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Editorial on the Research Topic
Granger causality and information transfer in physiological systems: basic
research and applications

The concept of causality provides a theoretical framework to gain insights into the
mechanisms underlying driver-response relationships in coupled systems by estimating the
involved subsystems’ directed interaction. In recent years, this approach has become
fundamental to investigating coupled dynamical systems in several fields, including
physiology, physics, and economics, among others (Bressler and Seth, 2011). In this
context, a class of information-theoretic methods has been proposed for causality
estimation of time series, starting from the fundamental definition of Granger causality
(GC) based on multivariate linear autoregressive models (Barrett et al., 2010) and extending
to non-linear and non-parametric information transfer approaches (Faes et al., 2011). In the
field of network physiology, causality analysis has become a reference tool (Porta and Faes,
2016; Ivanov, 2021) as it has allowed studying the dynamics of brain connectivity,
interactions of the brain with other organ systems, as well as the interactions between
pairs of physiological systems such as the cardiovascular, cardiorespiratory, and
cerebrovascular ones (Porta and Faes, 2016; Khandoker et al., 2019).

The present Research Topic highlights advances in causality analysis applied to bi- and
multivariate physiological and simulated time series. The Research Topic has attracted nine
high-quality papers involving novel methodologies, revisiting established approaches, and
presenting innovative applications.

The methodological paper from Shao et al. introduced a novel measure of causal
influence strength in the context of recurrent transient neural events—the relative dynamic
causal strength (rDCS). This measure was compared to previously used tools and verified by
simulated and experimentally recorded neurophysiological data. The significance of this
approach to studying brain activity mechanisms was further discussed.

A modified, corrected measure of the mutual information rate (cMIR) was developed by
Mijatovic et al. for the study of bivariate point processes. The functionality of the measure
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was first demonstrated in various simulation studies, showing its
good performance in terms of bias reduction, and then in real point
process data represented by heartbeat times and arrival times of the
sphygmic wave at the body periphery. In the application, a
significant coupling between the two processes could be
demonstrated in healthy subjects studied across different
experimental conditions. The statistically significant changes in
cMIR observed during physiological stress suggested that this
index may reflect neuroautonomic modulation of heartbeat and
vascular dynamics.

As a decision aid for interaction analyses, Günther et al.
compared strengths and weaknesses of the GC approach and the
Bivariate Phase Rectified Signal Averaging (BPRSA). Among other
results, they found that BPRSA requires more data or stronger
interactions than GC and that the latter, unlike BPRSA, can detect
direct causal relationships from indirect relationships. In contrast to
this, BPRSA is suitable for the analysis of non-stationary data. The
suitability of GC for the coupling analysis of causal networks in
subjects with and without sleep apnea (analysis of heart rate,
respiratory rate, and EEG alpha amplitude) was successfully
demonstrated.

Baccalà and Sameshima delved into the methodological
aspects of the analysis of GC, particularly focusing on the
assumptions underlying the computation of GC measures in
both time and frequency domains. Importantly, they show
that using the very popular linear vector autoregressive model
representation of the observed set of time series is not a
mandatory requirement for computing GC but is rather a
convenient representation that can be substituted by other
means of spectral factorization of the spectral density matrix
into minimum phase factors.

Important methodological aspects in the computation of GC
are also addressed by Koutlis et al., who challenged the notion
that the structure of neural connectivity underlying multichannel
electroencephalographic signals can be better inferred by
analyzing the cortical source time series obtained through
inverse source reconstruction. Using both simulated and real
signals measured from epileptic subjects, they showed that
causality networks constructed at the sensor and source levels
differ significantly, and the former can yield better discriminative
ability of network topological indices.

Froese et al. employed GC and other statistical methods applied
to autonomic response variables such as heart rate and blood
pressure variability to investigate the relationship between such
variables and cerebrovascular reactivity in patients with moderate
to severe traumatic brain injury. The study showed that the
sympathetic autonomic response, monitored via spectral indexes
and baroreflex sensitivity, is closely linked to impaired
cerebrovascular reactivity.

Incorporating measures of physiological interaction in
classification tasks is gaining importance due to consideration
of the relevant physiological information. In that sense,
Difrancesco et al. set out to improve the performance of
machine learning models, specifically support vector machine
classification algorithms (SVM), by including cardiorespiratory
interactions to identify and classify acute toxicity effects of two
chemicals on guinea pigs, an opioid and a nerve agent. For this
purpose, by continuously monitoring the ECG and respiration

signals through wearable sensors, the F-statistics of bivariate
prediction models between respiration features, as the tidal
volume, and ECG morphology characteristics, as the ST
elevation, were fed to an SVM. Although chemicals affected
cardiorespiratory interactions differently, they did not improve
SVM performance since respiratory features were the most
important for the classification task.

In the search for new ways to measure cerebral blood flow (CBF)
in humans non-invasively and continuously, González et al.
proposed the rheoencephalograph (REG) signal as a CBF
surrogate to provide patient monitoring in surgeries.
Furthermore, the authors addressed the estimation of bivariate
GC to understand better the anesthetics’ effects on brain
hemodynamics. GC was estimated between REG’s features, linear
and non-linear, and global hemodynamics by HR or MAP, as well as
EEG-based parameters related to the depth of anesthesia. Results
pointed out that REG effectively contains information on CBF, and
the most frequent causal interaction occurred from CBFREG to the
different EEG spectral density bands but not in the opposite
direction.

In a clinicall-oriented research study, Santiago-Fuentes et al.
applied univariate and causal bivariate analyses on
cardiorespiratory signals obtained from patients with
idiopathic pulmonary fibrosis (IPF) before and during oxygen
supplementation to characterize cardiovascular control and
cardiorespiratory interactions. In IPF patients, a shift of the
sympathovagal balance towards sympathetic dominance was
observed, accompanied by a decreased cardiorespiratory
interaction, increased blood pressure variability, and decreased
baroreflex function during oxygen supplementation. These
results point towards a persistence of autonomic control
impairment despite oxygen administration.

The papers of this Research Topic consider fundamental
aspects of causality estimation and include novel proposals.
Also, most of the contributions showed the power of the
causality framework for dissecting intricate directed
interactions from physiological networks studied in diverse
physiological and pathological scenarios. These efforts are
hoped to increase the impact and importance of causality
estimation in clinical settings, among others.
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The usage of methods for the estimation of the true underlying connectivity among the
observed variables of a system is increasing, especially in the domain of neuroscience.
Granger causality and similar concepts are employed for the estimation of the brain
network from electroencephalogram (EEG) data. Also source localization techniques, such
as the standardized low resolution electromagnetic tomography (sLORETA), are widely
used for obtaining more reliable data in the source space. In this work, connectivity
structures are estimated in the sensor and in the source spacemaking use of the sLORETA
transformation for simulated and for EEG data with episodes of spontaneous epileptiform
discharges (ED). From the comparative simulation study on high-dimensional coupled
stochastic and deterministic systems originating in the sensor space, we conclude that the
structure of the estimated causality networks differs in the sensor space and in the source
space. Moreover, different network types, such as random, small-world and scale-free,
can be better discriminated on the basis of the data in the original sensor space than on the
transformed data in the source space. Similarly, in EEG epochs containing epileptiform
discharges, the discriminative ability of network topological indices was significantly better
in the sensor compared to the source level. In conclusion, causality networks constructed
at the sensor and source level, for both simulated and empirical data, exhibit significant
structural differences. These observations indicate that further studies are warranted in
order to clarify the exact relationship between data registered in the sensor and
source space.

Keywords: multi-channel EEG analysis, sensor space analysis, source space analysis, brain networks, Granger
causality, sLORETA

1 INTRODUCTION

There is an increasing interest in neuroscience in working on the true current distribution of the
sources in the grey matter of the brain, termed source space, and not on the extracranial
electroencephalograms (EEG) or magnetic encephalogram (MEG) recordings, termed sensor
space (De Vico Fallani et al., 2010; Lehmann et al., 2014). Many strategies have been proposed
in order to obtain the primary current distribution of the sources in the brain from EEG or MEG.
These are basically head models that take into account the volume conduction of the brain and other
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properties in order to estimate the activity of the initial sources
that explain best the extracranial electric potential measurements.
Alternatively, it has also been proposed to reconstruct the
electrostatic field within a predefined cubic grid of center
points, based on the assumption of an ellipsoid and
electromagnetically homogeneous head model, without using
dipole modeling or other priors, an approach called 3D vector
field tomography (Papadaniil and Hadjileontiadis, 2015;
Papadaniil et al., 2016). The methods of source reconstruction
are separated in two main classes, the over-determined and the
under-determined inverse models (Michel et al., 2004). The over-
determined inverse models presuppose that a small number of
points in the source space is capable of explaining the extracranial
measurements sufficiently. In this case, a unique solution, in
terms of source location and current activity, is provided when
the number of parameters to be estimated is less or equal to the
number of sensor space channels. On the contrary, the under-
determined inverse models consider a dense three dimensional
(3D) grid of points in the brain having fixed positions and being
manymore than the sensor space channels, which leads to infinite
solutions, as stated first in (Helmholtz, 1853). The objective for
these models then is to determine a unique optimal source electric
activity distribution over the grid of points.

In recent years, the concepts of Granger causality (Granger,
1969) and causality networks are of increasing interest in many
branches of science such as finance (Hong et al., 2009; Billio et al.,
2012), socioeconomics (Bollen et al., 2011), climatology (Runge
et al., 2015; Dijkstra et al., 2019) and neuroscience (Kugiumtzis
and Kimiskidis, 2015; Porta and Faes, 2016; He et al., 2019;
Rossini et al., 2019). Intuitively, given two variables, X1 and X2,
the Granger causality from variable X1 to variable X2 exists if the
past and present of X1 provide information that improves
forecasts for the future of X2. The concept of Granger
causality is implemented in a number of measures in the time,
frequency and phase domain, and extended to account for the
presence of other observed variables and thus estimate only direct
causal effects. In several studies, linear and nonlinear as well as
bivariate and multivariate causality measures are compared, e.g.,
see the recent comparative studies in (Bakhshayesh et al., 2019;
Siggiridou et al., 2019; Sommariva et al., 2019) and references
therein, and it turns out that the most appropriate measures are
the direct and nonlinear measures, but these are also the harder to
be estimated reliably. The dimension reduction, intrinsically
taking place in the algorithm of some Granger causality
measures, allows for the estimation of direct causal effects in
high-dimensional time series, such as multi-channel EEG. We
consider a linear and a nonlinear such measure in this study, the
restricted conditional Granger causality index (RCGCI)
(Siggiridou and Kugiumtzis, 2016) and the partial mutual
information from mixed embedding (PMIME) (Kugiumtzis,
2013), respectively, both found to perform well in high-
dimensional settings (Koutlis and Kugiumtzis, 2016; Siggiridou
et al., 2019).

The direct measures are particularly relevant for the formation
of causality networks from multivariate time series because only
direct causal effects are estimated. The causality networks are
graphs with nodes that represent the observed variables of a

system and connections between nodes that are weighted by the
values of the selected causality measure. These networks are
usually analyzed with simple metrics of network theory in
order to estimate important characteristics of their topology
(Rubinov and Sporns, 2010; Fornito et al., 2016; Geier and
Lehnertz, 2017). In neuroscience, the estimation of causality
effects among brain areas using EEG recordings is a widely
used approach for the observation of brain reactions to certain
stimuli and for the discrimination of normal and abnormal states
of brain function (Schelter et al., 2006; Lehnertz et al., 2014;
Fornito et al., 2016).

For the computation of the connectivity in the source space, in
some cases the cortical activity may be estimated for a limited
number of nodes and that makes the computations cost-efficient
(De Vico Fallani et al., 2010), while in other cases, the number of
nodes is prohibitive for a multivariate analysis of the estimated
cortical activity (Milz et al., 2014). In the latter cases, the usual
strategy is to discretize the cortex in different regions of interest
(ROIs) and to consider as new nodes the centers of these regions
and assign to them the average activity of all nodes of this region
(Hata et al., 2016; Toppi et al., 2016). The connectivity of the
estimated cortical activity is estimated using the measures of
Granger causality discussed above [see also (Lei et al., 2015)], as
well as linear measures (Schoffelen and Gross, 2009; De Vico
Fallani et al., 2010; Lehmann et al., 2014; Milz et al., 2014) and
nonlinear measures (Mulert et al., 2011; Pascual-Marqui et al.,
2014) of similarity and synchronization, i.e. phase
synchronization or correlation in the time and frequency
domain. Recent studies found that the choice of the inverse
method impacts the brain connectivity analysis, e.g., see
source-space coherence analysis on magnetoencephalogram
(MEG) (Hincapié et al., 2017).

To the best of our knowledge there have not been any reports
for systematic comparison of the brain connectivity estimated in
the sensor and source space. These two approaches are tested in
simulation examples and discussed in (Brunner et al., 2016; Van
de Steen et al., 2019). Furthermore, the effect of noise and source
locations on the estimation of connectivity in source space is
studied in (Anzolin et al., 2019). It is well accepted that EEG
sensors do not capture signals exclusively from areas beneath
EEG electrodes and the location and orientation of the sources
influence critically the signals registered at the sensor level (Van
de Steen et al., 2019). For that very reason, in the present study, we
examine the overall connectivity and not distinguish one-to-one
relationship between connections of individual anatomic areas in
the sensor and source space, as done in the two studies in
(Brunner et al., 2016; Van de Steen et al., 2019). Our study
differs from the two studies also in that it assumes the simulated
systems in the sensor rather than the source space, where the
latter is physiologically more appropriate as sensors do not
interact with each other but brain sources do. However, the
data at hand are the scalp EEG (sensor space) and it is thus
reasonable to assume simulation systems for the observed
dynamics. Moreover, the study is on the overall structure of
causality networks and not causal relationships of distinct sources
as in (Anzolin et al., 2019; Van de Steen et al., 2019), and for this
to develop a high dimensional system in the source space under

Frontiers in Network Physiology | www.frontiersin.org September 2021 | Volume 1 | Article 7064872

Koutlis et al. Causality Networks in Sensor and Source Space

8

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


realistic assumptions is a hard task. For the comparison of
causality networks in sensor and source space it was reported
strong correlation of the global functional connectivity between
the two domains on real scalp EEG of eyes open and closed (Lai
et al., 2018). We extend this study using effective connectivity
measures and a different real EEG setting of changing
connectivity structure.

In this work, the objective is beyond investigating differences
in the estimated connectivity networks in the sensor and source
space, which is expected due to the transform and we show it here
analytically. Rather, the objective is to apply the same procedures
for causality network estimation in the sensor and source space
and to compare the causality structures that arise on each of the
two workspaces. Though it is not expected to find similar
causality structures, an important question is whether the
estimated causality structures hold the same discriminative
information in any of their characteristics, estimated by
network metrics. For this, we performed a simulation study on
systems of linear and nonlinear dynamics, having a predefined
connectivity structure of one of the three types of random
(RAND) (Erdös and Rényi, 1959), scale-free (SCF) (Barabási
and Albert, 1999) and small-world (SW) (Watts and Strogatz,
1998) networks. Examples of the network types are presented in
Figure 1. The original space of the generated multivariate time
series is assumed to be the sensor space and the data are
transformed by sLORETA to source space. The objective of
the simulation study is the discrimination of different coupling
structures (the three network types) by a network characteristic in
both spaces. As established in our previous works, the two
causality measures RCGCI and PMIME have a very good
discrimination capability in the sensor space (the generated
time series in the simulation study) and the interest is merely
to investigate the deformation of the network structure in the
source space. For the neuroscience data analysis, EEG data with
episodes of epileptiform discharges (ED) are used in order to
compare the causality structure of the brain before, during and
after an ED in the sensor and source space.

The paper is organized as follows: in Section 2 the source
localization method sLORETA, the causality measures and the
network indices are presented, in Section 3 the simulated and the

EEG data are briefly discussed, in Section 4 the results are
presented and in Section 5 conclusions are given.

2 METHODS

2.1 sLORETA
A commonly used method for the 3D localization of the sources
of the electromagnetic activity of the brain is the so-called low
resolution electromagnetic tomography, implemented in the
LORETA software (Pascual-Marqui et al., 1994). LORETA is
suggested as an improvement of the minimum norm estimate
(Hämäläinen and Ilmoniemi, 1994). The minimum norm
estimate has a main disadvantage in that superficial sources
are preferred over deep sources due to the fact that the
current density vector is not weighted for the solution of the
minimization problem. LORETA overcomes this problem using
as weights the norm of the columns of the lead field matrix (the
matrix that transforms current density of the sources to
extracranial measurements), thus giving truly 3D solutions.
Additionally, it provides “smooth” solutions in terms of the
minimum weighted Laplacian, which are more plausible as
neighboring neurons tend to have coherent waveforms. The
way to achieve a meaningful 3D unique solution is by
sacrificing spatial resolution, namely the brain volume is
discretized in v � 2394 voxels considered as separate dipoles
and thus the name low resolution electromagnetic tomography.
The forward model is defined as:

m � Gd (1)

where m ∈ Rc is the vector of measurements at a certain time
point, c ∈ N is the number of channels, d ∈ R3v is the vector of
current densities of the v voxels (for each voxel a 3D vector is
considered) and G ∈ Rc×3v is the lead field matrix. The discrete
problem is:

mind‖BWd‖, under the constraintm � Gd (2)

where W ∈ R3v×3v is a diagonal matrix with Wii � ‖Gi‖, Gi is the
ith column of G and B is the discrete Laplacian operator 3v × 3v

FIGURE 1 | Illustration of network types: (A) random, (B) small world, and (C) scale-free.
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matrix [for more details on the computation of B see the
Appendix of (Pascual-Marqui et al., 1994)]. The unique
solution for the current densities is:

d* � Tm (3)

with T�(WBTBW)−1GT [G(WBTBW)−1GT]†, where the †
exponent denotes the Moore-Penrose pseudo-inverse.

In (Pascual-Marqui, 2002) an improvement of LORETA is
presented suggesting that it achieves zero localization error due to
a standardization of the current densities. This improvement is
termed standardized low resolution brain electromagnetic
tomography (sLORETA) and provides a better resolution with
v � 6239 voxels. The followed procedure is exactly the same as in
LORETA but the estimation d* is finally standardized by its
variance. This is actually similar to the work conducted in (Dale
et al., 2000) utilizing standardization as well but in a different way
from that in sLORETA, which conversely achieves exact
localization. More precisely, the covariance matrix Sd* of the
estimated current density d* is computed and the standardized
current densities are:

d*
i T [Sd*]ii{ }−1d*

i (4)

where d*i ∈ R3 is the current density estimate at the ith voxel and
[Sd* ]ii ∈ R3×3 is the ith diagonal block of matrix Sd* .

2.2 Causality Network Estimation
For the estimation of the causality networks we use two
Granger causality measures, one linear, and one nonlinear,
and both in the time domain making use of dimension
reduction and being capable of estimating direct causal

effects from high-dimensional time series (Koutlis and
Kugiumtzis, 2016; Siggiridou et al., 2019).

2.2.1 RCGCI
The measure restricted conditional Granger causality index
(RCGCI) is the well-known linear stochastic model-based
measure of conditional Granger causality index (CGCI) but
based on a restricted (sparse) vector autoregressive (VAR)
model (Siggiridou and Kugiumtzis, 2016). The CGCI makes
use of the unrestricted VAR model (U-model) of all the lagged
variables up to a maximum lag (order) p so that in total there are
Kp terms, where K is the number of observed variables. Applying
a selection scheme using augmented VAR models, called
modified backward-in-time selection, a small subset of lagged
variables are selected in the sparse VAR model to constitute the
U-model for RCGCI. For high-dimensional systems with sparse
coupling structure, the selected subset may have cardinality much
smaller than Kp. The restricted model (R-model) is derived by
excluding the lagged terms of the driving variable X, so that if the
sparse VAR U-model contains no lagged terms of X then RCGCI
� 0. If it contains lagged terms of X then RCGCI is computed by
the log ratio of the fitted error variances of the U-model and
R-model, sU

2 and sR
2, respectively, as for the CGCI

RCGCIX→Y � log
s 2
R

s 2
U

. (5)

2.2.2 PMIME
The measure partial mutual information from mixed embedding
(PMIME) is a normalized version of the partial transfer entropy

FIGURE 2 | (A) Electrode positions assumed for the sLORETA on the simulated data. (B) One epoch with an ED episode. The vertical lines represent the start and
end points of the ED, respectively, and the time order is with respect to the ED start (0 time at start).
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(Schreiber, 2000; Papana et al., 2012) restricted to the selected
mixed embedding vector, formed by selecting progressively from the
set of all delayed variables the most relevant ones to the future of the
response variable (Kugiumtzis, 2013). The selection relies on
information measures, mutual information (MI) and conditional
mutual information (CMI). In particular, in the first step of the
selection scheme, the lagged variable w with the highest mutual
information (MI) to the responseY (one time step ahead, yt+1), I(yt+1;
w), is selected and constitutes the current subset of lagged variables
wt. For each subsequent step, the lagged variable w with the highest
CMI to the response given the current subset, I(yt+1;w|wt), is selected
and added to wt. The significance of CMI (MI for the first step) is
tested at each step and the selection scheme terminates when it is
found statistically not significant. Similarly to RCGCI, if the derived
subset does not include any lagged terms of the driving variable X
then PMIME � 0. If it includes, the information of the lagged terms
of X about the response is evaluated by the CMI of the lagged terms
of X in wt, wx

t , and the response given all other components in wt,
normalized by themutual information of all the lagged terms and the
response

PMIMEX→Y � I(yt+1;wx
t |wy

t ,w
z
t )

I(yt+1;wt) , (6)

where wy
t and wz

t are the lagged terms of the response Y and the
remaining variables Z in wt, respectively, so that wt �
[wx

t ,w
y
t ,w

z
t ].

Both causality measures include an internal criterion to
determine the presence of the driving of one variable to

another and in that case a positive value of RCGCI or PMIME
quantifies the strength of the driving, otherwise the measure is
zero. This leads to a weighted matrix with zero and weighted
connections of driving strength, thus the binarization of the
causality network is performed just by accepting the positive
values as existing causal effects.

2.3 Network Metrics
We select five network metrics, which capture different
characteristics of the network structure (Rubinov and Sporns,
2010). These metrics are computed on the adjacency matrices
formed by the positive PMIME or RCGCI values for each ordered
pair of variables and regard the causality network estimated from
the multivariate time series.

The five network metrics quantify different properties of
the network with binary directed or non-directed
connections. The centrality property of the network is
quantified by the mean, degm, and standard deviation (SD),
degSD, of the degree distribution over the nodes. The
characteristic path length, λ, is used as index of functional
integration. The small-worldness index, SWi, quantifies the
presence of small-world structure in the network, which
suggests the combination of functional segregation and
functional integration in a network. As an index of
resilience we consider the assortativity coefficient, r,
quantifying the preference of network nodes to attach to
other nodes of similar degree, typically defined as the
correlation coefficient between the degrees of two nodes.

FIGURE 3 | The initial scale-free coupling structure among the variables is used to generate the K � 20 time series from the CMG system hypothesized to be in the
sensor space. Then, sLORETA derives the respective time series in the source space and finally the PMIME is used to estimate the causal effects and give the causality
networks in both the sensor and the source levels.

Frontiers in Network Physiology | www.frontiersin.org September 2021 | Volume 1 | Article 7064875

Koutlis et al. Causality Networks in Sensor and Source Space

11

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


2.4 Evaluation Index
In the focus of the study is the discrimination of different
connectivity structures in the sensor and source space, and we

consider the three network types, i.e., random (RAND), small
world (SW), and scale-free (SCF) (see Figure 1). We consider a
number of realizations of multivariate time series from each network

FIGURE 4 |Histograms for the standard deviation of the degree, degSD, for 50 realizations of each network type: (A) random (RAND), (B) small-world (SW), and (C)
scale-free (SCF). At each panel, there are three histograms, for the initial network, the network estimated in the sensor space, and the network estimated in the source
space, as given in the legend.

FIGURE 5 | Scatter plots of network metrics estimated on 50 realizations of random (RAND) and small-world (SW) network types, where in the x-axis is the metric
for the true network and in the y-axis for the estimated network in the sensor and source space, as shown in the legend. The metrics are SWi in (A), degSD in (B), λ in (C)
and r in (D).
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type and compute the causality networks and subsequently the
network metrics for each realization. For each pair formed from
any two of RAND, SW, and SCF, the evaluation index area under
receiver operating characteristic curve (AUROC) (Fawcett, 2006) is
employed to quantify the overlapping of the two distributions of the
network metric in the two network types. For the simulation study,
the AUROC is computed for each pair of network types of the
original causality network (given by the system equations) and the
estimated causality networks in the sensor and source space.

3 MATERIALS

In the simulation study, the synthetic systems are considered to
evolve in the sensor space. One could argue to consider the source
space instead, but we do not follow this line here for two reasons.
First, the assumption of the sensor space as the space of the
generated time series is a natural choice since the starting data,
the acquired EEGmeasurements, are in the sensor space. Secondly,
the generation of data in the source space is a hard task and can be
realized under rather unrealistic simplifications, e.g., assuming the
same activity in all vertices (voxels) in a ROI on the cortical mesh
(Silva Pereira et al., 2017). We consider three systems of different
type. The two first systems are deterministic chaotic dynamical
systems while the third is a linear multivariate stochastic process.

The two first systems are coupled systems, i.e., are formed from a
number of subsystems of the same type coupled to each other. The
first system is in discrete time and the second in continuous time.

3.1 Simulated Data
The system of coupled Hénon maps (CHM) (Kugiumtzis, 2013)
is a system of coupled chaotic maps defined as

FIGURE 6 | Distribution of network metric values for three different network types (RAND, SW, and SCF) computed on the initial network and on the networks
estimated by PMIME on the sensor space and on the source space, as shown in the legend. The PMIME is computed on simulated time series of the CMG system. The
metrics are SWi in (A), degm in (B), degSD in (C), λ in (D) and r in (E).

TABLE 1 | Average AUROC values from the three AUROC values computed in the
three binary classification tasks, RAND vs. SW, RAND vs. SCF, and SW vs.
SCF, for the five network metrics (labels in the first row), the three dynamical
systems (labels in the first column) and for the initial networks, the networks from
the sensor space and the networks from the source space.

SWi degm degSD λ r

CMG initial 0.999 1 1 0.995 0.856
sensor 0.997 0.878 0.995 0.828 0.842
source 0.546 0.839 0.633 0.768 0.713

CHM initial 1 1 1 0.993 0.866
sensor 0.99 0.957 0.988 0.924 0.713
source 0.523 0.781 0.706 0.678 0.613

VAR initial 0.999 1 1 0.993 0.888
sensor 0.951 0.953 0.993 0.949 0.729
source 0.739 0.841 0.855 0.851 0.559
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xj,t � 1.4 − ∑K
i�1Cijxi,t−1

∑K
i�1Θ(Cij)

+ 1 − ∑K
i�1Cij

∑K
i�1Θ(Cij)( )xj,t−1[ ]

2

+ 0.3xj,t−2

(7)

where j � 1, 2, . . . , K is the variable index, K denotes the number
of variables and Cij is the coupling strength (considering xi as the
driving variable and xj as the response variable). The Θ(Cij) is the
Heaviside function, being one if Cij > 0 and zero if Cij � 0. For this
system, we consider K � 20 variables coupled with strength Cij �
C � 0.2 for the non-vanishing terms according to each of the three
network types (RAND, SW, SCF). For each network type, 50
realizations are generated and the time series have length
N � 2048.

The system of coupled Mackey-Glass (CMG) (Senthilkumar
et al., 2008; Kugiumtzis, 2013) is a system of coupled identical
delayed differential equations defined as

_xj(t) � −0.1xj(t) +∑K
i�1

Cijxi(t − Δ)
1 + xi(t − Δ)10, (8)

where j � 1, 2, . . . , K is the variable index, and Δ is the delay
parameter. For this systemwe considerΔ � 100 time units (for the
uncoupled system each equation defines a chaotic system of
correlation dimension close to 7) and Cij � C � 0.1. The
solution is run in Matlab (Natick, Massachusetts: The
MathWorks Inc.) using the function “dde23” and then

sampled at 4 time units. Further details for the generation of
the CMG time series are given in (Kugiumtzis, 2013). The setting
is as for CHM, K � 20, 50 realizations of each of the RAND, SW,
and SCF network types and N � 2048.

The third systems is a linear stochastic VAR process (Basu and
Michailidis, 2015) on K � 20 variables and order p � 1,

xt � Axt−1 + et, (9)

where xt is the state vector of length K and et is the white noise
vector of length K following Gaussian distribution with zero
mean and unity covariance matrix. The components of the square
coefficient matrix A are zero or positive determined by the
selected network of type RAND, SW, or SCF. Initially, the
non-vanishing coefficients are set to 0.9 (the rest are set to
zero) and then they are iteratively reduced until the
stationarity condition is fulfilled. We get 50 multivariate time
series for each of the three network types of length N � 2048.

The PMIME is used to estimate the connectivity for the two
first nonlinear systems and the RCGCI for the third linear system,
as being the most appropriate measures to capture the causality
effects in each system. This is so because the objective here is to
have an appropriate measure that estimates best the causality
network from the time series in the sensor and source space.

All the computationally generated data are treated as if they
were EEG signals (in the sensor space) in order to transform them
with sLORETA (to the source space) and the K � 20 variables are

FIGURE 7 | Distribution of network metric values for three different network types (RAND, SW, and SCF) computed on the initial network and on the networks
estimated by PMIME on the sensor space and on the source space, as shown in the legend. The PMIME is computed on simulated time series of the CHM system. The
metrics are SWi in (A), degm in (B), degSD in (C), λ in (D) and r in (E).
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considered as electrode positions on the scalp, more precisely:
FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz,
CP2, CP4, P3, P1, Pz, P2, P4. These positions are selected in order
to cover a sufficient area of the brain rather than concentrating on
a small region, as shown in Figure 2A.

For each of the 50 realizations, the hypothesizedmulti-channel
(K � 20) time series in the sensor space is transformed with
sLORETA to v � 6239 source space signals, which consequently
are separated in ROIs and averaged, thereby resulting in K � 20
source space time series. The ROIs are selected with the option of
“all nearest voxels” in the sLORETA software, which separates the
voxels in mutually disjoint regions of the nearest to the selected
electrodes voxels.

3.2 EEG Data
For the real data analysis, EEG data from three epileptic patients
at rest are used. In order to avoid the confounding variables of
diverse structural substrates and varying localizations of the
epileptic zone, which typically characterize focal epilepsies, we
used data from patients suffering from Genetic Generalized
Epilepsies. From the initial recording of 60 channels, channels
containing artifacts were rejected, i.e., 16 channels for subject 1, 9
channels for subject 2, and 14 channels for subject 3. The EEG
data of the artifact-free channels were band-pass filtered in
(0.01,70) Hz, downsampled to 200 Hz, and re-referenced to

infinity (Yao, 2001), a re-referencing scheme found to be more
appropriate for connectivity analysis (Qin et al., 2010). Epochs
containing epileptiform discharge (ED) were selected, 7 epochs
from subject 1, 3 epochs from subject 2 and 10 epochs from
subject 3. An exemplary epoch from subject 1 is shown in
Figure 2B. Each epoch contains a pre-ED period of 10 s, a
spontaneous ED of duration from 2.19 to 5.71 s and a post-
ED period of 10 s.

The sLORETA software is used for the transformation of the
EEG signals to the source space. First, the electrode positions are
selected and then the transformation matrix is generated by the
software. Consequently, the signals are transformed to the source
space giving a large number of v � 6239 time series. In accordance
with the simulation study, a number of 44 ROIs corresponding to
the 44 scalp electrodes for subject 1 are selected and 44 time series
for the source space are obtained, and the same was done
accordingly for the artifact-free channels of the other two
subjects.

After the transformation of the time series, both the sensor and
source time series are split in sliding overlapping windows of 2 s
with a sliding step of 0.5 s to profile the brain network
characteristics and all their changes during the epochs. The
causality estimation is performed with PMIME and then
characteristics of the causality networks are estimated by the
network metrics previously presented.

FIGURE 8 | Distribution of network metric values for three different network types (RAND, SW, and SCF) computed on the initial network and on the networks
estimated by PMIME on the sensor space and on the source space, as shown in the legend. The PMIME is computed on simulated time series of the VAR system. The
metrics are SWi in (A), degm in (B), degSD in (C), λ in (D) and r in (E).
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4 RESULTS

Before presenting the results of the simulation study, it is
elaborated that a linear transformation may change the
connectivity of a set of variables in a significant degree.
Although the employed methodology (sLORETA) is not a
linear transformation, the following simplistic example is
indicative of the changes a transformation in general can
induce. Let us assume a linear VAR(1) process on K variables

xt � Axt−1 + et, (10)

where the coefficient matrix A defines the connectivity matrix of
the original system, xt � [x1,t, . . . , xK,t] is the vector of the state of
K variables at indexed time t and et � [e1,t, . . . , eK,t] is the vector of
noise terms at time t having normal distribution ei,t ∼N(0, σ2), i �
1, . . . , K, and covariance matrix Σet � σ2IK, where IK is the
identity matrix of size K × K. Consider a linear transformation
of xt

yt � Hxt, (11)

whereH is a matrix of size K × Kwith det(H) ≠ 0. Solving Eq. (11)
with respect to xt and substituting it in Eq. (10), the VAR (1) for yt
is obtained as:

yt � HAH−1yt−1 +Het � Byt−1 + et′ , (12)

where the input noise vector et′ is correlated (the noise covariance
matrix is not diagonal) indicating also the presence of
instantaneous causality, which however is not relevant here, as
we estimate only the lag causality. In analogy to the connectivity
of the original VAR(1) system, the connectivity of the
transformed VAR(1) system is determined by the coefficient
matrix B � HAH−1. Thus, a variety of different connectivity
structures for the transformed system can be obtained,
dependent on the form of H, with the only constraint being
that the initial and the transformed system have connectivity
matrices with the same eigenvalues. Also, it is noteworthy that the
transformation matrixH � Q−1

A , where the columns ofQA are the
eigenvectors of A, leads to a diagonal B and subsequently a
linearly transformed VAR(1) system with no connections
among its variables, regardless of its initial connectivity structure.

4.1 Simulation Study
In Figure 3, the steps of the procedure followed in the simulation
study are illustrated in an example for the CMG system. Initially,
a network of a predefined type (RAND, SW, or SCF) is defined, in
order to form the coupling relationships in the system equations,
for the generation of the 50 simulated time series of each network
type in the hypothesized sensor space. Then, sLORETA is used to
transform the time series to the source space. The causal effects
for all pairs of observed variables are estimated by a causality
measure (PMIME for CMG in Figure 3) in both the sensor and
the source space, resulting in the respective causality networks. It
is observed that the form of the time series is rather different
before and after the sLORETA transformation. More precisely,
the source space time series are less oscillatory and show spikes at
various times contrary to the initial time series.

Regarding the causality network estimation, for the example in
Figure 3 the PMIME has a satisfactory performance on the sensor
space time series capturing the original scale-free structure. The
causality network of the transformed time series in the source
space is qualitatively different from the original network, as
expected from the previous analytical example. This is
quantitatively confirmed for instance by the network metric
degSD that takes the values 5.33 and 2.35, respectively, for the
initial structure and the source space estimation. In Figure 4,
aggregate results from the 50 realizations are shown for all three
network structures, i.e., the initial network, the network estimated

FIGURE 9 | Upper panel: One epoch of S1 comprising a 10 s pre-ED
period, an ED lasting 5.71 s and a 10 s post-ED period. Three time windows
are highlighted (one in the pre-ED period, one during the ED and one in the
post-ED period) and the respective causality networks are presented
right under the arrows. Lower panel: the same but for the sLORETA
transformed time series.
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in the sensor space and the network estimated in the source space.
The similarity of the degSD between the original network and the
estimated network in the sensor space as well as their dissimilarity
to the estimated network in the source space are striking for the
cases of RAND and SW networks. For SCF networks, the PMIME
does not estimate with the same high accuracy the initial network
(see specific results in (Koutlis and Kugiumtzis, 2016)) and
therefore the histograms of degSD for the sensor and source
space networks differ significantly from the respective
histogram for the initial network.

The matching of the metrics of the estimated network to the
true network can be seen collectively in the scatter plots for each
network metric and for both RAND and SW network types in
Figure 5. Results are not shown for the characteristic degm being
constant for the true networks and the SCF network type as for all
but the network metric r the metric of the true network is rather
constant across the 50 realizations. The network metrics SWi,
degSD, and λ computed on the sensor space tend to match well
with the respective metrics of the true networks whereas for the

source space the respective metrics are more spread and have the
tendency to overestimate or underestimate the metrics of the true
network (over or under the diagonal in Figures 5A–C,
respectively). For the metric r in Figure 5D the values of the
true networks are at the same range for RAND and SW network
types so that at first look r values seem to spread about the same
for both sensor and source space. A careful look would discern the
alignment of the r values for the sensor space along the diagonal
and indeed the Pearson correlation coefficient values are for
RAND network type 0.84 for sensor space as opposed to 0.01
for source space and for SW network type 0.67 and −0.28,
respectively.

Establishing that the connectivity changes significantly under
the sLORETA transform, we investigate now whether the
transform preserves the discriminative information that allows
for correct classification of the different initial coupling
structures. For this, we examine the discrimination of the
three network types in the sensor and source space. In
Figure 6, results for the discriminative ability of the network

FIGURE 10 | The profile of five network indices on the sensor (green line with “o”marker) and on the source space (red line with “+”marker) for 7 epochs of S1 given
in the row panels: (A) SWi, (B) degm, (C) degSD, (D) λ, (E) r.
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metrics are presented for the CMG system, where the estimated
networks are derived by the PMIME.

It is observed that the values of all network metrics for the
initial network and the network estimated on the sensor space
range in a similar scale. This includes also the case of degSD, where
though the initial connections are not preserved well in the sensor
space with the PMIME for SCF networks (see Figure 4C), still the
SCF networks can be clearly discriminated with degSD from
RAND and SW networks. The values of the network metrics
for the source space are in some cases similar with those of the
initial networks, e.g., SWi on RAND network, but in most cases
they range in different scales. This result indicates that the
transformation to the source space changes significantly the
structure of the causality network. The discriminative
information of the network metrics, regarding the three
network types, remains in the sensor space estimation at a

larger degree than in the source space. This result is confirmed
by the average AUROC values for the differences in the three
pairs of the RAND, SW, and SCF network types, presented in
Table 1. While the AUROC values for the networks estimated in
the sensor space are high and similar to these for the initial
networks, the respective AUROC values for networks estimated
in the source space are much lower. However, in almost all of the
discrimination tasks of Table 1 we obtain a p-value < 0.01 after
ANOVA hypothesis testing for equal mean AUROC in the
RAND, SW and SCF network types, with the exception of
source space estimation of SWi on CMG, source space
estimation of SWi on CHM, source space estimation of r on
CHM and source space estimation of r on VAR.

In Figure 7, results for the discriminative ability of the
network indices are presented for the CHM system in the
same way as shown earlier for the CMG system in Figure 6.

FIGURE 11 | The profile of five network indices on the sensor (green line with “o”marker) and on the source space (red line with “+”marker) for 3 epochs of S2 given
in the row panels: (A) SWi, (B) degm, (C) degSD, (D) λ, (E) r.
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Similarly to the CMG case, the values of all network indices for
the initial network and the network estimated on the sensor space
range in a similar scale. In contrast, the values of the network
indices for the networks estimated on the source space range in
different scales with those of the initial networks in most of the
cases. Again, this is confirmed with the results of AUROC in
Table 1.

In Figure 8, the respective results for the VAR system are
presented. Here, the causality networks are estimated with the
linear causality measure RCGCI, which is more appropriate (and
simple) for the linear VAR process. Regarding the range of
network index values, in many cases the initial network, the
sensor space network and the source space network share the
same range of values, e.g., for the random network type and all
measures or the scale-free network and SWi and λ. Also, the
discriminative information of the network indices is preserved in

the sensor space in all cases, but in the source space only for SWi
and λ, as it is shown also in Table 1.

4.2 EEG Data Analysis
For the EEG data analysis, the epochs from three subjects that
contain epileptiform discharges (ED) are considered. The EDs
of the 7 epochs of Subject 1 (S1) have duration from 2.19 to
5.71 s and the EDs of the 9 epochs of Subject 3 (S3) from 1.94 to
5.63 s, whereas the 10th epoch is exceptionally long at 29.05 s.
The 3 epochs of Subject 2 (S2) have all very short EDs of
duration 1.40, 1.80, and 2.09 s. Each epoch consists of a 10 s
pre-ED period, an ED period and a 10 s post-ED period. The
epoch is split in sliding overlapping windows of 2 s duration
and 0.5 s step on which the causality estimation is performed
with PMIME. As shown in Figure 9, for each window a
causality network is estimated from the initial time series

FIGURE 12 | The profile of five network indices on the sensor (green line with “o” marker) and on the source space (red line with “+” marker) for 10 epochs of S3
given in the row panels: (A) SWi, (B) degm, (C) degSD, (D) λ, (E) r.
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and from the time series obtained after the sLORETA
transformation.

Characteristics of the causality networks are estimated by
network metrics at each time window and the profiles of the
metrics are shown in Figure 10 for S1, Figure 11 for S2, and
Figure 12 for S3. It is observed that the network indices degm and
λ in both the sensor and the source space have similar estimated
values during the epochs, with subtle differences at various times,
e.g., for S1 the coefficient of determination R2 is 0.52 and 0.28,
respectively. In contrast, SWi shows significant differences in the
source space at many time points, e.g., for S1 R2 � 0.02, which is in
agreement with the simulation study.

The interest is mainly in the pre-ED and ED periods where the
brain state changes abruptly at the ED onset, whereas from ED to
post-ED the change is gradual as the brain state recovers from the
ED. To quantify the differences in the three states, before the ED
(pre-ED), within the ED (ED) and after the ED (post-ED), we
computed the AUROC for pre-ED vs. ED, pre-ED vs. post-ED
and ED vs. post-ED in both spaces (sensor and source) and all
network indices. The results for S1 and S3 are shown in Table 2,
while for S2 statistical comparison is not possible as the EDs in the
three episodes are very short.

The network index degm discriminates well the pre-ED
from ED period in all episodes of the two subjects with
average AUROC value 0.88 for the sensor space for both
S1 and S3 and 0.80 for S1 and 0.84 for S3 for the source space.
In the post-ED period, degm recovers its initial level
gradually.

For the network index λ the respective AUROC values are
0.85 and 0.84 for S1 and S3 for the sensor space while for the
source space the corresponding AUROC are 0.75 and 0.78,
respectively. The other two indices, SW and r, have low
discrimination ability, but still the AUROC values are higher
for the sensor space than for the source space for both
subjects S1 and S3. These findings are also confirmed by
the independent sample t-test for equal means of pre-ED
and ED, as shown in Table 3, where for more episodes
at the sensor space than at the source space the
discrimination is established for the stringent significance
level of 0.01.

The results show that the network characteristics do
change after the transformation to the source space at a
varying degree, so that the discrimination of the pre-ED
vs. ED period is less significant. This result is not in
agreement to a recent report of qualitatively similar results
of connectivity structure in the source activity from
reconstructed scalp EEG data and the connectivity from
corresponding electrocorticographic sources in primates
(Macaca mulatta) (Papadopoulou et al., 2019).

5 DISCUSSION

In this work, the level of preservation of the main network
structure when estimated on the original data, also called the
sensor space, and data transformed to the so-called source space
has been investigated. The transformation is performed using the
software sLORETA and the causality effects among the system
variables are estimated with a linear method (RCGCI) and a
nonlinear information based method (PMIME). After the
causality network estimation, certain network characteristics
are estimated by network indices in order to compare the
respective network topologies in the two spaces (sensor and
source).

We performed a simulation study first in order to compare the
results to the predefined ground truth, defined in the sensor
space. Admittedly, the true brain system is in source space and
physiologically it would be more appropriate to define the
simulation systems in the source space as done in (Brunner
et al., 2016; Anzolin et al., 2019; Van de Steen et al., 2019). In
contrast to these studies, where causal relationships of distinct
sources are investigated, our study is on the overall structure of
causality networks, requiring large scale systems that could only

TABLE 2 | Average AUROC values over the 7 epochs of S1 and the 10 epochs of
S3 for three discrimination tasks (pre-ED vs. ED, pre-ED vs. post-ED, ED vs.
post-ED), both spaces (sensor, source) and five network metrics (labels in the
first row).

SWi degm degSD λ r

7 epochs of S1

sensor space

pre-ED vs. ED 0.74 0.88 0.78 0.85 0.65
pre-ED vs. post-ED 0.65 0.61 0.58 0.62 0.57
ED vs. post-ED 0.68 0.77 0.79 0.76 0.62

source space

pre-ED vs. ED 0.59 0.80 0.77 0.75 0.60
pre-ED vs. post-ED 0.69 0.67 0.79 0.64 0.57
ED vs. post-ED 0.60 0.70 0.69 0.67 0.58

10 epochs of S3

sensor space

pre-ED vs. ED 0.73 0.88 0.74 0.84 0.75
pre-ED vs. post-ED 0.71 0.78 0.73 0.77 0.80
ED vs. post-ED 0.62 0.71 0.66 0.74 0.65

source space

pre-ED vs. ED 0.68 0.84 0.79 0.78 0.67
pre-ED vs. post-ED 0.87 0.80 0.99 0.71 0.83
ED vs. post-ED 0.62 0.74 0.72 0.64 0.60

TABLE 3 | Results of the independent sample t-test for equal means of pre-ED
and ED for subjects S1 and S3 and the five network indices as given in the first
row. The numbers correspond to the ED episodes of S1 and S3 for which the p-
value of the test is < 0.01 (for each subject first row is for the sensor space and
second row for the source space).

SWi degm degSD λ r

S1 sensor 2 6 7 1 3 5 6 7 1 3 6 7 1 3 5 6 7 4
source 1 3 5 7 1 2 3 5 3 5 7

S2 sensor — 1 3 7 10 3 2 3 4 —

source 2 4 2 4 4
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be realized under simplifications in the source space, e.g,. in (Silva
Pereira et al., 2017) this was attempted assuming the same activity
in all vertices (voxels) in a ROI on the cortical mesh. On the other
hand, it is common to assume the simulation systems at the
domain of the acquired data (here the scalp EEG). Thus, the
simulation systems refer to the observed dynamics, and the focus
of the study is on the change of the overall network structure of
the high-dimensional coupled system under the inverse
transform defined by sLORETA.

Three different network types were considered as initial
coupling structures for three high-dimensional coupled
dynamical systems: K � 20 coupled Mackey-Glass systems
(CMG), K � 20 Hénon coupled maps (CHM) and the linear
vector autoregressive process of order one on K � 20 variables
(VAR). The objective was first to designate the differences in the
topology of the causality networks in the two spaces, and then to
assess whether the information the network metrics hold
regarding the discrimination of the three network types was
preserved after the transformation to the source space. Then
we proceeded to EEG data analysis with illustrative cases from
recordings of three epileptic patients that contain epileptiform
discharges (EDs). The objective was again to compare the
differences in the topology of the estimated causality networks
in the sensor and in the source space. In addition, we tried to
clarify the degree to which the topology of the networks held
discriminative information regarding the pre-ED period vs. the
ED and in which space the discrimination was more clear.

In the simulation study, first we showed with an analytical
example that a linear transformation of the system variables can
change considerably the coupling structure of the dynamical
system, but it can preserve some characteristics e.g. the
eigenvalues of its adjacency matrix (similar derivation was
obtained in Van de Steen et al., 2019). Then, the simulation
results showed that the estimated causality networks have, as
expected, considerable differences in terms of the topology
characteristics. Finally, the ability of certain characteristics to
discriminate the initial coupling structures is reduced at a varying
degree after the transformation to the source space. We note here
that causality estimation inaccuracy (false positives or negatives)
exists also in the sensor space (the domain of true dynamics) due
to many sources, such as the time series length, the size in
conjunction with the density of the true coupling network,
and the type of inherent dynamics and causal relationships
(the latter may encounter the common source problem related
to volume conduction for EEG). However, the utilized measures
RCGCI and PMIME were found to perform well in high-
dimensional coupled systems and therefore they were used
here to allow for a better assessment of the differences in the
estimated networks in sensor and source space.

In the EEG data analysis, we showed that the characteristics of
the causality network topology were altered at varying degree.
Here, the small-worldness index was found to change most under
the transform to source space and had a very different profile at
overlapping windows across the epochs that contain ED. The
average degree of the causality networks was the most
discriminative characteristic regarding the pre-ED vs. ED task.
Also the characteristic path length showed good discrimination

ability for the same task. For both indices the ability to
discriminate the two periods was better in the sensor space
than in the source space. The clinical EEG data are essentially
a case study providing complementary evidence that clearly
corroborates the basic conclusion of the simulation analysis.
Further studies, on the basis of our preliminary findings, are
warranted including a larger number of subjects.

We have tactically left out of the design of the connectivity
analysis the issue of field spread and volume conduction. These
factors may affect the results of connectivity analysis in the sensor
space and subsequently the source space. It is not known as to what
extent the volume conduction affects through the inverse transform
the connectivity analysis in the source space (Schoffelen and Gross,
2009), but there is reported evidence from simulation studies that it
does (Anzolin et al., 2019). Functional connectivity measures
suggested in the literature to account for volume conduction,
such as the imaginary coherence (Nolte et al., 2004), have been
considered when comparing connectivity in sensor and source space
(Schoffelen and Gross, 2009; Lai et al., 2018; Demuru et al., 2020).
However, these measures are bivariate (allow for indirect
connections) and thus not suitable to estimate the network
structure, which is the main objective of this work. The utilized
causality measures here are multivariate and when estimating a
causal effect they account for the presence of all other observed
significant sources, including to some extent the common source due
to volume conduction. Certainly, they do not explicitly account for
zero-lag effects brought about by volume conduction. One of the two
measures used in the study has been recentlymodified to account for
zero-lag effects, called PMIME0 (Koutlis et al., 2019).We focused on
measures of lag-causality here and leave extension to other causality
measures including zero-lag effects to future work.

We have also refrained from discussing the different solutions
for the inverse transform and chose the sLORETA as one of the
most popular transforms. Certainly, the estimated connectivity
network in source space depends on the utilized inverse
transform, and this is also an open research topic gaining so
far little attention, e.g., two tested inverse transforms were found
to give distinctly different connectivity network characteristics in
source space (Lai et al., 2018).

In view of the increasing usage of source analysis in diverse
areas of neuroscience, the above data suggest that further studies
in order to clarify the relationship between sensor- and source-
derived data are warranted.
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Measuring the Rate of Information
Exchange in Point-Process Data With
Application to Cardiovascular
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The amount of information exchanged per unit of time between two dynamic processes is
an important concept for the analysis of complex systems. Theoretical formulations and
data-efficient estimators have been recently introduced for this quantity, known as the
mutual information rate (MIR), allowing its continuous-time computation for event-based
data sets measured as realizations of coupled point processes. This work presents the
implementation of MIR for point process applications in Network Physiology and
cardiovascular variability, which typically feature short and noisy experimental time
series. We assess the bias of MIR estimated for uncoupled point processes in the
frame of surrogate data, and we compensate it by introducing a corrected MIR (cMIR)
measure designed to return zero values when the two processes do not exchange
information. The method is first tested extensively in synthetic point processes
including a physiologically-based model of the heartbeat dynamics and the blood
pressure propagation times, where we show the ability of cMIR to compensate the
negative bias of MIR and return statistically significant values even for weakly coupled
processes. The method is then assessed in real point-process data measured from
healthy subjects during different physiological conditions, showing that cMIR between
heartbeat and pressure propagation times increases significantly during postural stress,
though not during mental stress. These results document that cMIR reflects physiological
mechanisms of cardiovascular variability related to the joint neural autonomic modulation
of heart rate and arterial compliance.

Keywords: information dynamics, point processes, mutual information rate, heart rate variability, cardiovascular
time series

1 INTRODUCTION

The mutual information (MI) between two random variables is a central concept in information
theory. MI is an important quantity with huge practical relevance, as it quantifies how much
information is exchanged between two complex systems or is shared by two data sets. Indeed, thanks
to these characteristics, MI is ubiquitously employed in diverse fields of science and engineering to
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assess linear and non-linear interactions, e.g., between electronic
oscillators (Minati et al., 2018), financial systems (Fiedor, 2014),
climatological variables (Perinelli et al., 2021), brain units
(Mijatovic et al., 2021b) or physiological systems (Valderas
et al., 2019). In all these application fields, the study of
dynamical systems, i.e., systems whose state evolves over time,
is central to the understanding of the underlying phenomena.
Therefore, dynamic formulations of MI in which the observed
variables are associated with temporal information are
recommended for a proper assessment of the interactions
between the system units. In this study we consider the MI
rate (MIR), a well-known quantity measuring the amount of
information shared by two random processes per unit of time
(Duncan, 1970). In particular, we focus on the computation of
MIR for point processes, i.e., processes where the relevant
information stands in the times of occurrence of specific
events. This class of processes is widely adopted in
neuroscience, for instance to study the spiking activity of
neural populations acquired through multi-electrode recording
techniques (Truccolo et al., 2005), and in the field of
cardiovascular variability, where the point process nature of
the human heartbeats has inspired the development of event-
based models to describe the heart rate and its interaction with
vascular, respiratory andmetabolic variables (Barbieri et al., 2005;
Valenza et al., 2018).

The calculation of dynamic information measures, such as the
MIR or the transfer entropy rate (TER) quantifying the rate of
directed (causal) information flow between stochastic processes
(Schreiber, 2000; Spinney et al., 2017) is well-established for
discrete-time processes, i.e., processes defined at discrete time
instant, which represent the sampling rate of continuous-time
signals or the rate of a physiological oscillator (e.g., the cardiac
pacemaker); in this context, a number of practical approaches
exist to provide data-efficient estimates (Vicente et al., 2011; Faes
et al., 2015). On the other hand, the definition and practical
computation of these measures for continuous-time processes
defined at each time instant with arbitrarily small resolution, and
more specifically for point processes, is much more cumbersome.
The classical way to compute MIR and TER for point process or
other event-based data typically relies on binning of the temporal
axis followed by the application of discrete-time estimators
(Pasquale et al., 2008), but unavoidably implies loss of
information and strong dependence on the parameters related
to time discretization (Mijatovic et al., 2021a; Shorten et al.,
2021). Only recently, the theoretical formalism (Spinney et al.,
2017; Spinney and Lizier, 2018) and the design of estimation
approaches for the TER (Shorten et al., 2021) and MIR (Mijatovic
et al., 2021a) has been introduced in the context of neuroscience
applications. In particular, Mijatovic et al. (2021a) have shown
that for point process data theMIR can be expressed as the sum of
the TER computed along the two directions of interaction
between the two analyzed processes, and have exploited the
TER estimation methods introduced by (Shorten et al., 2021)
to design a data-efficient estimator of the MIR for coupled point
processes. These works are of a great practical relevance, because
they open the way for a reliable non-parametric, continuous-time
estimation of the information transfer for event-based processes.

In this work, we exploit the MIR estimator introduced in
(Mijatovic et al., 2021a) to assess the rate of information shared
between cardiovascular point processes. Specifically, we focus on
cardiovascular interactions assessed between the cardiac
pacemaker, studied by the heartbeat timings and measured
from the ECG, and the times of arrival to the body periphery
of the sphygmic wave, measured through finger
photoplethysmography. The application of event-based
frameworks to heartbeat and pulse arrival times entertains a
different perspective on the study of cardiovascular regulation
than more classical analyses performed on time series of the heart
period and arterial pressure variability (Cohen and Taylor, 2002;
Porta and Faes, 2015), and leads to address related but different
physiological mechanisms. In particular, while classical time
series analysis methods investigate cardiovascular interactions
focusing on baroreflex regulation and mechanical mechanisms
(Faes et al., 2013; Javorka et al., 2017), the study of coupled point
processes may reveal the physiological mechanisms that
modulate the arterial pressure, the contractility of the
ventricles and vasomotion (Okada et al., 1996; Chan et al.,
2007). Since these mechanisms typically operate on short time
scales involving a few heartbeats, and due to stationarity issues,
the analysis of these processes is typically restricted to short
realizations (few hundred events). A practical consequence of this
restriction is the difficulty of obtaining reliable estimates in the
presence of short series of data. To test the applicability of the
MIR estimator on short realizations of point process data, we
assess the estimation bias in simulations of uncoupled point
processes generated for different parametric probability
distributions. When there is no coupling between the
processes, a positive bias can be misinterpreted as a weak
coupling, while a negative bias makes a non-negative measure
like the MIR of difficult interpretation. We provide a solution to
this problem, by modifying the MIR estimator and introducing a
corrected MIR (cMIR) measure for which the bias is reduced; the
correction employs surrogate time series, which reproduce the
bias occurring for uncoupled point processes. The novel cMIR
measure is tested first in simulated point process models that
reproduce the coupled occurrence of the heartbeat times and of
the arrival instants of the blood pressure wave at the body
periphery, and then in real point process series measured from
healthy subjects monitored in resting state and during postural
and mental stress (Javorka et al., 2017).

2 INFORMATION-THEORETIC MEASURES
TO ASSESS THE DYNAMIC INTERACTION
BETWEEN STOCHASTIC PROCESSES
This section presents the mathematical background necessary to
assess the information shared between continuous-time
stochastic processes. Information-theoretic measures are
typically employed to treat dynamic systems in discrete time,
i.e. systems can be described by processes whose states are
mapped by times series values. However, many theoretical and
real-world systems are naturally described by processes defined in
continuous time, whose available discrete-time signals represent
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approximate realizations. The most accurate information-
theoretic treatment of continuous-time processes is that using
random functions in place of collections of random variables to
quantify information dynamics (Spinney et al., 2017). In the
following subsections, we show how to employ random functions
to define the information dynamically shared between two
continuous-time processes, how to express it in terms of the
information transferred along the two directions of interaction
between the processes, and how to formalize its computation and
practical estimation in the particular case of point processes.

2.1Mutual Information and Transfer Entropy
Rates
Let us consider two possibly coupled dynamical systems X and Y
such that their evolution over time is mapped by the continuous-
time stochastic processes X � {Xt} and Y � {Yt}, which are defined
at each continuous-time instant t ∈ R. A well-known undirected
measure of the dynamical interaction between X and Y is the
mutual information rate (MIR), which quantifies the amount of
information exchanged per unit of time by the two processes
(Duncan, 1970). If the processes are stationary, the MIR is
defined as

_IX;Y � lim
τ→∞

1
τ
I Xt−τ: t;Yt−τ: t( ), (1)

where I (·; ·) denotes mutual information (MI) and τ is the
duration of the temporal window over which the MI is computed.
The notation Xt−τ:t denotes the random function expressing the
stochastic process evaluated along the time interval of duration τ
ending at the time t, also referred to as path (Spinney et al., 2017),
i.e. Xt−τ:t � {Xs : t − τ ≤ s < t} (the same holds for the process Y);
note that the MI in Eq. 1, and consequently the MIR, are
independent on t due to stationarity.

The MIR defined above, as any other information measure
applied to continuous-time processes, cannot be readily
formulated in terms of the probability mass functions or
densities used for discrete and continuous random variables.
In continuous time, a viable approach is to establish a
generalized form for the information measures via measure-
theoretic approaches that unify under one framework the
methods specifically developed for discrete and continuous
random variables (Spinney et al., 2017). In this framework,
information measures can be expressed by using the Radon-
Nykodim derivative between appropriate random density
functions defined on paths in place of the ratio between
probability distributions of random variables adopted in
discrete-time (Gray, 2011). The MI measure in Eq. 1 can be
then expressed in a generalized form as (Duncan, 1970)

I Xt−τ: t;Yt−τ: t( ) � EP ln
dP xt−τ: t|yt−τ: t[ ]

dP xt−τ: t[ ][ ], (2)

where the expectation is taken over the path realizations xt−τ:t and
yt−τ:t of the random functions Xt−τ:t and Xt−τ:t, and the argument
of the logarithm is the Radon-Nykodim derivative of two
probability measures defined on path functions. With a similar

formalism, Spinney and colleagues have formalized different
measures of information dynamics for continuous-time
processes (Spinney et al., 2017; Spinney and Lizier, 2018). In
particular, the transfer entropy rate (TER) from the ‘source’
process Y to the ‘target’ process X is defined as (Spinney et al.,
2017)

_TY→X t, τ( ) � lim
Δt→0

1
ΔtTY→X t,Δt, τ( ), (3)

where

TY→X t,Δt, τ( ) � EP ln
dP xt+Δt|xt−τ: t, yt−τ: t[ ]

dP xt+Δt|xt−τ: t[ ][ ] (4)

is the transfer entropy (TE) formulated in terms of a Radon-
Nykodim derivative of conditional probability measures similarly
as in Eq. 2 for the MI, and the normalization by the time interval
Δt ensures convergence of the TER in the limit of small Δt
(Spinney et al., 2017). For stationary processes X and Y, the TER
is independent on the time t; moreover, considering realizations
of infinite duration yields the constant TER measure

_TY→X � lim
τ→∞

_TY→X t, τ( ), (5)

which quantifies the rate of information transferred along the
causal direction from Y to X. By reversing the role of the two
processes, the information transferred along the opposite causal
direction can be quantified by the TER measure _TX→Y.

The measures of the rates of information exchanged by X and
Y defined in Eqs. 1, 5 are related to each other by a decomposition
that expresses the MIR between X and Y as the sum of the TER
along the two directions X→ Y and Y→ X, plus a term related to
the instantaneous interaction between the two processes.
Specifically, by using information-theoretic rules on Eq. 2 and
recognizing Eq. 4 as a conditional MI, i.e., TY→X (t, Δt, τ) � I
(Xt+Δt; Yt−τ:t|Xt−τ:t), the MIR can be expanded as

_IX;Y � _TX→Y + _TY→X + _I
0

X;Y, (6)

where the term

_I
0

X;Y � lim
Δt→0

lim
τ→∞

1
Δt I Xt+Δt;Xt+Δt|Xt−τ: t, Yt−τ: t( ) (7)

quantifies the rate of information instantaneously exchanged
between the two processes conditioned to the knowledge of
their past histories. The derivation of the important relation
Eq. 6, where all three terms are quantified in [nats/s], is
reported in the Appendix.

2.2 Computation for Bivariate Point
Processes
In this subsection we formulate the computation of MIR for point
processes. A point process is a particular class of continuous-time
process that is uniquely characterized by a series of
indistinguishable events described by their time of occurrence.
In a bivariate context, the statistical description of two point
processes is provided in terms of the instants marking the event
times, i.e., by writing X � {xi}, i � 1, . . . ,NX, and Y � {yj}, j � 1, . . . ,
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NY, where xi and yj represent the times of the ith event in X and of
the jth event in Y, respectively. For these point processes, the MIR
can be computed by leveraging the decomposition provided in
Eq. 6 (Mijatovic et al., 2021a) and making the assumption that
simultaneous events are not possible, i. e, xi ≠ yj, ∀i � 1, . . . , NX,
j � 1, . . . ,NY (Spinney et al., 2017; Mijatovic et al., 2021a; Shorten
et al., 2021). This assumption implies that the measure _I

0
X;Y of

instantaneous information exchange between X and Y defined in
Eq. 7 is null, so that the MIR between two point processes simply
becomes the sum of the two TER terms

_IX;Y � _TX→Y + _TY→X. (8)

Starting from Eq. 8, the MIR can be calculated by employing
methods to define (Spinney et al., 2017) and compute (Shorten
et al., 2021) the TER for point processes. Specifically, the TER
from Y to X is formulated as

_TY→X � �λXEpx ln
λX,xi|X−

xi
,Y−

xi

λX,xi|X−
xi

⎡⎣ ⎤⎦, (9)

where �λX � NX/T is the average event rate of X, NX is the
number of target events, and T is the duration of the target
process; in Eq. 9, λX,xi |X−

xi
and λX,xi|X−

xi
,Y−

xi
are the instantaneous

event rates of the target process X evaluated at the time of its
ith event xi, respectively conditioned on the history of X and
on the histories of both X and Y. In general, the
unconditioned instantaneous event rate of the process X,
evaluated at the arbitrary time u, is given by
λX,u � limΔu→0pu(NX,u+Δu −NX,u � 1)/Δu, where NX(u) is the
counting process that returns the number of events occurred up
to time u. At this point it is worth noting that, while the
probability pu is defined at any time point u ∈ R, the
expectation in Eq. 9 is taken over the probability px of
observing a quantity precisely at the time of target events xi,
i � 1, . . . , NX (Shorten et al., 2021). This important distinction,
upon expressing the conditional event rates in terms of pu,
making a Bayes inversion and noting that
limΔu→0pu(·|NX,u+Δu −NX,u � 1) � px(·), allows to
reformulate the expression of the TER as (Shorten et al., 2021)

_TY→X � �λXEpx ln
px X−

xi
, Y−

xi
( )

pu X−
xi
, Y−

xi
( ) ·

pu X−
xi

( )
px X−

xi
( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (10)

Equation 10 shows that the TER depends on the probabilities
of the process historiesX−

xi
and Y−

xi
, evaluated at target events and

at arbitrary time points (respectively, px and pu), whose statistical
average is taken only at target events (i.e., over px). The last
expression constitutes the basis for the MIR estimation strategy
presented in the next subsection.

2.3 Practical Estimation
The approach for MIR estimation, devised in (Mijatovic et al.,
2021a; Shorten et al., 2021) and briefly presented in the following,
relies on creating history embeddings that cover the past states of
the two observed point processes, implementing an operational
formulation of Eq. 10 to estimate the TER, and finally using Eq. 8
to obtain the MIR estimate.

In the estimation of the TER from the source process Y to the
target process X, the procedure for building history embeddings
approximates the past history of the two processes observed
either at the times of target events xi � 1, . . . , NX, or at
arbitrary time points ui � 1, . . . , NU, sampled in continuous
time. In the first case, illustrated in Figure 1A), the history
embedding of the target X referred to the event xi is
approximated by taking l inter-event intervals,
i.e., X−

xi
≈ Xl

xi
� {xi−k+1 − xi−k, k � 1, . . . , l}; the history

embedding of the driver Y referred to xi is approximated as
Y−
xi
≈ Yl

xi
� [xi − yp, Yl−1

yp
], where yp is the most recent driver

event preceding xi. In the second case (Figure 1B), the histories of
both processes as observed from ui are approximated by taking
the interval from the most recent event to ui followed by l − 1
inter-event intervals, i.e.,X−

ui
≈ Xl

ui
� [ui − xp,Xl−1

xp
], Y−

ui
≈ Yl

ui
�

[ui − yp, Yl−1
yp
].

The history embeddings are then used to compute the entropy
terms that compose the TER computed according to Eq. 10.
Specifically, Eq. 10 can be expressed as

_̂TY→X � �λX Ĥpu Xl
xi
, Yl

xi
( ) − Ĥpx Xl

xi
, Yl

xi
( ) + Ĥpx Xl

xi
( ) − Ĥpu Xl

xi
( )[ ],

(11)

where the estimates of the four entropies on the r.h.s. are obtained
by approximating the past histories of infinite duration with the
l − dimensional history embeddings, and computing the nearest
neighbor entropy estimator (Vicente et al., 2011; Faes et al., 2015).
Specifically, the terms Ĥpx(·) and Ĥpu(·) respectively refer to
‘standard’ differential entropy estimates where expectation is
taken over the same probability distribution for which the log-
likelihood is estimated, and to ‘cross-entropy’ estimates where the
two distributions differ (a detailed procedure is given in Shorten
et al. (2021); Mijatovic et al. (2021a)). The entropies are then
estimated via the kNN estimator (Kozachenko and Leonenko,
1987), where the parameter k indicates the number of points used
for searching the neighbors of each reference point; here, points
are realizations of the history embeddings of dimension l or 2l
specified in Eq. 11, and the search for neighbors is performed
within the set of realizations taken at target events in the case of
‘standard’ entropy estimation, and within a set of realizations
observed at arbitrary (randomly sampled) time points in the case
of ‘cross-entropy’ estimation. The estimation algorithm, which is
described in details in (Mijatovic et al., 2021a; Shorten et al.,
2021), proceeds performing neighbor searches and range searches
optimized to estimate together the four entropy terms in Eq. 11,
in order to achieve compensation of the bias brought by the
individual terms to the overall TER estimate. The TER from X to
Y is estimated in the same way after reversing the role of the two
point processes, and finally the MIR estimate is obtained by
simply summing the two TER estimates in Eq. 8.

2.4 Corrected Measure of Mutual
Information Rate
In this work, we face the issue of estimating the MIR from short
realizations of coupled point processes. As any estimate of a
measure computed on finite-length realizations of a process, the
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MIR exhibits bias and variance which typically depend on the
system dynamics, the analysis parameters, and the time-series
length. While the variance reflects random errors which cannot
be corrected, the bias of an estimator is related to systematic
errors that can be compensated by knowing the true value of the
measure of interest and its average value computed over several
repetitions of the analyzed process. However, unfortunately the
true theoretical values are generally not known for the MIR of
coupled point processes, as analytical results do not exist for the
sampling distribution of kNN estimates of entropy quantities.
Therefore, here we resort to an empirical procedure that follows
previously proposed approaches using surrogate time series to
reduce the bias of information-theoretic estimates (Marschinski
and Kantz, 2002; Papana et al., 2011). Specifically, first we
estimate the bias of the estimator computing its average over
several realizations of uncoupled surrogate event series for which
the expected MIR is zero, and then we use such average value to
correct the MIR estimated on the original coupled processes.
While this approach can be theoretically justified as a full
correction of the bias only when the true coupling between
the processes is zero, it has been shown to provide a
reasonable compensation of the bias of coupling and causality
measures even for coupled processes (Papana et al., 2011).

The correction procedure adopted in this work is based on the
generation of surrogate time series that preserve the individual
dynamics of a process while destroying any correlation between
pairs of processes. While surrogates are typically used to set a
significance threshold in the estimate of coupling measures (Faes
et al., 2004; Lancaster et al., 2018), in our approach we do not
apply a formal surrogate data test but rather correct the MIR for
the bias estimated in the absence of coupling. To do this, after
computing the MIR estimate _̂IX;Y for a given realization of two
point processes, we generate M surrogate point processes,
estimate the MIR over each surrogate pair, and finally
compute the corrected MIR (cMIR) as

_̂I
c( )
X;Y � _̂IX;Y − _̂I

m( )
X;Y, (12)

where _̂I
(m)
X;Y is the median of the MIR estimated over the M

surrogate pairs; we use the median instead of the mean to
consider possible deviations of the MIR values from a
symmetric distribution. The use of the corrected measure Eq. 12
aims at reducing the bias of MIR in the case of absence of coupling
between the two analyzed processes. To generate surrogate data, we

adopted the procedure proposed by Shorten et al. (2021) in the
context of TER estimation. This procedure implements a local
permutation of the patterns forming the history embeddings for the
two processes under the null hypothesis of independence of the
present of the target and the history of the source given the history
of the target. This null hypothesis is related to a more conservative
test than that typically performed in TER/MIR estimation; while
standard shuffling procedures destroy any relation between the
current and past states of the target and the past states of the source,
the local permutation test maintains the relation between the target
and source histories, by decoupling only the source histories from
the target events (Shorten et al., 2021). Nevertheless, to test this
approach in comparison with established methods for the
generation of surrogate data, we also implemented the algorithm
based on random shuffling of the inter-event intervals, which
preserves the probability distribution of the series of inter-event
intervals; the iterative amplitude-adjusted Fourier transform
(IAAFT) procedure (Schreiber and Schmitz, 1996; Perinelli
et al., 2020), which preserves both distribution and power
spectrum of the intervals; and the JODI algorithm (Ricci et al.,
2019; Perinelli et al., 2020), which is specifically designed to
preserve amplitude distribution and inter-event autocorrelation
in point process data.

In all simulations and real data analyses, we implemented the
nearest neighbor entropy estimator by using k � 30 neighbors and
the maximum norm to compute distances (Faes et al., 2015), and
generating a number of random time points equal to the number
of target events (NU �NX) (Mijatovic et al., 2021a). Analyses were
repeated varying the length of the history embedding in the range
l ∈ {1, 2, 3, 4, 5}. In the simulation study, the dependence of MIR
and cMIR on the coupling parameter, type of distribution of the
inter-event intervals, and time series length was also analyzed.

3 SIMULATION STUDY

This section reports the application of the proposed method for
continuous-time estimation of the MIR on point processes
simulated according to three scenarios. The first is devised to
assess the bias of the MIR estimate on pairs of independent point
processes for different types of inter-event distribution and
distribution parameters. In the second and third simulation,
coupled point processes designed to mimic the conditions of
the real-data application relevant to cardiovascular variability

FIGURE 1 | Example of history embeddings used to approximate the past states of a target point process X and a source process Y described by the event times
depicted as red and blue dots, respectively. In this example, embeddings are reconstructed with an embedding length l � 3.
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reported in Section 4 are considered; specifically, the dynamics of
the heartbeat times and of the arrival times of the blood pressure
wave in the body periphery are reproduced, and the two processes
are coupled in a way such that the intensity of their interaction
increases or decreases depending on different driving
mechanisms modulated by the input simulation parameter.

3.1 Simulation Design
3.1.1 Simulation 1
In the first simulation, we generate pairs of uncoupled point
processes according to different distributions. We consider: 1)
Poisson processes, for which the inter-event intervals are i.
i.d. exponential random variables with mean 1/λP, where λP is
the mean event-rate, here varied in the set λP ∈ {1, 2, 3, 4, 5}
events/s; 2) point processes with i. i.d. inter-event intervals
taken from the Gaussian distribution N (μ, σ2), with mean
varied in the set μ ∈ {0.8, 0.9, 1.0, 1.1, 1.2} s and standard
deviation varied in the set σ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} s; 3) point
processes with i. i.d. inter-event intervals taken from the
inverse Gaussian distribution IG (μ, λ), with mean varied in
the set μ ∈ {0.8, 0.9, 1.0, 1.1, 1.2} s and shape parameter varied
in the set λ ∈ {500, 600, 700, 800, 900} s; 4) point processes
with identically distributed history-dependent inter-event
intervals taken from the inverse Gaussian distribution,
HDIG (μ, λ, θ), where μ ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and λ ∈
{500, 600, 700, 800, 900} are the mean and shape parameters
of an IG distribution, respectively, and θ is a vector of
parameters that sets the correlations between the inter-
event intervals of each process, and makes them it history-
dependent (the values of the parameters in θ are described in
Section 3.1.2).

While the first two distributions are typically used in the
simulation of point processes, the IG and HDIG distributions are
considered as they constitute the basis for a model that
reproduces realistic heartbeat dynamics as presented in the
following Section 3.1.2. For all these classes of point
processes, the ground truth value of the information
exchanged dynamically between the two processes is zero ( _IX;Y �
_TX→Y � _TY→X � 0) because the processes are obtained from
independent runs of the simulation. This allows to quantify
the bias of the adopted MIR estimator, which is equivalent to
the median value of the MIR estimated across several realizations
of each simulation. In a single simulation, 100 realizations of each
pair of uncoupled point processes were generated, each consisting
of N � 300 events, and the distribution of the MIR measure was
computed for each combination of the simulation parameters in
the four cases described above.

3.1.2 Simulation 2
In the second simulation the process X, which reproduces the
heartbeat times, is generated as a point process following the
history-dependent inverse Gaussian (HDIG) model proposed
by Barbieri et al. (2005). According to this model, given any
event xi that simulates the occurrence time of a heartbeat, the
waiting time until the next event, i.e. the ith inter-event
interval wi, is assumed to be drawn from the probability
density function

p wi, X
p
xi
, θ, λ( ) �

�����
λ

2πw3
i

√
· e

−λ wi−μ X
p
xi

,θ( )[ ]2
2μ X

p
xi

,θ( )2

wi , (13)

where μ(Xp
xi
, θ) and λ are the mean and the scale parameter of the

inverse Gaussian distribution. In the HDIG model, the mean is
dependent on the history of the inter-event intervals up to the
current event xi, Xp

xi
� [wi−1, . . . , wi−p], according to the linear

autoregressive (AR) model:

μ Xp
xi
, θ( ) � θ0 +∑p

j�1
θjwi−j. (14)

This model represents, through the parameter vector θ � (θ0,
θ1, . . . , θp), the dependence of the present inter-event interval on
the past history of the process, and in this application accounts for
autonomic influences on heart rate variability (Stein et al., 1994).
The setting of the model parameters is performed to reproduce
typical point-process patterns of heart rate variability and
cardiovascular interactions (Faes et al., 2014; Beda et al.,
2017). Specifically, in our simulation we assume that the inter-
event intervals exhibit lagged dependencies up to the order p � 5,
and we set the coefficients {θ1, . . . , θ5} to obtain oscillations of wi

within the very low frequency (VLF, < 0.04 Hz), low frequency
(LF, 0.04–0.15 Hz) and high frequency (HF, 0.15–0.4 Hz) bands,
as typically observed in the time series of heart period variability
(Stein et al., 1994). This is achieved by simulating for the AR
model (14) a transfer function with two complex-conjugate poles
with modulus ρLF � 0.8 and phases ± 2π · 0.1 rad, two other
complex-conjugate poles with modulus ρHF � 0.92 and phases ±
2π · 0.25 rad, and a real pole with modulus ρVLF � 0.6 (Beda et al.,
2017). The mean and scale parameters of the inverse Gaussian
distribution are set to θ0 � 1 s (average heart period) and λ � 600 s.

After generating the heartbeat point process X as described
above, the point process Y that simulates the blood pressure
arrival times is obtained generating its events as

yi � xi + τi, (15)

where each propagation delay τi simulates an instance of the pulse
arrival time (PAT), i.e. the time interval between the initiation of a
cardiac contraction (identified by the electrical depolarization of
the ventricles) and the following time of arrival of the blood
pressure wave at the body periphery (identified by the time of
maximum finger arterial pressure). The propagation delays are
modelled as realizations of a second-order AR process defined as

τi � a0 + a1τi−1 + a2τi−2 + ui, (16)

where a0 represents the mean PAT set to 300 ms to reproduce the
average propagation time of the sphygmic wave from the heart to
the body periphery; a1 and a2 were set to reproduce a stochastic
oscillation at ∼ 0.1 Hz by using a transfer function with two
complex-conjugate poles with modulus ρLF � 0.8 and phases ±
2π · 0.1 rad, and ui are random numbers taken from a
Gaussian distribution with zero mean. The standard deviation of
uiwas adjusted to obtain specific values for the standard deviation of
τi, which we denote as σPAT. This important parameter modulates
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the variability of the arrival times yi, and in this simulation is
inversely related to the strength of the interaction from X to Y;
here, σPAT was varied from 10 to 235ms with steps of 25ms.

The inter-event intervals of the simulated heartbeat and blood
pressure timings generated by a run of the simulation 2 are
reported in Figure 2A) along with the respective power spectral
densities (PSD, shown in Figure 2B), which evidence VLF, LF
and HF oscillations in the two processes. The values of the TER
estimated along the two directions of interaction, the MIR
estimated as the sum of the two TERs, as well as the
distribution of the MIR estimated from 100 surrogate series
and the corresponding cMIR, are displayed in Figure 2C).

3.1.3 Simulation 3
The third simulation is a modification of the second one and is
devised to impose a common oscillation in the inter-event
intervals of the process X and in the propagation delays τi, so
as to reproduce a condition in which the same underlying
mechanism drives the two point processes. To this end, the
HDIG model is retained to simulate the heartbeat intervals as
in Eq. 13, but with different autocorrelation structure;
specifically, an AR model of order p � 3 was used in Eq. 14,
with coefficients {θ1, θ2, θ3} set to obtain oscillatory activity within
the VLF and HF bands only (i.e., using a transfer function with
one real pole withmodulus ρHF � 0.92 and two complex conjugate
poles with modulus ρHF � 0.92 and phases ± 2π · 0.25 rad).
Starting from the intervals wi drawn from this HDIG distribution
with VLF and HF components, the LF component is introduced
by adding towi a term equal to 2τi, where τi is the random interval
generated by Eq. 16. The simulation is then completed as in the
previous case, i.e., by generating blood pressure arrival times as in
Eq. 15with propagation delays given again by Eq. 16. In this way,
the LF component of the inter-event intervals in X and the
propagation delays that contribute to the LF variability of Y

are generated from the same random seed ui and, as a
consequence, the parameter σPAT that determines the
variability of both components directly modulates the coupling
between the two processes (i.e., we expect that higher values of
σPAT determine higher amounts of information shared between X
and Y).

3.2 Simulation Results
In the first simulation, the MIR computed according to Eq. 8,
where the two TER terms are estimated as in Eq. 11, was
evaluated in pairs of uncoupled point processes by varying the
type of inter-event interval distribution of the processes and the
distribution parameters. Since for these processes the true value of
the index is _IX;Y � 0, the values of theMIR estimate _̂IX;Y highlight
the bias of the estimator. The results reported in Figure 3 indicate
the presence of a negative bias in all simulations, as documented
by the negative values of _̂IX;Y measured by varying the type and
parameters of the distribution of the uncoupled processes.

For Poisson processes, the bias tends to increase with the event
rate and with the mismatch between the rates of the two processes
(Figure 3A). For Gaussian processes, the bias increases when the
standard deviation of the inter-event intervals is decreased, and is
not substantially affected by the mean (Figure 3B). In the case of
uncorrelated inverse Gaussian inter-event intervals, the bias is
inversely related both to the mean and to the shape parameter of
the interval distribution (Figure 3C); the dependence on the
shape parameter becomes direct when the inverse Gaussian
intervals are correlated in HDIG processes (Figure 3D).
Overall, these results indicate that, in the presence of short
realizations of point processes as in the present case where
N � 300 spikes are simulated, the MIR estimates are strongly
biased, and therefore strategies are needed for the compensation
of such bias in the practical analysis of the information shared
between point processes.

FIGURE 2 | Representative example of the analysis relevant to the second simulation. (A) Inter-event intervals obtained for the process X as observations of the
history-dependent inverse Gaussian model of Eqs. 13, 14 and for the process Y as observations of the process described by Eqs. 15, 16 generated with σPAT �85 ms;
(B) power spectral densities of the two inter-event series evidencing LF and HF oscillations at ∼ 0.1 Hz and ∼ 0.25 Hz; (C) corresponding estimates of the TER from X to
Y (blue circle) and from Y to X (red circle), of the MIR obtained as the sum of the two TERs (green circle), and distribution (median and percentiles) of the MIR
estimated from 100 surrogate event series (light green); the difference between the MIR and the median of its distribution on the surrogates corresponds to the bias-
corrected cMIR (gray arrow).
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The procedure for compensating the bias of MIR estimates, as
well as the performance of the corrected cMIR estimator, are
illustrated in Figure 4 for several runs of simulation 2 generated
by varying the intensity of the interaction between the HDIG
processes modulated by the parameter σPAT.

As shown in Figure 4A, the progressive de-coupling of the
interactions between X and Y obtained by increasing σPAT is
reflected by a progressive decrease of the MIR estimates; this
behavior is observed for all the analyzed values of the history
embedding length l. However, the analysis also confirms the
presence of a substantial bias in the estimates of MIR, which take
on negative values when the coupling between the two processes
decreases. Figure 4B reports the bias-corrected MIR estimates,
showing how the correction leads to non-negative values of cMIR
even when the processes approach the uncoupled states for high
values of σPAT. The correction brings the cMIR values in the range
0 − 0.6 nats/s for l � 1, which extends to ∼ 0.7 nats/s for l � 5, and
evidences the appropriateness of using higher embedding lengths
in the simulated process when the inter-event intervals are
modeled by an AR model of order p � 5.

The benefit of longer history embeddings is documented also
in Figure 4C, where we employ the standard procedure for

testing coupling significance based on surrogate data. This
procedure tests the null hypothesis of uncoupling between the
two analyzed point processes and is based on generating, from
each pair of original realizations of the processes, a suitable
number of pairs of surrogate event series using the local
permutation method, and then on deeming the original pair as
significantly coupled if the MIR value was above the 95th
percentile of the MIR surrogate distribution. The percentage of
realizations for which the MIR/cMIR values were detected as
statistically significant is reported in Figure 4C, showing that the
rate of detection of weakly coupled point processes (higher values
of σPAT) increases for higher embedding lengths.

Figure 5 has the same structure of Figure 4A, and shows
alternative approaches to generate the surrogate data consistent
with the null hypothesis of uncoupling between the two analyzed
point processes. The figure shows that the analysis of cMIR is
rather stable at varying the type of surrogate data. The most
remarkable difference is that using the shuffling surrogates,
similarly to the local permutation surrogates employed in
Figure 4A even though with a lower extent, the MIR estimates
partially overlap with the distribution of the MIR for the original
process realizations when the de-coupling parameter is high

FIGURE 3 | Assessment of the bias of the proposed MIR estimator. Plots depict the distribution (mean ± SD) of the MIR values computed over 100 realizations of
uncoupled, short-length processes (N � 300 samples) with inter-event intervals taken from an exponential distribution with parameter λ ((A), Poisson processes), a
Gaussian distribution with mean μ and variance σ2 (B), an inverse Gaussian (IG) distribution with mean μ and shape parameter λ (C), and a history-dependent inverse
Gaussian (HDIG) distribution with mean μ and shape parameter λ (D). The history embedding length was set to l � 1 in all computations.
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(σPAT � 210 ms and particularly σPAT � 235 ms); such an effect is
not observed using IAAFT and JODI surrogates. This suggests
that surrogates which preserve autocorrelation properties of the
inter-event intervals are more prone to detect weak but significant
amounts of information shared by two point processes and to
return higher values of the cMIR measure. On the other hand, the
use of the local permutation method for the generation of
surrogate time series resulted in higher values of the MIR
assessed on the surrogates (see the gray areas in Figure 4A vs
those in Figure 5). This result is expected, as the local
permutation method maintains the relationship of the source
history embeddings with the history embeddings of the target,
thus allowing to keep a low rate of false positive detection of
information transfer (Shorten et al., 2021). Thus the comparison
between Figures 4A, 5 evidences that the local permutation
surrogates adopted as a main solution in our work tends to
favor specificity in the detection of coupled point process
dynamics, while surrogates preserving autocorrelation

structure of the inter-event intervals tend to favor sensitivity.
These considerations are of practical relevance for the analysis of
real-world data.

To show that the bias of the MIR estimates is due to the small
sample size of the point process realizations analyzed, in Figure 6
we show the MIR computed as a function of the decoupling
parameter σPAT for different lengths of the simulated processes,
N ∈ {150, 300, 1,000, 5,000, 10,000}, together with the cMIR
obtained using either the local permutation method or the JODI
algorithm to generate surrogate point processes. We observe that
increasing the number of simulated events progressively reduces
the bias, as documented by the progressively higher values
observed for the MIR and by the absence of negative values
for N ≥ 5,000. As expected, also the variance of the MIR estimates
decreases while increasing N, confirming that larger sample sizes
reduce not only the bias, but also the variability of the estimates.
We also note that the median of MIR over the surrogate
distribution (gray dotted line in Figures 6A,C) is not a

FIGURE 4 | Computation of MIR and cMIR, and assessment of their statistical significance, in simulations of short-length (N �300 events) coupled history-
dependent inverse Gaussian (HDIG) processes. (A) Distribution (mean ± SD) of the MIR measure, estimated over 100 realizations of simulation 2 as a function of the de-
coupling parameter σPAT, for different values of the history embedding length, l ∈ [1, 5]; gray dotted lines and shades correspond to the median and 5th − 95th percentiles
of the distribution over the 100 realizations of the median MIR (for each realization, the median is computed over 100 surrogate pairs obtained using local
permutation). (B) Distribution (mean ± SD) of the corrected MIR (cMIR) measure, estimated over the same realizations of simulation 2; for each realization, cMIR is
computed as the difference between MIR and the median of the MIR distribution assessed over 100 local permutation surrogates. (C) Bar plots reporting the number of
realizations for which the MIR is detected as statistically significant according to the surrogate data analysis.
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constant function of σPAT and differs for the two methods for
surrogate generation. As a consequence, the cMIR does not represent
a simple translation ofMIR toward positive values and depends on the
adopted surrogates. In particular, the use of local permutation
surrogates results in lower values of cMIR compared to that based
on JODI surrogates (see Figures 6B,D), suggesting a better bias
compensation for the latter approach. Moreover, the non-
monotonic behavior of MIR estimated for small sample size (N �
150 and N � 300) is accentuated in cMIR when local permutation
surrogates are used (Figures 6A,B), while it is smoothed when JODI
surrogates are used (Figures 6C,D).

Figure 7 reports the results of Simulation 3, where coupled
HDIG processes are generated so that increasing the variability of
the propagation delay from X to Ymay also increase the coupling

between the two processes. This effect is verified in our simulations by
observing that the cMIR measure increases with the parameter σPAT,
which in this case modulates the variability of both the LF component
of the inter-event intervals of X and the propagation delays; the
increase of the information shared between the two processes at
increasing σPAT is observed consistently for all the analyzed history
embedding lengths, l ∈ [1, 5].

4 APPLICATION TO REAL DATA

This section describes the application of cMIR on experimental
point-process data relevant to cardiovascular variability. In the
information-theoretic domain, cardiovascular interactions are

FIGURE 5 | Analysis of MIR using different methods for surrogate data generation. Plots depict the distribution (mean ± SD) of the MIR measure, estimated over 100
realizations of simulation 2 as a function of the de-coupling parameter σPAT, for different values of the history embedding length, l ∈ [1, 5]. Gray dotted lines and shades
correspond to the median and 5th − 95th percentiles of the distribution over the 100 realizations of the median MIR; for each realization, the median is computed over 100
surrogate pairs generated by random shuffling of the inter-event intervals (A), according to the IAAFT algorithm (B), and according to the JODI algorithm (C).
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commonly studied by means of entropy measures applied to the
discrete-time series of heart period and arterial pressure
variability (Faes et al., 2012; Faes et al., 2015; Javorka et al.,
2017). However, given the intrinsic unevenly sampled nature of
human heartbeats (Barbieri et al., 2005), recent studies started to

face the analysis of cardiovascular, cardiorespiratory and brain-
heart dynamics from the perspective of point processes analyzed
also using information measures (Valenza et al., 2018; Greco
et al., 2019). Here, with the aim of assessing the potential of MIR
analysis in short-term cardiovascular variability as well

FIGURE 6 |Dependence of MIR and cMIR on the size of the analyzed point processes and on the type of surrogate series used for bias compensation. Plots depict
the distribution (mean ± SD) of the MIR (A,C), and the cMIR based on local permutation surrogates (B) or JODI surrogates (D), estimated (history embedding length l � 1)
as a function of the decoupling parameter σPAT over 100 realizations of simulation 2 of different lengths (number of simulated eventsN ∈ {150, 300, 1000, 5000, 10 000}).
In panels (A,C), gray dotted lines and shades correspond to the median and 5th − 95th percentiles of the distribution over the 100 realizations of the median MIR,
where for each realization the median is computed over 100 surrogate pairs obtained by using local permutation surrogates (A) or JODI surrogates (C).
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physiological mechanisms other than those investigated by the
traditional information-theoretic measures, we apply our
continuous-time approach on the point processes that map the
heartbeat and systolic time events measured in healthy humans
and monitored under different physiological states.

4.1 Database and Experimental Protocol
The analyzed data belong to an historical database previously
used to study the effects of physiological stress and cognitive
workload on cardiovascular variability (Javorka et al., 2017;
Pernice et al., 2019). The data were acquired on 76 young
healthy subjects (age: 18.4 ± 2.7 years, 32 males),
normotensive and with a normal body mass index (21.3 ±
2.3 kg/m2), and consisted of electrocardiographic (ECG) and
blood pressure (BP) recordings acquired synchronously with a
sampling frequency of 1 kHz. ECG and BP signals were recorded
by using CardioFax ECG-9620 (Nihon Kohden, Japan;
horizontal bipolar thoracic leads) and the Finometer Pro
devices (FMS, Netherlands; volume-clamp continuous BP
measurement), respectively. The experimental protocol
foresaw the acquisition of the signals in different
physiological states, going from resting conditions to
different types of stress (orthostatic or mental). For the
analyses carried out in this work, we have taken into account
the following states: 1) baseline state (B), with subjects resting in
the supine position for 15 min; 2) head-up tilt state (T),
obtained by passively tilting the subjects by 45° to the
upright position and maintaining them in that state for
8 min in order to produce orthostatic stress; 3) mental
arithmetic state (M), obtained with subjects in the supine
position and by asking them to sum up as fast as possible 3-
digit numbers projected on the ceiling until reaching a 1-digit
number and to decide whether the resulting number was
even or odd (PMT test, Psycho Soft Software, s. r.o., Brno,
Czech Republic), where this task was repeated over a period
of 6 min to elicit cognitive load. Further details on the
experimental protocol can be found in (Javorka et al.,
2017; Pernice et al., 2019).

4.2 Data Analysis
The data analyzed consisted of sequences containing the timings
of the consecutive R peaks in the ECG (event series of the R times)
and of the following maxima in the BP signals (event series of the
systolic times), previously extracted by means of LabChart 8
(ECG analysis, blood pressure modules) toolbox from
ADInstruments (Javorka et al., 2017; Pernice et al., 2019).
Moreover, the time series of the RR and PAT intervals were
measured respectively as the sequences of the difference between
two consecutive R times, and of the difference between each
systolic time and the preceding R time. The event series and time
series analyzed for each subject and experimental condition
consisted of N � 300 events, which were extracted starting
respectively ∼8 min after the beginning of the phase B, ∼3 min
after the beginning of the phase T, and ∼2 min after the beginning
of the phase M; the corresponding RR and PAT time series were
checked for stationarity by using a test targeting a restricted form
of weak stationarity (Magagnin et al., 2011).

Starting from the interval series of RR and PAT, the mean and
standard deviation of the two series, respectively computed as the
average interval duration and the interval variability, were
computed for each subject and experimental condition.
Starting from the corresponding event series of R times and
systolic times, the intervals forming the history embeddings were
extracted as displayed in Figure 1, and employed as described in
Section 2 to estimate first the TER along the two directions of
interaction, then the MIR, and finally the cMIR. To test the
statistical significance of the differences in the median of the
distributions of each measure (mean, standard deviation and
cMIR) evaluated across conditions (B, T, M), we used the non-
parametric Kruskal-Wallis test, followed by post-hoc paired
Wilcoxon signed rank test to assess pairwise differences (B vs.
T, B vs. M, T vs. M) with 5% significance and employing the
Bonferroni-Holm correction for multiple comparisons.

4.3 Results and Discussion
The results of the real data analysis are summarized in Figure 8,
reporting the distributions of the basic statistics (mean and

FIGURE 7 | Computation of cMIR for short-length realizations (N �300 events) of simulation 3. Plots depict the distribution (mean ± SD) of the cMIR measure,
estimated over 100 realizations of simulation 3 as a function of the parameter σPAT, for different values of the history embedding length, l ∈[1,5]. Note that in this simulation
in which common oscillations are imposed in the variability of the inter-event intervals of the process X and on the propagation delay from X to Y, σPAT serves as a coupling
parameter.
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standard deviation of RR and PAT intervals) in the upper panels
and of cMIR in the lower panels.

The mean RR interval decreased significantly moving from B
to T and from B to M; the effect was more pronounced during tilt
than during mental arithmetic. Similarly, both postural stress and
mental stress induced a decrease of the variability of the RR
intervals, with a larger effect during head-up tilt, as documented
by the statistically significant decrease of the standard deviation of
the RR intervals moving from B to T and from B to M and by its
higher values during M compared to T.

The physiological stressors induced also statistically significant
variations in the mean and variability of the propagation delays of
the sphygmic wave from the heart to the periphery. Specifically,
the mean PAT decreased progressively and significantly while
moving from B to T and from T to M, and the standard deviation
of PAT increased during T compared to B, and decreased during
M compared to T.

The analysis of the cMIR measure indicated that the postural
stress tends to increase the information shared between the R
times and the systolic times, while mental stress does not have
significant effects. In fact, cMIR was significantly higher
during T compared to B, and significantly lower during M
compared to T when a history embedding l � 1 was used.
These variations were less evident when l � 2, as the Kruskal-
Wallis test reported statistically significant differences among
the three distributions despite the post-hoc tests did not
reach statistical significance (B vs T, p � 0.070; B vs M,
p � 0.195, T vs M, p � 0.333), and were reduced to non-
significant trends when l � 3 and l � 4.

The alterations observed in the basic cardiovascular
parameters during the two physiological stressors are in
agreement with a large body of literature in cardiovascular
variability analysis, and document the involvement of several
physiological mechanisms in the elicitation of these stressors. In
particular, the lower mean and variability of the RR intervals
during tilt and mental arithmetic reflect well-known effects such
as the tachycardia and the shift of the cardiac autonomic balance
towards sympathetic activation and parasympathetic inhibition
induced by postural and mental stress (Montano et al., 1994;
Carnethon et al., 2002; Garde et al., 2002; Wood et al., 2002;
Martinelli et al., 2005; Javorka et al., 2017, 2018; Kim et al., 2018;
Pernice et al., 2019). The interpretation of the shortening of PAT
and of the increase of its variability observed during tilt is less
straightforward. The PAT is composed by the pre-ejection period
(PEP), i.e., the interval from the electrical depolarization of the
ventricles to the ejection of the blood from the heart, and by the
pulse transit time (PTT), i.e., the time that it takes for the blood
pressure wave to reach the body periphery; the PEP depends
mainly on the strength of left ventricular contraction, influenced
by the Frank-Starling law and by sympathetic control (Krohová
et al., 2017), while the PTT is mostly affected by arterial
compliance, reflecting (on a short time scale) modulation of
blood pressure and vasomotion (Mukkamala et al., 2015;
Czippelova et al., 2019). In accordance with our previous
research in a related database (Krohová et al., 2017), we
expect an increase in PEP during orthostasis as an effect of
decreased diastolic filling of the heart via the Frank-Starling
mechanism leading to a lower strength of the cardiac

FIGURE 8 | Basic statistics and information shared in the cardiovascular time series. Panels depict the boxplots and individual values of the mean and standard
deviation of the RR intervals (red dots) and of the PAT intervals (blue dots), as well as of the cMIR measure estimated for different values of the history embedding length l
(green dots), computed for all subjects during the three analyzed experimental conditions (baseline (B), head-up tilt (T), and mental arithmetic (M)). Statistical analysis
(orange symbols): #, p < 0.05, Kruskal-Wallis test; *p < 0.05 B vs T or B vs M; °p < 0.05: T vs M, Wilcoxon test.
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contraction. Therefore, the decrease of the mean PAT observed
during tilt should reflect mostly a decrease in PTT related to an
augmented arterial stiffness caused by peripheral
vasoconstriction, which is in turn evoked by the vascular
baroreflex response associated with a decrease of blood
pressure due to pooling of blood in the lower extremities
(Czippelova et al., 2019); the concomitance of these opposite
trends (i.e., increase of PEP and decrease of PTT) and the
complexity of the related physiological mechanisms including
autonomic reflexes and mechanical effects (Rapalis et al., 2017;
Czippelova et al., 2019; Pernice et al., 2021) may - together with
an increased systolic blood pressure variability associated with tilt
- explain the higher variability of PAT observed during tilt.
During cognitive load, induced in our protocol by the mental
arithmetic task, the more prominent decrease of PAT likely
reflects–in addition to vasoconstriction driven by commands
stemming from the central nervous system which reduces the
PTT–also a reduction of PEP associated with an increased cardiac
contractility mediated by the sympathetic nervous system
(Martin et al., 2016); in this case, the presence of common
trends (i.e., decrease of both PEP and PTT) may explain both
the lower PAT and its lower variability measured during mental
arithmetic.

According to our results, the physiological mechanisms
described above are associated with an increase of the rate of
information exchange between the point processes marking the R
times of the ECG and the times of arrival of the sphygmic wave in
the body periphery. Higher values of MIR are expected when the
variations of the propagation delay from one process to another
are small, or when such variations occur in phase due to the effect
of some common driver mechanism. Since we observe an increase
in cMIR simultaneously with a shortening of the mean PAT and
an increase of the PAT variability, we conclude that the presence
of a common driver oscillation is the mechanism underlying the
higher exchange of information. This mechanism was
synthetically reproduced in our third simulation (see
Figure 7), and can be physiologically explained by the
sympathetic activation induced by head-up tilt (Montano
et al., 1994; Carnethon et al., 2002; Martinelli et al., 2005).
The “common driver” nature of this mechanism can be
explained by observing that during postural stress the
sympathetic activation is related to the baroreflex mechanism
and, as such, it simultaneously involves the variability of the heart
period (and thus that of the R times) and the variability of the
arterial pressure (and thus that of the PAT) (Porta et al., 2011;
Faes et al., 2013), thereby determining a more intense exchange of
information between the two processes. In fact, vasoconstriction
in the arterioles in systemic circulation is modulated almost
exclusively by the sympathetic part of the autonomic nervous
system (Krohova et al., 2020) whose oscillations mostly occur in
the LF band; a similar effect is mimicked in our simulations in
Section 3. On the other hand, the less evident variations of cMIR
observed during the mental arithmetic test may be associated
with the fact that the sympathetic activation evoked by mental
stress is of a different type, likely involving central commands
from the upper brain centers (cortex) which control more
independently the heartbeat and the arterial compliance

without prominent synchronization effects related to the
baroreflex (Fauvel et al., 2000).

The observation of statistically significant differences across
conditions of the cMIR index only for small values of the history
embedding length (variations from B to T and from T to M are
detected for l � 1 and, to a lower extent, for l � 2) suggests that the
cardiovascular interactions altered by physiological stress occur
mostly as a consequence of the variability of the propagation time
of the sphygmic wave from the heart to the body periphery, and
that the use of longer memory effects may confound the detection
of such altered interactions. This result can be expected by
considering that the largest part of the analyzed type of
interactions is due to the PAT, whose effects are fully captured
with l � 1 (note that, within the point process framework, effects
explained with l � 1 are not immediate but rather indicative of
time-lagged effects with short memory). The result is in
agreement with previous observations reporting that the
latency of cardiovascular information transfer is typically
limited to zero-lag or one-beat interactions, especially during
postural stress (Faes et al., 2014). Nevertheless, we remark that the
type of cardiovascular interactions studied using time-series
based methods (Faes et al., 2014; Porta and Faes, 2015) reflect
different mechanisms than those reflected by the event-based
method employed here, the former being related mainly to the
baroreflex control of heart rate, while the latter being related to
blood pulse propagation and arterial contractility.

5 CONCLUDING REMARKS

This study reports the first application to cardiovascular
dynamics of the continuous-time estimator of the information
exchanged dynamically between point processes introduced in
(Shorten et al., 2021) to compute the TER and employed in
(Mijatovic et al., 2021a) to compute the MIR. In the reported
application context where the direction of interaction is
determined by the cardiac pacemaker that triggers the
propagation of the sphygmic waves through the arterial bed,
studying causal interactions through the TER is less relevant than
assessing the coupling between the heartbeat and systolic times
through the MIR. Moreover, this application context is
particularly challenging with regard to the computation of
information rates, because the cardiovascular regulation
operates mostly through short-term control mechanisms and
needs to be performed over short stationary series including a
few hundred heartbeats at most (Cohen and Taylor, 2002). The
adopted estimator combines the property that for point processes
the MIR can be formulated in terms of the TER (Mijatovic et al.,
2021a), and exploits the approach based on representing dynamic
states of point processes in terms of inter-event intervals to
efficiently capture information flows (Shorten et al., 2021). In
this work we investigate the small sample properties of the MIR
estimator, finding the presence of a negative bias which is
significant in almost all the scenarios simulated between
uncoupled point processes (Figure 3). A similar bias, even
though considerably smaller, was described in the work that
first introduced the TER and MIR estimators (Mijatovic et al.,
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2021a; Shorten et al., 2021). As opposed to previous applications
in neuroscience, cardiovascular interactions feature conditions of
strongly auto-correlated processes and of short data sequences,
which can be responsible of the strong bias that very often leads to
meaningless negative values of MIR, thus justifying the adoption
of countermeasures to prevent such bias. In Shorten et al. (2021),
this bias was associated with a violation of the assumption of local
uniformity of the probability density within the range of the k
nearest neighbors used for entropy estimation. While methods
for reducing the bias of nearest neighbor information estimators
which address specifically cases where local uniformity does not
apply can be devised (Gao et al., 2015), in this work we resort to
an empirical approach that reproduces the bias of MIR estimated
over uncoupled surrogate time series, and then subtracts this bias
from the MIR computed for the original series. This empirical
approach has the advantage of generality, since surrogates mimic
the data distribution and are in principle able to reproduce
diverse sources of bias and to compensate them in the
corrected measure (Papana et al., 2011). We find that different
procedures for surrogate data generation have a different impact
on the detection coupling and on the compensation of the bias,
with differences being emphasized as the size of the analyzed
event series decreases. A main advantage of the resulting cMIR
measure is that it establishes the statistical significance of the
information shared by the two processes, meaning that it does not
indicate significant coupling when the coupling is indeed absent
(Papana et al., 2011); this aspect has been verified in our
simulations showing that cMIR tends to zero when the studied
processes approach the uncoupled regime. A drawback of the
proposed correction stands in the fact that it reproduces the bias
for uncoupled processes, which can be different than that
occurring in the case of coupling. As a consequence, since the
MIR for truly coupled signals can be affected by a different bias
than that observed for uncoupled signals, our approach does not
provide a rigorous correction of the bias when the coupling is
nonzero and some residual bias possibly remains also after the
correction. Moreover, some applications of cMIR to networks
with several connections to be estimated can become
computationally unfeasible since the generation and
information-theoretic analysis of surrogate point processes is a
time-consuming procedure.

The proposed approach to estimate MIR in the presence of
short and possibly noisy point process data is recommended for
applications in the field of Network Physiology, where the
estimation of organ system interactions is typically challenged
by the inherently complex nature of human physiological signals
(Lehnertz et al., 2020). In our work, where complex point process
interactions between the heartbeat timings and the arrival times
of the sphygmic wave on the body periphery have been analyzed,
we detected significant coupling between the two processes in all
subjects and experimental conditions. Moreover, the statistically
significant variations of cMIR observed during physiological
stress suggest that the index can reflect the neuroautonomic
modulation of the heartbeat and vascular dynamics. This
conclusion is supported by previous studies performed by
using different approaches working in discrete time on interval
time series, which suggests that the differences between heart rate

and pulse rate variability are due not only to measurement noise,
but also to physiological factors (Schäfer and Vagedes, 2013;
Pernice et al., 2019). These factors are related to the physiological
modulation of the two time intervals that compose the PAT, i.e.
the PEP and the PTT. According to our present findings and
previous research (Krohová et al., 2017; Czippelova et al., 2019;
Pernice et al., 2019), the increased variability of PAT observed
during postural stress arises from an increased variability of PEP
related to sympathetic influence on cardiac contractility, an
increased variability of systolic blood pressure leading to
increased PTT variability, and an increased variability in the
vascular tone related to sympathetic vasomotor control. These
effects are manifested mainly in the LF band (0.04–0.15 Hz) of the
spectrum, which is the frequency range where dominant
oscillations of the blood pressure and the heart rate are
observed during head-up tilt (Montano et al., 1994; Pernice
et al., 2021). Accordingly, we ascribe the increase of cMIR
observed during postural stress to the activation of the
sympathetic nervous system and to the increased chronotropic
baroreflex coupling occurring with tilt, which are likely
responsible of the synchronous modulation of the LF
variability of heart rate and PAT. Whilst we support this
interpretation with our simulation, a recent study showed that
heart rate and PAT variability are more correlated at the
frequency of the Mayer waves (∼ 0.1 Hz) (Peng et al., 2021).
On the other hand, the smaller changes of cMIR observed during
mental arithmetic suggest that mental stress evokes a different
type of sympathetic activation, possibly more of central origin
than related to common modulation of heart rate and vascular
tone (Javorka et al., 2017). Future studies should address the
separate role of PEP and PTT variability in the changes of the
coupling between heartbeat and systolic time dynamics, and
investigate the clinical value (e.g., in relation to the alterations
of the arterial compliance observed with aging or hypertension)
of the novel measures computed in this work.

In summary, the method for MIR computation presented in
this work constitutes a viable approach to assess the rate of
information exchanged dynamically between pairs of point
processes from short realizations of event-based data. Our
approach, which explicitly considers the point-process
structure of human heartbeats, is alternative to existing model-
free information measures developed in discrete time and
working on amplitudes rather than on events (Porta and Faes,
2015), as well as to existing model-based parametric models
developed in the point process framework (Barbieri et al.,
2005; Valenza et al., 2018; Greco et al., 2019). As such, it
holds the potential to disclose different physiological
mechanisms than those investigated by traditional
cardiovascular variability approaches.
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APPENDIX

This section reports the derivation of the decomposition of the
MIR presented in Eq. 6. We start considering two
discrete-time processes XΔ � {Xtn} and YΔ � {Ytn} defined at
the discrete time instants tn � nΔt, n ∈ Z, where Δt is the time
interval between samples expressed in unit of time; the
derivation in continuous time, i.e., for Δt → 0, will
intuitively follow. In discrete time, the MIR is defined as

_IXΔ ;YΔ � lim
n→∞

1
nΔt I Xt1 : tn;Yt1: tn( ), (17)

where Xt1: tn � {XΔt, X2Δt, . . . , XnΔt} and Yt1: tn �
{YΔt, Y2Δt, . . . , YnΔt} are n-dimensional vectors of consecutive
random variables taken from the two processes. According to
basic information-theoretic rules we have that
I(Xt1: tn;Yt1: tn) � H(Xt1: tn) +H(Yt1: tn) −H(Xt1: tn, Yt1: tn),
from which Eq. 17 can be expressed in terms of entropy rates as

_IXΔ ;YΔ � _HXΔ + _HYΔ − _HXΔ ,YΔ. (18)

Then, recalling the equivalent definitions of entropy rate for
sequences of identically distributed random variables (Cover,
1999), the entropy rate for the process XΔ can be written as

_HXΔ �
1
Δt lim

n→∞

H Xt1: tn( )
n

≡
1
Δt lim

n→∞
H Xti|Xti−n : ti−1( )

� 1
ΔtH Xti|X−

ti
( ), (19)

where the last term is independent on ti due to stationarity and is
written in compact form evidencing the past history of the
process, X−

ti
� Xti−n: ti−1 with n → ∞. By using Eqs. 18, 19 can

be formulated evidencing a difference of MI terms as

_IXΔ ;YΔ �
1
Δt H Xti|X−

ti
( ) +H Yti|Y−

ti
( )( ) −H Xti, Yti|X−

ti
, Y−

ti
( )

� 1
Δt H Xti, X

−
ti

( ) −H X−
ti

( ) +H Yti, Y
−
ti

( ) −H Y−
ti

( )(
−H Xti, Yti, X

−
ti
, Y−

ti
( ) +H X−

ti
, Y−

ti
( ))

� 1
Δt I Xti, X

−
ti
;Yti, Y

−
ti

( ) − I Xti;Y
−
ti

( )( ). (20)

Moreover, application of the chain rule for mutual
information allows to expand the first MI term in the last line
of Eq. 20 as

I Xti, X
−
ti
;Yti, Y

−
ti

( ) � I X−
ti
;Yti, Y

−
ti

( ) + I Xti;Yti, Y
−
ti
|X−

ti
( )

� I X−
ti
;Y−

ti
( ) + I Yti, X

−
ti
|Y−

ti
( )

+ I Xti;Yti, Y
−
ti
|X−

ti
( )

� I X−
ti
;Y−

ti
( ) + I Yti, X

−
ti
|Y−

ti
( ) + I Xti;Y

−
ti
|X−

ti
( )

+ I Xti;Yti|X−
ti
, Y−

ti
( ).

(21)

Finally, substituting Eqs. 20, 21 leads to express the MIR as

_IXΔ;YΔ �
1
Δt I Yti, X

−
ti
|Y−

ti
( ) + I Xti;Y

−
ti
|X−

ti
( ) + I Xti;Yti|X−

ti
, Y−

ti
( )( )

� 1
Δt TXΔ→YΔ + TYΔ→XΔ + I0XΔ ;YΔ( ),

(22)

where the transfer entropies TXΔ→YΔ and TYΔ→XΔ (Schreiber,
2000) and the instantaneous information exchanged between
the two processes, I0XΔ;YΔ

(Amblard and Michel, 2013), are put
in evidence. Taking the limit Δt → 0 in Eq. 22 leads to Eq. 6,
which is valid when the processes X and Y are continuous.
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There has been little change in morbidity and mortality in traumatic brain injury (TBI) in the
last 25 years. However, literature has emerged linking impaired cerebrovascular reactivity
(a surrogate of cerebral autoregulation) with poor outcomes post-injury. Thus,
cerebrovascular reactivity (derived through the pressure reactivity index; PRx) is
emerging as an important continuous measure. Furthermore, recent literature indicates
that autonomic dysfunction may drive impaired cerebrovascular reactivity in moderate/
severe TBI. Thus, to improve our understanding of this association, we assessed the
physiological relationship between PRx and the autonomic variables of heart rate variability
(HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) using time-series
statistical methodologies. These methodologies include vector autoregressive integrative
moving average (VARIMA) impulse response function analysis, Granger causality, and
hierarchical clustering. Granger causality testing displayed inconclusive results, where PRx
and the autonomic variables had varying bidirectional relationships. Evaluating the
temporal profile of the impulse response function plots demonstrated that the
autonomic variables of BRS, ratio of low/high frequency of HRV and very low
frequency HRV all had a strong relation to PRx, indicating that the sympathetic
autonomic response may be more closely linked to cerebrovascular reactivity, then
other variables. Finally, BRS was consistently associated with PRx, possibly
demonstrating a deeper relationship to PRx than other autonomic measures. Taken
together, cerebrovascular reactivity and autonomic response are interlinked, with a
bidirectional impact between cerebrovascular reactivity and circulatory autonomics.
However, this work is exploratory and preliminary, with further study required to
extract and confirm any underlying relationships.

Keywords: cerebrovascular reactivity (CVRx), time series analysis, traumatic brain injury, causality testing,
autonomic nervous system responses
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1 INTRODUCTION

There has been little change in morbidity and mortality in
moderate and severe traumatic brain injury (TBI) over the
past 25 years (Carney et al., 2017; Maas et al., 2017; Donnelly
et al., 2019; Steyerberg et al., 2019). TBI remains one of the
leading burdens to global health (Maas et al., 2015), thus there is a
need to investigate new ways to improve TBI care. Secondary
injury mechanisms dictate ongoing neural injury during the acute
phase of TBI care and take various forms. Such secondary injury
pathways are essential targets for therapeutic intervention in
moderate/severe TBI care. However, before developing
precision therapeutics aimed at specific secondary injury
mechanisms, we require a more comprehensive understanding
of the inter-relationships between different aspects of cerebral
physiology post-injury.

Impaired cerebral autoregulation in moderate/severe TBI is a
secondary injury mechanism that leads to ongoing neural insult
(Zeiler et al., 2020a). Literature has emerged demonstrating
impaired cerebral autoregulation, assessed through
cerebrovascular reactivity indices (surrogate measures for
cerebrovascular autoregulation) after TBI are independently
associated with mortality and poor functional outcome at 6
and 12 months post-injury (Czosnyka et al., 1997; Sorrentino
et al., 2012; Zeiler et al., 2018a; Donnelly et al., 2019; Zeiler et al.,
2019; Bennis et al., 2020; Zeiler et al., 2020b; Åkerlund et al.,
2020). The pressure reactivity index (PRx) has emerged as one of
the most commonly utilized methods for assessing
cerebrovascular reactivity in the TBI literature (Zeiler et al.,
2017). Despite the growing body of literature supporting the
association of PRx with outcome (Czosnyka et al., 1997;
Sorrentino et al., 2012; Zeiler et al., 2018a; Donnelly et al.,
2019; Zeiler et al., 2019; Bennis et al., 2020; Zeiler et al.,
2020b; Åkerlund et al., 2020), emerging literature suggests
current guideline-based therapeutic interventions in moderate/
severe TBI have little-to-no impact on the degree of impaired
cerebrovascular reactivity seen (Donnelly et al., 2019; Froese et al.,
2020a; Froese et al., 2020b; Zeiler et al., 2020b; Froese et al.,
2020c). As such, more work is required to uncover the driving
factors of impaired cerebrovascular reactivity.

Autonomic dysfunction after moderate/severe TBI has been
well documented and is associated with poor global outcome
(Hasen et al., 2019; Tymko et al., 2019; Fedriga et al., 2021a;
Fedriga et al., 2021b). Furthermore, it is clear that autonomics
and cerebrovascular function intersect (Ogoh et al., 2005; Hasen
et al., 2019; Tymko et al., 2019; Fedriga et al., 2021a; Fedriga et al.,
2021b). Recent literature demonstrates that PRx has an
association with heart rate variability (HRV), including low
frequency HRV (HRV_LF) and high frequency HRV
(HRV_HF) (Lavinio et al., 2009; Sykora et al., 2016), with PRx
also being connected to the baroreflex sensitivity (BRS) (Sykora
et al., 2016). However, these studies had only a limited correlation
between the autonomic variables and PRx, and did not examine
the temporal profiles of autonomic and PRx measures. As such, a
knowledge gap regarding the temporal and causal relationship
between autonomic function and cerebrovascular reactivity
exists.

Understanding the relationship between cerebrovascular
reactivity and autonomic function is an important step to
improve TBI care. The directional relationship between PRx
and autonomic response portends to future targeted
therapeutic development that is aimed at the prevention and
reduction of secondary injury insult burden. Past work has shown
that autonomic response drives factors associated with
cerebrovascular reactivity, however dysautonomia has shown
to be exacerbated by increases in intracranial pressure
(Baguley et al., 1999; Baguley et al., 2008; Hasen et al., 2019).
Beyond this, a deeper understanding of this relationship may
enable the development of a more complete and accurate
prognostic model that accounts for both cerebral
autoregulatory and autonomic dysfunction. Ultimately, a
robust understanding of how these secondary factors
interconnect will improve our ability to predict patients at risk
for cerebral autoregulation failure and ANS dysfunction.

Thus, using the prospectively maintained high-resolution data
set from the Winnipeg Acute TBI Laboratories, we aim to
examine the temporal and causal relationship between PRx
and autonomic functionality in more detail using advanced
time-series methodologies. The goal of this project is to
comprehensively evaluate the time-series statistical properties
of cerebrovascular reactivity and autonomics, focusing on the
impact they have on each other. This will leverage the fact that
circulatory phenomena respond in a fashion which may be
assessed using the approach of linear interdependent time-
series. Thus, using time-series analysis allows us to comment
on what aspects of autonomic function drives cerebrovascular
reactivity and gives a more complete picture of physiological
response.

2 METHODS AND MATERIALS

2.1 Patients
Data were accessed retrospectively from the maintained TBI
database at the Winnipeg Acute TBI Laboratories, University of
Manitoba. For this study, patient data were collected from June
2018 up to December 2020. All patients suffered from moderate to
severe TBI (moderate = Glasgow Coma Score (GCS) 9—12, and
severe = GCS of 8 or less). All patients in this cohort were admitted
to the intensive care unit where they were sedated, intubated and
were on volume-controlled mode of ventilation (with constant
PEEP), during the course of cerebral physiologic data collection. All
patients had both invasive intracranial pressure (ICP) and arterial
blood pressure (ABP) monitoring conducted, per the Brain
Trauma Foundation guidelines (Carney et al., 2017).

2.2 Ethics
Data were collected following a full approval by the University of
Manitoba Health Research Ethics Board (H2017:181, H2017:188,
and H2020:118).

2.3 Data Collection
For this study, admission demographic information was extracted
following the existing prognostic models in TBI (Dijkland et al.,
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2021). Such demographic data collected was: age, sex, admission
pupillary response (bilaterally reactive, unilaterally reactive,
bilaterally unreactive) and admission GCS (both total and
motor).

All patients had high-frequency digital signals recorded
throughout their ICU stay. ABP was obtained through radial
or femoral arterial lines connected to pressure transducers
(Baxter Healthcare Corp. CardioVascular Group, Irvine, CA,
or similar devices). ICP was acquired via an intra-
parenchymal strain gauge probe (Codman ICP MicroSensor;
Codman and Shurtlef Inc., Raynham, MA). All signals were
captured simultaneously, synchronized and digitized via an
A/D converter (DT9804; Data Translation, Marlboro, MA),
sampled at a frequency of 100 Hertz (Hz) or higher using the
Intensive Care Monitoring (ICM+) software (Cambridge
Enterprise Ltd., Cambridge, United Kingdom, http://icmplus.
neurosurg.cam.ac.uk). Signal artifacts were removed using
manual methods before further processing and analysis. This
ensured that all analyzed blood pressure had the distinct full wave
beat, with all other data removed.

2.4 Signal Processing
2.4.1 Cerebrovascular Reactivity
Post-acquisition processing of the above signals was conducted
using ICM+, in keeping with our previously published
methodology (Froese et al., 2020b; Froese et al., 2020c). First,
10-s moving averages (updated every 10 s to avoid data overlap)
were calculated for all recorded signals: ICP and ABP (which
produced MAP). PRx was derived via the moving correlation
coefficient between 30 consecutive 10-s mean windows of the
parent signals (ICP and MAP), updated every minute according
to previously validated methods (Czosnyka et al., 1997;
Sorrentino et al., 2012; Zeiler et al., 2018b; Donnelly et al.,
2019; Depreitere et al., 2021).

2.4.2 Autonomic Response Variables
To determine autonomic functionality, we used three categories
of autonomic response that can be derived from a continuous
ABP waveform. The categories were heart rate variability (HRV),
blood pressure variability (BPV) and the baroreflex sensitivity
(BRS). Each of these autonomic response variables (ARVs) were
determined for each minute, calculated over both a 5 and 15-min
window. These time windows were chosen because 5 min is a
common time window for HRV (30) and a 15-min window is the
minimum for a short BPV (Mena et al., 2005; Höcht, 2013; Parati
et al., 2013). For spectral BPV the Lomb-Scargle periodogram was
used to calculate spectral power of the ABP waveform over the 5
and 15-min window to derive the subsequent minute-by-minute
updated ARV values (note these result in the power of mmHg2)
(Sykora et al., 2016; Szabo et al., 2018). For HRV, the original ABP
was processed through a peak detection algorithm based on Pan-
Tomkins method (Pan and Tompkins, 1985; Sykora et al., 2016;
Szabo et al., 2018). This results in an irregularly sampled peak-to-
peak time series value over the 5 and 15-min window. From this
the Lomb-Scargle periodogram was used over the window to
calculate spectral power values for the resulting HRVs, updated
every minute (note these result in the power of milliseconds2)

(Electrophysiology, 1996; Sykora et al., 2016; Szabo et al., 2018).
Thus, each variable can be time series linked to the minute-by-
minute update interval of PRx and allows the implementation of
times series methodologies of these spectral variables.

Due to the similarity in the final results between the time
windows, all further data demonstrated will be of the 15-min
windows.

HRV was derived from ABP by finding the power in 3
bandwidth categories; very low frequency (HRV_VLF;
frequency less than 0.04 Hz), low frequency (HRV_LF;
frequency of 0.04–0.15 Hz) and high frequency (HRV_HF;
frequency of 0.15–0.4 Hz) (Electrophysiology, 1996; Berntson
et al., 1997; Shaffer and Ginsberg, 2017). The interpretation of
these frequencies is still up for debate (Electrophysiology, 1996;
Berntson et al., 1997; Hayano and Yuda, 2019), although
common interpretations are; HRV_VLF reflects slow
mechanisms of sympathetic activity (though this warrants
further elucidation), HRV_LF is a marker of sympathetic
modulation or parameter that includes both sympathetic and
vagal influences, and HRV_HF reflects parasympathetic (vagal)
activity (Electrophysiology, 1996; Shaffer and Ginsberg, 2017).
Due to the nature of spectral analysis of ABP waveforms the
individual variables can be influenced by physiological responses
that are adjunct or entirely separate from autonomic response
(Electrophysiology, 1996; Berntson et al., 1997; Hayano and
Yuda, 2019). Thus, any correlations must be taken as
interpretations more than direct responses.

We also calculated the ratio between low and high frequency,
(HRV_LF_HF; HRV_LF divided by HRV_HF) which represents
minor sympathetic vagal balance or sympathetic modulations
(though further investigation is still required) (Electrophysiology,
1996; Hayano and Yuda, 2019). The root mean square differences
between consecutive heart beat period a heartbeat waveform
(HRV_RMS) was found, which estimates the vagally mediated
changes in autonomics (Electrophysiology, 1996; Hasen et al.,
2019; Hayano and Yuda, 2019). The total power (HRV_TOT;
which is the sum of the three spectral bands power) is a non-
specific variable that reflects the overall autonomic activity
(Electrophysiology, 1996; Shaffer and Ginsberg, 2017).

There were twomethods of BPV found; the standard deviation
of BPV in the time domain and the spectral domain analysis of
BPV. The standard deviation of BPV was found in three main
groups; mean blood pressure (BPV_M), systolic blood pressure
(BPV_S) and diastolic blood pressure (BPV_D) over the moving
time window (Höcht, 2013).

Furthermore, we assessed the spectral domain of the systolic
blood pressure variability in three domain frequency ranges: low
frequency (SBPV _LF; frequency of 0.077–0.15 Hz), high
frequency (SBPV _HF; frequency of 0.15–0.4 Hz) and total
(SBPV _TOT; total power over the full frequency range)
(Höcht, 2013). Though these variables have a limited
understanding, current assessments show the following:
SBPV_LF variability is modulated by the sympathetic/
baroreflex of vascular/vasomotor tone, total peripheral
resistance and the Mayer wave (Stauss, 2007; Aletti et al.,
2009; Aletti et al., 2012; Aletti et al., 2013) and SBPV_HF
variability is mainly influenced by changes in cardiac output,
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parasympathetic and respiration action (Janssen et al., 1995;
Aletti et al., 2009; Aletti et al., 2013).

Finally, the baroreflex sensitivity (BRS) was calculated using a
modification of the sequential cross-correlationmethod. ABPwas
used to find systolic peaks and the heart beat period, then a linear
regression between the 10-s series of heart beat period and the
corresponding 10-s series of systolic blood pressure over the time
window results in the BRS (Westerhof et al., 2004). BRS may
provide a useful synthetic index of neural regulation at the sinus
atrial node, though limitations still exist with this interpretation
(Kardos et al., 2001; La Rovere et al., 2008; Pinna et al., 2015).

2.5 Time-Series Analyses
We implemented a wide variety of time-series tests and models to
assess both functionality and associated causality between the
individual ARVs and PRx. To help elucidate the uses of these
methods as well as the limitations and pitfalls of such techniques,
we will give an overview of the methods. However, a full
conceptual understanding of these individual methodologies
can be found from their respective literature (McQuitty, 1966;
Granger, 1969; Lütkepohl, 2005; Rokach et al., 2005; Murtagh and
Legendre, 2014; Kilian and Lütkepohl, 2017; Chatfield and Xing,
2019; Thelin et al., 2019).

The three major methods used were: vector autoregressive
integratedmoving average (VARIMA) impulse response function
plots (IRF), Granger Causality Testing and Hierarchical
Clustering. These methods were chosen for their exploratory
nature and their use in previous analyses of temporal physiology
within TBI (Zeiler et al., 2018c; Zeiler et al., 2018d; Thelin et al.,
2019).

2.5.1 Vector Autoregressive Integrative Moving
Average Impulse Response Functions Analysis
IRF are used to graphically demonstrate the causal effect of an
impulse on a system. For our uses we created VARIMAmodels to
represent the relationship between PRx and each ARV. Then we
created a simulated impulse on the VARIMA model from each
respective ARV on PRx and vice versa. In this way we graphically
demonstrated the patient specific interaction between each ARV
and PRx.

2.5.1.1 Autoregressive Integrative Moving Average Structure
Analysis
In order to derive a VARIMA model in an effective manner (due
to the heavy computational requirements of such a method) but
also to evaluate the accuracy of a VARIMA model, we performed
a Box-Jenkin’s autoregressive integrative moving average
(ARIMA) model for each patients’ PRx and all ARVs
(Lütkepohl, 2005; Zeiler et al., 2018c; Chatfield and Xing, 2019).

Initially, PRx and ARVs were evaluated for time stationarity
using the: autocorrelation function (ACF) plots, partial
autocorrelation function (PACF) plots and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS). The augmented
Dickey-Fuller (ADF) was used to test for root trend. Note we
assume that all variables have some aspect that is both
interdependent and linear, due to the interconnection of
circulatory/vascular function.

Next, the optimal ARIMA structure for PRx and ARVs were
derived for each patient. Initially, the auto.arima (a pre-built R
function) was used to determine the upper order limit for tested
ARIMA models (auto.arima, 2021). Based on this, autoregressive
order (p) was varied from 1 to 10, and the moving average order
(q) was varied from 0 to 10, while the integrative order (d) was
held at 0. The integrative order was held at 0 as the tests of ACF,
PACF, KPSS, and ADF suggested that all the signals were
stationary. This is in keeping with previous time-series work
in TBI literature (Zeiler et al., 2018c; Zeiler et al., 2018d; Thelin
et al., 2019). All the permutations of the ARIMA orders were
assessed using the Akaike Information Criterion (AIC), and Log-
Likelihood (LL) recorded for every model.

Using the AIC and LL, the optimal ARIMA structures for PRx
and ARVs were compared in the datasheets, with the lowest AIC
and highest LL values indicating superior models. A general Box-
Jenkin’s ARMA model for PRx can be found in Supplementary
Appendix SA1.

A patient example of the serial ARIMA model testing with
AIC and LL outputs can be found in Supplementary Appendix
SB in Supplementary Material. Similarly, an example in Figure 1
is given of the raw signal ACF and PACF plots, followed by the
plots for the residuals of the optimal ARIMA model (found
through LL and AIC), indicating that the autocorrelative
structure has been adequately accounted for.

2.5.1.2 Vector Autoregressive Integrative Moving Average
(VARIMA) Models
Next, we derived multi-variate VARIMA models to evaluate the
impulse response of ARVs on PRx and vice versa. These models
explore the behavior of two-time series variables, recorded
simultaneously, and are derived through the extension of the
standard Box-Jenkin’s models into multi-variate systems (further
descriptions can be found in the references) (Lütkepohl, 2005;
Kilian and Lütkepohl, 2017; Chatfield and Xing, 2019). A formula
representing the vector autoregressive moving average model
(VARMA) of PRx and an ARV can be found in
Supplementary Appendix SA2, which is a VARIMA with the
integrative order held at 0.

Since the ACF and PACF did not indicate any cyclical trends in
the variables, with ADF and KPSS indicating that all variables were
stationary, we employed basic VARMA models with autoregressive
order of four and moving average order of four. This was based on
the findings from individual patient ARIMA models of ARVs for
each patient and past work evaluating the ARIMA models of ICP
andMAP (Thelin et al., 2019; Zeiler et al., 2020c; Zeiler et al., 2020d).

A VARIMA model autoregressive order of four was chosen
given the optimal ARIMA models for many ARVs was less than
two, as well as previous studies found that most patient’s ICP and
MAP had an autoregressive order of two (Thelin et al., 2019;
Zeiler et al., 2020c; Zeiler et al., 2020d). Thus, as suggested by
Helmut Lutkepohl, taking the product of the ARIMA
autoregressive orders for VARIMA modelling is a method to
ensure adequate model structure (Lütkepohl, 2005), and thus the
order of four. For the moving average order for the VARIMA
model, a value of 4 was chosen based on the previous study of ICP
and MAP (52,59,60) and ARVs optimal order being below two in
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many patients. Thus, the sum of the two ARIMA moving average
orders was used to get a final VARIMA moving average
order of 4.

2.5.1.3 Impulse Response Function Analysis
Next, the coefficients derived from these VARIMA models were
employed to derive the IRF plots between PRx and an individual
ARV. The IRF plots provide a descriptive graphical
representation of the impact of PRx on an ARV, and an ARV
on PRx, by using the previously generated VARIMA models and
modelling a one unit orthogonal impulse of one variable on the
other, and vice versa (Kilian and Lütkepohl, 2017). Depicted in
the plot is how much one variable will fluctuate as a response to
the impulse from the other variable. A bootstrapping method was
used to derive the confidence interval of the population using
sampled data. Bootstrapping involves using only part of the
sample data for a run, then comparing all the runs, in this
design a standard percentile bootstrap interval of 100 runs was
used (Efron and Tibshirani, 1993).

Due to the high variability in the IRF plots and the difficulty that
arises with simple graphical interpretations of large datasets, a
simple method to help separate models into two categories (“more
responsive” verses “less responsive”) was used. To do this the
impulse response was normalized with respect to its original
variable data. Then identified if the response was greater than
an absolute value of 0.001 threshold (chosen as at least a 0.1%
change in the normalized response) after 10min (one complete
cycle of PRx after the initial impulse, i.e., 5 min post PRx
calculation window). In this way, we could infer if the impulse
created a stronger response within the subsequent variables and
differentiate responses.

2.5.2 Granger Causality Testing
Granger causality testing is used to identify the assistance of one
interdependent variable to predict another interdependent

variable, beyond the degree to which the variable predicts
itself (Barnett et al., 2009). In this case, the ability for PRx to
predict an ARV (beyond the ability for the ARV to predict itself)
and vice versa. Thus, with the minute-by-minute time series
linked ARV data to PRx we could perform a Granger causality
test between these interdependent variables.

For the Granger causality test, we recorded the response for
every patient, both F-test statistic value and p-values for all ARVs
vs. PRx (Granger, 1969). The Granger causality responses were
assessed to identify the reciprocal influences between PRx
and ARVs.

2.5.3 Co-Variance Cluster Analysis
Finally, to confirm our findings regarding the relationship
between ARVs and PRx, a hierarchical clustering method was
used on each patient to identify which ARVs and PRx was most
closely associated. Using a divisive method, we separated the
variables using the Euclidean distance of the normalized variables
and the hclust (a prebuilt R function) (McQuitty, 1966; Rokach
et al., 2005; Murtagh and Legendre, 2014).

2.5.4 Sub-Group Analysis
The entire database was subdivided based on some simple
parameters and re-evaluated to see if the VARIMA IRF analysis
or Granger causality test displayed any outlying groups. Parameters
included were age (<60 vs. age ≥60; moderate vs old age), Glasgow
outcome scale extended (GOSE) at 6 months (<2 vs. ≥ 2; dead vs
alive), Marshall computer tomography (CT) score (<4 vs. ≥ 4; mass
lesion vs diffuse injury), sex (male vs. female), the first 24 h only and
the first 72 h only. Due to the similarity between the first 24 h only,
72 h only and the full time; all data presented will be of the full time.

2.6 Statistics
All statistical analyses were conducted using R (R Core Team
(2016). R: A language and environment for statistical computing.

FIGURE 1 | The Residuals, ACF, PACF of the PRx and PRx ARIMA Model. The figures demonstrate the minute-by-minute PRx data and an optimal ARIMA model
(autoregressive order of 2, integrative order of 0 andmoving average order of 0) obtained from the Akaike Information Criteria and Log Likelihood. The reduced significant
lags in ACF or PACF of the ARIMAmodel shows that the ARIMAmodel in part accounts for the residual relationship between the PRx data. ACF, autocorrelation function;
PACF, partial autocorrelation function; PRx, pressure reactivity index; ARIMA, autoregressive integrated moving average.
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R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/). The alpha was set at 0.05 for
significance. No multiple error correction test was performed
at this time as the analysis is in the preliminary exploratory phase.
The patient population was summarized using simple descriptive
statistics, including median/mean and standard deviation/IQR
where applicable.

For the Granger causality test, we performed aMann-Whitney
U comparison test between the F-statistics of PRx on an ARV and
an ARV on PRx over the entire population. As well we bar plotted
the number of significant p-values for each variable. This gives the
overarching relationship between the PRx and each ARV.

3 RESULTS

3.1 Patient Demographics
A total of 47 patients were included in this study. The mean age
was 43.5 ± 23.5 years, with 37 (80.9%) being males. The median
admission total GCS score was 6 (IQR: 3.5–9), and motor sub-
scores were 4 (IQR: 1.5–5). Six patients (12.8%) presented with
bilaterally unreactive pupils, and ten (21.3%) unilaterally
unreactive pupils. The median duration of digital signal
recording was 2.67 (IQR: 1.35–5.74) days. Table 1 displays the
patient admission demographics and injury information.
Supplementary Appendix SC shows the median value for
each measured variable over the full data set.

3.2 VARIMA and Impulse Response
To assess the relationship between PRx and ARVs, we employed
VARIMA modelling with an IRF. VARIMA models of
autoregressive order 4 and moving average order 4 were
employed for each patient for the first 24 h only, 72 h only

and the full data. IRF plots provide a descriptive visualization
of the relationship between each ARV and PRx (examples seen in
Supplementary Appendix SD). These IRF plots allowed us to
visually determine the temporal relationship between PRx and
ARVs, assessing the impact of one unit impulse on the respective
variable.

Overall, there was high variability in absolute changes in the
PRx and ARVs. However, ARVs demonstrated a higher
magnitude in impulse response in PRx than the alternative.
This was explored through the number of patients that
exceeded an absolute value threshold of 0.001, with PRx
responses being greater in amplitude for an ARV orthogonal
impulse than the converse.

BRS demonstrated the most consistent number of patients in
the “more responsive” cohort, with BRS impulse on PRx resulting
in 9 “more responsive” patients vs PRx impulse on BRS resulting
in 7 “more responsive” patients. Other ARVs on PRx that had at
least 10% of the population (over five patients) in the “more
responsive” category were; HRV_VLF, SBPV_HF, SBPV_TOT,
BPV_M, and BPV_D. Likewise for PRx on APVs demonstrating
over five patients in the “more responsive” category only had BRS
and HRV_VLF.

3.3 Granger Causality
To assess the directional response between ARVs and PRx, we
performed a Granger causality test comparing data sets for all
patients. The Mann-Whitney U comparisons test between PRx
and ARVs are in Supplementary Appendix SE, with Figure 2
showing the number of patients with significant p-values
(demonstrating a causal connection). In general, across the
population, we found that the Granger causality test was
inconclusive, with bidirectional causal features between PRx
and ARVs seen across the cohort. In addition, some patients
favored PRx impacting ARVs, though some showed the
alternative causal relationship and not all directional
relationships reached significance. Supplementary Appendix
SF provides the Granger test results, including F-test and
p-values, for every patient using the entire data set of full
time. Of note, the causal direction of the relationship was not
significantly changed when evaluating only the first 24 or 72 h
of data.

The only variable that had a significant p-value was
HRV_RMS in the first 24 and 72 h only. From Figure 2
variables of HRV_VLF, HRV_LF_HF, BPV_S and BRS all had
a moderate reduction in p-value significant patients from PRx on
APV to APV on PRx. This may indicate a more impactful
response from PRx in these relationships.

From the VARIMA IRF, PRx impulse most often caused a
decrease in BRS. All other variables failed to have a consistent
common PRx impulse response.

3.4 Hierarchical Cluster
Finally, the hierarchical clustering analysis helped confirm the
connection that the variables had with one another. Though there
was significant heterogeneity in the individual plots, PRx was
most associated with BRS and HRV_LF_HF in a majority of
patients. For an example plot, Figure 3. With the full data

TABLE 1 | 47 Patient demographics.

Demographics Mean (Interquartile range)

Age 38 (28.5–51)
Sex (% Male) 80.9%
Best admission GCS—total 6 (3.5–9)
Best admission GCS—motor 4 (1.5–5)
Number with hypoxia episode 20
Number with hypotension episode 5
Number with traumatic SAH 45
Number with epidural hematoma 5
Pupils —

Bilateral unreactive 6
Unilateral unreactive 10
Bilateral reactive 31

Admission marshall CT —

V 12
IV 8
III 14
II 3
1 month GOSE 6 (4.5–6)
30-Day mortality 27.7%
Average ICU stay (days) 6.34 (5.32–8.25)

CT, computerized tomography; GOSE, extended Glasgow outcome scale; GCS,
Glasgow comma score; ICU, intensive care unit; SAH, subarachnoid hemorrhage.
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cophenetic correlation and dendrogram displayed in
Supplementary Appendix SG.

3.5 Age, GOSE and Significant Patients
Sub-group analysis failed to demonstrate any significant findings
or finding that would be consider different from the full data.
Dividing patients into sex, <60 vs. ≥60 age groups and six-month
GOSE of <2 vs. ≥2 did not identify any significant outliers or an
increased percentage of responsive patients. However, nearly all
VARIMA IRF plots with a significant response (either PRx on an
ARV or vice versa) had a Marshall CT score of 4 or higher.

4 DISCUSSION

We compared cerebrovascular reactivity as measured through
PRx with various ARVs like HRV, BPV and BRS. We evaluated
underlying behaviors by employing complex time-series analyses,
like: ARIMA, VARIMA, IRF plots, Granger causality testing, and
hierarchical clustering. Through this evaluation of PRx and
ARVs, some exploratory insights into the association in
physiological responses were illustrated. The preliminary
evidence supports the idea that certain ARVs may have a
clinically relevant association with impaired PRx. Further,
results here help outline the framework for the role that
systemic autonomic response has on cerebral autoregulation.
However, the insights here must be tempered by the following
limitations inherent with the use of any continuous ABP
waveform method but in particular those of a spectral nature.

Foremost is the fact that significant changes to HRV, BPV or
BRS may have occurred due to concomitant incidents outside of

physiological autonomic response. In order to limit this, we
followed the outlined method to achieve an optimal HRV,
which are; signal capturing should allow signal reconstruction
without amplitude and phase distortion, individual subjects
should be recorded under fairly similar conditions and
environments, and complete signals should be carefully edited
using visual checks (Electrophysiology, 1996). Patients were all in
the ICU with TBI, and were sedated, intubated and were on
volume control mode of ventilation, with constant PEEP, during
the course of cerebral physiologic data collection. The
sympathetic nervous system seems to attenuate the CO2-
induced increases in CBF (Jordan et al., 2000), which can be
mediated by ventilation in the ICU. Though it has been noted that
powerful actions of mechanical ventilation induces periodical
modifications of the intrathoracic pressure, modulating venous
return which has shown to alter cardiovascular and
cerebrovascular interactions (Innes et al., 1993; Elstad et al.,
2011; Porta et al., 2021). With literature assessing the
relationship between PEEP and cerebral reactivity in pigs,
demonstrating that static PEEP improved the assessment of
impaired/intact cerebrovascular reactivity (Brady et al., 2012;
Fraser et al., 2013). Furthermore, the ABP changes slower then
30 s were linked to PRx, with improved consistency, when PEEP
was constant (Fraser et al., 2013). Taken together, this highlights
the need for more study between respiratory control and vascular
influences. Finally, when the rate of change in blood pressure or
cardiac output is rapidly altered, cerebral autoregulation has a
reduced ability to regulate CBF (Levine et al., 1994; Zhang et al.,
2002; Ogoh et al., 2005; Ogoh et al., 2007). Though it is impossible
to limit all situations of extreme systemic circulatory response in
the ICU, as part of critical TBI targets, ICP and cerebral prefusion

FIGURE 2 |Granger Causality p-value Comparisons (n = 47). The bar graphs show the number of significant Granger Causality p-values of PRx on an ARV and an
ARV on PRx, in this way the impulse that has more significant responses may be considered to have a greater influence on causality. Image (A) shows all BPV and
Baroreflex, (B) shows all HRV. ARV, autonomic response variable; BPV_D, standard deviation of diastolic blood pressure variability; BPV_M, standard deviation of mean
blood pressure variability; BPV_S, standard deviation of systolic blood pressure variability; HRV, heart rate variability; HRF_HF, heart rate variability high frequency;
HRV_LF, heart rate variability low frequency; HRV_LF_HF, heart rate variability ratio between low/high frequency; HRV_RMS, heart rate variability root mean square;
HRV_TOT, heart rate variability total; HRV_VLF, heart rate variability very low frequency; PRx, pressure reactivity; SBPV_HF, spectral blood pressure variability high
frequency; SBPV_LF, spectral blood pressure variability low frequency; SBPV_TOT, spectral blood pressure variability total.
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pressure are kept in moderate ranges (Carney et al., 2017). With
this in mind the results can be summarized as the following.

First PRx, appears to causally impact ARVs as displayed
through Granger causality, with the IRF plots of ARVs on
PRx demonstrating a greater change then the inverse. This
implies that derangements in cerebrovascular reactivity may,
in turn, cause fluctuations in systemic circulatory autonomic
responses. However, based on IRF results, any fluctuations in
systemic circulatory autonomic responses result in larger
derangements to cerebrovascular reactivity than the inverse. In
a past study that assessed MAP and CBF, there is a slight
bidirectional interaction between MAP and CBF but MAP
mostly had a unidirectional impact on CBF (assessed over
~2 min windows) (Schiatti et al., 2014). Further in patients
either in a normal or tilt table posture, there was association
between MAP and CBF (Bari et al., 2017). Thus, underlying
patient characteristics could influence the directionality of the
relationship between cerebrovascular reactivity and autonomic
function.

Second, certain ARVs like BRS, HRV_LF_HF and HRV_VLF
demonstrated a directional impact on PRx as assessed through
Granger causality and a strong impulse response in PRx, in over
10% of patients (n > 5). This implies that autonomics may, in fact,
be responsible for causing derangements in cerebrovascular
reactivity and may be important in achieving optimal CBF.
Furthermore, from the associated nature of BRS, HRV_VLF
and HRV_LF_HF, the sympathetic autonomic efferent
response may be the primary autonomic factor associated with
PRx response (Lindvall et al., 1978; Karemaker, 2017). This
however is still up for debate as previously stated the direct
interpretation of ARV response is limited, with the ARV being
most commonly associated with sympathetic response
(HRV_LF) remaining similarly connected to PRx as other
ARVs. This may be due to the limited number of patients and
requires further evaluation.

Despite this, previous literature has linked PRx to HRV_LF
(Sykora et al., 2016), with other studies that demonstrated
HRV_LF and PRx independently correlated with outcome

FIGURE 3 | Example of Hierarchical Clusters of Two Patients. Hierarchy cluster example from two patients, the data is normalized, and the distance between the
variables is Euclidean. The distance between two variables shows the height of the dendrogram where the two branches merge into a single branch, thus two variables
that diverge on the last branch may be more closely linked. BPV_D, standard deviation of diastolic blood pressure variability; BPV_M, standard deviation of mean blood
pressure variability; BPV_S, standard deviation of systolic blood pressure variability; HRF_HF, heart rate variability high frequency; HRV_LF, heart rate variability low
frequency; HRV_LF_HF, heart rate variability ratio between low/high frequency; HRV_RMS, heart rate variability root mean square; HRV_TOT, heart rate variability total;
HRV_VLF, heart rate variability very low frequency; PRx, pressure reactivity; SBPV_HF, spectral blood pressure variability high frequency; SBPV_LF, spectral blood
pressure variability low frequency; SBPV_TOT, spectral blood pressure variability total.
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(Lavinio et al., 2009; Gao et al., 2016). Moreover, sympathetic
nerves modulating resistance vessels tone has been demonstrated
(Baumbach and Heistad, 1983). As well the sympathetic tone
during spinal cord stimulation confirmed indirectly its role in
mediating the CBF (Visocchi, 2006; Visocchi, 2008). Likewise
CBF autoregulation is shifted towards higher blood pressure
levels during sympathetic activation (Bill and Linder, 1976;
Sadoshima et al., 1985). Furthermore, two independent studies
suggested that stimulation of the sympathetic nerves can extend
the limit of autoregulation (Fitch et al., 1975; MacKenzie et al.,
1979). Thus, derangements of sympathetic autonomics may, in
turn, interfere with cerebral vascular reactivity in certain patients.

However, previous work has demonstrated that HRV_HF can
predict impaired cerebrovascular reactivity (PRx > 0.2) (Lavinio
et al., 2009). Likewise, a study performed by Fedriga et al.
indicated that CBF is maintained by the baroreflex and the
parasympathetic autonomic response (as assessed by the
association of BRS and HRV_HF with the upper limits of ICP
values) during plateau waves of ICP (Fedriga et al., 2021a). In
conjunction with this, HRV_HF and BRS in the past have shown
a connection with ICP and cerebral perfusion pressure (Goldstein
et al., 1998; Ogoh et al., 2007; Kox et al., 2012; Hasen et al., 2019;
Fedriga et al., 2021a). However, the only situations where
HRV_HF (representing the parasympathetic autonomic
response) and PRx are connected is when cerebrovascular
reactivity is already impaired, for example, during extremes of
ICP elevation. In such states where ICP is at extreme levels or
cerebrovascular reactivity is heavily impaired, the natural
homeostasis of cerebral autoregulation is already heavily
deranged, and thus any subsequent variation in systemic blood
pressure (especially those of a higher frequency nature) would be
reciprocated in the ICP response. This may account for why
previous studies have linked the parasympathetic response to
cerebrovascular reactivity and encourages the idea that the
derangement of PRx is linked primarily to the sympathetic
response of the autonomic system. However, we must
acknowledge that the results found in this manuscript are
preliminary and require much further validation.

Finally, nearly all VARIMA IRF plots with a significant
response (either PRx on an ARV or vice versa) had a Marshall
CT score of 4 or higher. This may indicate intracranial injury
burden as a driver of the autonomic/cerebrovascular reactivity
relationships, which is in keeping with recent literature
supporting the strong association between diffuse acceleration-
deceleration injury patterns and the development of cerebral
autoregulation impairment/failure (Hiler et al., 2006; Zeiler
et al., 2018e; Zeiler et al., 2020e).

In summation, there appears to be a directional impact of PRx
on ARVs as assessed through Granger causality and IRF plots in
some patients. Despite corroboration through various statistical
approaches, the outcome of this study should be interpreted as
only a preliminary exploration into the interconnected nature
between ARVs and cerebrovascular reactivity. The responses
themselves are significantly heterogeneous from patient to
patient, with the IRF showing both positive and negative
responses in PRx values. Thus, future work continuously
analyzing PRx and ARVs would benefit from large cohorts

separated into key demographical groups, with the use of
clustering methodology to isolate homogeneous physiological
factors. Key among these groups would be patients with
impaired vs intact cerebrovascular reactivity. The heterogeneity
in patient response, coupled with the small cohort size, leaves
these statistical models quite limited in their overall assessment.

5 LIMITATIONS

As this was an exploratory analysis of the ARVs and PRx, many
overarching limitations could be assessed. First, this is a
retrospective analysis of a relatively small prospectively
collected dataset. As such, our findings should only be
considered exploratory and preliminary. Further, the results
here may not be generalizable to other TBI populations and
requires validation in larger multi-center high-frequency
physiologic datasets. Second, patient injury severity and
treatment heterogeneity could have influenced the physiologic
signal response and is something that will require more tailored
and refined datasets, with the use of clustering methodology to
isolate homogeneous physiological factors. Third, the nature of
these ARVs and their connection with cerebral autoregulation is
severely limited, with the individual variables themselves still up
to interpretation as to which aspect of the autonomic nervous
system they truly represent (Hayano and Yuda, 2019). Thus,
avenues that focus on the more extreme cases of autonomic and
PRx change may provide more useful insights as to the effect of
such variable responses, as demonstrated in the limited previous
literature on plateau waves in moderate/severe TBI cohorts
(Hasen et al., 2019; Tymko et al., 2019; Fedriga et al., 2021a;
Fedriga et al., 2021b). Likewise there is a known influence of
mechanical ventilation on ARV, and thus the evaluation of
patient populations outside of intensive care may allow for
more conclusive results.

Finally, the statistical methodology employed was
computationally tasking and, as such, implementing such
methodologies on larger cohorts would benefit from more
robust central computing services.

6 CONCLUSION

Using statistical methods like ARIMA, VARIMA IRF, Granger
causality and hierarchical clustering, we evaluated the temporal
relationship between ARVs and cerebrovascular reactivity (as
measured through PRx) in moderate/severe TBI patients.
Granger causality testing demonstrated inconclusive results, with
bidirectional relationships between PRx and ARVs in most of the
cohort studied. However, the ARVs of BRS, HRV_LF_HF and
HRV_VLF all demonstrated a stronger connection to PRx than
other ARVs, indicating that the sympathetic autonomic response
may be connected to cerebrovascular reactivity derangements.
Finally, BRS was consistently one of the most responsive ARVs
to PRx, possibly demonstrating a unique connection. However, this
work is exploratory and preliminary, with further examination
required to extract any underlying relationships.
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Effects of Supplemental Oxygen on
Cardiovascular and Respiratory
Interactions by Extended Partial
Directed Coherence in Idiopathic
Pulmonary Fibrosis
Laura M. Santiago-Fuentes1, Sonia Charleston-Villalobos1*, Ramón González-Camarena2,
Andreas Voss3, Mayra E. Mejía-Avila4, Ivette Buendía-Roldan4, Sina Reulecke1 and
Tomás Aljama-Corrales1

1Electrical Engineering Department, Universidad Autónoma Metropolitana, Mexico City, Mexico, 2Health Science Department,
Universidad Autónoma Metropolitana, Mexico City, Mexico, 3Institute of Biomedical Engineering and Informatics, University of
Technology Ilmenau, Ilmenau, Germany, 4National Institute of Respiratory Diseases, Mexico City, Mexico

Idiopathic pulmonary fibrosis (IPF) is a chronic and restrictive disease characterized by
fibrosis and inflammatory changes in lung tissue producing a reduction in diffusion capacity
and leading to exertional chronic arterial hypoxemia and dyspnea. Furthermore, clinically,
supplemental oxygen (SupplO2) has been prescribed to IPF patients to improve
symptoms. However, the evidence about the benefits or disadvantages of oxygen
supplementation is not conclusive. In addition, the impact of SupplO2 on the
autonomic nervous system (ANS) regulation in respiratory diseases needs to be
evaluated. In this study the interactions between cardiovascular and respiratory
systems in IPF patients, during ambient air (AA) and SupplO2 breathing, are compared
to those from a matched healthy group. Interactions were estimated by time series of
successive beat-to-beat intervals (BBI), respiratory amplitude (RESP) at BBI onset, arterial
systolic (SYS) and diastolic (DIA) blood pressures. The paper explores the Granger
causality (GC) between systems in the frequency domain by the extended partial
directed coherence (ePDC), considering instantaneous effects. Also, traditional linear
and nonlinear markers as power in low (LF) and high frequency (HF) bands, symbolic
dynamic indices as well as arterial baroreflex, were calculated. The results showed that for
IPF during AA phase: 1) mean BBI and power of BBI-HF band, as well as mean respiratory
frequency were significantly lower (p < 0.05) and higher (p < 0.001), respectively, indicating
a strong sympathetic influence, and 2) the RESP→ SYS interaction was characterized by
Mayer waves and diminished RESP→ BBI, i.e., decreased respiratory sinus arrhythmia. In
contrast, during short-term SupplO2 phase: 1) oxygen might produce a negative influence
on the systolic blood pressure variability, 2) the arterial baroreflex reduced significantly (p <
0.01) and 3) reduction of RSA reflected by RESP → BBI with simultaneous increase of
Traube-Hering waves in RESP → SYS (p < 0.001), reflected increased sympathetic
modulation to the vessels. The results gathered in this study may be helpful in the
management of the administration of SupplO2.

Keywords: idiopathic pulmonary fibrosis, supplemental oxygen, systems interactions, time-frequency
cardiorespiratory interactions, extended partial directed coherence
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1 INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, restrictive, and
progressive disease characterized by fibrosis and inflammatory
changes in lung tissue. IPF also affects lung vasculature and
prevents an adequate gas exchange, thus leading to exertional
chronic arterial hypoxemia and dyspnea. The disease has a bad
prognosis since after diagnosis the 50% of the patients die within
3–5 years (King et al., 2019). IPF etiology, diagnosis, treatment, and
influences on quality of life, among other, have been investigated,
but the focus has always been lungs performance. There is evidence
that IPF patients also manifest comorbidities such as
cardiovascular diseases, lung cancer, or pulmonary hypertension
(Caminati et al., 2019). Furthermore, arterial hypertension has
been related to dysfunctional autonomic cardiovascular control
(Mancia and Grassi, 2014) and considerable impact on IPF disease
progression and patient mortality (Buendía-Roldán et al., 2017).

Recently, IPF has been hypothesized as a systemic disease, but
its influence on the autonomic nervous system (ANS) regulation
has not been assessed as in other pulmonary disorders. For
example, chronic obstructive pulmonary disease (COPD)
negatively affects the cardiovascular system and the ANS
regulation; the autonomic dysfunction is an important factor
in the underlying pathophysiological mechanisms of the disease.
The former conclusion has been mainly stated based on the
analysis of heart rate variability (Van Gestel and Steier, 2010;
Mohammed et al., 2015). However, for IPF disease studies about
ANS regulation are scarce. Furthermore, supplemental oxygen
(SupplO2) has been prescribed to IPF patients to improve
clinical symptoms, but its impact on ANS regulation of
cardiovascular and respiratory systems has not been
evaluated in these patients.

The effects of oxygen supplementation have been reviewed on
healthy subjects and patients with cardiovascular diseases, but on
respiratory patients just for COPD. Until now the evidence about
the benefits or drawbacks of oxygen supplementation is not
conclusive. On the one hand, some authors point out that this
type of clinical intervention does not help to increase oxygen
delivery, i.e., the rate at which oxygen is transported from lung
to microcirculation depending on cardiac output and arterial
oxygen contents (Smit et al., 2018a). Furthermore, it is plausible
that in critically ill patients, it could be associated with increased
hospital mortality (You et al., 2018). Conversely, oxygen therapy in
COPDpatients is clinically well-accepted and it is recommended to
enhance exercise capacity (Stoller et al., 2010). However, some
trials have not found enough evidence to support that long-term
oxygen therapy improves COPD patients’ mortality rate (Khor
et al., 2019). It is important to point out that few studies have
addressed the efficiency of oxygen administration in COPD and
Interstitial Lung Disease (ILD) patients (Khor et al., 2019) and that
studies about the ANS regulation in COPD patients were based on
classic heart rate variability (HRV) parameters (Mohammed et al.,
2017). Regarding IPF disorder, the authors of the present contribution
compared the hemodynamic response to SupplO2 between ill and
healthy subjects, showing potential detrimental effects of SupplO2 on
IPF hemodynamics, particularly on total peripheral resistance (TPR)
and cardiac output (Santiago-Fuentes et al., 2021).

Different methods have been employed to assess ANS
regulation by the analysis of heart rate variability. In the case of
HRV, it reflects the variations in the beat-to-beat interval and the
corresponding variability time series is built up by diverse
oscillatory modes. To extract the information from the time
series, linear and nonlinear schemes have been proposed. For
instance, the short-term HRV spectral density representation
has been broadly used to analyze the sympathetic and
parasympathetic modulation by the power in the low frequency
(LF) and high frequency (HF) bands, respectively. Another way to
assess ANS regulation of cardiovascular system is the nonlinear
approach that allows to incorporate the analysis of complexity of
underlying physiological mechanisms. Nonlinear indices by
symbolic dynamics (SD) and detrended fluctuation analysis
(DFA) have enabled the exploration of the cardiovascular
system adaptability, among other, for example in elderly
population (Beckers et al., 2006; Voss et al., 2015). Furthermore,
the analysis of physiological variability time series has advanced
from the univariate to bivariate and, to multivariate type to
discover the complex interactions between human body
subsystems. Nowadays, an open research area is to assess the
cause-effect relationship to elucidate the complex picture of the
autonomic control of the cardiovascular system and the complex
interplay between cardiovascular and the respiratory systems.

Recently, the use of multivariate autoregressive models and the
assessment of the directional interactions among a set of
physiological variables (i.e., the so-called Granger causality)
has been proposed for the analysis of ANS regulation under
pathological and non-pathological conditions (Faes and Nollo,
2010; Faes et al., 2010; Charleston-Villalobos et al., 2019).
Particularly, the extended partial directed coherence (ePDC)
has gained interest as a tool to estimate the causality in the
frequency domain in presence of instantaneous interactions (Faes
and Nollo, 2010), i.e., as the effect from respiration to systolic
blood pressure and beat to beat interval as well as the systolic
blood pressure to beat to beat interval. Consequently, this study
aimed to analysis cardiovascular and respiratory times series of
variability by linear and nonlinear indices as well as Granger
causalities (GC), via a multivariate autoregressive model
including instantaneous effects, in IPF patients in comparison
with healthy subjects under the effect of short-term SupplO2.

2 MATERIALS AND METHODS

2.1 Subjects, Acquisition Protocol, and
Preprocessing
This study includes 19 (8 women and 11 men) healthy subjects
(CON) and 20 IPF patients (9 women and 11 men) with 67.79 ±
5.00 and 65.8 ± 6.48 years old, respectively. All subjects were
medically evaluated at the National Institute of Respiratory
Diseases in Mexico City after they accepted the invitation to
participate and signed an informed consent according to the
Declaration of Helsinki. Table 1 depicts different parameters
related to clinical measures and respiratory functional tests of
both groups. Signals acquisition was performed via a Biopac
MP150 system during morning hours including ECG, continuous
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noninvasive arterial blood pressure, and peripheral blood oxygen
saturation. Also, a thoracic belt was used to acquire the
respiratory signal and all signals were sampled at 1,000 Hz.
Raw signals were acquired in supine position continuously
during 10 min with the subjects breathing spontaneously
ambient air (AA) and an additional 10 min breathing SupplO2

at 3 L/min to ensure an arterial oxygen saturation above 94%
(Santiago-Fuentes et al., 2021). Time series of successive beat-to-
beat intervals (BBI), respiratory amplitude (RESP) at BBI onset as
well as systolic (SYS) and diastolic (DIA) blood pressure (BP)
were extracted from recorded signals; all extracted time series
were manually reviewed and corrected. For GC analysis, the
variability time series were resampled at 2 Hz using spline
interpolation and normalized to zero mean and unit variance.
For dynamic data analysis, consecutive windows of 5 min shifted
by 30 s (90% overlap) were used. Therefore, the influence of
SupplO2 on IPF was studied using 31 windows including three
phases labelled as ambient-air (AA), transition phase (TPH) and
steady supplemental oxygen (SupplO2), as indicated in Figure 1.
The transition phase (TPH) is characterized by windows sharing
AA and starting SupplO2 conditions. In each window, univariate,
and bivariate indices, as well as the ePDC were estimated.

2.2 Univariate and Bivariate Analyses
2.2.1 Linear Analysis
Time and frequency domain linear indices were extracted as the
mean value, the root mean square of successive differences
(rmssd), and power in the very low-frequency range (VLF,
0.003–0.04 Hz), low (LF, 0.04–0.15 Hz), and high frequency
(HF, frequencies >0.15 Hz) bands in agreement with the
standardization proposed by the Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology (AuthorAnonymous, 1996). The index
rmssd is considered the more precise marker of chronotropic
cardiac vagal influence (Minarini, 2020), for example, it provided
a good differentiation between healthy subjects and vasovagal
syncope patients for systolic and diastolic blood pressure
variability (Reulecke et al., 2016). For estimating the power of

LF and HF bands a parametric autoregressive model was used in
each temporal window along of the variability time series. The
model parameters and optimal order were estimated using the
Burg method and the Akaike Information Criterion (AIC),
respectively.

2.2.2 Nonlinear Analysis
To explore the nonlinear time series properties two techniques were
applied: Detrended FluctuationAnalysis (DFA) to quantify the fractal
scaling properties of a time series, and Symbolic Dynamics (SD),
which is a coarse-grained method based on symbols (Reulecke et al.,
2016). For DFA analysis, the short-term fractal scaling exponent (α1)
was calculated over equal and non-overlapping segments with length
between 4 and 16 beats while the long-term exponent (α2) for
segments with length of 16–64 beats (Peng et al., 1995).
Furthermore, by SD technique, nonlinear indices related to the
low or high variability of the signal were determined. An
alphabet, consisting only of symbols “0” or “1”, was used to create
words of length six and for BBI time series, thresholds of 2, 5, 10 and
20ms were established (Voss et al., 2015). In this sense, a low
variability index associated with the word “000000” and a high
variability index associated to the word “111111”, were counted
(Schulz and Voss, 2017). In the case of blood pressure variability
(BPV), the 6-lengthwordswere created by selecting thresholds of 1, 2,
3 and 4mmHg (plvar 3 and 4) (Reulecke et al., 2016).

2.2.3 Bivariate Analysis
The Dual Sequence Method (DSM) is a linear technique to
estimate the arterial baroreflex sensitivity (BRS) by the analysis
of spontaneous fluctuations in systolic BP and BBI time series.
Traditionally, a pattern of three consecutive increments or
decrements in SYS and BBI are tagged as bradycardic (bslope,
increase in SYS that causes an increase in BBI) or tachycardic
(tslope, a decrease in SYS that causes a decrease in BBI)
sequences, respectively. However, we avoided using the
classical thresholds for SYS and BBI due to the criticisms
about them (Gouveia et al., 2007) and in consequence,
different pattern length was used including one up to three
samples (N1-N3). Furthermore, the synchronous responses in
the same beat interval (T0) and delayed BBI responses shifted by
one up to three beats (T1-T3) were also explored, as suggested by
(Malberg et al., 2002; Gouveia et al., 2007).

2.3 Multivariate Autoregressive Modeling,
Extended Partial Coherence and
Time-Frequency Analysis of Interactions
Establishing the cause and effect, or the driver-response
relationship, between physiological systems has been of great
interest in diverse biomedical applications. Fundamental to the
driver-response relationship is the concept of Granger causality
which states that if a signal improves the prediction of a second
signal, above and beyond, its prediction in terms of its own past,
then the first signal causes the second one. GC has been
formalized in terms of multivariate time series analysis and its
treatment in the frequency domain leading to the concept of
partial directed coherence. Particularly, the extended partial

TABLE 1 | Clinical and functional measures.

Measure Control (19 W:8/M:11) IPF (20 W:9/M:11)

Hematocrit (%) 47.4 ± 4.9 51.6 ± 2.4
Hemoglobin (g/dL) 15.3 ± 1.4 15.0 ± 1.4
Respiratory rate (bpm) 17 ± 4 25 ± 7*
Fibrotic HRCT scan — 1.99 ± 0.53
FEV1 (%, predicted) 98.63 ± 12.87 78.15 ± 30.27*
FVC(%, predicted) 94.11 ± 12.72 72.40 ± 26.51*
FEV1/FVC 77.69 ± 6.37 88.08 ± 9.54*
DLCO (%, predicted) 114.26 ± 20.85 67.20 ± 21.24*
PaO2(mmHg) 65.9a 61.92 ± 8.65
PaCO2(mmHg) 32.7a 34.76 ± 5.31

Values expressed as mean plus/minus standard deviation. FEV1, forced expiratory
volume in one second; FVC, forced vital capacity; DLCO, diffusing capacity of the lungs
for carbon monoxide; PaO2, partial pressure of oxygen in arterial blood; PaCO2, partial
pressure of carbon dioxide.
aEstimated values for residents at the altitude of Mexico City.
*Statistical difference with p< 0.05.
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FIGURE 1 | Time courses of linear and nonlinear indices for BBI, SYS and DIA time series (A–L). AA phase occurs from windows 1 to 11, transition phase (TPH)
from 12 to 20 while the steady SupplO2 fromwindows 21 to 31. Circles in blue represent healthy subjects and red triangles represent IPF patients. The solid line indicates
the median values and broken lines indicate the interquartile range from 25 to 75%. Statistically significant differences between groups are shown with bars at the bottom
of each graph while differences within-groups with bars at the top (p < 0.05 in green, p < 0.01 in yellow and p < 0.001 in orange).
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directed coherence (ePDC) is based on fitting a linear time-
invariant parametric model to the observed set of M time series
Y(n) including instantaneous effects, i.e.,

Y(n) � ∑q

k�0B(k)Y(n − k) +W(n), (1)
where the model coefficients B(k), k = 0, . . . ,q, are related to
instantaneous and strictly causal effects, q is the model order and
W(n) is the innovation process formed by white and uncorrelated
noises with diagonal covariance matrix Λ = diag (λi2). The
identification of the extended MVAR model can be achieved
from a strictly causal MVAR model with coefficient matrix
Â(k), k � 1, . . . ., q, as B̂(k) � [I − B(0)]Â(k) (Faes et al.,
2010; Charleston-Villalobos et al., 2019). Furthermore, to
calculate B(0) is necessary to perform a Cholesky
decomposition of the input covariance matrix Σ � LΛLT, with
Σ � cov(U(n)), of the strictly causal model to obtain the matrix
L � (I − B(0))−1. From this decomposition L is a lower triangular
matrix as well as B(0) with null diagonal, but it is required to
order the times series in Y(n) to set the direction, but not the
strength, of physiological influence among them. Consequently,
in the present study, to achieve the former constrain, two models
were proposed: i) MVARmodel 1 (MVAR1) where Y(n) was built
up as y1 = RESP, y2 = SYS and y3 = BBI and ii) MVAR model 2
(MVAR2) with y1 = RESP, y2 = DIA, and y3 = BBI. The model
order q was obtained by the minimum of the function
AIC(q) � Nlog(detΣ) +M2q, where Σ is the input covariance
matrix of the strictly causal model. From the frequency domain
representation of Eq. 1 is possible to obtain the spectral density of
Y(f) and its inverse, from which the partial coherence (PC)
function Πij(f) between yi and yj is defined. However, PC
cannot provide information about causality due to its
symmetrical nature and, consequently, a factorization of Πij(f)
is necessary to produce ePDC, named χij(f), as:

χij(f) � (1
λi
)�Bij(f)������������������∑M

m�1(1/λ2m)∣∣∣∣�Bmj(f)∣∣∣∣2
√ . (2)

where �Bij(f) � 1 −∑q
k�0Bij(k)e−2πfkT with T equal to the

sampling period and λi is a diagonal value of the noise
covariance matrix of the W process in Eq. 1. Therefore, ePDC
is a directional frequency domain measure of connectivity
quantifying the influence of the process yj on the process yi,
removing the influence of other processes. The ePDC is
normalized with respect to the structure that sends the signal
taking values between 0 (absence of causal coupling) and 1 (full
causal coupling) at frequency f. In this study, the identification of
eMVAR model was performed by the standard least-squares
method and the estimated ePDC was corrected by statistical
hypothesis testing based on setting a threshold for significance
using causal Fourier transform surrogates (Faes et al., 2010;
Charleston-Villalobos et al., 2019). In a few words, once the
eMVAR model is estimated, if there is a direct causality from the
process yj to yi, the corresponding coefficients bij(k, wl), k �
0, . . . , q, at each temporal window (wl) are set to zero, and from
there the surrogates are obtained; causality is selectively destroyed
only over the direction under study, details of the procedure can

be found in Faes et al., 2010. To accept or reject the estimated
ePDC, its magnitude at each frequency was compared with the
threshold obtained from 100 surrogates (95% confidence
interval). If the magnitude of ePDC was below the threshold,
the null hypothesis was accepted, reflecting the absence of
interaction, and the estimated value was set to zero. In the
present study, the time series of variability were segmented
producing a time-frequency representation of interactions
(TFRi). In TFRi, the x-axis is related to the 31 temporal
windows of 5 min and the y-axis depicts the frequency in Hz
(0.0–0.50 Hz) using 512 bins. Furthermore, the z-axis represents
the magnitude of the ePDC (0–0.4) by a color palette from blue to
red, respectively. To count with the same number of samples in
each window a resampling was performed at 2 Hz. It is worthy to
note that, at least for this research protocol, the TFRi without or
with resampling are close to each other and the dynamic changes
produced by IPF, and supplemental oxygen remain.

2.4 Statistical Analysis
To evaluate the effect of supplemental oxygen, in this study the
statistical analysis was performed with two statistical test, within-
groups and between-groups. The within-groups test was carried
out on univariate and bivariate indices values comparing window
5 vs. windows 12 to 31 (TPH and steady SupplO2) by the
Wilcoxon Sign Rank-sum. All p-values were corrected using
the Benjamini and Hochberg correction (Benjamini and
Hochberg, 1995). In the case of between-groups comparison,
the analysis was carried out on the univariate and bivariate
indices values, and ePDC magnitude at each tile, in each
temporal window by the nonparametric Mann-Whitney-U-
test. In both statistical analyses, the significance was set at
three levels for descriptive purposes: slightly significant for p <
0.05 (green), moderately significant for p < 0.01 (yellow), and
highly significant for p < 0.001 (orange).

3 RESULTS AND DISCUSSION

The section is organized presenting first the results for the AA
phase followed by the findings in the TPH and steady SupplO2

phases. The SupplO2 effect on healthy subjects and IPF patients is
obtained looking for the time course of linear and nonlinear
indices as well as by the dynamics of cardiovascular and
respiratory interactions as compared with those in the AA
phase. Statistical analysis between-groups, throughout all the
phases, is displayed at the bottom of the graphs while within-
group, comparing window 5 vs. windows 12 (start of TPH) to 31,
is depicted at the top. For saving the space of article, selected
indices are included in Figure 1, while others are only discussed.
Also, the indices in Figure 1 were ordered as they are used
throughout the manuscript.

3.1 Clinical and Functional Measurements
According to Table 1, the IPF group was characterized by
moderate reduction in vital capacity and FEV1, mild
reduction in diffusion capacity, hypoxemia, mild
hypercapnia, and high respiratory rate. In contrast, the CON
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group had no signs of pulmonary alterations; although the
PaCO2 and PaO2 were not registered at the time of the
study, it is plausible to estimate them at the altitude of
Mexico City (Vazquez-Garcia and Perez-Padilla, 2000).
Consequently, the estimated normal values of PaCO2 and
PaO2 for Mexico City residents are around 32.7 and
65.9 mmHg, respectively; there were no statistically
significant differences in age, anthropometric measures,
hematocrit, and hemoglobin values. As can be seen in
Figure 1A, peripheral oxygen saturation (SpO2) increased
importantly from TPH towards the steady SupplO2 phase for
both groups until a saturation of 96% was reached, but no
statistically significant differences between-groups were found
during SupplO2. In contrast, within-group statistical analysis
revealed highly significant differences. Furthermore, Rico et al.
observed that SPO2 tends to decline during the aging process
that is in line with the SpO2 in our Control group (Rico et al.,
2001). On the other hand, the IPF group showed a greater
dispersion of SpO2 during AA phase that may be explained by
age, disease stage, and pulmonary condition. Also, it is relevant
to point out that the population of this age was under
medication for other comorbidities. A comprehensive
discussion of this aspect for the groups under study can be
found in (Santiago-Fuentes et al., 2021).

3.2 Linear and Nonlinear Univariate Analysis
in AA
For mean BBI index, statistically significant differences between
CON and IPF groups were found fromwindows 8 to 12, Figure 1B,
while for the mean respiratory frequency highly significant
differences were found for the whole phase, Figure 1C. Also,
the mean SYS and DIA BP for CON tended to be higher than
for IPF, Figure 1D. For linear indices as rmssd, there were no
significant differences for BBI, SYS or DIA, Figures 1E,F, but for
BBI the IPF group showed a tendency to lower values. Also, for BBI
power in the LF andHF bands was significantly different (p< 0.05);
particularly, the CON group showed higher BBI-HF power and
consequently, higher cardiac vagal influence than IPF, Figure 1G.
For SYS-nLF, IPF showed a tendency to higher values,
i.e., increased sympathetic influence on the vasculature than in
CON. In the case of SD nonlinear analysis, for IPF the indices BBI-
phvar2 as well as SYS-plvar3 (Figure 1H) showed a tendency to
lower probability values than CON, i.e., low BBI variability and
higher SYS variability, respectively. Nevertheless, in the DFA
analysis, BBI-α2 was statistically different (p < 0.05) between
groups, where IPF patients showed higher sympathetic activity
than CON, Figure 1I. Consequently, by univariate analysis,
statistically significant differences between groups were found
just for BBI, indicating a significant cardiac sympathetic
modulation in IPF patients during AA scenario.

3.3 Linear and Nonlinear Univariate Analysis
in TPH and Steady SupplO2
At the firsts windows in TPH, BBI showed statistically significant
differences between-groups for mean, BBI-HF, and BBI-α2

indices, Figure 1. Specifically, the mean cardiac frequency
decreased in both groups, slowly for CON and more
drastically for IPF, whereas for HF and α2, the CON group
showed higher and lower values than IPF, respectively. The
former behavior is in line with the expected effect of SupplO2

on the cardiac frequency. The mean respiratory frequency was
reduced for both groups however, the between groups differences
were kept along both phases, Figure 1C. Although between-
groups no statistically significant differences were found for mean
SYS and DIA in TPH or steady SupplO2, the mean SYS showed a
tendency to increase in CON while the mean DIA decreased
in IPF.

To evaluate the influence of O2 within each group, statistical
comparisons were achieved between AA and TPH or steady
SupplO2 phases. The effect of O2 was significantly different for
CON and IPF. Specifically, significant differences were obtained
for BBI, mean respiratory frequency, and DIA. For the IPF group,
the BBI-rmssd index showed highly significant differences (p <
0.001) from windows 16 to 31, i.e., the cardiac vagal influence in
IPF was increased to a greater extent by O2, Figure 1E. The
former time course was supported by the nonlinear BBI-phvar2
index (p < 0.001). Furthermore, BBI-LF and BBI-α1 indices
provided significant within-group differences. Regarding BBI-
LF index, only for the IPF group, the LF power increased from
TPH and throughout steady SupplO2 phase (p < 0.001) while the
BBI-α1 index decreased. It is worthy to note that for SYS, in none
of the groups neither linear nor nonlinear indices provided
significant differences. Although, for IPF, SYS-rmssd had a
tendency to increase while SYS-plvar3 to decrease, indicating
that SYS increased its variability with O2, Figures 1F,H. In the
case of DIA, just for IPF, mean DIA decreased due to oxygen from
TPH to the end of the steady SupplO2 phase in a moderately
significant way (p < 0.01), that may be related to the lower cardiac
frequency with O2, i.e., a vagal modulation effect, Figure 1D.
Also, the DIA-plvar4 index showed moderately and highly
significant differences along the two phases, the percentage of
words of low variability was reduced, i.e., in the IPF group the
DIA variability was increased by SuppO2, Figure 1J.

3.4 Bivariate Analysis in AA, TPH and Steady
SupplO2
For DSM analysis, different pattern lengths and delays were
tested, and the results indicated that statistical differences
between groups occurred with lengths of 2–3 samples and
shifts between 0 and 3 beats. The bivariate indices during AA,
associated with arterial baroreflex sensitivity, did not show
statistical differences between groups, only a tendency to lower
values for IPF. The former behavior is in line with the literature
indicating that hypoxia produces a resetting of arterial baroreflex,
without changing the sensitivity, to higher heart rates and systolic
blood pressures due to stimulation of peripheral chemoreceptors
(Halliwill et al., 2003). In contrast, the IPF patients of the present
study were characterized by significantly higher cardiac frequency
and cardiac sympathetic modulation but similar systolic pressure.
It is worthy to mention that the interaction between baroreflex
and peripheral chemoreflexes remains controversial (Kronsbein
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et al., 2020). During steady SupplO2, from window 21, bslope and
tslope indices provided significant differences (p < 0.05 and p <
0.01) between groups, Figures 1K, 1L. For both indices, IPF
showed lower values than CON, i.e., IPF decreased their
baroreflex in comparison to CON. In the case of within-
groups analysis, in TPH and steady SupplO2 phases, bslope
tends to increase for CON while for the IPF group tends to
decrease. Systolic pressure, being a variable to control, tends to
oscillate with greater amplitude when feedback mechanisms are
deficient, showing an inverse relationship with variations in heart
rate, as a variable to regulate (Mancia et al., 1986; Lanfranchi and
Somers, 2002). In fact, it should be noted that the significant
reduction in cardiac output in IPF observed during SupplO2

(Santiago-Fuentes et al., 2021) could be a consequence of
alteration of the cardiovascular regulation. The former
behavior may be explained, on the one hand, by statistically
significant changes (attenuation) of the sensitivity of the
baroreceptors reflected by bslope and tslope indices (Figures
1K,L), increase in BBI (Figure 1B), and in total peripheral
resistance and, on the other hand, by statistically non-
significant trends in systolic blood pressure and its variability.
Furthermore, diverse research pointed out that clinicians should
be aware of the prognostic implications of increased blood

pressure variability, a marker of cardiovascular
decompensation, which may lead for example to organ
damage (Hoecht, 2013).

3.5 Interactions Between Cardiovascular
and Respiratory Systems
3.5.1 TFRi Magnitude Distribution in AA
An averaged time-frequency representation of RESP → SYS
interaction by MVAR1, associated with the information flow
from RESP to SYS, is showed in Figure 2A, for CON (above)
and IPF group (below). The TFRi magnitude distribution points
out differences between groups for the LF and HF bands, the
significant differences are displayed in Figure 2B. The power in
the LF band has been associated with the sympathetically
mediated BP vasomotor modulation, the so-called Mayer
waves around 0.1 Hz. The origin of Mayer waves has not been
elucidated, but some authors agreed that these waves could be
related to an oscillatory sympathetic activation that, in the specific
case of humans, is independent of factors such as gender, age, or
posture and can be induced in BP by hypoxia (Julien, 2006; Ghali
and Ghali1, 2020). According to the RESP → SYS interaction in
the LF band, the TFRi magnitude for IPF is higher than for CON

FIGURE 2 | Cadiorespiratory and cardiovascular interactions by the model MVAR1. (A,C,E) TFRi of RESP → SYS, RESP → BBI and BBI → SYS interactions,
respectively, (B,D,F) the map of corresponding statistical differences between groups [p < 0.05 (green), p < 0.03 (yellow), p < 0.01 (red)]. For each interaction, the TFRi of
the control group is at the top while the one for patients is at the bottom of the panel. Horizontal broken lines indicate the LF and HF bands while the vertical lines mark the
phases of the protocol.
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that is in line with the SYS univariate results presented above; the
IPF group showed a tendency to an augmented sympathetic
activity in AA, as revealed by SYS-rmssd (Figure 1F).
Furthermore, for the CON group the magnitude of the TFRi

in the HF band is concentrated around 0.28 Hz while for IPF
group is spread out around 0.42 Hz, i.e., around the respective
mean respiratory frequency, Figure 1C. It is plausible that
different mechanical effect on central blood volumes is
produced by higher respiratory frequency and lower FVC in
IPF than in CON. Also, in the HF band Traube-Hering waves
(THW) have been reported associated with respiratory-related
fluctuations in sympathetic outflow that promotes changes in
vascular tone (Menuet et al., 2020). In fact, the IPF group showed
a significant increased TPR during AA, i.e., increased vascular
tone (Santiago-Fuentes et al., 2021). In the case of SYS → BBI
interaction there were no statistically significant differences and
consequently, the corresponding TFRi is not shown. A possible
explanation could be associated to the fact that subjects were in
supine position and then, baroreflex feedback control may be
blunted. The RESP→ BBI interaction, Figure 2C, shows that the
magnitude for CON is spread out over the whole HF band and is
higher than for IPF that is localized around the mean respiratory
frequency, the corresponding statistical differences are displayed
in Figure 2D. Therefore, the magnitude of the RESP → BBI
interaction pointed out that respiratory sinus arrhythmia (RSA),
associated with the cardiac vagal influence, occurs at different
operating point in CON and IPF. The former result is in line with
other studies which suggest that RSA decreases with hypoxia
(Yasuma et al., 2001) and in fact, the IPF group of the present
study was characterized by hypoxemia (Table 1). Furthermore,
RSA was more relevant for CON as the magnitude of the RESP→
BBI interaction is higher than the corresponding of the RESP →
SYS interaction, i.e., the influence of RESP on the heart is higher
than on the vascular subsystem. Regarding the BBI → SYS
interaction, Figure 2E, associated with the mechanical
feedforward influence, a relevant magnitude is located towards
the VLF and LF bands for both groups; however, there were no
statistically significant differences.

Results by MVAR2, using DIA instead of SYS are shown in
Figure 3. The TFRi of the RESP → DIA interaction is shown in
Figure 3A and resembles the TFRi of RESP → SYS, but for both
groups the magnitude spread further in the LF and HF bands,
statistically significant differences are shown in Figure 3B. For
the DIA → BBI interaction, Figure 3C, the TFRi displayed a
magnitude with a trend to be higher in CON, particularly in the
upper part of the HF band, while for the IPF group a more
uniform distributed magnitude is observed across the frequency
bands. Furthermore, for both groups the DIA → BBI interaction
presents a higher magnitude than SYS → BBI interaction. The
former behavior may be interpreted in terms of an impaired left
ventricular (LV) diastolic filling in IPF in contrast to a preserved
LV systolic function, as was shown in a previous study
(Papadopoulos et al., 2008). Also, the lower magnitude in the
DIA → BBI interaction for the IPF group may reflect peripheral
vascular changes due to increased arterial stiffness and in
conjunction with a high heart rate may be indicative of the
prevalence of sympathetic tone. For the BBI → DIA

interaction, the TFRi magnitude distribution resembles the
corresponding to BBI → SYS of MVAR1, Figure 3E, but with
a tendency to display lower values for both groups. Furthermore,
a consistent activity in the LF band was found, the Mayer wave.
For the DIA→ RESP interaction, the corresponding TFRi did not
show relevant magnitude in any phase and, consequently it was
not included in the paper. Therefore during the AA phase, based
on the TFRi magnitude, its spread and relevance of statistically
significant differences between groups, IPF during the AA phase
mainly impacted the RESP→ SYS and RESP→ BBI interactions.

3.5.2 TFRi Magnitude Distribution in TPH and Steady
SupplO2

In the case of RESP→ SYS interaction, during TPH the SupplO2

increased the TFRi magnitude in both groups, Figure 2A. For the
CON group the magnitude spread further in the LF and HF (the
Traube-Hering waves) bands as compared with the AA phase. In
contrast, for the IPF group the magnitude was increased mainly
in the upper part of the HF band, the statistically significant
differences are shown in Figure 2B. Furthermore, in the steady
SupplO2 phase, the TFRi magnitude decreased in both groups but
remains higher in IPF, it seems that the interaction for both
groups reached an operation level like the level in AA phase.
Presumably, in IPF the heightened arterial peripheral
chemoreceptors activity/sensitivity by the hypoxia keeps the
drive of RESP on SYS (Stickland et al., 2016). In fact, chronic
hypoxia produces among other things, hyperplasia of the carotid
body and increases its activity. As can be seen in Figure 1C,
throughout the SupplO2 phase the mean respiratory frequency
decreased in the IPF group, with a moderate p-value with respect
to AA, but the influence on SYS does not change significantly.

During TPH, the RESP → BBI interaction reveals that RSA
was highly significant different between CON and IPF groups,
Figures 2C,D, i.e., RSA in CONwas stronger. The former result is
in line with the fact that vagal modulation facilitates RSA at rest
while sympathetic activation attenuates its magnitude. Moreover,
for the RSA physiological purpose, there are three major
hypotheses, i.e., 1) improvement of gas exchange, 2)
minimization of the energy consumption for the heart, and 3)
reduction of BP fluctuations (Buchner, 2019). One of the
premises of hypothesis 3) is that suppression of RSA generally
increases BP fluctuations in its HF band. In fact, the former
hypothesis may explain the decrease in RSA for the IPF group
that may be related to the tendency to increase of SYS-rmssd and
SYS-phvar1 indices, through SupplO2 as discussed above. During
the steady SupplO2 phase the RESP → BBI interaction showed
highly significant differences. For CON, the TFRi significant
magnitude in the HF band, almost in the whole phase, reveals
that SupplO2 affects importantly respiratory drive on BBI. In
contrast, for the IPF group the RESP → BBI interaction remains
at similar operation level as previous phases, in consequence, the
RSA in IPF was lower than in CON. It is noteworthy that in
SupplO2 phase, for the CON group the RESP → BBI (RSA)
interaction increased while RESP → SYS magnitude (THW)
decreased (Barnett et al., 2020). In the case of BBI → SYS, for
IPF during TPH, the TFRi magnitude showed a sustained level of
driving indicating a higher influence of the cardiac mechanical
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modulation, Figure 2E. In steady SupplO2, in the LF band there
were no significant differences, but there was a trend in IPF
towards a greater magnitude, which is associated with
sympathetic modulation on the vasculature.

By MVAR2 using DIA instead of SYS, the RESP → DIA
interaction reveals that the TFRi magnitude for CON and IPF is
concentrated around the mean respiratory frequency of each
group as occurs for RESP→ SYS, Figures 3A,B. It seems that the
oxygen delivery did not influence significantly the information
flow from RESP to DIA. Regarding the DIA → BBI interaction,
Figure 3C, the TFRi magnitude in steady SupplO2 phase showed
some differences between groups in the HF band, and mainly
toward the end of the phase, statistically significant differences are
depicted in Figure 3D. A plausible explanation is that the
diastolic BP is related to the pumping activity of the aorta and
large arteries of the circulating system. So factors such as systemic
vascular resistance or arterial stiffness modify diastolic BP more
than systolic BP, and therefore, the detriment of baroreflex
activity at rest, as reflected by the tslope index in Figure 1L, is
more evident in DIA→ BBI than in SYS→ BBI. In the case of the
BBI → DIA interaction, Figure 3E, the TFRi resembles the
behavior of BBI → SYS interaction in the LF band and it
seems to be slightly affected by oxygen but there were no
statistically significant differences, Figure 3F. It is worthy to

note that stationarity is assumed for temporal windows of
5 minutes of cardiovascular and respiratory time-series.
However, during TPH nonstationary behavior may be elicited
and consequently, a modified time-frequency approach could be
applied.

4 CONCLUSION

According to the results of the present study, the IPF group in the
AA phase, as compared with a matched healthy group, was
characterized by high sympathetic modulation to the heart
(supported by BBI-rmssd, BBI-α2 indices, and increased mean
respiratory frequency, among other indices) with a decreased
influence of the parasympathetic activity. It is well-known that
chemoreceptors sense the partial pressure of oxygen in blood
vessels, and they are important modulators of sympathetic
activation in response to hypoxemia. The activation is also
known as chemoreflex-mediated sympathetic activation and one
of the consequences is the hyperventilation that leads to the
inhibition of the chemoreflex due to the stretch
mechanoreceptors activity in the thoracic cage (Kara et al., 2003).
Also, the IPF patients during SupplO2 had blunted baroreflex
(confirmed by DSM results and almost inexistent SYS → BBI

FIGURE 3 | Cadiorespiratory and cardiovascular interactions by the model MVAR2. (A,C,E) TFRi of RESP → DIA, DIA → BBI and BBI → DIA interactions,
respectively, (B,D,F) the map of corresponding statistical differences between groups [p < 0.05 (green), p < 0.03 (yellow), p < 0.01 (red)]. For each interaction, the TFRi of
the control group is at the top while the one for IPF patients is at the bottom of the panel. Horizontal broken lines indicate the LF and HF bands while the vertical lines mark
the phases of the protocol.
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interaction), as well as RSA activity (confirmed by BBI-HF andRESP
→ BBI interaction). The former autonomic behavior could be
explained partially by the chronic hypoxemia and hypercapnia in
the IPF group. In this study, the patient group suffered mild hypoxia
and some evidence of hypercapnia, so the enhanced sympathetic
activity and reduced parasympathetic response may be a
consequence of alterations in baroreceptors and peripheral
chemoreceptors, which reduce the response to supplemental
oxygen. In fact, Van Gestel and Steier showed evidence related to
the high sympathetic activity in COPD patients due to the impaired
baroreflex sensitivity altered by hypoxia but not by hypercapnia
(Van Gestel and Steier, 2010). Additionally, an impairment of
cardiac control and sympathetic overactivity may be related to
age, but these responses seem to be higher for the IPF group. In
fact, Porta et al. at supine rest phase, found a possible age-related
impairment of the cardiac control and altered response to stressors
in conjunction with a gradual decrease in SYS complexity and thus,
an increase of the sympathetic activity (Porta et al., 2014).

The effect of oxygen has been studied mainly by its
hemodynamic effects and the analysis of heart rate variability
(Lund et al., 1999; Gole et al., 2011; Smit et al., 2018a; Smit et al.,
2018b). To the best of our knowledge, this is the first study that
tackle the effect of oxygen supplementation in IPF with a new
perspective from the point of view of linear and non-linear
indices as well as the dynamics of cardiovascular and respiratory
systems interactions. For IPF patients the results showed that
during AA phase: 1) the mean BBI value and power of BBI-HF
band, as well as the mean respiratory frequency were
significantly lower (p < 0.05) and higher (p < 0.001),
respectively, indicating a strong sympathetic influence, and 2)
the RESP → SYS interaction was characterized by Mayer waves
and diminished RESP → BBI, i.e., decreased respiratory sinus
arrhythmia. In contrast, for IPF during short-term SupplO2

phase: 1) oxygen might produce a negative influence on the
systolic blood pressure variability (SYS-rmssd was increased
among other indices), 2) the arterial baroreflex reduced
significantly (p < 0.01), and 3) reduction of RSA (RESP →
BBI) with simultaneous increase of Traube-Hering waves (RESP

→ SYS), reflected increased sympathetic modulation to the
vessels. Our study in patients with IPF, compared with
control subjects residing at the same altitude level, suggests
that the autonomic alterations induced by the pathology persist
or worsen despite the acute administration of oxygen. Based on
our previous effort, indicating a relevant increase of TPR
(Santiago-Fuentes et al., 2021), current research by the group
is directed to analyze interactions including TPR. Finally, the
proposed TFRi analysis may be used to better understanding the
underlying physiological phenomena of different respiratory
diseases.
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Partial Directed Coherence and the
Vector Autoregressive Modelling Myth
and a Caveat
Luiz A. Baccalá1* and Koichi Sameshima2

1Laboratório de Comunicações e Sinais, Departamento de Telecomunicações e Controle, Escola Politécnica, Universidade de
São Paulo, São Paulo, Brazil, 2Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo,
São Paulo, Brazil

Here we dispel the lingering myth that Partial Directed Coherence is a Vector
Autoregressive (VAR) Modelling dependent concept. In fact, our examples show that it
is spectral factorization that lies at its heart, for which VAR modelling is a mere, albeit very
efficient and convenient, device. This applies to Granger Causality estimation procedures
in general and also includes instantaneous Granger effects. Care, however, must be
exercised for connectivity between multivariate data generated through nonminimum
phase mechanisms as it may possibly be incorrectly captured.

Keywords: partial directed coherence, total partial directed coherence, spectral factorization, Granger causality,
time series connectivity modelling, nonminimum phase systems

1 INTRODUCTION

The aim of Granger time series connectivity modelling is to examine how observations from different
simultaneously observed time series may be related in the hope of exposing possible mechanisms
behind their generation. This goal is intrinsically limited by a number of factors: chief among them
are potential structural artifacts that result from unobserved series (confounders). This plus the fact
that Granger analysis rests exclusively on observations rather than active intervention (Baccalá and
Sameshima, 2014a) means that one must characterize interactions as “Granger-causal” rather than
causal in the strictest sense.

In spite of this, and in connection to situations where intervention is either impossible, such as
when impacting phenomena on a geophysical scale as for Solar spot/Melanoma data (Baccalá and
Sameshima, 2014b) or undesirable as in physiological data analysis where noninvasive methods, at
least in the human case, are always to be preferred, Granger Causality remains of interest in providing
clues as to the dynamics behind the observed variables.

In recent years a vast array of methods have been developed; they originated in economics
research following Granger’s seminal paper (Granger, 1969) who used vector autoregression as a
device to model data relationships in the time domain. His “causality” notion rests on how well the
knowledge of one time series’s past can enhance one’s ability to predict another time series, which
once vindicated, implies their connectivity. Though initially a strictly bivariate concept, the idea has
been extended to the analysis of more than two simultaneously observed time series in an attempt to
disentangle the effect of other series that might be acting as interaction confounders to pairwise
observations (Baccalá and Sameshima, 2001a). Historically, most developments that followed rest on
Geweke (1984)’s work who used Vector Autoregressive (VAR) modelling for more than two time
series as a preliminary step to deduct the effect of the other observed series from the time series pair of
interest. After that subtraction, the method consists of looking at a power ratio of the prediction
errors between when the past of a series is taken into account against when it is not.
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Much along the lines of improved estimation and inference of
Granger time domain representations has been made since then
and can be read in (Lütkepohl, 2005).

As a general rule, much of what followed is patterned on the
representation of temporal data in terms of “output-only”
systems, i.e., systems where the observed time series, x1(n), . . .,
xN(n), are represented as conveniently filtered versions of white
noise—the so called innovations.

Because VAR models can be naturally interpreted in terms of
linear filtering, already some aspects of a spectral interpretation to
the Granger connectivity scenario were present in (Geweke,
1984)’s work. Further specifics have been developed since
(Lütkepohl, 2005; Barrett and Seth, 2010).

The spectral nature of these problems, specially in connection
to EEG data processing which are naturally characterized in terms
of oscillatory behaviour, was boosted by the introduction of
Directed Transfer Function (DTF) (Kamiński and Blinowska,
1991) and later by partial directed coherence (PDC) (Baccalá
and Sameshima, 2001b). Both quantities employed VAR
modelling for their definition. Also both have since evolved to
more accurate, and thus, more appropriate measures, please see
(Baccalá and Sameshima, 2021a) for their development. A
leitmotif of those improvements was the growing realization of
the importance and consequent incorporation of the estimated
covariance of the innovations noise driving the observed outputs
xi(n) (Baccalá et al., 2007; Takahashi et al., 2010; Baccalá and
Sameshima, 2021a; Baccalá and Sameshima, 2021b).

In fact, explicit consideration of innovations covariance effects
are important in connection to the so-called “instantaneous”
Granger causality (iGC) and are helpful in unveiling aspects of
cardio-hemodynamic behaviour (Faes, 2014). Much as in the case
of GC itself, iGC was originally only seen as a time domain aspect.
There have been early efforts to portray it in the frequency
domain (Faes and Nollo, 2010; Faes, 2014); more general
efforts have only recently appeared with Cohen et al. (2019)
and Nuzzi et al. (2021) along Geweke’s line of description and
along PDC/DTF lines (Baccalá and Sameshima, 2021b).

All of the latter developments have relied heavily on VAR
modelling. This paper, by contrast, aims to dispel the notion that
PDC (Baccalá and Sameshima, 2001b) (and DTF, its dual) or any
of its related quantifiers require vector autoregressive (VAR)
modelling as a mandatory prerequisite. This notion coupled
with limited familiarity with VAR modelling may have been a
hindrance to their spread as methods of choice for Granger time
series connectivity modelling among non time series specialists.
We show here that absolute reliance on VAR modelling is not a
must, but rather a matter of convenience, even though PDC and
DTF were originally introduced with the help of VAR models.

As we have been alerted in the review process to this paper, an
early precursor to the present developments is contained in
(Jachan et al., 2009), which undeservedly does not seem to
have attracted much following having just 22 citations at the
Web of Science at the moment of this writing with only a small
fraction of them reflecting actual practical method employment,
mostly by its proponents. The present exposition not only
confirms those results but provides evidence that they hold for
more general PDC/DTF versions as well.

To dispel the VAR reliance misconception we employ a
set of examples comprising a variety of methods, parametric
and nonparametric, that, as we show next, yield essentially
the same results. The methodological equivalence between
them holds even for total PDC (tPDC) and total DTF (tDFT)
as defined in (Baccalá and Sameshima, 2021b) which
represent recently introduced extensions that incorporate
the effects of instantaneous Granger causality to connectivity
descriptions.

For brevity, we only show results for total PDC since it
incorporates a consistent frequency domain description of
instantaneous Granger interactions to PDC that automatically
extends to total DTF’s, given their duality (Baccalá and
Sameshima, 2021a; Baccalá and Sameshima, 2021b).

The rest of this paper is organized as follows: Section 2 reviews
the theoretical basis and is followed in Section 3 with a brief
description of the methods employed in the comparative
computations which are illustrated in Section 4 and
commented in Section 5 leading to the conclusion in Section
6 that tPDC/PDC (tDTF/DTF) representations are essentially
canonical factors of the joint power spectral density of the data
which portrays the relationship between multivariate data.

A concept that turns out to be key in the present setup is that of
spectral factorization and the notion of aminimum phase spectral
factor covered in more detail in Section 2.1.

The concept of a minimum versus a nonminimum phase
system is important for our discussion. This is briefly
examined in the development that follows as we show it can
lead to possibly false connectivity inference when nonminimum
phase mechanisms are behind the data generation process.

2 MATHEMATICAL CONSIDERATIONS

2.1 General Linear Models With Rational
Spectra
A general class of linear stationary multivariate processes x(n) �
[x1(n) . . .xN(n)]T is represented (Lütkepohl, 2005) by:

x n( ) � ∑p
r�1

Arx n − r( ) +∑q
s�0

Bsw n − s( ), (1)

where w(n) � [w1(n) . . .wN(n)]T is a stationary (zero mean
without loss of generality) multivariate innovations process
with covariance matrix Σw. The process defined by (1) is
termed a Vector Autoregressive Moving Average process,
denoted VARMA (p, q), whose structure is defined by the
Ar ,Bs matrices (Lütkepohl, 2005). VAR processes and vector
moving average (VMA) processes are special cases, respectively
when Bs � 0,∀s> 0, or Ar � 0, ∀r. The equivalences between
VAR(p) and VMA (∞), and between VMA(q) and VAR(∞) are
well known, where p and q refer respectively to the AR and MA
orders that make up the model.

We implicitly assume that (1) is stable, i.e., the associated x(n)
is wide sense stationary. For simplicity we consider only the case
of finite p and q. This is guaranteed if the magnitude of the
roots of
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det A z( ) � 0 (2)
are less than 1 for

A z( ) � I −∑p
r�1

Arz
−r (3)

where det stands for the determinant.

Definition 1. | The system represented by (1) is minimum phase
if the magnitude of the roots of

det B z( ) � 0 (4)
are less than or equal to 1 for

B z( ) � ∑q
s�0

Bsz
−s (5)

Definition 1 guarantees that stablew(n) innovations sequences
for n ≥ 0 may be found that lead to the observations, i.e. the
system defined by (1) has a stable inverse.

Remark 1 | Strictly speaking when the roots in (5) are equal to 1,
the impulse response of the inverse is merely bounded.

Remark 2 | When used as a data generating mechanism for x(n),
(1) does not need to be minimum phase. However, data
modelling through (1) always leads to an estimated minimum
phase counterpart system. This follows from the fact that only
second order statistics are used for estimating (1) coefficients.
When the data is Gaussian, this is the only available alternative, as
higher order statistics are redundant and offer no additional
information that might expose any evidence of possible phase
nonminimality.

It is easy to show that the power spectral density matrix of x(n)
(1) is given by:

Sx ]( ) � A−1 ]( )B ]( )Σw B
H ]( )A−H ]( ), (6)

where

A ]( ) � I −∑p
r�1

Are
−j2πr] (7)

B ]( ) � ∑q
s�0

Bse
−j2πs], (8)

for 0 ≤ |]| < 0.5 which represents the normalized frequency and
j � ���−1√

. Naturally (7) and (8) are associated with making z =
ej2πr] in (3) and (5) respectively.

It is easy to realize that (6) is of the form

Sx ]( ) � H ]( )ΣwH
H ]( ) (9)

containing the frequency dependent factor, H(]), and a
frequency independent factor, Σw.

Remark 3. | Equations (6) and (9) hold regardless of whether (1)
is minimum phase or not.

From (9) it is easy to write the coherency matrix C(]) with
entries:

Cij ]( ) � Sij ]( )����������
Sii ]( ) Sjj ]( )√ (10)

by writing

C ]( ) � D Sx ]( )( )−1/2 Sx ]( )D Sx ]( )( )−1/2
� D Sx ]( )( )−1/2 H ]( )Σw H

H ]( )D Sx ]( )( )−1/2
� Γ ]( )R ΓH ]( )

(11)

where D(·) is the diag matrix operator, i.e. one that produces a
matrix that is nonzero except for the diagonal elements of the
operand so that

Γ ]( ) � D Sx ]( )( )−1/2H ]( )D1/2 (12)
and

R � D−1/2ΣwD
−1/2 (13)

is a correlation matrix with ones along the main diagonal for
D � D(Σw).

Writing (11) as a product of the frequency dependent part Γ(])
mediated by a correlation matrix R allows one to apply the
definition of total DTF matrix (Baccalá and Sameshima, 2021b) as:

⁀Γ(v) � Γ(v) ⊙ Γp(v) + Γ(v)ρ ⊙ Γp(v) (14)
where ρ � R − IN, and IN is an N × N identity matrix with ⊙
standing for the Hadamard element-wise matrix product.

The entries i, j from ⁀Γ(v) reduce to the absolute square value
of directed coherence from j to i, which is a scale invariant form of
DTF (Baccalá et al., 1998), when instantaneous Granger causality
is absent. Eq. 14 describes what we have termed Total Granger
Influentiability (Baccalá and Sameshima, 2021b).

An entirely parallel development allows defining total partial
directed coherence (Baccalá and Sameshima, 2021b), taking
advantage of the fact the partial coherence matrix can be
shown to equal:

K ]( ) � C−1 ]( )
� ΠH ]( ) ~RΠ ]( ) (15)

for

Π ]( ) � D1/2H−H ]( )D Sx ]( )( )1/2 ~D1/2
(16)

and

~R � ~D
−1/2

Σ−1
w

~D
−1/2

(17)
which is a partial correlation matrix between the wi(n)
innovations where ~D � D(Σ−1

w ).
The form in (15) is what allowed us to define total PDC as:

⁀Π(v) � Πp(v) ⊙ Π(v) +Πp(v) ⊙ ~ρΠ(v) (18)
where ~ρ � ~R − IN. The i, j entries describe what we termed the
Total Granger Connectivity from j to i (Baccalá and Sameshima,
2021b), which reduce to generalized PDC (Baccalá et al., 2007)
when instantaneous Granger causality is absent.

Whenever one can properly write the spectral density matrix
as in (9), one may employ the latter quantities to describe
multivariate time series within the tPDC-tDTF framework. A
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case in point which we describe briefly in Section 3.3 is provided
by Wilson’s spectral factorization algorithm (Wilson, 1972),
which has been used before in connection with alternative
Granger causality characterizations (Dhamala et al., 2008) and
is also behind Jachan et al. (2009)’s results.

3 ESTIMATION METHODS

Eq. 1 was used as a general data mechanism for imposing
relationships between the time series we examine in Section 4.
The data generated were analysed via the three main approaches
we briefly describe next.

3.1 Vector Autoregressive Modelling
Vector autoregressive modelling is a traditional subject
(Lütkepohl, 2005). The version used here was implemented in
the AsympPDC package (Sameshima and Baccalá, 2014) and
employs Nuttall-Strand’s method to obtain the autoregression
coefficients (Marple, 1987). One important step in this sort of
procedure involves finding the best model order p. Here Hannan-
Quinn’s method was chosen; it is a variant from the better known
Akaike’s method (Lütkepohl, 2005).

3.2 Vector Moving Average and Vector
Autoregressive Moving Average Modelling
A traditional means of fitting VMA(q) and VARMA (p, q) models
is to determine a preliminary VAR model of very large order (p =
50 was adopted here) and use its residuals ϵi(n) to fit the observed
data xj(n) through a mock multi-input/multi-output system via
least-squares. An univariate version of this approach can be
appreciated in (Stoica and Moses, 2005).

In practical applications, determining p and q can be achieved
through minimizing model order choice functions as in Akaike’s
method. Whereas, minimizing Akaike-type penalization is trivial
in the VMA case, bidimensional search of tentative p and q is
required in the VARMA case. To simplify matters here, we have
employed the theoretical model orders used to get the estimates.

3.3 Wilson’s Algorithm
Wilson’s method is an iterative method that decomposes (9) into
estimates for H(]) and Σw (Wilson, 1972). It starts by guessing a
H(]) with the restriction of its representing filters to have
impulse responses that are identically zero for negative time
(the so-called filter causality condition, sometimes referred as
nonanticipative filters whose output cannot anticipate the input).
The solution essentially amounts to Newton’s root finding
iterations until a maximum prescribed error is achieved. In
the present case, a maximum error of 10−6 was adopted.

Wilson’s method has been used before in connection with
other Granger causality descriptions both related (Jachan et al.,
2009) and directly unrelated (Dhamala et al., 2008) to PDC/DTF
descriptions. It has the advantage that it can be applied to
nonparametric spectral estimates, whether they are obtained
by periodogram smoothing (Percival and Walden, 1993) or
other means like wavelets (Lima et al., 2020).

The spectral estimates used here (henceforth referred as WN,
nonparametric Wilson estimates) employed Welch’s method as
implemented in Matlab’s cpsd.m function with von Hann’s data
window and 50% segment overlap (Percival and Walden, 1993).

The reader may obtain a working Python implementation in
(Lima et al., 2020). Here a similar Matlab version was used.

3.4 Brief Comments
The time series modelling methods of Section 3.1, 3.2 are
essentially least squares approaches. Wilson’s algorithm on the
other hand is a numerical square-rooting procedure that also
achieves the spectral factorization of the power spectral density
matrix S(]). In all cases, one obtains the so-called minimum
phase spectral factor represented by H(]) in (9).

All Matlab routines used in this paper have been included as
Supplementary Material. For convenience, Dhamala’s most
recent implementation (Henderson et al., 2021) was also
included and essentially leads to the same results we report next.

4 NUMERICAL ILLUSTRATIONS

In the following illustrations, the data comprise ns = 16,384
observed points to minimize misinterpretation due to short
time series effects. In all cases, the theoretical models can be
used to compute the theoretical total PDC as in (Baccalá and
Sameshima, 2021b). In each case, the mean-squared frequency
domain approximation error of each estimation method was
computed and is presented in Table 1 after averaging over
R = 100 realizations. Here Wilson estimates employed 256-
point long data tappers.

Next we present three examples whose allied graphs contain
the real and imaginary parts of tPDC plotted against the
background of the expected theoretically computed results.
These examples share the property of being generated by
minimum phase (1) models.

Finally, a fourth example generated by a nonminimum phase
(1) is examined. Its numerical results are contrasted to the
theoretical tPDC computed with help of the actual generating
model parameters.

Example 1. | Vector Moving Average Model (VMA)
We start with conceivably the simplest possible kind of vector

moving average example with unidirectional influence and with
the clear presence of iGC described by

x1 n( ) � w1 n( ) + w2 n − 1( )
x2 n( ) � w2 n( ) + w2 n − 1( ){

with innovations noise covariance

Σw � 1 1
1 5

[ ] (19)

whose influence of x2(n) onto x1(n) is clear due to its lagged
dependence on w2(n) which is the sole input that determines
x2(n). The presence of iGC is clear from (19)’s non diagonal
nature.
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From Figure 1, it is clear that for large ns, all estimates of total
PDC agree with the theoretically expected one within the
constraints of estimator nature. A case in point is Wilson’s
factorized version computed from the nonparametric power
spectral estimates which is rippled as expected (red lines),
following what happens with the original spectral estimates.

Example 2. | Vector Autoregressive Moving Average Model
(VARMA)

The next example is a bit more elaborate. It has a VARMA (2,
2) data generating procedure described by

x1 n( ) � 2 r cos θ( )x1 n − 1( ) − r2x1 n − 2( ) + w1 n( ) + w3 n( ) + w3 n − 1( )
x2 n( ) � b x1 n − 1( ) + a x2 n − 1( ) + w2 n( )
x3 n( ) � c x3 n − 1( ) + w2 n( ) + w2 n − 2( ) + w3 n( )

⎧⎪⎨⎪⎩

where r = 0.95, θ = π/3, b = 0.5, a = −0.5, c = 0.7 and Σw equal to
the identity matrix.

As in the previous example, total PDC estimates match one
another regardless of method, see Figure 2.

Albeit at little surprise, it is important to realize that the use of
the VARMA modelling scheme (Section 3.2) yields substantially
better fit. This is confirmed by Table 1 results.

Example 3. | Vector Autoregressive Model (VAR)
The third toy example covers the one used in (Baccalá and

Sameshima, 2021b) and was borrowed from (Faes, 2014)
involving three channels whose connectivity is assessed via a
VAR model taking iGC effects into account through tPDC. One
obtains essentially the same results irrespective of the
computational approach, see Figures 3A, B.

Example 4. | Nonminimum Phase Data
Consider a moving average data generation scheme using (1)

with

TABLE 1 | Table containing means squared error to fits of the theoretical tPDC according to estimation method for each Example. Missing values portray when certain
estimation approaches were not used.

Example ns VMA VAR VARMA WN

1 16,384 1.27 × 10−5 6.84 × 10−6 0.15 × 10–2

4,096 5.76 × 10−5 3.06 × 10−5 0.61 × 10−2

1,024 2.45 × 10−4 1.57 × 10−5 3.26 × 10−2

2 16,384 0.21 × 10−2 1.72 × 10−4 2.96 × 10−8 0.67 × 10−2

4,096 0.84 × 10−2 7.09 × 10−4 5.02 × 10−7 2.77 × 10−2

1,024 3.10 × 10−2 2.60 × 10−3 6.65 × 10−6 12.36 × 10−2

3 16,384 6.11 × 10−4 3.20 × 10−5 0.13 × 10−2

4,096 0.20 × 10−2 1.37 × 10−4 0.57 × 10−2

1,024 0.90 × 10−2 5.30 × 10−4 3.50 × 10−2

FIGURE 1 | Superimposed graphs of total partial directed coherence, tPDC, estimates for the VMAmodel simulated for ns = 16, 384 data points (Example 1)
and three estimation methods (VAR, VMA, WN), where the real (A), and the imaginary (B) components are plotted separately. The theoretical tPDCs are depicted in
blue lines. WN estimates ripple around theoretical values (topmost red lines), yet they closely resemble that of theoretical values. VAR and VMA estimation methods
results—plotted as the two bottommost black lines—are visually indistinguishable from the theoretical values (blue lines).

Frontiers in Network Physiology | www.frontiersin.org April 2022 | Volume 2 | Article 8453275

Baccalá and Sameshima PDC: Ditching the VAR Myth

71

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


B0 � 1 0
0 1

[ ], B1 � 2 1
0 0

[ ], B2 � 4 2
0 2

[ ], (20) whose allied (4) roots {−1 + ± j
�
3

√
,± j

�
2

√ } have magnitudes that
are larger than 1, making this a nonminimum phase data
generating mechanism as opposed to all previous examples, as
computing their (4) easily shows. It is clear from (20) that x2(n)

FIGURE 2 | tPDC estimates by all four methods—VAR, VMA, VARMA, and WN—for the VARMA model in Example 2 simulated for ns = 16, 384 data points are
depicted, with real (A), and imaginary (B) components plotted separately. As before, the theoretical tPDCs are also shown (blue lines). Again note that WN estimates
(topmost red lines) ripple around theoretical values. In this case, VMA estimates (purple lines) also ripple around theoretical values (blue lines) illustrating estimator
accuracy limitations. This is also apparent on Table 1. VAR and VARMA results—plotted as the two black bottommost lines just underneath the theoretical
values—represent much closer approximations.
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Granger-causes x1(n) but not otherwise. This is reflected in the
computed tPDCT blue lines of Figure 4. Here, (19) was adopted
as the innovations covariance matrix.

Use of Section 3 algorithms leads to the results of Figure 4
where the estimation methods agree among themselves, but are
markedly different from the tPDC computed using (20).

FIGURE 3 | tPDC estimates for Example 3 are shown for VAR, VMA, and WN methods (ns = 16, 384) with real (A), and imaginary (B) components plotted
separately. As before, theoretical tPDCs are also shown (blue lines). Once again, WN estimates (topmost red lines) ripple around theoretical values. Here so do too VMA
estimates (purple lines) signalling their poor expected accuracy when fitting VAR data. This is confirmed by results presented on Table 1. VAR results are plotted as the
two bottommost black lines underneath the theoretical values.
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The reader may easily verify using the Supplementary
Material that the estimated solution using VMA modelling
leads to (4) roots whose magnitudes are all smaller than 1.

Most importantly, however is that this example shows that GC
causal relationships imposed through nonminimum phase
systems can be wrongly inferred. The consequences of this are
further elaborated in the discussion.

5 DISCUSSION

It is perhaps surprising that PDC/DTF have so long, and
unnecessarily so, remained inextricably associated with VAR
modelling even in view of early evidence to the contrary
(Jachan et al., 2009). Partial explanation may lie in the early
virtual exclusive reliance on VAR modelling that also dominated
initial approaches to Granger Causality characterization
(Granger, 1969; Geweke, 1984). This scenario in connection to
time series modelling in the time domain slowly changed as VMA
and VARMA approaches have been shown viable and possibly
desirable depending on the nature of the data under study
(Boudjellaba et al., 1992; Boudjellaba et al., 1994). The latter
methods are attractive because they more parsimoniously fit the
underlying data as in Example 2 via fewer parameters. This
reflects Parzen’s Parsimony Principle which formalizes the
statistical advantage of describing data via the least possible
number of parameters (Yaffee and McGee, 2000) that in the
present case leads to lower average estimation error (see Table 1).
More details on alternative time domain characterization can be
appreciated in Lütkepohl (2005).

Because of its prediction improvement ethos, Granger
Causality, when originally defined, rested on VAR modelling’s
predictive ability (Granger, 1969). Moreover, at that time it was

the only practical alternative from a computational perspective. It
is thus unsurprising that other predictive methods like VMA and
VARMA modelling also can fit the purpose.

Given PDC/tPDC’s frequency domain ties with Granger
causality (Baccalá and Sameshima, 2021a) (with the inclusion of
full instantaneous effects) (Baccalá and Sameshima, 2021b), it is
therefore no wonder that they too can be carried out via other
methods like VMA or VARMA modelling.

Thus we have shown that PDC/DTF (total or otherwise) are
not irrevocably tied to VAR data modelling, though today, VAR
remains the best studied and most widely applied option. It has
the advantage of having rigorous asymptotic results in the
squared PDC/DTF case (Baccalá et al., 2013; Baccalá et al.,
2016). Work is in progress to provide the asymptotics to the
allied total PDC/DTF quantities.

Further research is needed to pinpoint which of the latter
methods is best for what purpose. It is comforting to know that
many methods provide equivalent descriptions if used properly.

For example, even though it is possible to combine the response
of different trials in event-related experiments while employing
VARmodels (Rodrigues and Baccalá, 2015), this feat may also, and
perhaps more easily in some cases, be achieved through the
application of Wilson’s method to estimate nonparametric
spectra and cross-spectra averaged over trials. Other methods
have been proposed to deal with spectral matrix factorization
that still need proper practical appraisal (Amblard, 2015).

Though Wilson-type spectral factorization methods seem less
effective in practice, it does not mean that they should be
discarded. Here we only used Welch’s spectral estimator. More
research is needed, by employing other spectral estimation
procedures like multitappering for instance (Percival and
Walden, 1993) that could improve accuracy as they may more
appropriately fit certain spectral shapes.

FIGURE 4 | tPDC estimates for VARMA model with nonminium phase data in Example 4 using the VAR, VMA, and WN methods (ns = 16, 384) portraying its (A)
real and (B) imaginary components. As before theoretical tPDCs are shown as blue lines. Here,WN estimates (topmost red lines) also ripple and agree with VMA (black
lines) and VAR estimates (gray lines) are very close to one another but differ significantly from the theoretical values (blue lines). Note the parameters in (20) imply no
connection from x1(n) onto x2(n), yet all three estimation methods wrongly indicate a non zero tPDC real component reflecting strong estimated GC.
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Here we have employed large data sets, but one should expect
substantial performance differences for shorter time series. In this
case, too, as hinted by Table 1 results, VARmethods remain quite
efficient, except when better approximation can be made through
models that portray the data more closely as in the VARMA
Example 2.

Other approaches have been proposed to obtain Granger-type
estimates, namely state space modelling is one such example
(Barnett and Seth, 2015); present research is on-going to evaluate
them. In fact, as Sayed and Kailath (2001)’s theoretical appraisal
of univariate spectral density factorization methods suggests,
even state-space models can be seen as spectral factorization
providers.

All the above methods, by providing minimum phase spectral
factors to the spectral density matrix, ideally portray identical
Granger relationship representations within the accuracy and
characteristic limitations of the employed spectral estimation/
factorization techniques.

At this point, before we examine the nonminimum phase data
generation issue, and even if the theoretical realization that GC
connectivity reduces to a spectral factorization problem were not
important, the practice oriented reader might be wondering why so
much ado about a VAR ‘myth’ if in the end VAR remains a
reasonable practical compromise? To answer this, please have in
mind that spectral fitting is a method of approximation of whatever
the real spectra are. According to Parzen’s principle the best
conceivable statistical inference reliability rests on having the
least number of descriptive parameters for a given approximation
error (which one can gauge by the residual covariance matrix).
Hence, though at present VMA and VARMA methods are not as
mature as VAR methods in so far as inference is concerned, they
hold the promise of potential higher inference accuracy in
appropriate cases as they get to be further developed.

Another question that may be bothering those who are
practice oriented is: why use nonparametric methods if their
performance is not so good and if they call for much longer data
sets to furnish the same level of accuracy? In fact, this may well
behind their infrequent use in the past. First remember the issue
of ease of use as in the analysis of event related cases we
mentioned. Remember too that many investigators remain
uneasy about parametric methods because they require model
order decisions added to the often glossed over problem of model
diagnostic checking (Li, 2003). Despite their wiggly nature,
Wilson nonparametric methods dispense with these decisions
and can be helpful in providing hints to the approximative quality
of contending parametric models. They have issues of their own
that also merit further examination. These problems lie in
nonparametric spectral estimation shortcomings (Percival and
Walden, 1993) that many applied users often overlook.

In short, having more options in one’s analysis toolkit is
beneficial and should not be discarded.

Now moving on, there is the important caveat we have
shown: due to their intrinsic minimum phase limitation, the
methods we explored here are unable to properly capture GC-
type relations when the underlying data generation mechanism
is nonminimum phase as in Example 4. This happens because
these methods, either through classical time series modelling or

direct spectral factorization, employ only second order
statistics.

Though we do not show this explicitly here, Geweke-based
approaches also suffer from the same limitations. This is easy to
realize if one takes into account that they lead to conclusions that
are similar to those reached via PDC/DTF-type approaches.

This scenario evokes two intertwined questions: 1) whether
dynamical (viz. physical, physiological or economical)
observations of phenomena actually conform to nonminimum
phase generation mechanisms that might obscure their
connectivity inference and 2) whether real data using GC
methods in the past actually hold in view of this observation.

As an example consider a situation when nonminimum phase
signals are a practical reality. It happens in wireless
communication, and is due to signal propagation through
dispersive multipathway media that leads to serious bit-error
rate impairment. As a man made system, this problem is
circumvented by the transmission of pre-arranged pseudo
random data (training) sequences the receiver uses to estimate
channel nonminimality. Use of these sequences maps the receiver
“output-only” problem into an equivalent “input-output”
problem that can reveal nonminimum phase effects through
second order statistics alone. This solution is sometimes
unsatisfactory as it imposes a penalty on the transmission rate
of useful data. During the 1990’s a considerable body of literature
appeared to address this problem by dispensing with training
sequences and using the received (output) data only (Haykin,
1994). This is possible when the data is nongaussian, i.e., there is
information beyond the ordinary second order statistics of the
spectrum, something that can be made by design in
telecommunication systems. Signal diversity in both time and
space, via telecom signal characteristics or through employment
of redundant receiver antennas is also an option. This general
field has been known as that of “blind” identification/equalization
(see Chi et al., 2006, for an overview). Whereas real data
properties cannot be ‘designed’ as in man made systems, they
are often nongaussian and this could in principle be exploited to
overcome the nonminimum phase generation limitation on GC
inference we described here.

The answer to 2) must thus await further analysis in what is a
matter for further exciting research that may entail the revision of
many conclusions regarding formerly analysed real data.

6 CONCLUSION

The first take home lesson is that PDC/DTF-type estimators of
Granger connectivity/influentiability (Baccalá and Sameshima,
2014a) even in their latest and most general total form (tPDC/
tDTF), incorporating instantaneous Granger effects, do not
require vector autoregressive modelling as a mandatory step
but can be obtained through any other means of spectral
factorization of the spectral density matrix into minimum
phase factors. The second lesson is that, though not
mandatory, VAR modelling, since it can be used to obtain
consistent spectral factors, and because of its practicality and
efficiency, remains the method of choice, specially for short data
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sets. The third no less important lesson is that care as to
conclusions about real data must be exercised as possible
unknown nonminimum phase data generating mechanisms
may be at play that can confound results as to the actual true
underlying connectivity when methods of the present spectral
factorization class are used.
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The Reconstruction of Causal
Networks in Physiology
Moritz Günther1*, Jan W. Kantelhardt2 and Ronny P. Bartsch3

1Max Planck Institute for Meteorology, Hamburg, Germany, 2Institute of Physics, Martin-Luther-University Halle-Wittenberg,
Halle, Germany, 3Department of Physics, Bar-Ilan University, Ramat Gan, Israel

We systematically compare strengths and weaknesses of two methods that can be used to
quantify causal links between time series: Granger-causality and Bivariate Phase Rectified
Signal Averaging (BPRSA). While a statistical test method for Granger-causality has already
been established, we show that BPRSA causality can also be probed with existing statistical
tests. Our results indicate that more data or stronger interactions are required for the BPRSA
method than for the Granger-causality method to detect an existing link. Furthermore, the
Granger-causality method can distinguish direct causal links from indirect links as well as links
that arise from a common source, while BPRSA cannot. However, in contrast to Granger-
causality, BPRSA is suited for the analysis of non-stationary data. We demonstrate the
practicability of the Granger-causality method by applying it to polysomnography data from
sleep laboratories. An algorithm is presented, which addresses the stationarity condition of
Granger-causality by splitting non-stationary data into shorter segments until they pass a
stationarity test. We reconstruct causal networks of heart rate, breathing rate, and EEG
amplitude from young healthy subjects, elderly healthy subjects, and subjects with obstructive
sleep apnea, a condition that leads to disruption of normal respiration during sleep. These
networks exhibit differences not only between different sleep stages, but also between young
and elderly healthy subjects on the one hand and subjects with sleep apnea on the other hand.
Among these differences are 1) weaker interactions in all groups between heart rate, breathing
rate and EEG amplitude during deep sleep, compared to light and REM sleep, 2) a stronger
causal link from heart rate to breathing rate but disturbances in respiratory sinus arrhythmia
(breathing to heart rate coupling) in subjects with sleep apnea, 3) a stronger causal link from
EEG amplitude to breathing rate during REM sleep in subjects with sleep apnea. The Granger-
causality method, although initially developed for econometric purposes, can provide a
quantitative, testable measure for causality in physiological networks.

Keywords: time series analysis, network physiology, Granger causality, bivariate phase rectified signal averaging,
sleep apnea, heartbeat, respiration, brain-wave amplitudes

1 INTRODUCTION

Causality is an ambiguous term and there are numerous philosophical, sociological, statistical,
physical and information-theoretic approaches to define causality [Granger (1980); Hlaváčková-
Schindler et al. (2007); Pearl and Mackenzie (2018)]. Although classified as statistical rather than a
causal concept by some authors [see e.g., Hamilton (1994); Pearl (2009) for well-founded
arguments], Granger causality [“G-causality”, Granger (1969)] provides a generally accepted
operational framework to investigate causal interactions in time series. Going back to an idea by
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Norbert Wiener [Wiener (1956); therefore also “Wiener-Granger
Causality”], Clive Granger was first to apply a linear regression
model to probe whether a process X has a causal relationship with
another process Y {or whether X can forecast Y [Hamilton
(1994)]}. Limitations of this linear approach and prominent
non-linear extensions of G-causality are discussed in detail by
Hlaváčková-Schindler et al. (2007).

In the field of physiological time series analysis and in
particular when probing for physiological interactions, G-
causality plays a major role along with entropy-based
measures [Schulz et al. (2019)], phase synchronization analysis
and symbolic dynamics [Müller et al. (2016)]. Indeed, G-causality
is frequently used in the emerging field of Network Physiology
[Bashan et al. (2012)] to investigate the network interactions
between multiple physiological systems involved in
cardiovascular/cardiorespiratory control [Porta and Faes
(2015); Schulz et al. (2013)] and heart-brain coupling [Faes
et al. (2015)]. It is becoming a standard tool in neuroscience
to identify directed functional interactions in the brain [Hesse
et al. (2003); Bressler and Seth (2011); Seth et al. (2015)].
However, G-causality was initially developed for economic
time series [Granger (2004)], which are usually shorter
(regarding their number of samples) and sampled at lower
frequencies than physiological time series. This must be
considered when using G-causality for physiological
applications. Notably, the condition of “instantaneous
causality” [Granger (1969)] may, in contrast to economic data,
not be present in physiological data because typical sampling
rates are higher than the delay time of the causal relationships
[Lin et al. (2016)]. Furthermore, there are forms of coupling
between physiological systems that coexist but operate at different
time scales [Bartsch et al. (2014); Bartsch and Ivanov (2014)].
Therefore, in order to identify physiological interactions for fast
as well as very slow processes, the original model must be
extended and G-causality computed at different temporal
resolutions.

An often discussed drawback of G-causality for practical
implementations is the necessity of data being stationary,
which is usually not the case for physiological recordings.
Workarounds range from simply differentiating the data or
analyzing shorter (“quasi-stationary”) time windows to more
complex methods utilizing an adaptive recursive least-square
algorithm [Hesse et al. (2003)] or applying spectral density
matrix factorization of the Fourier and wavelet transforms
[Dhamala et al. (2008)] — with each method having its own
pros and cons [Bressler and Seth (2011)].

An alternative, simple yet powerful method, which does not
require stationarity to investigate interactions and causal relations
between time series, is Bivariate Phase Rectified Signal Averaging
(BPRSA) analysis [Schumann et al. (2008)]. While originally
developed as a mono-variate method to study quasi-periodic
oscillations in non-stationary signals [Bauer et al. (2006b)] and
quantify cardiovascular risk [Bauer et al. (2006a)], its bivariate
extension has been applied to assess spontaneous baroreflex
sensitivity [Müller et al. (2012)], and, more recently, to analyze
maternal-fetal heart rate coupling [Montero-Nava et al. (2020)].

Because BPRSA is, in contrast to G-causality, a model-free
approach to study inter-relationships and causality in
physiological signals, in this paper we aimed for a systematic
comparison of both methods. This will be done in Part A after a
proper introduction of each method. In particular, we will
elaborate on their strengths and weaknesses, and present
statistical tests to probe for significant interactions. The
analysis is done with a focus on possible applications in
physiology. A corresponding example regarding physiological
networks during sleep will be presented in Part B of the paper.

2 PART A: METHODS FOR CAUSALITY
ANALYSIS
2.1 Differentiating Between Direct and
Indirect Links
In physiological networks an important problem is to distinguish
direct from indirect links. Figure 1 depicts direct and indirect
links in simple three-node networks. In all three cases, the node
corresponding to the source signal z seems to influence the target
node, i.e., signal x. While there is a direct link from z to x in
subfigure (a), there is only an indirect link in subfigure (b),
mediated by signal y. Subfigure (c) shows another form of an
indirect link, where the link between z and x is purely due to the
common influence of y on both signals. Note that a time lag,
indicated by the operator L, is important only in case (c). If the
time lag from y to zwas longer than the lag from y to x (i.e., α > β),
the indirect link would change its direction and point from x to z
instead.

There are more complex and mixed cases e.g., direct and
indirect links between the same two nodes, and coexisting links
[Bartsch and Ivanov (2014)], but the ones shown in Figure 1 are
the most basic setups, and in the following they will be used to test
and compare G-causality and BPRSA. By studying results for
modeled data, we show that G-causality is more appropriate to
distinguish these setups within a certain range of detection limits.

2.2 Method 1: Granger Causality
A simplified definition of Granger causality is: “Variable z
Granger-causes (G-causes) variable x if knowledge about z
improves the forecast of x” [Granger (1969)]. This reflects our
common understanding of cause and consequence: The cause
must precede the consequence in time and if z has no effect on x,
we do not call it causal. This idea is formalized in the framework
of autoregressive (AR) processes.

Under fairly general conditions a random process can be
described by an AR model of order p [see, e.g., Lütkepohl
(2005)]. Consider two AR models of the time series xt, one
including and one excluding information on zt,

xt � ∑p
i�1

ϕ 1( )
i xt−i( ) + w 1( )

t ; STD w 1( )( ) � σ 1( ), (1)

xt � ∑p
i�1

ϕ 2( )
i xt−i + ψ 2( )

i zt−i( ) + w 2( )
t ; STD w 2( )( ) � σ 2( ). (2)
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Equation 1 models the value of x at time t as a weighted average
over its own past plus a white noise process wwith zero mean and
standard deviation (STD) σ(1). The weighting factors ϕi can be
obtained by minimizing the error term w(1). The past of x carries
information about its own future, but this information is
necessarily incomplete due to the statistical nature of x. The
better x can be described (forecast) from its own past, the lower
the standard deviation σ(1) of the residual w(1).

Equation 2 additionally considers information about z. If this
information helps to model (forecast) x, then the standard
deviation σ(2) will be reduced compared to σ(1). The G-value
Gz→x is a measure for the improvement of the forecast of x by
including z, and therefore a measure of causality,

Gz→x � ln
σ 1( )

σ 2( ). (3)

Gz→x quantifies G-causality, however it remains unclear whether
1) an obtained G-value is significantly different from zero, and 2)
the link is direct or indirect.

To resolve issue 1), one can test the null hypothesis that all
coefficients ψ(2)

i of Eq. 2 are practically zero, i. e.,G-causality does
not exist. This is done by assuming an F or chi-squared
distribution, given that the estimators of the least square
method coefficients are asymptotically normally distributed
[Neusser (2011)], and estimating the probability of a non-zero
mean value. Because no other variables (such as y) are taken into
account, this is a pairwise analysis method, which can identify
links from z to x in all three cases of Figure 1.

In order to differentiate between direct and indirect links,
i.e., to resolve issue 2), a conditional analysis is necessary.
Consider the two extended AR models,

xt �∑
p

i�1
ϕ 3( )
i xt−i + τ 3( )

i yt−i( )+w 3( )
t STD w 3( )( )� σ 3( ), (4)

xt �∑
p

i�1
ϕ 4( )
i xt−i + τ 4( )

i yt−i +ψ 4( )
i zt−i( )+w 4( )

t STD w 4( )( )� σ 4( ). (5)

Equations 4, 5 are the same as Eqs. 1, 2, except that the past
of y is added to both. Hence, σ(4) is lower than σ(3) if and
only if z adds information that is not already provided by y.
Therefore, the conditional analysis will not show y-conditional
G-causality

G
y( )

z→x � ln
σ 3( )

σ 4( ) (6)

for the indirect z → x links shown in Figures 1B,C, but only for
the direct link in Figure 1A. Besides, cases (b) and (c) can be
distinguished by a pairwise analysis of z and y (disregarding x).
This idea can be extended to a set of arbitrarily many variables,
but for the scope of this work three variables (time series xt, yt, and
zt) are sufficient.

Stationarity is an important prerequisite for the AR
framework, because the process’ characteristics (i.e., the
coefficients ϕi, ψi, τi) must not change over time. A stationary
process is a process with a constant mean and a finite covariance
function that is invariant to shifts in time. This requirement is
problematic, because many physiological signals are inherently
non-stationary [Ivanov et al. (1996); Goldberger et al. (2002)].
Here, we probe stationarity with the Augmented Dickey-Fuller
(ADF) test, which is widely accepted [Paparoditis and Politis
(2018)] and based on ARmodeling, so that it operates in the same
framework as G-causality analysis.

In summary: G-causality is based on the improvement of a
forecast by including additional data from other signals, and it
can only be applied to stationary data. It can be used to
distinguish between the three setups shown in Figure 1, if
pairwise analysis and conditional analysis are applied. With G-
causality the existence of a causal link can be decided as yes/no
question with a statistical test, and quantified with the G-value.

2.3 Method 2: Bivariate Phase Rectified
Signal Averaging
While the G-causality approach is sensitive to non-stationarities, the
Phase Rectified Signal Averaging method [PRSA, Bauer et al.
(2006b)] and its bivariate version [BPRSA, Schumann et al.
(2008)] have been developed to study noisy, non-stationary
signals. The methods are especially suitable for quasi-periodic
time-series, where perturbations reset the signal phase at random
times. The BPRSA approach can easily be extended to an arbitrary
number of signals. The idea is to align windows of the target signal x
that are in the same phase with respect to one or more trigger signals
(y and z) and average over all these windows. The procedure is
described in detail in Schumann et al. (2008), see also Bauer et al.
(2006b,a, 2009); here we only provide a brief overview.

FIGURE 1 | Illustration of a direct link (A) and indirect links (B,C) from source z to target x. An indirect link can be due to a causal chain z→ y→ x (B) or due to time
delayed effects of y on x and zwith a longer time delay towards x. Solid edges represent direct links, dashed edges the resulting indirect links; L is the time lag operator.
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The easiest and standard way to define trigger events from
signal z is to consider all positions, where the signal increases, i. e.,
zt] > zt]−1 for a trigger event at time t]. We denote all m trigger
points by t], ] = 1, . . ., m. Any other criterion that returns a
Boolean value (trigger event or no trigger event) is possible,
including criteria that are based on multiple signals. Each trigger
event at t] leads to an anchor point xt] of the target signal. Then,
windows of width 2L are chosen around each anchor point xt],

xt]−L, xt]−L+1 . . . , xt]+L−1{ }. (7)
The resulting BPRSA function for a potential z → x link is the
point-wise average of xt in all of these m windows,

BPRSAj � 1
m

∑m
]�1

xt]+j, j � −L,−L + 1, . . . , L − 1. (8)

The choice of anchor points is supposed to guarantee that in
each window the index j = 0 is at a similar phase of the
physiological process. The average over all windows is an in-
phase superposition and therefore insensitive to non-
stationarities (that are slower than the time scale L) and artifacts.

If there is no relation between z and x, and m is large, the
resulting BPRSA time series will be constant everywhere, however
with statistical fluctuations. This also happens if the choice of
trigger points is not appropriate to reveal a relation between the
signals, because it does not reflect the underlying processes. Any
significant deviation from a constant value for any BPRSAj must
be interpreted as a relation between z and x, but not necessarily in
the sense of G-causality. A positive (negative) peak in the BPRSA
time series indicates the positive (negative) influence of a trigger
event in z on x, or—in case the peak is at a negative index j—from
x on z. Thus, BPRSA yields temporal information on cause and
effect, just like G-causality. However, we would like to note
that—unlike G-causality analysis—BPRSA does not model the
time series data in any way, but relies on an averaging procedure
assuming that the selected trigger event criterion is suitable for
the relation between the considered signals and that the Central
Limit Theorem holds. Therefore, it is expected that longer data
are needed for a reliable identification of causality relations with
BPRSA.

Since no test for the statistical significance of such a relation
has yet been proposed1, we have studied and compared four tests.
The null hypothesis is that there is no causality between z and x. If
this holds, the trigger points are randomly distributed and each of
the BPRSAj values, Eq. 8, is an average over independent random
numbers and thus normally distributed due to the central limit
theorem.

The following statistical tests are considered and compared:

1) The one-sided Kolmogorov-Smirnov test [Massey (1951)]
measures the difference between the probability density
functions of the BPRSA and a normal distribution,
providing a p-value for the null hypothesis.

2) The two-sided Kolmogorov-Smirnov test [Massey (1951)]
compares the distribution of the real BPRSA values with
the distribution of BPRSA values for random trigger points
(i.e., disregarding the trigger signal z), also providing a p-value
for the null hypothesis.

3) The Anderson-Darling test [Anderson and Darling (1952)]
works similar to this idea, but introduces a weight function
that increases the importance of the tails of the distribution.
This is particularly useful if deviations from normality appear
as abnormally high or low values instead of deviations in the
middle of the bell-shaped curve.

4) The Shapiro-Wilk test [Shapiro and Wilk (1965)] is the most
powerful of these tests according to Razali and Wah (2011). It
is based on variance analysis and compares the variance of a
normal distribution with the estimated variance of the sample.

In summary: The existence of causality in the sense of
BPRSA can be tested by checking whether the BPRSAj

values are normally distributed. In addition, the peak height
can provide quantitative information on the link strength.
Compared to G-causality, this method is less sensitive to non-
stationarities, and it is a model-free approach. However,
BPRSA cannot distinguish direct from indirect links unless
more evolved trigger criteria could be established for a
conditional analysis.

2.4 Results and Discussion: Comparison of
G-Causality and BPRSA Causality
2.4.1 Pairwise Analysis
With the tools presented above, both G-causality and BPRSA
offer ways to test pairwise causality of two signals. In the first step,
we quantified the detection limits. To this end, two signals of 1/f α

noise with α = 0.5 were created by the Fourier filtering method
[Makse et al. (1996); Bashan et al. (2008)]. Starting with white
noise, the power spectrum was rescaled to follow 1/f 0.5 behavior,
and—back in the time domain—the values were rescaled to have
unit variance. These original noise signals are called o1 and o2.
The signals z and x are defined as

z � o1, x � L3z × q + o2 × 1 − q( ), 0< q< 1. (9)
Here, L shifts the series by one time unit, so that L3 shifts it by three
units; the number three was arbitrarily chosen. The unitless number q
quantifies how much x is influenced by z. This setup was designed to
test what influence is necessary for causality to be detected by the
differentmethods. The length of the time series was varied from26 = 64
to 216 = 65,536 samples. The length of the BPRSA time series was
chosen to be 2L= 30, triggering on a rising signal [Bauer et al. (2006a,b);
Schumann et al. (2008)]. Especially for the short time series large parts
of the data had to be discarded due to overlap ofwindowand boundary.
While choosing a shorter window length might result in less discarded
data, the averaged BPRSA time series would become shorter and
therefore impair the quality of the statistical tests. The boundary
effects are negligible for longer time series. For all tests the null
hypothesis was no causality. In our setup z causes x with varying
strength q. Therefore, a test yields the correct result if the null hypothesis
is rejected.We rejected the null hypothesis for p-values lower than 0.05.

1Previous publications focus on the analysis of definitely existing relations [Bauer
et al. (2006b,a); Schumann et al. (2008); Bauer et al. (2009, 2010)].
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Figure 2 shows the dependency of the threshold for the
identification of existing causality on sample size and link
strength for all proposed tests. All experiments were averaged
over 20 realizations in order to get a statistically reliable result.
The confidence intervals are given by the 5th and 95th percentile
of a bootstrap distribution, which is obtained from 100 random
samples. For each sample, we drew 20 out of the 20 realizations,
allowing individual realizations to be picked multiple times.

In the limit of large sample sizes and strong influence q, all
tests correctly identified causality (upper right corner of
Figure 2). In the limit of small sample size and weak
influence q, all tests failed (lower left corner of Figure 2). The
detection limit is given by the p = 0.05 isoline. For small sample
sizes (64 points or less) BPRSA is unable to detect causality, no
matter how strong the link, possibly because a non-negligible
amount of data near the boundaries is discarded. The two-sided
Kolmogorov-Smirnov test failed to detect causality in all cases
and is therefore not shown in Figure 2. The one-sided version
turned out more powerful, but remained weaker than the

Anderson-Darling test and the Shapiro-Wilk test. These results
are in line with the findings of Razali and Wah (2011). The G-
causality test detects causality for smaller sample sizes and weaker
influences than all BPRSA tests.

In the calculations for Figure 2, BPRSA causality methods
turned out to need about two times more computational effort
than G-causality, and all BPRSA tests failed for short time series.
As mentioned above, it is expected that BPRSA needs longer data
for a significant result, since it relies on the Central Limit
Theorem. For nonstationary data, BPRSA can still be applied,
but even longer data would be needed, since the non-
stationarities must cancel out in its averaging procedure.
Furthermore, BPRSA is dependent on the choice of the trigger
criterion. Only if a trigger criterion that fits to the physiological
process is chosen, relationships can be established. Without prior
knowledge, several trials with all kinds of criteria need to be done
in order to probe for BPRSA causality. G-causality does not
require such procedure, but also cannot be used to test for
different kinds of time-varying relations between the
considered signals in a system with non-stationary dynamics.
Therefore, BPRSA can still be advantageous if specific hypotheses
on the nature of the signals’ relations exist or if the signals’
relations change in time.

Both methods provide information on the direction of coupling,
while methods such as cross correlation analysis or cross-spectral
analysis are symmetric in the sense that a coupling of signal x with
signal z is always also a coupling of z with x. BPRSA and G-causality
both overcome this problem. We note that in Figure 2 a power-law
relationship between the critical q-value as function of the sample size
can be seen, however, a detailed study of this scaling is beyond the
scope of the present work.

In summary, G-causality is a more powerful method than BPRSA
causality. Still, the BPRSA method is more likely to be able to handle
nonstationarities because of its natural strength in phase-aligning the
signal parts. However, methods have been developed to overcome the
stationary constraint and apply time-dependent AR-models [Ding
et al. (2000)], which allow the definition of time-dependent G-
causality [Hesse et al. (2003)]. We concluded that G-causality is
better suited to detect causality in multivariate, stationary setups and
continued our analysis with this method.

2.4.2 Conditional Analysis
Consider the setup shown in Figure 1C. There is a relation between z
and x, but it only exists because of the common influence of y. While
BPRSA cannot distinguish between a direct influence of z on x or a
common driver y on z and x, with G-causality these cases can be
separated. This is a real strength ofG-causality, and in this subsection
we are testing the limits of such detection. One way to formalize the
setup is by extending Eq. 9 to three variables, with o1, o2 and o3 again
being independent 1/f 0.5 noise signals,

y � o2;
z � L2y × qy→z + o1 × 1 − qy→z( ); 0< qy→z < 1
x � L4y × qy→x + o3 × 1 − qy→x( ); 0< qy→x < 1.

(10)

We performed pairwise and conditional analysis, see Eqs. 1–5,
and tested for G-causality with an F-test for signals of sample size

FIGURE 2 | Model data according to Eq. 9 is tested for pairwise
causality with statistical tests applied to G-values (blue) and BPRSA values
(yellow and green). The plot shows the p = 0.05 isolines for each test as
function of the influence strength q and the length of the time series (xt
and zt). The isolines’ 5 and 95% confidence interval are marked by dashed
lines, computed from a bootstrap procedure. The tests correctly reject the null
hypothesis above the shown isolines towards the top right corner of the plot.
Clearly, the lowest detection limit is achieved by G-causality (applying the
F-test). BPRSA causality with the Anderson-Darling test (3) and the Shapiro-
Wilk test (4) is less sensitive by a factor of two to three in the influence strength
q as compared to G-causality. BPRSA causality with the one-sided
Kolmogorov-Smirnov test (1) is even less sensitive by another factor of 2, while
the two-sided Kolmogorov-Smirnov test (2) only yielded the correct result in
the top right corner of the plot and is therefore not shown. There seems to be a
power-law relationship between the critical q-value as function of the sample
size, q ~ N−0.5.
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215 = 32,768 and varying influences qy→z, qy→x. The results,
averaged over 20 realizations, are shown in Figure 3.

We identified three regions:

• Region 1: Both, the pairwise and the conditional test do not
reject the null hypothesis that there is no G-causality. This
would lead to the conclusion that there is neither a direct
nor an indirect link, which is false. The reason for the false
negative result is that the influence coefficients qy→z and
qy→x are too weak. Longer time series will shift this detection
limit towards the lower left corner of the figure.

• Region 2: While the pairwise test rejects the null hypothesis,
the conditional analysis does not. This leads to the
conclusion that there is a z → x link, which can only be
indirect. This is indeed true and corresponds to the case
shown in Figure 1C.

• Region 3: Both the pairwise as well as the conditional test
reject the null hypothesis, indicating that there is a direct
z→ x link, which is false. If qy→z and qy→x become so strong
that x and z are both very tightly coupled to y, G-causality is
mistakenly detected. In practice, this limitation rarely
applies, because signals are usually not free of noise and
not coupled so strongly.

If y is known, the method works for log qy→z + log qy→x = log
(qy→z · qy→x) ≥ log (0.02) = −1.7 (dashed line, Region 2), as long as
the link is not extremely strong (Region 3). If the influence is too
weak, no causality will be detected at all. If it is extremely strong,
the indirect link will be mistaken for a direct link.

In practice, measurements will always be limited to certain
variables, and there is no way to exclude the possibility of external
variables y that constitute a common cause to the measured
signals. For this reason, there can practically never be certainty if a
detected link is direct or due to a common source. One approach
to overcome this is to include as many variables in the model as
possible, which is, however, problematic because an increasing
number of parameters must be estimated in this procedure. Prior
knowledge on the modeled process can improve the
interpretation of the results.

3 PART B: RECONSTRUCTION OF CAUSAL
PHYSIOLOGICAL NETWORKS

In this part, conditional G-causality is applied to detect direct
physiological couplings between heart rate, breathing rate, and
EEG amplitude during sleep. We will show in the following that
the couplings among these physiological systems differ between
groups of young healthy subjects, elderly healthy subjects and
patients with obstructive sleep apnea (OSA). OSA is the
temporary, complete or partial disruption of normal
respiration during sleep, caused by a reduced tonus of upper
airways muscles [Dempsey et al. (2010)]. The increased negative
intrathoraic pressure upon inspiration causes the upper airways
to collapse, which results in a drop of blood oxygen and increase
in blood carbon dioxide levels. This leads to an arousal from sleep,
followed by recovery of normal respiration [Penzel et al. (2003b)].

3.1 Methods
Physiological time series were derived from polysomnography
(PSG) measurements that were recorded in several European
sleep laboratories between September 1997 and April 2000 as part
of the EU-project SIESTA [Klosch et al. (2001)]. Before any
analysis, we chose 36 young, healthy subjects with excellent signal
quality (young control group—YC, aged 29 ± 6), 36 elderly,
healthy subjects (elderly control group—EC, aged 51 ± 10) and
43 age-matched, elderly subjects with an apnea-hypopnea index
(AHI) of at least 10 per hour (OSA group, aged 51 ± 9). AHI is the
mean number of apnea and hypopnea events per hour when
considering a full-night sleep. Genders are distributed
approximately equally in the YC (17 male, 19 female) and EC
group (18 male, 18 female), but the OSA group consists mostly of
male participants (38 male, five female). We address this in the
results section. For each subject, we derived:

• Instantaneous heart rate H as the inverse RR-interval,
i.e., the time between two successive heart beats.

• Instantaneous breathing rate B from the inverse interval
between two extrema of the raw respiration signal. The raw
respiration signal was chosen for each subject individually
as the best-quality signal out of effective oronasal airflow
and stretch belts placed around abdomen and thorax.

• EEG α instantaneous amplitude by applying a bandpass
filter on the EEG signal using the α frequency band
7.8–15.6 Hz.

FIGURE 3 | G-causality F-test for z → x for the setup from Figure 1C,
according to Eq. 10. The correct result is obtained in Region 2. For further
details see text.
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Subsequently, signals H and B were interpolated to 1 Hz
resolution, for EEG α, averages over non-overlapping windows
of one second length were taken. The resulting three time series
were all sampled at 1 Hz, and were averaged to resolutions of 2, 5,
10, 15, 30, and 60 s (i.e., 0.5, 0.2, 0.1, 0.067, 0.033, and 0.017 Hz)
for further analysis (see Figure 4).

For each block of 30 seconds, sleep stages were scored by a
sleep technician on the basis of the PSG signal following the rules
by Rechtschaffen and Kales [Hobson (1969)]: light sleep (stages 1
and 2—LS), deep sleep (stages 3 and 4—DS) and REM sleep. Each
triple of time series (H, B and EEG α) was partitioned into patches
of continuous sleep of the same sleep stage, typically several
minutes, and then normalized to zero mean and unity variance.

Since stationarity is a crucial precondition for G-causality
analysis, a stationarity test must precede further analysis. We
based our algorithm on the widely accepted Augmented Dickey-
Fuller Test [ADF test, Paparoditis and Politis (2018)]. On the one
hand, only stationary patches can be used forG-causality analysis, on
the other hand the percentage of usable patches should be
maximized in order to obtain the best possible statistics. A trade-
off can be achieved through variation of the model order. For each
continuous patch of the same sleep stage, all three signals of the node
triple (i.e., heart rate, respiration rate and EEG amplitude) are tested
for stationarity on amodel of order 5. If all of them are stationary, the
G-value is calculated according to Eq. 6. If at least one is
nonstationary, the same procedure is repeated with model order
4, then with model order 3. If the process can still not be modeled as
stationary at model order 3, the patch is split in half and the same
procedure is applied to both shorter patches, motivated by the fact
that shorter time series aremore likely to be sufficiently free of trends
and variability in variance and autocorrelations. A stopping
condition is set when the patches reach a length of less than six
times the time series resolution (i.e., 90 s length is the lower limit for
time series of 15 s resolution), because this is the minimum length
required for an AR model of order five. If this condition is met, the
data is considered nonstationary and discarded.

Of all the data that are potentially available, the percentage of
stationary patches is shown in Figure 5. It does not make sense to
analyze data for resolutions broader than 15 s as most of these
patches do not contain stationary data. This is mainly because of
two reasons: Firstly, there are too few sufficiently long sleep stage
epochs for resolutions > 15 s, and secondly, windows with an
equal amount of data points but lower temporal resolutions cover
longer sleep episodes, which are less likely to be stationary
(i.e., compare high resolution 1 s time series with low
resolution 60 s data). In our datasets, the second reason is
dominant.

Even though resolutions above 15 s are of interest for research
on long-term correlations, they cannot be included because there
is not enough stationary data. For each group the conditional G-
values (Eq. 6) for each time series resolution and each sleep stage
were averaged and weighted by the length of the patch that they

FIGURE 4 | Example of 3 min segments from a YC subject for heart rate (top panel), breathing rate (middle), and EEG α amplitude (bottom) for four different
temporal resolutions. The sleep stage is light sleep. For examples from other sleep stages, see Supplementary Figures S1, S2.

FIGURE 5 | Percentage of stationary sleep episodes as function of the
time scale for the three different sleep stages. Note that wake epochs were
excluded from the analysis because of insufficient statistics.
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were calculated from in order to account for the varying length of
sleep stages.2

Error bars were calculated using a bootstrap method [Efron
and Tibshirani (1993)]: Out of all G-values that comprise a data
point, a new set of G-values was randomly drawn. This set is as
large as the original one, but the same G-value can be picked
several times, while others are not included in a particular
sample. Overall, 100 such samples were drawn and for each
sample the (unweighted) mean was calculated. The standard
deviation of these means is an estimate for the standard

deviation of the actual mean, the standard error, and is
plotted as error bar in Figure 6.

Each analyzed data patch consists of only tens to hundreds of
data points, which is not enough to reliably detect weak links with
the G-causality test (see Figure 2). Therefore, we compare our
results with surrogate data that allow for an alternative way to
validate G-causality: If the average G-value obtained for a
particular group and pair of signals is different from the G-
value of the surrogate data, G-causality can be assumed. For our
surrogate analysis, the respiration rate, heart rate and EEG
amplitude data were taken from three different subjects, so
that no G-causality can be expected between any of the three
signals [Toledo et al. (2002); Bartsch et al. (2007)]. An alternative
method would be the adjusted-amplitude Fourier transform
(AAFT) method [Theiler et al. (1992); Lavanga et al. (2020)].

3.2 Results
The results for all groups and the surrogate data are shown in
Figure 6. The figure shows two of the six combinations in each

FIGURE 6 | Pairwise conditional G-causality for the three groups [YC—(A), EC—(B), OSA—(C)] and surrogate data (D). Error bars represent the standard error
and were calculated using a bootstrap method [Efron and Tibshirani (1993), see text for more details].

2We note that theoretically G-values cannot be negative, because this would imply a
reduction in predictive power caused by adding new information, which is
impossible. In the worst case the new information could just be neglected, which
should lead to a G-value of zero. However, because of numerical reasons the
minimization algorithm used for the parameter calculation of the models can
lead to negative G-values in few cases. Instead of artificially removing those cases
theywere kept because in other cases the algorithm slightly overestimates theG-value.
Removing the negative values would introduce a bias towards higher G-values.
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panel, grouped into pairs of signals for each sleep stage. The error
bars represent the standard error calculated from the bootstrap
procedure described above. Particularly for LS and REM, the
difference in directionality increases for larger time windows
(i.e., lower resolutions at 10 and 15 s), however, for 15 s the error
bars are quite large in many cases. For this reason, time series with
10 s resolution were chosen to generate the physiological networks
presented in Figure 7. Thus, the strength of the connection line
between two nodes (“network link”) is proportional to theG-value at
a resolution of 10 s. While Figure 7 presents less information than
Figure 6, it is more helpful to find patterns and recognize important
differences between the groups.

It is important to note that a time series resolution of 10 s does
not mean that the relevant processes happen within 10 s. The
model that is used to calculate the G-values comprises three to
five past terms, which means that the processes occur in time
windows of 30–50 s, but by default neglect causalities from
processes with dynamics on time scales shorter than 10 s.

Subfigures (a), (b) and (c) in Figures 6, 7 show the results for the
YC, EC and OSA group, respectively. The results for YC and EC are
qualitatively very similar: The interaction betweenheart and respiration
rate is symmetrical in light and deep sleep across all time scales and
takes low to medium values (G < 0.04 at all times). This changes in
REM sleep, where the causality from respiration to heart rate clearly
dominates over the opposite direction, especially towards larger time

scales. The G-value for the causality from respiration to heart rate at
time scale 2 seconds is slightly increased (see Figures 6A,B only),
which is an indicator of respiratory sinus arrhythmia (RSA), a well-
known effect ofmodulation of the heart ratewithin the breathing cycle.
During inspiration, the heart rate accelerates and it slows down during
expiration [Angelone and Coulter (1964)]. This RSA peak disappears
for REM sleep, which is in agreement with Bond et al. (1973), who
describe “a total dissociation between respiration and rhythmic heart
rate variability” during REM sleep. However, while RSA (which acts
on relatively short time scales on the order of a breathing cycle)
disappears in REM sleep, the causal relation from respiration to
heart rate during REM sleep is shifted to longer time scales. The
RSA peak is also absent in OSA subjects during non-REM sleep (see
Figure 6C), possibly indicating reduced RSA for OSA subjects.

The coupling between EEG α amplitude and respiration rate
remains, for all groups, constantlyweak and symmetrical throughout
all sleep stages and time series resolutions. The only deviation from
this behavior is a slight increase in the causality from EEG α to
respiration rate at larger time scales for EC andOSA subjects in REM
sleep, which could be related to aging. Regarding the coupling
between heart rate and EEG α, there is a clear dominance from
EEG α to heart rate during light and REM sleep. This coupling
almost completely vanishes during deep sleep, causing EEG α to
heart rate coupling to become more symmetric.

The network plots 7(a) and (b) show the small differences between
the YC and EC group. Furthermore, throughout all groups there is
only little G-causality during deep sleep. This is in accordance with
results of Bashan et al. (2012) and Bartsch et al. (2015) who show low
network connectivity during deep sleep using a time delay stability
approach to quantify interactions. At the same time, during deep
sleep there is also a loss of long-term correlations in heart beats
[Bunde et al. (2000); Penzel et al. (2003b)] as well as in respiratory
inter-breath intervals [Schumann et al. (2010)]. Such long-term
correlations, however, exist during light and REM sleep and are
assumed to be due to influences from the sympathetic nervous system
on cardiac and respiratory dynamics [Schmitt et al. (2009); Bashan
et al. (2012)]. In contrast, deep sleep, which is considered the most
restorative sleep stage [Dijk (2009)], is characterized by sympathetic
withdrawal and greatly reduced influence of the autonomic nervous
system on heart and respiratory dynamics. In our results, this is
reflected by a more autonomous behavior of all three nodes for all
groups. A careful comparison between the YC and EC group reveals
that EEG α to heart rate coupling may slightly increase with age. For
OSA patients this effect is even more pronounced and accompanied
by an overall increase of coupling strength also between heart and
breathing as well as EEG α to breathing, possibly indicating a
decreased deep sleep quality because of sleep apnea.

In general, the OSA group follows similar sleep-stage patterns as
the YC and EC groups. Distinct differences, however, can be seen
in the overall strength of coupling: First andmost strikingly, theG-
causality fromheart rate to respiration rate ismuch stronger during
light and REM sleep than in the other two groups. This can be
attributed to different relaxation speeds of heart and respiratory
rate after apnea events. Following an episode of sleep apnea, heart
and respiration rate are increased [Penzel et al. (2003a; 2016)], but
the relaxation of the heart rate happens faster than the relaxation of
the respiratory rate. This leads to a situation where changes in heart

FIGURE 7 | Network plots for conditional G-causality at a time series
resolution of 10 s. The arrow width is directly proportional to the link strength
(G-value). (A) YC. (B) EC. (C) OSA. (D) Surrogate.
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rate precede changes in respiratory rate and thus lead to a detection
of increasedG-causality, as indicated by higherG-values. Secondly,
there is an increased G-causality from EEG α amplitude to
breathing during REM sleep.

Figures 6D, 7D show results for the surrogate data. As expected,
the G-value is very close to zero in all cases at all resolutions, with
small deviations for the 15 s data point, which could be due to the
large error bars at this resolution. These results can be used as a
baseline showing that randomly assembled physiological data yield
negligibleG-values, and that any deviation from zero, as seen in all
other sub-figures, are physiologically meaningful results.

Performing the same analysis without testing for stationarity
yields slightly different results (see Supplementary Figures S4,
S5). Values at short timescales are mostly unchanged, but it seems
that the G-value is overestimated in some cases when ignoring the
stationarity test. Additionally, the standard errors are larger, especially
for longer time scales. Therefore, we conclude that only stationary
data yield non-spurious network links when applying theG-causality
method. The fact that the OSA group consists of mostly male
subjects does not influence our results. We repeated the analyses
of Figures 6, 7 excluding all female subjects from YC and EC, and
obtained similar results (see Supplementary Figures S6, S7).

4 CONCLUSION AND OUTLOOK

In Part A, the causality methods BPRSA and G-causality were
analyzed. Both methods are strong analysis tools to detect
interrelations and causality in time series, but also have
limitations. While BPRSA has rather weak testing methods and
fails to distinguish direct from indirect links, the application of G-
causality is limited due to the fact that it requires time series to be
stationary (which is often not the case in physiology). For the setups
investigated in this work, G-causality yielded better results than
BPRSA causality tests. The G-value provides a measure of the
strength of causality, and it can be computed for pairwise
(bivariate) and conditional (multivariate) setups, where the latter
includes additional information beyond the causing and the caused
signal. Important for Network Physiology, this enables the distinction
between direct and indirect links as well as links that arise from a
common source signal. While (in contrast to BPRSA) theG-causality
method is constrained by the stationarity condition, there are
extensions to the method that circumvent the problem [Hesse
et al. (2003); Dhamala et al. (2008); Bressler and Seth (2011)]. A
particular, simple way to overcome this restriction is to split non-
stationary data into shorter, stationary patches. Further investigations
and alternative approaches to overcome the stationarity condition
could be promising future research pathways.

In part B, the G-causality method was applied to the node triple
consisting of heart rate, respiration rate, and EEG α amplitude,
recorded from subjects with and without OSA. The G-value was
calculated for time series resolutions between 1 and 15 s. Causal
physiological networks were constructed based on theseG-values. In
all groups, strong coupling between respiration and heart rate and
from EEG α to heart rate can be observed in light and REM sleep. In
contrast, during deep sleep, the three nodes are practically
“decoupled”, especially for the young group. This result supports

earlier findings and the understanding of deep sleep as the sleep stage
with lowest sympathetic tone. Because aging changes sympathovagal
balance due to a reduced parasympathetic tone [Schmitt et al.
(2009)], leading effectively to higher sympathetic activity, the G-
causality coupling in deep sleep is slightly increased for the elderly
and OSA groups. Apart from deep sleep, results are very similar for
young and elderly healthy subjects, however, OSA subjects show some
distinct differences. Compared to the other two groups, the most
prominent difference is an increase in G-causality from heart rate to
respiration rate in light and REM sleep due to different relaxation
times of heart rate and respiration rate, which are both increased at the
end of an apnea event. Disturbances in respiratory sinus arrhythmia
during light and deep sleep and a stronger causal link from EEG α to
breathing rate during REM sleep can also be observed inOSA subjects.

Our findings point to the conclusion that sleep of persons with
sleep apnea is not only different with respect to breathing
behavior, but also with respect to coupling mechanisms like
respiratory sinus arrhythmia and deep sleep decoupling.
Comparisons with surrogate data prove the significance of the
obtained results. Overall, the application to causal networks in
subjects with and without sleep apnea demonstrates the
usefulness of G-causality as a measure for physiological coupling.
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Assessing rheoencephalography
dynamics through analysis of the
interactions among brain and
cardiac networks during general
anesthesia
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Cerebral blood flow (CBF) reflects the rate of delivery of arterial blood to the

brain. Since no nutrients, oxygen or water can be stored in the cranial cavity due

to space and pressure restrictions, a continuous perfusion of the brain is critical

for survival. Anesthetic procedures are known to affect cerebral

hemodynamics, but CBF is only monitored in critical patients due, among

others, to the lack of a continuous and affordable bedside monitor for this

purpose. A potential solution through bioelectrical impedance technology, also

known as rheoencephalography (REG), is proposed, that could fill the existing

gap for a low-cost and effective CBF monitoring tool. The underlying

hypothesis is that REG signals carry information on CBF that might be

recovered by means of the application of advanced signal processing

techniques, allowing to track CBF alterations during anesthetic procedures.

The analysis of REG signals was based on geometric features extracted from the

time domain in the first place, since this is the standard processing strategy for

this type of physiological data. Geometric features were tested to distinguish

between different anesthetic depths, and they proved to be capable of tracking

cerebral hemodynamic changes during anesthesia. Furthermore, an approach

based on Poincaré plot features was proposed, where the reconstructed

attractors form REG signals showed significant differences between different

anesthetic states. This was a key finding, providing an alternative to standard

processing of REG signals and supporting the hypothesis that REG signals do

carry CBF information. Furthermore, the analysis of cerebral hemodynamics

during anesthetic procedures was performed by means of studying causal

relationships between global hemodynamics, cerebral hemodynamics and

electroencephalogram (EEG) based-parameters. Interactions were detected

during anesthetic drug infusion and patient positioning (Trendelenburg

positioning and passive leg raise), providing evidence of the causal coupling

between hemodynamics and brain activity. The provided alternative of REG

signal processing confirmed the hypothesis that REG signals carry information

on CBF. The simplicity of the technology, together with its low cost and easily

interpretable outcomes, should provide a new opportunity for REG to reach
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standard clinical practice. Moreover, causal relationships among the

hemodynamic physiological signals and brain activity were assessed,

suggesting that the inclusion of REG information in depth of anesthesia

monitors could be of valuable use to prevent unwanted CBF alterations

during anesthetic procedures.

KEYWORDS

general anesthesia, cerebral blood flow, electroencephalography,
rheoencephalography, Poincaré plot descriptors, Granger causality

1 Introduction

In the last decades, medical devices have flooded operating

theaters to provide healthcare professionals updated and reliable

information on patient vital signs, as well as advanced algorithms

aiming at improving patient care. Nonetheless, certain clinical

signs are not included in standard patient monitoring during

surgeries under general anesthesia, such as cerebral blood flow

(CBF). Even though CBF is monitored in critical patients, it is not

part of the standard of care since it is invasive or extremely

unwieldy and expensive.

General anesthetics are known to affect brain

hemodynamics, provoking changes in CBF that might

interfere in the transit times of the anesthetics towards the

target organ, the brain. The main research hypothesis of this

research (Slupe and Kirsch, 2018; Tauber et al., 2021; Porta et al.,

2022) suggests that CBF plays an important role in anesthesia

andmight be useful to enhance current algorithms used for depth

of anesthesia monitoring. Moreover, to be accepted for standard

clinical practice, a CBFmonitor to be used for anesthesia titration

should be easy to use, non-invasive and cost-effective, provide

real time information and guarantee that it does not cause

alterations in blood flow during its use.

Rheoencephalography (REG) is an explorative method of

cerebral circulation that measures electrical impedance which

allows a continuous observation of the blood flow in different

cerebral regions. The principle of this method is that blood is a

good electrical conductor, therefore any increase in blood volume

will lead to a reduction of the brain electrical resistance, and this

will be reflected in a decrease of REG pulse amplitude given a

constant current. Therefore, REG would comply with the

requirements of low-cost and effective CBF monitoring tool

(Bodo, 2010; Moskalenko, 2015). REG signals have

traditionally been analyzed by assessing the geometrical

properties of the blood pulse waves in the time domain

(Montgomery et al., 1995; Bodo et al., 2004), such as the

duration of the anacrotic phase of the pulse, the maximum

and minimum amplitudes, the slope and the area under the

curve.

The closest technology to REG is impedance cardiography

(ICG), since both share the same working principle based on the

electrical bioimpedance. ICG measures the electrical impedance

of the thoracic cavity and allows the assessment of several

hemodynamic variables, such as cardiac output (CO), stroke

volume (SV), left ventricular ejection time (LVET) and systemic

vascular resistance (SVR), among others (Siedlecka et al., 2015).

Due to the similarities between REG and ICG, and the positive

clinical outcome of the use of ICG, the rationale behind the

analysis of ICG waves will be applied to REG recordings for CBF

estimation.

Within the field of time series nonlinear analysis, many

features have been developed for signals characterization, such

as the Lyapunov exponents, fractal dimension, Poincaré plot

analysis or entropy. Even though none of those algorithms has

been applied to REG signals, some authors have studied their

performance in processing similar data, such as intracranial

pressure (ICP) recordings. For instance (Lu et al., 2012), used

multiscale entropy applied to ICP recordings to study their

complexity in brain injured patients, concluding that

multiscale entropy was a good predictor of mortality and

favorable outcome in those patients. Another metric entropy,

approximate entropy (ApEn) was selected by (Hornero et al.,

2006) to analyze ICP signals in the pediatric population,

providing evidence that decreased complexity in ICP was

related to events of intracranial hypertension. However,

entropy calculations are often cumbersome for real time

applications; they could be a powerful tool for post hoc

analysis but are not the optimal solution for patient bedside

monitoring. In contrast, within the set of nonlinear algorithms

applied to biomedical signals, Poincaré plot analysis has shorter

computation times and has also been extensively used in

physiological signal processing, namely in heart rate variability

(HRV) analysis (Khandoker et al., 2013), hence being a suitable

tool for REG analysis.

Related to Poincaré plot analysis (Dimitriev et al., 2016),

analyzed by means of nonlinear dynamics based on Poincaré

plots how the state of anxiety affected heart rate variability. Voss

et al. have previously published on the effects of age and gender in

short-term heart rate variability analyzed with Poincaré plots

among other features (Voss et al., 2015). Other biological signals

have been studied by means of Poincaré plots. Hayashi et al.

related the delayed coordinates map to changes provoked by

anesthesia in the electroencephalogram (EEG) (Hayashi et al.,

2015). Hoshi et al. used standard features of Poincaré plot

analysis to distinguish between healthy subjects and patients

suffering coronary disease, concluding that the SD1/SD2 index
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provided useful information for that purpose (Hoshi et al., 2013).

Even though some features extracted from Poincaré plots are

known to be highly correlated to linear time domain information,

some others reflect nonlinear behaviors, complementing the

diagnosis capabilities of heart rate variability signals, such as

the SD1/SD2 parameter or the Complex Correlation Measure

(Karmakar et al., 2011).

The causality analysis of different physiological signals has

gained popularity in the last decade. Most of the causality studies

of biomedical signals have been published on the analyses of

causal relationships between heart period, systolic arterial

pressure (SAP) and respiration (Faes et al., 2011; Porta et al.,

2014). Relevant clinical results have arisen such as the work from

(Rield et al., 2010) exploring short-term couplings between

respiration, systolic and diastolic blood pressure and heart

rate, in order to have a deeper understanding on pre-

eclampsia, which is responsible for significant neonatal and

maternal mortality. Additionally, Porta et al. studied the

causal interactions between heart period, respiration and

systolic arterial pressure at rest and after the administration of

different drugs, concluding that Granger causality is a suitable

tool to describe cardiovascular control and the effects of the

administered drugs (Porta et al., 2013). Schulz et al. studied

cardiorespiratory causality couplings involved in the processes of

an autonomic dysfunction present in patients suffering from

schizophrenia (Schulz et al., 2020).

Besides interactions in the hemodynamics system, several

publications have focused on the application of Granger

Causality on EEG signals. For instance (Juan et al., 2017),

studied the connectivity across EEG frequency bands in

patients with Alzheimer’s disease, detecting increments of

connectivity in the δ band, together with decrement

connectivity in other EEG frequency bands. They concluded

that Granger Causality (GC) was suitable for Alzheimer

diagnosis, since the disconnection among different brain

regions is a well-known effect of the disease. Another

application of GC in EEG signals was presented by (Coben

and Mohammad-Rezazadeh. 2015), who analyzed pre and

post-ictal periods of epileptic seizures to study the

connectivity between brain regions in epileptic patients.

The GC principles have also been applied to EEG signals

during anesthesia. Nicolaou et al., developed a system capable of

classifying EEG signals as belonging to awake or anesthetized

patients with a 96% accuracy, using as inputs the interactions

between EEG signals from different brain areas (Nicolaou and

Georgiou, 2014). Moreover, in (Nicolaou et al., 2012) an accuracy

of 98% was obtained for loss of consciousness detection,

suggesting that GC could be used as an awareness detection

system. Barrett et al. analyzed steady state EEG signals during

propofol induced anesthesia recorded from the anterior and

posterior brain areas, detecting a bilateral increase in GC for

the power spectral density in the β and γ bands during loss of

consciousness (Barrett et al., 2012).

The interactions between the brain and the hemodynamic

system have also been the target of many research projects.

Duggento et al. analyzed functional magnetic resonance

imaging data, respiration and heartbeat recordings, concluding

that GC is a suitable tool to assess causality among brain and

heart activity (Duggento et al., 2016). In (Greco et al., 2019), it

was studied the causality between hemodynamics and EEG

activity during the exposure to pleasant or unpleasant visual

stimulation, to relate the reaction to emotions with the changes at

the cardiovascular and brain level. Pleasant images increased the

coupling from the left hemisphere to the heart, while unpleasant

images increased the coupling with the right one, when

compared to GC indices at rest. An analysis of brain,

cardiovascular and respiratory dynamics was conducted by

(Zanetti et al., 2019) combining information-theoretic

measures with network physiology during different levels of

mental stress. Results indicated that a characterization of these

networks is possible in terms of the amount of information

transferred within and between the brain and peripheral

subnetworks. Faes et al. analyzed causal relationships brain-

heart and brain-brain during sleep and concluded that both

kinds of interactions were effectively taking place (Faes et al.,

2015). Moreover, brain-heart interactions were also studied by

(Won et al., 2019) for different sedation levels in anesthetic

procedures. EEG spectral power and heart rate signals were

analyzed, showing a higher connectivity from brain to heart

when compared with the opposite direction for all sedation levels,

finding as well a higher coupling in deeper sedation states.

Therefore, the aim of this study is to track cerebral blood flow

(CBF) changes during anesthesia by means of

rheoencephalography (REG) signals. Thus, REG signals are

analyzed using a traditional approach based on the extraction

of geometrical properties in the time domain as well as non-linear

features extraction by Poincaré plot analysis. Those analyses are

applied to different anesthesia scenarios. Moreover, interactions

between depth of anesthesia monitoring, REG signal based

features and other clinical variables recorded during general

anesthesia procedures, such as EEG, infused drugs, heart rate

and mean arterial pressure are analyzed by means of causal

Granger analysis. This last step aims at detecting cause-effect

relationships taking place during general anesthesia procedures,

involving interactions between different physiological systems to

better characterize the effect of anesthetics on brain

hemodynamics.

2 Materials and methods

2.1 Data acquisition

The analyzed database is composed of 88 female patients

enrolled for elective gynecological surgeries under total

intravenous anesthesia (TIVA) with propofol and
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remifentanil. Exclusion criteria considered were cardiac or

neurosurgeries, as well as traumatic brain injuries.

Summarized demographic data, the set of drugs used for

anesthesia management, control of hemodynamics and the

occurrence of administration of each drug are specified in

Table 1.

The initial dosage of propofol at anesthesia induction was

5.8 μg/ml (ranging from 4.8 to 7 μg/ml) and was administered

together with remifentanil targeted at 3.8 ng/ml (ranging from

2 to 6.2 ng/ml). After induction, those target dosages for

propofol and remifentanil were reduced to 3.4 μg/ml (from

2.5 to 4.3 μg/ml) and to 3.4 ng/ml (from 2.3 to 4.5 ng/ml),

respectively. From the 88 patients suitable for analysis, 22 were

intubated through laryngoscopy while in the remaining 66 a

Laryngeal Mask Airway (LMA) was used. Patient positioning

was also considered in this work, two different positions were

assessed besides the standard supine position in steady state

anesthesia: 24 patients (27.3%) were kept in the horizontal

plane for the whole procedure, while passive leg raising took

place in 51 cases (57.9%) and 13 participants (14.8%) were

placed in Trendelenburg position (surgical position where the

subject lies supine, or flat on their back, with their feet raised

higher than their head).

All patients were monitored from 3 min prior to the

anesthesia induction until 3 min after extubating. Patient

monitoring consisted on the use of a Depth of Anesthesia

device, the Conox (Fresenius Kabi, Bad Homburg, Germany)

providing the electroencephalogram (EEG) signal and the qCON

index that evaluates the hypnotic effects in the brain, as well the

qCO (Quantium Medical, Barcelona, Spain) device, an electrical

bioimpedance monitor for rheoencephalography (REG) data

collection, and a Dräger (Dräger, Lübeck, Germany)

hemodynamic monitor for the heart rate (HR in bpm,

1 value/s), systolic blood pressure (SBP, mmHg), diastolic

blood pressure (DBP, mmHg) and mean arterial pressure

(MAP in mmHg, 1 value/s). Data from the qCO monitor

were continuously collected at a sampling frequency of 250 Hz

and EEG from Conox with a sampling rate of 1024 Hz, and a

resolution of 3 bytes in the range of ± 374 mV.

Data from those monitors, as well as data from the TCI

pumps were recorded through the RugloopII software (Demed,

Belgium). Moreover, annotation of relevant events during the

surgical procedure was performed through the same software, to

make sure the occurrence of those events was synchronized with

all other clinical data.

The clinical trial followed the principles of the Declaration of

Helsinki for human subjects. All participants were informed

about the study and gave their written consent prior to

participation.

Recorded signals were classified in 5 different categories

depending on the clinical state of the patients during general

anesthesia:

− Awake, corresponding to the data recorded prior to

anesthesia induction.

− Loss of consciousness (LOC), data recorded right after LOC

is detected and while intubation is being prepared.

− Steady state anesthesia (Anes), data recorded during

anesthesia, without burst suppression episodes (EEG

pattern with continuous alternation between high-voltage

slow waves or even sharp waves and depressed or even

suppressed electrographic activity) and after intubation and

patient positioned for surgery.

− Burst suppression rate (BSR), data belonging to periods in

which the Conox BSR index provides values higher than 10.

The burst suppression rate (BSR), is defined as the fraction of

EEG spent in suppression per epoch, is the standard

quantitative measure used to characterize burst suppression.

− Recovery of consciousness (ROC), data belonging to the end

of the procedure, once drug infusion has been stopped and

patient is ready to be extubated.

2.2 Signal preprocessing

An automatic artefact rejection algorithm was applied to the

recorded EEG signals, in order to avoid processing noisy data

resulting from patient movements or the use of other devices,

mainly the surgical knife. The traditional frequency band analysis

(δ, θ, α, ß) was performed on EEG signals filtered between 0.1 and

50 Hz with a second-order Butterworth filter resampled at

256 Hz. Subsequently, time series were processed in moving

time windows of 2 s with 1 s overlap, thus providing new

results every second.

REG data were screened for artefact rejection and processed

with linear filters. A high-pass filter was applied to REG signals

using a fourth-order Chebyshev type II, with 0.1 Hz stop band

frequency to eliminate DC fluctuations, followed by a

TABLE 1 General anesthesia dataset.

Patients demographic data

Age (years) 49.5 ± 16.4

Height (cm) 161.3 ± 7.0

Weight (kg) 68.1 ± 13.9

BMI (kg/m2) 26.2 ± 5.2

Drugs administered during surgical procedures

Propofol 88/88 (100%)

Remifentanil 88/88 (100%)

Rocuronium 43/88 (48.9%)

Atropine 16/88 (18.2%)

Ephedrine 7/88 (7.9%)

Methadone 16/88 (18.2%)

Demographic data values are presented by mean value ± standard deviation.

BMI: body mass index.
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Butterworth second-order low-pass filter with a cut-off frequency

at 4 Hz. Subsequent calculations of REG data were applied to

sliding windows of 8 s, resulting in a new value every second.

Finally, once time series were preprocessed, they were

synchronized with all other data collected during the surgical

procedures, such as hemodynamic variables, drug infusion

dosages and events recorded during surgery.

2.2.1 Geometric features of
rheoencephalography signals

The classical methods used to assess REG signals rely on the

analysis of the geometry of the pulse waves (González et al.,

2018). In this way, for REG recordings, the minimum and

maximum values of each pulse wave and their respective

derivatives were automatically detected, and the following

features were calculated: amplitude range of the pulse

(Range), time between two consecutive maximums (Δtmax,

samples), time between two consecutive minimums (Δtmin,

samples), time between each minimum and the following

maximum (Δtmin-max, samples), the slope (α, a.u.) of the

pulse during Δtmin-max interval, the area under the pulse

wave (Area, Ω s), the systolic area (AreaSyst, Ω s) that is

calculated as the area of a pulse wave delimited by a

minimum and its consecutive maximum, the maximum

derivative (δmax, Ω s−1) and the range of the derivative

(δrange, Ω s−1). In addition, blood volume and blood flow

estimations were also considered. The relative cerebral blood

volume (CBVrel, Ω) was calculated as:

CBVrel � δmax LVET (1)

where the left ventricular ejection time (LVET, ms) was

considered as a function of HRREG (bpm), LVET =

416–1.56 HRREG (Willems et al., 1970), computing HRREG

from the difference between two consecutive maximums of

the REG curve. The cerebral blood estimation (CBFest, Ω s−1)

was calculated as:

CBFest � CBVrel HRREG/60 (2)

2.2.2 Poincaré plot analysis of
rheoencephalography signals

Two-dimensional Poincaré plot was constructed from REG

sequences, with REG(t) at x-axis and REG (t+τ) at y-axis, where t
moves from 1 to N-τ samples, being N the length of the series.

The choice of the time lag τ is critical, since very low values would

not allow the attractor to expand, with a majority of points laying

on the diagonal line (Chen at al., 2007), while very large values of

τ would cause deformations of the attractor due to the fact that

pairs of samples would be uncorrelated (Fraser and Swinney,

1986; King et al., 1987). Since no previous work has been done on

the analysis of REG attractors during general anesthesia, a wide

range of τ values was analyzed (from 1 to 20 samples) in order to

provide a τ value able to give the maximum possible information

related to the dynamics hidden in REG signals. Figure 1 shows a

rheoencephalography (REG) signal trend and its related Poincaré

plot reconstruction of a patient.

To generate quantitative information on the distribution of

REG signals in the Poincaré plots, several features were extracted

from the reconstructed attractor:

− SD1 and SD2 which respectively are the standard deviation

(SD) of REG(t) dispersion perpendicular to the diagonal line (the

identity line) and the SD of the REG(t) dispersion along the diagonal

line. They are computed following Eq. 3 where var is the variance.

SD1 �
�����������������������
var(REG(t) − REG(t + τ)�

2
√ )

√

SD2 �
�����������������������
var(REG(t) + REG(t + τ)�

2
√ )

√ (3)

FIGURE 1
(A) Rheoencephalography (REG) signal trend and (B) Poincaré plot reconstruction of a REG signal with time lag τ = 5 samples.
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− Area of the ellipse (SDarea), calculated as SDarea = π

SD1 SD2

− Ratio SDratio, defined as SD1/SD2

− Correlation R, measured between REG(t) and REG (t+τ)
signals.

− Complex correlation measure (CCM) (Karmakar et al.,

2009), identifies all possible sets of three consecutive

attractor points of the Poincaré plot and the area of the

triangle they define is calculated (González, et al., 2018). In

cases where all three points are aligned, the area is considered

to be zero. CCM is computed as indicated in Eq. 4:

CCM(τ) � 1
SDarea (N − 2) ∑N−2

i�1
‖M(i)‖ (4)

where M(i) is the matrix including the coordinates of the three

points from each subset whose determinant is the area of the

triangle formed by them and SDarea is the normalizing

constant and represents the area of the fitted ellipse over

Poincaré plot.

2.2.3 Granger causality analysis
Granger Causality (GC) has been applied to the collected

signals to assess causality between pairs of time series. It relies on

a hypothesis test in which the null hypothesis is that, given two

time series x1(t) and x2(t), x2(t) does not cause x1(t). In order to

assess the causality between the signals, autoregressive models

(AR) are built, the restricted and the unrestricted model. The

restricted model (univariate AR model) uses only past values

from the signal x1(t) to predict its future values, while the

unrestricted model (bivariate ARX model) uses past values

from both x1(t) and x2(t) to predict values of x1(t). The

restricted model is defined as:

x1(t) � a1 +∑L
i�1
a1,i x1(t − i) + ε1r(t) (5)

x2(t) � a2 +∑L
i�1
a2,i x2(t − i) + ε2r(t) (6)

while the unrestricted model are represented by:

x1(t) � b1 +∑L
i�1
b1,i x1(t − i) + ∑L

i�1
c1,i x2(t − i) + ε1u(t) (7)

x2(t) � b2 +∑L
i�1
b2,i x2(t − i) + ∑L

i�1
c2,i x1(t − i) + ε2u(t) (8)

where aji, bji and cji are the estimated coefficients of the models of

order L, being j = {1,2} and the residuals (prediction errors) of the

models are εjr(t) and εju(t).
The Schwartz’s Bayesian Information Criterion (BIC)

(Schwartz 1978) was selected to fit the order L of the model,

since it has been published to be more consistent (Zhang, 1993)

and demonstrated (Nicolau and Georgiou, 2013) to provide

reliable values for EEG models under general anesthesia. The

optimal order L was a priori tested from 1 to 10 samples

(i.e. 10 s).

To decide if the null hypothesis is rejected, an analysis of

variance test was carried out. In this context, F-statistic is

computed as:

F � SSR/dn
SSE/dd (9)

where SSR is the sum of squares explained by the regression, SSE

is the sum of squares errors, dn equals the number of independent

variables and the degrees of freedom of the SSE are dd = N - dn -1.

If the statistic is found significant at level p-value<0.05, the null
hypothesis is rejected and causality from the time series x2(t) to

x1(t) is considered to take place. Following a similar procedure,

the causality from times series x1(t) to x2(t) is evaluated. The

magnitude of the causality from x1(t) to x2(t) and x2(t) to x1(t)

was measured respectively as function of the model error

variances:

Cx1→x2 � ln
var(ε2r)
var(ε2u)

Cx2→x1 � ln
var(ε1r)
var(ε1u)

(10)

2.2.4 Data analysis and statistical analysis
The features extracted from each constructed two-

dimensional Poincaré plot on REG(t) signals were SD1, SD2,

SDratio, SDarea, R and CCM. A statistical analysis was

performed to select the τ value from 1 to 20 samples (based

on González et al., 2018) that allows those features to statistically

distinguish the clinical states of a general anesthesia (Awake,

LOC, Anes, BSR, ROC).

Furthermore, a statistical analysis was applied on REG

geometric features (Range, Δtmax, Δtmin, Δtmin-max,

Slope α, Area, AreaSyst, δmax, δrange, CBVrel and

CBFest), REG Poincaré plot descriptors (SD1, SD2,

SDratio, SDarea, CCM and R), global hemodynamics

(HR, MAP), the effect site concentrations of propofol and

remifentanil (CePropo, CeRemi) and EEG based-

parameters related to depth of anesthesia (qCON and the

EEGδ, EEGθ, EEGα and EEGß energy bands) in order to

statistically study their performance in discriminating

between the consecutive clinical states of the patients

during general anesthesia.

For each patient, all these descriptors were calculated on each

time-varying 8-s sliding-window at each state and their averaged

value calculated. ANOVA for repeated measures for normal

distributions and Friedman test for non-normal distributions

verified by the Kolmogorov–Smirnov test were applied. This

analysis was followed by the post hoc non-parametric paired

samples Wilcoxon test. A significant level p-value<0.01
(Bonferroni correction) was considered.
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Causality analysis was applied among pairs of simultaneous

feature values, calculated on each time-varying 8-s sliding-

window obtained from each patient undergoing general

anesthesia. All windows of all data were synchronized. The

features taken into account were those REG(t) geometric

descriptors (named as CBF lin), REG(t) Poincaré plot

descriptors (named as CBF PP), global hemodynamics

features (HR and MAP), the effect site concentrations of

propofol (CePropo) and remifentanil (CeRemi) and EEG

based-parameters. The coupling strength between those

families of features were analyzed under different general

anesthesia events:

a) Steady state anesthesia (n = 84 segments): 400s periods in

which effect site concentrations of propofol and remifentanil

were constant, and no surgical events took place.

b) Propofol infusion (n = 29 segments): periods from 200s

before to 200s after the change of the target effect site

concentration of propofol, while remifentanil was kept

constant.

c) Remifentanil infusion (n = 16 segments) periods from 200s

before to 200s after the change of the target effect site

concentration of remifentanil, while propofol was kept

constant.

d) Atropine infusion (n = 16 segments): periods from 200s

before to 200s after the administration of atropine.

e) Ephedrine infusion (n = 7 segments): periods from 200s

before to 200s after the administration of ephedrine.

f) Trendelenburg position (n = 12 segments): periods from 200s

before to 200s after the positioning of the patient from the

horizontal supine position to the Trendelenburg position.

g) Passive leg raising (n = 48 segments) periods from 200s before

to 200s after the elevation of patient legs in preparation for

surgery.

Among the set of clinical events in which causality was

studied, the periods of steady state anesthesia were used as

reference, thus the results from the other events, such as

atropine infusion or Threndelenburg positioning were

compared to those obtained during stable anesthesia.

Given a pair of variables x1(t) and x2(t), causality indices

Cx1→x2 and Cx2→x1 were compared through statistical hypothesis

testing. Normality of the data was assessed by means of a

Kolmogorov-Smirnov test and subsequently, t-student test was

applied. This analysis was followed by the post hoc non-

parametric U Mann-Whitney test. Statistical significance level

p-value < 0.005 was considered.

Causality diagrams are drawn for each general anesthesia

event. Whenever causality indices were higher in one-way, with

statistical significance, this direction of causality is considered

and represented in the causality diagrams with a single arrow.

The occurrence of the interactions between two groups was

computed as the number of patients presenting at least one

statistically significant causal relationship between any pair of

features belonging to the two groups under analysis.

Moreover, for each event, Spearman correlations (ρ) between
the causality indices and patient demographics were calculated and

considered as confounding factors for p-value <0.01, due to the large
number of correlations being analyzed simultaneously. Only

correlations reaching absolute values above 0.5 were included for

analysis. Those relations that presented a correlation higher than 0.5,

a regression analysis based on one variable was constructed for

analyzing the influence of patient demographics on causality indices.

3 Results

3.1 Estimating Poincaré plot time-lag on
rheoencephalography signals

To determine the time lag τ of the Poincaré plot of REG

sequences able to provide the maximum possible information

related to the dynamics hidden in REG signals, a wide range of τ

values is studied (τ = {1, . . ., 20} samples).

The evolution of each Poincaré plot descriptor as a function

of the time lag τ for each anesthesia phase is depicted in Figure 2.

SD1 increases as τ increases in all states, reaching higher values

for awake and LOC, which are also characterized by a wider

interquartile range. In contrast, SD2 remains stable for all τ

values, providing a higher score during Awake and LOC states.

Subsequently, their ratio (SDratio) increases as τ increases, with

similar interquartile ranges among the various anesthesia stages,

while the ellipse area (SDarea) shows higher values for Awake

and LOC, with a higher dispersion in those two states as τ

increases compared with dispersions of Anes, BSR and ROC

states. The behavior of the correlation R decreases for increasing

τ values in all anesthesia phases, and showing similar

interquartile ranges across states. Finally, CCM is the only

feature showing a local maximum, identified in low τ values

(τ ≤ 5) and providing its highest values in Anes state.

All the extracted features (SD1, SD2, SDratio, SDarea, CCM

and R) present differences between the targeted set of anesthetic

states. The statistical significance of those differences is assessed in

Figure 3, SD1 and SD2 showed the ability to differentiate between

LOC and Anes (p-value <0.01) for all τ values, while they failed in
reflecting differences among all other transitions between

consecutive states. Regarding SDratio, significant differences

were detected in both transitions Awake vs LOC and LOC vs

Anes. Nonetheless, the τ range in which p-values were under the

significance threshold (p-value <0.01) was reduced to the intervals
8 to 20 samples and 12 to 20 samples, respectively.

The correlation R provided a similar performance but with

narrower τ ranges for significance: 10 to 20 samples for the

transition between Awake and LOC and 17 to 20 samples for

LOC and Anes. The ability of SDarea to distinguish between

consecutive states was limited to the transition between LOC and

Frontiers in Network Physiology frontiersin.org07

González et al. 10.3389/fnetp.2022.912733

96

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.912733


Anes, preserving the statistical significance for all τ values tested.

CCM is the only feature that does not distinguish between LOC

and Anes, but it provides statistical significant results

(p-value <0.01) in the transition between Anes and BSR for τ

from 18 to 20 samples. Moreover, it also reflects differences

between Awake and LOC states for τ > 10 samples.

Considering the selection of the optimal τ values to assess

differences between consecutive anesthesia states (Awake vs

LOC, LOC vs Anes, Anes vs BSR and BSR vs ROC) using the

set of features extracted from the Poincaré plot, low τ values have

proved to fail in reflecting changes while the highest range of the

tested interval showed a better performance considering all

features and anesthesia states (Figure 3). Therefore, the value

τ = 20 samples was chosen to be appropriate to detect changes in

anesthesia states.

3.2 Analysis of the behaviors of the
anesthesia state descriptors

Figure 4 includes a set of data recorded from one subject

participating in the clinical trial. The anesthesia induction started

at t = 500s approximately, with the infusion of remifentanil and

propofol (Figure 4C). A decrease in qCON (Figure 4A) took place

as a consequence of the effect of the drugs, resulting in the

transition from the awake state to anesthesia around t = 700s.

Different events can be observed, steady state anesthesia

(Figure 4A) begins right after the drug concentrations of

propofol and remifentanil are lowered and stabilized at t =

1000s and lasts for 1000s (Figure 4C). Immediately afterwards,

the remifentanil effect site concentration was increased,

originating the new clinical event that seems to be followed by

FIGURE 2
Evolution of SD1, SD2, SDratio, SDarea, CCM and R as a function of τ for the set of anesthesia states under analysis: Awake, LOC, Anes, BSR and
LOC. Median values are graphed, together with the 25th and 75th quartiles represented with dashed lines.
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EEGδ(t), EEGθ(t), EEGα(t), EEGß(t) energies (Figure 4B), HR

(Figure 4D) and δmax (Figure 4E).

The mean and standard deviation values of REG geometric

features calculated on each anesthesia state are depicted in

Table 2. Statistical significance level obtained comparing each

two consecutive states (Awake vs LOC, LOC vs Anes, Anes vs

BSR and BSR vs ROC) are also indicated. Values of REG Range,

δmax, δrange, CBVrel and CBFest were higher at LOC state and

minima at Anes, p-value < 0.005. Regarding the systolic area

(AreaSyst), its value increased from BSR to ROC state, p-value =

0.006. No statistical differences were presented between the

remainder consecutive states.

Results concerning to Poincaré plot features of REG

segments for τ = 20 samples are reported in Table 2.

SD1 presented similar values, in average, in Awake vs LOC,

decreasing during anesthesia (LOC, m ± std = 0.015 ± 0.009;

Anes, m ± std = 0.009 ± 0.003; p-value = 0.00005) and slightly

increasing for BSR and ROC, but without recovering the initial

values at Awake and LOC. Descriptor SD2 had a similar

performance, except for the transition between Awake and

LOC, where SD1 showed similar values while SD2 increased.

Since SDarea is proportional to the product of SD1 and SD2, it

followed similar behavior described for those two features

comparing LOC vs Anes (p-value = 0.00007). Regarding

SDratio and R descriptors, they presented opposite trends, as

expected, with similar variances for all patient states: SDratio

showed an absolute minimum for LOC, while R had its

maximum in this same state. Both descriptors were able to

statistically differentiate Awake vs LOC (p-value = 0.0053 and

p-value = 0.0065, respectively) and LOC vs Anes (p-value =

0.0076 and p-value = 0.00873, respectively), as it is indicated in

Table 2. Finally, CCM presented a maximum for the Awake state

and a minimum for LOC state (p-value = 0.0095), presenting

similar values for all states except for LOC.

FIGURE 3
Statistical significance (p-values) obtained for the comparison of the median values of each Poincaré feature (SD1, SD2, SDratio, SDarea, CCM
and R) among consecutive anesthesia states. The post hoc non-parametric paired samples Wilcoxon test was applied. Grey areas represent intervals
in which the graphed parameter shows statistical significance of p-value<0.01.
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The trends of all extracted features present changes along the

anesthetic procedure for τ = 20 samples, mainly during LOC.

However, only some of those changes are statistically significant.

All the features except CCM were able to detect changes in the

transition between LOC and Anes states. Regarding the

differences between the Awake and LOC states, SDratio, CCM

and R provided statistically significant results while none of the

features led to positive results for the transitions among other

anesthesia states.

The evolution of the EEG energy, qCON, HR and MAP

across the identified anesthesia states is presented in Table 2.

It is observed that qCON index statistically differentiates

(p-value < 0.01) Awake to LOC, Anes to BSR and BSR to ROC

state transitions, showing decreasing values from Awake to

BSR but increasing at the recovery of consciousness (ROC)

state (qCON (m ± std): Awake, 95.9 ± 8.04; LOC, 47.0 ± 13.6;

Anes, 40.1 ± 9.4; BSR, 24.2 ± 8,7; ROC, 71.1 ± 15.0). The MAP

could statistically differentiate LOC vs Anes (MAP (m ± std):

LOC, 89.2 ± 20.6; Anes, 76.7 ± 15.4; p-value = 0.008), while

HR was not able to differentiate any transition. Regarding to

EEG frequency bands, a similar trend was observed in EEGα
and EEGß with high statistical differences when comparing

Awake vs LOC and BSR vs ROC. Both EEGδ and

EEGθ energies only statistically differentiated BSR vs ROC

states.

3.3 Causality analysis at different
anesthesia events

For every general anesthesia event (steady state anesthesia,

propofol infusion, remifentanil infusion, atropine infusion,

ephedrine infusion, Trendelenburg position and passive leg

raising) all couplings between pairs of variables (CBF lin, CBF

PP, HR, MAP, EEG based-parameters, CePropo, CeRemi) are

presented through Granger causality, with the aim of studying

FIGURE 4
Clinical data recorded during anesthetic procedure: (A) qCON index, (B) EEG frequency bands, (C) propofol and remifentanil effect site
concentrations (CePropo and CeRemi, respectively), (D) heart rate (HR) and mean arterial pressure (MAP) and (E) δmax and SDratio REG features.
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the causality between different physiological systems. For this

reason, causalities among pairs of REG features are not

considered as well as the causal links between pairs of EEG-

based parameters.

3.3.1 Steady state anesthesia
The main interactions between the physiological variables

(HR, MAP, EEG based-parameters, CBF lin and CBF PP

features) during steady state anesthesia are presented in

TABLE 2 Averaged values of the rheoencephalography REG(t) signal features, electroencephalogram EEG(t) features, and the clinical variables such as
heart rate andmean arterial pressure, recorded during general anesthesia. The differences between consecutive anesthetic states (Awake vs LOC,
LOC vs Anes, Anes vs BSR, BSR vs ROC) are indicated by means of the statistical significance level.

Index Awake LOC Anes BSR ROC Awake LOC Anes BSR

LOC Anes BSR ROC

Cerebral hemodynamic features

CBF lin

Range 0.103 ± 0.061 0.130 ± 0.094 0.062 ± 0.025 0.071 ± 0.031 0.082 ± 0.049 n.s *** n.s n.s

Δtmax 379.2 ± 222.2 361.4 ± 154.4 277.0 ± 93.3 272.9 ± 45.8 357.5 ± 179.9 n.s • n.s n.s

Δtmin 383.0 ± 227.0 352.1 ± 150.2 275.4 ± 80.5 285.8 ± 69.4 359.0 ± 186.0 n.s n.s n.s n.s

Δtmin-max 182.7 ± 145.0 162.7 ± 107.1 197.4 ± 74.8 114.6 ± 36.3 179.5 ± 133.0 n.s • n.s n.s

Slope(α) 9E-4 ± 6E-4 11E-4 ± 9E-4 8E-4 ± 3E-4 8E-4 ± 4E-4 7E-4 ± 4E-4 n.s • n.s n.s

Area 417.6 ± 257.8 393.9 ± 184.4 287.8 ± 83.2 301.0 ± 72.0 387.6 ± 210.1 n.s • n.s •
AreaSyst 198.7 ± 159.8 181.5 ± 123.3 112.2 ± 77.7 120.7 ± 37.6 194.8 ± 150.1 n.s n.s n.s *

δmax 19E-4 ± 12E-4 23E-4 ± 17E-4 12E-4 ± 4E-4 13E-4 ± 6E-4 14E-4 ± 8E-4 n.s *** n.s n.s

δrange 30E-4 ± 20E-4 33E-4 ± 22E-4 18E-4 ± 6E-4 20E-4 ± 9E-4 22E-4 ± 12E-4 n.s *** n.s n.s

CBVrel 1.015 ± 0.669 1.128 ± 0.822 0.593 ± 0.194 0.660 ± 0.295 0.747 ± 0.412 n.s *** n.s n.s

CBFest 51.91 ± 40.34 48.76 ± 31.14 33.99 ± 12.42 37.51 ± 18.86 34.87 ± 19.90 n.s ** n.s n.s

CBF PP

SD1 0.015 ± 0.009 0.015 ± 0.009 0.009 ± 0.003 0.010 ± 0.004 0.011 ± 0.006 n.s *** n.s n.s

SD2 0.045 ± 0.027 0.058 ± 0.043 0.027 ± 0.011 0.031 ± 0.014 0.036 ± 0.022 n.s *** n.s n.s

SDratio 0.339 ± 0.074 0.295 ± 0.074 0.345 ± 0.054 0.329 ± 0.053 0.316 ± 0.060 * * n.s n.s

SDarea 9E-4 ± 11E-4 12E-4 ± 16E-4 3E-4 ± 2E-4 4E-4 ± 3E-4 5E-4 ± 6E-4 n.s *** n.s n.s

CCM 3E-5 ± 2E-5 3E-5 ± 3E-5 3E-5 ± 1E-5 3E-5 ± 1E-5 3E-5 ± 2E-5 * n.s n.s n.s

R 0.789 ± 0.084 0.834 ± 0.073 0.785 ± 0.059 0.802 ± 0.056 0.814 ± 0.063 * * n.s n.s

Global hemodynamics

HR 69.8 ± 13.8 64.9 ± 10.3 61.4 ± 9.6 60.1 ± 10.2 66.1 ± 14.0 n.s n.s n.s n.s

MAP 99.1 ± 12.6 89.2 ± 20.6 76.7 ± 15.4 76.2 ± 16.0 81.4 ± 16.3 • * n.s n.s

EEG based-parameters

qCON 95.9 ± 8.04 47.0 ± 13.6 40.1 ± 9.4 24.2 ± 8.7 71.1 ± 15.0 *** • *** ***

EEGδ −0.153 ± 0.095 −0.173 ± 0.100 −0.238 ± 0.152 −0.207 ± 0.117 −0.595 ± 0.298 n.s n.s n.s ***

EEGθ −3.374 ± 0.627 −3.616 ± 0.616 −3.561 ± 0.618 −3.459 ± 0.670 −2.943 ± 0.540 n.s n.s n.s ***

EEGα −4.387 ± 0.714 −3.360 ± 0.801 −2.954 ± 0.771 −3.245 ± 0.584 −2.278 ± 0.849 *** n.s n.s ***

EEGß −5.250 ± 0.905 −4.411 ± 0.654 −4.368 ± 0.640 −4.320 ± 0.634 −2.951 ± 0.800 *** n.s n.s ***

Significant levels (p-value): n.s not significant; • < 0.05; * < 0.01; ** < 0.005; *** < 0.0005.

Value of the descriptor is expressed by mean ± standard deviation.
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Figure 5. Up to 99% of the analyzed patients showed a bilateral

causal relationship between CBF lin and CBF PP parameters,

since both sets of variables come from the same time series.

Regarding the interactions between HR and CBF features,

causalities from CBF to HR were more frequent than in the

opposite direction, with the linear CBF (CBF lin) features

showing a stronger role over the nonlinear ones (CBF PP).

This relevance of the linear features is preserved in the

causality study from and to MAP, even though in this case

the causalities from MAP to the CBF features are more frequent

than the opposite ones.

Both global (HR and MAP) and cerebral hemodynamics

(CBF lin and CBF PP) presented causal relationships with EEG

activity. EEG based-parameters had a similar occurrence of

causality (5% of patients) towards HR and MAP, while HR

presented a higher rate of causality towards EEG (29% of

patients) than MAP (24% of patients). Regarding cerebral

hemodynamics, the most relevant results rely on the 65% of

causality from the CBF lin features to the EEG variables, which

is one of the highest occurrences of interactions of the full

system considered and therefore strongly suggests a

modulation of EEG activity as a result of changes in the

REG signals represented by their linear features. The

Poincaré extracted features (CBF PP) showed a lower

occurrence of causality (54% of patients) on EEG variables,

but still higher than the ones provided by global

hemodynamics HR and MAP of 29% and 24% of patients,

respectively. Finally, the causality from EEG to CBF features

was also higher for the linear features (CBF lin) when

compared to the nonlinear parameters (CBF PP) extracted

from REG signals, with 64% and 50% of patients, respectively.

No correlations were found between the causality indices and

patient demographics and neither influences due to age, height,

weight or BMI based on regression analysis.

3.3.2 Propofol infusion event
The propofol effect site concentration, CePropo, was added to the

analysis since it is not constant in general anesthesia scenario. However,

FIGURE 5
Main interactions between global hemodynamics (HR and
MAP), EEG based-parameters, REG geometric features (CBF lin)
and REG Poincaré plot (CBF PP) parameters during steady state
anesthesia. The post hoc non-parametric U Mann-Whitney
test and statistical significance level p-value < 0.005 were
considered.

FIGURE 6
Causal interactions from (A) CePropo to: (A1) EEG based-
parameters (δ, θ, α, ß) and global hemodynamics (HR, MAP), (A2)
REG geometric features and (A3) REG Poincaré plot features. (B)
Causal interactions between global hemodynamics, EEG
based-parameters, REG geometric features (CBF lin) and REG
Poincaré plot (CBF PP) parameters in propofol concentration. The
post hoc non-parametric U Mann-Whitney test and statistical
significance level p-value < 0.005 were considered.
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it should only be considered as a causing variable, since it is collected

from infusionpumps, resulting from the calculationof pharmacokinetic

models and is not influenced by other physiological systems.

The interactions from the propofol effect site concentration

(CePropo) towards all the collected physiological data are

represented in Figure 6A. Causality in the opposite direction

was not assessed since it does not have any clinical interpretation

as previously stated. Among all the EEG bands (Figure 6A1),

CePropo has the highest interaction with α (28% of patients),

with similar results for its causality towards the qCON index

(24% of patients). This indicates that the changes in propofol

dosages are mainly affecting the α band and therefore projected

in the overall depth of anesthesia assessment represented by the

qCON index. The influence of CePropo in HR was detected in

21% of the patients, while causal relationships with MAP were

limited to one patient. Regarding the effects of CePropo in the

linear features extracted from REG signals (Figure 6A2), the

causal relationships with higher occurrence were those towards

Δtmin-max and AreaSyst, identified in 34% of the patients,

followed by a 31% occurrence of causalities towards CBVrel,

δmax and δrange. The less frequent interactions took place from
CePropo to Δtmax and Δtmin. The Poincaré plot features

(Figure 6A3) showed smaller occurrences, the higher ones

associated to SD1, SDratio and R with 28% of patients,

suggesting that CePropo is affecting the short-term variability

of REG signals rather than the long-term one.

Besides the direct effects of propofol concentration changes

in all the physiological variables under study, the causal

relationships among hemodynamics and EEG might also be

affected by the administration of the hypnotic drug. Figure 6B

shows an overview of the existing causal interactions between

global hemodynamics (HR, MAP), cerebral hemodynamics (CBF

lin and CBF PP) and EEG related variables. Even though the

detected interactions are similar to those during steady state

anesthesia, several differences can be appreciated. For instance,

the occurrence of causal interactions from HR and MAP towards

CBF PP, CBF lin and EEG are higher, suggesting that changes in

HR caused by propofol are projected in CBF and EEG.

Additionally, causal effects from CBF lin to HR (76% of

patients) and EEG (76% of patients) are also more frequent

under propofol infusion, while the interactions between MAP

and HR have a lower occurrence. Overall, changing the propofol

effect site concentration elicits a higher number of interactions

from both cerebral and global hemodynamics towards EEG.

The causality indices and patient demographics showed

statistically significant correlations during changes in propofol

effect site concentration (Table 3). Age proved to be correlated to

the causality indices computed from REG features towards MAP,

with correlations obtained for the REG slope (α), δrange, CBFest,
SDratio and R. Among those, the linear parameters (REG slope

(α), δrange and CBFest) presented increasing relations for

increasing ages, while for the Poincaré based features (SDratio

and R) the opposite behavior was detected. Moreover, qCON

towards the REG slope (α) positively correlated with age. The

influence of patient’s height in the causality indices was only

relevant for the causal links from SDratio and R to MAP, with

taller patients related to higher values of the causality indices. In

contrast, weight showed a more determinant role, patients with

higher weight presented lower causality indices from CePropo to

MAP, from Δtmin to MAP and from CBFest to the EEGα band.

Nonetheless, the highest correlations were detected for the

causality links from the EEGθ band to Δtmin and AreaSyst,

with a positive correlation. Finally, BMI demonstrated to be

relevant in the interactions between REG features and EEG. BMI

was positively correlated with the causality relation form the

EEGθ to Δtmin-max relation and AreaSyst, while it presented a

negative correlation with the indices calculated from Δtmin-max

TABLE 3 Spearman correlation (ρ) between the causality indices and
patient demographic.

From To Demographic ρ

During changes of propofol effect site concentration

CBFest MAP age↑ 0.573

Slope (α) MAP age↑ 0.523

δrange MAP age↑ 0.548

qCON Slope (α) age↑ 0.574

R MAP age↓ −0.535

SDratio MAP age↓ −0.553

R MAP height↑ 0.543

SDratio MAP height↑ 0.537

EEGθ AreaSyst weight↑ 0.618

EEGθ Δtmin weight↑ 0.621

CBFest EEGα weight↓ −0.537

Δtmin MAP weight↓ −0.577

EEGθ AreaSyst BMI↑ 0.504

EEGθ Δtmin-max BMI↑ 0.518

AreaSyst EEGδ BMI↓ −0.569

Δtmin-max EEGδ BMI↓ −0.524

During changes of remifentanil effect site concentration

CCM MAP age↑ 0.668

HR EEGθ weight↑ 0.672

HR SD1 weight↑ 0.646

EEGß δmax weight↑ 0.640

EEGα Δtmax weight↑ 0.752

AreaSyst HR weight↓ −0.673

Δtmin-max HR weight↓ −0.707

CBVrel qCON weight↓ −0.698

EEGδ R weight↓ −0.639

EEGθ Slope (α) weight↓ −0.643

EEGß δmax BMI↑ 0.637

EEGδ R BMI↓ −0.695

EEGδ SDratio BMI↓ −0.658

Increasing causality is denoted by ↑
Statistical significance p-value < 0.01.
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and AreaSyst to EEGδ. Influence of BMI was found in these

causality indices on the level of adjusted R2 = 0.7. However, no

influences in causality indices due to age, height or weight based

on regression analysis could be found.

3.3.3 Remifentanil infusion event
Causalities from CeRemi towards other variables should be

taken into account since, as discussed for CePropo, CeRemi data

are the result of the calculation of pharmacokinetic models and

are not affected in any way by other physiological data, only

depend on patient demographics.

Causal interactions from CeRemi towards EEG based-

parameters, global hemodynamics (HR and MAP), linear

features (CBF lin) and nonlinear features (CBF PP) are

depicted in Figure 7A. The effects of CeRemi on EEG

variables (Figure 7A1) have occurrences up to 25%, almost

inexistent towards the qCON index, but slightly higher for α,
θ and δ bands. However, causal relationships between CeRemi

and global hemodynamics represented by HR and MAP were

more frequent, reaching an incidence of 31% and 38%,

respectively. Regarding the causal effects of CeRemi towards

the linear features of CBF (Figure 7A2), the highest occurrences

took place in the causality from CeRemi to CBVrel (up to 50%),

followed by δrange and δmax (44% of patients). The weakest

causality was detected towards Δtmin-max and AreaSyst, and

this is one of the main differences when comparing causal effects

elicited by CePropo and CeRemi. Finally, for the REG Poincaré

plot features, the most frequent interaction was from CeRemi to

SD1 (31% of patients), as detected as well in the CePropo

analysis, suggesting that changes in remifentanil infusion did

also affect short-term variability of REG signals.

The occurrence of causal interactions between HR, MAP,

EEG and CBF linear and nonlinear parameters is presented in

Figure 7B. When compared to steady state anesthesia, the

causal effects of HR on EEG and CBF lin features are

enhanced, as well as the effects of CBF PP on EEG. On the

contrary, causal relationships of CBF lin features on EEG have

lower occurrence. Moreover, when comparing CeRemi

changes to CePropo changes, causality from HR to EEG is

much more frequent under CeRemi analysis (44% of patients),

while causality from MAP to EEG decreases, allowing to

consider that CePropo modulates EEG changes through

MAP while CeRemi influences EEG by means of HR. With

respect to other significant differences, it should also be

mentioned that CBF linear and nonlinear features have less

frequent causal links with EEG variables, when compared to

the analysis of CePropo changes. This finding is consistent

with the fact that CePropo is acting at a cerebral level,

reducing brain metabolism, while CeRemi has a less

pronounced influence in EEG signals.

The causality indices obtained for several pairs of variables

were highly correlated with patient demographics as summarized

in Table 3, during changes in remifentanil effect site

concentration. Age presented a positive correlation with the

causality indices from CCM towards MAP, hence indicating

that older patients presented higher causality indices between

those two physiological parameters. Nonetheless, patient weight

was the demographic variable showing more correlation value in

the causal interactions detected under remifentanil dosage

changes. For instance, the causality indices from Δtmin-max

and AreaSyst towards HR showed a negative correlation with

weight, suggesting that causality from REG to HR is enhanced in

patients with lower weight (regressive analysis with adjusted R2 =

0.6). A negative correlation was also obtained for the causal link

fromCBVrel to qCON, from EEGθ band to the slope of REG, and
from the EEGδ band to the Poincaré descriptor R, while positive

FIGURE 7
Causal interactions from (A) CeRemi to: (A1) EEG based-
parameters (δ, θ, α, ß) and global hemodynamics (HR, MAP), (A2)
REG geometric features and (A3) REG Poincaré plot features. (B)
Causal interactions between global hemodynamics, EEG
based-parameters, REG geometric features (CBF lin) and REG
Poincaré plot (CBF PP) parameters in remifentanil concentration.
The post hoc non-parametric U Mann-Whitney test and statistical
significance level p-value < 0.005 were considered.
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correlations were found for the interactions from EEGα to

Δtmax, from EEGβ to δmax, from HR to SD1 and from HR

to the EEGθ band. Some of those results were replicated for the

BMI analysis, namely the causality from EEGβ to δmax and from

EEGδ to R. Additionally, BMI presented a negative correlation

from EEGδ to SDratio. Those correlations suggest that links

between general hemodynamics, EEG activity and REG features

under changes of remifentanil dosage are sensitive to the main

characteristics of the patients being monitored, with weight being

the key factor that influences causality from REG to EEG and HR

to REG features, with a regression relation with adjusted R2 = 0.6.

3.3.4 Atropine infusion event
Figure 8A presents the interactions between EEG

parameters, HR, MAP and CBF extracted features.

Causalities emerging from HR were lower towards MAP

and CBF lin when compared to steady state anesthesia, but

higher towards CBF PP and EEG. Regarding MAP, the causal

link towards CBF PP (44% of patients) showed a higher

occurrence for atropine infusion, while all other links were

detected with a lower frequency. Finally, the analysis of the

interactions between EEG and REG features was enhanced

during the administration of atropine (CBF lin with 81% and

CBF PP with 88% of patients), suggesting that this drug

affects the electrical brain activity.

Several correlations between the causality indices and the

demographic data of the patients were identified as significant

(Table 4). Age presented a negative correlation with the causality

indices from qCON to δrange and from MAP to SD1, and a

FIGURE 8
Causal interactions between global hemodynamics, EEG based-parameters, REG geometric features (CBF lin) and REG Poincaré plot (CBF PP)
parameters (A) in atropine infusion and (B) in ephedrine infusion. The post hoc non-parametric UMann-Whitney test and statistical significance level
p-value < 0.005 were considered.

TABLE 4 Spearman correlation (ρ) between the causality indices and
patient demographic.

From To Demographic ρ

During atropine infusion

SD2 EEGß age↑ 0.694

Δtmax EEGß age↑ 0.780

Δtmin EEGß age↑ 0.689

MAP SD1 age↓ −0.736

qCON δrange age↓ −0.638

HR EEGθ height↑ 0.664

EEGθ SD1 height↑ 0.693

EEGθ SDarea height↑ 0.664

EEGß δrange height↑ 0.715

EEGα Δtmax height↓ −0.748

CBVrel EEGδ weight↑ 0.679

CBFest EEGδ BMI↑ 0.723

CBVrel EEGδ BMI↑ 0.749

SDarea EEGδ BMI↑ 0.688

δmax EEGδ BMI↑ 0.798

Δtmax EEGß BMI↑ 0.692

During ephedrine infusion

CCM EEGα height↓ −0.906

EEGδ Range weight↓ −0.955

EEGδ Slope (α) weight↓ −0.901

EEGδ Range BMI↓ −0.955

EEGδ Slope (α) BMI↓ −0.901

Increasing causality is denoted by ↑
Statistical significance p-value < 0.01.
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positive one from the REG features Δtmax, Δtmin and

SD2 towards the EEGβ band. Furthermore, regression analysis

indicated that older patients present causal links from REG to

EEG (R2 = 0.6). Several correlations between height and the

analyzed set of causal links were also found to be significant. For

instance, the causality from the EEGα band to Δtmax had a

negative correlation with height, while positive correlations were

obtained from EEGβ to δrange, from EEGθ to SD1, from θ to

SDarea and from HR to EEGθ. Therefore, the links between EEG

and CBF features during atropine infusion seem to be dependent

on patient height (also with regression analysis adjustment of

R2 = 0.6). Finally, weight was positively correlated with the

causality index computed from CBVrel to the EEGδ band, as

well as BMI. Additionally, BMI showed positive correlations

from δmax, CBFest and SDarea towards the EEGδ band, and

from Δtmax towards EEGβ. Increased BMI is hence related to

enhanced causality from REG features towards electrical brain

activity, with a regression analysis with adjusted R2 = 0.6.

3.3.5 Ephedrine infusion event
As with the previous clinical scenarios analyzed, the

interactions between the main sets of physiological variables

were analyzed to assess the relationship between

hemodynamics and brain activity (Figure 8B). One of the

most relevant changes when compared to steady state

anesthesia was the occurrence of the EEG causality towards

CBF parameters, as well as the one from CBF lin to EEG

(43% of patients) and all causal links emerging from HR and

MAP, suggesting that the cardiovascular effects of ephedrine are

also projected in brain activity. Some of those effects were also

detected during the infusion of another vasoactive drug, atropine,

even though in that case the causalities emerging from MAP and

HR were in general lower, while those from EEG to CBF PP and

from CBF lin to both MAP and EEG were enhanced.

Table 4 reflects the correlations between the causality indices

and patient demographics. Age was not a relevant factor during

ephedrine infusion. Decreasing height is correlated to increased

causality between CCM and the EEGα band and also it is detected
an influence to these causality indices from a regression with

adjusted R2 = 0.8. The highest correlation was detected between

weight and the causality index from the EEGδ band towards the

REG slope (ρ = −0.955, R2 = 0.783), followed by the one from the

EEGδ band towards the REG range (ρ = −0.901, R2 = 0.804). Both

correlations were also detected for BMI, suggesting that lower

weight and BMI are associated to higher causality from EEG

towards CBF features.

3.3.6 Trendelenburg positioning
The transition of anesthetized patients from a supine

position to Trendelenburg was assessed for causality.

Considering the interactions between hemodynamics and

brain activity signals (Figure 9A), HR showed less influence

in MAP when compared to steady state anesthesia, but higher

causal effects on CBF features, up to 83% for the linear ones.

On the contrary, MAP caused lower interactions than in

steady state, except for CBF PP, which were significantly

higher. Moreover, while causal links between EEG and CBF

PP were enhanced during Trendelenburg positioning when

compared to stable anesthesia, links between EEG and CBF lin

features showed lower occurrence.

Regarding the influence of demographic characteristics of the

patients in the causal relationships previously analyzed (Table 5),

age showed a high negative correlation with the causality indices

from HR to AreaSyst and Δtmin-max, indicating that the

younger the patients the higher the causality from HR

towards REG features (with regression adjusted R2 = 0.8). The

causality index from the depth of anesthesia index, qCON,

towards Δtmin-max and AreaSyst was negatively correlated

with height, as well as the causality index from CCM to the

EEGα band and from HR to EEGβ (with a regression analysis

with adjusted R2 = 0.5), suggesting that taller patients presented

weaker causal links among those pairs of variables. The role of

weight was limited to two statistically significant correlations: one

from δmax to qCON, presenting higher causality in patients with

less weight, and a second one from MAP to SD2, in which taller

patients had higher causality index associated (with a regression

analysis with adjusted R2 = 0.5). Finally, lower BMI was

associated to an enhanced causality from several REG features

(δmax, δrange and CBVrel) to the qCON index while higher BMI

resulted in a stronger causality (with regression analysis with

adjusted R2 = 0.8) from EEGδ to Range, from MAP to SD2 and

from SD1 to EEGθ.

3.3.7 Passive leg raise
Interactions among the physiological systems under study is

presented in Figure 9B. Besides the bidirectional link between

linear and nonlinear CBF features, the most frequent causality

during passive leg raising takes place from CBF linear parameters

towards EEG (77% of patients), suggesting that changes in

cerebral hemodynamics are projected in brain activity. When

compared to steady state anesthesia, higher causalities are

detected, mainly from HR to CBF PP and EEG, from MAP to

CBF features and, bilaterally, between CBF features and EEG.

Additionally, causality from EEG to CBF PP is increased during

patient positioning.

Since both Trendelenburg and passive leg raise provoke

hemodynamic changes, it is worth comparing the causal

interactions between both situations. Causalities emerging

from MAP have higher occurrence under passive leg raising,

as well as the interactions from CBF features to brain activity

variables, and from EEG to CBF lin. However, causality from

EEG to CBF PP is decreased, as well as from HR to CBF

parameters. Furthermore, no statistically significant

correlations were found between the causality indices and

patient demographics, suggesting that the detected interactions

were not dependent on patient characteristics.
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4 Discussion and conclusions

The geometric features extracted from REG waves collected

during general anesthesia have provided statistically significant

results. Several geometric features were able to detect differences

between LOC and Anes states: Range, δmax, δrange, CBVrel and
CBFest. The evolution of those values suggests a generally

decreased CBF and instantaneous blood flow velocity during

anesthesia, as previously reported by (Conti et al., 2006; Fodale

et al., 2007). CBFest and CBVrel decreased during general

anesthesia. This phenomenon has been related with the

vasoconstriction associated to the propofol administration

(Rasmussen et al., 2010). It should be noted that values for

those two features are not recovered after extubation. This is

probably caused by the effects of propofol in hemodynamics,

since at the time of extubation it has not been eliminated from the

body (Morgan et al., 1990). The reduction of CBF and related

parameters in the anesthetic state might seem inconsistent with

the slight increases detected during BSR. Intuitively, the lower the

anesthetic depth, the lower the brain metabolism is, CBV and

CBF. However, it has been proved in rats that hemodynamic

fluctuations at the brain level occur during general anesthesia:

cortical electrical activity is accompanied by oscillations in

cerebral hemodynamics (Liu et al., 2010). This might explain

the small and non-significant increase of the CBF related

parameters during BSR.

The Poincaré plot features were computed for a range of τ

values from 1 to 20 samples, after the preprocessing stage of the

general anesthesia dataset. Statistical differences were found

between Awake-LOC and LOC-Anes transitions, with a wide

range of parameters showing statistically significant differences:

SDratio, CCM and R in the Awake-LOC transition and all

features but CCM in the LOC-Anes transition, however CCM

presented statistical differences between Anes and BSR. Within

the 1 to 20 samples interval of τ tested, the upper values

concentrated the highest amount of statistically significant

differences among anesthetic states. It is therefore stated that

a value of τ = 20 samples (0.08 s) is the most appropriate one for

FIGURE 9
Causal interactions between global hemodynamics, EEG based-parameters, REG geometric features (CBF lin) and REG Poincaré plot (CBF PP)
parameters (A) during Trendelenburg positioning and (B) during passive leg raising. The post hoc non-parametric UMann-Whitney test and statistical
significance level p-value < 0.005 were considered.

TABLE 5 Spearman correlation (ρ) between the causality indices and
patient demographic during Trendelenburg positioning.

From To Demographic ρ

HR AreaSyst age↓ −0.894

HR Δtmin-max age↓ −0.866

CCM EEGα height↓ −0.732

qCON AreaSyst height↓ −0.789

HR EEGß height↓ −0.732

qCON Δtmin-max height↓ −0.789

MAP SD2 weight↑ 0.872

δmax qCON weight↓ −0.746

SD1 EEGθ BMI↑ 0.769

EEGδ Range BMI↑ 0.734

MAP SD2 BMI↑ 0.782

CBVrel qCON BMI↓ −0.769

δmax qCON BMI↓ −0.825

δrange qCON BMI↓ −0.769

Increasing causality is denoted by ↑
Statistical significance p-value < 0.01.
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the analysis of REG signals during anesthesia. The performance of

those parameters is dependent on the time lag τ used to reconstruct

the signal attractor. Considering all results previously discussed from

the information extracted of the REG signal features under

anesthesia, REG analysis might be able to reflect CBF changes in

REG waves. Concerning to global hemodynamics and EEG related

parameters, qCON index differentiated across the different

anesthesia states, but MAP just from LOC to Anes

(p-value<0.01). Related to energies on the frontal EEG frequency

bands, statistical differences were found between Awake vs LOC and

BSR vs ROC. Similar results were found by (Sanjari et al., 2021) that

applied transfer entropy on EEG signal for depth of anesthesia

estimation, obtaining statistical differences between awake vs

unconscious and unconscious vs. recovery EEG frequency bands.

Causal interaction analysis was applied to interpret how EEG,

general hemodynamics and CBF evolve during general

anesthesia under propofol and remifentanil. These interactions

have been studied during steady state anesthesia, as well as during

certain events occurring during surgery, such as anesthetic

concentration changes, the administration of vasoactive drugs

and patient positioning.

Even though literature on causal interactions involving REG

signals is not available, several studies on brain activity and

general hemodynamics describing heart-brain interactions have

been published during both natural sleep and anesthesia. For

instance (Faes et al., 2014), analyzed causal relationships among

HRV and EEG during a full night sleep of subjects, observing a

strong link between nonlinear beat-to-beat analysis and the

power spectrum of the EEGδ band. Analogously, this EEGδ
band was the one found in this study having a more frequent

coupling with CBF measurements. Moreover, other studies do

also support this link between hemodynamics and brain

networks (Jurysta et al., 2003; Jurysta et al., 2006).

A brain-heart causality study during propofol anesthesia was

published by (Won et al., 2019), concluding that causalities increased

with depth of anesthesia and were stronger in the brain-heart

direction than from the heart to the brain. Results obtained for

the analysis herein presented suggest in fact that the most frequent

interactions took place from cerebral hemodynamics to the EEG

spectral densities (rather than in the opposite direction), that HR and

MAP had closed loop relationships with cerebral hemodynamics and

the depth of anesthesia index presented bilateral causal links with

cerebral hemodynamics. Even though a larger physiological system

was considered in this work, the obtained results are not consistent

with those presented by (Won et al., 2019). Some differences exist in

the study design, mainly based on the lowest age of the patients

enrolled in Won’s study, with a majority of males and receiving

midazolam drug. Further data should be collected under the same

circumstances to figure out the root cause of the differences between

both studies, since patient demographics have shown to play an

important role both in the occurrence of causality and its strength.

Overall, the analysis of causal interactions during steady state

anesthesia showed that hemodynamics and EEG activity are

closely linked, often under closed loop interactions, and even

though there is no consensus on the direction and strength of

those links, their existence has been published by several research

groups and has turned neurocardiology into a relevant topic

under analysis (Chen et al., 2017; Scherbakov and Doehner,

2018). Besides the study of causal interactions among heart and

brain hemodynamics and EEG activity during stable anesthesia

periods, changes in the concentration of propofol were also

analyzed to assess its influence in these causal links. The

effects of propofol on hemodynamics are well-known,

characterized by a MAP and HR depression, cerebral

vasoconstriction and reduced CBF while preserving

autoregulation (Dagal and Lam. 2009). However, until now no

information exists regarding the causality between

hemodynamics and EEG during its infusion. The study

performed in our work reveals that during a change in

propofol dosage, the number of interactions between

hemodynamics and brain activity increases. Changes in HR

and MAP provoked changes in CBF and EEG, with CBF

linear and nonlinear features causing EEG modulation.

Moreover, one of the strongest links was found between the

propofol effect site concentration and the EEGα band, which is

consistent with the fact that propofol provokes a shift of the EEG

energy towards this band (Schwilden et al., 1989). Additionally, a

causal link between the propofol concentration and the qCON

index was detected, as expected, since changes in hypnotic

dosages should translate into changes in depth of anesthesia.

Several propofol pharmacokinetic-pharmacodynamic models

are used in routine clinical practice for induction and

maintenance of propofol anesthesia. The parameters used in those

models are exclusively based on patient demographics but do not

take into account hemodynamics. Given the causal relationships

between brain activity and hemodynamics, the inclusion ofHR,MAP

or CBF data in the models would probably make themmore patient-

specific and improve their accuracies. Several studies have been

published on this topic. Sahinovic et al. (Sahinovic et al., 2017)

raised a concern on the use of propofol models in patients with brain

tumours, since those might alter propofol kinetics and dynamics and

loose accuracy. Furthermore, a new set of models called

Physiologically-Based PK Models (PBPK) have been developed to

account for the effects of hemodynamics in the currently used

compartments models (Jones and Rowland, 2013), since

hemodynamic variables such as cardiac output have shown to be

determinant for predicting the effects of propofol infusion (Adachi

et al., 2013). The results for propofol infusion in this work support the

hypothesis that those new models should be key for anesthesia

personalization, thus enhancing the accuracy of target-controlled

infusion (TCI).

Similar conclusions can be drawn from the analysis of

remifentanil concentration changes. The use of remifentanil is

associated to depressed hemodynamics, preserving cerebral

autoregulation but lowering CBF (Dagal and Lam. 2009), and its

administration together with propofol is known to produce some
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synergies in the modulation of the EEG waves and resulting depth of

anesthesia index (Copot et al., 2015). The causal interactions between

CeRemi and EEG related parameters revealed that the highest

causality took place from CeRemi to EEGδ frequency band,

followed by EEGα, EEGθ and EEGβ, but was almost inexistent

with the qCON index. Those results are consistent with the EEG

spectral analysis under remifentanil infusion published by

Kortelainen et al. (Kortelainen et al., 2009), that highlighted the

influence of remifentanil in the EEG spectrogram rather than to limit

its effects to synergies with propofol. Hence, remifentanil modified

the spectral content of the EEG of the patients under study while the

qCON index remained unaffected. The causal relationships detected

during CeRemi changes suggest that its causal effects in EEG, either

directly or through hemodynamics, are less pronounced than those

obtained for propofol, which is consistent with the fact that propofol

is a hypnotic drug while remifentanil is an analgesic. Moreover, HR

seems to be the link between CeRemi infusion and brain activity,

while MAP played a more relevant role in propofol infusion.

Together with the effects of propofol and remifentanil in the EEG

activity, the causal relationships induced by vasoactive drugs such as

atropine and ephedrine were also studied in order to find out to

which extent those drugs could affect brain activity and depth of

anesthesia. Both drugs are often administered during anesthesia to

compensate bradycardia and/or hypotension provoked by hypnotics

and analgesics, and are therefore producing HR and MAP increases

to achieve hemodynamic stability.

Furthermore, the presented results provided information

supporting the hypothesis that effects of atropine and ephedrine

in EEG activity take place through the causal links between MAP,

HR and CBF features towards EEG parameters, and vice versa. In a

recently published case study (Jo et al., 2018), atropine was

administered to a patient presenting very low depth of anesthesia

values, including EEG suppression and a bradycardia episode. After

the atropine infusion, hemodynamic stability was recovered

together with recommended depth of anesthesia values. The

authors related this episode to cerebral hypoperfusion, therefore

suggesting that causal interactions exist between hemodynamics

and brain activity, and that those are modulated through CBF.

Patient positioning was also considered as a potential factor

influencing causal relationships between hemodynamics and EEG

activity. Two different positions were assessed besides the standard

supine position in steady state anesthesia: Trendelenburg and passive

leg raising. Both positioning strategies are known to provoke changes

in general hemodynamics, mainly in MAP (Fakhari et al., 2018), but

information on their influence in EEG is scarce.Mallick et al. reported

the dependence between the depth of anesthesia index and the

steepness of the Trendelenburg position, establishing a relationship

between both variables (Mallick et al., 2015). Considering the causal

occurrences calculated in this work, HR and MAP do not seem to

modulate directly EEG changes, but through alterations in CBF

features that are further projected into EEG activity.

As part of the causality analysis, the role of patient demographics

was assessed through correlation and hypothesis testing. Patient

characteristics such as age, height, weight and BMI should be taken

into account since those might enhance or prevent the existence of

causal relationships and the intensity of the existing causal effects. For

instance, during steady state anesthesia, lower ages were associated to a

higher occurrence of causal links from CBF to EEG, as well as lower

weight and BMI. However, the size of the database under study

impaired a more detailed analysis of patient demographics in heart-

brain links during anesthesia, being one of the limitations of this study.

Other limitations that should be noted are the low number of

recordings for some of the analyzed events, such as atropine or

ephedrine infusions, and the concomitant effects of different factors,

as for instance patient positioning taking place before or after a drug

dosage change or the administration of a vasoactive drug.

During the causality study, linear and nonlinear CBF features

have been independently considered in order to assess their individual

performance. Even though they showed a 100% of causal effects

among them in the majority of events under test, they revealed

different occurrences of causal relationships with brain activity and

global hemodynamics. During propofol infusion, bilateral causality

between linear CBF features and HR was much more frequent than

between Poincaré plot features of REG signals and HR, while those

showed similar values during steady state anesthesia. In contrast,

during atropine infusion, effects of MAP on CBF parameters were

more frequent towards the Poincaré features. The use of a larger

dataset would allow to further compare the performance of both

algorithms, but results herein presented suggest that they are closely

related to each other but the integration of the information contained

in both sets of features improves the assessment of causality.

As a conclusion, results from this study confirm the hypothesis

that during general anesthesia causal interactions among global

hemodynamics, cerebral hemodynamics and EEG neural activity

take place. And, as a consequence, clinical decisions made to

achieve hemodynamical stability have effects at a neural level,

as well as changes in anesthetic dosages would interfere both

in global and brain hemodynamics. REG signals provided an

assessment of brain hemodynamics, with both linear and

nonlinear features contributing to the heart-brain interactions,

revealing its potential as a monitoring tool for anesthesia

management. Finally, CBF estimators demonstrated to contain

information allowing to understand the coupling between

hemodynamics and neural activity, and should therefore be

integrated in routine clinical care, mainly in patients in which

causal relationships might be impaired or altered due to

pathological or intrinsic conditions.
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Wearable sensors offer newopportunities for the early detection and identification
of toxic chemicals in situations where medical evaluation is not immediately
possible. We previously found that continuously recorded physiology in guinea
pigs can be used for early detection of exposure to an opioid (fentanyl) or a nerve
agent (VX), as well as for differentiating between the two. Here, we investigated
how exposure to these different chemicals affects the interactions between ECG
and respiration parameters as determined by Granger causality (GC). Features
reflecting such interactions may provide additional information and improve
models differentiating between chemical agents. Traditional respiration and
ECG features, as well as GC features, were extracted from data of 120 guinea
pigs exposed to VX (n = 61) or fentanyl (n = 59). Data were divided in a training set
(n = 99) and a test set (n = 21). Minimum Redundancy Maximum Relevance
(mRMR) and Support Vector Machine (SVM) algorithms were used to, respectively,
perform feature selection and train a model to discriminate between the two
chemicals. We found that ECG and respiration parameters are Granger-related
under healthy conditions, and that exposure to fentanyl and VX affected these
relationships in different ways. SVMmodels discriminated between chemicals with
accuracy of 95% or higher on the test set. GC features did not improve the
classification compared to traditional features. Respiration features (i.e., peak
inspiratory and expiratory flow) were the most important to discriminate
between different chemical’s exposure. Our results indicate that it may be
feasible to discriminate between chemical exposure when using traditional
physiological respiration features from wearable sensors. Future research will
examine whether GC features can contribute to robust detection and
differentiation between chemicals when considering other factors, such as
generalizing results across species.

KEYWORDS

Granger causality, chemical exposure, toxidrome detection, physiological data, support
vector machine, machine learning
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1 Introduction

Wearable sensor technology is rapidly evolving, leading to higher
quality data and more physiological parameters that can be monitored
simultaneously. This development offers new opportunities to quickly
detect and identify toxic chemicals based on their effects on the human
body, enabling timely (self-administered) treatment when medical
evaluation is not immediately possible, such as in the military battle
field. Various specialized devices are under investigation for alcohol or
substance abuse or are already commercially available, such as the
Secure Continuous Remote Alcohol Monitor (SCRAM®) ankle
monitor, which electrochemically detects transdermal alcohol (Davis-
Martin et al., 2021). Even though direct chemical detection is the gold
standard, it only allows for the monitoring of a limited number of
compounds, making it unsuitable for ‘threat-agnostic’ monitoring.
Furthermore, chemical detection is difficult for compounds that are
toxic at extremely low systemic levels, such as is the case for novel
synthetic opioids as carfentanil (Uddayasankar et al., 2018). Also note
that differential diagnosis in the clinic is not always straightforward, as
exemplified in the 2018 Salisbury poisoning incident, in which a nerve
agent poisoning was mistaken for an opioid overdose (Eddleston &
Chowdhury, 2020; Haslam et al., 2022). Indirect detection bymeasuring
the compound’s (toxic) effects on the body (toxidrome) presents a
promising approach for continuous, non-invasive monitoring of
exposure to chemicals. Automatic algorithms may alert the
possibly exposed individual or their colleague that quick
countermeasures are required. In the battlefield such warnings
could be especially helpful given that military personal likely
ignore or suppress physical discomfort, and effects of chemicals
are initially hidden for others by protective clothing and gas masks.

The effects of chemical intoxication on the body can be complex
and multi-facetted. Machine learning models are suitable for complex
pattern recognition analyses with relatively large numbers of parameters
and previous studies showed that when applied to physiological data,
they could detect various chemical intoxications. A study by Mahmud
et al. (2018) employed variousmachine learningmethods (decision tree,
k-nearest neighbor, eXtreme Gradient Boosting) to detect opioid use
based on data from a wrist-band with 99% accuracy. A study by Chang
et al. (2021) showed that a neural network trained to recognize digoxin
toxicity from electrocardiography (ECG) performed similarly to
cardiologists and emergency room specialists, showing 84.6%
sensitivity and 96.6% specificity. We previously showed that a
machine learning model could accurately detect exposure to an
opioid (fentanyl) or a nerve agent (VX) and differentiate between
the two, based on continuously measured electroencephalography
(EEG), ECG and respiration (whole-body plethysmography) data in
guinea pigs (van Baardewijk et al., 2021).

While these studies successfully demonstrated the detection of
chemical intoxication based on physiology, they all considered
physiological parameters independently. However, under normal
physiological conditions, the various biological systems of the body
exhibit oscillatory patterns due to underlying feedback and feedforward
mechanisms. For instance, heart rate is well-known to be regulated by
many such mechanisms. In healthy people, successive beats do not
occur at a constant rhythm, instead, (R-R) intervals show considerable
variability. The largest contributor to heart rate variability (HRV) is
respiratory sinus arrhythmia (RSA). The heart rate increases with
inspiration and decreases with expiration, a mechanism by which

the body optimizes pulmonary gas exchange (Hayano et al., 1996;
Goldberger et al., 2013) and which is thought to be regulated mainly by
central mechanisms (Gleb et al., 1936). These and other
cardiorespiratory interactions vary under different circumstances,
such as different breathing patterns (Stefanovska, 2002; Elstad et al.,
2018; Lukarski et al., 2022). Various pathological conditions have been
linked to changes inHRV, such as congestive heart failure, diabetes, and
depression (Musialik-Łydka et al., 2003;Wang&Wang, 2011; Young &
Benton, 2018; Hartmann et al., 2019). HRV has also been implicated as
a useful marker for substance abuse (Koenig et al., 2015), withdrawal
symptoms (Levin et al., 2019; Garland & Howard, 2021), and exposure
to fine particulate matter (Riediker et al., 2018).

Even though the precise mechanisms of HRV remain poorly
understood, these studies highlight the fact that the various
physiological systems of our body do not function in an isolated
manner. Instead, they coordinate and synchronize their functions to
maintain a given physiological state. This holistic view of physiology
is investigated in the field of Network Physiology (Bashan et al.,
2012; Bartsch et al., 2015). Quantifying the interactions of
physiological features under different (healthy and intoxicated)
circumstances may improve the detection of toxic chemicals as
well as increase our understanding of physiological mechanisms.

One method to quantify the (causal, i.e., time ordered) relationships
between physiological features is Granger causality (GC), named after the
econometrician who first described it in 1969 (Granger, 1969). This
technique has been frequently applied in the financial sector, among
others for investigating causal relationships between market factors,
economic changes, stock prices, and stock price predictions (Výrost
et al., 2015; Gao et al., 2018;Gherghina et al., 2020; Thakkar&Chaudhari,
2021). A variety of studies that usedmethods based onGC to quantify the
interactions between physiological signals, mainly focused on heart rate,
respiration, and arterial blood pressure. GC in these studies show how
well the future of a physiological signal (e.g., heart rate variability) can be
predicted from the present and the past of another signal (e.g.,
respiration) by means of linear vector autoregressive (VAR) models,
and result in directionality and strength of interaction (Seth et al., 2015).A
study by Faes et al. (2015) applied GC to map directional interactions in
brain-brain and brain-heart networks in different sleep states,
exemplifying the added value of GC in neuroscience (Porta & Faes,
2015; Seth et al., 2015). A study by Rozo et al. (2021) demonstrated that
different methods to quantify RSA, based on GC principles, captured the
cardiorespiratory changes expected during different non-REM sleep
stages. Interactions between respiration, blood pressure and heart rate
have been found to be influenced by factors such as body position (Mary
et al., 2019) and deep versus normal breathing (Mary et al., 2018). These
interactions have been used to make distinctions between healthy and
diseased conditions under conditions such as congestive heart failure
(Radovanović et al., 2018), and pre-eclampsia (Riedl et al., 2010). Recent
studies successfully used GC between brain and heart signals to
characterize epileptic seizures (Pernice et al., 2022) and GC between
activity in different brain areas to distinguish between patients with
cognitive impairment associatedwith epilepsy and healthy controls (Jiang
et al., 2021).

Acknowledging the potential diagnostic value of
physiological interactions in the context of exposure to toxics,
and acknowledging GC as a way to quantify such interactions, we
here determine the GC interactions within and between both
respiration and ECG parameters under healthy and intoxicated
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(fentanyl or VX) conditions. RSA, that we already discussed
above, is the most studied form of cardiorespiratory GC
interactions, despite the identification of other forms
(cardiorespiratory phase synchronization: Bartsch et al. (2007),
and time delay stability; Bartsch et al., 2014). One of the reasons
for this is that RSA can be directly estimated using predictability
and casual measures based on GC, applied to the raw respiratory
signal and the tachogram, derived from the ECG. Such measures
are often used to estimate the information transferred from a
driver, often the respiration, to a target signal (e.g., the
tachogram). Here, however, we study the cardiorespiratory
interactions not by predicting one (close to) raw signal from
the other, but by looking at the effect that specific respiratory
higher order features have on the morphological and rhythm
features of the ECG, such as the effect of peak inspiratory flow on
the interval between successive heart beats, and vice versa.
Interactions between these features are also examined within
modality. Relying on higher order features is important from the
perspective of our envisioned ultimate application of using
wearables for diagnostics in the field, where the quality of the
raw physiological signals and their synchronization is likely
compromised. Since it is currently unknown how exposure to
fentanyl and VX affect GC interactions, we first provide an
overview of the interactions for each condition. Next, we
evaluate the contribution of traditional ECG and respiration
features as well as GC features in machine learning models
that aim to differentiate between exposure to fentanyl and VX
over 45 min following exposure as well as over the first 15 min of
exposure (which we considered as a cut-off for a timely treatment
in an exposure scenario). The study here is an updated and
extended version of a previous proceedings paper [van
Baardewijk et al. (2022)].

2 Materials and methods

2.1 Sample

Data comprised four existing physiological datasets of freely
moving guinea pigs, exposed to VX (n = 62) or fentanyl (n = 71). The

animal procedures were as described previously (Joosen et al., 2017).
Briefly, VXwas obtained from the in-house synthesized TNO stocks.
Purity upon issue was >98%. Fentanyl citrate (European
Pharmacopoea grade) was purchased from Spruyt-Hillen
(IJsselstein, Netherlands). Purity was >99%. VX was either
dissolved in 2-propanol (IPA) to the required concentration or
applied as neat agent. The VX doses applied were 1–2 mg/kg
dermally, corresponding to approximately 1.5–3 times the 24 h
LD50 values in guinea pigs (Rice et al., 2015). The fentanyl doses
ranged from 0.05 to 8 mg/kg (intravenous bolus) and 0.4–32 mg/kg
(subcutaneous), selected to elicit varying degrees of respiratory
depression. Fentanyl was dissolved in phosphate-buffered saline
(PBS) to the required concentration before administration. For
continuous measurements, animals were surgically equipped with
ECG leads. Two leads were sutured in the superficial muscles under
the skin right below the right collar bone and between the second
and third rib (configuration II). ECG data were transmitted
wirelessly to a hardware system (Data Sciences International
(DSI), St. Paul, MN, United States) using F40-EET (nominal
sampling rate 240 Hz) or HD-S02 (nominal sampling rate
375 Hz) telemetry devices. Unrestrained respiratory
plethysmography (URP) data were obtained using whole-body
plethysmography cages, connected to a Universal XE signal
conditioner (DSI). Telemetry and plethysmography data were
upsampled simultaneously at 1,000 Hz using the Ponemah
Physiology Platform (v5.41) software, in order to combine the
modalities into a single dataset. Under typical conditions, the
synchronization error of the two modalities was within
150 ms. For each animal, at least 30 min of data were acquired
before exposure. The final sample included 120 animals; nine
animals were excluded because they belonged to a placebo group,
four animals were excluded because they died during the
experiment.

2.2 Preprocessing: From raw data to the
extraction of ECG and respiratory features

Physiological data were preprocessed using Ponemah® Software. The
signals were inspected visually to identify and exclude artifacts related to

FIGURE 1
ECG (A) and respiration (B) features illustrated in schematic raw ECG and respiratory signals. In the current study, we used R-R interval (RR-I), ST
elevation (ST-E), R height (R-H) and QRS duration (QRS) as traditional ECG features. For respiration, the traditional features that were used were tidal
volume (TV), peak inspiratory flow (PIF), peak expiratory flow (PEF), inspiratory time (IT), expiratory time (ET), and total time (TT).
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movements and sudden ambient pressure changes. All derived features
were subsequently exported in a beat-to-beat format for further
processing. The following four traditional ECG features were extracted

from ECG data: R-R interval (RR-I), ST elevation (ST-E), R height (R-H)
and QRS duration (QRS). For respiration, the six traditional features that
were extracted from URP data were: tidal volume (TV), peak inspiratory

FIGURE 2
Percentage of 5-minute windows with significant GC per condition and feature combination for ECG causing ECG (A), ECG causing respiration (B),
respiration causing ECG (C), and respiration causing respiration (D).
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flow (PIF), peak expiratory flow (PEF), inspiratory time (IT), expiratory
time (ET), and total time (TT; TT= IT+ET). These ECG and respiratory
features are illustrated in Figures 1A, B, respectively.

To identify and remove signal artifacts, z-scores were
determined for 20 s moving windows (shifted in steps of 1 s).
Datapoints with a z-score higher than 3 or lower than −3 were
removed.

Data around the moment of exposure (from 5 min before to
5 min after) were excluded to prevent any handling effects related to
administering the chemical potentially influencing the data.

2.3 Traditional ECG and respiratory features

Extracted features were aggregated over successive 5-min
windows for data from 30 min before exposure to 45 min after
exposure. Within-animal centering of features was done by
subtracting the baseline, which was defined as the average feature
value as recorded during the first 15 min (i.e., from 45 min until
30 min before exposure). Missing data were linearly interpolated.
Such features were used as input for Support Vector Machine (SVM)
classification analysis (Cortes & Vapnik, 1995) as described later.

2.4 Granger causality (GC) features

In this study, a bivariate formulation of GC was used. In such a
formulation a system consists of two variables X and Y. Y causes X,
in the Granger sense, if the past of Y (Yl

n) provides information
about the future of variable X, given the past of X (Xk

n), whereYn and
Xn denote the present value of Y and X respectively and:

Xk
n � Xn−1, X, . . . , Xn−k+1[ ], (1)

Yl
n � Yn−1, Yn−2, . . . , Yn−l+1[ ], (2)

where k and l represent the time lags.
For extracting GC features between each pair of features, the

different time series (i.e., extracted features) were resampled at

aligned points in time. For subsequent windows of 100 ms, data
points in a specific window were averaged. Average data points were
linearly interpolated and data were resampled at 10 Hz. The time
series were then detrended by means of differencing.

GC features were determined for each animal, each 5-min
window, and each of the 90 combinations of traditional ECG
and respiratory features (four ECG and six respiratory features
as described in 2.2 gives a total of 10 features; leading to
10*10–10 = 90 unique combinations). To determine the
optimal GC lag, the Vector Autoregression (VAR) on the
healthy data of all animals was calculated by varying the lag
from 1 to 50 100 ms-windows. The optimal lag value was the one
with the lowest average Akaike information criterion (AIC)
(Akaike, 1974). In this case, the optimal lag was found to be
35 100 ms-windows, i.e. 3.5 s.

Statistical significance of GC was determined with an SSR
F-test, resulting in a p-value (α = 0.05) for each combination in
each 5-min window. F-statistic values were used as GC features
in the prediction models. Percentages of statistically significant
GC features were plotted to give an impression of which
interactions between ECG and respiratory features were more
present than others in the current sample.

To extract Granger causality features and to identify the
optimal lag as just described, we used Python and the
statsmodels module version 0.12.2. Specifically, the “VAR”
class from the statsmodels module was used to calculate the
VAR. For each lag a fit was done and from the result the AIC
value was used. The function “grangercausalitytests” from the
statsmodels module was used for calculation of the Granger
Causality. GC for each pair of features was calculated by putting
the values of the two features in a two-column dataframe and
using that as the first input for this function. A list of one
element was used for the “maxlag” parameter, with the optimal
lag as the only element, so only this lag was used as parameter
for the test. From the output of this function, the p-value from
“ssr_ftest” was used for statistical significance as described
above.

2.5 Feature selection, classification of
exposure and classification evaluation

Using classification analysis we explored whether GC could
support classification of respiration and ECG data into either
exposure to VX or fentanyl. Twenty percent of the data (21 of
the animals) was set aside as a test set to evaluate the final model
after the training phase (using data of 99 animals). The proportion of
animals exposed to either VX and fentanyl was held constant
between the training and the test set.

A standard scaler was used to standardize the data before using
the SVM. After that, feature selection, classification and evaluation
of the classification was performed in the dataset stratified by time
from the exposure (i.e., 5–45 min and 5–15 min from exposure).

Because the final training set was composed of 100 features
(4 traditional ECG features, 6 traditional respiratory features, and
90 GC features), feature selection was performed. The minimum
Redundancy Maximum Relevance (mRMR) algorithm was used to
rank features by their importance. mRMR ranks features high if they

FIGURE 3
SVM accuracy as a function of number of selected features.
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are mutually far away from each other (i.e., minimum redundancy) while
still correlating strongly with the to be classified variable (i.e., maximum
relevance) (Peng et al., 2005). After that, an SVMwas used to classify the
exposure to the type of chemical based on varying numbers of features.
Specifically, an SVM (with standard hyperparameters) was trained by
adding one of the ranked features at the time, following their rank and
starting with the first. Leave-one-group-out (LOGO) cross validation was
applied to evaluate the accuracy of the classificationmodel by leaving one
animal out at each iteration on the training set. The average accuracy
varying by the number of ranked features was plotted to qualitatively
select the optimal number of features. A similar approach has been used
before (Peng et al., 2005). The top traditional as well as GC features were
selected.

A grid-search was then used for tuning the SVM and optimize
the following hyperparameters: kernel, C or “regularization
parameter”, and gamma. The kernel defines whether the decision
boundary is linear or not. Here, a linear and a radial basis function
were used as candidate kernels. The constant C represents the
tradeoff between minimizing the training set error and
maximizing the margin. Gamma is a parameter for nonlinear
kernels; gamma controls the influence of each feature on the
decision boundary. C and gamma were initialized on different
scales ranging from 0.0001 to 100. LOGO was used in this step
to optimize the SVM as well as performing internal validation for the
best set of parameters. Finally, the tuned SVM was evaluated on the
test set (i.e., external validation).

FIGURE 4
Boxplots for VX (blue) and fentanyl (orange) exposure in the most important features in the first 45 min from exposure: top 3 traditional features on
the left, top 3 GC features on the right. For reference, values for the not exposed condition are shown as well (green).
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Python 3.9 was used to perform the analyses. The pymrmr
library was used to rank features and the sklearn library was used to
build the classification model.

3 Results

Figure 2 shows the percentage of 5-min windows with significant
GC. Not exposed conditions are shown on the left, exposure to
fentanyl in the middle and exposure to VX on the right. Results are
shown separately for ECG causing ECG features a), ECG causing
respiration features b), respiration causing ECG features c) and
respiration causing respiration features d). All feature combinations
were GC related for more than 25% of the 5-min windows within
modality (ECG causing ECG and respiration causing respiration
features). Most feature combinations were GC related for more than
20% of the cases between modalities (ECG causing respiration and

respiration causing ECG features). Patterns appear to differ between
the three exposure conditions.

The feature selection step showed that with only the top three
features (ranked PEF, TT, PIF for the first 45 min; ranked PEF, PIF,
ET for the first 15 min) the accuracy of the SVM on the training
set already reached a high accuracy for both the 45 and the 15 min
case (Figure 3). The following top three features in the feature
selection step were all GC features. For the first 45 min from
exposure, these were (ranked) IT causes ET, RR-I causes R-H,
PIF causes TV. For the first 15 min from exposure, these were
(ranked) RR-I causes R-H, TT causes PEF, PIF causes TV.

Figures 4, 5 provide insight into how the features that came
out as the most relevant features for differentiating between
fentanyl and VX differed between these chemical exposure
conditions. The left panels in Figure 4 show how the top three
(traditional) variables differed for the first 45 min after exposure.
TT, PEF and PIF were all lower for fentanyl than for VX. The left

FIGURE 5
Boxplots for VX (blue) and fentanyl (orange) exposure in the most important features in the first 15 min from exposure: top 3 traditional features on
the left, top 3 GC features on the right. For reference, values for the not exposed condition are shown as well (green).
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panels in Figure 5 show how the three highest ranked features
(PEF, PIF and ET) differed between the chemical exposure
conditions when only the first 15 min from exposure were
considered. As for the 45 min, PEF and PIF were lower for
fentanyl than for VX. ET was higher for fentanyl than for VX.
The right panels in Figures 4, 5 indicate how the top GC features
differed between conditions. The GC for ECG features (RR-I
causes R-H in both the 45- and 15 min case) was low in VX
compared to fentanyl. In contrast, the GC for respiration features
(with slightly different GC combination popping up for the 45-
and 15-min case) was low in fentanyl compared to VX. To
provide insight as to how the exposure conditions compare to
the not exposed condition, Figures 4, 5 include these data as well.

Table 1 shows optimal hyper parameter settings used in the
SVM. Table 2 shows internal validation and external validation
results. Accuracy of the SVM using traditional features alone was
high for both the first 45 min and the first 15 min (respectively 95%
and 97% for the test sets). Results were comparable when using
traditional features alone versus traditional and GC features in both
the 45 and 15 min time frames, indicating that GC features did not
add to traditional features. Still, models using only GC features had
an accuracy of 79%, confirming the impression from Figure 2 that
relations between physiological features differed between exposure
to VX and fentanyl.

4 Discussion

We explored the relation between different ECG and respiration
parameters under healthy conditions, after exposure to fentanyl, and
after exposure to VX using Granger causality. We were especially
interested in whether the interactions between physiological signals,
quantified using Granger’s method, could be used to improve
discrimination by machine learning models between exposure to
VX and fentanyl relative to using traditional features alone.
Quantification of (cardiorespiratory) interactions may be useful
in improving machine learning models designed to detect acute
chemical intoxication and discriminate between chemicals based on
non-invasive physiological data, as well as improve our
understanding of chemicals’ toxic effects.

SVM classification showed that it was already possible to
discriminate between VX and fentanyl with high accuracy (95%)
after 15 min, using traditional features. While models using GC
features alone showed that these features contained information,
adding them did not result in improved classification of the already
high accuracy reached by using only traditional features. Respiration
features were the most important to discriminate between the two
types of exposure. This is consistent with the different
pharmacological mechanisms by which both compound classes
exert their toxic effects and the used administration routes.
Opioids, such as fentanyl, directly bind to the mu opioid receptor
(MOR), disrupting the central respiratory drive, controlled by
various respiratory centers in the brainstem (Pattinson, 2008; van
der Schier et al., 2014). In the current data sets, fentanyl poisoning
occurred via intravenous and subcutaneous exposure, leading to
rapid intoxication. Nerve agents, such as VX, cause a cholinergic
crisis, leading to a wide palette of signs and symptoms typical for
nicotinic and muscarinic overstimulation. In the current data sets,
VX poisoning occurred via dermal exposure, resulting in a steady
progression of toxicity, where bradycardia and hypothermia are
typically observed first and respiratory distress at a more severe state
(Hamilton et al., 2004; Mumford et al., 2008). Our finding that it was
already possible to discriminate between the chemicals in the first
15 min from the exposure with good accuracy demonstrate the
feasibility to discriminate between chemical exposure when using
respiration data that may be measured using wearable sensors. This

TABLE 2 Internal and external validation of SVM prediction of chemical exposure.

Internal validation External validation

Accuracy, mean (SD) Accuracy

5 to 45 min from exposure

Traditional featuresa 0.954 (0.215) 0.950

GC featuresb 0.754 (0.425) 0.790

Traditional + GC featuresa+b 0.953 (0.203) 0.940

5 to 15 min from exposure

Traditional featuresc 0.970 (0.260) 0.970

GC featuresd 0.767 (0.614) 0.790

Traditional + GC featuresc+d 0.958 (0.256) 0.970

aFeatures = TT, PEF, PIF.
bFeatures = IT causes ET, RR-I causes RH, TV causes PIF.
cFeatures = ET, PEF, PIF.
dFeatures = RR-I causes R-H, ET causes PEF, IT causes PEF.

TABLE 1 SVM hyperparameters tuning.

Kernel C ɣ

5 to 45 min from exposure

Traditional featuresa rbf 90 0.02

GC featuresb linear 0.09 5

Traditional + GC featuresa+b rbf 90 0.01

5 to 15 min from exposure

Traditional featuresc rbf 100 0.10

GC featuresd rbf 1.50 0.50

Traditional + GC featuresc+d rbf 100 0.10

aFeatures = TT, PEF, PIF.
bFeatures = IT causes ET, RR-I causes RH, TV causes PIF.
cFeatures = ET, PEF, PIF.
dFeatures = RR-I causes R-H, ET causes PEF, IT causes PEF.
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is important to provide timely interventions to reverse the effects of
chemicals’ exposure. It remains to be seen how the accuracy of models
such as these varies with other compounds and other dosages.

The fact that classification accuracy was already high when using
traditional features alone made it difficult for GC features to further
improve that. Models based on GC features alone showed that these
features contained information, but they performed poorly compared to
models based on traditional features alone. This may be explained by two
main limitations of this work. Firstly, the GC features were computed
under the assumptions of stationarity and joint Gaussian distribution. As
a result, only the linear interactions could be captured, thereby ignoring
possible nonlinearities that could be strongly affected by the exposure.
Therefore, future work should focus on the quantification of these
possibly nonlinear interactions (Rozo et al., 2021). Secondly, the
interactions between the features were assumed to be constant
throughout the 15 or 45min after the exposure. It is, however, still
unknown whether such interactions change towards the general health
deterioration caused by the exposure. Future studies will investigate if
such dynamic changes are stronger and occur faster in the cross-modality
features when compared to traditional ECG and respiratory features.

While the current work did not demonstrate a large contribution of
Granger causality features for the purpose of distinguishing between
exposure to different toxic chemicals, these features may add value for
the purpose of generalizing results across species and across movement
conditions. Automatic and early detection of exposure to toxic chemicals
can save human lives, but studying the physiological effects of these
chemicals can only be done in animals where it is questionable how
well these models generalize to humans. Also, large variations in body
movement and posture may make it hard to automatically detect and
exposure to chemicals. In future work we hope to examine how traditional
as well as interaction features vary across species, movement and exposure
conditions in order to select the features that are insensitive to variations in
species and movement. As mentioned before, the cardiorespiratory
interactions can be analyzed from the GC perspective using the raw
respiratory signal and the tachogram. This study, instead, highlights that
the GC relations between respiration and ECG are also prominent when
higher order variables are used, which are derived from the raw signal (e.g.,
RR-I, TT), suggesting that exact synchronization and high-quality raw
signals may not be essential. This is an advantage since such high-quality
signals are known to be difficult to record using wearables and under
ambulatory conditions. Future work will examine how traditional GC
relations between respiration and ECG compare for these different
approaches, and for data fromwearables compared tohigh-end equipment.
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Introduction: Transient phenomena play a key role in coordinating brain activity at
multiple scales, however their underlying mechanisms remain largely unknown. A
key challenge for neural data science is thus to characterize the network
interactions at play during these events.

Methods: Using the formalism of Structural Causal Models and their graphical
representation, we investigate the theoretical and empirical properties of
Information Theory based causal strength measures in the context of recurring
spontaneous transient events.

Results: After showing the limitations of Transfer Entropy and Dynamic Causal
Strength in this setting, we introduce a novel measure, relative Dynamic Causal
Strength, and provide theoretical and empirical support for its benefits.

Discussion: These methods are applied to simulated and experimentally recorded
neural time series and provide results in agreement with our current
understanding of the underlying brain circuits.

KEYWORDS

information theory, causal strength, graphical models, transfer entropy, structural
equations, neural oscillations

1 Introduction

During both wakefulness and sleep, the mammalian brain is able to implement numerous
functions key to our survival with extraordinary reliability. This implies precise coordination of
transient mechanisms at multiple spatiotemporal scales ensuring both the synergy between
brain regions contributing to the same task, and the non-interference between network
activities in charge of different functions. Evidence for such transient mechanisms is provided
by the variety of neural events that can be observed in brain activity across multiple structures.
Such phenomena may occur in response to stimuli, as has been observed for gamma
oscillations (Tallon-Baudry and Bertrand, 1999; Fries, 2015), and may play a role in the
dynamic encoding of information. However, key phenomena can also occur spontaneously, as
exemplified by the variety of events occurring during sleep. These include SharpWave-Ripples
(SWR) complexes that occur in the hippocampus during the same sleep stages, and take the
form of a slow deflection (the sharp wave, SW) superimposed with a fast short-lived oscillation
(the ripple). SWRs have been extensively studied and a large set of evidence supports their key
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role in episodic memory consolidation and the recall of previous
experiences (Lee and Wilson, 2002; Diba and Buzsaki, 2007; Ego-
Stengel and Wilson, 2010).

In order to understand how these transient phenomena operate
mechanistically, causality measures based on observed neural time series
can be very helpful to quantify the underlying transient influences
between brain structures. Several measures of causality have been
proposed, starting in the econometrics literature with Granger
causality (GC) (Granger, 1969), relying on vector auto-regressive
models. This measure can be generalized to an information-theoretic
quantity: Transfer Entropy (TE) (Schreiber, 2000). In the present work,
we focus on “model-free” quantities such as TE that are defined
independently of the specific functional relationships entailed by a
particular model of the dynamics. TE and GC have been used to
assess the significance of causal links, but also the “strength” of these
links. However, whether they are appropriate quantities to measure such
strength is debated (Janzing et al., 2013; Stokes and Purdon, 2017).

Structural Causal Models (SCM, see Supplementary Section SA for
background) also allow causal strength measures to be evaluated by
their ability to reflect the magnitude of the changes resulting from
removing the causal links. In this context, the relevance of causality
measures has been investigated by Ay and Polani (2008), who discuss
how to account for the effect of knockout experiments, and introduce a
measure of information flow, emphasizing its desirable properties;
Janzing et al. (2013) provide interesting theoretical justifications for
this kind of measure and extend it to define causal strength (CS) of an
arbitrary set of arrows in a graphical model. With respect to TE,
information flow and CS have the benefit to be local, in the sense that
they depend only on the direct causes of the observed effects and their
associated mechanisms. This makes CS a good candidate to measure
transient connectivity changes during non-stationary neural events, as
they would be able to restrict themselves to causal influences that take
place at a specific time, associated to specific arrows in the “unrolled”
causal graph describing time-varying interactions.

However, we will argue that, even in simple unidirectional settings
where a “source” region is driving events in a target region, such TE and
CSmay not reflect well a key element for neuroscientists: the role played
by transient dynamics. Based on the potential outcome framework
(Rubin, 1974), causal reasoning has also been used to provide intuitive
measures of the causal impact of a specific phenomenon happening at a
given time point (Brodersen et al., 2015), by comparing it to a putative
scenario where this phenomenon does not happen and called synthetic
control in economics (Abadie, 2021). This inspired us to take into
account the peri-event change of signals compared to a pre-event stage
as another component of causal influence.

Therefore, we look at causal influences through the lens of
interventions in SCMs to propose a principled quantification of the
strength of causal interactions in peri-event time series, i.e., datasets
collected specifically around the times of occurrence of an identified
phenomenon in neural signals. Based on information theoretic analyses,
we assess the relevance and issues raised by a time-varying
implementation of GC, TE and causal strength (DCS, where D
stands for Dynamic), and extend DCS to a novel measure, the
relative DCS (rDCS), to quantify causal influences reflected by both
the connectivity and the event-related change at the cause. We show
theoretically that rDCS is effective in uncovering dynamic causal
influences for task-dependent events that are often accompanied
with a deterministic component, as well as for spontaneous events.

We also demonstrate how choices made for aligning peri-event time
series collected across multiple occurrences of these events may bias
causality measures, and we propose a way to align the detected events
favoring the recovery of the ground truth causal direction for a uni-
directionally coupled system. The benefits of rDCS over TE and DCS is
demonstrated by both simulated toy models and neurophysiological
recordings of SWRs. Overall, our results suggest that rDCS helps better
quantify the causal interactions between transient dynamical events,
and thus uncover elementary mechanisms that shape brain activities.

2 Methods

2.1 General principles for the analysis of
event-related causal interactions

2.1.1 Structural Causal Models (SCM)
Mathematically, an SCM for variables {V1, . . ., Vd} is a collection

of so-called “structural assignments” of the form

Vj :� fj PAj,Nj( ), j � 1, . . . , d. (1)

where the right hand side function fj determines the assignment of
the value of Vj on the left-hand side based on the values of parents
variables PAj ⊂ {V1, . . ., Vd} and of the so-called exogenous random
variable Nj. The SCM is associated to a directed graph, the causal
graph, where each variable Vj is represented by a node, and the
parent-child relations between them is indicated by a “parent →
child” arrow. While SCMs do not necessary include time
information, we can exploit them to study dynamic interactions
between two subsystems by considering causal relations linking
variables representing one subsystem at past time points, to
variables representing the other subsystem at a future time point.
As an example, Figure 1A shows two uni-directionally coupled brain
regions whose activities are represented by time series
{. . . , X1

t , X
1
t+1, . . .} and {. . . , X2

t , X
2
t+1, . . .} and the corresponding

SCM links the past of X2 to the future of X1. Typically, such a model
also includes dependencies of each regional activity on its own past,
and those dependencies can involve multiple time steps, leading to
causal graphs of the form exemplified in Figure 2A. We focus on
information theoretic causality measures, which are typically “model
free”, in the sense that they can be expressed independently from the
choice of functions fj in the assignments of Eq. 1. However, model-
free estimation of information theoretic quantities is a
challenging problem that we will not address in this paper.
Instead, estimation of the relevant quantities will rely on the
following linear time-inhomogeneous Structural Vector
Autoregressive (SVAR) model.

X1
t : � a⊤t X

1
p,t + b⊤t X

2
p,t + η1t , η1t ~ N k1t , σ

2
1,t( ), (2a)

X2
t : � c⊤t X

1
p,t + d⊤

t X
2
p,t + η2t , η2t ~ N k2t , σ

2
2,t( ). (2b)

where:

• ηkt is the innovation for channel k at time t, sampled
independently from the past values of X and from
innovations at other time points and/or channels,

• Xk
p,t � [Xk

t−1, . . . , X
k
t−p]⊤ is the vector collecting past p samples

of the time series,
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• the t subscript in all parameters (at, bt, ct, dt, k1t , k2t , σ21,t, σ22,t)
comes from our time-inhomogeneity assumptions and is not
standard in the GC literature.

Note that the constraint of independence between exogenous
variables ηkt associated to different channels entails the assumption
of no contemporaneous effects, in contrast to, e.g., Moneta et al.
(2011). Figure 2A exemplifies the associated causal graph for p = 2
and ct = 0, such that X2 is dependent only on X2 itself, encodes
unidirectional causation from X2 to X1. The methods presented in
this paper can be applied to time series generated by any other
Markovian time series model (e.g., non-linear models (Marinazzo
et al., 2011a)). However, the choice of SVAR 1) allows expressing the
link between Granger causality and Transfer Entropy, 2) facilitates
the estimation of all information theoretic quantities (which is
inherently hard in a model-free setting, see, e.g., McAllester and
Stratos (2020), as they get an analytic expression based on second
order statistics), 3) avoids issues related to the non-parametric
estimation of information theoretic quantities (e.g., finite sample
bias), 4) allows to build easily interpretable models of transient
oscillations.

2.1.2 Interventions in SCMs
One key question in causality is estimating the effect of (possibly

imaginary)manipulations (see, e.g., Woodward, 2001) of the system

of interest from data, which boils down to comparing two “worlds”
or scenarios (Shpitser and Pearl, 2008): the original world where no
manipulation is performed, and the “post-manipulation” world.

Both original and post-manipulation worlds typically cannot be
measured simultaneously (e.g., “treatment” and “no treatment” in
the same patient). However, estimating their differences arguably
forms the basis of causal investigations in empirical sciences, for
example, by performing randomized experiments on multiple
instances of a system designed with mutually exclusive
treatments to infer the outcome of manipulations of this system.
However, even performing carefully controlled experiments on close
to identical instances of a system is often challenging in reality, as
many physical and physiological phenomena cannot be easily
reproduced or manipulated. This is typically the case for
spontaneous transient neural events investigated in this paper,
where neurophysiological experimental techniques limit the
understanding and control of their conditions of occurrence, as
well as the ability to precisely modify some aspects of network
activity to test assumptions on the underlying mechanisms.

Under additional model assumptions, such as the absence of
unobserved confounders, the framework of SCMs (as briefly
introduced in Section 2.1.1 and Supplementary Section SA), can
be leveraged to infer the outcome of manipulations based on
observational data only. Assuming those assumptions are met
(see also Discussion for examples), the SCM inferred from data

FIGURE 1
Analysis of event-related causality via interventions in SCMs. (A) (Top) Diagrams representing two brain regions with uni-directional connectivity
from Region 2 to Region 1 and the post-manipulation scenario where the connectivity is removed. Region 2, as the “cause region”, exhibits transient
events (grey) that influence Region 1 by propagating along the anatomical connection. (middle) SCMs underlying the diagrams, where X1

t and X2
t denotes

states of Region 1 and Region 2. (bottom left) joint distribution of the two nodes in the SCM above reflecting dependencies between them. (bottom
right) Hypothetical Gaussian joint distribution of two nodes in the SCM above with black arrows indicating varied covariance. (B) (Top) An experimental
manipulation of the two-region diagram in (A) related to the intervention in measuring causal strength: cutting the anatomical connectivity. (middle) A
corresponding intervention of the SCM in (A) represents cutting the causal arrow and feeding the effect node X1

t with an independent copy of the cause
node X2

t−1. (bottom) joint distribution of the corresponding intervention distribution in contrast to the joint distribution in (A, bottom left). (C) (Top) Another
experimental manipulation of the two-region diagram in (A): cutting the anatomical connectivity and removing the event-based signal changes at Region
2. (Bottom) The corresponding intervention of the SCM in (A) represents cutting the causal arrow and feeding the effect node X1

t with an independent
copy of a reference state of the cause node X2

tref
. (bottom) joint distribution of the corresponding intervention distribution in contrast to the joint

distribution in (A, bottom left). (D) (Top) A time course of observed peri-event signals of Region 1 (X1
t , red) and Region 2 (X2

t , grey) reflecting the original
scenario. The blue dashed time course represents the post-intervention scenario where X1

t evolves without the influence from X2
t . The interval marked by

grey dashed lines refers to the reference state before the occurrence of events in X2
t . (Bottom) Visualization of the difference between the original and

post-intervention scenarios at each time point.
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can be modified using a family of operations named interventions to
model the manipulations of the system described by the SCM (Pearl,
2000; Peters et al., 2017). Intervening typically refers to modifying
the structural equation associated to one node in the SCM, to study
the modifications it brings about in the system. When interventions
are performed, the only affected mechanistic relations (represented
by arrows in an SCM) are the ones between the intervened nodes
and their parent nodes. For instance, one can impose a fixed
deterministic value to a node, or that this node’s variable is
drawn from a given distribution, independently from other
variables in the SCM (Janzing et al., 2013; Correa and
Bareinboim, 2020; Peters et al., 2017, Chapter 3). Both such
interventions lead to an intervened causal graph where the
arrows between the node intervened upon and its parents are
removed. For a better understanding of the manipuation
modelled in these two cases, consider examples from
experimental manipulations in electrophysiology. The first case
involves fixing a value, as in voltage clamp techniques used to
study channel conductance. By fixing the membrane potential of
a single neuron, the causal arrow between the membrane potential
and extracellular ion concentration is broken. An example of the
second case is injecting current in plasticity studies to maintain

certain firing rates in a patch-clamped neuron, ensuring that the
pharmacological shutdown of certain ion channels does not cause a
change in neuronal firing patterns.

Importantly, while an intervention modifies the graph
associated to an SCM, the variables’ joint distribution can still be
obtained by exploiting interventional knowledge, (unintervened)
observational data and prior assumptions related to the unaffected
conditionals.

For the SCM introduced in Eq. 1, intervening on Vk consists in
replacing its structural assignment by a new one:

Vk :� f̃k P̃Ak, Ñk( ). (3)

where the new function f̃k, set of parents P̃Ak, and/or the
distribution of the exogenous variable Ñk may be differ from the
original ones. The resulting distribution ~PV is called intervention

distribution and denoted P do(Vk :�f̃k(P̃Ak,Ñk))
V (see e.g., Peters et al.

(2017, chapter 6)), where the superscript indicates that we refer to
the distribution resulting from the modification of the SCM’s kth
equation by Eq. 3, which is called a “do operation”. Meanwhile, the
other structural equations and the distribution of their associated
exogenous variables are kept unchanged.

FIGURE 2
D-separation of bi-variate SVAR(2) model. (A) Structural causal model of a bi-variate SVAR(2) model defined in Eq. 2a with uni-directional coupling
from X2 to X1. (B)Conditioning on both past states of X1 and X2 blocks all paths from X1

t−3 to X1
t . Blue nodes represents conditioned nodes while blue arrows

marks blocked paths. Orange arrows marks the unblocked paths. (C) Conditioning on past states of X1 alone blocks all paths from X1
t−3 to X1

t in the uni-
directional case. Color codes are the same as (B). (D) Conditioning on past states of X1 alone does not block all paths from X1

t−3 to X1
t in the bi-

directional case. Color codes are the same as (B). (E) The intervention implemented in devising CS is to break the causal arrows and send an independent
copy X2

p,t to X1
t at each time point. This diagram applies to both CS and DCS (Section 2.2.3). (F) The intervention implemented in devising rDCS is to break

the causal arrows and send an independent copy of the stationary state X2
p,tref

(marked by grey) to X1
t at each time point.
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2.1.3 From causal strength to a measure of event-
based causal influence

Typically, one brain region influences another through axonal
propagation of spiking activity in afferent neurons, and synaptic
transmission to dendrites of the target region. In the simplest bi-
variate case (i.e., if we focus on two brain regions with direct synaptic
projections), this relationship can be represented in an SCM by
Figure 1A(left) where two nodes representing the neural activities of
the two regions are linked by a uni-directional arrow. For the sake of
simplicity, we ignore for now the influence of the past of X2 on itself,
such that the only causal link is from the past (at t − 1) of region 2 to
the present (at t) of region 1. The joint probability can be causally
factorized as P(X2

t−1, X
1
t ) � P(X1

t |X2
t−1)P(X2

t−1), where P(X1
t |X2

t−1)
reflects the stochastic map or causal mechanism between the child
and parent of the arrow: for example, Figure 1A(bottom left) shows a
typical example how a nonlinear structural equation (i.e., the arrow)
induces dependencies between a normally-distributed X2

t−1 and X1
t .

A natural manipulation to study the causal mechanism is to shut
down the synaptic transmission during event occurrence and
compare the outcomes, e.g., via physically cutting the pre-
synaptic dendrite attached to the synapse, or pharmacological
blockade of the relevant ion channel. Suppose that the
experiment could be done, the data obtained in this hypothetical
manipulated scenario can be modeled by another SCM without the
arrow betweenX2

t−1 andX
1
t , as seen in Figure 1A(right middle), such

that they are independent from each other with ~P(X2
t−1, X

1
t ) �

~P(X1
t )~P(X2

t−1) due to the Markov properties (Supplementary
Section SA). In a model-free setting and in absence of data
where this (technically challenging) manipulation is actually
done, the choice of factorized ~P, such as the marginal mean and
covariances, is non-trivial (see illustration in Figure 1A(bottom
right)). Janzing et al. (2013) introduce a well-grounded way to
make this choice to emulate this experimental ablation of
connectivity, that generalize to arbitrary causal graphs.

This approach will be thoroughly discussed in Section 2.2.3 but
here we explain it briefly in this simplified example to provide the
readers with an intuitive understanding of the principles. Figure 1B
illustrates the intervention performed in the SCM: cut the causal
arrow from X2

t−1 to X1
t and feed X1

t with an independent copy of
X2

t−1 (denoted X2′
t−1), where independent copy means that X2′

t−1 is a
random variable statistically independent from any exogenous
variables within the graph, and with the same marginal
distribution as X2

t−1. The idea of this intervention is to achieve
the independence of variables in the post-manipulation world by
exploiting the observational conditional and marginal probabilities
available to us. That is:

• choose ~P(X2
t−1) to be the observedmarginal distribution of the

cause, i.e., ~P(X2
t−1) � P(X2

t−1), because it is the only one
available to us in a model-free setting. Consider alternative
choices: we could set the cause to a constant, but which
constant to choose is unclear without additional
information on the system. For example, even taking the
observational average would not be realistic if X2

t−1 is binary,
• replace the cause→ effectmechanismP(X1

t |X2
t−1) by the operation

of feeding the effect nodeX1
t with an independent copy of the cause

nodeX2
t−1 at the same time t− 1, such that themechanism becomes

~P(X1
t ) � ∫P(X1

t |X2′
t−1)P(X2′

t−1)dX2′
t−1 � P(X1

t ). Here again, the

choice of observational density guarantees that the resulting
mechanism is well defined for arbitrary SCMs.

The strength of the causal arrow is then quantified by the
Kullback-Leibler (KL) divergence DKL between original
(unintervened) and intervened joint densities DKL(P‖~P) �
DKL(P(X2

t−1, X
1
t )‖P(X2

t−1)P(X1
t )), which in this simple case

thus boils down to the mutual information between the two
nodes. Figure 1B(bottom) illustrates the contrast between the
actual joint distribution and the intervention distribution for
such intervention: by comparing these two distributions one
could quantify how much the causal mechanism tilts the
Gaussian shape, while they still largely overlap. In a context
where nodes correspond to single neurons, this can be thought of
as a proxy for the experiment of cutting the axon of afferent
neurons, while injecting a current to maintain the baseline level
of excitation in the target neuron, such that it is kept in
naturalistic conditions.

However, we will argue that this choice of intervention is not
an ideal way to measure the event-based causal influences
between two brain regions. Going back to the manipulation
experiment, despite the transient activities occurring at the
pre-synaptic neurons as an input to the synapse, due to the
cutoff of afferents or blockage of ion channels, the activity of the
post-synaptic neuron (i.e., the effect variable) is expected to
remain at baseline level without being influenced by the event
occurring in the cause. In this context, the operation of feeding
the effect node X1

t with an independent copy of the cause node
X2

t−1 at the same time t − 1 still implicitly incorporates the
influence of the event-related transient changes undergone by
X2 at the time t − 1 on X1

t , as the distribution of X2
t−1 may strongly

differ from what it is during baseline activity (without the
occurrence of events). Therefore we propose instead to
reconstruct the baseline state by replacing the independent
copy of the marginal distribution of the event-related activity
X2

t−1 by the marginal distribution of a baseline state in X2
tref

, at a
reference time point tref where the event of interest has not yet
occurred (Figure 1D(Top)), such that the new intervention
distribution becomes ~P(X2

t−1, X
1
t ) � P(X2

t−1)∫ P(X1
t |X2′

tref
)

P(X2′
tref

)dX2′
tref

� P(X2
t−1) ~P(X1

t ). The difference between
feeding independent copies of different marginal distributions
and the resulting baseline joint probability are illustrated in
Figures 1B, C. We thus argue that this is a better reference
scenario for testing the influence of an event between two
brain regions because it accounts for the event-related
variations of the input distribution relative to baseline activity.

2.2 Candidate time-varying causality
measures

We now present the time-varying versions of commonly-
adopted causal strength measures of a given direction of
causation X2 → X1 and discuss their properties in the context of
transient event-based causality analysis, in light of the above
principles. The candidate measures include time-varying
extensions of Granger causality (GC), Transfer Entropy (TE) and
Causal Strength (CS) (Janzing et al., 2013). To make the comparison
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quantitative, time series are modeled using the bivariate linear
SVARmodel of Eq. 2a and Eq. 2b. As we will see, all measures boil
down to comparing the “full” bivariate model to a model where
the contribution of the cause time series to the effect is removed
in some way. Generalization to more than two observed time
series is possible in all cases and briefly mentioned for each
approach.

2.2.1 Granger causality
Granger causality (GC), as well as its information-theoretic

extension, Transfer Entropy (TE) is rooted in Wiener’s principle
of causality. For the bivariate case, Granger (1969) defines the
statement of (Granger-)causality from X2 to X1 whenever
knowledge of X2

p,t, in addition to X1
p,t, yields a strictly better

prediction of X1
t . This can be interpreted as a comparison

between two prediction scenarios:

• Scenario 1: predict X1
t using both X1

p,t and X2
p,t,

• Scenario 2: predict X1
t using only X1

p,t,

where X1
p,t and X2

p,t refer to the respective p previous past points of
each time series, without further specification, such that in our
notation p can be potentially infinite.

The predictive model describing the first scenario is referred to
as the full model (Geweke, 1984) and corresponds to Eq. 2a of the
SVAR model, where the first variable X1 is dependent on both
variables X1 and X2. An estimate of the innovation variance of X1

t

(σ21,t in Eq. 2a) is the mean squared residual error (σ̂21,t) of the
forecast of X2

t under the assumption that both X1
p,t and X2

p,t

contribute to X1
t . Under Scenario 2 where X1

t is predicted only
by X1

p,t, we have a reduced model

X1
t � a′⊤t X

1
p′,t + η1t ′, η1t ′ ~ N k′1, σ′21,t( ). (4)

where the model order p′, the coefficient a′, the innovations mean
k′1 and innovations variance σ′21 are different from the corresponding
terms in Eq. 2a and are classically re-estimated.

If X2 Granger-causes X1, then the full model should fit the data
more accurately compared to the reduced model as measured by

the estimated variance σ̂′
2

1,t, which should be larger than σ̂21,t. Then
the amount of Granger causality can be defined as the log ratio of
the residual variance between the reduced model and the full
model, which leads to estimating the magnitude of Granger
causality as

GC X2
t → X1

t( ) � 1
2
log

σ̂′1,t
2

σ̂1,t
2

⎛⎝ ⎞⎠, (5)

where the factor 1/2 is chosen for consistency with TE (see Section
2.2.2). While the above linear SVAR model is the most widely used,
Granger causality has been extended to non-linear models following
the same predictive approach (e.g., Marinazzo et al., 2008;
Marinazzo et al., 2011b; Diks and Wolski, 2016; Wismüller et al.,
2021, for a recent review see Shojaie and Fox, 2022).

2.2.2 Transfer Entropy
TE is an information-theoretic implementation of Wiener’s

principle, where a comparison between the prediction
performance of the above two scenarios is quantified with

conditional entropy. TE quantifies to which amount X2

causes X1 in the Granger sense and is defined by the entropy
difference

TE X2
t → X1

t( ) � H X1
t |X1

p,t( ) −H X1
t |X1

p,t,X
2
p,t( ). (6)

Interestingly, using the Kullback-Leibler (KL) divergence DKL

between two probability densities DKL(p‖q) � ∫p(x)log p(x)
q(x) dx,

TE can be rewritten as an expected KL-divergence between the
corresponding conditional probabilities, thereby contrasting the two
above mentioned scenarios:

TE X2
t → X1

t( ) � EX1
p,t ,X

2
p,t

DKL p X1
t |X1

p,t,X
2
p,t( )‖p X1

t |X1
p,t( )( )[ ].

(7)
As noticed by Barnett et al. (2009), under stationary Gaussian SVAR
assumptions the analytic expression of Gaussian entropy applied to
Eq. 6 leads to GC(X2

t → X1
t ) � TE(X2

t → X1
t ) in the limit of

unbiased variance estimation, such that TE appears as a strict
generalization of GC, and can be estimated by GC in the context
of Gaussian SVAR models. TE and GC statistics are two commonly
used measures of causal strength for investigating interactions
between brain regions (e.g., Vicente et al., 2011; Besserve et al.,
2010, 2015; Ding et al., 2006; Wibral et al., 2013, 2014; Barrett et al.,
2010; Wen et al., 2013; Shorten et al., 2021; Cekic et al., 2018, with
several widely applied toolboxes such as Barnett and Seth, 2014;
Montalto et al., 2014; Lizier, 2014; Wollstadt et al., 2019). They
generalize easily to more than two signals by including also the past
of additional signals in the prediction equations when assessing
causality for a specific pair, as is done in conditional pairwise
Granger causality (Barrett et al., 2010; Faes et al., 2011; Runge
et al., 2012; Barnett and Seth, 2014). Based on the observational
conditional distribution of the neural signals being analyzed, these
two measures estimate a quantity that is easily interpretable from a
forecasting perspective. However, they have some limitations with
regard to their interpretability as interventions in the SCM
framework and in the time varying setting that interests us in the
present paper.

A key issue is that the reduced model ignores but does not
remove the influence of past values of X2 (X2

p,t) on X1
t by

marginalizing with respect to them. It can be shown that such
change does not preserve the SCM structure, and leads to violations
of the Markov properties due to the implicit dependency on the
mechanisms relating X2

p,t and X1
p,t, which manifest themselves

through the p(X2
p,t|X1

p,t) term of the marginalization equation
(Ay and Polani, 2008; Janzing et al., 2013):

p X1
t |X1

p,t( ) � ∫p X1
t |X1

p,t,X
2
p,t( )p X2

p,t|X1
p,t( )dX2

p,t. (8)

As a consequence, the reduced model cannot be generally interpreted
as an intervention on the original SCM that would result in a model
where arrows associated to the causal influence of interest would be
removed. In addition, in case of bi-directional coupling, the reduced
model of Eq. 4 is misspecified (in a generic case) for any finite order.
This can be seen easily by exploiting the d-separation criterion
(Supplementary Section SA), as illustrated in Figure 2. Figure 2B
shows the estimation in the full model, where conditioning on both
X1
p,t and X2

p,t blocks all the paths from X1
t−3 toX

1
t such thatX1

t−3 and
X1

t are conditionally independent. For such a uni-directionally-
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coupled system, a finite order for the reduced model also guarantees
such conditional independence, as seen in Figure 2C where all
paths are blocked by conditioning. However, in the same system
with bi-directional coupling, for any k > p (i.e., k > 2), there is
always a path from X1

t−k to X1
t going through nodes of X2 that is

unblocked by (X1
t−p, . . . , X

1
t−1). As Figure 2D shows, 2 paths

from X1
t−3 to X1

t are not blocked by conditioning on X1
p,t. Under

faithfulness assumptions, this implies that there is conditional
dependence between X1

t and its remote past samples, no matter
how many finite past states we are conditioning on. This further
implies that to minimize the forecast error of X1

t in the reduced
model one should ideally exploit the past information of this
time series up to p = +∞.

This issue has been both raised and addressed in the
literature, in particular by resorting to Autoregressive
Moving Average models and state space models for defining
an appropriate reduced model (e.g., (Barnett and Seth, 2015;
Solo, 2016)). However, this remains an important limitation
when extending TE to time-varying versions, where the model
is assumed to be stationary at best locally in time. For example,
when defining a non-stationary SVAR model as Eq. 2a, we
assume a different linear model in each 1-point time window.
The non-locality of TE is particularly problematic for such a
time-varying model assumption because of the implicit
influence of past activities on this quantity.

2.2.3 Dynamic causal strength
To overcome the limitations of TE and GC, Ay and Polani

(2008) have proposed a measure of information flow to quantify the
influence of some variables on others in a system, which has been
further studied and generalized in Janzing et al. (2013) as a measure
of the Causal Strength (CS) of an arbitrary set of arrows in a
graphical model. In the present paper, we define CS in the
context of time-inhomogeneous vector autoregressive processes
and their associated unrolled causal graph, and thus call it
Dynamic Causal Strength (DCS).

DCS can be naturally defined using the SCM interventional
formalism (Pearl (2000); Peters et al. (2017), see Section 2.1.2).
Briefly, interventions are performed on nodes in order to remove
the specific arrows from the causal graph whose influence we
wish to quantify. In agreement with Ay and Polani (2008) and
Janzing et al. (2013), in the context of inhomogeneous SVAR
models (as illustrated in Figure 2A), an appropriate intervention
to remove the causal influence from X2

p,t to X
1
t can be designed as

the following intervention (shown in Figure 2E): remove the
arrow X2

p,t → X1
t by injecting instead X2

p,t′, an independent
copy of X2

p,t with the same joint distribution, in the original
mechanism P(X1

t |X1
p,t,X

2
p,t). The intervention distribution pDCS

models the post-interventional world after removing the causal
arrow from X2

p,t to X1
t and results in the entailed conditional

probability

pDCS X1
t |X1

p,t( ) � p
do X1

t :�f X1
p,t ,X

2
p,t′,η1t( )( ) X1

t |X1
p,t,X

2
p,t( )

� ∫p X1
t |X1

p,t,X
2
p,t( )p X2

p,t( )dX2
p,t,

which does not depend on p(X2
p,t|X1

p,t) anymore, in comparison
to Eq. 8. DCS then quantifies the KL divergence between the

distributions of X1
t |(X1

p,t,X
2
p,t) obtained in both worlds, such

that

DCS X2
t → X1

t( ) � E X1
p,t ,X

2
p,t

DKL p X1
t |X1

p,t,X
2
p,t( ) | pDCS X1

t |X1
p,t( )( )[ ].

(9)
A parametric formulation under linear Gaussian model assumptions
is given in Supplementary Section SD.5. Generalization tomore than
two time series is also straightforward following (Janzing et al.,
2013): pDCS and DCS are simply computed by also including
conditioning on the past of all other time series, in addition
to X1

p,t.
Remark: In contrast with Janzing et al. (2013), but in line

with Ay and Polani (2008), we do not use jointly
independent copies of each component of X2

p,t, that is,
the copy preserves the dependency between the successive
past time points of X2. Indeed, Janzing et al. (2013) require
having copies with jointly independent components in order
to assess the individual strength of each arrow in the causal
graph, which would correspond to the influence of each time
lag in our setting. In contrast, this is not a requirement for us as
we are only interested in assessing the overall effect of the
whole past of a given time series on the another. One benefit of
our choice is that it is consistent with the definition of TE: one
can easily check that in absence of dependency of X1

t on its own
past, both TE (based on Eq. 6) and DCS reach the same value:
the mutual information of X2

p,t and X1
t . Given that successive

samples may be strongly correlated in practice, our choice
avoids unnecessary discrepancies between these two
measures to focus on their key difference. In additional, our
choice can be seen as in line with Janzing et al. (2013) when
considering a state representation of the time series’ causal
graph, where the node of variable k at time t would be the vector
[Xk

t , X
k
t−1, . . . , X

k
t−p+1]⊤.

2.3 Near deterministic behavior of TE
and DCS

The analysis of transient neural events leads us to analyze signals
that have limited stochasticity in several respects: on the one hand,
strongly synchronized oscillatory signals can be represented by
SVAR models with low innovation variance, relative to the
variance of the measured signal. Moreover, when a study focuses
on a reproducible type of transient pattern, it is often characterized
by a waveform that has little variability across collected trials. Such a
situation can be modeled with a time-varying deterministic
innovation, exhibiting strong variation of its mean across time,
but no or little variance. We investigate the theoretical properties of
TE and DCS in this regime, showing a benefit of DCS with respect to
TE, but also remaining limitations.

2.3.1 TE behavior for strongly synchronized signals
Besides, it has also been pointed out that the definition of TE in

Eq. 7 has some other non-intuitive implications (Ay and Polani,
2008; Janzing et al., 2013). In particular, there are situations in which
TE(X2 → X1) almost vanishes, although the influence is intuitively
clear. How frequent are the practical situations in which we have
these detrimental effects is unclear; however, theoretical analysis
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suggests that this can happen when the time series are strongly
correlated.

To see this, we can derive from Eq. 7 the case where X2 is a
deterministic function of X1 such that TE vanishes. Take the special
case where X2

t is proportional to X1
t such that X2

t � kX1
t ,

representing a time-wise synchronization of the two signals, the
conditional variance will be

ΣX2
p |X1

p
� ΣX2

p
− ΣX2

pX
1
p
Σ−1
X1
p
ΣX1

pX
2
p

� ΣX2
p
− kΣX2

p
· 1

k2
Σ−1
X2
p

( ) · kΣX2
p
� 0

Plugging into Supplementary Equation S8 in Supplementary
Section SD.4 yields,

TE X2
t → X1

t( ) � log
b⊤t Cov X2

p,t|X1
p,t[ ]bt + σ1,t

2

σ1,t
2

� log
σ1,t

2

σ1,t
2 � log 1 � 0

However, a strong correlation between two observed time series
does not necessarily imply that causal interactions between them are
weak, from an SCM perspective. We will investigate this case in
Section 3.1 and compare with the results of DCS to show that DCS
does not suffer from this non-intuitive vanishing problem.

2.3.2 Insensitivity of TE and DCS to deterministic
perturbations

While several intuitive properties make DCS a good candidate to
quantify causal influences, we exhibit a counterintuitive property
common to TE and DCS in the context of peri-event time series.
Transient neural events are mainly investigated in two types of
analyses: 1) stimulus-triggered (or response-triggered) data that are
temporally aligned by task (or response) onset and 2) event-
triggered data where occurrences of a type of brain-activity
pattern are detected along the time course of the recordings
(manually or algorithmically) and used to create peri-event trials.

In both cases, neural activities are likely to have a deterministic
component appearing in the peri-event ensembles, due the similarity
of the response to successive stimuli in case 1), or due to the
similarity of the neural patterns detected in the recordings in
case 2). Here we will show that, in a linear setting, TE and DCS
are insensitive to such a deterministic component. Specifically, TE
and DCS values are unaffected by interventions on the innovations’
mean at any time point.

First, we exhibit the role played by a deterministic perturbation
in an example.

Example 1. Consider the bi-variate SVAR(1) model in the
following form

X1
t :� aX1

t−1 + bX2
t−1 + η1t , (10a)

X2
t :� η2t , (10b)

with a, b ≠ 0 and a stationary innovation for X1, η1t ~ N (0, 1), but a
non-stationary innovation for X2, η2t ~ N (αδt, t0, σ22,t), with

δt,t0 � 1, for t � t0,
0, otherwise.

{
When varying α, this models a intervention on the second time

series. Then it can be easily shown that the expected time course of X1 is

E X1
t[ ] � αbat−t0+1, t≥ t0 + 1

0, otherwise.
{

This witnesses the causal influence of X2
t0

on values of X1
t at

subsequent times, which for large α results in large deviations
from the baseline expectation of X1

t for t prior to t0. Intuitively,
one may expect that a quantification of the magnitude (strength) of
the causal influence of X2 on X1 should be larger for larger α, as a
transient of larger magnitude propagates from X2 to X1. From a
neuroscientific perspective, this could model an experimental setting
where one brain region is electrically stimulated with increasing
strength to detect whether it is anatomically connected to another.
Obviously, the magnitude of the stimulation is expected to be critical
to elicit a response in the target region. However, TE and DCS
actually turn out to be insensitive to such stimulation.

We will show this in the more general setting of the SVAR(p)
model of Eq. 2a and Eq. 2b.

Proposition 1. For linear SVARmodels defined by Eq. 2a and Eq.
2b, TE and DCS measures are invariant to deterministic
perturbations, i.e., to changes in the mean of the innovation’s
distributions (k1t , k2t ).

Proof. Without loss of generality, we will show invariance to an
elementary intervention at a single time t0 that transforms η2t0 to
η2t0 + α, which boils down to changing the mean parameters of the
innovation k2t0 in Eq. 2a and Eq. 2b. By linearity and symmetry of the
problem for channel 1 and 2, invariance to deterministic
perturbations results from combining several elementary
interventions.

To compute how the intervention distribution of the new
variables denoted ( ~X1

, ~X
2) changes with respect to the

distribution of the original variables, we can examine the
difference with respect to (X1, X2) that has the same innovations,
except for η2t0 for which we remove a constant α. (X1, X2) is then
distributed according to the original distribution (before
intervention), and the difference (U,V) � ( ~X1 −X1, ~X

2 −X2)
follows the equations

Ut � a⊤Up,t + b⊤Vp,t,
Vt � c⊤Up,t + d⊤Vp,t + δt, t0,

which is a set of linear deterministic difference equations with a
unique solution making X and ~X coincide before the intervention1

(Ut, Vt). As a consequence, by linearity, the interventional density ~p
is a shifted version of the original:

~p X1
t ,X

1
p,t,X

2
p,t( ) � p X1

t − Ut,X
1
p,t − Up,t,X

2
p,t − Vp,t( ),

which implies the same for conditional marginal densities, e.g.,

~p X1
t |X1

p,t,X
2
p,t( ) � p X1

t − Ut|X1
p,t − Up,t,X

2
p,t − Vp,t( )

and

~p X1
t |X1

p,t( ) � p X1
t − Ut|X1

p,t − Up,t( ).
As a consequence TE on the intervention distribution writes

1 Because initial conditions of this deterministic linear system are set to zero
before the intervention at t0
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TE ~X
2

t → ~X
1

t( ) � ∫ ~p X1
t ,X

1
p,t,X

2
p,t( )log ~p X1

t |X1
p,t,X

2
p,t( )

~p X1
t |X1

p,t( ) dX1
tdX

1
p,tdX

2
p,t

� ∫p X1
t − Ut,X

1
p,t − Up,t,X

2
p,t − Vp,t( )

× log
p X1

t − Ut|X1
p,t − Up,t,X

2
p,t − Vp,t( )

p X1
t − Ut|X1

p,t − Up,t( ) dX1
tdX

1
p,tdX

2
p,t.

And by change of variable we get the invariance property:

TE ~X
2

t → ~X
1

t( )f � ∫p X1
t ,X

1
p,t,X

2
p,t( )logp X1

t |X1
p,t,X

2
p,t( )

p X1
t |X1

p,t( ) dX1
tdX

1
p,tdX

2
p,t

� TE X2
t → X1

t( ),
which can be generalized to arbitrary deterministic perturbations.
The same reasoning can be applied to DCS leading to invariance as
well (Supplementary Section SB) and this concludes the proof.

Arguably, this result is not what we would expect from an event-
related measure of influence, because in the above example of Eq. 10a
and Eq. 10b, setting a large α intuitively leads to a large influence of X2

on X1 provided b ≠ 0. Provided that TE and DCS can be made
arbitrarily small by reducing the innovation’s variance σ22,t
(according to their analytical expression in Supplementary Section
SD), TE and DCS may detect no influence despite this strong effect
on the mean ofX2

t . Although this invariance result is rigorously derived
for linear SVAR models, it uncovers an issue for non-linear models as
well, the magnitude of the causal influence associated to deterministic
perturbation then depending chiefly on the non-linear properties of the
system under study, and not on the magnitude of the changes triggered
by the perturbation. Moreover, linear SVAR(p) models being able to
approximate nonlinear dynamics, this suggests that deterministic causal
influences cannot be detected by TE or DCS for a broad class of models
in practice.

As elaborated above, this is in contrast to what would be expected in
the neuroscientific context, and directly relates to the observational,
event-related setting that we investigate: the deterministic component is
due to the alignment of the data with respect to an event of interest, and
we do not have a different condition to contrast the occurrence of this
event with what would have happened in its absence. This analysis calls
for building a synthetic baseline condition that would allow
deterministic changes to be detected.

2.4 A novel measure: relative Dynamic
Causal Strength

2.4.1 Motivation
Following the guidelines for event-based causality (presented in

Section 2.1), we propose a novel measure, the relative Dynamic Causal
Strength (rDCS), as a modification of DCS. This measure aims at taking
into account the influence of event-based changes in the cause signals
independent from the connectivity (the mechanism), and notably those
driven by deterministic exogenous inputs. In the specific problem we
are investigating, the cause is the past states of X2, denoted X2

p,t, while
the mechanism can be represented by the model in Eq. 2a and
symbolized by the corresponding causal arrow in the causal graph.
DCS only deletes the causal arrow in the post-intervention scenario but
preserves the event-related change in the cause itself.

In the case whereX2 is driven by a deterministic exogenous input in
a transient window, the cause exhibits significant changes relative to
baseline; thus, intuitively, the causal effect should also be enhanced even
if the causal arrow remains the same (i.e., the coefficient b stays
unchanged). Apart from intervening on the causal arrow, further
intervention can be implemented on the cause node to construct a
post-intervention scenario where the cause receives no time-varying
innovations. Therefore, inspired by causal impact (Section 2.1.3) which
characterizes the difference between the current state and a baseline
state, we propose (additionally to DCS) to replace the marginal of X2

p,t

by the marginal of X2
p,tref

, that we denote pref(X2
p,tref

), for a reference
time tref. The reference time tref is typically chosen to be a stationary
period before the occurrence of the transient deterministic
perturbations and statistics of X2

p,tref
can be averaged by statistics of

X2
p,t within this period. This leads to the relative Dynamic Causal

Strength (rDCS)

rDCS X2
t→X1

t( )
� EX1

p,t ,X
2
p,t

DKL p X1
t |X2

p,t ,X
2
p,t( ) p

do X1
t :�f X1

p,t ,X
2
p,tref

,η1t( )( )
X1

t |X1
p,t ,X

2
p,t( )

�����������
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

(11)

with

p
do X1

t :�f X1
p,t ,X

2
p,tref

,η1t( )( )
X1

t |X1
p,t,X

2
p,t( )

� ∫p X1
t |X1

p,t,X
2
p,t( )pref X2

p,t( )dX2
p,t (12)

The implementation of rDCS given a SVAR model is derived in
Supplementary Section SD.6. Generalization to more than two time
series can be done in the same way as for DCS, by including extra
conditioning on the past of other time series for all quantities.

Intuitively, the term relative originates from the comparison
between the current past state X2

p,t and the reference past state
X2
p,tref

. It is then natural to predict that in the uni-directional case,
rDCS(X2 → X1) = DCS(X2 → X1) for any reference time tref if X

2 is
stationary because stationarity implies that themarginal distributions of
X2
p,tref

and X2
p,t are identical. As a particular case, this result implies that

a transient loss of causal link from X2 to X1 will lead to rDCS = 0, while
for a stationary bivariate system, DCS = rDCS is constant.

2.4.2 Sensitivity of rDCS to deterministic
perturbations

The definition of rDCS implies sensitivity to deterministic
perturbations. Indeed, taking the example in Section 2.3.2, the
reference state X2

p,tref
is unaffected by the deterministic

perturbation. Consequently, the translational invariance does not
hold for the intervention distribution because

rDCS ~X
2

t → ~X
1

t( ) � ∫ ~p X1
t ,X

1
p,t ,X

2
p,t( )log ~p X1

t |X1
p,t ,X

2
p,t( )

∫~p X1
t |X1

p,t ,X
2
p,t( )~pref X2

p,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t � ∫p X1

t − Ut,X
1
p,t − Up,t ,X

2
p,t − Vp,t( )log p X1

t − Ut |X1
p,t − Up,t ,X

2
p,t − Vp,t( )

∫p X1
t − Ut |X1

p,t − Up,t ,X
2
p,t − Vp,t( )pref X2

p,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t � ∫p X1

t ,X
1
p,t ,X

2
p,t( )log p X1

t |X1
p,t ,X

2
p,t( )

∫p X1
t |X1

p,t ,X
2
p,t( )pref X2

p,t + Vp,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t ≠∫p X1

t ,X
1
p,t ,X

2
p,t( )log p X1

t |X1
p,t ,X

2
p,t( )

∫p X1
t |X1

p,t ,X
2
p,t( )pref X2

p,t( )dX2
p,t

dX1
t dX

1
p,tdX

2
p,t � rDCS X2

t → X1
t( ),

because ~pref is not translated by the deterministic perturbation in
the way ~p(X2

p,t) is (as the perturbation is happening after the
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reference time), such that the denominators do not allow equating
the integrated terms by change of variables in the generic case.
Therefore rDCS is capable of uncovering transient causal influences
between stimulus-triggered events exhibiting a deterministic
waveform.

2.5 Alignment for spontaneous events

The relevance of peri-event time-varying causal analysis
using the proposed rDCS, as well as TE and DCS, depends on
the modeling assumptions of peri-event data. In particular, we
assume that the neural events we want to study reflect a sequence
of continuously changing hidden states and that values at each
peri-event time point t′ are sampled i.i.d. across trials from the
same ground truth distribution (Shao et al., 2022) at t′. This is
easily justified for stimulus-evoked events, as addressed in
Section 2.3.2 and Section 2.4.2, with an intrinsic reference
time for occurrence (i.e., the triggering time). However,
analyzing spontaneous events whose occurrence times are not
known a priori, such as transient events observed during sleep,
requires 1) a selection procedure to identify them and 2) a
procedure to choose a reference time point for each detected
event, which is used to align all of them on a common peri-event
time grid. The idea of reference points for alignment is similar to
the anchor points in Phase Rectified Signal Averaging (Bauer
et al., 2006). In contrast with such work, we focus on a transient
phenomenon at the time scale of a peri-event time window
instead of a very fast increase in the signal amplitude. Given a
signal exhibiting spontaneous events, common procedures
involve 1) selecting the events by thresholding a filtered
version of this signal (that amplifies the events’ features of
interest); 2) aligning events according to the local peak of this
same filtered signal to best reflect the evolution of the underlying
state. The result may only approximately recover the ground
truth distribution of the events, as it is influenced by the choice of
filtered signal and putative signal perturbations.

Importantly, selection may lead to a biased estimation of
event statistics and peri-event dynamics, due to selecting data
based on a specific detection signal, resulting in a misleading
characterization of causal interactions (e.g., wrong causal
directions as seen in Supplementary Figure S6B). We will thus
study how event selection affects the estimation of causal
influence and propose an appropriate procedure on this basis.
To model the effect of selection, we use an SCM-based
perspective on selection bias (Bareinboim and Pearl, 2012;
Bareinboim et al., 2014). We can modify the SCM in
Figure 2A to incorporate an additional node S representing
the selection variable, which is a binary variable indicating
whether the time window, with specified reference time point,
is selected (Supplementary Section SC for background). Typically
S is defined by testing whether a continuous random variable D
goes over a predefined threshold. D is itself a function of the time
series nodes within the peri-event time window, corresponding,
for example, to the aforementioned filtering operation. A
practical example is the detection of oscillatory events using a
band-pass filter, where the dependency of D (and thus S) on other
nodes reflects the dependency of the filtered signals on past

samples of X through the coefficients of a causal Finite
Impulse Response (FIR) filter.

In practice, we can a priori choose S to depend either on the
cause variables X2 (Figure 3A) or on the effect variables X1

(Figure 3B). Assuming that the filter (i.e., for constructing the
continuous RV) is well chosen, and the selection threshold is high
enough, choosing windows satisfying S = 1 will typically “over-
select”, i.e., exclude some peri-event time series that would
actually be relevant for our analysis. Figure 3C(left, top right)
illustrates how thresholding selects only a subset of peri-event
trajectory samples at t′ = 0 in a simulated scenario. This over-
selection can then be modeled as sampling peri-event data from a
conditional peri-event distribution p(X|S), while we are
interested in analyzing a ground truth distribution p(X). This
conditioning may induce a so-called selection bias in the
estimation of quantities we are interested in, notably the
conditional distributions that enter the calculations of TE,
DCS and rDCS. The impact of such bias on those quantities
as been investigated in Bareinboim and Pearl (2012); Bareinboim
et al. (2014) within the SCM framework, as we describe in the
following.

For simplicity and consistency with the Results section, we will
restrict ourselves to models with a unidirectional causal effect (either
X1 → X2 or X2 → X1) and assume that S is only dependent on a finite
number of past peri-event times (t′ ≤ 0) as in the case of a causal FIR
filter (for other cases, refer to Supplementary Section SC.2). Figures
3A, B illustrate in this setting that the conditional associated to
causal arrow (X2 → X1) can be recovered at any peri-event time only
when the selection node depends on the cause variable
(Supplementary Section SC.2 for justification). Specifically, this
means that P(X1

t | X1
p,t,X

2
p,t, S) � P(X1

t | X1
p,t,X

2
p,t) for the SCM

in Figure 3A. For the opposite direction, P(X2
t |

X1
p,t,X

2
p,t, S) ≠ P(X2

t | X2
p,t) for negative peri-event time t′ ≤ 0.

For the case where S depends on the effect variable, P(X1
t |

X1
p,t,X

2
p,t, S) ≠ P(X1

t | X1
p,t,X

2
p,t) for negative peri-event time t′ ≤

0 and P(X2
t | X1

p,t,X
2
p,t, S) ≠ P(X2

t | X1
p,t,X

2
p,t) for t′ < 0 (see also

Supplementary Section SC.2 and Supplementary Figure S4). The S-
dependent and S-independent conditionals are visualized in
Figure 3E for an example SVAR(1) model, as described in
Section 2.3.2, where the innovations η1t and η2t are drawn from a
uniform-distribution. Similarly, the conditional model of the post-
intervention scenario for rDCS with selection node depending on
the cause satisfies

p
do X1

t :�f X1
p,t ,X

2
p,tref

,η1t( )( )
X1

t |X1
p,t,X

2
p,t, S( )

� ∫pref X2
p,t( )p X1

t | X1
p,t,X

2
p,t, S( )dX2

p,t

� ∫pref X2
p,t( )p X1

t | X1
p,t,X

2
p,t( )dX2

p,t

� p
do X1

t :�f X1
p,t ,X

2
p,tref

,η1t( )( )
X1

t |X1
p,t,X

2
p,t( )

Therefore, the KL divergence for the ground truth direction
X2 → X1 can be estimated correctly when selecting the event based
on the ground-truth cause variable “S(X2)”, while this does not hold
for the opposite direction X2 → X1 nor when selecting based on the
ground-truth effect “S(X1)”. As the true causal direction is unknown,
we thus propose that, to investigate the dominant causal direction

Frontiers in Network Physiology frontiersin.org10

Shao et al. 10.3389/fnetp.2023.1085347

131

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1085347


FIGURE 3
Illustrationofselectionbiasdueto thresholdingandalignment. (A)SCMofabi-variateSVAR(2)modelwithuni-directionalcoupling fromX2 toX1 andaselectionnodeS
depending on states of the cause variable before peri-event time (t′< =0). The selection node S represents partial selection of samples due to thresholding of the filtered
cause signal (as the detection signal). Orange arrowsmakes the recoverable arrowswith the current selectionnode,while purple arrows indicates the unrecoverable ones.
(B)ThesameSCMas in (A)withtheselectionnodedepending inasimilarwayontheeffectsignal. (C)Anexampleeventensemble for thecausevariableX2

t in (A,B)and
thedetection threshold. (D)Zoomedeventensenbles for (C) (left) andhistograms for selectedsamplescompared to the full sample (right). Toppanel illustratesselectionbias
atground truthperi-event time t′=0.Theorangeandshadeddistributions representshistogramsatasingle time t′=0.Bottompanel showsselectionbiasat theperi-event
time t′ =0 fordetectedevents alignedby thepeak. Thedataset aligned in thisway reflects at t′ =0 is a local averageof the state trajectories in aneighborhoodof the target
ground truth state. (E) Illustration of recoverability when aligning by the cause. Subplots show joint distributions of the lagged variables and the putative effect variable of a
SVAR(1) model with uniformly distributed innovations, with left column for the ground-truth alignment, middle column for aligning by the cause and right column for
aligning by the effect. The conditional is only recoverable for the top middle panel. See Supplementary Figure S4 for the cases of peri-event time t′=0 and t′>0.
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between two event ensembles, we should focus on comparing the
causality measures (TE, DCS and rDCS) for each direction when the
events are aligned on the putative cause, i.e., X2 → X1|S(X2)
compared to X1 → X2|S(X1). Although rDCS is expected to be
biased for the second case when aligned by the effect variable, for
uni-directionally coupled systems, as the ground truth rDCS is zero,
we expect the bias to still lead to a comparatively small rDCS value
relative to ground truth, such that the contrast between two
directions is preserved.

Other factors may affect the estimation of causal strength. Since
rDCS is defined as the expectation over the KL divergence over the
past states X1

p,t and X2
p,t (Eq. 11), reliable estimation of

rDCS(X2
t → X1

t ) also depends on the unbiased sampling of the
joint probability of X1

p,t and X2
p,t. We argue here that this is

approximately satisfied as the conditioning is made on a specific
detection signal rather than on these variables, such that they are
mildly affected by it.

Next, the above mentioned alignment procedure may affect
causal strength estimation. Perfect alignment (considered ground
truth) refers to the condition where the ground-truth hidden
states are identical for all trials at each peri-event time t′ in an
extracted event ensemble, as shown in Figure 3D for t′ = 0. In this
scenario, no further alignment is needed as all trials are
intrinstically aligned. In order to study the influence of the
aforementioned selection bias specifically due to thresholding,
we may still apply selection to the perfectly aligned dataset,
resulting in excluding below threshold samples from the
estimation procedure. We refer to this situation as single-time
selection of events where trials are aligned based on known
ground-truth reference time. This setting assumes that one
knows the hidden state, which is possible only for stimulus
triggered or simulated events, but impossible for
experimentally observed spontaneous events. In the latter case,
by thresholding over the whole observed signal one typically end
up selecting successive sliding time windows that all have a
detection signal exceeding the threshold (e.g.,
Figure 3D(Bottom right)). Selecting all these points can be
interpreted as smoothing the ground truth state over all these
neighboring state space points, an alignment scenario which we
name as smoothed alignment of events. In practice, a common
alternative is to further select among above-threshold
overlapping peri-event time-windows the local peaks as the
reference points, which can be understood as a non-uniform
subsampling of the smoothed alignment and can be unified into
the same scenario category.

2.6 Data processing pipeline

The whole analysis procedure can be conducted in two phases:
event selection and causal analysis. We will elaborate on the detailed
steps in each phase in the following.

• Phase 1: Event Selection
1. Filtering: given a bi-variate signal (as a simple case), for

different purposes of study, one would need to find an

appropriate filter to apply to the original signals such that
certain features of the underlying system can be amplified.
For example, to locate the SharpWave-Ripples (introduced
in the Introduction and analyzed in Section 3.3) that are
prominent in the ripple band [80–250]Hz, one would use a
bandpass filter such that the irrelevant components are
attenuated. Events can be also detected with a template
matching procedure, which is another type of filtering
(Supplementary Figure S2).

2. Thresholding: a certain threshold is determined
beforehand (up to the specific feature of the question)
and applied to the filtered signal. As the filtered signal is
designed to amplify the feature, time points where the
filtered signals are over the threshold are candidate
reference points. Reference points define the peri-
event time t’ and are used to extract peri-event data
as multiple trials.

3. Alignment: the thresholding procedure can be applied to
either the cause or effect signals. One can select all
candidate reference points obtained by filtering either
signal (for the smoothed alignment case) or the time
points of local peaks (of the filtered signal) as reference
points. Then the bi-variate peri-event trials are extracted in
a fixed-length window surrounding the reference points,
thus forming the peri-event ensemble for further analysis.

• Phase 2: causal analysis
1. Model order selection: as mentioned in Section 2.2.1, our

estimation of information theoretic quantities is based on
time-inhomogeneous SVAR models. One thus needs to
determine the optimal SVAR model order that best reflects
the underlying dynamics. A common approach for model
order selection is the Bayesian Information Criterion (BIC),
which we have extended to the time-varying case in Shao
et al. (2022) using the extracted event ensembles obtained
in the first phase.

2. SVAR model estimation: Shao et al. (2022) also provide a
way to estimate the SVAR model with the extracted event
ensemble and the optimized model order. Thus we will obtain
an estimate of the autoregressive parameters, i.e., the
autoregressive coefficients and innovationmean and variance.

3. Computation of causality measures: with the estimated
autoregressive parameters and the signals second order
statistics, we can estimate the time-varying causality
measures as detailed in Supplementary Section SD: TE
based on Supplementary Equation S8, DCS on
Supplementary Equation S9 and rDCS on
Supplementary Equation S10.

Notably, the causal analysis procedure can be applied to event
ensembles obtained with any type of alignment. However, as
elaborated in Section 2.5, we propose to compare the causality
measures in two different directions from the event ensembles
where trials are aligned by the putative causes. To facilitate the
application of this analysis framework, we have made available the
code that performs the aforementioned experimental procedure (see
https://github.com/KaidiShao/event_causality_frontiers).
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3 Results

In this section, we first focus on illustrating the properties of TE,
DCS and rDCS with simulated toy models. The problem of
vanishing TE occurring with synchronized signals and the
benefits of DCS in the same situation will be investigated in
Section 3.1. Next, we simulate a simple uni-directionally coupled
SVAR(4) system with rhythmic perturbations of the cause variable
to generate transient events, where we will show that rDCS is able to
reflect the change of causal effects due to this perturbation while TE
and DCS fail. We also study the influence of the alignment method
in the same example, as well as in experimental in vivo recordings
from uni-directionally coupled hippocampal regions during SWRs.

3.1 The case of strongly-correlated signals

As mentioned in Section 2.3.1, TE does not capture well causal
influences when the cause and effect signals are strongly correlated
with each other, contray to DCS. Here, to illustrate such contrast, we
simulate a bivariate dynamical system in the form of two
synchronized continuous harmonic oscillators x(t) and y(t), with
uni-directional coupling (i.e., x(t) driving y(t)):

d2x

dt2
� −2ζxωx

dx

dt
− ω2

xx + nx,

d2y

dt2
� −2ζyωy

dy

dt
− ω2

yy + cx + ny.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(13)

In this system, x(t) is designed as an under-damped oscillator
(ζx = 0.015722), which approximately oscillates at a period Tx = 200
samples corresponding to natural (angular) frequency ωx = 2π/Tx =
0.0314 rad/sample. To achieve synchrony, y(t) is also designed as an
under-damped oscillator (ζy = 0.2) whose intrinsic oscillation
gradually vanishes and finally follows the oscillation of x(t) with
a coupling strength of c = 0.098. For y(t), Ty = 20, ωy = 2π/Ty = 0.314.
We also add small Gaussian innovations to both oscillators:
nx ~ N (0, 0.02), ny ~ N (0, 0.005). Adding this noise allows
fitting a SVAR model to the signals to assess the causal
interactions with TE and DCS. SVAR parameter estimation
would fail with deterministic signals by causing the covariance
matrix estimates to be singular.

Using the Euler method with a time step of 1 and random initial
points (N (0, 1)), we simulated 2000 trials of this uni-directionally
coupled system with 1000-point length. We discarded the first
500 points to ensure that the time series reach a sufficient level
of synchronization. We can see this system as a stationary SVAR(2)
process because numerical simulation with the Euler method
generates data as a function of the last two past states. The idea
of using a SVAR(2) model is elaborated on in the Supplementary
Section SE. Notably, modeling simulated data with a SVAR(2) model is
also possible if the numerical integration method is switched to Runge-
Kutta, despite the SVAR(2) parameters having a more complex form
than the continuous formulation of the system.

Figure 4A shows the results of time-varying TE and DCS for
assessing the causal effects between x(t) and y(t). Calculation is
performed in both the ground truth direction (x(t) → y(t)) and the

FIGURE 4
TE fails when the signals are strongly synchronized. (A) Control experiments where synchrony is not changed. (top) Example trace of the bivariate
signal in the control experiment. (middle) Time-varying design of innovation’s variance for both variables in the control experiment. (bottom) Time-
varying TE and DCS results in the control experiment. (B) TE underperforms during transient increased synchrony induced by a tiny change in noise
variance. The transient change can be seen as an event. Subfigure designs are the same as (A).
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FIGURE 5
Causal analysis for simulated perturbation events with non-zero innovations. (A) Example signal traces of the bi-variate SVAR(4) system (black). Blue
and red traces mark two example events detected by thresholding over the cause X2

t . Blue and red dots show other reference points. (B) (Top) Hidden
states for ground-truth alignment (left), single time selection of the ground truth event ensembles due to thresholding (middle) and events aligned by
local peaks over threshold (right). (Middle) ground truth event ensemble for X1

t (left) and bi-variate ensembles of the other two selections aligned by
X1
t (middle, right). Thin blue line represents the threshold in X1

t . (Bottom) Same settings as in (middle) but aligned by X2
t . (C) Example elements of coupling

strength in the ground truth directions X2
t → X1

t (red) and the opposite direction X1
t → X2

t (blue) for 3 types of event ensembles aligned by putative cause.
(D) TE (left), DCS (middle) and rDCS (right) for all 3 types of event ensembles aligned by putative cause.
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opposite direction. We first look at the control experiment. Consistent
with the system’s stationarity, TE is constant in both directions while
being higher in the ground-truth direction. DCS in the ground-truth
direction stays at a relatively high level, despite some small oscillation
under a frequency similar to the intrinsic oscillation frequency of x(t).

With respect to the detection of causal direction, both measures
are able to detect the correct direction (i.e., causation for x(t)→ y(t)
is much larger than in the opposite direction). It is also reasonable
that DCS in both directions is higher than TE, according to its
definition in section 2.2.3. However, from the control experiment,
we cannot conclude that the smaller TE values are due to its
definition or due to the strong synchrony in the signals.

Therefore, we introduced a transient decrease of the noise
variance in the cause signals (x(t)). The logic of designing this
transient change is the following: the level of synchronization will
increase with weaker noise, but the system and input magnitude
remain the same because the contribution of the noise change to the
signal amplitude is negligible; thus if TE is insensitive to the level of

synchronization of signals, its values are expected to stay constant.
However, as the results show in Figure 4B, there is a transient
decrease of TE during the interval where noise variance is decreased,
suggesting that TE performs poorly in the cases where the cause and
effect signals are strongly synchronized. As such strong
synchronized oscillations are common phenomena in the context
of transient neural events, one would need to pay extra attention
when using TE (as a widely-applied causality measure) to investigate
the direction of causation during these transient phenomena.

3.2 The case of deterministic perturbations

In this section, we directly address the benefits of rDCS over TE and
DCS when applied to signals driven by deterministic perturbations. To
illustrate this specific property, we designed some simple transient
events perturbing the innovation parameters of a stationary SVAR
process with uni-directional coupling. The events are generated by

FIGURE 6
Event-based causal analysis for SWRs in rodent hippocampal CA3 and CA1 regions. (A) Examples signal traces of the original signals and bandpass
filtered signals of CA3 and CA1 regions (black). Blue and red tracesmark two example events detected by thresholding over the cause CA3 and aligned by
the local peak. Blue and red dots show other reference points. (B) Event waveforms of SWR event ensembles at CA3 (left) and CA1 (right) regions aligned
by CA3 (Top) and CA1 (Bottom) signals. Shades repensent the ensemble standard error averaged over 1024 channel pairs. (C) Peri-event causality
measured by TE (Top), DCS (middle) and rDCS (Bottom) for event ensembles aligned by the putative cause (left) and the putative effect (right). Shades
reflect standard deviation of 100 repeated bootstrapped ensembles.
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feeding the cause signal with innovations with non-zero time-varying
means, such that both signals will exhibit temporal oscillations.We refer
to these events as perturbation events in the following sections. These
perturbations intrinsically define a hidden state that parametrizes the
ground truth distribution of peri-event data.We exploit the hidden state
and demonstrate that the proposed alignment method in Section 2.5 is
efficient for recovering the time-varying causal direction between the
two variables.

3.2.1 Simulation procedure
We simulated a non-stationary uni-directionally-coupled

autoregressive system defined in Eq. 2a and Supplementary Eq.
2b. The causal direction is X2 → X1. The system is designed as a
bivariate SVAR(4) process with a time-invariant coefficient matrix:
a⊤ = [−0.55, − 0.45, − 0.55, − 0.85], b⊤ = [1.4, − 0.3, 1.5, 1.7], c⊤ = [0,
0, 0, 0] and d⊤ = [0.9, − 0.25, 0, 0.25]. These coefficients were
randomly generated and kept after checking the stability of the
SVAR(4) system. Uni-directional interactions are ensured by setting
the autoregressive coefficients associated to interactions in the
opposite direction (i.e., c) to zero for all lags.

We enforce non-stationarity of η2t , the innovations of the ground
truth cause process {X2

t }. Both innovations η1t and η2t are drawn from
a Gaussian distribution with unit variance (with no correlation in
between, i.e., Cov[η1t , η2t ] � 0); the difference is that E[η1t ] � k1t � 0
while E[η2t ] � k2t is non-zero and time-varying. We designed the
time-varying profile of k2t as a Morlet-shaped waveform to mimic
the oscillatory properties of neural event signals:
k2t � H exp(−(αx)2/2) cos(5αx), where α = 2/25 is a constant
controlling the event duration, and H = 4 is the amplitude of the
highest peak in the center of the event. The total duration of the
Morlet-shaped waveform is 101 ms. The innovation’s mean
designed for X2 is shown in Figure 5B (top left panel).

We generated this bi-variate SVAR(4) process for 1300s
consisting of 5,000 trials of perturbation events by transiently
varying η2t , detecting event occurrence based on the cause X2

t , as
illustrated in Figure 5A. The central peaks of these Morlet events are
used as the ground-truth reference points for which peri-event time
t′ = 0, and used to extract a dataset of multi-trial events ensemble
with a 200-ms peri-event window such that t′ ranges, from −99ms to
+100ms (i.e., there is no alignment procedure that could lead to
selection bias, see Section 2.5). The event waveforms of the cause
variable X2

t and the effect variable X1
t are illustrated in Figure 5B

(bottom left, middle left). The whole process is repeated 100 times to
obtain variabilities plotted in the figure.

3.2.2 Effect of trial selection and alignment on
model estimation and causality measures

The designed deterministic innovation (i.e., identical across
trials), can be seen as imposing a hidden state evolving across the
peri-event interval. The event ensembles obtained by this ground
truth model define a dataset where no event selection and alignment
is needed. We can compare the SVAR model estimation and
causality measures resulting from this dataset to the outcomes
obtained by selecting and aligning events based on either variable
X2 or X1, as discussed in Section 2.5.

To validate the recoverability theory in the presence of selection
bias due to the event detection procedure, we test the single-time
selection setting (see Section 2.5) where sub-threshold trials are

removed from the ground truth peri-event dataset (as illustrated in
Figure 3D(Top right)), thus preserving the ground-truth hidden
states (Figure 5B(Top middle)). The peri-event trials having
reference point values higher than a threshold d0 = 3SD for the
chosen variable are selected, where the standard deviation is
computed from the whole signal. The selected event ensembles
are shown in Figure 5A(middle center) for thresholding based onX1

t

and Figure 5A(middle right) for thresholding based onX2
t . Notably,

this kind of selection is only feasible when the hidden state in known,
which is not realistic practically for real data.

Next we demonstrate the appropriateness of the approach
performed on real data (i.e., selection and smoothed alignment based
on putative cause), we set d0 as a threshold and performed smoothed
alignment over the original signal itself. We obtain an event ensemble by
selecting local peaks for points over d0 as new reference points, which is
shown in Figure 5B(middle right and bottom right). This can be seen as a
smoothed version of the ground-truth dynamics, which is also
confirmed by checking the aligned hidden states (Figure 5B(Top right)).

While inferring SVAR model parameters of the event ensembles
according to Shao et al. (2022), the truemodel order 4) can be recovered
for all five ensembles. Figure 5C demonstrates the recoverability of
conditional probabilities for ensembles aligned by the putative cause.
Coupling strengths from the putative cause to the putative effect are
plotted in red. As described in the simulation procedure in Section 3.2.1,
the coupling strength is constant over time, which is reflected in
Figure 5C(left). Consistent with the theory in Section 2.5, biased
selection of event trials on the samples at t′ = 0 leads to unbiased
estimation of the coupling strength X2

t → X1
t aligned by the cause X2

(denoted also as “|X2” in Figure 5C(middle)). By comparison, the
coupling strength in the other direction is slightly biased at negative
peri-event times (t′) but still relatively close to its true value 0). This
contrast holds for alignment with local peaks over threshold, as seen in
Figure 5C(right).

Figure 5D (Top, middle, bottom) shows the corresponding results
of how causalitymeasures perform in the three alignment scenarios. For
clearer visualization of TE and DCS with a zoomed vertical scale, see
Supplementary Figure S8. During the periods where no transient events
occur, all three measures are able to infer a time-invariant causal effect
in the ground-truth direction (X2 → X1) compared to the opposite
direction. Besides, in line with theoretical predictions, DCS is higher
than TE and is equal to rDCS. During the perturbation events, in the
ground truth direction TE and DCS remain constant and rDCS exhibit
a rhythmic pattern. These results match the theoretical predictions: TE
and DCS measures the connectivity strength, which does not change,
while rDCS measures the combined causal effect related to the
connectivity and the event-based changes at the cause, yielding
larger variations transmitted to the effect node.

In the transient time scale, thresholding leads to selection bias in
estimating causality measures. In the case where event ensembles are
aligned by single-time selection of the causeX2

t , TE andDCS of the ground
truth direction is underestimated while rDCS is slightly overestimated
around t′ = 0. A bias appears in the opposite directionwhile aligned by the
effect, but the direction of causation is detected correctly. The case of local
peak alignment shows similar results, except the peak amplitude of the
smoothed rDCS is less amplified. Notably, in the smoothed case, a
transient increase is observed in both TE and DCS, resembling the
envelope of the perturbation. This is likely an effect of the smoothing
procedure but is quickly interrupted by a negative bias due to thresholding,
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making the results unreliable in detecting transient changes. We also
showed a negative example with putative effect alignment in
Supplementary Figure S5, where the coupling strength in the causal
direction is much weaker than the model in Figure 5. The coupling
strength of the causal direction undergoes a sharp decrease at peri-event
time t′ = 0, leading to a transient underestimation of TE, DCS and rDCS
for both single-time and local peak scenarios. The close-to-zero value of
rDCS is misleading for the inference of transient causal interactions, thus
illustrating the unreliability of putative effect alignment.

Thus, this simulation experiment of perturbation events
demonstrates the effectiveness of rDCS in reflecting the causal
influence when the cause is perturbed by a deterministic
exogenous input compared to TE and DCS, validating that rDCS
is a better measure to address event-based causal interactions. More
importantly, we highlight here the trial alignment problem when
dealing with event-based data, especially when events occur
spontaneously. Supplementary Figure S7 is a clear example
showing the impact of alignment on information-theoretic
measures: aligning on the actual effect could reverse the detected
direction of causation. Thus, by contrasting the different impacts of
alignment on information-theoretic measures, we show that in
practice, selection via thresholding and aligning the event
ensemble with the local peaks of the putative cause is a good way
to assess the ground truth event-based causality given uni-
directional connections. This approach will be further applied to
real data in the next section.

3.3 Validation on SWRs-based causality
between CA3 and CA1 regions

Sharp Wave-Ripple (SWR) events, hypothesized as a key
element in implementing memory consolidation in the brain,
have been reported in the electrophysiological recordings within
the hippocampus of both macaques and rodents. In this section we
detect SWRs in an experimental dataset to investigate the behavior
of TE, DCS and rDCS in a neuroscientific context where the event-
hosting brain regions are uni-directionally coupled, i.e., in a
situation where the causal direction is known a priori.

SWRs are primarily generated in the CA1 area of the hippocampus.
The somas of CA1 pyramidal cells are located in the pyramidal layer (‘pl’)
while their dendritic trees are rooted in the stratum radiatum (‘sr’). It is
hypothesized that the dendritic trees receive strong excitatory inputs from
the pyramidal cells in CA3 which generate post-synaptic activities in the
dendritic trees. This results in LFP activities at low frequencies (0–30Hz,
due to the sharp-wave) and in the gamma band (30–80Hz, due to
CA3 oscillations). Then the dendritic activities propagate to the soma,
where recurrent interactions between inhibitory and excitatory cells
generate a fast oscillation, the ripples (80–250Hz).

We applied the event-based causality analysis to an open source
dataset where electrophysiological recordings in the CA3 and
CA1 regions of rodent hippocampus have been performed with
4 shanks of 8 channels simultaneously in each region (Mizuseki
et al., 2014). In agreement with the SWR generation mechanism
explained in the above paragraph, anatomical studies (Csicsvari et al.,
2000) support uni-directional anatomical coupling between these two
regions within the hippocampal formation, i.e., the ground truth
direction is known to be CA3 → CA1. The analysis is based on two

Local Field Potential (LFP) data sessions recorded from the rat named
‘vvp01’ with a sampling rate of 1252 Hz. An example trace of a channel
pair of both CA3 and CA1 regions is shown in Figure 6A. As SWRs are
more challenging to observe during behavioral sessions, we perform our
analysis only on a session of sleep which lasts 4943.588s.

Following Mizuseki et al. (2009), we detect SWRs by applying an
49-ordered FIR filter in the frequency band [140, 230]Hz to each
channel of signals in both regions. The detailed detection procedure
has been elaborated in Section 2.6 for the reference of readers and is
similar to what is performed in Section 3.2. We set a threshold over
the mean of the filtered signals (5 SD) to locate the events and align
them according to the local peak time points over threshold.

Figure 6A(Bottom) shows the case aligned on the CA3 signals.
The peri-event window for display has been chosen to be [-79.9,
79.9]ms, while VAR model estimation and the BIC-based model
order selection are performed according to Shao et al. (2022). For
each channel pair, we obtain two bi-variate event ensembles,
corresponding to the two alignment conditions; thus, in total, we
extract 2*1024 event ensembles (1024 channel pairs and 2 alignment
conditions). The event waveforms and statistics of an example
channel pair for different alignments are illustrated in Figure 6B.

SWR-based causality measures shown in Figure 6C compare the
alignment by the putative cause and by the putative effect. The
reference states used for estimating rDCS are the averaged states
over the first 16ms time points in the window. The standard
deviation plotted in the figure originates from 100 times
bootstrapped ensembles and the variability is averaged over
1024 channel pairs. In line with the theoretical predictions, the
ground truth direction (CA3 → CA1) is well recovered when using
an alignment by the putative cause, but not when aligning by the
putative effect. TE, DCS and rDCS in the opposite of the truth
direction are not significantly different from zero, which is
consistent with the uni-directionality of anatomical connections
posited by anatomical studies. Significantly stronger causal
influences in the ground truth direction are shown by TE, DCS
and rDCS before the alignment point (t′ = 0), matching the
hypothesized SWR generating mechanism that the CA3 region
drives the SWR interactions in CA1 region. The lack of
difference between the two directions in more stationary states
might be explained by the ineffectivity of causal measures based
on linear VAR models to capture non-linearity (Shajarisales et al.,
2015). The transient increase in the non-ground truth direction
when using alignment on the putative cause might be explained by
the selection bias elaborated on in Section 2.5.

4 Discussion

In summary, we have discussed the benefits and shortcomings of
two time-varying causality measures (TE and DCS) in characterizing
causal interactions based on peri-event data. To address their
insensitivity to deterministic perturbations, we proposed a novel
measure, rDCS, justified within the SCM framework. We compared
the performance of these causality measures on perturbation events
with innovations having time-varying means and
electrophysiological recordings of hippocampal SWRs. The
benefits of rDCS are supported by the perturbation events
presented in Section 3.2. As causality analysis of transient events
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aims at uncovering the network mechanisms underlying these
phenomena (e.g., addressing whether one event drives the other),
we argue for the use of rDCS as it provably captures causal influences
due to event-related changes in the cause that propagate to target
regions through anatomical connections, even if these changes have
little variability across trials. The outcome of rDCS is further
illustrated on in vivo recordings of SWRs events in two
hippocampal subfields.

Transient events are nonstationary signals that likely occur
when the brain undergoes a transition from one state to another.
Studying the “local” properties of the underlying non-
equilibrium dynamics in regions of the state space might
provide insights into the mechanism driving this transition.
Earlier methods investigating such local dynamic properties
include the local Lyapunov exponent (Pikovsky, 1993), while
other common methods characterize local interactions between
state variables within a short sliding time window, e.g., the local
cross correlation (Buchner et al., 2009) or piecewise Granger
causality (Ding et al., 2006). Our approach, although focused on
the meaningful quantification of causal strength, is in line with
the latter idea, where the time-varying SVAR model finds a 1-step
local linear mapping in the trajectory formed by event
trajectories, thus enabling to reveal transient causal
interactions at a fast time scale, which may differ from the
results obtained at equilibrium. As the measures are based on
SVAR models, they can also be easily extended to a spectral form
in order to capture the rich spectral properties in transient
dynamics.

Contrasting the three measures of causal strength, TE is
designed to assess conditional dependencies in observational
data, while DCS and rDCS exploit this information to infer
the impact of performing interventions of the SCM. In theory
and as shown in the experiment of Section 3.1, TE can lead to
counterintuitive outcomes applied to strongly synchronized
events (a widely observed nonlinear phenomenon). While
support has been provided for DCS and rDCS to be more
appropriate measures of causal strength, they still require, like
TE, certain assumption to be met (see also Section 2.1). A major
concern is unobserved confounding, which might bias the
estimated causal directions (e.g., the Simpson’s paradox in
Pearl (2000)). Confounding effects can be corrected for by
including activities from other regions, and there are also a
few theoretical approaches to account for unobserved
confounding under strong assumptions (Geiger et al., 2015;
Mastakouri et al., 2021).

Selection bias is a fundamental issue for analyzing spontaneous
neural activities, especially in case of any unsupervised detection or
analysis. In this study we have demonstrated its impact on the
alignment of the detected transient events and the resulting bias in
causal inference. However, our proposal of putative cause alignment
to estimate causal effect is theoretically supported only in the case of
uni-directional coupling. Future work should assess the effect of
selection bias in the case of bidirectional interactions and establish a
framework to correct for such bias, not only in the context of causal
strength inference but more generally for recovering the underlying
event dynamics.
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