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Why Malformations of Cortical
Development Cause Epilepsy
Alfonso Represa*

INSERM, Institut de Neurobiologie de la Méditerranée, Aix-Marseille University, Marseille, France

Malformations of cortical development (MCDs), a complex family of rare disorders,
result from alterations of one or combined developmental steps, including progenitors
proliferation, neuronal migration and differentiation. They are an important cause of
childhood epilepsy and frequently associate cognitive deficits and behavioral alterations.
Though the physiopathological mechanisms of epilepsy in MCD patients remain poorly
elucidated, research during the past decade highlighted the contribution of some factors
that will be reviewed in this paper and that include: (i) the genes that caused the
malformation, that can be responsible for a significant reduction of inhibitory cells
(e.g., ARX gene) or be inducing cell-autonomous epileptogenic changes in affected
neurons (e.g., mutations on the mTOR pathway); (ii) the alteration of cortical networks
development induced by the malformation that will also involve adjacent or distal cortical
areas apparently sane so that the epileptogenic focus might be more extended that
the malformation or even localized at distance from it; (iii) the normal developmental
processes that would influence and determine the onset of epilepsy in MCD patients,
particularly precocious in most of the cases.

Keywords: cortical malformation, epileptogenesis, developmental disorder, ARX, mTOR, focal cortical dysplasia,
gray matter heterotopia

INTRODUCTION

Malformations of cortical development (MCD) are a complex family of rare disorders that result
from alterations of one or combined developmental steps, including proliferation of neural
progenitors, migration of neuroblasts to the cortical plate, layer organization and neuronal
maturation (Barkovich et al., 2012). Thus, in general, alterations of neuronal and glial proliferation
associating neuronal dysgenesis are a cause of focal cortical dysplasia type II (FCD-type
II); alterations of neuronal migration leading to ectopic localization of neurons are a cause
of periventricular nodular heterotopia (neurons accumulate along the ventricular walls) and
subcortical band heterotopia (SBH; neurons accumulate in the white matter between the cortex and
the ventricular wall); alterations on processes subsequent to neuronal migration are at the origin of
polymicrogyria, characterized by a cortex organized in multiple small gyri (Barkovich et al., 2012).

Malformations of cortical development are an important cause of childhood epilepsy. Though
the precise incidence of MCDs is not known, it is estimated that they account for up to 40% of cases
of intractable or medication-resistant childhood epilepsies (Barkovich et al., 2012; Guerrini and
Dobyns, 2014) and that at least 75% of the patients with MCDs will have epilepsy (Leventer et al.,
1999). Associated to seizures, the patients display different comorbidities, particularly cognitive
deficits, that are more frequent and severe when epilepsy begins early in life (Berg et al., 2017).
MCDs consequently represent a severe burden for patients, families and society.
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Though the physiopathological mechanisms of epilepsy in
MCD patients remain unclear, clinical and experimental data
suggest that epileptogenesis results from diverse developmental
processes that can be cell autonomous or not, directly imputable
to the genetic cause of the malformation or linked to an
abnormal development of neuronal networks. In this review,
we will discuss the pathophysiological mechanisms involved
in MCD epileptogenesis through the analysis of three distinct
matters: the genetic causes of MCDs, the localization of the
epileptogenic focus and the age at the epilepsy onset in patients
and animal models.

CAUSATIVE GENES AND
EPILEPTOGENESIS

The classification of cortical malformations according to
the developmental step involved (proliferation, migration or
differentiation) or the type of malformation generated (e.g., gray
matter heterotopia, lissencephaly, focal cortical dysplasia) does
not provide clear indications about the epileptogenic process.
However, the analysis of causative genes and their respective
cellular roles, provided in some cases interesting data that would
help the understanding of the epileptogenic process.

The pathogenesis of MCDs is multifactorial involving different
genes and environmental factors. There is a large and increasing
number of genes identified during the past decade as causative of
MCD (Guerrini and Dobyns, 2014). This is an exciting research
field that is also contributing to our knowledge of genetic factors
controlling brain development. However, the objective of this
report is not to provide a complete overview of the genetic
causes of MCDs, but to discuss some examples that help our
understanding of epileptogenesis.

One of the more fascinating genes causing brain malformation
is ARX (aristaless related homeobox gene). In vitro and in vivo
studies have shown that the Arx gene is both a positive
and a negative regulator of gene transcription important for
brain development (Collombat et al., 2003; Seufert et al.,
2005; McKenzie et al., 2007; Fullenkamp and El-Hodiri, 2008).
Among the roles of this gene are the regionalization of the
brain, the proliferation of cortical progenitors, the migration
of interneurons and early commitment of cholinergic neurons
(Colombo et al., 2004; Marsh et al., 2009, 2016; Friocourt and
Parnavelas, 2010). Numerous mutations of the ARX gene have
been reported in more than a dozen different early neurological
disorders, where intellectual disability is associated or not
with epileptic seizures (Bienvenu et al., 2002; Kitamura et al.,
2002; Stromme et al., 2002). These conditions do or do not
associate brain malformations during embryonic development
(Shoubridge et al., 2010). Phenotypic heterogeneity may, in part,
be explained by the nature and location of ARX mutations (Kato
et al., 2004; Olivetti and Noebels, 2012). Indeed, phenotypes
without malformation are mainly caused by mutations that
are in the polyalanine domains and outside the homeodomain.
Conversely, the more severe phenotypes with brain malformation
are mostly associated with mutations leading to protein
truncation or located in the homeodomain; this is the case for

the XLAG syndrome characterized by a severe lissencephaly,
agenesis of the corpus callosum and abnormal genitalia. Animal
models so far generated have shown that Arx deficient mice or
Knockin mice displaying Arx mutations associate a more or less
pronounced reduction of cortical GABAergic and cholinergic
neurons (reviewed in Olivetti and Noebels, 2012) and the analysis
of post-mortem brain tissue reported a three-layered cortex
containing exclusively pyramidal neurons in XLAG patients from
three different families (Bonneau et al., 2002). In the context of
developmental malformations, ARX related syndromes can be
thus considered as “interneuronopathies” and the epilepsy and
cognitive deficits reported in patients and animal models, would
be directly related to the reduction of inhibition. Glutamatergic
neurons do not express ARX and are not directly affected by
the mutation of ARX but support the consequences and are thus
responsible for the expression of epileptic seizures.

Mutations affecting the activation of the mammalian target
of rapamycin (mTOR)-signaling pathway have been identified
in focal malformations of cortical development associating
alterations of progenitor cell proliferation, defective neuronal
migration and lamination and the presence of cytomegalic
neurons and balloon cells as a result of a defective differentiation
program of cortical cells. These malformations include FCD
type II and Hemimegalencephaly (Harvey et al., 2008; Blümcke
et al., 2011; D’Gama et al., 2017). Tuberous sclerosis, a rare
multisystem genetic disease condition that in the brain generates
cortical tubers (focal distortions in cellular organization and
morphology which extend into the subcortical white matter) is
also caused by a hyperactivation of mTORC1, due to mutations in
either TSC1 or TSC2 genes (European Chromosome 16 Tuberous
Sclerosis Consortium, 1993). This disorder presents intractable
epilepsy, cognitive disability, and autism spectrum disorders.
Interestingly, tuberal lesion display cellular features similar
to FCD type II (i.e., cytomegalic neurons and balloon cells).
Therefore, collectively, these disorders might be referred to as
“mTORopathies” (Reviewed by Crino, 2015; Marsan and Baulac,
2018). During the past decade somatic activation mutations in
mTOR itself have been identified in these syndromes (Lim et al.,
2015; Mirzaa et al., 2016; Møller et al., 2016; D’Gama et al.,
2017; Ribierre et al., 2018). In addition, positive (e.g., gain of
function mutations in Akt1 or AKT3; Lee et al., 2012; Poduri
et al., 2012; Jansen et al., 2015) or negative (e.g., TSC2, or
DEPDC5; Baulac et al., 2015; D’Gama et al., 2017; Lim et al.,
2017) regulators of mTOR have been implicated in FCD type II
and Hemimegalencephaly.

Because some patients with FCD are surgically treated, there
have been opportunities for investigating on resected tissue
neuronal properties (reviewed by Abdijadid et al., 2015). These
investigations described for example an abnormal expression
of glutamate and GABA receptor in dysplastic and heterotopic
neurons (Crino et al., 2001; Lozovaya et al., 2014), a reduction
of GABAA -receptor-mediated inhibition (Calcagnotto et al.,
2005), an altered pattern of expression and distribution of
synaptic protein SV2 (Toering et al., 2009). Carlos Cepeda and
coworkers nicely evaluated the electrophysiological properties
of cytomegalic neurons and balloon cells and identified in
dysplastic areas the presence of neurons with immature cellular
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and synaptic properties (Cepeda et al., 2007); these observations
gave origin to the hypothesis that local interactions of dysmature
cells, that would be directly affected by the mutations, with
normal postnatal neurons produce seizures (Cepeda et al.,
2007). Though these investigations did not elucidate the exact
mechanisms of epileptogenesis in FCD, they indicate clearly that
different cell types, molecular changes and cellular interactions
are contributing factors.

Many neuronal changes reported on neurons from FCD type
II or tuber resections would be considered as cell autonomous
as they indicate that the hyperactivation of the mTOR pathway
leads to neuronal and synaptic dysfunctions, that contribute to
epilepsy, independently from the cytoarchitectonic alteration.
This notion has been confirmed by Hsieh et al. (2016) when
investigating a murine model of type II FCDs by increasing
mTOR activity in layer 2/3 neurons of the medial prefrontal
cortex. When the hyperactivation of mTOR was induced
in cortical progenitors by in utero electroporation, animals
displayed dyslamination and cytomegalic neurons; associated
to these changes, animals developed spontaneous tonic-clonic
seizures. However, when mTOR hyperactivation was induced
after corticogenesis, thanks to the use of inducible vectors,
animals still displayed an epileptic condition without neuronal
misplacement and dysmorphogenesis. In agreement with this,
my lab has shown that heterozygous mice from a Tsc1-KO line,
develop spontaneous seizures during the first month of life in the
absence of any apparent cortical dysplasia (Lozovaya et al., 2014).
In this study we demonstrated that Tsc1+/−neurons, particularly
L4 spiny stellate cells, display an anomalous expression of
NR2C receptors resulting in a change on the kinetics of
NMDA currents and that this change was sufficient to induce
the epileptic condition. Indeed, the treatment of pups with
antagonists specific for NR2C transiently abolished seizures
(Lozovaya et al., 2014). We also demonstrated in this report
that treatment of newborn mice with rapamycin was sufficient
to reverse the phenotype confirming the link between mTORC1
hyperactivation and NMDA receptor changes. Interestingly,
cortical resections from patients with tuberous sclerosis and FCD
type II also demonstrated higher expression levels of NR2C
as compared with control fetal or adult samples (Lozovaya
et al., 2014); in addition to this, patch-clamp recordings on
these cortical resections demonstrated the contribution of NR2C
to NMDA currents confirming the potential role of NR2C to
epileptogenesis in mTORpathies.

It is also important to remind, however, that human samples
investigated were obtained from severely affected, pharmaco-
resistant patients with resection of the epileptogenic zone being
the only therapeutic option. The epileptic process by itself
can be cause of many subsequent alterations, including an
excitatory/inhibitory imbalance. Thus, based on investigations
of a Tsc1-KO mice line, Bateup et al. (2013) reported that
many biochemical, transcriptional and functional changes in Tsc1
neurons arise secondarily, due to increased network activity.
To study the epileptogenic process itself, we must develop
appropriate experimental paradigms in order to evaluate the
changes that increase the excitability of neurons and networks
and that take place before epilepsy onset.

In conclusion, the two paradigmatic examples discussed
before, suggest that the initial genetic alteration that yields
cytoarchitectonic disruptions of cortical development, might
also be responsible for the clinical manifestations. However,
these investigations also highlighted to a certain extent the
importance of cellular interactions and the possibility that
developmental changes, that might involve non-mutated neurons
during a particularly vulnerable developmental period, could also
contribute to the emergence of epilepsy and/or cognitive deficits.

THE EPILEPTOGENIC NETWORK

Investigations combining EEG and functional imaging have
demonstrated that patients with focal cortical malformations
display interictal or ictal events not only in the affected area (the
malformation itself) but also in more or less distal cortical areas.
Thus, reports of patients with SBH or periventricular nodular
heterotopia indicate that the epileptogenic network is restricted
to the heterotopia, or involves both the heterotopia and the
surrounding cortex or localizes out of the heterotopia (Mai et al.,
2003; Tassi et al., 2005; Kobayashi et al., 2006; Tyvaert et al.,
2008; Valton et al., 2008; Christodoulou et al., 2012; Shafi et al.,
2015; Pizzo et al., 2017). In patients with FCD, it has also been
reported that epileptogenicity extends beyond the limit of the
malformation in many patients (Aubert et al., 2009). Another
pathological conditions in which the adjacent or even more distal
cortex can be the primary origin of epileptiform activity is the
tuberous sclerosis. Although tubers are thought to be the initial
heart of the epileptogenic zone, electrocorticographic recordings
of some patients revealed epileptiform activities and ictal onsets
in the perituberal cortex (Madhavan et al., 2007; Major et al.,
2009; Ma et al., 2012).

Though conclusions are hampered by the diversities of clinical
courses, that includes variabilities on epilepsy onset, type of
seizures, efficiency of AEDs, cortical area affected, etc., these
data tend to support the notion that epileptic network frequently
involves supposedly “healthy” cortical areas that are affected by
the presence of a cortical malformation. We investigated this
notion in a rat model of SBH induced by in utero (by embryonic
day 15) knockdown (KD) of Dcx, the main causative gene of this
condition (des Portes et al., 1998; Gleeson et al., 1998; Pilz et al.,
1998). In Dcx-KD rats, affected neurons fail to migrate to the
cortical plate and form a band of ectopic neurons in the white
matter of the electroporated hemisphere (Bai et al., 2003). Dcx-
KD rats display altered neocortical excitability already present at
the second postnatal week, resulting in an increased propensity
for convulsant-induced seizures and spontaneous absence-like
seizures in adulthood (Ackman et al., 2009; Manent et al., 2009;
Lapray et al., 2010).

We first investigated in Dcx-KD juvenile rats the phenotype
of ectopic neurons and found that they displayed a reduced
dendritic tree as compared with control (mismatch) neurons
and a reduced density of dendritic spines (Ackman et al.,
2009; Martineau et al., 2018). We also performed genetic
labeling of scaffolding proteins PSD-95 and gephyrin for
quantifying, respectively, glutamatergic and GABAergic synapses
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in ectopic neurons and observed that they were severely reduced
(Martineau et al., 2018). These structural changes were associated
with a decrease of the frequency of glutamatergic and GABAergic
synaptic currents in patch-clamp recordings (Ackman et al.,
2009; Martineau et al., 2018). Though DCX also plays a role on
neuron maturation (Martineau et al., 2018), the ectopic position
of neurons is mainly responsible for the impaired development
and synaptogenesis.

Reports on other animal models of cortical migration defects
revealed similar features: neurons displayed a simplification of
their dendritic arbors in ectopic gray masses induced by either
fetal irradiation (Ferrer et al., 1984) or treatment of pregnant
rats with methylazoxymethanol (MAM) (Singh, 1980; Chevassus
au Louis et al., 1998; Rafiki et al., 1998; Sancini et al., 1998);
a significant diminution in spine numbers was also reported in
MAM treated offspring (Colciaghi et al., 2014). All together these
observations confirm that the positioning of neocortical neurons
significantly impacts the subsequent development of dendrites
and synapses impairing their integration in functional networks.

In contrast to these dendritic and synaptic defects, ectopic
neurons develop axonal projections toward targets that are
considered to be “normal” for cortical neurons. In DCX-KD rats,
ectopic neurons form cortico-cortical projections like Layer II/III
neurons: they reach layers V-VI in the ipsilateral cortex and send
axonal projections to the contralateral cortex (Ackman et al.,
2009); they also form cortico-striatal connections like Layer V
neurons. Similarly, ectopic neurons in irradiated rats and in Tish
rats, respectively, lesional and genetic models of SBH, project
as normal Layer V neurons to the spinal cord and thalamus
(D’Amato and Hicks, 1980; Jensen and Killackey, 1984; Lee et al.,
1997). Therefore, ectopic neurons, though poorly innervated as
compared with their normotopic counterparts, are in the position
of spreading signals to typical cortical targets and participating in
the propagation of epileptic activities.

We then analyzed the synaptic properties of normotopic
neurons from DCX-KD rats to evaluate if the SBH altered the
development of normal positioned neurons. Our studies revealed
that normotopic neurons displayed an increased frequency
of spontaneous glutamatergic post-synaptic currents while
GABAergic currents were unaffected (Ackman et al., 2009). As
a consequence, the excitatory/inhibitory ratio of synaptic inputs
was increased in normotopic neurons (Ackman et al., 2009).
Calcium imaging analysis also revealed that more neurons were
active in the cortex overlaying SBH than in the cortex of control
rats and that they displayed higher frequency of spontaneous
events. In addition, more neurons exhibited synchronized events
(Ackman et al., 2009). More recently, in a rat model of bilateral
double cortex we also observed that the strength of excitatory
L4 to L2/3 synapses (Figure 1), the intrinsic properties of
L4 glutamatergic cells and the excitation/inhibition ratio in
L2/3 converge into making the early stage of cortical sensory
integration abnormally strong in somatosensory cortex adjacent
to heterotopia, thus demonstrating developmental alterations of
cortical functional circuits that likely play a major role in the
cortical dysfunction of the malformed brain (Plantier et al., 2018).
Investigations of animal models of periventricular heterotopia
induced by irradiation (Zhu and Roper, 2000) or treatment

FIGURE 1 | Collateral Alterations of Functional Cortical Circuits in a Rat Model
of Subcortical Band Heterotopia. (A) Representative examples of
across-barrel brain slices from control (Mismatch) and Dcx-KD rats.
Fluorescence microphotographs of electroporated cells are superimposed on
schematized views of barrels (in white) and SBH (in green). Red dashed line
rectangles illustrate the cortical columns evaluated in the study. (B) Excitatory
synaptic input maps for L2/3 neurons in mismatch and Dcx-KD rats. Colors
indicate the mean amplitude of excitatory synaptic responses in a 100-ms
time window. White circles show soma positions of recorded L2/3 neurons.
Solid white lines delineate barrels. Note that in DCX-KD rats the strength of
excitatory inputs to L2/3 neurons are dramatically increased (for more details
see Plantier et al., 2018).

with carmustine (Benardete and Kriegstein, 2002) also found an
excitatory/inhibitory misbalance in normotopic cortex.

Taken together these data support the notion that normotopic
cortex becomes hyper excitable during postnatal development
and that it would be responsible for epileptogenesis in
DCX-KD rats. Interestingly, the suppression of excitability of
ectopic neurons by their transfection with potassium channels
Kir2.1, did not alter the high propensity of DCX-KD rats
to experience seizures, while the transfection of ectopic and
normotopic neurons significantly reduces it (Petit et al., 2014).
These observations prompted us to evaluate the origin of
interictal events on acute slices from DCX-KD rats using 60-
channels microelectrode arrays (Petit et al., 2014). Our data
demonstrated that most of interictal discharges initiated in
normotopic cortex and propagated secondarily to the SBH.
In vivo recording with deep electrodes in Tish rats (Chen et al.,
2000) also indicated that normotopic neurons were more prone
to exhibit epileptiform activities than heterotopic neurons and
that blocking the connectivity between the two fields by a local
TTX injection inhibited the firing of ectopic but not that of
normotopic neurons.

Another pathological condition in which the dysplastic or
malformed brain area is not the primary origin of epileptiform
activities is provided by the rat model of microgyria induced
in rats by freeze-lesioning of deep layer neurons at neonatal
stage. Though injured animals did not display spontaneous
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epileptic events, it has been proven that there is a focal region
of hyperexcitability around the lesion (Jacobs et al., 1996); In
the cortex lateral to the microgyria, an increased excitation
of L5 neurons and an increased inhibition of L5 and L2/3
neurons were observed (Jacobs and Prince, 2005; Brill and
Huguenard, 2010; Jin et al., 2014). In addition to this, a rather
widespread cortical reduction of GABAA receptor subunits α1,
α2, α3, α5, and γ2 expression has been reported (Redecker
et al., 2000). These alterations together would account for the
increased excitability of an apparently normal cortex lateral
to the microgyria.

Collectively, these clinical and experimental observations
support the notion that anatomically unaltered cortical
regions surrounding the malformation are included in a
large epileptogenic network. We propose that developmental
changes in these areas play a major role in the generation of more
or less large epileptogenic networks.

THE TIME OF ONSET OF EPILEPSY

The age at epilepsy onset in patients with MCD is largely variable
ranging from newborn to adulthood. This is observed even within
the same type of cortical malformations. For example, in a series
of 132 patients with polymicrogyria (Leventer et al., 2010), the
mean age of epilepsy onset was 4.9 ± 6.7 years but ranging
from 1 day to 34 years of age. However, 43% of the patients had
the first seizures during the first year of life, coinciding with an
important period of synaptogenesis. In a similar way, the analysis
of 86 female patients with mutations of DCX (Bahi-Buisson et al.,
2013) indicate an early onset, during the first year of life, in 55%
of cases, but the age at onset varied between the first month of
life to 17 years.

These data indicate that the majority of patients with MCD
develop the first clinical manifestations of epilepsy during the
first year of life, a period of brain development characterized
by an intense neuronal maturation and synaptogenesis. It is
thus plausible that epilepsy onset is facilitated in these patients
by the increasing weigh of maturing synaptic inputs and/or
the maturation of the axonal initial segment responsible for
the genesis of action potentials and/or other molecular and
synaptic changes linked to neuronal maturation. Interestingly,
in Dravet syndrome (Dravet, 1978), a severe encephalopathy
due to de novo loss-of-function mutations in the SCN1A gene,
leading to haploinsufficiency of NaV1.1 channel (reviewed by
Brunklaus and Zuberi, 2014), epilepsy typically presents around
6 months of age. Expression analysis on human temporal cortex
and hippocampus demonstrated that Na(v)1.1 immunoreactivity
increased significantly during the late fetal and postnatal periods,
reaching peaks 7–9 months after birth (Wang et al., 2011).
Hence, epilepsy onset in Dravet patients compares with the
developmental course of the affected channel. It is not unlikely
that such developmental pattern plays a role on the onset of
epileptic manifestations in Dravet and would be also participating
in other epileptic syndromes.

It is well established that GABAergic synapses play a major
pathophysiological role in epilepsy and thus GABAergic
transmission is targeted by many antiepileptic drugs. Synaptic
currents induced by the activation of GABAA receptors
are carried by chloride and consequently the intracellular
concentrations of this anion determine the type of response
evoked by the transmitter. In adult neurons, the potassium-
chloride cotransporter KCC2 usually extrudes chloride
promoting hyperpolarizing, inhibitory, responses. In immature
neurons the Na+-K+-2Cl− cotransporter NKCC1 loads them
with chloride and favors depolarizing responses to GABA so

FIGURE 2 | Schematic representation of some MCD-related epileptogenic changes in neurons and neuronal networks.
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that the transmitter might have in developmental brain an
excitatory effect (Ben-Ari et al., 1989). However, though the
topic remains controversial, the action of GABA on developing
cortical neurons in vivo seems to be inhibitory (Tyzio et al.,
2008; Kirmse et al., 2015; Valeeva et al., 2016), maybe because of
its shunting effect (Staley and Mody, 1992) that is independent
from the polarity of GABAergic signals. Interestingly, in
epileptic tissue from patients with temporal lobe epilepsy it
has been shown that changes in chloride homeostasis switch
GABAergic signaling from hyperpolarizing to depolarizing
(Cohen et al., 2002; Khalilov et al., 2003; Huberfeld et al.,
2007). It is therefore likely that GABA may play an important
role in childhood epilepsy and that its depolarizing actions in
immature neurons would contribute to epilepsy onset. However,
in cortical resections from pediatric (6 to 14 months old)
Sturge-Weber patients, a severe epileptogenic neurocutaneous
syndrome, we found that GABA played mainly an inhibitory
and anticonvulsive role (Tyzio et al., 2009). On the other hand,
investigations on resections from pediatric patients with FCD,
Hemimegalencephaly and tuberous sclerosis (Aronica et al.,
2007; Talos et al., 2012) suggest a possible dysregulation on the
expression of cation-chloride co-transporters. These changes
may be activity-dependent and secondary to the epileptic
process itself (Puskarjov et al., 2012); they would thus participate
more in the expression and evolution of the epileptic disease
than at its onset.

The occurrence of a large time window between the initial
insult and the onset of clinical manifestations is a common
feature for many neurological disorders, including Parkinson
and Alzheimer diseases. In these neurodegenerative diseases the
latency window can be related to the evolution of the disease,
for example the progressive degeneration of dopaminergic
neurons in Parkinson disease. Following this reasoning, the
late onset of epilepsy reported in some patients might be
due to developmental apoptotic processes and/or synaptic
(Bourgeois and Rakic, 1993) and dendritic (Zehr et al., 2006)
pruning. It is interesting to note that synaptic pruning is
particularly important around puberty. For example, electron
microscopy studies in primates (Bourgeois and Rakic, 1993)
showed a significant reduction in the density of synapses
in cortex and hippocampus, during this period of time and
imaging analysis of human cortex depicted a reduction in
cortical thickness during equivalent periods (Giedd et al.,
2006; Raznahan et al., 2011). Would these changes contribute
to the peak of incidence of epilepsy that was observed at
this period of life (Doherty et al., 2003)? this including
juvenile myoclonic epilepsy, emerging mainly in mid-to-
late childhood (Martínez-Juárez et al., 2006; Kasteleijn-Nolst
Trenité et al., 2013; Ochoa-Gómez et al., 2017)? We do not
have an obvious answer on this, but it is clear that we
are facing a particular vulnerable period of brain life and
that a deregulation of axonal pruning processes, for example
affecting more inhibitory synapses or stabilizing recurrent
axonal loops, could reveal at last a neuronal excitability status
concealed until then.

Alternatively, the intervention of additional precipitating
factors during specific time windows, can be at play. Among

the factors that would increase neuronal excitability one
can mention hormones like estrogens (Zehr et al., 2006) or
progesterone (Smith et al., 2002) and inflammation (Bartolini
et al., 2018). There is an increasing interest for the role of
inflammation and glia in neurodevelopmental disorders like
autism spectrum disorders (ASD), schizophrenia, cerebral palsy,
cognitive impairment, epilepsy and depression (Galic et al.,
2012; Devinsky et al., 2013; Vezzani, 2013; Knuesel et al.,
2014; Marchi et al., 2014; Rosenblat et al., 2014; Jiang et al.,
2018). Indeed, microglia could have a significant physiological
role, contributing to the regulation of cell death/survival,
synapse pruning and neurogenesis (Stolp et al., 2011; Vukovic
et al., 2012; Kettenmann et al., 2013; Wake et al., 2013).
Microglia thus contribute to the regulation of maturation
and plasticity of developing neuronal circuits. Furthermore,
it has been suggested that microglia would act as a versatile
modulator of neurogenesis depending on its activation state: pro-
inflammatory microglia would reduce neurogenesis while anti-
inflammatory microglia could increase neurogenesis through
release of trophic factors (e.g., Kyritsis et al., 2012) and it is
suspected that similar dual action of microglia applies to synaptic
functioning, plasticity and stability (Marin and Kipnis, 2013;
Nisticò et al., 2017).

The contribution of inflammation and glial cells in epilepsy
has been particularly investigated (reviewed by Devinsky et al.,
2013; Vezzani, 2013) and it has been proposed that inflammation
plays an important role in the onset of pediatric seizures
(Bartolini et al., 2018). While some infections (e.g., bacterial
meningitis, herpes virus, toxoplasmosis) are known to cause
acute seizures (Lowenstein et al., 2014; Vezzani et al., 2016)
an actual epileptogenic process would take place in some
patients after an initial infection. The precise mechanisms
remain to be elucidated but they seem to depend on “the
pathogen itself, the developmental stage, the degree of cytokine-
mediated inflammatory response and the genotype-phenotype of
the person concerned” (Vezzani, 2013). It can be thus proposed
that in a patient with a susceptible brain condition like MCDs,
inflammation-induced responses would act as a second-hit, a
trigger or an aggravating factor. Interestingly, signs of activation
of both innate and adaptative immunities have been found
in dysplastic tissue from FCD type II patients (Iyer et al.,
2010), suggesting that at least in this type of malformation
an inflammatory process is engaged. To note, however, that
some of these changes can be related to the action of mTOR
on glial cells or be a consequence of the epileptic activity per
se. Future research is required for better understanding this
important question.

CONCLUSION

In conclusion, epileptogenesis in MCDs occur during a period
of brain development characterized by many molecular, cellular
and structural changes (Figure 2) that determine the features
of brain operation and functioning and impact epileptogenic
processes and epilepsy expression. Epileptogenesis in MCDs
involves complex multifactorial causes that would relate to
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the type of gene or insult involved in the malformation,
normal developmental processes and developmental adaptative
or reactive changes in cortical circuitry. The emergence
of new animal models reproducing focal mosaic lesions
associating manifestation reminiscent of human clinical
symptoms, open promising vistas for better understanding
the physiopathology of these disorders and testing new
therapeutic options.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

The financial support from European Community 7th
Framework programs [Development and Epilepsy – Strategies
for Innovative Research to improve diagnosis, prevention and
treatment in children with difficult to treat Epilepsy (DESIRE)],
EraNet Neuron [Deciphering hyperexcitable networks associated
with neurodevelopmental lesions (DeCipher), #ANR-15-NEUR-
0001-03], INSERM and CNRS are acknowledged.

ACKNOWLEDGMENTS

The author thanks Drs. P. P. Lenck-Santini, V. Crepel and M.
Milh for critically reading the manuscript.

REFERENCES
Abdijadid, S., Mathern, G. W., Levine, M. S., and Cepeda, C. (2015). Basic

mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci.
Ther. 21, 92–103. doi: 10.1111/cns.12345

Ackman, J. B., Aniksztejn, L., Crepel, V., Becq, H., Pellegrino, C., Cardoso, C., et al.
(2009). Abnormal network activity in a targeted genetic model of human double
cortex. J. Neurosci. 29, 313–327. doi: 10.1523/JNEUROSCI.4093-08.2009

Aronica, E., Boer, K., Redeker, S., Spliet, W. G., van Rijen, P. C., Troost, D.,
et al. (2007). Differential expression patterns of chloride transporters,
nNa+-K+-2Cl–cotransporter and K+-Cl–cotransporter, in epilepsy-associated
malformations of cortical development. Neuroscience 145, 185–196. doi: 10.
1016/j.neuroscience.2006.11.041

Aubert, S., Wendling, F., Regis, J., McGonigal, A., Figarella-Branger, D., Peragut,
J. C., et al. (2009). Local and remote epileptogenicity in focal cortical dysplasias
and neurodevelopmental tumours. Brain 132, 3072–3086. doi: 10.1093/brain/
awp242

Bahi-Buisson, N., Souville, I., Fourniol, F. J., Toussaint, A., Moores, C. A.,
Houdusse, A., et al. (2013). New insights into genotype-phenotype correlations
for the doublecortin-related lissencephaly spectrum. Brain 136, 223–244.
doi: 10.1093/brain/aws323

Bai, J., Ramos, R. L., Ackman, J. B., Thomas, A. M., Lee, R. V., and LoTurco,
J. J. (2003). RNAi reveals doublecortin is required for radial migration in rat
neocortex. Nat. Neurosci. 6, 1277–1283. doi: 10.1038/nn1153

Barkovich, A. J., Guerrini, R., Kuzniecky, R. I., Jackson, G. D., and Dobyns, W. B.
(2012). A developmental and genetic classification for malformations of cortical
development: update 2012. Brain 135, 1348–1369. doi: 10.1093/brain/aws019

Bartolini, L., Libbey, J. E., Ravizza, T., Fujinami, R. S., Jacobson, S., and Gaillard,
W. D. (2018). Viral triggers and inflammatory mechanisms in pediatric
epilepsy. Mol. Neurobiol. 56, 1897–1907. doi: 10.1007/s12035-018-1215-5

Bateup, H. S., Johnson, C. A., Denefrio, C. L., Saulnier, J. L., Kornacker, K.,
and Sabatini, B. L. (2013). Excitatory/inhibitory synaptic imbalance leads to
hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron
78, 510–522. doi: 10.1016/j.neuron.2013.03.017

Baulac, S., Ishida, S., Marsan, E., Miquel, C., Biraben, A., Nguyen, D. K., et al.
(2015). Familial focal epilepsy with focal cortical dysplasia due to DEPDC5
mutations. Ann. Neurol. 77, 675–683. doi: 10.1002/ana.24368

Benardete, E. A., and Kriegstein, A. R. (2002). Increased excitability and decreased
sensitivity to GABA in an animal model of dysplastic cortex. Epilepsia 43,
970–982. doi: 10.1046/j.1528-1157.2002.40901.x

Ben-Ari, Y., Cherubini, E., Corradetti, R., and Gaiarsa, J. L. (1989). Giant synaptic
potentials in immature rat CA3 hippocampal neurones. J. Physiol. 416, 303–325.
doi: 10.1113/jphysiol.1989.sp017762

Berg, A. T., Tarquinio, D., and Koh, S. (2017). Early life epilepsies are a comorbidity
of developmental brain disorders. Semin. Pediatr. Neurol. 24, 251–263.
doi: 10.1016/j.spen.2017

Bienvenu, T., Poirier, K., Friocourt, G., Bahi, N., Beaumont, D., Fauchereau, F.,
et al. (2002). ARX, a novel Prd-class-homeobox gene highly expressed in the

telencephalon, is mutated in X-linked mental retardation. Hum. Mol. Genet. 11,
981–991. doi: 10.1093/hmg/11.8.981

Blümcke, I., Thom, M., Aronica, E., Armstrong, D. D., Vinters, H. V., Palmini, A.,
et al. (2011). The clinicopathologic spectrum of focal cortical dysplasias: a
consensus classification proposed by an ad hoc task force of the ILAE diagnostic
methods commission. Epilepsia 52, 158–174. doi: 10.1111/j.1528-1167.2010.
02777.x

Bonneau, D., Toutain, A., Laquerriere, A., Marret, S., Saugier-Veber, P.,
Barthez, M., et al. (2002). X-linked lissencephaly with absent corpus callosum
and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging,
and neuropathological findings. Ann. Neurol. 51, 340–349. doi: 10.1002/ana.
10119

Bourgeois, J. P., and Rakic, P. (1993). Changes of synaptic density in the primary
visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13,
2801–2820. doi: 10.1523/JNEUROSCI.13-07-02801.1993

Brill, J., and Huguenard, J. R. (2010). Enhanced infragranular and supragranular
synaptic input onto layer 5 pyramidal neurons in a rat model of cortical
dysplasia. Cereb. Cortex 20, 2926–2938. doi: 10.1093/cercor/bhq040

Brunklaus, A., and Zuberi, S. M. (2014). Dravet syndrome–from epileptic
encephalopathy to channelopathy. Epilepsia 55, 979–984. doi: 10.1111/epi.
12652

Calcagnotto, M. E., Paredes, M. F., Tihan, T., Barbaro, N. M., and Baraban, S. C.
(2005). Dysfunction of synaptic inhibition in epilepsy associated with focal
cortical dysplasia. J. Neurosci. 25, 9649–9657. doi: 10.1523/JNEUROSCI.2687-
05.2005

Cepeda, C., André, V. M., Wu, N., Yamazaki, I., Uzgil, B., Vinters, H. V.,
et al. (2007). Immature neurons and GABA networks may contribute to
epileptogenesis in pediatric cortical dysplasia. Epilepsia 48(Suppl. 5), 79–85.
doi: 10.1111/j.1528-1167.2007.01293.x

Chen, Z. F., Schottler, F., Bertram, E., Gall, C. M., Anzivino, M. J., and Lee,
K. S. (2000). Distribution and initiation of seizure activity in a rat brain with
subcortical band heterotopia. Epilepsia 41, 493–501. doi: 10.1111/j.1528-1157.
2000.tb00201.x

Chevassus au Louis, N., Rafiki, A., Jorquera, I., Ben-Ari, Y., and Represa, A.
(1998). Neocortex in the hippocampus: morphofunctional analysis of CA1
heterotopiae in the hippocampus of MAM treated rats. J. Comp. Neurol. 394,
520–536.

Christodoulou, J. A., Walker, L. M., Del Tufo, S. N., Katzir, T., Gabrieli, J. D.,
Whitfield-Gabrieli, S., et al. (2012). Abnormal structural and functional brain
connectivity in gray matter heterotopia. Epilepsia 53, 1024–1032. doi: 10.1111/
j.1528-1167.2012.03466.x

Cohen, I., Navarro, V., Clemenceau, S., Baulac, M., and Miles, R. (2002). On the
origin of interictal activity in human temporal lobe epilepsy in vitro. Science
298, 1418–1421. doi: 10.1126/science.1076510

Colciaghi, F., Finardi, A., Nobili, P., Locatelli, D., Spigolon, G., and Battaglia,
G. S. (2014). Progressive brain damage, synaptic reorganization and NMDA
activation in a model of epileptogenic cortical dysplasia. PLoS One 9:e89898.
doi: 10.1371/journal.pone.0089898

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 25010

https://doi.org/10.1111/cns.12345
https://doi.org/10.1523/JNEUROSCI.4093-08.2009
https://doi.org/10.1016/j.neuroscience.2006.11.041
https://doi.org/10.1016/j.neuroscience.2006.11.041
https://doi.org/10.1093/brain/awp242
https://doi.org/10.1093/brain/awp242
https://doi.org/10.1093/brain/aws323
https://doi.org/10.1038/nn1153
https://doi.org/10.1093/brain/aws019
https://doi.org/10.1007/s12035-018-1215-5
https://doi.org/10.1016/j.neuron.2013.03.017
https://doi.org/10.1002/ana.24368
https://doi.org/10.1046/j.1528-1157.2002.40901.x
https://doi.org/10.1113/jphysiol.1989.sp017762
https://doi.org/10.1016/j.spen.2017
https://doi.org/10.1093/hmg/11.8.981
https://doi.org/10.1111/j.1528-1167.2010.02777.x
https://doi.org/10.1111/j.1528-1167.2010.02777.x
https://doi.org/10.1002/ana.10119
https://doi.org/10.1002/ana.10119
https://doi.org/10.1523/JNEUROSCI.13-07-02801.1993
https://doi.org/10.1093/cercor/bhq040
https://doi.org/10.1111/epi.12652
https://doi.org/10.1111/epi.12652
https://doi.org/10.1523/JNEUROSCI.2687-05.2005
https://doi.org/10.1523/JNEUROSCI.2687-05.2005
https://doi.org/10.1111/j.1528-1167.2007.01293.x
https://doi.org/10.1111/j.1528-1157.2000.tb00201.x
https://doi.org/10.1111/j.1528-1157.2000.tb00201.x
https://doi.org/10.1111/j.1528-1167.2012.03466.x
https://doi.org/10.1111/j.1528-1167.2012.03466.x
https://doi.org/10.1126/science.1076510
https://doi.org/10.1371/journal.pone.0089898
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00250 March 29, 2019 Time: 16:53 # 8

Represa Epileptogenic Cortical Malformations

Collombat, P., Mansouri, A., Hecksher-Sorensen, J., Serup, P., Krull, J.,
Gradwohl, G., et al. (2003). Opposing actions of Arx and Pax4 in endocrine
pancreas development. Genes Dev. 17, 2591–2603. doi: 10.1101/gad.269003

Colombo, E., Galli, R., Cossu, G., Gecz, J., and Broccoli, V. (2004). Mouse
orthologue of ARX, a gene mutated in several X-linked forms of mental
retardation and epilepsy, is a marker of adult neural stem cells and forebrain
GABAergic neurons. Dev. Dyn. 231, 631–639. doi: 10.1002/dvdy.20164

Crino, P. B. (2015). mTOR signaling in epilepsy: insights from malformations of
cortical development. Cold Spring Harb. Perspect. Med. 5:a022442. doi: 10.1101/
cshperspect.a022442

Crino, P. B., Duhaime, A. C., Baltuch, G., and White, R. (2001). Differential
expression of glutamate and GABA-A receptor subunit mRNA in cortical
dysplasia. Neurology 56, 906–913. doi: 10.1212/WNL.56.7.906

D’Amato, C. J., and Hicks, S. P. (1980). Development of the motor system: effects
of radiation on developing corticospinal neurons and locomotor function. Exp.
Neurol. 70, 1–23. doi: 10.1016/0014-4886(80)90002-3

des Portes, V., Francis, F., Pinard, J. M., Desguerre, I., Moutard, M. L., Snoeck, I.,
et al. (1998). Doublecortin is the major gene causing X-linked subcortical
laminar heterotopia (SCLH). Hum. Mol. Genet. 7, 1063–1070. doi: 10.1093/
hmg/7.7.1063

Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N. C., and Rogawski, M. A.
(2013). Glia and epilepsy: excitability and inflammation. Trends Neurosci. 36,
174–184. doi: 10.1016/j.tins.2012.11.008

D’Gama, A. M., Woodworth, M. B., Hossain, A. A., Bizzotto, S., Hatem, N. E.,
LaCoursiere, C. M., et al. (2017). Somatic mutations activating the mTOR
pathway in dorsal telencephalic progenitors cause a continuum of cortical
dysplasias. Cell Rep. 21, 3754–3766. doi: 10.1016/j.celrep.2017.11.106

Doherty, M. J., Simon, E., De Menezes, M. S., Kuratani, J. D., Saneto, R. P.,
Homles, M. D., et al. (2003). When might hemispheric favouring of epileptiform
discharges begin? Seizure 12, 595–598.

Dravet, C. (1978). Severe epilepsies in infancy and childhood [in French]. Vie Méd.
8, 548–1548.

European Chromosome 16 Tuberous Sclerosis Consortium (1993). Identification
and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75,
1305–1315.

Ferrer, I., Xumetra, A., and Santamaría, J. (1984). Cerebral malformation induced
by prenatal X-irradiation, an autoradiographic and Golgi study. J. Anat. 138,
81–93.

Friocourt, G., and Parnavelas, J. G. (2010). Mutations in ARX result in several
defects involving GABAergic neurons. Front. Cell. Neurosci. 4:4. doi: 10.3389/
fncel.2010.00004

Fullenkamp, A. N., and El-Hodiri, H. M. (2008). The function of the Aristaless-
related homeobox (Arx) gene product as a transcriptional repressor is
diminished by mutations associated with X-linked mental retardation (XLMR).
Biochem. Biophys. Res. Commun. 377, 73–78. doi: 10.1016/j.bbrc.2008.09.116

Galic, M. A., Riazi, K., and Pittman, Q. J. (2012). Cytokines and brain excitability.
Front. Neuroendocrinol. 33, 116–125. doi: 10.1016/j.yfrne.2011.12.002

Giedd, J. N., Clasen, L. S., Lenroot, R., Greenstein, D., Wallace, G. L., Ordaz, S., et al.
(2006). Puberty-related influences on brain development. Mol. Cell. Endocrinol.
254–255, 154–162. doi: 10.1016/j.mce.2006.04.016

Gleeson, J. G., Allen, K. M., Fox, J. W., Lamperti, E. D., Berkovic, S., Scheffer, I.,
et al. (1998). Doublecortin, a brain-specific gene mutated in human X-linked
lissencephaly and double cortex syndrome, encodes a putative signaling protein.
Cell 92, 63–72. doi: 10.1016/S0092-8674(00)80899-5

Guerrini, R., and Dobyns, W. B. (2014). Malformations of cortical development:
clinical features and genetic causes. Lancet Neurol. 13, 710–726. doi: 10.1016/
S1474-4422(14)70040-7

Harvey, A. S., Cross, J. H., Shinnar, S., Mathern, G. W., and ILAE Pediatric Epilepsy
Surgery Survey Taskforce (2008). Defining the spectrum of international
practice in pediatric epilepsy surgery patients. Epilepsia 49, 146–155. doi: 10.
1111/j.1528-1167.2007.01421.x

Hsieh, L. S., Wen, J. H., Claycomb, K., Huang, Y., Harrsch, F. A., Naegele, J. R.,
et al. (2016). Convulsive seizures from experimental focal cortical dysplasia
occur independently of cell misplacement. Nat. Commun. 7:11753. doi: 10.1038/
ncomms11753

Huberfeld, G., Wittner, L., Clemenceau, S., Baulac, M., Kaila, K., Miles, R., et al.
(2007). Perturbed chloride homeostasis and GABAergic signaling in human

temporal lobe epilepsy. J. Neurosci. 27, 9866–9873. doi: 10.1523/JNEUROSCI.
2761-07.2007

Iyer, A., Zurolo, E., Spliet, W. G., van Rijen, P. C., Baayen, J. C., Gorter, J. A.,
et al. (2010). Evaluation of the innate and adaptive immunity in type I and type
II focal cortical dysplasias. Epilepsia 51, 1763–1773. doi: 10.1111/j.1528-1167.
2010.02547.x

Jacobs, K. M., Gutnick, M. J., and Prince, D. A. (1996). Hyperexcitability in a model
of cortical maldevelopment. Cereb. Cortex 6, 514–523. doi: 10.1093/cercor/6.3.
514

Jacobs, K. M., and Prince, D. A. (2005). Excitatory and inhibitory postsynaptic
currents in a rat model of epileptogenic microgyria. J. Neurophysiol. 93, 687–
696. doi: 10.1152/jn.00288.2004

Jansen, L. A., Mirzaa, G. M., Ishak, G. E., O’Roak, B. J., Hiatt, J. B., Roden,
W. H., et al. (2015). PI3K/AKT pathway mutations cause a spectrum of brain
malformations from megalencephaly to focal cortical dysplasia. Brain 138,
1613–1628. doi: 10.1093/brain/awv045

Jensen, K. F., and Killackey, H. P. (1984). Subcortical projections from ectopic
neocortical neurons. Proc. Natl. Acad. Sci. U.S.A. 81, 964–968. doi: 10.1073/
pnas.81.3.964

Jiang, N. M., Cowan, M., Moonah, S. N., and Petri, W. A. Jr. (2018). The impact of
systemic inflammation on neurodevelopment. Trends Mol. Med. 24, 794–804.
doi: 10.1016/j.molmed.2018.06.008

Jin, X., Jiang, K., and Prince, D. A. (2014). Excitatory and inhibitory synaptic
connectivity to layer V fast-spiking interneurons in the freeze lesion model
of cortical microgyria. J. Neurophysiol. 112, 1703–1713. doi: 10.1152/jn.00854.
2013

Kasteleijn-Nolst Trenité, D. G., Schmitz, B., Janz, D., Delgado-Escueta, A. V.,
Thomas, P., Hirsch, E., et al. (2013). Consensus on diagnosis and management
of JME: from founder’s observations to current trends. Epilepsy Behav. 28(Suppl.
1), S87–S90. doi: 10.1016/j.yebeh.2012.11.051

Kato, M., Das, S., Petras, K., Kitamura, K., Morohashi, K., Abuelo, D. N., et al.
(2004). Mutations of ARX are associated with striking pleiotropy and consistent
genotype-phenotype correlation. Hum. Mutat. 23, 147–159. doi: 10.1002/humu.
10310

Kettenmann, H., Kirchhoff, F., and Verkhratsky, A. (2013). Microglia: new roles
for the synaptic stripper. Neuron 77, 10–18. doi: 10.1016/j.neuron.2012.12.023

Khalilov, I., Holmes, G. L., and Ben-Ari, Y. (2003). In vitro formation of a
secondary epileptogenic mirror focus by interhippocampal propagation of
seizures. Nat. Neurosci. 6, 1079–1085. doi: 10.1038/nn1125

Kirmse, K., Kummer, M., Kovalchuk, Y., Witte, O. W., Garaschuk, O., and
Holthoff, K. (2015). GABA depolarizes immature neurons and inhibits network
activity in the neonatal neocortex in vivo. Nat. Commun. 6:7750. doi: 10.1038/
ncomms8750

Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-Kogo, A., Kusaka, M.,
et al. (2002). Mutation of ARX causes abnormal development of forebrain and
testes in mice and X-linked lissencephaly with abnormal genitalia in humans.
Nat. Genet. 32, 359–369. doi: 10.1038/ng1009

Knuesel, I., Chicha, L., Britschgi, M., Schobel, S. A., Bodmer, M., Hellings, J. A.,
et al. (2014). Maternal immune activation and abnormal brain development
across CNS disorders. Nat. Rev. Neurol. 10, 643–660. doi: 10.1038/nrneurol.
2014.187

Kobayashi, E., Hawco, C. S., Grova, C., Dubeau, F., and Gotman, J. (2006).
Widespread and intense BOLD changes during brief focal electrographic
seizures. Neurology 66, 1049–1055. doi: 10.1212/01.wnl.0000204232.37720.a4

Kyritsis, N., Kizil, C., Zocher, S., Kroehne, V., Kaslin, J., Freudenreich, D., et al.
(2012). Acute inflammation initiates the regenerative response in the adult
zebrafish brain. Science 338, 1353–1356. doi: 10.1126/science.1228773

Lapray, D., Popova, I. Y., Kindler, J., Jorquera, I., Becq, H., Manent, J. B., et al.
(2010). Spontaneous epileptic manifestations in a DCX knockdown model of
human double cortex. Cereb. Cortex 20, 2694–2701. doi: 10.1093/cercor/bh
q014

Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., et al.
(2012). De novo somatic mutations in components of the PI3K-AKT3-mTOR
pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945. doi: 10.1038/ng.
2329

Lee, K. S., Schottler, F., Collins, J. L., Lanzino, G., Couture, D., Rao, A., et al.
(1997). A genetic animal model of human neocortical heterotopia associated

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 25011

https://doi.org/10.1101/gad.269003
https://doi.org/10.1002/dvdy.20164
https://doi.org/10.1101/cshperspect.a022442
https://doi.org/10.1101/cshperspect.a022442
https://doi.org/10.1212/WNL.56.7.906
https://doi.org/10.1016/0014-4886(80)90002-3
https://doi.org/10.1093/hmg/7.7.1063
https://doi.org/10.1093/hmg/7.7.1063
https://doi.org/10.1016/j.tins.2012.11.008
https://doi.org/10.1016/j.celrep.2017.11.106
https://doi.org/10.3389/fncel.2010.00004
https://doi.org/10.3389/fncel.2010.00004
https://doi.org/10.1016/j.bbrc.2008.09.116
https://doi.org/10.1016/j.yfrne.2011.12.002
https://doi.org/10.1016/j.mce.2006.04.016
https://doi.org/10.1016/S0092-8674(00)80899-5
https://doi.org/10.1016/S1474-4422(14)70040-7
https://doi.org/10.1016/S1474-4422(14)70040-7
https://doi.org/10.1111/j.1528-1167.2007.01421.x
https://doi.org/10.1111/j.1528-1167.2007.01421.x
https://doi.org/10.1038/ncomms11753
https://doi.org/10.1038/ncomms11753
https://doi.org/10.1523/JNEUROSCI.2761-07.2007
https://doi.org/10.1523/JNEUROSCI.2761-07.2007
https://doi.org/10.1111/j.1528-1167.2010.02547.x
https://doi.org/10.1111/j.1528-1167.2010.02547.x
https://doi.org/10.1093/cercor/6.3.514
https://doi.org/10.1093/cercor/6.3.514
https://doi.org/10.1152/jn.00288.2004
https://doi.org/10.1093/brain/awv045
https://doi.org/10.1073/pnas.81.3.964
https://doi.org/10.1073/pnas.81.3.964
https://doi.org/10.1016/j.molmed.2018.06.008
https://doi.org/10.1152/jn.00854.2013
https://doi.org/10.1152/jn.00854.2013
https://doi.org/10.1016/j.yebeh.2012.11.051
https://doi.org/10.1002/humu.10310
https://doi.org/10.1002/humu.10310
https://doi.org/10.1016/j.neuron.2012.12.023
https://doi.org/10.1038/nn1125
https://doi.org/10.1038/ncomms8750
https://doi.org/10.1038/ncomms8750
https://doi.org/10.1038/ng1009
https://doi.org/10.1038/nrneurol.2014.187
https://doi.org/10.1038/nrneurol.2014.187
https://doi.org/10.1212/01.wnl.0000204232.37720.a4
https://doi.org/10.1126/science.1228773
https://doi.org/10.1093/cercor/bhq014
https://doi.org/10.1093/cercor/bhq014
https://doi.org/10.1038/ng.2329
https://doi.org/10.1038/ng.2329
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00250 March 29, 2019 Time: 16:53 # 9

Represa Epileptogenic Cortical Malformations

with seizures. J. Neurosci. 17, 6236–6242. doi: 10.1523/JNEUROSCI.17-16-
06236.1997

Leventer, R. J., Jansen, A., Pilz, D. T., Stoodley, N., Marini, C., Dubeau, F., et al.
(2010). Clinical and imaging heterogeneity of polymicrogyria: a study of 328
patients. Brain 133, 1415–1427. doi: 10.1093/brain/awq078

Leventer, R. J., Phelan, E. M., Coleman, L. T., Kean, M. J., Jackson, G. D., and
Harvey, A. S. (1999). Clinical and imaging features of cortical malformations
in childhood. Neurology 53, 715–722. doi: 10.1212/WNL.53.4.715

Lim, J. S., Gopalappa, R., Kim, S. H., Ramakrishna, S., Lee, M., Kim, W. I., et al.
(2017). Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am.
J. Hum. Genet. 100, 454–472. doi: 10.1016/j.ajhg.2017.01.030

Lim, J. S., Kim, W. I., Kang, H. C., Kim, S. H., Park, A. H., Park, E. K., et al. (2015).
Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading
to intractable epilepsy. Nat. Med. 21, 395–400. doi: 10.1038/nm.3824

Lowenstein, D. H., Walker, M., and Waterhouse, E. (2014). Status epilepticus in the
setting of acute encephalitis. Epilepsy Curr. 14, 43–49. doi: 10.5698/1535-7511-
14.s2.43

Lozovaya, N., Gataullina, S., Tsintsadze, T., Tsintsadze, V., Pallesi-Pocachard, E.,
Minlebaev, M., et al. (2014). Selective suppression of excessive GluN2C
expression rescues early epilepsy in a tuberous sclerosis murine model. Nat.
Commun. 5:4563. doi: 10.1038/ncomms5563

Ma, T. S., Elliott, R. E., Ruppe, V., Devinsky, O., Kuzniecky, R., Weiner, H. L., et al.
(2012). Electrocorticographic evidence of perituberal cortex epileptogenicity in
tuberous sclerosis complex. J. Neurosurg. Pediatr. 10, 376–382. doi: 10.3171/
2012.8.PEDS1285

Madhavan, D., Weiner, H. L., Carlson, C., Devinsky, O., and Kuzniecky, R. (2007).
Local epileptogenic networks in tuberous sclerosis complex: a case review.
Epilepsy Behav. 11, 140–146. doi: 10.1016/j.yebeh.2007.03.017

Mai, R., Tassi, L., Cossu, M., Francione, S., Lo Russo, G., Garbelli, R., et al.
(2003). A neuropathological, stereo-EEG, and MRI study of subcortical
band heterotopia. Neurology 60, 1834–1838. doi: 10.1212/01.WNL.0000065884.
61237.24

Major, P., Rakowski, S., Simon, M. V., Cheng, M. L., Eskandar, E., Baron, J., et al.
(2009). Are cortical tubers epileptogenic? Evidence from electrocorticography.
Epilepsia 50, 147–154. doi: 10.1111/j.1528-1167.2008.01814.x

Manent, J. B., Wang, Y., Chang, Y., Paramasivam, M., and LoTurco, J. J. (2009).
Dcx reexpression reduces subcortical band heterotopia and seizure threshold
in an animal model of neuronal migration disorder. Nat. Med. 15, 84–90.
doi: 10.1038/nm.1897

Marchi, N., Granata, T., and Janigro, D. (2014). Inflammatory pathways of seizure
disorders. Trends Neurosci. 37, 55–65. doi: 10.1016/j.tins.2013.11.002

Marin, I., and Kipnis, J. (2013). Learning and memory... and the immune system.
Learn. Mem. 20, 601–606. doi: 10.1101/lm.028357.112

Marsan, E., and Baulac, S. (2018). Mechanistic target of rapamycin (mTOR)
pathway, focal cortical dysplasia and epilepsy. Neuropathol. Appl. Neurobiol. 44,
6–17. doi: 10.1111/nan.12463

Marsh, E., Fulp, C., Gomez, E., Nasrallah, I., Minarcik, J., Sudi, J., et al. (2009).
Targeted loss of Arx results in a developmental epilepsy mouse model and
recapitulates the human phenotype in heterozygous females. Brain 132, 1563–
1576. doi: 10.1093/brain/awp107

Marsh, E. D., Nasrallah, M. P., Walsh, C., Murray, K. A., Nicole Sunnen, C.,
McCoy, A., et al. (2016). Developmental interneuron subtype deficits after
targeted loss of Arx. BMC Neurosci. 17:35. doi: 10.1186/s12868-016-0265-8

Martineau, F. S., Sahu, S., Plantier, V., Buhler, E., Schaller, F., Fournier, L.,
et al. (2018). Correct laminar positioning in the neocortex influences proper
dendritic and synaptic development. Cereb. Cortex 28, 2976–2990. doi: 10.1093/
cercor/bhy113

Martínez-Juárez, I. E., Alonso, M. E., Medina, M. T., Durón, R. M., Bailey, J. N.,
López-Ruiz, M., et al. (2006). Juvenile myoclonic epilepsy subsyndromes: family
studies and long-term follow-up. Brain 129, 1269–1280. doi: 10.1093/brain/
awl048

McKenzie, O., Ponte, I., Mangelsdorf, M., Finnis, M., Colasante, G., Shoubridge, C.,
et al. (2007). Aristaless-related homeobox gene, the gene responsible for West
syndrome and related disorders, is a Groucho/transducin-like enhancer of split
dependent transcriptional repressor. Neuroscience 146, 236–247. doi: 10.1016/j.
neuroscience.2007.01.038

Mirzaa, G. M., Campbell, C. D., Solovieff, N., Goold, C., Jansen, L. A., Menon, S.,
et al. (2016). Association of MTOR mutations with developmental brain

disorders, including megalencephaly, focal cortical dysplasia, and pigmentary
mosaicism. JAMA Neurol. 73, 836–845. doi: 10.1001/jamaneurol.2016.0363

Møller, R. S., Weckhuysen, S., Chipaux, M., Marsan, E., Taly, V., Bebin, E. M., et al.
(2016). Germline and somatic mutations in the MTOR gene in focal cortical
dysplasia and epilepsy. Neurol. Genet. 2:e118.

Nisticò, R., Salter, E., Nicolas, C., Feligioni, M., Mango, D., Bortolotto, Z. A., et al.
(2017). Synaptoimmunology - roles in health and disease. Mol. Brain 10:26.
doi: 10.1186/s13041-017-0308-9

Ochoa-Gómez, L., López-Pisón, J., Lapresta Moros, C., Fuertes Rodrigo, C.,
Fernando Martínez, R., Samper-Villagrasa, P., et al. (2017). A study of epilepsy
according to the age at onset and monitored for 3 years in a regional reference
paediatric neurology unit. Ann. Pediatr. 86, 11–19. doi: 10.1016/j.anpedi.2016.
05.002

Olivetti, P. R., and Noebels, J. L. (2012). Interneuron, interrupted: molecular
pathogenesis of ARX mutations and X-linked infantile spasms. Curr. Opin.
Neurobiol. 22, 859–865. doi: 10.1016/j.conb.2012.04.006

Petit, L. F., Jalabert, M., Buhler, E., Malvache, A., Peret, A., Chauvin, Y., et al. (2014).
Normotopic cortex is the major contributor to epilepsy in experimental double
cortex. Ann. Neurol. 76, 428–442. doi: 10.1002/ana.24237

Pilz, D. T., Matsumoto, N., Minnerath, S., Mills, P., Gleeson, J. G., Allen, K. M.,
et al. (1998). LIS1 and XLIS (DCX) mutations cause most classical lissencephaly,
but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037.
doi: 10.1093/hmg/7.13.2029

Pizzo, F., Roehri, N., Catenoix, H., Medina, S., McGonigal, A., Giusiano, B.,
et al. (2017). Epileptogenic networks in nodular heterotopia:
a stereoelectroencephalography study. Epilepsia 58, 2112–2123.
doi: 10.1111/epi.13919

Plantier, V., Watrin, F., Buhler, E., Martineau, F. S., Sahu, S., Manent, J. B., et al.
(2018). Direct and collateral alterations of functional cortical circuits in a
rat model of subcortical band heterotopia. Cereb. Cortex doi: 10.1093/cercor/
bhy307 [Epub ahead of print].

Poduri, A., Evrony, G. D., Cai, X., Elhosary, P. C., Beroukhim, R., Lehtinen, M. K.,
et al. (2012). Somatic activation of AKT3 causes hemispheric developmental
brain malformations. Neuron 74, 41–48. doi: 10.1016/j.neuron.2012.03.010

Puskarjov, M., Ahmad, F., Kaila, K., and Blaesse, P. (2012). Activity-dependent
cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated
protease calpain. J. Neurosci. 32, 11356–11364. doi: 10.1523/JNEUROSCI.6265-
11.2012

Rafiki, A., Chevassus-au-Louis, N., Ben-Ari, Y., Khrestchatisky, M., and Represa, A.
(1998). Glutamate receptors in dysplasic cortex: an in situ hybridization and
immunohistochemistry study in the brain of rats with prenatal treatment with
methylazoxymethanol. Brain Res. 782, 142–152. doi: 10.1016/S0006-8993(97)
01273-0

Raznahan, A., Lerch, J. P., Lee, N., Greenstein, D., Wallace, G. L., Stockman, M.,
et al. (2011). Patterns of coordinated anatomical change in human cortical
development: a longitudinal neuroimaging study of maturational coupling.
Neuron 72, 873–884. doi: 10.1016/j.neuron.2011.09.028

Redecker, C., Luhmann, H. J., Hagemann, G., Fritschy, J. M., and Witte, O. W.
(2000). Differential downregulation of GABAA receptor subunits in widespread
brain regions in the freeze-lesion model of focal cortical malformations.
J. Neurosci. 20, 5045–5053. doi: 10.1523/JNEUROSCI.20-13-05045.2000

Ribierre, T., Deleuze, C., Bacq, A., Baldassari, S., Marsan, E., Chipaux, M., et al.
(2018). Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes
focal cortical dysplasia-associated epilepsy. J. Clin. Invest. 128, 2452–2458. doi:
10.1172/JCI99384

Rosenblat, J. D., Cha, D. S., and Mansur, R. B. (2014). McIntyre RS. Inflamed
moods: a review of the interactions between inflammation and mood disorders.
Prog. Neuropsychopharmacol. Biol. Psychiatry. 53, 23–34. doi: 10.1016/j.pnpbp.
2014.01.013

Sancini, G., Franceschetti, S., Battaglia, G., Colacitti, C., Di Luca, M.,
Spreafico, R., et al. (1998). Dysplastic neocortex and subcortical heterotopias
in methylazoxymethanol-treated rats: an intracellular study of identified
pyramidal neurones. Neurosci. Lett. 246, 181–185. doi: 10.1016/S0304-3940(98)
00258-4

Seufert, D. W., Prescott, N. L., and El-Hodiri, H. M. (2005). Xenopus aristaless-
related homeobox (xARX) gene product functions as both a transcriptional
activator and repressor in forebrain development. Dev. Dyn. 232, 313–324.
doi: 10.1002/dvdy.20234

Frontiers in Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 25012

https://doi.org/10.1523/JNEUROSCI.17-16-06236.1997
https://doi.org/10.1523/JNEUROSCI.17-16-06236.1997
https://doi.org/10.1093/brain/awq078
https://doi.org/10.1212/WNL.53.4.715
https://doi.org/10.1016/j.ajhg.2017.01.030
https://doi.org/10.1038/nm.3824
https://doi.org/10.5698/1535-7511-14.s2.43
https://doi.org/10.5698/1535-7511-14.s2.43
https://doi.org/10.1038/ncomms5563
https://doi.org/10.3171/2012.8.PEDS1285
https://doi.org/10.3171/2012.8.PEDS1285
https://doi.org/10.1016/j.yebeh.2007.03.017
https://doi.org/10.1212/01.WNL.0000065884.61237.24
https://doi.org/10.1212/01.WNL.0000065884.61237.24
https://doi.org/10.1111/j.1528-1167.2008.01814.x
https://doi.org/10.1038/nm.1897
https://doi.org/10.1016/j.tins.2013.11.002
https://doi.org/10.1101/lm.028357.112
https://doi.org/10.1111/nan.12463
https://doi.org/10.1093/brain/awp107
https://doi.org/10.1186/s12868-016-0265-8
https://doi.org/10.1093/cercor/bhy113
https://doi.org/10.1093/cercor/bhy113
https://doi.org/10.1093/brain/awl048
https://doi.org/10.1093/brain/awl048
https://doi.org/10.1016/j.neuroscience.2007.01.038
https://doi.org/10.1016/j.neuroscience.2007.01.038
https://doi.org/10.1001/jamaneurol.2016.0363
https://doi.org/10.1186/s13041-017-0308-9
https://doi.org/10.1016/j.anpedi.2016.05.002
https://doi.org/10.1016/j.anpedi.2016.05.002
https://doi.org/10.1016/j.conb.2012.04.006
https://doi.org/10.1002/ana.24237
https://doi.org/10.1093/hmg/7.13.2029
https://doi.org/10.1111/epi.13919
https://doi.org/10.1093/cercor/bhy307
https://doi.org/10.1093/cercor/bhy307
https://doi.org/10.1016/j.neuron.2012.03.010
https://doi.org/10.1523/JNEUROSCI.6265-11.2012
https://doi.org/10.1523/JNEUROSCI.6265-11.2012
https://doi.org/10.1016/S0006-8993(97)01273-0
https://doi.org/10.1016/S0006-8993(97)01273-0
https://doi.org/10.1016/j.neuron.2011.09.028
https://doi.org/10.1523/JNEUROSCI.20-13-05045.2000
https://doi.org/10.1172/JCI99384
https://doi.org/10.1172/JCI99384
https://doi.org/10.1016/j.pnpbp.2014.01.013
https://doi.org/10.1016/j.pnpbp.2014.01.013
https://doi.org/10.1016/S0304-3940(98)00258-4
https://doi.org/10.1016/S0304-3940(98)00258-4
https://doi.org/10.1002/dvdy.20234
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00250 March 29, 2019 Time: 16:53 # 10

Represa Epileptogenic Cortical Malformations

Shafi, M. M., Vernet, M., Klooster, D., Chu, C. J., Boric, K., Barnard, M. E.,
et al. (2015). Physiological consequences of abnormal connectivity in a
developmental epilepsy. Ann. Neurol. 77, 487–503. doi: 10.1002/ana.24343

Shoubridge, C., Fullston, T., and Gecz, J. (2010). ARX spectrum disorders: making
inroads into the molecular pathology. Hum. Mutat. 31, 889–900. doi: 10.1002/
humu.21288

Singh, S. C. (1980). Deformed dendrites and reduced spine numbers on ectopic
neurones in the hippocampus of rats exposed to methylazoxymethanol-
acetate. A Golgi-Cox study. Acta Neuropathol. 49, 193–198. doi: 10.1007/BF007
07106

Smith, M. J., Adams, L. F., Schmidt, P. J., Rubinow, D. R., and Wassermann, E. M.
(2002). Effects of ovarian hormones on human cortical excitability. Ann. Neurol.
51, 599–603. doi: 10.1002/ana.10180

Staley, K. J., and Mody, I. (1992). Shunting of excitatory input to dentate gyrus
granule cells by a depolarizing GABAA receptor-mediated post- synaptic
conductance. J. Neurophysiol. 68, 197–212. doi: 10.1152/jn.1992.68.1.197

Stolp, H. B., Turnquist, C., Dziegielewska, K. M., Saunders, N. R., Anthony,
D. C., and Molnár, Z. (2011). Reduced ventricular proliferation in the foetal
cortex following maternal inflammation in the mouse. Brain 134, 3236–3248.
doi: 10.1093/brain/awr237

Stromme, P., Mangelsdorf, M. E., Shaw, M. A., Lower, K. M., Lewis, S. M. E.,
Bruyere, H., et al. (2002). Mutations in the human ortholog of Aristaless cause
X-linked mental retardation and epilepsy. Nat. Genet. 30, 441–445. doi: 10.1038/
ng862

Talos, D. M., Sun, H., Kosaras, B., Joseph, A., Folkerth, R. D., Poduri, A., et al.
(2012). Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia.
Ann. Neurol. 71, 539–551. doi: 10.1002/ana.22696

Tassi, L., Colombo, N., Cossu, M., Mai, R., Francione, S., Lo Russo, G., et al. (2005).
Electroclinical, MRI and neuropathological study of 10 patients with nodular
heterotopia, with surgical outcomes. Brain 128, 321–337. doi: 10.1093/brain/
awh357

Toering, S. T., Boer, K., de Groot, M., Troost, D., Heimans, J. J., Spliet, W. G.,
et al. (2009). Expression patterns of synaptic vesicle protein 2A in focal cortical
dysplasia and TSC-cortical tubers. Epilepsia 50, 1409–1418. doi: 10.1111/j.1528-
1167.2008.01955.x

Tyvaert, L., Hawco, C., Kobayashi, E., LeVan, P., Dubeau, F., and Gotman, J.
(2008). Different structures involved during ictal and interictal epileptic activity
in malformations of cortical development: an EEG-fMRI study. Brain 131,
2042–2060. doi: 10.1093/brain/awn145

Tyzio, R., Khalilov, I., Represa, A., Crepel, V., Zilberter, Y., Rheims, S., et al. (2009).
Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber
syndrome. Ann. Neurol. 66, 209–218. doi: 10.1002/ana.21711

Tyzio, R., Minlebaev, M., Rheims, S., Ivanov, A., Jorquera, I., Holmes, G. L., et al.
(2008). Postnatal changes in somatic gamma-aminobutyric acid signalling in

the rat hippocampus. Eur. J. Neurosci. 27, 2515–2528. doi: 10.1111/j.1460-9568.
2008.06234.x

Valeeva, G., Tressard, T., Mukhtarov, M., Baude, A., and Khazipov, R. (2016). An
optogenetic approach for investigation of excitatory and inhibitory network
GABA actions in mice expressing channelrhodopsin-2 in GABAergic neurons.
J. Neurosci. 36, 5961–5673. doi: 10.1523/JNEUROSCI.3482-15.2016

Valton, L., Guye, M., McGonigal, A., Marquis, P., Wendling, F., Regis, J.,
et al. (2008). Functional interactions in brain networks underlying epileptic
seizures in bilateral diffuse periventricular heterotopia. Clin. Neurophysiol. 119,
212–223. doi: 10.1016/j.clinph.2007.09.118

Vezzani, A. (2013). Fetal brain inflammation may prime hyperexcitability and
behavioral dysfunction later in life. Ann. Neurol. 74, 1–3. doi: 10.1002/ana.
23930

Vezzani, A., Fujinami, R. S., White, H. S., Preux, P. M., Blümcke, I., Sander, J. W.,
et al. (2016). Infections, inflammation and epilepsy. Acta Neuropathol. 131,
211–234. doi: 10.1007/s00401-015-1481-5

Vukovic, J., Colditz, M. J., Blackmore, D. G., Ruitenberg, M. J., and Bartlett, P. F.
(2012). Microglia modulate hippocampal neural precursor activity in response
to exercise and aging. J. Neurosci. 32, 6435–6443. doi: 10.1523/JNEUROSCI.
5925-11.2012

Wake, H., Moorhouse, A. J., Miyamoto, A., and Nabekura, J. (2013). Microglia:
actively surveying and shaping neuronal circuit structure and function. Trends
Neurosci. 36, 209–217. doi: 10.1016/j.tins.2012.11.007

Wang, W., Takashima, S., Segawa, Y., Itoh, M., Shi, X., Hwang, S. K., et al. (2011).
Nabeshima K, Takeshita M, Hirose S. The developmental changes of Na(v)1.1
and Na(v)1.2 expression in the human hippocampus and temporal lobe. Brain
Res. 1389, 61–70. doi: 10.1016/j.brainres.2011.02.083

Zehr, J. L., Todd, B. J., Schulz, K. M., McCarthy, M. M., and Sisk, C. L. (2006).
Dendritic pruning of the medial amygdala during pubertal development of the
male Syrian hamster. J. Neurobiol. 66, 578–590. doi: 10.1002/neu.20251

Zhu, W. J., and Roper, S. N. (2000). Reduced inhibition in an animal model of
cortical dysplasia. J. Neurosci. 20, 8925–8931. doi: 10.1523/JNEUROSCI.20-23-
08925.2000

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Represa. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 25013

https://doi.org/10.1002/ana.24343
https://doi.org/10.1002/humu.21288
https://doi.org/10.1002/humu.21288
https://doi.org/10.1007/BF00707106
https://doi.org/10.1007/BF00707106
https://doi.org/10.1002/ana.10180
https://doi.org/10.1152/jn.1992.68.1.197
https://doi.org/10.1093/brain/awr237
https://doi.org/10.1038/ng862
https://doi.org/10.1038/ng862
https://doi.org/10.1002/ana.22696
https://doi.org/10.1093/brain/awh357
https://doi.org/10.1093/brain/awh357
https://doi.org/10.1111/j.1528-1167.2008.01955.x
https://doi.org/10.1111/j.1528-1167.2008.01955.x
https://doi.org/10.1093/brain/awn145
https://doi.org/10.1002/ana.21711
https://doi.org/10.1111/j.1460-9568.2008.06234.x
https://doi.org/10.1111/j.1460-9568.2008.06234.x
https://doi.org/10.1523/JNEUROSCI.3482-15.2016
https://doi.org/10.1016/j.clinph.2007.09.118
https://doi.org/10.1002/ana.23930
https://doi.org/10.1002/ana.23930
https://doi.org/10.1007/s00401-015-1481-5
https://doi.org/10.1523/JNEUROSCI.5925-11.2012
https://doi.org/10.1523/JNEUROSCI.5925-11.2012
https://doi.org/10.1016/j.tins.2012.11.007
https://doi.org/10.1016/j.brainres.2011.02.083
https://doi.org/10.1002/neu.20251
https://doi.org/10.1523/JNEUROSCI.20-23-08925.2000
https://doi.org/10.1523/JNEUROSCI.20-23-08925.2000
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00588 June 14, 2019 Time: 17:27 # 1

REVIEW
published: 18 June 2019

doi: 10.3389/fnins.2019.00588

Edited by:
Benedikt Berninger,

King’s College London,
United Kingdom

Reviewed by:
Federico Luzzati,

University of Turin, Italy
Sophie Peron,

Johannes Gutenberg University
Mainz, Germany

Maryam Faiz,
University of Toronto, Canada

*Correspondence:
Marina Yu. Khodanovich
khodanovich@mail.tsu.ru

Specialty section:
This article was submitted to

Neurogenesis,
a section of the journal

Frontiers in Neuroscience

Received: 22 December 2018
Accepted: 23 May 2019

Published: 18 June 2019

Citation:
Nemirovich-Danchenko NM and

Khodanovich MY (2019) New
Neurons in the Post-ischemic

and Injured Brain: Migrating or
Resident? Front. Neurosci. 13:588.

doi: 10.3389/fnins.2019.00588

New Neurons in the Post-ischemic
and Injured Brain: Migrating or
Resident?
Nikolai M. Nemirovich-Danchenko and Marina Yu. Khodanovich*

Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia

The endogenous potential of adult neurogenesis is of particular interest for the
development of new strategies for recovery after stroke and traumatic brain injury.
These pathological conditions affect endogenous neurogenesis in two aspects. On
the one hand, injury usually initiates the migration of neuronal precursors (NPCs)
to the lesion area from the already existing, in physiological conditions, neurogenic
niche – the ventricular-subventricular zone (V-SVZ) near the lateral ventricles. On the
other hand, recent studies have convincingly demonstrated the local generation of
new neurons near lesion areas in different brain locations. The striatum, cortex, and
hippocampal CA1 region are considered to be locations of such new neurogenic zones
in the damaged brain. This review focuses on the relative contribution of two types
of NPCs of different origin, resident population in new neurogenic zones and cells
migrating from the lateral ventricles, to post-stroke or post-traumatic enhancement
of neurogenesis. The migratory pathways of NPCs have also been considered. In
addition, the review highlights the advantages and limitations of different methodological
approaches to the definition of NPC location and tracking of new neurons. In general, we
suggest that despite the considerable number of studies, we still lack a comprehensive
understanding of neurogenesis in the damaged brain. We believe that the advancement
of methods for in vivo visualization and longitudinal observation of neurogenesis in the
brain could fundamentally change the current situation in this field.

Keywords: neurogenesis, neural stem cells, migration, stroke, traumatic brain injury, subventricular zone,
striatum, cortex

INTRODUCTION

At present, it is well known that the production of new neurons in the mammalian brain is not
restricted to the embryonic and early postnatal development stages, but occurs throughout the
lifespan of animals. However, not all brain regions are equally capable of generating new neurons.
There are two main neurogenic niches where neurogenesis persists: the ventricular-subventricular
zone (V-SVZ) and the subgranular zone of the hippocampus (SGZ). By the term V-SVZ we mean
a complex of brain regions that includes: the subventricular zone (SVZ) – the area stretching
along the lateral wall of the lateral ventricles, the ventral extension of the lateral ventricles, and
the posterior periventricular region (PPV). Several researchers have also considered these areas as

Abbreviations: V-SVZ, ventricular-subventricular zone.
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a single neurogenic zone (Lim and Alvarez-Buylla, 2016; Mizrak
et al., 2019). During adulthood, neurogenesis also occurs in
several other brain regions, including the striatum (Luzzati et al.,
2006, 2014) and cortex (Gould et al., 2002; Dayer et al., 2005).
At the same time, in mice, the most well-studied mammalian
species, under physiological conditions no neurogenesis occurs
in the cortex (Ehninger and Kempermann, 2003) and striatum
(Teramoto et al., 2003; Luzzati et al., 2011; Nato et al., 2015) or,
probably, it occurs but only at a very low rate.

Some types of brain damage, such as ischemia or traumatic
brain injury (TBI), stimulate neurogenesis in the brain (Sun,
2016; Marques et al., 2019). On the one hand, we know that
the proliferation of neuronal precursors (NPCs) in the V-SVZ
(the most active proliferative region of the brain) increases, and
that these precursors migrate from their place of origin to the
injury site (Nakatomi et al., 2002; Jin et al., 2003; Yamashita
et al., 2006). On the other hand, many studies have shown that
when the brain is damaged, new neurons are generated from
local neural stem cells (NSCs) at the injury site (Ohira et al.,
2010; Magnusson et al., 2014; Nato et al., 2015). This raises
the question: do the NPCs that migrate from the V-SVZ play a
major role in the injury-related neurogenesis, or is the role of
resident NPCs more important? The answer to this question is
of huge clinical significance, because it will determine treatment
methods targeted either at the increase in localized neurogenesis
near the injury site or at the increase in neurogenesis in – and
migration from – the V-SVZ. Consequently, numerous studies
have been carried out to establish the dynamics of proliferation
and migration of NPCs in the brain in various conditions. In the
present review we consider the studies with a focus on the features
of neurogenesis in conditions of ischemia and TBI.

METHODS FOR STUDYING THE
PRODUCTION AND MIGRATION OF
NPCs

Here we consider approaches to studying neurogenesis, paying
particular attention to how the origin of new neurons can be
established. In other words, whether new neurons have originated
in the same area where they localize, or if they/their precursors
have migrated there from another area. Methods for defining
migration pathways of NPCs are also reviewed here.

Research Into Spatial Distribution of
Neuronal Precursors in Fixed Brain
Tissues
Historically, the first studies that established the production
of new neurons in the mammalian brain were performed
using autoradiographic investigation of 3H-thymidine-labeled
dividing cells, in particular, newborn neurons (Altman, 1962;
Kaplan and Hinds, 1977; Goldman and Nottebohm, 2006).
However, neurogenesis in the adult mammalian brain has
not been acknowledged by the scientific community for a
long time. The existence of neurogenesis was recognized only
after methodological improvement, which promoted further

studies. This improvement was replacement of radioactive analog
of thymidine with bromodeoxiuridine (BrdU), which can be
detected by immunohistochemistry (Abrous et al., 2005).

This approach, based on the administration of such
proliferation markers as BrdU and other analogs of thymidine,
still remains among the most widely used methods. BrdU
can be administered intraperitoneally or with drinking water.
It incorporates into the cells that are in S-phase at the time
of administration. The timing of BrdU administration and
subsequent killing of animals affect the interpretation of results.
When BrdU is given systematically for several days or weeks,
labeled cells born at different time points cannot be distinguished.
Alternatively, a single dose (pulse) of BrdU labels the cells that
are born at the time of the pulse. Then animals can be sacrificed
either shortly after administration, or at a delayed time point
(pulsed and pulse-chase paradigm, respectively). This approach
allows for the tracing of a short-term or a long-term fate of a
particular group of cells that are born at a certain time point
(Dayer et al., 2005; Sundholm-Peters et al., 2005; Shapiro et al.,
2009; Lugert et al., 2012).

In addition to BrdU, other nucleotide analogs can be used: -5-
chloro-20-deoxyuridine (CldU), 5-iodo-20-deoxyuridine (IdU),
and 5-ethynyl-20-deoxyuridine (EdU). The use of combination
of several thymidine analogs within the same experiment gives
additional possibilities. Labeling of dividing cells with two
(Encinas et al., 2011) or even three (Podgorny et al., 2018)
nucleotide analogs allows for measuring cell-division kinetics,
and identifying and tracing subclasses of NSCs or NPCs.
Assessment of the fraction of CldU/IdU double-labeled NPCs
enabled Encinas et al. (2011) to determine the number of
divisions, the length of S-phase, and the length of the division
cycle of amplifying and quiescent neural progenitors in the
dentate gyrus (DG).

The immunodetection of BrdU or other thymidine
analogs in fixed brain slices, in combination with labeling
the specific markers of immature (doublecortin or DCX)
and mature (NeuN, MAP2, NSE) neurons, as well as NSCs
(Nestin, SOX2), allows for indirect tracking of NPCs.
Additionally, Ki67, a marker of cell divisions, is used
to confirm the proliferation status and to identify the
location of non-migrating progenitors (Abrous et al., 2005;
Kuhn et al., 2016).

Although this approach facilitated the estimation of the
proliferation and differentiation of NPCs, it provided only
indirect evidence of neuroblast migration. The signs of migration
can be: a distribution pattern of migrating neuroblasts (markers –
DCX and sometimes PSA-NCAM) from the place of origin
toward the place of destination (Palma-Tortosa et al., 2017), a
density gradient of neuroblasts with high density at the presumed
place of origin (Thored et al., 2006; Fukuzaki et al., 2015), as
well as the change in this gradient at subsequent time points
(Yan et al., 2007; Oya et al., 2009; Li et al., 2011). Also, in
their works researchers pay due attention to the orientation of
migrating cells. Neuroblasts stretch out their leading processes in
the direction of the zone to which they are moving (Parent et al.,
2002; Zhang et al., 2004; Dayer et al., 2005; Osman et al., 2011;
Nakaguchi et al., 2012; Moraga et al., 2014). Moreover, migrating
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neuroblasts often integrate into chains, and the orientation of
the chain also corresponds to the direction of migration (Parent
et al., 2002; Zhang et al., 2004; Wang et al., 2007; Kuge et al.,
2009; Yan et al., 2009b; Kazanis et al., 2013; Wan et al., 2016;
Song et al., 2017). Alternatively, clustering cells with round cell
bodies, lacking long leading processes and co-expressing DCX
with proliferation marker Ki67 are considered as non-migrating
local NPCs (Magnusson et al., 2014; Nato et al., 2015).

Studies of postmortem tissues are of great importance in
research on human neurogenesis because this is the only way
it can be investigated. BrdU labeling in combination with other
neuronal markers enabled scientists to prove for the first time
the existence of neurogenesis in humans (Eriksson et al., 1998).
A more sophisticated technique of 14C-dating was proposed by
Jonas Frisen’s group (Bhardwaj et al., 2006; Spalding et al., 2013).
The technique is based on the fact that the 14C levels in the
atmosphere have been decreasing at a known rate since a sharp
rise in the 14C content caused by the extensive testing of nuclear
weapons in the middle of the 20th centuary. Thus, comparison
of the 14C-content in DNA with that in the atmosphere enabled
the assessment of the age of cells. Isolation of cell nuclei
from brain tissue with subsequent labeling with NeuN and
the 14C content measuring by accelerator mass spectrometry
allowed for evaluation of the turnover rate of neurons in the
human hippocampus, cortex, olfactory bulb (OB), and striatum
(Bhardwaj et al., 2006; Spalding et al., 2013; Ernst et al., 2014).

The above-mentioned studies have investigated neuroblasts
distribution in brain slices. The limitation of this approach
is a lack of information about whole brain tissues. In recent
years, completely new techniques for ex vivo studies which
potentially expand possibilities for the investigation of new
neuron generation have been devised.

A promising technique called CLARITY (Chung and
Deisseroth, 2013) was developed by the Deisseroth lab. This
technique makes the entire brain transparent for any optical
imaging via special chemical transformations of intact brain
tissue. These transformations aim to remove the lipid component
of the brain while retaining the protein and nucleic components
in their native state. After transformation, the preserved
components can either be immunohistochemically stained or
initially fluorescent-labeled by genetic modification, thereby
facilitating the performance of precise whole-brain imaging
without dividing into slices. Imaging of the whole brain rather
than of just separate brain slices could provide an entire picture
of the spatial distribution and orientation of migrating NPCs.

Despite the unique possibility to obtain 3D images of brain
structure at the molecular level, we did not find any research
works that have used this method since it was published.
The major limitations of this method are the complexity and
timescales involved in the brain processing and immunostaining,
as well as the toxicity of the reagents used (Jensen and Berg, 2017).
Significant efforts have been made to improve this technique
(Jensen and Berg, 2017) in order that it might be more extensively
used in studies – including NPC tracking.

Another powerful technique, single-cell transcriptomics, is
based on measuring gene expression at the level of individual
cells in certain cell populations. It helps clarify the mechanisms

of cell reprogramming into NSCs in non-neurogenic zones after
injury and promotes a better understanding of the balance of NSC
activation and quiescent state in the neurogenic niches (Llorens-
Bobadilla et al., 2015). Cell subgroups identified by this technique
can be compared to the known cell types using previously
established marker genes; however, novel cell subtypes can also be
discovered using single-cell data (Liu and Trapnell, 2016). Unlike
immunofluorescent detection with antibodies, which is usually
limited in the number of markers, single-cell transcriptomics
allows for the simultaneous investigation of hundreds, or even
thousands, of genes. The main limitation of this technique in
studies on cell migration is the loss of the original spatial context.
Currently, efforts are being made to overcome this limitation
by using computational methods of 3D reconstruction (Satija
et al., 2015). Combining single-cell transcriptomics with other
single-cell techniques, such as fluorescent RNA FISH, provides
an orthogonal method of quantifying transcript levels, and is
often used to independently validate results from scRNA-seq data
(Liu and Trapnell, 2016).

In general, neuroblast distribution, orientation, morphology
and clustering are only indirect signs of migration. Additionally,
this approach is limited only to estimation of the origin and
migration direction of cells, which at a certain time point are
migrating neuroblasts. However, we lack information on the
origin of new cells that have already become mature neurons.
In the next section, we will discuss methods that allow us to
specifically trace the fate of cells of a particular origin, i.e., the
cells that originated from the SVZ or cortex.

Determining the Place/Time of NPCs
Production by Chemical and Genetic
Labeling
Local labeling of the cells within a particular region of the brain is
a powerful method for tracing the migration of NPCs that are
produced there. After labeling, the fate of the NPCs and their
offspring can be examined at different time points. For example,
these labeled cells can be found in a different brain region some
time later, or they can stay at their place of origin. To determine
a phenotype of stained cells, immunohistochemical detection of
such cell type-specific proteins as DCX, calretinin, NeuN, MAP2,
NSE, and Nestin is carried out (Nakatomi et al., 2002; Jin et al.,
2003; Zhao et al., 2003; Goings et al., 2004; Ramaswamy et al.,
2005; Zhang et al., 2005, 2011; Ohab et al., 2006; Yamashita et al.,
2006; Kolb et al., 2007; Yang et al., 2007, 2008; Faiz et al., 2008,
2015; Hou et al., 2008; Lai et al., 2008; Liu et al., 2009; Kreuzberg
et al., 2010; Li B. et al., 2010; Li L. et al., 2010; Ohira et al.,
2010; Shimada et al., 2010; Yoshikawa et al., 2010; Bi et al., 2011;
Grade et al., 2013; Saha et al., 2013; Magnusson et al., 2014;
Duan et al., 2015).

Local injection of various tracers into the brain is widely used.
In this method, the cells residing in the zone of injection, absorb
the tracer; this then allows for tracking the fate of these cells,
or their offspring at different post-injection time points. Tracers
can be either a stain (Nakatomi et al., 2002; Jin et al., 2003; Zhao
et al., 2003; Ramaswamy et al., 2005; Zhang et al., 2005; Faiz et al.,
2008; Hou et al., 2008; Shimada et al., 2010), or a genetic vector,
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which after entering the cell causes expression of the marker
in it (Nakatomi et al., 2002; Hou et al., 2008; Lai et al., 2008;
Magnusson et al., 2014; Duan et al., 2015).

For labeling brain cells, such stains as 1,1′-dioctadecyl-6,6′-
di- (4-sulfophenyl)-3,3,3′,3′ tetramethylindocarbocyanine (DiI),
and fluorescent latex microspheres are used. For detection of the
labeled cells, fluorescent microscopy is used (Nakatomi et al.,
2002; Jin et al., 2003; Zhao et al., 2003; Ramaswamy et al., 2005;
Zhang et al., 2005; Faiz et al., 2008; Hou et al., 2008; Shimada
et al., 2010). However, the major drawback of this approach is
that a cell gets a very limited amount of the label, which can
then be lost either due to cell metabolism, or via cell divisions,
if labeled cells are proliferating as in the case of NPCs. In this
regard, a genetic vector injection is a more appropriate method
because even one copy of a reporter gene entering the cell may
be enough to cause a stable synthesis of labeling substance in it.
Moreover, the application of such genetic vectors as retrovirus or
lentivirus, which integrate into the host cell genome, ensures the
transmission of the reporter gene to all offspring of the infected
cell: this is an advantage for the staining of proliferating cells,
for example, NPCs.

Genetic vectors for in vivo cells tracing encode many different
reporter genes that allow for the identification of targeted cells.
These include the green fluorescent protein (GFP) gene, the
yellow fluorescent protein (YFP) gene, the DSRed, mCherry, and
mKate for detection using fluorescence microscopy; the alkaline
phosphatase (AP) gene for immunodetection; the galactosidase
(GLA) gene for histochemical detection using transmitted light
microscopy (Nakatomi et al., 2002; Goings et al., 2004; Ohab
et al., 2006; Kolb et al., 2007; Yang et al., 2007, 2008; Hou et al.,
2008; Lai et al., 2008; Liu et al., 2009; Li B. et al., 2010; Ohira
et al., 2010; Yoshikawa et al., 2010; Grade et al., 2013; Saha
et al., 2013; Magnusson et al., 2014; Müller-Taubenberger and
Ishikawa-Ankerhold, 2014; Vandeputte et al., 2014; Duan et al.,
2015; de Jong et al., 2017).

Another important question concerns promoters that drive
reporter gene expression in vectors for NPCs labeling. The use
of general promoters (CMV-promoter, CAG-promoter) in the
construct results in non-specific expression of the reporter gene
in the cells that have been successfully infected with a genetic
vector (Grade et al., 2013; Saha et al., 2013; Magnusson et al.,
2014; Duan et al., 2015). Nevertheless, this promoter-related
non-specificity may at least in part be compensated by the use
of viral serotypes that preferentially target specific cell types
(Aschauer et al., 2013), as well as by the use of retroviruses that
transduce specifically mitotic cells (Roe et al., 1993). Non-specific
expression is in fact an advantage, if the aim of investigation is
to trace the cells’ fate throughout their differentiation – when
changes in expression of many cell type-specific genes occur.
The use of cell type-specific promoter drives expression of the
reporter gene in a particular group of cells. It can be a promoter of
the gene, the expression of which is a reliable indicator of a certain
cell group; for example, DCX – a protein of young neurons,
Nestin – of NSCs, GFAP – of NSCs and astroglia. This approach
has only a limited potential for studying neurogenesis as it does
not allow for the detection of neural cells at different stages of
their development.

Interestingly, there is still at least one work in which this
approach was applied to investigate the origin of new neurons
in the brain. Duan et al. (2015) injected a plasmid carrying the
GFP gene under the control of the GFAP gene promoter into
the striatum of mice and showed that after ischemia new striatal
neurons express the GFP-reporter, despite the lack of GFAP
gene expression. The authors concluded that these new neurons
in the striatum stem from local GFAP-expressing astrocytes.
However, since it remains unclear what could be the cause of
GFP expression in these new neurons, the results of the research
cannot be unambiguously interpreted.

A completely different approach involves the use of transgenic
animals already carrying a reporter gene in their cells. As
a rule, the reporter gene is initially inactive because of an
insertion containing a stop signal. It can then be restored (the
restoration mechanisms are described below), thus facilitating
the reconstruction of the reporter gene in the cells residing in
a specific brain region at a specific time point and of a specific
phenotype. Later, the cells where the reporter gene was restored
and their offspring can be detected (Li L. et al., 2010; Bi et al.,
2011; Zhang et al., 2011; Magnusson et al., 2014; Faiz et al., 2015).

The reporter gene can be restored by the use of site-specific
Cre-recombinase that removes an insertion from the reporter
gene (Magnusson et al., 2014; Nato et al., 2015). A specific
variant of this recombinase is a CreERT2 recombinase that
requires the presence of tamoxifen for activity (Li L. et al.,
2010; Zhang et al., 2011; Faiz et al., 2015). Tamoxifen can be
either administered intraperitoneally (Li L. et al., 2010; Zhang
et al., 2011) or added to daily ration (Faiz et al., 2015). The
gene of Cre-recombinase recombinase can be initially present
in the animal genome, together with the reporter gene (Li L.
et al., 2010; Zhang et al., 2011; Faiz et al., 2015). Alternatively,
it can be introduced into the animal brain via vector injection
(Magnusson et al., 2014). Additionally, to achieve cell-type
specificity of the reporter gene restoration, the recombinase gene
can be placed under the control of a cell-specific promoter, for
example, the promoter of the GFAP gene (Magnusson et al.,
2014; Nato et al., 2015). As a result of these manipulations,
reporter gene restoration occurs in a particular brain region,
or at least at a specific time point, and in the cells having a
particular phenotype.

Lastly, Kreuzberg et al. (2010) used animals carrying the
reporter gene under the control of a promoter of the 5HT3A
gene, which is active in all, or the majority, of neuroblasts
originating from the SVZ, as well as in some mature interneurons.
In combination with BrdU administration, it allows the
distinguishing of SVZ-derived newborn cells.

Another principally new technique to have been recently
developed is the Brainbow strategy (Livet et al., 2007) which
aims to identify single cells of one type and trace their
connections and lineages. The strategy is based on Cre-
Lox recombination that allows the Brainbow transgene to
cause expression of three different fluorescent proteins in
random combinations and obtain multicolor micrographs of
brain sections. Recently, this approach has been successfully
applied to trace lineages of NSCs and NPCs in the DG and
SVZ for 6 months (Gomez-Nicola et al., 2014). Obviously,
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this technique has huge potential since it helps distinguish
ramified processes of neighboring cells and thereby trace
their lineage. However, we believe that the advantages of the
Brainbow technique are also its limitations because multicolor
single-cell labeling cannot be combined with another type of
fluorescent labeling.

Thus, local in vivo cell labeling is the most reliable method for
establishing the origin of new neurons in brain regions. Rapid
development in genetic engineering led to widespread using of
plasmid libraries designed for new viral vector production. To
increase efficiency of the use of libraries, a novel tool of viral
barcoding was suggested (Davidsson et al., 2016). The method
of in vivo cell labeling is often used together with detection of
labeled cells in fixed brain sections. Additionally, this method
facilitates observation of the migration of labeled neuroblasts in
real time, as described in the section “Real-Time Observation of
NPCs Migration.”

Suppression of NPC Production and
Migration
In this section we describe approaches that diminish or exclude
any participation of one brain region in the replenishment
of neurons in another region. Two methods are applicable
here: either locally suppressing the production of new NPCs
in one region or preventing the migration of NPCs from one
region to another.

Inhibition of neurogenesis in a particular brain region can be
achieved by local injection of the antimitotic agent Ara-C, which
kills cycling cells. In a number of studies, Ara-C was administered
into the lateral ventricle. Thus the role of SVZ neurogenesis in the
addition of new neurons in the damaged cortex was examined
(Leker et al., 2007; Li B. et al., 2010; Yoshikawa et al., 2010; Faiz
et al., 2015). In some works, migration from the SVZ toward the
cortex was prevented by surgical separation (Shapiro et al., 2009;
Ahmed et al., 2012).

However, it should be mentioned that some issues have
complicated the interpretation of the results obtained with the
use of these approaches. In particular, antimitotic drugs can
diffuse in the brain tissue from the region of injection to remote
brain areas. Thus, spatial specificity of antimitotic effect should
be carefully verified. Additionally, both local antimitotic drug
administration and surgical isolation of brain areas are highly
invasive approaches, potentially causing unwanted side effects.

Almost all the above-mentioned studies have demonstrated
that the suppression of proliferation in, or migration from, one
region affects the number of new neurons in the other; therefore,
the results of these experiments cannot be unequivocally
interpreted (Leker et al., 2007; Shapiro et al., 2009; Li B. et al.,
2010; Yoshikawa et al., 2010; Faiz et al., 2015).

Real-Time Observation of NPCs
Migration
In the last few decades, new methods for longitudinal in vivo
tracking of NPCs have been devised, while some existing
ones have been considerably improved. One of those more
recently developed approaches involves MRI-based labeling of

migrating NPCs, while others are based on fluorescence or
bioluminescence detection.

The most common MRI-based labeling technique uses
iron oxide particles as MRI-negative contrast agent visible
in T2-weighted images (Norman et al., 1992; Bulte et al.,
1999). Several efforts have been made to visualize NPCs by
injecting iron oxide nanoparticles directly into the lateral
ventricles or the SVZ (Shapiro et al., 2006; Panizzo et al.,
2009; Nieman et al., 2010; Sumner et al., 2010; Vreys
et al., 2010). However, this method has several significant
limitations: cells can release iron oxide particles that can then
be absorbed by non-proliferating cells, including macrophages,
which are present at the site of damage, thus indicating
low specificity of the method; furthermore, neuroblasts can
die before reaching the target regions (Winner et al., 2002).
Consequently, MRI detection by iron-based nanoparticles does
not provide precise information about the state, location and
survival of new neurons.

Attempts to overcome low specificity of paramagnetic
nanoparticles have been made in a number of works (Elvira
et al., 2012; Zhong et al., 2015; Zhang et al., 2016), in
which the animal brain was injected with paramagnetic
particles conjugated with antibodies to specific cell-
surface antigens of NPCs. Another type of cell labeling
for MRI is based on reporter genes coding paramagnetic
proteins, mainly ferritin (Iordanova and Ahrens, 2012;
Vande Velde et al., 2012). This method, though less liable
to imaging artifacts compared to iron oxide labeling,
shows relatively low MR signal intensity from ferritin
overexpression (Naumova et al., 2014). Thus, the reporter
gene design and MRI protocols need improving. A similar
methodological approach utilizing specific reporter genes
was applied for NPC visualization in other modalities.
Introduction of the luciferase gene allowed the tracing of
NPCs using bioluminescence detection (Reumers et al., 2008;
Vandeputte et al., 2014).

Multiple works at different levels of observation were
performed with the use of fluorescence. Neuroblast migration
dynamics was directly observed on acute brain slices using time-
lapse microscopy (Landecker, 2009). In these works, migrating
cells are also labeled either by prior administration of fluorescent
particles (Zhang et al., 2007) or a vector with a reporter gene (Inta
et al., 2008; Kojima et al., 2010; Le Magueresse et al., 2012; Grade
et al., 2013) into the animal brain, or by using transgenic animals
carrying the reporter gene under the control of a neuron-specific
promoter (Dayer et al., 2008; Zhang et al., 2009). The advantage
of studies on brain sections, when compared to research into
the whole brain, is greater resolution and the possibility of a
detailed estimation of particular cells’ behavior. The limitation
of this method is the short lifespan of a brain slice – usually
studies last up to one day. However, the living whole brain
is preferred to long-living brain slices for observations at the
molecular level.

The most promising strategy is a recently developed
technique of in vivo cell tracking with intravital microscopy
through a cranial window. Two-photon microscopy is a further
improvement of confocal laser scanning microscopy due to its
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deeper tissue penetration, efficient light detection, and reduced
photobleaching (Denk et al., 1990). These benefits allowed for
the combination of this technique with intravital observation of
living neural cells that had been previously labeled using reporter
genes of fluorescent proteins. Recently this technique has been
used for the investigation of hippocampal neurogenesis in the DG
(Pilz et al., 2016).

Table 1 summarizes the advantages and limitations of the
methods described in this section. From our point of view,
the methods for local cell labeling and the methods for direct
observation of cells, described in the sections “Determining
the Place/Time of NPCs Production by Chemical and Genetic
Labeling” and “Real-Time Observation of NPCs Migration,” are
the most promising, informative, and precise.

EARLY POSTNATAL AND ADULT
NEUROGENESIS IN THE NORMAL
BRAIN

In this section we summarize the data accumulated to date about
the origins of NPCs and their migration pathways in the normal
mammalian brain during the early postnatal and adult periods.

The Ventricular-Subventricular Zone
The V-SVZ is the main neurogenic niche and the major source
of new neurons in the postnatal brain, both in the early postnatal
period and throughout adulthood. This is a place where NSCs
reside and NPCs originate. Many authors have recently used the
general term, V-SVZ, to describe several regions located in the
walls of the lateral ventricles (Lim and Alvarez-Buylla, 2016). The
SVZ, which stretches along the lateral wall of the lateral ventricles,
is a major focus of studies (Doetsch et al., 1997, 1999; Bernier
et al., 2000; Gage, 2000; Kornack and Rakic, 2001; Pencea et al.,
2001a; Temple, 2001; Alvarez-Buylla et al., 2002; Doetsch, 2003;
Ming and Song, 2005; Duan et al., 2008). Additionally, there are
data on NSCs in a ventral extension of the lateral ventricle (Zhao
et al., 2003) and in the PPV region (Nakatomi et al., 2002; Bull and
Bartlett, 2005; Abdipranoto-Cowley et al., 2009; Saha et al., 2013).

Neural stem cells in the V-SVZ, the so-called type B1
cells, have many characteristics of parenchymal astrocytes
because they express GFAP, glutamate aspartate transporter
(GLAST), and brain lipid-binding protein (BLBP) (Lim and
Alvarez-Buylla, 2016). However, unlike parenchymal astrocytes,
type B1 cells have a direct contact with the ventricle.
A subset of these cells is quiescent NSCs, whereas others
are mitotically active (Llorens-Bobadilla et al., 2015). In
the activated state, type B1 cells also express Nestin and
produce transit-amplifying precursors (type C cells) that produce
NPCs (type A cells) expressing the markers of immature
neurons (Lim and Alvarez-Buylla, 2016). The NPCs that
originate in the V-SVZ migrate to other brain regions where
they finally differentiate into neurons and may integrate
into local neural networks (Lledo and Saghatelyan, 2005;
Sakamoto et al., 2014).

In the early postnatal brain, several migratory pathways
stretching from the V-SVZ to other brain regions have been

described. Inta et al. (2008) showed in fixed and cultivated
mouse brain slices that in the first weeks of life, neuroblasts
travel along four different pathways – rostral, ventral, external,
and dorsal – from the lateral ventricles. The rostral migratory
stream (RMS) flows from the SVZ to the OB; the ventral
stream flows from the SVZ to the striatum and the nucleus
accumbens; the external migratory pathway emerges from the
anterior parts of the SVZ and extends along the external
capsule toward the latero-dorsal regions; the dorsal stream flows
from the PPV along the superior border of the hippocampus
toward the occipital cortex. Other authors also report on
the massive migration of neuroblasts from the SVZ as well
as from the RMS via the corpus callosum to the cortex
(Dayer et al., 2008; Le Magueresse et al., 2012). In the cortex,
migrating neuroblasts mainly reach the lower layers (Dayer
et al., 2008; Inta et al., 2008; Le Magueresse et al., 2012), but
can be also found in the upper layers (Dayer et al., 2008;
Inta et al., 2008).

De Marchis et al. (2004) injected CellTracker Green into the
SVZ of newborn mice and showed three migratory pathways
for neuroblasts originating in the SVZ: primarily, the RMS
and two additional pathways – ventral migratory mass (VMM)
and ventrocaudal migratory stream (VMS). Within the VMM,
neuroblasts migrate from the SVZ to the basal forebrain and
populate the islands of Calleja, while the VMS deviates from
the anterior part of the RMS to flow in the ventrocaudal
direction, when neuroblasts reach the pyramidal layer of the
olfactory tubercle.

In the adult brain, the V-SVZ remains the main zone
of neurogenesis. However, its intensity decreases soon after
birth and the majority of pathways become largely quiescent
(Fuentealba et al., 2015). The exception is NPC migration from
the SVZ to the OB, which remains active in adulthood, at least in
rodents (Lim and Alvarez-Buylla, 2016). Cells migrate in chains
and form an RMS stretching from the SVZ to the OB. In the OB,
neuroblasts then migrate radially and turn into mature neurons
in the granular and periglomerular layers (Sun et al., 2011).

The migration from the V-SVZ to other brain regions
substantially decreases compared with the early postnatal period,
and a range of works have confirmed this. De Marchis et al.
(2004) found that migration via the VMS to the olfactory tubercle,
which was observed in neonatal mice, is less intense during
adulthood, whilst migration within the VMM stops completely.
Several other studies report on the occurrence of neuroblasts
and new mature neurons in different areas of the adult mouse
and rat brains, including the striatum, nucleus accumbens,
ventral septum, corpus callosum, olfactory tubercle, anterior
olfactory nuclei, tenia tecta, islands of Calleja, amygdala and
lateral entorhinal cortex (Dayer et al., 2005; Sundholm-Peters
et al., 2005; Shapiro et al., 2009). The origin of these neurons
has not been established. However, the authors posit that they
are produced in the SVZ (Dayer et al., 2005; Sundholm-Peters
et al., 2005; Shapiro et al., 2009). Zhao et al. (2003) labeled
NPCs localizing near the lateral ventricles with DiI injection
into the lateral ventricle, and demonstrated that neuroblasts
migrate from a ventral extension of the lateral ventricle to
the substantia nigra, where they differentiate into dopaminergic
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TABLE 1 | Methods for estimation of NPCs migration in the brain.

Method Description of the method Advantages Limitations

Estimation of neuroblasts migration
patterns in fixed brain slices.

In fixed brain slices signs of neuroblasts
migration are observed: distribution of
cells from the supposed place of origin
to the supposed destination; orientation
of chains of cells and cell processes in
the direction toward the destination.

It is a non-invasive and simple research
method that facilitates the estimation of
cell migration in the brain at the time of
animal euthanasia.

This approach facilitates the estimation
of the direction of migration only of the
cells migrating at the time of animal
euthanasia. Furthermore, although the
distribution of neuroblasts in the fixed
brain slice describes the general
direction of migration, it fails to prove
the origins and direction of migration of
each cell.

Local administration of antimitotic
agents.

The Ara-C antimitotic agent is
administered into a particular brain
region to suppress neurogenesis in it.

The method facilitates the reduction or
exclusion of any participation of a brain
region in replenishment with neurons in
another region.

The method is invasive and potentially
causes adverse effects. The results of
such experiments can be unequivocally
interpreted only in the absence of any
effects, i.e., when killing proliferating
cells in one region doesn’t affect the
number of new neurons in the other.

Moreover, antimitotic drugs can diffuse
in brain tissue from the region of
injection to the remote brain areas.
Thus, spatial specificity of antimitotic
effect should be carefully verified.

Surgical separation of brain regions. Surgical separation prevents migration
from one brain region into another.

This method facilitates the exclusion of
any participation of a brain region in
replenishment with neurons in another
region.

The method is invasive, and potentially
causes adverse effects.

Local labeling of cells in the brain. Local administration of stains or genetic
vectors carrying the reporter gene.
Alternatively, transgenic animals can be
administered with special agents that
induce expression of a reporter gene in
them (tamoxifen or a genetic vector
with the recombinase gene can serve
as an inductor).

This method helps prove the origin of a
particular neuron from a particular brain
region. Moreover, the method is suitable
for direct observation of cell migration.

The method is invasive, and potentially
causes adverse effects.

Direct observation of cell migration in
live brain slices.

Preliminary in vivo staining of
neuroblasts, obtaining of live brain
slices and detection.

The method facilitates a detailed
observation of individual cell behavior.

The conditions in the live brain slice
cannot be equal to the conditions in the
live animal brain: cutting the brain into
slices results in damage to many cells,
and isolating a slice from the whole
brain removes potential influences from
other cells in the whole brain. Moreover,
brain slices remain viable for quite a
short time (usually studies last up to one
day), which is not enough to observe
the long-term fate of migrated cells.

Direct observation of in vivo cell
migration.

Preliminary in vivo staining of
neuroblasts and subsequent
bioluminescent or MRI detection.
Alternatively, two-photon microscopy
through a cranial window.

The method facilitates the tracing of
long-term cell migration in the live brain.

In general, the method has a
low-resolution capacity, as it facilitates
the observation of the migration of only
large cell groups. However, a recently
developed technique of intravital
microscopy through a cranial window,
in combination with two-photon
microscopy, facilitates the tracing of
individual cells deep within the brain
tissue. Still, cranial window is a highly
invasive approach.

neurons. Nakatomi et al. (2002) administered DiI or a genetic
vector with a GFP gene into the lateral ventricle of a normal
animal, and showed negligible migration of stained neuroblasts
from the PPV toward CA1 of the hippocampus.

Despite the fact that these pathways remain largely quiescent
(Fuentealba et al., 2015), they might be important for response to

injury. Multiple studies on the injured brain showed significant
intensification of NPC migration in these conditions (Arvidsson
et al., 2002; Nakatomi et al., 2002; Thored et al., 2006).

In humans, the amount of neuroblasts migrating to the
OB drops rapidly in the early postnatal period. Spalding
et al. (2013) using the 14C technique showed that in the OB,
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adult neurogenesis can be negligible. As in animal models,
neurogenesis in the SVZ in humans declines over a lifetime
(Dennis et al., 2016).

The Hippocampus
The DG of the hippocampus ranks second after the V-SVZ where
proliferation of NPCs continues throughout the whole life of
animals. According to the classical point of view, the dentate
neuroepithelium gives rise to both granular neurons and NSCs
in the prenatal period (Gonçalves et al., 2016). However, recent
studies of Li et al. (2013) showed that the NSCs in the DG
may originate from the population in the most ventral part
of the hippocampus, close to the lateral ventricle. These cells
migrate to the DG at the late stage of gestation and become
the source of NSCs of the SGZ in adulthood. Proliferation
in the DG is limited to the SGZ from the second postnatal
week (Urbán and Guillemot, 2014). Radial glia-like cells (RGL),
also called type 1 cells that express GFAP, Nestin, and SOX2,
are considered as genuine NSCs in the SGZ (Gonçalves et al.,
2016). Most of these cells remain quiescent and eventually divide
(Encinas et al., 2011).

Unlike the SVZ (Obernier et al., 2018), neurogenic potential
of NSCs in the SGZ is highly debated. Bonaguidi et al. (2011)
showed self-renewal properties and multipotent capacity of RGL
cells, using cloning analysis. At the same time, the studies of
Encinas and Enikolopov, based on the Nestin-GFP transgenic
mice (Mignone et al., 2016), showed restriction of the NSC
pool and its inability to self-renew. Moreover, the authors,
using multiple S-phase labeling, observed that RGL cells in the
SGZ make 2-3 asymmetric divisions and then lose their RGL
morphology. Further they move to the hilus where they start
expressing S100ß (a marker of mature astrocytes) and continue to
express GFAP but not Nestin (Encinas et al., 2011). The number
of RGL cells dramatically drops with age (Gage, 2000; Encinas
et al., 2011; Ming and Song, 2011; Bergami et al., 2015).

Asymmetric division gives rise to bipolar neural progenitors
that differentiate into neuroblasts after several divisions. During
their maturation these NPCs, unlike NPCs from the V-SVZ,
migrate short distances – from the subgranular to the granular
layer of the DG – and become mature glutamatergic granular
neurons (Gage, 2000; Alvarez-Buylla et al., 2001; Temple, 2001;
Doetsch, 2003; Ming and Song, 2005; Duan et al., 2008;
Imayoshi et al., 2008).

In adult humans, hippocampal neurogenesis in the DG
is more prominent than in the OB (Gage, 2000; Spalding
et al., 2013; Jessberger and Gage, 2014). Spalding et al. (2013)
showed two different types of neuronal populations in the
human hippocampus, one of which is renewed continuously,
unlike the other. The renewing cell population accounts for
approximately one third of the hippocampal neurons and exceeds
similar cell population in rodents (Snyder and Cameron, 2012).
In humans, as in rodents, hippocampal neurogenesis declines
over the years (Ihunwo et al., 2016). It is worth noting that
despite the large number of research works, inconsistency still
exists concerning the abundance of adult human hippocampal
neurogenesis. For example, two recent studies have provided
quite contradictory results. Moreno-Jiménez et al. (2019) found

thousands of cells of immature neuronal phenotype within the
DG of healthy adult subjects, aged between 43 and 87. In
sharp contrast, Sorrells et al. (2018) report that hippocampal
neurogenesis declines in children and no immature neurons
are found within the DG in adult subjects. Moreno-Jiménez
et al. (2019) along with Kempermann et al. (2018) consider
that such discrepancies may stem from the differences in the
details of post-mortem tissue processing, and conclude that
the level of human hippocampal neurogenesis may in fact be
underestimated in some studies due to the loss of the detectable
immature neuronal markers in post-mortem brain tissues. Thus,
a consensus about the level of adult human hippocampal
neurogenesis is yet to be achieved.

The Cortex
Neurogenic potential of the cerebral cortex in physiological
conditions is considerably smaller in comparison to the V-SVZ
and to the SGZ of the DG.

The majority of cortical neurons and glial cells originate from
the radial glia stem cells that located along lateral ventricles.
These cells generate cortical neurons and direct their migration
to the cortical layers at the embryonic stage (Rakic et al., 2009).
This process is almost complete prior birth. However, the mouse
cortex retains its neurogenic potential for a short period after
birth. For almost 10 days after birth, there exist in the mouse
cortex multipotent astrocytic stem cells, which, having been
translated into cell culture, form neurospheres and differentiate
into neurons, astrocytes and oligodendrocytes (Laywell et al.,
2000; Ahmed et al., 2012). From day 10 neurogenesis in the cortex
stops; however, traumatic injury of the cortex at day 15 causes its
restoration (Ahmed et al., 2012).

Almost no neurogenesis occurs in the cortex of the normal
adult brain in rodents, but systematic analysis shows that small
numbers of NeuN/BrdU double positive new neurons still
continue to be generated there (Dayer et al., 2005). Their origin
has yet to be established, but the authors posit that these neurons
might be produced from local precursors. Interestingly, these
new neurons seem to be generated not from DCX-expressing
cells but, rather, from those that express NG2, a protein that
is usually associated with oligodendrogenesis. There were no
DCX-expressing cells in the cortex, but instead there were
proliferating (BrdU-labeled) NG2-positive cells. Moreover, some
NeuN/BrdU positive cells also co-expressed NG2, suggesting that
NG2-precursors are the source of new neurons in the cortex.
Given that DCX is a marker of migrating neuroblasts, the authors
concluded that the observed cortical DCX-negative progenitors
are of local origin (Dayer et al., 2005). Gould et al. (2002) similarly
showed rare cells incorporating BrdU and co-expressing the
neuronal markers NeuN and TuJ1 in the anterior rat neocortex.
It remains unclear whether these cells are of local origin or they
arise from the SVZ. At the same time, some other studies failed
to discover any newly generated neurons in the adult rodent
cortex (Ehninger and Kempermann, 2003; Madsen et al., 2005).
However, analysis performed in the review by Cameron and
Dayer (2008) suggests that the causes for such negative results
may stem from an extremely low level of cortical neurogenesis
and the small diameter of their nuclei.
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A number of studies in primates and humans mainly report
on the absence or a low level of adult neurogenesis in the
cerebral cortex. Longitudinal observations by Gould et al. (2002)
revealed a small number of cells that co-expressed the neuronal
markers NeuN and TuJ1 with BrdU. The authors concluded
that these de novo generated neurons have transient existence
because their number declines after 9 weeks of observation.
The origin of these cells has not been studied in this work.
In humans, Eriksson’s studies (Eriksson et al., 1998) showed a
non-neuronal phenotype of BrdU-labeled cells in the cortex. An
extremely sensitive analysis, which included both BrdU labeling
and 14C incorporation, estimated the exchange rate of neurons
in the adult human neocortex at 1/1,000 neurons every fifth year
(Bhardwaj et al., 2006).

For several decades, the piriform cortex has attracted
significant attention due to its ability to express the markers
of immature neurons DCX and PSA-NCAM, which was
revealed in most mammalian species in adulthood. Nevertheless,
numerous attempts to achieve evidence of neurogenesis in this
area using BrdU labeling failed. It was concluded that the
expression of DCX and PSA-NCAM could be explained by this
particular population of neurons retaining its structural plasticity
(Nacher and Bonfanti, 2015).

The Striatum
The adult striatum, at least in some mammalian species, also
retains the potential to generate new neurons. Ontogenically, the
striatum originates from the ganglionic eminence located in the
ventral part of the developing telencephalon. The most active
striatal neurogenesis, which proceeds in two phases that result
in a different functionality of striatal neurons, almost ends with
birth (Pauly et al., 2012). In adults the striatum consists of about
95% GABAergic medium spiny neurons and less than 5% aspiny
interneurons (Tepper and Bolam, 2004; Pauly et al., 2012).

Unlike the cerebral cortex, there is significantly more evidence
of the generation of new neurons in the adult striatum under
physiological conditions. Several works did not reveal new
neurons in the unlesioned striatum (Pencea et al., 2001b;
Teramoto et al., 2003; Luzzati et al., 2011). Nevertheless, some
studies clearly demonstrated that neuroblasts and new neurons
continued to arise in the striatum of adult rats (Dayer et al.,
2005), rabbits (Luzzati et al., 2006), guinea pigs (Luzzati et al.,
2014) and humans (Ernst et al., 2014). However, adult-born new
neurons were not found in mice in physiological conditions
(Nato et al., 2015), suggesting a potentially important difference
between the species. In humans, unlike in other species, Ernst
et al. (2014) showed substantial neurogenesis in the striatum:
a subpopulation of interneurons, mainly expressing the marker
calretinin, is exchanged at a rate of 2.7% per year in adulthood.

The origin of NPCs in the adult striatum has been
intensively studied. Some works have largely clarified the
question concerning “local vs. SVZ” source of these neurons.
Luzzati et al. (2006), analyzing spatial distribution of proliferating
NPC clusters in rabbits, have demonstrated that new neurons
in the striatum, at least partially, are of local origin. The
authors also showed that NPCs differentiate into mature neurons;
however, only a small amount of them survive during maturation.

Similarly, NSCs of astroglial nature, like NSCs in the SVZ and
DG, were found in the external capsule and lateral striatum
of juvenile guinea pigs (Luzzati et al., 2014). These cells
proliferate and give rise to new neurons that have existed
transiently and have not contributed to the population of mature
functional neurons. At the same time, they expressed Sp8, a
transcription factor associated with neuroblasts migrating to the
OB, and showed tropism for white matter tracts. Collectively,
these studies suggest that the striatum, at least in rabbits and
guinea pigs, is able to generate new neurons but that their
survival is negligible.

Various pathologic changes and injuries strongly affect
neurogenesis and migration of NPCs in the adult brain. Though
the V-SVZ is still considered the main source of new neurons,
migration pathways and destinations of NPCs can change
depending on lesion area. At the same time, there is much
evidence that new neurons can originate from different sources
outside the known and proven neurogenic zones. In the next
section we consider several works investigating these changes.

NEUROGENESIS IN THE INJURED
BRAIN

In this section we describe changes in proliferation and migration
of NPCs in the injured brain. In general, injury can stimulate
V-SVZ neurogenesis accompanied by the migration of V-SVZ-
derived neuroblasts to the site of injury, as well as local generation
of new neuroblasts near the damage area. In the latter case, new
neuronal progenitors are found to arise from local astrocytes,
which gain NSCs properties. The significance of SVZ-derived
versus local progenitors is a highly debated question. Table 2
summarizes the research described in the following sections.

New Neurons in the Damaged
Hippocampus – Resident and Migrating
From the PPV Region
As has already been mentioned, under physiological conditions
significant neurogenesis occurs in the DG of the hippocampus.
Under ischemic conditions, mainly in the model of global
ischemia, the number of neuroblasts in the DG can grow
(Schmidt and Reymann, 2002; Bendel et al., 2005; Wojcik et al.,
2009; Khodanovich et al., 2016, 2018a).

Additionally, after global ischemia new neurons are detected
in the CA1 region of the hippocampus, where in these conditions
a massive death of pyramidal neurons occurs (Nakatomi et al.,
2002; Schmidt and Reymann, 2002; Daval et al., 2004; Bendel
et al., 2005; Oya et al., 2009; Wojcik et al., 2009). The PPV
is probably the major source of these new neurons in CA1.
This supposition is lent credence by the work of Nakatomi
et al. (2002) who, having labeled the cells from the PPV by
intraventricular administration of DiI or of a vector with a GFP
gene, proved that under total ischemic conditions neuroblasts
migrate from the PPV. Moreover, the authors showed that a
small number of neuroblasts from the PPV also migrate to
the DG. Some authors revealed post-ischemic distribution of
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TABLE 2 | Data on the origins of new neurons in the damaged brain.

Model of brain injury Brain region References

CA1 region of the hippocampus Striatum Cortex

Resident Migrating from the V-SVZ Resident Migrating from the V-SVZ Resident Migrating from the V-SVZ

Global ischemia Yes Nakatomi et al., 2002

Yes Oya et al., 2009

MCAO No Yes Yamashita et al., 2006

Yes Magnusson et al., 2014; Duan et al.,
2015

Yes Arvidsson et al., 2002; Zhang et al.,
2004, 2007, 2009, 2011; Thored et al.,
2006; Hou et al., 2008; Liu et al., 2009;
Kojima et al., 2010; Li L. et al., 2010;
Nakaguchi et al., 2012; Grade et al.,
2013; Kazanis et al., 2013

Neonatal ischemia/hypoxia Yes Yang and Levison, 2006; Yang et al.,
2008

Global ischemia Yes Yoshikawa et al., 2010

Hemorrhagic stroke Yes Yan et al., 2009a

MCAO Yes Yes Parent et al., 2002; Jin et al., 2003;
Zhang et al., 2005; Yan et al., 2007

Global ischemia Yes Yes Ohira et al., 2010

Yes Fukuzaki et al., 2015

Neonatal hypoxia Yes Bi et al., 2011

MCAO Yes No Kuge et al., 2009

Chemical injury of the cortex No Yes Faiz et al., 2015

Yes Magavi et al., 2000; Chen et al., 2004;
Faiz et al., 2008

Global ischemia Yes Li et al., 2011

MCAO Yes Leker et al., 2007; Wang et al., 2007;
Lai et al., 2008; Li B. et al., 2010;
Kreuzberg et al., 2010; Moraga et al.,
2014; Palma-Tortosa et al., 2017;
Pradillo et al., 2017

MCAO+global ischemia Yes Ohab et al., 2006; Song et al., 2017;
Tseng et al., 2018

Photothrombotic stroke (cortex) Yes Osman et al., 2011; Vandeputte et al.,
2014

Thermocoagulation of pial vessels (cortex) Yes Gotts and Chesselet, 2005

Cortical devascularization Yes Kolb et al., 2007; Wan et al., 2016

Neonatal ischemia/hypoxia Yes Yang et al., 2007

Mechanical injury of the cortex Yes Goings et al., 2004; Ramaswamy et al.,
2005; Saha et al., 2013; Yi et al., 2013
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neuroblasts from the PPV to CA1 in fixed slices (Oya et al.,
2009; Khodanovich et al., 2018b). Furthermore, it is likely that
the same migration was being reported in the work by Daval
et al. (2004), wherein the authors discovered an increase, after
neonatal hypoxia, in the number of neuroblasts in the SVZ and
the PPV, where labeled cells formed a migrating chain toward
the periventricular region located above the hippocampus.
Many works that have demonstrated the appearance of young
neurons in CA1 after ischemia still provide no information
about their origins (Schmidt and Reymann, 2002; Bendel et al.,
2005; Wojcik et al., 2009; Niv et al., 2012; Ortega et al.,
2013). Bendel et al. (2005) emphasized that after ischemia
NPCs proliferation increased both in the PPV and the SGZ
of the DG, and both these regions could be the source of
new neurons in CA1.

Thus, these data testify that new neurons in the damaged CA1
region originate from the PPV. However, there is no proof that
resident NPCs cannot occur in this region after an injury, because
this possibility has not been specifically examined.

New Neurons in the Damaged Striatum –
Resident and Migrating From the SVZ
In the damaged striatum, many young neurons can be detected,
as has been shown on models of ischemia (Jin et al., 2003;
Yamashita et al., 2006; Hou et al., 2008; Kojima et al., 2010;
Grade et al., 2013; Magnusson et al., 2014) and neonatal ischemia-
hypoxia (Yang and Levison, 2006; Yang et al., 2008).

Some works do not specify the origins of these cells (Kobayashi
et al., 2006; Lee et al., 2006; Zhang et al., 2006, 2010; Masuda et al.,
2007; Yoo et al., 2008; Cui et al., 2009; Yan et al., 2009a; Shimada
et al., 2010; Li et al., 2011; Ortega et al., 2013; Cheyuo et al., 2015;
Fujioka et al., 2017; Wang et al., 2017). However, some proved
their origins from the SVZ using different methods by:

- labeling cells in the SVZ (Jin et al., 2003; Zhang et al., 2005,
2007, 2011; Yamashita et al., 2006; Hou et al., 2008; Yang
et al., 2008; Liu et al., 2009; Kojima et al., 2010; Li L. et al.,
2010; Yoshikawa et al., 2010; Grade et al., 2013);

- direct observation of migration in living brain slices (Zhang
et al., 2007, 2009; Kojima et al., 2010; Grade et al., 2013);

- intraventricular administration of the antimitotic agent
Ara-C (Yoshikawa et al., 2010);

- or estimation of neuroblasts distribution in fixed brain
slices (Arvidsson et al., 2002; Parent et al., 2002; Jin et al.,
2003; Zhang et al., 2004, 2005, 2007, 2009, 2011; Thored
et al., 2006; Yang and Levison, 2006; Yan et al., 2007, 2009b;
Yang et al., 2008; Liu et al., 2009; Li L. et al., 2010; Yoshikawa
et al., 2010; Nakaguchi et al., 2012; Kazanis et al., 2013).

Additionally, data provided by Yamashita et al. (2006) suggest
that SVZ-derived NPCs can be the main source of new neurons
in the damaged striatum after transient MCAO, with no, or
minor, participation of local striatal progenitors. For labeling
cells that originate from the striatum, a genetic vector carrying
the GFP gene was injected into the striatum. As a result,
GFP expression was induced in some striatal cells (in the
majority of cells near the injection site), but not in the SVZ.

Then, ischemia was induced, and none of the detected DCX-
positive neuroblasts in the damaged striatum expressed GFP.
However, given that only a subset of striatal cells was infected
with a GFP-expressing vector, the generation of new neurons
from some unlabeled striatal progenitors cannot be entirely
excluded. At the same time, DCX-positive neuroblasts in the
damaged striatum expressed GFP, if the vector was injected
into the SVZ. This points to a significant role for SVZ-
derived progenitors.

At the same time, three works proved that after lesion,
a number of new neurons in the striatum are generated
from local precursors (Magnusson et al., 2014; Duan et al.,
2015; Nato et al., 2015). Nato et al. (2015) found local
neurogenesis in the damaged striatum after excitotoxic lesion.
By injecting a vector carrying Cre-recombinase under the
control of a GFAP promoter into the striatum of transgenic
R26R reporter mice, the authors induced YFP expression in
striatal – but not subventricular – astrocytes. After subsequent
lesion, about 85% of clustering Ki67 and DCX-positive cells in
the damaged striatum co-expressed a YFP reporter, indicating
that the majority of lesion-induced neuroblasts are of local
origin. Additionally, the induction of a YFP reporter in the
SVZ revealed that only a small number of these striatal
neuroblasts derived from the SVZ. Similarly, Magnusson et al.
(2014) induced the expression of the YFP gene in the striatal
astrocytes and their offspring (but without induction of YFP
expression in the SVZ or the RMS). After ischemia, which
was later induced, many cells that had expressed YFP were
also colocalized with DCX and with NeuN. Duan et al. (2015)
induced GFP expression in astrocytes of the striatum by injecting
a vector carrying a GFP gene under the control of a GFAP
promoter. After ischemia they discovered NeuN- and Nestin-
positive cells among those that had expressed GFP. The authors
concluded that these cells are GFP-positive because they had
generated from striatal GFAP-expressing astrocytes. However,
it is unclear whether cells are able to retain a detectable
amount of GFP in the absence of GFP-gene expression for an
any significant length of time. Thus, the exact mechanism of
GFP appearance in GFAP-negative neurons and NPCs remains
an open question and the results of Duan et al. (2015) are
difficult to interpret.

It should be noted here that the majority of the above-
mentioned works estimated the role of either the SVZ or only of
the striatum in the production of new neurons in the damaged
striatum. Only the two works investigated both and obtained
contradictory results (Yamashita et al., 2006; Nato et al., 2015).
In particular, Yamashita et al. (2006) failed to discover new
striatal neurons of local origin at all, whereas Nato et al. (2015)
found that the majority of lesion-induced striatal neuroblasts are
of local origin. It is unclear whether these contrasting results
stem from the difference in the nature of the lesion (transient
local ischemia versus chemical lesion), or from some other
methodological aspects of the studies. At the same time, the
work by Li L. et al. (2010), who labeled the cells originating
from the SVZ, showed that labeled cells from the SVZ account
for only one third of all neuroblasts in the damaged striatum.
However, it remains unclear whether this value is indicative
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of the actual proportion of subventricular/striatal precursors
or of insufficient labeling of precursors in the SVZ. Thus,
it remains to be elucidated which plays a more important
role in the restoration of the damaged striatum – the SVZ
or the striatum.

New Neurons in the Damaged Cortex –
Resident and Migrating From the
SVZ/PPV Region
Damage to the cortex of the adult animal brain enhances
neurogenesis in it, and this has been shown in different models
of brain damage, such as ischemia (Jin et al., 2003; Ohab et al.,
2006; Kolb et al., 2007; Kreuzberg et al., 2010; Ohira et al., 2010),
neonatal ischemia-hypoxia (Yang et al., 2007), neonatal hypoxia
(Bi et al., 2011), and mechanical (Saha et al., 2013), chemical
(Faiz et al., 2008, 2015) and thermal (Covey et al., 2010; Ajioka
et al., 2015) damage. Some of the above works do not include
an investigation into the origins of new neurons in the damaged
cortex (Zhang et al., 2006; Yoo et al., 2008; Covey et al., 2010;
Ortega et al., 2013; Ajioka et al., 2015).

The majority of works establish their origin from the SVZ
or from the PPV. These findings were obtained with the use of
different approaches based on:

- distribution pattern of neuroblasts migrating from the
SVZ/PPV to the damaged area in fixed brain slices (Magavi
et al., 2000; Parent et al., 2002; Jin et al., 2003; Chen
et al., 2004; Goings et al., 2004; Gotts and Chesselet, 2005;
Ramaswamy et al., 2005; Zhang et al., 2005; Ohab et al.,
2006; Kolb et al., 2007; Leker et al., 2007; Wang et al., 2007;
Yan et al., 2007; Faiz et al., 2008, 2015; Li et al., 2008, Li B.
et al., 2010; Li et al., 2011; Kreuzberg et al., 2010; Osman
et al., 2011; Saha et al., 2013; Yi et al., 2013; Moraga et al.,
2014; Vandeputte et al., 2014; Wan et al., 2016; Palma-
Tortosa et al., 2017; Pradillo et al., 2017; Song et al., 2017;
Tseng et al., 2018);

- suppression of cell proliferation in the SVZ by
intraventricular administration of Ara-C (Leker et al.,
2007; Li B. et al., 2010; Faiz et al., 2015);

- labeling cells from the lateral ventricles (Jin et al., 2003;
Goings et al., 2004; Ramaswamy et al., 2005; Zhang et al.,
2005; Ohab et al., 2006; Kolb et al., 2007; Yang et al., 2007;
Faiz et al., 2008, 2015; Lai et al., 2008; Kreuzberg et al., 2010;
Li B. et al., 2010; Saha et al., 2013; Vandeputte et al., 2014);

- and direct observation of migration in the live brain
(Vandeputte et al., 2014).

At the same time, some studies do in fact suggest that the
production of new neurons can occur in the injured cortex (Gu
et al., 2000; Kuge et al., 2009; Ohira et al., 2010; Shimada et al.,
2010, 2012; Bi et al., 2011; Nakagomi et al., 2011, 2015; Fukuzaki
et al., 2015). Bi et al. (2011) showed by special labeling that,
after neonatal hypoxia, cortex astrocytes in neonates gain the
properties of NSCs and differentiate into new neurons both in the
damaged cortex and after having been translated into cell culture.

Ohira et al. (2010) discovered, in the first layer of
the normal animal cortex, proliferating cells that express

the GAD67 neuronal marker. Mild ischemia, which was
achieved by 10-min cross-clamping of the two major carotid
arteries, caused an increase in the number of these cells,
their migration into the lower layers of the cortex and
differentiation into functionally mature neurons (revealed by
expression of the TuJ1, HuC/D, MAP2, c-Fos markers, and
electrophysiological activity). A vector with the GFP reporter
gene was administered before ischemia either into the cortex
or into the SVZ to determine the source of new neurons in
the cortex. The cortex appeared to be the main source of
new neurons itself, with only a few having migrated to the
cortex from the SVZ.

Kuge et al. (2009) report in their work that after transient
MCAO new neurons were generated in the cortex. The authors
emphasize that they have not detected any patterns of neuroblasts
migration from the SVZ via the corpus callosum to the cortex.
Therefore, they assume that these new neurons in the cortex are
of local origin.

Fukuzaki et al. (2015) described in their work that after 10-
min cross-clamping of the two carotid arteries they observed
proliferation of GAD67-positive NPCs in the cortex. The fact that
these cells localized mainly in the first layer showed that they were
local precursors.

Gu et al. (2000) reported in their work that after
phototrombotic stroke new neurons (colocalization of
bromodeoxyuridine with MAP2 and NeuN) started generating
in the damaged cortex 72 h after surgery. The authors
concluded that this early appearance of new neurons in the
cortex proves that it is very unlikely that they could have
originated in the SVZ. At the same time, it is questionable
that even local progenitors in the cortex can generate mature
NeuN-expressing cortical neurons within 3 days. Thus,
the mechanism of new neuron generation in this study
remains unclear.

Some works described that after permanent MCAO in
adult animals, cortical astrocytes (Buffo et al., 2008; Shimada
et al., 2010, 2012), as well as pericytes of leptomeningeal
and cortical vessels (Nakagomi et al., 2011, 2015), gained
NSC properties: in cell culture they differentiate into neurons,
astrocytes and oligodendrocytes. At the same time, in the
damaged cortex these precursors exhibited a more limited
capacity to differentiate – differentiating only into astrocytes and
oligodendrocytes and never into neurons (Buffo et al., 2008;
Shimada et al., 2010).

Despite a large number of studies, it is still difficult to
get a full picture of neurogenesis in the damaged cortex
since the majority of researchers estimated the role of either
only the cortex or of the SVZ in the production of new
cortical neurons. The work by Ohira et al. (2010) is a rare
exception. The authors labeled both cells of the cortex and
cells of the SVZ, and demonstrated that after a mild cortical
ischemia a larger part of new cortical neurons originated
in the cortex, not in the SVZ. At the same time, Faiz
et al. (2015) showed that after chemical cortical damage,
all of the NPCs that were generated in the cortex had
originated from the SVZ. The different results allow us to
assume that the role of local and SVZ precursors in the
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restoration of the cortex can substantially vary depending on
the conditions of the experiment, particularly on the type and
degree of damage.

Interhemispheric Migration
In this section we consider several works that describe
interhemispheric migration of neuroblasts after cortical injury
(Ramaswamy et al., 2005; Wan et al., 2016). The authors
discovered that damage to the cortex may result in migration of
neuroblasts from one hemisphere to the other. While Wan et al.
(2016) reported on migration from the healthy hemisphere to the
damaged one, Ramaswamy et al. (2005) discussed migration from
damaged to healthy.

Wan et al. (2016) observed that after cortical
devascularization, migration occurs not only from the SVZ
of the same hemisphere, but also from the contralateral
SVZ, to the injured cortex. In fixed brain slices, the
authors observed distribution of cells migrating from
the contralateral SVZ via the midline, further to the
ipsilateral corpus callosum, and finally to the lesion area
in the cortex. Some authors report on the enhancement
of proliferation in the contralateral SVZ after ischemic or
mechanical brain damage but they have not found any
signs of migration from the contralateral SVZ to ipsilateral
(Leker et al., 2007; Kreuzberg et al., 2010; Li B. et al., 2010;
Saha et al., 2013).

Ramaswamy et al. (2005) obtained more unusual results.
They discovered that after mechanical damage to the cortex,
neuroblasts migrate from the ipsilateral SVZ not only to the
lesion area in the cortex, but also to the contralateral (non-
damaged) hemisphere. The origin of neuroblasts migrating
from the SVZ has been proved by preliminary administration
of fluorescent microspheres into the lateral ventricle. The
authors hypothesized that migration of neuroblasts to the
contralateral hemisphere may functionally compensate for the
damage to the ipsilateral cortex, hence the healthy cortex
in the contralateral hemisphere may take over the functions
of the damaged cortex. The results obtained by the two
mentioned groups (Ramaswamy et al., 2005; Wan et al., 2016)
are extraordinary, and have not been reported elsewhere.
Still, it remains unclear whether migration from the damaged
hemisphere to the health one or vice versa occurs only under
some specific conditions set by researchers, or is an ordinary
process in the injured brain that has just been overlooked by
other investigators.

Functional Relevance of Injury-Induced
Neurogenesis
Although this review focuses mainly on the anatomical origin of
new neurons appearing in the damaged brain areas, the question
about their functional relevance cannot be ignored due to its high
importance when seeking out new directions for future therapies.
Here we discuss some related issues. For more information about
the survival, differentiation and functional integration of new
neurons within the injured brain tissue, we direct the reader to the
reviews by Lindvall and Kokaia (2015) and Marlier et al. (2015).

Relatively few works have addressed the study of structural
and functional integration of new neurons into the existing
neural networks after brain injury. Mainly, such integration has
been shown in the damaged striatum and cortex.

At least two studies provided evidence that both SVZ-
derived and locally generated neurons may successfully integrate
into the pre-existing circuit within the damaged cortex. Lai
et al. (2008) used lentiviral labeling of SVZ-derived progenitors
in combination with patch-clamp recordings on the labeled
neurons within the cortex. They showed that after MCAO,
new SVZ-derived neurons in the damaged cortex fired the
induced and spontaneous action potentials, which suggests
that these neurons are synaptically integrated. However, the
results of Lai et al. (2008) should be interpreted with
consideration for the fact that a lentiviral vector could have
infected non-dividing cells in the cortex. Ohira et al. (2010)
retrovirally labeled the local progenitors within the cortex,
and after global ischemia indirectly examined the functional
integration of new neurons by evaluation of the immediate
early gene c-Fos expression. They found that c-Fos expression
by the new neurons was much higher in the enriched
environment when compared with the control conditions, which
suggests that the new neurons in the cortex are synaptically
active. It was also concluded that the new neurons are
GABAergic interneurons.

Several studies showed structural and functional integration
of new neurons into the existing striatal networks. Yamashita
et al. (2006), using electron microscopy, showed that newly
generated neurons form synapses with neighboring cells in the
post-ischemic striatum. Additionally, a retrograde tracing study
by Sun et al. (2012) showed that a subpopulation of new neurons
in the damaged striatum re-establishes long connections with
the substantia nigra. Moreover, Hou et al. (2008) provided
both structural and electrophysiological evidence of synaptic
integration of new striatal neurons after MCAO. Strong evidence
in support of the regenerative role of lesion-induced neurogenesis
comes from the work by Jin et al. (2010). The authors used
transgenic animals expressing herpes simplex virus thymidine
kinase under the control of the promoter for DCX to selectively
ablate new neurons in the brain through a ganciclovir injection.
They showed that neurogenesis ablation worsens the outcome
after MCAO at both histological and behavioral levels.

Despite these optimistic results, the majority of these studies
showed two important limitations in the restoration of neuronal
circuits by adding newly generated neurons: the low survival
rate of these neurons and the poor scope of their differentiation
potential. Most new neurons within the ischemic striatum die,
possible due to unfavorable environment in the damaged tissue
(Arvidsson et al., 2002; Parent et al., 2002; Thored et al., 2006).
Since generation and migration of new neurons can last for
months (Thored et al., 2006; Leker et al., 2007) and even a year
(Kokaia et al., 2006; Osman et al., 2011) after injury, we can
assume that mature neurons may, at least partially, compensate
for their high mortality within the ischemic tissue.

Another important limitation is a relevance of functional
features of integrated new neurons to the pre-existing
functionality of the network. Studies on a phenotype of
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newly generated neurons within the ischemic striatum provided
contradictory results regarding a percentage of newly generated
neurons expressing DARPP-32, a marker of medium-sized
spiny neurons – the major class of striatal neurons. Arvidsson
et al. (2002) and Parent et al. (2002) showed that after MCAO
a substantial number of new striatal neurons are DARPP-
32-positive. In contrast, on the same model of ischemia,
Teramoto et al. (2003) and Liu et al. (2009) failed to find any
newly generated DARPP-32-positive neurons at all. Teramoto
et al. (2003) found that about 65% of newly generated striatal
neurons are parvalbumin-positive interneurons, which normally
comprise a minor subpopulation of striatal neurons. Liu
et al. (2009) reported that nearly all new neurons in the
damaged striatum are calretinin-positive interneurons, which are
extremely rare in the striatum under physiological conditions.
In addition, these new striatal neurons express the transcription
factor Sp8, which is expressed in most newly generated neurons
in the OB under physiological conditions. The results of Liu
et al. (2009) suggested that SVZ-derived progenitors had strictly
limited differentiation potency, and that after MCAO they
cannot generate the majority of neuronal classes, which are
lost within the damaged striatum. This point of view may be
further strengthened by the work of Merkle et al. (2007). The
authors found that, despite the diversity of the newly generated
OB interneurons, their stem progenitors within the SVZ have
a strictly restricted potency of differentiation. In fact, the SVZ
stem cell niche has a mosaic organization, where NSCs from SVZ
subregions vary in their differentiation potential. NSCs from a
particular SVZ-subregion may give rise only to a particular type
of interneurons, even when cultivated in vitro. It seems unlikely
that these strictly predetermined cells can produce other types of
neurons necessary for brain recovery.

Identification of the causes of the above-mentioned
discrepancies is one of the directions for future studies.
Thus, more research needs to be done to comprehensively
evaluate the regenerative potential of adult neurogenesis and to
develop optimal strategies for its enhancement.

CONCLUSION

Up to the present time, a substantial amount of research material
concerning the origins and migratory pathways of NPCs in
the brain under physiological and pathological conditions has
been accumulated. In the healthy brain, the majority of NPCs
originate in the V-SVZ located in the walls of the lateral ventricles
(Lim and Alvarez-Buylla, 2016). In the embryonic and early
postnatal brain, NPCs migrate from the V-SVZ to the OB,
striatum, and cortex. In adulthood, these pathways – except
for migration to the OB in rodents (Lim and Alvarez-Buylla,
2016) and, probably, to the striatum in humans (Ernst et al.,
2014) – remain substantially quiescent but can intensify in
conditions of brain injury (Nakatomi et al., 2002; Yamashita
et al., 2006; Faiz et al., 2015). Among other regions, at the
very least, the adult striatum maintains the capacity to generate
new neurons in both physiological (Dayer et al., 2005; Luzzati
et al., 2006, 2011) and pathological (Magnusson et al., 2014;

Nato et al., 2015) conditions. The fate and functionality of local
newborn striatal neurons have been intensively studied (Lindvall
and Kokaia, 2015; Marlier et al., 2015). Adult neurogenesis
in the cortex and migration of NPCs from the V-SVZ to
this area in physiological conditions are less evident (Gould
et al., 2002; Dayer et al., 2005; Bhardwaj et al., 2006; Cameron
and Dayer, 2008). However, whilst brain injury provokes the
generation of new cortical neurons, the survival and functionality
of these neurons are commonly questioned (Ohira et al., 2010;
Faiz et al., 2015).

Human neurogenesis, which has been also shown in
the studies with the comprehensive 14C-content assessment
(Spalding et al., 2013), substantially differs from neurogenesis
in rodents. Using this technique in studies on rodents, which
are more extensively used in research, could help clarify
these differences.

Despite the impressive array of research works, at present
there is no full picture of neurogenesis and NPC migration
in the brain. Most research works address either a single
neurogenic region or a single migratory pathway of neuroblasts.
Future studies on the injured brain could examine the following
aspects: firstly, the local or migratory nature of NPCs after
brain injury could be confirmed by novel techniques of real-time
observations; secondly, since the presence of newly generated
neurons does not ensure their functionality, the question about
the integration of new neurons into the existing networks
and their phenotypes could be further investigated; thirdly,
comparative studies are needed to understand the difference
between human and rodent neurogenesis for future translation
of new therapies to clinic.

It is likely that in the future, methods for longitudinal
observation capable of capturing new neuron production,
migration, and functional integration in the same animal brain,
will be improved. We believe that the advancement of methods
for in vivo visualization of neurogenesis in the brain could
fundamentally change the current situation in this field.
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Role of the Immune System in the
Development of the Central Nervous
System
Keiko Morimoto and Kazunori Nakajima*
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The central nervous system (CNS) and the immune system are both intricate and highly
organized systems that regulate the entire body, with both sharing certain common
features in developmental mechanisms and operational modes. It is known that innate
immunity-related molecules, such as cytokines, toll-like receptors, the complement
family, and acquired immunity-related molecules, such as the major histocompatibility
complex and antibody receptors, are also expressed in the brain and play important
roles in brain development. Moreover, although the brain has previously been regarded
as an immune-privileged site, it is known to contain lymphatic vessels. Not only
microglia but also lymphocytes regulate cognition and play a vital role in the formation
of neuronal circuits. This review provides an overview of the function of immune cells
and immune molecules in the CNS, with particular emphasis on their effect on neural
developmental processes.

Keywords: MHC, complement, T cell, central nervous system, immune system

INTRODUCTION

The central nervous system (CNS) and the immune system have much in common. The most
prominent characteristic of either system is their ability to transmit information to distant parts
of the body with extraordinary specificity and diversity. In the immune system, the diversity of
acquired immune cells–T cells and B cells–is generated by the stochastic VDJ recombination of
T cell receptors (TCRs) and immunoglobulin (Ig) genes, and somatic hypermutation of TCRs (at
least in the shark) (Ott et al., 2018) and immunoglobulins. For example, the human heavy chain
region contains 38–46 variable (V) gene segments, 23 diversity (D) gene segments, and 6 joining
(J) gene segments, and one segment of each type is selected in each lymphocyte by a mechanism
called VDJ recombination. Moreover, the many different combinations of heavy- and light-chain
variable regions that pair to form the antigen-binding site result in at least 1011 different receptors.
The diversity of immunoglobulins is magnified by somatic hypermutation that occurs after the
initiation of immune response and introduces point mutations into the rearranged variable region
to enhance the reactivity to antigen. As for T cells, theoretically, 1015 TCRs can be produced by
using almost the same mechanism as for immunoglobulins. This mechanism is critical for the
evolution of the vertebrate adaptive immune system, because the genome with its limited size
(approximately 3 billion nucleotides) could not directly encode all the possible antigen receptors.
On the other hand, the human brain contains approximately 1011 neural cells that are classified
into hundreds of different neuronal subtypes based on cell morphology, gene expression profile,
and axon/dendrite projection patterns. For example, 21 neuronal subtypes are identified in the
human frontal cortex by single-cell methylomes (Luo et al., 2017). Each neuron collects inputs
from and sends outputs to many other specific neurons–on average, 103 for both inputs and

Frontiers in Neuroscience | www.frontiersin.org 1 September 2019 | Volume 13 | Article 91634

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00916
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.00916
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00916&domain=pdf&date_stamp=2019-09-03
https://www.frontiersin.org/articles/10.3389/fnins.2019.00916/full
http://loop.frontiersin.org/people/725112/overview
http://loop.frontiersin.org/people/3589/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00916 September 3, 2019 Time: 14:40 # 2

Morimoto and Nakajima CNS Development and Immune System

outputs for a mammalian neuron. In addition, glial cells, which
outnumber neurons approximately 10 times, cover synapses
and control the neural network. It is known that each human
astrocyte can contact and encompass nearly 2 × 106 synapses
(Oberheim et al., 2006). In this way, specific and diverse
neural networks are established, although the precise underlying
molecular mechanisms have not been completely illustrated.
During the generation of diversity, some non-functional or
autoreactive TCR-expressing T cells and undesirable neurons
could emerge. These T cells undergo apoptosis in the thymus
by a mechanism known as positive and negative selection,
and some neurons are removed by apoptosis or lose their
synaptic connections through synaptic pruning. Moreover, both
systems possess memory mechanisms. In the immune system,
after invasion of bacteria, viruses, and other disease-causing
organisms, the appropriate acquired immune cells that can
respond to specific antigens are expanded and stored as
memory T and B cells, so they can immediately generate
an accelerated and more robust antibody-mediated immune
response when the pathogen is encountered again. On the
other hand, synaptic plasticity, including long-term potentiation
(LTP) and long-term depression (LTD), underlie memory in the
nervous system. In addition, both systems use the mechanisms
of accelerators and brakes. In the immune system, there are
immunosuppressive T/B cells (Treg, Breg) (Sakaguchi et al.,
2008; Rosser and Mauri, 2015) and their imbalance results in
allergy and autoimmunity. On the other hand, CNS neurons
are classified into excitatory and inhibitory neurons, and the
appropriate balance between these two populations is critical
for neuronal networks to function normally (Yizhar et al.,
2011). During the formation of neural circuits, both excitatory
neurons and inhibitory interneurons undergo extensive cell death
in the critical window of postnatal development (Southwell
et al., 2012) and the survival of interneurons depends on the
activity of excitatory pyramidal neurons (Wong et al., 2018).
Of note, acquired immune system cells and highly developed
myelination in the nervous system appeared at nearly the same
time during evolution, around the evolution from jawless to
cartilaginous fish (Zalc et al., 2008). It would be interesting
if this was not mere coincidence but the two phenomena
were causally linked. In addition, our understanding of the
CNS has recently dramatically changed from an “immune
privileged site” to a “special immune-controlled site.” In 2015,
it was discovered that functional lymphatic vessels line the
dural sinuses, and are able to carry both fluid and immune
cells from the cerebrospinal fluid to the deep cervical lymph
nodes (Louveau et al., 2015). The importance of meningeal
lymphatic vessels for waste clearance was confirmed because
impairment of meningeal lymphatic function caused cognitive
impairment in mice (Da Mesquita et al., 2018). These discoveries
shed more light on the interaction between the CNS and
the immune system. Moreover, emerging evidence suggests
that an increasing number of molecules that are typically
associated with the immune system are also expressed in various
CNS regions and play crucial roles in brain development.
This review summarizes the reports on the function of
immune cells (Figure 1) and immune molecules (Table 1)

mainly in CNS development during the embryonic and early
postnatal periods, with some attention paid to their function in
more mature brains.

CONTRIBUTION OF IMMUNE CELLS TO
CNS FUNCTION

In the steady state, many lymphocytes reside mostly in the
meninges and choroid plexus; however, a few lymphocytes are
also found in the brain parenchyma, such as in the fimbria
of the dorsal hippocampus and anterior olfactory nucleus,
as clearly illustrated by reconstitution of green fluorescent
protein-expressing lymphoid cells in Rag2−/− mice (Song
et al., 2016). The most dominant immune cells in the
brain are microglia, which comprise 80% of brain immune
cells. Other immune cells identified in the brain include
myeloid cells, monocytes/macrophages, dendritic cells, T cells,
B cells and natural killer (NK) cells (Korin et al., 2017).
Lymphocytes (including T cells, B cells, and NK cells), which
are identified as a CD45hi population, are scarce in the CNS,
with approximately 10,000 per hemisphere in adult naïve
mice (Pösel et al., 2016). However, it is now clear that
these limited numbers of immune cells have a significant
impact on brain function. In particular, T cells have been
implicated in complex brain processes including spatial learning,
memory, emotional behavior, and stress responsiveness. For
example, in mice undergoing the Morris-water-maze test
(MWM), CD4+ T cells (helper T cells), but not CD8+
T cells (cytotoxic T cells), are recruited to the meninges,
and secrete interleukin (IL)-4. IL-4 skews macrophages and
microglia to an M2 (anti-inflammatory) phenotype, and
induces the production of brain-derived neurotrophic factor
by astrocytes, leading to the improvement of spatial learning
and memory (Kipnis et al., 2004; Ziv et al., 2006; Wolf
et al., 2009; Derecki et al., 2010; Radjavi et al., 2014).
Previous studies have also demonstrated that B cells are not
required for these processes because B cell-deficient µMT
mice do not exhibit learning disabilities (Wolf et al., 2009;
Radjavi et al., 2014).

In contrast to the adult brain, data regarding the interaction
of immune cells and neural cells— except for microglia—during
developmental stages are quite limited. However, epidemiological
studies have demonstrated a link between maternal infection
and the onset of neurodevelopmental disorders, such as autism
spectrum disorder (ASD), schizophrenia, epilepsy, cerebral
palsy, anxiety, and major depressive disorder, pointing to
the association between the immune system and neural
development (reviewed in Knuesel et al., 2014; Estes and
McAllister, 2016). Animal models using rodent and non-human
primates have also clearly demonstrated a causal relationship
between maternal infection and ASD- and schizophrenia-related
behavioral abnormalities. It is widely accepted that a major
consequence of maternal immune activation (MIA) are changes
in microglial morphology, distribution, and the expression level
of several marker proteins. Moreover, it is known that microglia
have multifaceted functions during normal brain development. It
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FIGURE 1 | Timeline of cerebral cortex development and distribution of immune cells in mice. Microglia begin to enter the brain at E9.5, and other immune cells,
such as T cells, B cells and dendritic cells, infiltrate the brain at least by E16. No data regarding the distribution of granulocytes and NK cells at developmental stages
are available; however, they exist in the adult brain. Immune cells, except microglia, are mostly located at the pial surface, ventricle and choroid plexus, and a few
cells enter the brain parenchyma. The lower part indicates the time course of major developmental events and the marks on the right illustrate the related immune
cells for each process. E, embryonic; P, postnatal; MZ, marginal zone; CP, cortical plate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone.

has recently been reported that acquired immune cells are also
engaged in the developmental processes of the CNS.

Neonatal Immune Cell Population
Analyses of embryonic and neonatal immune populations in the
CNS remain limited; however, one report illustrated that a small
number of lymphocytes infiltrated the developing mouse brain
even at embryonic day 16 (E16) and, among the investigated
cell types, including CD4+ T cells, CD8+ T cells, and B
cells, B cells are the most abundant in the CNS, peaking at
approximately 5% of total lymphocytes (Tanabe and Yamashita,
2018b). Another study, using CD11c/EYFP transgenic mice,
clearly illustrated that CD11c+ (also known as integrin αX
and complement component 3 receptor 4 subunit) cells—which
include monocytes, macrophages, dendritic cells, granulocytes,
and NK cells—were present along the ventricles and within the
adjacent parenchyma at E16 and postnatal day 2 (Bulloch et al.,
2008). However, there have been no detailed reports describing
the subpopulation of immune cells in the developing brain.

Microglial Function in CNS Development
Microglia are tissue-resident macrophages that play essential
roles in innate immunity and have an origin that is different

from other immune cells. Hoxb8-negative microglia arise from
erythromyeloid precursors in the yolk sack during primitive
hematopoiesis and infiltrate the brain at E9.5 in mice (Ginhoux
et al., 2010), immediately after the onset of angiogenesis and
neurogenesis. In contrast, Hoxb8-positive microglia infiltrate
the brain at E12.5 (De et al., 2018). Although microglia are
initially located along the meninges and ventricles, after E14 they
distribute broadly throughout the cortex and then change their
distribution to avoid the cortical plate. After E18, they again enter
the cortical plate and begin to distribute to the entire cortex and
increase their numbers dramatically (Reemst et al., 2016). During
these dynamic changes in microglial distribution, the neural
system undertakes highly orchestrated processes, including
angiogenesis/vascularization, proliferation and migration of
neurons and glia, programed cell death of neural stem cells and
neurons, formation of synapses, myelination and establishment
of neuronal circuits. Microglia contribute virtually to all of these
events (reviewed in Kettenmann et al., 2013; Wu et al., 2015).
For example, microglia regulate angiogenesis/vascularization by
clearing excess vessels and participating in vessel anastomosis
(Fantin et al., 2010), control the number of neural stem cells
by phagocytosis (Cunningham et al., 2013), and regulate the
survival of neurons in layer 5 via insulin-like growth factor 1
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TABLE 1 | Molecules that are expressed both in the nervous system and immune system, and their reported/potential functions.

Neuro-immune common molecule Nervous system Immune system

Expression Function References
(bold: review)

Expression Function References
(bold: review)

Major
histocompatibility
complex (MHC)
class I

H2-Kb, H2-Db Neuron, glial cells Regulate axonal and dendritic
growth, synaptic density,
synaptic transmission,
activity-dependent refinement
and plasticity

Elmer and McAllister,
2012; McAllister,
2014

All nucleated cells,
platelet

Present antigen to T cells,
activate NK cells if missing or
changed

Blum et al., 2013;
Vivier et al., 2011

Complement
family

C1q, C2-9 Neuron, glial cells Regulate activity-dependent
synaptic pruning, related to
neurogenesis, migration, and
neuronal survival

Veerhuis et al., 2011;
Stephan et al., 2012

Epithelial cell,
monocyte/macrophage,
fibroblast, hepatocyte

Eliminate cellular debris and
infectious microbes,
orchestrate immune responses

Ricklin et al., 2010

CR3 Microglia neutrophil,
macrophage, NK cell

Fc receptor FcγR II B Purkinje cell Regulate the development of
Purkinje cell

Nakamura et al., 2007 B cell,
monocyte/macrophage,
neutrophil, dendritic
cell, basophil

Low affinity receptor for the Fc
region of IgG and negatively
regulate receptor-induced
signaling

Bruhns, 2012

Fcα/µR Oligodendrocyte
precursor cell
(OPC)

Regulate proliferation and
maturation of OPC

Tanabe and
Yamashita, 2018a

B cell, macrophage Work as a receptor for the Fc
region of IgA and IgM

Shibuya et al., 2000

CD3 family CD3ε Purkinje cell Regulate the development of
Purkinje cell

Nakamura et al., 2007 T cell Work as a co-receptor for TCR Kuhns et al., 2006

CD3ζ dLGN,
hippocampal
neuron

Regulate activity-dependent
synapse formation of RGCs in
retina, LTP and LTD, and
promote axon pruning

Huh et al., 2000;
Baudouin et al., 2008;
Xu et al., 2010, Elmer
and McAllister, 2012

Cytokine IL-1β, IL-6,
TNF-α, TGF-β

Neuron, microglia,
astrocyte

Regulate cell survival,
proliferation and differentiation,
axonal growth and
synaptogenesis

Bauer et al., 2007;
Knuesel et al., 2014

Several immune cells,
fibroblast, endotherial
cell

Play key roles in mediating
inflammatory and
anti-inflammatory reactions

Arango Duque and
Descoteaux, 2014

Chemokine CXCL1
(fractalkine)

Neuron Regulate microglial recruitment,
neuronal survival, synaptic
maturation, activity and
plasticity, synaptic pruning

Paolicelli et al., 2014 Monocyte/macrophage,
fibroblast, epithelial cell,
endothelial cell

Survival, migration and
adhesion of monocyte

Imai et al., 1997

(Continued)
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TABLE 1 | Continued

Neuro-immune common molecule Nervous system Immune system

Expression Function References
(bold: review)

Expression Function References
(bold: review)

CX3CR1 Microglia Monocyte/macrophage,
T cell subset, platelet,
NK cell

CXCL12
(SDF-1)

Cerebral cortex
(subplate,ventricular
surface)

Enhance migration of microglia,
NPC, cortical interneuron and
Cajal Retzius cell, related to
axon guidance, neurite
outgrowth

Li and Ransohoff,
2008; Zhu and
Murakami, 2012;
Guyon, 2014

Bone marrow Essential for development of B
cell and homing of
hematopoietic stem cell to the
bone marrow

Nagasawa, 2015

CXCR4 Neuron Several immune cells
including hematopoietic
stem cell

TLR TLR2, 3, 4, 8, 9 Neuron, neuronal
progenitor cell
(NPC), microglia,
astrocyte,
oligodendrocyte

Related to axon outgrowth,
NPC proliferation, cognition,
sensory and motor behaviors

Kioussis and
Pachnis, 2009;
Okun et al., 2011;
Khariv et al., 2013

Monocyte/macrophage,
dendritic cell, B cell, NK
cell, regulatory T cell,
neutrophil, basophil,
fibroblast, epithelial cell,
endothelial cell

Key molecules for innate
immune system, work as a
receptor for peptidoglycan
(TLR2), dsRNA (TLR3), LPS
(TLR4), ssRNA (TLR8), CpG
DNA (TLR9)

Kawai and Akira,
2007

Pentraxin PTX3 Astrocyte Modulate phagocytic functions
of microglia, induce functional
synapse formation

Jeon et al., 2010;
Fossati et al., 2019

Dendritic cell,
macrophage, neutrophil

Activate complement, facilitate
pathogen recognition by
phagocytes

Garlanda et al., 2005

Pcdh Pcdh18 Ventricular zone in
the forbrain and
midbrain

Involved in neural circuit
formation

Kim et al., 2011 Activated CD8+
memory T cell

Function as an inhibitory
signaling receptor and restrict
the effector phase

Vazquez-Cintron et al.,
2012

Dscam Dscam Neuron Specify neuronal wiring,
regulate axon guidance and
retinal lamination

Boulanger, 2009;
Schmucker and
Chen, 2009

Hemolymph (in flies) Bind directly to bacteria Watson et al., 2005

Eph/Ephrin Ephrin-B1 Neuron Axon guidance during
development, synaptic plasticity

Klein, 2009 Germinal center B cell,
memory precursor B
cell

Inhibit GC recruitment and
retention of Tfh cells, promote
IL-21 production

Laidlaw et al., 2017; Lu
et al., 2017

Semaphorin Sema3A Olfactory neuron,
cerebral cortex,
corpus callosum

Inhibit axon branching in the
cortical neurons, regulate
pre-target axon sorting of
olfactory system

Tran et al., 2007;
Imai et al., 2009

Dendritic cell, T cell Inhibit monocyte migration,
inihibit T cell activation

Kumanogoh and
Kikutani, 2013;
Nishide and
Kumanogoh, 2018
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secretion (Ueno et al., 2013). They also modulate major events
in forebrain wiring. These include the regulation of invasion
of tyrosine hydroxylase-positive dopaminergic interneurons into
the subpallium, the laminar positioning of parvalbumin-positive
cortical interneurons (Squarzoni et al., 2014), and the control
of axon projection through the corpus callosum (Pont-Lezica
et al., 2014). Moreover, microglia regulate synaptic formation
and synaptic pruning (through activation of the classical
complement cascade) (Stevens et al., 2007; Miyamoto et al., 2016);
they also regulate myelination by promoting the survival and
differentiation of oligodendrocyte precursor cells (OPCs) and the
maturation of oligodendrocytes (Pang et al., 2013; Shigemoto-
Mogami et al., 2014).

Role of T Cells During CNS Development
In contrast to the contribution of T cells in adult brain
function, very little is known about their function during
embryonic and neonatal stages. One of the few explored
contributions is their involvement in the pathophysiology of
neonatal brain injury. Using postmortem brains from human
preterm infants with periventricular leukomalacia, and animal
models of preterm brain injury and sepsis-induced white
matter brain injury, it was shown that γδ T cells—which have
a distinctive TCR and have features of non-MHC-restricted
antigen recognition and abundant cytokine secretion capacity—
were responsible for injury in the developing brain, and that
depletion of γδ T cells resulted in protection from injury
(Zhang et al., 2017; Albertsson et al., 2018; Nazmi et al., 2018).
Moreover, other groups have also demonstrated that T-helper
17 (Th17) lymphocytes coordinate neuroinflammatory responses
in lipopolysaccharide (LPS)-sensitized hypoxic-ischemic injury
in neonates (Yang et al., 2014). It has been also reported
that TCRβ −/−γ−/− mice, which lack both αβ T cells
and γδ T cells, exhibit altered size of several areas of the
brain and lose sex differences (Rilett et al., 2015). Our
knowledge of T cell involvement in CNS development is still
fragmented and more work on T cell function in normal CNS
development is needed.

B Cells in Oligodendrogenesis
As mentioned above, B cells accumulate in the neonatal brain and
decline in number with age. Most of these B cells are IgMhi B-
1a cells (Tanabe and Yamashita, 2018b), which have innate-like
characteristics and participate in maintaining tissue homeostasis
(Baumgarth, 2011). These B-1a cells are suggested to be mature
and are recruited to the meningeal space and lateral ventricle
depending on the chemokine receptor CXCR5 and in response
to CXCL13 secreted from the choroid plexus. B-1a cells secrete
natural IgM antibody and promote the proliferation of OPCs
through the Fc receptor for IgM (Fcα/µR). Antibody depletion
of B-1a cells diminishes the number of oligodendrocytes and
results in reduction of myelinated axons in neonatal mouse brains
(Tanabe and Yamashita, 2018b). However, depletion of B-1a cells
by antibody treatment also resulted in a decrease in the number
of microglia in the subventricular zone. Therefore, it has not
yet been completely ruled out that B-1a cells may also affect

oligodendrogenesis indirectly through microglia. More detail is
provided in Tanabe and Yamashita (2018a,b).

MOLECULES THAT PLAY IMPORTANT
ROLES IN BOTH THE NERVOUS
SYSTEM AND THE IMMUNE SYSTEM

It is known that these two systems share molecular mediators
of communication in establishing the ability to monitor
and respond to changes in the internal milieu and outside
environment. Some of these are discussed in this section.

MHC Class I
MHC class I (MHCI) genes, known to be important for antigen
presentation, are polygenic and polymorphic genes, comprising
three classes (H2-K, -D, and -L) and multiple variants in
mice. They were shown to be expressed in neurons at axons,
dendrites and synapses, and in glial cells, especially highly
during early postnatal stages. The function of MHCI is well
reviewed in Elmer and McAllister (2012) and McAllister (2014).
In brief, they are engaged in activity-dependent refinement
and plasticity in the visual system, and regulate synaptic
plasticity and motor learning in the cerebellum. An important
question in this field is whether the diversity of MHCI is
necessary for these functions. Synapse elimination and eye-
specific axonal segregation in the lateral geniculate nucleus
(LGN) were impaired in mice deficient in H2-Kb and H2-Db

(KbDb−/−), and were rescued by expressing a single MHCI
molecule H2-Db in neurons (Lee et al., 2014). However,
whether each MHCI has specific functions and whether its
polymorphism is related to CNS development and cognitive
function related to diseases such as autism and schizophrenia
remain to be elucidated.

The other major question concerns the MHCI signaling
pathway. The TCR is the most widely known receptor for
MHCI; however, no TCR protein has been detected in the
CNS (Syken and Shatz, 2003). In contrast, CD3ζ, a component
of the TCR, is expressed in the LGN during development
(described below). Moreover, messenger RNA for PirB (paired
Ig-like receptor B), an innate Ig-like transmembrane receptor
for MHCI that antagonizes the integrin and MAP kinase
signaling cascades (Takai, 2005), is highly expressed in neurons
of the cerebral cortex, olfactory bulb, and granule cells of the
cerebellum (Syken et al., 2006). Of note, mice deficient for CD3ζ
(Huh et al., 2000) or PirB (Syken et al., 2006) also exhibit
defects in the activity-dependent refinement of connections,
similar to β2m−/−TAP1−/− and KbDb−/− mice. Other immune
receptors, such as KIR (killer cell immunoglobulin-like receptor)
(Bryceson et al., 2005) and Ly49 (a member of the NK family
of innate immune receptors) (Zohar et al., 2008), are also
believed to be potential neuronal receptors for MHCI. Moreover,
whether MHCI molecules in the CNS really present antigens,
and if so, what kinds of antigens are presented and whether
they are essential for establishing specific neural networks
remains to be answered.
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The Complement Family
The classical complement family, an immune pathway that
functions to eliminate pathogens and apoptotic cells, also
plays an important role in synaptic remodeling. Its function
has been reviewed several times, such as in Veerhuis et al.
(2011) and Stephan et al. (2012). In brief, complement
is produced by neurons and glial cells, especially by
microglia and astrocytes, from early developmental periods
to adulthood. Complement receptors CR3 (also known as
CD11b/CD18, Mac-1, and integrin αMβ2) and CR5 are
expressed in resident microglia. These complement proteins
are engaged in synaptic refinement of retinal ganglion cell
(RGC) projections to the dorsal LGN of the visual thalamus
and they are also implicated in neurogenesis, migration,
and neuronal survival during development and adulthood.
The complement family play these important functions by
cooperating with other proteins, because C1q co-localizes
with H2-D and H2-K at synapses (Datwani et al., 2009),
and the antibody and pentraxin families are involved in the
complement cascade, as discussed below. C1q homologous
proteins, including C1ql2 and Cbln1, are also engaged
in synaptic formation, as reviewed in Südhof (2017) and
Yuzaki (2017). However, much remains to be resolved:
What signals control the activation of the complement
cascade? Are they used similarly during development and
adulthood? What are the critical molecules for synaptic
pruning that might be the potential pharmacological
targets of developmental and neurodegenerative diseases
and injuries?

Antibody Receptors
The blood-brain barrier prevents large molecules, such as
antibodies, from entering the brain parenchyma. However,
FcγRIIB, a low-affinity membrane receptor for IgG, which
negatively regulates B cell receptor-induced signaling, is
expressed in Purkinje cells and Bergmann glia in the developing
cerebellum. In addition to FcγR, Fcα/µR, a receptor for the
Fc region of IgA and IgM, is expressed in OPCs (Nakahara
et al., 2003a,b; Tanabe and Yamashita, 2018b). Although the
function of these Fc receptors is not yet fully understood,
IgG was reportedly detected in the developing rat cortex, and
immunohistochemical signals were observed in subplate and
other early-generated cortical neurons as well as in retinal and
cerebellar neurons during early developmental stages (Upender
et al., 1997). The origin of these IgG proteins remains unclear.
Because IgG is actively transferred from the mother to the
fetus across the placenta using neonatal Fc receptors, and the
barrier function of the blood-brain barrier is not complete until
E15, maternal antibodies may leak into the fetal brain through
blood vessels.

CD3
CD3 is the most commonly used T cell marker and is composed
of four subunits: CD3δ, CD3ε, CD3γ, and CD3ζ. They assemble
to form three types of dimers (δε, γε, ζζ), and serve as a co-
receptor for MHC-TCR signaling (Call and Wucherpfennig,

2007). CD3ζ is expressed by retinal neurons located in the
RGC layer in the developing retina and is localized at synapses
in the inner plexiform layer during the period of synapse
formation. CD3ζ participates in the eye-specific segregation of
RGC axon projections to the dorsal LGN (Huh et al., 2000) and
glutamate receptor (GluR)-mediated synaptic activity-dependent
synapse formation of RGCs in the retina and dorsal LGN (Xu
et al., 2010). CD3ζ is also expressed by hippocampal neurons
and the deficiency of CD3ζ results in enhanced LTP and lack
of LTD. CD3ζ activation on hippocampal neurons affects cell
morphology by promoting dendritic pruning (Huh et al., 2000;
Barco et al., 2005; Baudouin et al., 2008). CD3ε is expressed
with FcγR II B on Purkinje cells and Bergmann glia in the
cerebellar cortex during development, and both CD3ε-deficient
mice and FcγR II B-deficient mice exhibit impaired development
of Purkinje cells, enhanced paired-pulse facilitation of parallel
fiber-Purkinje cell synapses, and poor rotarod performance at
high speed (Nakamura et al., 2007). The precise function of these
molecules is summarized in a table in Elmer and McAllister
(2012). However, the neuron-specific signaling cascade through
CD3 and FcγR II B is yet to be uncovered.

Cytokines
Cytokines are small signaling proteins secreted mostly by
immune cells that regulate diverse immunological responses.
However, many, such as IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-11,
IL-13, IL-18, IL-33, TNF-α, TGF-β and IFN-γ are also expressed
in the CNS and are involved in cell survival, proliferation and
differentiation, axonal growth and synaptogenesis, as reviewed
in Bauer et al. (2007). For example, maternal IL-6 is the
central molecule that alters social and cognitive behaviors of
the offspring of immune-activated mothers (Smith et al., 2007;
Wu et al., 2017), and working memory performance of 2-
year-old children can be predicted by measuring maternal
IL-6 (Rudolph et al., 2018). It is important to take into
consideration that both mother and fetus can produce cytokines,
and maternal peripheral and placental cytokines can also reach
the fetal brain to directly affect CNS development. If pregnant
mice colonized with commensal segmented filamentous bacteria
undergo immune activation by infection, high amounts of
IL-17a is produced by the mother’s intestinal Th17 cells, is
transferred to the fetal brain and binds to IL-17R expressed
on neurons, resulting in behavioral and cortical abnormalities
that resemble those observed in autism (Choi et al., 2016; Kim
et al., 2017; Shin Yim et al., 2017). Moreover, astrocyte-derived
IL-33, which is one of the alarmins released by tissue damage,
is used for promoting synapse refinement during development
(Vainchtein et al., 2018).

Chemokines
Chemokines are chemotactic cytokines, which direct cell
migration, and were originally identified as potent attractants
for leukocytes to mediate acute and chronic inflammation.
However, accumulating evidence suggests that they also play
an essential role in mediating neuron-microglia crosstalk in the
developing and mature brains, as illustrated in Ransohoff (2009)
and Williams et al. (2014).
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One of the most recognized examples is the CX3CL1 (also
known as fractalkine) signaling pathway (Paolicelli et al., 2014).
Briefly, neuron-derived CX3CL1 and its receptor CX3CR1,
which is expressed mostly on microglia, promote microglial
recruitment to neuronal circuits by increasing their process
movement and cellular migration. This signaling also influences
the survival of developing neurons, pruning of synapses, synaptic
transmission, synaptic plasticity and connectivity, affecting
learning, memory, and behaviors. CXCL12 (also known as
stromal cell-derived factor-1, SDF-1)-CXCR4 signaling is also
required for the appropriate migration of microglia, neural
progenitor cells (NPCs), cortical interneurons, and Cajal Retzius
cells. It also controls neurogenesis, axon guidance/pathfinding,
neurite outgrowth and maintenance of NPCs, as reviewed
in Li and Ransohoff (2008), Zhu and Murakami (2012),
and Guyon (2014).

Toll-Like Receptors
Toll-like receptors (TLRs) are pattern recognition receptors
involved in the induction of the innate immune response. There
are 13 TLRs identified in mice. Among them, TLR 2, 3, 4, 8, and
9 are expressed in the CNS, and their contribution to various
phenomena is suggested, including neurite outgrowth, NPC
proliferation, structural plasticity, cognition, anxiety, sensory,
and motor behaviors, as discussed in Kioussis and Pachnis
(2009), Okun et al. (2011), and Khariv et al. (2013). For
example, TLR3 is highly expressed during early developmental
stages, its activation reduces embryonic NPC proliferation
in the subventricular zone and adult NPC proliferation in
the dentate gyrus, and it inhibits neural outgrowth. TLR3
signaling has great impact on cognition; TLR3 deficiency
causes improved spatial working memory and contextual fear
memory, impaired amygdala-dependent cued fear memory and
anxiety. However, the endogenous ligands that activate TLRs
under physiological conditions, and whether they affect the
development of neural circuits and/or cause more acute effects
on synaptic plasticity remain unknown.

Pentraxins
The pentraxins (PTX) are an evolutionarily conserved family
of proteins characterized by a pentraxin protein domain. Some
of them, such as C-reactive protein (CRP) and PTX3, are
involved in acute immunological responses. It is well known
that CRP is a binding partner of C1q and may be involved
in synaptic pruning through C1q, and PTX3 can modulate
phagocytic activity of microglia and promote functional synapse
formation (Jeon et al., 2010; Fossati et al., 2019). Moreover,
neural pentraxin 1 (NPTX1) and 2 (NPTX2) mediate synaptic
refinement in the developing visual system (Bjartmar et al.,
2006) and NPTX2 and neuronal pentraxin receptor (NPTXR)
are required for GluA4 expression within parvalbumin-positive
fast-spiking interneurons. In Nptx2−/−Nptxr−/− mice, GluA4
is markedly reduced, with consequent reductions in AMPA
receptor function in the parvalbumin-positive interneurons,
which compromise circuit recruitment of these interneurons,
leading to deficits in network rhythmogenesis and behavior
(Pelkey et al., 2015).

FUNCTION OF MAJOR NEURONAL
MOLECULES IN THE IMMUNE SYSTEM

In contrast to the molecules that were originally discovered
in the immune system and later found to have functions in
the nervous system, several molecules, such as Protocadherin
(Pcdh), and the Eph/Ephrin and Semaphorin families, were
first reported in the nervous system. However, they are
also regarded as immune-modulatory molecules. Pcdh18 is
an activation marker of CD8+ memory T cells that can
function as an inhibitory signaling receptor and restrict
the effector phase (Vazquez-Cintron et al., 2012). Ephrin-
B1(Efnb1) is a specific marker for germinal center (GC)
and memory precursor B cells (Laidlaw et al., 2017), and
Efnb1 repulsively inhibits GC recruitment and retention of
follicular T helper (Tfh) cells. This repulsion requires forward
signaling through Eph-B6 on Tfh. Efnb1 also promotes
GC Tfh production of IL-21 through forward signaling
via Eph-B4 (Lu et al., 2017). Semaphorins, major axon
guidance molecules, are also involved in the various phases of
physiological and pathological immune responses associated with
rheumatoid arthritis, systemic lupus erythematosus, systemic
sclerosis and anti-neutrophil cytoplasmic antibody (ANCA)-
associated vasculitis. For example, Sema3A synthesized by
activated dendritic cells and T cells downregulates T cell
proliferation, activates macrophages, and is also involved
in DC transmigration across the lymphatics. Sema4A is
related to T cell priming and Th1/Th2 regulation and
maintenance of Treg stability (Kumanogoh and Kikutani, 2013;
Nishide and Kumanogoh, 2018).

PERSPECTIVE ON FUTURE DIRECTIONS

As discussed above, the CNS and immune system share many
common characteristics; however, some clear fundamental
differences do exist, especially with regard to the manner of
target molecule/cell recognition. Immune cells can dynamically
move around to search for targets and can clonally expand in
cell number. The primary means of communication between
immune cells include direct contacts with nearby cells that
are attracted by chemokines or via secretory molecules. In the
nervous system, mature neurons themselves do not proliferate
or actively migrate; therefore, where a neuron is located
during development is critically important. Moreover, the
specific order of signaling between cells in a neural network
is essential. For example, when an excitatory neuron A
directly projects to neuron B, neuron A would activate neuron
B. In contrast, if neuron A indirectly communicates with
neuron B through an inhibitory neuron C (i.e., A→C→B),
neuron B would be suppressed by the activation of neuron
A. The formation of these specific neuronal connections
could, if not exclusively, be accomplished by specific and
diverse cell adhesion molecules, such as Dscam (Schmucker
and Chen, 2009) and clustered Pcdh (Yagi, 2008). For
example, the Drosophila Dscam gene could theoretically
generate 38,016 isoforms (19,008 for the extracellular
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domain) by alternative splicing. Interestingly, the Dscam
protein is also detected in Drosophila immune-competent
cells (hemolymph) and is believed to be involved in bacterial
binding followed by phagocytosis, suggesting that this
molecular diversity may provide a highly diverse innate
immune system in insects (Watson et al., 2005). In these
examples, extraordinary diversity and specificity, shared by
the nervous system and immune system, may be established
based on a common molecular machinery or operational
modes between these two systems. From this perspective, to
understand the mechanisms of development of the complex
brain network, significantly more effort should be directed
at uncovering why some molecules or cells that are known
to work in acquired immunity are expressed/exist in the
developing nervous system.
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Stress has pronounced effects on the brain, and thus behavioral outputs. This is
particularly true when the stress occurs during vulnerable points in development.
A review of the clinical literature regarding the moderating effects of sex on
psychopathology in individuals exposed to childhood maltreatment (CM) is complicated
by a host of variables that are difficult to quantify and control in clinical settings.
As a result, the precise role of sex in moderating the consequences of CM remains
elusive. In this review, we explore the rationale for studying this important question
and their implications for treatment. We examine this issue using the threat/deprivation
conceptual framework and highlight a growing body of work demonstrating important
sex differences in human studies and in animal models of early life stress (ELS).
The challenges and obstacles for effectively studying this question are reviewed
and are followed by recommendations on how to move forward at the clinical and
preclinical settings. We hope that this review will help inspire additional studies on this
important topic.

Keywords: sex, childhood maltreatment, early life stress, animal models, limited bedding nesting, maternal
separation, deprivation, threat

INTRODUCTION

Childhood maltreatment (CM) is a heterogenous group of childhood adversities (i.e., subtypes) that
include, physical abuse, physical neglect, sexual abuse, emotional abuse, emotional neglect, erratic
parenting and severe bullying by peers. Exposure to CM is associated with enormous clinical and
economic burden as CM exposure accounts for roughly 50% of all childhood psychiatric disorders
in the United States (Green et al., 2010). CM increases the risk for multiple psychopathologies,
including depression, anxiety, substance abuse, psychosis, and PTSD (Anda et al., 2006; Kaffman
and Meaney, 2007; Nemeroff, 2016; Teicher and Samson, 2016). CM also increases the risk for
several medical conditions, such as cardiovascular disease, arthritis, metabolic syndrome, cancer,
and generally reduced life expectancy (Kaffman and Meaney, 2007; Teicher and Samson, 2016).
Interventions that improve quality of parental care in high-risk children lead to robust and
sustained improvement in several behavioral and cognitive outcomes (Olds et al., 1998, 2004a,b;
Zeanah et al., 2009; Humphreys et al., 2015), supporting a causal relationship between CM and the
presence of behavioral abnormalities later in life. Indeed, CM is now recognized as a significant risk
factor for abnormal brain development in industrialized countries (Kaffman and Meaney, 2007;
Garner et al., 2012; Nemeroff, 2016; Teicher and Samson, 2016) with an estimated cost of $500
billion annually in the United States alone (Fang et al., 2012).
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One of the most robust findings across the CM literature is
its additive effect, where the risk for developing a broad range
of psychological and medical conditions increases linearly with
exposure to a greater number of adversities (Kessler et al., 1997;
Anda et al., 2006; Chen et al., 2010; Evans et al., 2013). This
dose-dependent effect has led to the development of diagnostic
tools that calculate a cumulative-risk score as a way to quantify
exposure to CM (Evans et al., 2013). The cumulative model
has been expanded by McLaughlin, Sheridan and Lambert
who proposed that a two-dimensional “Threat/Deprivation”
system would better characterize and quantify CM exposure
(McLaughlin et al., 2014; McLaughlin and Sheridan, 2016). This
model maps adversity along a “threat” scale on the X-axis and
a “deprivation” scale on the Y axis. Threatening adversities
trigger fear of physical harm/death and include experiences that
range from physical and sexual abuse to exposure to domestic
and neighborhood violence. Deprivation on the other hand
is characterized by an early environment that is devoid of
appropriate stimulation and parental care and include subtypes
such as physical and emotional neglect or severe poverty (see
Figure 1A). The authors argue that deprivation and threat lead
to different developmental outcomes and psychopathologies.
Moreover, they proposed that mapping CM along these two
dimensions helps resolve the complexity and heterogeneity of
CM allowing for better predicted outcomes when compared to
single dimension scale used in the cumulative-risk approach
(McLaughlin et al., 2014; McLaughlin and Sheridan, 2016). In
this review, we use the Threat/Deprivation conceptual model to
examine whether CM affects males and females differently in
clinical and preclinical studies.

Although a large body of work has shown that CM affects male
and females differently, very few findings have been replicated
across studies and little information is currently available about
the mechanisms by which sex moderates the outcomes of CM
(see Supplementary Table S1 for a list of key studies that
have examined the effects of sex on psychopathology). This
review extends previous discussion on this topic (Gobinath et al.,
2014; Bale and Epperson, 2015; Cameron et al., 2017) in three
important ways. First, we examine the rationale for studying
sex as an important moderator of the consequences of CM and
how sex can affect response to treatment (section “Sex as an
Important Moderator of Consequences of CM”), an issue that
has not received adequate attention to date. Second, we utilize
the Threat/Deprivation conceptual model to review clinical and
preclinical studies that have examined the issue of sex (section
“Modereating Effects of Sex in Clinical and Preclinical Studies”).
Third, we outline challenges and obstacles that hinder progress
and make specific recommendations on how to move forward
(section “Challenges and Recommendations”).

SEX AS AN IMPORTANT MODERATOR
OF CONSEQUENCES OF CM

Male and female brains, physiology, and immune systems
differ in many ways (Gillies and McArthur, 2010; McCarthy,
2015; McCarthy et al., 2015). These differences reflect
distinct and specialized roles that males and females play in

ensuring reproductive success (Cahill, 2006). In mammals,
these differences are first established by increased levels
of testosterone during a critical period of development in
males. Testosterone is aromatized locally and converted
to estrogen leading to several structural and functional
differences in the brains of males and females. For example,
the anteroventral periventricular nucleus (AVPV) is larger in
females, and this sexual dimorphism is considered responsible
for establishing a pulsatile pattern of GnRH release in males
and a cyclical pattern in females that drives ovulation. These
structural differences are established during the postnatal
period by a wave of apoptosis in GABAergic neurons in
the male AVPV. Structural and functional sexual dimorphic
variations that emerge early in development are maintained
and extended by different levels of sex hormones produced
during reproductive age (i.e., estrogens and progesterone in
females and testosterone in males). For excellent reviews on
this topic see Gillies and McArthur (2010), McCarthy (2015),
McCarthy et al. (2015).

These structural and hormonal alterations are responsible for
important differences in the way males and females respond to
injury, stress, and medications (Gillies and McArthur, 2010).
For example, both male and female mice develop chronic
neuropathic pain in response to spared nerve injury. However,
the mechanisms responsible for this hypersensitivity to pain
differs; it is mediated by the brain’s endogenous immune cells
(i.e., microglia), in males but not in females (Sorge et al.,
2015). Sex differences in response to environmental insults
are well documented in neonates. For example, exposure to
hypoxic-ischemic injury in pre-term and full-term babies causes
significantly more neurologic damage and long-term disabilities
in males compared to females. These sex differences are seen
in both humans and rodents and are thought to be mediated
by higher rates of apoptosis in male neural stem cells (Hill
and Fitch, 2012). Recent genomic work found little overlap
in genes that are differentially expressed in men and women
diagnosed with major depression across multiple brain regions,
including the medial prefrontal cortex (mPFC). Similar sex-
specific genomic changes were seen in mice exposed to chronic
stress, suggesting that these sex-specific changes are evolutionary
conserved across mammalian species (Labonte et al., 2017).
Network analysis identified the phosphatase Dusp6 as a central
hub in depressed women and overexpression of the transcription
factor Emx1 as a central hub in depressed men. Knockdown of
Dusp6 in the mPFC combined with subthreshold stress induced
a depression-like phenotype in female but not male mice. In
contrast, the overexpression of Emx1 induced depression-like
behavior in males only. Interestingly, down regulation of Dusp6
in females and upregulation of Emx1 in males led to similar
increase in spontaneous firing of glutamatergic neurons in the
mPFC (Labonte et al., 2017). Together, these findings suggest that
different mechanisms converge in males and females to produce
major depression and that some but not all interventions will
have sex-specific effects when treating depression. These findings
highlight the importance of studying disease mechanism in both
sexes as it has critical implications for treatment.

Although many studies show that CM causes different
outcomes in males and females, very few of these findings have
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FIGURE 1 | The threat/deprivation conceptualization is shown for human subtypes of CM (A) and rodent models of ELS (B).

been replicated across studies and there is little information
about the mechanisms underlying the moderating effects of
sex on CM outcomes (see Supplementary Table S1 and
section “Modereating Effects of Sex in Clinical and Preclinical
Studies” below). Moreover, as demonstrated above, even in
the presence of similar clinical presentation, the mechanisms
responsible for these outcomes might be different in males and
females, requiring sex-specific interventions. This is an important
consideration given the enormous clinical and economic burden
associated with CM.

MODEREATING EFFECTS OF SEX IN
CLINICAL AND PRECLINICAL STUDIES

Sex as a Moderator of Psychopathology
Over the past 30 years, more than 50 studies, including
several systematic reviews and meta-analyses have examined the
moderating effects of sex on the psychological consequences of
CM in humans (Jumper, 1995; Rind and Tromovitch, 1997; Rind
et al., 1998; Paolucci et al., 2001; Gershon et al., 2008; Chen et al.,
2010). While some studies found that females are more sensitive
to CM (McGee et al., 1997; MacMillan et al., 2001; Lansford
et al., 2002; Banyard et al., 2004; Fletcher, 2009; Herringa et al.,
2013b), others maintain that males are more sensitive (Hibbard
et al., 1990; Garnefski and Diekstra, 1997; McGloin and Widom,
2001; De Bellis and Keshavan, 2003; Bergen et al., 2004; Zeanah
et al., 2009; Coohey, 2010; Crozier et al., 2014). A third group
of studies proposed a more nuanced and complex relationship
between sex and CM, suggesting that the outcome depends on
the type of maltreatment, genetic vulnerability, the specific circuit
involved, and the developmental stage when the outcomes are
assessed (Darves-Bornoz et al., 1998; Gershon et al., 2008; Keyes
et al., 2012; Bale and Epperson, 2015; Humphreys et al., 2015;
Teicher and Samson, 2016; Gauthier-Duchesne et al., 2017). See
also Supplementary Table S1.

Of the systematic reviews, one conducted by Gershon et al.
(2008) is particularly helpful as it focuses on more than 30
studies with sufficient power to formally assess sex by ELS
interactions in both adulthood and adolescence. Of the 14
studies conducted in adulthood, 50% found no sex differences,
29% reported worse outcomes in females, while 21% found
worse clinical outcomes in males. In contrast, of the 19 studies
conducted in adolescents, 58% found worse outcomes in males,
30% reported no differences, 5% found mixed effects with females
more severely affected in some domains and males more affected
in others, and only 5% noted worse outcomes in females. No
significant sex by CM interactions were reported by 3 other large
meta-analyses (Jumper, 1995; Paolucci et al., 2001; Chen et al.,
2010); although, these analyses did not separately assess outcomes
in adults and adolescents (Supplementary Table S1).

The assertion that male adolescents are more symptomatic
across multiple psychopathologies was challenged by a recent
study examining the effects of childhood sexual abuse in a
large cohort of adolescents (Gauthier-Duchesne et al., 2017).
Their findings indicate a mixed effect, with females being
more likely to develop PTSD, males being more likely to
develop externalizing disorders, and no sex difference in the
vulnerability to internalizing disorders. These findings suggest
a more complex moderating effect of sex, but further supports
the notion that male and female adolescents respond differently
to consequences of sexual abuse. Important sex differences
were also demonstrated by Keyes et al. (2012) using a large
sample of adults (n = 34,653, 52% men) in which physical
abuse caused a significant increase in externalizing disorders
in males while increasing the rate of internalizing disorders
in females (Keyes et al., 2012). Interestingly, in contrast to
the work conducted in adolescents, exposure to sexual abuse
increased the risk for internalizing and externalizing disorders in
both male and female adults (Supplementary Table S1). These
findings raise the question as to why physical, but not sexual
abuse, is associated with different symptomatology in males and
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females and highlight the complexity by which sex interacts
with different forms of CM. Moreover, as discussed above, one
should not assume that comparable levels of symptomatology
reflect similar developmental changes or response to treatment
in males and females.

The Bucharest Early Intervention Project (BEIP) as a
Model of Deprivation
The BEIP provides a unique opportunity to examine the
moderating effects of sex on a relatively well characterized and
homogeneous cohort of children that were exposed to high
levels of deprivation, with relatively low-level exposure to threat
with respect to the Threat/Deprivation model (Figure 1A).
In this project, Romanian children, orphaned at birth, were
placed in government-run institutions. These orphanages
were understaffed and caregivers were insufficiently trained
and lacked the necessary resources to provide adequate
sensory, emotional and cognitive stimulation for these children
(Bos et al., 2011). During the first stage of the project, a
large cohort of toddlers (n = 104, mean ages 21 months),
institutionalized for 6–31 months, was characterized and
compared to non-institutionalized age- matched controls
(n = 66) for developmental milestones. Institutionalized
toddlers were physically smaller, showed cognitive delays,
and had higher levels of behavioral and emotional problems
compared to non-institutionalized controls (Smyke et al., 2007).
Importantly, male and female toddlers were similarly, affected
at this age (Smyke et al., 2007). Further, male and female
institutionalized toddlers showed multiple EEG differences
compared to non-institutionalized controls which suggested
altered neurodevelopment (Marshall et al., 2004). Together, these
findings indicate that early deprivation leads to similar physical,
emotional, and cognitive deficits across male and female toddlers.

After the initial characterization, the institutionalized
toddlers either stayed at the institution or were adopted
into middle-class, Romanian families (n = 68 children in
each group). The chronically institutionalized group (CIG)
and the institutionalized and then adopted group (IAG)
were followed over time and compared to an age-matched,
never-institutionalized group (NIG). This randomized clinical
trial-like setup was used to assess the long-term effects of early
deprivation/neglect and adoption on the emotional and cognitive
development in a fairly large group of children.

The second assessment was conducted when the children
were roughly 4.5 years old; at this time, there was a significant
interaction between sex and history of institutionalization (CIG
and AIG children grouped together). This interaction was driven
by increased internalizing, externalizing and ADHD disorders
in institutionalized boys compared to institutionalized girls
(Zeanah et al., 2009). Unfortunately, no formal assessment for
an interaction between sex and history of institutionalization
is available for the third assessment conducted at ages 11–15
(Humphreys et al., 2015). While institutionalized females (CIG
and AIG grouped together), but not males, showed higher levels
of internalizing symptoms compared to controls, the rates of
externalizing disorders and ADHD were similarly, elevated in
institutionalized males and females. Interestingly, adoption only

reduced levels of externalizing symptoms in boys, and adoption
had no effect on the rate of internalizing disorders or ADHD
(Humphreys et al., 2015).

In summary, the initial assessment at 2 years of age found no
sex differences, the second assessment at age 4.5 found increased
psychopathology in males, and the third assessment at ages
11–15 found an increased sensitivity to internalizing disorders
in females and equal sensitivity between males and females
to externalizing disorders and ADHD. It is unclear if these
outcomes reflect true changes in the moderating effects of sex
over time, or if the different assessment tools and analyses used
at each time point are contributing to these reported differences
(Supplementary Table S1). These variable outcomes highlight
the difficulties of assessing the moderating effects of sex even in a
fairly large and homogeneous group of maltreated children.

CM by Sex Interaction: Lessons From
Imaging Techniques
Structural MRI
The use of objective, measurable outcomes such as imaging,
EEG, neurocognitive testing, and peripheral biomarkers
have provided some of the most robust findings on the
moderating effects of sex on the consequences of CM.
The best example of this is the consistently documented
reduced hippocampal volume in adults exposed to CM
(Teicher and Samson, 2016). Both men and women show
reduced hippocampal volume, but the effect size in men is
significantly more pronounced (Teicher and Samson, 2016).
These findings provide some of the most compelling evidence
for the existence of sex differences among the long-term
consequences of CM. Since reduced hippocampal volume
is more consistently found in adults with CM, it would be
interesting to determine if these structural changes correspond
with more pronounced deficits in hippocampal-mediated
tasks in adult males as well. Moreover, most of the structural
MRI studies to date have focused on hippocampal changes in
individuals exposed to high threat subtypes of CM (Teicher and
Samson, 2013) and there is a need to clarify how high levels
of deprivation experiences may affect hippocampal volume in
males and females.

Reduced corpus callosum size is another consistent finding
associated with a history of CM, with male adolescents being
more affected than age-matched females (Teicher and Samson,
2016). This is consistent with a meta-analysis by Gershon
et al. (2008) and other imaging studies (Herringa et al., 2013a;
Crozier et al., 2014; Colich et al., 2017) indicating important sex
differences in adolescents exposed to CM.

Task-Mediated fMRI
Individuals with a history of CM show increased amygdala
activation in response to fearful or angry faces (Teicher
and Samson, 2016). This result has been replicated in many
clinical studies, with similar results also being reported in
rodents (Supplementary Table S2). Since the amygdala plays
an important role in detecting and responding to threat, this
finding provides a possible explanation for the increased anxiety
seen in individuals with a history of CM (Anda et al., 2006;
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Chen et al., 2010; Nemeroff, 2016; Teicher and Samson,
2016). Exposure to CM increased amygdala activation in
children, adolescents and adults, suggesting that inappropriate
parental care during a critical period of development, alters
the amygdala’s response to threat in a manner that persists
into adulthood, reviewed in VanTieghem and Tottenham (2018).
This assertion is supported by work showing that the presence
of maternal cues reduces amygdala activation in normally
developing young children, but not in adolescents (Gee et al.,
2014). This phenomenon is called “maternal buffering” and
is associated with increased negative connectivity between the
prefrontal cortex (PFC) and the amygdala in young children,
but not in adolescents, indicating that top-down suppression
of amygdala activation becomes independent of maternal cues
during adolescence, further supporting the idea of a critical
period in development.

Therefore, CM may disrupt the normal maturation of
connectivity between the PFC and the amygdala during
childhood, leading to abnormal amygdala activation and
emotional dysregulation throughout life (Herringa, 2017;
VanTieghem and Tottenham, 2018). This assertion is supported
by work showing that normally developing children (ages
6–10) displayed positive connectivity between the PFC and
the amygdala in response to fearful faces, whereas age-
matched children raised in an orphanage showed negative
connectivity between the PFC and the amygdala (Gee et al.,
2013). These findings led the authors to suggest that early
parental deprivation leads to precocious maturation of amygdala-
PFC connections which serve to help these children negotiate
unfavorable environments (Gee et al., 2013). However, the
negative connectivity seen in parentally deprived children was
associated with elevated amygdala activation and high levels
of anxiety (Gee et al., 2013), a pattern that is qualitatively
different than the negative connectivity seen in typically reared
adolescents. Thus, rather than precocious maturation along
normal developmental trajectory, parental deprivation seems
to impair the normal maturation of top-down inhibitory tone
between the PFC and the amygdala. As discussed further
below, additional work is needed to clarify whether parental
neglect/deprivation leads to similar alterations in fronto-limbic
connectivity compared to individuals exposed to the high
threat form of CM.

To our knowledge, only two studies have used task-mediated
fMRI to test the effects of CM and sex on fronto-limbic
connectivity (Crozier et al., 2014; Colich et al., 2017). Crozier
et al. (2014) used the emotional odd-ball task to assess non-
emotional and emotional responses in a group of CM children
with a history of physical abuse and neglect (n = 29, 55% males,
ages 8–16). All CM subjects had positive forensic investigation
with the Department of Children and Families (DCF) and
were assessed using the Kiddie Schedule for Affective Disorders
and Schizophrenia-Present and Lifetime Version (Kaufman
et al., 1997). The CM group was compared to an age and
sex matched control group (n = 45, 42% males) and was
found to have lower socioeconomic status, lower IQ, and
higher rates of both internalizing and externalizing symptoms
(Crozier et al., 2014). No sex differences or interactions between

CM and sex were found for IQ, internalizing, externalizing
symptoms or performance in the task. However, there were
many significant interactions between CM and sex in BOLD
signal. For example, in response to fearful faces CM females
showed reduced activation of the dorsal medial PFC (dmPFC)
while CM males showed increased activation in this region.
Additionally, CM males showed increased activation over both
CM females and controls in both the calcarine region and
the left hippocampus. This is the first study to demonstrate
extensive differences in how CM affects the way in which
male and female adolescents process fearful faces and it is
consistent with a growing body of work showing significant
sex differences in the sequela of CM among adolescents
(Gershon et al., 2008).

Colich et al. (2017) used the Traumatic Event Screening
Inventory for children (TESI-R), to characterize a broad range
of adversities (e.g., childhood abuse, neglect, moving homes,
and witnessing injury) in a large cohort of children (ages 9–13,
males n = 59, females n = 78). These authors used the implicit
emotional-regulation fMRI task and analyzed the effect of sex
based on Tanner stage, to control for the earlier sexual maturity
in females. In their cohort, higher levels of CM were associated
with increased internalizing symptoms in females but not in
males after controlling for age. Three brain regions (left vlPFC,
right dlPFC/vlPFC, and intracalcarine cortex) showed significant
CM X sex interactions, with increased activation in females, but
not males. Activation of these three regions in females and the
intra-calcarine cortex in males was correlated with internalizing
symptoms. Further, higher levels of CM were associated with a
stronger negative correlation between the PFC and the amygdala,
a finding that was seen in both males and females. However, there
was no correlation between the strength of these connections and
internalizing symptoms (Colich et al., 2017). Although this study
found CM X sex differences in emotional processing, there was
little overlap with the findings reported by Crozier et al. (2014).
Most notably Crozier et al. (2014) found increased PFC activation
in CM males and hypoactivation in females, while (Colich et al.,
2017) found increased activation in the PFC of females and little
change in males. These differences may be a result of the different
tasks utilized (e.g., the emotional odd-ball task vs. the implicit
emotional-regulation task) or the subtype of CM experienced;
most notably, higher levels of threat are reported in the Crozier
cohort. Despite these disparities, both studies highlight important
sex differences in how the PFC processes threating faces in
maltreated male and female adolescents.

Fronto-Limbic Connectivity Using rsfMRI and
Tractography
Unlike task mediated fMRI, in which brain connectivity may
change depending on the nature of the task, functional
or structural connectivity obtained using resting state fMRI
(rsfMRI) or diffusion tensor imaging (DTI), do not involve an
explicit cognitive task, allowing for a more direct comparison
between studies. Jalbrzikowski et al. (2017) have used rsfMRI and
DTI to characterize the effects of age and sex on amygdala-PFC
connectivity in a large cohort of typically developing adolescents
(n = 246, ages 10–25, 49% females). Using a longitudinal
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approach, they found an age-dependent reduction in amygdala-
PFC connectivity in this cohort. They replicated these findings
using an independent cohort and further substantiated these
findings using structural tractography. This refinement process
was associated with reduced internalizing symptoms during
adolescence with similar outcomes seen in males and females
(Jalbrzikowski et al., 2017). This is one of the most rigorous
studies to examine how fronto-limbic connectivity matures in
typically developing males and females, providing a solid ground
to investigate how different types of CM alter this pattern
of connectivity.

Several studies have examined the effects of early adversity
on amygdala-PFC connectivity using rsfMRI (Supplementary
Table S2). Some studies reported reduced connectivity (Herringa
et al., 2013b; Birn et al., 2014; Wang et al., 2014), others found
no change (Burghy et al., 2012; van der Werff et al., 2013),
while others noted increased connectivity (Cisler et al., 2013;
Philip et al., 2013; Dean et al., 2014; Nicholson et al., 2015).
These conflicting findings are likely due to differences in the
composition and severity of CM, the age and sex of the subjects,
and additional comorbidities, such as a history of substance abuse
and/or depression. For an extensive review on this issue see
Herringa (2017), Johnson et al. (2018).

Most studies published to date lack sufficient power to test for
CM by sex interactions on fronto-limbic connectivity. The only
exception is work by Herringa et al. (2013a) which examined the
relationship between CM, levels of internalizing symptoms and
resting state connectivity in a cohort of adolescents (n = 64, ages
18 ± 0.19, 46% females). CM was assessed using the Childhood
Trauma Questionnaire and ranged from 25 to 40, indicating a
low to moderate severity. Higher levels of CM, were correlated
with higher levels of internalizing symptoms, with females
having higher overall levels of internalizing symptoms compared
to males (Herringa et al., 2013a). Maltreated females showed
reduced functional connectivity between the right amygdala and
the vmPFC, an effect not seen in CM males. In contrast, reduced
connectivity between the left hippocampus and the vmPFC was
seen in both males and females exposed to CM (Herringa et al.,
2013a). The authors proposed that this “double hit” in females
(e.g., reduced connectivity between the mPFC-amygdala and the
mPFC-hippocampus) versus a “single hit” in males (e.g., reduced
connectivity between the mPFC-hippocampus), may explain the
higher symptomatology seen in females exposed to CM. Since
the majority of studies did not find higher levels of internalizing
symptoms in maltreated adolescent females (Gershon et al.,
2008), additional work is needed to confirm these findings and
to clarify whether differences in connectivity are due to sex
differences and/or the severity of the internalizing symptoms.
Nevertheless, this work is consistent with other studies discussed
above showing important sex differences between maltreated
male and female adolescents.

Modeling Early Life Stress in Rodents
We use the term early life stress (ELS) to describe work in rodents
that attempts to model aspects of CM, focusing on paradigms
that use postnatal stress in order to mimic childhood adversity.
Rodents exposed to ELS show many of the developmental and

behavioral changes reported in humans, suggesting that work
in rodents can clarify important details about how different
types of ELS alter neurodevelopment and behavior in males and
females (see Supplementary Table S2). Although aspects of the
moderating effects of sex on ELS have been reviewed by others
in recent years (Gobinath et al., 2014; Lucassen et al., 2017;
Walker et al., 2017), the rapid progress in this area warranted an
updated reexamination of the issue. Moreover, we examine the
preclinical work in regards to the deprivation/threat model and
have attempted to link important clinical findings with preclinical
studies. This is especially relevant for a growing body of work in
rodents that has used human imaging tools such as rsfMRI and
high-resolution diffusion MRI (dMRI) to examine the effects of
ELS on fronto-limbic connectivity in rodents.

Due to a large number of inconsistent findings across the
ELS literature, we searched for paradigms that provided distinct
features within the deprivation/threat model and also produced
reproducible outcomes in male and female rodents across
different labs. Unfortunately, the licking and grooming paradigm
developed by Meaney et al. (2002) did not provided enough
examples of consistent findings across labs to be included in the
current review. Thus, we focused on the low bedding/nesting
(LBN) paradigm, a model with a relatively high deprivation score
and moderate levels of threat, and the maternal separation (MS)
paradigm, a model of moderate/low levels of deprivation and
high threat level (Figure 1B). Despite a wealth of literature on
these two paradigms from a variety of groups, much of the work
was done only in males, with very few studies that document
reproducible outcomes in both sexes. As a result, we present
several reproducible and clinically relevant findings described
only in males, in order to highlight the pressing need to further
explore the consequences of these paradigms in females.

Limited Bedding/Nesting Paradigms
The LBN paradigm was originally developed by Tallie Baram’s
lab in an attempt to model chronic postnatal stress due to
impoverished nesting condition and fragmented/erratic maternal
care (Walker et al., 2017). In the original, and most commonly
implemented version, the dam’s access to nesting materials is
severely reduced from PND2 to PND9 and pups are raised
on an elevated mesh platform, while the control condition
receives standard amounts of bedding and nesting material.
The paucity of nesting material models an impoverished, sub-
standard rearing condition that leads to fragmented maternal
care, characterized by rapid transition in and out of the nest
(Rice et al., 2008; Heun-Johnson and Levitt, 2016; Molet et al.,
2016a). The exact reason for this fragmented maternal care is
unclear, but it might reflect a compensatory foraging mechanism
aimed at improving nesting conditions. Rodent pups are fully
dependent on the dam for survival (Kuhn and Schanberg,
1998; Kaffman and Meaney, 2007). Therefore the erratic but
constant maternal presence in the LBN paradigm is likely to
induce a less threatening rearing environment compared to
the removal of pups from the nest in the absences of any
maternal cues used in the MS paradigm (Figure 1B). Moreover,
the limited availability of soft nesting material deprives LBN
pups of important sensory/tactile cues during a critical period
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(Kaffman and Meaney, 2007), as opposed to the ample bedding
and nesting material provided in the MS paradigm.

Since newly born pups are unable to regulate their body
temperature (Lagerspetz, 1962), LBN pups are also likely to
experience mild but chronic hypothermia. Mild hypothermia
is a form of deprivation that likely plays an important role
in mediating several key developmental abnormalities seen in
LBN pups, i.e., stunted growth and elevated corticosterone levels
(Lagerspetz, 1962; Anisman et al., 1998; Walker et al., 2017). The
observation that female pups appear to be more resilient to the
effects of hypothermia (Harshaw and Alberts, 2012) may account
for some of the sex-specific outcomes reported in this paradigm;
including hippocampal dependent cognitive deficits, altered adult
neurogenesis, and changes in reward sensitivity and response to
threat (see below for more details).

LBN Causes Similar Reduction in Body Weight in
Male and Females
One of the most robust findings across the LBN literature is a
reduction in body weight, an effect found in both rats and mice,
with similar pattern in both sexes. This reduced body weight has
been reported to persist into adulthood by some (Maniam et al.,
2015a,b; Bath et al., 2016, 2017; Goodwill et al., 2018; Johnson
et al., 2018), while others have noted only transient reductions at
PND9 that are restored by weaning (Brunson et al., 2005; Rice
et al., 2008; Kanatsou et al., 2015; Naninck et al., 2015; Arp et al.,
2016; Fuentes et al., 2018). This effect is also seen in studies
conducted in humans, where delayed (Smyke et al., 2007) and
even stunted growth is seen in individuals exposed to severe
CM (Grantham-McGregor et al., 2007). While male and female
rodents show similar reductions in weight (Naninck et al., 2015;
Arp et al., 2016; Moussaoui et al., 2016; Bath et al., 2017; Goodwill
et al., 2018; Johnson et al., 2018), important sex-differences are
already present during the early postnatal period (see section
“Sex as an Important Moderator of Consequences of CM” above)
raising the possibility that somewhat different mechanisms drive
the slower growth in male and female pups exposed to LBN.

LBN Leads to More Significant Hippocampal Deficits
in Male Offspring
Abnormal hippocampal function among LBN-reared offspring
is consistently reported. The initial reports indicated that
hippocampal impairment associated with LBN emerges only in
middle-aged or aged animals (Brunson et al., 2005), and while this
is also seen in more contemporary studies (Naninck et al., 2015),
recent studies have found deficits much earlier when utilizing
the novel object location task (NOLT) instead of novel object
recognition or the Morris water maze (Molet et al., 2016b; Bath
et al., 2017). For example, deficits in NOLT are seen in male
and female LBN-reared mice as early as PND21 (Bath et al.,
2017) and in LBN-reared male rats at 2 months (Molet et al.,
2016b). These deficits are more significant in males compared
to females (Naninck et al., 2015; Bath et al., 2017). Naninck
et al. (2015) provided evidence that these sex-specific effects were
due to reduced neural stem cell survival in the dentate gyrus
of adult male, but not female LBN offspring. These findings are
consistent with human literature showing greater reduction in

hippocampal size in males exposed to ELS. While reduced volume
in the dorsal hippocampus of male LBN offspring has also been
found using high resolution MRI (Molet et al., 2016b), females
were not included in this study. Thus, it is unclear whether
this model recapitulates all sex differences reported in human
imaging studies.

LBN Increases the Susceptibility to Secondary Stress
in Male Offspring
Most studies found no effect of LBN on anxiety in male and
female offspring (Brunson et al., 2005; Rice et al., 2008; Naninck
et al., 2015; Molet et al., 2016a; Bath et al., 2017; Goodwill
et al., 2018; Manzano-Nieves et al., 2018). Two reports found
increased anxiety following LBN (Molle et al., 2012; Guadagno
et al., 2018) and two others noted mixed effects (Wang et al., 2012;
Johnson et al., 2018). The absence of robust changes in anxiety
might be due to the short developmental window in which the
rodents are exposed to LBN or the relatively mild nature of the
stressor. Indeed, van der Kooij et al. (2015) found that exposure
to LBN between PND10 and PND17, but not PND2-9, leads to
increased anxiety in adult male mice. These findings underscore
the important role that timing of exposure plays in modifying
developmental and behavioral outcomes later in life.

Work from several groups suggests that a “second hit” might
be necessary to unmask underlying changes in anxiety in LBN
offspring. For example, adding only 6 episodes of unpredictable
maternal separation (UPS) at PND14, 16, 17, 21, 22, and 25 to
pups raised under LBN conditions followed by nest disruption
leads to a robust increase in anxiety that is not seen in LBN mice
that were not separated. Importantly, exposure to UPS increased
anxiety in adult male but not female littermates (Johnson et al.,
2018). Newborn pups depend on their mother for survival (Kuhn
and Schanberg, 1998; Kaffman and Meaney, 2007). Therefore,
the UPS paradigm exposes LBN pups to increased levels of
threat (Figure 1B), which appears to unmask important sex-
differences in anxiety-like behavior. Additionally, single-housing
adult LBN animals may also unmask important differences in
anxiety and response to threat, as adult LBN-reared male rats
that were single-housed showed increased anxiety and greater
dendritic arborization in BLA neurons compared to LBN females
or controls (Guadagno et al., 2018). Additionally, Arp et al. (2016)
found that single housed LBN male mice displayed high levels of
freezing during the safety period (tone-off) that was not seen in
LBN females or CTL mice.

Depression-Like Behaviors in LBN Offspring
Inconsistent findings have been reported for the effects of LBN
on depression-like behaviors. For example, studies have found
increased helpless behavior in the forced swim test (Cui et al.,
2006; Raineki et al., 2012) and reduced sucrose preference (Molet
et al., 2016a; Bolton et al., 2017) in males exposed to LBN,
but provided no information on female behavior. In contrast,
three studies found no effect of LBN on helpless behavior in
males (Molet et al., 2016a; Bolton et al., 2018; Goodwill et al.,
2018). Bolton et al. (2018), showed that reducing CRF expression
in the central amygdala of LBN males reverses anhedonia
like behavior, providing a possible mechanism to explain the
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depressive phenotype documented in LBN males. The only study
that examined the effects LBN on depression-like behaviors in
both males and females, found increased depression-like behavior
in female mice and not male littermates (Goodwill et al., 2018).
The Goodwill et al. (2018) work is particularly interesting as, in
addition to using standard assays of depression-like behaviors like
sucrose preference and forced swim test, home-cage behavior,
i.e., locomotor activity and self-grooming, was assessed over
5 days. Such prolonged and unbiased assessment of behavior
can identify robust behavioral changes in domains such as self-
care and energy levels that map well onto clinical presentation
of depression. It is currently unclear if the different outcomes
with regard to the effects of LBN on sucrose preference in males
are due to differences between C57 mice (Goodwill et al., 2018)
and Sprague Dawley rats (Molet et al., 2016a; Bolton et al.,
2018) or some other methodological differences between these
studies. Further work in both male and female LBN offspring
is needed to determine whether the LBN-induced depression
phenotype is truly sex-specific and what mechanisms, other than
CRF expression may be mediating these changes.

LBN Increases CRF Levels and Alters Amygdala
Connectivity in Males
Work from several groups provided compelling evidence that
LBN increase CRF levels in the hippocampus and that this
prolonged exposure to high levels of CRF reduces spine
density, dendritic arborization, and contributes to hippocampal-
dependent cognitive deficits (Chen et al., 2013). In addition,
abnormal expression of CRF in the central nucleus of the
amygdala appears to induce an anhedonia-like state in LBN male
rats (Bolton et al., 2018). Unfortunately, this work was done
exclusively in males and it is currently unclear whether similar
alterations in CRF are also seen in females and whether elevated
levels of CRF cause similar outcomes in males and females. This
is one of many examples, some of which are outlined below, in
which outcomes in females have not been explored.

Recent advances in imaging has allowed the use of rsfMRI
and DTI in rodents to assess the effect of LBN on functional
and structural connectivity in fronto-limbic circuits that include
the amygdala, prefrontal cortex, and the hippocampus. Such
studies allow for direct comparison between humans and
rodents and can help clarify whether variations of ELS cause
different alterations in fronto-limbic connectivity and whether
sex modulates these effects. Using rsfMRI, Johnson et al. (2018)
showed that exposure to UPS, a modified version of the LBN
paradigm described in section “LBN Increases the Susceptibility
to Secondary Stress in Male Offspring,” leads to increased
connectivity between the amygdala and the prefrontal cortex, as
well as between the amygdala and the hippocampus in adult male
mice. The strength of these connections was highly correlated
with anxiety-like behavior providing a possible explanation for
the increased anxiety seen in UPS male mice compared to control
reared males. In the aforementioned study, UPS did not increase
anxiety-like behavior in females, so it would be interesting to
know whether similar changes in connectivity are seen in UPS
females as well. Similarly, UPS, but not LBN leads to robust
increase in anxiety-like behavior (Johnson et al., 2018) raising

the question as to whether the higher levels of threat associated
with the UPS paradigm (Figure 1B) induce a different pattern of
fronto-limbic connectivity when compared to LBN.

Direct comparisons between the effects of LBN and UPS
on fronto-limbic connectivity have not been reported yet, but
three papers have examined the effects of LBN on fronto-limbic
connectivity in male rats (Yan et al., 2017; Bolton et al., 2018;
Guadagno et al., 2018). Bolton et al. (2018), found increased
structural connectivity between the amygdala and the mPFC in
LBN-reared males (Bolton et al., 2018). Yan et al. (2017), used an
abbreviated scarcity model in which the limited bedding occurred
from PND8-12 to assess the effects of LBN and age (PND45 vs.
60) on functional connectivity between the amygdala and the
PFC. Although they did not find a robust LBN effect, there was
an age-dependent increase in functional connectivity in control
rats that was not seen in LBN rats. This change in trajectory was
due to a relatively high connectivity in LBN male adolescents that
plateaued in adulthood. These results suggest that LBN causes
precocious maturation of fronto-limbic connections in males
(Yan et al., 2017), an effect consistent with findings reported in
parentally deprived children (see Gee et al., 2013 and section
“Task-Mediated fMRI”). Guadagno et al. (2018), used rsMRI to
assess functional connectivity between the anterior and posterior
BLA and the PFC in PND18 and PND74 rats. They found
reduced connectivity between the right anterior BLA and the
PFC in both ages but mixed effects, i.e., increased or decreased
connectivity between the left anterior BLA and the posterior BLA
connections with the PFC. In summary, although differences in
connectivity between the amygdala and the PFC were found in
LBN-reared adult rats (Supplementary Table S2), no consistent
pattern emerged in males, and to our knowledge, no group has
yet studied this issue in females.

In summary, LBN represents an ELS model with relatively
high deprivation score and moderate levels of threat that is
associated with important sex-specific effects on hippocampal
function and distinct threat/deprivation profile and long-term
consequences when compared to the MS paradigm (Figure 1B,
and see also section “Maternal Separation Paradigms” below).

Maternal Separation Paradigms
Despite the fact that maternal separation (MS), maternal
deprivation (MD) and brief maternal separation (BMS, also
known as handling) are different postnatal stress paradigms that
lead to different outcomes, they are commonly lumped together
and discussed interchangeably. Several reviews have previously
detailed the rationale for developing MS, BMS, and MD and
highlighted important differences in their ability to modulate
neurodevelopment, physiology, and behavior (Lehmann and
Feldon, 2000; Meaney, 2001; Pryce and Feldon, 2003; Schmidt
et al., 2011; Tractenberg et al., 2016).

The term MS is used here to describe a group of procedures
in which pups are separated for 1–6 h daily during the first 2–
3 weeks of life. Such prolonged separation represents a significant
threat to rodent pups that are fully dependent on the dam
for survival (Kuhn and Schanberg, 1998; Kaffman and Meaney,
2007). Compared to the LBN paradigm, MS pups experience
higher levels of stimulation (Figure 1B) due to exposure to a
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novel environment, and, in many cases, to increased levels of
maternal care after reunification with the dam (Reeb-Sutherland
and Tang, 2012; Gobinath et al., 2014; Couto-Pereira et al., 2016).

Maternal separation paradigms allow for high level of
flexibility in modifying the complexity of the early life
stressor, but this added flexibility is responsible for the
development of numerous variations, lack of standardization,
and difficulties reproducing developmental outcomes (Lehmann
and Feldon, 2000; Tractenberg et al., 2016; Murthy and Gould,
2018). Additionally, even when the paradigm is consistent,
strain effects are often present (Millstein et al., 2006; Mehta
and Schmauss, 2011; Tractenberg et al., 2016). To identify
robust and reproducible outcomes we extracted outcomes
specifically associated with MS from two systematic reviews (Loi
et al., 2015; Tractenberg et al., 2016) and one meta-analysis
(Chen and Jackson, 2016).

The work by Loi et al. (2015) is particularly germane as it
specifically explores the effects of different ELS paradigms (e.g.,
MD, MS, BMS, and LBN) on behavior in male and female
rodents. When examining these paradigms together, they note a
trend for increased vulnerability in males compared to females in
tests for social behavior, cognition, and depression-like behaviors.
Yet, when only looking at MS studies utilizing both sexes, Loi
et al., 2015 did not find a significant effect of MS on anxiety,
depression, or hippocampal-dependent function, in either sex.
The few studies that reported a significant main effect of MS, did
not present a clear outcome with regard to the moderating effects
of sex on MS. The vast majority (i.e., 87%) of the MS studies
cited by Loi et al. (2015) used rats with only three studies (13%)
conducted in mice. The effects of MS, MD and BDS on behavior
in the mouse was systematically reviewed by Tractenberg et al.
(2016) and revealed a more consistent pattern. Specifically, when
focusing on MS studies, there is a trend for increased depression
and anxiety-like behavior across studies, but most studies only
used males, and several of the studies that used both males and
females did not formally assess for an interaction, making it
difficult to determine how sex interacts with MS in the mouse.

Chen and Jackson (2016) conducted the only meta-analysis
looking at the effects of MS, MD and BMS on pain sensitivity
(Chen and Jackson, 2016). They found a significant reduction
in pain sensitivity in rodents exposed to ELS that was due to
the effects of BMS and not MS on pain sensitivity. In fact, MS
studies found an opposite trend for increased pain sensitivity
that did not reach statistical significance. Sex emerged as a
significant factor in studies involving MS but not BMS, with
males showing greater sensitivity compared to females. MS
studies in mice (CD1) showed greater effect size compared
to studies conducted in rats consistent with the notion that
mice are more sensitive to the consequences of MS. This study
demonstrates the utility of meta-analysis to quantify an overall
effect size for the different paradigms, identify publication bias,
and to reveal a significant effect of sex.

MS Alters DNA Methylation and Dopaminergic
Development in Males
The challenges of producing consistent behavioral outcomes
using the MS paradigm is likely responsible for the paucity of

studies describing reproducible cellular and molecular changes
in offspring exposed to MS. Nevertheless, two important
exceptions are worth noting. First, several groups have found
increased levels of DNA methyltransferases (DNMTs), including
DNMT1, in the brain of adult male offspring exposed to MS
(Anier et al., 2014; Boku et al., 2014; Todkar et al., 2015;
Ignacio et al., 2017; Park et al., 2018). This is an important
observation because DNMT1 plays a critical role in maintaining
DNA methylation and transcription across a large number of
promoters in neural stem cells, neurons and glia that regulate
circuit development, neuroplasticity, and complex behavior (Guo
et al., 2011; Heyward and Sweatt, 2015). This type of epigenetic
regulation is now recognized as an important mechanism
by which early life stress causes long term changes in gene
expression in both animals and humans (Kaffman and Meaney,
2007). Exactly how an increase in DNMTs affects circuits that
regulate complex behaviors in adult offspring exposed to MS
is not fully elucidated, but work by Boku et al. (2014) has
shown that elevated levels of DNMT1 in neural stem cells
causes hypermethylation of the retinoic acid receptor (RARα)
promoter. This increase in DNA methylation reduced RARα

expression and impaired NSC differentiation into neuronal
pathway in vitro (Boku et al., 2014). DNA methylation also
plays a critical role in establishing sex-specific differences
early in development (McCarthy, 2016), providing a possible
mechanism by which MS may alter developmental trajectory
in males and females. As seen with other examples noted
above, none of the studies examined the effect of MS on
DNMTs expression in females, an issue we suspect will provide
important details about whether sex modulates the functional
consequences of MS.

Secondly, work by Pena et al. (2017) found that exposing
pups to MS from P10-20 causes latent vulnerability to depression
that is not seen when pups are separated from P2-12. These
different outcomes are due to the ability of MS from P10-20,
but not from P2-12, to transiently reduce the expression of the
transcription factor OTX2 in the ventral tegmental area (VTA)
of male mice. Reduced OTX2 levels during this critical period
of development impairs dopaminergic innervation and increases
vulnerability to additional stress in adulthood (Pena et al., 2017).
It is important to note that the MS paradigm used by Pena
et al. (2017) also utilized low amounts of bedding commonly
used in the LBN paradigm (i.e., increased levels of deprivation)
and required exposure to additional trauma in adulthood in
order to induce a depression-like phenotype. Additional studies
are needed to clarify whether MS from P10-20 also reduces
expression of OTX2 in females and whether OTX2 plays a similar
role in dopaminergic development in both sexes.

CHALLENGES AND
RECOMMENDATIONS

As discussed above, many questions are yet to be clarified
about the moderating effects of sex on consequences of CM
and outcomes of ELS in animal models. In this section, we
highlight key obstacles for effectively studying this question and
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make several recommendations about how to overcome these
challenges. We first discuss these issues in clinical setting and
then examine them in preclinical studies.

Challenges in Clinical Setting
The conflicting clinical results are not surprising given the
number of variables involved and their complex interaction.
For instance, different subtypes of CM (e.g., physical
abuse vs. emotional neglect) cause somewhat different
neurodevelopmental and behavioral outcomes (Keyes et al.,
2012; McLaughlin et al., 2014; Teicher and Samson, 2016). These
different developmental trajectories are further modified by the
timing in which the trauma occurred (Bale and Epperson, 2015;
Teicher and Samson, 2016) and the genetic vulnerability of the
individual (Caspi et al., 2002, 2003; Klengel et al., 2013). Perhaps
most relevant to this review, is work indicating that different
forms of CM interact differently with sex (see Supplementary
Table S1 and section “Sex as a Moderator of Psychopathology”).
Moreover, pure forms of CM are rarely encountered, with most
cases of CM characterized by a combination of several subtypes
of maltreatment (Kessler et al., 1997; Anda et al., 2006; Keyes
et al., 2012). Co-occurring types of CM interact with one another
in a manner that is not easy to quantify, but affects the risk for
psychopathology (Fergusson et al., 1996; Kessler et al., 1997;
Anda et al., 2006).

Sex also appears to moderate the prevalence and the nature
of certain forms of CM. Specifically, while men experience lower
prevalence of sexual abuse (Cutler and Nolen-Hoeksema, 1991;
Coohey, 2010; Gauthier-Duchesne et al., 2017), young males
are more likely to experience severe and frequent sexual abuse
perpetuated by adolescent males while females are more likely
to be abused by adult males (Gauthier-Duchesne et al., 2017).
Work by MacMillan et al. (2001) provides a good example of
how these differences may influence the interpretation of data
with regard to the moderating effects of sex on psychopathology
(Supplementary Table S1). For instance, adult women exposed
to childhood physical abuse, and to a lesser extent sexual abuse,
were more likely than males exposed to the same CM to meet
criteria for either depression, substance use disorder, or antisocial
behavior (MacMillan et al., 2001). Importantly, 33% of the
physically abused women in this study were also sexually abused
while only 11% of the men that were physically abused reported
sexual abuse (MacMillan et al., 2001). These differences raise the
possibility that the increased vulnerability seen in women may be
due to more severe trauma and not actual sex differences.

One of the most important contributing factors to the
confusion is the lack of a unifying method for characterizing CM.
Different diagnostic tools are used to assess CM (Supplementary
Table S1), making it practically impossible to compare outcomes
across studies or to conduct meaningful meta-analyses.
Moreover, most scales use the cumulative-risk model and
there is a need to develop tools that diagnose CM along the
threat/deprivation dimensions. These critical issues have not
received enough attention and we hope that this review will
help galvanize an effort to implement a uniformly accepted
scale in future studies (see also section “Recommendations for
Clinical Work” below).

Another issue that complicates the analysis and interpretation
of the data is the use of an appropriate comparison group
(Banyard et al., 2004). This is important, as the rates of
internalizing disorders are almost twice as high in females
(Kilpatrick et al., 2003; Altemus, 2006; Gobinath et al., 2014).
This female-specific effect raises the question of whether a direct
comparison between males and females is even appropriate.
For example, Gold et al. (1999), found no difference in the
rates of depression and anxiety between adult men and women
exposed to childhood sexual abuse. However, when the rates were
normalized to the rates seen in the same sex, non-abused general
population, men were found to have higher rates of normalized
internalizing disorders compared to women (Gold et al., 1999).
While intriguing, these findings were not replicated by Banyard
et al. (2004) who reported higher rates of internalizing symptoms
in women exposed to sexual abuse, but no sex differences when
the rates were normalized to the non-abused same sex general
population. Another unresolved methodological question is how
to address differences in sexual maturation between males and
females. Females enter puberty roughly 18 months before males,
suggesting that a comparison should be made based on Tanner
phase, and not age per se (Colich et al., 2017). This issue is further
complicated by extensive work showing that CM accelerates entry
into puberty in females, with less clear data available on this issue
in males (Cowan and Richardson, 2018).

Cultural norms regarding issues of masculinity, femininity
and sexual orientation also influence the moderating effects of
sex on the consequences of the traumatic experience (Maikovich-
Fong and Jaffee, 2010; Gauthier-Duchesne et al., 2017). These
cultural expectations may cause reporting biases that affect
rates of psychopathology between males and females (Coohey,
2010). Moreover, it may be more culturally acceptable for boys
to act aggressively compared to girls, leading to higher levels
of externalizing disorders in boys (Coohey, 2010; Gauthier-
Duchesne et al., 2017). For a comprehensive discussion of this
important issue see (Rutter et al., 2003).

Recommendations for Clinical Work
We start by highlighting the need to increase awareness that sex
differences matter in terms of the developmental consequences
of CM and patient response to treatment. This includes
the realization that similar presentation does not necessarily
mean similar mechanism, and the interaction between threat,
deprivation and sex are likely to be complex and circuit
specific. Perhaps the most important and necessary change is the
implementation of a uniformly accepted scale to assess CM. Such
a scale should be guided by the threat/deprivation conceptual
model to better map the complexity and heterogeneity of the
CM experiences. This is not a call for the elimination of all other
scales, but rather an effort to include one common scale that will
allow for better comparisons between studies and help conduct
meaningful meta-analyses. In addition, given the broad range of
psychopathologies seen after exposure to CM, it would be helpful
to include a measurement of global psychopathology in the form
of the p factor in both males and females. For a detailed review
on the p factor and its relationship to CM see Caspi et al. (2014),
Ronald (2019). Additional studies using objective measurable
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outcomes such as imaging, neurocognitive testing, and peripheral
markers should provide important details about how different
types of CM alter specific circuits in males and females. Such
studies should be adequately powered to detect sex differences
and will help resolve important discrepancies in imaging studies
described above.

Challenges Faced by Preclinical Studies
A major issue in the preclinical literature is the paucity of
studies that have examined outcomes of ELS in both males
and females (Loi et al., 2015; Tractenberg et al., 2016). The
large historical bias in male-exclusive studies, i.e., 5 to 1,
in neuroscience and biomedical research (Beery and Zucker,
2011) led to the 2015 implementation of an NIH initiative
emphasizing the importance of sex as a biological variable (Lee,
2018). While the percentage of studies using both males and
female rodents has drastically increased from 17 to 38%, very
few of those studies (15–25%) utilized sex as an experimental
variable of interest (Beery and Zucker, 2011; Will et al., 2017).
Moreover, methodological issues related to statistical analyses
and reporting bias have also contributed to the large number
of inconsistent findings in the preclinical ELS literature. For
example, formal assessment of general linear modeling (GLM)
assumptions, e.g., normal distribution and/or equal variance
across groups, are often lacking, sample sizes are frequently
low without proper justification or power analysis (Button
et al., 2013; Dumas-Mallet et al., 2017; Smith, 2017), and the
inadequate analysis of “nested” data (Aarts et al., 2014) can all
lead to an increased rate of false-positive reporting (Colquhoun,
2014). This is particularly relevant for ELS studies where both
fixed (rearing condition) and random (dam) effects are present.
In other words, the behavior of each pup is nested within
the dam (or litter), thus yielding clustered observations that
cannot be considered fully independent, making the traditional
use of GLM problematic. This tendency toward underpowered
studies and inadequate data analysis may mask individual litters
driving effects, making both within group and between group
replication more difficult.

Beyond issues related to analysis, it can be difficult to
compare findings within the same paradigm, as the specifics
of the stress timing, testing age, animal species or strain
can directly alter results. For instance, in a systematic review
conducted by Tractenberg et al. (2016), MS paradigms were
found to be highly varied in terms of separation length,
animal strain utilized, and biological and behavioral phenotypes.
Variability in methodology is further complicated by inadequate
reporting practices. For instance, according to Tractenberg
et al. (2016), only half of the 96 studies included in their
systematic review met 75% of the criteria for guidelines on
reporting animal research, and only three studies had a quality
score above 90% (Tractenberg et al., 2016). Additionally, some
reports demonstrate little to no strain variation (Millstein
and Holmes, 2007), while others show resiliency to MS
paradigms in certain strains, e.g., C57bl/6 (Own and Patel,
2013). This inconsistency suggests a need for more in depth
methodological reporting or more standardized paradigms
between research groups.

An important statistical tool to address conflicting results is
to conduct systematic reviews followed by meta-analyses. This
approach has been used frequently in clinical studies, but is
rarely used to resolve inconsistent findings in preclinical studies
in general, and to an even less extent in the ELS literature.
In fact, while we are aware of only one meta-analysis that has
conducted this kind of analysis using rodent models of ELS (Chen
and Jackson, 2016), this type of approach can be very effective
in addressing the relative vulnerabilities of males and females
to different paradigms of ELS and in identifying important
moderators and publication biases.

Finally, preclinical studies would also benefit from using the
threat/deprivation conceptual model to study consequences of
ELS (Figure 1B). In this regard, one of the most important
caveats is that the “standard rearing” condition provides fairly
low levels of stimulation that does not adequately reflect the
complexity seen in nature or the levels of stimulation seen in
children exposed to normal rearing conditions.

Recommendations for Preclinical Studies
There is a desperate need for additional work directly exploring
outcomes and underlying mechanisms in both males and
females exposed to forms of ELS (see sections “Modeling early
life stress in rodents” and “Maternal Separation Paradigms”).
The use of human imaging modalities such as rsfMRI and
dMRI provide a particularly promising area of translational
research that can help clarify how sex moderates the effects of
deprivation and threat on many aspects of brain development.
Such imaging findings should be coupled with genomic,
retrograde tracing, optogenetic tools, and behavioral assays
to rigorously clarify how these structural and functional
changes alter complex behavior in males and females. To
improve the clinical relevance of these ELS models, additional
enrichment/stimulation during early development in the control
group is warranted, and could unmask small, but consistent
outcomes that have otherwise been overlooked. Finally, effort
should be made to improve the standardization and reporting of
rearing conditions and appropriate sample sizes and statistical
tools, i.e., hierarchical linear modeling (Woltman et al., 2012;
Aarts et al., 2014) should be utilized; see Naninck et al. (2015)
for an example of this strategy used in ELS research. Finally,
conducting more meta-analyses using animal models of ELS
could prove helpful in identifying subtle-sex differences in
behavioral and developmental outcomes and help correct for
publication bias.

CONCLUSION

Important sex differences are present early in development
affecting the way males and females respond to environmental
challenges early in life. Despite the large number of inconsistent
clinical and preclinical findings, a growing body of work has
identified important differences in the way sex moderates
outcomes of CM. These sex differences will likely have
important treatment implications, and, therefore deserve
additional research effort to elucidate them. However, such
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effort would need to address key obstacles at both the clinical
and preclinical levels. The most important suggested changes
include the development of a uniformly accepted method of
characterizing CM and the use of advanced human imaging tools
in preclinical studies.
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Down Syndrome (DS) is the most common genetic disorder associated with intellectual
disability (ID). Excitatory neurons of DS patients and mouse models show decreased
size of dendritic field and reduction of spine density. Whether these defects are caused
by cell autonomous alterations or by abnormal multicellular circuitry is still unknown.
In this work, we explored this issue by culturing cortical neurons obtained from two
mouse models of DS: the widely used Ts65Dn and the less characterized Ts2Cje. We
observed that, in the in vitro conditions, axon specification and elongation, as well
as dendritogenesis, take place without evident abnormalities, indicating that the initial
phases of neuronal differentiation do not suffer from the presence of an imbalanced
genetic dosage. Conversely, our analysis highlighted differences between trisomic and
euploid neurons in terms of reduction of spine density, in accordance with in vivo data
obtained by other groups, proposing the presence of a cell-intrinsic malfunction. This
work suggests that the characteristic morphological defects of DS neurons are likely
to be caused by the possible combination of cell-intrinsic defects together with cell-
extrinsic cues. Additionally, our data support the possibility of using the more sustainable
line Ts2Cje as a standard model for the study of DS.

Keywords: Down syndrome, neural differentiation, Ts65Dn, Ts2Cje, dendritic spines

INTRODUCTION

Trisomy for human chromosome 21 (HSA21) causes Down syndrome (DS) in one every 800 live
births (de Graaf et al., 2017), making it the most common genetic cause of developmental delay and
intellectual disability (ID). DS is characterized by several phenotypes affecting many organ systems,
including CNS abnormalities that lead to cognitive and motor impairment, congenital heart defects,
megakaryocytic leukemia and early onset Alzheimer’s disease (AD) (Haydar and Reeves, 2012;
Hibaoui et al., 2014; Hartley et al., 2015). Thanks to the constant improvement of medical care
and to increased access to it, a vast majority of these problems can be now addressed medically
(e.g., megakaryocytic leukemia) or surgically (e.g., congenital heart defects). However, despite the
presence of several medical trials, cognitive impairment remains a limiting factor in DS patients, by
reducing the accomplishment of personal and social goals.

A number of studies performed on patients and animal models demonstrated that the brain
structures more affected in DS are the hippocampus, the cerebellum and the cerebral neocortex
(Dierssen et al., 2009; Rueda et al., 2012). MRI studies revealed that neuro-anatomic abnormalities
in the cerebral cortex are correlated with the cognitive profile of DS patients (Raz et al., 1995;
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Pinter et al., 2001; Lott, 2012). However, the alterations that
characterize neocortical structure and its development in
DS patients are less studied than the abnormalities of other
districts. Qualitative and quantitative defects, such as reduction
of dendritic arborizations, decreased synaptic contacts and
altered information processing, have been documented
in DS patients cortical neurons (Wisniewski et al., 1984;
Golden and Hyman, 1994).

Cortical alterations similar to those found in patients
have also been described in Ts65Dn mice (Dierssen et al.,
2003) the most commonly used and best characterized
rodent model of DS (Davisson et al., 1993). Ts65Dn mice
possess an extra chromosome, containing approximately
two-thirds of HSA21 orthologous genes. Recently, Ts[Rb
(12.1716)]2Cje (Ts2Cje) mice have been established, after a
fortuitous translocation of the Ts65Dn extra chromosome
to chromosome 12 (Villar et al., 2005). Ts2Cje possess the
same amount of triplicated DNA sequence as Ts65Dn,
but the stable rearrangement spares fertility in males and
increases the frequency of transmission of the segmental
trisomy through the female germline. These differences make
Ts2Cje mice a much easier model to study, as compared
to Ts65Dn animals.

Since the presence of an extra, freely segregating chromosome
may contribute to DS phenotypes, Ts65Dn mice may represent
a more faithful model. However, it is noteworthy that
possessing an entire extra HSA21 is not necessary for DS-
related ID, since a subset of DS patients show partial
trisomy, associated with chromosome 21 translocation and
fusion events. Ts2Cje mice have not been characterized as
deeply as the Ts65Dn line, but they show some of the DS-
relevant phenotypes previously found in Ts65Dn mice, such
as structural dendritic spine abnormalities, ventriculomegaly
and altered neurogenesis (Villar et al., 2005; Ishihara et al.,
2010; Raveau et al., 2017). Considering the difficulties of
breeding the Ts65Dn line, a deeper characterization of Ts2Cje
mice could provide valuable insight for further establishing
this more tractable model. In addition, in both models, it is
not well understood whether cortical neuron abnormalities are
primary and cell-autonomous or the result of altered dynamics
of neurogenesis.

To address these issues, we cultured cortical neurons from
newborn Ts65Dn and Ts2Cje mice and evaluated their ability to
differentiate in in vitro conditions.

Our data indicate that, in both mouse models, axonogenesis
and dendritogenesis are unaffected, while dendritic spines
are both reduced and immature, suggesting that only the
latter phenotypes are a cell-autonomous consequence of the
genetic imbalance.

MATERIALS AND METHODS

Mice
Ts65Dn and Ts2Cje lines were bred accordingly to Jackson’s
Laboratories directions, conforming to the Italian laws on animal
experimentation and under the supervision of the veterinary

service of our animal facility. Mice were genotyped with PCR
using primers spanning the translocation site.

Neuronal Primary Cell Culture and
Transfection
Mouse cortical neurons were isolated from Ts65Dn and Ts2Cje
pups and euploid litters on the day of birth (P0) as previously
described (Beaudoin et al., 2012). Briefly, PCR was performed
on a small amount of tissue obtained from the tail and
mice with the same genotype were then processed as a single
individual. Brains from both euploid and trisomic mice were
extracted from the skull, meninges were removed, the two
hemispheres were separated, hippocampus removed, cortices
were isolated and transferred into 1 ml of pre-warmed 2,5%
trypsin (Sigma) for 15 min at 37◦C. Cortices were then washed
five times with HBSS (Thermo Fisher), DNAseI (Promega)
was added to the last wash and incubated at 37◦C for
10 min. Subsequently, cells were carefully disaggregated with
a P1000 sterile filtered tip eight to ten times, counted and
plated in Mem Horse medium (MEM 1×, 10% horse serum,
2 Mm L-glutamine) on poly-L-lysine (Sigma, 1 mg/ml.) pre-
coated coverslips with a density of 32,500 cells/cm∧2. After
4 h, medium was changed into Neurobasal (Thermo Fisher)
supplemented with 2% B27 (Thermo Fisher) and 2 mM
L-glutamine (Gibco). Fresh supplemented Neurobasal was
added to cultures every 4 days after the removal of half of
the medium.

To highlight neuronal morphology for dendritogenesis and
dendritic spines analysis, pEGFP-C1 plasmid (Clontech) was
transfected using Lipofectamine LTX (Thermo Fisher) according
to manufacturer’s indications.

Immunofluorescence, Image Acquisition,
and Analysis
Neurons were fixed with 4% paraformaldehyde in PBS for
10 min, quenched with 50 mM NH4Cl for 15 min, permeabilized
with 0.1% Triton X-100/PBS for 5 min. Non-specific sites were
blocked with 5% BSA/PBS for 30 min. Immunofluorescence
(IF) was performed using the anti-GFP antibodies (Rabbit
polyclonal AB290, 1:1000, Abcam), followed by incubation
with appropriate Alexa Fluor-conjugated secondary antibodies
(Molecular Probes). Polymeric F-actin was detected with Tritc
or Fitc phalloidin (Sigma). Interneurons were identified with
GAD67 staining (mouse monoclonal, 1:100, Abcam). Axons were
stained with anti neurofilament H (mouse monoclonal SMI
32, 1:200, Biolegend) and pre-synaptic sites were stained with
Bassoon (mouse monoclonal, 1:200, Stressgene).

Images were acquired with ViCo (Nikon) fluorescent
microscope or with SP5 Leica confocal microscope. All analyses
were performed with FiJi software (Schindelin et al., 2012).
Traces of neurites were obtained using the NeuronJ plugin for
FiJi. In brief, Z-stacks of GFP transfected neurons were projected
on one plane (“maximum projection”) and traces were manually
drawn with a line. Concentric circles were centered on cell soma
and the number of intersections was counted manually. Total
dendritic length was measured with FiJi “segmented line” tool.
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Dendritic spines were counted manually on 10 µm dendritic
segments, 20 µm far from cell soma. At least two segments per
cell were analyzed.

RESULTS

Neuronal Polarity Is Not Altered in
Ts65Dn and Ts2Cje Mouse Cortical
Neurons
To evaluate whether the cortical defects described in DS patients
and in mouse models could be attributed to cell intrinsic defects,
we resorted to the use of in vitro primary cultures, obtained
from post-natal 0 (P0) pups. Neuronal cultures were prepared
from both Ts65Dn and Ts2Cje mice (Villar et al., 2005). In both
cases, euploid littermates were used as matched controls. Cultures
were composed by a majority of excitatory neurons. Indeed,
they contained approximately 20% inhibitory neurons, with
no significant differences between genotypes (Supplementary
Figure 1A). Moreover, we only analyzed cultures containing less
than 20% glial cells (Supplementary Figure 1C)(see methods
for technical details about the procedure). We evaluated all the
main stages of neuronal development (Banker and Goslin, 1988):
axonogenesis (days in vitro∼DIV-3), dendritogenesis (∼DIV7)
and synaptic maturation (∼DIV14) (Figure 1A). Three days after
plating, we counted the percentage of cells in stage II (multipolar
cells, with equally long neurites) and in stage III (polarized SMI+
cells, Supplementary Figure 1B) (Banker and Goslin, 1988): we
did not observe any difference in the distribution of cells between
the two stages in the two analyzed strains (Figures 1B,C,F). It
has previously been reported that the number of projections is
higher and axonal length is increased in cultured hippocampal
neurons obtained from Ts65Dn and in cortical neurons obtained
from patients’ samples (Sosa et al., 2014). To evaluate whether
cortical neurons from Ts65Dn and Ts2Cje would behave the
same, we counted the number of primary neurites emerging
directly from the cell soma and the length of the axon after
3 days in culture. In both models, we did not appreciate any
alteration in the number of primary projections (Figures 1D,G).
In addition, although in both genotypes the average axonal length
tended to a slight increase, the differences from controls were
not statistically significant (Figures 1E,H). Together, these data
indicate that cortical neurons in primary culture, obtained from
post-natal brain of two different mouse models of DS, show a
normal pattern of neuritogenesis, with no significant alterations
in the stage progression or in the axonal outgrowth.

Dendritic Arborization Is Unaffected in
Ts65Dn and Ts2Cje Cortical Neurons
During neuronal differentiation, the establishment of neuronal
polarity and axon sprouting are followed by rapid growth of
the minor neurites into dendrites. In vitro, this step takes
place around DIV7 (Takano et al., 2015). Previous in vivo
work has reported that Ts65Dn layer III pyramidal neurons
display simplified branching pattern and shorter dendritic
length (Dierssen et al., 2003), while no data are currently

available for Ts2Cje. We thus evaluated the differentiation
potential of Ts65Dn and Ts2Cje cortical neurons, by analyzing
their capability to form dendrites after 7 days in vitro. To
clearly highlight the dendritic tree, neurons were transfected
at DIV5 with a GFP expressing plasmid. Sholl analysis (Sholl,
1953) was performed on GFP-positive cells (Figures 2A,B)
counting the number of intersections up to a radius of
60 µm from cell center. We did not analyze larger radii,
because of the high number of breaks taking place at the
tiny tip of dendrites. Interestingly, this analysis did not reveal
significant changes in the number of intersections (Figures 2C,F).
Even the cumulative number of intersections (Figures 2D,G),
as well as the total dendritic length (calculated inside the
Sholl’ area) (Figures 2E,H) were not different from controls
in both genotypes.

Considering the previous work showing that Ts65Dn cortical
neurons display dendritic alterations in vivo (Dierssen et al.,
2003), we next asked whether these defects may depend on
the inability of neurons to properly maintain, rather than
establish, the structure of dendritic fields. Indeed, around
DIV7-9, differentiating mouse neurons display a dynamic
phase characterized by branching instability, with continuous
progression and retraction of the neurites. This is followed,
around DIV10-15, by a stabilization phase, leading to the final
dendritic configuration (Baj et al., 2014). To evaluate whether
the stabilization phase is affected in trisomic mice, we performed
Sholl analysis also in mature Ts65Dn and Ts2Cje neurons, at
DIV14. As expected, the number of intersections is increased at
this time, as compared to DIV7. However, even at this stage, no
differences were detected between trisomic and euploid neurons
(Figures 3A,B). These data suggest that cortical neurons of
trisomic mice, grown in in vitro conditions, possess a similar
intrinsic capability to generate dendrites and to establish a
dendritic arbor as euploid controls.

Dendritic Spines of Trisomic Neurons in
Primary Culture Show Immature
Morphology and Reduced Density
We next wondered whether Ts65Dn and Ts2Cje neurons in
culture show alterations of dendritic spines. Indeed, in vivo
studies have reported that Ts65Dn neurons exhibit a reduced
number of spines, which are further characterized by immature
shape and function (Dierssen et al., 2003; Belichenko et al., 2004).
To further investigate this topic, we transfected at DIV5 Ts65Dn,
Ts2Cje and matched control neurons, with a GFP expressing
plasmid. We then quantified the density of dendritic spines
at DIV14. Spines were grouped in four classes, as previously
described with morphological parameters (Harris et al., 1992):
filopodia (without a visible head), stubby (no distinguishable
neck), long neck and mushroom (defined as active contacts,
Figure 4G). Concerning Ts65Dn, we observed a slight decrease
of the long neck spines and a significant decrease of mushroom
spines. No dramatic changes were seen in stubby and filopodial
spines (Figures 4A,B). The overall spine density (spines/10 µm
segment) was also decreased in Ts65Dn, compared to euploid
cells (Figure 4E). In Ts2Cje neurons, we observed a similar
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FIGURE 1 | Neuronal polarity is not altered in Ts65Dn and Ts2Cje mouse cortical neurons. (A) Schematic representation of neuronal differentiation. We observed that
during the first 3 days in culture, neurons generate and specify the axon (stages I to III). Next, around day in culture (DIV) 7, cells start to elongate dendrites (stage IV)
and after 2 weeks they begin to be synaptically active (stage V). (B) Euploid (left panel) and Ts65Dn (right panel) cortical neurons at DIV3, stained for filamentous actin
(phalloidin). Cells appear properly differentiated and show no evidence of delay or maturation alteration. A similar pattern was observed in Ts2Cje cells. (C,F)
Percentage of cells in stage II or stage III after 3DIV (C: euploid in stage II n = 44, stage III n = 144, from 5 mice; Ts65Dn in stage II n = 18, stage III n = 94, from 4
mice. F: euploid in stage II n = 15, stage III n = 38, from 4 mice; Ts2Cje in stage II n = 10, stage III n = 51, from 4 mice). Euploid vs. Ts65Dn p = 0.32 (stage II) and
p = 0.65 (stage III); euploid vs. Ts2Cje p = 0.28 (stage II) and p = 0.25 (stage III). (D,G) Total number of primary neurites emerging directly from cell soma (D: 78 cells
from 5 mice for euploid, 75 cells from 4 mice for Ts65Dn; 1G: 53 cells from 6 mice for euploid, 61 cells from 6 mice for Ts2Cje). Euploid vs. Ts65Dn p = 0.32; euploid
vs. Ts2Cje p = 0.07. (E,H) Axon length after 3 DIV. All the evaluated parameters showed no significant differences in the two trisomic models, when compared to the
matched euploid controls (E: 105 cells from 5 mice for euploid, 63 cells from 4 mice for Ts65Dn; H: 53 cells from 6 mice for euploid, 57 cells from 6 mice for Ts2Cje).
Euploid vs. Ts65Dn p = 0.09; euploid vs. Ts2Cje p = 0.71. Statistics: Unpaired two tailed Student’s t-test. P > 0.05 was considered not significant. Error bars
represent SEM. Scale bar = 10 µm.

alteration of spine phenotype as the one observed in Ts65Dn.
In Ts2Cje the difference between control and trisomic neurons
was significant for all morphological classes, with the only
exception of stubby spines (Figures 4C,D). In addition, also in
Ts2Cje, spine density was significantly reduced with respect to
controls (Figure 4F).

Taken together, these data indicate that Ts65Dn and Ts2Cje
neurons have an intrinsically compromised capability to form
and mature dendritic spines.

DISCUSSION

Down syndrome is a genetic disorder characterized by a large
cohort of symptoms that greatly vary in both penetrance and
severity. Nevertheless, all DS patients share the common
hallmark of ID (Chapman and Hesketh, 2000). Much
information is available about the abnormalities existing in
hippocampus and cerebellum (Dierssen et al., 2009; Rueda
et al., 2012). Much less is known about the alterations produced
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FIGURE 2 | Dendritic arborization is unaffected in Ts65Dn and Ts2Cje cortical neurons. (A,B) Skeletonization with Sholl analysis target superimposition (upper panels)
and GFP fluorescent images (lower panels) of DIV7 cortical neurons. (C,F) Sholl analysis of cells images processed as in panels (A,B) (C: 55 cells from 8 mice for
euploid, 43 cells from 5 mice for Ts65Dn; F: 32 cells from 4 mice for euploid, 50 cells from 6 mice for Ts2Cje). In panel F, ∗p = 0.03. (D,G) Total number of crossings
counted in panels (C,F), respectively. Euploid vs. Ts65Dn p = 0.78; Euploid vs. Ts2Cje p = 0.65. (E,H) Total dendritic length measured within the Sholl area (E: 26
cells from 8 mice for euploid, 23 cells from 5 mice for Ts65Dn; H: 32 cells from 4 mice for euploid, 40 cells from 6 mice for Ts2Cje). Euploid vs. Ts65Dn p = 0.90;
euploid vs. Ts2Cje p = 0.60. Statistics: unpaired two tailed Student’s t-test. P > 0.05 was considered not significant. Error bars represent SEM. Scale bar is 10 µm.

by HSA21 trisomy on cortical circuits, which are likely to
significantly contribute to ID (Raz et al., 1995; Pinter et al.,
2001; Lott, 2012). In this work, we investigated more in depth
the possible cellular basis of cortical structure alterations that

characterize DS brain. We evaluated the ability of cortical
neurons obtained from Ts65Dn and Ts2Cje to complete the
differentiation program within the minimal environment of
2D culture condition. In both models, we could not detect
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FIGURE 3 | Dendritic arborization is not altered in Ts65Dn and Ts2Cje neurons at later stages of maturation. (A,B) Sholl analysis of DIV14 GFP + neurons from both
Ts65Dn and Ts2Cje (and age matched controls). The number of intersections between euploid and trisomic neurons is comparable also at this time point (A: 27 cells
from 3 mice for euploid, 11 cells from 3 mice for Ts65Dn; B: 15 cells from 3 mice for euploid, 16 cells from 3 mice for Ts2Cje). Euploid vs. Ts65Dn p ≥ 0.5 for all the
points; euploid vs. Ts2Cje p ≥ 0.5 for all the points. Statistics: unpaired two tailed Student’s t-test. Error bars represent SEM. P > 0.05 was considered not
significant.

significant impairment or delay in establishment of neuronal
polarity, axon outgrowth and dendritogenesis. In particular, the
normal axonal development is in accordance with data obtained
with transplantation of human DS neurons, differentiated from
induced pluripotent stem cells, into adult mice brain (Real
et al., 2018). In this study, chronic in vivo imaging revealed
that DS neurons had a normal pattern of axon development,
with rates of both axon growth and retraction similar to those
of control neurons. On the contrary, our data are in partial
contrast with previous work, in which an increased length of
the axon in Ts65Dn cultures was described (Sosa et al., 2014).
However, the two experimental conditions differ for cellular type
(cortical vs. hippocampal neurons), culturing substrate (poly-
L-lysine vs. laminin) and timing of axonal length measurement
(72 h vs. 24 h).

In the case of dendritogenesis, we were not able to detect
significant differences between the two genotypes and their
matched littermate controls in dendritic tree development,
complexity and total length.

Data about dendritic arborization in DS mouse models
and humans are quite heterogeneous. For instance, in one
study (Haas et al., 2013) dendritic fields in Ts1Rhr and Tc1
mice were relatively normal. In contrast, studies performed
on both DS patients (Becker et al., 1991) and Ts65Dn mice
(Dierssen et al., 2003) reported a simplification of dendrites
in cortical neurons. However, age specific differences could
exist. Analyses performed in infants with DS (< 6 months of
age) indicated a higher number of intersections, particularly
evident in cortical layer III cells (Becker et al., 1991). Later
on, already after 6 months of age, the reverse situation was
found, with reduced dendritic arborization in DS individuals
respect to healthy age matched controls (Becker et al., 1991).
These results indicate that in DS there is a dramatic cessation of
the neuronal growth soon after birth, with dendritic shortening
and atrophy. One possible explanation to reconcile these data
is that trisomic 3D environment could be characterized by

abnormally low concentrations of trophic factors, or abnormally
high concentrations of inhibitory cues that fluctuate during time,
differentially affecting dendrites throughout the different phases
of their development. In particular, the discrepancy between
in vitro and in vivo data could imply that factors operating in
the 3D environment of developing brain, but not in 2D cultures,
may be specifically altered by HSA21 trisomy. These factors could
consist of missing close contacts between pyramidal neurons
and other cell types, such interneurons, astrocytes or other glial
cells. The study of trisomic neurons developing within brain
organoids (Faundez et al., 2018) may represent a very interesting
possibility to further address this phenomenon and to unravel its
molecular details.

In contrast with axonogenesis and dendritogenesis, analysis of
the late stages of in vitro differentiation showed in both models
a significant reduction of mature dendritic spines. This result
is consistent with the in vivo data, supporting the notion that
the synaptic defects that characterize DS are at least in part
due to cell-autonomous mechanisms, together with additional
cell-extrinsic factors that may exacerbate the phenomenon.

From a genetic point of view, the most obvious candidates for
such a synaptic effect are the HSA21-located APP and DYRK1A
genes. APP is localized to both pre- and post-synaptic boutons,
playing a role in the stabilization of the whole synapse. Imaging
analyses performed in APP knockout mice showed that layer
V cortical neurons exhibited alterations in spine turnover, a
reduction in the number of thin spines and an increase in
the fraction of mushroom ones (Zou et al., 2016). Another
candidate is DYRK1A, because transgenic mice overexpressing
this protein show reduced spine density and increased frequency
of filopodial spines, similar to DS individuals and mouse models
(Martinez de Lagran et al., 2012).

Importantly, our work demonstrated that the spine phenotype
observed in the fully described Ts65Dn could be reproduced also
in the novel and less characterized Ts2Cje mouse model. For
this reason and together with the consistent increase in fertility
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FIGURE 4 | Spine morphology is altered in Ts65Dn and Ts2Cje cortical neurons. (A,C) High magnification images of dendrites of euploid and trisomic DIV14 cortical
neurons (respectively, Ts65Dn and Ts2Cje); scale bar 5 µm. (B,D) Quantification of different classes of spines calculated as the density of spines on ten micrometers.
Based upon morphological parameters, spines were classified as filopodia, long neck, mushroom, stubby. In Ts65Dn and Ts2Cje the number of long neck and
mushroom spines was decreased. The amount of filopodia spines was significantly higher only in Ts2Cje. White symbols represent euploid mice, black ones Ts65Dn
in panel (B) and Ts2Cje in panel (D). Bars represent mean. Error bar is SEM. (E,F) Quantification of total number of spines calculated as the density of spines on ten
micrometers segments. In trisomic conditions the total number of spines is decreased. (B–E: 26 cells from 3 mice for euploid, 22 cells from 3 mice for Ts65Dn. D–F:
47 cells from 5 mice from euploid, 64 cells from 6 mice from Ts2Cje). B-Euploid vs. Ts65Dn (each group p-value in the same order represented in the graph):
p = 0.62, p = 0.22, ∗p = 0.03, p = 0.26. D-Euploid vs. Ts2Cje: ∗p = 0.013, ∗∗∗p = 0.0004, ∗∗p = 0.0018, p = 0.41. E: ∗p = 0.04. F: ∗∗p = 0.0024. Statistics:
Two-tailed Mann–Whitney test. Error bars represent SEM. P > 0.05 was considered not significant. (G) Representative images of spine contacts. Stars indicate GFP
(filling post-synaptic protrusions) and Bassoon (pre-synaptic marker) positive excitatory spines in the two genotypes. Error bars represent SEM.
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of both males and females of this line, as compared to Ts65Dn,
our results suggest that 2D neuronal cultures of Ts2Cje mice
could provide an efficient model not only to identify the genetic
factors by which gene dosage imbalance leads to altered synaptic
development, but also to screen for pharmacological compounds
capable of reverting the phenotype. On this basis, we propose that
Ts2Cje should be taken into stronger consideration as a standard
model for the study of DS.
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Current evidence indicates that certain immune molecules such as components of the
complement system are directly involved in neurobiological processes related to brain
development, including neurogenesis, neuronal migration, synaptic remodeling, and
response to prenatal or early postnatal brain insults. Consequently, complement system
dysfunction has been increasingly implicated in disorders of neurodevelopmental origin,
such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However,
the mechanistic evidence for a causal relationship between impaired complement
regulation and these disorders varies depending on the disease involved. Also, it
is still unclear to what extent altered complement expression plays a role in these
disorders through inflammation-independent or -dependent mechanisms. Furthermore,
pathogenic mutations in specific complement components have been implicated in the
etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The
aims of this review are to discuss the current knowledge on the roles of the complement
system in sculpting brain architecture and function during normal development as well
as after specific inflammatory insults, such as maternal immune activation (MIA) during
pregnancy, and to evaluate the existing evidence associating aberrant complement with
developmental brain disorders.

Keywords: complement system, neural progenitor proliferation, neurogenesis, neuronal migration, synapse
refinement, neurodevelopmental disorders

INTRODUCTION

The complement system has been increasingly implicated in multiple physiological and
homeostatic functions, including development and maintenance of the central nervous system
(CNS) (Orsini et al., 2014; Coulthard et al., 2018b), in addition to its well documented roles
in immune surveillance and host defense against pathogens and injured cells (Kolev et al.,
2014). Virtually all complement components can be locally produced in the brain, where they
play critical roles in almost every aspect of normal brain development, including neurogenesis
(Rahpeymai et al., 2006; Coulthard et al., 2017; Gorelik et al., 2017a,b), neuronal migration
(Gorelik et al., 2017a,b), and synaptic refinement (Schafer et al., 2012; Stephan et al., 2012).
Moreover, the complement system plays an important role in the maintenance of uninjured
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brain homeostasis, protecting from infection and inflammation,
eliminating damaged cells and supporting regeneration (Alawieh
et al., 2015; Hammad et al., 2018). However, in the injured,
aged or diseased CNS, the synthesis of components of the
complement pathway markedly increases and contributes to
local inflammation and tissue damage, which may lead to blood
brain barrier injury (Orsini et al., 2014; Hammad et al., 2018).
Consequently, the brain parenchyma can be invaded by a number
of peripheral blood-derived inflammatory cells and molecules,
including complement proteins, which amplify local damage and
brain malfunction (Brennan et al., 2012).

Given the multi-faceted functions of complement in
CNS development, dysfunction of specific components of
the complement system has been increasingly linked to
developmental brain disorders, including 3MC syndrome, a rare
autosomal recessive disorder with facial dysmorphism, growth
deficiency and cognitive deficit (Sirmaci et al., 2010; Rooryck
et al., 2011; Munye et al., 2017), as well as to more prevalent
and genetically complex disorders, such as schizophrenia (Sekar
et al., 2016) and autism spectrum disorder (ASD) (Warren et al.,
1991; Fagan et al., 2017). However, despite recent advances,
several aspects of the involvement of the complement system
in the pathogenesis of these complex neurodevelopmental
disorders are still unclear. It is not yet fully established, for
example, whether aberrant complement expression produced
locally during brain development plays an etiological role in
these disorders independently of any role in inflammation, or
whether aberrant complement activation both systemically and
in the CNS, as a result of inflammatory insults during prenatal
or early postnatal neurodevelopment, also plays a part in the
pathophysiology of these disorders as a secondary event.

In support of the first possibility are, as abovementioned,
recent findings reporting multiple emerging novel non-
inflammatory roles of complement in every stage of brain
development (Coulthard et al., 2018b), as well as data from
genetic studies showing an association between risk variants in
complement genes and neurodevelopmental disorders (Warren
et al., 1991; Odell et al., 2005; Sekar et al., 2016). In addition, there
are studies suggesting that the neuropathological and behavioral
phenotypes in genetically modified mouse models with aberrant
complement expression in the brain parallel known features of
these human developmental brain disorders (Chu et al., 2010;
Perez-Alcazar et al., 2014; Sekar et al., 2016; Comer et al., 2019).

In support of the latter possibility are data from different
studies describing the presence of activated astrocytes and
microglia in brains as well as the presence of altered expression
of immune molecules, including complement components, in
peripheral blood and/or cerebrospinal fluid obtained from
individuals with schizophrenia and ASD (Mayilyan et al., 2006;
Corbett et al., 2007; Morgan et al., 2010; Ashwood et al., 2011;
Ishii et al., 2018). In addition, recent studies using animal
models have suggested a role for the complement system in
brain and behavioral abnormalities in offspring associated with
prenatal maternal immune activation (MIA) (Pedroni et al., 2014;
McDonald et al., 2015). In humans, severe maternal infections
during pregnancy have been highlighted as a potential risk factor
for these neurodevelopmental disorders (Patterson, 2009, 2011;

Malkova et al., 2012; Knuesel et al., 2014; Coiro et al., 2015).
One possibility is that immune molecules released by the
maternal immune response can cross the placenta and enter
the fetal brain, where they contribute to the pathological and
behavioral changes. The ongoing immune dysregulation in
the brain and the peripheral immune system of individuals
with these neurodevelopmental diseases suggest that MIA or
other inflammatory insults during prenatal or early postnatal
development may induce an irregular immune phenotype that
persists into adulthood.

This review aims to highlight the importance of the
complement system in regulating the development of the healthy
and diseased brain. First, we provide an overview of the
well-known concepts of complement system activation in the
immune system context. Then, we discuss recent progress in
understanding the roles of the complement system in important
physiological processes of normal brain development, as well
as initial findings suggesting a potential role for complement
in neuropathological and behavioral abnormalities in MIA
offspring. Finally, we evaluate the current evidence for the
involvement of the complement system dysfunction in disorders
that trace their origin to abnormal brain development, including
schizophrenia, ASD, Rett syndrome, and 3MC syndrome.

COMPLEMENT SYSTEM ACTIVATION: A
BACKGROUND

The complement cascade is composed of several soluble and
membrane-bound proteins that are mainly secreted by the liver,
but also by leukocytes, adipocytes, cells in the CNS (such as
neurons, astrocytes, and microglia), among others (Veerhuis
et al., 2011; Bajic et al., 2015). Complement is activated through
the classical, lectin and alternative pathways, which are initiated
by different stimuli and result in the generation of: (1) opsonins
(such as C3b and C4b), which recognize and bind to target
cells to facilitate their removal by phagocytic cells that express
complement receptors (such as complement receptor type 1,
CR1); (2) anaphylatoxin proteins (such as C3a and C5a), which
are proinflammatory peptides that interact with and activate
immune cells through interaction with their receptors (C3a
receptor, C3aR, and C5a receptor, C5aR); (3) terminal membrane
attack complex (MAC), which are pores that disrupt lipid bilayers
and lyses targeted (opsonized) pathogens or self-damaged cells
(Ricklin et al., 2010; Bajic et al., 2015; Figure 1).

The classical pathway is initiated by C1 complex activation,
which consists of a recognition molecule C1q and two
copies of each of the homologous C1r and C1s serine
proteases. Initially, C1q binds to one of its ligands, such
as antibodies, C-reactive protein and some structures on
invading microorganisms or apoptotic cells, which triggers a
conformational change within the C1 complex resulting in
the activation of C1r, which subsequently cleaves and activates
C1s (Gaboriaud et al., 2004). The activated C1s then cleaves
the complement protein C4 into the fragments C4a and
C4b. C4b may then opsonize the activator and facilitates
phagocytosis. Additionally, C4b binds to the complement protein
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FIGURE 1 | Complement activation pathways and the activity or expression of their individual components (either protein or mRNA) in schizophrenia and autism
spectrum disorder (ASD). ↑ red, increased protein activity or expression in blood from patients; ↓ red, decreased protein activity or expression in blood from patients;
↑ blue, increased RNA expression in brain tissues from patients; ↓ blue, decreased RNA expression in brain tissues from patients (Spivak et al., 1989, 1993; Warren
et al., 1994; Wong et al., 1996; Maes et al., 1997; Shcherbakova et al., 1999; Hakobyan et al., 2005; Mayilyan et al., 2006; Corbett et al., 2007; Boyajyan et al.,
2010; Momeni et al., 2012; Nardone et al., 2014; Li et al., 2016; Sekar et al., 2016; Fagan et al., 2017; Shen et al., 2018). The Figure does not distinguish between
strong and weak evidence.

C2, which is subsequently cleaved by C1s into the fragments
C2a and C2b. C2a remains attached to C4b and forms the C3
convertase C4b2b (previously termed C4b2a) of the classical
pathway, which cleaves the complement protein C3 into the
fragments C3a and C3b, triggering the final common part
of the complement cascade (Muller-Eberhard et al., 1967;
Dunkelberger and Song, 2010; Figure 1).

The lectin pathway is functionally similar to the classical
pathway and also leads to formation of the C3 convertase C4b2b.
However, the lectin pathway is initiated by binding of collectins
[mannose-binding lectin (MBL), collectin-10 (COLEC10), and
collectin-11 (COLEC11)] or ficolins (ficolin-1, ficolin-2, and
ficolin-3) to sugar moieties or certain acetyl groups present
on the surface of a large variety of pathogens, which leads
to activation of the MBL-associated serine proteases (MASP)
1 and 2, structurally and functionally similar to C1r and C1s
(Garred et al., 2016). While both enzymes cleave C2, only MASP2
cleaves C4, generating the C3 convertase C4b2b in a reaction
analogous to the classical pathway (Chen and Wallis, 2004;
Heja et al., 2012; Figure 1).

In contrast to the other two pathways, the alternative pathway
does not depend on the recognition of exogenous materials
and is constitutively active at low levels through a process
called “tickover.” This pathway is activated by spontaneous

hydrolysis of plasma C3 to form C3(H2O), which binds to
factor B. Factor D cleaves factor B to form Ba and Bb, which
then generates C3(H2O)Bb, the initial alternative pathway C3
convertase that can cleave C3 into C3a and C3b (Bexborn et al.,
2008; Lachmann, 2018). Subsequently, C3b generated from any
of the pathways can bind to factor B, which is cleaved by factor
D, generating C3bBb, the main C3 convertase of the alternative
pathway. C3bBb produces more C3b molecules, promoting an
amplification loop for the entire system. Also, factor I cleaves C3b
to iC3b, allowing iC3b to interact with leukocyte complement
receptors (CR3 and CR4) and trigger the inflammatory response
(Lachmann, 2009; Figure 1).

Therefore, the terminal phase of the complement cascade is
similar for the classical, lectin, and alternative pathways and
leads to the generation of C3 convertases. The incorporation of
C3b into the C3 convertases generates C5 convertases (C4b2b3b
for the classical and lectin pathways, and C3bBbC3b for the
alternative pathway) that cleave C5 into C5a, which binds to
its receptors on phagocytic cells, and C5b, which associates
sequentially to other complement proteins (C6, C7, C8, and C9)
forming the MAC and leading to cell lysis (Muller-Eberhard,
1985; Bajic et al., 2015; Figure 1).

It should be noted that the activity of the complement system
is tightly regulated to protect host cells from indiscriminate
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attack and limit the deposition of complement molecules
on pathogen and host surfaces. Among the complement
regulators is SERPING1 (or C1-inhibitor), which binds to and
inactivates C1r, C1s, and MASP-1/2 proteases, thus leading
to inhibition of the classical and lectin pathways (Ricklin
et al., 2010). Other regulators include: factor H, which acts
as a cofactor for complement factor I (CFI) in the C3b
cleavage and also favors the dissociation of factor Bb from C3b
(Lachmann, 2009); CSMD1, which acts as a cofactor to CFI-
mediated degradation of C4b and C3b and also inhibits MAC
assembly by preventing binding of C7 to the C5b-6 complex
(Escudero-Esparza et al., 2013); and CD59, which inhibits MAC
formation by preventing binding of C9 to the C5b-8 complex
(Farkas et al., 2002).

COMPLEMENT SYSTEM IN THE
DEVELOPMENT OF HEALTHY AND
DISEASED BRAIN

Complement System in Neurogenesis
Besides playing a critical role during embryogenesis, the
generation of new neurons is sustained throughout adulthood
in the mammalian brain through the proliferation and
differentiation of neural progenitor cells (NPC) present in
neurogenic niches, mainly the subventricular zone of lateral
ventricles and the subgranular zone of the hippocampal dentate
gyrus (Fuentealba et al., 2012). Studies using animal and
in vitro cell models have shown important roles for specific
complement components in the regulation of neurogenesis
both in the embryonic and adult brain under normal
physiological conditions.

It has recently been shown that mouse embryos deficient for
C3, Masp2 or treated with C3aR antagonist exhibit increased
proliferation of NPC in the brain ventricular or subventricular
zones, suggesting that these complement components inhibit
NPC proliferation at early stages of cortical development (Gorelik
et al., 2017a; Coulthard et al., 2018a). It is noteworthy, however,
that an opposite trend was observed for C3aR knockout
mouse embryos, that display decreased proliferation of NPC
within the ventricular zone (Coulthard et al., 2018a; Table 1).
This discrepancy between the use of C3aR pharmacological
blocker and C3aR knockout may be attributed in part to
combinatorial modulation of other signaling pathways in the
absence of C3aR during the entire developmental period
(Coulthard et al., 2018a). In the context of adult mouse brain,
previous studies have shown that young adult mice lacking
C3, C3aR or treated with C3aR antagonist exhibit reduced
neurogenesis from NPC in the neurogenic niches, possibly
due to impaired NPC differentiation rather than decreased
proliferation of these cells (Rahpeymai et al., 2006). These
findings were further corroborated by an in vitro study using
NPC isolated from adult mouse brain showing that C3a
stimulates their neuronal differentiation without altering their
survival and proliferation (Shinjyo et al., 2009; Table 1).
Consistent with the findings that C3a/C3aR signaling regulates

neurogenesis, adult C3aR knockout mice show deficits in
memory (Coulthard et al., 2018a).

Constitutive deficiency of C5aR and acute pharmacological
blockade of C5aR during neurogenesis also caused opposing
phenotypes of NPC proliferation. While the use of C5aR
antagonist inhibits NPC proliferation in the ventricular
zone of mouse embryos and lead to brain microstructural
alterations and behavioral deficits (such as heightened anxiety,
impaired coordination, and short-term memory) later in life
(Coulthard et al., 2017), C5aR knockout mice exhibit increased
proliferation of NPC within the ventricular zone (Coulthard
et al., 2018a; Table 1). In addition, while in the postnatal
rat cerebellar cortex a C5aR agonist was shown to stimulate
proliferation of immature granule neurons, which suggests
a role for the C5a-C5aR axis in the cerebellar histogenesis
(Benard et al., 2008), C5a-C5aR1 signaling seems not to
be involved in NPC proliferation and differentiation in the
neurogenic niches of the adult brain (Bogestal et al., 2007;
Shinjyo et al., 2009; Table 1).

Interestingly, it has recently been shown that mouse embryos
deficient in the Serping1 gene, a known inhibitor of the classical
and lectin pathways of the complement system, display decreased
proliferation of both ventricular zone (radial) and intermediate
(basal) progenitors during development of the cortex, suggesting
that SERPING1 stimulates proliferation of NPC at early stages of
cortical development (Gorelik et al., 2017b; Table 1). However,
it is still unknown whether this function of SERPING1 is either
dependent or independent on downstream activation of the
complement system.

Together, the abovementioned studies suggest a role mostly
for the anaphylatoxins in NPC proliferation and differentiation
in the absence of other factors of the canonical pathogen-initiated
complement activation routes. Also, these studies suggest that
the spatiotemporal expression pattern of these complement
components in different subsets of NPC seems to determine their
role in progenitor neurogenesis.

Complement System in Neuronal
Migration
Neuronal migration is an essential phenomenon for proper
brain formation and establishment of neural circuit since most
neurons must move from their birth position to their final
location in the brain. During development, excitatory neurons
arising from the proliferative neuroepithelium surface (the
ventricular zone) exhibit mainly radial migration, in which early
postmitotic neurons migrate along the processes of radial glial
progenitors to their correct laminar position within the cortical
plate. Inhibitory neurons are born in the ganglionic eminences
and exhibit, initially, tangential migration, in which nascent
neurons move in trajectories that are parallel to the ventricular
surface (Marin et al., 2010). There is mounting evidence
showing that the complement system plays an important role
in the radial migration of pyramidal neurons during normal
brain development.

A recent study has uncovered a direct role for the
lectin arm of the complement system in radial neuronal
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TABLE 1 | Summary of the phenotypes observed after disturbances in the expression of individual components of the complement pathway.

Functional
alteration

Pathway Model NPC
proliferation

NPC
differentiation

Neuronal
migration

Brain wiring References

C1q knockout Cl Mouse embryo = Gorelik et al., 2017a

Postnatal mouse ↑ Comer et al., 2019,
Bialas and Stevens,
2013

C1s knockdown Cl Mouse embryo ↓ Gorelik et al., 2017a

Masp1 knockout L Mouse embryo ↓ Gorelik et al., 2017a

Masp1 knockdown L Mouse embryo = ↓ Gorelik et al., 2017a

Zebrafish embryo ↓* Rooryck et al., 2011

Masp2 knockout L Mouse embryo ↓ Gorelik et al., 2017a

Masp2 knockdown L Mouse embryo ↑ ↓ Gorelik et al., 2017a

Colec11 knockdown L Zebrafish embryo ↓* Rooryck et al., 2011

C4 knockout Cl and L Postnatal mouse ↑ Sekar et al., 2016

C4 overexpression Cl and L Postnatal mouse ↓ Perez-Alcazar et al.,
2014

C3 knockout C Mouse embryo ↑ ↓ Gorelik et al., 2017a

Postnatal mouse ↑ Schafer et al., 2012;
Bialas and Stevens,
2013

Adult mouse ↓ Rahpeymai et al., 2006

C3 knockdown C Mouse embryo ↑ ↓ Gorelik et al., 2017a

C3a antibody C Xenopus embryo ↓* Gorelik et al., 2018

Xenopus NCC in vitro ↓* Gorelik et al., 2018

C3aR knockout C Mouse embryo ↓ Shinjyo et al., 2009

Adult mouse ↓ Rahpeymai et al., 2006

C3aR knockdown C Xenopus embryo ↓* Gorelik et al., 2018

Xenopus NCC in vitro ↓* Gorelik et al., 2018

C3aR antagonist C Mouse embryo ↑ Shinjyo et al., 2009

Adult mouse ↓ Rahpeymai et al., 2006

Postnatal rat granule cell in vitro = Shinjyo et al., 2009

C3aR agonist C Mouse embryo ↓ Shinjyo et al., 2009

Mouse embryo NPC in vitro ↓ Shinjyo et al., 2009

Postnatal rat granule cell in vitro = ↑ Shinjyo et al., 2009

Adult mouse NPC in vitro ↑ = Benard et al., 2008

CR3 knockout C Postnatal mouse ↑ Schafer et al., 2012

C5aR knockout C Adult mouse = Marin et al., 2010

C5aR antagonist C Mouse embryo ↓ Coulthard et al., 2017

Postnatal rat cerebellum = Shinjyo et al., 2009

Postnatal rat granule cell in vitro = Shinjyo et al., 2009

C5aR agonist C Mouse embryo ↑ Coulthard et al., 2017

Human and mouse NPC in vitro ↑ Coulthard et al., 2017

Postnatal rat cerebellum ↑ Shinjyo et al., 2009

Postnatal rat granule cell in vitro ↑ = Shinjyo et al., 2009

Adult mouse NPC in vitro = = Benard et al., 2008

Serping1 knockout Ci Mouse embryo ↓ ↓ Gorelik et al., 2017b

Serping1 knockdown Ci Mouse embryo ↓ ↓ Gorelik et al., 2017b

Cl, Classical pathway; L, Lectin pathway; C, Common final pathway; Ci, Complement inhibitor;=, No difference; *, Neural crest cells.

migration in the developing cerebral cortex. C3-, Masp1-
or Masp2-deficient mice exhibit impairments in radial
migration resulting in improper positioning of neurons and
disorganized cortical layers (Gorelik et al., 2017a). Importantly,
the migration deficits observed in C3- or Masp2-deficient
mice were partially rescued by addition of polypeptides

that mimic C3 cleavage products, C3aR agonist or a dual
C3aR/C5aR agonist, suggesting that activation of the lectin
cascade leading to C3 cleavage, C3a and C5a generation
and activation of both C3aR and C5aR are necessary for
proper radial neuronal migration and cortical development
(Gorelik et al., 2017a; Table 1).

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 2374

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00023 February 5, 2020 Time: 12:40 # 6

Magdalon et al. Complement in Brain Development

It is also noteworthy that components of the lectin
complement pathway, including MASP1 and CL-K1 (encoded by
the Colec11 gene) proteins, as well as the C3a-C3aR axis, were
shown to behave as early guidance cues to direct the migration
of neural crest cells during embryonic vertebrate development,
since deficiency of these components in zebrafish or Xenopus
causes craniofacial abnormalities (Rooryck et al., 2011) or
disorganized collective cell migration (Carmona-Fontaine et al.,
2011; Table 1).

Abnormal radial neuronal migration was also observed in
Serping1 knockout and knockdown mice but, unexpectedly,
deficiency of SERPING1 resulted in a small but significant
decrease in C3b levels, suggesting that the complement pathways
are not being activated (Gorelik et al., 2017b). Moreover,
addition of C3 mimicry cleavage products, or addition of
a dual C3aR/C5aR agonist, but not a C3a peptide or a
specific C3aR agonist, significantly improved impaired neuronal
migration (Table 1). These findings corroborate a role for C3
cleavage and downstream complement activation at the level
of C5a in controlling normal migration of newly born neurons
to the cortical plate (Gorelik et al., 2017b). Interestingly, it
has been recently shown that C3 knockout mouse embryos
display reduced activity of the small GTPase Rac1 and
reduced phosphorylation of Cofilin, a cytoskeleton protein, in
migrating neurons entering the cortical plate. This suggests
that Rac1 may be one of the key downstream mediators of
the complement activity to control cytoskeletal remodeling
required for proper neuronal migration in the developing brain
(Gorelik et al., 2018).

In agreement with the results obtained with mouse embryos,
previous studies have shown that adult mice deficient for
C3a/C3aR signaling show impaired migration of both
neuroblasts and newly formed neurons from the brain
neurogenic niches (Rahpeymai et al., 2006), and that C3a
stimulates migration of in vitro mouse adult brain NPC in
response to low concentrations of the chemokine stromal cell-
derived factor 1 alpha (Shinjyo et al., 2009). Also, the C3a-C3aR
signaling was shown to regulate migration of immature granule
neurons in the postnatal rat cerebellar cortex, suggesting that this
signaling also plays a role in the cerebellum ontogenesis (Benard
et al., 2008; Table 1).

Taken together, the existing findings indicate that functional
activation of the lectin complement pathway and consequent
production of anaphylatoxins are important for proper
neuronal migration and correct positioning of neurons during
brain development.

Complement System in Brain Wiring
Formation of precise neural circuitry during development is
essential for proper functions of the CNS. Synaptic contacts
are generated in excess during early phases of development,
and postnatally unnecessary synapses are eliminated while
functionally important synapses are strengthened to construct
appropriate neural circuits (Rakic et al., 1986; Riccomagno and
Kolodkin, 2015). Much of the current understanding about
the mechanisms underlying synapse refinement during CNS
development has been studied using the mouse retinogeniculate

pathway. Early in development, axons from retinal ganglion
cells form transient connections with neurons of dorsal
lateral geniculate nucleolus (dLGN) of the thalamus and,
during early post-natal development, these connections are
sculpted through the pruning of redundant synapses (Hooks
and Chen, 2006). Important studies have revealed that mice
deficient for complement C1q, C3, C4 or microglia-specific
CR3 exhibit impaired elimination of retinogeniculate synapses
and defects in eye-specific segregation (Stevens et al., 2007;
Schafer et al., 2012; Sekar et al., 2016), suggesting that the
classical complement system plays a crucial role in synapse
pruning during development (Table 1). Mechanistically, it
has been proposed that transforming growth factor (TGF)-
β released by retinal astrocytes induces the expression of
C1q in retinal ganglion cells, which is transported from cell
bodies along axons to the dLGN, where it is released to bind
weak synapses (Bialas and Stevens, 2013). Similar to the
immune system, the binding of C1q and formation of C1
complex results in activation of the classical complement
pathway, cleavage of C4, formation of C3 convertase
and then production of C3a and C3b/iC3b fragments.
Activated C3 (iC3b) binds to CR3 in microglia ultimately
promoting the engulfment of overlapping and weaker synapses
(Schafer et al., 2012).

It is noteworthy that, in accordance with the abovementioned
data using the mouse retinogeniculate pathway, C1q- or C3-
deficient mice exhibit increased number of excitatory synapses
in the cortex and hippocampus, respectively (Chu et al.,
2010; Perez-Alcazar et al., 2014), epilepsy (Chu et al., 2010)
or abnormal hippocampus-dependent learning (Perez-Alcazar
et al., 2014; Table 1). Also, C3 knockdown specifically in
the prefrontal cortex lead to repetitive behavior and impaired
social interaction in mice, possibly due to reduced synaptic
pruning (Fagan et al., 2017). In addition, a study using cortical
wild type neurons co-cultured with astrocytes derived from
IkBα knockout mice, which overexpress the transcription factor
NFkB and consequently complement C3, has shown that C3
released by astrocytes acts through neuronal C3aR reducing
excitatory synaptic density and dendritic length and complexity
(Lian et al., 2015). Moreover, it was shown that overexpression
of C4 in mouse prefrontal cortex leads to dendritic spine
dysgenesis, reduced connectivity in cortical neurons, enhanced
microglia-mediated engulfment of synapses and deficits in social
interactions (Comer et al., 2019; Table 1).

Although the mechanisms that drives the opsonization of
weaker synapses are not yet fully understood, a recent study using
whole cortical tissue from newborn and adult mice has shown
that C1q is predominantly localized to the presynaptic region
of the labeled synapses, and that C1q-tagged synapses display
downregulation of proteins associated with synaptic transmission
and increased expression of apoptotic markers, suggesting
that weaker synapses induce apoptotic-like mechanisms that
attracts C1q and then triggers synaptic elimination by microglia
(Gyorffy et al., 2018).

Altogether, the findings abovementioned suggest that
microglia- and astroglia-mediated complement-dependent
synaptic refinement occurs in different regions of the developing
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CNS, and that alterations in this process affect behavior
in animal models.

Complement System in Brain Pathology
Associated With Prenatal Maternal
Immune Activation
The developing brain is particularly vulnerable to environmental
insults, such as ischemic and inflammatory insults, that can
cause injury and long-term neurodevelopmental abnormalities
manifesting as cognitive difficulties or behavioral problems
(Meyer et al., 2006; Bilbo and Schwarz, 2009). Although the
link between environmental risk factors, the immune response,
and neurological dysfunction is not completely clear at present,
accumulating evidence suggests that MIA via infection during
pregnancy alters brain development and increases the risk
for neurodevelopmental disorders in the offspring (Patterson,
2009, 2011; Malkova et al., 2012; Coiro et al., 2015). In this
regard, some studies using animal models have reported a
role for the complement system in brain abnormalities in the
offspring following MIA.

Using a mouse model of inflammation-induced preterm
birth and brain injury, a study has shown that treatment of
pregnant mice with lipopolysaccharide (LPS) induced an increase
in the levels of C5a in both the amniotic fluid and the fetal
brain, as well as cortical abnormalities in the preterm fetuses,
characterized by decreased expression of neuronal markers and
increased cell death (Pedroni et al., 2014). Interestingly, these fetal
cortical brain alterations associated with LPS-induced preterm
birth were not observed in fetuses deficient for C5aR or born
from mice treated with anti-C5 antibody (Pedroni et al., 2014).
Furthermore, the neurotoxic effect of C5a was confirmed in vitro
by treating isolated fetal cortical neurons with this anaphylatoxin,
which inhibited the growth of neurites and increased cell death,
phenotypes that were blocked by C5aR antagonist (Pedroni
et al., 2014). Similar results were observed in another study
using a mouse model of malaria in pregnancy, in which the
offspring from infected mice has shown impaired learning
and memory and depressive-like behavior compared to non-
infected controls. The neurocognitive impairments observed in
the malaria-exposed offspring were rescued by deletion of C5aR
in the fetuses or by treating infected pregnant mice with anti-
C5 antibody (McDonald et al., 2015). Together, these findings
suggest a new role for the anaphylatoxin C5a in the cortical brain
damages and behavioral disturbances observed in fetuses exposed
to prenatal inflammation.

More recent studies have shown that MIA induced by
synthetic dsRNA (polyI:C) in pregnant rodents, which acts
to initiate an inflammatory response similar to that caused
by viral infection, caused long-term increase in C1q (Han
et al., 2017) and C4 (Duchatel et al., 2018) expression in the
cortex of their offspring. The involvement of C1q and C4 in
synaptic pruning (Stevens et al., 2007; Schafer et al., 2012;
Sekar et al., 2016) suggests that these complement molecules
may be involved in MIA-associated brain abnormalities in
the offspring, but additional studies are necessary to confirm
this possibility.

COMPLEMENT SYSTEM
DYSREGULATION IN
NEURODEVELOPMENTAL DISORDERS

Complement in Schizophrenia
Schizophrenia (MIM 181500) is a chronic and disabling mental
disorder that affects about 1% of the world population (Hafner
and der Heiden, 1997; McGrath et al., 2008). The symptoms
of schizophrenia include psychosis and deficits in cognition
and social interaction, which most commonly emerge in late
adolescence or early adulthood (Howes and Murray, 2014).
Neuropathological findings in individuals with schizophrenia
include abnormal cortical organization possibly due to altered
neuronal migration (Akbarian et al., 1996; Arnold et al., 1997;
Shenton et al., 2001) and reduced cortical gray matter thickness
(Selemon and Goldman-Rakic, 1999; Cannon et al., 2002, 2015)
and diminished synaptic density possibly due to excessive
pruning of cortical synapses, thus producing hypoconnectivity
of prefrontal cortex (Glantz and Lewis, 2000; Glausier and
Lewis, 2013). Although the exact mechanisms underlying
schizophrenia are not yet fully understood, both complex
genetic and environmental risk factors have been implicated in
its pathogenesis. Importantly, accumulating evidence suggests
that complement dysregulation is among the risk factors
for the disorder.

The earliest studies of the complement system in
schizophrenia have focused on the complement hemolytic
activity to measure both the overall function of the classical
pathway and the function of its specific components in blood.
Although the results from the different studies were diverse with
some studies reporting either a decrease (Spivak et al., 1989,
1993) or no difference (Sasaki et al., 1994) in complement total
hemolytic activity in patients compared to control individuals,
the majority of data, mainly concerning individual complement
components (such as C1, C2, C3, and C4), points toward higher
activity of the classical pathway in patients (Maes et al., 1997;
Shcherbakova et al., 1999; Hakobyan et al., 2005; Mayilyan
et al., 2006; Figure 1). Accordingly, increased levels of C1q
attached to circulating immune complexes (C1q-CIC) and
increased expression of CR1 on blood cells, which can bind to
C1q-CIC and mediate clearance of immune-complexes, were
found in patients with schizophrenia (Arakelyan et al., 2011;
Figure 1). Also, increased circulating C1q levels were observed
in mothers of infants who later developed schizophrenia, which
suggest that exposure of the fetal brain to maternally derived
C1q might be a contributory factor for the disease (Severance
et al., 2014), as suggested by rodent models of MIA. In addition,
it is noteworthy that decreased expression of CSMD1, which
codes for an inhibitor of the classical complement pathway,
was observed in serum from patients with schizophrenia
(Liu et al., 2019).

Curiously, a negative correlation was recently found between
superior frontal cortical thickness and the expression levels of
C5 and SERPING1 genes in peripheral blood mononuclear cells
from a sample of adult Swedish twins enriched for schizophrenia
patients, who are known to show reduced cortical gray matter
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thickness (Allswede et al., 2018). Whereas C5 is an activator of
the complement system, SERPING1 codes for a protease involved
in the inhibition of the classical and lectin complement cascades,
and its increased expression could reflect a compensatory
mechanism for higher complement activity. Although this
finding cannot establish causality and further studies are clearly
needed, it is tempting to speculate that the relationship between
enhanced expression of these specific complement components
in the blood and cortical thickness may represent a trace of earlier
immune dysregulation during development.

While several lines of evidence support the involvement of
the classical complement pathway in schizophrenia susceptibility,
only a few studies have addressed specifically the role of the lectin
and alternative pathways in the disease. Data on the involvement
of the lectin cascade show higher MBL-bound MASP2 activity in
serum from individuals with schizophrenia, suggesting increased
activity of this pathway in the disorder (Mayilyan et al., 2006;
Figure 1). On the other hand, conflicting results exist regarding
the involvement of the alternative cascade, because a hemolysis-
based assay indicated an upregulation of the alternative pathway
(Boyajyan et al., 2010), while an ELISA-based assay identified
suppression of the same cascade in the peripheral blood
from patients with schizophrenia (Li et al., 2012). Therefore,
further studies are required to confirm whether dysfunction of
lectin and alternative complement cascades contribute somehow
to schizophrenia.

As mentioned above, all of the complement pathways
converge at the point of C3 and data related to C3 levels in
blood from schizophrenia patients are also controversial. Some
studies found no alteration (Spivak et al., 1993) or increased
levels of C3 in patients compared to controls (Maes et al., 1997;
Shcherbakova et al., 1999; Hakobyan et al., 2005; Boyajyan et al.,
2010), while others found a decrease and suggest a negative
correlation between the serum levels of C3 and the severity of
the symptoms (Wong et al., 1996; Li et al., 2016; Figure 1). The
reasons for these differences are unknown, but may include either
population-specific genetics and environmental risk factors or the
stage of illness (acute vs. chronic). Thus, additional studies using
larger groups are needed to elucidate the precise nature of the
relationship between C3 levels and schizophrenia susceptibility.

Genetic studies evaluating the association between
complement gene polymorphisms and schizophrenia have
also been conducted. Initial studies have yielded unreliable or
conflicting results due to lack of replication or small sample
sizes (Rudduck et al., 1985; Fananas et al., 1992; Wang et al.,
1992; Schroers et al., 1997; Mayilyan et al., 2008; Zakharyan
et al., 2011). However, more recent large-scale genome-wide
association studies evaluating very large sample collections for
hundreds of thousands of single-nucleotide polymorphisms
(SNPs) have shown variants significantly associated with higher
risk of schizophrenia at CSMD1 (Schizophrenia Psychiatric
Genome-Wide Association Study (GWAS) Consortium, 2011)
and C4 genes (Sekar et al., 2016). CSMD1 is highly expressed
in the CNS (Kraus et al., 2006) and its schizophrenia risk allele
was associated with poor performance on neuropsychological
measures of general cognitive ability and memory function
(Donohoe et al., 2013; Koiliari et al., 2014). C4 is encoded by

two different genes, C4A and C4B, which vary in structure
and copy number leading to a wide range of expression levels
of each isotype. Interestingly, the strongest association with
schizophrenia was found with alleles that increase expression
of C4A (Sekar et al., 2016). Accordingly, higher C4A expression
was observed in brain samples from patients with schizophrenia
compared to controls (Sekar et al., 2016) and a positive
correlation was found between the copy numbers of C4 and
neuropil contraction in different brain regions in patients (Prasad
et al., 2018; Figure 1), which strongly suggest that increased C4
levels constitute a risk factor for schizophrenia.

Whereas the abnormal complement expression in the
peripheral blood of both patients with schizophrenia and their
mothers suggests that complement dysfunction as part of
standard immune pathways may contribute to schizophrenia in
a subset of patients, findings from several of the abovementioned
studies also suggest that the clinical and neuropathological
phenotypes of schizophrenia may also be, at least in part,
due to dysfunction of locally synthesized complement in the
brain during specific periods of neural development. The
strong association between increased C4A expression with
schizophrenia (Sekar et al., 2016), the involvement of classical
complement cascade in synapse elimination (Stevens et al., 2007;
Schafer et al., 2012; Bialas and Stevens, 2013; Sekar et al., 2016;
Comer et al., 2019), and the decreased brain connectivity and
sociability in mice overexpressing C4 in the prefrontal cortex
(Comer et al., 2019) strongly suggest that enhanced complement-
mediated synaptic pruning contributes directly to reduction in
cortical gray matter thickness and to schizophrenia pathogenesis.
On the other hand, while it is highly attractive to speculate that
complement-mediated dysregulation in neuronal migration may
contribute to the pathogenesis of schizophrenia, further detailed
studies are still required to directly establish a causal link.

Complement in Autism Spectrum
Disorder and in Rett Syndrome
Autism spectrum disorder (MIM 209850) comprises a
heterogeneous group of early onset neurodevelopmental
diseases characterized by impairments in social-communicative
skills and repetitive behaviors (APA, 2013) that affects at least
1.5% of the population worldwide (Christensen et al., 2016).
The most consistent neuropathological findings in patients
with ASD include increased cortical surface area during early
childhood (Miles et al., 2000; Hazlett et al., 2011) and reduced
number of Purkinje cells in the cerebellum (Allen, 2005) possibly
due to abnormal progenitor cell neurogenesis, altered cortical
organization (presence of heterotopias and more frequent
and narrower minicolumns) suggestive of abnormal neuronal
migration (Casanova et al., 2002; Whitney et al., 2008; Stoner
et al., 2014), and increased cortical dendritic spine densities
possibly due to defective synapse elimination during brain
development (Hutsler and Zhang, 2010; Tang et al., 2014).
Recent molecular genetic studies have identified a specific cause
for ASD in almost 30% of the cases, while in the remaining cases
the underlying pathogenic mechanisms may involve complex
genetic and environmental risk factors (Bourgeron, 2015).
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Preliminary evidence suggests a possible role for the complement
system in the pathogenesis of ASD.

Genetic association studies have reported that the complement
C4B gene null allele has increased frequency in patients with
ASD compared to control individuals (Warren et al., 1991; Odell
et al., 2005; Mostafa and Shehab, 2010) and, accordingly, a
significant decrease in the plasma levels of C4B protein was
observed in ASD patients (Warren et al., 1994; Figure 1). On
the other hand, proteomic analyses have suggested that the levels
of other complement system proteins, such as C1q, C3, and C5,
are elevated in plasma from patients with ASD (Corbett et al.,
2007; Shen et al., 2018; Figure 1). In addition, a significantly
increased activity of CFI, a negative regulatory component of the
alternative pathway responsible for cleavage and inactivation of
C3b and C4b, has been observed in plasma from ASD patients
(Momeni et al., 2012).

The expression of complement system components in brain
tissues from patients with ASD was also investigated and some
conflicting results were obtained. While a genome-wide DNA
methylation profiling of prefrontal cortex (Brodmann areas
BA10 and BA24) has shown hypomethylation and, consequently,
overexpression of C1q, C3, and CR3 genes in the ASD brains
(Nardone et al., 2014), a more recent study found decreased
mRNA levels of C1q, C3, and C4, and increased mRNA levels
of C2, C5, and MASP1 in the middle frontal gyrus from
patients compared to controls (Fagan et al., 2017; Figure 1). The
discrepancies obtained in the expression of C1q and C3 genes in
brain tissues from patients with ASD could be due to the analysis
of different brain regions and/or analysis of different subgroups
of patients combined with small sample sizes and need to be
clarified in further studies.

Collectively, the evidence regarding association between
complement dysfunction and ASD is far weaker than the
evidence of complement dysregulation in schizophrenia
susceptibility, and a recent large-scale genome-wide association
study did not report common variants in complement genes
significantly associated with ASD (Grove et al., 2019). However,
the altered complement system expression in peripheral blood
and in brain from patients with ASD might suggest that an
aberrant activity of this system may somehow contribute to ASD.
Based on decreased expression of some complement components
in post-mortem brain of ASD patients (Fagan et al., 2017), the
increased number of dendritic spines and glutamate synapses
in ASD brains (Hutsler and Zhang, 2010; Tang et al., 2014)
as well as in C1q- and C3-deficient mouse brains (Chu et al.,
2010; Perez-Alcazar et al., 2014), the reduced elimination of
retinogeniculate synapses in mice lacking C4 (Sekar et al., 2016)
and the ASD-like phenotypes observed in C3-deficient mice
(Perez-Alcazar et al., 2014; Fagan et al., 2017), it is tempting
to speculate that diminished complement-mediated synaptic
pruning, among other known mechanisms (Tang et al., 2014),
may contribute to the cortical hyperconnectivity and behavioral
phenotypes in ASD. Nevertheless, additional studies are clearly
necessary to further explore the possible role of complement
dysregulation in key aspects of ASD neuropathology.

Finally, it is noteworthy that, as occurs with schizophrenia
and ASD, immune dysregulation may also contribute to some

of the neuropathological features of Rett syndrome (RTT; MIM
312750) (Cortelazzo et al., 2014; De Felice et al., 2014; O’Driscoll
et al., 2015), an X-linked progressive neurodevelopmental
disorder primarily affecting girls at a frequency of 1:10,000
live female births. Although RTT is not classified as an ASD
and is recognized as a distinct pathological entity (APA, 2013)
(DSM-5), RTT may show overlapping symptoms with ASD,
and is characterized by typical early development until age
6–18 months followed by a rapid deceleration in growth
associated with progressive loss of acquired motor and language
skills, severe cognitive impairment, intractable seizures, spasticity
and stereotypic hand movements (Chahrour and Zoghbi, 2007).
More than 95% of classic RTT cases are caused by sporadic
loss-of-function mutations in the gene encoding MECP2 (Amir
et al., 1999), a transcriptional regulator of gene expression that
acts through epigenetic mechanisms on chromatin structure
(Nan et al., 1998; Bienvenu and Chelly, 2006). Interestingly, a
proteomic study has shown that the levels of several proteins
involved in the immune system are altered in plasma from
patients with RTT, including overexpression of complement
factor B of the alternative complement pathway (Cortelazzo
et al., 2014). Also, a recent genome-wide transcriptome (RNA-
seq) analysis of post-mortem brain samples (from both frontal
and temporal cortex) from young RTT patients showed that all
three genes encoding complement C1q complex (C1QA, C1QB,
C1QC) were downregulated in RTT human brains as they are
in Mecp2 knockout mice (Lin et al., 2016), which suggest that
the expression of these genes is regulated by MECP2. Although
the involvement of C1q in RTT pathogenesis has not yet been
clarified and additional studies are required, the role of C1q in
regulating dendritic spine density (Chu et al., 2010; Perez-Alcazar
et al., 2014) may contribute somehow to RTT.

Complement in 3MC Syndrome
3MC syndrome (MIM 257920; 265050; 248340) comprises
a rare developmental disorder that unifies four autosomal
recessive diseases with overlapping features previously known
as Mingarelli, Malpeuch, Michels, and Carnevale syndromes
(Titomanlio et al., 2005). This syndrome is characterized
by a spectrum of developmental anomalies that include
facial dysmorphism, cleft lip and/or palate, postnatal growth
deficiency, learning disability and hearing impairment. Less
often, individuals with 3MC syndrome may also show
craniosynostosis, genital, limb, and vesicorenal anomalies
(Titomanlio et al., 2005; Leal et al., 2008).

Several different potentially deleterious mutations in genes
of the lectin arm of the complement system - such as MASP1,
COLEC10, and COLEC11 genes – have been described in
patients with 3MC syndrome (Sirmaci et al., 2010; Rooryck
et al., 2011; Atik et al., 2015; Urquhart et al., 2016; Gardner
et al., 2017; Munye et al., 2017; Graul-Neumann et al.,
2018; Basdemirci et al., 2019). It has recently been shown
that disease-associated mutations in COLEC10 and COLEC11
inhibit either production or secretion of encoded proteins in
mammalian cells (Rooryck et al., 2011; Venkatraman Girija
et al., 2015), which may explain the undetectable levels of CL-
K1 in the serum of affected individuals (Rooryck et al., 2011).
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However, it is noteworthy that although at least some of these
mutations impair the normal function of the encoded proteins,
normal levels of downstream reaction cascade components (C2,
C3, and C4) were found in serum from patients, suggesting
a possible direct role of these lectin cascade proteins in
3MC syndrome pathogenesis independently of standard lectin
pathway activation (Rooryck et al., 2011).

Studies using zebrafish (Rooryck et al., 2011) and an
in vitro cell model (Munye et al., 2017) have shown that
these components of the lectin pathway act as chemoattractants
to guide cell migration and suggest that the craniofacial
abnormalities in 3MC syndrome are the result of deficient
migration of neural crest cells during development (Rooryck
et al., 2011). Also, the involvement of components of the lectin
pathway in regulating neuronal migration in the developing
cerebral cortex (Gorelik et al., 2017a) also suggests that
the cognitive impairment observed in 3MC patients may be
explained in part by deficits in neuronal migration. Further
studies, however, are necessary to further understand the
mechanisms by which dysfunctional MASP1, COLEC10, and
COLEC11 genes may lead to 3MC syndrome.

CONCLUDING REMARKS

Here, we have highlighted the emerging functions of the
complement system as a key regulator of normal CNS
development. Components of lectin and terminal complement
pathways, mainly the C3a and C5a anaphylatoxins, have
been shown to regulate neural progenitor cell proliferation,
neurogenesis and neuronal migration. Components of classical
and terminal complement pathways, such as C1q, C3, and C4,
have been shown to tag weaker synapses for removal by microglia,
which sculpts brain connectivity. Consequently, alterations in
the expression of complement components in the brain may
lead to long-lasting changes in brain development and function.
The severe autosomal recessive 3MC syndrome originates from
rare pathogenic mutations in genes of the lectin pathway that

regulate cell migration during embryonic development. In both
schizophrenia and ASD, evidence is growing that abnormal
complement signaling owing to genetic mutations or as a
result of inflammatory insults during prenatal or early postnatal
development may lead to changes in brain connectivity and
may contribute to disease pathophysiology. Although research
into the molecular mechanisms downstream from complement
components has just begun to be explored, the progress in this
field holds tremendous promise not only for increasing our
understanding of neurodevelopment, but also for elucidating and
potentially even treating neurodevelopmental disorders.
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The developing nervous system is a complex yet organized system of neurons, glial
support cells, and extracellular matrix that arranges into an elegant, highly structured
network. The extracellular and intracellular events that guide axons to their target
locations have been well characterized in many regions of the developing nervous
system. However, despite extensive work, we have a poor understanding of how axonal
growth cones interact with surrounding glial cells to regulate network assembly. Glia-
to-growth cone communication is either direct through cellular contacts or indirect
through modulation of the local microenvironment via the secretion of factors or signaling
molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor
cells, and olfactory ensheathing cells have all been demonstrated to directly impact
axon growth and guidance. Expanding our understanding of how different glial cell types
directly interact with growing axons throughout neurodevelopment will inform basic
and clinical neuroscientists. For example, identifying the key cellular players beyond
the axonal growth cone itself may provide translational clues to develop therapeutic
interventions to modulate neuron growth during development or regeneration following
injury. This review will provide an overview of the current knowledge about glial
involvement in development of the nervous system, specifically focusing on how glia
directly interact with growing and maturing axons to influence neuronal connectivity. This
focus will be applied to the clinically-relevant field of regeneration following spinal cord
injury, highlighting how a better understanding of the roles of glia in neurodevelopment
can inform strategies to improve axon regeneration after injury.

Keywords: glia, growth cone, axon, neurodevelopment, cell-cell interaction, spinal cord injury

INTRODUCTION

The developing nervous system is a complex milieu of neurons, glial support cells, extracellular
matrix, and budding vasculature that elegantly organizes into a highly stereotyped structure.
Combinatorial actions of many well-characterized extracellular and intracellular events guide axons
to their target locations, which is heavily influenced by tissue mechanics, bound and soluble
secreted chemical factors, and cell-cell interactions. The interactions between axonal growth cones
and surrounding cells within the developing nervous system is an important component of
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neurodevelopmental biology but is often not well characterized
due to the challenges with observing these transient cellular
interactions in vivo.

Glial cells in the developing nervous system have many
supportive physiological functions, like maintaining solute
and nutrient homeostasis, as well as migratory and synaptic
development and maintenance roles, such as assisting neurons
in reaching their target locations (Chotard and Salecker, 2004;
Chao et al., 2009). Glial cells regulate axon growth cone
pathfinding, such as acting as guidepost cells along migratory
routes creating cellular boundaries as “no-go” zones; they can
also assist in proper targeting of axon terminals by serving as
transient synaptic partners. Glia have the ability to either directly
interact with growing axons through cell adhesion or indirectly
by secreting factors that modulate the local microenvironment
to promote or inhibit axon growth. Many glial subtypes have
been demonstrated to directly impact axon growth and guidance
including microglia (Reemst et al., 2016), oligodendrocytes (Chen
et al., 2002a; Gang et al., 2015), astrocytes (Cavalcante et al.,
2002; Liu R. et al., 2015), Schwann cells (Thompson and
Buettner, 2006; De Luca et al., 2015), neural progenitor cells
(Merianda et al., 2017), and olfactory ensheathing cells (Windus
et al., 2010), and they can either promote or inhibit growth
depending on the circumstance. Expanding the knowledge of
how different supporting cell types may directly or indirectly
interact with growing axons will offer a deeper understanding
of the intercellular crosstalk occurring in neurodevelopment, as
well as provide clinically useful information, such as identifying
potential drugs to modulate neuron regeneration (De Luca et al.,
2015; Gang et al., 2015).

This review will provide a brief overview of the current
knowledge about glial cell contributions to axon growth and
guidance, specifically focusing on how glial cells directly interact
with growing axons to influence neuronal connectivity.
A selection of examples where glial cell-axonal growth
cone interactions are shown to play a crucial role during
neurodevelopment will be critically discussed. This basic science
background is then linked with translational work targeting
glia to promote regeneration following spinal cord injury,
highlighting how a better understanding of the role of glia
in neurodevelopment can inform strategies to improve axon
regeneration after injury.

NEURON AND GLIA DEVELOPMENT:
RIGHT PLACE AT THE RIGHT TIME

Glial cell development in the central nervous system (CNS) and
peripheral nervous system (PNS) often occurs alongside neuron
development and maturation as many glial subtypes originate
from a common precursor stem cell (Cameron and Rakic, 1991;
Lee et al., 2000; Pinto and Gotz, 2007; Grabel, 2012). Therefore,
many glial cell subtypes are present at the right time and place to
directly impact axon growth and guidance.

Microglia are the only glial cell to enter the CNS from the
periphery, doing so well before CNS-resident glia differentiate
(Reemst et al., 2016). Unlike other glial cell types, microglia

possess a unique origin, the yolk sac (Samokhvalov et al., 2007;
Prinz and Priller, 2014), which in mice can be detected as
early as embryonic day 7.5 (E7.5) (Kierdorf et al., 2013) and
invade the CNS beginning around E8-9 using specific matrix
metalloproteinases (Alliot et al., 1999; Kierdorf et al., 2013).
Colonization of the brain has been observed to occur in two
waves with the first being at E8-9 and second at E14-16; both
of these events are independent of the vascular system as the
cells enter via the meninges or from the ventricles, thus invading
the brain parenchyma from both superficial and deep layers
(Reemst et al., 2016). In contrast to the adult brain, microglia
in the embryonic brain tend to cluster near developing axons
(Reemst et al., 2016), such as around the axonal tracts of
the subpallium at E14.5 (Squarzoni et al., 2014) and corpus
callosum at E15.5-17.5 (Pont-Lezica et al., 2014). This pattern
continues in postnatal development with microglia associating
with subcerebral, callosal, and hippocampal perforant path-
projecting axons (Dalmau et al., 1998; Rochefort et al., 2002;
Ishii et al., 2013). The close association between microglia and
developing white matter tracts suggests a role in axon growth,
guidance, and/or survival during CNS development, which is
further strengthened by the accumulating data from studying
CNS injury and regeneration.

Astrocytes and oligodendrocytes, the macroglia in the CNS,
originate from a common precursor, the radial glial (RG)
cell (Cameron and Rakic, 1991; Lee et al., 2000; Grabel,
2012). RG cells appear around E9-10 in mice marking the
beginning of neurogenesis, followed by gliogenesis. Derived
from neuroepithelial cells, RG cells span the neural tube in
the brain and spinal cord with their apical endfeet on the
ventricular surface and a single radial process that contacts
the basal pial surface. This dynamic cell type undergoes a
series of symmetric or asymmetric divisions that either self-
renew or begin producing committed postmitotic neurons or
glial daughter cells (Huttner and Kosodo, 2005). In the cortex,
postmitotic cells migrate toward the pial surface along the
radial process to complete differentiation at the appropriate
layer (Grabel, 2012), and this glial-guided neural migration
is dependent on gap junction adhesions (Elias et al., 2007).
Oligodendrocyte precursor cells (OPCs) develop primarily in
the ventral neural tube, migrate laterally and dorsally to their
proper locations, and continue to differentiate and change
morphologically to begin the myelination process (Lee et al.,
2000). In the adult brain, oligodendrocytes can also be derived
from parenchymal oligodendrocyte progenitor cells as well
as adult neural precursor cells from the subventricular zone
following a demyelinating disease (Xing et al., 2014). Astrocytes
develop later than oligodendrocytes and are primarily born in
the dorsal neural tube; they populate developing white and gray
matter and serve a myriad of functions including maintenance
of solute homeostasis, axon guidance, and synaptic formation
(Mason et al., 1988; Giaume and Venance, 1998; Bacci et al.,
1999; Cavalcante et al., 2002; Liu R. et al., 2015). Additionally,
astrocytes are classified into two subtypes: (1) fibrous astrocytes
within white matter and (2) protoplasmic astrocytes within gray
matter (Kimelberg, 2010); recent studies have demonstrated
differences in their propensity to promote neurite growth (Liu
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R. et al., 2015), which is discussed in greater detail below. It is
important to note that there are well-documented differences in
radial glial development in the cortex versus spinal cord. For
example, radial glia are vital in regulating vascular patterning
within the spinal cord (Matsuoka et al., 2016), and astrocytes
derived from regionally-distinct sites exhibit unique molecular
signatures (Bachoo et al., 2004; Yoon et al., 2017; Bradley et al.,
2019). What remains to be fully elucidated is how knowledge of
these differences can be utilized for region-specific intervention,
such as aiding in regeneration in the cortex versus spinal cord.

In the PNS, glial cells are derived from neural crest cells that
differentiate while migrating to their final destination (Jessen
and Mirsky, 2005). These migrating neural crest cells form
Schwann cell precursors (SCPs) and then immature Schwann
cells that begin to associate with axons; an additional branching
lineage includes the formation of satellite cells that eventually
associate with peripheral ganglia (Le Douarin and Ziller, 1993).
The eventual fate of immature Schwann cells is determined by
the type of axons they associate with, directing them to become
non-myelinating or myelinating Schwann cells. Interestingly,
even though SCPs are present during times of perfuse axon
extension and development, they are not required for the axons
to reach their target location (Grim et al., 1992; Sepp et al.,
2001). Nonetheless, several studies have shown Schwann cells
can impact axon outgrowth and guidance, which is especially
relevant in PNS injury and repair (Thompson and Buettner, 2006;
De Luca et al., 2015).

Finally, olfactory ensheathing cells (OECs) are a unique
population of Schwann cells that facilitate the replenishment
of olfactory neurons (Farbman and Squinto, 1985; Chuah and
Au, 1991; Barnett and Riddell, 2004; Windus et al., 2010).
This unusual PNS-CNS connection involves the invasion of
peripheral olfactory receptor neurons, which originate from
the basal stem cells of the olfactory epithelium, into the
cribriform plate and olfactory bulb to form synapses with
second-order neurons in the glomerular layer (Barnett and
Riddell, 2004). OECs are derived from precursor cells within
the olfactory epithelium and closely associate with growing
axons (Chuah and Au, 1991). Interestingly, the olfactory
receptor neurons are continually turning over so new olfactory
receptor neurons must be replenished throughout life. The
OEC Schwann cells provide permissive substrata for the
migration of new olfactory receptor neurons into the olfactory
epithelium where new synapses form throughout life (discussed
further below).

GLIAL CELL-AXONAL GROWTH CONE
INTERACTIONS: A SELECTION OF
EXAMPLES

Some of the earliest work studying the cellular events that
underlie neurodevelopment established the importance of glia
in the growth and guidance of migrating neurons and axons.
For example, the first axons to cross the corpus callosum
in the developing mouse brain cross a cellular “sling” made
up of primitive glial cells suspended below the longitudinal

cerebral fissure, which disappears after birth (Silver et al., 1982).
These commissural axons also avoid regions containing glial
cells, such as the “glial wedge” that express inhibitory axon
guidance cues (Shu and Richards, 2001). On the other hand,
migrating granule cells in the developing mouse cerebellum
follow along vertically oriented Bergmann fibers arising from
Golgi epithelial cells, a protoplasmic astrocyte (Rakic, 1971).
During Drosophila early embryogenesis, three classes of glial
cells form an organized pattern at each body segment before
axon outgrowth occurs, and these cells enwrap the axon tracts
as they migrate (Jacobs and Goodman, 1989). Importantly,
loss of peripheral glia in Drosophila results in sensory axon
stalling and pathfinding defects as they migrate toward the
CNS, as well as early migration defects in pioneer motor
axons as they cross the CNS/PNS transition zone (Sepp et al.,
2001). Although these initial studies relied heavily on fixed
sample imaging that provided authors only a static view of
specific time points, they provided much of the foundational
observations to influence future studies examining the dynamic
interface between glia and growing axons. A focused view on
specific glial subtypes will be discussed citing important events
in specific regions of the CNS and PNS during development
(see Figure 1 for a summary).

Astrocyte-Axonal Growth Cone
Interactions
Astrocytes can form a variety of cellular processes that directly
interact with growing axons. In vitro, both astrocytes and granule
neurons form plasma membrane “microspikes” that continually
protrude and retract; it is only after contact is made between
the astrocyte and granule neuron that the granule neuron
microspikes are stabilized, promoting the formation of a neurite
that grows over the cell body of the astrocyte (Mason et al., 1988).
Using electron microscopy (EM), small, adherent junctions were
observed at contact points between the astrocytes and granule
neurons. Functional studies demonstrated that these interactions
depend on neural cell adhesion molecule (NCAM), N-cadherin,
and integrin β1, as blocking the astrocyte-neuron interactions
via antisera against these proteins resulted in reduction or
elimination of neurite outgrowth onto cultured astrocytes
(Keilhauer et al., 1985; Neugebauer et al., 1988; Tomaselli et al.,
1988). Interestingly, integrin β1 antisera only blocked E8 but
not E14 chick ciliary ganglion neuron outgrowth on rat cortical
astrocytes (Tomaselli et al., 1988), unlike chick retinal neurons,
which were not affected by age (Neugebauer et al., 1988).
Additionally, blocking NCAM also had neuron-type dependent
effects: NCAM antisera impacted cerebellar neuron-astrocyte
interactions (Keilhauer et al., 1985) and E11 chick retinal
neurons interactions with rat cortical astrocytes (Neugebauer
et al., 1988), but not chick ciliary ganglion neuron interactions
with rat cortical astrocytes (Tomaselli et al., 1988) nor E8
chick retinal neuron interactions with rat cortical astrocytes
(Neugebauer et al., 1988). Finally, inhibition of N-cadherin
consistently blocked astrocyte-neuron interactions regardless of
neuronal type and developmental time point (Keilhauer et al.,
1985; Neugebauer et al., 1988; Tomaselli et al., 1988). Together
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FIGURE 1 | Summary of glial cell-axonal growth cone interactions during neurodevelopment and regeneration. Green arrows represent attractive guidance cues
while red represent repellent. See text for description. OPC, oligodendrocyte precursor cell; OEC, olfactory ensheathing cell.

these results suggest a heterogeneity in the molecules used for
neuron-glia interactions, with either a neuron type-specific or
time-dependent switch over critical time periods.

While heterogeneity in neuronal populations is expected,
distinct astrocyte populations also appear to have differential
effects on axon development. Liu R. et al. (2015) characterized the
development of two astrocyte subpopulations termed “typical”
and “atypical” that spontaneously develop when rat primary
cortical glial cells were grown in vitro. The typical astrocytes
were the majority (∼70%) of the astrocytes in the culture, which
exhibited a variety of shapes and arrangements, and often co-
localized with oligodendrocytes. The atypical astrocytes exhibited
a spindle shape with a high cell density arranged in a polarized
fashion and covered by fewer oligodendrocytes. When dorsal root
ganglia (DRG) neurons were plated on top of this heterogeneous

astrocyte population, the typical astrocytes promoted neuron
adhesions and neurite growth consistent with prior studies
(Keilhauer et al., 1985; Mason et al., 1988; Tomaselli et al., 1988).
In contrast, the atypical astrocytes inhibited neuron adhesion
and neurite outgrowth without impacting neuron survival. It
is plausible that these two astrocyte phenotypes represent the
natural heterogeneity of these glial cells in the CNS rather than
an artifact of the in vitro methods. The atypical astrocytes may
form inhibitor barriers in the developing CNS (e.g., glial wedge)
and may be related to damaged or reactive astrocytes that have
a well-characterized inhibitory effect on neurite growth both
in vitro and in vivo (McKeon et al., 1991, 1999; Wanner et al.,
2008). Liu et al. attempted to connect these in vitro results to an
in vivo model by transplanting DRG neurons into either cortical
gray matter or corpus callosum white matter (Liu R. et al., 2015).
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They observed little neurite growth in the cortical gray matter
location but robust neurite growth in the corpus callosum.
They drew the conclusion that the fibrous astrocytes, which are
found within the white matter, are supportive of neurite growth
while protoplasmic astrocytes, the subtype found within gray
matter, are not. However, since this in vivo experimental system
does not exclude the influence of all the other differences that
exist between the gray and white matter microenvironments,
the effects observed on the neurite growth may be completely
independent of the astrocytes within the tissue. Furthermore,
the results of enhanced neurite growth in the corpus callosum
are counterintuitive considering that white matter can have a
high content of myelin, which is known to be repulsive to
axon growth (discussed below). Clearly an important control
experiment is to determine if these findings are reproducible in
a rodent model with selective astrocyte ablation, which has been
generated in other laboratories (Delaney et al., 1996; Sofroniew
et al., 1999; Cui et al., 2001). Nonetheless, follow-up studies to
examine the differences between typical and atypical astrocytes
in vitro are warranted and should be more robustly compared to
the fibrous and protoplasmic astrocytes observed in vivo using
modern molecular techniques, such as single cell expression
analysis. These data may provide candidate targets to reprogram
inhibitory astrocytes to promote axon growth, which is a highly
desired outcome after injury.

Astrocytes also play an active role in assembling connections
of GABAergic stellate interneurons within the developing
cerebellum (Ango et al., 2008; Chao et al., 2009). Bergmann
glia (BG) cells, which are highly polarized astrocytes within
the cerebellum, form an elaborate arborization of apical fibers
that extend into the cerebellar cortex early in the postnatal
brain. The stellate interneurons that reside within the upper
half of the cerebellar molecular layer innervate the dendritic
shafts of the Purkinje cells that reside below, and they do so
by following the BG radial projections. Ango et al. observed
strong expression of Close Homolog of L1 (CHL1), a member
of the L1 immunoglobulin cell adhesion molecule (L1CAM)
family of proteins, within both the BG apical fibers and stellate
interneurons during postnatal development. Furthermore, global
or BG-specific CHL1 knockout resulted in aberrant growth of
stellate interneuron axons with reduced synapse formation on
target Purkinje cells. The authors proposed that the disruption
in stellate interneuron synapse formation on Purkinje cells
may explain the poor motor performance of Chl1−/− mice
in the Rotarod test (Pratte et al., 2003). Further probing
into the electrophysiologic circuitry aberrations and functional
motor differences in Chl1−/− mice would be an interesting
follow-up study to solidify the impact of disrupting BG-
mediated stellate interneuron axon migration in the cerebellum.
However, another research group did not detect changes in
the stellate interneuron population within the cerebellum in
Chl1−/− mice, rather they observed a decrease in Purkinje
cell number, complicating the story (Jakovcevski et al., 2009).
Despite loss of Purkinje neurons, Jakovcevski et al., as well as
other groups, did not detect motor deficits in Chl1−/− mice
(Montag-Sallaz et al., 2002; Jakovcevski et al., 2007; Morellini
et al., 2007), reaching the conclusion that cerebellar function

is grossly preserved in these mice. These studies suggest that
more refined electrophysiological measurements, as well as fine
motor tasks and non-motor assessments, should be performed
on Chl1−/− mice. While the necessity of stellate interneuron
axon guidance on specific adhesion molecules is unclear at
this point, it is clear that interactions between astroglia and
axon growth cones are important for proper synapse formation
within the cerebellum.

Oligodendrocyte-Axonal Growth Cone
Interactions
Oligodendrocytes and oligodendrocyte precursor cells (OPCs)
are notorious for their inhibitory effect on axon growth and
guidance (Caroni and Schwab, 1988; Fawcett et al., 1989;
Bandtlow et al., 1990; McKerracher et al., 1994; GrandPre
et al., 2000; Chen et al., 2002a,b; Kottis et al., 2002; Wang
et al., 2002; Moreau-Fauvarque et al., 2003; Vourc’h et al.,
2003; Goldberg et al., 2004; Pasterkamp and Verhaagen,
2006; Shim et al., 2012; Gang et al., 2015). Early studies
examining DRG axon growth in an oligodendrocyte co-
culture system revealed that axons avoided growing upon
oligodendrocytes unlike other glial cells such as astrocytes.
Furthermore, live imaging revealed axonal growth cone stalling
and collapse upon membrane contacts with oligodendrocytes
(Fawcett et al., 1989; Bandtlow et al., 1990). A number of
secreted and membrane proteins produced by oligodendrocytes
that are in part responsible for this inhibition include
Nogo (GrandPre et al., 2000), myelin-associated glycoprotein
(MAG) (McKerracher et al., 1994), oligodendrocyte-myelin
glycoprotein (OMgp) (Kottis et al., 2002; Wang et al., 2002),
and the semaphorins Sema4D (Moreau-Fauvarque et al.,
2003), Sema5A (Goldberg et al., 2004), and Sema6A (Shim
et al., 2012). Nogo, MAG, and OMgp comprise the Nogo
receptor (NgR) ligand family, which are also referred to as
myelin-associated inhibitors (MAIs) that stabilize neuronal
structure (Vourc’h and Andres, 2004; Schmandke et al.,
2007). Interestingly, expression of many of these inhibitory
molecules increases after injury, suggesting that blocking these
key targets would improve axon regeneration (Pasterkamp
and Verhaagen, 2006). MAIs serve seemingly redundant
inhibitory activities toward axon extension, but also exhibit
some key differences in function that may be important in
neurodevelopment. For example, MAG does not always act
as an inhibitor of axon growth as the case when applied
to newborn DRG neurons (Mukhopadhyay et al., 1994).
Furthermore, myelin preparations from MAG knockout mice
do not inhibit neurite elongation or cause growth cone
collapse compared to myelin preparations from wild type mice
(Bartsch et al., 1995). Additionally, myelin preparations from
adult rats actually stimulated axon growth of rodent neural
progenitor cells and human induced pluripotent stem cell-
derived neural stem cells, which was dependent on interactions
with neuronal growth regulator 1 (Negr1) (Poplawski et al.,
2018). Therefore, highlighting these differences in MAIs
and downstream mediators are important when designing
translational neural regeneration applications.
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While it is clear that oligodendrocytes function within the
adult and injured CNS, there is limited evidence for roles of
oligodendrocyte-expressed inhibitors during neurodevelopment
while nascent axonal growth cones are searching for their
targets. In vitro studies on Nogo ligands suggest these inhibitory
molecules expressed on oligodendrocytes and myelin may serve
to prevent axon sprouting in the adult CNS (Vourc’h and Andres,
2004). Moreover, the abundance of myelin in white matter may
be one explanation for its low structural plasticity in contrast
to gray matter, as regions of high plasticity tend to have low
myelin content (Silver et al., 2015). It is important to note that
the developmental time point when myelin becomes abundant is
much later than the appearance of nascent axon growth cones;
thus, it is unlikely that MAIs play a major role in shaping
neuronal networks (McKerracher and Rosen, 2015). Nonetheless,
there are numerous studies examining the impact of several
inhibitory molecules, especially the semaphorins, on various
neurodevelopmental events (Iketani et al., 2016; Wang L. et al.,
2017), but these are outside the scope of this review.

Of interest in this review is the neural/glial antigen 2 (NG2)
integral membrane proteoglycan expressed by OPCs during
neurodevelopment (Chen et al., 2002a). NG2 belongs to the
family of chondroitin sulfate proteoglycans (CSPGs) that have a
well-known inhibitory effect on axon growth, especially within
glial scars. For example, acute treatment of DRG neurons
with soluble NG2 induces growth cone collapse. Furthermore,
rat ventral spinal cord explants cultured upon 3-dimensional
collagen gels with membrane vesicles embedded from NG2-
expressing HEK293 cells exhibited reduced neurite length and
axon bundling when compared to control conditions (Chen et al.,
2002b). Importantly, the authors found high expression of NG2
in the developing rat embryo in areas such as the notochord,
perinotochord mesenchyme, lateral mesoderm, base of limb
buds, and optic chiasm where segmental patterning was observed.
βIII-tubulin-positive axon bundles were found in regions of low
NG2 labeling, suggesting that these axons originally migrated
through regions of low NG2 expression. Regions such as the
perinotochord mesenchyme have been previously characterized
as barriers to axon growth, and the authors suggest that NG2
expression in these regions may limit axon growth, forming
repellent boundaries to prevent axon straying. Observing axon
extension dynamics in live preparations with in vivo two-photon
excitation microscopy would be very informative to detect
cellular interactions during the development of this circuit. As
NG2 can be expressed by a variety of immature cell types (Levine
and Nishiyama, 1996) and pericytes (Laredo et al., 2019), this
raises the possibility that many of the cells observed in vivo in
this study are not OPCs nor oligodendrocytes. In fact, the role
of NG2-positive glia continues to be heavily debated, and their
influence on neurodevelopment and regeneration remains an
open question (Silver et al., 2015).

Microglia-Axon Growth Cone
Interactions
Microglia are CNS-resident macrophages that serve a number
of important roles in regulating tissue homeostasis, namely

phagocytic scavenging, localized immune function, modulation
of synaptic transmission, synaptogenesis, and neurotrophic
support (Reemst et al., 2016; Henstridge et al., 2019; Rotterman
et al., 2019; Wilton et al., 2019). Microglia are implicated in
both health and disease, gaining recent attention as a cell type
that can be targeted for therapeutic purposes (Tay et al., 2017).
Microglia are highly active in autoimmune and injury-related
diseases, such as multiple sclerosis and spinal cord injury; thus,
understanding their normal physiologic role in development and
tissue homeostasis may provide clues for their role in disease
states and offer potential targets for intervention.

Some of the hypothesized roles of microglia in axon growth
and guidance were originally associated with their phagocytic
properties including pathway clearance for developing axons,
elimination of transient axonal projections, or clearance of
axon growth and guidance factors. More recently, new evidence
suggests that microglia may themselves secrete factors that
mediate axon growth and guidance (Reemst et al., 2016).
Within the mouse embryonic brain, microglia are positioned
at decision points along specific axonal tracts rather than
associated with vasculature, regions of cell death, or at progenitor
zones, where they are typically located postnatally (Squarzoni
et al., 2014). During development, microglia are observed near
tyrosine hydroxylase (TH)-positive dopaminergic axons as they
enter the subpallium. EM revealed that the microglia in the
subpallium contained TH+ axon fragments within their cytosol,
suggesting a phagocytic role. Interestingly, microglial depletion
resulted in enhanced growth of the dopaminergic axons within
the subpallium, while maternal excess immune activation of
microglia resulted in reduced axon growth. Similarly, microglia
also play a role in localization of LIM/homeobox 6 (Lhx6)-
positive interneurons, which originate in the subpallium,
migrating tangentially into the neocortex and eventually
migrating radially into the cortical plate. However, when
microglia were depleted, Lhx6-interneurons entered prematurely
into the cortical plate and had more diffuse localization in layer V,
which persisted postnatally (Squarzoni et al., 2014). Furthermore,
Cx3cr−/− mice exhibited expansion of TH+ axons in the
subpallium, as well as diffuse localization of Lhx6+ interneurons
within the neocortex as a result of impaired microglia-neuron
communication. Taken together, these data provide convincing
in vivo evidence that microglial activity plays an important role
in limiting axon outgrowth of dopaminergic neurons within
the subpallium, as well as interneuron distribution within the
neocortex. Consistent with these findings, microglia also play a
role in axon bundling and maturation, as microglial activation
or knock-down resulted in defasciculation (Pont-Lezica et al.,
2014). Transcriptome analysis revealed a down-regulation of
genes involved in “nervous system development and function,”
such as Sema3C, PlnxA2, and Vcan, in both activated or
defective microglia. These data demonstrate that microglia are
important players in the wiring of the mouse forebrain, and
both hyperactivation, as well as defective microglia, are likely
detrimental to axon growth and guidance.

In the postnatal brain, microglia continue to be tightly
associated with certain populations of maturing neurons.
For example, in cats, microglia cluster within the white
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matter beneath cortical areas A17/A18, which contain juvenile
exuberant callosal projection neurons that project to the
contralateral A17/A18 by crossing through the corpus callosum
(Rochefort et al., 2002). With normal rearing (NR), many
of these projections are eliminated, which is associated with
amoeboid-like microglia consistent with phagocytically active
cells. However, in cats raised with monocular deprivation (MD
condition) from birth, most projections are stabilized and
retained in the adult animal, and microglia exhibit more ramified
morphology consistent with a resting, quiescent state (Rochefort
et al., 2002). These data demonstrate that microglia function is
regulated by postnatal visual experience, which indicates that
there are likely close interactions between microglia and axons
of the visual neurons. In addition, since microglia exhibited
more phagocytic-like appearance in the condition where juvenile
exuberant callosal projections are expected to degenerate, the
microglia may be an important mediator of this postnatal
axonal elimination. In contrast, another study demonstrated that
microglia in mice are vital for the support and survival of callosal
projection neurons through the secretion of the trophic factor
IGF1 (Ueno et al., 2013), which would be in opposition to the
conclusions drawn above. These seemingly contradictory results
are common throughout studies of microglia in development
and most likely represent their diverse function, as well as
heterogeneity in methods and animal models employed.

Additional in vitro evidence demonstrates that microglial
activation can be inhibitory to axon growth and guidance.
Microglia activated by lipopolysaccharide (LPS) inhibited neuron
outgrowth and induced growth cone collapse (Kitayama et al.,
2011). Importantly, this effect was only observed when activated
microglia and neurons were co-cultured in the same dish;
culturing these two populations of cells in a transwell system,
which prevents direct contact but allows for continuous bathing
media, resulted in no changes in neurite outgrowth or growth
cone collapse. This result suggests that the inhibitory effect
of activated microglia on axon growth was not due to a
secreted factor but rather direct contact via adhesion molecule
or phagocytic interaction. The inhibitory effect was subsequently
attributed to activated microglia expressing repulsive guidance
molecule a (RGMa), a glycosylphosphatidylinositol (GPI)-linked
glycoprotein that has been previously demonstrated to induce
growth cone collapse of retinal axons (Monnier et al., 2002).
Addition of RGMa-blocking antibodies or siRNA-mediated
knockdown of RGMa in the activated microglia blocked their
inhibitory effects on neurite outgrowth and growth cone collapse.
Similar effects were observed when the activated microglia were
treated with minocycline, a tetracycline antibiotic that was shown
to decrease expression of RGMa. Taken together, these results
indicate that activated microglia express RGMa and directly
inhibit axon growth in a contact-dependent fashion, which is a
potential molecular target to use in regeneration therapies.

Olfactory Ensheathing Cell-Axonal
Growth Cone Interactions
Olfactory neurons are unique as they are continuously turned
over so new axons must enter the CNS from the periphery

throughout life. Olfactory neuron axons are supported by
olfactory ensheathing cells (OECs) in both the periphery and
within the olfactory bulb, which both aid in the growth and
guidance of olfactory axons as well as surround groups of
olfactory axons to enhance electrical conduction (Van Den Pol
and Santarelli, 2003). Cell surface molecules on OECs promote
axon growth, which may prove useful for regeneration after
CNS injury. In the developing olfactory nerve, OECs pioneer
the path for olfactory neuron axons, extending their cellular
processes as much as 15 microns ahead of the axon growth
cone, and olfactory processes never extend ahead of the OECs
(Tennent and Chuah, 1996). In vitro, olfactory neurites prefer to
grow upon OECs rather than surface polylysine, often leaving
the surface completely to grow on top of the OECs (Van Den
Pol and Santarelli, 2003). Interestingly, live imaging reveals
that shortly after an axon growth cone contacts an OEC, the
growth cone appears to become a passive partner remaining
adherent to the migrating OEC. For example, if the OEC moves
toward the neuron cell body, the neurite process will shorten
as a result. Moreover, the attached axon growth cone follows
their partner OEC even when the cell retracts to divide, after
which the growth cone remains adherent to one daughter
cell after cytokinesis. The adhesion molecules mediating this
interaction include NCAM, polysialic acid (PSA)-NCAM, and
N-cadherin that are expressed on the surface of OECs during
all developmental stages (Miragall et al., 1989; Key and Akeson,
1990; Franceschini and Barnett, 1996; Fairless et al., 2005; Su
and He, 2010). Studies performed in situ show that cerebellar
granule cells seeded on the surface of olfactory mucosa and
bulb slices preferentially grow within regions dense in OECs,
such as the ventral nerve layer and lamina propria (Van Den
Pol and Santarelli, 2003). These findings represent the preferable
interaction between axons and OECs that supports neurite
growth and introduces the unique concept that olfactory neuron
axons may ride along OEC cell bodies as they migrate into the
CNS. Furthermore, unique OEC populations are hypothesized
due to the differences in anatomical and temporal development of
the olfactory bulb (Windus et al., 2010). When primary olfactory
neurons are co-cultured with central- and peripheral-derived
OECs, axons grow in a dispersed pattern with central OECs but
fasciculate upon peripheral OECs. Time lapse imaging showed
that peripheral OECs preferably adhere to one another while
central OECs display much more variable behavior of adhesion,
repulsion, or crossover. The physiologic implication of these
observed differences is interesting as it relates to the in vivo
organization of the olfactory system. In the periphery, as the
olfactory axons leave the olfactory epithelium, they form fascicles
as they merge into the olfactory nerve mediated by OECs,
which is mirrored by their behavior in vitro. Once in the CNS,
the axons defasciculate and sort themselves dependent on their
odorant receptor expression. Interestingly, the effects of central
OECs in vitro suggest that these OECs may promote or even
guide this defasciculation process. Semaphorin3A (Sema3A),
a membrane-bound, cleavable chemorepellent found on the
OEC cell surface, was found to mediate this defasciculating
and sorting process as olfactory neuron axons avoided regions
with high Sema3A expression. Furthermore, Sema3A-deficient
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mice exhibited defects in olfactory neuron axon sorting within
the olfactory nerve layer, which persisted into postnatal life
(Schwarting et al., 2000). Overall, the relationship between
OECs and olfactory neurons is an elegant demonstration of
how direct glial-neuron interactions can result in changes in
axonal growth behavior to have an impact on olfactory circuit
development and function.

Schwann Cell-Axonal Growth Cone
Interactions
Beyond astrocytes, microglia, and OECs, there is little
evidence that Schwann cells or Schwann cell precursors
(SCPs) play a direct role in axon growth and guidance during
PNS development. Rather, the functions of SCPs during
neurodevelopment are believed to include trophic support of
sensory and motor axons and nerve myelination (Jessen and
Mirsky, 2005). Early studies indicate that Schwann cells or SCPs
do not guide axons to their target, but rather follow behind
(Speidel, 1964; Carpenter and Hollyday, 1992; Bhattacharyya
et al., 1994; Gilmour et al., 2002), and growing motor neurons
are primarily guided by substrata composition with a preference
to follow pioneer axons (Tosney and Landmesser, 1985). Specific
ablation of Schwann cells or SCPs in the mouse does not affect the
number of peripheral motor and sensory axons that are generated
nor their ability to reach their targets to form initial synapses.
However, axons without Schwann cell support do subsequently
withdraw and degenerate before postnatal life (Riethmacher
et al., 1997; Wolpowitz et al., 2000; Britsch et al., 2001; Jessen
and Mirsky, 2005). Furthermore, specific ablation of boundary
cap (BC) cells, which are neural crest-derived SCPs that reside
early in neurodevelopment at the CNS:PNS junction, does not
affect motor neuron axon exiting the spinal cord, but does cause
displacement of their somata into the periphery (Vermeren et al.,
2003). These data emphasize the importance SCPs and Schwann
cells in trophic support of developing peripheral nerves and their
apparent limited direct involvement in initial axon outgrowth
and guidance to their peripheral targets. Typically, these studies
lack detailed dynamic information about early peripheral axon
growth and rely heavily on static images to draw conclusions.
It remains to be determined whether the absence of SCPs or
Schwann cells results in any initial aberrant axon growth cone
migration that is corrected through redundant mechanisms to
allow axons to reach their proper targets. Live cell in vivo imaging
is necessary to elucidate these details in neurodevelopment.

MOLECULAR MECHANISMS OF GLIAL
CELL-AXONAL GROWTH CONE
INTERACTIONS

Multiple families of cell adhesion molecules (CAMs) mediate
interactions between glial cells and neurons, with some being
specific for certain glial subtypes (see Table 1). Many of these
CAMs activate intracellular signaling cascades that converge on
common pathways to impact cytoskeletal function and neurite
outgrowth (see Figures 2, 3). Many of these CAMs are extensively

reviewed (Herron et al., 2009; Siebold et al., 2017; Sytnyk et al.,
2017; Chooi and Chew, 2019), thus this section will highlight
some of the key players and mechanisms that underlie glial
cell-neuron interactions.

The immunoglobulin superfamily (IgSF) of CAMs, including
L1-CAM family members NCAM and CHL1, as well as
N-cadherin, mediate much of the attractive interactions between
glial cells and axonal growth cones (Figure 2). The L1-CAM
family consists of type I transmembrane proteins that have a
large extracellular domain, with several immunoglobulin and
fibronectin binding domains, as well as a short cytoplasmic tail
of approximately 120 amino acids. These CAMs can participate
in both homophilic and heterophilic binding interactions either
in cis or trans that allow for a variety of functions depending
on differential expression and binding interactions of the
cytoplasmic tail (reviewed in Hansen et al., 2008; Herron et al.,
2009; Samatov et al., 2016). There are three major isoforms of
NCAM arising from alternative splicing that contain identical
extracellular domains but variable cytoplasmic tails. The larger
180 kDa isoform (NCAM180) is primarily found in neurons,
while the smaller 120 kDa isoform (NCAM120), which is
attached to the membrane via a GPI anchor, is primarily found
in glial cells (reviewed in Sytnyk et al., 2017). All L1-CAM
family members contain the ankyrin-binding motif SFIGQY on
their cytoplasmic tails, and the phosphorylation status of the
tyrosine residue in this motif mediates binding with ankyrin.
Changes in L1-CAM/ankyrin binding regulates coupling of
ankyrin-associated proteins to the spectrin cytoskeleton, which
can influence growth cone motility (Sytnyk et al., 2017). There
is convincing evidence that both L1 and CHL1 can also bind the
ezrin-radixin-moesin (ERM) family of proteins, which allow for
additional linkage to the actin cytoskeleton. Interestingly, ERM
binding to CHL1 was shown to be essential for Sema3A-induced
growth cone collapse, providing a mechanism of crosstalk
between different CAMs and axon guidance molecules (Schlatter
et al., 2008). Similarly, CHL1 has recently been shown to
play a role in non-canonical hedgehog signaling via interaction
with PTCH1, providing a link to RhoA/ROCK signaling,
which is discussed below (Katic et al., 2017). Extracellular
NCAM interactions have been shown to activate membrane-
linked tyrosine kinases such as Fyn, which can phosphorylate
downstream targets like focal adhesion kinase (FAK) and spectrin
that impact cytoskeletal dynamics (reviewed in Chooi and
Chew, 2019). Finally, multiple studies have demonstrated that
NCAM is able to activate fibroblast growth factor receptors
(FGFR), which can influence gene expression (via MAPK)
and intracellular calcium signaling (Doherty and Walsh, 1996;
Niethammer et al., 2002).

Neural cadherin (N-cadherin or NCAD), which belongs to
the larger family of calcium-dependent adhesion molecules,
promotes cell adhesion through hemophilic binding in trans.
The intracellular cytoplasmic tail of cadherins associate with
p120 catenin complexes to link them to the actin cytoskeleton
(reviewed in Hansen et al., 2008; Chooi and Chew, 2019). NCAD
and NCAM share some downstream targets, such as activation of
FGFR signaling cascades. Additionally, NCAD signaling through
p120 both inhibits RhoA activity and activates MAPK, both of
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TABLE 1 | Summary of key proteins and mechanisms underlying glial cell-axon growth cone interactions.

Glial protein Cell type(s) Neuron receptor(s) Co-receptors Signaling mechanism(s)

NCAM120 Astrocyte
OEC

NCAM180
NCAM140

FGFR Lipid raft-associated kinases
FGFR signaling

CHL1 Astrocyte L1
CHL1
Neurofascin
NCAM

Sema3A Ankyrin and ERM recruitment

N-cadherin Astrocyte
OEC

N-cadherin (homophilic) FGFR
ASTN1

Catenins
FGFR signaling
p120-mediated RhoA inhibition and MAPK activation

Nogo
MAG
OMgp

Oligodendrocyte NgR1 p75NTR
Troy
Lingo-1
PirB
PlexinA2
CRMP2

RhoA activation

Sema3A OEC Plexins Neuropilins
Integrins

R-Ras inhibition
Rho-A activation

Sema4D
Sema5A
Sema6A

Oligodendrocyte Plexins Neuropilins
RTKs
Tim-2

R-Ras inhibition
Rho-A activation

NG2 Oligodendrocyte CSPG receptors RhoA activation
Par complex alterations

RGMa Microglia Neogenin Unc5B RhoA activation
FAK-mediated Ras inactivation
LMO4-mediated transcription

NCAM, neural cell adhesion molecule; OEC, olfactory ensheathing cell; FGFR, fibroblast growth factor receptor; CHL1, close homolog of L1; MAPK, mitogen-activated
protein kinase; MAG, myelin-associated glycoprotein; OMgp, oligodendrocyte-myelin glycoprotein; p75NTR, neutrophin receptor; CRMP2, collapsin response mediator
protein family-2; RhoA, Ras family member homolog A; RTK, receptor tyrosine kinase; NG2, neuron-glia antigen-2; CSPG, chondroitin sulfate proteoglycan; RGMa,
repulsive guidance molecule A; FAK, focal adhesion kinase; LMO4, LIM domain transcription factor; ASTN1, astrotactin-1; ERM, ezrin-radixin-moesin; NgR1, Nogo
receptor 1; PirB, paired immunoglobulin-like receptor B; Tim-2, T cell immunoglobulin and mucin domain containing 2.

which can positively impact growth cone motility (reviewed in
Hansen et al., 2008). Recent work has emphasized the importance
of co-receptors such as astrotactin (ASTN1) that are important
for formation of glial cell-neuron cell adhesions mediated by
NCAD (Horn et al., 2018). Finally, endocytic trafficking of NCAD
has been shown to regulate neuronal migration and maturation,
which depends on Rab GTPase activity (Kawauchi et al., 2010;
Shikanai et al., 2011).

The inhibitory or repulsive interactions between glial cells
and axon growth cones include the myelin-associated inhibitors
(MAIs), semaphorins, NG2, and RGMa (Figure 3). The
oligodendrocyte-expressed MAIs include the membrane proteins
Nogo, MAG, and OMgp that signal through receptor complexes
including the GPI-linked, Nogo-66 receptor NgR1 (reviewed
in McKerracher and Rosen, 2015). Importantly, since NgR1
is GPI-linked, co-receptors are required to transmit signaling
information within the cell, and the array of co-receptors
being expressed can vary for a given neuron. These co-
receptors include, but are not limited to, p75NTR, LINGO-
1, TROY, PirB, PlexinA2, and CRMP2 (Sekine et al., 2019),
and their common intracellular signaling mechanism is through
the activation of RhoA, which is a GTPase within the Ras

superfamily of proteins. RhoA is in its active form when bound
to GTP, which is facilitated by guanine-nucleotide exchange
factors (GEFs) that promote the exchange GDP for GTP.
GEFs are regulated by a number of complex mechanisms,
such as alterations in protein-lipid interactions that can change
subcellular localization, release of autoinhibition by a flanking
domain or region, and activation by secondary messengers or
posttranslational modification (reviewed in Rossman et al., 2005;
Bos et al., 2007). RhoA is also regulated via interactions with
GTPase activating proteins (GAPs) that promote the conversion
of GTP to GDP to inactivate RhoA, as well as guanine-
nucleotide dissociation inhibitors (GDIs) that maintain GTPases
in an inactive, GDP-bound state. For example, the NgR1 co-
receptor p75NTR is cleaved upon ligand binding to NgR1, and
the intracellular cleavage product displaces GDI from RhoA
leading to its activation (Hasegawa et al., 2004; Domeniconi
et al., 2005). Once activated, RhoA binds its downstream
effector protein, Rho-associated protein kinase (ROCK) within
the α-helical coiled-coil domain, resulting in removal of
autoinhibition of ROCK and subsequent phosphorylation of
substrate molecules (reviewed in Liu J. et al., 2015). ROCK
phosphorylates a number of important targets that impacts axon
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FIGURE 2 | Molecular mechanisms underlying glial-axon growth cone guidance signals. NCAM, neural cell adhesion molecule; FGFR, fibroblast growth factor
receptor; CHL1, close homolog of L1; MAPK, mitogen-activated protein kinase; RhoA, Ras family member homolog A; FAK, focal adhesion kinase; NCAD,
N-cadherin; NF, neurofascin; ERM, ezrin-radixin-moesin; RyR, ryanodine receptor; PLC, phospholipase C; PKC, protein kinase C; DAG, diacylglycerol; IP3, inositol
trisphosphate; AA, arachidonic acid; ASTN1, astrotactin-1; PTCH1, protein patched homolog 1; SMO, smoothened; CaMKII, calcium/calmodulin-dependent protein
kinase II; ER, endoplasmic reticulum.

guidance. For instance, ROCK promotes actin contractility by
phosphorylating myosin light chain (activate) and myosin light
chain phosphatase (inactivate), which can lead to growth cone
collapse and neurite retraction. ROCK also phosphorylates LIM
kinase (LIMK), which phosphorylates cofilin, an actin-binding
protein responsible for depolymerization of actin filaments.
Note that when phosphorylated, cofilin is inactivated, resulting
in stabilization of actin filaments. As a result, activation of
the RhoA/ROCK signaling pathway stabilizes actin filaments,
which provides a substrate for ROCK-activated myosin based
contractility, resulting the inhibition of axon growth.

Several other inhibitory axon guidance cues expressed by
certain glia signal through the RhoA/ROCK pathway. For
example, several of the previously discussed molecules above
including RGMa, NG2, and many of the plexins (semaphorin
receptors) signal through the RhoA/ROCK pathway to inhibit
axon growth and guidance. RGMa is part of the larger
family of GPI-linked repulsive guidance molecules (RGMs) that
signals through interactions with the type 1 transmembrane
protein neogenin (reviewed in De Vries and Cooper, 2008;
Siebold et al., 2017). RGMa can act in trans to promote
the formation of neogenin receptor dimers, which initiates
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FIGURE 3 | Molecular mechanisms underlying glial-axon growth cone repulsive signals. MAG, myelin-associated glycoprotein; OMgp, oligodendrocyte-myelin
glycoprotein; p75NTR, neutrophin receptor; CRMP2, collapsin response mediator protein family-2; RhoA, Ras family member homolog A; RTK, receptor tyrosine
kinase; NG2, neuron-glia antigen-2; CSPG, chondroitin sulfate proteoglycan; RGMa, repulsive guidance molecule A; FAK, focal adhesion kinase; LMO4, LIM domain
transcription factor; NgR1, Nogo receptor 1; PirB, paired immunoglobulin-like receptor B; Tim-2, T cell immunoglobulin and mucin domain containing 2; Lrig2,
leucine rich repeats and immunoglobulin like domains 2; GAP, GTPase activating protein; PI3K, phosphoinositide 3-kinase; LARG, leukemia-associated Rho guanine
nucleotide exchange factor; PKC, protein kinase C; LIMK, LIM domain kinase 1; ROCK, Rho-associated protein kinase; MLC, myosin light chain; ER, endoplasmic
reticulum.

downstream signal transduction. The co-receptor Unc5B, a
member of the netrin family, was found to interact with neogenin,
which activates downstream signaling to the leukemia-associated
Rho GEF (LARG) (Hata et al., 2009). RGMa-induced tyrosine
phosphorylation of LARG by FAK has also been found to
be necessary for the activation of RhoA and growth cone
collapse. Interestingly, the co-expression of Lrig2 adds another
layer of regulation to the RGMa-neogenin signaling cascade.
Lrig2 association with neogenin prevents premature extracellular
cleavage and inactivation of neogenin by A disintegrin and

metalloprotease 17 (ADAM17), and RGMa disrupts the Lrig2-
neogenin interaction allowing for the cleavage to occur (Van
Erp et al., 2015). Thus, Lrig2 co-expression allows neurons to
remain RGMa-sensitive by preventing the premature cleavage
of neogenin, allowing for subsequent downstream signaling
through RhoA. Several other non-RhoA-dependent mechanisms
have also been shown to be important in RGMa signaling. For
example, FAK has been shown to activate p120GAP, leading to the
inactivation of Ras and subsequent growth cone collapse (Endo
and Yamashita, 2009). Additionally, RGMa binding neogenin
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also promotes the cleavage of the neogenin intracellular domain
by γ-secretase. Released intracellular cytoplasmic neogenin
associates with the transcriptional co-activator LIM-only protein
4 (LMO4) and affects downstream gene expression that mediates
growth cone collapse (Schaffar et al., 2008; Banerjee et al., 2016).
NG2 also signals to RhoA by interaction with a number of CSPG
receptors such as Protein Tyrosine Phosphatase σ (PTPσ), NgR1,
and NgR3 (reviewed in Ohtake and Shuxin, 2015). Additional
mechanisms of NG2-mediated growth inhibition exist such as
signaling through Cdc42 and atypical protein kinase C (PKCζ),
which alters Par complex function (Lee et al., 2013).

Semaphorins, a large family that includes GPI-linked and
membrane-bound proteins that play critical roles in axon
growth and guidance, signal through both RhoA-dependent
and independent pathways (reviewed in Liu and Strittmatter,
2001; Negishi et al., 2005; Derijck et al., 2010; Hota and Buck,
2012). Semaphorin signaling is mainly mediated by plexin
receptors, a family cell-surface, transmembrane proteins with
four subfamilies (PlexinA-D) in mammals. Additional plexin
co-receptors like neuropilins, receptor tyrosine kinases (RTKs),
and integrins mediate ligand binding and additional downstream
signaling within target cells, allowing for diverse semaphorin-
mediated signaling. All plexins contain a conserved intracellular
GAP homology domain that can directly activate the GTPase
activity of multiple GTPase protein families. For example, the
plexin-A and B GAP homology domains inactivate R-Ras,
resulting in reduced PI3K and integrin signaling (Hota and Buck,
2012). Plexins also contain a Rho binding domain (RBD) that can
interact with Rho family GTPases in a number of ways to affect
a complex network of downstream proteins (reviewed in Hota
and Buck, 2012). Plexins can signal to RhoA by mediating the
activity of GEFs, such as LARG, as well as many other possibilities
as described in the above reviews.

MODULATING GLIAL CELL-AXONAL
GROWTH CONE INTERACTIONS TO AID
IN REGENERATION

One major motivation to improve our understanding of
the roles glia play in axon growth and guidance during
neurodevelopment is to direct those developmental principles
to improve regeneration of the CNS or PNS after injury. For
example, glia are known to mediate regeneration following spinal
cord injury (SCI) (Cregg et al., 2014; Silver et al., 2015; Jin and
Yamashita, 2016). This section aims to provide a few examples
showing how the neurodevelopmental discoveries influenced the
field of SCI for translational purposes (Table 2).

In an injured state, cytokines, cell fragments, and nucleic acids
contribute to differentiation of CNS microglia into “classically
activated” M1 or “alternatively activated” M2 subtypes (Silver
et al., 2015). This decision may be influenced by a number of
local factors such as interleukin-4 (IL-4) (Francos-Quijorna et al.,
2016) and hemopexin (Han et al., 2018). M1 activated microglia
are generally viewed as pro-inflammatory and neurotoxic,
promoting axon dieback (see below). M2 activated microglia are
anti-inflammatory and neuroprotective, secreting neurotrophic

factor and promoting axon regeneration. For example, microglia
have been shown to encourage axon elongation and presynaptic
site formation following pyramidal tract section (Jiang et al.,
2019) as well as promote plasticity following lesions within
the visual pathways (Chagas et al., 2019). However, this binary
system represents an oversimplification of microglial function.
For example, a variety of cytokines are able to promote both
M1 and M2 phenotypes, which adds mechanistic uncertainty
into the divergent roles of M1 and M2 microglia. Nonetheless,
this model provides a framework that is relevant to SCI and
categorizes the multiple roles microglia may have on axon growth
and regeneration.

Work described above demonstrated that deficiency of Cx3cr1
(Cx3cr−/−), the microglial-specific fractalkine chemokine
receptor, improved axonal growth of dopaminergic neurons in
the subpallium (Squarzoni et al., 2014). Importantly, Cx3cr−/−

microglia compared to WT do not exhibit an activated, M1-type
morphology when stimulated with the inflammatory mediators
interferon-γ (INF-γ) and LPS (Freria et al., 2017). Instead, they
remained in an unstimulated, M0 “reparative” phenotype with
neurotrophic potential as they expressed higher amounts of
TGF-β, IGF-1, and FGF2 compared to WT microglia. After SCI,
Cx3cr−/− mice exhibited greater regeneration of serotonergic
axons, especially in the ventral horn. This may be partially
attributed to the creation of a microenvironment that promoted
the differentiation and survival of NG2-positive glia, which
include OPCs, as greater numbers closely associate with growing
axons in the Cx3cr−/− mice following SCI. The above data,
when taken together, suggest that modulating CX3CR could
be a therapeutic strategy to enhance axonal regeneration after
injury through a mechanism of improved microglial support.
Indeed, inhibition of CX3CR via a small molecule or monoclonal
antibody has shown promise in other inflammatory conditions,
such as atherosclerosis (Poupel et al., 2013), rheumatoid arthritis
(Nanki et al., 2004), and multiple sclerosis (Wollberg et al.,
2014). Therefore, the next logical step would be to try these
interventions in a SCI clinical trial.

RGMa was identified as a major molecule involved in the
inhibitory effect microglia exert on growing axons (Kitayama
et al., 2011). In a mouse model of SCI, minocycline treatment,
which decreases microglial RGMa expression, reduced the
accumulation of microglia in the site of injury with a subsequent
reduction in axonal dieback in injured corticospinal neurons.
Furthermore, intrathecal administration of an antibody against
RGMa in a rat SCI model promoted axonal growth and functional
recovery, which may be attributed to invasion of microglia
and/or macrophages in the site of injury (Hata et al., 2006).
Another group developed a systemically administered, human
monoclonal antibody against the N-terminus of RGMa, which
both neutralized RGMa as well as prevented the RGMa receptor
Neogenin from associating with lipid rafts, which is essential
for its downstream functions (Mothe et al., 2017). The authors
demonstrated that this treatment promoted neuron survival,
corticospinal tract axonal regeneration, and improvement in
motor function and gait. As such, inhibition of RGMa/Neogenin
shows promise in improving clinical outcomes for SCI. In fact,
AbbVie Inc. has developed the human anti-RGMa antibody
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TABLE 2 | Pharmaceuticals targeting glial-neuron interactions under study for spinal cord injury.

Glial protein target Cell type Intervention Clinical trial Phase Status References

Nogo Oligodendrocyte ATI355/NG-101
(Novartis)

NCT00406016
NCT03935321
EudraCT2016-001227-31

I
II
II

Complete
Ongoing
Ongoing

Kucher et al., 2018

Nogo
MAG
OMgp

Oligodendrocyte AXER-204 NCT03989440 I/II Ongoing

RGMa Microglia Elezanumab
(ABT-555)
Minocycline

NCT02601885
NCT03737812
NCT03737851
Not announced
NCT00559494
NCT01828203

I (MS)
II (MS)
II (MS)
I (SCI)
II (SCI)
III (SCI)

Completed
Ongoing
Ongoing
N/A
Completed
Ongoing

Casha et al., 2012

MAG, myelin-associated glycoprotein; OMgp, oligodendrocyte-myelin glycoprotein; RGMa, repulsive guidance molecule A. The above clinical trial information was
acquired from the United States (clinicaltrials.gov) and European Union (clinicaltrialsregister.eu) databases.

elezanumab (ABT-555) that is currently in Phase II clinical trials
for Multiple Sclerosis (NCT03737812 and NCT03737851) with
plans to start a Phase I clinical trial for spinal cord injury (see
abbvie.com). Additionally, many other pre-clinical studies have
demonstrated the beneficial effects of the RGMa-suppressing
antibiotic minocycline in SCI (Lee et al., 2003; Wells et al., 2003;
Stirling et al., 2004; Festoff et al., 2006; Wang Z. et al., 2017), and
a Phase II clinical trial suggested that there may be improvement
after acute SCI (Casha et al., 2012). There is an ongoing Phase
III clinical trial (NCT01828203) that was expected to complete in
June of 2018, but no results have been posted.

In addition to microglia, other glial cells negatively impact
CNS injury with the formation of the well-known “glial scar”
that is detrimental to axon regeneration. For example, astrocytes
react and form a dense barrier around the lesion, stromal
cells invade and form fibrous connective tissue with dense
collagen and CSPG deposition, and OPCs proliferate and
surround dystrophic axons (Pasterkamp and Verhaagen, 2006;
Cregg et al., 2014; Dias et al., 2018). Efforts to prevent or
dissociate the glial scar have been shown to improve axon
regeneration (for example, see Rosenzweig et al., 2019). However,
the biology of the glial scar is much more nuanced, and
oversimplification of this complex healing and regeneration
process can hinder advances in the field (Bradbury and Burnside,
2019). Therefore, a detailed understanding of the players
involved, including the glial subtypes, can provide additional
clues for intervention. As mentioned above, the expression of
many inhibitory molecules such as the MAIs increase following
injury, such as Nogo-A (Hunt et al., 2003), which signals through
NgR/RhoA pathway to inhibit axon outgrowth. Four Nogo
receptors have been identified (NgR1, NgR2, NgR3, and PirB),
and Ngr1−/−; Ngr2−/−; Ngr3−/− mice exhibit improved axon
regeneration following optic nerve crush injury (Dickendesher
et al., 2012). Furthermore, knockout of Nogo-A in mice improved
axon regeneration past the lesion following dorsal spinal cord
hemisection, an effect that was not observed in MAG or OMgp
knockout mice (Cafferty et al., 2010). Consistently, intrathecal
administration of a Nogo-A neutralizing antibody following SCI
resulted in enhanced axon growth and collateral sprouting in

both rats and non-human primates (Merkler et al., 2001; Freund
et al., 2006). These results led to a phase I trial (NCT00406016),
which was completed in 2011 to assess the safety of intrathecal
administration of ATI355 (Novartis), a recombinant human
antibody directed against Nogo-A that was well-tolerated in
patients with acute SCI (Kucher et al., 2018). Currently there are
two ongoing phase II trials (NCT03935321 and EudraCT2016-
001227-31) as a follow-up to this study, with no results posted.
An additional approach to antagonize the action of MAIs is
via administration of a soluble NgR fragment that can disrupt
neural NgR signaling and promote axon regeneration (Fournier
et al., 2002). Intrathecal administration in a rat SCI model
showed promising results as demonstrated by increased axon
sprouting, electrical conduction, and locomotion (Li et al., 2004).
To translate this finding into humans, the drug AXER-204
(ReNetX Bio, Inc.), which is a soluble decoy for MAIs like the
one previously mentioned, is being used in a current phase I/II
trial for patients with chronic SCI (NCT03989440).

In addition to the identification of novel drug targets, pre-
clinical studies investigating glial-axon growth cone interactions
have led to the notion of implanting growth-promoting glia
into the site of injury. For example, OECs can be harvested
from the olfactory blub, cultured in vitro, and injected into
SCI sites. In rodent studies, transplantation of OECs resulted
in enhanced axon regeneration and even functional recovery in
several animals (Ramon-Cueto et al., 2000; Keyvan-Fouladi et al.,
2003; Li et al., 2003). OEC transplants provided several benefits
for regenerating axons, such as functioning as a physical substrate
for axon growth and secretion of soluble factors that enhanced
neurite sprouting (Chung et al., 2004). Interestingly, similar
behaviors were observed in spinal cord as seen in the in vitro
models. For example, some neurons traveled along OECs as they
migrated into the injury tract. This may provide a means to avoid
the inhibitory signaling molecules that become enriched at injury
sites, as regenerating axons may associate with OECs as they
migrate through the forming glial scar. Several small clinical trials
have been completed in humans (for example, NCT01327768
and NCT01231893) with mixed results, often challenged by small
sample sizes and technical difficulties with cell extraction and
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transplantation (Tabakow et al., 2013, 2014; Wang et al., 2016).
There are currently two clinical trials actively recruiting for
participants that aim to optimize the OEC harvesting procedure
and implant them into patients with SCI (NCT02870426 and
NCT03933072). In addition to OECs, spinal cord neural stem
cell (NSC) grafts are also being developed with the potential
to reconstitute components of the damaged spinal cord. Spinal
cord NSCs derived from human pluripotent stem cells and
transplanted into lesioned rat spinal cords develop into both
neuron and astrocyte lineages, which are able to integrate into the
spinal cord circuitry with improvements in functional outcomes
(Kumamaru et al., 2018; Lien et al., 2019). Therefore, spinal cord
NSCs are an additional cell-based therapy that show promise for
translation into humans. With improvements in culturing and
transplantation techniques, as well as the potential benefits from
combined therapies with different mechanisms of action, there
is great promise that the long history of research in glial-axonal
growth cone interactions will prove worthwhile to aid in axon
regeneration after SCI in human patients.

CONCLUSION

In the CNS and PNS, many glial cell types are able to
affect axon growth and guidance, which has an impact on
neuronal wiring in adulthood as well as the outcomes of
several disease states, such as SCI (see Figure 1). Promising
therapeutics are being developed because of the advances in
knowledge of glial function in neurodevelopment, which shows
the importance of further development in this area of pre-
clinical research. As more specific molecular tools and labeling
techniques become readily available, better correlation can be
drawn from the observational data of anatomic distribution

and morphology of glia with developing axonal tracts. For
example, with improvements in live imaging in vivo, much
of these developmental events will become accessible to view
in real time, which could promise a plethora of important
information on glial-axon growth cone interactions (Wu et al.,
2013). Furthermore, with advances in cell culture techniques,
such as with the multi-compartment neuron-glia co-culture
platforms (Park et al., 2012), as well as widespread availability of
genome editing and human stem cell differentiation protocols,
more streamlined and high-throughput screening of potential
drug targets will be available (Gang et al., 2015). Finally,
techniques to specifically target glial populations are being further
refined with application to both non-human primate models
and humans (Juttner et al., 2019). In the end, there will always
be a balance between the promoting and inhibiting effects of
glia on growing axons, and there are likely benefits to precise
molecular reprogramming of glia for both neuroprotective and
regenerative applications.
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Astrocytes exhibit a region-dependent molecular and functional heterogeneity in the
CNS. Although cortical astrocytes proliferate robustly during the first postnatal week
and become proliferation quiescent, the temporal proliferation dynamics of astrocytes in
subcortical regions during postnatal development remain essentially unknown. Whether
subcortical astrocytes mature similarly to cortical astrocytes is also unexplored. In
this current study, we examined proliferation of subcortical, especially hypothalamic,
astrocytes during postnatal development using genetic labeling of astrocytes and pulse-
chase EdU labeling of proliferating cells. While a lower number of proliferating astrocytes
was found in the hypothalamus compared to cortex during the first postnatal week,
astrocyte proliferation is much more active in hypothalamus than in cortex from P15
to P30 in both proliferating astrocyte density and percentage, indicating a persistent
and distinct proliferation pattern of astrocytes in hypothalamus. This observation is
further confirmed by Ki67 immunostaining with genetically or immunolabeled astrocytes
in hypothalamus and cortex during P15–30. In addition, astrocytes in representative
subcortical regions have a modest growth of their domain size and exhibit a significantly
smaller domain size compared to cortical astrocytes at P30 when astrocytes have
generally completed postnatal maturation. However, the expression of astrocyte-derived
Sparc, an important synaptogenic inhibitor, is consistently higher in hypothalamic
astrocytes than in cortical astrocytes throughout postnatal development. In summary,
our study unveiled a distinct proliferation and maturation pattern of subcortical,
especially hypothalamic, astrocytes during postnatal development.

Keywords: astrocyte, heterogeneity, development, hypothalamus, proliferation, Sparc

INTRODUCTION

Astrocytes are considered important modulators of brain physiology and pathology, playing diverse
and active roles in synaptogenesis, synaptic transmission, and neuronal survival (Clarke and
Barres, 2013; Allen and Eroglu, 2017). Interestingly, astrocytes display region-specific differences
in their mature morphology and their modulatory functions are also largely associated with local
brain regions or circuits (Ben Haim and Rowitch, 2017; Chai et al., 2017; Morel et al., 2017).
Several recent studies, by combining RNA-seq with ribosome pull-down (RiboTag or TRAP)
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(Chai et al., 2017; Morel et al., 2017), cell surface antigen
based sorting (John Lin et al., 2017), or single-cell isolation
approaches (Zeisel et al., 2018), have systematically characterized
transcriptomes of astrocytes from different brain regions. These
studies have shown a clear molecular heterogeneity of astrocytes
in the adult brain that appears to follow an anatomical dorsal to
ventral and anterior to posterior axis (Farmer et al., 2016; Morel
et al., 2017). Additionally, astrocytes’ physiological properties,
such as gap-junction coupling, inward-rectifying K+ currents,
and intracellular Ca2+ responses are manifested differently across
CNS regions (Chai et al., 2017; Oberheim et al., 2012). By
using in vitro mismatched neuron and astrocyte co-cultures, we
further showed that astrocyte-mediated promotion of neurite
growth and neuronal synaptic activity is region-conserved
(Morel et al., 2017). Whether this molecular, morphological,
and functional heterogeneity stems primarily from early stages
of astrogliogenesis or is largely influenced by local neighboring
signals during the maturation phase remains to be determined.

Subcortical brain regions have a distinct glia to neuron
ratio compared with cortex with drastically different neural
circuitry (Azevedo et al., 2009). These regions are also highly
populated with interneurons derived from medial ganglionic
eminence (MGE) progenitors in contrast to predominant
glutamatergic neurons in cortex/hippocampus (Bayraktar et al.,
2014). Astrocytes are derived from radial glia (RG) in
the CNS when RGs transition from GLAST+/Nestin+ to
GLAST+/Nestin− progenitors during late embryonic or early
postnatal stages (Bayraktar et al., 2014; Siddiqi et al., 2014).
Although astrocytes proliferate robustly during the first 2 weeks
postnatally to occupy the cortex, presumably through a local
proliferation mechanism from newly born immature astrocytes
(Ge et al., 2012), as RGs are heterogenous with a dorsoventral
(DV) distribution along the ventricular zone (VZ), whether
subcortical astrocytes undergo similar proliferation dynamics
during early postnatal development has not been explored. In
addition, newly born cortical astrocytes undergo a maturation
phase to acquire their uniquely ramified morphology and
express important functional proteins such as excitatory amino
acid transporter (EAAT2) (Morel et al., 2014). Whether these
morphological and molecular changes similarly occur for
subcortical astrocytes remains to be investigated.

In the current study, we performed genetic and 5-ethynyl-2′-
deoxyuridine (EdU) pulse-chase labeling to investigate astroglial
proliferation dynamics in developing subcortical regions. We
also examined postnatal morphological and molecular changes of
subcortical astrocytes.

MATERIALS AND METHODS

Animals
The Ai14-tdTf/f reporter, Bac Slc1a3-CreERT transgenic
(C57BL/6) and Bac Aldh1l1-eGFP mice were obtained from
the Jackson Laboratory. VGluT1−/− mice were obtained as
a kind gift of Dr. Robert Edwards (University of California,
San Francisco). The EAAT2-tdTomato (tdT) transgenic mice
were generated as previously described (Yang et al., 2011).

Animals were deeply anesthetized with ketamine (100 mg/kg)
plus xylazine (10 mg/kg) in saline by intraperitoneal injection
and perfused intracardially with 4% PFA in PBS. The brains
were dissected and kept in 4% PFA overnight at 4◦C, then
cryoprotected by immersion in 30% sucrose for 48 h. Brains
were embedded and frozen in OCT-Compound Tissue-Tek
(Sakura). Sagittal sections (20 µm) were prepared with a cryostat
(Leica HM525) and mounted on glass SuperFrost+ slides
(Thermo Fisher Scientific). Mice of both sexes were used for
all experiments. All procedures were in strict accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Tufts University
Institutional Animal Care and Use Committee.

Tamoxifen and EdU Injection
Tamoxifen (4-OHT; Sigma-Aldrich) was suspended at 20 mg/ml
in ethanol and diluted into sunflower seed oil at a final
concentration of 2 mg/ml in 10% ethanol. For Slc1a3-
CreERT+Ai14f/+ mice, an intraperitoneal injection of 10 µl 4-
OHT (50 mg/kg) was administered from P1 to P2 for a total dose
of 0.25 mg to selectively label astrocytes. The Click-iT EdU Alexa
Fluor 488 Imaging Kit was suspended at 2.5 mg/ml in DMSO,
a 1:10 dilution from the stock, and the final concentration was
10 mg/kg. An intraperitoneal injection of EdU was administered
at different developmental time points (P3, P8, and P15) for a
total dose of 0.25 mg.

Immunohistochemistry
Mice were perfused by intracardial perfusion with 4%
paraformaldehyde in 1× PBS. Brains were cut into 20 µm
sections with a cryostat. Slides were rinsed three times in PBS for
10 min each, then incubated with blocking buffer (1% BSA, 5%
normal goat or donkey serum, and 0.2% Triton X-100 in PBS) for
1 h at room temperature (RT). Primary antibodies against Ki-67
(1:100 rabbit anti-Ki-67, Pierce #PA5-19462), Sparc (1:500 goat
anti-Sparc, R&D Systems #AF942), or Sox9 (1:100 goat anti-Sox9,
R&D Systems #AF3075) were incubated overnight at 4◦C in the
appropriate blocking buffer. After washing slides three times
in PBS, secondary antibody (1:2000, donkey anti-goat Alexa
Fluor 647 or goat anti-rabbit Alexa Fluor 488, Life Technology)
was added for 2 h at RT. For EdU immunostaining, slides were
permeabilized with 0.5% Triton X-100 in PBS for 20 min at RT.
The slides were then washed with 3% BSA in PBS twice for 5 min
each. The reaction cocktail was added for 30 min at RT. The
sections were rinsed once in BSA for 5 min before mounting.

Acquisition of Images and Quantification
of Labeled Cells
Images were obtained with a confocal laser scanning microscope
(A1R, Nikon), Keyence BZ-X700 microscope, or Zeiss AXIO
Imager with ApoTome. For EdU quantification, Keyence stitched
images of the entire sagittal sections were taken with a 10×
objective lens and all cells were manually counted using Fiji
ImageJ (multi point tool). We counted all tdT+ cells (astrocytes),
EDU+ cells (dividing cells), and tdT+EDU+ cells (dividing
astrocytes) in cortex, thalamus, and hypothalamus. At each
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time point we calculated the density of astrocytes, dividing
cells, and dividing astrocytes by dividing the number of cells
by the area of the respective brain region to determine the
number of cells per mm2. We also quantified the percentage
of dividing astrocytes among all labeled astrocytes at P30 by
dividing the number of tdT+EdU+ cells by the total number
of tdT+ cells. For Ki-67 quantification, Keyence stitched images
of sagittal brain sections were taken with a 10× objective,
and a 0.5 mm2 grid was overlaid on the image. tdT+ cells
(astrocytes) and tdT+Ki-67+ cells (dividing astrocytes) were
quantified from 20 grids in cortex and 10 grids in hypothalamus,
and percentage of dividing astrocytes among labeled astrocytes
was determined. Labeling efficiency of the Ai14-tdT reporter
in a given brain region was estimated by dividing density of
tdT+ cells by the density of eGFP+ cells in age-matched Bac
Aldh1l1-eGFP mice.

For Sparc analysis, images were taken using the
Zeiss microscope with a 20× objective. The numbers of
eGFP+SPARC+ cells were individually quantified in Fiji ImageJ
and the intensity of Sparc from co-localized astrocytes (indicated
with eGFP fluorescence) was also measured. Sparc fluorescence-
negative area in each image was selected to determine the
background and subtracted. In Fiji, maximum projections were
generated from Zeiss images for each channel and the merged
images. The number of eGFP+ labeled astrocytes in the field was
manually counted using the region of interest (ROI) manager.
The freehand selection tool was then used to outline labeling
in Sparc images that were co-localized with eGFP+ labeled
astrocytes in the merged images. Measurements of average
intensity within the region were calculated through Fiji’s ROI
manager using the polygon selection tools to draw a circle
around the cells.

Astrocyte Domain Analysis
All confocal images for Imaris analysis were taken with a 40×oil-
immersion objective lens. Images were taken under optimized
setting to best show the astrocyte morphology. The settings
were consistent across all age groups. For the morphological
analysis of astrocytes, a 3D reconstruction was first generated
using the original confocal Z-stack images in Imaris software.
The surface tool was then used to build the domain. This
function uses an automatic smoothing of the image with the
Gaussian filter. A tdT fluorescence-negative area in each of
the confocal stack images was used as the internal control to
determine the background fluorescence. The sensitivity threshold
(absolute intensity) was manually adjusted so that the generated
astrocyte domains in the 3D images matched with the original
confocal images. The cell somas were then detected based on
size (≤12 µm in diameter) and used as seeding points to
build the 3D domain. The quality (intensity) threshold was also
manually adjusted to ensure that all cell somas were detected
in a given image. The seeded watershed algorithm enables the
Imaris software to recognize and split the domains of neighboring
cells. Cells that were only partially included in confocal and
3D images were excluded from analysis. The volume size of
individual astrocytes can be directly measured from generated 3D
domains in Imaris.

Statistical Analysis
Sample size and statistical approach used for each experiment
are described in figure legends. All analysis was performed using
GraphPad Prism 7. All values were plotted as mean ± SEM,
except for the astrocyte domain size values, which were converted
to cumulative frequency. The Kolmogorov–Smirnov test was
used to analyze significance for all cumulative frequency curves.
For multiple groups (>2), one-way ANOVA was used to analyze
the variance, followed by a Tukey post hoc test to compare
multiple groups. For two-group comparison, an unpaired two-
tailed t-test was used. Statistical significance was tested at a 95%
(p < 0.05) confidence level and the exact p-values are presented
in each figure panel and legend.

RESULTS

Proliferation of Subcortical Astrocytes
During Early Postnatal Development
Previous studies found that the peak of astrocyte proliferation
in the cortex occurs within the first postnatal week, after
which these astrocytes become gradually proliferation quiescent
(Ge et al., 2012). To examine the proliferation dynamics
of subcortical astrocytes during postnatal development, we
combined the genetic labeling of astrocytes using Cre-dependent
Ai14-tdTf/f mice and EdU pulse-chase for labeling proliferating
cells (Figure 1A). Although astrocytes can be conventionally
identified by immunostaining of glial fibrillary acidic protein
(GFAP) and recently aldehyde dehydrogenase L1 (ALDH1L1)
(Cahoy et al., 2008; Yang et al., 2011), these immunostaining
signals can be incomplete (in the case of GFAP) (Fujita et al.,
2014) or weak (in the case of ALDH1L1) (Yang et al., 2011) and
often more evident in astroglial processes than the cell body,
making it ambiguous to clearly identify and quantify individual
astrocytes. Alternatively, we bred Bac Slc1a3 CreERT transgenic
mice with Ai14-tdTomato (tdT) reporter mice in which the tdT
reporter can be induced in a Cre-dependent manner in astroglial
soma and processes, facilitating the confident quantification of
individual astrocytes in the CNS. Glutamate transporters GLAST
and GLT1 (human analog EAAT1 and EAAT2, encoded by
Slc1a3 and Slc1a2, respectively) are both highly and selectively
expressed in astrocytes during postnatal development in the
CNS (Rothstein et al., 1994). Although the Slc1a3 genomic
promoter is also active in RG during late embryogenesis (Regan
et al., 2007), RG’s fate is destined toward astrocytes at P1–
2 (Rowitch and Kriegstein, 2010) when 4-hydroxy-tamoxifen
(4-OHT) was administered. Consequently, it is unlikely that
Slc1a3-Cre induced tdT is expressed in other CNS cell types
in Slc1a3-CreERT+Ai14-tdTf/+ mice. We have also previously
performed immunostaining with cell-type specific markers to
confirm that tdT is indeed expressed in astrocytes, but not in
other CNS cells, in cortex (Higashimori et al., 2016). In addition
to astrocyte labeling, we also performed a single intraperitoneal
(i.p.) injection of EdU to Slc1a3-CreERT+Ai14-tdTf/+mice. EdU
is a nucleotide analog that can be incorporated into DNA during
the DNA synthesis phase of the cell cycle, thus reliably and
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FIGURE 1 | Genetic labeling of astrocytes and EdU pulse-chase labeling of proliferating cells during postnatal development. (A) Experimental paradigm for genetic
labeling of astrocytes and EdU pulse-chase labeling of proliferating cells at different time points postnatally; specific time points for 4-OHT and EdU injections are
indicated. (B) Representative images of astrocyte labeling with the tdT reporter in slc1a3-CreERT+Ai14-tdTf/+ mice and EdU labeling of proliferating cells in P7
brain; magnified images show cortical astrocytes. Magenta arrow, tdT+EdU− cell; white arrow, tdT−EdU+ cell; yellow arrow, tdT+EdU+ cell. Scale bar: 1 mm (i–iii),
10 µm (i’–iii’).

selectively labeling proliferating cells. Although EdU-mediated
labeling of proliferating cells can continue for more than one
cycle of division, its quantification still allows us to assess the
overall proliferation activity in a given time period.

To examine astrocyte proliferation within a specified postnatal
period of time, we decided to inject EdU at P3, P8, or P15 to
label proliferating cells during the postnatal period from P3 to
P7 (week 1), P8 to P14 (week 2), and P15 to P30 (weeks 3–
4), respectively (Figure 1A). Based on the previously observed
significant decrease of cortical astrocyte proliferation from P15
to P30, we decide to combine weeks 3 and 4 in assessing astrocyte
proliferation activity during this time period. In all experimental
groups, 4-OHT was injected at P1–2 to selectively induce
expression of tdT in astrocytes. With the combined injections of
4-OHT and EdU, proliferating astrocytes, -likely from multiple
cycles of divisions, are labeled as tdT+EdU+ cells that can
be unbiasedly quantified to reflect the proliferation activity of
astrocytes during indicated periods (Figure 1A) of early postnatal
development. We tested combinations of dose and frequency of

EdU and 4-OHT injections to achieve optimal numbers of cell
labeling for quantification. The combined injections of 4-OHT
and EdU resulted in efficient induction of tdT expression in
astrocytes (Figure 1Bi and the magnified view i’) and sufficient
labeling of proliferating cells (Figure 1Bii and the magnified view
ii’) in the CNS. Co-localized tdT and EdU labeled (tdT+EdU+,
yellow arrow), tdT+ alone (tdT+EdU−, magenta arrow), or
EdU+ alone (tdT−EdU+, white arrow) cells were all observed
(Figure 1Biii’). Although our strategy is not designed to label all
astrocytes or proliferating cells, the number of labeled astrocytes
and proliferating cells is sufficient for examining astrocyte
proliferation activity in both cortex and subcortical regions.
On the other hand, it is known that other CNS cell types,
particularly polydendrocyte NG2 cells, also actively proliferate
during early postnatal development (Kang et al., 2010), thus it
is not unexpected that some EdU+ proliferating cells do not
overlap with tdT+ astrocytes. In addition, it is also possible that
not all tdT+ astrocytes were sampled by the EdU injection or
underwent division at the time when EdU was injected. Overall,
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the combined labeling of astrocytes and proliferating cells allows
temporal and spatial quantification of proliferating astrocytes, as
an indication of overall astrocyte proliferation activity, during
early postnatal development.

To analyze astrocyte proliferation in subcortical regions,
especially thalamus and hypothalamus, we prepared sagittal
sections from Slc1a3-CreERT+Ai14-tdTf/+ mice following 4-
OHT and EdU injections at different time points. The total
number of tdT+, EdU+, and tT+EdU+ cells were quantified
from the whole thalamus, hypothalamus, and cortex regions,
highlighted with white crosses and yellow dots (indicating
individual cells, Figure 2A) using the ROI script in ImageJ.
As the brain regions analyzed undergo rapid expansion
during early postnatal development, we first measured the
size of the quantified brain regions and found that the
cortex region expands substantially faster (slope of linear
regression = 0.76 mm2/day, Figure 2B) than subcortical regions
(slope of linear regression = 0.17 or 0.19 mm2/day for
hypothalamus or thalamus, respectively, Figure 2B). The area of
these brain regions was also used to calculate the density of total
tdT+, EdU+, and tdT+EdU+ cells in these regions. We found
that the density (number of cells/mm2) of tdT+ astrocytes was
highest in cortex compared to thalamus and hypothalamus at
P7 and P14 (Figure 2C). The density of astrocytes significantly
decreased in all regions examined as brain volume rapidly
increases in postnatal weeks 2–4 (Figure 2C). Although the
density of EdU+ cells was generally comparable in all regions
examined at P7 and P14 (Figure 2D), it was significantly higher
in thalamus and hypothalamus than in cortex at P30 (Figure 2D),
suggesting that proliferation activity in these regions remains
active while cortical proliferation is much reduced from P15 to
P30. It is noted that the density of EdU+ cells at P7 is highest
in the cortex, though not significantly different from that in
thalamus and hypothalamus, possibly due to the incomplete
labeling of all proliferating cells. Similarly, although the density
of tdT+EdU+ cells, presumably proliferating astrocytes, is higher
in cortex than that in hypothalamus at P7 (Figure 2E), the density
of tdT+EdU+ cells becomes significantly higher in thalamus
(p = 0.002) and hypothalamus (p = 0.019) than in cortex at P30
(Figure 2G). The density of tdT+EdU+ astrocytes is comparable
across all examined regions at P14 (Figure 2F).

Although the Slc1a3 promoter is widely active in astrocytes
in the CNS, recent studies have indicated a dorsal to ventral
axis heterogeneity in astrocyte gene expression (Farmer et al.,
2016; Morel et al., 2017) in which the Slc1a3 promoter could be
heterogeneously activated in cortical and subcortical astrocytes.
As a result, this potential Slc1a3 promoter activity heterogeneity
may become a confounding factor in quantifying genetically
labeled astrocytes. We then decided to determine whether there
is a comparable genetic labeling efficiency of astrocytes in
cortex and hypothalamus in Slc1a3-CreER+Ai14-tdTf/+ mice.
As it is likely that tdT+-mediated labeling of astrocytes is
incomplete with Slc1a3-CreER+Ai14-tdT+ tamoxifen-injected
mice, we employed Bac Aldh1l1-eGFP astrocyte reporter mice
in which most if not all astrocytes are labeled with eGFP
across the CNS based on previous studies (Cahoy et al., 2008),
and quantified the number of eGFP+ astrocytes in cortex and

hypothalamus respectively in a size-matched area as in Slc1a3-
CreER+Ai14-tdT+ mice. Interestingly, although cortex size
expands significantly faster than hypothalamus during postnatal
development (P7–30, Figure 2B), our quantification consistently
found that cortical astrocyte density (# of astrocytes/mm2) is
only 74–80% of hypothalamic astrocyte density during the same
time period depending on the exact time point examined. Based
on eGFP+ and tdT+ astrocyte numbers from Bac Aldh1l1-eGFP
and Slc1a3-CreER+Ai-14-tdTf/+ mice in corresponding regions
(size-matched) and time points, we calculated the genetic labeling
efficiency of astrocytes in cortex and hypothalamus from P3
to P7, P8 to P14, and P15 to P30 (Figure 2H) and found
that the genetic labeling efficiency of astrocytes in cortex is
typically 1.5 to 2-fold higher than that of hypothalamic astrocytes
(Figure 2H). To eliminate the influence of the differential
genetic labeling efficiency of astrocytes in these regions on the
analysis, we calculated the percentage of proliferating astrocytes
(tdT+EdU+/tdT+) and found that both hypothalamus and
thalamus have a substantially higher percentage of proliferating
astrocytes (p < 0.0001) than in cortex from P15 to P30
(Figure 2I), consistent with the density-based proliferative
astrocyte analysis in Figure 2G.

As it is likely that EdU-mediated labeling could pass several
cycles of cell division, to further assess astrocyte proliferation
activity in cortex and hypothalamus during early postnatal
development, we performed immunostaining of Ki67, a nuclear
marker of active proliferation, on cortical and hypothalamic
sections of Slc1a3-CreER+Ai14-tdT+ mice at different time
points of postnatal development (Figure 3A) to provide a
snapshot assessment of the proliferating astrocytes in these
regions. As shown in Figure 3B, we observed widespread
labeling of tdT+ astrocytes in brain and clear co-localization
of tdT reporter with Ki67 immunoreactivity, an indication of
proliferative astrocytes. The quantification of total tdT+ and
tdT+Ki67+ astrocytes showed 25% more proliferating astrocytes
in cortex than in hypothalamus at P7 (Figure 3C), while 40%
more proliferating astrocytes were observed in hypothalamus
than in cortex at P14/P15 (Figure 3D). To assess whether
astrocytes at cortex and hypothalamus still actively divide at P30
and beyond, we further performed immunostaining of Ki67 and
Sox9, a recently characterized nuclear marker of adult astrocytes
(Sun et al., 2017), and found essentially no Ki67+ cells or
Ki67+Sox9+ astrocytes at P30 in both cortex and hypothalamus
(data not shown), suggesting that astrocytes in these regions
become essentially proliferatively quiescent at P30 and beyond.
These Ki67 snapshot analysis results further support our EdU-
based analysis that more cortical astrocytes are proliferatively
active than hypothalamic astrocytes at P7, but hypothalamic
astrocytes are significantly more active in proliferation than
cortical astrocytes from P15 to P30. Taken together, these
results unveil distinct dynamics of astrocyte proliferation in
subcortical regions of thalamus and particularly hypothalamus
in comparison to cortical astrocytes. Consistent with previous
observations (Ge et al., 2012), we found that cortical astrocytes
robustly proliferate early at P7, but that the proliferation activity
of these astrocytes is drastically reduced after the first week. In
contrast, astrocytes in thalamus and particularly hypothalamus
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FIGURE 2 | Temporal proliferation dynamics of subcortical astrocytes during postnatal development. (A) Representative images highlighting the cortex, thalamus,
and hypothalamus for quantifying proliferating cells; scale bar: 2 mm. Each white cross with a yellow dot represents an individual cell. (B) Changes in the size of
cortex, thalamus, and hypothalamus during early postnatal development. One-way ANOVA with Tukey’s post hoc test; significant differences between the means at
P7 (p = 0.001, F(2,12) = 12.49) and P30 (p < 0.0001, F(2,9) = 482.38). Density of tdT+ [significant differences between the means at P7 (p = 0.044, F(2,7) = 5.027)
and P14 (p = 0.002, F(2,4) = 49.8)] (C) or EDU+ [significant difference between the means at P30 (p < 0.0001, F(2,9) = 34.85)] (D) cells in cortex, thalamus, and
hypothalamus during postnatal development. p-values determined by one-way ANOVA and post hoc Tukey’s test. Density of tdT+EdU+ cells in cortex, thalamus, or
hypothalamus generated from P3–7 (E), P8–14 (F), and P15–30 (G); one-way ANOVA followed by post hoc Tukey’s test, significant difference between the means at
P30 (p = 0.002, F(2,9)=13.2). (H) Calculated genetic labeling efficiency of astrocytes from P3–7, P8–14, and P15–30 in cortex and hypothalamus. (I) Percentage of
proliferating astrocytes (tdT+EdU+/tdT+) in cortex, thalamus, or hypothalamus from P15–30; one-way ANOVA with Tukey’s post hoc test; significant differences
between the means (p < 0.0001, F(2,8) = 140.8). n = 3 images/mouse for 4–5 individual mice. A total of 3000–5000 tdT+ or EDU+ cells were quantified from three
images/mouse per region/time point (a total of 4–5 mice per condition). All p-values shown in the figure were determined by post hoc analysis, and if not otherwise
specified represent a comparison between cortex and thalamus.
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FIGURE 3 | Astrocyte proliferation activity in cortex and hypothalamus determined by genetic labeling of astrocytes and Ki67 immunostaining. (A) Experimental
strategy for genetic labeling of astrocytes and Ki-67 staining of proliferating cells at different postnatal time points. (B) Representative images of astrocyte labeling
with the tdT reporter in Slc1a3-CreERT+Ai14-tdTf/+ mice and Ki-67 labeling of actively proliferating cells in P7 brain; magnified images show cortical astrocytes.
Scale bars: 1 mm (left panel), 30 µm (magnified images). Percentage of proliferating astrocytes (100 × tdT+Ki-67+/tdT+) in cortex and hypothalamus at P7 (C) and
P14/P15 (D); n = 3 images/mouse from 3–4 individual mice per region/time point. p-values determined by unpaired two-tailed t-test.

become more active in proliferation than cortical astrocytes later
in early postnatal development.

Morphological Maturation of Subcortical
Astrocytes During Postnatal
Development
Previous studies have found that cortical and hippocampal
astrocytes undergo a maturation process during which the
cell domain size significantly increases by growing abundant

fine processes (Bushong et al., 2002; Morel et al., 2014).
To determine whether subcortical astrocytes also undergo
a similar morphological maturation process, we quantified
hypothalamic astrocyte domain size from confocal images of
EAAT2-tdT astrocyte reporter mice. We have previously shown
that the tdT reporter is able to illustrate the full morphology
of mature astrocytes, allowing direct measurement of the
domain size (volume) of individual astrocytes from confocal
images using Imaris image analysis software (Morel et al.,
2014). Representative confocal and 3D Imaris images from
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FIGURE 4 | Morphological maturation of subcortical astrocytes during postnatal development. (A) Representative confocal and 3D images of astrocytes from
hypothalamus of eaat2-tdT mice. Scale bar: 20 µm; (B) cumulative frequency curve of astroglial domain size in hypothalamus at different postnatal developmental
time points (P7, P14, and P26). n = 60 astrocytes/group from multiple mice; (C) representative confocal and 3D images of astrocytes from different brain regions of
eaat2-tdT mice at P30. Scale bar: 20 µm; (D) cumulative frequency curve of astroglial domain size in these brain regions. The insert bar graph represents the
average astroglial domain size (one-way ANOVA, significant differences between the means, p = 0.002, F(3,145) = 5.220). n = 50–84 astroglia/group from multiple
mice; p-value in the figure determined by post hoc Tukey’s test. (E) Cumulative frequency curve of thalamic astroglial domain size in VGluT1−/−tdT+ and
VGluT1+/+tdT+ mice. n = 70 astrocytes/group from multiple mice; n.s., not significant.

hypothalamic astrocytes of EAAT2-tdT mice are shown in
Figure 4A. Subsequent quantification of domain size found that
a majority of hypothalamic astrocytes have similar domain size
at P7, P14, and P26, with only a small portion of astrocytes
(∼20%) substantially growing their domain size from P7 to
P26 (Figure 4B). These results reveal for the first time that

hypothalamic astrocyte domain size only has a very modest
growth during postnatal development, in sharp contrast to the
dramatic growth of cortical astrocyte domain size during the
same developmental period.

In addition to the small hypothalamic astrocyte domain
size at P26, to gain insights about the morphological features
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FIGURE 5 | Differential expression of Sparc in cortical and hypothalamic astrocytes during postnatal development. (A) Representative images of Sparc
immunostaining in cortex and hypothalamus of Bac Aldh1l1-eGFP astrocyte reporter mice at P7; white arrows, positive Sparc immunostaining in eGFP+ astrocytes;
scale bar: 50 µm. Quantification of Sparc intensity in eGFP+ astrocytes in cortex and hypothalamus at P7 (B), P14 (C), and P30 (D). n = 118–134 astrocytes/group
from multiple mice; p-values were determined by unpaired two-tailed t-test.

of astrocytes in other subcortical regions, we next measured
the domain size of astrocytes from other representative
subcortical regions (thalamus and lateral caudate putamen) from
EAAT2-tdT mice, as shown in Figure 4C. The astrocytes in
these subcortical regions appear morphologically less complex
than those in cortex at P30 (Figure 4C). In particular,
the enormous arborization of astroglial branches typically
found in cortical astrocytes was not evident in astrocytes
from other regions (Figure 4C). Subsequent quantification
confirmed that astroglial domain size is smallest in the
hypothalamus (2212 mm3) and largest in the cortex (6687 mm3)
(Figure 4D). We previously showed that the arborization
of cortical astroglial branches can be regulated by local
VGluT1+ neuronal glutamatergic signaling (Morel et al., 2014).
To determine whether astrocytes in subcortical regions are
regulated by the same mechanism, we quantified astroglial
domain size in the thalamus from VGluT1+/+tdT+ and
VGluT1−/−tdT+ mice at P30. We and others have previously
shown that the loss of VGluT1 drastically reduces glutamatergic
signaling in the CNS (Fremeau et al., 2004). As shown in
Figure 4E, the distribution of thalamic astroglial domain size
is similar in VGluT1−/−tdT+ and VGluT1+/+tdT+ mice,
suggesting that thalamic astroglia domain size is not influenced
by the loss of neuronal VGluT1+ glutamatergic signaling.
We previously also observed similar results in hypothalamic
astrocytes of VGluT1−/−tdT+ and VGluT1+/+tdT+ mice
(Morel et al., 2014). The selective effect of VGluT1+ neuronal

signaling on cortical but not on thalamic (and hypothalamic)
astrocyte domain size indicates a region-specific regulatory
mechanism for astrocyte morphological maturation during
postnatal development.

We recently profiled translating mRNAs in adult astrocytes
from multiple brain regions, through which we identified several
genes that are differentially expressed in astrocytes across brain
regions (Morel et al., 2017). In particular, we found that the
expression of Sparc, one of astrocyte-secreted modulators of
synaptogenesis (Allen and Eroglu, 2017), is substantially higher
in adult subcortical (hypothalamic and thalamic) astrocytes
than in cortical and hippocampal astrocytes. To determine
whether the differential expression pattern of Sparc in these
regions stems from earlier developmental stages, we performed
immunostaining of Sparc in cortex and hypothalamus of Bac
Aldh1l1-eGFP astroglial reporter mice at different developmental
time points (P7, P14, and P30). As shown in Figure 5A,
Sparc immunoreactivity is widely co-localized with eGFP+
astrocytes (white arrows) in both regions at P7 (representative
images for other developmental time points not shown).
Quantification of Sparc immunoreactivity in eGFP+ astrocytes
showed that Sparc immunoreactivity in hypothalamic astrocytes
is significantly higher than that in cortical astrocytes as early
as P7 and persists at P14 and P30 (Figure 5B–D), suggesting
that the differential expression pattern of Sparc in astrocytes
starts in early astrogliogenesis and continues through postnatal
development into the adult.
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DISCUSSION

In the current study, we investigated the postnatal proliferation
and maturation of astrocytes in subcortical regions by employing
astrocyte genetic and EdU pulse-chase labeling. In contrast
to the robust proliferation of cortical astrocytes within the
first postnatal week, we found that astrocytes in subcortical
regions, particularly in hypothalamus are less proliferatively
active than cortical astrocytes during the same period. However,
a significantly higher percentage of hypothalamic astrocytes
remain proliferatively active from P15 to P30 than cortical
astrocytes, indicating that hypothalamic astrocytes have a distinct
temporal, particularly a more persistent proliferation dynamic
in comparison to cortical astrocytes. This is also in parallel to
our quantification that hypothalamic astrocyte density is 20–
26% higher than cortical astrocyte density throughout postnatal
development. As the area of cortex expands at a faster rate than
subcortical regions (Figure 2B), it is unlikely that the increased
percentage of proliferative astrocytes in subcortical regions from
P15 to P30 is due to a greater territorial expansion of those brain
regions compared to cortex.

Although our combined use of astrocyte genetic and EdU
pulse-chase labeling effectively labels proliferating astrocytes, as
we intended to assess the proliferation activity of astrocytes but
not to label all proliferating cells at a given time period, we decide
not to inject a high dose of EdU or perform repeated injections to
label all proliferating cells. Similarly, our EdU injection dose also
serves to sample but not label all proliferating cells. As a result,
it is possible that not all dividing tdT+ astrocytes were sampled
by the EdU injection or underwent division at the time when
EdU was injected. In addition, as EdU likely labels more than
one cycle of dividing cells, EdU-based quantification may include
the number of proliferating astrocytes from multiple generations,
which is different from the single-day snapshot quantification
based on Ki67 immunostaining. Despite the difference in
quantifying proliferative astrocytes, both approaches showed
similar results that astrocyte proliferation activity is switched in
cortex and hypothalamus during early postnatal development.
Given the observation that there is a higher percentage of
proliferative astrocytes at P14/P15 in hypothalamus and that
there are essentially no proliferative astrocytes at P30 in both
regions (based on Ki67/Sox9 staining and (Ge et al., 2012), it is
likely that hypothalamic astrocytes are persistently more active
than cortical astrocytes from P15 until astrocytes from both
regions become quiescent near the P30 time point.

The distinct proliferation dynamics between cortical and
subcortical (hypothalamic) astrocytes are likely to closely
associate with the unique characteristics of synaptogenesis in
each brain region. Immature (but not mature) cortical astrocytes
are known to secret extracellular matrix proteins, such as
thrombospondin (Thbs), hevin, and glypican, etc., (Allen and
Eroglu, 2017) to actively promote the formation and function
of glutamatergic synaptogenesis that is the dominant synapse
type in cortex. Therefore, the massive generation of immature
cortical astrocytes in a relatively short time period may potentially
facilitate the supply of such extracellular proteins to promote
glutamatergic synaptogenesis in the cortex. In contrast, as

interneurons are more widely distributed in hypothalamus
(Obrietan and van den Pol, 1995) and Thbs/hevin/glypican have
no apparent effect on promoting GABAergic synaptogenesis
(Allen and Eroglu, 2017), it is not unexpected that hypothalamic
astrocyte proliferative activity is low at first. In addition to the
distinct proliferation dynamics, we found that Sparc expression
is significantly higher in hypothalamic astrocytes than in cortical
astrocytes as early as P7. As Sparc antagonizes the synaptogenic
effect of hevin during glutamatergic synaptogenesis (Kucukdereli
et al., 2011), higher Sparc levels may also help maintain a
GABAergic synaptic environment in the hypothalamus. This is
also consistent with the observation that the growth of astrocyte
domain size in subcortical thalamus and hypothalamus is not
influenced by the loss of glutamatergic synaptic signaling in
VGluT1−/− mice. The higher Sparc levels at P7 also support
the notion that the molecular differences between adult cortical
and hypothalamic astrocytes are likely to be predetermined in
progenitors that are heterogeneously positioned along the VZ
during late embryogenesis. Moreover, astrocytes in representative
subcortical regions also show a modest growth of their domain
sizes and exhibit a significantly smaller domain size compared
to that of cortical astrocytes at P30 when astrocytes generally
complete postnatal maturation. This likely reflects a difference
in astroglial coverage on synapses in these regions, which
subsequently affects how astrocytes modulate synaptic signaling.
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The brainstem is a posterior region of the brain, composed of three parts, midbrain,
pons, and medulla oblongata. It is critical in controlling heartbeat, blood pressure,
and respiration, all of which are life-sustaining functions, and therefore, damages to
or disorders of the brainstem can be lethal. Brain organoids derived from human
pluripotent stem cells (hPSCs) recapitulate the course of human brain development and
are expected to be useful for medical research on central nervous system disorders.
However, existing organoid models are limited in the extent hPSCs recapitulate human
brain development and hence are not able to fully elucidate the diseases affecting
various components of the brain such as brainstem. Here, we developed a method
to generate human brainstem organoids (hBSOs), containing midbrain/hindbrain
progenitors, noradrenergic and cholinergic neurons, dopaminergic neurons, and neural
crest lineage cells. Single-cell RNA sequence (scRNA-seq) analysis, together with
evidence from proteomics and electrophysiology, revealed that the cellular population in
these organoids was similar to that of the human brainstem, which raises the possibility
of making use of hBSOs in investigating central nervous system disorders affecting
brainstem and in efficient drug screenings.

Keywords: brain organoids, brainstem, neural crest, midbrain, dopaminergic neurons, human pluripotent stem
cells, melanocyte
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INTRODUCTION

The brainstem is a posterior region of the brain between
the deep structures of the cerebral hemispheres. It connects
the cerebrum with the spinal cord and is divided into three
parts: midbrain, pons, and medulla oblongata. They contain
multiple nuclei and small fiber tracts widely projecting to
the cerebrum cortex, basal ganglia, and other parts of the
cerebrum. Brainstem functions such as alertness, heartbeat, blood
pressure, and respiration are considered to be more vital for
life than that of the cortex. Therefore, damages to or disorders
of brainstem including infarction, hemorrhage, tumors, or any
neurodegenerative diseases may lead to death. To investigate
the pathology of these diseases and to establish novel therapies,
models recapitulating brainstem tissue are needed.

Recent progress on protocols for inducing organs in-a-dish
(organoids) provides potentials for the modeling of various
diseases (Clevers, 2016). Organoids mimic the structure of organs
composed of various cells such as the kidney (Takasato et al.,
2015), brain (Dang et al., 2016), colon (Sato et al., 2009), and
retina (Eiraku et al., 2011; Nakano et al., 2012). The use of brain
organoids is a recognized method for the recapitulation of human
fetal development during in vitro cultivation (Lancaster et al.,
2013; Lancaster and Knoblich, 2014; Trujillo et al., 2019).

However, improvements to the protocols are still needed,
particularly in aspects such as the maturity, efficiency, and the
extent of recapitulation captured in the organoids. Recently, a
protocol for generating human midbrain-like organoids from
human pluripotent stem cells (hPSCs) was reported (Jo et al.,
2016). There are also reports on the effects of reagents or
growth factors on the differentiation of dopaminergic neurons
(Diaz et al., 2009; Ayton et al., 2016; Lee et al., 2016). Based
on these findings, we designed a new method for generating a
human brainstem organoid (hBSO) model where the midbrain,
surrounding brainstem parts, and neural crest region behind
them are induced by the addition of basic fibroblast growth
factor (bFGF) and epidermal growth factor (EGF) for neuronal
stem/progenitor cells expansion. This is followed by treatment
with brain-derived neurotrophic factor (BDNF), glial cell line–
derived neurotrophic factor (GDNF), neurotrophin 3 (NT-3),
cyclic adenosine monophosphate (cAMP), and ascorbic acid for
the differentiation of dopaminergic neurons. In the present study,
we established a novel method for inducing hBSOs. We believe
our methods will become a powerful tool in examining the
pathology of neurodegenerative or neurodevelopmental diseases
affecting the brainstem.

MATERIALS AND METHODS

Cell Culture
Human induced pluripotent stem cells (iPSCs) and embryonic
stem cells (ESCs) are maintained in feeder-free condition
with mTeSR1 media. Human iPSC line (XY) was obtained
from Takara, Kusatsu, Shiga, Japan, and human H9 ESC
line (WA09) was purchased from WiCell Research Institute,
Madison, WI, United States. Embryonic stem cells and iPSCs

were cultivated in mTeSR1 medium (Stemcell Technologies,
Vancouver, British Columbia, Canada), based on feeder-free
culture protocols on six-well plates (Corning, Corning, NY,
United States), coated with growth factors reduced Matrigel (BD
Biosciences, San Jose, CA, United States). At the time of passage,
we added ROCK inhibitor (final concentration 10 µM; Selleck
Chemicals, Houston, Texas, United States). These cells were
maintained with daily medium change without ROCK inhibitor
until they reached approximately 70% confluence. Then, they
were detached by Versene Solution (Thermo Fisher Scientific,
Waltham, MA, United States) and seeded by 1:20 dilution ratio.

Human Brainstem Organoid Generation
The hBSOs were generated with some modifications on the
cerebral cortical organoid protocol (Thomas et al., 2017; Trujillo
et al., 2018). Human iPSCs/ESCs were gently dissociated by
10 min of treatment with 50% Accutase (Sigma A6964) in
phosphate-buffered saline (PBS). Detached cells were transferred
to six-well plates at the density of four million cells in
5 ml mTeSR1 medium with 5 µM ROCK inhibitor, 1 mM
dorsomorphin (Wako, 040-33753) and 10 µM SB431542
(Cayman Chemical, 13031) per well in six-well plates on the
orbit shaker (WakenBtech) to keep the cells in suspension.
For neural induction from day 3, media was switched to one
composed of neurobasal medium (Thermo Fisher Scientific,
Waltham, MA, United States) and 2× Gem21NeuroPlex
(Gemini Bio-Products, CA, United States), 1× non-essential
amino acid solution (NEAA, Sigma-Aldrich), 1× GlutaMAX
(Thermo Fisher Scientific, Waltham, MA, United States), 1 mM
dorsomorphin, 10 µM SB431542, 10 µM transferrin, 5 mg/L
human insulin, and 0.063 mg/L progesterone. After 9 days
of exposure to dorsomorphin and SB431542, we treated the
cells with 20 ng/mL bFGF (Peprotech, AF-100-18B) to induce
neural progenitor cell (NPC) proliferation in the presence of
neurobasal-A medium (Thermo Fisher Scientific, Waltham, MA,
United States), supplemented with 2× Gem21NeuroPlex, 1×
NEAA, 1× GlutaMax, 10 µM transferrin, 5 mg/L human insulin,
and 0.063 mg/L progesterone until day 16. Cells were then kept
in the same media containing not only 20 ng/mL bFGF, but also
20 ng/mL EGF (Wako, 059-07873) until day 22. After day 22, EGF
and bFGF were replaced by ascorbic acid (nacalai, 13048-42),
cAMP (nacalai, 11540-74), BDNF (Wako, 028-16451), GDNF
(Wako, 075-04153), and NT-3 (Peprotech, 450-03). After day 28,
cells were cultivated without any growth factors for neuronal
maturation. Organoid results were combined from at least three
separate batches of inductions.

Human Cerebral Organoid Generation
The human cerebral organoids (hCOs) were generated as per
previously reported protocols (Lancaster et al., 2013; Lancaster
and Knoblich, 2014). Human iPSCs/ESCs were detached and
subjected to embryoid body (EB) induction using the protocol.
After 4 days, half of the media was replaced by human EB
medium without ROCK inhibitor and bFGF. After 2 days, the EBs
were transferred into a neural induction media and embedded in
Matrigel after 5 days. The organoids were subsequently induced
by the use of an orbital shaker, following the original protocol.
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Immunohistochemical Analysis
Each human cerebral or brainstem organoid was fixed in 4%
paraformaldehyde in PBS overnight at 4◦C, dehydrated with 30%
sucrose in PBS and embedded in O.C.T. compound (Thermo
Fisher Scientific, Waltham, MA, United States). Cryostat sections
(14 µm) were cut and mounted onto slides (Thermo Fisher
Scientific, Waltham, MA, United States). Mounted sections were
incubated for 1 h at room temperature with blocking solution [3%
normal goat serum + 0.3% Triton X-100 in Tris-buffered saline
(TBS)] and incubated with primary antibodies (Supplementary
Table S1) diluted in blocking solution overnight at 4◦C. After
three washes with TBS, corresponding fluorophore-conjugated
secondary antibodies diluted in the blocking solution were added
and incubated for 2 h at room temperature and followed by DAPI
staining. Finally, stained slides were rinsed with TBS three times,
mounted, and analyzed using a FV3000 Confocal Microscope
(Olympus, Shinjuku, Tokyo, Japan).

RNA Isolation, Reverse
Transcriptase–Polymerase Chain
Reaction, and Quantitative Polymerase
Chain Reaction
RNA from hCOs/hBSOs and ESCs was extracted according
to the protocol supplied with TRIzol reagent (15596018;
Thermo Fisher Scientific, Waltham, MA, United States).
The concentration and purity of the RNA samples were
measured using Spectrophotometer (Beckman Coulter, Brea,
CA, United States). Extracted RNA samples were either
shipped to bioengineering laboratory for RNA sequencing
analysis or subjected to reverse transcriptase–polymerase chain
reaction (RT-PCR). For RT-PCR, the extracted RNAs were
reverse transcribed according to the protocol supplied with
ReverTra Ace qPCR RT Master Mix (FSQ-201; TOYOBO,
Osaka, Osaka, Japan). StepOne Plus Real-time PCR System
(Thermo Fisher Scientific, Waltham, MA, United States) was
used to amplify and quantify levels of target gene cDNA.
Real-time quantitative RT-PCR (qRT-PCR) was performed with
SsoAdvanced Universal SYBR Green Supermix (172-5271; Bio-
Rad Laboratories, Hercules, CA, United States) and specific
primers for qRT-PCR (Supplementary Table S2). The cycling
conditions for PCR program were 2 min at 95◦C for activation
followed by 40 cycles of 95◦C, over a duration of 5 s for
denaturation, 60◦C for 30 s for annealing, 95◦C for 15 s, 60◦C
for 30 s, and 95◦C for 15 s for melt curve stage. Reactions were
run in triplicate. The expression of each gene was normalized
to the geometric mean of β-actin as a housekeeping gene and
analyzed using the 11CT method. Mean threshold cycle values
of each gene in qPCR are shown in Supplementary Tables S3
and S4. Statistical significance was calculated by a two-tailed
Student t test. A p value of less than 0.05 was considered
statistically significant.

RNA Sequencing
Total RNA was isolated from cells using the PureLink RNA Mini
Kit (12183018A) according to the manufacturer’s instructions.
RNA concentration was analyzed by Qubit RNA HS Assay

Kit (Thermo Fisher Scientific, Waltham, MA, United States),
and the purity was assessed using the Qsep100 DNA Fragment
Analyzer and RNA R1 Cartridge (BiOptic, New Taipei City,
Taiwan). Subsequently, total RNA was converted to cDNA and
used for Illumina sequencing library preparation based on the
KAPA Stranded mRNA-Seq Kit protocols (KAPA Biosystems,
Wilmington, MA, United States). DNA fragments were then
subjected to adapter ligation, where dsDNA adapters with 3’-
dTMP overhangs were ligated to A-tailed library insert fragments
by FastGene Adapter Kit (NIPPON Genetics, Bunkyo, Tokyo,
Japan). The purified cDNA library products were evaluated using
Qubit and dsDNA HS Assay Kit (Thermo Fisher Scientific,
Waltham, MA, United States), followed by quality assessment
using the Fragment Analyzer and dsDNA 915 Reagent Kit
(Advanced Analytical Technologies, Ankeny, IA, United States)
and finally by sequencing (2 × 75 bp) on NextSeq 500 (Illumina,
San Diego, CA, United States).

Transcriptome Analysis
A count-based differential expression analysis “TCC” was used
to identify differently expressed genes (DEGs) in the RNA-
seq data with a thresholded false discovery rate of 20% (Sun
et al., 2013). iRegulon (Janky et al., 2014) was used to identify
transcription factors (TFs) potentially regulating the DEG with
normalized enrichment scores >4 as the threshold. Genotype-
Tissue Expression (GTEx) (GTEx Consortium, 2013) was used
to analyze the similarity of expression pattern between organoids
and various tissues in the brain.

Electrophysiology
Electrophysiological recordings of the cells in hBSOs at 3 months
were performed. An organoid was transferred to a glass-bottom
recording chamber on an upright microscope (Leica DM LFS;
Leica, Wetzlar, Germany) and continuously perfused with an
extracellular solution containing (in mM) 125 NaCl, 2.5 KCl, 2
CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3 and 25 glucose and
aeration with 95% O2 and 5% CO2 (pH 7.4) at a rate of 2 mL/min.
The organoid was held down by a weighted net to prevent it
from moving. The bath temperature was maintained at 30–32◦C
using an in-line heater (TC-324B; Warner Instruments, Hamden,
CT, United States). Whole-cell current-clamp recordings were
performed using an EPC-8 patch-clamp amplifier (HEKA,
Darmstadt, Germany). Patch pipettes were prepared from
borosilicate glass capillaries and filled with an internal solution
containing (in mM) 120 K-methylsulfate, 10 KCl, 0.2 EGTA, 2
MgATP, 0.3 NaGTP, 10 HEPES, 10 Na2-phosphocreatine, and 0.1
spermine, adjusted to pH 7.3 with KOH. The osmolarity of the
internal solution was 280–290 mOsm/L, and the resistance of the
patch electrodes was 4–8 M� in the bath solution. The voltage
signals were low-pass filtered at 3 kHz and digitized at 10 kHz.
The calculated liquid junction potential of -5 mV was corrected.
The data were acquired using a pClamp 9 system (Molecular
Devices, Sunnyvale, CA, United States). Voltage responses of the
cells were investigated by the application of depolarizing and
hyperpolarizing current pulses (400 ms in duration). Off-line
analysis was performed using AxoGraph X software (AxoGraph
Scientific, Berkeley, CA, United States). The input capacitance
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was estimated based on the current induced by a 10-mV-voltage
step from a holding potential of -70 mV. The input resistance
was estimated based on the voltage change induced by an applied
hyperpolarizing current pulse of -40 pA. The spike amplitude was
determined by the spike height from its threshold, defined as the
membrane potential at which the derivative of the voltage trace
reached 10 V/s. The maximum firing frequency was obtained
from cells that exhibited more than one spike and calculated
as the reciprocal of the shortest interspike interval between
successive pairs of spikes.

Mass Spectrometric Analysis
Human ESCs (hESCs), iPSCs, ESC-derived organoids, and iPSC-
derived organoids were washed with ice-cold PBS, harvested
by scraping and centrifugation, and frozen in liquid nitrogen.
The frozen cells and organoids were crushed by using Multi-
beads shocker (Yasui Kikai, Japan) and subsequently lysed
by sonication in 9.8 M urea with protease inhibitor cocktail
(cOmplete; Roche, Basel, Switzerland) and phosphatase inhibitor
cocktail (PhosSTOP; Roche, Basel, Switzerland). The clear lysate
was collected by centrifugation, and protein concentration was
measured by BCA protein assay. Twenty micrograms of proteins
was mixed with an internal standard protein mixture (10 fmol/ml
MassPREP; Waters, Milford, MA, United States) and incubated
with 2 mM Tri(2-carboxyethyl)phosphine hydrochloride (TCEP-
HCl) for 30 min at 37◦C for reduction, followed by alkylation
with 55 mM iodoacetamide for 30 min at room temperature. The
mixture was then diluted fourfold with 0.1 M triethylammonium
bicarbonate and subjected to trypsin digestion (1:40 trypsin:
sample ratio) for 3 h at 37◦C. The digestion was terminated
by trifluoroacetic acid, following by desalting with SDB-XC
StageTips. The samples were fractionated into eight fractions
by using SDB StageTips. Each fraction was dried by vacuum
and dissolved in the measurement buffer (3% acetonitrile
and 0.1% formic acid). Mass spectrometry was performed
as described previously (Uetsuka et al., 2015). To identify
the proteins, raw data of peptides were analyzed using
Proteome Discoverer 2.2 (Thermo Fisher Scientific, Waltham,
MA, United States) and Mascot 2.6 (Matrix Science, London,
United Kingdom). The peptide results from all eight fractions
were combined and subjected to search for the matching
proteins in UniProt human database (The Uniprot Consortium,
2018). Maximum numbers of missed cleavages, precursor
mass tolerance, and fragment mass tolerance were set to 3,
10 ppm, and 0.01 Da, respectively. The carbamidomethylation
on Cys was set as a fixed modification, whereas oxidation of
Met and deamidation of Asn and Gln were set as variable
modifications. A filter of false discovery rate of less than 1% was
applied to the data.

The Minora Feature Detector node was used for label-
free quantification, and the consensus workflow included the
Feature Mapper and the Precursor Ion Quantifier nodes using
intensity for the precursor quantification. The protein intensities
were normalized by the total peptides intensity. In addition,
annotations from the Ingenuity Knowledge Base (IKB; released
in autumn, 2018; Qiagen, Redwood City, CA, United States)
and the database of Ingenuity Pathway Analysis were used

to determine the localization and functional categories of the
identified proteins.

For downstream analysis, we used the data normalized
by Proteome Discoverer 2.2. All the following analysis was
calculated on R. For missing value handling, we first applied
listwise deletion method and removed the rows containing
missing values. The removed rows are shown in Supplementary
Table S5. The respective correlation coefficients between iPSCs,
ESCs, iPS-derived brainstem organoid, and ES-derived brainstem
organoid were calculated after log transformation, and the
correlation coefficient, the distributions of all genes, and scatter
plots of all the genes in each sample were shown by “pairs.panels”
function in psych, R package1 (Supplementary Figure S1A). We
performed principal components analysis (PCA) and analyzed
the contribution rate of each principal component (PC) on the
log-transformed data (Supplementary Figures S1B,C). Next,
after trimmed mean of M values (TMM) normalization, we
extracted DEGs between stem cells and brainstem organoids
based on the likelihood ratio test by edgeR, R package2). The
threshold of DEGs was p < 0.05.

scRNA-Seq and Data Analysis
To dissociate hBSOs into single cells, we incubated them for
∼30 min in Accutase (Stemcell Technologies, Vancouver, British
Columbia, Canada) at 37◦C. Droplet-based scRNA-seq libraries
were generated using the Chromium Single Cell 3’ Reagent
kits V2 (10X Genomics, Pleasanton, CA, United States). Cell
number and cell viability were assessed using the Countess II
Automated Cell Counter (Thermo Fisher Scientific, Waltham,
MA, United States). Thereafter, cells were mixed with the
Single Cell Master Mix and loaded together with Single Cell
3’ Gel beads and Partitioning Oil into a Single Cell 3’ Chip.
RNA transcripts were uniquely barcoded and reverse-transcribed
in droplets. cDNAs were pooled and amplified according to
the manufacturer’s protocol. Libraries were quantified by high-
sensitivity DNA reagents (Agilent Technologies, Santa Clara, CA,
United States) and the KAPA Library Quantification kit (KAPA
Biosystems, Wilmington, MA, United States). Libraries were then
sequenced by Illumina Hiseq 2500 in rapid mode.

Raw sequencing data from the organoid were preprocessed
using the Cell Ranger (v 2.2.0; 10X Genomics, Pleasanton, CA,
United States) software (Zheng et al., 2017). Reads were aligned
to the GRCh38 human reference genome using STAR. After
processing by Cell Ranger, the scRNA-seq data were analyzed
using the Seurat v.3.0.0 R package (Satija et al., 2015). Cells
with more than 8,000 or fewer than 750 detected genes, as
well as cells expressing more than 5% mitochondrial genes,
were excluded. Genes expressed in fewer than three cells were
excluded. We collected a total of 2,345 cells expressing a
total of 19,454 genes. The data sets were log normalized and
scaled to 10,000 transcripts per cell. The top 2,000 highly
variable genes were determined using the variance-stabilizing
transformation method. The data sets were scaled and unique
molecular identifier counts, ribosomal genes, and mitochondrial

1https://cran.r-project.org/web/packages/psych/index.html
2https://bioconductor.org/packages/release/bioc/html/edgeR.html
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genes were regressed out. We analyzed the data sets by using
“SCTransform” function in Surat (Hafemeister and Satija, 2019).
After PCA, clustering was performed based on the top 15 PCs
using the shared nearest neighbor modularity optimization with a
resolution of 0.8. Cluster identities were assigned based on cluster
gene markers determined by the “FindAllMarkers” function in
Seurat (Supplementary Table S6).

RESULTS

To generate hBSOs from hPSCs, we used a combination of several
growth factors, including EGF/bFGF for the initial proliferation
of neuronal stem/progenitor cells, and BDNF, GDNF, and NT-3
for the subsequent differentiation of dopaminergic neurons and
neural crest cells. This procedure is different from the protocols
in previously reported studies (Figure 1A and Supplementary
Figure S2). A recent study by Muotri and colleagues reported
the presence of neural networks in their cortical organoids with
advanced maturity (Trujillo et al., 2018). We further modified
their protocol to induce dopaminergic neurons by adding insulin,
transferrin, and progesterone, all of which have been shown to
be protective or induce dopaminergic neuronal differentiation in
two-dimensional culture (Diaz et al., 2009; Ayton et al., 2016;
Lee et al., 2016). Our novel approach to generate hBSOs yielded
cells with dark granules between 22 and 28 days of cultivation
(Figure 1A), an observation that was absent at a similar stage in
previous studies (Thomas et al., 2017; Trujillo et al., 2018).

On immunohistochemistry (IHC), we detected melanin in
the hBSOs by hematoxylin–eosin, Fontana–Masson, and HMB45
stainings (Figure 1B), showing that these dark cells were
melanocytes derived from neural crest cells in the organoids.
The expression of SOX9 [12.1% (74 of 608 cells)], which plays
a role in the migration of neural crest cells (Spokony et al., 2002),
also supported the existence of neural crest population in the
brainstem organoids (Figure 1B).

Based on a quantitative PCR (qPCR) analysis of 1-month-
old hBSOs, we confirmed distinct expression of various
markers for neuronal cells. Additionally, we detected the neural
stem/progenitor cell markers SOX2, ASCL1, SLC1A3, and
OTX2 (Figure 2A), which are necessary for the development
of anterior brain structures including the midbrain (Wurst and
Prakash, 2014). Our analyses also demonstrated the expression
of FOXA2, a potent inducer of midbrain dopaminergic (mDA)
progenitors (Sasaki and Hogan, 1993; Norton et al., 2005;
Kittappa et al., 2007; Lin et al., 2009; Ribes et al., 2010), and
NR4A2, which is essential for both the survival and final
differentiation of ventral mesencephalic late dopaminergic
precursor neurons into dopaminergic neurons (Saucedo-
Cardenas et al., 1998), and SOX6, important for the specification
of substantia nigra dopamine neurons (Panman et al., 2014;
Figure 2A and Supplementary Figure S3). We also detected
the expression of LMX1A, required to trigger dopamine cell
differentiation (Andersson et al., 2006), and EN1, required
in early development of mDA neuron (Alves dos Santos and
Smidt, 2011), in hBSOs, and both genes were not revealed in
hESCs (Supplementary Table S3). Consistently, we detected the

expression of mRNAs coding for the pan-neuronal marker MAP2
and the mature dopaminergic neuronal marker TH (Figure 2A).
Using IHC, we demonstrated that the organoids have midbrain
components via the detection of protein expressions of SOX2
[26.8% (153 of 571 cells)], OTX2 [16.5% (55 of 333 cells)], and TH
[14.7% (84 of 571 cells)], which also indicated that the organoids
contain midbrain components (Figure 2B). Other midbrain or
mDA markers were also detected in 1-month hBSOs by qPCR
(Supplementary Figure S3 and Supplementary Table S3).

Furthermore, we observed expressions of ChAT on qPCR and
IHC [17.4% (83 of 478 cells)] (Figure 3A). The detection of ChAT,
a marker for cholinergic neurons, suggests the existence of medulla
population (Stornetta et al., 2013). GBX2 is a hindbrain marker
that plays a role in the positioning of the midbrain/hindbrain
boundary with OTX2. Its expression [in 15.2% (44 of 289)
cells] suggests that the hBSOs included midbrain and hindbrain
population (Waters and Lewandoski, 2006; Figure 3B). The
expression of DBH [13.9% (63 of 453 cells)], a marker for the
central noradrenergic nervous system, may indicate that pons
and medulla components are contained in the hBSOs (Swanson
and Hartman, 1975; Figure 3B). Also, we detected VGLUT1
and GAD67, markers for mature and functional excitatory
and inhibitory neurons, respectively (Soghomonian and Martin,
1998; Fremeau et al., 2004). The expression of OLIG2 and
MBP indicated that our organoids contained oligodendrocyte
progenitors and mature oligodendrocytes (Wei et al., 2003),
whereas the presence of S100β suggested the existence of astrocytes
(Figure 3C and Supplementary Figure S3). In addition, the qPCR
analysis on 3-month-old hBSOs demonstrated the expressions
of a variety of neuronal components (Supplementary Figure S4
and Supplementary Table S4).

To further verify the translated products in hBSOs, we
performed protein mass spectrometric analysis of the hBSOs
at 1 month. Finally, we identified 3,458 DEGs, of which 763
genes satisfied false recovery rate (FDR) <0.05. Of these 763
proteins, we identified genes found to be enriched in brainstem,
cerebellum, or basal ganglia (Table 1), suggesting that hBSOs
have specific components for brainstem or cerebellum (Uhlen
et al., 2015, 2017; Thul et al., 2017).

To assess the electrical functionality of the neurons in
the hBSOs, we performed electrophysiological characterization
using the whole-cell patch clump method. Most cells displayed
neither an action potential nor a membrane potential less
than -40 mV immediately after patch membrane rupture. One
cell showed hyperpolarizing voltage responses with an obvious
voltage sag, defined as a fast hyperpolarization, followed by a
slow depolarization (Figure 4, left-1, arrow), whereas other cells
(n = 8) showed no sag (Figure 4, middle-1, right-1). In the neurons
exhibiting repetitive firings, the spike overshot (52.9± 5.5 mV in
amplitude) and its width was narrow (1.1 ± 0.3 ms of the half
width). However, in the neuron exhibiting a few spikes, the spike
amplitude was small (33.9 ± 7.9 mV), and the half width was
wide (2.8 ± 1.6 ms), suggesting that these neurons were still in
the course of development.

To further analyze the gene expression profile of hBSOs, we
carried out total RNA sequencing (RNA-seq) analysis of hCOs
induced using Lancaster and colleagues’ protocol (Lancaster
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FIGURE 1 | Schematic procedure of inducing hBSOs and immunohistochemical analysis of 1-month-old hBSOs from hESCs. (A) Schematic procedure of
generating human brainstem organoids. SB, SB431542; D, dorsomorphin; I, insulin; P, progesterone; T, transferrin; bF, basic fibroblast growth factor; E, epidermal
growth factor; AA, ascorbic acid; cA, cyclic adenosine monophosphate; N, neurotrophin 3; G, glial cell line–derived neurotrophic factor; B, brain-derived
neurotrophic factor. Photographs of organoids were taken on days 0, 9, 22, and 28. Bars = 500 µm. (B) Immunohistochemistry of hBSOs at 1-month old from
hESCs for the markers of melanocyte (Fontana–Masson, HMB45) and neural crest cell (SOX9). Bars = 100 µm.

et al., 2013; Lancaster and Knoblich, 2014) and the hBSOs at
day 28. RNA-seq analysis revealed that the hBSOs contained
cell populations like that of a human brainstem. At the age of
1 month, the hBSOs expressed genes that were characteristic
of a fetal midbrain, such as LMX1A and LMX1B, and those
indicating dopaminergic neuronal property, such as EN1, EN2,
TYR, and TH, whose expression was stronger than in hCOs
(Supplementary Table S7). Additionally, MLANA and MITF,
known as melanocyte-marker genes, and MBP, a marker
for oligodendrocytes, also showed higher expressions in the
hBSOs. We also observed significant expression of NGF and
SOX9 specific to neural crest–stem cells. On the other hand,
cortical neuron specific markers, such as Reelin and Lhx2, were
lower in the hBSOs than the hCOs, indicating their distinct
cellular populations.

To better understand the molecular mechanism regulating the
differentiation of the hBSOs, we identified DEGs (Figure 5A)
between the hBSOs and hESCs (Supplementary Table S8)
and between the hCOs and hESCs (Supplementary Table S9).
We detected 91 DEGs that were selectively regulated in the
hBSOs (Supplementary Table S10) and 215 DEGs in the hCOs
(Supplementary Table S11).

To analyze the correlation between the genes selectively
regulated in the hBSOs, the hCOs, and various parts of the

brain, we used GTEx, a comprehensive public resource to study
tissue-specific gene expression and regulation (Figures 5B,C)
(GTEx Consortium, 2013). High expressions of EN2, CNPY1
reflected the link between the hBSOs, human cerebellum, and
substantia nigra, whereas the expression of EN1 and RPE65
demonstrated the relationship between the hBSOs, substantia
nigra, and hypothalamus (Figure 5B). Low expression of TRIML2
in the hBSOs is characteristic of the cerebellum, substantia nigra,
and hypothalamus (Figure 5B).

To identify TFs potentially governing the genes selectively
regulated in the hBSOs and the hCOs, we applied iRegulon
(Janky et al., 2014), a computational method built upon the fact
that genes coregulated by the same TF contain common TF-
binding sites and that uses the gene sets derived from ENCODE
ChIP-seq data (Gerstein et al., 2012). CTCF, RAD21, BRF2,
JUND, and SUZ12 were identified as potential TFs for genes
selectively regulated in the hBSOs (Figure 5D). This suggested
that EN1 and CNPY1, related to dopaminergic neurons, were
controlled by CTCF and RAD21. Also, MLANA, one of the
melanocyte markers, was indicated to be controlled by CTCF,
RAD21, and SUZ12. On the other hand, in the hCOs, FOXA1,
FOXA2, HDAC2, EP300, NFIC, HNF4G, NR2F2, CTBP2, and
SUZ12 were detected as potential TFs, and more complex and
wide variety of factors were shown (Figure 5E).
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FIGURE 2 | Quantitative PCR and immunohistochemical analysis of 1-month-old hBSOs from hESCs. (A) Quantitative PCR analysis of 1-month-old hBSOs for the
markers of neural stem/progenitor cell (SOX2, Mash1, SLC1A3), mature neuron (MAP2), midbrain (OTX2), and mDA (FOXA2, NR4A2, TH). Error bars indicate
mean ± SEM; *p = 0.0167 (ASCL1), *p = 0.0412 (OTX2), *p = 0.0387 (NR4A2), ****p < 0.0001 (MAP2), *p = 0.0178 (TH). (B) Immunohistochemical staining of
midbrain marker (OTX2), mDA marker (TH), and neural stem cell marker (SOX2) at 1 month. Bars = 100 µm.

Finally, to investigate heterogeneity and gene expression
dynamics in hBSOs, we performed scRNA-seq analysis
on 1-month-old hBSOs. After processing, quality control,
and filtering, we analyzed a total of 2,345 cells expressing
19,454 genes. To identify distinct cell populations based
on shared and unique patterns of gene expression, we
performed dimensionality reduction and unsupervised
cell clustering using uniform manifold approximation and
projection (UMAP) (Figure 6A). The UMAP plot revealed 10
distinct cell populations composed of various cell types. Cell

populations were identified based on cluster gene markers
(Supplementary Table S6) and the expression of known
marker genes. We could not annotate cluster 1 and termed
this cluster as “unknown” (U). Dot plot showed a selection
of genes that can be used to identify cell population types
(Figure 6B). Each cell population expressed canonical cell
type markers. Violin plots showed the expression intensity
distribution of the marker genes in each cluster (Figure 6C
and Supplementary Figure S5). The neuronal progenitors
cluster expressed genes of cell proliferation (e.g., MKI67) and
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FIGURE 3 | Quantitative PCR and immunohistochemical analysis of 1-month old hBSOs from hESCs. (A) Quantitative PCR analysis and immunohistochemical
staining of the marker of cholinergic neuron (ChAT). Error bars indicate mean ± SEM; *p = 0.0337 (ChAT). Bars = 100 µm. (B) Immunohistochemical staining of
DBH, the marker of noradrenergic neuron, and hindbrain marker (GBX2). Bars = 100 µm. (C) Quantitative PCR analysis for the marker of excitatory neuron
(VGLUT1), inhibitory neuron (GAD67), oligodendrocyte (OLIG2, MBP), and astrocyte (S100β). Error bars indicate mean ± SEM; *p = 0.0127 (VGLUT1), *p = 0.0155
(GAD67), *p = 0.0320 (MBP).

neural stem cell markers (e.g., PLAGL1). The radial glia cells
cluster expressed PAX6 and the telencephalic progenitors
cluster expressed genes related to telencephalon development
(FOXG1, LHX2) (Godbole et al., 2018). The ependymal cells
cluster expressed genes related to cilia development and
formation (FOXJ1, PIFO) (Jacquet et al., 2009). The forebrain
and midbrain (FB/MB) clusters expressed genes of forebrain
and midbrain progenitors (OTX2). In addition, the FB/MB
clusters expressed dopaminergic (FGFR2, NR4A2, LMX1A,
CALB1), serotonergic (HTR2C), and melanocyte development

and differentiation (MITF) markers (Quilter et al., 2012;
Ratzka et al., 2012; Anderegg et al., 2015). The mature
neurons (mNeu) cluster expressed pan-neuronal (MAP2,
SNAP25), cholinergic (ACHE), and glutamatergic (SLC17A6)
markers. The hindbrain cluster expressed genes of cerebellar
or medulla formation (ZIC1, ZIC4) (Blank et al., 2011).
The inflammation cluster expressed genes of microglia
cells (AIF1) and endothelial cells (ICAM1). The scRNA-seq
indicated that the organoids contain various cell types and
neuronal subtypes.
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TABLE 1 | Differentially expressed genes specific for brain in mass spectrometric analysis (FDR < 0.05).

Regional specificity Symbol Accession logFC logCPM LR P value FDR

Pons and medulla DSG2 Q14126 5.669599673 6.550998938 58.16620526 2.41E-14 7.57E-12

PRPH P41219 −6.447981469 6.171664268 44.05998978 3.18E-11 3.84E-09

KRT8 P05787 3.759699355 10.38106493 21.58664839 0.00000338 0.0000829

KRT18 P05783 3.725473938 10.34020675 23.87534344 0.00000103 0.000032

PRSS8 Q16651 2.094239437 −0.279713416 8.491513239 0.003568069 0.02138368

CFAP44 Q96MT7 −2.431897956 2.251822919 9.751540469 0.001791725 0.012801209

Cerebellum JARID2 Q92833 8.121840088 2.982965594 69.44954272 7.84E-17 5.42E-14

HIST3H2BB Q8N257 −4.40083852 1.304593593 19.49310574 0.0000101 0.00020181

HELLS Q9NRZ9 2.112404374 6.517273007 12.01916385 0.000526563 0.004961459

ZIC2 O95409 1.958589485 3.966265294 7.992220317 0.004697877 0.026045008

Cerebellum, midbrain, pons, medulla MAB21L1 Q13394 −3.26983685 1.866012194 13.63006394 0.000222592 0.002412928

Basal ganglia PCP4 P48539 −2.607799879 3.661385349 10.15879101 0.001436148 0.010890787

DISCUSSION

To the best of our knowledge, this is the first time hBSOs with
dark cells such as melanocytes have been successfully induced.
These cells are of neural crest origin and derived from the
fetal midbrain–hindbrain boundary. Using qPCR, IHC, RNA-
seq, scRNA-seq, and mass spectrometry, we observed a gene
expression profile like that of a human fetal brainstem in
hBSOs that were cultivated for 28 days. We built our current
protocol upon existing protocols for human brain organoids.
In particular, we were inspired by Lancaster and colleagues
(Lancaster et al., 2013; Lancaster and Knoblich, 2014), who
found that their organoids, acquired with the least use of
growth factors, were composed of neuroectodermal tissues
with multiple identities, such as cerebral cortex, hippocampus,

FIGURE 4 | Voltage responses of recorded cells in 1-month-old hBSOs from
hESCs to current pulses. (Left, middle, right) Three types of cells exhibiting
different hyperpolarizing and firing responses. (1) Voltage responses to
hyperpolarizing current pulses. Arrow: voltage responses characterized by a
voltage sag. (2) Firing responses to depolarizing current pulses. Firing
responses with multiple spikes (left), immature spikes (middle), and a few
spikes (right). The values of depolarizing current pulses are given at right.

and retina. In another key study, Muotri and colleagues
reported a protocol where cortical organoids were induced
with electrophysiologically active neurons with glutamatergic
and GABAergic signaling (Trujillo et al., 2018). We designed
our protocol based on these existing reports and made use
of selected hormones, such as human insulin, transferrin,
and progesterone, which have been found to be protective
or support the survival and differentiation of dopaminergic
neurons and neural crest lineage cells (Ciarlo et al., 2017;
Frith and Tsakiridis, 2019). Of note, our findings suggest
that the use of an orbit shaker might have contributed to
quick induction of hBSOs, through the achievement of an
ideal concentration gradient of growth factors. Considering
that our protocol does not contain sonic hedgehog (SHH) or
WNT, essential for inducing ventral midbrain (Tang et al.,
2010), and that the presence of melanocytes implies the
presence of dorsal tissues of brainstem, the evidence of
mDA neurons in hBSOs is interesting. It is plausible that
these factors were secreted from neighboring cells in the
population of hBSOs.

The hBSOs and previously reported midbrain organoids
contained characteristic dark spots mimicking the
existence of neuromelanin. Given that neuromelanin is
derived over a few years, through an accumulation of
catecholamine-derived wastes, the dark spots observed
in previously reported midbrain–organoid protocols may
have melanocytes such as those found in the hBSOs.
However, to our knowledge, no existing study on midbrain
organoids has identified such neural crest–derived cells in
their organoids.

Our findings indicate that the hBSOs mock broad fetal
brainstem region and surrounding neural crest, as cranial
melanoblasts are known to originate from the neural crest
around the midbrain and spread to the whole cranial region
(Adameyko et al., 2012; Denecker et al., 2014). Our observations
of the high Wnt1 expressions in the hBSOs, which characterize
the neural crest (Adameyko et al., 2012), are consistent with
this idea. Our current findings also provide the basis for
future research on hereditary diseases caused by neural crest
migration disorders.
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FIGURE 5 | RNA-seq transcriptomic analysis of 1-month old hBSOs from hESCs. (A) Venn diagrams of the number of genes differentially expressed between
human brainstem organoids (hBSOs), human cerebral organoids (hCOs), and hESCs. (B) Clustering brain regions based on the expression of differentially expressed
genes selective in hBSOs (FDR < 10%). (C) Clustering brain regions based on the expression of differentially expressed genes selective in hCOs (FDR < 3%).
(D) Transcription factors that potentially regulate the differentially expressed genes in hBSOs. (E) Transcription factors that potentially regulate the differentially
expressed genes in hCOs.
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FIGURE 6 | Single-cell RNA-seq analysis of 1-month-old hBSOs from hESCs. (A) Unsupervised clustering of all cells from human brainstem organoids. INF;
inflammation, NP; neuronal progenitors, TCP; telencephalic progenitors, RGC; radial glia cells, HB; hindbrain, EC; ependymal cells, FB/MB; forebrain and midbrain,
mNeu; mature neurons, U; unknown. (B) Dot plots showing a selection of genes that identify cell population types. (C) Cell distribution plot of OTX2, FGFR2, ZIC4,
and MAP2.
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We would like to propose two potential applications based
on our current findings: (1) to use hBSOs as a tool for drug
screening and (2) apply hBSOs as an efficient tool for the
modeling of neural crest disorders. First, the quick induction of
hBSOs will enable more efficient drug screenings and accelerated
research on the molecular mechanisms driving brainstem
neurodegenerative diseases. Electrophysiological analysis of the
hBSOs at the age of 1.5 months revealed neurons that exhibited
action potentials and hyperpolarizing responses with voltage
sags attributed to the activation of hyperpolarization-activated
cyclic nucleotide-gated (HCN) cation channels (Robinson and
Siegelbaum, 2003; He et al., 2014). This finding suggests that
HCN channels, as well as spike generating Na+ and K+ channels,
are expressed at an early stage of the hBSO. It also suggests
the presence of a heterogeneous neuronal population that is
capable of exhibiting distinct electrophysiological properties
in the organoid.

A second potential application of hBSOs lies in their utility
in investigations into the interaction between the brainstem
and neural crest cells. For example, brainstem functions are
reported to be affected in representative neural crest disorders,
DiGeorge syndrome, and Waardenburg-Shah syndrome (Wang
et al., 2017; Nusrat et al., 2018). Nonetheless, the disease models
of such diseases have yet to be established, and their pathologies
remain to be known. We see the potential in applying the hBSOs
developed in our current study as they contain neural crest cells
and can be powerful tools for elucidating the mechanisms driving
such neural crest diseases.
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In mammals and other tetrapods, a multinuclear forebrain structure, called the
amygdala, forms the neuroregulatory core essential for emotion, cognition, and
social behavior. Currently, higher circuits of affective behavior in anamniote non-
tetrapod vertebrates (“fishes”) are poorly understood, preventing a comprehensive
understanding of amygdala evolution. Through molecular characterization and
evolutionary-developmental considerations, we delineated the complex amygdala
ground plan of zebrafish, whose everted telencephalon has made comparisons
to the evaginated forebrains of tetrapods challenging. In this radical paradigm,
thirteen telencephalic territories constitute the zebrafish amygdaloid complex and each
territory is distinguished by conserved molecular properties and structure-functional
relationships with other amygdaloid structures. Central to our paradigm, the study
identifies the teleostean amygdaloid nucleus of the lateral olfactory tract (nLOT), an
olfactory integrative structure that links dopaminergic telencephalic groups to the
amygdala alongside redefining the putative zebrafish olfactory pallium (“Dp”). Molecular
characteristics such as the distribution of substance P and the calcium-binding
proteins parvalbumin (PV) and calretinin (CR) indicate, that the zebrafish extended
centromedial (autonomic and reproductive) amygdala is predominantly located in the
GABAergic and isl1-negative territory. Like in tetrapods, medial amygdaloid (MeA) nuclei
are defined by the presence of substance P immunoreactive fibers and calretinin-
positive neurons, whereas central amygdaloid (CeA) nuclei lack these characteristics.
A detailed comparison of lhx5-driven and vGLut2a-driven GFP in transgenic reporter
lines revealed ancestral topological relationships between the thalamic eminence (EmT),
the medial amygdala (MeA), the nLOT, and the integrative olfactory pallium. Thus, the
study explains how the zebrafish amygdala and the complexly everted telencephalon
topologically relate to the corresponding structures in mammals indicating that an
elaborate amygdala ground plan evolved early in vertebrates, in a common ancestor
of teleosts and tetrapods.

Keywords: telencephalon, teleost, amygdala, hippocampus, isocortex, emotion, prefrontal cortex, prethalamic
eminence
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SIGNIFICANCE

Based on molecular and evolutionary-developmental
characteristics, the study identifies the elaborate amygdala
ground plan in zebrafish and stresses the evolution of a complex
emotional system in early vertebrates. A multinuclear forebrain
structure, the amygdala of mammals has been viewed as a
requirement for sophisticated emotions, social behavior, and
emotional sentience. Comparable emotional phenomena are
rarely discussed in fish in accordance with the current consensus
that their amygdala is rather rudimentary and incomparable.
Despite obvious morphological differences, however, we show
that considerable ancestral amygdaloid building blocks are
shared between fish and tetrapods including mammals. The
study introduces a long-needed testable molecular reference
paradigm of the mature zebrafish extended amygdaloid complex
studying neural underpinnings and evolution of emotion in this
important model organism.

INTRODUCTION

In mammals and other tetrapods more than a dozen telencephalic
nuclei form the amygdala, the regulatory core of the emotional
brain (Swanson and Petrovich, 1998; de Olmos and Heimer,
1999; Abellan et al., 2013). The early evolution of a complex
amygdala, its organization and behavioral significance in
basally derived vertebrates are poorly understood. Until now
this heterogeneous structure, the key to emotion and social

Abbreviations: A, amygdala; ac, anterior commissure; BG, basal ganglia; BNSM,
bed nucleus of the stria medullaris; BST, bed nucleus of the stria terminalis; BSTa,
anterior division of BST; BSTc, central division of BST (mouse); BSTm, medial
division of BST; BSTp, posterior division of BST; Cantd, anterior commissure,
pars dorsalis; Cantv, anterior commissure, pars ventralis; CeA, central amygdala;
CeAa, anterior division of CeA; CeAl, lateral (migrated) division of CeA; CeAd,
dorsal division of CeA; CGE, caudal ganglionic eminence; CoA, cortical amygdala
(mouse); CR, calretinin; D, dorsal telencephalon (=pallium); Dc, central zone of
D; Dd, dorsal zone of D; Dg, diagonal domain; Dl, lateral zone of D; dLGE,
dorsal LGE; Dlv, ventral subdivision of Dl; Dlp, posterior territory of Dl; Dm,
medial zone of D; DM, precomissural (vGlut2a positive) territory of Dm; DP,
dorsal pallium; Dta, diencephalic tela attachment site; Dp, posterior zone of D;
DTJ, diencephalic-telencephalic junction; EmT, thalamic eminence; EmT-d, EmT-
derivative; EmTl, lateral EmT; EmTm, medial EmT; ENv, entopeduncular nucleus,
ventral part; Fr, fasciculus retroflexus; Hy, hypothalamus; LGE, lateral ganglionic
eminence; LP, lateral pallium; LTE, lateral thalamic eminence (mouse); MeA,
medial amygdala; MeAa, anterior division of MeA; MeAd, dorsal division of
MeA; MeAp, posterior division of MeA (zebrafish); MeApd, posterior division
of MeA (mouse); MeAv, ventral division of MeA (zebrafish pendant to mouse
MeApd); MP, medial pallium; MTE, medial thalamic eminence (mouse); nLOT,
nucleus of the lateral olfactory tract; nLOTi (zebrafish), intermediate (vGlut2a-
neg.) nLOT; nLOTp (zebrafish), posterior (vGlut2a-pos.) part of nucleus of
the lateral olfactory tract; nLOTr (zebrafish), rostral (vGlut2a-pos.) nLOT; oc,
optic commissure; PA, pallidum; pAmy, pallial amygdala; PGC, preglomerular
complex; pirCtx, piriform cortex; Pit, pituitary; pLOT, posterior territory of lateral
olfactory tract; PMCo, (mammalian) posteromedial cortical amygdala; PMPa,
posteromedial pallial nucleus; PPa, parvocellular preoptic nucleus, anterior part;
Pr, pretectum; PT, posterior tuberculum; PTh, prethalamus; sAmy, subpallial
amygdala; PV, parvalbumin; SD, saccus dorsalis; SDB, base of SD; Se, septum; Str,
striatum; tela attch, attachment point of tela choroidea; TE, thalamic eminence
(mouse); Th, thalamus; TH, tyrosine hydroxylase; TS, torus semicircularis; V,
ventral telencephalon (=subpallium); Vd, dorsal zone of V; Vdd, dorsalmost
territory of V (=“extended dLGE”); Vi, intermediate zone of V; Vl, lateral zone
of V; vLGE, ventral LGE; VP, ventral pallium; Vv, ventral zone of V.

behavior, remained ill-defined in ray-finned fish (actinopterygii),
because their telencephalon looks markedly different from
the familiar mammalian situation. In these fish a complex
developmental outgrowth called eversion (Figure 1) leads to
a topographic rearrangement of forebrain territories relative
to non-actinopterygian vertebrates (Wullimann and Mueller,
2004b; Northcutt, 2008; Nieuwenhuys, 2009b; Mueller et al.,
2011). To this day, scientists have failed to consistently
map pallial and subpallial (subcortical) territories even in
relatively well-investigated teleost fish such as cichlids and
cyprinids (carp-like fish) like goldfish or zebrafish. As a
result, putative homologies across teleosts remain persistently
debated (Elliott et al., 2017; Yamamoto et al., 2017) owing
to inconsistencies in terminology, lack of robust molecular
demarcations of brain nuclei, and erroneous annotations of
molecular expression patterns.

We unraveled the zebrafish amygdala using a holistic
approach that integrates molecular and chemoarchitectonic
characteristics and previously published developmental data with
a neuroethological framework that adopts the concepts of “the
extended amygdala” and “primary olfactory cortex” originally
developed by examining macrosmatic rodents that is, mammals
with a pronounced sense of smell (Swanson and Petrovich, 1998;
de Olmos and Heimer, 1999). The extended amygdala concept
considers numerous subpallial (subcortical) regions as part of
the amygdala, including subdivisions of the bed nucleus of the
stria terminalis (BST) and the centromedial (CeA, MeA) nuclei.
These additional territories extend the classic definition of the
amygdala, which included exclusively pallial (cortical) nuclei such
as the basolateral amygdala (BLA) critical for fear conditioning
(Swanson and Petrovich, 1998). The concept of the primary
olfactory cortex includes all pallial nuclei that receive projections
from olfactory bulb neurons, several of which form part of
the mammalian amygdala. For example, the posteromedial
cortical nucleus (PMCo) and the composite nucleus of the
lateral olfactory tract (nLOT) are amygdaloid nuclei essential for
olfactory cued behavior. Usually, the entire amygdala is described
as a heterogeneous collection of predominantly olfactory pallial
and subpallial territories that regulate emotion and autonomic
nervous system function (Swanson and Petrovich, 1998). In
addition, analyzing the distributions of lhx5- and vGLut2a-
driven green fluorescent protein (GFP) in the transgenic lines
tg(lhx5:GFP) and tg(vGlut2a:GFP) we uncovered the ancestral
relationships between the everted olfactory pallium and the
thalamic eminence (EmT).

Our analysis, therefore, capitalizes on the deep evolutionary
relationship between EmT, amygdala, and the sense of smell. Like
rodents, zebrafish are macrosmatic animals whose reproductive
behavior is hugely influenced by pheromones (Lazzari et al.,
2014). Male zebrafish exposed to the female sex pheromone
prostaglandin F2α (PGF2α) express stereotypic nudging behavior
and conspecific male-male aggression (Sorensen et al., 1988;
Yabuki et al., 2016). Molecular data in amphibians (frogs
and salamanders) and sauropsids (birds and reptiles) have
established a conserved amygdala blueprint across tetrapods
(Martínez-García et al., 2007; Medina et al., 2011, 2017). For
teleosts like zebrafish the amygdala remained vaguely defined
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FIGURE 1 | Telencephalic eversion in zebrafish and comparison to mammals. The schematic illustrates how both the outward-growing (eversion) process of the
developing telencephalon and its adult morphology of zebrafish (lower row) compares to the telencephalon development (evagination) of mammals (upper row). (A)
The telencephalon develops from the anteriormost part of the neural tube. (B–E) In mammals, two bilateral hemispheres develop around a centrally located ventricle.
Predominantly glutamatergic pallial zones (warm colors) develop in the dorsal telencephalon, whereas mostly GABAergic subpallial territories (cold colors) are found
in the ventral telencephalon. (B’–E’) Likewise, in teleosts like zebrafish, the dorsal and ventral telencephalon, respectively, hold pallial and subpallial territories,
however, the ventricle due to the eversion comes to lie on top of the brain. (C’,D’) Proliferation patterns, BrdU-long term labeling, and gene expression studies in
zebrafish indicated a complex eversion process that includes a radial migration toward the dorsoposterior pallial (“Dp”) zone (Mueller et al., 2011). The zebrafish
dorsal pallium (yellow) subsequently gets overgrown by the pallial amygdala and the medial pallium (MP in orange). (F’) The teleostean eversion process is not
comprehensively understood. A major obstacle in the comprehensively understanding both the eversion and comparative anatomy remains the unsolved delineation
of the integrative olfactory pallium (IOP – the putative homolog to the mammalian piriform cortex) and of telencephalic entities in the posteriormost extent.
Ambiguous structures and focus of this study are colored in gray.

(Wullimann and Mueller, 2004b; Northcutt, 2008; von Trotha
et al., 2014; Ruhl et al., 2015). This lack of a comprehensive
amygdala systems understanding hindered the study of the

neural mechanisms underlying cognition, emotion, and social
behavior in teleosts and hampered comparisons to mammals and
other tetrapods. Our study, thus, introduces a long-needed and
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testable reference paradigm of the zebrafish amygdala’s functional
organization, molecular definition, and evolution.

MATERIALS AND METHODS

Fish Maintenance and Stocks
We keep zebrafish (Danio rerio, Cyprinidae) in a LACS
operated facility at Kansas State University (KSU) in Manhattan
under standard conditions at 28◦C (Westerfield, 2000). The
University Institutional Animal Care and Use Committee
(IACUC) reviewed and approved all experimental protocols of
this study. Our experiments conform to the NIH Guidelines for
the Care and Use of Laboratory Animals. We used four previously
published transgenic lines: (1) Tg(isl1:GFP) (Higashijima et al.,
2000); (2) Tg(vGlut2a:GFP) also named Tg(slc17a6b:EGFP) (Bae
et al., 2009); (3) Tg(lhx2a:GAP-YFP) (Miyasaka et al., 2009), and
Tg(lhx5:GFP) (Peng and Westerfield, 2006; Turner et al., 2016).

Immunohistology
Immunohistology on cryosectioned brain sections was
performed as described (Rink and Wullimann, 2001). We used
only antibodies with previously validated specificity including
rabbit anti-calretinin (Swant, catalog# 7697/1:1000), mouse anti-
parvalbumin (Millipore 1:5000), rabbit anti-γ-aminobutyric acid
(GABA, Sigma, catalog# A2052, 1:5000), rabbit anti-substance P
(SP; immunostar, catalog# 20064/lot#1003002, 1:2000), mouse
anti-tyrosine hydroxylase (TH; 1:1000; catalog# 22941; lot#
1241002) Immunostar; catalog# 20066; lot# 1301001), 1:1000),
chicken anti-GFP (1:1000; molecular probes/invitrogen, catalog#
A10262; lot# 1729643), rabbit anti-GFAP (1:100, Immunostar),
rabbit anti-DSRed antibody (Living Colors, Clontech, Cat#
632496, 1:1000). Secondary fluorescence-coupled antibodies
(Invitrogen): goat anti-chicken Alexa Fluor 488, goat anti-rabbit
Alexa Fluor 488/555, goat anti-mouse Alexa Fluor 488/555. We
used a total of 65 adult (unsexed) zebrafish fish and stained with
maximally three antibodies at the same time so that each pattern
was represented by at least three samples.

Confocal and Conventional
Epi-Fluorescence Microscopy and Image
Analysis
To image the distribution patterns of fluorescence
immunohistologically stained neuronal phenotype patterns
we routinely used a ZEISS Axioplan-2 fluorescence microscope,
a confocal Zeiss 700 microscope (microscope core facility
KSU), and an Olympus automated epi-fluorescence microscope.
Post imaging techniques included montaging, stitching, and
sharpening techniques using Slidebook 6 and Adobe Photoshop.
We used CorelDraw X7/8 for labeling anatomical structures and
the generation of photoplates and figures.

Approach and Redefined Terminology
First, we generated a molecular atlas of the zebrafish
telencephalon by imaging and analyzing numerous
immunohistologically stained sections of adult zebrafish
brains (both wildtype and transgenic lines. Specifically, we
compared GFP distribution in reporter lines [Tg(vGlut2a:GFP,

Tg(isl1:GFP, Tg(lhx2a:GAP-YFP), Tg(lhx5:GFP] in fluorescence
immunostained cross sections of the telencephalon of adult
fish that were additionally stained against GABA- and tyrosine
hydroxylase (TH, a marker for dopaminergic neurons in
the zebrafish forebrain), the neuropeptide substance P, and the
calcium binding proteins parvalbumin and calretinin. We stained
against up to three antigens simultaneously and always used
DAPI as counterstain. This systematic multi-marker approach
identifies amygdaloid nuclei based on the distribution of
neurochemically defined neurons, gene expression patterns, and
fiber courses that reflect topological relationships. In addition, we
integrated published data on the organization and development
of the zebrafish telencephalon (Castro et al., 2006; Mueller et al.,
2008, 2011; Mueller and Guo, 2009; Mueller and Wullimann,
2009; Ganz et al., 2012; Ruhl et al., 2015; Lal et al., 2018).
Moreover, we build on an earlier study regarding the putative
isocortex-homolog (dorsal pallium) that stressed a complex
pallial eversion (Figure 1) because our new data strongly support
this previously proposed model (Mueller et al., 2011).

Similar to former studies and in accordance with established
molecular data in zebrafish and functional findings in goldfish,
we use the term medial pallium for the dorsolateral pallial
zone of zebrafish (Dl) (Ganz et al., 2012; Ocana et al., 2017;
Rodriguez-Exposito et al., 2017). To provide a meaningful
framework and further improve conceptual understanding,
we adapted vocabulary for the zebrafish amygdala to the
terminologies used for amphibians and mammals. This is
not to say that our comparison between similar molecular
compositions in zebrafish and mammals suggests simple one
to one equations. While we focus on comparing zebrafish to
mammals, amygdaloid nuclei in this latter group are more
diversified and different subdivisions can show similar molecular
compositions. Mammalian amygdaloid territories, of course, also
show species-specific differences and a greater cell type variety
than zebrafish at large. Our modified terminology treats newly
demarcated amygdaloid territories as potentially field homologs
to one or more nuclei within tetrapod species and we indicate
specific proposed homologies where necessary within Table 1.
Instead of individual nuclei, we focused on the identification
of common building blocks critical for understanding the
underlying organizational scheme. Supplementary Table S1 lists
former topographical terminologies for goldfish and zebrafish
and their labeling inconsistencies.

Of course, we build on previous knowledge that established
basic functional and hodological similarities to tetrapod
amygdaloid nuclei, (1) the teleostean dorsomedial pallial zone
(“Dm”) most often viewed as the pallial amygdala and (2)
three subpallial candidate amygdaloid nuclei typically termed
supra- and postcommissural nuclei (Vs, Vp, BST) (Braford,
1995; Portavella et al., 2004a; Wullimann and Mueller, 2004b;
Northcutt, 2008; Ganz et al., 2014). Here, we provide additional
data that either confirm, establish, redefine, or extend classical
definitions of these nuclei; we discuss these in the text when
needed. Last but not least, we apply the widely accepted
prosomeric model as a paradigm for comparing the forebrains
zebrafish and mammals (Wullimann and Puelles, 1999; Puelles
and Rubenstein, 2003, 2015; Wullimann and Mueller, 2004a).
Developmental studies indicated that the topological anterior
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tip of the prosomeric forebrain is the optic chiasm and the alar-
plate derived telencephalon consists of a topologically anterior
subpallium and a posterior pallium (Puelles and Rubenstein,
2003). In classical columnar paradigms of the forebrain, these
entities have been mis-represented as ventral (subpallial) and
dorsal (pallial) portions of the telencephalon, with the olfactory
bulbs as the (topographical) anterior tip of the brain (Puelles,
2019; Puelles et al., 2019). To accommodate our terminologies to
these two different perspectives, we use the terms “anterior” and
“posterior” for topological annotations from the perspective of
the prosomeric model. In contrast, we use “rostral” and “caudal”
to refer to topographical locations in orientation to either the
nose or the tail. However, as an exception to this rule, we used
the terms anterior, ventral, dorsal, and posterior in the classical
(topographical) sense for most amygdaloid territories simply to
better relate them to similarly named structures in tetrapods.

Our iterative strategy solved the complexities of the zebrafish
amygdala by starting with the identification of the nLOT
and most readily identifiable nuclei, such as the medial
extended amygdaloid nuclei (MeAa, MeAv, MeAd, and
MeAp), and moving to more obscure regions, such as the
posteromedial pallial nucleus (PMPa) most likely homologous
to the mammalian posteromedial cortical nucleus (PMCo),
and the anterior, lateral and dorsoposterior central amygdaloid
nuclei (CeAa, CeAl, and CeAd). In addition, we propose
that the dopaminergic subpallial groups belong to the newly
defined anterior and posterior divisions of the bed nucleus of
the stria terminalis (BSTa, BSTp). Within the new paradigm,
the nLOT and newly identified rostral, medial, and lateral
portions of the thalamic eminence (EmTr, EmTm, and EmTl)
form pivotal landmarks for topologically relating the everted
zebrafish amygdala to the evaginated mammalian telencephalon.
We identified the heterogenous nLOT based on its proximity
and partial convergence with thalamic (EmT and Emtl)
territories within the region of the diencephalic-telencephalic
junction (DTJ) as defined in this study. In fact, we consider
the identification of the EmT derivatives together with the
characterization of the DTJ and as pivotal for understanding
the everted topology of the teleostean telencephalon. Previously,
the nLOT has been misunderstood as the dorsoposterior
olfactory pallium (Dp) and highest integrative olfactory center
in zebrafish. We, instead, show that the highest olfactory pallial
territory occupies a region that is currently considered the
posteriormost part of the dorsolateral zone (Dl) most often
assigned to the “hippocampal” medial pallium. As a result, we
named this posterior dorsolateral zone the “integrative olfactory
pallium (IOP),” which we assume is homologous to the lateral
pallium (LP) and functionally comparable to the mammalian
entorhinal cortex that forms part of the hippocampal formation
(Watson and Puelles, 2017). The precise anatomical demarcation
and molecular definitions of both the IOP and the nLOT refutes
current theories on the functional organization of the olfactory
pallial zones (Jacobson et al., 2018). Likewise, the GFAP and lhx5-
driven GFP data presented do not support simple telencephalic
eversion models (Butler, 2000; Nieuwenhuys, 2009a,b; Furlan
et al., 2017; Yamamoto et al., 2017). Also, they are not compatible
with an incomplete or partial pallial eversion as suggested earlier
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(Wullimann and Mueller, 2004b). Instead they indicate that the
telencephalic outward-growing process is complete and complex
and probably constrained by hem-like organizing centers and the
thalamic eminence and its derivatives.

RESULTS

Overview
Based on the distribution of molecularly defined neuronal
phenotypes and calcium binding proteins (calretinin,
parvalbumin) that reveal both territory-specific cell type
abundances and intra-telencephalic connections, we identify
thirteen amygdaloid territories (Table 1). Following established
conventions in the field, Table 1 divides predominantly
GABAergic subpallial from predominantly glutamatergic pallial
structures (Puelles et al., 2000; Mueller et al., 2006) as well as
the predominantly glutamatergic MeAp which we consider a
thalamic eminence derivative (EmT-d). Due to its dual nature as
being both a part of the medial extended amygdala and derivative
of the rostral otp-a positive thalamic eminence (EmTr), we refer
to this structure as “MeAp/EmTr.”

Table 1 highlights four key findings:

(1) Most of the subpallial amygdaloid nuclei in zebrafish (CeAa,
CeAl, BSTa, BSTp, and MeAd) form part of the GABAergic,
isl1:GFP-free region that we propose corresponds to or
develop within the region of the dorsal lateral ganglionic
eminence (dLGE); not to the “dorsal striatum” as previously
suggested (Ganz et al., 2012). The isl1:GFP positive BSTm
represents an extension of the striatopallidal systems, that is
the teleostean counterpart of the tetrapod medial ganglionic
eminence (MGE) that gives rise to the pallidum consistent
with a former study that identified this nucleus (Ganz
et al., 2012) as well as a study that confirmed its pallidal
identity (Wullimann and Umeasalugo, 2020). In contrast,
we interpret the newly identified MeAv, despite its absence
of isl1-driven GFP, as an extension of the striatum proper
based on the presence of both substance P and calretinin
cells (this study). Notably, we consider the predominantly
glutamatergic MeAp a derivative of the rostral EmT
(MeAp/EmTr). This structure has been previously viewed
as the “MeA” in zebrafish and was termed intermediate
nucleus of the subpallium (“Vi”) (Biechl et al., 2017).
In contrast, we show that this nucleus is predominantly
glutamatergic and contiguous or identical with the thalamic
eminence located within what we consider the diencephalic
telencephalic junction (DTJ).

(2) The presence of numerous calretinin positive neurons define
medial amygdaloid nuclei (MeAd, MeAv, MeAp) whereas
the lack of pronounced populations of calretinin expressing
neurons is indicative of central amygdaloid nuclei (CeAa,
CeAl, and CeAd) similar to the mammalian situation at
early stages of development (Wojcik et al., 2013). The CeAd
stands out as a laterally displaced subpallial (GABAergic)
nucleus that is defined by the presence of dense parvalbumin
expressing fibers and some parvalbumin-expressing neurons.

(3) The study identifies a territory in the caudalmost position
of the former dorsomedial zone (“Dm”) as the putative

homolog of the mammalian posteromedial cortical
amygdaloid nucleus (PMCo), based on substance P-fibers
passing both through both the medial amygdala and
posterior Dm. We termed this territory the “posteromedial
pallial amygdaloid zone” (PMPa), its homology to the
mammalian PMCo is also supported by its intercalated
position between MeAd and integrative olfactory pallium
(IOP) and many calretinin positive neurons, which
potentially share developmental origins with those
populating medial amygdaloid territories.

(4) We used the transgenic line Tg(lhx2a:GAP-YFP) to
distinguish the newly identified nucleus of the lateral
olfactory tract (nLOT) from the principal olfactory pallium
(Dp proper), which we termed in zebrafish the “integrative
olfactory pallium” (IOP) owing to its prospective higher
integrative function. The heterogenous amygdaloid nucleus
of the former olfactory tract (nLOT) was previously
mislabeled as the dorsoposterior pallial zone (“Dp”) and
most likely serves olfactory and taste integration at a primary
(lower) level. We propose that this composite structure
in zebrafish is homologous with the mammalian nLOT,
because—like its mammalian counterpart— it consists
of pallial (glutamatergic), subpallial (GABAergic) and
(glutamatergic) putative thalamic derivatives (EmT-d)
(Huilgol and Tole, 2016). Most importantly, we show that
the lateral thalamic eminence (EmTl) form the base of the
nLOT and lhx5-driven GFP positive cells are present in the
posterior lateral olfactory tract territory (pLOT) strongly
resembling the mammalian situation during development
(Ruiz-Reig et al., 2017). Again, as in mammals, a stream of
migrating pallial neuroblasts originating from a region close
to or overlapping with the pallial amygdala form part of this
region in zebrafish (Remedios et al., 2007; Mueller et al.,
2011). In addition, lhx5-driven positive elements are found
within and close to Dp (Turner et al., 2016). Our results
suggest that these elements represent derivatives of the
thalamic eminence that, like their counterparts in mammals,
may both control and contribute to the development of
the nLOT and other structures at the DTJ in zebrafish.
Interestingly, the heterogenous nLOT in zebrafish receives
both gustatory and main olfactory input (Miyasaka et al.,
2009; Yanez et al., 2017) further supporting its functional
and structural heterogeneity.

PALLIAL AND SUBPALLIAL DERIVATIVES
IN THE ANTERIOR TELENCEPHALON

Pallial Amygdala (pAmy)
A recent study on the developing zebrafish pallium suggests
a concentric pallial growth and simple eversion (Furlan et al.,
2017) as similarly postulated before (Butler, 2000; Nieuwenhuys,
2009b). This hypothesis strongly conflicts with earlier findings
that showed a complex pallial eversion and identified the dorsal
pallium (DP) based on molecular distinctiveness and topological
relationships to two of the major pallial territories, the putative
pallial amygdala [i.e., the dorsomedial (Dm) zone] and the medial
pallium (MP; Figure 1; Mueller et al., 2011). A solid demarcation
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of these pallial histogenetic units is pivotal for the complete
understanding of the pallial and subpallial territories forming the
entire amygdaloid complex, which is the objective of this study.

To solve conflicting views, we tested if additional molecular
characteristic set the prospective dorsal pallium (DP) apart
from the medial pallium (MP; roughly the dorsolateral (Dl)
pallial zone in zebrafish) and the putative pallial amygdala (the
dorsomedial (Dm) zone). We determined that the distribution
of specific glutamatergic neurons visualized by GFP in the
transgenic line Tg(vGlut2a:GFP) in comparisons to parvalbumin
and GABA strongly supported the molecular distinctiveness
and delineation of the dorsal pallium candidate. Focusing
on these chemoarchitectonic characteristics, we were able to
corroborate that the centralized portion of the prospective dorsal
pallium is covered by the molecularly distinct DM and medial
pallium (MP) at posterior sections as previously suggested
(Mueller et al., 2011).

In the transgenic line Tg(vGlut2a:GFP), we found that
GFP is expressed only in subsets of glutamatergic neurons
that differentially populated pallial derivatives. In fact, we
found vGlut2a-driven GFP (vGlut2a:GFP) positive neurons
heavily labeled the dorsomedial (DM) zone here considered
a derivative of the pallial amygdala (pAmy), whereas the
putative dorsal pallium (mammalian isocortex) entirely lacked
GFP (Figures 2A–C,H,K). This lack of GFP in the dorsal
pallium (DP) indicates that DM does not contribute neurons
to the development of DP and that they indeed represent
distinct histogenetic units. In addition, the hippocampal pallium
(MP, medial pallium) showed vGlut2a:GFP exclusively in its
anterior- and posteriormost extents and dense populations of
parvalbumin-positive neurons throughout its entire expansion
(Figures 2E,F). The medial pallium thus also represents a
distinctive pallial unit that is easily distinguishable from both the
parvalbumin-free DM and the dorsal pallium (DP) that showed
parvalbumin fibers yet lacked parvalbumin-positive neurons. The
further molecular characterization of these distinct pallial units
thus validates previous publications on topology (homology),
function, and transcription factor profiles of the three major
pallial derivatives: (1) the pallial amygdala (DM, PMPa), the
dorsal pallium, and (3) the medial pallium (Mueller et al., 2011;
Ganz et al., 2012). This expression pattern is also visible in 2 and
3-week-old larval zebrafish (personal observation).

The validation of all of these three pallial entities as distinct
developmental entities enabled us to approach the remaining
pallial and subpallial entities in the everted telencephalon
of zebrafish, especially those that have been controversially
discussed (gray zones in Figure 1). Comparing vGluta2a:GFP
and GABA patterns, we established the ventralmost cells of
the vGlut2a-GFP positive pAmy as a landmark that defines
the (topographically) dorsal side of the pallial-subpallial border
(PSB) adjacent to the dense GABAergic and isl1:GFP-free cell
populations constituting the zebrafish dLGE (Figures 2D1–
G). These results indicate that the Dm-region widely viewed
as the pallial amygdala (pAmy) in teleosts (Wullimann and
Mueller, 2004b; von Trotha et al., 2014; Ruhl et al., 2015),
molecularly needs to be subdivided into an anterior part (DM)
of the former dorsomedial zone of the pallium (“Dm”) and a
posterior part. The presence of predominantly vGLUT2a-driven

GFP expressing neurons and absence of parvalbumin-fibers and
neurons define DM, which we therefore consider a derivative
of the pallial amygdala. Notably, a recent study identified a
group of so-called Dm120a-neurons as part of DM mediating
associative fear learning (Lal et al., 2018). These Dm120a-neurons
and most of DM are defined by emx3 expression whereas a
posteriomost portion of Dm does not express this gene (Lal
et al., 2018). This emx3-negative posteriormost part of the
former dorsomedial (Dm) territory according to our results
contains the posteromedial pallial nucleus (PMPa) most likely
homologous to the mammalian PMCo (this study; Figures 2K–
N). In the anterior telencephalon, vGlut2a:GFP positive neurons
also heavily populate a portion of the nLOT consistent with
the hypothesis that this portion of the nLOT is a migrated
territory derived from the thalamic eminence located within the
DTJ (this study).

Anterior Extended Amygdala – The
Central (CeAa,CeAl) and Anterior Medial
Amygdala (MeAa)
In general, dense populations of GABAergic neurons mark
the zebrafish striatopallidum (Vd in Figures 2B,C), septal
(Vv in Figures 2B,C), anterior (CeAa; Figures 2B,C) and
laterally displaced (CeAl) “central amygdaloid” (“Vc”) nuclei
(Figures 2B,C). In contrast (and consistent with earlier reports),
we detected sparsely distributed GABAergic neurons in pallial
territories including the vGlut2a:GFP-positive pallial amygdala
(pAmy), the olfactory pallial zone (OP), the nucleus of the lateral
olfactory tract (nLOT; Figure 2C), as well as the territories
that topologically correspond to the mammalian isocortex
[=zebrafish dorsal pallium (DP)] and hippocampus [medial
pallium (MP)](e.g., Figure 2C).

The distributions of neuronal phenotype, such as
parvalbumin- and TH-expressing dopaminergic neurons
was also compared to that of neurons labeled by the transgenic
line Tg(isl1:GFP) (Figures 2D1–G,J,N). In this way, the isl1:GFP
negative and GABA-positive subpallial (extended) amygdala
was distinguished from positive striatopallidal territories
(“Vd”) (Figures 2A–G). Specifically, isl1:GFP expressing
neurons are confined to a territory ventral to the isl1:GFP-
negative TH-expressing neurons (Figure 2F). This indicates
that the predominantly GABAergic nuclei of the subpallial
(extended) amygdala, specifically the CeAa, CeAl, MeAa, and
MeAd form the GABA positive and isl1:GFP-negative domain
sandwiched between the isl1:GFP positive striatopallidum and
the vGlut2a:GFP expressing DM. In other words, the absence
of isl1:GFP labeled cells marks most of the zebrafish central
amygdala (CeAa. CeAl) dorsal to the dopaminergic cell clusters
(Cave and Baker, 2009). Only a small territory dorsal to the
CeAa belongs to the MeAa, because substance P fibers label this
territory as distinct (Figures 4D,E). Thus, the central amygdala
(CeA) is defined based on its isl1:GFP negativity, its juxtaposed
position to both the pAmy and MeAa, and the absence of typical
MeA markers such otpa- and calretinin-positive neurons and
substance P expression (Figures 2M,L). Figure 3 illustrates how
otpa- (Figure 2L) and calretinin-positive neurons (Figure 2M)
in the supra- and postcommissural subpallial territories of
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FIGURE 2 | Continued
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FIGURE 2 | Molecular Definitions of the Zebrafish Amygdaloid Complex. Precommissural (A–E), supra- and postcommissural (F–Q) telencephalon, and delineation
of the dorsal pallium in its periventricular {(S+T, U1/left) and central (U1, right, U2)} portions. Pallium: Analyzing the distributions of GABA (A–C,H,K), parvalbumin
(E,F,J,N), and GFP in the transgenic line Tg(vGlut2a:GFP) (A–C,H,I,K,M) allowed to discern the dorsomedial pallial zone, the putative core region of the pallial
amygdala, from the hippocampal division (medial pallium/MP) and the teleostean dorsal pallium (DP) (A–C). DP lacks both vGlut2a-driven GFP and
parvalbumin-positive neurons but shows parvalbumin positive fibers (F,J,H,U2). The strongly GFP-positive DM lacks parvalbumin expression (F,J). The mostly
vGlut2a:GFP-free hippocampal division (MP) exhibits both parvalbumin-positive fibers and neurons in addition to GABA-neurons (C,F,J). Only at posteriormost
sections, we found vGlut2a:GFP positive neurons in the MP (H). At anteriormost sections (A,B), the DP reaches the dorsalmost periventricular zone, which holds
proliferative stem cells. More posteriorly (C,F,J), the DP is shown in its secondarily centralized position overgrown by both the pAmy and hippocampal division
(medial pallium/MP). In addition, we found many large GABAergic interneurons in DP (A–C), as well as sparsely distributed GABAergic interneurons in the pAmy and
MP (B,C). Subpallium: Dense population of GABAergic neurons define the subpallium (A–C,H,K). Within the subpallium, isl1-driven GFP labels striatopallidal and
septal divisions as well as the BSTm (D1,D2,F,G). In contrast, GABAergic territories that lack isl1-driven GFP define the majority of subpallial amygdaloid territories.

(Continued)
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FIGURE 2 | Continued
The anterior (precommissural) dorsalmost. GABAergic population (CeAa) together with the migrated GABAergic nuclei (CeAl = former Vc) predominantly form the
zebrafish central amygdala [CeA in (A–C)]. The ventricular-close GABAergic territory is juxtaposed and contiguous with the former supracommissural (Vs) and
postcommissural (Vp) nuclei of medial amygdala (MeA; former Vs/Vp). In addition, based on the lack of isl1-driven GFP in both anterior and posterior TH-positive
dopaminergic and their previous reported projection to the hypothalamus, we consider as the anterior and posterior bed nucleus of the stria termalis (BSTa/BSTpd).
The medial bed nucleus of the stria terminalis (BSTm) is the only isl1:GFP positive medial nucleus [BSTm in (F,G)]. We also found sparse dopaminergic neurons
within the posteromedial amygdala (MeAp) that project into part of the nLOT (B2). Supra- and postcommissural extended medial amygdaloid nuclei (MeAc, MeAd,
MeAp, BSTm, BSTpd) are defined by the presence of numerous calretinin-positive neurons (F,I,M) similar to the mammalian situation. In contrast, the CeAd that
comprises numerous laterally displaced GABAergic neurons shows many parvalbumin-positive fibers and few parvalbumin neurons, but lacks calretinin neurons. The
MeAp was formerly assigned to the teleostean subpallium, because there are GABAergic neurons in its vicinity (K). However, the otp-a (L) and calretinin (I,M)
positive neurons that define the MeAp are likely glutamatergic and originate from the thalamic eminence according to our results. Discerning PMPa, IOP, and nLOT
Comparing secondary olfactory projections in the transgenic line Tg(lhx2a:GAP-YFP) (J,N) with parvalbumin allowed us to identify primary olfactory pallial territories
and their topological relationships. The distribution of secondary olfactory projections in comparison to parvalbumin and calretinin fibers identifies two olfactory
integrative structures: (1) the parvalbumin-positive integrative olfactory pallium (IOP) (I,J,M,N) formerly misinterpreted as part of the medial pallium (“Dl/Dlp”) in
zebrafish; (2) the largely parvalbumin-free (migrated) amygdaloid nucleus of the lateral olfactory tract (nLOT). The nLOT is a predominately glutamatergic nucleus that
consists of both vGlut2a:GFP positive (anterior; C) and negative (posterior) domains as well as GAD67-positive [arrows in (O,P)] and gad1b-driven dsRed expressing
[arrow in (Q)] GABAergic zones resembling the mammalian nLOT that consists of alternating GABAergic and glutamatergic layers. Previously, the nLOT has been
mislabeled as the posterior division of the dorsal telencephalon (“Dp”) and mistakenly considered the piriform cortex homolog. The identification of the nLOT together
with the piriform cortex homolog (IOP) solves their topological relationships within the complexly everted telencephalon (R indicates orientation of sections A–N).
(F) Schematic figure shows orientation of section in the sagittal view. New hallmarks of the complexly everted zebrafish telencephalon – the rostral (superficial) versus
posterior centralized parts of the dorsal pallium (DP). (S–U2) Analyzing distribution of parvalbumin versus vGlut2a-driven GFP shows that the dorsal pallium reaches
the periventricular zone and includes its germinative layer of origin. Note, that DM and medial pallium (MP = dorsolateral (Dl) zone of the pallium) overgrow the dorsal
pallium at posterior sections at the point of convergence (circled area). (V) Schematics of a zebrafish telencephalon from dorsal perspective illustrating levels of cross
sections.

the BSTm and teleostean dLGE defines the medial extended
amygdaloid nuclei as well as the pallial PMPa.

Dopaminergic Groups Form the Anterior
and Posterior Division of the BST
Previous studies have classified telencephalic dopaminergic
neurons in teleosts as an integral part of the striatopallidum (Rink
and Wullimann, 2001; Tay et al., 2011). However, we found that
these dopaminergic neurons are located within isl1:GFP-negative
territory, in contrast to the isl1-driven GFP positive rest of the
territory typically labeled as dorsal portion of the subpallium
(“Vd”) and considered here the zebrafish striatopallidum. Based
on their relative position between isl1-negative CeAa, CeAl, and
MeA amygdaloid territories and in close proximity to the newly
defined nLOT, we identified them as part of the amygdaloid
BST. This radical new interpretation acknowledges a recent
finding that telencephalic dopaminergic neurons project into
the hypothalamus in addition to the teleostean striatopallidum
(“Vd”) (Tay et al., 2011). Precommissural groups of dopaminergic
neurons build the (topographically) anterior bed nucleus of
the stria terminalis (BSTa) whereas supra- and postcommissural
groups of dopaminergic neurons form the BSTp (Figure 2G).
We also found a small number of dopaminergic neurons
in the newly identified caudalmost portion of the subpallial
medial amygdala (MeAv; Figure 2G) resembling the situation
of its most probable mammalian homolog the mammalian
MeApd. Likewise, dopaminergic neurons are also found in
subdivision so the mammalian BST (Northcutt and Lonstein,
2011; Bupesh et al., 2014). Overall, the zebrafish dopaminergic
BSTp is positioned in a laterally displaced angle and close to
the isl1:GFP positive medial BST (BSTm; Figures 2F–J). Both
the zebrafish CeA (=CeAa, CeAl, CeAd) and the dopaminergic
BST neurons seemingly are located in the isl1:GFP negative
and GABA-positive dorsal subpallium that corresponds to the

dorsal lateral ganglionic eminence (dLGE). This interpretation
is consistent with conserved regulatory gene expression patterns
and developmental studies in zebrafish (Mueller et al., 2008;
Mueller and Wullimann, 2009; Tay et al., 2011; Ganz et al., 2012).

NUCLEUS OF THE LATERAL
OLFACTORY TRACT (NLOT) AND
INTEGRATIVE OLFACTORY PALLIAL
NUCLEUS [IOP; MAMMALIAN LATERAL
PALLIUM (LP)]

Tg(lhx2a:GAP-YFP) Labels Main
Olfactory Bulb Projections to Two
Cortical Nuclei
Pivotal for assigning homologies in zebrafish is the correct
interpretation of the posterior olfactory nucleus “Dp,” which
partially forms through a peculiar radial cell migration (Mueller
and Wullimann, 2009; Mueller et al., 2011). Quite a number
of authors have questioned the origin of Dp, its homology
to mammals, exact delineation and position (Nieuwenhuys,
2009b). To solve this debate, we re-investigated the distribution
of secondary olfactory projections using the transgenic line
Tg(lhx2a:GAP-YFP). According to the study that introduced this
transgenic zebrafish line, olfactory bulb neurons allegedly send
their projections to a large single olfactory receptive pallium,
usually called the posterior pallial zone (Dp) (Miyasaka et al.,
2009). However, our results showed that these neurons project
not to one but to two separate pallial nuclei (Figures 2J,N),
which in turn differ by the respective presence or absence
of parvalbumin staining. The overlooked projection innervates
the parvalbumin-positive integrative olfactory pallium (IOP,
Figure 2N) previously mislabeled as a part of the dorsolateral
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FIGURE 3 | Molecular code of the zebrafish amygdaloid complex. Definitions of amygdaloid territories in the complexly everted telencephalon: Amygdala model
(basal ganglia (BG) not considered) (A–D) versus idealized topological amygdala model (B’,C’,D’,E,F) indicating tela attachments and radial glia distribution. (A–D)
The lateral schematic (A) of the amygdala model divides the zebrafish amygdaloid complex with regard to the anterior commissure (ac) into precommissural (B),
supracommissural (C), and postcommissural (D) sectors. A hierarchical code defines all amygdaloid nuclei: All medial extended amygdaloid nuclei in the supra- and
postcommissural sectors (C,D) are located within the isl1:GFP negative, subpallial (GABAergic) territories and comprise numerous calretinin-positive neurons. The
CeAd is distinguished from such MeA-territories through the presence of parvalbumin-fibers and cells that are laterally displaced. More anterior lying CeA-territories
such as the CeAa, CeAl also form part of the isl1:GFP negative subpallium, they are, however, distinguished from the CeAd through their lack of parvalbumin
expression. In addition, all dopaminergic clusters formerly viewed to the zebrafish striatopallidum are here considered the anterior (BSTa) and posterior (BSTp)
divisions of the bed nucleus of the stria terminalis (BST). These dopaminergic extended amygdaloid nuclei are also located in the zebrafish isl1:GFP free territory that
corresponds to the mammalian dLGE (= Vdd). The medial BST(m) is the only subpallial amygdaloid territory where a large population of isl1:GFP forms the majority of
this nucleus in addition to some calretinin-positive neurons that link this nucleus with the rest of the extended medial amygdala. The newly discovered integrative
olfactory nucleus (IOP) shows secondary olfactory projections and many parvalbumin positive neurons. In contrast, the amygdaloid nLOT that also receives
secondary olfactory projections lacks these parvalbumin neurons. (E) Topological amygdala model indicating idealized BG relationships showing tela attachment
sites and radial glia distribution as revealed in this study.

pallial territory (“Dl”) in the adult zebrafish brain atlas
(Wullimann et al., 1996). This parvalbumin-positive region is
the putative homolog to the mammalian lateral pallium (LP)
and probably best viewed as a teleostean counterpart to the

mammalian entorhinal cortex, which considered a part of the
hippocampal formation. In contrast, the second parvalbumin-
free region, as our data indicate, represents the amygdaloid
nucleus of the lateral olfactory tract (nLOT; Figure 2J). The
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FIGURE 4 | Substance P Fiber Tracts from the Olfactory Bulb into the Telencephalon. (A–G) Using diaminobenzidine (DAB) as a substrate for the detection of a
horseradish peroxidase coupled antibody yielded enhanced detection of substance P in the telencephalon (A–G). We found substance P positive neurons in the
olfactory bulb (OB in A and inlet). substance P fibers emanate from the olfactory bulb toward the lateral ventralmost part of the subpallium [Vv+Vd in (B,C)]. Most
importantly, some SP cells and many SP fibers label the medial amygdala (MeAa) in the dorsal tier of the subpallium (B–F). At the transition between
supracommissural and postcommissural telencephalon (D–F), substance P positive fibers passing through the dorsal medial amygdala [MeAd in (D–F)] enter and
label the posteromedial pallial amygdala [PMPa in (E,F)]. Substance P fibers also pass through the PMCo into the IOP, the zebrafish putative piriform cortex
homology (black arrows in IOP of H), supporting the proposed homology between the zebrafish PMPa and mammalian PMCo. Note, the anterior and dorsoposterior
divisions of the CeA (CeAa + CeAd) lack substance P and therefore can easily distinguished from all medial amygdaloid nuclei (MeAa, MeAd, MeAv, MeAp).
(G) Schematic cross sections and sagittal view of the zebrafish telencephalon to illustrate the two solid zebrafish accessory olfactory substance P fiber systems
innervating the medial amygdaloid territories. Substance P fibers seemingly form also laterally displaced diffuse projections (E).

zebrafish nLOT, like its mammalian counterpart, is a molecularly
heterogeneous composite structure whose GABAergic and
glutamatergic components originate from different primordial
sources. For example, both the rostral- and caudalmost
vGlut2a:GFP positive cell masses of the nLOT (Figure 2C) are
most likely generated through radial migration from the lhx5-
negative/vGlut2a-positive thalamic eminence (EmT; this study).
In addition, other glutamatergic, vGlut2a-negative cells are
probably derived from a region closely adjacent or overlapping
with the primordial pallial amygdala (Mueller et al., 2011). In
contrast, the presence of GABAergic portions of the nLOT
(Figures 2O–Q) suggests a subpallial origin of these neurons.
More posterior glutamatergic yet vGlut2a:GFP negative portions
that are not innervated by secondary olfactory fibers may be
derived from other telencephalic or thalamic sources. Previously,
the nLOT was misinterpreted both as part of the teleostean
ventral portion of the medial (hippocampal) pallium (“Dlv”) and
the so-called posterior zone of the pallium (Dp) of Wullimann

(Wullimann and Mueller, 2004b; Northcutt, 2008; Ganz et al.,
2012). However, the absence of substance P (this study) and
previously reported absence of dorsal raphe serotonergic input
(Lillesaar et al., 2009) speak against higher integrative function.

THE SUPRA- AND POSTCOMMISSURAL
EXTENDED MEDIAL AMYGDALA
NETWORK

The Supracommissural Extended
Amygdala (CeAd, BSTm, BSTp, MeAv,
pAmy)
We angled cross sections perpendicularly to the rostro-caudal
axis of the zebrafish telencephalon to visualize the
supracommissural BSTm/MeAv/CeAd configuration as an
oval structure sandwiched between the caudalmost DM
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(vGlut2a-driven GFP positive putative pAmy) and the anterior
commissure (Figures 2F–J). The relative position of these
territories between both the anterior commissure (ac) and
pallial-subpallial border (PSB) corresponds to the topological
situation in mammals, in such a way that the pallidal BSTm is
located adjacent to the ac, followed by an intermediate positioned
striatal MeAv, and the CeAd being closest to the PBS. We refer to
this oval composite structure as the supracommissural standard
configuration, which permits an easy navigation between the
supracommissural and postcommissural amygdala (Figures 2K–
N). In the latter, the MeAd merges with the posteromedial pallial
nucleus (PMPa) at the caudalmost telencephalic expansion
(Figures 2K–N). In the former, a group of isl1-GFP-positive
neurons contribute to the medial bed nucleus of the stria
terminalis (BSTm; Figures 2F,G), whereas isl1:GFP-negative
TH-expressing cells form the posterior division of the BST
(BSTp) (Figures 2F,G). A small number of isl1:GFP-negative and
TH-and GABA-positive neurons contributes to the MeAv. The
positions of the medial amygdaloid nuclei (MeAd, MeAv, MeAp)
are consistent with the topological positions of the redefined
BST nuclei (BSTm, BSTa, BSTp), the nLOT, the PMPa, and the
IOP. In these posterior sections, numerous calretinin-positive
neurons populate all MeA- and BST nuclei, which distinguish
them from CeA territories that are largely free of calretinin cells.
The distribution of calretinin cells in zebrafish resemble the
situation described for mammals (Wojcik et al., 2013).

The Postcommissural Amygdala (MeAa,
MeAd, MeAv, MeAp, PMPa, nLOT)
Next, we analyzed calretinin cell and fiber patterns in GABAergic
subcortical amygdaloid territories (Figures 2H,I,K,M) to
decipher the topological relationship between the MeA nuclei
and the newly identified PMPa. We found that the PMPa
shows extensive calretinin cell and fiber staining continuous
with the dorsal division of the zebrafish medial amygdala
(MeAd; 2I). Moreover, we define the posterior division of the
MeA (=MeAp) based on the presence of a large population of
otpa-positive neurons (Figure 2L). In addition, a contiguous
band of calretinin-positive neurons defines both the MeAd and
MeAv (Figure 2M). Connections between MeAd and PMPa
are suggested by calretinin fibers that arrive via four fiber
bundles in the ventralmost aspect of the MeAd (Figure 2I). In
the dorsal GABAergic subcortical MeAd at posterior sections,
these calretinin bundles fuse into one bilateral continuous
band projecting into the PMPa (Figure 2I). The ramification
patterns of these calretinin fibers suggest a functional link
between MeA and PMPa. Supporting this interpretation are
substance P positive fibers that emanate from the olfactory bulb
and reach the medial amygdala (MeA) at posteriormost sections
(Figures 4D–F,G–J). Specifically, these substance P positive
fibers also innervate the zebrafish PMPa (black thick arrows in
Figures 4E,F pointing within PMPa) supporting its functional
relationship with the MeA. In addition, numerous calretinin
positive cells in the territories of the posterior medial extended
amygdala (MeAd, MeAp) support its redefined homology. We
speculate that many of these calretinin positive neurons mediate

odor-cued behavior and, like in mammals, emanate from hem
like organizing centers including the thalamic eminence (Bielle
et al., 2005; Huilgol et al., 2013; Huilgol and Tole, 2016).

Substance P (SP) in Extended Amygdala
Marks Accessory Olfactory Nuclei
In mammals, the MeA mediates reproductive behavior in
response to sex-pheromones and receives projections from
the accessory olfactory bulb (Abellan et al., 2013). These
characteristics have been used in classical studies to define the
MeA in non-mammalian vertebrates with a vomeronasal organ
such as amphibians and lungfish (Moreno and González, 2003;
González et al., 2010). Given that zebrafish like other ray-
finned fish lack a vomeronasal organ and accessory olfactory
bulbs, it is generally assumed that an accessory pathway and
thus the medial amygdala is absent in zebrafish. However,
the olfactory epithelium of ray-finned fish contains sensory
neurons with pheromone-binding vomeronasal-like as well
as pheromone-binding (non-vomeronasal) olfactory receptors
critical for reproductive behaviors (Ahuja and Korsching, 2014;
Behrens et al., 2014). Hence, we tested the existence of several
medial extended amygdaloid territories and the PMPa also
through immunohistological detection of substance P (SP)
in adult zebrafish. In both amphibians and mammals this
neuropeptide labels accessory olfactory bulb projections to the
MeA (Moreno and González, 2003; Davidson et al., 2006).
Specifically, the presence of extensive SP fibers and numerous
SP positive neurons separates the mammalian MeA from the
central amygdala (CeA) (Emson et al., 1978). In adult zebrafish
two SP-positive bulbofugal tracts innervate the medial extended
amygdaloid nuclei (Figures 4G–J) in the rostral (Figures 4A–
C) and caudal (Figures 4D–F) zebrafish telencephalon. The
SP-positive MeA nuclei thus can be clearly distinguished from
the negative CeA (CeAa and CeAl; Figures 4B,C). Even more
significant is the finding that SP fibers pass through the
MeA (MeAd in Figures 4D,E) and project to the dorsalmost
regions of the PMPa and the integrative olfactory pallium
(IOP; Figures 4E,F). This finding supports the identification
of these newly defined territories. The nLOT completely lacks
substance P fibers in contrast to the IOP (Figures 4C–F). This
finding is consistent with the interpretation that the zebrafish
IOP integrates accessory olfactory-like and main olfactory and
gustatory information. In contrast, the absence of substance P
fibers in the nLOT suggests that this structure integrates main
olfactory and gustatory information only.

TELA ATTACHMENT SITES IN
COMPARISON TO RADIAL GLIA CELLS
AND VGLUT2A-DRIVEN GFP INDICATE
COMPLEX TELENCEPHALON EVERSION

Our molecular data and amygdala framework as outlined above
is incompatible with current eversion models, especially with the
idea that the zebrafish telencephalon develops through concentric
growth that causes a simple “outside-in pallial” organization as
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proposed based on radial glia cell distribution and genetic fate
mapping (Furlan et al., 2017). We postulated that the conclusion
of these results are due to inaccurate anatomical analyses of both
the periventricular radial glia and pial surfaces of the pallium
and misleading claims of earlier studies suggesting that radial
glia and tela attachment sites reflect a simple pallial eversion
in teleosts (Nieuwenhuys, 2009a,b). To test this hypothesis
and define periventricular sites versus respective pial sites, we
mapped the tela attachment sites and distribution of radial glia
somata and processes. For this purpose, we used antibodies
against parvalbumin (PV), GFAP and GFP in the transgenic line
tg(vGlut2a:GFP) allowing us to correctly annotate distribution
of radial glia cells and their processes and tela attachment
and fusion sites.

The Tela Attachment and Fusion Sites
Indicate Complexly Everted Pallial
Organization and Contributions of the
(Pre-)Thalamic Eminence (EmT)
We found that the PV antibody visualized the telencephalic
tela choroidea (Figure 5, specifically 5A1/A2, D1-D2B, and
E1/F1). Most strikingly, and in sharp contrast with former
studies, we found that the tela choroidea is fused with
at the periventricular site of the dorsolateral zone (“Dl”)
corroborating the interpretation that this zone is the zebrafish MP
(Figures 5D1B,D2B). This finding thus falsifies Nieuwenhuys
hypothesis stating that the tela is attached solely to what he
identified as (telencephalic) “nucleus taeniae”: (Nieuwenhuys,
2009b). Our results, in contrast, indicate that he misinterpreted
what would be traditionally viewed as a diencephalic attachment
site as being telencephalic. This fact becomes particularly
evident at caudalmost sections in the region that we describe
as diencephalic-telencephalic junction (DTJ) in this study
(Figures 5E1–F3). Within the DTJ, the zebrafish vGlut2a-driven
GFP positive (lhx5-driven GFP negative) thalamic eminence
(EmT) is contiguous with a portion of the regions of the
dorsoposterior zone (DP) within a transitional zone between
EmT, nLOT, and IOP (vGlut2a-driven GFP of the nLOT as
visualized in Figures 5E1–F3). The putative GFP-positive EmT-
derivative (EmT-d) extends to the pial surface of the pallium
occupying a small portion of the part that is usually considered
Dp or Dlp. Topographically beneath this GFP positive EmT-d,
we identify the lateral thalamic eminence (EmTl; Figures 5E1–
F3), which in mammals is an important signaling center that
contributes to the development of the nLOT (Remedios et al.,
2007; Huilgol and Tole, 2016; Ruiz-Reig et al., 2017). The EmTl
is most pronounced and appears as a pseudo-layered or folded
structure at the DTJ probably due to bending processes during
development. The characteristic distribution of the vGlut2a-
driven GFP neurons close to the pial surface of the pallium,
the lateral displacement of the nLOT in connection with an
indentation of the outer pallial rim, as well as the close
relationship with the diencephalic tela attachment site together
suggest that the vGlut2a-driven GFP positive portions of the
nLOT represent derivatives of the thalamic eminence (EmT-
d) as summarized in the schematic Figure 8). We postulate

that vGlut2a-driven GFP positive cell masses of the nLOT in
its most rostral (e.g., Figures 2A–C, 5A1–C2, D1B) and caudal
aspects (are derived from the vGlut2a-driven portions of the
EmT. Again, what is visible as a tela attachment site across the
entire length of the nLOT represent a diencephalic attachment
site (Figures 5D1B,D2B), not homologous to the one that defines
the medial pallium as proposed before.

This drastic reinterpretation of the tela attachment sites as
well telencephalic homologies to mammals also concerns an
important structure at the DTJ, which we called the posterior
medial amygdala (MeAp). Notably, we found that PV also stains
the tela attachment site of what we identified as the rostral
portion of the thalamic eminence (EmTr) and which we consider
a part of the medial amygdala and consequently called it the
posterior medial amygdala (MeAp/EmTr). The MeA/EmTr has
been previously proposed as being the MeA and labeled as the
intermediate subpallial nucleus (“Vi”) that contains tangentially
migrated hypothalamic otp-a positive neurons (Biechl et al.,
2017). The facts that the tela choroidea is attached to this nucleus
(Figures 5E1,F1) and that glutamatergic neurons populate this
nucleus (Figures 5E1,F1) strongly suggest that this territory is an
EmT derivative that forms a smaller part of the medial extended
amygdala as visualized in schematic Figure 8.

Radial Glia Somata and Processes
Support Complexly Everted Pallium,
Contributions of the (Pre-)Thalamic
Eminence (EmT), and Presence of the
Dorsal Pallium
At rostral most sections (Figures 5A1–C1), distribution and
orientation of radial glia and their processes were consistent
with our delineation of both the pallial amygdala (DM) and
dorsal pallium (DP). The GFAP-positive radial glia of both
these territories send their processes toward the subpallium
and end just at the pallial-subpallial border (PBS) that is
located topographically below the GFP-positive and PV-negative
nLOT. However, the somewhat laterally displaced nLOT does
not show radial glia somata at its lateral superficial expansion
demonstrating that this part does not contain proliferative
stem cells as shown before based on proliferation patterns
(Wullimann and Mueller, 2004b; Lillesaar et al., 2009; Mueller
and Wullimann, 2009; Mueller et al., 2011). Thus, our results
again confirm that the nLOT is located at the pial surface
and not at the periventricular site as suggested in simple
eversion models. This finding is consistent with the interpretation
that heterogeneous migrated cell masses form the nLOT.
This hypothesis is strongly supported by the somewhat lateral
displacement of the nLOT which leads to an indentation between
nLOT and DP or MP (Figures 5A1–C2). Likewise, the overall
orientation and distribution of radial glia cells supports the
interpretation that the centralized zone of the zebrafish pallium
(“Dc”) represents the dorsal pallium (DP) which extends into
the topographical rostral most sector and includes its own
germinative zone of origin (Mueller et al., 2011).

At mid-telencephalic sections (Figures 5D1A,D2B), the
processes of the radial glia of both the DM and the MP cut
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FIGURE 5 | Continued
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through the DP territory and end just below the nLOT at the
PSB. Interestingly, there are no radial glia cell somata nor radial
glia processes visible at the lateral margins of the nLOT toward
the indentation close to the tela attachement site. This finding
again is consistent with our hypothesis that the vGLut2a positive
portions of the nLOT originate from the EmTl (see schematic in
Figure 5). Moreover, both the DM and the MP have overgrown
the DP for the largest part, only few radial glia cells belong to
DP (arrow pointing on radial glia cells of the dorsal pallium in
Figures 5D1B,D2B). This finding suggests that once overgrown

by DM and MP, the radial glia of DP will be replaced by those
of the DM and MP.

At caudalmost sections, the processes of the radial glia located
within the DM, PMPa, and IOP, again, dock onto the area
topographically below the nLOT. As expected, none of the
vGlut2a-driven GFP positive territories defined in this study as
nLOT show radial glia somata at their pial site, nor do they show
pronounced radial glia processes indicating that these territories
have formed either through early radial migration (within a
thalamic territory (EmT) or through tangential migration (late

FIGURE 5 | Continued
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FIGURE 5 | Continued
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FIGURE 5 | Radial glia cells and Tela Attachement Sites Confirm Medial, Dorsal, and Thalamic Eminence Identification.
We performed triple fluorescence immunostains against parvalbumin (PV), GFP, and GFAP in the brains of Tg(vGlut2a:GFP) counterstained against DAPI. (A1–C2):
A1 shows different aspects of a rostral section highlighting that one large parvalbumin- (PV-) positive tela attachment site is located at the ventricular site of the
dorsal pallium and pallial amygdala (white arrows in A1,A2,B,C1). The tela choroidea is fused (green arrows in A1,A2,B,C1) with the proliferative stem cell layer of the
dorsolateral zone (“Dl”) supporting its medial pallial (“hippocampal”) identity. The nLOT tract shows a characteristic indentation (A2,C2) and no GFAP stained cell
somata at its lateralmost aspect corroborating this area as the pial, not ventricular site. Notably, all radial glia of the candidate dorsal pallium do send their processes
towards the pallial-subpallial border (PBS). These radial glia are attached to the topographically ventral side of the nLOT next to those of the medial pallium. Radial
glia of the nLOT are not visible in this orientation suggesting that their radial domain is different from pallial zones. This finding supports the interpretation that the
vGlut2a-driven GFP domain is a derivative of the EmT. (D1A–D2B) At mid-telencephalic sections, both radial glia cells and tela attachments show the same
distribution. At the point where proliferative zones of the DM and medial pallium (MP) meet and grow over the dorsal pallium, a reduced number of radial glia cells of
the dorsal pallium are visible. Radial glia of both MP and DM cut through the territory of DP and send their processes beneath the nLOT. The probable diencephalic
attachment site of the tela choroidea is located at the nLOT (gray arrows in D1b,D2b). Again, there are no GFAP-positive glia cell somata at the most lateral cell
groups corroborating its pial nature. The nLOT in this orientation shows no radial glia processes supporting their postulated EmT origin. At caudalmost sections, the
study identifies the diencephalic -telencephalic junction (DTJ) that comprises territories formerly assigned to the telencephalon such as the posterior medial
amygdala (MeAp/EmTr) and the vGlut2a-driven GFP positive nLOT territory that spans a region next to the MeAp/EmTr to the lateral (pial) surface (blue arrows in
E1-E3). The BNSM was formerly identified as a derivative of the EmT in zebrafish and is often mistaken as the entopeduncular nuleus proper (ENv) Mueller and Guo
2009). Note, that the tela choroidea is attached to the MeAp/EmTr indicating its periventricular site (E1,F1).

developmental stages from thalamic EmT into telencephalon).
Note, that we view the vGlut2a-driven GFP positive portions of
the nLOT as a radial domain of the EmTm or EmTl not described
for earlier stages in zebrafish (Wullimann and Mueller, 2004a;
Turner et al., 2016).

DIFFERENTIAL EXPRESSION OF
VGLUT2A- AND LHX5-DRIVEN GFP
DEFINE SUBDIVISIONS OF THE
THALAMIC EMINENCE AT THE
DIENCEPHALIC-TELENCEPHALIC
JUNCTION

Comparing lhx5-driven GFP versus distributions of otp-a and
vGlut2a-driven GFP revealed the detailed architecture of the
adult zebrafish EmT and its topological relationships to both
the EmTr/MeAp (former “Vi”) and nLOT (Figures 6A1–D).
Specifically, the results showed that otp-a protein distribution
strongly overlaps with lhx5-driven GFP positive neurons
within the EmTr/MeAp where the tela choroidea attaches at
posteriomost sections close to the border to the habenula which is
separated from the EmTr/MeAp by the base of the saccus dorsalis
(SDB; Figures 6C1,C2,D). The lhx5-driven GFP expressing
neurons at the posteriormost section reach to the periventricular
site indicating that this proliferation zone gives rise to the lhx5-
driven GFP positive cells, some of which are double-positive for
both otp-a and lhx5-driven GFP (Figures 6A3,B3). This finding
suggests that at least a fraction of these otp-a positive neurons is
derived from the EmTr.

DISCUSSION

Teleost fish with more than 26,000 species comprise the largest
vertebrate group and exhibit sophisticated cognitive capabilities
underlying social and reproductive behaviors (Fernald, 2017).
Yet to this day, the neural basis of these complex behavioral
repertoires has remained elusive. Specifically, the field lacks a

precise definition of the teleostean amygdala, whose counterparts
in mammals form the regulatory core of the emotional brain
essential to emotion, cognition, and social behavior (Northcutt,
2008). The mammalian amygdala shares many characteristics
with other tetrapods and their sister group, the lungfish, which
suggests that a complex tetrapod-like amygdala ground plan
originated in the common ancestor of lungfish and tetrapods
(Moreno and González, 2007; González et al., 2010; Abellan
et al., 2013). It is currently, however, not understood how the
amygdala is organized in more basally derived fish. In teleosts,
eversion of the forebrain made direct comparisons difficult
with tetrapod forebrains that develop through evagination
(Figure 1; Nieuwenhuys, 2009b). We choose to focus and
decipher the teleostean amygdala ground plan in zebrafish,
because it represents an important model system for brain
development and disease. What is more, earlier studies on
zebrafish provide rich molecular information regarding pallial
and subpallial entities including putative homologs of the
mammalian iscortex and hippocampus (Mueller and Guo, 2009;
Mueller et al., 2011; Ganz et al., 2014). Key processes, moreover,
of the telencephalic eversion have been uncovered in zebrafish,
providing an ideal foundation for our redefinition of the zebrafish
amygdala (Mueller and Wullimann, 2009; Mueller et al., 2011;
Folgueira et al., 2012).

Combining molecular characterizations with evolutionary
and developmental considerations, we describe the entire
zebrafish amygdala and its relationships with pallial, subpallial,
and EmT territories. Our results stress that a dense almost
indivisible continuum of thirteen territories forms the zebrafish
amygdala. For the first time, we identify the nLOT and the
posteromedial pallial nucleus (PMPa), both of which are integral
elements of the zebrafish amygdala and the primary olfactory
pallium. In addition, we show that the highest integrative
olfactory zone (“Dp proper”) occupies a sector that was
previously considered a posterior portion of the dorsolateral
pallium (“Dl” or “Dlp”). To avoid future misunderstandings,
we call this region the integrative olfactory pallium (IOP),
which we postulate represents the homolog of the lateral
pallium (LP; mammalian entorhinal cortex). Despite their
everted positions, each pallial amygdaloid territory is defined
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FIGURE 6 | The posterior medial amygdala (MeAp) is identical with the rostral thalamic eminence (EmTr). (A1–D): The comparison between lhx5-driven GFP,
parvalbumin (PV), and otp-a protein distribution shows that the lhx5-driven GFP positive EmTr reaches from its periventricular site (indicated by tela choroidea
attachment in C). Note, the lhx5-driven GFP positive base (SDB) of the saccus dorsalis (SD) connects to both the Ha (in C1/2 and D) and the MeAp/EmTr (best
visible in C1/2)hh. Like in mice, the posterior territory of the lateral olfactory tract seemingly does express lhx5 as indicated by GFP expression in Tg(lhx5:GFP)
(A1,B1,C1,D).

in this new framework through its conserved relationships with
subpallial nuclei.

Neural Systems Organization of the
Zebrafish Amygdala in Relation to
Olfaction
The zebrafish amygdala consists of three functional networks
similar to the situation described for mammals: (1) the main

olfactory system, (2) the accessory olfactory-like or reproductive
amygdala, and (3) the central and pallial amygdala (CeA-pAmy)
network (mammalian BLA) regulating autonomic functions
and mediating associative emotional learning. In other words,
(1) the nLOT and two related nuclei of the bed nucleus of
the stria terminalis (BSTa, BSTp) are part of the zebrafish
main olfactory network. (2) The zebrafish accessory olfactory-
like pathway consists of the PMPa, four medial amygdaloid
territories (MeAa, MeAd, MeAv, MeAp/EmTr), and the medial
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FIGURE 7 | Comparison Zebrafish – Macrosmatic Rodent Amygdala. (A) Cladogram indicating presence of a complex amygdala ground plan and nucleus of the
lateral olfactory tract (nLOT) in the last common ancestor of teleosts and mammals. Our results indicate that the last common ancestor between ray-finned fish and
mammals already showed a tetrapod-like main extended amygdala ground plan (red circle). Previously, most scientists assumed that a bipartite main versus
olfactory extended amygdala evolved with a vomeronasal epithelium in the last common ancestor of lungfish and tetrapods (González et al., 2010). However,
molecular evidence hint toward the presence of a bipartite olfactory system already in agnathan lamprey (Chang et al., 2013). We speculate, therefore, that a
bipartite and complex amygdala may evolved with the earliest vertebrates. (B) Prosomeric comparisons of the zebrafish/teleostean amygdala (left) with the situation
in macrosmatic rodents (right). Both the schematized zebrafish brain cross sections and the parasagittal view on the left side indicate that the zebrafish amygdala
holds several previously misinterpreted territories such as the bed nucleus of the stria terminals (BST), the medial amygdala (MeA) and its anterior (MeAa), posterior
(MeAv) and dorsal division (MeAd), the posteriormedial pallial amygdala (PMPa), the integrative olfactory pallium (IOP), and the nucleus of the lateral olfactory tract
(nLOT). Due to the teleostean-specific outward growing process (eversion), these territories lie on top of the telencephalon and cover the zebrafish homolog to the
mammalian isocortex. In mammals (right side), we find the opposite situation. Here, the amygdaloid complex is located in the anterior ventral depth of the brain
covered by the enlarged isocortex (modified after Mueller et al., 2011; Mueller, 2012). For molecular definition of pallial, subpallial, and EmT-derived (EmT-d)
amygdaloid territories see Table 1. Abbreviations see table.
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FIGURE 8 | Summary schematic explaining how the zebrafish thalamic
eminence (EmT) reveals ancestral topological relationships to posterior medial
amygdala and olfactory pallium. (A–F2) Comparing topographically rostral and
posterior ends of the telencephalon in transgenic lines Tg(vGlut2a:GFP) and
Tg(lhx5:GFP) with distribution of parvalbumin, otp-a, and GFAP indicated a
complex EmT. In sites classically defined as “telencephalic,” we identified the
rostral (EmTr = vGlut2a+, lhx5+, otp-a+) and lateral (EmTl) vlgut2a+;lhx5-). At
diencephalic side of the diencephalic-telencephalic junction, the EmTm can
be easily identified based on vGlut2a-driven GFP expression and absence of
lhx5-driven GFP, whereas the otp-a negative bed nucleus of the stria
medullaris (BNSM) shows both vlgut2a- and lhx5-driven GFP. Note, that we
consider the rostral and posteriormost parts of the newly defined nLOT a
derivative of the EmT consistent with the absence of radial glia somata and

(Continued)

FIGURE 8 | Continued
processes in their most lateral (pial) aspects. (G–L) Schematics comparing
brain of adult zebrafish (dorsal view) with adult rodent (idealized side view),
and developmental stage to determine various EmT derivatives. The study
identifies topographically rostral and posterior EmT territories based on
differential expression of vGluta- and lhx5-driven GFP in comparison to otp-a
expression. The dorsal view on the zebrafish telencephalon highlights
“diencephalic” medial (EmTm) versus “telencephalic” rostral (EmTr) and lateral
(EmTl) at the diencephalic-telencephalic junction (DTJ). The distribution of
vGlut2a-driven GFP and lhx5-driven GFP in adult zebrafish strikingly
resembles the situation shown in mammals (mouse) (Ruiz-Reig et al., 2017).
Our complexly everted telencephalon model considers both rostral (nLOTr)
and posterior portions of the most ventro-lateral expression domains of
vGlut2a-driven GFP as radial extensions of the EmTl. The integrative olfactory
pallium (IOP) is most likely a derivative of the newly defined lateral pallium of
the prosomeric model and thus homologous to the entorhinal cortex.

BST (BSTm). The MeAp/EmTr, previously termed intermediate
subpallial nucleus (Vi), has already been identified as an olfactory
subpallial nucleus (the “MeA”) that responds to socially relevant
olfactory information (Biechl et al., 2017). (3) The zebrafish
central amygdala (CeA = CeAa+CeAl+CeAd) sits close to and
topographically below the region that is commonly viewed as
the teleostean pAmy (Portavella et al., 2004a,b; Wullimann and
Mueller, 2004b; Martin et al., 2011; von Trotha et al., 2014;
Ruhl et al., 2015).

This separation of the three neural systems becomes visible
when looking at the molecular characteristics that define
mature neurons. For example, the branching formations of
both substance P and calretinin fibers reflect the topological
relationship and connectivity between newly identified core
territories of the extended medial amygdala (MeAd, MeAv,
MeAp). As a unifying characteristic, these accessory olfactory-
like territories share the presence of numerous calretinin-
positive neurons. This fact clearly separates them from anterior
central amygdaloid territories that lack such calretinin neurons.
Likewise, among central amygdaloid territories, the CeAd stands
out as a laterally displaced sector enriched with parvalbumin
fibers and sparse parvalbumin-neurons. Similarly, amygdaloid
structures of the main olfactory-like pathway, such as the nLOT
and the dopaminergic BST territories, lack substance P fibers.

Taken together, our new amygdala framework reveals
an intricate zebrafish pallial-subpallial amygdala network
of heterogonous molecular structure that resembles the
amygdala of mammals with prominent olfaction, such as
macrosmatic rodents.

Hallmarks of our new amygdala paradigm are the
identification and molecular definition of the EmT territories
(EmTr; EmTl, EmTm), the nLOT, and the highest olfactory pallial
zone, which we termed the integrative olfactory pallium (IOP).
Their precise demarcation, chemoarchitecture and topology
allowed us to clarify previously mislabeled neighboring structures
(see Supplementary Table S1 that lists labeling inconsistencies
across teleosts). The zebrafish IOP, for example, was previously
interpreted as part of the dorsolateral (Dl) pallial zone by
Wullimann et al. (1996). As such, it was incorrectly considered
as a non-olfactory extension of the teleostean medial pallium
(mammalian hippocampus). Our identification of the actual Dp
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region—as integrative olfactory pallium (IOP) in its redefined
position in the dorsoposterior pallium—posits also a topological
correspondence to the mammalian entorhinal cortex (=lateral
pallium; LP). That is, we postulate that the IOP/Dp proper is
not part of the “teleostean hippocampus” (“Dl”) but like the
mammalian entorhinal cortex an important building block of the
“teleostean hippocampal formation-like system.” In other words,
we suspect that the IOP is critical for both olfactory integration
and olfactory-related navigation similar to the mammalian
entorhinal cortex. Also, the zebrafish nLOT was previously
misinterpreted either as part of the “teleostean hippocampus”
(“Dlv”) or the posterior olfactory pallium (“Dp”) (Wullimann
et al., 1996; Ganz et al., 2014). Confusion about Dp has also led to
functional misinterpretations and the erroneous assumption that
the Dp territory represents the highest integrative olfactory pallial
zone (Jacobson et al., 2018). Our identification of the zebrafish
nLOT as a potentially lower integrative structure emphasizes
deeply conserved evolutionary links between the teleostean
and mammalian amygdala and primary olfactory pallium. The
identification of various EmT territories and their structural
relationship to the zebrafish amygdala clarifies the unusual
(compared to non-actinopterygian vertebrates) everted topology
of the teleostean forebrain that has been subject of debate among
comparative neurologists for over a century (Nieuwenhuys,
1963, 2009b; Wullimann and Mueller, 2004b; Yamamoto et al.,
2007; Northcutt, 2008; Mueller and Wullimann, 2009).

Our data also indicate deep and unexpected relationships
between the DM, the PMPa, the integrative olfactory pallium
(IOP), and the nLOT. For example, we show that the PMPa
needs to be viewed as a pallial passage functionally linked to
the extended medial amygdala and cannot simply be described
as an extension of DM (anterior Dm) (Northcutt, 2008; von
Trotha et al., 2014; Ruhl et al., 2015). Critically positioned
between the DM (important for motivational states), the IOP
and the extended medial amygdala (processing pheromones
and social cues), the PMPa, we postulate, integrates accessory
olfactory information and motivational states. In contrast, the
newly identified dopaminergic BST nuclei (BSTa and BSTpd)
form a functional relationship with the nLOT. As a part of the
main olfactory system, the BSTa and BSTpd most likely modulate
the activity of the nLOT. We postulate that the nLOT itself
integrates main olfactory and gustatory information, given that
this structure receives projections from both systems (Vaz et al.,
2017; Yanez et al., 2017).

Molecular Amygdala Characteristics and
Functional Organization
Our drastically revised zebrafish amygdala-olfactory systems
paradigm is also supported by previous findings about the
expression patterns of conserved gene regulatory genes and the
development of the zebrafish telencephalon. The interpretation
of the isl1:GFP negative BSTa; BSTp, CeA, MeAd as mainly
dLGE-derived territories is compatible with conserved regulatory
gene expression patterns and developmental studies of the
zebrafish telencephalon (Costagli et al., 2002; Mueller et al.,
2008; Mueller and Guo, 2009; Ganz et al., 2012; Folgueira

et al., 2012). A study has shown as well that the adult isl1-
driven GFP expression strongly resembles the larval expression
(Baeuml et al., 2019). This fact supports our interpretation that
the isl1-free GABAergic zone in fact represents an evolutionarily
expanded dLGE territory. However, we cannot exclude the
possible presence of pallidal and striatal neurons that may
have migrated from the isl1-positive territory and subsequently
suppressed isl1-expression. We suspect also that amygdaloid
territories might be even more heterogeneous than this study
proposes. For example, the zebrafish BST may include a territory
with isl1-negative and nkx2.1 positive neurons as has already
been suggested (Ganz et al., 2012).

Equally important for understanding the ground plan is that
the distribution of mature neuronal phenotypes conforms with
the function of these amygdaloid territories. For example, even
though the overlapping distribution of vGlut2a-driven GFP (this
study) and emx3 mRNA (Ganz et al.) render the zebrafish
DM a relatively homogenous histogenetic unit, the region most
likely subdivides into functionally distinct sectors. A recent study
showed that emx3-positive glutamatergic subpopulations, called
“Dm120A,” innervate zebrafish hypothalamic territories (Lal
et al., 2018)(Ganz et al., 2014). In contrast, the mammalian central
amygdala projects to the hypothalamus via GABAergic neurons.
Here the zebrafish pallial amygdala candidate (DM) seems to
deviate, at least partially, from the mammalian one. Mammals
except marsupials also do not possess an emx3 ortholog (Kuraku,
2010) and instead express Emx1 in specific nuclei of the
pallial amygdala (Medina et al., 2017). In fact, the mammalian
basolateral amygdala (BLA)—critical for associative emotional
learning and in all likelihood the most comparable region to the
zebrafish DM region – contains Emx1 positive neurons (Cocas
et al., 2009) (Medina et al., 2017). Other studies also support this
comparability between mammalian BLA and part of the zebrafish
DM. In particular the significant expression of cannabinoid
receptor 1 in the zebrafish DM (Lam et al., 2006), is also a
key characteristic of the mammalian BLA (Katona et al., 2001).
These findings point to deeply conserved neurophysiological and
functional parallelisms between ray-finned fish and tetrapods.
Previous studies showed also that the zebrafish DM is involved
in associative learning and endocannabinoid signaling critical
for its function (von Trotha et al., 2014; Lau et al., 2011; Ruhl
et al., 2015, 2017). As a result, the zebrafish amygdala needs to be
understood as a mosaic of conserved and acquired characteristics
much like other parts of the zebrafish brain (Costagli et al., 2002;
Wullimann and Mueller, 2004b; Adolf et al., 2006; Northcutt,
2008; Mueller, 2012).

Zebrafish Eversion and Amygdala
– Complex and Constrained
What is more, our data drastically extend a complex
telencephalon eversion model characterized by a centralized
isocortex-homolog (dorsal pallium) and a migratory stream
across the pallium only in an earlier study (Mueller et al.,
2011). Our identification here of several previously overlooked
structures, including the principal olfactory pallium (IOP), the
nLOT, and a set of EmT territories alongside documentation of
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radial glia distribution and attachment sites of the tela choroidea,
paint a new and complex picture of the zebrafish eversion. Our
results indicate, that a complete and complex outward-growing
(eversion) process rearranges the zebrafish forebrain constrained
by the thalamic eminence (EmT), the organizing center sitting
at the diencephalic-telencephalic junction (DTJ, Figure 8). The
presence of the thalamic eminence in the newly demarcated
diencephalic-telencephalic junction (DTJ) of adult zebrafish
supports a highly regulated outward-growing process that
starts during early development. This hypothesis is consistent
with embryonic eversion processes as well (Folgueira et al.,
2012). During larval and juvenile stages, the eversion gains
in complexity through radial migratory processes and the
overgrowing of the dorsal pallium by both the DM (putative
pallial amygdala) and the MP (Mueller et al., 2008, 2011;
Mueller, 2012).

The Evolution of Cognition and Emotion
For the first time, our study identifies the DTJ with the
EmT derivatives and their relationship to the amygdala
thereby solving the zebrafish eversion for teleost ray-finned
fish (actinopterygians) at large. What this study makes
particularly clear is that the zebrafish telencephalon resembles
the mammalian forebrain even though the teleostean everted
morphology causes a markedly difference in appearance. Our
findings show as well that the here newly identified EmT
territories represent the missing link between the everted
zebrafish forebrain and the evaginated telencephalon of
mammals. Like in mammals, zebrafish EmT territories form
highly conserved and intertwined forebrain elements, a fact
previously overlooked causing misinterpretations of the
forebrain evolution in ray-finned fish. This study also validates
the prior discovery of the zebrafish dorsal pallium (mammalian
iscortex), which already suggests a conserved forebrain ground
plan between teleosts and tetrapods (Mueller et al., 2011).
The presence of both a considerable dorsal pallium and a
complex zebrafish amygdala, of course, is pivotal for the
development of phenomenal consciousness, emotional sentience,
and the perception of pain (Key, 2015; Sneddon, 2019). This
study, therefore, stresses the need to discuss the presence and
implications of emotion in fish.

Important for a better understanding of the early evolution
of vertebrate amygdala and isocortex-homolog will be the
identification of EmT territories in more basally derived fish.
The probably highly conserved territories in actinopterygian
and non-actinopterygian fish, such as agnathans (lamprey)
and chondrichthyes (sharks and manta rays), might allow to
solve disagreements about their forebrain evolution (Puelles,
2001; Pombal et al., 2009; Mueller, 2011; Northcutt, 2011;
Schluessel, 2015; Docampo-Seara et al., 2018). Similarly, the
discovery of EmT and nLOT enabled in this study to effectively
compare the everted zebrafish with the evaginated forebrain of
mammals. Notably, the mammalian amygdala is evolutionarily
not only related to EmT and nLOT but shows also strong
reciprocal connections with the prefrontal cortex, critical
for cognition and goal-directed behaviors. Currently, most
comparative neurobiologists assume that the prefrontal cortex,

the highest integrative cortical center, represents a distinguishing
characteristic of the mammalian isocortex, most pronounced in
humans. However, based on the prefrontal cortex’s connections
to the amygdala in mammals and conservatisms in the
zebrafish amygdala, we postulate that basic amygdala-prefrontal
cortex-like circuits exist in teleost fish, too. In this context,
our study provides role model and rationale for the neural
substrates of cognition and emotion in fishes or basally derived
vertebrates. The predictable presence of amygdala-prefrontal
cortex-like circuits in teleosts may eventually allow identifying
the neural basis of emotional sentience in the important genetic
model zebrafish.
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FIGURE S1 | substance P fiber tracts from the olfactory bulb into the
telencephalon. (A–D) The antibody against substance P labeled fiber bundles
originating in the olfactory bulb and projecting to all extended medial amygdala
(MeA) territories, posteromedial pallial amygdala (PMPa), and integrative olfactory
pallium (IOP). The bulbo-telencephalo projections form two solid tracts; one
smaller dorsally located one and a larger ventral one, plus a diffuse tract less
visible in sagittal sections. The ventral substance P positive tract most likely

corresponds to the lateral medial olfactory tract of cyprinids conveying pheromone
information. The dorsal ascending substance P tract extends along the
pallial-subpallial border (PSB) and most likely represents a derivative of the
septum. Note, the nLOT, as defined in this study, lacks substance P fibers.

FIGURE S2 | Sagittal brain section stained against GFAP (red), vGlut2a-driven
GFP (green), and parvalbumin (yellow). (A1,A2) The distribution of vGlut2a-driven
GFP shows the extent of the pallial amygdala DM in relation to the dorsal pallium
(DP) and integrative olfactory pallium (IOP) both of which lack vGlut2a-driven GFP
at large. The tela choroidea is closely attached (white arrows) to the DM an extents
up to the olfactory bulb. Also, note that dense population of GFAP-positive
fibers surround the anterior commissure similar to the situation in
mammals.

TABLE S1 | Nomenclature for teleostean telencephalic territories and examples
for former labeling inconsistencies. ∗None of the former studies did establish
molecularly defined histogenetic units as this study does making it impossible to
perfectly compare conflicting interpretations. ∗∗After Biechl and colleagues
(Biechl et al., 2017).
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