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Releasing the Kraken
Steven L. Salzberg1,2,3,4* and Derrick E. Wood2,3

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States, 2Center for Computational
Biology, Johns Hopkins University, Baltimore, MD, United States, 3Department of Computer Science, Johns Hopkins University,
Baltimore, MD, United States, 4Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States

Ten years ago, the dramatic rise in the number of microbial genomes led to an inflection
point, when the approach of finding short, exact matches in a comprehensive database
became just as accurate as older, slower approaches. The new idea led to a method that
was hundreds of times times faster than those that came before. Today, exact k-mer
matching is a standard technique at the heart of many microbiome analysis tools.

Keywords: metagenomics, sequence alignment, sequencing indexing, phylogenetic classification, k-mer matching,
microbiome

INTRODUCTION

The field of microbiome research began in the 2000s, at a time when sequencing technology was
rapidly getting less costly, and it first became feasible to sequence an environmental sample
containing an unknown mixture of organisms. The earliest studies (Venter et al., 2004; Gill
et al., 2006) used Sanger sequencing, where sequence lengths were ∼600–800 bp and the cost to
sequence a bacterial genome was $50,000 or more. With the advent of Solexa (later Illumina)
sequencing technology in 2007, read lengths dropped to just 25 bp, but sequencing costs dropped
much faster. Read lengths crept up to 100 bp over the next few years, while costs continued to drop.

In one of the very first microbiome studies to use random shotgun sequencing, published in 2004
(Venter et al., 2004), just under two million reads were generated, averaging 818bp in length. The
analysis began by assembling the reads into contigs, and then analyzing only those contigs with
sufficient depth of coverage. This yielded 2,226 contigs spanning 30.9Mb, which the authors
estimated to represent 1800 different species. The primary tool for identifying species was
BLAST (Altschul et al., 1997), which they used to align all bacterial proteins in the NCBI
database at the time (∼627 thousand proteins) against the 6-frame translations of all contigs.
This was relatively slow, but with just 2,226 contigs, it was feasible.

BLAST remains a powerful tool for determining the best match of any sequence to all known
genomes. However, it is far too slow for analysis of modern shotgun sequencing (or even 16S
sequencing) experiments. Microbiome experiments can easily generate tens of millions of reads, and
it is not unusual to generate well over 100M reads in a single experiment. Any computational step
that processes all these reads needs to be very fast.

How fast exactly? Well, in order to process 100M reads in 24 h, a program would have to process
over 1,150 reads per second. That is far, far faster than BLAST.

MORE GENOMES = A NEW TYPE OF ALGORITHM

By 2009, there were over 500 complete bacterial genomes, with thousands more in progress (Brady
and Salzberg, 2009). As the number of genomes grew, new computational methods were developed
to assist with their analysis, and in particular with the core task of assigning a taxonomic label to each
read. The label might be the name of a species, genus, family, order, class, or even phylum, depending
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on how much information was in the sequence. These early
methods included: CARMA (Krause et al., 2008), which matched
reads to known protein domains, a strategy that worked well
when those domains were present, but that had very low
sensitivity, only 6% in early experiments; Phylopythia
(McHardy et al., 2007), a method that used support vector
machines based on oligonucleotide frequencies, and worked
best on sequences of 3000 bp or longer; MEGAN (Huson et al.,
2007), which used BLAST plus a phylogenetic algorithm; and
PhymmBL (Brady and Salzberg, 2009), a method that used
interpolated Markov models (IMMs) trained on known
species. PhymmBL could handle reads as short as 100 bp,
unlike earlier methods, but running thousands of IMMs on
each read made it relatively slow. None of these methods were
truly superior to BLAST, but they included new ways to assign
a read to a taxonomic category, ranging from species to
phylum.

Once the number of sequenced species grew sufficiently
large, though, it became likelier that most reads in a
metagenomics sample would be similar to at least one of
the previously-sequenced genomes. This is especially true
for well-studied environments such as the human gut
microbiome, which many sequencing projects have targeted.
With complex environmental samples, more of the species in a
sample might not have been seen before, but with over 360,000
prokaryotic genomes available today (of which 25,000 are
complete and the rest are in various stages of assembly, as
described at NCBI https://www.ncbi.nlm.nih.gov/genome/
browse#!/prokaryotes/), the likelihood is far greater now, as
compared to the 2000s, that at least one previously-sequenced
species is very close to something in a sample.

This observation led us to the idea, back in 2012, that we could
forego sequence alignment (e.g., BLAST) and instead identify
reads by looking for exact matches of short sequences. Exact
matching is far faster than alignment, because it requires a simple
table lookup. In its optimal implementation, exact matching
requires constant time, while alignment time is at least
proportional to the length n of the query sequence (and
optimal alignment requires O(n2) time).

For this approach to succeed, we need first to choose a value k
for the length of our exact matches. K needs to be large enough
that we can safely assume, in almost all cases, that a match of
length k is not simply a random match, but rather that the two
matching sequences came from the same species, or at least from
very closely related species. Thus we can quickly rule out small
values such as k � 6, because every one of the 4,096 possible 6-
mers is likely to be present in most bacterial genomes. At larger
values, e.g., k � 20, the vast majority of random k-mers will not be
present in a given bacterial genome, since there are 420 (just over
one trillion) 20-mers, and a typical bacterial genome has just one
to five million 20-mers.

Thus if we find a 20-base exact match between a read and a
genome, there’s a very good chance that the read comes from the
same or a similar species. Why not increase the value of k even
more, which will make this inferencemore precise (i.e., avoid false
positives)? Clearly, for metagenomic analysis the value of k
cannot be longer than a read. When Kraken first appeared it

was not unusual to generate 75 bp reads, so 75 is an initial upper
bound for k.

There are at least two reasons for reducing the value of the
upper bound, though. The first reason is sequencing error: even if
the species in a sample exactly matches a known genome, some of
the reads will have errors. Illumina technology has a very low
error rate, less than 0.5%, so it is reasonable to expect that most
75 bp reads will have one or 0 errors. If the single error is precisely
in the middle of the read, then the reads must contain a 37-mer
with no errors, suggesting that we might set k � 37. The second
reason is the simple fact that the species in a microbiome will not
be identical to previously-sequenced genomes. We cannot know
in advance how similar they will be, but longer values of k will
mean that we will fail to recognize some species. Thus we can
probably choose a value of k somewhere between 20 and 37, with
higher values yielding lower sensitivity but greater precision.

When we developed Kraken, we initially chose k � 31 for
technical reasons: first because larger values of k reduce the
number of queries to our data structure per sequence; and
second because 31 is the largest value of k for which we could
fit a k-mer into a 64-bit integer. In subsequent work, k � 31
worked well across a very wide range of databases and
experiments, and therefore we kept it as the default value,
although the user can adjust k when building the Kraken
database.

SPEED MATTERS

When using exact matches instead of a full-blown alignment of
reads to genomes, we know that we will never exceed the
sensitivity of BLAST. Thus the usefulness of Kraken, and the
many competitors that have emerged since, is dependent on its
speed. Essentially, we need to find out whether or not a k-mer has
ever been seen before, and identify where it appeared, as fast as
possible. We decided early on that even a single k-mer match
would be enough to label a read, but that we’d look at every k-mer
in order to maximize sensitivity. Thus for 100 bp reads with k �
31, we would do exactly 70 lookups into our database.

Fortuitously, a very fast k-mer counter, called Jellyfish
(Marçais and Kingsford, 2011) had recently been developed by
our colleagues Guillaume Marçais and Carl Kingsford. Jellyfish
counts k-mers in a set of DNA sequences (reads or genomes, of
any length) and stores the k-mer counts in a specialized, highly
optimized hash array. It can then query this array very rapidly to
report, for any k-mer, how often it has occurred.

For metagenomic classification, we do not need to know how
often a k-mer has appeared, but only what species it occurs in.
Every species has a unique taxonomic identifier, available from
NCBI, and taking advantage of this, wemodified Jellyfish’s output
so that for each genome in the database, it would simply store that
taxonomy ID next to every k-mer in the genome. The only
question was what to do for k-mers that appear in more than
one genome. To keep the data structure from growing too
enormous, we wanted to store exactly one ID with each
k-mer. We solved this problem by using the lowest common
ancestor (LCA) of all the genomes in which a k-mer appeared. At
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the time it is building the database, if Kraken encounters a k-mer
that it has seen before, it queries the NCBI taxonomy and finds
the identifier of the LCA, which might be at the genus, family, or
higher level.

Thus at the conclusion of the database construction step,
Kraken has stored a single taxonomic identifier with every
distinct k-mer across every genome. The database is stored in
a file that is then used for metagenomic classification.

To classify a 100 bp read, Kraken simply walks through it,
from position 1 to 70, and looks up all the 31-mers in its database.
In most cases, all the k-mers are from the same genome and it can
simply output that genome’s identifier. If the k-mers yield
multiple IDs, then Kraken computes the subtree of all the
species that it found, and outputs a taxonomy label
corresponding to the path in the tree with the most k-mers.
(Our 2014 paper (Wood and Salzberg, 2014) contains more
details.)

This strategy, simple as it is, turned out to be very accurate,
with precision of >99% (meaning its false positive rate was <1%)
and sensitivity of just over 90%. As expected, BLAST was slightly
more sensitive, about 1% higher, and had slightly lower precision,
less than 1% lower. (These results were on a simulated dataset in
the original study; other results varied but the overall findings
were consistent.) One benefit of Kraken’s algorithm is that as the
database of known genomes grows, Kraken’s sensitivity has
increased over time.

Kraken’s big advantage was speed: in the original paper, we
showed that it can classify 1.5 million 92 bp reads per minute (rpm)
on a single 2.1 GHz CPU, while Megablast (the “fast” version of
BLAST) achieved a rate of 7,143 rpm (Wood and Salzberg, 2014).
The fast version of Kraken, Kraken-Q, was even faster, running at
3.9 million rpm, making it >500 times faster than Megablast. Other
programs were much slower than Megablast. With slightly longer
reads (156bp), Kraken clocked in at 892 K rpm, Kraken-Q ran at
2,842 K rpm, while Megablast processed 2,830 rpm. Thus for the
longer reads, Kraken was about 315 times faster and Kraken-Q ran
over 1,000 times faster than Megablast.

To illustrate the practical consequences of these speed
differences, if we classified a relatively small run of 30 million
Illumina reads, Kraken would take about 20 min. Megablast, in
contrast, would take 70 h. Analyzing the output of a single run of
a current-generation Illumina sequencer, which can generate
three billion paired-end reads, would take 100 times longer,
which would be less than a day and a half for Kraken, but
10 months with Megablast. This illustrates how the dramatic

gains in DNA sequencing efficiency have driven the need for
far faster computational methods, even when a solution such as
BLAST might initially seem adequate.

CONCLUSION

Since we first released Kraken, many other methods have been
developed for metagenomics analysis, some of them direct
competitors and some that solved related but distinct
problems. A recent benchmarking analysis (Ye et al., 2019)
compared 20 different metagenomics classifiers on a variety of
tasks, and Kraken (along with its successors, KrakenUniq
(Breitwieser et al., 2018) and Kraken 2 (Wood et al., 2019))
remains one of the fastest and most accurate methods for
identifying reads in a microbiome sample. That study
concluded that methods using exact matching of long k-mers,
the idea pioneered in Kraken, were among the best scoring
methods, and that most of the k-mer based methods
performed similarly to one another.

From an algorithmic perspective, classifying metagenomics reads
is a straightforward alignment problem that can be solved by
aligning each read to every genome known to science. Optimal
solutions to this problem have been known for decades (Fickett,
1984), but they require time that is quadratic in the lengths of the
sequences, which is far too slow. As a practical matter, very fast
methods are required to keep pace with both the volume of sequence
data and the number of sequenced genomes, both of which have
been growing at an exponential rate for the past 2 decades. The
success of Kraken demonstrates that exact matching of a relatively
long subsequence delivers the requisite speed, and with a sufficiently
large database of genomes, it also delivers similar accuracy as
compared to other methods that are far slower.
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Challenges in Bioinformatics
Workflows for ProcessingMicrobiome
Omics Data at Scale
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Karen Davenport1, William D. Duncan2, Kjiersten Fagnan2, Mark Flynn1, Brian Foster2,
David Hays2, Marcel Huntemann2, Elais K. Player Jackson1, Julia Kelliher1, Po-E. Li 1,
Chien-Chi Lo1, Douglas Mans3, Lee Ann McCue3, Nigel Mouncey2, Christopher J. Mungall 2,
Paul D. Piehowski 3, Samuel O. Purvine3, Montana Smith3, Neha Jacob Varghese2,
Donald Winston4, Yan Xu1 and Patrick S. G. Chain1*

1Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States, 2Lawrence Berkeley National Laboratory,
Berkeley, CA, United States, 3Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA,
United States, 4Polyneme LLC, New York, NY, United States

The nascent field of microbiome science is transitioning from a descriptive approach of
cataloging taxa and functions present in an environment to applying multi-omics methods
to investigate microbiome dynamics and function. A large number of new tools and
algorithms have been designed and used for very specific purposes on samples collected
by individual investigators or groups. While these developments have been quite
instructive, the ability to compare microbiome data generated by many groups of
researchers is impeded by the lack of standardized application of bioinformatics
methods. Additionally, there are few examples of broad bioinformatics workflows that
can process metagenome, metatranscriptome, metaproteome and metabolomic data at
scale, and no central hub that allows processing, or provides varied omics data that are
findable, accessible, interoperable and reusable (FAIR). Here, we review some of the
challenges that exist in analyzing omics data within the microbiome research sphere, and
provide context on how the National Microbiome Data Collaborative has adopted a
standardized and open access approach to address such challenges.

Keywords: microbiome, microbial ecology, omics, bioinformatics, infrastructure

1 INTRODUCTION

The microbiome is defined as a characteristic microbial community occupying a reasonably well-
defined habitat which has distinct physio-chemical properties. It includes both the composition of
the community (e.g., microbiota) and a theatre of activity, which can be measured with various forms
of omics data (Berg et al., 2020). Microbiome research has greatly increased our understanding of the
composition and distribution of microbial communities and has provided us with much insight into
microbiome functioning, and clues into how best to perturb communities as potential solutions to
improve our health and the health of our environment (Donohue and Cogdell 2006; Light et al., 2018;
Lear et al., 2021).

While our increased knowledge of individual microbiomes has benefited from a growing number
of individual microbiome investigations, the ability to compare data across projects is hampered by
many challenges, due in part to the disparate nature of analysis methods employed to process omics
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data. The ongoing flux in software development and application
of new methods to analyze these data have evolved from tackling
low throughput technologies (e.g., microscopy) to increasingly
high-throughput data, such as metagenomics (Tringe and Rubin
2005), metatranscriptomics (Carvalhais et al., 2012),
metabolomics (Bundy et al., 2008), and metaproteomics
(Lagier et al., 2018).

Several large-scale microbiome efforts have focused on
generating reference genomic data and other valuable omics
data (Human Microbiome Project Consortium 2012; Gilbert
et al., 2014; Li et al., 2015; Proctor et al., 2019; Parks et al.,
2020), yet the velocity at which microbiome data are generated
has outpaced infrastructure resources for collection, processing,
and distribution of these data in an effective, uniform, and
reproducible manner. Given the magnitude of this challenge,
there are limited efforts aimed at closing the analysis gap for
metagenomic and community profiling data across diverse
environments (Gonzalez et al., 2018; Mitchell et al., 2020;
Chen et al., 2021). One such effort developed by the European
Bioinformatics Institute, called MGnify, provides standardized
taxonomic classification of small subunit ribosomal ribonucleic
acid gene amplicon data, while for shotgun metagenomic and
metatranscriptomics data, MGnify provides assembly,
annotation, and contig binning. Importantly, programmatic
access to the data for cross-database complex queries is also
available via a RESTful application programming interface (API)
(Mitchell et al., 2020), and a free service is available for users to
submit rawmetagenomics sequence data and associatedmetadata
to the European Nucleotide Archive (ENA) followed by analysis
using MGnify pipelines. While this platform does not yet support
metabolomics and proteomics data analysis, it provides an
intuitive way to enable cross-project sequence-based
comparisons.

Comparisons across different microbiome studies are of great
interest and would allow us to investigate cross-study patterns in
a systematic manner to potentially enable generalizable principles
to be uncovered. Further, most microbiome studies are
underpowered (Kelly et al., 2015), and thus by combining data
from different studies, one may find correlations or other
associations that cannot be revealed by individual studies
alone. For example, it may enable us to differentiate or find
similarities in response to various environmental stressors among
different microbiomes in different systems. However, several
limitations, most notably the broad spectrum (or lack) of
metadata standards that allow researchers to find the data they
wish to compare, the heterogeneous nature of omics data
generated from different labs, and the various data processing/
bioinformatics methods, impede the further utilization of these
data beyond the scope for which they were originally intended.
For researchers interested in cross-study comparisons, it is thus a
herculean effort to identify the relevant microbiome studies, to
access both the raw omics data and analyzed results, and to re-
analyze them in a standardized fashion with other datasets.

To minimize the effort required to identify reusable
microbiome datasets, the National Microbiome Data
Collaborative (NMDC) was established in 2019 to support
microbiome data exploration and discovery through a

collaborative, integrative data science ecosystem (Wood-
Charlson et al., 2020; Eloe-Fadrosh et al., 2021; Vangay et al.,
2021). The NMDC aims to both provide an interface that allows
users to search for microbiome samples and omics data based on
sample metadata and omics data results, and also provide
exemplary open-source analytic workflows for processing
petabyte level (1015 bytes) raw multi-omics data in
microbiome research and producing FAIR compliant
(Wilkinson et al., 2016) interoperable and reusable annotated
data products. Compared to a typical microbiome study at
gigabyte (109) scale, the scope of planned data processing in
NMDC represents a 106 fold increase.

Bioinformatics workflows have their own set of requirements
compared to the more general and increasingly popular data
science practices. For example, the coexistence of different file
format standards, various upstream sample collection and
preparation methods, and often incomplete sample metadata
all require workflow developers to have a comprehensive
understanding of both the biology underpinning the analyses,
as well as the related statistical and computational methods.

In this paper, we provide a perspective and review some
challenges faced since the inception of the NMDC and the
implementation of solutions to support standardization and
cross-study, cross-sample microbiome comparisons. We
believe these challenges and the proposed solutions are
applicable to any large-scale bioinformatics or scientific data
portal development. We focus on challenges in 1) architecture
considerations; 2) microbiome workflow selections; 3) Metadata
to standardize and manage workflow data products.

2 ARCHITECTURE CONSIDERATIONS

There are two major architecture patterns for data portal design,
namely data warehouse (Gardner 1998; Koh and Brusic 2005)
and data federation (Haas et al., 2002). Though both patterns
support multiple sources to submit data, the major difference is
that with data commons all the data storage, analysis, and access
are provided through a single location instead of from different
participating sites. To avoid duplicating data from its submitters,
the NMDC adopts the data federation pattern. The NMDC
participating institutions can serve as satellite sites, which can
be further categorized by its function as experimental site (where
raw experimental data are generated), computing site (where
bioinformatics workflows are executed), storage site (where raw
and/or workflow output data are stored) or any combination.
There is a separate central site that functions as the central
registry to maintain a global catalog of metadata and data and
to link a set of heterogeneous data sources. The central site
implements an application programming interface (API) that
allows search of the data and communication with satellite sites. It
also hosts the web portal (Figure 1). A new institution can join
the NMDC data federation by registering as a satellite site and
implementing protocols that communicate with the NMDC API.
Adopting the data federation pattern allows different sites to
maintain their own computing environment setup indepently,
e.g., using different job management solutions, such as SLURM

Frontiers in Bioinformatics | www.frontiersin.org January 2022 | Volume 1 | Article 8263702

Hu et al. Challenges in Bioinformatics Workflows

10

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


(Yoo et al., 2003) or Univa Grid Engine (https://www.altair.com/
grid-engine/), which also brought us some additional
considerations for workflow designs. It also provides the
flexibility to bring bioinformatics workflows (gigabytes in size)
to experimental and storage sites, instead of moving raw omics
data (often terabytes or even larger in size) to a compute site. This
model also allows experimental data generation sites to integrate
with local data services used for tracking critical metadata and
automatically submitting data into the central registry. The
current NMDC sites are tightly coupled through the
development of the NMDC as the original infrastructure
developers, however future NMDC satellite sites can be more
loosely coupled as they will not be responsible for maintaining the
core infrastructure. Instead, these satellite sites will maintain data
processing and exchange services based on their needs to connect
with the NMDC project.

3 MICROBIOME OMICS WORKFLOW
CONSIDERATIONS

As an increasingly varied array of omics data are being generated
for more and more microbiomes, the NMDC team supports
standardized workflows for the consistent analysis of
metagenomics, metatranscriptomics, metaproteomics, and a
suite of metabolomics data. Open-source bioinformatics

workflows for processing raw multi-omics data have been
developed based on production-quality workflows at the two
Department of Energy User Facilities, the Joint Genome Institute
(JGI) at Lawrence Berkeley National Laboratory (LBNL) and the
Environmental Molecular Sciences Laboratory (EMSL) at Pacific
Northwest National Laboratory (PNNL). For any given set of
omics data processing or analysis, there exist many tools that
typically undergo frequent updates as technologies advance. To
accommodate the goals of providing an expanded search
capability for NMDC users, the primary goal was to deliver a
scalable, open source platform that could provide standardized
results independent of the computing platform used, thereby
accelerating and enabling future downstream comparative
microbiome analytics. It is also worth noting that to help
standardize the workflow outputs for cross-study comparisons,
we have specified the parameters used in all the NMDC
workflows. In other words, all the workflows are static to keep
output consistency. Given the various experimental instruments
for generating any of these omics data and the associated
complexities of instrument-specific biases and error models,
we decided to initially focus on the most popular methods
applied to microbiome samples developed and maintained by
the JGI and EMSL, including Illumina sequencing data, bottom-
up proteomics using data-dependent acquisition (Stahl et al.,
1996; Kalli et al., 2013), gas chromatography mass spectrometry
(GC-MS) based untargeted metabolomics (Hiller et al., 2009;

FIGURE 1 | Implementation of a data federation model in the NMDC pilot. The central site implements the NMDCRuntime API that orchestrates the data flowwith a
database that serves as the data registry. The Runtime validates submitted metadata against the NMDC schema and detects new jobs to be done based on submitted-
data annotations. Source sites submit raw experimental data and sample metadata to the central site. Compute sites poll the Runtime for new workflow jobs to be done,
claim jobs appropriate for their capabilities, and submit workflow job outputs to the central site. Storage sites store raw workflow outputs. The portal site provides a
web-based interface. One site can serve as both a computing site and storage site. Arrows: 1): Portal site gets data object from HTTP server at a storage site; 2): The
HTTP server retrieves data from a database; 3) A compute site deposits workflow run result data to a database at a separate storage site; 4) Compute sites claim
computing jobs and provide job execution updates to the job tracking mechanism at the Central site; 5, 6, 7): A compute site can also serve as a storage site at the same
time; 8) Compute jobs are associated with the sample metadata; 9) A source site submits sample metadata to the Central site; 10) Central site validates submitted
sample metadata; 11) New jobs are created from the submitted samples metadata and become claimable by compute sites; 12) Sample metadata can be queried; 13) A
set of rules define the type of computing jobs that can be claimed by every Compute site; 14) The Portal site queries metadata.
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Fiehn 2016) and Fourier transform ion cyclotron resonance mass
spectrometry of complex mixtures (FT-ICR MS) (Kujawinski
2002; Ghaste et al., 2016; Corilo et al., 2021) data, in our initial
workflow implementations and software package releases. A
Liquid chromatography–mass spectrometry (LC-MS) based
workflow is under development and will be available later this
year.

3.1 Common Assumptions in Workflows
Many of the challenges in bioinformatics workflows relate to
various assumptions made by the workflow software developers.
Typically, a bioinformatics workflow tool is developed to solve a
data analysis need for a specific experimental design, as well as
specific data types and volumes generated for a specific project
and to be run within a specific computational infrastructure.
Adaptation of specific bioinformatics tools or workflows for a
broader project such as that embarked upon by the NMDC
requires a more thorough analysis of the workflow
requirements and portability needs. The result is a solution
that cannot readily be separated from the developers’
computing environment with various explicit and implicit
assumptions, such as the availability of specific job scheduler
and compiler, Linux kernel module and even a specific
distribution, instrumentation, file naming conversions, and
storage location and formats of the input and output files. We
have also investigated the memory usage requirements of various
software components, particularly metagenome assemblers,
which are known for their high-memory requirements
(Kleftogiannis et al., 2013; Li et al., 2015). Another implicit
but common assumption is that workflows are for scientists or
humans to execute manually on a handful of datasets, instead of
being automated for many thousands of datasets, and actively
monitored by software, which is linked to workflow scaling.

3.2 Scaling Workflows
Scaling in bioinformatics workflows means the process of
dynamically adjusting compute, storage, and network services
to meet the data processing demands in an automated fashion in
order to maintain availability and performance as utilization
increases. Scaling is a common design requirement in cloud
applications and has begun to attract attention from the
bioinformatics community. Scaling is usually not a
requirement for workflows designed to serve small to medium
scale studies (with perhaps a few terabytes of raw data) since these
workflows can be started manually and queued in a shared job
environment. However, in large-scale studies, workflows are
being used as a service and must be automatically triggered
based on the detection of the availability of new experimental
data and additional computing resources may need to be added
without interruption to existing workflow executions (Clum et al.,
2021). Also, large-scale studies often involve several experimental
laboratories and data may be processed at different computing
sites, which may run different job schedulers. Thus, it is
important that job schedulers have to be separated from the
workflow implementation and be configurable for each
computing site. For example, based on the raw sequencing
data size and complexity, the de novo assembly of

metagenomic and metatranscriptomic data often requires
access to high memory (>1 terabyte) computing nodes. An
algorithm is needed to estimate the memory and time needed
to process a given sequencing dataset and only allow a data
processing site with available big memory nodes to claim such
jobs. When cloud resources are used, the appropriate virtual
machine instance with sufficient memory and storage must be
instantiated. Within the NMDC, a runtime API (https://
microbiomedata.github.io/nmdc-runtime/) was implemented
that constantly monitors the raw data availability, raw data
type (which decides which workflow needs to run), and the
computing resources available at each computing site
(Figure 1). The runtime API is based on the Global Alliance
for Genomes and Health GA4GH Data Repository Service (DRS)
standard (Rehm et al., 2021). Some other scaling related issues are
listed in Table 1.

3.3 Selection of Workflows Based on Best
Practices
Based on NMDC expertise and general knowledge of the
bioinformatics landscape for varied omics data analysis
software, no available workflows could accommodate our
design needs, e.g., scalability, portability, and reproducibility.
While there is no ultimate gold standard workflow for
performing environmental microbiome omics analyses, the
metagenomics, metatranscriptomics workflows developed at
the JGI and the metabolomics and metaproteomics workflow
developed at EMSL have been rigorously tested with hundreds
and thousands of datasets in the past decade. These workflows,
though developed with the assumptions about their local
computing environments and not easily portable, do cover a
variety of memory and parallelization requirements and follow
some of the best practices, and were chosen as the foundation of
the NDMC workflows (Piehowski et al., 2013; Li et al., 2017;
Clum et al., 2021; Wu et al., 2021). We have introduced several
enhancements on top of these foundations. Firstly, to make these
workflows fully portable and scalable, we have removed or
abstracted all computing environment dependencies by
containerizing all the software components. Secondly, we
implemented all the workflow logic using the workflow
definition language (WDL) (Voss et al., 2017). We also added
standardized workflow output file formats in a schema to verify
workflow outputs are ready for data ingestion, described further
below in the Workflow Metadata section. To help external users
adopt these workflows and run them within their own
computational environments, we have put all the workflow
definitions with test datasets in the NMDC project Github
organization (https://github.com/microbiomedata). In addition
to this open access software, we further provide detailed
documentation (https://nmdc-workflow-documentation.
readthedocs.io/en/latest/). Additional training materials are
also provided, including video instructions on using the
NMDC portal site to examine processed data, and how to run
the NMDC workflows in the NMDC EDGE web application
(https://nmdc-edge.org), which provides access to all available
NMDC omics workflows and is open for public use.
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3.4 Workflow Manager and Workflow
Definition
Containerizing workflow components and adopting a workflow
definition language alone are not sufficient to separate the
concerns of workflow logic and its execution environment. A
workflow manager is still required to cleanly separate the
concerns of workflow definition and workflow execution.
Compared to traditional pipelines utilizing job schedulers or
scripting languages, workflow managers excel at
reproducibility, data provenance and portability (Di Tommaso
et al., 2017; Wratten et al., 2021). Each data processing site only
needs to install and configure its own data workflow manager
instance based on its resources, such as memory, CPUs, job
queues, and storage. With detailed information retrievable from
the workflow manager’s database, information about workflow
execution status is no longer limited to the computing system’s
job queue itself (e.g., Slurm). This also provides support for
resuming failed workflow executions from where the workflow
stopped instead of at the beginning of the entire workflow.

For the NMDC, WDL was selected over other workflow
languages primarily based on reusable workflow components
and superior standardization, which has also been reported by
others (Perkel 2019). The Cromwell workflow manager is used
in the NMDC due to its native support for WDL (Voss et al.,
2017). Cromwell also provides a rich set of features including
existing support for a variety of batch systems, native support
for containers, “call-caching” to reuse previously executed
tasks and an API to facilitate automation. Several key best
practices that were adopted by the NMDC for specifying
workflows using WDL with component software packaged
in containers are listed below. Figure 2 displays a snippet
of WDL code from the NMDC metagenomics workflow, to
highlight several key considerations when developing WDL
code.

(1) Utilize the WDL “import” function to break down the
complexity in large workflows to smaller components.
This makes the workflow maintenance easier and increases
components reuse.

(2) All workflow tasks should use containers to improve
portability, consistency and reproducibility.

(3) All container images should have published recipes (e.g.
Dockerfiles). This makes it easier for others to understand

how an image was generated and make modifications if
needed.

(4) The WDL files should not include any site specific
implementation. The Cromwell configuration file should
be used to handle site integration. This ensures the WDL
is as portable as possible.

(5) Workflows should avoid doing major pre-processing or post-
processing outside the WDL. All of the major analysis should
be captured in the WDL. This makes the analysis more
transparent. For example, generating gene expression
information has to be part of the WDL.

(6) Container images should be versioned and the version should
be specified in the WDL. This makes the workflow more
transparent and ensures that the tasks specified in the WDL
are in sync with the image contents. For example, if a new
tool version is used that has different command-line options,
the WDL and image version can be changed in sync with one
another.

(7) Reference data should be versioned and the workflow should
specify which version of the reference data is to be used. This
avoids potentially format mismatches and helps with
reproducibility and transparency.

(8) Workflow WDL have to provide a metadata section that
includes the workflow version and author information.

3.5 Workflow Deployment
One of the common challenges in complex bioinformatics
workflows is how to best resolve the conflicting software
dependencies, and managing the versioning of component
software. For NMDC, we addressed this challenge by
separating the workflow definition and its runtime by the
adoption of workflow managers and WDL as described in the
previous section. We also packaged all the runtime requirements
for each workflow in Docker containers (Merkel 2014) and made
them freely available to non-commercial users (https://hub.
docker.com/u/microbiomedata). Some of the runtime
components are developed by third parties and have
restrictions for commercial users. However, researchers can
still use the NMDC workflow WDL definitions by either
acquiring appropriate component software licenses (free and
open to non-profit organizations and universities). Currently,
the NMDC workflows have been deployed to NMDC partner
organizations: the National Energy Research Scientific
Computing Center (NERSC), the Environmental Molecular

TABLE 1 | Scaling related considerations.

Small scale studies
(gigabytes to <10

terabytes)

Large scale studies
and data portals
(>10 terabytes)

Workflow
management

Rarely used, typically job scheduler Dedicated workflow manager program

Workflow
reproducibility

Limited reproducibility within developers’ specific computing environment, lack of
long term support

Reproducible independent of the computing environment,
better support

Metadata
management

Usually at intra-study level and nonstandardized Community standard based and enforced

Data Management Spreadsheets Databases with API access
Data Query Manual lookup Database queries and APIs
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Sciences Laboratory (EMSL), the San Diego Super Computing
Center (SDSC), and the Los Alamos National Laboratory
(LANL). Adding another data processing site or running it in
a local computing environment only requires installing and
configuring Cromwell and Docker. In high performance
computing (HPC) environments where elevated user privilege
is a concern, the NMDC workflow containers have also been
adapted to other software container solutions that are HPC-
friendly, e.g., Singularity (Kurtzer et al., 2017), Shifter (Jacobsen

and Canon 2015), and Charliecloud (Priedhorsky and Randles
2017).

Through our experience in packaging and testing of these
workflows in different environments, we have learned a few
lessons. One is user privilege management. For example, the
Cromwell user account needs to have access to all the virtual
storage volumes used by the workflow runtime containers. Also,
when packaging tools into WDL, workflow developers should
really avoid writing to the “/tmp” directory in containers since

FIGURE 2 | Code snippets of the metagenomic data workflow to illustrate the WDL best practices listed in this paper 1: example use of the “import” function (best
practice point 1); 2–4: examples of using containers inWDL (best practice points 2-4 and 6); 5–8: examples of avoid site specific implementation (best practice point 4); 9:
workflow metadata information (best practice point 8). The full workflow code is available from https://github.com/microbiomedata/metaG.
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default settings of writing to “/tmp” is prohibited in Singularity
and Charliecloud containers, while being allowed in Docker and
Shifter. For testing purposes, we also suggest a minimum of
including two testing data sets for each workflow. One smaller
test data set can be used for rapid workflow logic validation. The
second data set should be complex enough to test memory usage
and allows for benchmarking and estimation of CPU and
memory usages. In addition, when building software in the
containers, chip specific instructions have to be avoided in
order to maintain portability. This can mean trading off
performance for portability. We have evaluated our workflow
containers in both physical and virtual environments running on
Intel and AMD processors. We have tested these workflows in
various HPC facilities (NERSC/DOE, Expanse/San Diego
Supercomputing Center, Texas Advanced Computing Center,
Los Alamos National Laboratory, Environmental Molecular
Sciences Laboratory/DOE). For some workflows that do not
require large memories or databases to run, we have also
tested on laptop computers. The NMDC continues to evaluate
support for non-x86-64 architectures based on support of the
underlying tools and the prevalence of these systems within the
community. Presently, many of the underlying tools have not
been tested or optimized for architectures such as ARM64 or
PPC64 so supporting these is not in any near-term plans.
Likewise, GPU support in most of the tools is limited or non-
existent. We will continue to track any improvements and make
adjustments in the NMDC workflow and images as these tools
and community access evolves.

3.6 Workflow User Interface and
Customization
The intended users include all microbiome researchers, including
both bench scientists and bioinformaticians. To assist bench
scientists to use the NMDC workflow, we have carefully
engineered a web-based user interface (NMDC EDGE) to run
the NMDC workflows interactively (https://nmdc-edge.org).
Since we aim to provide a catalogue of the existing
microbiome data based on unified analysis processes, we made
a design decision to use static workflows with fixed parameters for
all the data that feeds into the NMDC portal. Customized
workflow runs, including changing the default workflow
parameters and even modified the workflow components for
internal analysis needs that are not submitted to the NMDC
portal will be supported through the KBase (https://www.kbase.
us) and future versions of the NMDC EDGE.

4 METADATA

Metadata in the NMDC includes both sample metadata that
describes the origin and environmental attributes of the biological
sample collection, as well as metadata related to the omics
analysis processes employed. The NMDC schema controls
which metadata elements are applicable or required for all
data within the NMDC, whether it is sample data, or data
generated from workflows. The NMDC schema is defined

using Linked Data Modeling Language (LinkML, https://
linkml.io/linkml/). LinkML is a rich modeling language that is
used to create schemas that define the structure of data, allows for
rich semantic description of data elements, as well as leveraging
JSON-Schema for validation. For example, the relationship
between studies, samples, workflows, and data objects is
described using LinkML, and the metadata dictionary for
samples is described using LinkML.

For sample metadata, our schema leverages the Minimal
Information about any Sequence (MIxS) data dictionary provided
by the (Genomics Standards Consortium (GSC, https://gensc.org/
mixs/) (Yilmaz et al., 2011), as well as environmental descriptors
taken from theGenomesOnlineDatabase (GOLD) (Mukherjee et al.,
2021), and OBO Foundry’s Environmental Ontology (EnvO)
(Buttigieg et al., 2013).

The metadata we focus on in this review revolves around
descriptive metadata on the procedures used to generate and
process the data. The NMDC leverages the PROV ontology
standard (https://www.w3.org/TR/prov-o/), which is a well-
established practice in the semantic web community, to
provide provenance information. Instances of workflow runs
are represented as PROV activities. We include distinct
schema classes for workflow executions such as Metagenome
Assembly, Metabolomics Analysis Activity, Metagenome
Annotation Activity, etc. Each of these has generic metadata
associated such as time of execution, site of execution, inputs,
outputs, etc., in addition to metadata specific to each type of
workflow. For example, metabolomics activities have metadata
such as calibrations, metabolite quantifications, instruments use.
Where possible, these descriptors are mapped to existing
standards and vocabularies. An example is provided in
Figure 3. A Uniform Resource Identifier (URI) and associated
workflow activities have been assigned to all the workflow output
files that are ingested to the backend database. In the example for
Figure 3, the URI “nmdc:MAGsAnalysisActivity” is assigned for
the outputs of the metagenome binning workflow. This approach
lays the foundation for checking workflow output integrity and it
also helps to guide the user interface development decisions for
the portal website (e.g., what types of searches will be allowed).

Metadata can also be used to steer the workflow execution. For
example, nucleotide sequencing data generated from the Illumina
platform can be either single-ended (SE) or paired-ended (PE)
and PE reads can be stored either in two separate fastq files or
interleaved in one fastq file, which makes three types of potential
input formats for the NMDC metagenomic and
metatranscriptomic workflows. The NMDC workflow supports
both SE and PE reads. We plan to automate the detection of the
SE/PE reads and leverage the sample preparation and
instrumentation metadata to set parameters to the workflow
and to trigger appropriate workflow component tasks.

5 SUMMARY AND FUTURE

Here, we have outlined some of the challenges and considerations
in implementing disseminable standardized bioinformatics
workflows for microbiome omics data, with the goal of
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providing microbiome analyses that may be cross-compared
across projects, regardless of the samples, or the
computational environment used to generate the results. The
initial efforts from the NMDC have shown how some of these
challenges can be addressed by adopting workflow managers,
workflow definition language, containerizing workflow runtimes,
and developing a data schema for workflow files and their
contents. The NMDC has also adopted a data federation
model to allow multiple sites (as either data generation,
computing, or data storage sites) to contribute to the NMDC
while minimizing resource challenges on any single site.

While we document progress towards robust and
standardized analyses of various microbiome omics data
types, many challenges remain. For example, the data flow
in the NMDC is not yet entirely automated which would
significantly increase processing capacity. The NMDC is

developing a runtime API to fully automate the processing
of microbiome data and that supports continuous
integration and continuous development. We are also
actively developing and supporting a public-facing NMDC
API. We have already implemented a set of APIs for satellite
sites to register samples and submit workflow outputs in JSON
to the portal. Currently, this API is used by the NDMC
developers and will be open to external developers. We also
plan to provide a set of APIs for programmatic data access,
such as query and import data from the NMDC (e.g., the KBase
project plans to provide this utility from within the KBase
platform). Concomitantly, the optimization of workflow
parameters based on sample metadata is also being
undertaken, which would then further support automation.

The NMDC data that have been integrated thus far have been
generated from JGI and EMSL, both of which serve as

FIGURE 3 | Example NMDC workflow metadata. Left panel shows an example JSON output snippet of a MAGSAnalysisActivity, which is a record of the
metagenomic assembled genome (MAG) workflow execution. It includes generic workflow metadata (start/end time, execution resource) and MAG-specific metadata
and workflow outputs. The full JSON example is available on-line (https://github.com/microbiomedata/nmdc-metadata/blob/master/examples/MAGs_activity.json).
Right panel shows a visual depiction of the MAGSAnalysisActivity class in the NMDC LinkML schema (https://microbiomedata.github.io/nmdc-schema/
MAGsAnalysisActivity/).
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experimental data generation sites, compute sites, and storage
sites. Separate omics data processing workflows have been
developed, and the integration for these data happens through
the harmonization of the sample metadata and the functional
annotation information. Specifically, the metagenomics,
metatranscriptomics, and metaproteomics workflows rely on
the same underlying annotations to allow cross-comparisons.
At this time, the integration of metabolomics data is only
available through the sample metadata information. The
workflows and infrastructure envisioned to process future
microbiome data, including all microbiome data stored in the
short read archive (SRA), are envisioned to be deployed as omics
analysis platforms as a service (PaaS) in the cloud for prompt data
processing. The NMDC team will coordinate with the user to
decide the best strategy to process or deposit a large amount
of data.

Lastly, one of the largest and likely ever-present challenges
that remains surrounds the topics of sustainability and
updating results. These must be considered given the
constantly changing landscape of our knowledge of the
biological world, and the tools and technology (both
instruments and algorithms) used to interrogate
microbiomes. Workflow extensibility and database version
reliance regularly factor into workflow design considerations.
Like almost all bioinformatic workflows, the NMDC workflows
rely on several reference databases for genome annotation,
metagenome-assembled genome binning, taxonomy
classification, and protein and metabolome assignments. As
a result, alternative databases, or updates to any of these
databases can lead to differences in workflow outputs, which
engender important considerations: when to reprocess sample
data and how to control the versions of the workflows,
databases, and their outputs. An open question is when it is
necessary to rerun the analysis on all or a subset of microbiome
omics data to update the analysis results. A rerun of the
workflow may be triggered by a major update in either the
database or the workflow itself. For example, a major change in
the NCBI taxonomy database, which is used to identify taxa
within metagenomic and metatranscriptomic data, would
warrant reprocessing samples affected by these changes.
Similarly, newly discovered genomes could enhance both
taxonomy and annotation results, or new discoveries in
protein structure and function or new metabolites may
require reanalysis of metaproteome and metabolomic
datasets as well. In addition, new or improvements in

algorithms and software tools that significantly
outperform existing tools will likely require rerunning
relevant workflows.

The NMDC model, in terms of workflow development,
implementation, and sharing has been to construct modular
workflows from established, best practice tools and pipelines,
and to make these open source (https://github.com/
microbiomedata). While the NMDC plans to use these
workflows to process currently available microbiome data,
continued testing and evaluation of new tools, or new versions
of existing tools is also underway and part of our internal
processes and policies related to workflow management,
updates, and adoption of new tools. Specifically, the current
NMDC workflows are derived from established workflows
from the NMDC participating organizations and will evolve
over time. These upstream workflows will routinely undergo
modifications in order to improve the quality and
performance of the results and products, through the adoption
of new tools, updates to the various software packages, updates to
the reference databases and taxonomy, etc. The NMDC will
synchronize with the upstream workflow changes to improve
the NMDC workflows. The open source model also allows third
party developers to substitute tools and examine how changes to
the workflows may impact the results. As the NMDC team
further develops support for curated metadata and
production-quality bioinformatic workflows, we welcome
contributions from the broader community of researchers to
partner with us to make the NMDC a unique collaborative
resource for microbiome researchers.
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RecruitPlotEasy: An Advanced Read
Recruitment Plot Tool for Assessing
Metagenomic Population Abundance
and Genetic Diversity
Kenji Gerhardt1,2†, Carlos A. Ruiz-Perez1,2†, Luis M. Rodriguez-R3†, Roth E. Conrad4 and
Konstantinos T. Konstantinidis 1,2,4,5*
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United States, 3Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria,
4Ocean Science & Engineering, Atlanta, GA, United States, 5School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA, United States

Mapping of short metagenomic (or metatranscriptomic) read data to reference isolate or
single-cell genomes or metagenome-assembled genomes (MAGs) to assess microbial
population relative abundance and/or structure represents an essential task of many
studies across environmental and clinical settings. The filtering for the quality of the read
match and assessment of read mapping results are frequently performed without visual
aids or with the assistance of visualizations produced through ad-hoc, in-house
approaches. Here, we introduce RecruitPlotEasy, a fully automated, user-friendly
pipeline for these purposes that integrates statistical approaches to quantify intra-
population sequence and gene-content diversity and identify co-occurring relative
populations in the sample. Hence, RecruitPlotEasy should also greatly facilitate
population genetics studies.

RecruitPlotEasy is implemented in Python and R languages and is freely available open
source software under the Artistic License 2.0 from https://github.com/KGerhardt/
RecruitPlotEasy.

Keywords: bioinformatics, software, metagenomics, MAG, population diversity

INTRODUCTION

Metagenomics studies of natural microbial populations have recently revealed that bacteria and
archaea predominantly form sequence-discrete populations with intra-population genomic sequence
relatedness typically ranging from ∼95 to 100% genome-aggregate average nucleotide identity (or
ANI) depending on the population considered (e.g., younger populations since the last population
diversity sweep event show lower levels of intra-population diversity and thus, higher ANI). In
contrast, ANI values between distinct populations are typically lower than 90% [Figure 1 and
reviewed in (Caro-Quintero and Konstantinidis, 2012)]. Such sequence-discrete populations were
recovered from many different habitats, including marine, freshwater, soils, sediment, human gut
and biofilms, and were typically persistent over time and space [e.g., (Konstantinidis and DeLong
2008; Meziti et al., 2019; Olm et al., 2020)]. Therefore, these populations appear to be “species-like”
and may constitute important units of microbial communities. This discovery is also important in
medical microbiology; for instance, in identifying which population is the causative agent of disease
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(Pena-Gonzalez et al., 2019). More recent work has even shown
that intermediate identity genotypes, for example, sharing
85–95% ANI, when present, are ecologically differentiated and
thus, should probably be considered distinct species (Conrad
et al., 2021; Rodriguez-R et al., 2021), rather than representing
cultivation (or other sampling) biases (Murray et al., 2021).

Read recruitment plots are one of the most in-depth
analyses to reveal and study sequence-discrete populations.
In these plots, the reads of a metagenome are mapped against a
genomic reference sequence that is representative of the
population to be studied (e.g., an isolate genome or MAG).
The mapping patterns that are revealed are informative about
how well the metagenomic population matches the reference
genome, gene content differences if any, the level of intra-
population sequence diversity, and regions of sequence-
discontinuity (Rusch et al., 2007; Konstantinidis and
DeLong 2008) (Figure 1). Thus, read recruitment plots can
provide a thorough and quantitative view of the natural
population in a sample and its diversity, which represents
highly useful information for several downstream analyses.
Accordingly, several tools that can plot read mapping patterns
have been developed for this purpose e.g., (Robinson et al.,
2011; Zhu et al., 2013; Jaenicke et al., 2018). However, these
tools typically provide no additional information or
capabilities such as they do not include appropriate
statistics to characterize the genome, gene allelic, and gene
content diversity in spatial or time-series metagenomes and

thus, do not allow targeted analyses of specific gene-based
traits and exploration of selection pressure and population
bottlenecks (Meziti et al., 2019).

Recently, we have developed bioinformatic scripts that can
be applied to the read mapping output of a read recruitment
plot to provide information based on read mapping that is not
available by previous tools such as what is the average coverage
of the genome by reads (a proxy for relative metagenome
abundance), whether or not co-occurring populations exist in
the dataset (sample) (Rodriguez and Konstantinidis, 2016),
and which genes of the reference genome in the plot (isolate or
MAG) are shared or not by the metagenomic population
(Meziti, et al., 2019). Here, we present RecruitPlotEasy, a
pipeline that integrates all these scripts into a single tool
and represents a completely redesigned tool compared to
that originally introduced as part of the enveomics script
collection (Rodriguez and Konstantinidis, 2016) in order to
scale-up with more data. RecruitPlotEasy also includes new,
additional features such as the possibility to simultaneously
view plots of multiple reference genomes and/or metagenomic
read datasets and is interactive in that the user can browse over
the plot to identify genes of interest and view their associated
functional annotation (when provided) and relative
abundance in the metagenome. Based on previous literature,
we employed a (user-adjustable) 95% nucleotide identity
threshold to identify reads that represent the same (target)
population (a.k.a. within population diversity), while reads

FIGURE 1 | Recruitment plot displaying gut metagenomic reads mapped to a single Staphylococcus aureus reference genome. (A) is a 2-D histogram displaying
the percent identity of reads to the reference genome on the y-axis and the position in the genome on the x-axis. Cell fill color darkens as more reads fall within the cell,
i.e., the region of the genome and percent identity window the cell represents, in a logarithmic scale. Shaded in dark blue is a region indicates the plot’s current within-
population percent nucleotide identity threshold, here shown at the tool’s default 95%. (B) is a line plot of the average depth of coverage per genome region on the
main panel. The dark blue line displays depth of coverage for reads mapping to regions of the genome within the population threshold from panel (A), and the light blue
line displays depth for reads outside this population. Note the logarithmic scale in the base pair counts axis as well as the highlighted area of lower coverage, representing
a reference genomic region not shared by the majority of the metagenomic population. (C) is a histogram of depths of coverage across the entire genome, with colors
corresponding to within and outside-population as in panel. (D) is a histogram of the number of bases displayed in panel (A) (x-axis) which fall into particular percent
identity windows (y-axis), here displayed in log scale. Note the second peak in the number of basesmapping in the 94–95% identity range, representing a co-occurring S.
aureus-like population. See also main text for further details.
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showing lower than 95% identity are considered to represent
distinct, co-occurring populations (a.k.a. outside population).
Using the RecruitPlotEasy tool requires no previous
bioinformatics or coding skills.

INSTALLATION AND INPUTS

RecruitPlotEasy is operated entirely through a graphical user
interface (GUI) which manages the selection of inputs, the
manipulation of data, and the creation of plots through simple
buttons and drop-down menus. Further, all menus and
options are annotated with tooltips and reports that help
the user easily navigate the workflow of the Recruitment
Plot without prior experience using the tool.
RecruitPlotEasy is written in a pair of scripts, one in R and
one in Python 3. This two-script design takes advantage of
multiple visualization libraries and the GUI of the Shiny
library available in R, while operating with modest
computational resources enabled by Python.

To use the tool, the user needs only to download and install
R, Rstudio, and then run a single command from the R
terminal. This command installs any missing R
dependencies, installs Miniconda if it is absent (to ensure
that the right version of Python is subsequently installed),
retrieves the R and Python functions, and launches the GUI for
the user. While installation only occurs on the first use of
RecruitPlotEasy, this same command is used in subsequent
sessions to activate the GUI again. RecruitPlotEasy requires a
user to supply one (or more) genome file(s) in FASTA format and
at least one set of readsmapped to that genome file in either tabular
BLAST or SAM/BAM formats. Users may optionally supply gene
functional annotation in GFF for gene-level analysis.

METHODS

The graphical interface of RecruitPlotEasy opens in the user’s
default web browser. This interface is organized into 4 tabs:
Database Creation, Database Management, Recruitment Plot,
and Interactive Plot (Supplementary Figure S8). The tabs
organize the workflow of RecruitPlotEasy into smaller,
manageable tasks where the options available on each page
are directly relevant to the task that page supports. For
instance, input selection occurs on the database creation
tab, assessment of the contents of a database and the
control of advanced options occurs on the database
management tab, and the creation of plots occurs on the
recruitment plot and interactive plot tabs. The workflow of
the recruitment plot is further guided by multiple forms of user
feedback. All buttons and input fields are annotated with
tooltips that inform the user of the actions each button will
perform upon hovering their cursor over it. This includes
guidance on the type of file and the kind of data required
in each input, and the consequences of changes made to
plotting parameters. As inputs are selected, their formats
are also checked for basic appropriateness.

The underlying data shown in a recruitment plot is a 2-
dimensional matrix (or table) of counts. For a given genome,
columns of this matrix correspond to successive regions of the
genome and rows correspond to windows of percent nucleotide
identity values. The width and height of each cell of the matrix are
defined by the user, with defaults of 1000 base pairs for width and
0.5% identity for height. If viewing genes, percent identity
windows are determined in the same way, but genome regions
instead correspond exactly to the starts and ends of the gene
sequences, with intergenic regions forming additional columns,
as needed, to fill in the rest of the matrix. The cells of the matrix
effectively form a 2-dimensional histogram of bins into which
reads may fall.

To fill the matrix, reads aligning to the genome are assigned
to their appropriate percent identity window and genome
position bin. A user may choose to define percent identity
to the reference as either the number of matches divided by the
alignment length (local alignment) or matches divided by the
entire length of the read, including unaligned sections (global
alignment). After the percent identity row is determined, the
read will increase the base pair (bp) count of the bin it falls into
by its length. Should a read span two or more bins, each bin will
receive its respective share of the read’s length according to
exactly where the read mapped to the genome and the
boundaries of the bins. The count for each bin represents
the sum of all bases of all reads that map within the
corresponding percent identity and region of the genome.
Once every read has been processed, the filled matrix is
passed to the plotting component of RecruitPlotEasy.

Reads may also be filtered based on minimum alignment
length, minimum percent of the read aligning to the reference
(not available for tabular BLAST), and by selecting only those
reads which map best to the currently viewed genome (i.e.
allowing each read to map only once across the set of genomes
available in the database). Reads are not processed in any way
prior to their selection from the database, meaning that any
plot and any statistics or data export based on a plot are created
only from the reads which pass the filtering parameters
selected by the user (or the defaults when user makes no
choices). A record of the exact query used to select reads
from the current RecruitPlotEasy database is exported
alongside any saved plot or data export in order to ensure
that the reads used to generate a plot can be recovered at
later dates.

OUTPUT AND RESULTS

The recruitment plots from RecPlotEasy show four views of a
single dataset; the main panel of a recruitment plot directly
displays the underlying counts matrix, while the other three
panels display useful summaries derived from the data in the
main panel. Figure 1 shows an example of the read
recruitment plot obtained with a single gut metagenome
mapped against a Staphylococcus aureus reference genome.
We consider the subplot in the bottom left the main panel,
which shows how metagenomic reads of sufficient nucleotide
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identity and alignment (user defined) thresholds map against
the reference genome. Because read recruitment plots
commonly recruit tens of thousands to millions of reads
from a metagenome it is computationally intractable to
directly plot each read individually. Instead, we plot the
sum of all bases from the reads that fall within a specific
region of the main panel defined as a grid with cells consisting
of base pair width (x-axis; default � 1000) and percent
sequence identity of the read alignment height (y-axis;
default � 0.5%) (Methods section above).

The panel on the bottom right shows the number of nucleotide
bases (i.e., density of reads) at each unit of nucleotide identity
(y-axis) in the main panel. Note that the specific case in Figure 1
shows an abundant S. aureus population in the sample,
represented by a high density of high identity (>98% identity)
reads mapping evenly across the reference genome along with a
less abundant, closely related and co-occurring S. aureus-like
population represented by the second lower peak in the number
of mapped bases in the 94–95% identity range. The region
between these two peaks shows the sequence discontinuity
between the two sequence-discrete populations, one
representing the reference genome and the other representing
the sum of the remaining genomes.

Similarly, the upper left panel shows the coverage (i.e., how
many times a base of the reference sequence is covered by
mapped reads) of the genome at each unit of genomic position
(x-axis) in the main panel. The darker blue color represents
reads within the target population (default >95% nucleotide
identity to the reference sequence) while the lighter blue
represents lower identity reads considered outside the
population (nucleotide threshold can be adjusted by the
user). Note in Figure 1 that the top left panel shows fairly
even read coverage across the genome for the target population
with the exception of a few lower coverage regions while the
outside of population coverage is more variable. This is an
expected result for a single, homogenous population that is a
good match to the reference genome. When no reads map to a
genomic region (i.e., the region shows zero coverage), the
region is displayed at the bottom of the panel for its
respective group (dark blue target or light blue off-target),
discontinuous from the rest of the line chart. Such low- or
zero-coverage windows typically occur when a reference
gene(s) is absent in the sampled population; browsing over
the windows in the interactive mode can reveal which genes are
found in these windows and their functional annotation, when
the latter information is provided at the input stage. Hence,
RecruitPlotEasy can reveal the gene content differences
between the reference genome and the metagenomic
population.

Finally, the top-right panel shows the histogram of coverage
depth values over regions of the genome, which should reveal a
tight distribution around the mean in cases where the reference
genome represents a single population and a not-chimeric
genome, like in the S. aureus example in Figure 1. A wider
distribution would have been expected in the case of a chimeric
genome that represents two or more populations with distinct
in-situ abundances. For further details on the panels, see also

Supplementary Figure S4. Supplementary Material includes
additional methodological details; Supplementary Figures
S5–S7 provide additional (less common) examples and
use cases.

RecruitPlotEasy provides the user with the option to export
their plots as high-quality figures and save the plotting data
used to create them. Once the user has decided that they are
satisfied with their plot as it appears in the GUI, they may
provide a name and save the plotting data used to generate
each recruitment plot sub-plot three in tab-delimited files and
save a PDF of the plot image, laid out in a 16:9 aspect ratio to
match the majority of modern screens. While RecruitPlotEasy
uses the PDF format to save its plots, the graphics within each
PDF are ultimately saved as an SVG that is both infinitely
scalable without any loss in the figure’s resolution (i.e. it can be
zoomed in on as much as desired without losing any clarity)
and can be easily imported into common figure editing
software that support SVG manipulation such as Adobe
Illustrator for further editing, labelling, or other
manipulations desired by a user.

The interactive plots created by RecruitPlotEasy may also
be exported, but the files produced are quite different from the
PDFs that are generated by the normal plotting approach. The
R Plotly library is used to generate interactive recruitment
plots, and these interactive plots are saved as HTML files that
contain an independent copy of the data used to create the plot
and the graphical results. These can be subsequently opened
by most internet browsers, and do not require
RecruitPlotEasy, R at all, or any other external software to
be shared and viewed.

To better support integration in workflows, RecruitPlotEasy
also includes a built-in read filtering function. When a
database is built, RecrutPlotEasy makes a note of the
location of each input read file and indexes reads by their
name and the genome each mapped to. When viewing plots,
reads at or above a user-defined percent identity cutoff may be
added to a cart. By returning to the database management tab
of the GUI, reads in the cart can be exported to filtered outputs
in the same format as the inputs (although BAM is converted
to SAM format) that will contain only those reads matching
the selection criteria currently chosen by the user. Depending
on the users’ chosen options, this can (and will, under default
settings) include filtering reads to only their best matches, thus
removing instances of reads mapping to multiple locations,
filtering poorly aligned reads, selecting only reads mapping to
specific genomes, and selecting only reads sufficiently similar
to the reference sequence. This function is intended to be used
in tandem with the plot saving component of RecruitPlotEasy:
a user may inspect their read mapping results, tailor their
filtering settings to match the properties of each genome as
needed, and export reads alongside one or multiple
recruitment plots that aid in justifying the choice of
filtering parameters.

In summary, we have presented an advanced read
recruitment plot tool that can provide a thorough and
quantitative view of the natural population in a
metagenome and its diversity, which represents highly
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useful information for several downstream analyses.
Accordingly, we expect that RecruitPlotEasy will greatly
facilitate microbiome research across the clinical and
environmental fields and advance the toolbox for the
analysis and summarization of large-scale genomic/
metagenomic data and the communication of those results.
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Dimensionality reduction techniques are a key component of most microbiome studies,
providing both the ability to tractably visualize complex microbiome datasets and the
starting point for additional, more formal, statistical analyses. In this review, we discuss the
motivation for applying dimensionality reduction techniques, the special characteristics of
microbiome data such as sparsity and compositionality that make this difficult, the different
categories of strategies that are available for dimensionality reduction, and examples from
the literature of how they have been successfully applied (together with pitfalls to avoid). We
conclude by describing the need for further development in the field, in particular
combining the power of phylogenetic analysis with the ability to handle sparsity,
compositionality, and non-normality, as well as discussing current techniques that
should be applied more widely in future analyses.

Keywords: microbiome, dimensionality reduction, ordination, sequencing data, non-linear embeddings

INTRODUCTION: WHAT IS DIMENSIONALITY REDUCTION AND
WHY DO WE DO IT?

To a first approximation, life on Earth consists of complex microbial communities, with
“familiar” multicellular organisms such as plants and animals being rounding errors in
terms of cell count and biomass. The genetic repertoire of such a community is called a
“microbiome” (Turnbaugh et al., 2007), although the term “microbiome” is often also loosely
applied to the collection of microbes that make up the community. In either sense, microbiomes
are typically incredibly complex, containing vast numbers of species and genes, and how samples
relate, even in well-studied contexts, are not predetermined. For example, in the Earth
Microbiome Project (EMP) (Thompson et al., 2017) and the work leading up to it
(Lozupone and Knight, 2007; Ley et al., 2008; Caporaso et al., 2011), an ontology
constructed from the microbe’s perspective based on community similarities and differences
revealed many surprises, such as a deep separation between free-living and host-associated
samples, and between saline and non-saline samples. Accordingly, to truly understand the
microbial perspective, we must get acquainted with the structure of the data in human-
interpretable formats. This is especially important when we need to separate new biological
discoveries from technical artifacts, such as distinguishing clusters related to different habitats
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on the human body from artifacts caused by different
sequencing methodologies such as PCR primers (The
Human Microbiome Project Consortium, 2012).

When microbiome sequencing data (Figure 1A) are arranged
into count tables (Figure 1B), such as those that count 16S
amplicon sequence variants (ASVs) or the microbial genes
present in a sample, the number of features being counted
across all of the samples often vastly outnumbers the number
of samples observed. This phenomenon of having many features,
and particularly having far more features than samples, is a
hallmark of high-dimensionality. For example, the EMP
(Thompson et al., 2017) contained 23,828 samples and
represented 307,572 ASVs, where each of these ASVs is
considered a dimension of the resulting count table. This
degree of high feature dimensionality creates difficulties for
interpreting data and calculating meaningful statistics, since
humans cannot visualize more than 3 dimensions, many of
the features are noisy or redundant, the number of hypotheses
that explain the data is far greater than the number of
observations, and the number of features can cause run-time
issues for downstream analysis. These are all common
consequences of the “curse of dimensionality”. Dimensionality
reduction transforms a high-dimensional dataset into a
representation with fewer dimensions, while retaining the key
relationships among samples from the full dataset, making
analysis tractable. Accordingly, dimensionality reduction is a
core step in microbiome analyses, both for creating human-
understandable visualizations of the data and as the basis for
further analysis. The EMP used dimensionality reduction to
produce plots of the 23,828 samples using 3 coordinates (in
contrast to the 307,572 ASVs) that demonstrate the large
difference between host-associated and non-host-associated
microbiomes, and between saline and non-saline free-living
microbiomes (Figure 1C). These differences in microbial
communities were subsequently statistically validated. This

example is particularly salient because it shows the value of
preserving the structure of the data while using much less
information to represent it. Owing to its importance,
dimensionality reduction methods are included in many
analysis packages, including QIIME 2 (Bolyen et al., 2019),
mothur (Schloss et al., 2009), and phyloseq (McMurdie and
Holmes, 2013), as well as online software such as Qiita
(Gonzalez et al., 2018) and MG-RAST (Keegan et al., 2016).

In this review, we describe how the characteristics of
microbiome data complicate dimensionality reduction. We
then discuss common strategies for dimensionality reduction
(Table 1), examining in detail whether and how they address
each of the aspects that, in conjunction, confound microbiome
analysis. Tried-and-true techniques, although useful, often have
conceptual and practical problems that limit their utility in the
microbiome, due to the inability to handle the data’s most salient
traits simultaneously (Table 2). In this light, we then focus on
examples of how dimensionality reduction techniques have been
used in the literature, highlighting biological findings that have
been revealed by each, while also discussing what may have been
obscured. We then discuss common artifacts of widely used
dimensionality reduction techniques, including specific pitfalls
that users of these techniques must avoid in order to draw
conclusions that are robust, reproducible, and well-supported
by their data. We end with guidance on how dimensionality
reduction should be used responsibly by practitioners in the field,
and with an outlook describing how additional techniques that
are seldom used today might provide valuable advances.

Specific Features of Microbiome Data That
Complicate Dimensionality Reduction
“Microbiome data” most often refers to sequencing results from
two primary methodologies. The first class of microbiome
sequencing is known as “amplicon sequencing” where a

FIGURE 1 |Overview of dimensionality reduction pipeline. Nucleotide sequences (A) from a biological experiment are organized in a feature table (B) containing the
abundance of each feature (e.g., OTU, ASV, MAG) in each sample. (C)Beta diversity plots showing unweighted UniFrac coordinates of EMP annotated by EMPO levels 2
and 3. (C) is a derivative of Figure 2C from “A communal catalogue reveals Earth’s multiscale microbial diversity” by Thompson et al. (2017) used under CC BY 4.0.
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specific gene or region of a gene is targeted in each sample. 16S,
18S, and ITS sequencing approaches all fall under this class of
methods. Variants of the targeted nucleotide sequences are used
as a proxy for discrete microbial taxa. These unique sequences
can be clustered by sequence similarity into “operational
taxonomic units” (OTUs) or used by themselves as individual
units after denoisers, such as DADA2 and Deblur, resolve the
individual sequence variants from error-prone sequences
(Callahan et al., 2017; Amir et al., 2017). These filtered
sequences are often called amplicon sequence variants

(ASVs) (Callahan et al., 2017) or sub-OTUs (sOTUs). The
second class of microbiome sequencing is shotgun or whole
metagenome sequencing. In this method, the DNA from a
sample is collected and sequenced broadly. The reads are
then mapped to a reference database to determine the
corresponding units, which can range from taxonomic
identities to gene families or genes from a specific reference
genome or metagenome-assembled genomes (MAG).

The result of these sequence analysis pipelines is typically a
“feature table” that counts the microbial “units” or features

TABLE 1 | Common characteristics of strategies for dimensionality reduction address different aspects of the data.

Table 1

Term Definition

Compositionally aware Transforms data to account for non-independence of features in sequence count data
Pseudo-counts or imputation Requires no/minimal zeroes in the feature table due to numerical issues (such as logarithm

transform being undefined on zeroes)
Able to incorporate phylogeny Method is calculated with awareness of how each sampled microbial community is evolutionarily

represented relative to other samples
Operates on beta-diversity dissimilarities Dimensionality reduction step is performed on pairwise dissimilarities (arbitrary metric) between

samples, rather than the feature table itself
Linear Lower dimensional coordinates are computed via linear transform of features
Repeated measures Subjects are sampled multiple times. Commonly sampled longitudinally
Feature relationships are interpretable The method indicates the relevance of input microbial features with regard to its output coordinates
Supervised component Method takes explanatory sample variables as an additional input

TABLE 2 | Dimensionality reduction methods each have their own characteristics. x indicates that the characteristic applies to the method. Examples of software capable of
performing each method are included in the last column.

Table 2

Compositionally
aware

Avoids
pseud-
counts

or
imputation

Able
to

incorporate
phylogeny

Operates
on beta-
diversity

dissimilarities

Linear Repeated
measures

Feature
relationships

are
interpretable

Supervised
component

Software

PCoA — x x x x — — — QIIME 2, CRAN
phyloseq, mothur

PCA — x — — x — x — scikit-learn, R built-in,
mothur

UMAP — x x x — — — — umap-learn, CRAN
umap, QIIME 2

t-SNE — x x x — — — — scikit-learn, CRAN
tsne

nMDS — x x x — — — — scikit-learn, CRAN
vegan, mothur, CRAN
phyloseq

CCA — — — — x — x x scikit-bio, CRAN
vegan, CRAN
phyloseq

PLS-DA — — — — x — x x CRAN mixOmics

Aitchison
PCA

x — — — x — x — scikit-bio, QIIME 2

RPCA x x — — x — x — gemelli, QIIME 2,
vegan

CTF x x — — x x x — gemelli, QIIME 2
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(OTU, ASV, MAG, etc., (Figure 1B)) associated with each
sample. Additionally, information about the relationship
between features, such as taxonomic identity or gene family,
can optionally be used to “collapse” the feature table to a lower
resolution sum of its units. At this point, the data are generally
ready to pursue exploratory analysis with dimensionality
reduction.

However, there are several features common to microbiome
data that can make standard dimensionality reduction techniques
difficult to apply or to interpret. Each method must therefore
handle each of these key issues or be benchmarked carefully to
determine that these issues do not strongly affect the results in
ways that are problematic for biological interpretation. We
demonstrate various dimension reduction techniques on two
datasets: Lauber et al., 2009 (Figures 2A–D) and Shalapour et
al., 2017 (Figures 2E–H) looking at soil pH and antibiotic-diet
axis respectively.

High dimensionality. In this context, “dimensionality” refers to
the number of features in a feature table. Microbiome data
typically have far more features than samples. Across studies
ranging from tens of samples to tens of thousands of samples, the
number of features for taxonomic data typically exceeds the
number of samples by 20-fold or more. With gene-oriented
data, the number of genes represented in a metagenomic study
typically exceeds samples by several orders of magnitude. This
can lead many statistical methods to overfit or to produce
artifactual results.

Sparsity. Most microbes are not found in most samples, even
of the same biospecimen type, for example, most human stool
specimens from the same population have relatively low shared
taxa (Allaband et al., 2019). As a result, a feature table containing
counts of each microbe in each sample often has many zeros
corresponding to unobserved microbes. Most 16S microbiome
datasets do not have even as many as 10% of the possible entries
observed in most of the specimens. Feature tables with this over-
abundance of unobserved counts are said to be “sparse”, posing
problems for statistical analysis. Moreover, the proportion of
observed values tends to decrease as additional samples are
sequenced, often leading to tables with density well below 1%
(Hamady and Knight, 2009; McDonald et al., 2012).

Compositionality. In any high-throughput sequencing
experiment, we impose an implicit limitation and randomness
to the number of reads from a given sample due to many factors,
including the random sub-sampling occurring in the process of
collecting samples as well as uncontrolled variation in how
efficiently each sample is amplified and incorporated into
molecular libraries for sequencing. This limitation, termed
“compositionality”, should always be kept in mind when
performing any microbiome analysis on abundance data
(Gloor et al., 2017). The total number of sequences per sample
can affect the distances between samples (Weiss et al., 2017).
Strategies such as rarefaction and relative abundance
normalization are common for normalizing differences in
sequencing depth. However, the relative amount of one feature
in the sample is not independent from the counts of the other
features. A difference in just one feature of the original sample can
induce an observation that many other features are also changing

(Morton et al., 2019) and neither rarefaction nor relative
abundance sampling solve this issue. Due to this effect, many
dimensionality reduction methods, such as PCA, will emphasize
false correlations in the data.

Repeated measures. One of the most challenging experimental
aspects to account for in dimensionality reduction is repeated
measures data, e.g., multiple timepoints from the same subject
where the variation between subjects may be greater than the
variation between timepoints (Wu et al., 2011). In the context of
dimensionality reduction, subjects or sites with multiple samples
represented (such as in longitudinal studies or replicate analysis)
provide an additional source of variation that can inhibit
interpretation of the experimental effect of interest; the
samples from a single subject can be highly correlated,
resulting in between-subject differences dominating the
ordination [e.g., (Song et al., 2016)].

Feature interpretation. Analysis of high-dimensional
microbiome data is often motivated to find microbial
biomarkers associated with observed differences in sample
communities (Fedarko et al., 2020). This line of inquiry is of
interest for diagnosis and/or prognosis of disease status, dysbiosis,
and a host of other biological questions. Although this task is
often addressed with differential abundance methods, those
methods make specific statistical assumptions and may not
correspond to the group separation observed in an exploratory
analysis performed with any dimensionality reduction method
(Lin and Peddada, 2020). Thus, methods that offer a quantitative
justification of their representation in terms of the microbial
features are often desirable. However, methods with feature
importance that are not specifically designed for the
microbiome often fail to account for compositionality, which
can include many false positives due to the induced correlation of
features, and sparsity, where important but infrequently observed
features will not be detected (false negatives).

Complex patterns. Microbiome data are often assumed to
contain clusters or gradients (Kuczynski et al., 2010). For
example, multiple samples swabbed from one’s own keyboard
are more likely to be similar to each other than samples from
another individual’s keyboard (Fierer et al., 2010), and the
microbial composition of soils is expected to vary
continuously with soil pH (Lauber et al., 2009). However, with
larger and larger datasets with many covariates and metadata on
these being collected, more complex patterns can be detected
(Debelius et al., 2016), such as grouping by both biological and
technical factors in the case of the Human Microbiome Project
(The Human Microbiome Project Consortium, 2012).
Furthermore, many conventional dimensionality reduction
methods, such as principal component analysis (PCA), assume
the data lie in a linear subspace, and this assumption is violated by
microbiome data (Ginter and Thorndike, 1979; Greig-Smith,
1980; Potvin and Roff, 1993; Tabachnick and Fidell, 2013).

Strategies for Dimensionality Reduction in
the Microbiome
The problems that complicate dimensionality reduction in
microbiome data are scattered throughout the analysis
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pipeline. Difficulties can arise immediately from the raw sequence
count data. Many can be corrected before the dimensionality
reduction step, with careful preprocessing, though this can raise
other issues. Furthermore, beta-diversity analysis, which seeks to
quantify the pairwise differences in microbial communities
among all samples with dissimilarity metrics (tailored to
microbiome data), is often helpful for addressing many of the
aforementioned circumstances (Pielou, 1966). Algorithms that
are able to incorporate these metrics are particularly valuable, and
this can be done in a variety of ways. Finally, additional
constraints can be placed on dimensionality reduction
algorithms to account for study design or provide additional
information about the correspondence between the features and
the reduced dimensions. In this section, we discuss each of these
strategies in depth.

Compositionally Aware: Comparisons between and among
samples must consider how sampling and sequencing depth
can affect projection into low-dimensional space. Traditionally,
compositionality has been addressed using logarithmic
transformations of feature ratios. Transformations such as the
additive log-ratio (ALR), centered log-ratio (CLR), and isometric
log-ratio (ILR) can convert abundance data to the space of real
numbers such that analysis and interpretation are less skewed by
false positives (Aitchison and Greenacre, 2002; Pawlowsky-Glahn
and Buccianti, 2011). After transformation, the Euclidean
distance can be taken directly on the log-ratio transformed
data (referred to as Aitchison distance) (Aitchison and
Greenacre, 2002). Dimensionality reduction methods that
incorporate log-ratio transformations attempt to preserve
high-dimensional dissimilarities while taking into account the
latent non-independence of microbial counts.

Pseudocounts and Imputation: High-dimensional
microbiome data is almost always plagued by problems of
“sparsity”, or an overabundance of zeroes. The data
transformations to address compositionality (as outlined
above) are often based on logarithmic functions which are
undefined at zero. The simplest solution is to add a small
positive pseudocount to each entry of the feature table so that
logarithmic functions can be applied. However, downstream
analyses based on this approach are sensitive to the choice of
pseudocount (Kumar et al., 2018) and there does not exist a
standardized way to choose such a value. Other options
include imputation of zeros (Martín-Fernández et al., 2003)
through inference of the latent vector space. Fundamentally,
zero handling is complicated by the inherent unknowability of
the zero generating processes for each zero instance. In
Silverman et al. (2020), they characterize the three different
types of zero-generating processes (ZGP) as sampling,
biological, and technical and demonstrate how the results of
different zero-handling processes are affected by the
(unknowable) mix of ZGPs in a given dataset. Recently
Martino et al. (2019) introduced a version of the CLR
transform that only computes the geometric mean on the
non-zero components of a given sample. This avoids the
problem of logarithms being undefined at 0 and thus
dimensionality reduction through this method is robust to
the high levels of sparsity in microbiome data.

Incorporating Phylogeny: Organisms identified using
microbiome data can be related to one another through
hierarchical structures that describe their evolutionary
relationships. Typically, these structures take the form of
either a taxonomy or a phylogeny. A taxonomy is a
description of the organism relationships, generally derived
subjectively using multiple biological criteria. A phylogeny, in
contrast, is an inference of a tree, commonly with branch lengths,
derived from quantitative algorithms that are typically applied to
microbial, nucleic acid, or protein sequence data. Taxonomies
have the advantage of being more directly interpretable because
hierarchical structures correspond to a defined organization and
classification pattern curated by experts in the field. However,
these assignments and hierarchies are often putative and subject
to change as more information about microbial taxa emerges. In
contrast, phylogenies are derived from quantitative measures of
sequence similarity from sample reads. These data structures are
more easily incorporated into statistical analyses but often at the
cost of less interpretability as the hierarchical structures do not
necessarily map to pre-defined microbial relationships. These
evolutionary relationships, particularly phylogenies, add
information to microbiome analysis, because related organisms
are more likely to exhibit similar phenotypes (although
counterexamples do exist, especially closely related taxa such
as Escherichia and Shigella, which are very similar genetically but
produce different clinical phenotypes).

When comparing the similarity of pairs of microbial
communities, it is possible to utilize these hierarchical
structures, and derive a metric that computes a dissimilarity as
a function of shared evolutionary history (Lozupone and Knight,
2005). Specifically, communities that are very similar will share
most of their evolutionary history, whereas those that are very
dissimilar will have relatively little in common. A popular form of
phylogenetically-aware distances is the suite of UniFrac metrics,
which includes both quantitative (Lozupone et al., 2007) and
qualitative (Lozupone and Knight, 2005) forms. Numerous
extensions to UniFrac have been developed (Chang et al.,
2011; Chen et al., 2012), including variants that account
explicitly for the compositional nature of microbiome data
(Wong et al., 2016). Because these metrics all utilize not only
exactly observed features, but also the relationships among
features, they can better account for the sparsity of
microbiome data which manifests at the tips of a phylogenetic
tree (because most microbes are not observed in most
environments). In contrast, a metric like the Euclidean
distance is limited to only the information at the tips of these
hierarchies, and, worse, assumes that all features at the tips are
equally related to one another (so that in a tree consisting of a
mouse, a rat, and a squid, there is no allowance for the fact that
the two rodents are muchmore similar to each other than they are
to the squid). Neither phylogenetic nor non-phylogenetic beta-
diversity measures explicitly model differences in sequencing
depth per sample, although these differences in depth can be
standardized through rarefaction (Weiss et al., 2017).

Operates on Generalized Beta-Diversity Matrix: Many of the
issues outlined above can be easily addressed at the sample
dissimilarity level rather than directly through dimensionality

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 8218615

Armstrong et al. Dimensionality Reduction for Microbiome Data

29

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


reduction algorithms. A number of dissimilarity/distance metrics
have been developed to account for factors such as phylogenetic
data incorporation, compositionality, or sparsity that output a
sample by sample matrix estimating high-dimensional
dissimilarity. These dissimilarity matrices represent the overall
community differences between pairwise samples calculated by a
chosen beta-diversity metric. Dimensionality reduction methods
that operate on arbitrary dissimilarity metrics are attractive
options because the complex handling of the various feature
table issues can be split into the choice of dissimilarity metric and
the choice of dimensionality reduction algorithm. This adds a
layer of flexibility for researchers to analyze their data depending
on their needs. Methods based on multidimensional scaling
approaches such as PCoA (Kruskal and Wish, 1978) and
nMDS (Kruskal, 1964) attempt to preserve as much as
possible the pairwise dissimilarities between subjects. Other
methods such as t-distributed stochastic neighbor embedding
(t-SNE) (van der Maaten and Hinton, 2008) and Uniform
Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018) are non-linear dimensionality reduction
techniques that aim to find a low-dimensional representation
such that similar data points are placed closed together and
dissimilar points are pushed apart. A caveat of these methods
is that they can be very sensitive to the choice of dissimilarity
used. Patterns that may appear from one measure of dissimilarity
may not be as apparent in a different measure. As an example,
phylogenetic metrics such as UniFrac may differ from non-
phylogenetic metrics such as Bray-Curtis depending on the
strength of phylogenetic contribution (Shankar et al., 2017).
The choice of dissimilarity metric should therefore be
considered carefully, as different dimensionality reduction
techniques yield visually and statistically very different results
on the same data (Kuczynski et al., 2011).

Linear vs Non-Linear Methods: Principal coordinates analysis
(PCoA) and PCA are popular dimensionality reduction
techniques that fall under the “linear” category. Linear
techniques attempt to reduce or transform the data such that
an approximation of the original data can be reconstructed by a
weighted sum of the resulting coordinates. These methods
typically involve computing decompositions/factorizations of
the data that are highly computationally efficient and work
well on data that is naturally linear. Various other techniques,
such as robust Aitchison PCA (RPCA) (Martino et al., 2019), and
nonnegative matrix factorization (NMF) (Lee and Seung, 1999)
also fall under this class of techniques.

Other methods fall under the “non-linear” category, which
perform more complex transformations that often excel at
preserving different patterns that may not be linear. This
category includes methods such as the non-metric
multidimensional scaling (nMDS), t-SNE, and UMAP. These
methods can more succinctly represent complex patterns, but
possibly at the expense of additional computation. Furthermore,
these models tend to have randomness (such as from
initialization) and more hyperparameters that the output can
be highly sensitive to, so it is usually necessary to run these
algorithms multiple times to ensure the conclusions are
reproducible. Other non-linear methods that have seen less

frequent use in microbiome data (and bioinformatics
generally) include kernel PCA (Scholkopf et al., 1999), locally
linear embeddings (Roweis and Saul, 2000), Laplacian eigenmaps
(Belkin and Niyogi, 2001), and ISOMAP (Tenenbaum et al.,
2000).

Unlike its close, linear counterpart PCoA, nMDS performs the
ordination onto a pre-specified number of dimensions and
operates on the ranks of the dissimilarities, rather than the
dissimilarities themselves. This rank-based approach can be
beneficial for representing data that departs from the
assumptions of linearity. Other non-linear methods, such as
t-SNE and UMAP, also transform the data onto a pre-
specified number of dimensions and operate by assuming the
high-dimensional data follow a non-linear structure that can be
represented with fewer dimensions.

Repeated Measures: If the biological variable of interest
occurs at the subject level, repeated samples (such as through
a longitudinal study design) can artificially inflate how tight a
cluster appears in low-dimensional space. Dimensionality
reduction methods for microbiome need to be designed for
the purpose of handling this kind of data, with the intent to
represent the relationships between explanatory variables while
accounting for the inherent similarity between samples from the
same subject. Methods to account for repeated measures can
incorporate the relationship between individual samples and
subjects by subject-aware decomposition of the data (Martino
et al., 2021). There has also been discussion about incorporating
prior sample relationship information into ordinations through
Bayesian methods (Ren et al., 2017). Nevertheless, methods that
incorporate repeated measures remain an underexplored area in
dimensionality reduction literature.

Feature Importance: When the lower-dimensional
representation of microbial communities shows separation
between sample groups, a natural next question is what
microbes or groups of microbes are driving such a separation.
Dimensionality reduction methods that return a quantitative
relationship between individual microbial features and the
latent lower-dimensional space are a powerful class of
methods that can demystify the construction of the lower-
dimensional axes. However, certain methods that attempt to
find high-dimensional patterns, such as non-linear methods,
do not have an explicit interpretable correspondence between
the output coordinates and the input features.

The most relevant category of methods for visualizing
feature importance is the biplot ordination family of
approaches. Biplots display both the samples and the driving
variable vectors in reduced dimension space (Figures
2A,D,E,H). For example, PCA naturally quantifies the
contribution of each microbe to the principal component
axes through matrix factorization into linear combinations of
features. RPCA modifies this approach to account for
compositionality and sparsity while retaining interpretable
feature loadings (Martino et al., 2019). Another set of
ecologically motivated matrix factorization methods is the
correspondence analysis (CA) family. The general CA
method can be thought of as an implementation of PCA that
operates on count data. It is also possible to explicitly
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incorporate sample metadata into these dimensionality
reduction methods. Researchers are often interested in the
explanatory power of their sample metadata (site, pH,
subject, etc.). Certain dimensionality reduction methods can
take as input both a feature table and a table of sample metadata
to jointly estimate the low-dimensional representation of
samples as well as the relative contribution of the provided
metadata vectors. The general goal of these methods is to
determine whether and/or which explanatory variables may
be driving the differences in microbial communities among
samples. Canonical correspondence analysis (CCA) is an
extension of CA that incorporates sample variables of
interest to determine which covariates are associated with
the placement of samples and feature vectors in low-
dimensional space (ter Braak, 1986). The results of CCA can
be visualized as a “tri-plot” where samples are simultaneously
visualized with the relative contribution of features and
explanatory variables near related samples (Paliy and
Shankar, 2016). Partial least squares discriminant analysis
(PLS-DA) is a similar approach that uses only categorical
sample metadata (classification) in the construction of lower-
dimensional axes (Barker and Rayens, 2003; Ruiz-Perez et al.,
2020). In each of these cases, the feature contributions can

motivate subsequent statistical analysis of associations between
sample metadata and specific microbial taxa.

Uses of Dimensionality Reduction for
Microbiome Data
Over the past decade, PCoA has seen an increase in use in
microbiome analyses, and it is the primary ordination method
for beta-diversity included by default in workflows such as
QIIME2 (Bolyen et al., 2019). It is typically used for
exploratory visualization, as it excels at rendering biologically
relevant patterns, such as clusters and gradients (Kuczynski et al.,
2010). When used as an exploratory tool, observed patterns are
often followed with statistical analysis on the original feature
tables or dissimilarity matrices (Galloway-Peña and Hanson,
2020), such as ANOSIM (Clarke and Ainsworth, 1993),
PERMANOVA (aka Adonis) (Anderson, 2017), ANCOM
(Mandal et al., 2015), or bioenv (Clarke and Ainsworth, 1993).
It should also be noted that some of these statistical techniques
use the full table or dissimilarity matrix, not the reduced
dimension matrix as visualized (at least by default) and may
therefore introduce incongruent results between the statistics and
the visualization.

FIGURE 2 | Examples of dimensionality reduction techniques applied to publicly available microbiome data. (Top) Beta-diversity plots of soil samples colored by pH
from (Lauber et al., 2009). (Bottom) Beta-diversity plots of murine fecal samples colored by diet and antibiotics usage from (Shalapour et al., 2017). (HFD = high-fat diet,
NC = normal chow, ABX = antibiotics). PCA plots (A,E) show extremely high sample overlap due to outliers and characteristic “spike” artifacts. The top three taxa driving
variation also overlap as shown by arrow superposition. (B) “Horseshoe” pattern emerges for samples following ecological gradients such as pH. RPCA plots (D,H)
show the top three taxa driving separation of groups. (F) and (G) show strong overlap of HFD + ABX samples resolved by (H).
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Exploratory visualizations have revealed microbial-associated
patterns in applications ranging from host-associated gut
microbiomes to soil, ocean, and other environmental
microbiome contexts. For example, studies have applied PCoA
to demonstrate differences between host groups, such as
differences between humans’, chimpanzees’, and gorillas’ gut
microbial taxa (Campbell et al., 2020), or the correspondence
between human gut microbiomes and westernization
(Yatsunenko et al., 2012; Campbell et al., 2020). Host
microbiome-disease associations have also been identified
using PCoA, such as in the case of colorectal cancer (Young
et al., 2021) in humans and metritis in cows (Galvão et al., 2019).
Uses also extend to host-environment relationships, such as
demonstrating the differences between oyster digestive glands,
oyster shells, and their surrounding soils (Arfken et al., 2017). The
microbiome-shaping roles of environmental factors such as
salinity in shaping free-living environments (Lozupone and
Knight, 2007), pH in arctic soils (Malard et al., 2019) and
depth in the ocean (Sunagawa et al., 2015) have also been
elucidated with PCoA. In many of these cases, the PCoA
visualizations demonstrated a separation between groups that
was subsequently followed by statistical validation with
PERMANOVA or ANOSIM.

In numerous other instances, PCoA has also been used to
make claims that extend beyond exploratory group differences
followed by statistical analysis. For example, Halfvarson et al.
(2017) fit a plane to the healthy subjects in the first three
coordinates of a PCoA and then used the distance to this
plane to associate dissimilarities in the microbiome with the
severity of irritable bowel disease (IBD) (Halfvarson et al.,
2017); this approach has subsequently been replicated
(Gonzalez et al., 2018). Others have used regression of
participant and microbiome characteristics (e.g., age and alpha
diversity, respectively) on PCoA coordinates to determine
whether the given factors have a significant relationship with
microbial community composition in the context of dietary
interventions (Lang et al., 2018). In one case, while providing
visualization with PCoA and statistical confirmation with
ANOSIM, Vangay et al. (2018) additionally plotted ellipses for
visualizing cluster centers/spread in their PCoA coordinates
(Vangay et al., 2018). In another instance, Metcalf et al. (2017)
showed the correspondence of dissimilarities between the 16S
rRNA profiles and chloroplast marker profiles by performing a
Procrustes analysis on the separate ordinations of the different
data types (Metcalf et al., 2017).

We note that the choice of dissimilarity metric can have a
significant impact on the low-rank embedding depending on the
dataset. Shi et al. (2022) review the effect of high and low-
abundance operational taxonomic units have on unsupervised
clustering of Bray-Curtis and unweighted UniFrac (Shi et al.,
2022). Marshall et al. (2019) compare Bray-Curtis ordination
with weighted UniFrac on marine sediment samples and note
that the most relevant clustering variable differed depending on
the dissimilarity used (Marshall et al., 2019). These results imply
that interpretation of low-dimensional embeddings and the
putative driving variables must be performed in the context of
the choice of dissimilarity. Metrics such as Bray-Curtis and

weighted UniFrac take into consideration the abundance of
individual microbes in each sample which can be important
for datasets with many rare taxa. In contrast, some
dissimilarity metrics such as Jaccard and unweighted UniFrac
are only defined on binarized data, which may mask this
property. Furthermore, phylogenetic metrics such as the
UniFrac suite of metrics are best when the evolutionary
relationships among microbial features is of interest in the
context of sample communities. These metrics may also be
more appropriate than other methods for datasets with
particularly high sparsity.

PCA is arguably the most widely used and popular form of
dimensionality reduction, which does not allow generalized
beta-diversity dissimilarities (e.g., PCoA or UMAP), but does
allow for the direct interpretation of feature importances
relative to sample separations in the ordination. However,
due to compositionality and sparsity, PCA often leads to
spurious results on microbiome data (Hamady and Knight,
2009; Morton et al., 2017). Aitchison PCA attempts to fix these
issues by using log transformation, but imputation is required
(because the log of zero is undefined). Therefore, (Martino
et al., 2019) proposed the adoption of RPCA for
dimensionality reduction. This method has been shown to
discriminate between sample groups in a wide array of
biological contexts, including fecal microbiota transplants
(Goloshchapov et al., 2019), cancer (Bali et al., 2021), and
HIV (Parbie et al., 2021). Moreover, the generalized version of
this technique accounts for repeated measures, allowing for
large improvements in the ability to discriminate subjects by
phenotypes across time or space (Martino et al., 2021). This
advantage has been crucial in the statistical analysis of
complicated longitudinal experimental designs such as early
infant development models (Song et al., 2021). Feature
loadings from these PCA-based methods can be used to
inform selection of microbial features for log-ratio analysis
(Morton et al., 2019; Fedarko et al., 2020), leading to novel
biomarker discovery.

For feature interpretation, CCA is the most commonly used
CA-based method for analyzing high dimensional microbiome
data, due to its ability to incorporate sample metadata into the
low-rank embeddings. This strategy has shown success in
differentiating clinical outcomes following stem cell
transplantation (Ingham et al., 2019) as well as diarrhea status
in children (Dinleyici et al., 2018). CCA has also shown success in
projecting environmental samples into lower-dimensional space
such as in rhizosphere microbial communities (Benitez et al.,
2017; Pérez-Jaramillo et al., 2017), and aerosol samples (Souza
et al., 2021). Another approach designed for microbial feature
interpretation has been posed by (Xu et al., 2021), explicitly
modeling the ZGP through a zero-inflation model. This method
attempts to optimize a statistical model for jointly estimating the
“true” zero-generating probability as well as the Poisson rate of
each microbial count.

Of non-linear methods, nMDS has historically been more
widely used in microbiome data analysis, in part because it can
incorporate an arbitrary dissimilarity measure. Furthermore,
since nMDS is a rank-based approach, it is less likely than

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 8218618

Armstrong et al. Dimensionality Reduction for Microbiome Data

32

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


linear methods to be highly influenced by outliers in beta-
diversity dissimilarities. Recent uses have involved using
nMDS to show differences in the gastric microbiome between
samples from patients with gastric cancer cases against the
control of gastric dyspepsia (recurrent indigestion without
apparent cause) (Castaño-Rodríguez et al., 2017) and
demonstrating differences in the gut microbiome based on
diabetes status (Das et al., 2021). In both of these cases, the
visual distinction between groups was supported by
PERMANOVA.

Other non-linear methods have been increasingly used for
analyzing other types of sequencing data, especially in the single-
cell genomics field, but have not yet been widely deployed in the
microbiome. The most popular of these methods for
visualization, t-SNE and UMAP, are starting to see more use
in the microbiome field. (Xu et al., 2020) developed a method to
classify microbiome samples using t-SNE embeddings. We
recently reviewed the usage and provided recommendations
for implementing UMAP for microbiome data (Armstrong
et al., 2021). UMAP with an input beta-diversity dissimilarity
matrix can reveal biological signals that may be difficult to see
with traditional methods such as PCoA.

Artifacts and Cautionary Tales in
Dimensionality Reduction
Dimensionality reduction is incredibly useful and has led to many
interesting biological conclusions. However, when using
dimensionality reduction techniques, one must be careful how
results are interpreted. There are known examples of patterns that
are induced by the properties of the data alone (rather than the
relationships among specific samples or groups of samples), and
others that are a product of the method itself. Here, we discuss
several known issues, as well as insights into evaluating the degree
to which an ordination represents the actual data.

One of the most well-known artifacts in microbial ecology is
the horseshoe effect (Podani and Miklós, 2002), wherein the
ordination has a curvilinear pattern along what otherwise
appears to be a linear gradient. This pattern can occur
when a variable, such as soil pH (Lauber et al., 2009) or
length of time of corpse decay (Metcalf et al., 2016)
corresponds with drastic changes in microbiome
composition on a continuous scale. Since the characteristic
“bend” in the horseshoe typically occurs along the second
coordinate of a PCoA (Figure 2B), it can obfuscate additional
gradients/associations along that axis. Recent research in the
topic has also identified that indeed, it is unlikely the horseshoe
appears from a real effect, and instead it is a product of the
limitations of many dissimilarity metrics to capture distance
along a gradient when no features are shared between many of
the samples (i.e., saturation) (Morton et al., 2017), which can
be an issue with many common metrics, such as Euclidean,
Jaccard, and Bray-Curtis dissimilarities (Morton et al., 2017).
As a result, a possible remedy for the artifact is to use a
dissimilarity metric that considers the relationships between
features, such that two samples that share no features do not
necessarily have the same dissimilarity as two different

samples that share no features, e. g, UniFrac or weighted
UniFrac. If a change in metric does not resolve the issue, it
may be possible to avoid the horseshoe artifact by using RPCA
or a non-linear method (e.g., UMAP). “Spikes” are another
artifact, more prevalent on cluster-structured data, where
outliers dominate the embedding and it fails to separate
into clusters in the visualization (Vázquez-Baeza et al.,
2017). Spikes also appear to be mitigated with an
appropriate choice in dissimilarity metric, such as UniFrac
(Hamady and Knight, 2009). In both cases, since the issues are
with representing the distances between distant or extreme
samples, non-linear methods (such as UMAP or nMDS) that
dampen the effect of outliers provide a potential workaround
to reveal secondary gradients or the obfuscated cluster
structures (Armstrong et al., 2021). Though it is possible
that the benefits offered by non-linear methods for the
horseshoe effect are limited by the aspect ratio of the
gradient (Kohli et al., 2021), and potentially the parameters
of the algorithms.

Dimensionality reduction is also commonly used in other
bioinformatic disciplines. Particularly, single-cell transcriptomics
has used dimensionality reduction prolifically, with many
publications using PCA, t-SNE, or UMAP visualizations.
Furthermore, single-cell RNA-seq data shares many properties
with microbiome data, including sparsity/zero-inflation,
sequencing depth differences, and even phylogenetic
relationships (Lähnemann et al., 2020). This connection is
further strengthened by the fact that researchers in both
disciplines investigate similar types of questions, albeit with
different underlying data. Microbiome researchers often ask
whether there is a difference between different treatments or
disease-statuses (David et al., 2013; Lloréns-Rico et al., 2021), and
which microbes contribute to those differences (i.e., differential
abundance analysis). Similarly, transcriptomics may investigate
parallel scenarios (Ocasio et al., 2019; Taavitsainen et al., 2021),
where the goal is to discover transcripts whose expression
stratifies the desired groups (i.e., differential expression).

Despite these similarities, the most popular methods for
dimensionality reduction in microbiome and single-cell
publications differ significantly, with PCoA being more
prevalent among microbiome publications, and t-SNE (or
variants (Linderman et al., 2019)) and UMAP more prevalent
in single-cell publications (Kobak and Berens, 2019). Given the
similarities in hypotheses and the properties of the data, but use of
different methods, it is reasonable to suppose that methods such
as t-SNE and UMAP have potential utility in the microbiome.
However, global distances are not necessarily preserved in these
methods, therefore distances between different clusters should
not be interpreted as demonstrating similarity or dissimilarity.
Consequently, recent research concerning the representation of
single-cell RNA-seq data should also be taken into account when
applying these methods to microbiome data.

First, t-SNE and UMAP are fairly complex algorithms that
have many hyperparameters that can be adjusted, so it is
important to be able to evaluate the faithfulness of the
embeddings they produce. The evaluation of dimensionality
reduction has been performed with many different measures,
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each of which has its own characteristics. Some measures
reward embeddings that adequately preserve the local-scale
structures in the embedding but do not necessarily penalize
inaccurate representations of large distances in the original
high-dimensional data, like the KNN evaluation measure
(Kobak and Berens, 2019), which takes the average accuracy
of the k = 10 nearest neighbors in the reduced dimensions
compared to the original space. Others, such as the correlation
(either Pearson or Spearman) between distances in the original
space and reduced dimensions have been used (Becht et al.,
2019; Kobak and Berens, 2019; Kobak and Linderman, 2021).
The correlation measure generalizes whether the two
representations overall are similar, i.e. close points in the
original space are close in the low-dimensional space, and
similar for far points. However, high correlation does not
guarantee that the fine-scale structures have been preserved.
Additionally, measures that use sample metadata about known
classes can be used, such as the KNC measure (Kobak and
Berens, 2019), which measures whether the closest class/
category centers to a given category are preserved in the
embedding. KNC emphasizes the preservation of
relationships between classes, but not necessarily structures
within the classes or between distant classes. These measures
have been used to evaluate the quality of several
dimensionality reduction methods across a variety of
parameter settings on complex datasets. Notably, Kobak and
Berens (2019) demonstrated on several single-cell
transcriptomics datasets, that t-SNE with the default value
for “perplexity” performed well at representing the
relationships between nearby points (KNN), but poorly at
representing the large-scale patterns (KNC and correlation).
However, when they increased the perplexity parameter, they
achieved improved KNC and correlation at the expense of a
decreased KNN score. Kobak and Linderman (2021) observed
with correlation that the best method (between t-SNE and
UMAP) can vary by dataset. So, in practice, it may be necessary
to compare multiple dimensionality reduction methods (and
parameter settings) on a dataset using the measure that best
suits the question, e.g., use the correlation measure when
seeking a visualization of earth microbiomes by
environment to show which environments are similar to
each other.

Furthermore, since UMAP and t-SNE are algorithms that
require configurable (possibly random) initializations, particular
attention has been paid to their reproducibility. A metric to
evaluate reproducibility comes from (Becht et al., 2019), which
measures the preservation of pairwise distances in the
embeddings by comparing an embedding on a subset of the
points to the location of those points in the embedding of the
entire dataset. In its original application, the reproducibility
measure was used to demonstrate UMAP providing more
reproducible results than t-SNE and variants of t-SNE.
However, (Kobak and Linderman, 2021) showed that with
appropriate (spectral) initialization, t-SNE can perform just as
well by this metric as UMAP. While reproducibility is important,
this metric should be applied carefully, because it fails to account
for rotations in the embedding. Another important concern

related to reproducibility is whether even random noise will
yield apparent clusters. This phenomenon has been observed
with t-SNE (Wattenberg et al., 2016), and whether other
dimensionality reduction techniques are also susceptible to this
effect warrants further systematic investigation. However,
because these benchmarks are all performed within
transcriptomics, further validation is needed to determine
whether the conclusions generalize to microbiome data. These
measures provide a starting point for evaluating the application of
non-linear dimensionality reduction techniques on
microbiome data.

Finally, literature from mathematics and computer science
that has not been as widely applied to dimensionality reduction in
bioinformatics may also be relevant. Of particular interest is the
study of distortion, which is applicable when the goal of the
embedding is to preserve distances, like one might expect for an
exploratory analysis. Similar to the previously described
correlation measure, distortion measures summarize the extent
to which the distances in high dimensions match the distances in
low-dimensions, however, distortion is defined in terms of the
expansions and contractions of distances between points.
Furthermore, there are many ways to summarize the
expansions and contractions, including the worst-case,
average-case and local-case, which are all detailed more in
(Vankadara and von Luxburg, 2018).

DISCUSSION

The above examples illustrate that dimensionality reduction is an
extremely powerful technique that has enhanced a wide range of
microbiome studies. However, with great power comes great
responsibility. It is unlikely that any one method will excel at
representing all datasets, so responsible users of dimensionality
reduction should try out several techniques, ideally guided by
characteristics of the data rather than as a fishing expedition to
see whether any one of many techniques produce results that
“look good” (which may even happen in random data for some
techniques and parameters) or that fulfill pre-conceived
hypotheses and biases. We need standard protocols and
software interfaces for choosing the algorithm that suits your
data best, rather than the algorithm that shows what you want to
see if you squint at it correctly. Methods are needed both for
diagnosing the issues that may be most prevalent in your data and
affecting your representation, and for rationally choosing among
different methods that could be applied to a given dataset.
Developing these methods is a key priority for the field.

Dimensionality reduction for the purposes of visualization has
somewhat different goals from dimensionality reduction for other
purposes and developing a better appreciation of this distinction
is important for practice in the field. The goal of dimensionality
reduction for visualization is primarily for exploratory overview
by human observers (do groups differ from one another, is there
overall structure such as gradients in the data). As such,
visualization is usually done with three dimensions (more can
be examined through parallel plots), while the intrinsic
dimensionality of the data may be higher. Visualization is
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typically only the first step in the data analysis pipeline, and is
followed by downstream analysis, such as multivariate analysis/
regression (PERMANOVA, ANOSIM, PERMDISP) either on the
original distances or on a dimensionality-reduced version of the
data (which can be higher than three dimensions). These results
can also be used to motivate supervised differential abundance
modeling, such as to determine which groups separate and then
determine which microbes are driving these separations.

Dimensionality reduction is thus often an early step in a
multi-step pipeline. What downstream analyses is
dimensionality reduction a step towards, and how are these
accomplished? Feature loadings (i.e. the importance of
particular taxa or genes) can be interpreted using log ratios
from tools such as DEICODE (Martino et al., 2019), which can
then be visualized in Qurro (Fedarko et al., 2020). Classification
can be accomplished using machine learning techniques such as
random forests, allowing estimates of classifier accuracy and
group stability, and also allowing tests of the reusability of these
models, e.g. applying a model of human inflammatory bowel
disease to dogs (Vázquez-Baeza et al., 2016) or models of aging
between different human populations (Huang et al., 2020). A
popular strategy is to use a lower-dimensional embedding for
traditional statistical analysis, such as using PCA or PCoA
coordinates as inputs for regression, classification, clustering,
and other analyses. However, as we have seen, many
dimensionality reduction methods induce various kinds of
artifacts or distortions, and cannot generalize well beyond
the data on which the model was initially optimized on,
including PCoA, nMDS, RPCA/CTF, and UMAP/t-SNE.
Consequently, analyses on these coordinates should be
performed with caution. Furthermore, since the parameters
and software versions used with these methods have the
potential to be highly influential to their results, we
recommend that these always be reported for dimensionality
reduction methods.

Given the large number of publications that have used
dimensionality reduction on microbiome data, we can start to
draw conclusions about which dimensionality reduction
strategies should be more widely used, and which less widely
used. On larger, sparser, compositional datasets, we recommend
against the use of conventional PCA, Bray-Curtis and Jaccard
dissimilarities, and pseudocounts. Conventional PCA presents
the clearest case of a method that should not be used on
microbiome data due the sparsity and compositional nature of
the data. UniFrac and weighted UniFrac are essentially
phylogenetically informed versions of Jaccard and Bray-Curtis
beta-diversity metrics respectively. Due to the current default
generation of a phylogeny in most 16S and shotgun analyses,
there is no reason not to use the phylogenetic counterparts, which
have been shown to have better discriminatory power.
Pseudocounts should not be used because the choice of
pseudocount impacts the lower-dimensional embedding, and
there is no clear method for determining which pseudocount
value is best.

In contrast, CTF and non-linear methods should be used more
in microbiome contexts. As the cost of acquiring microbiome
data continues to decrease, experimental designs are getting
increasingly complex, and include repeated measures,
longitudinal studies, batch effects, etc. We therefore need
methods that can determine which biological signals are
relevant among all these confounding factors. Additionally, we
are increasingly recognizing that many relationships between/
among samples are non-linear. Using non-linear methods can
potentially explain more of such datasets with fewer dimensions,
although additional benchmarking is required to understand the
performance of these methods.

Our analyses suggest some important gaps in the field that
could be important areas for future development. There are no
dimensionality reduction methods yet that are both able to
incorporate phylogeny and are compositionally aware. Several
methods, such as Robust PCA and CTF, control for the
sparsity, non-normality, compositionality, and are
adaptable to specific study-designs of microbiome data but
do not incorporate phylogenetic information. In contrast,
phylogenetic techniques do not account for sparsity and
compositionality, and some also perform poorly with non-
normality. A unified method that is appropriate for any
microbiome study is therefore still in the future, despite
many important recent advances. The ability to perform
this task using a generalizable dissimilarity measure would
be particularly useful, because it would allow for full
utilization of PCoA and non-linear methods including
nMDS and UMAP.

Taken together, we conclude that dimensionality reduction is
a key part of many, if not most, of the highest-impact microbiome
studies performed to date. We can expect this situation to
continue into the future, especially as larger study designs and
datasets continue to accumulate, and additional method
development advances increase the speed and range of
applicability of these techniques.
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Improved Mobilome Delineation in
Fragmented Genomes
Catherine M. Mageeney1†, Gareth Trubl2† and Kelly P. Williams1*

1Systems Biology Department, Sandia National Laboratories, Livermore, CA, United States, 2Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States

The mobilome of a microbe, i.e., its set of mobile elements, has major effects on its
ecology, and is important to delineate properly in each genome. This becomes more
challenging for incomplete genomes, and even more so for metagenome-assembled
genomes (MAGs), where misbinning of scaffolds and other losses can occur. Genomic
islands (GIs), which integrate into the host chromosome, are a major component of the
mobilome. Our GI-detection software TIGER, unique in its precise mapping of GI termini,
was applied to 74,561 genomes from 2,473 microbial species, each species containing at
least one MAG and one isolate genome. A species-normalized deficit of ~1.6 GIs/genome
was measured for MAGs relative to isolates. To test whether this undercount was due to
the higher fragmentation of MAG genomes, TIGER was updated to enable detection of
split GIs whose termini are on separate scaffolds or that wrap around the origin of a circular
replicon. This doubled GI yields, and the new split GIs matched the quality of single-
scaffold GIs, except that highly fragmented GIs may lack central portions. Cross-scaffold
search is an important upgrade to GI detection as fragmented genomes increasingly
dominate public databases. TIGER2 better captures MAG microdiversity, recovering
niche-defining GIs and supporting microbiome research aims such as virus-host linking
and ecological assessment.

Keywords: metagenome-assembled genome mobile genetic element, genomic island, prophage, metagenomics,
metagenomeassembled genome

INTRODUCTION

The mobilome is the collection of mobile genetic elements (MGEs), such as transposable elements,
plasmids, and prophages, present in a genome. Aside from selfish genes for propagation, anMGE can
carry cargo genes that benefit the host organism, for example by promoting catabolism of organic
pollutants (van der Meer and Sentchilo, 2003), nitrogen fixation (Sullivan and Ronson, 1998) or
biofilm formation (Drenkard and Ausubel, 2002). Acquisition of a new cargo-bearing MGE can
quickly and profoundly alter the phenotype of the host microbe. Therefore to understand the
evolution and ecological role of microbes, it is important to delineate their mobilomes. If the genome
is complete and closed, plasmids are automatically identified as isolated replicons, but precise
identification of those MGEs that lie integrated within the chromosome is more challenging. The
fragmentation accompanying incomplete genomes, typical of metagenome-assembled genomes
(MAGs), further increases the challenge of identifying MGEs.

Genomic islands (GIs) are a subclass of MGEs that integrate into microbial chromosomes, usually
with high specificity for a particular chromosomal site (attB), determined by the GI-encoded
integrase. They range from ~5 to hundreds of kbp and carry genes of diverse function. GIs can be
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horizontally transferred via conjugation, transformation or
transduction, with mobility heavily influenced by other MGEs
(Bertelli et al., 2019). Some GIs carry a gene set revealing the
mode of transfer between microbes, either bearing conjugative
genes that indicate an integrative and conjugative element (ICE),
or viral genes that indicate a prophage, i.e., a temperate phage in
the lysogenic phase of its life cycle. Other GIs are satellites, which
do not carry their own transfer genes but require a helper, itself
either an ICE or phage, to supply gene products promoting
transfer (Fillol-Salom et al., 2018).

There are several computational GI prediction tools [reviewed
in (Bertelli et al., 2019)] that exploit special GI features, such as
sporadic occurrence within a species, differences from the
nucleotide sequence composition of the chromosome,
preference for tRNA genes, and gene content. Our methods
Islander and TIGER are unique in their precise mapping of
GIs (Hudson et al., 2015; Mageeney et al., 2020). Precise GI
mapping improves genome annotation and allows discoveries of
new attB site-specificity by integrases, site-promiscuous integrase
clades, and cases where cells use GIs to regulate gene integrity.

The advent of metagenomics has reshaped our understanding
of uncultured microbes and microbial communities. Early
metagenomics provided mere gene catalogs of environmental
samples, but the field has turned toward genome-centric
characterization, as read-depth coverage and bioinformatic
tools improved sufficiently to enable coverage-based binning
of assembled scaffolds into population genomes or MAGs (Taş
et al., 2021). Characterization of MAGs has revealed that high
proportions of bacteria and archaea remain uncultured (Steen
et al., 2019) and that most metagenomic reads do not map to any
MAG or isolate genome (Nayfach et al., 2021).

MAGs are lower quality than same-species isolate genomes by
every available metric (Supplementary Table S1). Some of the
factors contributing to reduced MAG quality are similar to those
that may plague any genome project: low coverage that can break
or leave gaps in the assembly, and outright misassembly. The key
feature distinguishing a metagenomic DNA sample from an
isolate DNA sample is complexity. One way complexity
manifests is through different levels of coverage for different
microbes, exacerbating the low coverage problem for someMAGs
in a metagenome. Complexity can also manifest as
microdiversity, where a group of population-level variants
exist in the sample. Resolution of multiple individual MAGs
from the same microdiverse population is often impossible but
has been achieved when species diversity is low (Tyson et al.,
2004) or complexity is reduced (Sieradzki et al., 2020; Haro-
Moreno et al., 2021; Nicolas et al., 2021). More often a single
consensus MAG can be obtained for a population with moderate
microdiversity, but high microdiversity can counteract assembly,
perhaps leaving the more diverse genomic regions unassembled
and reducing the completeness of the MAG. Finally, a problem
unique to metagenomes can occur post-assembly, at the binning
step (Evans and Denef, 2020). Shared nucleotide sequence
composition of scaffolds is a major basis for binning, such
that genomic regions departing from baseline composition can
be misbinned, generating artifactual composite MAGs (Shaiber
and Eren, 2019). We have observed cross-domain misbinning,

where scaffolds with uniquely bacterial markers are mixed into
archaeal MAGs (unpublished results).

There has been relatively little emphasis in the literature on the
problems that metagenomic datasets pose for mobilome
delineation. Scaffolds from within MGEs are more prone to
misbinning because they can strongly differ in composition
from their surrounding chromosomes (Carr et al., 2020;
Maguire et al., 2020). MGEs tend to have higher
microdiversity than chromosomal regions because MGE gene
expression is largely repressed, reducing selective pressure to
preserve MGE nucleotide sequence (Haro-Moreno et al.,
2021). Finally, induction of a GI, i.e., its excision,
circularization and possible replication in some cells within a
MAG population, can confuse assemblers. We have observed
such assembler confusion caused by inadvertent GI induction in
isolate assemblies (unpublished results). Alternative GIs at the
same genomic site is another formal possibility for a type of
diversity that could affect assembly of MAGs. MGEs are not
included in the assessment ofMAG quality (Bowers et al., 2017); a
MAG may thus be considered high quality, yet still be missing
extensive portions of its mobilome.

Here, we present TIGER2, with new modes to identify GIs
either across two contigs or around the circular origin of a
chromosome (Figure 1), doubling average GI yields.

MATERIALS AND METHODS

Genomes. We collected a set of 74,561 genomes (for 7978 MAGS
and 66,583 isolates) from 2,473 microbial (64 archaeal, 2,409
bacterial) species, where each species contained at least one MAG
and one isolate genome (Supplementary Table S2). We
downloaded 288,451 microbial genomes from GenBank in July
2019, after rejecting additional genomes with N50 < 10,000 or

FIGURE 1 | New TIGER modes. The same circular chromosome with 3
(colored) GIs is shown with a complete (A,B) or fragmented assembly (C).
With complete assembly, if the origin of the linearized sequence of the circle is
randomly chosen, it will occasionally fall within a GI, splitting the GI (B).
Yields are shown for the various TIGER modes. The original mode can only
find intact GIs on a single scaffold, while the new modes, CircleOrigin (applied
to complete assemblies) and Cross (applied to fragmented assemblies), can
additionally find the split islands. Because TIGER focuses on GI-flanking
sequences, the Cross-mode call for a multiply split GI (red in panel C) will only
include the terminal fragments and exclude middle GI fragments.
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scaffold count >300. A script speciate. pl was developed
employing MASH and fastANI that placed all but 1,656 of the
GenBank genomes into a species defined by GTDB release 202
(Parks et al., 2022); for the 173,660 GenBank assembly IDs that
had been treated by GTDB, which applies its own genome quality
filters, the script mismatched the GTDB assignment in only 184
rejected cases, at least some due to major differences between
versions of the assemblies. Among the 47,894 GTDB species,
2,487 were found to contain at least one MAG and one isolate
genome. All remaining MAG genomes for these species, and
many remaining isolate genomes (up to 200 total per species
unless more were already available) were collected. Fourteen two-
genome species were rejected in which the two genomes had
identical scaffold size lists, suggesting duplicate entries.

TIGER version 2. TIGERwas originally designed tomap intact
GIs present on a single scaffold. We re-wrote the core software to
offer two new “split”modes that yield split GIs, in addition to the
intact GIs (Figure 1). “CircleOrigin” mode finds split GIs that
wrap around the origin of a circular replicon. “Cross” mode
detects split GIs with termini on separate scaffolds. We applied
CircleOrigin mode to the 9 008 genomes we considered complete
(in five or fewer parts, to accommodate plasmids and secondary
chromosomes), and applied Cross mode to the 65,553 remaining,
fragmented genomes. To accommodate the new split GIs, the
main TIGER wrapper and the merge. pl script that produces a
tentative file of nonoverlapping GI calls were also revised, but we
have not yet revised the orthogonal software Islander nor the
resolve. pl script that compares Islander/TIGER calls and treats
tandem GI arrays. New software is available at github/sandialabs/
TIGER.

Genomic islands. TIGER is a comparative method, requiring a
database of reference genomes. We prepared a tailored database
for each species consisting of all genomes for that species, capping
at 200. For species with ≥ 200 genomes, the most diverse 200 were
chosen based on all vs. all MASH distance scores. TIGER2 was
run in Intact and either Cross or CircleOrigin modes on all
genomes through to the merge. pl script, and GIs were collected
from the resulting genome. island.nonoverlap.gff files above a size
cutoff of 5 kbp, containing a serine (S-Int) or tyrosine (Y-Int)
integrase gene, and with crossover length <300 bp, allowing
overlaps no larger than 100 bp. This yielded 223,323 GIs
identified by both modes, 211,599 identified by split-scaffold
mode only and 13,653 identified by same-scaffold mode only.

Typing of split GIs. TIGER typing software was adapted to
handle split GIs. The two halves of the split GI are annotated with
our Tater software (Mageeney et al., 2020) which uses Prodigal to
call open reading frames, Prokka to assign gene names, and
applies Pfam-A HMMs (v. 35) including subsets for phage and
ICE proteins. Typing proceeds according to gene content of the
entire split GI, as previously described (Mageeney et al., 2020).
This yields seven output categories: Phage1, GI containing at least
one structural and at least one non-structural phage Pfam;
Phage2, GI containing at least one phage Pfam; PhageFil, GI
less than 13 kb that contain the Pfam Zot, previously identified in
many Inoviridae phages (Roux et al., 2019); ICE1, GI with ≥7 or
≥15% ICE Pfams; ICE2, GI under 10 kb with >2 or ≥12% ICE
genes, or over 10 kb with >2 or >7% ICE genes; PhageICE, GI

matching both Phage and ICE criteria (very rare and usually due
to mistaken grouping of neighbors in a tandem array); Other, GI
with none of the above calls.

Testing large groups of islands. Four GI-abundant genomic
loci, the Escherichia icd, tmRNA, and ybhC/ybhB loci and the
Mycobacterium tRNA-Ser locus, were studied to examine the
quality of the split GI calls. GI sequences were collected for the
intact and split islands assigned to those sites, and the 600 bp attL
and attR terminal GI-internal segments were taken as queries,
except in cases where scaffold splitting left the terminal segment
shorter than 600 bp, where the segment contained a transposase
gene indicating sequence likely to be repeated throughout the
genome, or where long blocks of ambiguous bases precluded even
self-matching. Strong matches (≥500 bp and ≥95% identity) in
all-vs. all BLASTN of the intact GI termini were clustered as
connected components, combining attL and attR typing to
produce the attP type for each intact GI.

RESULTS

GI yields for MAGs and isolates. As a null hypothesis, MAGs
could be expected to contain numbers of GIs comparable to
isolate genomes. Because some phylogenetic groups are more GI-
rich than others (Mageeney et al., 2020), we reasoned that MAG/
isolate comparisons would be most appropriate within a species,
and that large numbers of such within-species comparisons could

FIGURE 2 |GI yields for MAGs and isolate genomes. TIGER2 was run in
(A) intact-only mode or (B) split modes on genomes from 2473 GTDB species
containing at least one MAG and one isolate genome, measuring GIs/genome
within each species; shown here is the mean of the GI/genome values for
all species tested at each size (i.e., genome count) cutoff. Data labels show the
numbers of species remaining with each size cutoff.
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achieve statistical significance. The GTDB project has
systematically treated most archaeal and bacterial genomes,
applying a revised taxonomy that we employ here to improve
genome comparison (Parks et al., 2022). Its most strictly defined
rank is the species; each is seeded by a representative genome, and
a genome must have 95–97% similarity to the representative for
inclusion in the species. We analyzed 2 473 GTDB species
containing at least one MAG and one isolate genome, totalling
74,561 genomes (7,978 MAGs and 66,583 isolates). Despite this
overall bias toward isolates, 894 species had equal numbers of
MAGs and isolates, and 549 had more MAGs than isolates.

We ran our GI discovery software TIGER on these genomes,
counting GI yields for each. Average GI recovery over all MAGs
or isolates would be misleading and dominated by relatively few
overrepresented species due to the wide range of species sizes,
from 2 to 9 114 genomes. MAG and isolate GI yields were
averaged within each species, and we present (Figure 2A)
averages over all species, using various cutoffs for species size.
For both small and large species, there is a trend of increased GI
yields with increasing species size. At the left of the figure, small
species had small reference databases for TIGER, which likely
explains their lower yields. The right of the figure suffers from
noise due to low species numbers. The middle region is flatter and
provides a species-normalized estimate of 3.4 GIs per isolate
genome, with a large depression for MAGs, down to 1.8 GIs per
genome. This depression is probably explained by the poorer
quality of MAG genomes, worse than isolates by every available
metric (Supplementary Table S1). Especially relevant is scaffold
counts, averaging 95 for isolates and 152 for MAGs. TIGER was
designed to search for GIs contained within a single scaffold, but
in fragmented genomes, some GIs may also be fragmented,
escaping detection.

TIGER2. TIGER employs a “ping-pong BLAST” method, first
running a query sequence from the study genome (a candidate
GI/chromosome boundary proximal to an integrase gene) against
a reference genome database, then running a second query from
each hit reference genome back to the original scaffold of the
study genome, to find the distal end of the intact GI. In principle
this second query can be applied to all scaffolds in the study
genome to find GIs split among contigs. TIGER2 allows the
original “Intact”mode that only finds within-scaffold GIs and two
new split modes (either “Cross” for fragmented genomes or
“CircleOrigin” for complete genomes) that can also find the
termini of GIs when split onto different scaffold ends. We also
prepared new species-focused reference databases (Materials and
Methods, “Genomic islands”). Running the split modes on the
genomes produced many more GI calls. There were 223,323 GIs
for which intact and split modes agreed, 13,653 found by intact
mode only, and a surprisingly large number, 211,599, found by
split modes only. All GI calls from TIGER2 are reported in
Supplementary Table S2. Repeating the yield analysis
(Figure 2B), the split modes improved GI yields 1.7-fold for
isolates and 2.0-fold for MAGs, elevating the MAGs:isolates ratio
from 0.52 (intact mode) to 0.62 (split modes).

The split GIs are generally better supported than competing
intact GI calls. A support value is computed for each GI call equal
to the number of reference database genomes found to be

precisely deleted for (and thereby mapping) the GI. For the
11,152 contests where a split-only GI overlapped an intact-
only GI, 806 were tied for support, 543 of the contests were
won by higher support for the intact-only GI, and 9,419 were won
by the split-only GI.

Assessing GIs at four common genomic integration sites. To
further assess the quality of TIGER2 calls, four large groups of GIs
integrating into the same genomic site in the same large genus
were examined, at the icd and tmRNA genes and the phage
lambda locus (the ybhC/ybhB intergenic site) of Escherichia, and
the tRNA-Ser gene in Mycobacterium (Table 1). The
Mycobacterium tRNA-Ser gene (and other loci in the genus)
have far fewer split-only GIs than the Escherichia loci. This may
be simply explained by the much larger scaffold:GI length ratio,
11.0, for tRNA-Ser GIs in Mycobacterium; this ratio is only
1.6–1.8 for the Escherichia GIs. Databases were prepared from
the genomes containing an intact GI at the site for the genus. For
each locus, the GI-internal terminal DNA sequences were used to
type intact and split GIs, and a split GI was considered validated
when its termini matched those of an intact GI. This test of GI-
internal sequences is orthogonal to the TIGER method itself,
which finds GIs based only on their flanking sequences. The
sequences from the attL region were independently typed, as were
the attR sequences, and together these produced an attP type for
each GI. Although the goal of this typing was to assess the new
split GIs, we first characterized attP types among intact GIs only.

Intact GIs at the four integration sites. At the Mycobacterium
tRNA-Ser locus, only seven attP types were observed, that do not
mix attL and attR types, and are strictly segregated by species, for
example, the largest type (6,075 GIs) is restricted to M.
tuberculosis (Mtu) and is the only attP type in that species
(Table 1). At the Escherichia loci there is much greater attP
type diversity, strong but imperfect species segregation, and each
shows mixing of the half-attPs. For example, between two
abundant attP types at icd, L1-R2 (this designation indicates
its composition from attL type 1 and attR type 2) and L10-R4,
both mixtures are observed, L1-R4 and L10-R2. Such swapping of
unrelated attP halves is probably an example of the mosaicism

TABLE 1 | Validation of split GI calls at four commonly used integration loci.
Analysis of the tRNA-Ser locus was from 6,283Mycobacterium genomes and
of the icd, tmRNA and lambda loci from 15,111 Escherichia genomes.

Locus Icd tmRNA Lambda tRNA-ser

Total GIs 3,905 4,882 4,651 6,155
Found by intact and split modes 1,379 2,246 1,248 6,088
Found by intact mode only 10 53 0 6
Found by split modes only 2,516 2,583 3,403 61
Split mode, novel intact 3 4 0 11
Circular origin spanning 7 2 4 0
Cross-scaffold 2,506 2,577 3,399 50
Intact GIs typed 1,361 2,193 1,110 6,099
Intact GI attL types 31 100 137 7
Intact GI attR types 29 154 8 7
Intact GI attP types 66 278 140 7
Split GIs typed 2,361 2,357 2,856 46
Split GIs, known attP type 2,286 2075 2,726 46
Split GIs, novel attP type 75 282 130 0
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that is pervasive among GIs, but in some cases could be due to
unresolved tandem GI arrays. At the lambda site, we observe
lopsided mosaicism: one main attR type and many different attL
types. The tmRNA gene has the highest occupancy and the
highest diversity of attP types, perhaps related to its known
targeting by multiple independent integrase clades (Williams,
2003).

The Mtu tRNA-Ser GI reveals a problem with using small,
single-species reference databases; this GI is so widespread in the
species that only one of the 200 genomes in the Mtu reference
database was lacking the GI and therefore able to identify, map,
and support it. With a support value of only one, a false positive
GI call with support values as low as twomight overlap the tRNA-
Ser GI and eliminate it during the merging step. Six false negative
intact Mtu GIs were identified through matches to the split GI
queries; all had been identified by the TIGER core module, but
rejected during merging due to overlapping false positives. In the
future we will prepare reference databases that include some
genomes from outside the species.

Split GIs at the four loci. Results for the tRNA-Ser locus can be
succinctly summarized. The 31 split GIs from Mtu all had the
same attP type as all intact Mtu GIs. The remaining 15 split GIs,
from M. immunogenum, had an attP type of intact M.
immunogenum GIs. For the Escherichia loci there were more
split GIs than intact GIs, and some new attP types. Altogether
93.6% of the tested split GIs were validated, matching attP types
known from intact GIs. Some of the mismatches may reflect
additional mosaicism (Table 1).

GI typing. The TIGER typingmodule determines whether a GI
is a credibly complete prophage (Phage1) or contains less than a
full complement of phage genes (Phage2), and likewise assigns a
category one and two for ICEs, otherwise leaving the type
undetermined (Other). This module was updated to
accommodate split GIs. Examining all GIs (Figure 3A), the
type breakdown for intact GIs is similar to that observed
before (Mageeney et al., 2020), with almost half labeled Other

and the next largest fraction labeled Phage1. For cross-scaffold
GIs, the Phage1 fraction is appreciably smaller, while Phage2 and
Other fractions are larger than for intact GIs. This “downward”
typing shift may be due to “missingmiddles,” that is, if a GI is split
onto more than two scaffolds, its central fragments would remain
unidentified because TIGER2 finds only the terminal fragments
of split GIs (Figure 1). Circle Origin GIs, which should not suffer
from missing middles, have the same fraction of Phage1 as the
intact GIs, with a notable expansion of the ICE1 category. ICEs
tend to range to larger sizes than prophages; the arbitrary origin
point of complete circular chromosomes may land more
frequently on these larger GIs.

We also examined typing for GIs at the above three Escherichia
sites, which all had large numbers of both intact and split GIs. For
intact GIs, each site showed a different balance between Phage1,
Phage2 and Other calls (Figures 3B–D). All had a downward
typing shift for split GIs. According to our “missing middle”
hypothesis, this downward typing shift might correlate with
shorter split GI calls that omit central fragments. Extents of
downward typing did indeed correlate with reductions in GI
length (Figures 3B–D). For the split GIs at the tmRNA gene, the
drops in Phage1 type and average GI lengths were small (20 and
16%). At the other extreme, the Phage1 fraction for the lambda
site GIs dropped by 91% and the average GI length concomitantly
dropped by 44%. Some features in many lambda site GIs may
especially antagonize assembly, leaving more missing middle
segments than for the tmRNA and icd GIs.

DISCUSSION

Our original GI detection software, operating only on single
scaffolds, yielded substantially fewer GIs for MAGs than for
species-matched isolate genomes. Suspicion that this was due
to higher fragmentation of MAGs than isolates motivated a
software update enabling cross-scaffold search. TIGER2

FIGURE 3 | TIGER2 GI type breakdowns for composition categories (Intact, Cross and CircleOrigin). (A) All GIs, or (B–D) GIs at three Escherichia loci. Percent
change is given for Intact vs. Cross GIs; change for Phage1 counts correlates with change in GI length across the three loci.
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doubled GI yields for MAGs. This surprisingly large
improvement shows that fragmentation levels in current
microbial genomes substantially impact GI detection. Even
with this new approach, MAG yields are still not equal to
same-species isolate yields. A possible biological reason for
this remaining discrepancy might be sought in the
“domestication” of isolates through many generations of
passage in the lab (Barreto et al., 2020); however we expect
the opposite trend from domestication, that GIs could only be
lost by excision events in isolates. Other aspects of quality such as
completeness may depress yields in MAGs, when high
microdiversity within a GI prevents its full assembly into a
scaffold (Haro-Moreno et al., 2021). A third explanation is
that only very small databases of related genomes may be
available for many MAG-rich species, insufficient for TIGER
(or any comparative method) to find all GIs.

The quality of the new split GIs is high by several criteria. GI
support values outscore those of competing calls by intact-mode
TIGER. At frequently-used genomic loci of integration, the split
GIs share the attP compositions of the intact GIs. Split GIs have
type profiles (phage:non-phage) comparable to intact GIs,
although with a shift downward explainable by missing middle
segments; TIGER2 finds only the terminal fragments of a GI such
that its call will omit any additional internal fragments that might
exist for the GI.

CONCLUSION

Cross-scaffold search by TIGER2 doubles GI yields across diverse
microbial species, linking more scaffolds and improving the
quality of fragmented genomes such as MAGs. This will aid
detection of viruses in metagenomic datasets, offer insights into
population microdiversity and its phenotypic and ecological
consequences, and help address questions such as the balance
of temperate phages between the lysogenic state and free virions.
We will apply TIGER2 to our larger genome database to produce
an atlas of MGEs with precisely mapped termini in microbial
genomes; although applied here only to GIs, the TIGER principle
also discovers and maps other MGE classes, such as transposable
elements (Mageeney et al., 2020). The rise of long-read
sequencing is a welcome trend that will improve mobilome
representation in MAGs; lengths can now be attained
sufficient to contain an entire GI within a single read

(Warwick-Dugdale et al., 2019; Nicolas et al., 2021; Zablocki
et al., 2021).
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Pathway Tools Management of
Pathway/Genome Data for Microbial
Communities
Peter D. Karp1*, Suzanne Paley1, Markus Krummenacker1, Anamika Kothari 1,
Michael J. Wannemuehler2 and Gregory J. Phillips2

1Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States, 2Department of
Veterinary Microbiology, Iowa State University, Ames, IA, United States

The Pathway Tools (PTools) software provides a suite of capabilities for storing and
analyzing integrated collections of genomic and metabolic information in the form of
organism-specific Pathway/Genome Databases (PGDBs). A microbial community is
represented in PTools by generating a PGDB from each metagenome-assembled
genome (MAG). PTools computes a metabolic reconstruction for each organism, and
predicts its operons. The properties of individual MAGs can be investigated using themany
search and visualization operations within PTools. PTools also enables the user to
investigate the properties of the microbial community by issuing searches across the
full community, and by performing comparative operations across genome and pathway
information. The software can generate a metabolic network diagram for the community,
and it can overlay community omics datasets on that network diagram. PTools also
provides a tool for searching for metabolic transformation routes across an organism
community.

Keywords: microbiome, data management, genome database, metabolic pathways, metabolic routes

1 INTRODUCTION

The Pathway Tools (PTools) software Karp et al. (2019), Karp et al. (2020) was originally
developed to facilitate functional analysis of individual genomes. The software has a range of
capabilities including genome informatics, metabolic pathway informatics, regulatory
informatics, omics data analysis, and comparative analysis. A typical workflow is to import
a genome into PTools, compute a metabolic reconstruction, infer operons of the organism, and
then apply the search, visualization, and comparative analysis tools to investigate the functional
properties of the organism.

The software has been extended in recent years to support functional analysis of microbiomes
(Prakash and Taylor, 2012; Krishnan et al., 2015; Sung et al., 2017; Eng and Borenstein, 2019;
Visconti et al., 2019) that provides causal insights regarding the interactions of organisms within a
microbiome. Whereas many microbiome-related informatics tools aim to quantify and compare
properties of an overall community, PTools is more focused on enabling detailed reconstructions of
community members and their interactions. For example, PTools does not perform taxonomic
analysis of metagenome samples, nor does it compute case-control studies such as statistical
comparison of healthy and diseased individuals.

Questions that can be addressed using the software include the following: What metabolic
reactions and pathways are present in a metagenome, or in each organism in a community? How do
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their metabolic capabilities complement one another? What
pathways are unique to a given community member? What
metabolic transformations can be accomplished by the
community, for example, via what metabolic route might the
community convert a starting metabolite into an ending
metabolite? The PTools software does perform metabolic
modeling of individual microbes and of microbial
communities via flux-balance analysis Latendresse et al. (2022)
(see also Greenblum et al., 2013; Levy and Borenstein, 2014;
Krishnan et al., 2015; Esvap and Ulgen, 2021; Heinken et al.,
2021), although that topic is beyond the scope of this article.

The first step in a typical workflow is to import a set of
metagenome-assembled genomes (MAGs) into PTools. Each
MAG is converted to a PTools Pathway/Genome Database. A
number of PTools computational inference tools are next applied
to each MAG to infer its metabolic reactions and pathways, its
transport reactions, and its operons. The community members
are now captured within a set of PGDBs that comprehensively
encode their genomes and metabolic networks.

Next the user can apply a set of search and comparative
analysis tools to assess and compare the functional capabilities
of community members. For example, the user can search across
all community PGDBs for the presence of a gene, a metabolite, or
a pathway; the software can produce comparisons of the entire
metabolic networks of the community.

If meta-transcriptomics and/or meta-metabolomics data are
available for the community, then PTools provides an analysis
tool for visualizing such data on a multi-organism metabolic map
diagram.

PTools provides a community route-search tool that requires as
user inputs a set of PGDBs as well as a startingmetabolite and ending
metabolite. The tool generates minimal-cost metabolic routes (linear
reaction paths) from the starting to the ending metabolite that show
how the community might accomplish that transformation.

The remainder of the article describes these tools in more
detail and illustrates their use on the Altered Schaedler Flora
(ASF), a community of eight microorganisms from the mouse gut
microbiome Wannemuehler et al. (2014). The ASF were selected
by experimentalists as a model microbiome for their dominance
and persistence in the mouse gut, and for their ability to be grown
in the laboratory.

2 METHODS

2.1 Importing a Microbial Community Into
Pathway Tools
To import a microbial community into PTools, the metagenomic
sequencing data must have been binned by a separate program
into separate groups, one for each detected member of the
community. Each such MAG consists of a collection of
sequenced contigs covering a subset of the genome of each
organism. The contigs must be annotated by a tool such as
MetaPathways Konwar et al. (2013), MetaErg Dong and
Strous (2019), MG-RAST Keegan et al. (2016), MEGAN
Huson et al. (2016), Prokka Seemann (2014), or the National
Center for Biotechnology Information (NCBI) Prokaryotic
Genome Annotation Pipeline Tatusova et al. (2016), meaning
that an ORF-finding program has been run on each organism,
and protein function-prediction tools have been run on each
identified gene to assign protein names such as “pyruvate kinase,”
as well as to assign Enzyme Commission (EC) numbers
(optional).

The resulting sequence data, gene locations, and protein
functions can be provided as inputs to PTools in either GFF3
format or GenBank format, preferably as one file per MAG. The
files can be provided within a directory structure containing one
directory per genome that is processed by invoking the
PathoLogic component of PTools from the command line, as
described in the Pathway Tools User’s Guide SRI International
(2021).

PathoLogic applies a series of processing steps to each input
MAG to obtain a comprehensive PGDB for each organism. Those
steps are as follows.

1. The input files are parsed.
2. The input sequence, gene locations, and annotations are

converted to PGDB format. PGDBs are encoded using the
Ocelot object-oriented database system. A database object is
created for each replicon, each gene, and each gene product
described by the input files.

3. The reactome of the organism is predicted from the annotated
gene functions using a previously published algorithm Karp
et al. (2011). Enzyme names and EC numbers are associated

FIGURE 1 | Results of searching across the ASF for pathways whose name contains “tryptophan.” Four of the organisms contain such a pathway and four do not.
The pathways include biosynthesis and degradation, as well as super-pathways and base pathways.
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with biochemical reactions via queries to the MetaCyc
metabolic database (DB) Caspi et al. (2020). Those
reactions are imported into the new PGDB from MetaCyc.

4. The metabolic pathways of the organism are predicted from
the predicted reactome Karp et al. (2011). For each pathway in
MetaCyc the prediction algorithm considers which of its
component reactions are catalyzed by an enzyme in the
PGDB, and computes a score expressing the likelihood that
the pathway is present. Pathways that exceed a threshold are
imported into the PGDB.

5. The Transport Inference Parser Lee et al. (2008) is executed to
predict the transport reactions of the organism from
annotated transporter names.

6. The PTools operon predictor Romero and Karp (2004) is
executed to predict the operons of the organism.

7. PathoLogic executes an automatic layout algorithm that
creates an organism-specific metabolic network diagram for
the organism based on its complement of pathways,
metabolic reactions, and transport reactions Paley et al.
(2021).

FIGURE 2 | PTools generated table that summarizes database contents for three selected ASF organisms.
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The result of this process is a community of PGDBs—one
for each binned organism—describing its genome, proteome,
reactome, metabolic pathways, and operons. For example, we

have created PGDBs for each of the eight members of the
ASF, all of which are available through the BioCyc.org
website (which is powered by PTools). Enter “ASF” into

FIGURE 3 | Table that summarizes the number of enzymes in each Enzyme Commission top-level category for selected ASF organisms.

FIGURE4 | Table summarizing the pathway composition of selected ASF organisms, organized by theMetaCyc pathway ontology. The table is truncated for space
considerations.
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the BioCyc organism selection tool to search for these
databases.

We are not aware of other metagenome-analysis software
that performs operon prediction or transport-reaction

prediction. A number of other software tools Prakash and
Taylor (2012); Huson et al. (2016) perform metabolic reaction
and pathway prediction, often based on KEGG Kanehisa et al.
(2021). The metabolic reconstruction approaches of KEGG

FIGURE 5 | Table summarizing the number of metabolic pathways shared between pairs of selected ASF organisms, and the number of pathways unique to each
of the three organisms.

FIGURE 6 | Table comparing the transporter complements of selected ASF organisms.
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and PTools differ in the following respects. They use different
reference databases of pathways and reactions: as of August
2021, KEGG contained 400 metabolic pathway modules
versus 2,969 metabolic pathways in the MetaCyc DB;
KEGG contained 11,603 reactions versus 17,412 in
MetaCyc. Thus, MetaCyc has far wider coverage of
metabolism (7.4 times as many pathways, 1.5 times as
many reactions). MetaCyc pathways were derived from and
cite 69,000 literature citations and 9,739 textbook-equivalent
pages of mini-reviews that explain the role of each pathway;
KEGG contains very few citations or mini-reviews. The KEGG
algorithm for reactome and pathway prediction has never
been published to our knowledge, therefore its processing
steps are unknown, whereas the PTools pathway prediction
algorithm has been published Karp et al. (2011). KEGG does
not produce organism-specific metabolic network diagrams,
but it does have a series of global overview maps that span all
KEGG pathways, thereby showing many pathways that are not
present in a particular organism.

MAPLE Takami et al. (2016) also uses KEGG for
metagenome pathway analysis. Its pathway prediction
method is based on the “module completion ratio,” that is,
assessing the evidence for pathway presence based solely on
the fraction of reactions within a pathway that have an
enzyme present. This simple method causes many false-
positive predictions—particularly for larger pathway DBs
such as MetaCyc—which is why we developed a more

elaborate prediction method that considers factors such as
pathway taxonomic range and key reactions Karp et al. (2011).

2.2 Searching Across an Organism
Community
A suite of search tools enables scientists to perform basic searches
across a set of microbiome-derived PGDBs, such as to determine
which organisms in the community contain a given gene, protein,
metabolite, or pathway. Such searches enable a researcher to
quickly determine the functional roles played by different
organisms in the community. In addition, more advanced
searches are supported to find the organisms in the
community containing genes, proteins, metabolites, or
pathways matching specified conditions.

These searches are available in both the web and desktop
modes of PTools, with somewhat different user interfaces
available in the two modes. In web mode, the multi-organism
search tools are present under the Tools > Search menu. For
example, the Search Pathways command enables multi-organism
pathway searches, the Search Genes, Proteins, or RNAs command
enables multi-organism searches against genes and gene
products, and the Search Compounds command enables
multi-organism metabolite searches. By default these tools
perform single-organism searches; to enable multi-organism
searches, click the box next to “Search across Multiple
Organisms/Databases.”

FIGURE 7 | For each of three selected ASF organisms, this figure lists the biosynthetic pathways it contains for each amino acid. Multiple variants of amino-acid
biosynthetic pathways are often known, as designated with roman numerals. The blue cell indicates that Firmicutes bacterium ASF500 does not contain a pathway for
biosynthesis of L-histidine. The table is truncated for space considerations.
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For example, Figure 1 shows the result of searching across the
ASF PGDBs on BioCyc.org for all pathways whose name contains
“tryptophan.” Pathway searches can also search by ontology
(such as for all detoxification pathways in the organism),
pathway length, substrate(s) contained within the pathways,
evidence code, and publication.

Gene/protein searches can search by sequence length,
molecular weight, genome map position, pI, evidence code,
cellular location, Gene Ontology (GO) term, publication, and
by protein features.

Metabolite searches can search by ontology, monoisotopic
mass, molecular weight, chemical formula, SMILES Anderson
et al. (1988) substructure, and InChI Stein et al. (2003).

We are not aware of other tools that provide these types of
multi-MAG search capabilities.

2.3 Comparative Analysis Operations on a
Microbiome
PTools provides an extensive set of comparative operations that
can be run across a set of PGDBs for a microbial community.
Each comparative operation generates a series of pre-defined
tables. The comparative operations are available at BioCyc.org
under Tools > Comparative Analysis. The comparison tables
(some of which are appropriate for genomes, but not for MAGs)
span these aspects of the selected PGDBs (table numbers refer to
tables within the web pages):

• Organism comparison
• Table 1: Database Summary Statistics (example in
Figure 2)

• Table 2: Phenotype Metadata
• Table 3: Collection Metadata
• Table 4: Annotation Metadata

• Reaction comparison
• Table 1: Breakdown of Reactions by Type
• Table 2: Reactions of Small Molecule Metabolism (SMM)
• Table 3: Breakdown of SMM Reactions by Top-Level EC
Category (example in Figure 3)

• Table 4: Distribution of Isozymes across SMM Reactions
• Table 5: Shared Reactions
• Table 6: Unique Reactions

• Pathway comparison
• Table 1: Breakdown of Pathways by Pathway Class
(example in Figure 4)

• Table 2: Shared Pathways (example in Figure 5)
• Table 3: Unique Pathways (example in Figure 5)
• Table 4: Pathway Holes

• Metabolite comparison
• Table 1: All Compounds
• Table 2: Shared Compounds
• Table 3: Unique Compounds
• Table 4: Statistics on the Frequency with which Different
Compounds Appear in Different Metabolic Roles

• Gene/protein comparison
• Table 1: Selected Gene/Protein Statistics
• Table 2: Gene Annotation

• Table 3: Frequency Distribution of Heteromultimers by
Number of Unique Gene Products

• Table 4: Enzymes
• Table 5: Multifunctional Enzymes
• Table 6: Gene Ontology

• Transporter comparison
• Table 1: Transporters (example in Figure 6)
• Table 2: Substrate Uptake (example in Figure 6)
• Table 3: Substrate Efflux
• Table 4: Multiple Transporters and Substrates
• Table 5: Transcription

• Transcription unit and regulation comparison
• Table 1: Number of Genes per Transcription Unit
• Table 2: Number of Operons per Pathway
• Table 3: Regulation

The preceding tables are computationally generated such that
clicking hyperlinks within the tables will produce a new table with
an expanded level of information. For example, clicking on the
row name “Amino Acid Biosynthesis” in Figure 4 will generate
the table shown in Figure 7, which shows the biosynthetic
pathways present in each organism for each amino acid.

A number of other tools (e.g., MEGAN) present summaries of
pathway abundances across different metagenome samples. In
contrast, PTools reports differences in pathway compositions of
different MAGs; we are not aware of other tools that perform
such comparisons.

2.4 Analysis of Meta-Transcriptomics and
Meta-Metabolomics Data
In a PGDB for a single organism, the PTools-generated cellular
overview diagram provides a visual summary of all the metabolic
and transport capabilities of the organism. A rectangular outer
border represents the cell membrane. For Gram-negative
bacteria, this consists of a double membrane with an
intervening periplasmic space. Transporters and other
membrane proteins are drawn on the appropriate membrane.
Within the interior, representing the cytosol, metabolic pathways
are shown to the left, and a grid containing all reactions not
assigned to any pathway appears to the right. Within the pathway
section, pathways are organized according to the MetaCyc
pathway ontology, with biosynthetic pathways to the left,
energy metabolism pathways in the middle, and catabolic
pathways to the right. These sections are further subdivided
into functionally-based blocks. For example, within the
biosynthetic section are separate blocks for Carbohydrate
Biosynthesis and Secondary Metabolite Biosynthesis. Pathways
generally flow downwards, and connections between pathways
are mostly omitted. As the user zooms in on the diagram, more
detail is shown. At the highest level of detail, pathway, metabolite,
enzyme and gene names all become visible. Users can overlay
omics data for an organism onto the cellular overview diagram to
visualize experimental results in a metabolic context Paley et al.
(2021).

For a community of organisms, the user can create a
community overview diagram (within the desktop version
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of PTools only) that condenses and combines the overview
diagrams from multiple organisms into a grid, forming a
single large diagram. While initially shown at a low level of
detail, users can interrogate the diagram via mouse-overs,
zoom in to show more detail, or apply a range of highlight
operations. Meta-transcriptomics or meta-metabolomics data
can then be mapped onto this community overview diagram
to visualize how experimental conditions affect the
metabolism of the entire community. Omics data are
supplied as a set of tab-delimited files, one per organism in
the community, each with the first column containing gene or
metabolite identifiers, and a single numeric data column (any
additional columns in the file will be ignored), which can
contain either absolute data (e.g., counts, intensities,
concentrations) or relative data (e.g., ratios or log ratios of
two experimental conditions or experiment vs. control).

Figure 8 shows a community overview diagram consisting
of four organisms from the ASF microbial community
overlaid with an example transcriptomics dataset. To
identify the metabolic pathways that showed differential

activity in response to altered gut environmental
conditions, we conducted global transcriptome analysis
(RNA-seq) of the ASF community recovered directly from
wild type mice (129Sv6 background) along with IL-10−/−

knockout mice on the same genetic background. IL-10 is a
well-characterized immunomodulatory cytokine and IL-10−/−

knockout conventional (i.e., complex microbiota) mice are
known to exhibit an altered microbiota composition
Overstreet et al. (2021). Figure 8 shows the functional
changes in the microbiome as the ASF responded to the
altered immune status of the host as determined by
identifying differentially expressed genes associated with
specific metabolic pathways. The transcriptome dataset
used for this analysis was generated by DeSeq2 Love et al.
(2014).

In addition to visually drawing attention to particular
metabolic reactions and pathways that undergo significant
change, organism-wide effects also become apparent. For
example, in this dataset we immediately notice that the
metabolism of one organism, Ligilactobacillus murinus

FIGURE 8 | A community overview diagram for four of the bacterial species that make up the Altered Schaedler Floramodel gut microbiome, overlaid with data from
an example transcriptomics dataset. Reactions colored orange or red indicate genes with increased expression levels, whereas reactions colored blue or purple indicate
genes with reduced expression levels.
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(i.e., Lactobacillus murinus) is generally increased (red/
orange reactions), with the increases concentrated in
certain pathway classes; the metabolism of two other
organisms, Eubacterium plexicaudatum and Schaedlerella
arabinosiphila, generally decreases (blue/purple). Mousing
over any reaction will show a tooltip that includes the
omics data values for all genes associated with that
reaction. The user can zoom in on the diagram for a more
detailed view of regions of interest.

We are not aware of other tools that can display metabolic
network diagrams from multiple organisms simultaneously and
paint these diagrams with meta-omics data.

2.5 Community Metabolic Route Search
Single-organism metabolic route search enables the discovery of
the most optimal series of reactions (called routes), that will
transform a starting compound into a goal compound, within the
organism’s reaction network. Optimal means that the reaction
series has the lowest cost. The cost of a route is computed by a
weighted combination of atom conservation, route length in
terms of sequential reactions, and other parameters. To
compute the number of conserved atoms, our RouteSearch
algorithm Latendresse et al. (2014) uses pre-computed atom
mappings Latendresse et al. (2012) of reactions that are
available in MetaCyc. An atom mapping of a reaction gives a

one-to-one correspondence of each non-hydrogen atom, from
reactants to products. The more atoms are conserved, the more
efficient the transformation from start to goal becomes, thus
resulting in a lower cost.

The Multi-Organism RouteSearch (MORS) algorithm
Krummenacker et al. (2019) is a recent extension of single-
organism RouteSearch that enables route discovery across
arbitrary sets of organisms, simultaneously searching across
the union of reactions in their PGDBs. MORS enables
dissecting the metabolic contributions originating from specific
organisms, within the overall transformation performed by the
microbial community. A typical use case is searching HumanCyc
as well as the organisms in a microbiome body site, such as the
gastrointestinal-tract, to investigate how a combination of
organisms might synthesize a compound that is toxic to the
host organism. To performMORS searches at BioCyc.org, invoke
Tools > Metabolism > Metabolic Route Search, and check the
box next to “Routes across Multiple Organisms.”

The MORS algorithm requires an additional input beyond the
inputs to RouteSearch, namely the set of PGDBs to be searched.
The reaction network searched by MORS will be the union of all
reactions from that organism set. Additionally, the user may alter
a new MORS parameter, the cost for “organism switching.” A
switch occurs when the two organism sets of two consecutive
reactions in a route have no overlap. In other words, if the first

FIGURE 9 | MORS computed routes from L-tyrosine to 4-methylphenyl sulfate.

Frontiers in Bioinformatics | www.frontiersin.org April 2022 | Volume 2 | Article 8691509

Karp et al. Pathway Tools for Microbial Communities

54

http://BioCyc.org
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


reaction is known to occur in one set of organisms and the second
reaction is occurring in a different organism set, but there is no
organism that contains both reactions simultaneously, then the
route must switch organisms by transferring the compound
connecting both reactions from one organism to another (by
unspecified transport mechanisms). Each discovered route is
displayed horizontally across the web page, with the start
compound on the left and the goal compound on the right.
An organism switch is depicted in a route by a red vertical line. A
SmartTable of the route can be generated, which lists the
organism sets that provide the enzymes that catalyze each
reaction along the route.

As an example, let us use BioCyc.org to examine how dietary
L-tyrosine is transformed into toxic 4-methylphenyl sulfate,
which is a protein fermentation product that has been
modified in the liver and is implicated in kidney disease. As it
is known that this toxin originates from L-tyrosine Selmer and
Andrei (2001), the MORS start compound was set to L-tyrosine
and the goal compound to 4-methylphenyl sulfate. We selected all
organisms in the human microbiome body site called
“gastrointestinal-tract” plus Homo sapiens. The total count of
organisms was 553. The resulting top three routes are shown in
Figure 9. All routes retain eight atoms. The first route consists of
two reactions, and the other two routes consist of four reactions.
The first route does not need an organism switch, because one
microbe was found that can perform both reactions of this route.
In the other two routes, the last reaction after the organism switch
is found only in Homo sapiens. However, the reaction
immediately before the switch occurs in 26 organisms in both
routes. The third route found a different choice for the first
reaction, which incurs the cost of an additional organism switch.

We are not aware of other tools that can perform multi-
organism metabolic route search.
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GMEmbeddings: An R Package to
Apply Embedding Techniques to
Microbiome Data
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Large-scale microbiome studies investigating disease-inducing microbial roles base their
findings on differences between microbial count data in contrasting environments (e.g.,
stool samples between cases and controls). These microbiome survey studies are often
impeded by small sample sizes and database bias. Combining data from multiple survey
studies often results in obvious batch effects, even when DNA preparation and sequencing
methods are identical. Relatedly, predictive models trained on one microbial DNA dataset
often do not generalize to outside datasets. In this study, we address these limitations by
applying word embedding algorithms (GloVe) and PCA transformation to ASV data from
the American Gut Project and generating translation matrices that can be applied to any
16S rRNA V4 region gut microbiome sequencing study. Because these approaches
contextualize microbial occurrences in a larger dataset while reducing dimensionality of the
feature space, they can improve generalization of predictive models that predict host
phenotype from stool associated gut microbiota. The GMEmbeddings R package
contains GloVe and PCA embedding transformation matrices at 50, 100 and 250
dimensions, each learned using ~15,000 samples from the American Gut Project. It
currently supports the alignment, matching, and matrix multiplication to allow users to
transform their V4 16S rRNA data into these embedding spaces. We show how to
correlate the properties in the new embedding space to KEGG functional pathways for
biological interpretation of results. Lastly, we provide benchmarking on six gut microbiome
datasets describing three phenotypes to demonstrate the ability of embedding-based
microbiome classifiers to generalize to independent datasets. Future iterations of
GMEmbeddings will include embedding transformation matrices for other biological
systems. Available at: https://github.com/MaudeDavidLab/GMEmbeddings.

Keywords: microbiome, embedding, deep learning, machine learning, 16s sequencing

1 INTRODUCTION

Gut microbiomes can impact the physiology of their human hosts by modifying the availability of
molecules in the environment or through direct interactions with host cells Ruff et al. (2020). The
most commonly used and cost-effective method to observe microbiomes is 16S rRNA amplicon
sequencing, which allows researchers to observe which bacterial species are present in an
environment, their relative quantities, and their relative evolutionary distances to one another
Johnson et al. (2019).
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While 16S rRNA amplicon sequencing has many strengths
and provides insight into general microbiome compositions,
analysis of 16S data is often impeded by small sample sizes
paired with massive feature spaces. This can lead to
underpowered studies and spurious associations being detected
Schloss (2018), Ioannidis (2005), Fan et al. (2012). While meta-
analyses of microbiome datasets generally support associations
between microbiome community structure and disease, these
interactions are often relatively weak and confounded by
inter-study and individual microbiome variation Sharpton
et al. (2021), Sze and Schloss (2016), Holman and Gzyl
(2019), Duvallet et al. (2017), Wirbel et al. (2021). In
addition, 16S analysis generally treats amplicon sequence
variants (ASVs) or operational taxonomic units (OTUs),
also generally called taxa, as independent features, despite
the complex network of known relationships between
bacterial species that influence their function Albright et al.
(2021), Shoaie et al. (2013). By reducing dimensionality while
simultaneously analyzing 16S sequences in the context of co-
occurrence and co-abundance patterns across studies, we can
increase the generalizability of classifiers and gain insight into
microbiome community function.

Embedding has emerged as a method in natural language
processing to both decrease the dimensionality of the feature
space as well as consider co-occurrence relationships between
entities across corpuses of documents. Embedding algorithms
produce a numerical vector representation of every feature, then
datasets can be projected into this newly defined numerical space.
Vector representations can be learned in multiple ways–here we use
both GloVe and Principal Component Analysis (PCA) algorithms on
American Gut Project (AGP) data to produce two sets of embedding
vectors. GloVe is an algorithm designed for natural language
processing which learns numerical representation of features by
projecting a co-occurrence matrix between features into a lower
dimensional space. In the case of natural language, these numerical
vector representations of words can then be used to cluster words by
their shared meanings and relationships (e.g., king–male = queen)
Pennington et al. (2014). PCA is a method used frequently in ecology
which learns numerical representation of features such that samples
fall along the axes of highest variation across the dataset Karl (1901).
To some extent, this method takes into account co-abundances
between taxa across samples to learn a representation.

We used both of these algorithms to create embedding
transformation matrices. Numerical representations of 48,279
ASVs found in 15,709 samples were learned, and representations
were created in 50, 100, and 250 dimensions.

We present GMEmbeddings, an open-source R package that
transforms 16s microbiome data (ASV counts) into an embedding
space that captures information about taxa co-occurrence or co-
abundance patterns. GMEmbeddings currently contains
embedding vectors to enable embedding of 16S V4 reads from
the human gut microbiome. While the presented embedding
matrices are not meant to be used to transform counts from
other 16S regions or other biomes, future iterations will include
other sets of embedding vectors. The package also enables the
ability to interpret the learned numerical representations in the
context of microbial metabolic pathways.

Previous iterations of this work used only forward reads from
the American Gut Project that were ~ 150 bp long, resulting in
less specificity and less coverage during the transformation into
embedding space Tataru and David (2020). This iteration
contains full length V4 reads ( ~ 250 bp) to improve
performance, and is additionally more accessible through use
of a complete R package.

2 METHODS

2.1 Making Embedding Transformation
Matrix
2.1.1 Data Collection
Fastq files were downloaded from ftp://ftp.microbio.me/
AmericanGut/20nov2020-demultiplexed-data/. Only sequences
from stool samples were kept. Each folder represents a study,
and studies with less than 50 samples were removed. Of the 72
folders originally associated with the AGP, 50 folders were kept.
All gzipped FASTQ files were then collected from each folder,
totalling 43,256 individual files sharing a combined size of 113
Gigabytes of space. The files were then filtered using Cutadapt
in order to remove primers from the sequences Martin (2011).
We removed the 515F-806R primer pairs: GTGYCAGCMG
CCGCGGTAA (Fwd V4), GGACTACNVGGGTWTCTAAT
(Rev V4), GTGCCAGCMGCCGCGGTAA (Fwd V4),
GGACTACHVGGGTWTCTAAT (Rev V4) McDonald
et al. (2018). In an effort to keep only the most accurate
samples available, further filtration was performed to retain
only files containing over 5,000 sequence reads.

2.1.2 Process Into ASVs
Fastq files were then processed using the DADA2 pipeline
Callahan et al. (2016). In short, forward and reverse reads were
trimmed to 140 base pairs, and maxEE and truncQ were set to
2. Reads that matched the phiX contamination database were
removed Mukherjee et al. (2015). The error rates were then
learned from the data, and later the core sample inference
algorithm was applied to the filtered and trimmed sequence
data. We then merged the forward and reverse reads together
to obtain the full denoised sequences and removed any
chimeras from the data. Lastly, bloom sequences obtained
from the following link were removed: https://github.com/
knightlab-analyses/bloom-analyses/blob/master/data/
newbloom.all.fna.

2.1.3 Filter for Prevalence
After completing the quality filter and trimming steps in the
DADA2 pipeline, we created a sequence table. The entries in the
sequence table represented counts of the number of times the
sequence read was detected in each of the samples. In total, there
were unique 898,853 ASVs and 15,706 samples (merged forward
and reverse reads). However, many of these ASVs had low rates of
occurrence among the samples, so further filtering was done to
remove reads that were detected in 10 or fewer samples. Filtering
for blooms and prevalence reduced the size of our sequence table
from 898,855 ASVs to 48,279 ASVs.
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2.1.4 Calculate Co-Occurrence
Next, we created an ASV co-occurrence text file. Each line in the
file contained the full length ASV sequence of all ASVs in one
sample. The final file contained 15,706 lines, with one for every
sample. In essence, we could think of each sample as having a

specific sentence/catchphrase, and each line in this file contained
the catchphrase of one sample. However, instead of words, each
catchphrase was composed of the genetic sequences observed in
each sample. This is the format for input files to the GloVe
software (version 0.2). Pennington et al. (2014).

FIGURE 1 | Embedding a dataset. (A) Start with query dataset (sample by ASV counts) and an embedding transformation matrix (either from GloVe or PCA run on
the American Gut Project data). (B) BLAST ASV sequences from the query dataset against the sequences in the transformation matrix. Filter the BLAST output to include
only top hits (min E-value, max percent identity, and max alignment length) per query sequence. (C) Assign ids from BLAST hit column to query sequences. If there are
more than one best hit, split counts from original query sequence between all best hits equally. (D) Matrix multiply the query count table with the embedding
transformation matrix.
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2.1.5 GloVe Algorithm
The GloVe algorithm was then applied to our co-occurrence file
in order to create an embedding transformation matrix of a set
size Pennington et al. (2014). GloVe stands for global vectors for
word representation and is an unsupervised learning algorithm to
generate word embeddings from aggregated global word-word
co-occurrence data. When the algorithm is applied to ASV
sequences instead of words, the result is a vector
representation for each ASV in the set that represents co-
occurrence patterns. Cosine distances between vectors
represents probability of co-occurrence of the corresponding

ASVs. Short distances between sequences represent
higher probabilities of ASVs sharing co-occurrence patterns,
while greater distances represent lower probabilities of
sequences sharing co-occurrence patterns. Distances are
normalized by how frequently ASVs occur overall. The
algorithm was run three times with output vector sizes of 50,
100, and 250.

2.1.6 PCA Algorithm
The PCA transformation matrices were obtained using SVD
decomposition on the sample by ASV count table, and taking
the (VT) matrix. Prior to decomposition, ASV count vectors were
mean centered and scaled to have a variance of 1, to avoid issues
with heteroskedasticity. R/making_embedding_transformation_
matrix/make_PCA_transformation_matrix.py.

2.1.7 Creating BLAST Database for ASVs in
Embedding Database
The ASV sequences from the GloVe output were then used to create
a FASTA formatted file.We then used themakeblastdb functionality
of BLAST (Basic Local Alignment Search Tool) to generate a
database based on the nucleotide sequences in our FASTA file.
The database is used to check nucleotide sequences from other

TABLE 1 | Maximum E-value and minimum length of alignment that were
accepted in aligning sequences from each dataset to embedding
transformation sequences.

Dataset Max E-value accepted Min. Length of
alignment accepted

Halfvarson 3.72e-47 89
Schirmer 2.41e-86 133
M3 4.91e-125 129
Pilot 9.04e-122 110
Baxter 2.11e-133 110
Zeller 2.11e-133 121

FIGURE 2 | Predicting IBD: Model trained on AGP data and tested on Halfvarson data. (A): Models built using GloVe embedded data, PCA embedded data (50,
100, or 250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusion matrices showing the distribution of correct to predicted
classes on the testing dataset.
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studies against our “embedding database” sequences. BLAST
database files can be found here: https://files.cgrb.oregonstate.edu/
David_Lab/microbiome_embeddings/blastdb_fullseq/.

2.2 Transforming Query Data Into
Embedding Space
Figure 1 shows the process implemented by the GMEmbeddings
package to transform any query ASV count table into
embedding space.

2.2.1 BLAST Alignment
To embed a query sequence table, we first created a
corresponding FASTA file for the ASVs in that study. We
then used BLAST to obtain all hits for each query sequence
against the sequences in the embedding database:

2.2.2 Filter BLAST Output
We filtered the BLAST hits to include only the top match per query
sequence (lowest E-value, highest percent identity, and highest
length of alignment). We kept matches with a maximum E-value
threshold of 1*10−40. Using a 97% similarity threshold, the
maximum E-value and minimum length of alignment observed

and accepted are available in Table 1. See R/making embedding
transformation matrix/scripts/filter blast hits.sh.

2.2.3 Relabel Query Sequence Ids With Respective
Hit IDs
We relabeled query sequences with their respective hits in the
embedding database. If the query sequence had only one top hit,
we replaced its label with the label from the embedding
database. If the sequence had multiple hits, we split its
counts evenly among all of the top hits. If the sequence had
over 100 hits that are all tied, it was dropped in an effort to
increase the specificity of the method. If a query sequence had
no hits, it was dropped. We also removed any sequences from
the embedding transformation matrix that were never included
as a top hit for any query sequence.

2.2.4 Matrix Multiplication
After the above processing, the column space of the query count
table matched the rowspace of the embedding transformation
matrix.We then took the dot product between the twomatrices to
obtain the embedded form of the query count table. In the final
embedded table, rows were samples and columns were
dimensions in embedding space. Ultimately, the embedded
form of a matrix represents the original samples transformed
into a mathematical space, taking into account the co-occurrence
patterns of ASVs across a population.

2.3 Machine Learning Process
We trained seven random forest models per dataset to predict
phenotype, one using normalized read counts, three using GloVe
embedded data at 50, 100, and 250 dimensions, and three using
PCA embedded data at 50, 100, and 250 dimensions.

Model feature spaces had to match between training and
testing sets, so some modification of feature spaces was required:

1) For the model on normalized read counts, we included only
the ASVs that were present in both datasets. We performed a
BLAST alignment between the query dataset and AGP
sequences using a 100% sequence similarity cutoff, and
assigned the ASV full length sequences from AGP to the
secondary dataset (similar to the process of embedding
without matrix multiplication). Only the best hits were
considered from the resulting BLAST alignment after
imposing the 100% similarity cutoff. Read counts from the
secondary dataset were split equally among all the tied best
hits in the AGP data.

2) For the models based on embedded data, we followed the
procedure outlined above in “Transforming Query Data into
Embedding Space”.

Prior to being fed to a machine learning model, all data was
normalized using an inverse hyperbolic sin function,
(sin−1(x) � log(x + (x2 + 1)1/2), which mimics the function
log(2x) almost exactly, except for behavior near 0. Below 1,
the log function returns a negative value, and is undefined at
0. In contrast, inverse hyperbolic sin does not fall below 0 when
the argument is low, and is defined as 0 at 0 Burbidge et al. (1988),

TABLE 2 | Performance metrics of models trained on AGP data and tested on
Halfvarson data using a 97, 99 and 100% sequence similarity threshold.
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Sankaran and Holmes (2019). This function allows log
transformation of counts without the addition of pseudocounts.

All models were trained entirely on one large dataset and
tested on an independent dataset, paired as follows (AGP:
Halfvarson, AGP: HMP2, M3: Pilot, Baxter: Zeller). Datasets
are described below. We used random forest predictive
models, and set maximum tree depth to the square root of the
number of input features and the number of trees to 100. Classes
were weighted inversely to their a priori probabilities in the
training dataset (pos_weight � N

Npos
). For example, if the

positive class is represented by 5% of the training samples, the
weight on the positive class for the training classifier is 20, and the
weight on the negative class is 1.

2.4 Metabolic Pathway Correlation
In order to interpret the dimensions that define embedding
spaces, we correlated each dimension in embedding space to all
prokaryotic metabolic pathways available in the KEGG
database Kanehisa et al. (2015). An infographic describing
the process is available in Supplementary File S1. First, we
created a binary pathway (ko id) by gene (KO id) table
describing which genes are present in which metabolic
pathways using the KEGGREST API in R (A). Then, we
created a matrix of gene (KO id) by ASVs by using

PICRUSt Langille et al. (2013) (B). We multiplied the
pathway by gene table (A) with the gene by ASV table (B)
to obtain an ASV by pathway table (C), where higher values
suggest a higher presence of a pathway in that organism. We
then calculated the Spearman correlation between all columns
of these two matrices to obtain a pathway by dimension
correlation matrix. These values can be used to interpret
dimensions in a biological context.

2.5 Test Dataset Descriptions
2.5.1 American Gut Project
In the American Gut Project (AGP) dataset, the majority of
samples come from participants residing in the United States (n =
6,634) and the United Kingdom (n = 2,071), with a small number
of samples generated from people living in other countries and
territories. Participants in the United States inhabit largely urban
areas (n = 7,317), with rural (n = 29) and mixed (n = 98)
communities (2010 U.S. Census data based on participant ZIP
codes) contributing in much smaller numbers. These participants
also span a wide range of ages, race, and ethnicity. The read length
of each sequence was around 150 base pairs which, when merged,
resulted in a read length of 250 base pairs.

In the present study, we used a subset of 15,709 samples that
were part of cohorts with > 50 samples in the consortium. These

FIGURE 3 | Predicting IBD: Model trained on AGP data and tested on HMP2 data. (A): Models built using GloVe embedded data, PCA embedded data (50, 100, or
250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusionmatrices showing the distribution of correct to predicted classes on
the testing dataset. (full).
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samples contained a collective 898,855 ASVs. We removed ASVs
present in less than 10 samples, and 50,425 ASVs remained, each
253 base pairs in length.

2.5.2 Halfvarson
The Halfvarson dataset Halfvarson et al. (2017) consists of 683
samples taken from 118 patients at multiple timepoints.
Microbiome composition for each sample is ascertained by
sequencing the V4 region of the 16S rRNA gene for a total of
248 million 16S rRNA gene amplicons and a total of 38,513
unique amplicon sequence variants (ASVs) at a read length of
253 bp.

In the present study, we filtered to include only samples with
the diagnoses Crohn’s disease (CD), ulcerative colitis (UC), and
healthy control (HC). We used 608 of these samples from 118
patients (220 CD, 290 UC, and 54 HC samples). When
embedding using a 97% similarity threshold, 15,998 ASVs
(61%) from the Halfvarson dataset aligned to some read in the
embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 10.4 and a median of 2
embedding sequences (Supplementary File S3). These same
statistics applied to the PCA transformed data.

2.5.3 HMP2
The HMP2 study Lloyd-Price et al. (2019) follows 132 subjscts for
1 year to generate longitudinal molecular profiles.

In the present study, we used only the 16S samples from the
HMP2 study consisting of 197 samples taken from 83 individuals
sampled at multiple timepoints (111 CD, 44 UC, 42 HC). This
subsetted dataset contained a total of 5,869 unique ASVs at a
length of 253 bp. When embedding using a 97% similarity
threshold, 4,977 ASVs (85%) from the HMP2 dataset aligned
to some read in the embedding dataset (Supplementary File S2).
Each query sequence was aligned to amean of 7.8 and amedian of
2 embedding sequences (Supplementary File S3). These same
statistics applied to the PCA transformed data.

2.5.4 M3
The M3 dataset Tataru et al. (2021) consists of 432 total samples
from 72 age-matched sibling pairs. The pairs included one sibling
diagnosed with ASD and the other who is developing typically
(TD). The participants were between the ages of 2 and 8 years old.
Researchers recorded 331 diet and lifestyle variables for each
individual participating in the study. For each sample collected
there were an additional 100 variables detailing lifestyle and
dietary variables recorded. Samples were collected across the
United States. Before filtration, the average depth of reads per
sample measured 157,103 nucleotides (with a minimum of 23,321
and maximum of 996,530). The dataset contains a total of 5,265
ASVs (16S V4) at a length of 233 bp.

In the present study, all samples from the M3 dataset were
used. When embedding using a 97% similarity threshold, 4,555
ASVs (87%) from the M3 dataset aligned to some read in the
embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 2 and a median of 1
embedding sequences (Supplementary File S3).

2.5.5 Pilot
The dataset obtained from the Pilot study David et al. (2021)
contained 117 samples, of which, 60 were considered autism
spectrum disorder (ASD) and 57 were controls. The population
in the study consisted of age-matched sibling pairs between the ages
of 2 and 7 years old, where the siblings needed to be within 2 years of
each other. Of the 117 child subjects, there were 55 sibling pairs, two
sibling pairs accompanied by a third sibling with autism, and 5
singleton samples. Samples were collected from 24 states: California,
Colorado, Florida, Georgia, Hawaii, Illinois, Indiana, Massachusetts,
Maryland, Michigan, Minnesota, Missouri, North Carolina,
Nebraska, New Jersey, Nevada, New York, Ohio, Pennsylvania,
Tennessee, Texas, Utah, Washington, and Wisconsin. The dataset
contains a total of 1,664 ASVs (16S V4) at a length of 233 bp.

In the present study, all samples from the Pilot dataset were
used. When embedding using a 97% similarity threshold, 1,500
ASVs (90%) from the pilot dataset aligned to some read in the
embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 1.8 and a median of 1
embedding sequences (Supplementary File S3).

TABLE 3 | Performance metrics of models trained on AGP data and tested on
HMP2 data using a 97, 99 and 100% sequence similarity threshold.
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2.5.6 Zeller
The Zeller dataset Zeller et al. (2014) consists of three populations
of participants: 129 colonoscopy patients from a French hospital
(53 CRC, 42 adenoma, and 61 controls), 38 colorectal cancer
patients from a German hospital, and 5 healthy individuals living
in Germany. A subset of these participants were chosen for fecal
sample 16s sequencing by the original authors for stool 16S
sequencing.

The present study used 75 control and 41 CRC samples, and
this set of samples contained a total of 6,968 unique ASVs at a
length of 253 bp. When embedding using a 97% similarity
threshold, 5,581 ASVs (80%) from the Zeller dataset aligned to
some read in the embedding dataset (Supplementary File S2).
Each query sequence was aligned to amean of 1.2 and amedian of
1 embedding sequences (Supplementary File S3).

2.5.7 Baxter
The Baxter dataset Baxter et al. (2016) contains participants of ages
29–89 years with a median of 60 years. All patients were
asymptomatic and were excluded if they had undergone surgery,
radiation, or chemotherapy for current CRCprior to baseline samples
or had inflammatory bowel disease, known hereditary non-polyposis
CRC, or familial adenomatous polyposis. Colonoscopies were
performed and fecal samples were collected from participants in

four locations: Toronto (ON, Canada), Boston (MA, United States),
Houston (TX, United States), and Ann Arbor (MI, United States).

The present study used 314 samples, (187 control and 127 CRC).
When embedding using a 97% similarity threshold, 7,879

ASVs (88%) from the Baxter dataset aligned to some read in
the embedding dataset (Supplementary File S2). Each query
sequence was aligned to a mean of 1.33 and a median of 1
embedding sequences (Supplementary File S3).

2.6 Metrics
2.6.1 Precision
Precision is an indicator of a model’s performance and refers to the
number of true positives divided by the total number of positive
predictions. Total number of positive predictions can be found by
summing the number of true positiveswith the number of false positives.

precision � (truepositives)
(truepositives)+(falsepositives)

2.6.2 Recall
Recall gives indication of positive samples that the model has
missed. It is calculated by dividing the number of true positives
found by the model by the total number of positive samples that
could have beenmade. The number of possible positive samples is
the sum of true positives and false negatives.

FIGURE 4 | Predicting autism spectrum disorder: Model trained on the M3 dataset and tested on the Pilot dataset. (A): Models built using GloVe embedded data,
PCA embedded data (50, 100, or 250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusionmatrices showing the distribution
of correct to predicted classes on the testing dataset.
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recall � (truepositives)
(truepositives)+(falsenegatives)

2.6.3 F1
The F1 score is the weighted average of precision and recall. It
takes both false positives and false negatives into account and tells
us a model’s performance on a dataset. A perfect model would
have an F1 score of 1.

F1Score � 2*(recall)*(precision)
(recall)+(precision)

3 RESULTS

From the sequence counts from the American Gut Project (AGP),
we created GloVe and PCA based embedding transformation
matrices at 50, 100, and 250 dimensions. We then projected the
sequence tables from six independent datasets, as well as that
from the AGP, into both GloVe and PCA spaces. We then trained
random forest predictive models to predict host phenotype using
microbiome data in one of seven forms (GloVe embedded at 50,
100, and 250 dimensions, PCA embedded at 50, 100, and 250
dimensions, and normalized ASV counts). For each phenotype of
inflammatory bowel disease (IBD), autism spectrum disorder
(ASD), and colorectal cancer (CRC), models were trained on
one dataset and tested on an independent set with no fine-tuning.

No other metadata about samples was included in addition to
microbiome data.

3.1 Inflammatory Bowel Disease Prediction
Random forest models were trained on the American Gut Project
data, then tested on both the Halfvarson and HMP2 datasets
Halfvarson et al. (2017), Lloyd-Price et al. (2019) to predict host
phenotype of “healthy control” vs. “inflammatory bowel disease”
which included Crohn’s disease and ulcerative colitis. On the
Halfvarson test dataset, models that used normalized ASV counts
(full) had a higher training performance but much lower testing
performance than any of the other methods, implying an overfit
model (Figure 2; Table 2). Similarly, while larger models using 250
dimensions generalized to a testing set less well (f1 = 0.68–0.71),
small models using only 50 dimensions were able to generalizemuch
more effectively (f1 = 0.9–0.95). GloVe and PCA embedding
methods exhibited largely similar performance, regardless of the
choice of sequence alignment threshold (Table 2, Supplementary
File S4).

On the HMP2 test dataset, a similar phenomenon emerged. The
full model trained well but failed to generalize well to the testing
dataset, and the larger embedding-based models performed less well
than smaller embedding-based models (Figure 3). Increasing
sequence similarity threshold resulted in removing more original
sequences (Supplementary File S3), and in this case, decreased
overall performance considerably (Supplementary File S5,Table 3).
There was similar performance between GloVe and PCA
embedding-based models when using a 97% sequence similarity
threshold, but PCA based methods maintained a higher
performance as similarity threshold increased, as compared to
GloVe based models (Supplementary File S5, Table 3).

3.2 Austism Spectrum Disorder Prediction
Random forest models were trained on the M3 dataset and tested on
the Pilot dataset (see Test Dataset Descriptions) Tataru et al. (2021),
David et al. (2021) to classify the phenotype of participants with autism
spectrumdisorder and their typically developing siblings.While the full
model outperformed other models during training, it obtained an F1
score of 0.56 in testing, while the GloVe_50, GloVe_100 models
obtained higher F1 scores of 0.67, 0.66 respectively (Figure 4;
Table 4). Increasing sequence similarity threshold improved the
performance of GloVe_250 and PCA_100 models, and did not
significantly effect other models (Supplementary File S6).

3.3 Colorectal Cancer Prediction
Random forest models were trained on the Baxter dataset and
tested on the Zeller dataset (see Test Dataset Descriptions) Baxter
et al. (2016), Zeller et al. (2014) to classify the phenotype of
participants with colorectal cancer vs. healthy controls. The full
model had higher training performance but failed to generalize to
the test set, and this trend repeated in the models built on more
features in both GloVe and PCA based models. The highest
performing models were PCA_50 and GloVe_50 with F1 scores
of 0.45 and 0.4 respectively (Figure 5; Table 5). Sequence
similarity threshold had little effect on final performance
(Supplementary File S7, Table 5).

TABLE 4 | Performance metrics of models trained on M3 data and tested on Pilot
data using a 97, 99 and 100% sequence similarity threshold.
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3.4 Metabolic Pathway Correlation
We correlated each embedding dimension with metabolic
pathway genetic potential obtained from KEGG and PiCrust
(See Methods). From this, we saw that dimensions all
correlate to some groupings of metabolic pathways but not
others (Supplementary Files S8–S13). This serves as a
starting point in interpreting the biological functions of
the otherwise mathematically defined dimensions in
embedding space.

4 DISCUSSION

16S studies often result in spurious associations between
specific ASVs and host phenotype due to necessarily small
sample sizes in comparison to feature spaces and the
treatment of ASVs as independent features Schloss (2018),
Ioannidis (2005), Fan et al. (2012). Embedding methods can
address these issues by defining a new feature space, which
can be thought of as combinations of ASVs, where ASVs are
considered similar if they share co-occurrence or co-
abundance patterns across a large dataset Pennington
et al. (2014). Applying embedding methods to smaller

datasets can increase the generalization of predictive
classifiers that use gut microbiome data, and may lead to
new insights about overarching microbial properties that
independent ASV counts do not otherwise reflect Tataru and
David (2020).

The embedding methods presented here are aimed to address
the curse of dimensionality caused by a large number of variables
(ASVs) measured across a relatively small number of samples.
Machine learning models with too many input variables can
easily overfit the training data, as observed with the normalized
count data in this study. In addition, having too many input
variables can saturate distance metrics, giving datapoints unique
feature subsets that cause them to all appear equidistant Bai
(2014). By reducing the dimensionality of the input data, we show
that models are able to learn generalizable microbial patterns of
disease and avoid overfitting on biomarkers specific to single
datasets.

In the datasets tested, 50 dimensions offered the best, most
consistently high performance on test set predictions. PCA-
based transformation obtained higher recall without
significant drop in precision as compared to GloVe-based
transformation, but, in these datasets, both obtained
considerably improved performance over the method of

FIGURE 5 | Predicting Colorectal Cancer: Models trained on the Baxter dataset and tested on the Zeller dataset. (A): Models built using GloVe embedded data,
PCA embedded data (50, 100, or 250 dimensions), or normalized ASV counts performance on training and testing sets. (B): Confusionmatrices showing the distribution
of correct to predicted classes on the testing dataset.
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using normalized ASV counts. In most datasets, increasing the
sequence similarity threshold did not affect generalizable
performance significantly, with the exception of the HMP2
dataset where increasing threshold decreased recall
significantly. This may be due to the relatively low number
of original sequences utilized in embedding under the more
stringent threshold.

4.1 Comparison to Other Work
Kubinski et al. tested machine learning predictive models
using a leave one study out cross-validation across 15 IBD
datasets that performed 16s sequencing on stool samples.
Their random forest models obtained average F1 scores of
0.72 across studies when using species level annotations
Kubinski et al. (2021). A study from Manandhar et al. also
obtained a similar F1 score of 0.74 on a hold-on test portion
of the American Gut Projet dataset Manandhar et al. (2021).
These performances are just below the IBD testing results
from this study using the Embed 50 and PCA50 models (F1 =
0.82–0.95) on HMP2 and Halfvarson datasets respectively.
Interestingly, a study from Hassouneh et al. that combined
metagenomic features (as opposed to 16s) and included 3
independent datasets obtained an F1 score 0.87, suggesting
that perhaps the integration of multiple datasets into the
training data combined with the use of non-amplicon
microbiome features may lead to increased accuracy
Hassouneh et al. (2021).

Wu et al. tested the predictive power of 16s microbiome
features in predictive autism by annotating OTUs from five
studies at the genus level, then applying a random forest
model. When training on one dataset and testing on another,
the models’ performance ranged from an F1 of 0.17–0.73 Wu
et al. (2020). In comparison, the best performing model in the
present study, GloVe_50, obtained an F1 of 0.68 on the
testing data. Though they did not report F1 scores, other
studies have reported surprisingly high values for area under
the receiver operating curve when predicting autism (AUC =
0.93 and 0.98)Ding et al. (2020), Dan et al. (2020). This
exceedingly high performance may be attributable to the
sampling strategy, where ASD participants were recruited
from the local hospital and typically developing participants
from local kindergardens.

Wu et al. created a classifier that used fecal microbiome
16s sequences as well as age, sex, and BMI to distinguish
patients with adenomas from colorectal cancer patients, and
obtained an F1 score of 0.72. Models with equivalent
hyperparameters and feature inputs trained on additional
datasets also obtained F1 scores of 0.77 and 0.72) Wu et al.
(2021). This is in line with the training F1 score obtained
from the full model in this study from the Baxter data (F1 =
0.86) but higher than the training scores obtained from
embedding methods (F1 = 0.58–0.68). Zhou et al. trained a
random forest classifier to differentiate CRC from healthy
controls using the same Baxter dataset presented in this
study, and obtained an F1 score of 0.41, which is in the
range of the F1 scores obtained here when testing the PCA50
model on an independent dataset (F1 = 0.43) Zhou et al.
(2021). Neither of these studies tested their pre-trained
models on independent datasets, so their true
generalization capacity remains untested.

4.2 Limitations
This study used only the American Gut Project data to form the
embedding transformation matrices. Integration of other,
independent datasets would likely make the transformation
process even more generalizable, especially to populations outside
the United States.

In addition, Dada2 processing of reads and error model
learning was performed on all the sequencing runs from the
American Gut Project simultaneously in order to obtain one set of
ASVs for all samples. This resulted in over 800,000 ASVs, most of
which were not present in more than 10 samples. Learning an
error model per sequencing run may have resulted in a lower rate
of chimeric ASVs, which may have seen higher presence across
samples Callahan et al. (2016).

While data transformed with either PCA or GloVe did
provide grounds for more generalizable models, the
interpretation of the learned representation remains a
challenge. We find that correlations between learned taxa
vector representations and metabolic pathway potential exist,
however, each dimension correlates to a mixture of pathways,
making direct implications difficult to conclude. In previous
work, we found that mixtures of phylogenetic signal are also
captured by learned dimensions Tataru and David (2020).

TABLE 5 | Performance metrics of models trained on Baxter data and tested on
Zeller data using a 97, 99 and 100% sequence similarity threshold.
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Utilizing other natural language processing methods for
dimensionality reduction like deep learning networks may
allow us to take advantage of other interpretation methods
like attention, saliency maps, or explanation generation to
obtain a more complete understanding of the system Sun
et al. (2021).

Lastly, the embedding matrices provided are specific to human
gut microbiomes as measured from stool–embedding matrices for
other biomes will be provided in future iterations.
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Bacterial diversity is often analyzed using 16S rRNA gene amplicon sequencing.
Commonly, sequences are clustered based on similarity cutoffs to obtain groups
reflecting molecular species, genera, or families. Due to the amount of the generated
sequencing data, greedy algorithms are preferred for their time efficiency. Such algorithms
rely only on pairwise sequence similarities. Thus, sometimes sequences with diverse
phylogenetic background are clustered together. In contrast, taxonomic classifiers use
position specific taxonomic information in assigning a probable taxonomy to a given
sequence. Here we introduce Taxonomy Informed Clustering (TIC), a novel approach that
utilizes classifier-assigned taxonomy to restrict clustering to only those sequences that
share the same taxonomic path. Based on this concept, we offer a complete and
automated pipeline for processing of 16S rRNA amplicon datasets in diversity
analyses. First, raw reads are processed to form denoised amplicons. Next, the
denoised amplicons are taxonomically classified. Finally, the TIC algorithm
progressively assigning clusters at molecular species, genus and family levels. TIC
outperforms greedy clustering algorithms like USEARCH and VSEARCH in terms of
clusters’ purity and entropy, when using data from the Living Tree Project as test
samples. Furthermore, we applied TIC on a dataset containing all Bifidobacteriaceae-
classified sequences from the IMNGS database. Here, TIC identified evidence for 1000s of
novel molecular genera and species. These results highlight the straightforward application
of the TIC pipeline and superior results compared to former methods in diversity studies.
The pipeline is freely available at: https://github.com/Lagkouvardos/TIC.

Keywords: taxonomic classification, microbial diversity, clustering, microbiome analysis, amplicon sequencing,
NGS processing pipeline

1 INTRODUCTION

Today, profiling of microbial communities is often conducted by inexpensive and high throughput
DNA-sequencing (i.e., next generation sequencing, NGS). These profiling techniques often rely on
amplifying target marker genes by using the polymerase chain reaction (PCR) and subsequent
parallel sequencing (Nocker et al., 2007). The obtained sequences are then compared to gene
databases for probable taxonomic assignment. All assigned sequences of a sample result in a
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microbial profile. Since many years, the 16S rRNA gene is the
primary target for most microbiome and diversity studies due to its
versatility and phylogenetic information density (Woese et al., 1980).
This technique can even resolve the microbial profile down to strain
level, as shown in a study of Johnson et al. (2019).

In common approaches, sequence reads are usually de novo
clustered into groups based on their sequence similarity (Blaxter
et al., 2005), (Porter and Hajibabaei, 2018). Subsequently, the
centroids of these similarity groups are classified to the closest
known taxonomic level, obtaining so called Operational
Taxonomic Units (OTUs). To form these clustered groups,
multiple methods have been proposed. Several are based on
calculating pairwise sequence similarities from multiple
sequence alignments using UPGMA or neighbor-joining
algorithms (Liu et al., 2009), (Li, 2015). However, these
algorithms are computationally demanding processes and not
the fastest in finding similar sequences in multiple sequence
alignments, especially when using large similarity matrices as
needed in microbiome studies. Thus, heuristic distance-based
greedy clustering (DGC) and abundance-based greedy clustering
(AGC) algorithms have been developed that produce the required
clustering with a single pass through the data and are much faster
(Edgar, 2010), (Rognes et al., 2016). Taken together, compromises
must be taken between accurate and thoroughmethods on one side
and fast analysis methods on the other side. The shortcomings of
the DGC and AGC algorithms follow from their single pass
through the data. For instance, these algorithms choose the first
amplicon from the sequence pool and take it as the first OTU
centroid. The next sequence is compared to the first based solely on
similarity. If sufficiently similar, the sequence is added to the
centroid. In case the sequence is too different, a second centroid
(second OTU) is initiated. Thus, an OTU is formed by adding
sequences being similar to the centroid above a defined threshold.
This step is repeated with the remaining, not yet clustered
sequences until all are assigned to OTUs (Edgar, 2010), (Rognes
et al., 2016). Hence, the order of sequences in each data set strongly
influences the resulting clustering output. The sequential addition
of new sequences to existing OTUs might even sort sequences into
different OTUs even though they have a significant similarity.
However, these sequences are never evaluated together due to the
sequential nature of the process. Ultimately, this causes random
variation in microbial community assignments (Koeppel and Wu,
2013). While preordering the sequences based on their abundance
in the dataset increases the reproducibility of the clustering process
(Edgar, 2013) this does not eliminate the possible misplacements of
sequences in different OTUs (Edgar, 2013).

More recent approaches argue against the process of clustering
and rather support the processing of sequences only by removal
of chimeras and sequencing errors down to what is referred to as
denoised sequences. Two algorithms are the most common used
for denoising, DADA2 (Callahan et al., 2016) and UNOISE3
(Edgar, 2016). The results are, as said, denoised sequences in both
cases, while the creators of DADA2 call their result amplicon
sequence variant (ASV) and the author of USEARCH names
them zero-radius OTU (zOTU).

In any case, after having processed all sequences to a list of OTUs
representatives or denoised sequences they are classified to their

closest taxonomy possible. The outcome of this process is dependent
on initial primer choice (i.e., the variable region of the 16S rRNA
gene used), the software chosen to perform each task and reference
databases used (Abellan-Schneyder et al., 2021), including RDP (Lan
et al., 2012) or SILVA (Quast et al., 2012). Unfortunately, reference
databases have partially different taxonomic nomenclature, differ in
update frequency, and unavoidable errors in such reference
databases are affecting the quality and comparability of the
results (Sierra et al., 2020). For example, the database
GreenGenes DeSantis et al. (2006) has not been updated since
2013 and should not be used anymore. Through the years,
SILVA and RDP have distinguished themselves and are currently
the most frequently used by classifiers.

Taxonomic classification performs well on sequences from
characterized bacteria and archaea, correctly assigning them up
to their genus level. However, unknown sequences not represented
in the reference databases result in incomplete taxonomic paths. In
every sample, there will be sequences from yet undescribed taxa.
For instance, in gut samples, the proportion of OTUs that can be
assigned to fully described species ranges from 35 to 65%. For
environmental samples, this ratio is even lower (Lagkouvardos
et al., 2017). For analysis of ecological patterns in higher taxonomic
levels (e.g., family), sequences with incomplete taxonomic
classification are collectively binned intro groups of “Unknown
taxon” or simply discarded. Obviously, these problems limit the
resolution of the biological signal that could have been extracted
from available sequence data (Figure 1).

Here we present “Taxonomy Informed Clustering” (TIC), a
novel tool that flips the above paradigm, i.e., classifying after
clustering. Here, we first taxonomically classify each sequence
before any clustering is conducted. The taxonomic information
acquired and now attached to each sequence acts both as a guide
and as a limit in an incremental clustering process (Figure 2).
Thus, the dataset is divided into subsets following the assigned
taxonomies and, working within each subset, we avoid merging
sequences from diverse lineages together. As a result, the created
clusters have a higher purity and their number resembles more
that of the intrinsic community structure. The incremental
clustering procedure also allows sequences with incomplete
taxonomic classification to be positioned in the taxonomic
tree, allowing for higher resolution in compositional
comparisons of microbiome studies. Our novel tool, TIC, is
offered as a complete set of scripts, allowing researchers to
perform a thorough analysis from raw reads to compositional
tables for subsequent comparisons (e.g., in alpha- and beta-
diversity, etc.) within a single pipeline.

2 MATERIALS AND METHODS

2.1 Overview
The TIC-Pipeline consists of a setup (i.e., installation) and four
processing steps: 1) Processing raw reads from a study’s FASTQ
files, 2) Extraction of the consensus 16S region, creation of
zOTUs, and taxonomic classification up to the genus level, 3)
De-novo clustering based on taxonomic information (TIC) of the
used zOTUs, 4) Reporting the results from all the previous steps.
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2.1.1 Pipeline Installation
The TIC-Pipeline is a mixture of bash commands, python, and R
scripts connected by a main python script. An installer script handles
the installation of the command-line tools and their dependencies. The
installer also downloads the reference databases (SILVAv.138), and the
necessary programs, which includes KronaTools v.2.8 (Ondov et al.,
2011), rapidNJ v.2.3.2 (Simonsen et al., 2010), SINA v.1.7.2 (Pruesse
et al., 2012), SortMeRNA v.2.1 (Kopylova et al., 2012), USEARCH v.10
(Edgar, 2010), and VSEARCH v.2.13.4 (Rognes et al., 2016). In
addition, the installer uses a dedicated file-server hosting the tools
and the databases to set up dependencies for the pipeline, guaranteeing
availability without breakages. Taken together, users just run the
installer script, which installs R libraries and the Python packages
needed automatically. After installation, we suggest a test run to ensure
that all dependencies are met.

The structure of the pipeline is modular. An easy to modify text
file “config options.txt” contains the configuration options
controlling the pipeline’s flow. Configuration options include the
number of threads to use, the current active mode (production or
testing), or the input files’ location. The user may also execute each
pipeline’s step independently, given that they provide correctly
formatted data. For example, RDP classifications (Wang et al.,
2007) could be used instead of the default SINA classifier.
Detailed documentation of each option for all steps is given at
the tool repository. Illustrations shown in the present manuscript
directly correspond to generated outputs from the TIC-Pipeline.

2.1.2 Sample-wise Processing
At this step, raw sequencing data are processed to obtain unique
amplicon sequences. Those are the basis for any downstream

analysis. This process includes sequence trimming to remove
primers, merging paired reads, and filtering sequences based on
expected error thresholds. Default options are indicative only and
users are expected to fine-tune the parameters according to
their needs.

2.1.3 Overlapping Regions Detection and Taxonomic
Classification
Sequences from different studies cannot always be directly
compared as usage of different V-regions of the 16S rRNA
genes results in sequences of different lengths and sometimes
non-overlapping V-regions, which cannot be integrated. Matters
are further complicated, even for sequences originating from the
same method, due to the usage of diverse primers (and despite
using the same V-regions) among studies. Reference Based
Alignment (RBA), like SINA, has been used in the past to
tackle this problem, effectively detecting any overlapping
region among sequences from various studies and focusing the
analysis on regions, which are represented most often
(Lagkouvardos et al., 2014). Every sequence in the input
dataset is aligned to the reference database (SILVA) producing
a global alignment of 50,000 positions. By summing the number
of aligned bases in each position of the multiple sequence
alignment, the user can identify the most representative
region, enabling the extraction of this region. The TIC
pipeline provides an automatic calculation of this vector and
plots the result, so the user can confidently identify the most
informative region and set proper limits for the extraction of that
region (Figure 3). The chosen region is used for taxonomic
classification. The classification sub-process uses the Last

FIGURE 1 | Schematic representation of the shortcomings of missing detailed taxonomic assignments in microbiome analysis. OTUs missing taxonomic
classification for a certain level (e.g., genus) are analyzed together under the unknown label. The resulting conclusions can be deceiving when the constituting natural
divisions are present nonuniformly across conditions.
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Common Ancestor (LCA) shared by at least 7 of the 10 closest
sequences in the database to place a sequence.

2.1.4 Region Extraction and Denoising
Based on the user’s evaluation of the region with the highest
coverage among samples (recorded as parameter in the
configuration file), each sequence is trimmed for positions
outside this defined region. Trimmed sequences are pooled,
dereplicated, and denoised using the UNOISE3 algorithm
(Edgar, 2016) to create zOTUs. All denoised sequences are
checked for valid 16S rRNA sequences by SortMeRNA using
the SILVA bacteria and archaea databases. The taxonomic
information derived from the previous step is added
automatically to the header of the zOTU FASTA file and is
used in the next step to guide the clustering.

2.1.5 Taxonomy Informed Clustering
A step-wise taxonomy-guided clustering was implemented to
utilize position-specific taxonomic information for purer clusters.
TIC’s starting point is the pool of unique denoised sequences
(zOTUs) with a recognized genus name (Gseqs). Gseqs are

clustered within each genus to produce molecular species
(sOTUs) within the identified genera. Afterwards, sequences
that have been classified only up to the family level (Fseqs) are
processed. In order to account for limitations in the taxonomic
classification (i.e., missing levels), such Fseqs are first searched if
they match any existing sOTU from Gseqs within the current
family. In case a match is found, the taxonomy of the zOTU in
question is updated if within a designated species cutoff level.
However, sequences matching existing sOTUs above the
designated genus cutoff level, but below the species level, are
assumed to be novel sOTUs within the existing genera. Finally,
Fseqs without a match, even at the genus level to existing sOTUs,
are used to produce novel sOTUs that are next clustered again to
novel gOTUs. Sequences with an unidentified taxonomic family
follow the same procedure as before, but with the added layer of
fOTUs. For instance, they are first matched against sOTUs,
gOTUs, and known families of the same order. If no matches
are found according to corresponding cutoffs, the unidentified
sequences are designated as novel fOTUs (Figure 4).

Since there is no consensus on sequence similarity values
between orders, classes, and phyla across all bacteria, TIC

FIGURE 2 | Simplified representation of the TIC algorithm. (A) Sequences are divided based on their identified taxonomic level. (B) 1) Denoised sequences within
the same genus are clustered to produce sOTUs. 2) Sequences of unknown genera within the same family are clustered into sOTUs. 3) Produced sOTUs are further
clustered into novel gOTUs. 4) Sequences of the unknown family are first clustered into sOTUs. 5) Those sOTUs produce gOTUs. 6) fOTUs are formed from the gOTUs of
an unknown family.
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produces only novel fOTUs, gOTUs and sOTUs, while filling the
other missing taxonomic ranks (i.e., phylum, class and order)
with a placeholder, i.e., UNKPHYLUM, UNKCLASS, and
UNKORDER, respectively. Since no universal cutoffs for 16S
rRNA gene fragments (i.e., amplicons) exists for delineating
species, genera, and families, we adopt the popular cutoffs
normally used for the whole 16S rRNA molecule (97, 95, and
90%, respectively). However, we recommend that those cutoffs be
tailored to each analysis to reflect the variance captured within the
selected fragment (i.e., V-region used).

2.1.6 Results Reporting and Graphs
The produced zOTUs are outputted in FASTA format with the
full taxonomic path up to sOTU level, incorporating any novel
families and genera in the header of each zOTU. Furthermore, the
taxonomic tree (Figure 5A) indicates novelty (i.e., unknown
bacteria and archaea) within the given study by color-coding
each branch (Asnicar et al., 2015). Towards this end, the
microbial novelty and diversity in the examined samples are
displayed by uniting the taxonomic tree and the quantification
information contained within the Krona plot in a combined
figure (Figure 5B). Finally, the zOTU table produced shows
how many reads in each sample constitute the respective

sOTU together with the sOTUs’ taxonomy. Additional
mapping files produced as output reflect the relations between
sOTUs to gOTUs and gOTUs to fOTUs.

2.2 Benchmarking
2.2.1 Naive Classifiers vs TIC
Comparisons between naive classifiers (USEARCH and
VSEARCH) and TIC require a dataset for which the complete
taxonomic information is available. We created a dataset fulfilling
this requirement by using the sequences from the Living Tree
Project (Yarza et al., 2008) and their corresponding similarity
matches at a threshold of 98% of the non-redundant SILVA v128
database. This dataset was designated LTP. All sequences
included were classified with SINA and, in order to simulate
real-life scenarios, we pruned the produced taxonomies with two
strategies, designated “hard” and “soft.” Hard pruning
corresponds to the removal of whole clades from the
taxonomic tree at random levels. We removed about 10, 5, 2.5
and 1% from the tree at the level of genera, family, order, and
class, respectively. This hard pruned dataset was used to test the
performance for cases where completely unknown taxonomic
groups are present within the actual data. The chosen percentages
were based on empirical observations on missing taxonomic

FIGURE 3 | Sum of bases on each SINA alignment position. The height identifies the region with the most coverage in the coverage plot. Guided by this plot, users
should select the target region for their analysis. All sequences will be trimmed around those positions, and only those containing a sufficient number of bases will be
passed to the next step.
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FIGURE 4 | Overview of the TIC processes. (A) Diagram of the TIC process for sequences with identified genus-level taxonomy. All sequences within each genus
are used to create sOTUs. (B) Diagram of the TIC process for sequences with identified taxonomy up to the family. First step is searching for matches among those
sequences and sOTUs contained within genera in the current family. Not matched sequences create novel sOTUs, which are searched for matches at the genera cutoff
level (default 95%), as specified at the configuration file; if not matched again, they produce novel gOTUs. Any matched sequence gets the taxonomy of its match.
(C) Diagram of the TIC process for sequences without family classification. Searching for matches among existing sOTUs at the order level. Not matched sequences
create novel sOTUs, which are searched for matches at the genera cutoff level; if not matched again, they produce novel gOTUs. Another search is conducted afterwards
at the user-specified family similarity percentage (default 90%), afterward, and if not matched again, novel fOTUs are created. Any matched sequence gets the taxonomy
of its match.
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classification at each level when using SILVA on real data. The
second pruning strategy “soft” is the stochastic removal of
taxonomic information, simulating shortcomings of the
classification process in assigning taxonomies to every leaf of
each clade correctly, also following the above percentages. Those
strategies are needed because LTP consists only of taxonomically
known sequences on which classifiers have an advantage. Our
pruning strategies allow a fair comparison between the
taxonomy-aware TIC and the naive clustering algorithms. For
testing, the clustering was performed 100 times for each strategy
and tool.

2.2.2 Clustering Metrics
The following metrics were calculated for every trial: cluster
purity, Adjusted Rand Index (ARI), and Normalized Mutual
Information (NMI). Concerning cluster purity, this value
ranges from 0 to 1. It shows the mean fraction of sequences
across all clusters that are correctly pooled together according to
the genus taxonomic information included in LTP. Next, the ARI
gives a value about how often a randomly chosen sequence from
the dataset was found in the same cluster as in the original LTP
data set, when producing the same clustering (Steinley, 2004).
Finally, the Normalized Mutual Information (NMI) quantifies
the amount of information we obtain from clustering A by
observing the clustering B; thus, it is a measure on how
similar two different clustering runs (i.e., A and B) are (Vinh
et al., 2010). A higher NMI score indicates that the information

we got by clustering reflects the original taxonomic assignments
closer. In turn, this allows us to approximate the entropy of the
produced clustering.

We compared execution time for TIC with USEARCH and
VSEARCH, allocating eight threads on the same machine and
with Debian Linux as the host operating system. Each tool was
evaluated further based on the number of produced families,
genera, and species. This evaluation allowed us to determine the
inflation for each type of clustering in each’s diversity measures.

2.2.3 Template Data
Bifidobacteriaceae are a group of bacteria, which are responsible
for oligosaccharide metabolism in mammals. They are one of the
dominant families present in the human gastrointestinal tract
during infancy (Pham et al., 2016). There is a growing interest in
their role as probiotics. Therefore, illuminating the microbial
diversity within this family will help us evaluate the range within
which we operate and potential sources of hidden diversity. The
template data include 227,418 Bifidobacteriaceae sequences,
which were classified as such by RDP classifier. These
sequences have been originally detected across 11,074 samples
of diverse environmental origin within IMNGS. IMNGS is a
database containing currently more than 500 k samples analyzed
by 16S rRNA gene amplicon sequencing. All data are
preprocessed and IMNGS offers, next to other means,
automated export of all sequences belonging to a selected
taxonomy at once (Lagkouvardos et al., 2016). In addition to

FIGURE 5 | Plots produced from the TIC-Pipeline from the mouse dataset of Muller et al. (A)Graphlan plot depicting the taxonomic tree of the denoised sequences
after TIC incorporated both novel (red) and known (white) clades up to the family level. (A) Krona plot quantifies the size of each taxonomy in the merged study samples.
Contains novel and known taxonomies as produced by the SINA classifier and TIC.
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the above, to illustrate the use of TIC in microbial profiling
studies based on amplicon data, we processed the dataset from
Müller et al. (2016). In this study, the role of nutrition and
hygiene concerning mice’s gut microbiomes was investigated.
The original results demonstrated that diet and the hygiene level
of the mouse facility affect the mice’s gut microbial profiles. The
raw sequencing data of the study are available in ENA under
accession PRJEB13041.

3 RESULTS

3.1 Benchmarking Results
3.1.1 Number of Created Taxa
The LTP dataset used contains sequences with known taxonomic
assignment up to the species level, with 458 families, 1,590 genera, and
13,903 species. The TIC pipeline identified 508, 460, and 458 clusters
at family level when using hard- and soft-pruned, and the complete
taxonomy, respectively. In contrast, both USEARCH and VSEARCH
resulted in estimations almost twice the size of the actual family
numbers (Figure 6). Of note, when the complete SINA classification
is available (no pruning), TIC, as expected, successfully mirrors the
underlying family structure. Thus, overall, values produced by TIC
are the closest reflection of the ground truth we could get.

The results for the genus level reconstruction showed that,
when taxonomic information is missing (e.g., due to novel taxa or
incomplete classifications), TIC and VSEARCH perform
similarly. In contrast, USEARCH inflates genus numbers
(Supplementary Figure S1). Since TIC is the only tool
utilizing taxonomy knowledge, the results match the initial
genus composition as expected in the no pruning scenario. All
three tools fail to recapture the species diversity contained within
the dataset (Supplementary Figure S2). We suggest that this is
because taxonomic species definitions are not solely based on 16S
rRNA gene sequence similarity, and none of the tools can account
for this external information. However, TIC calling USEARCH
produces species cluster closer to the ground truth regardless of
the pruning scenario, while the TIC with VSEARCH improves its
performance significantly when compared with default running
of VSEARCH.

3.1.2 Quality of Created Taxa
Clusters produced by TIC are purer than those produced by
USEARCH and VSEARCH (Tables 1, 2). Since TIC uses
taxonomic information, unwanted merging of sequences
originating from distant taxonomies is less likely, while other
tools are blind to taxonomy and, thus, combine unrelated
sequences solely based on similarity thresholds. Although
VSEARCH produces a higher ARI score, this stems from the
inflation of the number of produced species, genera, and families
in combination with the rigorous approach taken when
calculating pairwise similarity scores, resulting in many one-
member clusters that should have been merged otherwise. The
NMI score calculated for all tools is almost identical. Therefore,

FIGURE 6 | Comparison of the three tools in regards to predicted family
number on the LTP dataset under different configurations. TIC was executed
containing USEARCH (TIC-U) and VSEARCH (TIC-V) as the integrated
clustering tool, with different modes of taxonomic pruning of the input
sequences. These tools were also executed as standalone. The dashed line
represents the actual number of families in the dataset. USEARCH performs
worse in terms of inflation of predicted family level clusters, with VSEARCH
resulting in only moderate inflation. TIC reflects this trend in its operation
depending on the tool utilized, especially with hard pruning (compete for
removal of assignments for whole taxonomic branches). For soft (stochastic)
pruning (only removing taxonomic information for random sequences), the TIC
performs significantly better than the naïve usage of the corresponding
clustering tool. In cases where the classifier can successfully assign family level
taxonomy to all sequences, as for the sequences in the LTP dataset, the TIC
mirrors this information resulting in a perfect grouping of the sequences as
expected.

TABLE 1 | Clustering quality comparison among tools.

Level Scenario Purity ARI NMI

Species TIC_Stohastic_VSEARCH 0.99 0.93 0.97
TIC_Stohastic_USEARCH 0.99 0.93 0.97
TIC_Hard_VSEARCH 0.99 0.93 0.98
TIC_Hard_USEARCH 0.99 0.93 0.97
USEARCH 0.98 0.88 0.97
VSEARCH 0.97 0.97 0.97

Genera TIC_Stohastic_VSEARCH 1 0.93 0.97
TIC_Stohastic_USEARCH 1 0.93 0.98
TIC_Hard_VSEARCH 1 0.93 0.98
TIC_Hard_USEARCH 1 0.93 0.97
USEARCH 0.87 0.88 0.97
VSEARCH 0.93 0.97 0.97

Families TIC_Stohastic_VSEARCH 1 0.93 0.97
TIC_Stohastic_USEARCH 1 0.93 0.97
TIC_Hard_VSEARCH 1 0.93 0.98
TIC_Hard_USEARCH 1 0.93 0.97
USEARCH 0.97 0.88 0.97
VSEARCH 0.88 0.97 0.97

Regardless of the pruning method, taxonomic level, and the underlying tool, the TIC
creates better clusters in terms of purity and the NMI statistic. VSEARCH inflates the
number of clusters and, in conjunction with its no-heuristic approach when calculating
the sequence pairwise identity score, results in higher ARI scores. Although USEARCH
uses heuristics for this calculation, the TIC restrains it, thus keeping the ARI score high.
Maximum values are highlighted (bold) for each column for each level.
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this value should not be viewed in isolation. Taken together,
across all metrics tested here, TIC is the better choice.

Performance
The computational speed for TIC is primarily dependent on the
underlying tool. TIC manages to offset the required time to
handle taxonomic information by clustering smaller subsets of
data created from the taxonomy classification (Figure 7).
Performance is further affected by the rate of available
taxonomic information and no-pruning run times are always
shorter than those from simulations, including partial
classifications.

3.2 Template Results
3.2.1 Amplicon Showcase
The Müller dataset (Müller et al., 2016) contains 238,936 raw
sequences produced from 24 samples. This dataset contains 6,580
unique sequences after extraction of the representative region
(i.e., SINA alignment positions: 6,500–22,500, number of bases:
384), trimming around it, and denoising to zOTUs. Taxonomic
classification using the integrated SINA classifier with SILVA as
the reference database resulted in 319 and 2,412 unclassified
zOTUs for family and genus level, respectively. Clustering those
sequences to form molecular species (sOTUs) using TIC or the
two naive clustering tools (i.e., USEARCH, VSEARCH) resulted

TABLE 2 | Level of impurity for genus and family level clusters created by USEARCH and VSEARCH compared with the TIC approach for the LTP dataset.

Tool Species Mixed genera (percentage) Mixed families (percentage)

USEARCH 6,668 299 (08.20) 115 (11.50)
VSEARCH 5,817 179 (05.84) 83 (08.80)
TIC_Soft_VSEARCH 5,824 0 0
TIC_Soft_USEARCH 6,315 0 0
TIC_Hard_VSEARCH 5,839 0 0
TIC_Hard_USEARCH 6,371 0 0

Impurity was calculated as the number of genera/families containing LTP sequences with conflicting taxonomic backgrounds. Both naive clustering tools result in more than 5% of genera
and 8% of families having impure composition.

FIGURE 7 | Comparison of execution times for VSEARCH, USEARCH, and TIC running with each as an underlying tool respectively. Although slower, TIC is
comparable with either tool regardless of the pruning method.
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in similar sOTU numbers (≈ 1380; Table 3). However, 78 and 83
out of the predicted sOTUs created by USEARCH and
VSEARCH, respectively, contain zOTUs with non-matching
taxonomic assignment, strongly suggesting impure clusters.
Moreover, 656 and 694 sOTUs created by USEARCH and
VSEARCH respectively, have incomplete taxonomic
assignments when we follow the old paradigm of clustering
first and assign taxonomy later. For instance, 153 and 150
sOTUs produced by USEARCH and VSEARCH, respectively,
have not been assigned to any family, while 503 and 544 sOTUs,
respectively, have family classification only, but were not assigned
to a genus (Table 3).

In contrast, TIC organized unclassified sOTUs in many cases
within distinct gOTUs of a given family. Such unclassified sOTUs
would otherwise be collectively treated as unknowns or even
discarded. Similarly, for four taxonomic orders containing
sOTUs with unknown family assignments, TIC stratified the
sequences in appropriate fOTUs, further enhancing the
insights into the community’s structure of this dataset.

3.2.2 Diversity Showcase
For testing about diversity outcomes when applying TIC, the used
dataset contains only sequences within the Bifidobacteriaceae
family as identified by the RDP classifier (v.2.11 with training
dataset 16) included in the IMNGS database. We re-classified the
retrieved sequences using SINA and the latest online RDP
classifiers (training dataset 18), removing all sequences not
classified as Bifidobacteriaceae. After identifying the most
representative region in this dataset (i.e., SINA alignment
positions: 12,000–25,300, number of bases: 288), trimming and
dereplication, almost 75,000 unique denoised sequences
remained. The produced dataset was processed with TIC,
resulting in about 72,000 molecular species organized in about
1,100 gOTUs. The known genus Bifidobacterium has about
69,000 sOTUs, reflecting the total molecular species diversity.
The rest of the nine described genera from the Bifidobacteriaceae
have 2,876 sOTUs, with an average of 320 sOTUs per genus
(Figure 8A). The 1,134 remaining novel gOTUs contain only a
single sOTU (Figure 8C). Comparing TIC to the other naive
clustering algorithms shows again an inflation of the numbers of
species and genera cluster formed (Table 4). Furthermore, both
similarity-based tools separated the Bifidobacteriaceae sequences
into 1000s of new families, while TIC kept them as one family.

About half of the discovered gOTUS (1.1 k) incorporate
sequences originating solely from bovine samples, with only
13 gOTUs (which include most of the already described
genera) containing sequences from diverse origins. The other

half of the gOTUs consist exclusively of sequences of non-bovine
origin (Figure 8B), including the genera Bombiscardovia,
Scardovia, and Gardnerella that were not found in any of the
bovine samples used in our analysis.

4 DISCUSSION

4.1 Amplicon Studies Integration Is
Problematic due to Partially Overlapping
Targeted Regions
Selection of different hypervariable regions for each amplicon-
based experiment inevitably results in different primer sets used
in different studies (Schloss et al., 2011), (Liu et al., 2008). The
absence of a consensus (Abellan-Schneyder et al., 2021) of the
scientific community on which region should be targeted for a
given purpose further complicates this issue (Li et al., 2014),
(Dassi et al., 2014). Such diverse primer designs prohibit the
effortless integration of amplicon studies even in the absence of
other experimental differences. In such cases, the suggested
procedure is to identify a common region across studies, when
such a region exists, and trim all sequences accordingly
(Lagkouvardos et al., 2016). The proposed TIC pipeline
follows this idea by using the SINA aligner. Extracting the
region of overlap for different studies and collapsing gaps
(which are inserted otherwise for better alignments) makes the
sequences compatible and allows us to analyze samples processed
with different, but overlapping V-regions together. Currently, the
selection of the common region is performed by manual
inspection, but an automated procedure is in development.

4.2 Naive Classification Tends to Produce
Impure Clusters
Naive clustering tools are based solely on sequence similarity in
creating groups. In contrast, TIC enhances the clustering process
by utilizing the taxonomic information of each sequence acquired
beforehand. The metrics tested here, clustering purity, ARI, and
NMI, show that TIC outperforms both USEARCH and VSEACH
(Table 4).

Fixed similarity levels cutoffs used for clustering will not
always produce clusters that correspond to valid taxonomic
paths (Edgar, 2018), (Schloss and Westcott, 2011), (White
et al., 2010), (Huse et al., 2010). New approaches to clustering
have been proposed, based on machine learning and other
methods, but they have not yet seen widespread adaptations

TABLE 3 | Comparison of TIC with naïve clustering approaches on microbial amplicon data from mice.

Tool Predicted SOTUs No genus assigned No family assigned

USEARCH 1,378 656 153
VSEARCH 1,380 694 150
TIC-Pipeline 1,279 — —

Nearly 700 sOTUs produced by naïve de novo clustering have the missing genus-level classification, and around 150 of those could not be assigned to a known family. The TIC organizes
those sequences to 356 novel gOTUs and introduces 16 novel fOTUs.
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(James et al., 2018) (Eren et al., 2015), (Navlakha et al., 2010),
(Preheim et al., 2013), (Mahé et al., 2014). The accuracy of
similarity-based tools can be improved by introducing clade
specific similarity cutoffs. For such an approach, phylogenetic
distances of all described taxa could be used to generate clade-
specific similarity limits reflecting the average distance of
taxonomic units (e.g., average distances among sequences from
all genera within a family to set the genus similarity cutoff for that
family). These limits should be further refined based on the
selected region of the 16S rRNA gene used in each study.

In any case, all tools tested struggle mapping sequences to the
underlining taxonomic delineation for species-level clusters. The
main reason is that taxonomic nomenclature, especially at the
species level, is not necessarily reflected in adequate differences in
the 16S rRNA gene. Instead, functional characteristics,
phenotypes, or pathogenicity differences of the bacteria are
used to designate species. A well-known example is the
Escherichia-Shigella clade, with otherwise almost identical 16S
rRNA genes, but even different genus names. Other such
examples exist. Thus, since classifiers based on 16S rRNA
cannot (yet) assign taxonomy up to the species level, TIC
cannot overcome the absence of this information in the
molecular species-level prediction. In any case, all classification

tools finally rely on reference databases that affect their
performance. That is why the usage of the latest and most
comprehensive iteration is the recommended practice.

Naive similarity-based clustering tools’ results are affected
only by their underlying algorithm regardless of other
available information. In contrast, TIC’s performance is bound
to the completeness of the classifier-provided taxonomic
information. Already with the current level of knowledge
extractable from commonly used classifiers, TIC outperforms
naive clustering tools despite some novel sequences existing in
most studies. Furthermore, as the classifiers improve in their
capacity to translate sequence signatures to finer taxonomic
classifications, TIC-produced clusters will also be affected and
improved in terms of purity and quality.

4.3 Evaluation of Taxonomy Informed
Clustering in Single Amplicon Studies
There has been a growing tendency to abandon “traditional”
OTUs based pipelines due to their problems in clusters purity,
reproducibility, and interoperability in favor of denoised
sequences. Denoised sequences are called with different names
depending on the tool used (e.g., ASVs, zOTUs). Although there

FIGURE 8 |Overview of the environmental origins of theBifidobacteriaceae sequences grouped in gOTUs. (A)Rank order of 10most diverse gOTUs, differentiated
by the origins of their constituent sOTUs. Bifidobacterium is by far the most diverse genus of this family. (B)High niche specificity of Bifidobacteriaceae gOTUs contained
within the bovine samples. (C) Pie chart indicating the size of gOTUs created by TIC from all available sequences classified as belonging to the Bifidobacteriaceae family
extracted from IMNGS.

TABLE 4 | Diversity estimations among the three tools for the Bifidobacteriaceae sequences extracted from IMNGS.

Tool Species number (k) Genera number (k) Families number

USEARCH 62 35 2.8 k
VSEARCH 52 28 3.5 k
TIC-Pipeline 52 1.1 1

Denoised sequences were clustered with the three tools. Using VSEARCH for within branch clustering, The TIC produces the most conservative results and should be used as a baseline.
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are clear benefits in such pipelines using denoised sequences,
limiting processing to the molecular strain level also is often
problematic. To the extreme, a strain can be any single bacterium
differing by a single mutation across its genome, effectively
accounting for nearly as many strains as individual bacteria in
a sample. However, commonly “strains” are viewed as relatives
belonging to a given species and differing in few to several
phenotypic characteristics. In any case, strains are not well
defined, especially when derived by molecular sequences.
Sequence fragments of the 16S rRNA gene of, e.g., about 300
bases may be identical and, therefore, different strains are
assigned to one amplicon variant, although originating from
several. Increasing the length of the fragment, e.g., by different
sequencing technologies, may reveal an increased number of
strains/variants for the same sample. Therefore, alpha-diversity
measures based on denoised sequences of different lengths offer a
non-comparable sample diversity measure only. Common OTU
clustering of 16S rRNA genes to a fixed similarity cutoff for
accommodating molecular species is more defined, stable across
sequencing lengths and technologies and, reflects a more
meaningful ecological entity. However, other problems with
OTUs, as mentioned above, exist. Concerning, beta-diversity
measures similar problems arise. For instance, methods like
Jaccard and Bray-Curtis do not consider the similarity
(i.e., taxonomy) among the different strains in a sample and,
therefore, tend to inflate the distances across microbial profiles
between samples. Finally, it defeats its purpose when studies
perform strain-level processing at first, but use the binned family
abundances or even higher taxonomies for their comparisons. In
contrast, TIC offers an incremental, structured dissection of the
sequencing outputs from zOTUs to sOTUs, and then proceeds to
gOTUs and fOTUs. Since the taxonomic placement of the
sequence is clear, exploring the different hierarchical levels is
easy depending on the question. For instance, the test run using
real amplicon data showed that multiple well differentiated
fOTUs and gOTUs were revealed. These would otherwise be
collectively treated as unknowns and not contribute to
understanding a sample’s or experiment’s ecology. Clearly, the
refined taxonomic classification of every sequence assists
downstream comparisons among higher taxonomic levels and
reveal differential patterns across yet undescribed groups. Since
taxonomy-informed clustering always results in purer clusters
and more informative outcomes, we strongly recommend
integrating tools like TIC in future amplicon analysis pipelines.

4.4 Diversity Analysis of Bifidobacteriaceae
The Bifidobacteriaceae family has attracted much interest due to
its mostly positive effects on humans and other mammals.
Microbes of this family colonize the infant gut, aiding in
nutrient absorption (Turroni et al., 2011) and can act as
probiotics with beneficial effects in patients with irritable
bowel syndrome (Yuan et al., 2017) and other intestinal
diseases (Matsuoka et al., 2018). This family is currently
composed of 10 genera containing 124 valid species in
taxonomic nomenclature. Specifically, the genus
Bifidobacterium covers most of the family’s diversity with
105 species, representing the most diverse genus of the

Bifidobacteriaceae. This genus is most frequently associated
with the gastrointestinal tract of humans (Scardovi and
Trovatelli, 1974). However, molecular evidence has shown
the presence of Bifidobacterium in other niches beyond the
mammalian gut (Watanabe et al., 2009), (Dong et al., 2000).
Species within the Bifidobacteriaceae show varying degrees of
ecological adaptation with few cosmopolitan taxa within an
otherwise specialized majority. This is due to the intense
selective pressure for acquiring and retaining genes
responsible for utilizing various carbohydrates to compete in
their respective ecological niches (Milani et al., 2014), (Milani
et al., 2015).

Our findings indicate an even larger Bifidobacterium genus,
followed by also prolific, but less known genera and
numerous novel candidate genera. Interestingly, the
distribution of the novel genera and species detected here
by molecular data seems to follow the distribution of
currently known and described species within the
recognized genera (normalized chi-square p-value: 0.12). It
is safe to assume that part of this discrepancy in species
numbers (i.e., known vs unknown) is attributed to uneven
sampling and isolation efforts devoted to human and
mammalian gut environments in general, which the genus
Bifidobacterium seems to dominate. Nevertheless, the
observed pattern is so pronounced that it calls for further
research to unravel the ecological constraints that dictate this
massive differentiation of Bifidobacterium and the modes of
persistence and dispersal of this vital family of bacteria in
contrast to the other genera in this family.

5 CONCLUSION AND FUTURE WORK

The TIC pipeline is a modular set of tools that facilitate fast and
easy analysis of microbial data to produce the data files most
commonly used in microbial ecology. In the present manuscript,
we demonstrate the advantages of reversing the current practice
of de novo sequence clustering followed by taxonomic
classification. In contrast, taxonomically placed sequences
allow utilizing the classifier’s information in guided clustering
and this approach results in higher cluster quality and purity, and
allows proper placing of yet unassigned sequences in the
taxonomy.

Currently, the TIC pipeline will soon be integrated in online
analytical services while further simplifying the technical
requirements for users. New features and outputs, such as
making the TIC pipeline available to distributed systems,
enhanced graphical representations, and other features, which
can be requested by the community, will be added.
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MIntO: A Modular and Scalable
Pipeline For Microbiome
Metagenomic andMetatranscriptomic
Data Integration
Carmen Saenz, Eleonora Nigro, Vithiagaran Gunalan and Manimozhiyan Arumugam*

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of
Copenhagen, Copenhagen, Denmark

Omics technologies have revolutionized microbiome research allowing the
characterization of complex microbial communities in different biomes without requiring
their cultivation. As a consequence, there has been a great increase in the generation of
omics data from metagenomes and metatranscriptomes. However, pre-processing and
analysis of these data have been limited by the availability of computational resources,
bioinformatics expertise and standardized computational workflows to obtain consistent
results that are comparable across different studies. Here, we introduce MIntO
(Microbiome Integrated meta-Omics), a highly versatile pipeline that integrates
metagenomic and metatranscriptomic data in a scalable way. The distinctive feature of
this pipeline is the computation of gene expression profile through integrating
metagenomic and metatranscriptomic data taking into account the community
turnover and gene expression variations to disentangle the mechanisms that shape the
metatranscriptome across time and between conditions. The modular design of MIntO
enables users to run the pipeline using three available modes based on the input data
and the experimental design, including de novo assembly leading to metagenome-
assembled genomes. The integrated pipeline will be relevant to provide unique
biochemical insights into microbial ecology by linking functions to retrieved genomes
and to examine gene expression variation. Functional characterization of community
members will be crucial to increase our knowledge of the microbiome’s contribution to
human health and environment. MIntO v1.0.1 is available at https://github.com/
arumugamlab/MIntO.

Keywords: omics integration, metagenomic, metatranscriptomic, pipeline, gene expression, community turnover,
microbial ecology, microbiome

INTRODUCTION

The human microbiome is a complex congregation of microbes comprising trillions of microbial
cells present in our bodies (Bashan et al., 2016). Microbe-microbe and microbe-host interactions
confer a variety of physiological benefits to the hosts and impact their susceptibility to disease. For
instance, the microbial niche can provide metabolic functions different from the host genome, most
of which are encoded by genes that have not yet been discovered (Nicholson et al., 2012; Donia and
Fischbach, 2015).
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Studying these microbial communities is a challenging task,
which has recently been made easier by high-throughput
sequencing approaches which generate omics data such as
metagenomes and metatranscriptomes. These omics methods
have revolutionized microbiome research by allowing the
characterization of complex microbial communities in
different biomes without requiring their cultivation.
Metagenomic data enables the genomic and taxonomic
characterization of microbial community composition and,
depending on the sequencing strategy employed, can allow the
recovery of Metagenome-Assembled Genomes (MAGs)
(Almeida et al., 2019; Stewart et al., 2019; Saheb Kashaf et al.,
2022). However, it can only unravel the functional potential in a
sample (Quince et al., 2017). In contrast, metatranscriptomic data
identifies the pool of genes that are transcribed under a specific
condition, which gives a more accurate picture of the processes
and molecular activity occurring in the microbial community
(Satinsky et al., 2014; Salazar et al., 2019). Hence, by analyzing
both metagenomes and metatranscriptomes, we can have
deeper insights into the functional potential as well as the
actual activity of microbial communities (Wang et al., 2020;
Tláskal et al., 2021).

In recent years, the application of high-throughput sequencing
approaches in microbiome research has greatly increased
together with the generation of large amounts of data (Qin
et al., 2010; Human Microbiome Project Consortium, 2012;
Pasolli et al., 2019). As a consequence, the pre-processing and
analysis of such data have been limited by the availability of
computational resources and bioinformatics expertise. In
addition, there is a lack of standardized protocols to handle
and analyze multi-omics data sets in a more consistent
manner, making the comparisons between different studies
and findings more challenging. Standardizing the way omics
data are handled ensures a degree of consistency of the results
across different studies. Furthermore, making the workflows
semi-automatic will allow the analysis of complex microbial
communities by users with limited bioinformatic skills.

Standard metagenomic and metatranscriptomic approaches
entail 1) read curation, 2) de novo assembly and/or co-assembly,
3) binning, 4) gene prediction, 5) annotation of predicted genes at
taxonomic and functional level and 6) quantification of gene
abundances and transcripts. However, most of the computational
pipelines developed so far can only analyze metagenomic or
metatranscriptomic data individually and only few, reported in

TABLE 1 | Features of pipelines that handle metagenomic and metatranscriptomic data in comparison to MIntO: Steps, capacities and approaches.

FMAP Kim et al.
(2016);

Salazar et al.
(2019)

IMP Narayanasamy
et al. (2016)

MOSCA
Sequeira

et al. (2019)

SqueezeMeta
Tamames

and
Puente-Sánchez,

(2018)

MUFFIN Van
Damme et al.

(2021)

MIntO (2021)

data source short reads paired-end short
reads

paired-end short
reads

paired-end short
reads

paired-end Illumina
reads (short reads)
and Nanopore-based
reads (long reads)

paired-end Illumina
reads (short reads)
and Nanopore-based
reads (long reads)

quality and read length
control

only quality control Yes Yes Yes Yes Yes

host genome removal only human genome
removal

Yes No No No Yes

rRNA removal No Yes Yes No No Yes
taxonomy assignment No Yes Yes Yes Yes Yes
de novo assembly/co-
assembly

No Yes Yes Yes combining short and
long reads

optionally, include long
reads

binning No Yes Yes Yes Yes Yes
gene prediction Yes Yes Yes Yes Yes Yes
function annotation Yes Yes Yes Yes Yes Yes
alignment to reference
database/genomes

alignment to reference
database

Yes No No No Yes

alignment to retrieved
MAGs

No Yes Yes Yes Yes Yes

normalization RPKM RPKM TMM, RLE RPKM TPM TPM, Marker genes
visualization Yes Yes Yes No Yes Yes
local installation Yes Yes Yes Yes Yes Yes
gene expression
computation

No No No No No Yes

differential analysis/
Downstream analysis

differentially-abundant
genes analysis

No differential gene
expression
analysis

No No No

Software
dependencies installed
by the user before using
the pipeline

Perl, R, Statistics::R,
DIAMOND or
USEARCH, Bio::DB::
Taxonomy, XML::
LibXML

Python3, pip, impy,
Conda, Docker/
Singularity

MOSGUITO, and
Conda, or Docker/
Singularity

Conda Nextflow and Conda
or Docker/Singularity

FetchMGs, Conda
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Table 1, can handle both meta-omics data (Kim et al., 2016;
Narayanasamy et al., 2016; Tamames and Puente-Sánchez, 2018;
Salazar et al., 2019; Sequeira et al., 2019; Van Damme et al., 2021).
Furthermore, only one of them (Van Damme et al., 2021) can
combine two sequencing technologies (Nanopore or long-
sequences and Illumina or short-sequences) to recover MAGs.

Overall, the pipelines shown inTable 1 integrate metagenomic
and metatranscriptomic data by comparing the abundances of

genes and their respective transcripts. To the best of our
knowledge, none of these (Table 1) considers the community
composition and gene expression alterations as the underlying
processes that shape the community transcript levels (Salazar
et al., 2019) when integrating metagenomic and
metatranscriptomic data. However, perturbations of the
transcript levels can be a consequence of two factors: the
variation in the expression of genes encoded by the

FIGURE 1 | Schematic overview of metagenomic and metatranscriptomic integration to quantify gene expression levels. (A) Three modes are available based on
the input data and the experiment design: the genome-based assembly-dependent mode (1, in dark purple) recovers MAGs from metagenomic samples, while the
genome-based assembly-free (2, in dark green) and the gene-catalog-based assembly-free (3, in red) modes use publicly available genomes or a gene catalog,
respectively, provided by the user. In the three modes, the pipeline workflow includes quality control and preprocessing; assembly-free taxonomy profiling of high-
quality metagenomic reads (in orange) by identifying phylogenetic markers (coloured); alignment of the high-quality reads to the selected reference and normalization;
integration: gene and functional profiling; and visualization and reporting. The gene prediction and functional annotation step is run using the recoveredMAGs (mode 1) or
publicly available genomes (mode 2). (B) The variation of gene expression depends on the abundance of transcripts from the organisms in the community and/or by
changes in the abundance of these members and their related genes (community turnover).
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organisms in the community, and/or by changes in the
abundance of these members and their related genes in a
process known as community turnover (Satinsky et al., 2014;
Salazar et al., 2019). Hence, the integration of abundances of
genes and the respective transcripts represents the gene
expression profiles, which are the relative amount of
transcripts per gene in a specific time (Salazar et al., 2019).
Additionally, being able to recover genomes from metagenomic
raw reads is crucial for an optimal computation of gene
expression levels and provides a more accurate ecological
description of the community’s functioning (Tamames and
Puente-Sánchez, 2018).

Here, we introduce MIntO (Microbiome Integrated meta-
Omics), a pipeline that includes state of the art tools to
integrate microbiome metagenomic and metatranscriptomic
data in a scalable way for read pre-processing, species
composition profiling, MAG generation, gene and function
expression profiling, as well as the visualization of the results
and comparison of multiple samples. Optionally, MIntO can
combine long-read sequences for more contiguous assemblies
and short-read sequences for higher accuracy, which helps
recover more accurate as well as complete MAGs (Bertrand
et al., 2019; Overholt et al., 2020; Brown et al., 2021).
Depending on the data availability and research question, the
pipeline can be run in three modes: (A) genome-based assembly-
dependent, (B) genome-based assembly-free and (C) gene-catalog-
based assembly-free (Figure 1A).

MIntO enables the study of microbial ecology by linking
functions to genomes and environmental context, helping to
understand the dynamics of the molecular activities captured
by the whole community-level changes in composition and gene
expression (Figure 1B).

METHODS

MIntO v1.0.1 has been developed using R software (v4.0.3) (The
R Project for Statistical Computing, 2021), Python 3 (Van
Rossum and Drake, 2009) and Perl (Wall, Christiansen and
Orwant, 2000) programming languages, and has been tested
on a 64-bit Linux server with 2 × AMD EPYC 7742 64-Core
Processors and 2 terabytes of memory.

Conda Environment and Singularity
Containers
MIntO has been designed to use publicly available software that
are available as conda environments (Anaconda Inc, 2020) or
singularity containers (Kurtzer, Sochat and Bauer, 2017) to
minimize the installation of individual software packages by
the user. All software dependencies are tied to specific versions
in conda or singularity containers to ensure reproducibility and
record-keeping of versions of the different libraries. It is
encapsulated within a user-friendly framework using
Snakemake (Mölder, 2021) to facilitate the scalability of the
pipeline by optimizing the number of parallel processes from a
single-core workstation to compute clusters. This pipeline enables

consistency of the results and straightforward application by
users with basic informatics skills to analyze complex omics data.

Pipeline Inputs
MIntO requires a configuration file as an input indicating the
metagenomic (metaG) and/or metatranscriptomic (metaT)
sample names and the corresponding raw FASTQ files
location together with the path of the pipeline dependencies,
currently only FetchMGs (Kultima et al., 2012). MIntO generates
the necessary directories and outputs the required files for further
analysis, including the configuration files needed in each step of
the pipeline, but they should be filled out by the user. Optionally,
the required databases can be downloaded and installed by
MIntO.

In addition, if MIntO is run under genome-based assembly-free
mode, the user should provide input genomes as FASTA files,
genome features as GFF files, and amino acid sequences of
protein-coding genes as FASTA files, while in the case of gene-
catalog based assembly-freemode the user should provide a multi
FASTA file with the nucleotide sequences of the genes, such as the
one published with the Integrated Gene Catalog (IGC) (Li et al.,
2014) (Figure 1A, user-provided input).

Pre-Processing of Metagenomic and
Metatranscriptomic Short Reads
MIntO pre-processes metagenomic and metatranscriptomic
short reads independently of each other. The pre-processing
step can be subdivided into three different steps: quality and
read length, host genome and ribosomal RNA (rRNA) filtering.

1. Quality and read length filtering.
We use Trimmomatic v0.39 (Bolger, Lohse and Usadel, 2014)

to first remove sequencing adapters and low quality bases from
raw reads and a second time to remove reads that are too short.

a. In the first step, the option TRAILING:5 LEADING:5
SLIDINGWINDOW:4:20 ILLUMINACLIP:{adapters.fa}:2:30:10
is used if a sequence adapters file is provided by the user
(trimmomatic_adaptors = <PathTo>/adapters.fa). Otherwise, a
custom script retrieves the adapters by selecting the most
abundant index in the first 10,000 headers of the raw FASTQ
files (trimmomatic_adaptors = False). The user can decide to skip
this step if adapter sequences have already been removed
(trimmomatic_adaptors = Skip).

b. For the second filtering, the MINLEN parameter in
Trimmomatic is used to remove reads that are too short.
This cutoff is estimated as the maximum length above which a
predefined percentage of the reads from the previous step are
retained (default parameter is 95% of the reads,
perc_remaining_reads: 95). If the estimated read length
cutoff is below 50bp, trimmomatic will use 50bp as the
minimum sequence length (Supplementary Figure S3).

2. Host genome filtering.
In the second step to remove putative host-derived

sequences, the filtered read-pairs are aligned to a reference

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 8469224

Saenz et al. MIntO: Microbiome Integrated Meta-Omics

87

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


genome given by the user. The BWA aligner (Vasimuddin
et al., 2019) version 2.2.1 is used to generate the index (bwa-
mem2 index) and to map the read-pairs to the host genome
(bwa-mem2 mem -a). Read-pairs aligned to this reference
genome are identified by msamtools v1.1.0 (Arumugam,
2022) (filter -S -l 30) and excluded from the FASTQ files by
mseqtools (https://github.com/arumugamlab/mseqtools)
version 0.9.1, even if only one end is mapped (subset
--exclude --paired --list {listfile}).

3. Ribosomal RNA filtering.
Prior to sequencing, it is recommended to deplete the rRNA in

the metatranscriptomic samples. Nevertheless, it is common that
metatranscriptomic sequence data still contains rRNA after such
a depletion step. MIntO uses SortMeRNA v4.3.4 (Kopylova, Noé
and Touzet, 2012) to map the metatranscriptomic reads to an
rRNA sequence database consisting prokaryotic (16S and 23S)
and eukaryotic (18S and 28S) rRNA sequences (--paired_in
--fastx --blast 1 --sam --other --ref). Reads classified as rRNA
by SortMeRNA are excluded from the FASTQ files using
mseqtools (subset --exclude --paired --list {listfile}).

The remaining high-quality filtered (host-free for
metagenomic and host- and rRNA-free for
metatranscriptomic) reads are then passed to the sequence
analysis and post processing steps.

Assembly-Free Taxonomic Profiling From
High-Quality Filtered Reads
High-quality filtered reads can be profiled by the default program,
MetaPhlAn3 v3.0.13 (Beghini et al., 2021) (--input_type fastq
--bowtie2out -t rel_ab_w_read_stats). Alternatively, users can
choose to run mOTUs2 v2.1.1 (Milanese et al., 2019) in two
different modes to generate a taxonomic profile as relative
abundance (taxa_profile: motus_rel, profile -u -q) or as
counts (taxa_profile: motus_raw, profile -c -u -q). If the latter
one is chosen, MIntO estimates the relative abundance of the
taxonomic profile. To explore the similarities and dissimilarities
of the data, the relative abundance of the species composition is
used to generate two visual outputs: 1) the 15 most abundant
genera across the samples, and 2) a principal coordinate analysis
(PCoA) using Bray-Curtis distance. These visualizations
provide users with a general idea of the microbial
composition in the different samples. For a more detailed
downstream analysis, MIntO outputs the combined table of
the taxonomy profiles of all samples in CSV format and as a
phyloseq object (McMurdie and Holmes, 2013), the latter
including the abundance of the species, taxonomic
classification and metadata tables.

Retrieving MAGs From Metagenomic
High-Quality Host-Free Reads
MIntO’s approach to reconstruct MAGs from high-quality host-
free reads exploits metagenomic assembly of single samples as
well as co-assembly of pre-defined sample groups followed by
binning preparation and contig binning.

1. Assembly:

a. Long-read assembly: If available, Nanopore reads are
assembled individually using metaFlye assembler
(Kolmogorov et al., 2020) v2.9 (--nano-raw <FASTQ>
--meta --min-overlap 3000 --iterations 3)

b. Short-read assembly: MetaSPAdes assembler v3.15.3 (Nurk
et al., 2017) is used to correct paired-end short reads from
individual samples (--only-error-correction, the default
--phred-offset is auto) followed by their single-assembly
(--meta --only-assembler, the default kmer option is k =
21,33,55,77,99,127).

c. Hybrid assembly: Optionally, we can combine
metagenomic Nanopore-based long reads and Illumina
paired-end short reads to perform hybrid assembly by
MetaSPAdes using the parameters as step (b) with an
additional --nanopore option.

d. Co-assembly: MEGAHIT (Li et al., 2015) v1.2.9 is run with
two different parameters (--meta-sensitive and --meta-large)
per co-assembly, where by default all samples used in the
single-assembly are assembled together. Users can also define
their own subsets of samples that should be co-assembled in
the configuration file.

2. Binning preparation:
Contigs longer than 2,500 bp from all the combinations of

assemblies above are combined together in preparation for
binning. Metagenomic reads from individual short-read
metagenomes are first mapped to this set of contigs using BWA
aligner (Vasimuddin et al., 2019) v2.2.1 (bwa-mem2 mem -a) in
paired-end mode. Sequencing depth of the contigs in each sample
is estimated by jgi_summarize_bam_contig_depths program
included in MetaBAT2 (Kang et al., 2019).

3. Contig binning:
Contig binning is then performed by executing VAMB

(Nissen et al., 2021), a binner using an unsupervised deep
learning approach in the form of variational autoencoders
that can be run with or without GPUs. GPU use is highly
recommended if available in order to speed up the binning
process, especially if working with a large number of
samples. By default, MIntO runs VAMB four times, each
time with a different set of parameters -l 16 -n 256,256; -l 24 -
n 384,384; -l 32 -n 512,512; and -l 40 -n 768,768. However the
user(s) can choose to perform just one run or a set of runs of
their choice.

4. Non-redundant MAGs:
Bins generated by VAMB are split into MAGs derived from

individual metagenomic samples. Only the MAGs that pass
quality control using CheckM (Parks et al., 2015)
(completeness > 90% and contamination < 5%) are kept. The
MAGs are then subjected to cluster analysis performed with
CoverM v0.6.0 (https://github.com/wwood/CoverM#usage,
module cluster) in order to dereplicate them at 99% average
nucleotide identity (ANI) (Jain et al., 2018). For each genome, a
score is retrieved with the formula below.
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assembly score � log10(longest contig length/#contigs) + log10(N50/L50)
genome score � completeness − 2pcontamination

final score � 0.1pgenome score + assembly score

Then for each cluster the genome with the highest score is
chosen, generating a unique set of non-redundant MAGs which
will be used in the next step.

Taxonomic Assignment of MAGs
Once the unique set ofMAGs is retrieved, taxonomy is assigned using
the module phylophlan_metagenomic in PhyloPhlAn3 (Asnicar et al.,
2020). MIntO uses SGB.Jul20 or SGB.Dec20 databases depending on
user’s choice (--database) which will be automatically downloaded in
the program folder if no other location is specified. Additionally, if the
users have previously downloaded one of the PhyloPhlAn3 databases
of their interest, they can use that by giving their path.

Genome Annotation on the Retrieved MAGs
First, Prokka (Seemann, 2014) (version 1.14) (with options
--addgenes --centre X --compliant) is used to identify and
annotate the genes from the recovered MAGs, retrieving the
corresponding nucleotide and amino acid sequences.
Next, predicted genes are annotated with several databases:

• eggNOG database (Huerta-Cepas et al., 2019) (COG ids)
with eggNOG-mapper v2.1.6 (Huerta-Cepas et al., 2017;
Cantalapiedra et al., 2021) (--no_annot --no_file_comments
--report_no_hits --override -m diamond and
--annotate_hits_table -m no_search --no_file_comments
--override, emapperdb v5.0.2).

• KEGG functions (Kanehisa andGoto, 2000) (-k -p prokaryote.hal
--create-alignment -f mapper, Kofam_scan (Aramaki et al., 2020)
version 1.3.0 and ko_list from November 2021).

• Carbohydrate-active enzyme database [CAZyme, (Huang
et al., 2018; Zhang et al., 2018)] with dbCAN annotation tool
v2.0.11 (Zhang et al., 2018) (run_dbcan.py protein).

• Pfam database (Mistry et al., 2021) with eggNOG-mapper
(Huerta-Cepas et al., 2017; Cantalapiedra et al., 2021).

These databases are installed locally by the user. The pipeline
integrates the different gene annotations: Gene ID, eggNOG,
KEGG_ko, KEGG_Pathway, KEGG_Module, dbCAN.mod,
dbCAN.enzclass and Pfam.

Functional Profiling
The high-quality filtered (host-free for metagenomic and host- and
rRNA-free for metatranscriptomic) reads are used to generate the
functional profiles following four steps: metagenomic and
metatranscriptomic read alignments, mappability ratio, read count
normalization, and gene and function expression computation.

Metagenomic and Metatranscriptomic Reads
Alignment
To estimate gene and transcript abundances, the high-quality
filtered reads can be aligned to 1) genomes such as the recovered

MAGs or publicly available genomes (genome-based) or 2) a gene
catalog (gene-based), depending on the mode that the pipeline
is run.

1. Genome-based alignment: The retrieved MAGs or the
reference genomes are concatenated and indexed using
the BWA aligner (Vasimuddin et al., 2019) v2.2.1 (bwa-
mem2 index). Mapping reads to the reference (bwa-mem2
mem -a) is followed by highest-scoring alignment(s)
filtering for each read with msamtools v1.1.0
(Arumugam, 2022) (filter -S -b -l 50 -p 95 -z 80 --
besthit). The filtered BAM files are indexed by samtools
v1.14 (Danecek et al., 2021) (sort --output-fmt = BAM;
index) and the GFF file with the genome features is used
to quantify the raw number of aligned reads to each gene by
bedtools multicov v2.29.2 (Quinlan and Hall, 2010).

2. Gene-based alignment: As an alternative, the gene
catalog given by the user is indexed using bwa-mem2
index [BWA aligner v2.2.1 (Vasimuddin et al., 2019)].
The aligned reads (bwa-mem2 mem -a) are filtered for
highest-scoring alignment(s) per read with msamtools
v1.1.0 (Arumugam, 2022) (filter -S -b -l 50 -p 95 -z 80 --
besthit).

Optionally, the user can filter the aligned reads by establishing
the minimum number of mapped reads to a gene, using the
MIN_mapped_reads parameter. While the default value for
this parameter is 0, for metagenomes with sequencing depth
higher than 10 million paired-end reads, we recommend
setting this threshold at 10 mapped reads to a gene
(MIN_mapped_reads: 10), which is what we used for
IBDMDB dataset.

Mappability Ratio
In addition, to estimate how representative the gene or genome
databases are of the metagenomic and metatranscriptomic
samples, the filtered BAM files are used to calculate the
mappability ratio by msamtools v1.1.0 (Arumugam, 2022)
(profile --total {total_reads} --multi prop --unit all --nolen).
Here, we used the IGC (Li et al., 2014) and recovered MAGs
as references.

Read Count Normalization
Normalization of read counts makes possible the comparison
within or between different samples. Based on the users’ selection,
TPM (Transcripts Per Kilobase Million) or MGs (Marker Genes)
normalized gene and transcript abundance profiles are generated
from the metagenomic and metatranscriptomic read alignments,
respectively.

1. TPM normalization. Sequencing depth and gene length
are used to obtain the relative abundance of genes or
transcripts (Wagner, Kin and Lynch, 2012). The TPM
value of the gene i, TPM(i), is calculated by employing
the equation:
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TPM(i) � reads mapped to gene/gene length

sum(reads mapped to gene/gene length)
× 106

� ni/li
Σj(nj/lj) × 106

where ni is the number of reads mapped to the gene i, li is the
length of that gene and j iterates over all genes identified in the
sample.

2. MGs normalization. In a similar approach to Salazar et al.
study, but more customized to MAG-based analysis, the gene
or transcript abundances of a MAG are divided by the median
abundance of 10 universal single-copy phylogenetic MGs from
the corresponding MAG (Salazar et al., 2019). These MGs are
identified in each MAG by FetchMGs v1.2 (available at http://
motu-tool.org/fetchMG.html) as OGs: COG0012, COG0016,
COG0018, COG0172, COG0215, COG0495, COG0525,
COG0533, COG0541, and COG0552. In addition, these
MGs are constitutively expressed housekeeping genes across
many different conditions (Sunagawa et al., 2013; Milanese
et al., 2019; Salazar et al., 2019). Thus, the MGs-normalized
metagenomic and metatranscriptomic profiles can be
interpreted as the gene and transcript abundances in a
MAG relative to housekeeping MGs abundance and
transcript, respectively. The MGs value of the gene i,
MGs(i), is calculated by employing the equation:

MG(i) � reads mapped to gene/gene length

median 10MGs from a genome
× 106

� ni/li
M(MGs) × 106

where ni is the number of reads mapped to the gene i in the
gene’s MAG, li is the length of that gene and M(MGs) is the
median abundance of the 10 MGs from the gene’s genome.
When the reads are mapped to a gene database, msamtools
v1.1.0 (Arumugam, 2022) is used to normalize the number of
aligned reads per gene to TPM (profile --total {total_reads}
--multi prop --unit tpm). However, if the reads are mapped to a
set of MAGs or publicly available genome(s), the user can
choose to obtain TPM or MGs normalized abundances.

Computing Gene and Function Expression Profiles
The levels of gene expression are computed by the integration of
gene and transcript abundance profiles, which is, the relative
amount of RNA molecules per DNA copy of that gene (TPM
normalization):

gene expression � transcript abundance/gene copy number

Or gene expression in that MAG relative to housekeeping MGs
expression (MGs normalization):

MGs-normalized gene expression

� gene expression /medianMGs gene expression

Finally, functional profiles are obtained by grouping the genes
into functions.

Visualization
All the visualization outputs are generated in R software (v4.0.3)
(The R Project for Statistical Computing, 2021), using the
following packages: BiocManager (v1.30.16) (Morgan, 2021),
data.table (v1.14.2) (Dowle and Srinivasan, 2021), reshape2
(v1.4.4) (Wickham, 2007), phyloseq (v1.34.0) (McMurdie and
Holmes, 2013), tidyverse (v1.3.1) (Wickham et al., 2019), ggplot2
(v3.3.5) (Wickham, 2016), ggrepel (v0.9.1) (Wickham, 2007;
Slowikowski, 2021), dplyr (v1.0.7) (Wickham et al., 2021),
tidyr (v1.1.4) (Wickham and Girlich, 2021), stringr (v1.4.0),
rlang (v0.4.11) (Henry and Wickham, 2021), haven (v2.4.3)
(Wickham and Miller, 2021), vegan (v2.5-7) (Oksanen et al.,
2020), keggrest (v1.30.1) (Tenenbaum, 2017), and pfam.db
(v3.12.0). To have a better representation of the result, it is
recommended to provide a metadata table by including the file
path in the config file (METADATA) with sample ID, conditions
and sample alias columns. If no metadata are provided, the sample
IDs are used to generate the plots. However, the user can always use
MIntO outputs for further downstream analysis.

Data
Inflammatory Bowel Disease Multi’Omics Database
Samples
We used 91 human fecal metagenomes from the Inflammatory
Bowel Disease Multi’omics Database [IBDMDB, (Lloyd-Price
et al., 2019)]. The IBDMDB study provides matching Illumina
metagenomic and metatranscriptomic data. We selected six
participants diagnosed as non-IBD [P6018 (nIBD1), M2072
(nIBD2)]; Crohn’s disease [H4006 (CD1) and H4020 (CD2)];
and ulcerative colitis [H4019 (UC1) and H4035 (UC2)] that were
followed for 1 year each (Supplementary Table S1). Sample
H4019_20 was not included due to a parsing error. Sequence
data were retrieved from NCBI Short Read Archive under
BioProject identifier PRJNA398089.

Paired-End Illumina and Nanopore-Based
Metagenomic Data From Head and Neck Cancer
Patients
We used human fecal metagenomes from head and neck cancer
(HNC) patients (Wongsurawat et al., 2019), where samples were
sequenced using Illumina and Nanopore technologies. We
selected a subset of five patients: PatientHNC_03,
PatientHNC_05, PatientHNC_06, PatientHNC_08 and
PatientHNC_10. These were obtained from NCBI Short Read
Archive under the accession numbers SRR7947170, SRR7947175,
SRR7947177, SRR7947178, SRR7947179, SRR7947181,
SRR7947184, SRR7947185, SRR7947186 and SRR7947187.

Human Genome
During MIntO pre-processing, the human genome (build hg38)
was used to remove putative host-derived sequences (host
genome filtering step).

Implementation of the Pipeline
MIntO implementation and automation are achieved by
Snakemake (Mölder, 2021), a user-friendly framework that
facilitates the scalability of the pipeline by optimizing the
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number of parallel processes from a single-core workstation to
compute clusters. MIntO leverages singularity containers
(Kurtzer, Sochat and Bauer, 2017) and Conda environments
(Anaconda Inc, 2020) to ensure version control of the
different libraries and implements a pipeline connecting
several state of the art bioinformatic tools. In this way, MIntO
enables consistency of the results and straightforward application
by users with basic informatics skills to analyze complex omics
data. The only dependencies are FetchMGs and Conda.

RESULTS

MIntO can be run in three different modes, thanks to its modular
design, depending on the user’s preference and available data:
genome-based assembly-free, gene-catalog-based assembly-free
and genome-based assembly-dependent. For all the three
modes, users have to input FASTQ files from metagenomic
and/or metatranscriptomic paired-end raw short reads and
optionally, nanopore-based long reads, as well as a
configuration file indicating the metagenomic and/or
metatranscriptomic sample names and the corresponding
location of raw FASTQ files. In the genome-based assembly-
dependent mode, the given metagenomes are used to retrieve
MAGs, while in the two assembly-free modes, genome-based or
gene-catalog-based, the user also has to provide a set of reference
genomes or a gene-catalog database, respectively, to generate the
gene and functional profiles. These two options could be used
when the user is working with a defined community or when
there are not enough metagenomic samples to generate
representative MAGs. These three modalities are illustrated in
Figure 1A.

MIntO can be divided into seven major steps, which will be
discussed in the next paragraphs using our analysis of example
data (Figure 1A):

1. Quality control and pre-processing
2. Assembly-free taxonomy profiling
3. Recovery of MAGs and taxonomic annotation (only run in

genome-based assembly-dependent mode)
4. Gene prediction and functional annotation (only run in

genome-based modes)
5. Alignment and normalization
a. genome-based mode: recovered MAGs or publicly available

genomes
b. gene-based mode: gene catalog
6. Integration: Gene and functional profiling
7. Visualization and reporting

The third step is skipped if an assembly-free mode is selected,
and the fourth step is skipped when gene catalog-based assembly-
free mode is chosen (Figure 1A). An overview of the directories
generated can be seen in Supplementary Figure S1.

To illustrate the use of MIntO, a set of 91 human fecal
metagenomes from the Inflammatory Bowel Disease
Multi’omics Database (IBDMDB) was selected (Lloyd-Price
et al., 2019). These samples correspond to six participants

diagnosed as non-IBD (nIBD1 and nIBD2), Crohn’s disease,
(CD1 and CD2) and ulcerative colitis, (UC1 and UC2), which
were followed for 1 year each (Supplementary Figure S2,
Supplementary Table S1). The IBDMDB study provides
matching Illumina metagenomic and metatranscriptomic data.
The subset of samples used here correspond to 933.4 and 612
million read-pairs (2 × 101 bp) from metagenomic and
metatranscriptomic sequencing, respectively (mean 10.85
million read-pairs, ranging from 0.26 to 21.04 million for
metagenomic; mean 6.18 million read-pairs, ranging from 0.01
to 15.72 million for metatranscriptomic).

Here, we present the results from the genome-based assembly-
dependent and gene catalog-based assembly-freemodes, where we
used recovered MAGs and the Integrated Gene Catalog (IGC) (Li
et al., 2014), respectively, as reference to profile genes and
functions.

Quality Control and Pre-Processing
The IBDMDB dataset was already filtered by quality and
sequence adapters, therefore the first step in the pre-
processing of the 91 samples was skipped
(trimmomatic_adaptors = Skip, see Methods). We then used a
minimum read length cutoff of 53 bp for metagenomic and 54 bp
for metatranscriptomic to keep 95% of the longest sequences
using Trimmomatic (Bolger, Lohse and Usadel, 2014)
(Supplementary Figure S3).

Subsequently, putative host-derived sequences were removed
using the human genome (build hg38). In silico rRNA sequences
screening was exclusively applied to metatranscriptomic reads
using SortMeRNA (Kopylova, Noé and Touzet, 2012). This
resulted in a total number of 599.4 million high-quality read-
pairs for metagenomic and 910.9 million high-quality read-pairs
for metatranscriptomic data (Table 2, Supplementary
Figure S4).

Assembly-Free Taxonomy Profiling
Once the reads were pre-processed, high-quality reads were
profiled at species level using MetaPhlAn3 (Beghini et al.,
2021) (Figure 1A, assembly-free taxonomy profiling step). In
Figure 2A, we can see the temporal shifts and dynamics exhibited
by microbes over the course of 1 year and the difference of
microbial composition between the six participants focusing
on the 15 most abundant genera across the samples. In
general, the most predominant genera are Bacteroides,
Faecalibacterium and Roseburia. The constitution of a separate
cluster by samples from participant nIBD2 in Figure 2B cannot
be explained by the 15 most abundant genera across the samples
(Figure 2A), but it could be due to the difference in composition
of lower-abundance bacteria.

TABLE 2 | Median (minimum and maximum) of raw and high-quality million read-
pairs in the 91 human fecal microbiome samples from the IBDMDB.

metagenomic metatranscriptomic

Raw read-pairs (millions) 10.85 (10.15–21.04) 6.18 (6.65–15.72)
High quality read-pairs (millions) 10.56 (9.9–20.58) 6.04 (6.52–15.45)
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FIGURE 2 | Taxonomic profiles. (A) Relative abundance for the 91 samples for the 15 most abundant genera across the samples using MetaPhlAn3 (Beghini et al.,
2021). (B) Projection of the first two principal coordinates based on Bray–Curtis dissimilarity from the microbiome composition using MetaPhlAn3 (Beghini et al., 2021).
(C) Taxonomy tree representing the 131 SGBs taxonomies after running PhyloPhlAn3 (Asnicar et al., 2020) on the retrieved MAGs. The first six rings mark MAGs that
were retrieved in the 6 patients with the different conditions used in this work (nIBD, CD andUC), while the last ringmarks theMAGs obtained from co-assembly. (D)
Distribution of the SGBs in the 6 patients: 51 SGBs taxonomies were retrieved from just one sample, 13 from two samples, 3 from three samples, 2 from five samples and
1 in all the samples. The last bar represents the 61 taxonomies that were found only by having performed co-assembly.
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Recovery of MAGs and Taxonomic
Annotation
In parallel, the pre-processed reads underwent the assembly step
in the genome-based assembly-dependent mode (Figure 1A,
recovery of MAGs and taxonomic annotation step). As this
dataset consists of short-read metagenomes only, we used two
assembly approaches to recover high-quality scaffolds: 1)
assembly of each metagenome individually (single-assembly)
using MetaSPAdes assembler (Nurk et al., 2017) and 2)
assembly of all metagenomes together (co-assembly) using
MEGAHIT (Li et al., 2015) assembler. Genome bins were
generated from assembled scaffolds that were at least
2,500 bp long by mapping the 91 samples individually to
the scaffolds, calculating the sequence depth of each
scaffold in the 91 samples, and finally running VAMB
(Nissen et al., 2021) four times with different parameters
and GPU mode (see Methods).

After binning, 5,048 MAGs were retrieved from the 91
metagenomic samples. Using CheckM (Parks et al., 2015),
we identified high-quality (HQ) MAGs (completeness > 95%
and contamination < 5%) and kept 957 MAGs. We then
obtained unique high-quality MAGs when clustering the
HQ MAGs at 99% ANI distance (Jain et al., 2018) with
CoverM (https://github.com/wwood/CoverM#usage) and
choosing the best genome in a given cluster using a genome
quality score (see Methods). This de-replication process
resulted in 163 MAGs which constituted a set of non-
redundant genomes (available at 10.5281/zenodo.6360083).
These MAGs are useful to collectively explain the ecological
description and biodiversity in the samples, and to capture
sample-specific variation at functional and abundance level
without relying on publicly available reference genomes.
Additionally, working with a restricted number of genomes
is helpful to speed up the next steps of the pipeline.

The taxonomic annotation of the 163 MAGs was performed
by phylophlan_metagenomic module in PhyloPhlAn3 (Asnicar
et al., 2020), which also provides taxonomic lineage information
about the 10 nearest genomes in the PhyloPhlAn3 genome
database. Each MAG was assigned to a species-level genome
bin (SGB) if its closest genome in the database was within 5%
average nucleotide identity. This resulted in the 163 MAGs falling
into 131 SGBs (Figure 2C). In general, MAGs with a distance
higher than 5% to the closest genome in the database can be
considered as putative novel species (Manara et al., 2019; Pasolli
et al., 2019). However, we did not recover any MAGs from
putative novel species in this dataset.

By default, MIntO performs co-assembly, which although time
consuming, is an extremely important step. In fact, we obtained
the highest number of unique taxa from the co-assembled
samples compared to any single-sample assembly (Table 3).
Remarkably, 61 of the 131 taxonomies (~46%) could be
retrieved only by performing co-assembly (Figure 2D). With
single-sample assembly we still retrieved 31 (~23%) unique
taxonomies not covered by the co-assembled samples, of
which 13 (~10% of the total) are only found in one sample
(Figure 2C). This is helpful to better distinguish sample-specific
composition, as for example Akkermansia muciniphila SGB9228,
which is the second Akkermansiacae species by presence in the
human population (Karcher et al., 2021) can only be found in
patient CD1. These results are achievable only by performing
both single and co-assembly.

In addition, we performed our own benchmark to show that
combining long and short reads improves the assembly
contiguity. MIntO assembled paired-end metagenomes from
the gut microbiota of five patients with head and neck cancer
(Wongsurawat et al., 2019), which were generated by 1) Illumina-
only, or 2) Illumina and Nanopore sequencing platforms. The
number of generated scaffolds (127,315 and 172,888 for Illumina
and Illumina + Nanopore, respectively), and their mean length
(9.44 kb and 9.72 kb for Illumina and Illumina + Nanopore,
respectively), were greater when long-reads were included in
the assembly. Furthermore, Illumina + Nanopore assembly
generated 13 scaffolds longer than 600 kb with a maximum of
1,119 kb, whereas the assembly of Illumina-only data generated 2
scaffolds longer than 600 kb with a maximum of 736 kb. Finally,
the scaffold length distribution shows that scaffolds from
Illumina + Nanopore assemblies are more contiguous than
Illumina-only assemblies (Supplementary Figure S6).

Gene Prediction and Functional Annotation
The unique set of MAGs recovered in the previous step
underwent gene prediction and functional annotation
(Figure 1A, gene prediction and functional annotation).
Prokka (Seemann, 2014) was used to identify and annotate the
genes, retrieving the corresponding nucleotide and amino acid
sequences. A total of 412,394 genes were predicted in the 163
recovered MAGs. These were annotated with seven different
functional databases: eggNOG (Yin et al., 2012; Huerta-Cepas
et al., 2019), KEGG Pathways, Modules and KOs (Kanehisa and
Goto, 2000), dbCAN modules and enzyme classes (Yin et al.,
2012), and Pfam (Mistry et al., 2021) (Figure 3). The same
process could also be applied to user-provided genome
sequences under genome-based assembly-free mode.

The gene and function annotation step was skipped in the gene
catalog-based assembly-free mode as we used existing eggNOG,
KEGG Pathways, KEGG Modules, KEGG KO, dbCAN modules,
dbCAN enzymes class, Pfam function annotation for IGC
(available at https://db.cngb.org/microbiome/genecatalog/
genecatalog_human/). The number of expressed genes and
functions for both modes are summarized in Figure 3. Even
though we detected > 5 × genes by mapping the metagenomes to
IGC compared to genes encoded in the 163 MAGs, genes from
the MAGs covered the vast majority of the functions detected via

TABLE 3 | Number of SGB taxonomies retrieved per sample.

Sample/Method Number of Taxa

nIBD1 18
nIBD2 21
CD1 24
CD2 15
UC1 21
UC2 24
Co-assembly 100
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IGC. In some cases such as Pfam and CAZy databases, MAGs
recovered more functions suggesting that contiguous assemblies
and more complete genes could improve the quality of functional
annotations.

Alignment and Normalization
The metagenomic and metatranscriptomic high-quality reads
were mapped to a reference database followed by TPM
normalization to obtain the relative abundance of genes from
metagenomic read alignments (i.e., gene abundance profile) and
transcripts from metatranscriptomic read alignments (i.e., gene
transcript profile) (Figure 1A, alignment, normalization and
integration). We used as a reference database the 163 recovered
MAGs for the genome-basedmapping and the IGC (Li et al., 2014)
for the gene-based alignment. Overall, the mappability rate at 95%
of sequence identity forMAGs (median 72.26%)was lower than for
IGC (median 92.47%) with the highest difference for participant
CD2 (Supplementary Figure S5), which could be due also to the
lower number of taxonomies retrieved for the samples (Table 3).
However, this difference was not as remarkable when using
metatranscriptomic reads (77.61 and 73.9% median, respectively).

Integration: Gene and Function Expression
Profiling
The variation of microbial community transcript levels may be
affected by the changes in gene expression and/or by the
community turnover. To disentangle the individual
contributions of these mechanisms across the different
samples, we integrated gene abundance and transcript
abundance profiles (Salazar et al., 2019) (see Methods). The
obtained levels of gene expression represent the relative
amount of expressed transcripts per gene (Figure 1A,
integration: gene and functional profiling). From the 412,394

predicted genes in the 163 recovered MAGs, 219,133 genes were
expressed in at least one sample, while we detected the expression
of 1,260,394 genes from the 9.9 million genes in IGC.

Furthermore, the corresponding gene profiles were used to
generate the function abundance, transcript and expression
profiles by grouping the annotated genes into functions. The
highest number of features detected in the samples corresponded
to the eggNOGdatabase on bothmodes, followed by Pfam or KEGG
KO (Figure 3). We identified 5,734 and 6,131 KEGG KO expressed
features when we used the recovered MAGs and IGC as a reference,
respectively. Among the 7,217 KEGG KO functions identified
between the two profiles, 64.4% (4,651 features) were found in
both. The 15% of features (1,086) uniquely identified in the MAGs
could correspond to genomes not included in the database and the
20.5% of the functions (1,481) detected in IGC could belong to low
abundant bacteria whose genomes could not be retrieved or were
missed due to MAGs filtered out based on our quality criteria.

We used MIntO’s visualization features to perform principal
coordinate analysis (PCoA) on the different gene and functional
profiles to observe the longitudinal compositional changes and to
compare the dissimilarities between participants. In Figure 4A
we show the gene expression PCoA plot for the assembly-free gene
catalog mode using IGC (Li et al., 2014). In general, the samples
were clustered by Crohn’s disease and Ulcerative colitis diagnosis
suggesting a similar bacterial abundance and expressed genes due
to the presence of the disease (Kostic, Xavier and Gevers, 2014;
Lloyd-Price et al., 2019). Samples from participants used as
control (nIBD1 and nIBD2) were clustered separately,
probably due to the inter-individual variations in the
microbiome composition. In fact, the most abundant genus in
all participants was Bacteroides, with the exception of nIBD1
where Roseburia and Faecalibacterium were predominant. At
transcript level (Supplementary Figure S7), the dissimilarity
between the samples explained by the first two principal

FIGURE 3 | Comparison of number of genes and features per function database between non-redundant high quality 163 MAGs and IGC.
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coordinates (18.7% and 12.2%) was higher than at gene
expression level (8.9% and 7.2%). The transcript abundance
changes might be mainly attributed either to differences in the
expression of genes encoded by themicrobes in the community or
changes in the abundance of these members and their related
genes or a combination of these mechanisms. Hence, the
computation of gene expression profiles by the integration of
abundances of genes and the respective transcripts is of crucial
importance to obtain a more accurate representation of
ecologically relevant processes that are occurring.

Overall, the dissimilarities between the samples were visible at
the gene expression, gene abundance and transcript abundance
profiles (Figure 4A and Supplementary Figure S7). However, at
function expression level (Figure 4B) the clusters were not as well
defined, suggesting that genes from different species could harbor
the same functions in different microbial communities. Although
the taxonomic composition differed between the six participants
and consequently the gene composition and expression, the
functional profiles across individuals and time were more
conserved (functional redundancy) (Tian et al., 2020).
Differences in functional profiles between nonIBD and IBD
diagnosed participants could provide insights into the
functions involved in microbiome–host interactions at states of
health or disease (Heintz-Buschart and Wilmes, 2018).

Visualization and Reporting
Further analyses can be done using the output files (Figure 1A,
visualization and reporting; Supplementary Figure S1). MIntO
generates three different types of table: 1) assembly-free and
assembly-based taxonomic profiles; 2) gene profiles, including the
gene IDs [generated by Prokka (Seemann, 2014; Beghini et al.,
2021) when selecting assembly-dependent mode or sequence IDs
when choosing assembly-free mode] and normalized gene
abundance, transcript or expression; and 3) functional profiles
per database, including the function IDs, function description and

function abundance, transcript or expression normalized counts.
For an easier downstream analysis of these data, phyloseq objects
are generated for the taxonomic, gene and functional profiles.

MIntO also outputs the shown plots as preliminary results to
help the user in the downstream analysis (Figures 2A,B, Figures
3, 4, Supplementary Figures S3, S7).

The metadata provided in IBDMDB (Supplementary Table
S1) was given as an input to the pipeline, which colored the
samples by sample_alias (participant’s ID) in the output plots.

DISCUSSION

MIntO is a versatile pipeline that integrates metagenomic and
metatranscriptomic data, beyond a comparison of the gene and
transcript abundances, in order to quantify gene and function
expression in a very straightforward way. The modular design of
MIntO enables the user to run the pipeline using three available
modes based on the input data and the experimental design.

In order to illustrate the pipeline, a subset of 91 human fecal
microbiome samples from the IBDMDB (Illumina metagenomic and
metatranscriptomic paired-reads) was used to run the full version of
the pipeline with default parameters. Here, we show the
complementary results from two of the three available modes,
genome-based assembly-dependent and gene catalog-based assembly-
free. In the former, MIntO retrieved 163 high-quality non-redundant
MAGs that encoded 412,394 genes, among which 219,133 genes were
expressed in at least one sample, while 1,260,394 genes from IGC were
expressed in the gene catalog-based assembly-free mode. Overall, the
dissimilarities between the samples were visible at the taxonomic and
gene levels, while the functional profiles across individuals and time
were more conserved (functional redundancy), indicating that strain-
specific genes from different microbiomes represented similar
functions. Interestingly, among the 7,217 KEGG KO functions
identified between the two profiles, 15% of the features were

FIGURE 4 |Projection of the first two principal coordinates based on expression profiles Bray–Curtis dissimilarity at (A) gene and (B) function KEGGKO levels using
a subset of 91 samples from IBDMDB. Labels correspond to the sample alias and are colored by condition (patients diagnosis).
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uniquely identified in the MAGs and 20.5% of the functions were
detected in IGC.

The distinctive feature of this pipeline is the integration of the
metagenomic and metatranscriptomic data, to obtain the expression
profiles and furthermore the functional profiles by annotating the
sequences with several databases. This enables us to study in detail
the variation in expression of the genes and functions in the different
samples across time and experiment conditions, thus the community
behavior. Overall, the IBDMDB-samples clustered by the participant
ID using the genes and transcript abundances and gene expression.
However, using the KEGG KO annotations at function expression
level, the clusters are not as well defined, due to the functional
redundancy (Tian et al., 2020).

Another important feature of MIntO is performing de novo
assembly and contig binning to recover high-quality MAGs from
metagenomic reads, which compared to other methods utilizes an
accurate unsuperviseddeep learning approach in the formof variational
autoencoders (Nissen et al., 2021). The assembly-dependentmode could
be helpful to retrieve novel genomes that are missed by reference-
dependent profiling methods (Pasolli et al., 2019). The recovery of
MAGs is indispensable to uncover the diversity of bacteria in an
environment and it is crucial for an optimal calculation of the
variation of gene expression, including unknown or functional genes
from biosynthetic gene clusters (Youngblut et al., 2020). Additionally,
new putative genomes can increase the number of known species in the
available databases, especially when the analyses are performed on
metagenomes coming from new environmental sources.

In conclusion, in this paper we show how MIntO can be a
useful tool to analyze metagenomic and metatranscriptomic data
in a standardized way, enabling the study of microbial ecology by
linking functions to genomes and environmental context. We
foresee that this pipeline will contribute to the understanding of
the dynamics of the molecular activities captured by the
community turnover and gene expression alterations as the
cause that shapes community transcript levels. Elucidating the
functions and characterizing the specific strains of a community
will be crucial to increase our knowledge of the microbiome’s
contribution to human health and environment.
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When analyzing microbiome data, one of the main objectives is to effectively compare the
microbial profiles of samples belonging to different groups. Beta diversity measures the
level of similarity among samples, usually in the form of dissimilarity matrices. The use of
suitable statistical tests in conjunction with those matrices typically provides us with all the
necessary information to evaluate the overall similarity of groups of microbial communities.
However, in some cases, this approach can lead us to deceptive conclusions, mainly due
to the uneven dispersions of the groups and the existence of unique or unexpected
substructures in the dataset. To address these issues, we developed divide and compare
(DivCom), an automated tool for advanced beta diversity analysis. DivCom reveals the
inner structure of groups by dividing their samples into the appropriate number of clusters
and then compares the distances of every profile to the centers of these clusters. This
information can be used for determining the existing interrelation of the groups. The
proposed methodology and the developed tool were assessed by comparing the
response of anemic patients with or without inflammatory bowel disease to different
iron replacement therapies. DivCom generated results that revealed the inner structure of
the dataset, evaluated the relationship among the clusters, and assessed the effect of the
treatments. The DivCom tool is freely available at: https://github.com/Lagkouvardos/
DivCom.

Keywords: microbial profiles, beta diversity, de novo clustering, reference distance, PAM

1 INTRODUCTION

Over the last 20 years, the field of microbiome research has been experiencing exponential growth,
mainly powered by advances in sequencing technology. A significant amount of this body of research
has been focused on how dysbiotic microbial communities are linked with pathological conditions
(Coker et al., 2018; Harbison et al., 2019; Harbison et al., 2019; Hufnagl et al., 2020). In addition, the
importance of microbes has been recognized in other fields spanning from agricultural and
biotechnological applications to ecological and environmental interventions (Lian et al., 2018;
Qiu et al., 2019).
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Nowadays, several pipelines, tools, and platforms are
dedicated to analyzing microbiome datasets. Specialized tools
include R-based packages such as vegan (Oksanen et al., 2015),
phyloseq (McMurdie and Holmes, 2013), and SIAMCAT (Wirbel
et al., 2021). Pipelines, like QIIME2 (Bolyen et al., 2019), mothur
(Schloss et al., 2009), and Rhea (Lagkouvardos et al., 2017),
usually offer streamlined analytical functionalities with
minimal programming requirements. However, more tools and
methodologies are under development to reflect the growth in our
understanding of the topic and accommodate our needs for more
specialized analytics.

Beta diversity, themeasure of diversity between two samples, is
one of the most widely used concepts in microbiome data analysis
(Lin et al., 2015;Wagner et al., 2018). Beta diversity does not focus
on the abundance of specific bacterial taxa but takes into account
the overall microbial community structure. The usage of an
appropriate metric function results in a single measurement
(distance) of similarity or dissimilarity that can be used to
examine the relations among the samples in a study. Metrics
like Bray-Curtis (Bray and Curtis, 1957), weighted or unweighted
Unifrac (Lozupone et al., 2011), and Jaccard distance (Jaccard,
1912) are commonly used for exploratory and ordination
analyses. In a limited number of studies, the quantification of
beta diversity measures has been utilized to gain better insights
into the community dynamics (Halfvarson et al., 2017; Suzuki
et al., 2020).

Clustering a group without using labels or prior knowledge of
the data is defined as unsupervised clustering. Unsupervised
clustering does not use any external information and relies
only on the pairwise distances of the samples. Since this type
of clustering shares similar principles with the de novo OTU
picking (Navas-Molina et al., 2013), here in this study, we will
borrow this term, and we will call the process of the unsupervised
clustering as “de novo clustering” of the microbial profiles. This
procedure can be extremely helpful for revealing substructures of
a dataset that are unknown or have not been predicted during the
study design (Ramette, 2007). The proposed concept of the
enterotypes (Arumugam et al., 2011) is one of the most
known cases where de novo clustering revealed intrinsic
substructures in the human gut microbiota. Also, de novo
clustering contributed significantly to drawing conclusions in
the studies of Paetzold et al. (2019) and later García-Mantrana
et al. (2020), which investigated skin and maternal microbiomes,
respectively. Although both beta diversity and de novo clustering
techniques are commonly used by individual researchers, no
standardized procedure, pipeline, or tool integrates and
automates their combined use for group comparisons.

Comparing the microbial profile of two or more groups
against each other or exploring the relationship between
control and intervention groups is part of a typical workflow
for many studies (Morris et al., 2013; Prast-Nielsen et al., 2019;
Ventura et al. 2019). Through this process, the dissimilarity
between the members of each group can be used to determine
the level of differentiation among the examined groups.

The problem that arises is that the approaches used to analyze
the microbial datasets can lead us, in some cases, to wrong
assumptions or incomplete conclusions. Among others, there

are three main obstacles in the currently applied methodologies:
the first is derived by the dimensionality reduction process (Calle,
2019), the second by the statistical tests (Xia and Sun, 2017), and
the third by not taking into consideration the unique substructure
of the data (Gupta et al., 2017; He et al., 2018). Because of the
dimensionality reduction process and the selected distance
metric, there is a high chance of producing a distorted image
of the data (Calle, 2019; Hawinkel et al., 2019). Relying only on
the visual representation of the ordination plots can lead us to
misleading conclusions about the existing relationship among the
profiles of the different groups. The suggested practice for
evaluating groups’ dissimilarities is through the application of
a multivariable statistical test (Knight et al., 2018) like
PERMANOVA (permutational multivariate analysis of
variance) (Anderson, 2001), PERMDISP (permutational
analysis of multivariate dispersions) (Anderson, 2006), or
ANOSIM (analysis of similarities) (Clarke, 1993). However,
even this practice can also produce inaccurate or deceptive
outcomes mainly due to the lack of homogeneity between the
groups, the different levels of their dispersion (Anderson et al.,
2008; Warton et al., 2012), and the wrong use and interpretation
of the results of the statistical tests.

To illustrate these issues, we present two hypothetical cases in
which wrong conclusions can easily be drawn if we follow the
widely applied microbiome data analysis practices. In the first
case, we simulated two groups that have the same center and a
similar number of samples but significantly different dispersions
(Figure 1A). The visual inspection of the plot suggests structural
differences among these two groups; however, the
PERMANOVA (p = 0.838) and ANOSIM (p = 0.556) tests
affected by the same centers and the different dispersions
(PERMDISP: p < 0.001) returned a high probability that both
groups originate from the same distribution. Although
PERMANOVA and ANOSIM tests are fairly robust methods,
they have their own limitations and are sensitive to different
dispersions. Relying only on these results can obscure the
information about the substantially different structures of the
dataset.

In the next case, according to PERMDISP, the two groups have
similar dispersions (p = 0.35) but appear to have different centers
(Figure 1C); this observation is also supported by the results of
the PERMANOVA (p < 0.001) and ANOSIM tests (p < 0.001).
These facts could lead the researcher to conclude that samples
originating from group “Test” have significantly different profiles
than those of group “Reference.” The PERMANOVA test
assumes that there is only one distribution from which every
group is sampling. However, de novo clustering of both groups
reveals that each of them consists of two well-defined subgroups
(Figure 1D). The use of statistical tests like PERMANOVA on
groups composed of multiple subgroups can lead to misleading
conclusions. In our instance, the two pairs of subclusters have
similar centers and dispersions but different sampling sizes and
also uneven number of samples belonging to each subgroup. This
unequal representation of the two otherwise related
compositions, from which both groups were composed, was
the reason for the distorted and misinformative initial image.
Thus, revealing the internal structure of the groups could provide
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us with additional information about the dataset and assist us in
preventing errors like those mentioned earlier.

In these two cases, we summarized some of the existing
problems in the microbiome beta diversity analysis that
sometimes are difficult to be detected and overpassed. The
problem presented in the first case is the improper use of the
statistical tests or the wrong interpretation of their results. In the
first instance, the PERMDISP test provided a clear view that the
groups have significantly different dispersions; this should have

been a hindrance to applying multivariate tests like PERANOVA
or ANOSIM as their results could have been inaccurate. However,
in many cases, the power of these tests is overestimated by the
researchers, leading them to wrong conclusions. In the second
instance, even though we did not have any misuse of the statistical
tests, the inner structure of the groups was a key factor in having
incorrect results. Unfortunately, in these cases, there is not an
easy and reliable alternative for the user to follow: either the
researcher will have to rely on the results of the statistical tests

FIGURE 1 | Simulated data demonstrating how different dispersion among groups influences the results of the statistical tests and how the substructures within the
groups and the uneven sampling of these subclusters can lead to a misleading interpretation of the data. (A)MDS plot presenting two groups with the same center but
according to the PERMDISP test significantly different variances (p < 0.001). The p-value of the PERMANOVA and ANOSIM tests for these groups is 0.838 and 0.556,
respectively, leading to not rejecting the null hypothesis that the two groups are drawn from the same distribution. (B) Boxplots presenting the distances of the test
points from the center of the reference group. The p-value of the Wilcoxon rank sum test is less than 0.001, implying correctly that these two groups are significantly
different. (C) MDS plot that presents two groups with similar dispersions (p = 0.35) but seemingly different centers. The results of the PERMANOVA (p < 0.001) and
ANOSIM (p < 0.001) tests indicate that these two groups are well-separated. (D)MDS plot illustrating the subgroups derived by the de novo clustering of the two groups.
The dataset now consists of two pairs of highly related clusters with different representations in the two subgroups. (E) Boxplots presenting the distribution of the
distances of every test sample from their closest reference center. According to the p-value of the Wilcoxon rank sum test (p = 0.2753), the points of the two groups do
not differ significantly in their values. The perceived difference comes from the unequal representation of the two subgroups in the final dataset.
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with the fear of drawing the wrong conclusions or should alter the
exploratory approach of the study.

Herein, we introduce DivCom, a new approach that can be
used as an answer to the challenges mentioned earlier. This
approach aims to compare different groups in a more efficient
and detailed way, and reveal their relations. The central notion
behind DivCom is that groups of microbial profiles should not be
treated as entireties because valuable information about their
unique structural characteristics could be lost. DivCom employs
the idea of dividing the groups using de novo clustering and then
comparing these clusters using beta diversity measures as metrics.
According to the methodology of DivCom, the samples of the
control group are clustered, and then, the most representative
point (centroid/medoid) for each of these clusters is selected.
Consequently, all the distances of the remaining test samples
from these preselected points are calculated and then assessed.

Applying the DivCom methodology to the previously
mentioned simulated cases of Figure 1, we can infer that in
the first instance, the distinct structure of the dataset was revealed
by comparing the distances of the samples of the two groups from
the center (p < 0.001) (Figure 1B). Also, in the second case, the
distance of the samples from their closest reference center showed
that there is no significant difference between the two pairs of
groups (Figure 1E). Therefore, even though the commonly used
techniques failed to uncover the true relationship of the data,
DivCom achieved this by using a distance- and structure-based
approach. Also, the use of the centroids reduced the required
calculations and comparisons, and produced results that are
analogous with those we would have obtained if we had
compared all test samples with all the samples of the closest
reference cluster (Supplementary Figure S1).

The effectiveness of the method was also evaluated using
publicly available gut microbiome data from the study of Lee
et al. (2017). The selected research aimed to compare the effect of
iron replacement in anemic patients who suffered from
inflammatory bowel disease against a group of non-inflamed
anemic individuals. All the subjects were randomly separated into
two groups, and they followed two different treatments of iron
replacement for 3 months. Simply by applying the DivCom
approach, we were able to reproduce some of the main
findings of the original analysis and also reveal some
additional aspects of the data that were unnoticed in the
original work. DivCom provides us with a better insight into
the data and can be used complementary to the currently applied
data analysis pipelines. The proposed methodology is
implemented as an automated, open-source, user-friendly, and
easily-editable R-based program. The DivCom tool has minimal
input requirements, produces several detailed outputs, and is
available at: https://github.com/Lagkouvardos/DivCom.

2 MATERIALS AND METHODS

2.1 Overview
DivCom has been implemented in R programming language
under version 4.1.2. The tool relies on the functions provided
by R packages: ade4, ape, caTools, cluster, cowplot, data.table,

dplyr, factoextra, fpc, ggplot2, ggpubr, ggtree, graphics, grid,
gridExtra, gtable, GUniFrac, mclust, phangorn, RColorBrewer,
stats, tidyr, tools, and vegan. Many of these packages have their
own dependencies. In the detailed description of the scripts, some
of the key functions are provided, along with the package to which
they belong. Also, selected sections of the Rhea pipeline
(Lagkouvardos et al., 2017) were modified accordingly and
incorporated in the DivCom scripts. The tool consists of two
scripts, named “Beta-Diversity.R” and “DivCom.R.” The former
is an ancillary script, while the latter is the main script of the tool
(Figure 2A).

DivCom is a purely distance-based tool that compares
different groups by taking into consideration the phylogenetic
distances between observed organisms, and using statistical
measures to evaluate the results. Therefore, the Partitioning
Around Medoids (PAM) algorithm (Kaufman and Rousseeuw,
2009) is applied to cluster the samples (cluster::pam), and
Generalized Unifrac (Chen et al., 2012) is the default distance
metric used by the program (GUniFrac::GUniFrac). The
statistical hypothesis testing relies on the Wilcoxon rank sum
test (Mann and Whitney, 1947; Wilcoxon, 1992) for the
continuous variables (stats::wilcox.test), the chi-square test for
the categorical variables (stats::chisq.test), permutational analysis
of multivariate dispersions (PERMDISP) (Anderson, 2006) for
the dispersion similarity comparison of the groups (vegan::
betadisper and permutest), and permutational multivariate
analysis of variance (PERMANOVA) (Anderson, 2001) for the
similarity comparison of the groups (vegan::adonis). All the
p-values are adjusted using the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995) (stats::p.adjust). The
multidimensional scaling (MDS) algorithm (Gower, 1966) is
applied for the ordination analysis (stats::cmdscale), and
finally, scatterplots, boxplots, barplots, and phylograms are
used to visualize the findings (ade4::s.class, ggtree, ggtree,
ggplot2).

2.2 Inputs
The input requirements are minimal as the user has to provide
only three mandatory files.

• The first file is an OTU or ASV abundance table which can
be either normalized or not. In this table, the rows should
represent the OTUs or ASVs, and the columns should
represent the samples. In case the table is not
normalized, then the first step will be the normalization
of the table so the sum of the counts will be equal across all
the samples.

• Considering that the generalized Unifrac distance is used
as the default distance metric, the second necessary input
file is a phylogenetic tree that corresponds to the OTUs or
ASVs of the abundance table. If a tree is not available, the
user can instead provide a dissimilarity matrix of the
samples.

• The final requirement is a mapping file that contains the
labels of the samples. The information of the mapping file is
necessary for the labeling and assigning of the reference and
test groups.
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In addition to the files mentioned earlier, the user has to fill out
some additional parameters. The desired number of clusters for each
group, the name of the reference and test groups, and the type of the
produced plots are among these additional requirements. A detailed
description for each of these parameters is provided in the scripts and
the accompanying documents of theDivCom tool on itsGitHub page.

Also, in the initiation phase, the user has to define the names of
the input files and then determine which group or groups will
serve as the reference dataset. The rest of the samples will be
compared with this reference group.

2.3 Beta-Diversity Script
Moving on to the actual scripts of the program, the first is named
“Beta-Diversity.R” (Figure 2B), and it is a slightly revised version

of the “Beta-Diversity” script of the Rhea pipeline. Its purpose is
to calculate Beta-Diversity for microbial communities but mainly
to provide us with all the necessary information about each
group’s optimal number of clusters. The script produces the
plots of the Calinski-Harabasz (Caliński and Harabasz, 1974)
and the silhouette (Rousseeuw, 1987) index. (fpc::cluster.stats),
the Within Sum of Squares (WSS) (factoextra::fviz_nbclust), and
the prediction strength (Tibshirani and Walther, 2005) (fpc::
prediction. strength) plots and also the plot of the BIC values
for six models as they are produced by the model-based clustering
based on finite Gaussian mixtures (mclust::Mclust). The purpose
of the last plot is to inform us if the dataset consists of a
homogenous and uniform distribution so that no
substructures exist. If this is true, then the program will

FIGURE 2 |Workflow of the DivCom tool, and the two scripts of the program. (A) According to the workflow of the DivCom, the user can execute the beta-diversity
to calculate the optimal number of clusters or to directly run the DivCom script. (B) The script “Beta-Diversity.R” calculates and visualizes beta diversity between the
samples and produces the plots of four different clustering evaluation indices (Calinski-Harabasz, silhouette, prediction strength, and Within Sum of Squares). These
outputs provide the user with the necessary information in order to determine the optimal number of clusters for each group. (C) The main script is called
“DivCom.R” and performs de novo clustering to both the reference and test groups, calculates the pairwise distances of the reference and test samples, and finally
conducts an automated statistical analysis and produces the final reports. This information contributes to a better understanding of the interrelation between the different
groups under study.
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propose just one cluster. These measures were selected as they are
among the most widely used techniques for clustering validation
(Baarsch and Celebi, 2012; Bouveyron and Brunet-Saumard,
2014).

2.3.1 Optimal Number of Clusters
The appraisal of these graphs in conjunction with the prior
knowledge of the dataset can help the user decide about the
optimal number of clusters for each group. Although we
recommend that users make this decision based on their
preferences and understandings, among the default outputs of
the script a report is included with a recommendation about the
optimal number of clusters for each group. To make this
suggestion, the script first calculates the optimal number of
clusters for each index and then selects the number with the
highest frequency. In case of a tie, this suggestion is based on the
results of the Calinski-Harabasz index. Even though all indices
have their own strengths and weaknesses, we chose to highlight
the role of the Calinski-Harabasz index because it is a variance-
dependent index that produces higher values when the clusters
are compact and well-separated; these characteristics are
necessary and highly desirable in our approach. Alternatively,
if the user does not wish to evaluate the optimal number of
clusters manually, they can omit the Beta-Diversity script and use
the integrated option in the main script for automatic calculation
of the optimal number of clusters for each group based on the
values of the Calinski-Harabasz index. Depending on their
preferences, the users can manually evaluate the optimal
number of clusters, follow our recommendation, or choose to
be automatically calculated by the program (Figure 2A).

2.4 DivCom Script
After determining the optimal number of clusters for each group,
the user has to run the main script of the tool, which is named
“DivCom.R.” DivCom script consists of two main sections
(Figure 2C): the first is called “Distances-Based analysis” and
the second “De novo clustering analysis.” The main difference
between them is that in the first part of the analysis, de novo
clustering is applied only to the reference dataset, while in the
second and optional stage, all the groups are clustered, and then
compared and analyzed against each other.

2.4.1 Distances-Based Analysis
Proceeding to the actual procedures of the tool, in order to
achieve a better insight into the data and take into
consideration the unique substructure of the groups, the script
performs de novo clustering to the samples of the reference group.
The PAM algorithm performs this task using the desired number
of clusters and the produced distances matrix as inputs. Through
this process, the most representative points of the reference group
are determined and stored for further use. The medoids of the
clusters can be used as the representative points; this is the default
and recommended option. Also, the mean or median counts of
the OTUs or ASVs can be used as an alternative option to the
medoids.

Following the clustering process, the program calculates the
distances of the remaining samples to these representative points.

Then, each sample is assigned to the closest and probably more
relevant to it, in terms of their microbial composition, reference
cluster. This procedure results in an indirect clustering of the test
samples based only on the distances from the most representative
points of the reference group.

Next, a fully automated statistical analysis is conducted.
MDS plots visualize the relationship of the reference clusters
with their closest test samples. Boxplots present the distances
of the samples under study from the nearest reference cluster.
Also, tables containing the p-values and various statistical
measures are printed. Finally, a part of the process is
dedicated to analyzing the distribution of the test samples
across the clusters of the reference group. This part can assist
the user in discovering similar patterns between the reference
and test groups.

2.4.2 De Novo Clustering Analysis
The second part of the analysis is complementary to the previous
section. The main difference is that de novo clustering is applied
not only to the reference but also to each of the test groups. The
user has to specify the desired number of clusters for each test
group in the initiation phase. If this information is not provided
correctly, then this part of the analysis is omitted.

Assuming that the aforementioned information has been
provided, every test group is clustered using the PAM
algorithm. Subsequently, every subcluster is compared with the
representative points of the reference group. This process results
in outputs that compare the structures of the reference and test
groups. Therefore, it is easier for the user to reveal the
substructural similarities and existing relations between the
groups.

Once again, an entirely automated statistical analysis is
performed following this procedure. Various descriptive
statistics measures for the clusters of the reference and test
groups are produced. MDS and boxplots which visualize the
relation between the subclusters, and the tables containing
p-values, distances, and statistical measures are printed.
Similar to the previous stage, the distributions of the test
samples across the clusters are analyzed and assessed.

Considering that these two sections of the program produce
analogous results, the user can compare their outputs and
uncover aspects of the dataset that would be difficult to be
discovered in any other way.

2.5 Outputs
The program produces two detailed reports in the PDF format,
one for each of the two steps described earlier. The first file is
named “Distances-based report,” and its goal is to present the
information about the discrepancy between the reference and the
test groups. This report visualizes and statistically investigates the
relation of the reference clusters to their closest test samples. The
second output is a PDF file called “De novo clustering report,” and
it aims to present the relationship between the reference and test
subclusters. Since de novo clustering has been applied to both the
control and test groups, this file focuses more on the relationship
and the distance-based similarities of the reference clusters with
their closest test subclusters.
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Each of these reports includes MDS plots and phylograms that
illustrate the relationship between the samples. Boxplots present
the distances from the selected representative points and tables
containing various statistical measures derived from the analysis.
In order for the results to be more interpretable by the user, a
detailed description is included for each of these elements.
Additionally, all the outputs are printed in the PNG or tab
format in a separate folder.

2.6 Test Dataset
To demonstrate the performance of DivCom and allow users to
test the functionality of the tool, a previously unpublished raw
sequencing dataset from the iron replacement study of Lee et al.
(2017) was used and is publicly available from now on.

This particular dataset was selected as the objective of the
study was in line with the requirements of DivCom. This
research aimed to assess the effects of Per Oral (PO) and
intravenous (IV) iron replacement therapy (IRT) in patients
with two types of inflammatory bowel disease (IBD) and a
group of non-inflamed (NI) individuals with iron deficiency.
The cohort consisted of Crohn’s disease patients (CD, N = 31),
ulcerative colitis patients (UC, N = 22), and non-inflamed
individuals (NI, N = 19); in total, 62 subjects were involved in
this study. The NI individuals were used as the control/
reference group, while the CD and UC patients were used
as the test groups. All the subjects were randomly separated
into PO or IV groups, and they followed the corresponding
therapy for 3 months. Therefore, the dataset consisted of two
timepoints based on the sampling time; the first timepoint
referred to the samples at the baseline (B) and the second to the
samples after the 3-month treatment (3M).

The raw sequences were processed through the IMNGS
platform (Lagkouvardos et al., 2016), implementing the
UNOISE3 (Edgar, 2016) and UPARSE (Edgar, 2013)
pipelines, using the default parameters. The number of
samples of each category that fulfilled the quality
assessment and eventually took part in the final analysis is
summarized in Table 1.

3 RESULTS

As presented in the introduction, the DivCom approach surpassed
the limitations and pitfalls of the currently applied methodology
and revealed the true relationship between the groups (Figures 1B
and E). Here, using the test dataset of the iron replacement study,
we evaluated the performance of our tool in real and complex data,

its ability to reproduce parts of the initial analysis, and its
contribution to a better understanding of the dataset.

In the first step of the analysis, we evaluated the effect of
the treatment on the non-inflamed (NI) control samples. As
indicated by the Calinski-Harabasz index and verified by the
suggestion of the Beta-Diversity script, the pretreatment
samples of the NI group (NI.B) were partitioned into four
clusters (Supplementary Figure S2A). The distances of all
the after-treatment individuals (NI.3M) from these clusters
were calculated and then evaluated. These distances indicated
that there was no significant difference for the profiles of the
non-inflamed (NI) anemic patients before (B) and after (3M)
iron treatment (p = 0.3908) (Figure 3A). Therefore, since the
IRT did not result in consistent changes in the overall
microbial profile of the samples, all the NI individuals
were merged and used as a unified reference group
consisting of 38 profiles. The Calinski-Harabasz index and
the recommendation of the Beta-Diversity script supported
the existence of two clusters for the entirety of the reference
group (Supplementary Figure S2B). Therefore, for the rest of
the analysis, the control group of the NI was subdivided into
two clusters. The type of treatment (IV, PO) and the sampling
time (B, 3M) did not contribute to the formation of these two
groups as the chi-square p-values were 0.217 for the first case
and 0.602 for the second.

Continuing the analysis, we investigated whether the
intervention shifted the IBD samples (UC and CD) closer to
the NI reference points. The distances of the IBD groups (B and
3M) from the NI reference points were significantly higher than
those of the reference group (p < 0.001), highlighting in this way
the disturbed nature of the IBD profiles. Nevertheless, those
distances were not significantly different among time points
(IBD.B-IBD.3M) (p = 0.96), indicating that the treatment did
not affect the median distances of the IBD sample from the NI
reference samples (Figure 3B).

Next, we repeated the analysis using the sampling time (B or
3M) and the type of disease (CD or UC) as the independent
variables. The boxplots of the distances from the closest
reference medoid and the statistical testing indicated that
the UC and CD groups at the baseline and after the iron
replacement were once again significantly farther from the
control group of the NI compared to the reference samples (p <
0.05) (Figure 4A). Regarding the distances, the CD patients
seemed to have a more substantial level of dissimilarity with
the NI group than the UC patients. Also, DivCom
automatically assigned each IBD profile to its closest NI
reference medoid. The integrated chi-square analysis

TABLE 1 |Number of samples of each category that were used in the DivCom analysis. In total, 19 samples of the NI group, 26 of the CD group, and 17 of the UC group were
selected to participate in the study analysis.

Iron intake NI (non-inflamed reference
group)

CD (Crohn’s disease
test group)

UC (ulcerative colitis
test group)

PO 9 12 10
IV 10 14 7
Total 19 26 17
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revealed that the samples of the UC group before and after the
intervention had similar distribution around the reference
medoids to the samples of the NI group (p = 0.5786 at the

baseline, p = 0.2602 at 3 months). On the other hand, this trend
was not present for the CD patients (p = 0.0070 at the baseline,
p = 0.0003 at 3 months).

FIGURE 3 | Boxplots presenting the distances of the NI and IBD samples from their closest reference medoids before (B) and after (3M) the treatments. (A) The
distances of the NI.3M samples from their closest medoid of the NI.B group implied that the iron replacement therapy (IRT) did not affect the microbial composition of NI
samples considerably. The two groups were not significantly different (p = 0.3908), so for the rest of the DivCom analysis, the samples weremerged and used as a unified
reference group. (B) Boxplots displaying the impact of the iron replacement therapy on the IBD samples. The IRT did not shift the IBD samples closer to the NI
group. The distances of the IBD groups (B and 3M) from the reference group of the NI samples are significantly different compared to those of the NI group (p<0.001).
However, the two groups are highly related to each other (p = 0.97). p-values: *<0.05; ***<0.01.

FIGURE 4 | Boxplots of the distances of the test groups from the closest reference medoid of the NI group. (A) For the UC and CD groups, the type of the disease
and the sampling time did not affect their distances from the NI samples. All the groups were significantly farther from the control group compared to the reference
samples (p < 0.05). The distances of the CD patients from the control group seem to present overall higher values than the distances of the UC patients from the NI group.
(B) All the IBD samples were grouped based on the type of the disease, the treatment, and the sampling time. The boxplots of the distances from the closest
medoid indicate that the CD groups have a higher level of homogeneity but are farther from the control group compared to the UC groups. On the contrary, most of the
UC samples are closer to the NI group, but their distances from the reference group present a higher variance. In particular, the distances of the UC.PO.B group are
related to the NI group (p = 0.34). p-values: *<0.05; ***<0.01.
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When the IBD samples were labeled based on the disease (CD
and UC), the type of the treatment (IV and PO), and the sampling
time (B and 3M), it was more evident that the CD groups appeared
to have greater distances from the control group than the UC
samples (Figure 4B). The IRT seemed to have a more
pronounced effect on the UC groups as their samples exhibited a
higher variance in terms of their distances from the reference group
before and after the treatments. In the UC patients, the type of iron
replacement showed trends of differential effect, with the IV group
demonstrating a slight decrease and the PO group exhibiting a small
increase in the overall distances from the NI. However, in both cases
(UC and CD), the distances from the reference group did not change
considerably, independent of the type of the iron replacement. On a
side note, we revealed that at the baseline, the UC samples chosen to
follow the PO treatment seemed to be considerably closer to the NI
group than the remaining samples of the UC or CD patients.

Subsequently, taking advantage of the outputs of the
DivCom, a secondary analysis was conducted. The intention
was to determine whether the PO or IV treatment had a more
profound impact on the distances of the test samples to the
reference dataset. Thus, the differences between the distances
from the closest medoid after the intervention and those at the
baseline were calculated. The average differences of the
distances for the IV treatment in both the CD and UC
groups were negative (CD = −0.0053, UC = −0.1165). On
the other hand, the corresponding differences for the PO
treatment in the CD and UC patients were positive (CD =
0.0267, UC = 0.1676). Overall, the statistical comparison of
those differences for the two types of treatment showed a trend
(p = 0.08), indicating that PO treatment led to an increase of
distance from the reference samples, while the IV treatment
resulted in a decrease (Figure 5A). This difference was mainly
due to the differential effect of the treatment type on the UC

patients, with the CD patients remaining mostly unaffected
(Figure 5B).

In order to reveal the test group’s unique substructure, de novo
clustering was applied to the IBD profiles. As suggested by the
Calinski-Harabasz index (Supplementary Figure S2C) and the
majority of the other indices as they were produced by the Beta-
Diversity script, the IBD group was partitioned into two clusters
(Figure 6). One cluster was closer to the NI group, and the other was
considerably more distant from the reference samples. This finding
was further evaluated through the statistical testing of the
corresponding distances of each subcluster from the nearest
reference medoid (Supplementary Figure S3). Both the IBD
clusters were significantly farther from the NI groups (p < 0.05),
confirming that the profiles of the patients diverged from those of the
control group. Through the automated statistical testing of the
DivCom, we verified that the iron therapy did not affect the CD
patients. The distribution of the CD samples across the IBD clusters
did not change significantly before and after the intervention (p =
0.2379). On the contrary, the distribution of UC samples was
significantly different after the IRT (p < 0.001).

In total, we executed the program five times using the appropriate
variables and number of clusters each time (Supplementary
Material S1). All the plots and statistical results except Figure 5
were produced directly and automatically by DivCom. The
generated outputs underwent only minor editing for complying
with the formatting requirements.

4 DISCUSSION

4.1 DivCom, Iron Dataset, and Beyond
Comparing microbial profiles of different groups can be a
challenging process mainly due to the multivariate and

FIGURE 5 | Differences of the “before–after” distances of the test samples from the closest reference medoid of the NI group. (A) For the samples of the IV and PO
treatments, the differences of the distances from the closest reference medoid before and after the IRT were calculated. The boxplots illustrate the distribution of these
differences. The IV treatment seems to have slightly but not significantly better results than the PO treatment (p = 0.08). The average differences of the IV samples are
negative (-0.0609), while the average differences of the PO treatment are positive (0.09715). (B) The IBD samples were compared based on the type of the disease
and the treatment. In terms of distance to the reference samples, a differential treatment response is observed on UC patients (p = 0.0702). CD patients do not seem to
be affected by the mode of treatment, with both resulting in a slight convergence to the reference profiles.
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multifactorial nature of the data (Ramette, 2007; Paliy and
Shankar, 2016). DivCom proposes a new approach for
microbial communities’ comparisons that is easily applied
using the developed tool. In order to evaluate whether
DivCom can produce meaningful results, we employed this
methodology to previously produced data that were made
public with this work. Next, the basic conclusions of the
DivCom analysis are presented and compared with the
outcomes of the original publication.

Similar to the results of Lee et al. (2017), we found that the NI
group was more homogenous, and the treatment did not
considerably affect their overall community composition.
Relying on this fact, we treated all the NI samples as a unity
during our analysis. In the original article, it was not emphasized
that the samples of the UC group were more related to the group
of the NI than the group of the CD. In particular, the samples of
the UC group chosen to follow the PO treatment were
consistently closer to the NI samples. This observation was
not mentioned or taken into account in the initial study but
was among the default outputs of the DivCom. Sampling
imbalances like the above can lead to misleading results when
they are not taken into consideration.

In studies exploring the possible differential effect of a
treatment on the microbial profiles of two or more groups, the
labeling of the subjects is commonly based on their demographics
or status characteristics. This process results in dividing the
dataset into test and control groups. Traits like age, gender, or
disease severity should always be considered and be part of a
typical study design in order to avoid biases caused by these
factors (Kim et al., 2017; Bharti and Grimm, 2021). However, in
addition to the demographic and status characteristics, we argue

that the subjects’ baseline microbiome is a significant confounder
we should always bear in mind in such analyses. We recommend
that an initial screening be performed to map the microbial
structure of the cohort, and then subjects be assigned to
groups so that the underlying microbial groups are equally
represented among the test and control groups. DivCom could
assist in this process by revealing the different communities
present in the cohorts and creating more balanced experiments.

Also, we verified that although the two treatments overall did
not shift the IBD samples significantly closer to the reference
group, the IV treatment had slightly better results concerning the
distances from the reference medoids. The CD samples seemed to
have the same response to the IRT independently of the followed
method. In contrast, the UC patients’ microbiomes seemed to be
more sensitive to the type of iron replacement, with IV treatment
resulting in overall decreased distance from the reference groups
and PO negatively affecting the structure of the community
reflected in increased distance from the controls. This
observation was not accentuated in the original article as the
relationship between the treatments and the type of the disease
had not been investigated. DivCom can easily highlight such
observations through its integral utilization of the distances as the
primary method of group comparison.

The de novo clustering of the IBD samples showed that one of
the two subclusters was close to the reference group, and the other
one was farther away. The IRT method did not seem to affect the
structure of the IBD clusters. According to chi-square analysis,
the after-treatment PO and IV samples were similarly dispersed
across the clusters. However, the type of the disease appeared to
influence the way the samples are distributed across the IBD
clusters. Almost all the UC samples were in the cluster closer to

FIGURE 6 | MDS plot presenting the de novo clustering of the NI and IBD groups. Both the NI and IBD samples were clustered into two clusters. The IBD 1
subcluster is closer to the reference groups of the NI, and the IBD 2 is considerably more distant. The table presents the median level of dissimilarity of each IBD cluster
from its nearest reference cluster.
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the NI group, while the CD samples were equally dispersed to the
two subclusters. Many of these details went unnoticed in the
original publication as the structure of the groups had not been
taken into account. However, additional variables like the disease
severity, age, or diet could also contribute to the observed
clustering pattern. In general, de novo clustering can provide
us with a sense of how well our recorded metadata reflect and
explain the grouping of the microbial profiles. The existence of
unexpected structures in the dataset could be an indication that
factors that had not been predicted or taken into consideration
could have a severe impact on the results (Goodrich et al., 2014;
Alashwal et al., 2019). Therefore, it is important to always
perform this type of analysis in any experiment dealing with
microbiome data.

Considering the differences between the original and DivCom
analysis, the former was based mainly on the study of dominant
bacterial taxa, while the DivCom analysis used beta diversity
metrics to summarize the overall community composition.
However, both the initial and the current analyses were
conducted with respect to the reference group of the NI.
Although the samples of the NI group did not have any type
of inflammatory bowel disease, the sampling occurred during
their hospitalization. Therefore, it would not be appropriate to
generalize the results to the wider healthy population.
Considering this fact, a universal baseline reference dataset of
healthy individuals would be useful for quickly and easily
assessing the level of dysbiosis in individual samples (Lloyd-
Price et al., 2016; King et al., 2019). If this becomes a reality, then
the way will open for more personalized-focused treatments
(Zmora et al., 2016; Behrouzi et al., 2019).

4.2 Strengths and Limitations of DivCom
Beta diversity is one of the most important parts of the
microbiome data analysis; it allows us to explore the
relationship between the samples and, by extension, the
relation between the different groups under study. As
presented and described in the introduction, statistical and
structural limitations can produce deceptive outcomes that will
consequently affect the rest of the analysis. Most of the time, it is
not easy to overcome these obstacles, mainly due to the lack of
alternative options. DivCom tries to solve some of these problems
by using a distance-based approach that considers the inner
structure of the data and reducing the dependency on the
results of the statistical tests.

The primary purpose of DivCom is to compare different
groups and reveal their interrelation. Therefore, it should be
used in studies where two or more groups are compared against
each other. The ideal scenario would be when the test groups are
compared with control/reference samples. Since the proposed
approach uses the pairwise distances of every sample from the
reference points, the wrong selection of this dataset may lead to
misleading and uninterpretable results. Thus, selecting the
reference dataset is an essential part of the process.

An advantage ofDivCom is that the sampling size of the dataset and
the distribution of the samples across the groups did not considerably
affect the overall results. DivCom can produce accurate results
independently of the dataset. Although the sampling size does not

directly affect the procedure and the outcomes, it is recommended not
to use extremely small groups (e.g., 2–3 samples), as in this case, it
would be difficult to obtain strong statistical results and draw safe
conclusions about the overall trend of the groups.

The de novo clustering is a fundamental part of the DivCom
methodology. Numerous techniques and algorithms perform
unsupervised clustering; among these approaches, model-based
clustering methods like Dirichlet multinomial mixtures (DMM)
(Holmes et al., 2012) and Dirichlet-tree multinomial mixtures
(DTMM) (Bai et al., 2020), density-based clustering algorithms
like density-based spatial clustering of applications with noise
(DBSCAN) (Ester et al., 1996), or even neural network clustering
algorithms like self-organizing tree algorithm (SOTA) (Dopazo
and Carazo, 1997) are included. However, here in the DivCom
tool, we chose a more conventional approach like the PAM
algorithm. PAM does not make any assumptions about the
distribution of the samples, can work with any dissimilarity
matrix, and forms sphere-like clusters. In particular, the last
characteristic is extremely useful as it allowed us to
successfully use the concept of the central points as
representative points of the clusters. As presented in the
introduction, only the use of the medoids/centroids produced
results analogous with those we would have obtained if we had
performed all the possible calculations and comparisons. All the
previously mentioned qualities lead DivCom to be fast and
produce accurate and detailed outcomes.

Another benefit of using the DivCom approach is that each
sample is studied separately, and the program produces various
statistical measures for each of these points. In this way, the user
can detect outliers and samples with abnormal behavior more
easily, and then further assess them. Identifying and evaluating
outliers is not always a straightforward task, so this is an
important and maybe overlooked feature of the tool.

DivCom does not require any advanced programming
knowledge as the users do not have to edit or modify the code
in the scripts; they just need to fill out the required parameters
and then execute the program. Each of these parameters is
described in the scripts, and clear guidelines are provided so
even inexperienced users to be able to use the tool. The workflow
of DivCom is flexible and can be personalized depending on the
requirements and needs of each user. Also, the results are printed
in the form of reports in which each plot and table is explained so
it will be easier for the user to interpret the results.

The computational and memory requirements of DivCom can
be considered limited. The development and testing of the tool
were performed mainly in spec-wise average personal computers
(processor: Intel core i5, Ram: 8GB, operating system: Windows
10). The requisite time to complete the process ranged from a few
seconds to several minutes, depending on the size of the
abundance table. For the dataset used in this study (62 × 254
abundance table), the execution time for the whole analysis was
approximately 1 min, while for much larger datasets (e.g., 700 ×
5,985 abundance table) the execution time for the whole analysis
was no more than 7 min. The only part of the process that has
increased computational requirements and is time-consuming is
the calculation of the beta diversity (Generalized Unifrac).
Therefore, for even larger datasets, it is recommended that the
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user pre-calculates and provides the matrix of the pairwise
distances between the samples in order to speed up the process.

5 CONCLUSION AND FUTURE WORK

In conclusion, we proposed a novel approach for the analysis of
the microbiome datasets. This approach incorporates beta
diversity measures used as distance metrics and the technique
of de novo clustering. This new methodology offers more detailed
and well-defined comparisons between different groups under
study. An automated tool that applies the suggested method was
developed and introduced.

Also, we assessed the performance of DivCom using existing data
and comparing the findings with those of the original study. The
outcomes showed its effectiveness as we were able to verify some of
the key points of the original publication simply by running our tool
while discovering and highlighting unnoticed details.

In some cases, the proposed approach outperforms the current
methods and techniques that are applied to the beta diversity
analysis. Of course, future improvements and optimizations to
the tool will render it easier for the user, will simplify the process,
and will expand its capability to handle a wider range of possible
cases. The use of DivCom combined with the existing tools for
downstream microbiome data analysis offers clear advantages
and additional information, and therefore should be considered
in every microbiome analysis.
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VirHunter: A Deep Learning-Based
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High-throughput sequencing has provided the capacity of broad virus detection for both
known and unknown viruses in a variety of hosts and habitats. It has been successfully
applied for novel virus discovery in many agricultural crops, leading to the current drive to
apply this technology routinely for plant health diagnostics. For this, efficient and precise
methods for sequencing-based virus detection and discovery are essential. However, both
existing alignment-based methods relying on reference databases and even more recent
machine learning approaches are not efficient enough in detecting unknown viruses in
RNAseq datasets of plant viromes. We present VirHunter, a deep learning convolutional
neural network approach, to detect novel and known viruses in assemblies of sequencing
datasets. While our method is generally applicable to a variety of viruses, here, we trained
and evaluated it specifically for RNA viruses by reinforcing the coding sequences’ content
in the training dataset. Trained on the NCBI plant viruses data for three different host
species (peach, grapevine, and sugar beet), VirHunter outperformed the state-of-the-art
method, DeepVirFinder, for the detection of novel viruses, both in the synthetic leave-out
setting and on the 12 newly acquired RNAseq datasets. Compared with the traditional
tBLASTx approach, VirHunter has consistently exhibited better results in the majority of
leave-out experiments. In conclusion, we have shown that VirHunter can be used to
streamline the analyses of plant HTS-acquired viromes and is particularly well suited for the
detection of novel viral contigs, in RNAseq datasets.

Keywords: novel virus detection, RNA viruses, plant virome, alignment-free method, deep learning, artificial neural
network

INTRODUCTION

Study of viromes at an unprecedented scale has been enabled by the adoption of high-throughput
sequencing (HTS) technologies and is now frequently undertaken across an increasing range of host
species. In particular, sequencing of plant viromes has become quite common, partly due to its
relevance to the agricultural sector. The acquired datasets help to elucidate important questions such
as virus spread among host reservoirs and effects of agriculture on the ecosystems and their
biodiversity as well as the identification of novel viruses in crops and natural environments (Lefeuvre
et al., 2019). These developments are fast advancing our knowledge of viral diversity through the
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discovery of previously unknown viral species or variants and the
identification of new hosts of known viruses (Roossinck et al.,
2015; Massart et al., 2017). Following the classification proposed
by Stobbe and Roossinck (2014), viruses identified in HTS
datasets can be classified into three different groups as follows:
1) viruses that are already known to infect a given host; 2) novel
viruses from a known family or known viruses that have not been
found previously described to infect a given host; and finally 3)
completely novel viruses that share little to no sequence similarity
with known viruses already present in the databases.

Using an efficient virus detection method, including for the
identification of novel viruses, is essential for efficient disease
management. Standard diagnostic tests (ELISA assays and PCR-
based assays) depend on specific antibodies or primers and thus
require prior knowledge of the virus and of its phylogenetic
neighbors. Precise identification of viruses is further complexified
by the large diversity encountered in the majority of viral species
which is linked to the high mutation rate of these agents. This is
particularly true for plant viruses, the majority of which are RNA
viruses whose mutation rate is very high (Jenkins et al., 2002).
Moreover, the new variants emerging from genomic
rearrangements or recombination events can also significantly
differ from the parental viruses (Domingo 2010). Also, many of
the plant viruses are multihost pathogens, and a single plant can
be infected by multiple unrelated viral species (Roossinck, 1997).
Such infections by multiple viruses represent an additional
challenge for detection since the viral load of different
pathogens can be very unequal (Martín and Elena, 2009).
Moreover, in most cases, background contamination is
currently unavoidable (Kleiner et al., 2015; Maree et al., 2018;
Kutnjak et al., 2021). In this context, HTS combined with
bioinformatics tools has been shown to be a valuable
approach, both for detection of known viruses and for the
discovery of novel ones (Maree et al., 2018; Villamor et al.,
2019; Mehetre et al., 2021).

Viruses do not have a universal genemarker that could be used
for their identification, contrary to the conserved regions of the
16S rRNA and ITS genes, commonly used to classify bacteria and
fungi at the genus or species level (Mokili et al., 2012). Moreover,
the abundance of viral genomic material in plant sequencing
samples can be very low (Massart et al., 2019), due to the
dominance of the host material. Hence, specific sample
preparation to enrich plant RNA viral-specific sequences is an
important step that makes the downstream detection of viruses by
bioinformatics methods more reliable. They include approaches
providing a high and targeted enrichment of viral sequences, such
as the purification of viral double-stranded RNAs (dsRNAs) or
that of virion-associated nucleic acids (VANAs) as well as less
specific approaches generally affording lower enrichment, such as
the sequencing of small interfering RNAs (siRNAs) or inclusion
of a ribodepletion step prior to the sequencing of total cellular
RNAs (Maree et al., 2018; Kutnjak et al., 2021). As already
discussed in a range of reviews, each of these approaches have
advantages and weaknesses. In particular, strategies providing
high enrichment factors may improve detection sensitivity but
often at the cost of introducing biases with the risk of
compromising the detection of some particular viruses (Maree

et al., 2018; Kutnjak et al., 2021). For example, dsRNA-based
approaches are usually poor at detecting DNA viruses, while
VANA-based ones may perform poorly for viruses with labile
particles.

When interested in known viruses or potentially novel viruses
but from a known family, bioinformatics methods that compare
the sequenced reads to genomes in public databases are very
efficient for virus detection and identification (Stobbe and
Roossinck, 2014; Massart et al., 2019). Read-based analysis is
thus particularly suited to study viral diversity of sequencing
samples in terms of known viral species. Generalistic
metagenome analysis tools such as, for example, Kaju (Menzel
et al., 2016), Kraken 2 (Wood et al., 2019), and Centrifuge (Kim
et al., 2016) show good performance in terms of sensitivity and
precision in detection of present known viral species (De Vries
et al., 2021).

For the discovery of novel viruses, use of de novo assembly to
recover novel viral contigs from sequencing data is an essential
step in order to overcome the incompleteness of virus reference
databases, annotation errors and, importantly, the limited
homology between novel viral sequences and reference
genomes (Sutton et al., 2019). The assembly step is a staple of
short-read sequencing studies, which are still the vast majority
today (Maree et al., 2018; Kutnjak et al., 2021). It represents its
own challenges, in particular, for very short reads such as those of
siRNAs and for viral populations with multiple and microdiverse
variants (Warwick-Dugdale et al., 2019), often leading to
microdiversity-associated fragmentation and, sometimes, to
chimeras in the resulting contigs (Martinez-Hernandez et al.,
2017; Roux et al., 2017), which in turn affects the downstream
analysis, including estimation of viral diversity and identification
of novel viruses (Nayfach et al., 2021). Popular assembler choices
are the generalistic de Bruijn graph assembly metaSPAdes (Nurk
et al., 2017) and Trinity, for RNAseq (Grabherr et al., 2011).

Following the recent review (Kutnjak et al., 2021), the methods
used to analyze assembled contigs can be grouped into three main
categories: 1) alignment and mapping-based methods, 2) protein
domain searches, and 3) k-mer-based approaches that can either
rely on signatures or leverage machine learning. Among this large
plethora of tools, alignment-based methods are widely adopted
when working with assembled contigs since they provide a longer
sequence for homology search against reference genomes using
either BLAST (Altschul et al., 1990) and its derivatives or the
amino acid alignment of protein-coding genes predicted from the
assembled contigs using DIAMOND (Buchfink et al., 2015). Also,
focusing the analysis on coding regions is particularly relevant for
RNAseq data since the non-coding sequences of viruses are not
highly represented in such samples, even if they can be well
conserved in certain viral taxa. However, the main drawback of
alignment- or mapping-based approaches lies on the fact that
they are both computationally intensive and require expertise for
filtering and interpreting the results. As for the generalistic k-mer
signature approaches, they remain demanding in terms of
memory and are best suited for diversity analysis tasks
(Kutnjak et al., 2021).

The emergence of machine learning tools for contig-based
analysis of virome sequencing data holds much promise to
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streamline the discovery of novel viruses in sequencing datasets
by both avoiding the time-consuming sequence similarity
analyses and modeling even highly divergent sequences. These
methods build models based on sequences with known class
labels such as “virus” and “host” and learn features that allow
them to differentiate between the classes. VirFinder (Ren et al.,
2017) and VirSorter2 (Guo et al., 2021) rely on classical machine
learning, the former being based on a regularized logistic
regression applied to the k-mer frequency matrix extracted
from the sequence and the latter on a random forest model
built from genomic features. Methods based on deep learning
networks have also been proposed for virus detection, such as
DeepVirFinder (Ren et al., 2020) and ViraMiner (Tampuu et al.,
2019) that both rely on a combination of convolutional neural
networks (CNNs) and dense neural networks, and VirNet
(Abdelkareem et al., 2018) that relies on a long short-term
memory (LSTM) architecture. These three deep learning
methods were developed for identification of viral contigs in
metagenomic samples and evaluated on bacterial and human
metagenomes. However, DeepVirFinder has been recently
successfully used in plant-related virome studies (Santos-
Medellin et al., 2021).

In this work, we present VirHunter, a deep learning method that
uses convolutional neural networks (CNNs), classifies previously
assembled contigs to identify potential viral, host, and bacterial
(contamination) sequences in RNAseq samples. The hybrid
architecture of VirHunter combines a multi-network CNN-based
module covering different k-mer sizes with a downstream random
forest classifiermodule.We have trainedVirHuntermodels for three
different plant host species: peach, grapevine, and sugar beet.
Importantly, we have shown that VirHunter is especially
performant for the task of completely novel virus discovery by
building 31 leave-out datasets, in which each viral family is excluded
from the training dataset, and comparing the results with a standard
BLAST-based solution on one side and a state-of-the-art deep
learning method, DeepVirFinder, the other side. VirHunter not
only systematically outperformed DeepVirFinder in terms of virus
detection but also has considerably reduced the False Positive rate.
Cross-evaluation has shown that host detection accuracy remained
high and decreased slightly when test sequences originated from the
plant species were further phylogenetically removed from that used
to train the model. We have further evaluated the detection capacity
of VirHunter on in silico mutated contigs sampled from the NCBI
virus database and have shown that it decreased only slightly with a
progressively increased mutation rate (e.g., True Positive rate of
0.898 for 20% mutation rate). Moreover, we generated 12 RNAseq
datasets for a range of host species and have shown that VirHunter
was not only able to uncover the viruses that were previously
identified but also to streamline the analyses by considerably
reducing the need for manual curation.

MATERIALS AND METHODS

Datasets
We downloaded all complete and incomplete viral sequences
from the NCBI virus database for which the host’s taxonomic id

belongs to Viridiplantae on 26/10/2021, which yielded 122,832
sequences. Plant sequences have been downloaded for Prunus
persica (peach), Vitis vinifera (grapevine), Beta vulgaris (sugar
beet), and Oryza sativa (rice) from the NCBI RefSeq genomes
database. On one hand, they consist of the latest available
assemblies, GCF_000346465.2, GCF_000003745.3,
GCF_000511025.2, and GCF_001433935.1 for peach,
grapevine, sugar beet, and rice, respectively, and of the coding
region sequences (CDSs), on the other hand. In the absence of the
plastid sequence in the reference assembly of the sugar beet, we
used the separately available sugar beet plastid sequence
(NC_059012.1). All complete representative bacterial genomes
have been downloaded from the NCBI RefSeq database on 28/10/
2021 using the genome_updater.sh script.

To simulate the discovery of completely unknown viruses that
do not have expected similarities with the available data, we
constructed virus family leave-out datasets by excluding in turns
all the sequences of a given plant viral family from the
downloaded virus dataset. The NCBI taxonomy contains 45
viral families. We excluded the Pospiviroidae and the
Avsunviroidae families of viroids as they have very small
genomes (average length < 1,000). All families with the
number of available sequences < 100 were merged in one
dataset called small families. Finally, all sequences without
family labels constituted the unclassified dataset. This resulted
in 31 leave-out datasets.

Moreover, we generated 12 novel virome-sequencing RNAseq
datasets, sampled from peach, grapevine, and sugar beet (see
Sample Preparation and Sequencing). Description of these
datasets and presence of viruses identified by aligning
assembled contigs against the NCBI GenBank database (see
Assembly of RNAseq Datasets and Annotation of Viral Contigs)
are listed in the Supplementary Table S1.

Sample Preparation and Sequencing
Total RNAs were extracted from three peach leaf samples,
three grapevine phloem scrapping samples, and three sugar
beet leaf samples using the CTAB method (Chang et al., 1993),
the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, Saint
Quentin-Fallavier, France), and the NucleoSpin RNA plant kit
(Macherey-Nagel SAS, Hoerdt, France), respectively. RNAseq
libraries were prepared either from total RNAs (peach and
grapevine samples), messenger RNAs (grapevine samples), or
ribodepleted RNAs (sugar beet samples). High-throughput
sequencing was performed on an Illumina platform
(Hiseq3000 or NovaSeq600) using a paired-end read length
of 2 × 150 bp. Accession numbers for each of the three studies
(peach, grapevine, and sugar beet) containing raw FASTQ
sequencing files are provided in the Supplementary Table S1.

Assembly of RNAseq Datasets and
Annotation of Viral Contigs
All of the 12 selected plant virome datasets (see Datasets) were
processed with the QIAGEN CLC Genomics Workbench
(v.21.0.5). Briefly, reads were first quality-controlled and
trimmed using default parameters and then assembled using
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de novo assembly (word size 50, bubble size 300, and minimum
contig length 250). To identify viral contigs present in these
datasets, we followed a standard three step BLAST-based
approach, see e.g., (Candresse et al., 2018). 1) All contigs
were aligned using the CLC built in tBLASTx tool against
the NCBI nucleotide non-redundant database limited to
taxonomic identifiers of viruses. Contigs having significant
hits (e-value below the 10−20 cut off) were selected. 2) Contigs
were further filtered by aligning them using BLASTn and
BLASTx with default parameters against the whole
GenBank non-redundant nucleotide and protein databases,
respectively, and keeping contigs for which the best hits
correspond to plant viruses for both BLASTn and BLASTx.
Additional manual expert curation allowed to discard contigs
with incoherencies between the two alignment results. 3)
Finally, all reads passing quality control were mapped
against the plant viral contigs, resulting from step 2 using
the CLC built-in mapping utility with default parameters with
high stringency (90% identity of 90% of read’s length). Only
contigs with length > 750 nucleotides and having sufficient
read coverage (expert curation) were retained.

Annotation results together with the counts of thus identified
viral contigs are listed in the Supplementary Table S1.

Data Preprocessing
To prepare the data for processing by the neural network module,
datasets were preprocessed by creating representative one-hot
encoded fragments (see Figure 1). Specifically, let us denote the
virus dataset byV, the plant dataset byH (for “host”)—composed
of the full assembly G, the coding sequences C, the chloroplast
sequence L, and the bacterial dataset by B. Given a fragment size
n of 500 and 1,000 nucleotides, V was split into fragments of size
n with a sliding window with an increment of n/2. Sequences
shorter than n nucleotides and longer than 0.95 × n were padded
to n bp length with gaps (those shorter than 0.95 × n are
discarded), together yielding N viral fragments. Same number
N of fragments of size nwas randomly sampled from B. As for the
plant, G was split into 0.6 × N fragments using a sliding window
with an increment of size n, C was split into 0.3 × N fragments
with a sliding window with increment of n/2, and finally 0.1 × N
fragments were sampled randomly from L.

Including plastids in relatively high proportion into the plant
dataset H was important to avoid the potential incorrect
assignment of contigs originating from plastids to B, given the
phylogenetic proximity of plastids and bacteria (McFadden,
2001). Moreover, there are RNA viruses that are known to be
replicated in tight association with plastids (mostly chloroplasts) -

FIGURE 1 | Dataset preprocessing procedure and architecture of the multi-CNN module. Panel (A): Reference datasets (virus, plant, and bacteria) are first
fragmented with a pre-defined fragment size (500 and 1000 bp). Each fragment is further one-hot encoded and carries the class label. Panel (B): Three CNNmodules are
built for k-mers of size k � 5,7, and 10. One-hot encoded genomic fragments of a fixed size are processed by convolutional and global max-pooling layers before being
concatenated. A total of two dense layers are followed by the softmax activation function to produce a 3-class classification.
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see e.g., (Budziszewska and Obre ̨palska-Ste ̨plowska, 2018;
Delgado et al., 2019). Enriching for CDS sequences was
necessary since the envisioned application of VirHunter is for
RNAseq virome datasets. Five compositions of G/C/L
proportions of H were tested (100/0/0, 90/0/10, 60/30/10, 50/
40/10, and 45/45/10, data not shown) and the best was retained.

Fragments were further transformed from length n ACGT-
character strings to n × 4 one-hot encoded arrays, in which an A
is encoded by [1, 0, 0, 0], a C is encoded by [0, 1, 0, 0] etc., while
gaps are encoded by [0, 0, 0, 0]. Moreover, the encoded dataset is
augmented by adding the reverse complement of each original
fragment. Indeed, it has been shown by Shrikumar et al. (2017)
that CNN models in genomics require the reverse-complement
data augmentation combined with parameter sharing between
the forward- and reverse-complement representations of the
model. Class labels V, H, or B are assigned to each fragment
according to its provenance.

VirHunter Architecture
VirHunter architecture was defined with two main components
the first component is a multi-path neural network shown in
Figure 1, and the second component is a machine learning
classification module shown in Figure 2.

1. Neural network component. The neural network module
follows a k-mer-based approach. To alleviate a potential
difficulty related to the choice of k, VirHunter implements a
multi-model solution for k � 5, 7, and 10 (see Figure 1), with
three independent CNN models having the same architecture.

These values of k were chosen based on the accuracy of the
individual CNN networks in the family leave-out experiment
(see Supplemental Figure S1). The genomic DNA sequence
and its reverse complement for each n-size fragment are
transformed from nucleotides (in ACGTN alphabet) to an n ×
4 one-hot encoded array as presented in Data Preprocessing. A
convolution layer with leaky rectified linear unit activation
function (a � 0.1) and global max-pool and dropout layers are
then applied independently to the forward fragments and their
paired reverse-complement versions. The use of dropout layers was
introduced to alleviate the issue of overfitting. Models with k � 5, 7
have the convolution layer with 256 filters, while the model for
k � 10 has 512 filters. The two resulting vectors for the forward-
and reverse-complement fragments are then concatenated. Finally,
two dense layers are applied. The first dense layer has the number
of units equal to 256 for the paths with k � 5, 7 and 512 for the path
with k � 10. It employs a rectified linear unit activation function.
The second dense layer has three units and uses the softmax
activation function to enable three-class classification.

2. Random Forest component. The second module of the
VirHunter implements a random forest classifier (see
Figure 2) with the goal to aggregate the predictions from
three neural networks. The classifier receives nine real-valued
predictions from the multi-network module (three per network)
and outputs one of the three classes using the majority vote
implementation of random forest. The random forest classifier
was chosen over other approaches such as linear regression and
simple voting, based on performance (data not shown).

FIGURE 2 | Training of the VirHunter’s machine learning module. The individual network predictions are subsetted to contain an equal number of both poorly
predicted (prediction value for viral class < 0.8) and well-predicted (prediction value ≥ 0.8) viral fragments (with the goal to overselect poor predictions relative to their
overall frequency in order to drive the model to recognize even completely novel viruses). The random forest classifier uses these subsetted predictions for its training.
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Training
The neural network and machine learning modules were trained
separately for each of the three plant host species (peach,
grapevine, and sugar beet) and for fragment sizes n of 500
and 1,000.

The training dataset for the CNN module was built as
presented in Data Preprocessing. Training batches with size
512 were prepared in a balanced manner across the three
classes (virus, plant, and bacteria) from the training dataset
and are split into training and validation with the ratio of 9:1.
Each of the three individual networks was trained for 10 epochs,
followed by 1 epoch of training on the validation set to take into
account all the data.

For training and testing the machine learning components,
predictions for the three trained networks were obtained on
100, 000 randomly selected fragments of size n from each V
and B. Likewise, 100, 000 fragments of size n were randomly
sampled from H, following the ratio described in Data
Preprocessing. Predictions for random viral fragments were
further subsetted in the following manner. We split the test
dataset viral fragments into those having good quality
predictions (prediction value for viral class ≥ 0.8) and low-
quality predictions (prediction value < 0.8) and maintained
10, 000 randomly selected fragments from each category,
yielding 20, 000 predictions. These 20, 000 predictions were
further selected for plant host H and bacterial B fragments.
The resulting dataset with three predictions for each of 60, 000
fragments was further split in train and test datasets with 2:1 ratio,
and the machine learning module was trained with parameters
max_depth = 5, n_estimators = 10, max_features = 1, and
max_samples = 0.2.

We verified that overfitting was successfully circumvented by
the individual CNN networks that compose the neural network
component of our model by comparing the accuracy on
validation and test datasets obtained by these individual
networks trained on families in the leave-out experiment for
peach (see Supplementary Table S9). No significant difference
was observed.

Contig Classification
VirHunter trained on fragments with n � 500 was used to
classify contigs with length 750< l < 1500, while VirHunter
trained on fragments with n � 1000 was used to classify
contigs with 1500< l . Indeed, an ORF of 500 nucleotides
corresponds to an 18 kDa protein, this size covering the vast
majority of viral polymerases, movement proteins, and capsid
proteins for plant viruses. Contigs with l < 750 were
considered as very small for prediction by the smaller of the
two models and were discarded.

Each fragment of an input contig was preprocessed following
the procedure presented in Data Preprocessing. Predictions were
produced by the neural network module for each of these one-hot
encoded fragments, yielding three probabilities of belonging to a
specific class (V, H, B). These class probabilities were further
processed by the random forest component, resulting in a unique
class label for each of the fragments. Finally, given class labels for
each of the fragments of the input contig, a vote was applied to

decide to which class belongs the whole contig, viral if the number
of viral (V) fragments is greater than those from H and from B,
host if the number of host (H) fragments is greater than those
from V and from B, and bacterial otherwise.

RESULTS

VirHunter Outperforms State-of-the-Art
Tools on Family Leave-Out Datasets
VirHunter was trained on GPU (Nvidia Tesla T4) with n � 1000
for 31 family leave-out datasets and three different plant datasets
(peach, grapevine, and sugar beet), resulting in 63 leave-out
models. The test datasets were prepared by random sampling
of 30,000 fragments with n � 1000 from the corresponding left-
aside families of viral sequences, bacteria, and plant.

Classification results for the viral fragments by VirHunter
in this family leave-out experiment are shown in Figure 3 and
in Supplementary Tables S2, S3. We compared the capacity of
VirHunter to detect novel viruses in the family leave-out
setting with the BLAST-based approach on one hand and
two state-of-the-art machine learning methods,
DeepVirFinder and VirSorter2, on the other hand as also
shown in Figure 3. Briefly, each test dataset was aligned
using tBLASTx (v2.12.0), preserving one best hit with
parameters -max_target_seqs 1 -max_hsps 1, against the
respective virus database with the leave-out family removed,
and filtered by e-value < 10−10, percent identity > 0.5, and
alignment length > 50 amino acids (see results in
Supplementary Table S4) in order to emulate the
annotation workflow without manual inspection;
DeepVirFinder was trained on the same 31 leave-out
datasets but excluding bacterial fragments from the training
dataset since this method provides the possibility to have only
two class labels and using the recommended parameters (Ren
et al., 2020) on 10 CPUs Intel Xeon CPU E5-2630 v4 (see
results in Supplementary Table S5); VirSorter2 was evaluated
on each test dataset using pretrained models provided by
authors (see results in Supplementary Table S6).

Variability of correct classification was observed for viral
fragments of different left-out families for all three methods as
shown in Figure 3 (see for detailed results in Supplementary
Tables S2–S4). We have split the families into three groups
according to the lowest True Positive (TP) rate of VirHunter
across the three plant host species: 21 “easy to classify” (TP rate
> 0.7), 7 “moderately difficult to classify” (TP rate between 0.5
and 0.7), and 3 “difficult to classify” (TP rate < 0.5). VirHunter
almost systematically outperformed DeepVirFinder in terms
of TPs (virus fragments from the leave-out family classified as
being viral). In total, there are four exceptions, namely,
Reoviridae, Mayoviridae, Phycodnaviridae, and small
families, out of which Reoviridae presented a considerable
performance gap. After inspection, it appeared that
VirHunter’s false negatives for these four families mostly
corresponded to viral fragments being classified as bacteria.
This is possibly due to the fact that Mayoviridae are
bacteriophages, Reoviridae concern a very wide range of
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hosts and present characteristics of bacteriophages [likely
evolutionary relationship to the Cystovirus family of
bacteriophage (Guglielmi et al., 2006)], while the small
families contain a wide variety of viruses, and
bacteriophages are one among them (Mitoviridae). This is
to be counterbalanced by the fact that being trained only on
plant and virus sequences due to the 2-class approach,
DeepVirFinder systematically erroneously considers the
majority of bacterial fragments as being viral (see
Supplementary Table S4). As for the Phycodnaviridae
family, it contains dsDNA viruses, which could potentially
have contributed to the poorer performance of VirHunter
relatively to DeepVirFinder for two of the host species.
Altogether, VirHunter has shown consistently better
capacity to detect novel viruses than DeepVirFinder.

Of note is also the difference in time requirement for training
the VirHunter and DeepVirFinder models. On average, training a
full model for one leave-out family for one plant host required
11 h for VirHunter (three CNNs, each for both fragment sizes 500
and 1000 – 6 CNNs in total—and the random forest) and 72 h for
DeepVirFinder (four CNNs for fragment sizes 150, 300, 500,
and 1000).

Compared to both VirHunter and DeepVirFinder,
VirSorter2 has shown poorer performance in the family
leave-out setup on all the families except two. Indeed, the
TP rate was below 0.5 threshold for all families except for the
Amalgaviridiae and the Alphasatellitidae. For the former,
VirSorter outperformed DeepVirFinder, while showing

poorer results than VirHunter, while for latter it was the
best performing method together with tBLASTx (see Panel
A of Figure 3).

As shown in Figure 3, despite the reasonably permissive
filtering criteria, tBLASTx shows best results comparable with
VirHunter and for certain families exhibits particularly poor
performance relative to the two machine learning methods.
For the “easy to classify” families, the difference was mostly in
favor of VirHunter, sometimes drastically (see for example,
Nanoviridae and Genomoviridae in Panel A and the boxplot
in Panel B). In seven cases, tBLASTx outperformed
VirHunter, but this difference was mostly marginal (5.8%
difference in TP rate on average), the outlier being
Tolecusatellitidae and Tymoviridae, where the gain in favor
of tBLASTx was the strongest. For the “moderately difficult to
classify” families, VirHunter had a higher TP rate than
tBLASTx in all cases. For the three “difficult to classify”
families, even if VirHunter’s performance was globally low,
it still outperformed tBLASTx, with the notable exception of
Tospoviridae. Altogether, VirHunter has shown consistently
better results than that of tBLASTx, for which the
TP rate was frequently below the threshold 0.5 (16 families
out of 31).

As for the capacity to correctly classify bacterial fragments,
VirHunter has shown a systematically high TP rate, ranging from
0.958 to 0.983, across all the leave-out experiments. As for plant
fragments, the TP rate was also satisfactory, sugar beet TP from
0.950 to 0.961, grapevine TP from 0.983 to 0.991, and peach TP

FIGURE 3 | Detection of novel viral fragments in the family leave-out setup. Panel (A): Results for the percent of correctly classified fragments (out of 10, 000) with
length n � 1000 from the corresponding left-aside families. VirHunter results are depicted by circles, tBLASTx by stars, DeepVirFinder by triangles, and VirSorter2 by
diamonds. Black lines represent thresholds separating families into three difficulty groups for VirHunter as follows: easy to classify (minimum TP rate across the three
plants >0.7), difficult to classify (minimum TP rate <0.5), and moderately difficult to classify (minimum TP rate between 0.5 and 0.7). Panel (B): Differences in the
True Positive rate between VirHunter, DeepVirFinder (red), tBLASTx (blue), and VirSorter2 (green).
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from 0.983 to 0.989 (see columns “Bacteria” and “Plant” in
Supplementary Table S2).

Plant Fragments Are Accurately Classified
When VirHunter Is Trained on
Phylogenetically Close Plant Species
VirHunter was trained independently with n � 1000 for three
selected plants (peach, grapevine, and sugar beet) and all the
downloaded viruses and bacteria, generated as described in Data
Preprocessing, yielding three models.

We cross-evaluated VirHunter’s ability to correctly predict
fragments from the plant absent in the training by sampling
from the three studied plants, and 10, 000 random fragments
with n � 1000 were selected. Those three plant test datasets
were supplemented with two datasets with n � 1000 , sampled
randomly from all viral sequences and from bacteria,
respectively.

As previously described (see VirHunter Outperforms State-
of-the art Tools on Family Leave-out Datasets), plant fragments,
coming from the same plant that the models were trained on, are
consistently well classified for all the three models with the TP
rate ranging between 0.95 (“sugar beet”model tested on random
fragments from the sugar beet genome) and 0.99 (the “peach”
model tested on random fragments from the peach genome) as
shown in Table 1. When the plant host species used for training
the model is reasonably phylogenetically close to the one of the
test datasets, the impact on the TP rate is not very important.
For example, the “peach” model tested on random fragments
from the grapevine genome still produces the TP rate of 0.9, and
the “grapevine” model tested on peach fragments gives the TP
rate of 0.836. However, both these models generate a lower TP
rate when tested on random fragments from the more

phylogenetically distant sugar beet fragments, 0.827 and
0.781, for the “peach” and “grapevine” models, respectively.
Similarly, the “sugar beet” model performs less well for both
peach and grapevine random fragments, with TP rates of 0.854
and 0.887, respectively.

The three plants used for training models are phylogenetically
distant from one another as they belong to different families, sugar
beet belongs to theAmaranthaceae family, grapevine belongs to the
Vitaceae family, and peach to the Rosaceae family; all the three are
eudicots. Out of these three plants, sugar beet is the outlier. Peach
and grapevine belong to the Rosids higher clade, while sugar beet
belongs to the Caryophyllids higher clade. Given the phylogenetic
distance, the lower bound of 0.78 for the true positive rate between
these three plants is reasonable.

To evaluate how strongly the performance would be
affected if the host of RNAseq dataset was to be from an
even further phylogenetically removed plant (belonging to
the monocots), we trained a model on the rice (Oryza sativa)
dataset that belongs to monocots higher clade. As shown in
the Supplementary Table S7, the performance drop was
coherent with the increase of the phylogenetic distance
(TP rate was 0.766, 0.759, and 0.702 for fragments from
peach, grapevine, and sugar beet, respectively); however,
the recall remained high for both viral and bacterial
fragments. These results highlight that when the host of
the RNAseq dataset is phylogenetically highly divergent
from any of the plants used to train the available models, a
new model for a phylogenetically closer plant has to be
trained.

VirHunter Enables Classification of Long
Mutated Viral Fragments
To evaluate the potential quality of VirHunter’s predictions on
contigs’ classification, we randomly sampled 10,000 long
fragments with n ∈ [1500, 2000, 2500, 3000, 4500, 6000]
from the whole virus dataset V. Furthermore, to better
emulate contigs resulting from assembly of sequencing
reads, we applied a point mutation rate
m ∈ [0, 0.05, 0.1, 0.15, 0.2] to these long fragments.
Classification of the resulting mutated long fragments was
performed using models trained for the three plants as
described in VirHunter Enables Classification of Long-
Mutated Viral Fragments and following the procedure for
contig classification described in Contig Classification.

We observed that VirHunter generated highly accurate predictions
for long viral fragments with 0 mutations and that across different
fragment sizes (column “Mutation rate” 0 in Supplementary Table
S5). The TP rate slowly decreased with the increase of the mutation
rate: for example, the average TP rate across different fragment sizes
with the mutation rate 0.2 was 0.885 for the “peach”model, 0.924 for
the “grapevine” model, and 0.885 for the “sugar beet” model.
Moreover, these results were consistent between the three plant
host species used to build the models: the “peach” model’s TP rate
was 0.944 in average across different fragment lengths and mutation
rates, the “grapevine” models’ average TP rate was 0.960, and the
“sugar beet” model’s average TP rate was 0.936.

TABLE 1 | VirHunter results for prediction of fragments from different plants.
Classification results for three plant-specific models of 10, 000 fragments for
length 1000 randomly drawn from three plants’ reference genomes, from all viral
sequences and bacteria are shown. In bold are predictions for the expected class.

Plant
used for training

Plant
used for testing

Predicted label

Plant Virus Bacteria

Peach Peach 0.988 0.007 0.006
Grapevine 0.892 0.064 0.044
Sugar beet 0.804 0.113 0.083
Virus 0.002 0.996 0.002
Bacteria 0.005 0.017 0.978

Grapevine Peach 0.845 0.106 0.005
Grapevine 0.986 0.011 0.004
Sugar beet 0.78 0.148 0.072
Virus 0.002 0.997 0.002
Bacteria 0.007 0.021 0.973

Sugar beet Peach 0.824 0.132 0.045
Grapevine 0.878 0.087 0.035
Sugar beet 0.956 0.018 0.026
Virus 0.002 0.996 0.002
Bacteria 0.012 0.019 0.969
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VirHunter Uncovers Expected Novel and
Known Viral Contigs in Virome
The capacity of VirHunter to detect novel viral contigs from real
RNAseq-sequencing data was evaluated and compared to that of
DeepVirFinder and VirSorter2. The 12 virome RNAseq
datasets, sampled from peach, grapevine, and sugar beet (see
Supplementary Table S1) were assembled as described in
Assembly of RNAseq Datasets and Annotation of Viral
Contigs. To imitate the novel virus discovery setting, we
excluded from the virus dataset those viral species that were
annotated as present in the studied plant viromes, and models
for each plant species were trained accordingly for VirHunter
and DeepVirFinder. For example, to train the “grapevine”
model, all viral species present in samples from grapevine
(Supplementary Table S1 column “Present viruses”) were
deleted from the virus dataset. The same procedure was
carried out for training the “peach” and “sugar beet” models.
VirSorter2 pretrained models were used following the
recommendations in Guo et al. (2021).

The assembled contigs > 750 nt were analyzed by
VirHunter, DeepVirFinder, and VirSorter2 (see Table 2 and
Supplementary Table S8). Importantly, VirHunter assigned a
viral label to a lower number of contigs than DeepVirFinder in
eight out of 12 datasets (“Viral contigs #” under VirHunter and
DeepVirFinder columns). These are the contigs that have to
undergo additional manual expert analysis. To better
understand their nature, we aligned the contigs identified by
VirHunter to the BLAST NCBI nucleotide database limited to
“Viruses” taxonomic id as was performed for Assembly of
RNAseq Datasets and Annotation of Viral Contigs analysis.
Contigs getting at least one alignment with percent identity

>0.5, length >50 amino acids, and e-value < 10−10are reported
in the column “tBLASTx hits.”

Moreover, for six datasets (P1, P2, P3, G4, S2, and S3)
VirHunter and DeepVirFinder have correctly identified contigs
that were previously annotated as viral. For four datasets (G1, G2,
G3, and G6), VirHunter was able to discover additional 4, 3, 5,
and 1 contigs, respectively. However, for two cases (G5 and S1),
DeepVirFinder identified one more annotated contig relative to
VirHunter. While VirSorter2 exhibited lower overprediction
comparted to VirHunter and DeepVirFinder, its ability to
correctly identify viral contigs was low, as it detected at best
60% of the expected viral contigs.

Remember that contigs annotated by experts were all
removed from the virus dataset used for the training of
VirHunter and DeepVirFinder, V. Consequently, strictly
from the computational point of view, detection of these
contigs as being viral can thus be considered as detection of
novel viruses for those tools. Simple tBLASTx alignment of
these expertly annotated contigs against V produced variable
percent identity, which was as low as 32.4% for a contig from
the G1 grapevine dataset and as high as 99% for a contig from
the S1 sugar beet dataset (see Supplementary Table S1).
According to the classification of Stobbe and
Roossinck, (2014), discovery of these viruses could thus be
assimilated in our setup with the discovery of “novel viruses
from a known family” and potentially of “completely novel
viruses.”

Moreover, it is possible that at least some potentially novel
viruses were missed during expert annotation and that the
overprediction in columns “# detected” and “tBLASTx hits”
(e-val < 10−10) is lower in reality. Indeed, a large number of
unidentified novel viruses have been recently shown to be

TABLE 2 | Performance of VirHunter, DeepVirFinder, and VirSorter2 on 12 RNAseq virome datasets. For each of the 12 datasets shown are the number of contigs that were
annotated as being viral by experts and the number of contigs in the initial assembly with length >750. Columns “VirHunter,” “DeepVirFinder,” and “VirSorter2” show
predictions run on these contigs by each method. Columns “# detected” show the total number of contigs detected as being viral by each of the two methods, and columns
“detected ∩ annotated” indicates how many of these were previously identified by the curators. Finally, the “tBLASTx e-value < 10−10” column indicates how many of “#
detected” contigs align against viruses for VirHunter.

Dataset ID and
plant origin

#
Contig
>750

# Contig
annotated as

viral

VirHunter DeepVirFinder VirSorter2

#
detected

Detected ⋂
annotated

tBLASTx
hits

(e-val < 10−10)

#
detected

Detected ⋂
annotated

#
detected

Detected ⋂
annotated

P1 Peach 1,009 2 35 2 14 45 2 10 1
P2 Peach 415 2 19 2 10 32 2 8 1
P3 Peach 685 2 23 2 10 49 2 7 1
G1 Grapevine 9,154 10 153 10 47 133 6 52 4
G2 Grapevine 17,024 10 178 10 40 131 9 117 6
G3 Grapevine 18,750 20 208 18 59 137 17 142 11
G4 Grapevine 4,332 15 95 14 32 81 11 24 4
G5 Grapevine 19,395 25 262 23 73 302 23 144 8
G6 Grapevine 2,932 15 70 14 30 86 13 26 12
S1 Sugar

beet
6,082 11 236 10 48 335 11 28 6

S2 Sugar
beet

8,902 16 277 16 49 419 16 37 7

S3 Sugar
beet

6,912 11 203 11 51 307 11 21 4
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present in public RNAseq datasets by Edgar et al. (2021),
where the authors have identified 105 novel RNA viruses.
Finally, of note is the considerable gain of time left for expert
curation of contigs by approaches similar to that presented in
Assembly of RNAseq Datasets and Annotation of Viral
Contigs, given the numbers in the “# detected” column,
where VirHunter has shown improvement over
DeepVirFinder in eight out of 12 datasets.

DISCUSSION

High-throughput sequencing (HTS) is capable of broad virus
detection for both known and unknown viruses in a variety of
hosts and habitats. It has been successfully applied for novel virus
discovery in many agricultural crops, leading to the current drive
to apply this technology routinely for plant health diagnostics.
For this, efficient and precise methods for HTS-based virus
detection and discovery are essential.

RNA viruses are the most abundant pathogens infecting
plants. However, RNA plant virus detection using HTS
presents a number of challenges due to their genetic diversity,
lack of conserved regions across viral species, short genome
lengths, high mutation rate, and incomplete knowledge present
in reference databases. To address this challenge, we developed a
novel deep learning method, VirHunter, to detect novel and
known plant viruses in RNAseq datasets.

VirHunter is particularly well-suited for the discovery of novel
viruses as it was exemplified on 31 synthetic leave-out family
datasets, where VirHunter systematically outperformed
DeepVirFinder and VirSorter2, reference machine learning tools
for virus detection. When compared with the standard tBLASTx
approach, we have shown that for most (21 out of 31) leave-out
families, VirHunter obtained a higher TP rate. In six cases, tBLASTx
was slightly better (5.8% on average). However, there remained four
cases where we have seen a much worse performance in VirHunter
results. For these specific families, it can be noted that they are
particularly well-suited to the alignment-based virus identification,
for example, Alphasatellitidae viruses carry high sequence similarity
to Geminiviridae (which was confirmed by the majority of tBLASTx
hits).

We have shown that the 3-class classification design of
VirHunter, accounting for possible bacterial contamination,
was justified by evaluating how such contaminating contigs
would be classified. Not surprisingly, VirHunter efficiently
dealt with bacterial contamination, while DeepVirFinder
classified bacteria mostly (65%) as viruses, which should have
been “plants” if the goal is to identify viruses. We have also
demonstrated that VirHunter is also perfectly suited for the
detection of known divergent viruses, by evaluating
classification accuracy on contigs with progressively increasing
the mutation rate.

Note the fact that VirHunter is designed to be trained
separately for a specific plant host species. However,
classification of plant contigs still remained reasonable
(minimum 0.78 TP rate) when we performed a cross-
evaluation by classifying sequences coming from three

phylogenetically distant plants (peach, grapevine, and sugar
beet) by each of the three models. As expected, VirHunter
performed better, when the plants it was trained and tested on
were phylogenetically closer: grapevine and peach belong to
the same rosids higher clade resulted in better mutual
predictions, while sugar beet as an outgroup belonging to
the caryophyllids higher clade has shown a relative drop in
performance. All these three plants are eudicots (Pin 2012).
When the model was trained on an even further
phylogenetically distant plant, rice that belongs to monocots
and tested on fragments from peach, grapevine, and sugar beet,
the classification accuracy of VirHunter was expectedly lower.
Together this implies that to classify contigs from an RNAseq
experiment, using a pretrained model trained on the exact
same plant species as the host of the experimental dataset is not
mandatory, but it is preferable to use one trained on a
phylogenetically close plant, ideally from the same family
and at least belonging to the same eudicots/monocots higher
clade. A possible avenue to explore in the future work is the
feasibility of transfer learning (Eraslan et al., 2019), to enable
fast on-demand retraining for a new plant or building a
generalistic plant model.

Finally, we validated VirHunter’s capacity to detect novel
viruses on 12 newly acquired RNAseq datasets for peach,
grapevine, and sugar beet. In these datasets, VirHunter
detected at least 90% (73% for DeepVirFinder and 26% for
VirSorter2) of all expert-annotated viral contigs, and in seven
datasets it was 100%. Another contribution is the low rate of
false positives generated by VirHunter, leaving from 19 to 277
contigs depending on the dataset to be inspected by an expert.
These results indicate that VirHunter efficiently
reduces the number of contigs requiring manual expert
curation.

In conclusion, we have shown that VirHunter can be used to
streamline the analyses of plant HTS-acquired viromes and is
particularly well suited for the detection of novel viral contigs, in
RNAseq datasets.
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Scalable Microbial Strain Inference in
Metagenomic Data Using StrainFacts
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While genome databases are nearing a complete catalog of species commonly inhabiting
the human gut, their representation of intraspecific diversity is lacking for all but the most
abundant and frequently studied taxa. Statistical deconvolution of allele frequencies from
shotgun metagenomic data into strain genotypes and relative abundances is a promising
approach, but existingmethods are limited by computational scalability. Here we introduce
StrainFacts, a method for strain deconvolution that enables inference across tens of
thousands of metagenomes. We harness a “fuzzy” genotype approximation that makes
the underlying graphical model fully differentiable, unlike existing methods. This allows
parameter estimates to be optimized with gradient-based methods, speeding up model
fitting by two orders of magnitude. A GPU implementation provides additional scalability.
Extensive simulations show that StrainFacts can perform strain inference on thousands of
metagenomes and has comparable accuracy to more computationally intensive tools. We
further validate our strain inferences using single-cell genomic sequencing from a human
stool sample. Applying StrainFacts to a collection of more than 10,000 publicly available
human stool metagenomes, we quantify patterns of strain diversity, biogeography, and
linkage-disequilibrium that agree with and expand on what is known based on existing
reference genomes. StrainFacts paves the way for large-scale biogeography and
population genetic studies of microbiomes using metagenomic data.

Keywords: metagenomics, strains, microbiome, biogeography, population genetics, model-based inference

INTRODUCTION

Intra-specific variation in microbial traits are widespread and are biologically important in
human associated microbiomes. Strains of a species may differ in their pathogenicity (Loman
et al., 2013), antibiotic resistance (Shoemaker et al., 2001), impacts on drug metabolism (Haiser
et al., 2014), and ability to utilize dietary components (Patrick et al., 2010; Ostrowski et al., 2022).
Standard methods for analysis of complex microbial communities are limited to coarser
taxonomic resolution due to their reliance on slowly evolving marker genes (Case et al.,
2007-January) or on genome reference databases lacking diverse strain representation
(Nayfach et al., 2020). Approaches that quantify microbiomes at the level of strains may
better capture variation in microbial function (Albanese and Donati, 2017), provide insight into
ecological and evolutionary processes (Garud and Pollard, 2019), and discover previously
unknown microbial etiologies for disease (Yan et al., 2020).
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Shotgun metagenomic data can in principle be used to track
strains by looking for distinct patterns of alleles observed across
single nucleotide polymorphisms (SNPs) within the species.
Several tools have recently been developed that count the
number of metagenomic reads containing alleles across SNP
sites (Nayfach et al., 2016; Costea P. I. et al., 2017; Truong
et al., 2017; Beghini et al., 2021; Olm et al., 2021; Shi et al.,
2021). Comparisons of the resulting “metagenotypes” across
samples has been used to track shared strains (Li et al., 2016;
Olm et al., 2021), or to interrogate the biogeography (Costea PI.
et al., 2017; Truong et al., 2017) and population genetics of species
(Garud et al., 2019). The application of this approach is limited,
however, by low sequencing coverage, which results in missing
values at some SNP sites, and co-existing mixtures of strains,
which introduce ambiguity about the taxonomic source of each
metagenomic read.

One promising solution to these challenges is statistical
strain deconvolution, which harnesses multiple
metagenotypes (e.g., a collection of related samples) to
simultaneously estimate the genotypes and relative
abundances of strains across samples. Several tools have been
developed that take this approach, including Lineage (O’Brien
et al., 2014), Strain Finder (Smillie et al., 2018), DESMAN
(Quince et al., 2017), and ConStrains (Luo et al., 2015).
These methods have been used to track the transmission of
inferred strains from donors’ to recipients’ microbiomes after
fecal microbiota transplantation (FMT) (Smillie et al., 2018;
Chu et al., 2021; Watson et al., 2021; Smith et al., 2022). The
application of strain deconvolution has been limited, however,
by the computational demands of existing methods, where
runtimes scale poorly with increasing numbers of samples,
latent strains, and SNPs considered. One reason for this poor
scaling is the discreteness of alleles at each SNP, which has led
existing methods to use expectation maximization algorithms to
optimize model parameters (Smillie et al., 2018), or Markov
chain Monte Carlo to sample from a posterior distribution
(O’Brien et al., 2014; Luo et al., 2015; Quince et al., 2017).

Here we take a different approach, extending the strain
deconvolution framework by relaxing the discreteness
constraint and allowing genotypes to vary continuously
between alleles. The use of this “fuzzy” genotype
approximation makes our underlying model fully
differentiable, and allows us to apply modern, gradient-
based optimization algorithms to estimate strain genotypes
and abundances. Here we show that the resulting tool,
StrainFacts, can scale to tens of thousands of samples,
hundreds of strains, and thousands of SNPs, opening the
door to strain inference in large metagenome collections.

MATERIALS AND METHODS

A Fully Differentiable Probabilistic Model of
Metagenotype Data
Metagenotypes
A metagenotype is represented as a count matrix of the
number of reads with each allele at a set of SNP sites for a

single species in each sample. This can be gathered directly
from metagenomic data, for instance by aligning reads to a
reference genome and counting the number of reads with each
allele at SNP sites. In this study we use GT-Pro (Shi et al.,
2021), which instead counts exact k-mers associated with
known single nucleotide variants. Although the set of
variants at a SNP may include any of the four bases, here
we constrain metagenotypes to be biallelic: reference or
alternative. For a large majority of SNPs, only two alleles
are observed across reference genomes (Shi et al., 2021).
Metagenotypes from multiple samples are subsequently
combined into a 3-dimensional array.

Deconvolution of Metagenotype Data
StrainFacts is based on a generative, graphical model of
biallelic metagenotype data (summarized in Supplementary
Figure S1) which describes the allele frequencies at each SNP
site in each sample (pig for sample i and SNP g) as the product
of the relative abundance of strains ( �πi) and their genotypes,
γsg, where 0 indicates the reference and one indicates the
alternative allele for strain s. This functional relationship is
therefore pig � ∑

s
γsg × πis, In matrix form, equivalently, we

notate this as P � ΓΠ (Table 1).
The crux of strain deconvolution is taking noisy

observations of P—based on the observed alternative allele
counts Y and total counts M obtained from metagenotypes
across multiple samples—and determining suitable matrices Γ
and Π. This notation highlights parallels to non-negative
matrix factorization (NMF). Like NMF, given a choice of
loss function, L, this inference task can be transformed into
a constrained optimization problem, where argmin

Π,Γ
L(Π, Γ|Y)

is a scientifically useful estimate of these two unobserved
matrices. We take the approach of explicitly modeling the
stochasticity of observed metagenotypes, placing priors on Π
and Γ, and taking the resulting posterior probability as the loss
function. This “maximum a posteriori” (MAP) approach has
also been applied to NMF (Schmidt et al., 2009). However,
unlike NMF, where the key constraint is that all matrices are
non-negative, the metagenotype deconvolution model also
constrains the elements of P and Γ to lie in the closed

TABLE 1 | Symbols used to describe the StrainFacts model.

Symbols Description

i � 1, ...,N Index and number of samples
s � 1, ...,S Index and number of strains
g � 1, ...,G Index and number of SNP sites
yig, mig Counts of reads with the alternative allele; the total count of both

reference and alternative alleles at SNP g in sample i
pig Alternative allele frequency at SNP g in sample i
γsg, �γg Allele at SNP g in strain s; vector of alleles for all strains

πis, �πi Relative abundance of strain s in sample i; vector of relative
abundances for all strains

εi Sequencing error rate in sample i
α Concentration parameter of the BetaBinomial distribution
�ρ Metacommunity strain composition
Y ,M, P, Γ, Π Matrices composed of the above elements
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interval [0, 1], and the rows of Π are are “on the
(s − 1)-simplex”, i.e. they sum to one.

Fuzzy Genotypes and the Shifted-Scaled Dirichlet
Distribution
StrainFacts does not constrain the elements of Γ to be
discrete—i.e. in the set {0, 1} for biallelic sites—in contrast
to prior tools: DESMAN (Quince et al., 2017), Lineage
(O’Brien et al., 2014), and Strain Finder’s (Smillie et al.,
2018) exhaustive search. Instead, we allow genotypes to
vary continuously in the open interval between fully
reference (0) and fully alternative (1). The use of fuzzy-
genotypes serves a key purpose: by replacing the only
discrete parameter with a continuous approximation, our
posterior function becomes fully differentiable, and
therefore amenable to efficient, gradient-based
optimization. When not using the exhaustive search
strategy, Strain Finder also treats genotypes as continuous
to accelerate inference, but these are discretized after each
iteration. We show below that inference with StrainFacts is
faster than with Strain Finder.

Since true genotypes are in fact discrete, we place a prior on
the elements of Γ that pushes estimates towards zero or one
and away from intermediate—ambiguous—values. Similarly,
we put a hierarchical prior on Π that regularizes estimates
towards lower strain heterogeneity within samples, as well as
less strain diversity across samples. This makes strain
inferences more parsimonious and interpretable. We
harness the same family of probability distributions, the
shifted-scaled Dirichlet distribution (SSD) (Monti et al.,
2011), for all three goals. We briefly describe our rationale
and parameterization of the SSD distribution in the
Supplementary Methods.

For each element of Γ we set the prior as
(γ, 1 − γ) ~ SSD(1, 1, 1

γp). (Note that we trivially transform
the 1-simplex valued (γ, 1 − γ) to the unit interval by
dropping the second element.) Smaller values of the
hyperparameter γ* correspond to more sparsity in Γ. We
put a hierarchical prior on Π, with the rows subject to the
prior �πi ~ SSD(1, �ρ, 1

πp) given a “metacommunity” hyperprior
�ρ ~ SSD(1, 1, 1

ρp), reflecting the abundance of strains across all
samples. Decreasing the values of γp, ρp, and πp increases the
strength of regularization imposed by the respective priors.

Model Specification
The underlying allele frequencies P are not directly observed
due to sequencing error, and we include a measurement
process in our model. We assume that the true allele is
replaced with a random allele at a rate εi for all SNP sites g
in sample i: ~pig � pig(1 − εi/2) + (1 − pig)(εi/2). Given the total
counts, M, we then model the observed alternative allele
counts, Y, with the Beta-Binomial likelihood, parameterized
with ~P and one additional parameter—αp—controlling count
overdispersion relative to the Binomial model.

To summarize, our model is as follows (in random variable
notation; see Supplementary Figure S1 for a plate diagram):

yig ~ BetaBinom(~pig, α
p
∣∣∣∣∣mig)

~pig � pig(1 − εi/2) + (1 − pig)(εi/2)
pig � ∑

s

πisγsg

(γsg, 1 − γsg) ~ SSD(1, 1,
1
γp
)

�πi ~ SSD(1, �ρ,
1
πp)

�ρ ~ SSD(1, 1,
1
ρp
)

ε ~ Beta(εpa,
εpa
εpb
)

Model Fitting
StrainFacts takes a MAP-based approach to inference on this
model, using gradient-based methods to find parameter values
that maximize the posterior probability of our model conditioned
on the observed counts. We rely heavily on the probabilistic
programming framework Pyro (Bingham et al., 2019), which is
built on the PyTorch library (Paszke et al., 2019) for numerical
methods.

Initial values for Γ andΠ are selected using NMF, and all other
parameters are initialized randomly (Supplementary Methods).
In order to promote global convergence, we take a prior annealing
approach (Supplementary Methods). While it is impossible to
know in practice if we converge to a global optimum, we find that
this procedure often leads to accurate estimates without the need
for replicate fits from independent initializations.

Simulation and Evaluation
Metagenotype data was simulated in order to enable direct
performance benchmarking against ground-truth genotypes
and strain compositions. For each independent simulation,
discrete genotypes of length G for S strains were sampled as
S × G independent draws from a symmetric Bernoulli
distribution. The composition of strains in each of N samples
were generated as independent draws from a Dirichlet
distribution over S components having a symmetric
concentration parameter of 0.4. Per-sample allele frequencies
were generated as the product of the genotypes and the strain-
composition matrices. Sequence error was set to ε � 0.01 for all
samples. Finally metagenotypes at each SNP site were drawn from
a Binomial(m, ~pig) distribution, with a sequencing depth of m �
10 across all sites.

Estimates were evaluated against the simulated ground truth
using five different measures of error (see Results).

Metagenotypes and Reference Genomes
We applied StrainFacts to data from two previously compiled
human microbiome metagenomic datasets: stool samples from a
fecal microbiota transplantation (FMT) study described in (Smith
et al., 2022, BioProject PRJNA737472) and 20,550 metagenomes
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from a meta-analysis of publicly available data in (Shi et al., 2021,
various accessions). As described in that publication,
metagenotypes for gut prokaryotic species were tallied using
GT-Pro version 1.0.1 with the default database, which includes
up to 1,000 of the highest quality genomes for each species from
the Unified Human Gastrointestinal Genome (UHGG) V1.0
(Almeida et al., 2021). This includes both cultured isolates and
high-quality metagenomic assemblies. This same database was
used as a reference set to which we compared our inferred
genotypes. Estimated genomic distances between SNPs were
based on the UHGG representative genome.

We describe detailed results for Escherichia coli (id: 102506,
MGYG-HGUT-02506), Agathobacter rectalis (id: 102492,
MGYG-HGUT-02492), Methanobrevibacter smithii (id:
102163, MGYG-HGUT-02163), and CAG-279 sp1 (id: 102556,
MGYG-HGUT-02556). These were selected to demonstrate
application of StrainFacts to prevalent gram-positive and
gram-negative bacteria in the human gut, the most prevalent
archaeon, as well as an unnamed, uncultured, and largely
unstudied species. We also describe detailed results for
Streptococcus thermophilus (GT-Pro species id: 104345,
representative UHGG genome: MGYG-HGUT-04345), selected
for its high diversity in one sample of our single-cell sequencing
validation.

Single-Cell Genome Sequencing
Of the 159 samples withmetagenomes described in the FMT study,
we selected two samples for single-cell genomics (which we refer to
as the “focal samples”). These samples were obtained from two
different study subjects; one is a baseline sample and the other was
collected after several weeks of FMT doses as described in (Smith
et al., 2022). A full description of the single-cell genomics pipeline
is included in the Supplementary Methods, and will be briefly
summarized here. For each of the focal samples, microbial cells
were isolated from whole feces by homogenization in phosphate
buffered saline, 50 μM filter-based removal of large fecal particles,
and density gradient separation. After isolating and thoroughly
washing the density layer corresponding to the microbiota, this cell
suspension wasmixedwith polyacrylamide precursor solution, and
emulsified with a hydrofluoric oil. Aqueous droplets in oil were
allowed to gellate before separating the resulting beads from the oil
phase and washing. Beads were size selected to between 5 and
25 μM, with the goal of enriching for those encapsulated a single
microbial cell. Cell lysis was carried out inside the hydrogel beads
by incubating with zymolyase, lysostaphin, mutanolysin, and
lysozyme. After lysis, proteins were digested with proteinase K,
before thoroughly washing the beads. Tn5 tagmentation and
barcode PCR were carried out using the MissionBio Tapestri
microfluidics DNA workflow with minor modifications. After
amplification, the emulsion was broken and the aqueous phase
containing the barcoded amplicons was used for sequencing library
preparation with Nextera primers including P5 and P7 sequences
followed by Ampure XP bead purification. Libraries were
sequenced by Novogene on an Illumina NovaSeq 6000,
BioProject PRJNA737472.

Demultiplexed sequence data for each droplet barcode were
independently processed with GT-Pro identically to

metagenomic sequences. For each barcode, GT-Pro allele
counts for a given species were assumed to be
representative of a single strain of that species. Horizontal
coverage was calculated as the fraction of GT-Pro positions
with ≥2 reads, unlike metagenotypes where ≥1 read was used
to calculate horizontal coverage. These single-cell genotypes
(SCGs) were filtered to those with > 1% horizontal coverage
over SNP sites, leaving 87 species with at least one SCG from
either of the two focal samples. During analysis, a number of
SCGs were found to have nearly identical patterns of
horizontal coverage. These may have been formed by
merging of droplets during barcoding PCR, which could
have resulted in multiple barcodes in the same
amplification. To reduce the impact of this artifact, allele
counts from multiple SCGs were summed by complete-
linkage, agglomerative clustering based on their depth
profiles across SNP sites, at a 0.3 cosine dissimilarity threshold.

Computational Analysis
Metagenotype Filtering
FromGT-Prometagenotypes, we extracted allele counts for select
species and removed SNPs that had < 5% occurance of the minor
allele across samples. Species with more than 5,000 SNPs after
filtering, were randomly down-sampled without replacement to
this number of sites. Samples with less than 5% horizontal
coverage were also filtered out.

Strain Inference
For all analyses, StrainFacts was run with the following
hyperparameters ρp � 0.5, πp � 0.3, γp � 10−10, αp � 10,
εpa � 1.5, εpb � 0.01. The learning rate was initially set to 0.05.
Prior annealing was applied to both Γ and �ρ by setting γp and ρp to
1.0 and 5, respectively, for the first 2,000 steps of gradient descent,
before exponentially relaxing these hyperparameters to their final
values over the next 8,000 steps. After this annealing period, when
parameters had not improved for 100 steps, the learning rate was
halved until it had fallen below 10−6, at which point we considered
parameters to have converged. These hyperparameters were
selected through manual optimization and we found that they
gave reasonable performance across the diverse datasets in
this study.

The number of strains parameterized by our model was
chosen as follows. For comparisons to SCGs, the number of
strains was set at 30% of the number of samples—e.g. 33 strains
were parameterized for S. thermophilus because metagenotypes
from 109 samples remained after coverage filtering. For the
analysis of thousands of samples described in (Shi et al.,
2021), we parameterized our model with 200 strains and
increased the numerical precision from 32 to 64 bits. After
strain inference using the 5,000 subsampled SNPs, full-length
genotypes were estimated post-hoc by conditioning on our
estimate of Π and iteratively refitting subsets of all SNPs
(Supplementary Methods).

For computational reproducibility we set fixed seeds for
random number generators: 0 for all analyses where we only
report one estimate, and 0, 1, 2, 3, and 4 for the five replicate
estimates described for simulated datasets. Strain Finder was run
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with flags --dtol 1 --ntol 2 --max_reps 1. We did not use
--exhaustive, Strain Finder’s exhaustive genotype search
strategy, as it is much more computationally intensive.

Genotype Comparisons
Inferred fuzzy genotypes were discretized to zero or one for
downstream analyses. SNP sites without coverage were treated as
unobserved. Distances between genotypes were calculated as the
masked, normalized Hamming distance, the fraction of alleles
that do not agree, ignoring unobserved SNPs. Similarly, SCG
genotypes and the metagenotype consensus were discretized to
the majority allele. In comparing the distance between SCGs and
these inferred genotypes sites missing from either the SCG or the
metagenotype were treated as unobserved. Metagenotype
entropy, a proxy for strain heterogeneity, was calculated for
each sample as the depth weighted mean allele frequency entropy:

1
∑gmig

∑
g

−mig[p̂ig log2(p̂ig) + (1 − p̂ig)log2(1 − p̂ig)]

where p̂ig is the observed alternative allele frequency.
Where indicated, we dereplicated highly similar strains by

applying average-neighbor agglomerative clustering at a 0.05
genotype distance threshold. Groups of these highly similar
strains were replaced with a single composite strain with a
genotype derived from the majority allele at each SNP site and
assigned the sum of strain relative abundances in each sample.
Subsequent co-clustering of these dereplicated inferred and
reference strains was done in the same way, but at a 0.15
genotype distance threshold. After co-clustering, to test for
enrichment of strains in “shared” clusters, we permuted cluster
labels and re-tallied the total number of strains found in clusters
with both inferred and reference strains. Likewise, to test for
enrichment of “inferred-only” clusters we tallied the total number
of strains found in clusters without reference strains after this
shuffling. By repeating the permutation 9,999 times, we arrived at
an empirical null distribution to which we compared our true,
observed values to calculate a p-value.

Pairwise linkage disequilibrium (LD) was calculated as the
squared Pearson correlation coefficient across genotypes of
dereplicated strains. Genome-wide 90th percentile LD, was
calculated from a random sample of 20,000 or, if fewer, all
available SNP positions. To calculate the 90th percentile LD
profile, SNP pairs were binned at either an exact genomic
distance or within a window of distances, as indicated. In
order to encourage a smooth distance-LD relationship,
windows at larger pairwise-distance spanned a larger range.
Specifically the ith window covers the span �10(i−1)/c�, �10i/c�
where c � 30 so that 120 windows span the full range [1, 104).

Software and Code Availability
StrainFacts is implemented in Python3 and is available at https://
github.com/bsmith89/StrainFacts and v0.1 was used for all results
reported here. Strain Finder was not originally designed to take a
random seed argument, necessitating minor modifications to the
code. Similarly, we made several modifications to the MixtureS
(Li et al., 2021) code allowing us to run it directly on simulated

metagenotypes and compare the results to StrainFacts and Strain
Finder outputs. Patch files describing each set of changes, as well
as all other code and metadata needed to re-run our analyses are
available at https://doi.org/10.5281/zenodo.5942586. For
reproducibility, analyses were performed using Snakemake
(Mölder et al., 2021) and with a Singularity container (Kurtzer
et al., 2017) that can be obtained at https://hub.docker.com/
repository/docker/bsmith89/compbio.

Runtime and Memory Benchmarking
Runtimes were determined using the Snakemake benchmark:
directive, and memory requirements using the GNU time
utility, version 1.8 with all benchmarks run on the Wynton
compute cluster at the University of California, San Francisco.
Across strain numbers and replicates, maximum memory usage
for models with 10,000 samples and 1,000 SNPs was,
counterintuitively, less than for smaller models, likely because
portions of runtime data were “swapped” to disk instead of
staying in RAM. We therefore excluded data for these largest
models from our statistical analysis of memory requirements.

RESULTS

Scaling Strain Inference to Hundreds of
Genotypes in Thousands of Samples
Inferring the genotypes and relative abundance of strains in large
metagenome databases requires a deconvolution tool that can
scale to metagenotypes with thousands of SNPs in tens-of-
thousands of samples, while simultaneously tracking hundreds
of microbial strains. To accomplish this we developed StrainFacts,
harnessing fuzzy genotypes to accelerate inference on large
datasets. We evaluated the practical scalability of the
StrainFacts algorithm by applying it to simulated datasets of
increasing size, and comparing its time and memory
requirements to Strain Finder, a previously described method
for strain inference. While several tools have been developed to
perform strain deconvolution (e.g. Lineage O’Brien et al., 2014;
and DESMAN Quince et al., 2017), Strain Finder’s model and
approach to inference are the most similar to StrainFacts. We
therefore selected it for comparison in order to directly assess the
value of fuzzy genotypes.

We simulated five replicate metagenotypes for 120 underlying
strains in 400 samples, and 250 SNPs, and then applied both
StrainFacts and Strain Finder to these data parameterizing them
with 120 strains. Both tools use random initializations, which can
result in convergence to different optima. We therefore
benchmarked runtimes for five independent initializations on
each dataset, resulting in 25 total runs for each tool. In this setting,
the median runtime for StrainFacts was just 17.2 min, while
Strain Finder required a median of 6.4 h. When run on a GPU
instead of CPU, StrainFacts was able to fit these data in a median
of just 5.1 min.

Since the correct strain number is not known a priori in real-
world applications, existing strain inference tools need to be
parameterized across a range of plausible strain counts, a step
that significantly impacts runtime. To assess performance in this
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setting, we also fit versions of each model with 50% more strains
than the ground-truth, here referred to as the “1.5x
parameterization” in contrast to the 1x parameterization
already described. In this setting, StrainFacts’ performance
advantage was even more pronounced, running in a median of
17.1 min and just 5.3 min on GPU, while Strain Finder required
30.8 h. Given the speed of StrainFacts, we were able to fit an even
larger simulation with 2,500 samples and 500 strains. On a GPU,
this took a median of 12.6 min with the 1x parameterization and,
surprisingly, just 8.9 min with the 1.5x parameterization. We did
not attempt to run Strain Finder on this dataset.

We next examined runtime scaling across a range of sample
counts between 50 and 2,500. We applied Strain Finder and
StrainFacts (both CPU and GPU) to simulated metagenotypes
with 250 SNPs, and a fixed 1:5 ratio of strains to samples. Median
runtimes for each tool at both the 1x and 1.5x parameterization
demonstrate a substantially slower increase for StrainFacts as
model size increases (Figure 1A). Strain Finder was faster than
StrainFacts on the 1x parameterization of a small simulation with
50 samples and 10 strains: 1.3 min median runtime versus 4 min
for StrainFacts on a CPU and 2.8 min on a GPU. However,
StrainFacts had faster median runtimes on all other datasets.

Given the good runtime scaling properties of StrainFacts, we
next asked if computer memory constraints would limit its
applicability to the largest datasets (Figure 1A). A model
fitting 10,000 samples, 400 strains, and 500 SNPs had a
maximum memory allocation of 7.7 GB, indicating that
StrainFacts’ memory requirements are satisfied on most
contemporary CPU or GPU hardware and opening the door
to even larger models. Using ordinary least squares, we fit the
observed memory requirements to the theoretical, asymptomatic
expectations, O(NS +NG + SG), resulting in a regression R2 of
0.997. We then used this empirical relationship to extrapolate for
even larger models (Figure 1B), estimating that for a model of

400 strains and 1,000 SNPs, 32 GB of memory would be able to
simultaneously perform strain inference for more than 22,000
samples. This means StrainFacts can realistically analyse tens of
thousands of samples on commercial GPUs.

StrainFacts Accurately Reconstructs
Genotypes and Population Structure
We next set out to evaluate the accuracy of StrainFacts and to
compare it to Strain Finder. We simulated 250 SNPs for 40 strains,
generating metagenotypes across 200 samples. For both tools, we
specified a model with the true number of strains, fit the model to
this data, and compared inferences to the simulated ground-truth.
For each of five replicate simulations we performed inference with
five independent initializations, thereby gathering 25 inferences for
each tool. As in (Smillie et al., 2018), we use the weighted UniFrac
distance (Lozupone et al., 2007) as an integrated summary of both
genotype and relative abundance error. By this index, StrainFacts
and Strain Finder performed similarly well when applied to the
simulated data (Figure 2A).We repeated this analysis with the 1.5x
parameterization to assess the robustness of inferences to model
misspecification, finding that both tools maintained similar
performance to the 1x parameterization. By comparison,
considering too few strains (the 0.8x parameterization, fitting 32
strains) degraded performance dramatically for both tools, with
StrainFacts performing slightly better. Thus, we conclude based on
UniFrac distance that StrainFacts is as accurate as Strain Finder
and that both models are robust to specifying too many strains.

To further probe accuracy, we quantified the performance of
StrainFacts and Strain Finder with several other measures. First,
we evaluated pairwise comparisons of strain composition by
calculating the mean absolute error of pairwise Bray-Curtis
dissimilarities (Figure 2B). While, with the 1x
parameterization, Strain Finder slightly outperformed

FIGURE 1 |Computational scalability of strain inference on simulated data. (A) Runtime (in seconds, log scale) is plotted at a range of sample counts for both Strain
Finder and StrainFacts, as well for the latter with GPU acceleration. Throughout, 250 SNPs are considered, and simulated strains are fixed at a 1:5 ratio with samples.
Models are specified with this same number of strains (“1x strains”, solid lines) or 50% more (“1.5x strains”, dashed lines). Median of 25 simulation runs is shown. (B)
Maximum memory allocation in a model with 100 strains is plotted for StrainFacts models across a range of sample counts (N) and SNP counts (G, line shade).
Median of nine replicate runs is shown. Maximummemory requirements are extrapolated to higher numbers of samples for a model with 1,000 SNPs (red line). A version
of this panel that includes a range of strain counts is included as Supplementary Figure S2.
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StrainFacts on this index, the magnitude of the difference was
small. This suggests that StrainFacts can be used for applications
in microbial ecology that rely on measurements of beta-diversity.

Ideally, inferences should conform to Occam’s razor,
estimating “as few strains as possible, but no fewer”.
Unfortunately, Bray-Curtis error is not sensitive to the
splitting or merging of co-abundant strains and UniFrac error
is not sensitive to the splitting or merging of strains with very
similar genotypes. To overcome this limitation, we calculated the
mean absolute error of the Shannon entropy of the inferred strain
composition for each sample (Figure 2C). This score quantifies
how accurately inferences reflect within-sample strain
heterogeneity. StrainFacts performed substantially better on
this score than Strain Finder for all three parameterizations,
indicating more accurate estimation of strain heterogeneity.

Finally, we assessed the quality of genotypes reconstructed by
StrainFacts compared to Strain Finder using the abundance
weighted mean Hamming distance. For each ground-truth
genotype, normalized Hamming distance is computed based
on the best matching inferred genotype (Figure 2D), then
summarized as the mean weighted by the true strain
abundance across all samples. We assessed the reverse as well:
the abundance weighted mean, best-match Hamming distance
for each inferred genotype among the ground-truth genotypes
(Figure 2E). These two scores can be interpreted as answers to the
distinct questions “how well were the true genotypes recovered?”
and “how well do the inferred genotypes reflect the truth?”,
respectively. While StrainFacts and Strain Finder performed
similarly on these indexes—which tool had higher accuracy
varied by score and parameterization—StrainFacts’ accuracy

FIGURE 2 | Accuracy of strain inference on simulated data. Performance of StrainFacts and Strain Finder are compared across five distinct accuracy indices, with
lower scores reflecting better performance on each index. Simulated data had 200 samples, 40 underlying strains, and 250 SNPs. For each tool, 32, 40, and 60 strain
models were parameterized (“0.8x”, “1x”, and “1.5x” respectively), and every model was fit with five independent initializations to each simulation. All 25 estimates for
each tool-parameterization combination are shown. Scores reflect (A) mean Unifrac distance between simulated and inferred strain compositions, (B) mean
absolute difference between all-by-all pairwise Bray-Curtis dissimilarities calculated on simulated versus inferred strain compositions, (C) mean absolute difference in
Shannon entropy calculated on simulated versus inferred strain compositions, (D) abundance weighted mean Hamming distance from each ground-truth strain to its
best-match inferred genotype, and (E) the reverse: abundance weighted mean Hamming distance from each inferred strain to its best-match true genotype. Markers at
the top of each panel indicate a statistical difference between tools at a p < 0.05 (*) or p < 0.001 (**) significance threshold by Wilcoxon signed-rank test. A version of this
figure that includes accuracy comparisons to MixtureS is included as Supplementary Figure S3.
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was more stable across the 1x and 1.5x parameterizations. It
should be noted that since strain genotypes are only inferred for
SNP sites, the genome-wide genotype reconstruction error
(which includes invariant sites) will likely be much lower than
this Hamming distance. We examine the relationship between
genotype distances and average nucleotide identity (ANI) in
Supplementary Figure S4 in order to contextualize our
simulation results for those more familiar with ANI comparisons.

To expand our performance comparison to a second tool
designed for strain inference, we also ran MixtureS on a subset of
the simulations. MixtureS estimates strain genotype and relative
abundance on each metagenotype individually and therefore does
not leverage variation in strain abundance across samples. We
found that it performed worse than Strain Finder and Strain Facts
on the benchmarks (see Supplementary Figure S3).

Overall, these results suggest that StrainFacts is capable of
state-of-the-art performance with respect to several different
scientific objectives in a realistic set of simulations.
Performance was surprisingly robust to model misspecification
with more strains than the simulation. Eliminating the
computational demands of a separate model selection step
further improves the scaling properties of StrainFacts.

Single-Cell Sequencing Validates Inferred
Strain Genotypes
Beyond simulations, we sought to confirm the accuracy of strain
inferences in a real biological dataset subject to forms of noise and

bias not reflected in the generative model we used for simulations.
To accomplish this, we applied a recently developed, single-cell,
genomic sequencing workflow to obtain ground-truth, strain
genotypes from two fecal samples collected in a previously
described, clinical FMT experiment (Smith et al., 2022) from
two independent subjects. We ran StrainFacts on metagenotypes
derived from these two focal samples as well as the other 157
samples in the same study.

Genotypes that StrainFacts inferred to be present in each of
these metagenomes matched the observed SCGs, with a mean,
best-match normalized Hamming distance of 0.039.
Furthermore, the median distance was just 0.013, reflecting the
outsized influence of a small number of SCGs with more extreme
deviations. For many species, SCGs also match a consensus
genotype—the majority allele at each SNP site in each
metagenotype (see Figure 3A). We found a mean distance to
the consensus of 0.037 and a median of 0.009. Because this
distance excludes sites without observed counts in the
metagenotype, we masked these same sites in our inferred
genotypes to uniformly contrast the consensus approach to
StrainFacts genotypes. Overall, inferred genotypes were similar
to the consensus, with a mean, masked distance of 0.031 (median
of 0.009). However, the consensus approach fails for species with
a mixture of multiple, co-existing strains. When we select only
species with a metagenotype entropy of greater than 0.05, an
indication of strain heterogeneity, we see that StrainFacts
inferences have a distinct advantage, with a mean distance of
0.055 versus 0.069 for the consensus approach (median of 0.018

FIGURE 3 | Inferred strains reflect genotypes from a single-cell sequencing experiment. (A) Distance between observed SCGs and StrainFacts inferences (X-axis)
versus consensus genotypes (Y-axis). Points below and to the right of the red dotted line reflecting an improvement of our method over the consensus, based on the
normalized, best-match Hamming distance. Each dot represents an individual SCG reflecting a putative genotype found in the analysed samples. SCGs from all species
found in either of the focal samples are represented, and marker colors reflect the metagenotype entropy of that species in the relevant focal sample, a proxy for the
potential strain diversity represented. Axes are on a “symmetric” log scale, with linear placement of values below 10–2. (B) A non-metric multidimensional scaling ordination of
68 SCGs and inferred genotypes for one species, S. thermophilus, with notably high strain diversity in one of the two focal samples. Circles represent SCGs, are colored by
their assignment to one of four identified clusters, and larger markers indicate greater horizontal coverage. Triangles represent StrainFacts genotypes inferred to be at greater
than 1% relative abundance, and larger markers reflect a higher inferred relative abundance. The red cross represents the consensus metagenotype of the focal sample.
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versus 0.022, p < 0.001). These results validate inferred genotypes
in a stool microbiome using single-cell genomics and
demonstrate that StrainFacts accounts for strain-mixtures
better than consensus genotypes do.

Of the 75 species represented in our SCG dataset, one stood
out for having numerous SCGs while reflecting a remarkably high
degree of strain heterogeneity. Among 68 high-quality SCGs for
S. thermophilus, cluster analysis identified four distinct types
(here referred to as Clusters A—D), accounting for 48, 7, 6,
and one SCGs, respectively (Figure 3B). Independently,
StrainFacts inferred four strains in the metagenomic data from
the same stool sample, (Strain 1—4) with 57, 32, and 7, and 3%
relative abundance, respectively. We explored the concordance
between clusters and StrainFacts inferences by assigning a best-
match Hamming distance genotype among the inferred strains to
each SCG (Table 2). For SCGs in three of the four clusters there
was a low median distance to StrainFacts genotypes as well as a
perfect 1-to-1 correspondence between strains and clusters.
While this genotype concordance was broken for SCGs in
cluster B, strain 4 was also inferred to be at the lowest relative
abundance, suggesting that there may have been too little
information encoded in the metagenotype data to accurately
reconstruct that strain’s genotype. While SCG counts and
inferred strain fractions do not match perfectly in this sample,
this may be due to large differences between SCG and
metagenomic sequencing technologies that could result in
differentially biased sampling of strains. The SCG cluster with
the largest membership was, however, matched with the strain
inferred to be at the highest relative abundance. Our findings for
S. thermophilus show that StrainFacts’ estimates of genotypes and
relative abundances are remarkably accurate for samples with
high strain heterogeneity, despite the challenges presented by real
biological samples and low abundance strains.

Analysis of Genomic Diversity Using de
novo Strain Inferences on Thousands of
Samples
Having established the accuracy and scalability of StrainFacts, we
applied it to a corpus of metagenotype data derived from 20,550
metagenomes across 44 studies, covering a large fraction of all
publicly available human-associated microbial metagenomes (Shi
et al., 2021). We performed strain inference on GT-Pro
metagenotypes for four species: Escherichia coli, Agathobacter
rectalis, Methanobrevibacter smithii, and CAG-279 sp1. E. coli
and A. rectalis are two highly prevalent and well studied bacterial

inhabitants of the human gut microbiome, and M. smithii is the
most prevalent and abundant archaeon detected in the human
gut (Scanlan et al., 2008). CAG-279, on the other hand, is an
unnamed and little-studied genus and a member of the family
Muribaculaceae. This family is common in mice (Lagkouvardos
et al., 2019), but to our knowledge does not have representatives
cultured from human samples.

For each species, we compared strains inferred by StrainFacts
to those represented in the GT-Pro reference database, which is
derived from the UHGG (Almeida et al., 2021). In order to
standardize comparisons, we dereplicated inferred and reference
strains at a 0.05 genotype distance threshold. Interestingly,
dereplication had a negligible effect on StrainFacts results,
reducing the number of E. coli strains by just 4 (to 119) with
no reduction for the three other species. This suggests that the
diversity regularization built into the StrainFacts model is
sufficient to collapse closely related strains as part of inference.

As GT-Pro only tallies alleles at a fixed subset of SNPs, the
relationship between genotype distances and ANI is not fixed. In
order to anchor our results to this widely-used measure of
genome similarity, we compared the genotype distance to
genome-wide ANI for all pairs of genomes in the GT-Pro
reference database for all four species. We find that the
fraction of positions differing genome wide (calculated as
1—ANI) was nearly proportional to the fraction of genotyped
positions differing, but with a different constant of
proportionality for each species: E. coli (0.0776, uncentered R2

= 0.994), A. rectalis (0.1069, R2 = 0.990),M. smithii (0.0393, R2 =
0.967), and CAG-279 (0.0595, R2 = 0.991). Additional details of
this analysis can be found in Supplementary Figure S4.

StrainFacts Recapitulates Known Diversity
in Well Studied Species
E. coli, A. rectalis, andM. smithii all have many genome sequences
in GT-Pro reference database, presenting an opportunity to
contrast inferred against reference strains. In order to evaluate
the concordance between the two (Table 3 and Figure 4), we co-
clustered all dereplicated strains (both reference and inferred) at a
0.15 normalized Hamming distance threshold—note, crucially,
that this distance reflects a much smaller full-genome
dissimilarity, as it is based only on genome positions with
polymorphism across metagenomes, ignoring conserved
positions.

For E. coli, we identified 40 strain clusters with 93% of inferred
strains and 94% of references falling into clusters containing strains

TABLE 2 |Concordance among SCGs of cluster assignments and the closest-match StrainFacts inferred genotype, among the four strains inferred to be at greater than 1%
relative abundance in the analysed sample. The total number of SCGs in each cluster and the relative abundance of each inferred strain are indicated in parentheses in the
column and row labels, respectively. Numbers in each cell indicate the number of SCGs at that intersection and values in parentheses indicate the median normalized
Hamming distance of those SCGs to the inferred strain genotype.

Cluster A (48) Cluster B (7) Cluster C (6) Cluster D (1)

Strain 1 (57%) 48 (0.006) 1 (0.18)
Strain 2 (32%) 3 (0.19) 6 (0.008)
Strain 3 (7%) 1 (0.02)
Strain 4 (3%) 3 (0.19)
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from both sources (“shared” clusters), which is significantly more
overlap than expected after random shuffling of cluster labels (p =
0.002 by permutation test). While most metagenome-inferred
genotypes are similar to those found in genome reference
databases, we observed some clusters composed only of
StrainFacts strains, representing novel lineages. However, these
strains are no more common than after random permutation (p =
0.81), matching our expectations for this well-studied species.

We next asked if these trends hold for the other species. While A.
rectalis had amuch greater number of clusters (456), 69% of inferred
strains and 45% of reference strains are nonetheless found to be in
shared clusters, significantly more than would be expected with
random shuffling of cluster labels (p = 0.002 by permutation test).
Correspondingly, we do not find evidence for enrichment of inferred
strains in novel clusters (p = 0.71). We find similar results for M.
smithii and CAG-279—the fraction of strains in shared clusters is
significantly greater than after random reassignment (p < 0.001 for
both), and there is no evidence for enrichment of inferred strains in
novel clusters (p = 1.0 for both). Overall, the concordance between
reference and inferred strains supports not only the credibility of
StrainFacts’ estimates, but also suggests that our de novo inferences
capture a substantial fraction of previously documented strain
diversity, even in well studied species.

Going beyond the extensive overlap of strains with reference
genomes and StrainFacts inferences, we examined clusters in
which references are absent or relatively rare. Visualizing a
dendrogram of consensus genotypes from co-clustered strains
(Figure 4) we observe some sections of theA. rectalis dendrogram
with many novel strains. Similarly, for CAG-279, the sheer
number of inferred strains relative to genomes in reference
databases means that fully half of all genotype clusters are
entirely novel, emphasizing the power of StrainFacts inferences
in understudied species. Future work will be needed to determine
if these represent new subspecies currently missing from
reference databases.

Species Inhabiting the Human Gut Exhibit
Distinct Biogeography Observed Across
Independent Metagenomic Studies
Large metagenomic collections allow us to examine intraspecific
microbial diversity at a global scale and among dozens of studies.
Towards this end, we identified the most abundant StrainFacts
strain of E. coli, A. rectalis, M. smithii, and CAG-279 in stool
samples across 34 independent studies. Across all four species, we
observe some strains that are distributed globally as well as others

that appear specific to one country of origin (Figure 5,
Supplementary Figure S5). For example, among the 198
dereplicated, inferred strains of A. rectalis, 75 were found as
the dominant strain (i.e. highest relative abundance) in samples
collected on three or more continents. While this makes it
challenging to consistently discern where a sample was
collected based on its dominant strain of a given species, we
nonetheless find that studies with samples collected in the
United States of America form a distinct cluster, as do those
from China, and the two are easily distinguished from one
another and from most other studies conducted across Europe
and North America (Figure 5). Our observation of a distinct
group of A. rectalis strains enriched in samples from China is
consistent with previous results (Scholz et al., 2016; Costea PI.
et al., 2017; Truong et al., 2017).

These general trends hold across the other three species. In M.
smithii, independent studies in the same country often share very
similar strain dominance patterns (e.g. see clustering of studies
performed in each of China, Mongolia, Denmark, and Spain in
Figure 5). In E. coli, while many strains appear to be distributed
globally, independent studies from China still cluster together based
on patterns in strain dominance (see Supplementary Figure S5).
Notably, in CAG-279, studies with individuals in westernized
societies do not cluster separately from the five other studies,
suggesting that host lifestyle is not highly correlated with specific
strains of this species. The variety of dominance patterns across the
four species described here suggest that different mechanisms may
drive intraspecific biogeography depending on the biology and
natural history of the species. As the coverage of diverse
microbiomes grows, StrainFacts will enable future studies
disentangling the contributions of lifestyle, dispersal limitation
and other factors in the global distribution of strains.

Linkage Disequilibrium Decay Suggests
Variation in Recombination Rates Across
Microbial Species
Studying the population genetics of host-associated microbes has
the potential to elucidate processes of transmission,
diversification, and selection with implications for human
health and perhaps even our understanding of human origins
(Linz et al., 2007; Garud and Pollard, 2019). To demonstrate the
application of StrainFacts to the study of microbial evolution, we
examined patterns in pairwise LD, here calculated as the squared
Pearson correlation coefficient (r2). This statistic can inform
understanding of recombination rates in microbial populations

TABLE 3 | Dereplication and co-clustering of strains inferred from metagenomes or from a reference database.

Species Metagenome samples
fit

Reference strainsa Inferred strainsa Total clustersb Novel clustersb

(%)
Shared clustersb

(%)

E. coli 9,232 176 119 40 20 60
A. rectalis 11,860 752 198 456 13 25
M. smithii 3,528 384 178 205 7 38
CAG-279 3,579 135 200 228 50 25

aDereplicated at 0.05 distance threshold.
bCo-clustered at a 0.15 distance threshold.
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(Vos, 2009; Garud et al., 2019). Genome-wide, LD, summarized
as the 90th percentile r2 (LD90, Vos et al., 2017), was substantially
higher for E. coli (0.24) thanA. rectalis (0.04),M. smithii (0.11), or
CAG-279 (0.04), perhaps suggesting greater population structure
in the species and less panmictic recombination.

We estimated LD distance-decay curves for SNPs, using a
single, high-quality reference genome for each species to obtain
estimates of pairwise distance between SNP sites. For all four
species, adjacent SNPs were much more tightly linked, with an
LD90 of > 0.999. LD was still dramatically above background at 50

FIGURE 4 | Concordance between reference and StrainFacts inferred strain genotypes for four prevalent species in the human gut microbiome. Heatmap rows
represent consensus genotypes from co-clustering of reference and inferred strains and columns are 3,500 randomly sampled SNP sites (grey: reference and black:
alternative allele). Colors to the left of the heatmap indicate clusters with only reference strains (dark purple), only inferred strains (yellow), or both (teal). Rows are ordered
by hierarchical clustering built on distances between consensus genotypes and columns are ordered arbitrarily to highlight correlations between SNPs.
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FIGURE 5 | Patterns in strain dominance according to geography and lifestyle across thousands of publicly available metagenomes in dozens of independent
studies for two common members of the human gut microbiome. Columns represent collections of samples from individual studies and are further segmented by
country and lifestyle (westernized or not). Rows represent strains inferred by StrainFacts. Cell colors reflect the fraction of samples in that study segment with that strain
as the most abundant member. Study segments are omitted if they include fewer than 10 samples. Row ordering and the associated dendrogram reflect strain
genotype distances, while the dendrogram for columns is based on their cosine similarity. Studies with samples collected in several countries with notable clustering for
one or more species are highlighted with colors above the heatmap. Additionally, studies from westernized populations are indicated. Both a study identifier and the ISO
3166-ISO country-code are included in the column labels.
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bases of separation, and fell rapidly with increasing distance
(Figure 6). The speed of this decay was different between
species, which we characterized with the LD½,90: the distance
at which the LD90 was less than 50% of the value for adjacent
SNPs (Vos et al., 2017). M. smithii exhibited by far the slowest
decay, with a LD½,90 of 520 bases, followed by E. coli at 93 bases,
CAG-279 at 66, and A. rectalis at just 28 bases. This variation in
decay profiles may reflect major differences in recombination
rates across populations.

To validate our findings, we ran identical analyses with
dereplicated genotypes from genomes in the GT-Pro reference
database. Estimates of both LD and the distance-decay
relationship are very similar between inferred and reference
strains, reinforcing the value of genotypes inferred from
metagenomes for microbial population genetics.
Interestingly, for three of the four species (E. coli, A.

rectalis, and M. smithii), LD estimates from StrainFacts
strains were significantly higher than from references (p <
1e-10 for all three by Wilcoxon test), while CAG-279 exhibited
a trend towards the reverse (p = 0.85). It is not clear what might
cause these quantitative discrepancies, but they could reflect
differences in the set of strains in each dataset. Future studies
expanding this analysis to additional species will identify
patterns in recombination rates across broader microbial
diversity.

DISCUSSION

Here we have described StrainFacts, a novel tool for strain
inference in metagenomic data. StrainFacts models
metagenotype data using a fuzzy-genotype approximation,

FIGURE 6 | Pairwise LD across genomic distance estimated from inferred genotypes for four species. LD was calculated as r2 and genomic distance between
polymorphic loci is based on distances in a single, representative genome. The distribution of SNP pairs in each distance window is shown as a histogram with darker
colors reflecting a larger fraction of the pairs in that LD bin, and the LD90 for pairs at each distance is shown for inferred strains (red), along with an identical analysis on
strains in the reference database (blue). Genome-wide LD90 (dashed lines) is also indicated.
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allowing us to estimate both the relative abundance of strains
across samples as well as their genotypes. To accelerate analysis
compared to the current state-of-the-art, we harness the
differentiability of our model to apply modern, gradient-
based optimization and GPU-parallelization. Consequently,
StrainFacts can scale to tens-of-thousands of samples while
inferring genotypes for hundreds of strains. On simulated
benchmarks, we show that StrainFacts has comparable
accuracy to Strain Finder, and we validate strain inferences
in vivo against genotypes observed by single-cell genomics.
Finally, we apply StrainFacts to a database of tens of
thousands of metagenomes from the human microbiome to
estimate strains de novo, allowing us to characterize strain
diversity, biogeography, and population genetics, without the
need for cultured isolates.

Beyond Strain Finder, other alternatives exist for strain
inference in metagenomic data. While we do not directly
compare to DESMAN, runtimes of several hours have been
reported for that tool on substantially smaller simulated
datasets (Quince et al., 2017), and hence we believe that
StrainFacts is likely the most scalable implementation of the
metagenotype deconvolution approach. Still other methods
apply regularized regression (e.g. Lasso Albanese and Donati,
2017) to decompose metagenotypes—essentially solving the
abundance half of the deconvolution problem but not the
genotypes half—or look for previously determined strain
signatures (e.g. k-mers Panyukov et al., 2020) based on known
strain genotypes. However, both of these require an a priori
database of the genotypes that might be present in a sample. An
expanding database of strain references can make these
approaches increasingly useful, and StrainFacts can help to
build this reference.

Several studies avoid deconvolution by directly examining
allele frequencies inferred from metagenotypes. While
consensus (Truong et al., 2017; Zolfo et al., 2017) or
phasing (Garud et al., 2019) approaches can accurately
recover genotypes in some cases, their use is limited to low
complexity datasets, with sufficient sequencing depth and low
strain heterogeneity. Likewise, measuring the dissimilarity of
metagenotypes among pairwise samples indicates shared
strains (Podlesny and Fricke, 2020), but this approach risks
confounding strain mixing with genotype similarity. Finally,
assembly (Li et al., 2019) and read-based methods (Cleary
et al., 2015) for disentangling strains are most applicable when
multiple SNPs can be found in each sequencing read. With
ongoing advancements in long-read (Vicedomini et al., 2021)
and read-cloud sequencing (Kuleshov et al., 2016; Kang et al.,
2018), these approaches will become increasingly feasible.
Thus, StrainFacts occupies the same analysis niche as
Strain Finder and DESMAN, and it expands upon these
reliable approaches by providing a scalable model fitting
procedure.

Fuzzy genotypes enable more computationally efficient
inference by eliminating the need for discrete optimization.
Specifically, we used well-tested and optimized gradient
descent algorithms implemented in PyTorch for parameter
estimation. In addition, fuzzy genotypes may be more robust

to deviations from model assumptions. For instance, an
intermediate genotype could be a satisfactory
approximation when gene duplications or deletions are
present in some strains. While we do not explore the
possibility here, fuzzy genotypes may provide a heuristic
for capturing uncertainty in strain genotypes. Future work
could consider propagating intermediate genotype values
instead of discretizing them.

StrainFacts builds on recent advances in metagenotyping, in
particular our analyses harnessed GT-Pro (Shi et al., 2021) to
greatly accelerate SNP counting in metagenomic reads. While
we leave a comparison of StrainFacts performance on the
outputs of other metagenotypers to future work, StrainFacts
itself is agnostic to the source of input data. It would be
straightforward to extend StrainFacts to operate on loci with
more than two alleles or to use metagenotypes from a tool other
than GT-Pro. It would also be interesting to extend StrainFacts
to use SNPs outside the core genome that vary in their presence
across strains.

Combined with the explosive growth in publicly available
metagenomic data and the development of rapid
metagenotyping tools, StrainFacts enables the de novo
exploration of intraspecific microbial diversity at a global scale
and on well-powered cohorts with thousands of samples. Future
applications could examine intraspecific associations with
disease, track the history of recombination between microbial
subpopulations, and measure the global transmission of host-
associated microbes across human populations.
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Phylogenetic placement refers to a family of tools and methods to analyze, visualize, and
interpret the tsunami of metagenomic sequencing data generated by high-throughput
sequencing. Compared to alternative (e. g., similarity-based) methods, it puts
metabarcoding sequences into a phylogenetic context using a set of known reference
sequences and taking evolutionary history into account. Thereby, one can increase the
accuracy of metagenomic surveys and eliminate the requirement for having exact or close
matches with existing sequence databases. Phylogenetic placement constitutes a
valuable analysis tool per se, but also entails a plethora of downstream tools to
interpret its results. A common use case is to analyze species communities obtained
from metagenomic sequencing, for example via taxonomic assignment, diversity
quantification, sample comparison, and identification of correlations with environmental
variables. In this review, we provide an overview over the methods developed during the first
10 years. In particular, the goals of this review are 1) to motivate the usage of phylogenetic
placement and illustrate some of its use cases, 2) to outline the full workflow, from raw
sequences to publishable figures, including best practices, 3) to introduce themost common
tools and methods and their capabilities, 4) to point out common placement pitfalls and
misconceptions, 5) to showcase typical placement-based analyses, and how they can help
to analyze, visualize, and interpret phylogenetic placement data.

Keywords: phylogenetic placement, evolutionary placement, phylogenetics, metagenomics, metabarcoding,
species diversity, taxonomic assignment, sequence identification

1 INTRODUCTION

Advances in sequencing technologies enable the broad sequencing of genetic material in
environmental samples (Edwards and Holt, 2013; Sunagawa et al., 2013), for instance, from
water (Karsenti et al., 2011; Giner et al., 2016; Lacoursière-Roussel et al., 2016), soil (Dupont
et al., 2016; Mahé et al., 2017), and air (Clare et al., 2022), which is known as environmental DNA
(eDNA, Deiner et al., 2017; Ruppert et al., 2019), or from the human body (Curtis et al., 2012; Methé
et al., 2012; Matsen, 2015; Wang et al., 2015) and other sources (Hanson et al., 2016; ElRakaiby et al.,
2019; Gohli et al., 2019; Lorimer et al., 2019). Crucially, this enables the ecological survey of a
community of organisms in their immediate environment (i. e., in situ), and allows to directly study
the genetic composition of species communities (from viruses to megafauna); a field known as
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metagenomics (Thomas et al., 2012; Escobar-Zepeda et al., 2015;
Oulas et al., 2015; Lindgreen et al., 2016).

Metagenomic data typically stem from so-called High-
Throughput Sequencing (HTS, Pettersson et al., 2009; Reuter
et al., 2015; Goodwin et al., 2016) technologies, such as Next
Generation Sequencing (NGS, Logares et al., 2012; Mardis, 2013),
as well as later generations (Niedringhaus et al., 2011; Pareek
et al., 2011; Mignardi and Nilsson, 2014; Heather and Chain,
2016; Mardis, 2016). For a sample of biological material, these
technologies typically produce thousands to millions or even
billions of short genetic sequences (also called “reads”) with a
length of some hundred base pairs length each. Over the past
decades, decreasing costs and increasing throughput of
sequencing technologies have caused an exponential growth in
sequencing data (Muir et al., 2016), which has now passed the
peta-scale barrier (Katz et al., 2022).

Amajor analysis step inmetagenomic studies is to characterize
the reads obtained from an environment by means of comparison
to reference sequences of known species (Desai et al., 2012). A
straight-forward way to accomplish this is to quantify the
similarity between the reads and reference sequences. We
obtain an indication of possible novelty if the sequence
similarity to known species is low (Temperton et al., 2012;
Peabody et al., 2015). However, such approaches do not
provide the user with the evolutionary context of the read,
and have been found to incorrectly identify sequences (Koski
and Golding, 2001; Clemente et al., 2011; Mahé et al., 2017).

Instead, general phylogenetic methods can be used directly to
classify and characterize the reads, providing highly accurate and
information-rich results (Brady and Salzberg, 2009; Segata et al.,
2012; Truong et al., 2015; Jamy et al., 2019; Beghini et al., 2021).
However, trying to resolve the phylogenetic relationships between
millions of short reads and the given reference sequences
represents a significant computational challenge. Furthermore,
as most phylogenetic methods require an alignment of sequences,
metagenomic data can often not be used directly, as whole-
genome reference data might not be available or
computationally intractable. Instead, specific marker genes can
be targeted (or filtered from the metagenomic data), which are
genetic regions that are well-suited for differentiating between
species (Ren et al., 2016). The use of marker genes to identify
species is called DNA (meta-)barcoding (Deiner et al., 2017;
Hebert et al., 2003; Savolainen et al., 2005; Kress and Erickson,
2008); see Section 2.2 for details.

A powerful and increasingly popular class of methods to
identify and analyze diverse (meta-)genomic (barcode) data is
the so-called phylogenetic placement (or evolutionary placement)
of genetic sequences onto a given fixed phylogenetic reference
tree. By placing unknown, anonymous sequences (in this context
called query sequences) into the evolutionary context of a tree,
these methods allow for the taxonomic assignment of the
sequences (i. e., the association of genomic reads to existing
species, for example Auladell et al., 2019; Jamy et al., 2019;
Hleap et al., 2021). Moreover, they can also provide
information on the evolutionary relationships between these
query sequences and the reference species/sequences, and thus

go beyond simple species identification. Phylogenetic placement
has found applications in a variety of situations, such as data
cleaning and retention (Mahé et al., 2017), inference of new clades
(Dunthorn et al., 2014; Bass et al., 2018), estimation of ecological
profiles (Keck et al., 2018), identification of low-coverage
genomes of viral strains (Mühlemann et al., 2020),
phylogenetic analysis of viruses such as SARS-CoV-2 (Morel
et al., 2020; Turakhia et al., 2021), and in clinical studies of
microbial diseases (Srinivasan et al., 2012).

When analyzing the resulting data, there are two complementary
interpretations of phylogenetic placement: 1) as a set of individual
sequences, placed with respect to the reference phylogeny, e. g., for
taxonomic assignment, phylo-geographic tracing, or even possible
clinical relevance; 2) as a combined distribution of sequences on the
tree, characterizing the sampled environment at a given point in time
or space to examine the composition of a species community as a
whole, for instance as a means of sample ordination and
visualization, and association with environmental variables.

In this review, we provide an overview of existing methods to
conduct phylogenetic placement, as well as post-analysis methods
for visualization and knowledge inference from placement data.
We also discuss some practical aspects, such as common pitfalls
and misconceptions, as well as caveats and limitations of these
methods. We mainly refer to metagenomic input data (or more
accurately, metabarcoding data, see below for details) as it
represents the most common use case, but also highlight some
alternative use cases where phylogenetic placement is employed
for other types of sequence data.

2 PHYLOGENETIC PLACEMENT

2.1 Overview and Terminology
The modern approach to phylogenetic tree inference is based on
molecular sequence data, and uses stochastic models of sequence
evolution (Arenas, 2015) to infer the tree topology and its branch
lengths (Felsenstein, 2004; Yang, 2006). Note that the
computational cost to infer the optimal tree under the given
optimality criterion grows super-exponentially in the number of
sequences (Felsenstein, 2004). In addition, large trees comprising
more than a couple of hundred sequences are often cumbersome
to visualize, rendering the approach challenging for current (e. g.,
metagenomic) large datasets. Furthermore, the lack of
phylogenetic signal contained in the short reads of most HTS
technology usually does not suffice for a robust tree inference
(Dunthorn et al., 2014; Bininda-Emonds et al., 2001; Moret et al.,
2002; von Mering et al., 2007). Hence, phylogenetic placement
emerged from the demand to obtain phylogenetic information
about sequence sets that are too large in number and too short in
length to infer comprehensive phylogenetic trees (Matsen et al.,
2010; Berger et al., 2011). In a metagenomic context, a set of
sequences obtained from an environment such as water, soil, or
the human body, is here called a sample. This is often the data that
we intend to place, and might have further metadata associated
with it, e. g., environmental factors/variables such as temperature
or geo-locations where the sample was taken.
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Generally, the input of a phylogenetic placement analysis is a
phylogenetic Reference Tree (RT) consisting of sequences
spanning the genetic diversity that is expected in the
sequences to be placed into the tree. The tree can be rooted or
unrooted; in the latter case however, a “virtual” root (or top-level
trifurcation) is used in the computation as a fixed point of
reference (Czech et al., 2019). Then, for a single sequence
(e. g., a short read), in this context called a Query Sequence
(QS), the goal of phylogenetic placement is to determine the
branches of the RT to which the QS is most closely evolutionarily
related. Note that the RT is kept fixed, that is, the QSs are not
inserted as new branches into the tree, but rather “mapped” onto
its branches. Hence, the phylogenetic relationships between
individual QSs are not resolved.

This is the key insight that makes it possible to efficiently
compute the placement of large numbers of QSs. By only
determining the evolutionary relationship between the
sequences of the RT and each individual QS, the process can
be efficiently parallelized, and the required processing time scales
linearly in the number of QS. Furthermore, this allows us to
consider multiple branches as potential Placement Locations for a
given QS, representing uncertainty in the placement, often
expressed as a probability (or confidence) of the QS being
placed on that branch. This uncertainty might result from
weak phylogenetic signal, or might indicate some other issue
with the data, as explained later. In Maximum-Likelihood (ML)
based placement (see Section “Maximum Likelihood Placement”
for details), these probabilities are computed as the Likelihood
Weight Ratio (LWR) resulting from the evaluation of placing the
QS attached to an additional (hypothetical) branch into the tree.
Hence, for historic reasons, the probability of a placement
location (one QS placed on a specific branch) is often called
its LWR, and for a given QS, the sum of LWRs over all branches is
1 (equivalent to the total probability). See Figure 1 for a glossary
of the terminology, and see Table 1 for an overview of different
placement tools, and which of the aforementioned quantities they
can compute.

In other words, phylogenetic placement can be thought of as
an all-to-all mapping from QSs to branches of the RT, with a
probability for each placement location, as shown in Figures
2D,E. We can however also interpret each such placement
location as if it was an extra branch inserted into the RT, as
shown in Figures 2B,C. In particular, maximum likelihood
placement makes use of its underlying evolutionary model to
also estimate the involved branch lengths that are altered
through the insertion of a QS, see Figure 2B for details. This
interpretation highlights the aspect of each individual QS being
part of the underlying phylogeny. For example, this allows its
taxonomic assignment to that clade of the reference tree where
the QS shows the highest accumulated placement probability, as
explained later.

2.1.1 Misconceptions
In the existing literature, and from our experience in teaching the
topic as well as supporting the users of our software, some
concepts of phylogenetic placement are not always well
explained or understood. Although we have introduced these

concepts above already, we briefly address two common
misconceptions here, for clarity.

Firstly, a common misconception is that the tree is amended
by the QSs, that is, that new branches are added to the RT, and
that the phylogenetic relationships of the QSs with each other are
hence resolved. This is not the case; instead, the RT is kept fixed,
the QSs are only aligned against the reference alignment, but not
against each other (in ML placement), and the QSs are mapped
only to the existing branches in the RT. This mapping can
however be interpreted “as if” the QS was a new terminal
node (leaf or tip) of the tree, usually inserted (or “grafted”)
into the branch with the most probable placement location,
which can be useful in some applications.

Secondly, a further common misconception is that a QS is
only placed onto a single branch, or that only the best (most
likely) placement location is taken as the result for each placed
QS. Instead, each branch is seen as a potential placement

FIGURE 1 | Glossary and abbreviations.

TABLE 1 | General purpose placement tools. This table compares the features of
the general purpose (i. e., not use-case specific) phylogenetic placement
tools. Columns are as follows. Alignment: Does the tool need the QSs to be
aligned against the reference alignment? Multiple: Does the tool produce multiple
placement locations per QS, or just a single (best) one? Uncertainty: Is there
some measure of uncertainty (such as LWR) assigned to each placement
location? Branch Length: Does the tool compute the involved branch lengths
at each placement location for each QS.

Placement Tool Alignment Multiple Uncertainty Branch Lengths

PPLACER yes yes yes yes
RAXML-EPA yes yes yes yes
EPA-NG yes yes yes yes
RAPPAS no yes yes no
APPLES no no no yes
APP-SPAM no no no yes
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location with a certain probability, which sum to one over the
tree. It can however be useful to reduce the placement
distribution of a QS to only its most probable placement
location. Also, for practical reasons, typically not all
locations are stored in the resulting file (or even considered
in the computation by application of heuristics), as low
probability locations can often be discarded to save storage
space and downstream processing time; see Section “File
Format” for details. Lastly, some placement methods do
only output a single best placement, see Table 1.

In summary, phylogenetic placement yields a distribution of
potential locations of where a QS could be attached in the RT–but
it does not extend the RT by the QS with an actual branch.

2.1.2 File Format
Placement data is usually stored in the so-called jplace format
(Matsen et al., 2012), which is based on the json format (Bray,
2018; Douglas, 2018). See Figure 3 for an example. It uses a
custom augmentation of the Newick format (Archie et al., 1986)
to store the reference tree, where each branch is additionally
annotated by a unique edge number, so that placement locations
can easily refer to the branches. For each QS (named via the list "n"),
the format then stores a set of possible placement locations (in the list

"p"), where each location is describedby the values: 1)"edge_num",
which identifies the branch of this placement location,
2) "likelihood", which is used by maximum likelihood based
placement methods, 3) "like_weight_ratio" (LWR), which
denotes the probability (or confidence) of this placement location for
the given QS, 4) "distal_length" and
5) "pendant_length", which are the branch lengths involved
in the placement of the QS for the given placement location; see
Figure 2B for an explanation of these lengths.

These five data fields are the standard fields of the jplace
format; further fields can be added as needed. As noted above,
typically not all placement locations for a given QS are stored in
the file, as low probability placements unnecessarily increase the
file size without providing substantial information; in that case,
the sum of the stored LWR values might actually be smaller
than 1.

The format furthermore allows for multiple names in the "n"
list, as well as assigning a “multiplicity” to each such name (by
using a list called "nm" instead of "n"). For instance, this allows
to only store the placement locations for identical reads once,
while keeping track of the original raw abundances of these reads
or OTUs. A pair of a "n"/"nm" list and a "p" list is called a
“pquery”, and describes a set of placement locations for one or

FIGURE 2 | Overview of phylogenetic placement. Here, we show the typical process, focused on ML-based placement. For the sake of simplicity, we here omit
heuristics and other algorithmic improvements. Alignment-free placement works conceptually in an analogous way, but does not compute tree likelihoods. (A) Pipeline
and data flow. The input to phylogenetic placement are the Reference Tree (RT) and its corresponding Reference Alignment (RA), as well as the set of Query Sequences
(QSs) that we are interested in. The placement algorithm computes potential placement locations of a QS on the branches of the RT, for each QS in the input.
(B) Terminology. The nodes D and P belong to the Reference Tree (RT). When placing a Query Sequence (QS), the branch between these nodes is split into two parts by
a temporary new node C, which serves as the attachment point for another temporary new node Q that represents the QS. Note that these two new nodes are only
conceptually inserted into the RT–they represent the mapping of the QS onto that branch. The pendant branch leads to Q. The original branch is split into the proximal
branch, which leads towards the (possibly virtual) root of the RT, and the distal branch, which leads away from the root. (C) A single QS is placed onto a single branch
(that is, one placement location). Vertical distances symbolize branch lengths. Note that the QS is located at a certain position along its Reference Tree branch (splitting
that branch into distal and proximal parts), and has a (pendant) branch length of its own. At this step, ML-based placement computes the likelihood of the RT with the QS
as a (temporary) extra branch. For one single QS, this step is then repeated at every branch of the tree. (D)Once the likelihoods of placing the QS onto every branch have
been computed, the Likelihood Weight Ratios (LWRs) for this QS are computed. They express the confidence of placing the QS onto each branch, and can be
interpreted as a probability distribution of theQS across the tree (and hence sum to one across all branches). In the image, we omit pendant branch lengths for the sake of
simplicity. (E) The process is repeated for every QS, yielding an LWR-weighted “mapping” of each QS to each branch. We can visualize this as a cumulative distribution
across all QSs on the tree, coloring branches according to the total sum of the LWRs at that branch over all QS. See Figure 4A for a real-world example of this.
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more (identical) QSs. This structure is then repeated for each QS
that has been placed.

To our knowledge, the GENESIS library (Czech et al., 2020) is the
only general purpose toolkit for working with, and manipulating,
placement data in jplace format. It also incorporates many of
the downstream visualization and analysis techniques we describe
later on. Some other tools that offer basic capability to work with
jplace files are BoSSA (Lefeuvre, 2018), GGTREE (Yu et al.,
2017), and TREEIO (Wang et al., 2020), all of which can read
jplace files for processing in R.

With the release of several placement tools that do not use the
ML framework, see Section “Distance-Based Placement”, the
jplace file format (Matsen et al., 2012) may require an
update. The standard is written currently (as of version
3) with placement properties such as branch lengths and
likelihood scores in mind, which do not translate well to other
types of placement algorithms (pers. comm. with S. Mirarab, July
2020). Furthermore, it might be helpful to support sample names,
multiple samples per file, and additional per-sample or even per-
query annotations and other metadata in the file format. Being
based on json, this can already be achieved now by adding these
entries ad-hoc, but would lack support by parsers if not properly
standardized.

2.2 Types of Query Sequences
In principle, any type of genetic sequence data can be subjected to
placement, as long as the reference sequences span the genomic

regions where the query sequences originate from. Apart from the
availability of suitable reference sequences used to construct a
reference tree (see Section “Sequence Selection”), the primary
limiting factor is the extent to which a given placement tool
supports the data. Currently, the majority of placement tools
supports nucleotide (DNA/RNA) and amino acid (protein)
data. Many placement methods require query reads to be
aligned to the reference, i. e. they need to be homologs.

2.2.1 Metabarcoding and Amplicons
For the above reasons, a common approach to obtain
sequences is metabarcoding (Deiner et al., 2017; Hebert
et al., 2003; Savolainen et al., 2005; Kress and Erickson,
2008). In metabarcoding, one or several marker or
barcoding genes, such as 16S (Weisburg et al., 1991), 18S
(Meyer et al., 2010), ITS, COI, etc. (Woese and Fox, 1977;
Woese et al., 1990; Ji et al., 2013; Sunagawa et al., 2013) are
typically chosen to compute the reference alignment, and
appropriate primers are selected to enable metabarcode
sequencing of the sample (Deiner et al., 2017). A marker
gene should be universally present in the studied organisms,
and ideally should only occur once in the genome of each
organism (Dunthorn et al., 2014; Nguyen et al., 2014), i. e., be
single-copy. In practice, marker genes often occur multiple
times per genome, possibly requiring the need for copy
number correction. A marker gene should exhibit
sufficient between-species variation to distinguish them
from each other, but show low within-species variation
(Kress and Erickson, 2008). Using a metabarcoding
approach has several advantages: it targets loci of interest
and focuses the sequencing effort there (incidentally also
limiting the size of the reference MSA), barcoding genes are
typically well suited for phylogenetics (stable regions to aid
alignment paired with variable regions to discriminate
organisms), and the approach is generally cost-effective.
Such approaches use amplicon sequencing (Peabody et al.,
2015; Hugerth and Andersson, 2017), wherein only DNA
originating from the targeted region is amplified using the
Polymerase Chain Reaction (PCR, Bartlett and Stirling,
2003), thus yielding the subsequent sequencing of any
remaining DNA fragments from other regions highly
improbable. The resulting amplicon sequences have been
shown to be well-suited for phylogenetic placement (Mahé
et al., 2017; Janssen et al., 2018).

However, PCR-based amplifications are known to introduce
biases in the abundance of the sequencing reads, as some
fragments may be copied with a higher likelihood than others
(Morgan et al., 2010; Logares et al., 2014). Similarly, a further bias
that skews abundance results exists as different organisms may
have a different number of copies of the targeted gene, ranging
from single copies to 15 copies, depending on the organism (Lee
et al., 2009). Some methods exist that attempt to account for copy
number bias (Kembel et al., 2012; Angly et al., 2014; Pereira-
Flores et al., 2019) as well as for PCR amplification bias (Love
et al., 2016; Silverman et al., 2021).

When an untargeted sequencing approach is chosen
instead (such as shotgun metagenomic sequencing), using

FIGURE 3 | Jplace format for phylogenetic placement. The exemplary
file consists of a reference "tree" in a custom Newick format that annotates
edge numbers in curly brackets, followed by two pqueries, which is the term
for combined lists of sequence names and their placement locations.
The first pquery contains two placement locations ("p") for two query
sequences ("n"), and the second contains a single location ("p") for two
other sequences including their multiplicities/abundances ("nm"). The order
to interpret the values per location is given via the "fields" list, and
highlighted by colors here; additional "metadata" and a "version" of the
file format can be given. Example adapted from (Matsen et al., 2012).
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a broader scope for the reference sequences may be advisable,
such as using whole genome data. This might only be feasible
for small genomes such as some viruses or mitochondrial
DNA. Alternatively, a sensible approach is to filter out any
reads that did likely not originate from the genetic regions
that constitute the reference alignment. This can be achieved,
for example, using HMMSEARCH from the HMMER-package
(Eddy, 1995; Eddy, 1998), which allows the user to obtain a
list of reads that have an alignment score above a given
threshold. Similarly, so-called mitags (Logares et al., 2014)
represent a shotgun-based alternative to amplicon
sequencing.

Recently, placement methods have emerged that do not
require the alignment of query sequences to a reference, and
some do not even require the references to be aligned against each
other (see Section “Distance-Based Placement”). However,
establishing that query reads and reference sequences are
homologous is still necessary.

2.2.2 Sequencing Technologies
A further consideration is the choice of sequencing technology,
with the primary property being the length of the resulting
sequencing reads. So far, the vast majority of studies utilizing
phylogenetic placement have relied on short-read sequencing
technologies such as NGS, using by now well established
protocols to perform broad low-cost sequencing (van Dijk
et al., 2014). However, this approach produces very short
(150-400 nucleotide) reads, that typically only cover fragments
of a reference gene. For universal single-copy markers, this can
limit their applicability to phylogenetics due to the lower
information content. However, the approach has been applied
successfully to other types of data (Piredda et al., 2021; Cardoni
et al., 2022).

More recent sequencing technologies, called third
generation sequencing, or long-read sequencing (LRS),
yield individual reads that cover entire genes, or even
entire genomes (Amarasinghe et al., 2020). While
placement was originally developed for short read
sequencing, longer read lengths typically increase the
phylogenetic signal contained in reads, thus increasing the
reliability of phylogenetic methods. Indeed, such sequence
data have been shown to overcome this fundamental hurdle to
phylogenetically resolving the relationships between query
sequences that originally gave rise to phylogenetic placement
(Jamy et al., 2019).

An emerging third way to obtain longer reads is to combine
short reads into longer so-called Synthetic Long-Reads (SLRs),
which have been used successfully to characterize metagenomes
(Sharon et al., 2015; Kuleshov et al., 2016) and which improve
upon short-read metabarcoding approaches for taxonomic
classification (Jamy et al., 2019; Ritter et al., 2020; Jeong et al.,
2021).

Related to this is the assembly of genomes from
metagenomic sequences (MAGs, Tyson et al., 2020), a
technique which has recently been shown to reliably obtain
multi-loci data from highly diverse data sources and
environments (Parks et al., 2017). MAGs may be a

beneficial input for phylogenetic placement, especially for
methods that are able to directly handle such assemblies in
their entirety (Metin et al., 2021). Other placement methods
may also benefit from sequence assemblies when combined
with marker gene extraction, as it potentially increases the
number of viable query sequences.

2.2.3 Clustering
Once the wet-lab sequencing strategy has been determined, a user
eventually obtains a (typically large) set of sequences. After
quality control, a potential next step is to consider if, and
how, to cluster these raw sequences in order to reduce the
amount of data that has to be processed, often at the cost of
losing information. Common choices include clustering by
similarity threshold (≥ 97%) resulting in Operational
Taxonomic Units (OTUs, Blaxter et al., 2005; Edgar, 2010; Fu
et al., 2012;Westcott and Schloss, 2015; Rognes et al., 2016), more
strictly based on single nucleotide differences resulting in
Amplicon Sequencing Variants (ASVs, Callahan et al., 2016),
or more recent alternatives such as SWARM clustering (Mahé
et al., 2021). These methods are most commonly used for
clustering reads from marker regions, and hence applicable in
the placement context; for a comprehensive review of clustering
methods, see (Zou et al., 2020).

If possible, it is recommended to avoid clustering, in order
to retain potential phylogenetic signal; this choice however
also depends on study design and goals. However, even if
sequences are not clustered, we strongly recommend
dereplication, that is, removal of exact (strict) duplicates of
sequences, to avoid unnecessary redundant computations. For
the same reason, sequence dereplication is also useful when
pooling the sequences from multiple samples together and
placing the resulting set via a single placement run. Tools that
offer this capability include USEARCH (Edgar, 2010), and
VSEARCH (Rognes et al., 2016), as well as the placement-
specific CHUNKIFY command in GAPPA (Czech et al., 2020).

2.2.4 Outgroup Rooting
Finally, an often overlooked source of query sequences are
high-quality reference sequence databases. Here, the use-case
of placement shifts away from taxonomic assignment: instead
such data can be used to attempt an outgroup rooting of an
existing tree, using already classified sequences (Hubert et al.,
2014; Liede-Schumann et al., 2020; Morel et al., 2020). The
result of placement, in this case, is a set of suggested branches
on which to root the tree, including a probability estimate for
each root placement onto each branch (Liede-Schumann
et al., 2020).

2.3 Reference Sequences, Alignment, and
Tree
The phylogenetic reference tree (RT), inferred from a set of
reference sequences (RSs) using their alignment (Reference
Alignment, RA), is the foundation and scaffold for conducting
phylogenetic placement. Ideally, to avoid duplicating work, to
ensure high quality, and to provide stable points of reference for
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comparison between studies, suitable reference trees should be
provided by the respective research/organismal communities.
First efforts for microbial eukaryotes are on their way (Berney
et al., 2017; Del Campo et al., 2018; Rajter and Dunthorn, 2021;
Rajter et al., 2021), although some of these are not designed
explicitly for phylogenetic placements, but more taxonomic
groups will follow. Recently, efforts have also been made to
produce reference trees for higher order animals, such as fish
(Collins et al., 2021). As references are however not yet available
for all taxonomic groups, we here provide an overview of the
process (see also Mahé et al., 2017, Rajter et al., 2021, for practical
examples).

2.3.1 Sequence Selection
As phylogenetic placement cannot infer evolutionary
relationships below the taxonomic level of the reference tree,
the first step is the selection of suitable RSs, which should 1) cover
the diversity that is expected in the query sequences (QSs), and
2) be well-established and representative for their respective
clades to facilitate meaningful interpretation. In order to
capture unexpected diversity and potential outliers, it can be
advantageous to include a wider range of sequences as well (Mahé
et al., 2017), or to run preliminary tests and filtering (placement-
or similarity-based) with a broad reference to ensure that all
diversity in the QSs is accounted for.

In many cases, the selection process is (unfortunately) labor-
intense, as it requires hand-selecting known sequences from
reference databases such as SILVA (Pruesse et al., 2007; Quast
et al., 2013; Yilmaz et al., 2014), NCBI (Benson et al., 2009; Sayers
et al., 2009), GREENGENES (DeSantis et al., 2006; McDonald et al.,
2012), or RDP (Wang et al., 2007; Cole et al., 2014). This manual
process however also often provides the highest quality, and
allows to optimally assemble the RSs for a given project. See
also (Balvočiūtė and Huson, 2017) for a comparison of these
databases.

Important selection criteria are the number of sequences to be
selected, as well as their diversity; both of which depend on the
study design and goals. Generally, a number of RSs in the order of
hundreds to a few thousands has shown to provide enough
coverage for most QS datasets, while still being small enough
to properly visualize their phylogeny and to conduct all necessary
computations in reasonable time. Often, it is sufficient to include
a single species to represent a whole clade (Rajter and Dunthorn,
2021). Depending on the types of downstream analyses, it can be
a disadvantage to select sequences that are too similar to each
other (i. e., closely related species, or different strains of the same
species), as this can spread the placement distribution across
nearby branches. In other words, placements with similar
probability in many branches are mostly a consequence of
reference alignment regions for which large subtrees contain
(almost) identical sequences. This is however expected when
conducting taxonomic assignment at species or below-species
level, and the reference should be built with the targeted
taxonomic resolution in mind.

On the other hand, if the QSs contain enough phylogenetic
signal (e. g., when using long reads, whole genome data, or when
the target gene has sufficient variability), including multiple

representatives of a taxonomic group might allow to obtain
more finely resolved placements. For example, in short
genomes such as HIV or arthropod mitochondria, where
mutations are not concentrated in specific regions but spread
all over the genome, reads matching a reference alignment region
likely show a decent amount of variation, making placements
exploitable (Linard et al., 2020).

Lastly, the RSs need to at least span the genomic region that the
QSs come from. For a more robust inference of the RT however, it
can be advantageous to include a larger region with more
phylogenetic signal. Theoretically, if one wanted to place shotgun
sequences from entire genomes, whole-genomeRSswould be needed.

As an alternative to manual selection, the Phylogenetic
Automatic Reference Tree (PhAT, Czech et al., 2018) is a
method that uses reference taxonomic databases to select
suitable RSs which represent the diversity of (subsets of) the
database. In cases where taxonomic resolution at the species-level
does not require expert curation, the PhATmethod can provide a
basis for rapid data exploration, and help to obtain an overview of
the data and its intrinsic diversity.

2.3.2 Reference Alignment Computation
Next, for ML-based tree inference and placement, the RSs need to be
aligned against each other to obtain the reference alignment (RA).
Typically, this is conducted with de novomultiple sequence alignment
tools such as T-COFFEE (Notredame et al., 2000), MUSCLE (Edgar,
2004), MAFFT (Katoh et al., 2002), and others; see (Kemena and
Notredame, 2009; Pervez et al., 2014; Chatzou et al., 2016) for reviews.
Recently, MUSCLE v5 introduced an interesting new approach that
generates alignment ensembles to capture alignment uncertainty
(Edgar, 2021, preprint). In the ML framework, the QSs also need
to be aligned against the RA, see next section.

2.3.3 Tree Inference
Finally, given the RA, a phylogenetic tree of the RSs is inferred,
which is henceforth used as the reference tree (RT); see (Kapli
et al., 2020) for a general review on this topic. In theory, any
method that yields a fully resolved (bifurcating) tree is
applicable, e. g., neighbor joining (Saitou and Nei, 1987),
maximum parsimony (Sankoff, 1975), or Bayesian inference
(Holder and Lewis, 2003; Yang, 2006). In practice however,
maximum likelihood (ML) tree inference (Yang, 2006; Dhar
and Minin, 2016) is preferred, in particular when using ML-
based placement, as otherwise inconsistencies in the assumed
models of sequence evolution can affect placement accuracy.
To this end, common software tools include IQ-TREE
(Nguyen et al., 2015), FASTTREE2 (Price et al., 2010), and
RAxML (Stamatakis, 2014; Kozlov et al., 2019); see (Zhou
et al., 2018) for a review and evaluation of ML-based tree
inference tools. An open research question in this context is
how to incorporate uncertainty in the tree inference (and in the
alignment computation) with phylogenetic placement
(Huelsenbeck et al., 2001; Ronquist, 2004; Edgar, 2021).

2.3.4 Alignment of Query Sequences
For many placement methods, the query sequences need to be
aligned against the reference alignment. In principle, de novo
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alignment methods can be deployed to obtain a comprehensive
alignment of both the reference and query sequences. These tools
are however not intended for HTS data, and are not well suited for
handling the heterogeneity of phylogenetic placement data, with
(typically) longer, curated, high-quality reference sequences, and
short lower-quality reads (query sequences).

Hence, with the rise of high-throughput sequencing,
specialized tools have been developed that extend a given
(reference) alignment without fully recomputing the entire
alignment. In the context of phylogenetic placement, there are
two additional advantages that can be exploited to improve
efficiency: 1) query sequences only need to be aligned against
the reference, but not against each other (as their phylogenetic
relationship is not resolved during placement), and 2) insertions
into the reference that result from aligning a QS against the
reference can be omitted as they do not contain any phylogenetic
signal for the placement of the QS.

In the simplest case, only the reference alignment and query
sequences are required as input. For instance, the hmmalign
command of HMMER (Eddy, 1995; Eddy, 1998) can align query
sequences to the reference alignment using a profile Hidden
Markov Model (HMM) built from the reference alignment.
Note that the option -m has to be set in order to not insert
columns of gaps into the reference. Alternatively, the MAFFT

command --addfragments (Katoh and Frith, 2012) uses an
internally constructed guide tree built from a pairwise distance
matrix of the reference alignment to aid the alignment process;
here, the option --keeplength has to be set to not add columns
of gaps to the reference.

Furthermore, the PAPARA tool (Berger and Stamatakis, 2011;
Berger and Stamatakis, 2012) can be used that was specifically
developed to target phylogenetic placement. It takes the RT as
additional input, and uses inferred ancestral sequences at the
inner nodes of the tree to improve the alignment process. Here,
the option -r has to be set to not insert columns of gaps into the
reference. Similarly, PAGAN (Löytynoja et al., 2012) also utilizes
the information in the reference tree, but it does extend the
reference alignment with gaps as needed for the query sequence,
causing higher computational effort during placement.

Note that typically, read mapping tools such as BOWTIE2

(Langmead and Salzberg, 2012) or BWA (Li and Durbin, 2009;
Li and Durbin, 2010) are not recommended for phylogenetic
placement, as they expect low-divergent sequences as input, e. g.,
from a single species.

2.4 General Purpose Placement Methods
Once initial tasks such as reference tree creation and sequence
alignment are completed, the actual placement can commence.
There exist several distinct algorithmic approaches for
conducting the core part of phylogenetic placement, which we
introduce here; see Table 1 for an overview.

2.4.1 Maximum Likelihood Placement
Maximum Likelihood (ML) is a statistically interpretable and
robust general inference framework, and one of the most
common approaches for phylogenetic tree inference
(Felsenstein, 2004; Yang, 2006; Dhar and Minin, 2016). It

works by searching through the super-exponentially large
space of potential tree topologies for a given set of sequences
(taxa), and computing the phylogenetic likelihood of the
sequence data of these taxa being the result of the
evolutionary relationships between the taxa as described by
each potential tree, while also computing branch lengths of
the tree. The result of this inference is the tree topology one is
able to find using some heuristic search strategy that best (most
likely) “explains” the underlying sequence data. Due to the NP-
hardness of the tree search problem, the best tree one can find
might not be the globally best one.

To calculate this likelihood, MLmethods use statistical models
of sequence evolution that describe substitutions between
sequences (insertions and deletions are mostly ignored; it is
hence also called a substitution model), see (Arenas, 2015) for
a review. Consequently, the estimated parameters of these models
are an inherent property of the resulting phylogenetic tree. The
choice of model parameters also directly informs the specific
branch lengths of a tree, interpreting a tree under a different set of
model parameters thus may lead to inconsistencies. Therefore,
under the ML framework, we strongly recommend to use the
same substitution model and parameters for tree inference and
for phylogenetic placement.

Based on the general ML tree inference framework, ML-based
phylogenetic placement works in two steps: First, the QSs are
aligned against the RA as described above, and second, using the
resulting comprehensive alignment with both reference and
query sequences, the QSs are placed on the RT using the
maximum likelihood method to evaluate possible placement
locations (Matsen et al., 2010; Stark et al., 2010; Berger et al.,
2011).

Standard methods used in ML tree inference use search
heuristics to explore some possible tree topologies for a given
set of sequences. Instead, for a given QS, ML-based placement
only searches through the branches of the reference tree (RT) as
potential placement locations for the QS. That is, each branch of
the RT is evaluated as a placement location, and branch lengths of
the involved branches are optimized, following the same
approaches as for de novo tree inference. However, the distal
and proximal branch lengths of the placement (see Figure 2B for
details) are typically re-scaled, so that their sum is equal to the
original branch length in the RT. Finally, the phylogenetic
likelihood of the tree with the QS amended as a temporary
extra taxon is calculated.

For each QS and each branch of the RT, this process yields a
likelihood score (which is stored in the jplace format, see
Section “File Format”). The Likelihood Weight Ratio (LWR) of a
placement location is then computed as the ratio between this
likelihood score and the sum over all likelihood scores for the QS
across the entire tree (von Mering et al., 2007; Strimmer and
Rambaut, 2002). These likelihood scores sum to one across all
branches, and hence express the confidence (or probability) of the
QS being placed on a given branch.

The first two tools to conduct phylogenetic placement in an
ML framework were the simultaneously published (as preprints)
PPLACER (Matsen et al., 2010) and RAxML-EPA (Berger et al.,
2011). Both build on the same general ML concepts, but use
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different strategies for improving computational efficiency, e. g.,
by heuristically limiting the number of evaluated branches
(potential placement locations). Additionally, PPLACER offers a
Bayesian placement mode. The more recent EPA-NG (Barbera
et al., 2018) tool combines features from both PPLACER and
RAxML-EPA, is substantially faster and more scalable on large
numbers of cores, and hence is the recommended tool for ML-
based placement.

2.4.2 Ancestral-Reconstruction-Based Placement
Recently, multiple methods were introduced that do not rely on
aligning query sequences to a referenceMSA. The first such group
of methods is based on reconstructing ancestral states at interior
nodes of the reference tree, again using an ML framework. From
these ancestral sequences, k-mers are generated and associated
with the branches of the reference tree. Subsequently,
phylogenetic placement is performed by comparing the
constituent k-mers of a QS with the set of k-mers indexing the
reference tree branches, thereby obviating the need for QS
alignment. This is the general approach used in both RAPPAS
(Linard et al., 2019) and LSHPLACE (Brown and Truszkowski,
2012).

It should be noted that using this procedure, distal and
pendant branch lengths of a given RT branch are determined
during the association of k-mers with RT branches, meaning that
all placements on a given branch have the same fixed location.
This means that an additional step to conduct branch length
optimization that is not directly offered by RAPPAS or LSHPLACE

may be required to obtain more realistic placement branch
lengths. RAPPAS however does produce multiple placements
per QS and calculates a confidence measure akin to the LWR,
yielding a distribution for placing a single QS onto different
branches of the tree.

2.4.3 Distance-Based Placement
Finally, the most recent placement approaches utilize methods
from distance-based phylogenetic inference.

For example, APPLES (Metin et al., 2019) is based on the
least-squares criterion for tree reconstruction (Felsenstein,
2004). For a given tree, the least-squares method calculates
the difference between the pairwise sequence distances and the
pairwise patristic distances (i. e., the path lengths between two
leaves). A least-squares optimal tree is the tree for which this
difference is minimized. In APPLES, this criterion is used to
score possible placement locations of a QS on an existing tree,
returning the branch which minimizes the between-distances
difference. A key advantage of the least-squares approach is its
ability to efficiently handle reference trees with hundreds of
thousands of leaves, which is currently not computationally
feasible using ML methods. Further, the method does not
require an alignment of the sequences involved, requiring
only a measure of pairwise distance between them. Note
however that as these methods still require a reference tree,
computing a reference MSA may still be needed, unless the tree
is inferred via distance-based methods as well. Consequently,
even unassembled sequences, such as genome skims
(Dodsworth, 2015), may be used both as reference and query

sequences. Recently, an updated APPLES-2 was published that
further improves upon the scalability and accuracy of the tool
(Metin et al., 2021). Note also that APPLES can take as input,
but does not require, aligned sequences.

The most recent alignment-free method is APP-SPAM (Blanke
and Morgenstern, 2021). It utilizes the concept of a spaced-word,
which can be understood as a type of k-mer for which only some
characters have to be identical for two subsequences to be
considered as having the same k-mer. This relaxed equality
definition is informed by a binary pattern, indicating for each
site of a spaced word whether it should be taken into account (1)
or disregarded (0). Building on this, the tool calculates pairwise
distances between a QS and the RSs based on the number of
shared spaced-words. Subsequently, the tool identifies the
placement branch of a QS as either the terminal branch of the
closest RS, or the branch leading to the parental node of the LCA
of the two closest RSs, depending on the strength of the signal of
the closest RS. Notably, APP-SPAM is able to provide both distal and
pendant branch lengths for the placements it produces, and does
so using an estimated phylogenetic distance (the Jukes-Cantor
distance, Jukes and Cantor, 1969). Note that both APPLES and
APP-SPAM only produce a single placement per QS and can
therefore not offer statistical measures of placement
uncertainty such as the LWR.

Generally, distance-based placement methods produce
results with lower accuracy compared to ML-based
placement, though this gap appears to be narrowing. These
newer approaches do however expand the scope of placement
to sizes of reference trees, and lengths of reference sequences,
that are orders of magnitude larger than what is currently
possible with ML methods.

2.5 Application-Specific Placement
Methods
Several additional placement methods exist. We provide a survey
of these in this section. The placement methods covered in this
section set themselves apart through their more specific use-cases,
however this does not imply that their scope of use is necessarily
limited.

2.5.1 Viral Data
A particularly challenging use case for phylogenetic methods is
the investigation of viral data, with a highly relevant example
coming from the SARS-CoV-2 pandemic. Due to the dense
sampling involved in studying such viral outbreaks, differences
between individual taxa in a prospective tree may only be due to a
very low number of, or even single, mutations. Consequently the
amount of phylogenetic signal is generally very low, complicating
tree reconstruction (Morel et al., 2020). Yet, distinguishing
between major viral variants and identifying them precisely
from a given clinical sample is crucial for epidemiological
studies. In this context the USHER software was introduced that
specifically focuses on phylogenetic placement of SARS-CoV-2
sequences (Turakhia et al., 2021). In contrast to ML methods,
USHER uses a Maximum Parsimony (MP) approach, and does
not operate on the full sequence alignment. This allows the
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method to focus directly on individual mutations, and
consequently only use a fraction of the runtime and memory
footprint of conventional ML placement methods. Note that the
accuracy of MP-based phylogenetic methods can suffer when one
or more lineages in the tree have experienced rapid evolution that
results in long branch lengths. In such cases MP may incorrectly
determine such lineages to be closely related, an effect termed
long branch attraction (Felsenstein, 1978; Bergsten, 2005). While
this is less of an issue for very closely related sequences such as
SARS-CoV-2 or other (but not all) viral data, it may yield the
application of such approaches to different types of data more
challenging.

2.5.2 Gene Trees
In principle, all placement methods aim to provide the location of
a QS on a phylogeny that accurately reflects the underlying
pattern of speciation, i. e., the species tree. In practice, the
reference tree is typically only inferred on a single gene (16S,
18S, ITS, etc.), yielding a gene tree which may substantially differ
from the species tree, called gene-tree discordance (Degnan and
Rosenberg, 2009). Alternatively, we may have multiple such gene
trees that induce a species tree, and subsequently want to perform
query placement onto the species tree via placement onto the
constituent gene trees (Sunagawa et al., 2013). Currently, only
two placement methods are able to handle such cases: INSTRAL
and DEPP. INSTRAL (Rabiee and Mirarab, 2019) performs
placement of QSs for a species tree induced by a set of gene
trees. It does so by first placing into the individual gene trees using
existingML placement methods, then re-inferring the species tree
from the extended gene trees. In contrast to this, DEPP (Jiang
et al., 2021, preprint) only considers the problem of discordance
between a gene tree and its species tree and attempts to account
for this during the placement into the species tree. The approach
is based on a model of gene tree discordance learned from the
data using deep neural networks that yields an embedding of
given sequences into a euclidean space. Incidentally, this makes
DEPP the first and so-far only phylogenetic placement method to
incorporate machine learning. DEPP then uses the pairwise
distances that result from the embedding of both reference
and query sequences as input to APPLES, which computes the
least-squares placement of the QSs.

2.5.3 Other Use Cases
Some further tools make application-specific usage of placement.
The first pertains to the specific case of samples containing
sequences from exactly two organisms, and the task of
identifying their respective known reference organisms. The
tool MISA was developed with this specific use-case in mind
(Balaban and Mirarab, 2020).

The second relates to either placing morphological sequences
from fossils typically represented by binary characters (presence/
absence of a trait) or Ancient DNA (aDNA) sequences. Placing
ancient DNA sequences is generally challenging for analysis
because of the high degree of degradation due to the age of
the DNA molecules, generally shorter read lengths ranging
between 50 and 150 base pairs, and post-mortem deamination
(Hofreiter et al., 2001). The PATHPHYNDER tool aims to solve this

use-case (Martiniano et al., 2022, preprint). Like USHER,

PATHPHYNDER operates on nucleotide variants, focusing on
single nucleotide polymorphisms. Furthermore, phylogenetic
placement has been used for placement of fossils (Berger and
Stamatakis, 2010; Bomfleur et al., 2015) using morphological
data. This approach uses the maximum likelihood framework to
use the signal from mixed morphological (binary) and molecular
partitions in the underlying MSA.

Lastly, phylogenetic placement has also been proposed as a
way to perform OTU clustering. The HMMUFOTU (Zheng et al.,
2018) tool implements this specific use-case, along with
automated taxonomic assignment (see also Section
“Taxonomic Classification and Functional Analysis”). A
unique characteristic in comparison to other placement tools
is that HMMUFOTU also performs QS alignment and uses this
information to pre-select promising placement locations.

2.6 Workflows Based on Phylogenetic
Placement
Over the last decade, several pipelines have been published that
use phylogenetic placement tools as their core method, building
on it and using its result in various ways.

2.6.1 Automated Analysis Pipelines
One class of placement pipelines focus on simplifying the overall
use of placement methods, typically providing the user with the
option to use a pre-computed reference tree, obviating the need
for manual selection of reference taxa (Stark et al., 2010; Carbone
et al., 2016; Douglas et al., 2018; Carbone et al., 2019; Douglas
et al., 2020; Erazo et al., 2021; Sempéré et al., 2021). A number of
these pipelines also automate the generation of key metrics and
downstream analysis steps. Among these pipelines, of particular
note is PICRUST2 (Douglas et al., 2018; Douglas et al., 2020),
which stands out for accounting for 16S copy number correction,
and providing the user with a prediction of the functional content
of a sample. Similarly, PAPRICA (Erazo et al., 2021) is a pipeline
that computes metabolic pathway predictions for bacterial
metagenomic sample data.

2.6.2 Divide-And-Conquer Placement
A further key challenge for existing phylogenetic placement tools
is scalability with regards to the size of the reference tree. While
more recent methods have shown significant improvements in
both the memory footprint and execution time required when
placing QSs on reference trees on the order of 105 reference taxa
(see Section “Distance-Based Placement”), such input sizes
remain extremely challenging for ML-based placement
methods. A number of workflows have been proposed to scale
existing placement methods for this use-case by splitting up the
reference tree into smaller subtrees on which phylogenetic
placement is then performed, creating a divide-and-conquer
approach to phylogenetic placement (Mirarab et al., 2012;
Czech et al., 2018; Czech et al., 2020; Koning et al., 2021;
Wedell et al., 2021). These approaches vary primarily in how
they select subtrees. SEPP (Mirarab et al., 2012) and PPLACERDC

(Koning et al., 2021) generate a subtree based on the topology of
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the reference tree. SEPP is a general boosting technique in
particular for highly diverse reference trees (Liu et al., 2012;
Mirarab et al., 2012). Further, a multi-level placement approach
exists (Czech et al., 2018; Czech et al., 2020), which first places
onto a broad RT, and then extracts QSs in pre-selected clades of
that RT to place them again onto clade-specific high-resolution
RTs. Finally, PPLACER-XR (Wedell et al., 2021) selects a set of
neighboring reference branches based on similarity to each query
sequence, out of which it creates a subtree. Note that in this case,
when decomposing the reference tree differently for every query
sequence, scalability with regards to the number of query
sequences is severely reduced.

A central promise of placement on very large trees is to simplify
the curation and engineering tasks involved in creating a reference
tree, as here a typical challenge is to decide which taxa to include in
the tree. If placement can instead be performed on a tree
encompassing an entire database, the curation challenge is
circumvented. However, as another common issue with reference
tree generation is the inclusion of overly similar reference sequences
resulting in unclear or fuzzy placement signal, divide-and-conquer
placement approaches may not be sufficient on their own.

2.6.3 Evaluation of Placement Tools
Lastly, PEWO is an extensible testing framework specifically
aimed at benchmarking and comparing different phylogenetic
placement softwares (Linard et al., 2020). It includes a wide
range of datasets and thus provides an important resource for
identifying which placement tool is best suited for specific
use-cases by evaluating the accuracy of existing tools, given
some dataset. PEWO does so using a pruning-based
evaluation procedure, where a subset of leaves is removed
from a reference tree. This subset of sequences is subsequently
used as input QSs for placement. The accuracy of a placement
is calculated as the number of nodes between the best
placement location, and the original location of the QS on
the reference tree (called the node distance). This basic
approach is used for evaluation in most publications that
introduce new placement approaches. Note that the node
distance measures two sources of error: error introduced by
the placement algorithm, and error introduced by the pruning
of the reference tree. In contrast to this, the “delta error” used
in the evaluation of APPLES measures the additional error
introduced through placement, in addition to the error
introduced by the process of altering the reference tree
through pruning (Metin et al., 2019). This new metric is
however not yet included in the PEWO workflow.
Nevertheless, the usefulness of a comprehensive and
standardized testing framework cannot be emphasized
enough, as it substantially facilitates further advancement
and standardization in the field and the development of
novel methods.

3 VISUALIZATION AND ANALYSIS

As mentioned before, there are two ways to conceptualize
phylogenetic placement: 1) as an assignment (or mapping) of

individual sequences to the branches of a phylogeny, usually
taking the (n-)most likely placement location(s) of each sequence,
or 2) as the distribution of all sequences of a sample across the
tree, taking their respective abundances and placement
probabilities into account. The former is similar to taxonomic
assignment, but with full phylogenetic resolution instead of
resolution at the taxonomic levels only, while the latter focuses
on, e. g., species communities and their diversity as a whole. In the
following we provide an overview of analysis methods that make
use of such data.

3.1 Abundances and Multiplicities
In both interpretations, an important consideration is whether to
take sequence abundances into account. When working with
strictly identical sequences, or sequences resulting from some
(OTU) clustering, the number of occurrences of each sequence or
size of each cluster can be used as additional information for
interpreting, e. g., community structure. On the one hand,
including their abundances with the placement of each
sequence yields information on how prevalent the species of
these sequences are; for example, this can provide insight into the
key (most abundant) species in environmental samples. On the
other hand, dropping abundances and instead considering each
sequence once (as a singleton) is more useful for estimating total
diversity and taxonomic composition. For example, this way the
number of distinct sequences can be regarded as a proxy for the
number of species that are present in a sample. Whether to
include abundances should hence be decided depending on the
type of analysis conducted.

In the jplace format, these abundances can be stored as the
so-called “multiplicity” of each placement (Matsen et al., 2012), in
the "nm" data field. Unfortunately, the fasta (Pearson and
Lipman, 1988) and phylip (Felsenstein, 1981) formats used as
input to placement do not natively support abundance
annotations, and current placement tools often do not handle
them automatically, meaning that the information can be lost.
However, the CHUNKIFY workflow (Czech et al., 2018; Czech et al.,
2020) mentioned in Section “Clustering” takes abundances into
account and annotates them as multiplicities in the resulting
jplace file. Furthermore, GAPPA (Czech et al., 2020) offers a
command to edit the multiplicities as needed, for example setting
them post-hoc to the initial sequence abundance determination.

3.2 Visualization
Prior to more in-depth analyses, a first step in most workflows is a
visualization of the immediate results. Following the two
interpretations of phylogenetic placement (and hence,
depending on the research question at hand), there are several
ways to visualize placement results.

First, individual placements can be shown as actual
branches attached to the RT, e. g., Figure 2C. Typically,
only the most likely placement location per sequence is
used for this, in order to avoid cluttering of the tree; this
hence omits the information about uncertainty. This can be
conducted by generating trees from placement results, e. g., in
Newick format. Tools to this end are GAPPA (Czech et al.,
2020) and GUPPY, which is part of PPLACER (Matsen et al., 2010).
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This can subsequently be visualized via standard tree viewing
tools (for a review, see Czech et al., 2019). Note however that
such a visualizations can quickly become overloaded when the
number of QSs becomes large.

Second, the LWR distribution of a single sequence can be
visualized, to depict the uncertainty in placement across the tree,
for example with GGTREE (Yu et al., 2017) and ITOL (Letunic and
Bork, 2016; Letunic and Bork, 2019).

Third, the distribution of all sequences can be visualized
directly on the reference tree, for example as shown in
Figures 2E, 4A, taking their per-branch probabilities (and
potentially their multiplicities/abundances) into account. This
gives an overview of all placements, and can for example reveal
important clades that received a high fraction of placements, or
indicate whether placements are concentrated in a specific region
of the tree. These visualizations can directly be generated by
GAPPA (Czech et al., 2020) and ITOL (Letunic and Bork, 2016;
Letunic and Bork, 2019); furthermore, GUPPY, can produce tree
visualizations in the phyloXML format (Han and Zmasek, 2009),
which can subsequently be displayed by tree viewer tools such as
ARCHAEOPTERYX (Han and Zmasek, 2009).

3.3 Placement Quality and Uncertainty
Quantification
An important post-analysis aspect is quality control, both in
order to assess the suitability of the RT for the given placed
sequences (to, e. g., test for missing reference sequences), and in
order to assess the placed sequences themselves. Assuming a
‘perfect’ reference tree that exactly represents the diversity of the
query sequences, the theoretical expectation is that each sequence
gets placed onto a leaf of the tree with an LWR close to 1. Ignoring
sequencing errors and other technical issues, deviations from this
expectation can be due to several issues.

To this end, plotting the histograms or the distribution of the
confidences (LWRs) across all placements can be useful,
Figure 4C. A more involved metric is the so-called Expected
Distance between Placement Locations (EDPL, Masten et al.,
2010), which for a given sequence represents the uncertainty-
weighted average distance between all placement locations of that
sequence, or in other words, the sum of distances between
locations, weighted by their respective probability, see
Figure 4D. The EDPL is a measure of how far the likely
placement locations of a sequence are spread out across the
tree. It hence can distinguish between local and global
uncertainty of the placements, that is, between cases where
nearby edges constitute equally good placement locations
versus cases where the sequence does not have a clear
placement position in the tree (Matsen et al., 2010). These
metrics can be explored with GAPPA (Czech et al., 2020) and
GUPPY (Matsen et al., 2010); see their respective manuals for the
available commands.

Examining the distribution of placement statistics, Figures
4C,D, or even the values of individual sequences, can help to
identify the causes of problematic placements: 1) Sequences that
are spread out across a clade with a flat placement distribution
might indicate that too many closely related sequences, such as

strains, are included in the RT; the EDPL can be used to quantify
this. The query sequence is then likely another variant belonging
to this subtree. 2) Placements towards inner branches of the RT
might hint a hard to place query sequence, or at a lack of reference
sequence diversity. This occurs if the (putative) ancestor
represented by an inner node of the tree is more closely
related to the QSs than the extant representatives included in
the RT. This can either be the result of missing taxa in the RT, or
even because the diversity of the clade is not fully known yet (also
known as incomplete taxon sampling), in which case the QS
might have originated from a previously undescribed species.
3) Sequences placed in two distinct clades might indicate
technical errors such as the presence of chimeric sequences
(Haas et al., 2011). 4) Sequences with elevated placement
probability in multiple clades (e. g., placements in more than
two subtrees) usually result from more severe issues, such as a
total lack of suitable reference sequences for the QS, or a severe
misalignment of the QS to the reference. This can for instance
occur if metagenomic shotgun data has not been properly filtered,
such that the genome region that the QS originated from is not
included in the underlying MSA. 5) Lastly, long pendant lengths
can also occur if a QS does not fit anywhere in the RT, in
particular when the RT contains outgroups, which can cause long
branch attraction for placed sequences (Bergsten, 2005).

Quantifying these uncertainties in a meaningful and
interpretable way, and distinguishing between their causes, are
open research questions. Approaches such as considering the
EDPL, flatness of the LWR distribution, pendant lengths relative
to the surrounding branch lengths of the RT, might help here, but
more work is needed in order to distinguish actual issues from the
identification of a new species based on their placement.

3.4 Taxonomic Classification and
Functional Analysis
By understanding the taxonomic composition of an environment,
questions about its species diversity and richness can be
answered. Typical metagenomic data analyses hence often
include a taxonomic classification of reads with respect to a
database of known sequences (Breitwieser et al., 2019), for
example by aggregating relative abundances per taxonomic
group. In addition, such a classification based on known data
enables to analyze which pathways and functions are present in a
sample, and hence to gain insight into the metabolic capabilities
of a microbial community.

3.4.1 Preexisting Tools
Many tools exist to these ends: BLAST (Altschul et al., 1990) and
other similarity-based methods were among the early methods,
but depend on the threshold settings for various parameters
(Shah et al., 2019), only provide meaningful results if the
reference database contains sequences closely related to the
queries (Mahé et al., 2017), and the closest hit does often not
represent the most closely related species (Koski and Golding,
2001; Clemente et al., 2011). Thus, the advantages of leveraging
the power of phylogenetics for taxonomic assignment have long
been recognized (Delsuc and Ranwez, 2020). The classification
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can be based on de novo construction of a phylogeny (Krause
et al., 2008; Schreiber et al., 2010), which as mentioned is
computationally expensive, and tree topologies might change
between samples, yielding downstream analyses and
independent comparisons between studies challenging (Boyd
et al., 2018). Other tools to investigate the community
composition of metagenome datasets via phylogenomic
assignment of markers genes are BUSCO (all kingdoms, Simão
et al., 2015) and AMPHORA2 (Bacteria and Archaea, Wu and Scott,

2012). These allow relatively fast de novo phylogenetic search
using several markers simultaneously. Alternatively, dedicated
pipelines for 16S metabarcoding data such as QIIME (Caporaso
et al., 2010; Bolyen et al., 2019) and MOTHUR (Schloss et al., 2009)
are routinely used to conduct taxonomic assignment based on
sequence databases and established phylogenies as well as
taxonomies; see Section “Sequence Selection” for a list of
common databases, and see (López-García et al., 2018; Prodan
et al., 2020) for comparisons of such pipelines. Other tools for

FIGURE 4 | Examination of phylogenetic placement data. Here, we show some techniques for visually inspecting placement data, using an exemplary dataset
consisting of 154 soil samples from neotropical rain forests placed on an eukaryotic reference tree (Mahé et al., 2017). (A)Heat tree showing the distribution of millions of
amplicon reads on the reference tree by summing over the per-branch LikelihoodWeight Ratios (LWRs) of all reads. The high abundance of placed reads in the Alveolata
clade (dark branches in the lower left) visualizes a main finding of the dataset in form of an over-abundance of reads from that clade, shown in the phylogenetic
context of the reference tree. Figure adapted from (Mahé et al., 2017). (B) Taxonomic assignment of all reads based on the PR2 (Benson et al., 2009; Guillou et al., 2012)
taxonomy. The taxonomy of the reference sequences was used to label each branch of the reference tree by its highest non-conflicting taxonomic path. Then, for each
read, the LWRs of its placement locations were accumulated for the branches, creating an overview of taxonomic abundances taking placement confidences into
account. The result across all reads is shown here as a Krona plot (Ondov et al., 2011). (C) Histogram of the LWRs of the first three most likely placement locations of
each read, showing howmany of the reads have their first, second, and third most likely placement at each (binned) LWR value. For example, the highest bin of LWR.1 on
the right hand side indicates that 20% of the reads have a first (most likely) placement position at or above an LWR of 0.95. That is, these placements have a high LWR
and are hence placed with high certainty onto their respective branches. Note that the second most likely placement (LWR.2) can never have an LWR exceeding 1/2
(otherwise, it would be the most likely), the third most likely (LWR.3) not more than 1/3 (otherwise, it would be the second most likely), and so forth. (D) Histogram of the
Expected Distance between Placement Locations (EDPL), which are computed as the distances (in terms of ML branch path length) between placement locations of a
query sequence, weighted by the respective LWR of each location. The EDPL measures how far the placements of a sequence are spread across the branches of the
reference tree, and hence how certain the placement in a “neighborhood” of the tree is. Here, most reads have an EDPL below 0.24 branch length units (mean expected
number of substitutions per site). This indicates that the reads have most of their likely placements close to one another, within two branches on average, given that the
used reference tree has an average branch length of about 0.12.
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taxonomic assignment and profiling are available, for example
based on k-mers, which often use a fixed taxonomy such as the
NCBI taxonomy (Benson et al., 2009; Sayers et al., 2009) to
propose an evolutionary context for query sequences. They hence
use a taxonomic tree without branch lengths, which can be an
advantage when a fully resolved phylogeny is not available. Tools
to this end are for exampleMEGAN (Huson et al., 2007), KRAKEN2

(Wood et al., 2014; Wood et al., 2019), and KAIJU (Menzel et al.,
2016), see (Sczyrba et al., 2017; Bremges and McHardy, 2018;
Meyer et al., 2019; Ye et al., 2019) for benchmarks and
comparisons. However, these approaches are based on
sequence similarity and related approaches, and can therefore
be incongruent with the true underlying phylogenetic
relationships of the sequences under comparison (Smith and
Pease, 2017).

3.4.2 Placement-Based Approaches
Phylogenetic placement can be employed to perform an accurate
assignment of QSs to taxonomic labels (Czech et al., 2018), with
potentially higher resolution than methods based on manually
curated taxonomies (Darling et al., 2014; Rajter et al., 2021). This
approach leverages models of sequence evolution (Darling et al.,
2014), and is hence more accurate than similarity-based methods
(von Mering et al., 2007). A further advantage over the above
pipelines is the ability to use custom reference trees, thus
providing a better context for interpreting the data under
study. Incongruencies between the taxonomy and the
phylogeny can however hinder the assignment, if they are not
resolved (Matsen and Gallagher, 2012). Furthermore, it is
important to note that placement-based methods only work
when the query sequences are homologous to the available
reference data, hence currently limiting the approach to, e. g.,
short genomes, metabarcoding or filtered metagenomic data.

A simple approach for taxonomic annotation based on
placements is to label each branch of the RT by the most
descriptive taxonomic path of its descendants, and to assign
each QS to these labels based on its placement locations,
potentially weighted by LWRs (Czech et al., 2018; Kozlov
et al., 2016). This is implemented in GAPPA (Czech et al.,
2020), see Figure 4B for an example; a similar visualization of
the taxonomic assignment of placements can be conducted with
BOSSA (Lefeuvre, 2018).

More involved and specialized approaches have also been
suggested. PHYLOSIFT (Darling et al., 2014) is a workflow that
employs placement for taxonomic classification, using a
database of gene families that are particularly well suited for
metagenomics. The workflow further includes Edge PCA
(introduced in Section “Similarity between Samples”) to
assess community structure across samples, and offers
Bayesian hypothesis testing for the presence of phylogenetic
lineages. The gene-centric taxonomic profiling tool
METANNOTATE (Petrenko et al., 2015) uses a similar
approach to identify organisms within a metagenomic
sample that perform a function of interest. To this end, it
searches shotgun sequences against the NCBI database
(Benson et al., 2009; Sayers et al., 2009) first, and then
employs placement to classify the reads with respect to

genes and pathways of interest. GRAFTM (Boyd et al., 2018)
is a tool for phylogenetic classification of genes of interest in
large metagenomic datasets. Its primary application is to
characterize sample composition using taxonomic marker
genes, which can also target specific populations or
functions. The abundance profiling methods TIPP (Nguyen
et al., 2014) and TIPP2 (Shah et al., 2021) also use marker
genes, and use the SEPP (Liu et al., 2012; Mirarab et al., 2012)
boosting technique for phylogenetic placement with highly
diverse reference trees, which increases classification accuracy
when under-represented (novel) genomes are present in the
dataset. The more recently introduced TREESAPP tool (Morgan-
Lang et al., 2020) uses a similar underlying framework, but
improves functional and taxonomic annotation by regressing
on the evolutionary distances (branch lengths) of the placed
sequences, thereby increasing accuracy and reducing false
discovery. Lastly, PHYLOMAGNET (Schön et al., 2019) is a
workflow for gene-centric metagenome assembly (MAGs)
that can determine the presence of taxa and pathways of
interest in large short-read datasets. It allows to explore and
pre-screen microbial datasets, in order to select good candidate
sets for metagenomic assembly.

3.5 Diversity Estimates
A goal that is intrinsically connected to taxonomic assignment
in studies that involve metagenomic and metabarcode
sequencing is to quantify the diversity within a sample
(called α-diversity) and the diversity between samples
(called β-diversity). A plethora of methods exists to
quantify the diversity of a set of sequences (for an excellent
review, see Tucker et al., 2017). Here, we focus on those
approaches that specifically work in conjunction with
phylogenetic placement.

Among the α-diversity metrics, Faith’s Phylogenetic Diversity
(PD) stands out, both for its widespread use in the literature and
its direct use of phylogenetic information (Faith, 1992). More
recently, a parameterized generalization of the PDwas introduced
that is able to interpolate between the classical PD and its
abundance weighted formulation (McCoy and Matsen, 2013).
Notably, this Balance Weighted Phylogenetic Diversity (BWPD)
has been implemented to work directly with the results of
phylogenetic placement, using the GUPPY fpd command
(Matsen et al., 2010; Darling et al., 2014).

To our knowledge, the only other method that computes a
measure of α-diversity directly from phylogenetic placement
results is SCRAPP (Barbera et al., 2020), which also deploys
species delimitation methods (Zhang et al., 2013; Kapli et al.,
2017). In this method, the connection of phylogenetics to
diversity is through the concept of a molecular species
(Agapow et al., 2004), and quantifying how many such species
are contained within a given sample. To facilitate this, SCRAPP

resolves the between-QS phylogenetic relationships, resulting in
per-reference-branch trees of those QSs that had their most likely
placement on that specific branch. Thus, a byproduct of applying
this method is a set of phylogenetic trees of the query sequences.

When the goal is to compute a β-diversity measure, a common
choice for non-placement based approaches is the so-called

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 87139314

Czech et al. Review of Phylogenetic Placement

154

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Unifrac distance (Lozupone and Knight, 2005; Lozupone et al.,
2007), which quantifies the relatedness of two communities that
are represented by leaves of a shared phylogenetic tree.
Interestingly, the weighted version of the Unifrac distance has
been shown to be equivalent to the KR-distance (Evans and
Matsen, 2012), see Section “Similarity between Samples”. As the
Unifrac distance is widely used and well understood, this makes
the KR-distance a safe choice for calculating between-sample
distances, and thus a measure of β-diversity based on
phylogenetic placement results.

3.6 Placement Distribution
Depending on the research question at hand, and for larger
numbers of QSs, it is often more convenient and easier to
interpret to look at the overall placement distribution instead
of individually placed sequences. This distribution, as shown in
Figures 2E, 4A, summarizes an entire sample (or even multiple
samples) by adding up the per-branch probabilities (i. e., LWRs)
of each placement location of all sequences in the sample(s),
ignoring all branch lengths (distal, proximal, and pendant) of the
placements. In this context, the accumulated per-branch
probabilities are also called the edge mass of a given branch.
This terminology is derived from viewing the reference tree as a
graph consisting of nodes and edges, and viewing the placements
as a mass distribution on that graph. This focuses more on the
mathematical aspects of the data, and provides a useful
framework for the analysis methods described below.

3.6.1 Normalization of Absolute Abundances
High-throughput metagenomic sequence data are inherently
compositional (Li, 2015; Gloor et al., 2017; Quinn et al., 2018),
meaning that the total number of reads from HTS (absolute
abundances) are mostly a function of available biological material
and the specifics of the sequencing process. In other words, the
total number of sequences per sample (often also called library
size) is insignificant when comparing samples, see (Weiss et al.,
2017; Du et al., 2018; Lin and Peddada, 2020) for reviews on this.
This implies that sequence abundances are not comparable across
samples, and that they can only be interpreted as proportions
relative to each another (Calle, 2013; Silverman et al., 2017).
However, the PCR amplification process is known to introduce
biases (Logares et al., 2014), potentially skewing these
proportions. For example, the relative abundances of the final
amplicons do not necessarily reflect the original ratio of the input
gene regions (Kanagawa, 2013; Li, 2015); this can be problematic
in comparative studies. If these characteristics are not considered
in analyses of the data (Weiss et al., 2017), spurious statistical
results can occur (Aitchison, 1986; Jackson, 1997; Gloor et al.,
2016; Tsilimigras and Fodor, 2016); see (Czech, 2020) for further
details. For this reason, the estimation of indices such as the
species richness is often implemented via so-called rarefaction
and rarefaction curves (Gotelli and Colwell, 2001), which might
however ignore a potentially large amount of the available valid
data (McMurdie and Homes, 2014).

Phylogenetic placement of such data hence also needs to take
this into account. The total edge masses (e. g., computed as the
sum over all LWRs of a sample) are not informative, and merely

reflect the total number of placed sequences. A simple strategy,
upon which several of the analysis methods introduced below are
based, is the normalization of the masses by dividing them by
their total sum, effectively turning absolute abundances into
relative abundances. This also eliminates the need for
rarefaction, as low-abundance sequences only contribute
marginally to the data. However, using this approach can still
induce compositional artifacts in the data, as the per-branch
probabilities (and hence the edge masses per sequence) have to
sum to one for all branches of the tree. In other words, it is
conceptually not possible to change the relative edge mass on a
branch without also affecting edges masses on other branches.

3.6.2 Transformations of Compositional Data
A statistically advantageous way to circumvent these effects, and
resulting misinterpretations of compositional placement data, is
to transform the data from per-branch values to per-clade values.
This way, individual placement masses in the nearby branches of
a clade are transformed into a single value for the entire clade,
which expresses a measure of difference (called contrast) of the
placement masses within the clade versus the masses in the
remainder of the tree. This makes such transformations robust
against placement uncertainty in a clade (e. g., due to similar
reference sequences), implicitly captures the tree topology, and
solves the issues of compositional data. From a technical point of
view, this transforms the data from a compositional space into an
Euclidean coordinate system (Juan and Pawlowsky-Glahn, 2005),
where the individual dimensions of a data point are unconstrained
and independent of each other. This can be achieved by utilizing
the reference tree, whose branches imply bi-partitions of the two
clades that are split by each branch (Pawlowsky-Glahn et al., 2015;
Silverman et al., 2017). Instead of working with the per-branch
placement masses, the accumulated masses on each side of a
branch are contrasted against each other. This yields a view of
the data that summarizes all placements in the clades implied by
each branch. These transformations are, for example, achieved via
two methods that in the existing literature have unfortunately
confusingly similar names: imbalances and balances (Czech, 2020).

The edge imbalance (Matsen and Evans, 2013) is computed on
the normalized edge masses of a sample: For each edge, the sum
over all masses in the two clades defined by that edge are
computed; their difference is then called the imbalance of the
edge. The edge balance (Silverman et al., 2017; Czech and
Stamatakis, 2019) is computationally similar, but instead of a
difference of sums, it is computed as the (isometric) log-ratio of
the geometric means of the masses in each clade; the resulting
coordinates are called balances (Egozcue et al., 2003; Juan and
Pawlowsky-Glahn, 2005; Quinn et al., 2018). Both
transformations yield a contrast value for each (inner) branch of
the tree, which can then, for example, be used to compare different
samples to each other, see Section “Analysis of Multiple Samples”.
They differ in the details of their statistical properties, but more
work is needed to examine the effects of this on placement analyses
(Czech, 2020); in practice, both can be (and are) used to avoid
compositional artifacts. Alternatively, approaches such as Gamma-
Poisson models and their zero-inflated versions (Peng et al., 2016;
Weiss et al., 2017), as well as other methods for abundance
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normalization (Weiss et al., 2017; Du et al., 2018; Lin and Peddada,
2020) can be applied, although future work is needed to establish
those in the context of phylogenetic placement.

3.7 Analysis of Multiple Samples
In typical metagenomic and metabarcoding studies, more than
one sample is sequenced, e. g., from different locations or
points in time of an environment. Furthermore, often per-
sample metadata is collected as well, such as the pH-value of
the soil or the temperature of the water where a sample was
collected. These data allow to infer connections between the
species community composition of the samples and
environmental features. Given a set of samples (and
potentially, metadata variables), an important goal is to
understand the community structure (Tyson et al., 2020).
To this end, fundamental tasks include measuring their
similarity (a distance between samples), clustering samples
that are similar to each other according to that distance
measure, and relating the samples to their environmental
variables. To this end, the methods introduced in this
section utilize phylogenetic placement, and assume that the
sequences from all samples have been placed onto the same
underlying reference tree; they are implemented in GAPPA

(Czech et al., 2020) and partially in GUPPY (Matsen et al., 2010).

3.7.1 Similarity Between Samples
A simple first data exploration method consists in computing the
Edge Dispersion (Czech and Stamatakis, 2019) of a set of samples,
which detects branches or clades of the tree that exhibit a high
heterogeneity across the samples by visualizing a measure of
dispersion (such as the variance) of the per-sample placement
mass. The method hence identifies branches and clades “of
interest”, where samples differ in the amount of sequences
being placed onto these parts of the tree.

The similarity between the placement distributions of two
samples can be measured with the phylogenetic Kantorovich-
Rubinstein (KR) distance (Evans and Matsen, 2012; Matsen
and Evans, 2013), which is an adaptation of the Earth Mover’s
distance to phylogenetic placement. The KR distance between
two samples is a metric that quantifies by at least how much
the normalized mass distribution of one sample has to be
moved across the reference tree to obtain the distribution of
the other sample. In other words, it is the minimum work
needed to solve the transportation problem between the two
distributions (transforming one into the other), and is related
to the UniFrac distance (Lozupone and Knight, 2005;
Lozupone et al., 2007). The distance is symmetrical, and
increases the more mass needs to be moved (that is, the
more the abundances per branch and clade differ between the
two samples), and the larger the respective moving distance is
(that is, the greater the phylogenetic distance along the
branches of the tree between the clades is). It is hence an
intuitive and phylogenetically informed distance metric for
placement data, for example to quantify differences in the
species composition of two environments.

Edge Principal Component Analysis (Edge PCA) is a method
to detect community structure, which can also be employed for

sample ordination and visualization (Darling et al., 2014;
Matsen and Evans, 2013). Edge PCA identifies lineages of
the RT that explain the greatest extent of variation between
the sample communities, and is computed via standard
Principal Component Analysis on the per-edge imbalances
across all samples. The resulting principal components
distinguish samples based on differences in abundances
within clades of the reference tree. See for example
Figure 5D, where each point corresponds to a sample and
is colorized according to a metadata variable of the sample,
showing that the ordination discriminates samples according
to that variable. Furthermore, as the eigenvectors of each
principal component correspond to edges of the tree, these
can be visualized on the tree (Matsen and Evans, 2013; Czech,
2020), so that those edges and clades of the tree that explain
differences between the samples can be identified, e. g., with
GUPPY (Matsen et al., 2010) and ARCHAEOPTERYX (Han and
Zmasek, 2009), or with GAPPA (Czech et al., 2020). Principal
components can also be computed from the balances instead of
the imbalances (Czech, 2020).

3.7.2 Clustering of Samples
Given a measure of pairwise distance between samples, a
fundamental task consists in clustering, that is, finding groups
of samples that are similar according to that measure. Squash
Clustering (Matsen and Evans, 2013) is a hierarchical
agglomerative clustering method for a set of placement
samples, and is based on the KR distance. Its results can be
visualized as a clustering tree, where terminal nodes represent
samples, each inner node represents the cumulative distribution
of all samples below that node (“squashed” samples), and
distances along the tree edges are KR distances. We show an
example in Figure 5E, where each sample (terminal node) is
colorized according to associated per-sample metadata
variables (features measured for each sample), indicating
that the clustering (based on the placement distribution)
recovers characteristics of the samples based on that
metadata variable.

The clustering hierarchy obtained from Squash Clustering
grows with the number of samples, which contains a lot of
detail, but can be cumbersome to visualize and interpret for
large datasets with many samples. Phylogenetic k-means
clustering and Imbalance k-means clustering (Czech and
Stamatakis, 2019) are further clustering approaches, which
instead yield an assignment of each sample to one of a
predefined number of k clusters. Phylogenetic k-means uses
the KR distance for determining the cluster assignment of the
samples, and hence yields results that are consistent with Squash
Clustering, while Imbalance k-means uses edge imbalances, and
hence is consistent with results obtained from Edge PCA.
Having the choice over the value k can be beneficial to
answer specific questions with a known set of categories of
samples (e. g., different body locations where samples were
obtained from), but is also considered a downside of k-means
clustering. Hence, various suggestions exist in the literature to
select an appropriate k that reflects the number of “natural”
clusters in the data (Thorndike, 1953; Rousseeuw, 1987;
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Bischof et al., 1999; Pelleg and Moore, 2000; Tibshirani et al.,
2001; Hamerly et al., 2004). Visualizing the cluster centroids
obtained from both methods can further help to interpret
results by showing the average distributions of all samples in
one of the k clusters; see again (Czech, 2020) for details.

3.7.3 Relationship With Environmental Metadata
Variables
The above methods only implicitly take metadata into account, e. g.,
by colorizing their resulting plots according to a variable.
Environmental variables can also be incorporated explicitly in

FIGURE 5 | Analyses of phylogenetic placement data. Here, we show several analysis techniques for placement data, which relate multiple samples to each other
(e. g., from different locations or points in time) that have been placed on the same underlying reference tree. The example dataset contains 220 vaginal samples of
human patients with and without Bacterial Vaginosis (BV), a condition caused by an abnormal vaginal microbiome (Srinivasan et al., 2012), placed on a bacterial tree. The
“Nugent” score is an external clinical indicator of the disease (Nugent et al., 1991), which is shown in (C–E) as blue (healthy, low score) vs. red colors (severe
disease, high score). In healthy patients, two types of Lactobacilli dominate the microbiome, while in diseased patients, a diverse mixture of other bacteria take over. All
figures are adapted from (Czech and Stamatakis, 2019), for details see (Srinivasan et al., 2012; Matsen and Evans, 2013; Czech and Stamatakis, 2019; Czech, 2020).
(A) Edge Correlation between read abundances in clades of the reference tree (measured via the imbalance transformation) and the per-sample Nugent score. This
visualization method identifies taxa whose abundances exhibit a relationship with environmental factors. Here, the red path towards the left identifies the Lactobacillus
clade, that exhibits a strong anti-correlation with the Nugent score (healthy patients with a low score have high abundances in this clade), while blue and green paths
show a multitude of clades that correlate with the score (diseased patients with a high score and high abundances in these diverse clades). (B) Placement-Factorization
discretely identifies these clades by splitting up the tree into a number of “factors”: Black edges (with colorized clades below them) indicate the first ten factors (groups of
taxa, some of them nested) whose differential placement abundances between samples exhibit a strong relationship with the Nugent score. That is, a factor is a clade in
which abundances co-vary with metadata (e. g., the Nugent score). Here, these factors are again the Lactobacillus clade and a multitude of other clades that are also
highlighted in (A) by colored paths. (C) Placement-Factorization can also ordinate samples, by plotting the balances (i. e., the abundance contrasts) across the edges
identified by factors. Here, the first two factors of (B) are shown (each dot represents one sample, colored by its Nugent score), which split healthy and diseased patients.
(D) Edge Principal Components Analysis (EdgePCA) is another ordination method, using PCA on the edge imbalances. Here, the first two PC axes are shown, which
separate healthy from diseased patients (Lactobacillus presence vs. absence) on the first axis, and further distinguish the healthy patients based on the two types of
Lactobacilli on the second axis. These interpretations of the axes are derived from visualizing the PCA directly on the reference tree, which is another way to show Edge
PCA results, see (Matsen and Evans, 2013; Czech, 2020). (E) Squash Clustering is a hierarchical clustering method, here showing the clustering tree of the samples (not
a phylogeny). Tip nodes (leaves) correspond to samples (individual patients), again colorized by their Nugent score, with samples clustered based on similarity of their
placement distribution, and vertical distances showing this similarity, measured as the phylogenetic Kantorovich-Rubinstein (KR) distance between samples. Patients
with a similar health status are close to each other, in particular the healthy (blue) ones.
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phylogenetic placement analysis, to more directly infer the
relationships between the species composition of the samples
(e. g., in form of abundances per clade) and the environments
these communities live in.

The Edge Correlation (Czech and Stamatakis, 2019) visualizes
parts of the tree where species abundances (as measured by the
accumulated probability mass of each sample) exhibit a strong
connection with a metadata variable, see Figure 5A. It is
computed as the per-edge correlation coefficient between the
per-sample metadata variable and either the edge masses
(highlighting individual edges), or imbalances or balances
(highlighting clades) of each sample.

Placement-Factorization (Czech and Stamatakis, 2019; Czech,
2020) is a more involved method. It is an adaption of
PhyloFactorization (Washburne et al., 2017; Washburne et al.,
2019) to phylogenetic placement data. Its goal is to identify
branches in the tree along which putative functional traits might
have arisen in adaptation to changes in environmental variables. In
other words, it can detect clades of the reference tree whose
abundances are linked to environmental factors. By “factoring out”
the clade with the strongest signal in each step of the algorithm (hence
the name of the method), nested dependencies with variables within
clades can also be discovered, see Figure 5B. This factorization of the
tree into nested clades can further be used as an ordination tool to
visualize how samples are separated by changes along the factors, and
as a dimensionality-reduction tool, seeFigure 5C. Themethod assesses
the relationship between per-sample metadata features and the
balances computed on the samples; by using Generalized Linear
Models, it allows to simultaneously incorporate multiple metadata
variables of different types, such as numerical values (pH-value,
temperature, latitude/longitude, etc), binary values (presence/
absence patterns, diseased or not), or categorical values (body site
that a sample was taken from).

4 CONCLUSION AND OUTLOOK

In this review we broadly surveyed the concepts, methods, and
software tools that constitute and relate to phylogenetic placement.
We have also presented guidelines and best practices formany typical
use cases, showcased some commonmisconceptions and pitfalls, and
introduced the most prominent downstream analysis methods.
Phylogenetic placement is a versatile approach that is particularly
applicable in metagenomics (e. g., for metabarcoding data) and
broader eDNA-based ecology studies. It allows for the annotation
of sequence data with phylogenetic information, and thereby to
investigate the taxonomic content, functional capacity, diversity, and
interactions of a community of organisms. Further, it allows for
comparing samples from multiple spatial and temporal locations,
enabling the analysis of community patterns across time and space,
as well as their association with environmental metadata variables.

Despite the growing popularity of phylogenetic placement,
there are several methodological and usage aspects that will
benefit from further developments.

Currently, significant effort is required to create high-quality
reference trees. We believe research effort should focus on
simplifying this process, potentially through the design of methods

that streamline and automate the commonly involved tasks. For
example, while there are some metrics that quantify the quality of an
inferred phylogenetic tree (Felsenstein, 1985; Dhar and Minin, 2016;
Lemoine et al., 2018), there is a lack of metrics to specifically evaluate
the suitability of a tree for phylogenetic placement, given some
expected input data. Note that the PEWO testing framework
(Linard et al., 2020) (see Section “Workflows based on
Phylogenetic Placement”) represents a first step in this direction.

Ideally, reference trees and alignments should be created by,
and shared in, research communities that investigate the same
group(s) of organisms. This would not only yield obtaining high-
quality reference trees trivial, but would also immensely increase
the comparability across studies, as well as their reproducibility.
Consequently, we would highly encourage such collaborations,
and the public sharing of (perhaps even versioned instances of)
gold-standard reference trees. Notably, for some environments,
first efforts into this direction have already been undertaken
(Berney et al., 2017; Del Campo et al., 2018; Rubinat-Ripoll,
2019; Rajter and Dunthorn, 2021; Rajter et al., 2021).

Furthermore, as mentioned, there is a lack of established
methods that evaluate placement quality in a standardized and
meaningful way. In particular, robust metrics are missing to
distinguish the case where reference sequences of known
species are missing from the tree from the case where the
placed data actually contains yet undescribed species. A
classification based on the LWR and pendant length of the
placement locations might offer a solution here.

Lastly, further work is required to connect environmental
metadata to the results of phylogenetic placement. Placement-
based spatio-temporal methods are of high interest for addressing
research questions in ecology and phylogeography. For example,
relating geo-locations of samples to their placement could
indicate how species communities differ across space, while
creating placement time series could show how community
compositions develop and change over time.
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Metascan: METabolic Analysis,
SCreening and ANnotation of
Metagenomes
Geert Cremers, Mike S. M. Jetten, Huub J. M. Op den Camp and Sebastian Lücker*

Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands

Large scale next generation metagenomic sequencing of complex environmental samples
paves the way for detailed analysis of nutrient cycles in ecosystems. For such an analysis,
large scale unequivocal annotation is a prerequisite, which however is increasingly
hampered by growing databases and analysis time. Hereto, we created a hidden
Markov model (HMM) database by clustering proteins according to their KEGG
indexing. HMM profiles for key genes of specific metabolic pathways and nutrient
cycles were organized in subsets to be able to analyze each important elemental cycle
separately. An important motivation behind the clustered database was to enable a high
degree of resolution for annotation, while decreasing database size and analysis time.
Here, we present Metascan, a new tool that can fully annotate and analyze deeply
sequenced samples with an average analysis time of 11 min per genome for a publicly
available dataset containing 2,537 genomes, and 1.1 min per genome for nutrient cycle
analysis of the same sample. Metascan easily detected general proteins like cytochromes
and ferredoxins, and additional pmoCAB operons were identified that were overlooked in
previous analyses. For a mock community, the BEACON (F1) score was 0.72–0.93
compared to the information in NCBI GenBank. In combination with the accompanying
database, Metascan provides a fast and useful annotation and analysis tool, as
demonstrated by our proof-of-principle analysis of a complex mock community
metagenome.

Keywords: metagenomics, metabolism, annotation, microbiology, ecology

INTRODUCTION

Alongside the advances in DNA sequencing, genome annotation has come a long way. Metagenomic
sequence data are becoming available at increasing rates, making accurate and fast (automated)
analysis tools even more important. Through the advancements of sequencing technologies, a single
isolated bacterium prior to sequencing is not a requirement anymore, leading to an increase in the
sequencing of metagenomes. This, in turn, leads to new challenges in annotation. It is common for
metagenomes to be binned prior to annotation into metagenome-assembled genomes (MAGs).
Especially when samples are (ultra-)deep sequenced, the number of MAGs per sample can reach
thousands of near-complete genomes (Anantharaman et al., 2016). Not only do all these MAGs need
to be annotated individually, which is time and effort consuming, there is also the greater ecological
question of how the metabolic processes in the original sample relate to one another.

Additionally, there is the problem of protein ortho- and paralogs, which is especially prevalent
when metagenomes lack enough sequencing depth for binning. Genes in a single genome are often
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distinct enough for a meaningful annotation, especially since for
small genomes direct comparison like BLAST analysis (Altschul
et al., 1990) to a database is still feasible. However, using BLAST
on complex metagenomes is too computationally intense and
time-consuming, and this will increase in the future, as databases
keep growing every day (Evanko, 2009). Therefore, a faster,
indirect comparison is preferred like the use of hidden
Markov models (HMM), where annotation is based on
matching amino acid patterns rather than whole gene or
protein sequences. However, these patterns are very similar for
ortho- and paralogs that have similar evolutionary origins
(Jensen, 2001), which makes HMM databases with high
resolution a necessity to achieve optimal annotations.
Automated annotation is often dividing the process in single,
specific functions like gene-calling, ribosomal RNA gene
identification, and gene annotation. The results of the single
analyses are subsequently combined in so called wrapper-scripts.
For bacterial genomes, Prokka (Seemann, 2014) is probably the
most well-known and fastest pipeline used at the moment. In
recent years, scripts have been published that are able to annotate
multiple genomes simultaneously, often by using well established
databases like PFAM (Mistry et al., 2021), KOFAM (Aramaki
et al., 2020), and TIGRFAM (Haft et al., 2013). Examples of these
are METABOLIC (Zhou et al., 2019), DRAM (Shaffer et al.,
2020), and eggNOG-mapper v2 (here-after eggNOG)
(Cantalapiedra et al., 2021).

Here, we report on the construction of a new database by first
clustering proteins for each KO number of the KEGG pathway
database (Kanehisa and Goto, 2000) involved in central metabolic
functions and subsequently building HMM profiles for each
cluster. Key genes of major metabolic pathways were
organized in pathway-specific individual databases (subsets),
based on the grouping of Anantharaman et al. (2016). These
databases together with a modified version of Prokka were then
used for a gene-centric annotation and analysis of a mock
community and previously published (meta-)genomes, either
for all MAGs separately, or the unbinned assembly.

MATERIALS AND METHODS

Database Creation
For the creation of the database, all KO numbers from the KEGG
database that are part of metabolic pathways (“09100
Metabolism”; https://www.genome.jp/brite/ko00001) were
collected and linked to Uniprot entries through LINKDB
(https://www.genome.jp/linkdb). For KO numbers with more
than three entries, the entries were downloaded from the
TrEMBL UniProt database (release 2018–09) (Bateman, 2019)
and converted into multi-FASTA files. The sequences were
filtered on length by calculating the average sequence length
for each KO number, after which sequences longer than 150%
and shorter than 60% of the average sequence length were
discarded. If a set consisted of less than three sequences after
length filtering, the unfiltered set was used.

For sequence de-replication, sets containing more than three
entries were clustered (nearest neighbor) using Linclust from the

MMSeq2.0 package (settings: -v 0 --kmer-per-seq 160 --min-seq-
id 0.5 --similarity-type 1 --sub-mat blosum80. out --cluster-mode
2 --cov-mode 0 -c 0.7) (Steinegger and Söding, 2018). For each
KO-number, clusters with less than three sequences were
combined into 1 cluster. If less than three unique sequences
were left after de-replication, the entire KO number was
discarded. Subsequently, all resulting sequences for each KO
number cluster were aligned individually using mafft v7
(settings: --quiet --anysymbol) (Katoh and Standley, 2013) and
HMM profiles were created using hmmbuild (default settings)
(Eddy, 2011).

Subsets with key genes for each metabolic pathway were
created automatically based on KEGG classification (“09102
Energy metabolism”) and manually curated where possible
(Supplementary Data S2) based on the functional
classification described in Anantharaman et al. (2016). HMM
profiles for hydrogenases were created by downloading FASTA
files for each hydrogenase group from the HydDB website
(Søndergaard et al., 2016) followed by HMM profile creation
as described above.

Metascan
Metascan expects a folder containing one or more DNA sequence
files in FASTA format, where each file represents either an
unbinned assembly (metagenome contigs) or a single MAG.
When analyzing a complete unbinned metagenome, Metascan
will generate an overview of all metabolic pathways and nutrient
cycles. If the metagenome was binned, providing all MAGs allows
annotation of each MAG. When using MAGs as input, the
unbinned sequences (and, if applicable, small contigs
discarded after size-filtering) are expected to be included as
one or multiple separate bins, since a full gene-centric analysis
of a metagenome is also dependent on the unbinned fraction of
the microbial population that may exist in the sample.

Procedure
The core process starts with gene calling by Prodigal (Hyatt et al.,
2010) (Figure 1). Per default, Metascan runs a few additional
analyses that can be excluded if a fast overview of the nutrient
cycles present in the ecosystem is desired. Before annotation, a
ribosomal RNA gene search is performed by either Barnnap
(https://github.com/tseemann/barrnap) or RNAmmer (Lagesen
et al., 2007). The recovered rRNA gene sequences are compared
against a local NCBI nr database using BLASTN (Sayers et al.,
2019). Subsequent gene annotation is performed using
hmmsearch (Eddy, 2011) against each of the seven subsets of
the key genes representing important nutrient cycles [Nitrogen,
Methane, Carbon fixation, Hydrogenases, C1 (methylotrophy)
molecules, Sulfur, and Oxidative phosphorylation; Table 2] and
one miscellaneous subset of metal cycling. After annotation of the
key genes, the remaining open reading frames (ORFs) are
annotated using the HMM profiles of the remaining metabolic
genes. If the metagenome was previously binned and abundance
was estimated, this data can be entered in a separate TSV file.

For a full annotation of MAGs, the option—prokka is
available. This Prokka legacy option provides tRNA search
Aragorn (Laslett and Canback, 2004), ncRNA scan Infernal
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(Nawrocki and Eddy, 2013), and CRISPR scan Minced (Bland
et al., 2007), exactly as Prokka (Seemann, 2014) would. It also
annotates the remaining unidentified ORFs using BLASTP and
the Prokka internal database. These options are also available
individually.

Bin Size
Metascan uses bin size in two different ways. First, for optimized
gene calling, Prodigal has a single genome or metagenome mode.
Thus, Metascan must determine whether the bin can be
considered as single trustworthy MAG. Since the largest
known bacterial genome is currently a little under 14.8 Mbp
(Han et al., 2013), the maximum size for a bin to be
considered a single prokaryotic genome is 15 Mbp. Anything
larger is regarded as metagenomic by Metascan. Furthermore, for
Prodigal the lower limit of the bin size is set at 0.5 Mbp, as this is
the minimum Prodigal requires for gene-calling in single mode.
Thus, bins smaller than 0.5 Mbp and larger than 15 Mbp are
processed in meta mode. Prodigal in Metascan is also set to
predict partial genes at the ends of contigs, as these are expected
to be abundant in a metagenome. Secondly, the maximum bin
size is also used to limit runtime by preventing time-consuming

analyses like tRNA, ncRNA, CRISPR, and BLAST searches
against small and unbinned contigs, as well as the unbinned
metagenome.

E-values
Like bin size, the e-value settings are important for the final
outcome. Three different e-values are implemented in the
Metascan workflow (Figure 1). The first and lowest e-value
serves as a prefilter for HMM results to reduce the amount of
working data. Here, E-06 is the highest score corresponding to the
lowest protein identity allowed by Metascan, and this e-value is
also used by all other first-level analyses. Next, Metascan
differentiates between the application of the full metabolic
dataset or the key gene set only. If only the smaller key genes
databases are applied, the stringency is set to a more stringent
setting of E-100 to exclude large numbers of false positives. When
including the larger metabolic database, the stringency is lowered
to E-50 because the risk for false positives is reduced by the
probable presence of genes with higher similarity in the database,
and a lower e-value here is useful to avoid false negatives.
Simultaneously, the program applies a filter on size difference
of ≥20% (by default) between target (as calculated by Hmmbuild

FIGURE 1 | Schematic overview of the Metascan pipeline. The bold black lines represent the core analyses of the program. The thin black lines show the default
Metascan pipeline when no options are opted out. The blue dotted lines indicate the options that can be invoked through the command line for full annotations.
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during HMM construction) and query sequence to remove hits
that clearly differ in size, but which contain similar sequence
motifs. After all databases are queried, the hit with the highest bit-
score is selected for each ORF.

For small proteins (<200 amino acids), the only e-value
considered is the prefilter. Short sequences are not long
enough to build up enough bit-score, resulting in large
e-values even when the similarity is high. Since this will also
include incomplete partial genes missing a start or stop codon, the
hits are selected on size difference between target and query of
maximum 30%. If desired, all target e-values can be set manually.
As a final option, the program also accepts user generated HMM
profiles, both as single input or in combination with the existing
databases.

Output
For each analysis, an overview file is produced that contains the
number of hits for each gene of each nutrient cycle and the
number of bins/MAGs harboring these genes, alongside their
relative abundance (Supplementary File S1.1). For both genes
and organisms, the absolute and relative coverage is provided, if
applicable. A Krona (Ondov et al., 2011) HTML file is produced
for visual reference. A TSV file is generated containing all protein
hits for easy retrieval of proteins of interest. Finally, two more
TSV files are created, containing the genes for each process and
metabolic module, as used by KEGGmapper (Kanehisa and Sato,
2020) on the genome.jp website. The process file can be used to
manually create a cycle diagram using the provided blank cycle
diagram (Supplementary File S1.2).

For each bin, an overview file is produced with the number of
hits for each gene and phylogenetic information if applicable. A
file containing hits of all the detected KEGG numbers is created,
which can be entered into KEGG mapper for further analysis.
Two files containing hits against the database and statistics like
bitscore and output from hmmsearch are retained as well. One
file contains all possible hits, the other file is an overview of all the
highest scoring hits. Furthermore a few additional files are
created, including a file containing all ribosomal RNA genes
and a tab-separated file with annotated genes for easy retrieval.
Finally, a few FASTA, statistical, log and GenBank files are
created, similar to standard Prokka output (Supplementary
File S1.1).

Validation
Mock Community
For eight different microorganisms, representing different
metabolic traits, the genomes (Table 1) were downloaded and
fully annotated using Metascan four ways: as separate genome bins
or as a single simulated metagenome and using either only key-
genes or the wholemetabolic set (Table 2). The mockmetagenome
was simulated using CAMISIM (Fritz et al., 2019) on all eight
genomes (default settings). Both the simulated metagenome and
the eight genomes were also analyzed using METABOLIC (default
settings), DRAM (default settings), Prokka and eggNOG (hmmer
method and default settings).

To obtain an accurate list of key genes present in these
genomes, each KO number in the metabolic core dataset was

cross-referenced with the KO numbers present in KEGG for
those organisms. For unclear or missing results, additional
BLAST checks and manual searches in the NCBI GenBank
files were performed. Since no golden standards exist for the
used organisms, the GenBank files generated by Metascan,
Prokka (default settings) and eggNOG were compared to the
GenBank files fromNCBI using BEACON (Kalkatawi et al., 2015)
with an offset of 2%. METABOLIC did not create files that could
be converted into Genbank files. DRAM created Genbank files,
but no annotation was present. Therefore, both programs could
not be included in the BEACON comparison.

The BEACON scores were found to be identical to F1 scores
(Van Rijsbergen, 1977) and we consequently report the BEACON
scores as F1 scores for the comparison of the different
annotations (Supplementary Data S3).

Metagenome Analysis
2537 MAGs and the accompanying coverage data from the
study by Anantharaman et al. (2016) were downloaded from
ggKbase (https://ggkbase.berkeley.edu/2500-curated-genomes/
organisms/). The key gene as well as full metabolic analyses
were performed on the binned and unbinned genomes
(Table 2). Both the binned and unbinned datasets were
furthermore analyzed using METABOLIC (default settings)
and DRAM (default settings). EggNOG accepted only a
single FASTA file, and thus only the unbinned dataset was
analyzed. The results of the Metascan analyses and the original
study were manually compared by analyzing the statistics for the
various nutrient cycles.

Computing Platform
All analyses were performed using 12 cores except for DRAM
(10) on a server with one 32 core Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60 GHz and 227 G RAM.

Code and Data Availability Statement
Metascan can be obtained from https://github.com/gcremers/
metascan, the required databases from Zenodo.org (https://doi.
org/10.5281/zenodo.6365663).

RESULTS

Database Creation
For the creation of the HMMdatabase, 7,788 unique KO numbers
associated with metabolic pathways were identified from file
ko00000. keg (7 May 2018; renamed in KEGG to ko00001.
keg in recent versions). When connecting these to proteins
deposited in UniProt, 876 KO numbers had less than 3
UniProt entries available and were therefore excluded.
Sequences from the remaining 6,912 KO numbers were
downloaded from the UniProtKB/TrEMBL database, converted
to FASTA format, and subjected to dereplication and length
filtering (60%–150% of the mean length for each set). After
dereplication, 46 sequence sets were discarded because a
limited amount (<3) of unique sequences was left for
alignment. Five unfiltered sets were retained as the length
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filtering step would have dropped the available sequences below
three. In total, this left a final of 6,866 KO numbers available for
alignment and HMM building.

After manually adding missing entries, subsets for each
nutrient cycle were manually created (Table 3). For each key
gene in a nutrient cycle, entries were manually checked and

completed for lesser studied genes like hydrazine synthase.
Finally, 38 profiles were calculated for hydrogenases by
aligning sequences taken from HydDB (Søndergaard et al.,
2016) for each (sub-)category.

Mock Community
We used DRAM, METABOLIC, eggNOG, and Prokka to
analyze the original eight genomes and the CAMISIM
simulated metagenome. We also used Metascan to analyze
the eight genomes of the mock community using four
different input and analysis settings (Table 2). Analysis
times ranged from 16 min for all eight genomes (Prokka)
to 2 days and 7 h for eggNOG; for the simulated metagenome
this was from 10 min (Prokka) versus 1 day and 10 h for
eggNOG. Metascan and Prokka both provided full
GenBank files for further analysis, whereas eggNOG
provided a GenBank files without RNAs. DRAM and
METABOLIC did not include the annotation within the
GFF file, which meant a meaningful GenBank file could not
be constructed.

TABLE 1 | Genomes used in the mock community of this study.

Organism Size (bp) Topology Accession number Metabolism

Methanosarcina acetivorans str. C2A 5,751,492 Circular AE010299 Methanogen
Nitrosomonas eutropha C91 2,781,824 Circular + plasmids CP000450 Autotrophic ammonia-oxidizer
Paracoccus denitrificans PD1222 5,236,194 Circular + plasmids CP000489 Denitrifier and methylotroph
Escherichia coli str. K-12 substr. MG1655 4,641,652 Circular NC_000913 Heterotroph
Candidatus Methylomirabilis oxyfera 2,752,854 Circular FP565575 Denitrifying methanotroph
Nitrospira moscoviensis strain NSP M-1 4,589,485 Circular NZ_CP011801 Autotrophic nitrite-oxidizer
Methylacidiphilum fumariolicum SolV 2,476,671 Circular NZ_LM997411 Nitrogen fixing methanotroph
Candidatus Kuenenia stuttgartiensis MBR1 4,406,153 Circular NZ_LT934425 Anammox

TABLE 2 |Overview of different analysis options, analysis times and properties per dataset. Time is the total analysis time. Pathways indicate whether the results are ordered
by ecological pathways and processes in the output. Abundance shows the option to include depth values into the analysis and GBK indicates the state of the Genbank
file that is created by the program.

Dataset Metascan key
genes

Metascan Full
annotation

DRAM eggNOG METABOLIC Prokka

8 genomes Time 01 h 01 4 h 46 3 h 26 2 days 7 h 02 0 h 39 0 h 16
Pathways Yes Yes Individual no Individual No
Abundance NA NA NA NA NA NA
GBK full full No genes No RNA No genes full

Simulated meta-genome Time 1 h 08 2 h 54 1 h 06 2 days 09 h 18 0 h 50 0 h 10
Pathways yes yes yes no yes No
Abundance NA NA NA NA NA NA
GBK limited limited No genes No RNA No genes full

2,537 genomes Time 2 days 22 h 29 19 days 08 h 21 34 days 13 h 2 NP 3 days 11 h 01 NP
Pathways Yes Yes Individual Individual
Abundance Yes Yes No no
GBK full full No genes No genes

Unbinned meta-genome Time 1 day 23 h 06 12 days 09 h 57 36 days 23 h 42a Over 44 daysb 3 days 17 h 28 NP
Pathways Yes Yes Yes yes
Abundance NA NA NA NA
GBK limited limited No genes No genes

NP, not performed; NA, not applicable.
aProgram crashed and was manually resumed, missing one step in the process.
bThe program run for over 44 days and was manually stopped.

TABLE 3 | Number of genes per subset (cycle) and the number of corresponding
HMM profiles.

#KO Cycles #HMM profiles

38 Hydrogenases 38
25 C1 molecules 319
34 Carbon fixation 643
12 Methane 32
14 Miscellaneous 213
38 Nitrogen 557
14 Oxygen 556
40 Sulfur 650
6,739 Non-key genes 114,157
6,916 Total 117,127
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Runtimes
When testing the mock community, we first needed to identify all
genes belonging to the different nutrient cycle within the NCBI
entries for each microorganism. This proved not to be
straightforward, since in GenBank the annotations are not
stored with these cycles in mind. We thus created the
individual nutrient cycling profiles of the reference organisms
by manually mining KO numbers from their annotations in
KEGG and GenBank for metabolic key genes and compared
these to the Metascan output. For a complete annotation of all
eight genome bins including all ~7,000 metabolic genes, the
analysis took 4 h and 46 min, with an average of 35.6 min per
genome bin. On the same system, it took 2 h and 54 min for the
simulated metagenome, with the exclusion of several steps
(tRNA, ncRNA, CRISPR detection, and BLASTP) in the
process due to bin size. The key genes only analyses took
68 min for the simulated metagenome and 1 h and 1 min for
the binned genomes.

Gene-Centric Annotation
The manual key genes mining of the mock community against
NCBI and KEGG yielded a total of 447 key genes for all eight
genomes, with the Nitrogen cycle being the most abundant (117
genes) and enzymes involved in hydrogen metabolism the least
(nine genes; Table 4).

Overall, the total amount of key genes recovered from the
mock community by Metascan varied from 133% (binned and
key genes only) to 100% (simulated and all metabolic genes)
compared to the GenBank annotations. Among the cycles,
Hydrogen (67%–147%), C1 (methylotrophy; 106%–159%),
Carbon fixation (102%–181%), and Miscellaneous
(95%–163%) have the largest variability, whereas Sulfur
(103%–119%), Methane (96%–100%), Nitrogen (92%–109%),
and Oxidative phosphorylation (102%–113%) showed better
congruency with the GenBank annotation. As could be
expected, the analyses that used all metabolic genes from the
KEGG dataset are more comparable to the GenBank
annotations than the analyses using only key genes. Binning
the mock metagenome into genome bins did not influence these
results much.

When looking into the data in more detail (Supplementary
Data S4), it became apparent that the majority of differences was
caused by a few specific types of proteins, mainly ferredoxins, and
cytochromes. Cbb3-type cytochrome c oxidase subunit III
(K00406) was found 5 and 14 times by Metascan in the
simulated metagenome full metabolic and binned key genes-
only analyses, respectively, vs. three times in the GenBank
annotations. A similar pattern was observed for the
cytochrome b556-containing formate dehydrogenase subunit
gamma (FdoI, K00127; 17 and 6 vs. 5), the Fe-S subunits of
anaerobic carbon-monoxide dehydrogenase (CooF, K00196; 30
and 11 vs. 2) and arsenate oxidase (AoxA, K08355; 9 and 0 vs. 0).
Another example is the Fe-S-containing beta subunit of formate
dehydrogenase (FdoH and K00124), where both binned (19) and
simulated metagenome key genes-only (15) Metascan analyses
yielded a surplus of positive hits. However, BLASTP analysis of
these proteins against the NCBI database identified 13 of them as
NADH-quinone oxidoreductase subunit NuoF. Manual
inspection of the input data (K00124) used to generate the
FdoH HMM profiles (Supplementary File S1.3) showed that
several entries in these protein clusters are labeled as NuoF,
indicating either misannotated entries or unspecificity within this
database entry.

Another group of gene annotations that deviated from the
GenBank entries entailed group 4 Ni-Fe hydrogenases. Here, in
the key genes-only annotation Metascan found seven proteins in
addition to those predicted in NCBI. However, all seven proteins
were apparently corresponding to NuoC or NuoD subunits of
NADH dehydrogenase complexes and not true hydrogenases, as
they also were lacking the catalytic Ni-binding motif, despite
e-values of 0.0 to 9E-161 in the HydDB database search.

Genome-Centric Annotation of
Metagenome-Assembled Genomes
Besides the broad metabolic overview that Metascan provides on
the metagenome level, an additional useful feature is the
possibility for parallel single genome annotations during the
analysis, which allows for immediate downstream analysis of
genomic potential for any given MAG. For comparison of single

TABLE 4 | Number of genes retrieved from the GenBank files of the mock community and four different Metascan analyses, ordered by cycle. Percentages state the
percentage relative to the total number of genes recovered from the GenBank files.

Number of genes

Nutrient cycle GBK Unbinned, key
genes

Binned, key
genes

Unbinned, full Binned, full

Sulfur 65 70 77 67 71
Hydrogen 15 19 22 10 12
Methane 25 24 24 25 25
Nitrogen 117 108 117 114 127
Oxidative phosphorylation 53 55 60 54 59
C1 68 95 108 72 79
Carbon fixation 85 123 154 87 118
Miscellaneous 19 26 31 18 18
All 447 520 (116.3%) 593 (132.7%) 447 (100.0%) 509 (113.9%)

GBK: GenBank file from NCBI, Key genes: Analysis using only the key genes as reference. Full: Analysis using all metabolic genes as reference. Unbinned: simulated metagenome
generated by CAMISIM., Binned: separate genomes from NCBI.
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genome annotations, we used BEACON to compare the
annotations produced by Prokka, Metascan, and eggNOG for
each genome used in the mock community to the GenBank files
from NCBI with an offset of 2% (Table 5, Supplementary Data
S5). BEACON (F1) scores range from 0.90–0.91 for E. coli to
0.72–0.73M. acetivorans. The results are very similar for all three
methods for all organisms, except for the eggNOG annotation of
P. denitrificans (0.47), which strongly deviated from Prokka and
Metascan (0.87). When comparing Metascan to the different
approaches, eggNOG, and Prokka F1 scores range from 0.99 to 1,
except for P. denitrificans (eggNOG, 0.55). The similarity scores
to the NCBI annotations again range from 0.72 (M. acetivorans)
to 0.91 (E. coli). These results show that Metascan, eggNOG, and
Prokka annotations are very similar to each other and that all
three equally differ from the NCBI GenBank files.

In-Depth Comparison Metascan vs. NCBI
Compared to Metascan annotations, the number of genes with
function annotations in NCBI GenBank was higher for all
samples (Table 6). This was caused by the higher number of
(conserved) hypothetical proteins in the Metascan/Prokka
annotations, as these programs use a conservative annotation
regime. Annotations containing words like “conserved” and
“containing” are labeled hypothetical, as there is no definitive
known function for these proteins. As a result, there are more

hypothetical proteins in the Metascan annotations and thus a
lower degree of genes with assigned apparent functions.

For two organisms there was a larger difference in the amount
of ORFs called by GenBank compared to the other two methods.
The first wasM. acetivorans, for which 4550 ORFs were predicted
by GenBank and 4,946 by Metascan, which is a difference of 8%
(396 ORFs). However, visualizing the ORFs of M. acetivorans in
Artemis (Carver et al., 2012) (Supplementary File S1.4)
indicated the presence of amber stop-codons (TAG) within
several genes in the NCBI GenBank annotation. The
substitution of a TAG stop codon by a sense codon is a codon
usage variation which has been described in some
microorganisms and ciliates (Tourancheau et al., 1995). As a
matter of fact, the usage of the unusual amino acid pyrrolysine
has first been described in a paper by Heinemann et al. (2009).
When re-analyzing the genome withMetascan using a translation
table that does not use TAG as stop codon like table 25, a more
intuitive layout of the ORFs appeared, as well as a gene count that
is closer to the GenBank file (4,631). BLASTx analysis of a few of
these ORFs against the NCBI nr database showed that they had
full length hits against database entries, which had either amino
acid X or O (pyrrolysine) at the position of the stop codon in the
query sequence (Supplementary File S1.4).

Contrastingly, in the annotation of M. oxyfera Metascan
predicted 2757 ORFs, which are 385 less than in the GenBank

TABLE 5 | BEACON (F1) scores comparisons of the GenBank files created by Prokka, Metascan, eggNOG, and NCBI for all eight genomes.

NCBIa Metascanb

Genbank Metascan eggNOG Prokka NCBI eggNOG Prokka

E. coli 0.91 0.90 0.91 0.91 0.99 1
M. fumariolicum SolV 0.84 0.83 0.84 0.84 0.99 0.99
Candidatus K. stuttgartiensis 0.80 0.79 0.80 0.80 0.99 1
N. eutropha 0.83 0.82 0.83 0.83 0.99 0.99
Candidatus M. oxyfera 0.81 0.80 0.81 0.81 0.99 1
M. acetivorans 0.72 0.73 0.72 0.72 0.99 0.99
N. moscoviensis 0.80 0.79 0.80 0.80 0.99 0.99
P. denitrificans 0.87 0.47 0.87 0.87 0.55 1

aF1 score compared to the Genbank files from NCBI.
bF1 scores compared to the Metascan annotation.

TABLE 6 | Direct and detailed comparison of the GenBank files from NCBI and Metascan. The differences in the grey area are related to the NCBI reference.

Gene calls M. a N. e P. d E. c cM. o N. m M. f cK. s

Detected identical 2,960 2,193 4,324 3,988 2,294 3,400 1,875 3,089
Detected similar 472 75 196 97 106 213 73 177
Unique to NCBI 1,118 379 653 452 742 896 400 833
Unique to Metascan 1,514 490 656 330 361 933 348 825
ΔrRNA −1 0 0 0 0 −1 0 −1
ΔtRNA 57 0 2 2 0 2 1 0
ΔncRNA 0 −3 −2 −72 0 −2 −2 −3
Δframeshift/Pseudo 0 −343 −213 −86 −2 −109 −151 −281
ΔFunctional genes −1,409 −559 −998 −1,052 −1,438 −648 −379 −797
Total Reference 4,550 2,687 5,173 4,537 3,142 4,509 2,348 4,099
Total Metascan 4,946 2,758 5,176 4,415 2,757 4,546 2,296 4,091

M.a =M. acetivorans, N. e = N. eutropha, P.d = P. denitrificans, E. c = E. coli, cM.o = “CandidatusM. oxyera”, N.m =N. moscoviensis, M. f =M. fumariolicum SolV, cK.s = “Candidatus K.
stuttgartiensis”. Δ+, Metascan annotated more genes; Δ−, metascan annotated less.
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file (3,142; 13% difference). When comparing the two analyses
through Artemis, it becomes apparent that the NCBI GenBank
file contains more small proteins (<200 amino acids) than the
Metascan GenBank file. The reason for this could be the threshold
setting (1E-06) for small proteins to be considered a true protein
within Metascan.

Noteworthy are the 57 tRNAs in M. acetivorans found by
Metascan that were not present in the GenBank entry. This
exemplifies that also GenBank files are far from perfect, as was
discussed before (De Simone et al., 2020). However, Metascan
had difficulties in identifying pseudo-genes (up to 343 genes in
Nitrosomonas eutropha) and ncRNAs (up to 72 in E. coli).

Metagenome Analysis
For a metagenome analysis, 2,537 genomes from a large-scale
metagenomic study of aquifer sediments (Anantharaman et al.,
2016) were downloaded from ggKbase (https://ggkbase-help.
berkeley.edu) together with a pre-parsed file containing the
average coverage depth for each bin. The per-genome key
gene analysis for all 2,537 genomes in this dataset took almost
three full days to complete, with an average of 1.7 min per
genome. In the full analysis using all metabolic genes, it took
the script about 19.5 days, corresponding to an average of 11 min
per genome. The key gene analysis of the unbinned metagenome
(i.e., the combined bins) was finished in just under 2 days, which
would equate to 1.1 min per genome (Table 2).

Similar to the mock community analyses, the formate
dehydrogenase iron-sulfur-containing beta (K00124; 369, 1018,
973, and 951 hits in the Full Annotation (FA), Binned Key gene
(BK), Unbinned Key gene (UK), and Full Unbinned (FU)
analyses, respectively) and gamma subunits (K00127; 126 FA,
1413 BK, 1381 UK, and 454 FU), and the anaerobic carbon-
monoxide dehydrogenase iron-sulfur subunit CooF (K00196; 654
FA, 1862 BK, 833 UK, and 766 FU) showed clear differences in
gene counts. Furthermore, malyl-CoA ligase frequencies were
overestimated in the key gene analyses. BLAST analysis of these
indicated that the misannotated genes were actually succinyl-
CoA ligases, a gene not included in the key gene set but present in
the large metabolic set.

Metascan vs. Reference
A direct comparison between the analyses from Anantharaman et al.
(2016) and Metascan is hampered by different choices made during
analyses, like which genes to include in the key gene set and how to
define the nutrient cycles. However, a few things became apparent
(Table 7; Supplementary File S1.5). For instance, when focusing on
methylotrophy Metascan identified 82 enzymes related to the
pyrroloquinoline quinone (PQQ)-dependent methanol
dehydrogenases (MDH) in the binned key gene analysis, which
were not reported in the original analysis. After curating the
retrieved set for (nearly) full length genes, a tree was constructed
(Felsenstein, 1985; Saitou and Nei, 1987; Jones et al., 1992; Kumar
et al., 2016), revealing that most of these proteins are PQQ-dependent
alcohol dehydrogenases from largely uncharacterized lineages within
this protein family (Supplementary File S1.6). Anantharaman et al.
(2016) found one organism (Burkholderiales bacterium
RIFCSPLOWO2_12_67_14) putatively involved in methane

oxidation, based on the presence of the genes encoding the
particulate methane monooxygenase (pmoCAB). In the key genes-
only analysis,Metascan foundfive pmoB, and one pmoC gene hits that
could also be confirmed using BLAST. In the full metabolic
annotation, Metascan found additional six pmoA and five pmoC
genes. In total, these genes were divided over four species from the
order Burkholderiales. Thus, besides the earlier mentioned species, the
dataset contained three previously unrecognized Burkholderiales
bacteria encoding particulate methane monooxygenase. From those
three, two MAGs contained two complete pmoCAB operons and one
was predicted to only encode pmoA and pmoC. However, a BLAST
search on the gene directly downstream revealed that pmoCA is
followed by an unrecognized pmoB in this organism as well. Based on
the coverage of the four species containing the pmoCAB genes,
methanotrophy is found in ca. 0.6% of the entire sample and
0.16% of the total number of organisms, and methylotrophy
constitutes 0.82% and 0.84%, respectively. Correspondingly, malyl-
CoA lyase (mcl), a marker gene for the serine pathway in
methanotrophy and methylotrophy, had a total abundance of 1.7%
and was detected in 0.1% of all organisms. While these findings
expand the number of putative methane oxidizers present, it still
indicates that methane oxidation is of minor importance in this
aquifer ecosystem.

On the contrary, a process in the nitrogen cycle that appears
to be over-predicted by Metascan is nitrate reduction to
ammonium (both assimilatory and dissimilatory), which is
mainly caused by large numbers of misannotated small
subunits of the two main enzyme systems catalyzing nitrite
reduction (nirD and nrfH). BLAST analyses showed that besides
true nirD these genes encode diverse ferredoxins, Rieske 2Fe-2S
proteins and dioxygenases.

Metascan vs. METABOLIC and DRAM
The eggNOG analysis ran for over 44 days and was expected to
run for over a year at 5 h per genome, therefore the analysis was
not included into the metagenome analysis in this paper.
METABOLIC and DRAM reported the results as lists of
identified genes per genome and did not provide a combined
overview of all analyzed genomes. However, for DRAM an
overview could be created from the available data. The
binned analysis took 31 days and 13 h, 12 days longer than
Metascan. The unbinned analysis ran for 36 days and 23 h, after
which it crashed due to memory issues during the creation of the
GFF files. Nevertheless, the distillation of the annotation was
possible with the annotation files that were produced so far.
Strikingly, both DRAM analyses were nearly identical and can
thus be reported as one (unbinned; Supplementary Data S6). In
METABOLIC, the binned analysis ran for 3 days and 17 h, the
unbinned analysis for 3 days and 11 h. As METABOLIC did not
provide a full overview of the combined genomes only the
unbinned dataset was used for comparison. Both
METABOLIC and DRAM reported the results in KEGG
numbers, which were used for making the comparisons.

Table 8 summarizes the annotation results, reporting the
maximum number any single protein assigned to the respective
process was detected, or the sum of all detected hydrogenases
in the case of hydrogen metabolism. Overall, annotations are
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similar for all three methods, with a few exceptions. Most
notably, DRAM did neither detect any methanol
dehydrogenases, nor anaerobic ammonium oxidation
(anammox). The high number for MDHs in the other
methods is likely an overestimation, which was confirmed
by BLAST analysis that indicated that the number of MDHs
is more in line with the predicted methanotrophy genes (15–17
MDHs). DRAM also did not report several sulfur cycling
processes. For thiosulfate oxidation, METABOLIC detects
the largest number of genes (320 vs. ~130 in Metascan and
DRAM), but the lowest for thiosulfate reduction (133). Here,
Metascan reports much higher numbers (684 and 1,372),
followed by DRAM (234). However, these numbers
especially for Metascan appear to be an overestimation, as
they are only based on the detection of PhsA. In contrast, PhsB
was detected 385 and 226 times by Metascan, and PhsC even
only 0 and 25 times, However, none of these genes was
included in METABOLIC or DRAM, hampering a
comparison between methods.

Finally, when comparing the two Metascan analyses with
each other, it becomes apparent that the number of genes
predicted in the full annotation is higher for almost all
cycles, likely due to the higher e-value (E-50 vs. E-100) used
in the full annotation.

DISCUSSION

Database Construction
In this study, we present Metascan, a new tool for analysis of the
metabolic potential of complex microbial communities. We
developed this tool to enable researchers to obtain a fast but
detailed and reliable overview of the main nutrient cycle reactions
encoded by complex microbial communities in large
environmental metagenomic datasets. This functionality
currently is lacking in most annotation tools, which mainly
focus on genome-centric analyses and rarely structure their
output to give an overview of the biogeochemical nutrient
cycles being catalyzed in the investigated environment.
Moreover, the currently available databases used for similarity
search-based annotations are too large to allow fast annotations
of complete metagenomes, too unstructured to yield an overview
of the nutrient cycles taking place, or, in the case of well-curated
databases, also too small to offer the required resolution especially
for environmental communities rich in uncultured and
understudied microorganisms. We thus constructed a novel
HMM-based database that not only allowed fast and accurate
gene- or genome-centric annotation of complex metagenomes,
but also categorized the identified protein-coding genes according
to the relevant nutrient cycles.

TABLE 7 | |Results from the Anantharaman et al. (2016) study and Metascan binned key gene analysis. Groundwater and sediment sample annotations were taken are from
Anantharaman et al. (2016).

Groundwater Sediment Metascan

N# org %O-Deptha N# org %O-Deptha N# org %O-Deptha

Carbon Cycle
Carbon fixation 186 12 186 30 1022 38
Methanogenesis 0 0 0 0 0 0
Methanotrophy 0 0 0 0 5 <1
Methylotrophy NA <1 NA <1 51 3

Hydrogen oxidation 356 22 356 45 400 14
Sulfur Cycle
Sulfate reduction 21 <1 21 2 165 9
Sulfite reduction 21 <1 21 <1 724 32
Thiosulfate oxidation 77 7 77 9 199 10
Thiosulfate reduction 53 2 53 6 361 17
sulfite oxidation 51 3 51 8 83 6
sulfide oxidation 208 17 208 29 371 18
sulfur oxidation 157 13 157 14 2 <1
sulfur reduction 223 16 223 23 194 12

Nitrogen cycle
Nitrogen fixation 54 3 54 1 87 5
Anammox 11 2 11 1 22 <1
ammonia oxidation 0 0 0 0 14 <1
Nitrite oxidation 85 8 85 15 265a 14a

DNRA 108 12 108 13 499b 22b

Denitrification
Nitrate reduction 212 15 212 18 265a 14a

Nitrite reduction 150 23 150 21 159 7
Nitric oxide reduction 109 6 109 11 168 10
Nitrous oxide reduction 56 3 56 4 98 6

a%O-depth is the percentage of the organisms that can perform the process in absolute numbers (depth). For instance, 12% of every single bacteria/archaea can perform Carbon Fixation
in Groundwater.
bThe HMMs, in Metascan cannot distinguish between nitrate reductases and nitrite oxidoreductases.
cThese are the numbers for the small subunit NirD. Large subunit NirB has N# 151 and 10% O-depth.
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Metagenome Analysis
A direct comparison of different annotation tools is hampered by
the choices made during the analysis and the reporting of the
results. Genes with multiple subunits can be reported as present
when all, some or just one subunit is present. Some processes are
part of two pathways (e.g., carbon fixation in methanol
metabolism), and some cycles are represented by multiple
pathways (carbon fixation). Obviously, different choices have a
direct impact on the results. For instance, some protein
complexes with multiple subunits like the anaerobic sulfate
reductase (ASR) consist of subunits rarely detected in the
Metascan full annotation (AsrA and ArsC, both detected five
times) and others that are likely overpredicted (AsrB, detected
480 times).

In general, Metascan reached a similar level of precision as the
GenBank reference annotation, although it tended to overpredict
certain functions. This was especially prevalent for annotations of
cytochromes and ferredoxins, which are very common proteins in
nature and participate in a wide range of metabolic reactions, not
seldom with overlap and interchangeability in function. To this

extent, while both cytochromes and ferredoxins contain
conserved domains that can easily be recognized through
bioinformatics, a large set of well annotated reference proteins
is required to ensure their exact annotation. However, this level of
resolution is not present in most databases, and many
automatically annotated genomes contain mis-annotated genes
or lack proper annotation altogether. These errors then are
propagated through different databases, consequently leading
to a reduced reliability of annotation also in conventional
tools (Schnoes et al., 2009). An example of this is K00124
(FdoH) in the UniProtKB/TrEMBL database, where either 1)
the UniProtKB/TrEMBL dataset is heavily misannotated and
many true NuoF are wrongly categorized under K00124, 2)
the protein entries identified by BLASTP in the GenBank
database are wrongly annotated as NuoF and in fact are true
FdoHs, which then would also indicate that in the GenBank files
from the mock community NuoFs are underrepresented, or 3)
these subunits belong to distinct protein complexes participating
in different pathways but are too similar to be distinguished by
HMM searches. While the last option seems plausible here, since
NuoF and FdoH both are Fe-S proteins with a common
evolutionary history (Oh and Bowien, 1998), this issue mainly
appears to be caused by the propagation of misannotations in the
public databases (Schnoes et al., 2009), as especially many
formate dehydrogenase beta subunit genes appear to be
deposited as NuoF in GenBank. Similarly, for the
overestimated carbon monoxide dehydrogenase iron-sulfur
subunit CooF (K00196), the raw data gathered from
UniProtKB/TrEMBL contained mostly unnamed ferredoxins,
which corresponds to a large part of the obtained false
positives in our analyses.

Another factor hampering correct functional annotation can
be overlapping functionality of enzymes. For instance, malyl- and
succinyl-CoA ligases react with two structurally quite similar
substrates, as both malate and succinate are small four-carbon
dicarboxylic acids. Since both proteins furthermore catalyze the
same type of reaction, they are structurally very similar with
respect to their conserved regions, which is also reflected in the
fact that succinyl-CoA ligase is able to use malate as alternative
substrate (Nolte et al., 2014). Consequently, when using a small
database as in our key genes-only analysis that contained only the
malyl-CoA ligase, E-values for hits against succinyl-CoA ligases
are small enough to be considered significant, leading to the
observed overestimation of malyl-CoA ligases. For this particular
case, this could largely be resolved by adding the succinyl-CoA
ligase to the core gene set representing the citric acid. In general,
this showcases the necessity of using databases with good
resolution, but it also highlights the underlying intrinsic
problem of annotating complex microbial communities, where
the genes of novel microorganisms might be so distinct that an
automatic differentiation between such similar functions is not
possible.

Despite these imperfections in our HMM database,
annotations with Metascan achieved a level of precision
comparable to other annotation tools, but at a greatly reduced
analysis time. In general, it is becoming increasingly challenging
to obtain fast and reliable annotations due to the rapid growth of

TABLE 8 | Results from Metascan (unbinned), Metabolic (unbinned), and DRAM
(unbinned) analyses of the Anantharaman metagenome (2016).

Metascan METABOLIC Dram

key full

Carbon Cycle #hitsa #hitsa #hitsa #hitsa

Carbon fixation 1578 2776 1707 1686
Methanogenesis 0 0 0 0
Methanotrophy 6 8 5 6
Methylotrophy 99b 294b 66 0

Hydrogen formationc 557 545 471
Hydrogen oxidationd 1370 2596 537 2008e

Sulfur Cycle
Sulfate reduction 193 480f 127 124
Sulfite reduction 449 718 378 388
Thiosulfate oxidation 133 195 320 124
Thiosulfate reduction 684g 1372g 133 234
sulfite oxidation 152 317 45
sulfide oxidation 491 877 587
sulfur oxidation 2 3 2
sulfur reduction 451 681 276

Nitrogen cycle
Nitrogen fixation 103 208 102 87
Anammox 53 90 60 0
Ammonia oxidation 6 8 6 6
Nitrite oxidation 294 537 162 198
DNRA 670 578 290 198
Denitrification
Nitrate reduction 294 537 148 198
Nitrite reduction 168 358 201 195
Nitric oxide reduction 181 303 340 194
Nitrous oxide reduction 98 39 96 96

aReporting the maximum number any single protein assigned to the respective process
was detected.
bCombined XoxF, MxaF (both EC:1.1.2.7) and NDMA-dependent MDH (EC:1.1.99.37).
cSum of all Fe-Fe hydrogenases.
dSum of all Ni-Fe hydrogenases.
eSum of all hydrogenases detected, as there is no distinction between Ni-Fe and Fe-Fe
hydrogenases in DRAM.
fInflated by AsrB, otherwise 338.
gInflated by PhsA, otherwise 385 and 226, respectively, based on PhsB detection.
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reference databases and the increasing size and sequencing depth
of metagenomic samples to be analyzed. Thus, methods that
reduce the reference dataset by clustering entries into subsets
represented by HMM profiles are promising developments to
overcome this hurdle, especially when considering that Metascan
reached a high precision despite the drawbacks of the uncurated
input database.

As indicated above, it became apparent during the
development of this tool that we needed to construct a
database that not only allows fast and accurate annotation of
gene functions, but also categorizes the output according to the
major nutrient cycles, which required a novel approach to build
and structure this database.

Further Considerations
Here, we opted for a proof-of-concept approach, based on
clustering proteins deposited in the UniProtKB/TrEMBL
database. This database is by no means perfect since many
protein entries in TrEMBL are not correctly annotated or
incomplete, and herein lies the major point of improvement of
our HMM database. The ideal input dataset would be manually
curated like for instance the UniProtKB/SwissProt database,
which will vastly increase the correctness for annotation.
However, such well-curated databases are not yet suitable as
many KO numbers are represented by less than three entries,
which is the minimal number of sequences needed to create a
HMM profile. A solution to circumvent this limitation would be a
top-down approach, starting from a well curated database and
subsequently adding missing HMM profiles using entries from
other, less-well curated data sources.

Another possibility to improve the reliability of annotation is
by employing a more stringent trimming and clustering
algorithm when building the HMM database. However, while
creating a database with stricter clustering rules will increase
correctness, this will be at the expense of a longer analysis time.
Lastly, the proteins in our database were clustered based on
similarity, but if clustering instead was achieved by means of
phylogenetic trees, this would provide additional information not
only about evolutionary descent, but also about the exact function
of proteins belonging to large and diverse enzyme families.
However, this comes with its own set of difficulties and is not
a trivial matter.

In the future, similar HMM subsets as developed here for
nutrient cycling metabolic pathways could be constructed for
non-metabolic pathways for a more complete genomic
annotation. This will however greatly increase the runtime
of the script, which would mean the need for a heavier
computational infrastructure. For virus detection, a database
of viral genes could be constructed in a similar way as
presented here. Furthermore, the same procedure might be

applicable for cell loci-specific proteins (e.g., cell wall or
S-layer spanning), as these often share stretches of
conserved amino-acids. In combination with RNA-seq, our
HMM-based annotation approach would not only detect
metabolic potential, but also actual activity of the overall
cycles.

All things considered, we feel that Metascan can be of great
help in mapping the important nutrient cycling pathways in an
ecosystem by reducing and simplifying the input databases
without compromising accuracy.
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Deep Learning Encoding for Rapid
Sequence Identification on
Microbiome Data
Jacob Borgman, Karen Stark, Jeremy Carson and Loren Hauser*

Department of Data Science, Digital Infuzion, Inc., Gaithersburg, MD, United States

We present a novel approach for rapidly identifying sequences that leverages the
representational power of Deep Learning techniques and is applied to the analysis of
microbiome data. The method involves the creation of a latent sequence space, training a
convolutional neural network to rapidly identify sequences by mapping them into that
space, and we leverage the novel encoded latent space for denoising to correct
sequencing errors. Using mock bacterial communities of known composition, we show
that this approach achieves single nucleotide resolution, generating results for sequence
identification and abundance estimation that match the best available microbiome
algorithms in terms of accuracy while vastly increasing the speed of accurate
processing. We further show the ability of this approach to support phenotypic
prediction at the sample level on an experimental data set for which the ground truth
for sequence identities and abundances is unknown, but the expected phenotypes of the
samples are definitive. Moreover, this approach offers a potential solution for the analysis of
data from other types of experiments that currently rely on computationally intensive
sequence identification.

Keywords: deep learning, microbiome, convolutional neural networks, rapid sequence identification, encoding,
embedding, denoising

INTRODUCTION

The identification of known sequences and of new variants related to known sequences has been
foundational to biological science over decades. The original Smith-Waterman algorithm (Smith and
Waterman, 1981) identified the most optimal alignments between sequences but was
computationally demanding and therefore slow. BLAST was first introduced in 1990 (Altschul
et al., 1990) as a more rapid approximation and has evolved to its current form (Camacho et al., 2009)
as themain workhorse for sequence identification. The use of k-mers (Edgar, 2004) has also become a
widely used method for faster rapid approximations based on string searches and counts. Because of
the large numbers of reads found in many experimental microbiome samples and the frequency with
which bacteria contain multiple copies of the 16S gene many times with single-base variation, there is
a need for a solution that can further reduce computational demands on sequence identification
while simultaneously providing single-base resolution of sequence variation. Moreover, improved
methodology for identification of which single-base variants in a microbiome sample represent
sequencing errors and which are likely to be true biological sequence variants would assist in
obtaining accurate abundance results.

A search of PubMed using the term “Microbiome” generates over 100,000 listings and a graph
showing exponential growth over the last 10 years. The Human Microbiome Project (https://portal.
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hmpdacc.org/), which contains just 18 microbiome studies,
contains over 30,000 samples. Most published microbiome
studies contain small number of samples, and therefore, their
statistical resolving power is low. In order to increase the
resolving power of studies on a specific subject, larger studies
containing many thousands of samples are desirable, and the
capability to combine multiple studies for meta-analysis would be
useful. In either case, this means that thousands of samples would
need to be processed with speed and accuracy using a single set of
analysis tools. Reduction in the computational burdens of using
these tools would promote the ability of more researchers to
conduct studies with larger samples.

The output of commonly used microbiome tools falls into two
general categories: operational taxon units (OTUs) that group
together closely related strains into higher level taxonomic units
and amplicon sequence variants (ASVs) that strive to achieve the
base pair level accuracy required to bring taxonomic
identification to the strain level. The microbiome analysis
pipeline tool QIIME2 (Bokulich et al., 2018) uses the widely
adopted VSEARCH algorithm (Rognes et al., 2016) for
microbiome data analysis at the OTU level, while also
permitting optional selection of a broader range of algorithms.
VSEARCH uses a k-mer-based approach to speed sequence
identification and error resolution, originally inspired by
USEARCH (Edgar, 2010). USEARCH evolved to include
UPARSE (Edgar, 2013) for OTU analysis using default 97%
identity for clustering. Many clustering methods including
mothur-average (Schloss et al., 2009), UPARSE, and UCLUST
(Edgar, 2010) are benchmarked and compared in Kopylova et al.
(2016) and applied to test microbiota data sets at the OTU level.

OTU methods intentionally speed analysis by settling for
higher level taxonomic resolution and that is frequently
sufficient for phenotypic studies. ASV methods take on the
additional challenge of trying to achieve finer-grained
taxonomic resolution by distinguishing sequence variation that
is due to errors in the sequencing process from true biological
sequence variants. Among ASV methods, the DADA2
microbiome analysis tool (Callahan et al., 2016) uses a
probabilistic model to identify amplicon sequence variants
(ASVs) with high sequence fidelity and has been chosen by
multiple comparative studies as having the highest biological
resolution for differentiating closely related and/or low
abundance strains (Nearing et al., 2018; Caruso et al., 2019;
Prodan et al., 2020). The UNOISE3 algorithm (Edgar, 2016)
uses a kmer-based approach to sequence identification and error
correction to produce ASVs. UCLUST, UPARSE, VSEARCH,
and UNOISE3 allow for pooling all samples or clustering
sequence reads for each sample individually for error
correction. DADA2 uses a subset of samples to learn its error
profile and then applies this error model to one sample at a time.
The Deblur algorithm (Amir et al., 2017) operates on each sample
separately for clustering to identify ASVs. Caruso et al. (2019)
found DADA2 and UNOISE to be preferable for maximizing
detection of true community members but note Deblur may be
more appropriate for minimizing detection of spurious ASVs.
UNOISE has been shown to have significantly higher speed
(Nearing et al., 2018) than DADA2. Performance benchmarks

and detailed comparison of the algorithmic similarities and
differences among the VSEARCH, DADA2 and UNOISE3
algorithms is given in Tremblay and Yergeau (2019) and
among DADA2, UNOISE3 and Deblur in Nearing et al. (2018).

Microbiomics is an ideal field for applying recent advances in
machine learning that may offer speed advantages in
combination with high accuracy when there is sufficient
training data available. There is a large quantity of publicly
shared microbiome data, with countless studies revealing the
pivotal role microbial populations play in establishing and
maintaining healthy conditions within diverse set of
ecosystems, including the human body. The gut microbiome
alone has been implicated in bone and brain development,
obesity, diabetes, autoimmune conditions, autism,
cardiovascular disease, metabolic disorders, inflammatory
bowel disorders, and drug response (Cho and Blaser, 2012;
Jandhyala et al., 2015; Levy et al., 2017; Thursby and Juge,
2017; Barlow et al., 2018; Gilbert et al., 2018). The presence or
absence of certain bacterial populations are often directly linked
to these medical conditions. Effective tools for characterizing
healthy versus unhealthy microbial populations with resolution
as close to the strain level as possible have an important impact on
biological discovery, potentially leading to new diagnostics and
treatments. Soil and plant microbiomes are also subjects of active
research, where the same tools can be applied to determine
microbial composition and lead to valuable interventions.

Unprecedented levels of accuracy in other fields have been
achieved by the expansion of machine learning through the
development of Deep Learning algorithms. In 2012, the
convolutional network AlexNet created a sensation with its
dramatic improvement demonstrated in an established
computer vision competition using the ImageNet challenge
data (Krizhevsky et al., 2012). Since then, image based neural
networks have continued to evolve, both in terms of architecture
and training strategies, from recurrent neural networks to the
now widely applied Transformer (Vaswani et al., 2017) design.
Aside from computer vision, these algorithms have
revolutionized other important areas such as speech and text
recognition and have created headline news with vast AI
improvements in specialized domains such as board games
[e.g., AlphaGo (Silver et al., 2016)] and protein folding
[AlphaFold (Jumper et al., 2021)].

Deep learning algorithms have been applied to classify the
phenotype of microbiome and metagenome samples. Asgari et al.
(2018) showed that deep learning can outperform random forest
classifiers and support vector machines for phenotypic prediction
from 16S data when the number of samples is large. Zhao et al.
(2021) use kmer embeddings and convolutional neural networks,
recurrent neural networks, and attention mechanisms to predict
taxonomic classifications and sample-associated attributes of
whole microbiome data at the level of a read. They use
additional methods such as voting to determine the phenotype
of each sample from the deep-learning-predicted phenotype of
the reads. This enables the predictor to consider many thousands
of read sequences and it achieves accuracy at phenotypic
prediction comparable to existing methods. An early
application of deep recursive neural networks to metagenomic
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data did not show much improvement over other methods for
metagenomic classification but the ability to learn hierarchical
representations of a data set that is produced could be useful
(Ditzler et al., 2015). Furusawa et al. (2021) chose an unusual
approach to perform image analysis on Gram-stained fecal
samples to classify their microbiome state with a deep
convolutional neural network. Although the prediction success
was low for fecal state, particularly on samples from adjacent time
points, it had more success in predicting quantitative changes in
microbial abundances. García-Jiménez et al. (2021) explored the
creation of deep latent spaces for prediction of the ecological
composition of a microbiome sample using minimal sequencing
features and incorporating sample environmental metadata such
as rainfall and plant age. These methods are generally not
intended to produce exact microbial composition based on
rigorous sequence variant identification or optimal abundance
estimates at the level of ASVs. They focus more on the ability to
accurately categorize the sample as a whole with respect to a
relevant phenotype (i.e., a population characteristic of interest).
However, for a deeper understanding of the microbial population,
the population dynamics and the ability to approach the
mechanisms by which the microbiome exerts its influence, an
accurate analysis of its composition at the true sequence variation
level provides more scientific insight than a phenotypic classifier.

Sequence identification in the closely related field of
metagenomics is an area where deep learning algorithms are
beginning to be applied. The Seeker tool (Auslander et al., 2020)
addresses the challenging problem of detecting bacteriophage in
metagenomic sequence data since bacteriophage evolve rapidly,
quickly losing sequence similarity to known bacteriophage. It uses
Long Short-TermMemory (LSTM) networks, a type of Recurrent
Neural Network (RNN), trained on bacteriophage and bacteria
sequences to detect subtle differences in sequence usage and is
able to predict which sequences in the metagenome are
bacteriophage and which are from bacteria, even when
homology to known bacteriophage is very low. Virfinder2
(Ren et al., 2020) is a convolutional neural network (CNN)
that learned to predict viral sequences by training on the
differences between prokaryotic and viral DNA sequences. Its
success does not rely on known sequence homologies or use of
pre-defined features such as kmers. While using more traditional
machine learning and not deep learning, the VirSorter2 algorithm
(Guo et al., 2021) has demonstrated considerable success in
identifying both RNA and DNA viruses within metagenomic
samples. It relies on a collection of known viral motifs and
annotations that are used as input features to a set of random
forest classifiers each trained on a major viral group. Its modular
design allows for easy updates as known viral diversity grows.
While each of these tools is successful at sequence analysis and
appropriate for metagenomics, their algorithmic approaches are
not readily adapted for microbiome analysis that relies on 16S
amplicon sequences from a single bacterial gene and then
attempts to identify the population of bacteria represented by
those sequences.

Herein, we describe a deep learning approach to finding ASVs
and obtaining their abundance estimates on sample sequencing
data obtained from mock communities of known bacterial

composition. We will show that using a latent sequence space
based on all known bacterial V4 sequences from the 16S gene and
using a Convolutional Neural Network algorithm trained to map
V4 sequences obtained from experimental data into this space
will match or better the accuracy of the best available open source
microbiome tools in significantly shorter computational time. A
denoising method that starts with clustering of experimental
sequence data in the V4 16S latent sequence space achieves
accurate abundance estimates. Although motivated by the
desire for improved sensitivity and accurate abundance
estimation of the microbial community, we demonstrate that
the output still supports phenotypic prediction by comparison to
previously published results for four data sets where the exact
microbial composition is unknown, but the phenotypes of the
samples are unambiguous.

This approach may be extensible to other types of
experimental sequence data in addition to microbiome where
single nucleotide resolution, correction of likely sequencing
errors and accurate abundance estimation are desirable. We
refer to this mathematical approach as Deep Learning
Encoding for Rapid Sequence Identification (DERSI).

MATERIALS AND METHODS

In order to identify a method for both rapid and accurate
identification of ASVs from microbiome experiments that use
16S sequence, a series of steps were performed. The steps were
used on data from microbiome sequence analysis using the V4
region of the 16S gene.

1. The first step was to create a 10-dimensional latent space
that encoded the distances among all known bacterial and
archaeal V4 sequences. An overview of this step is presented
in Figure 1. A copy of the Silva rRNA database (Yilmaz et al.,
2014) version 132 that contained alignments for known 16S
sequences was supplemented with sequences from GenBank.
The Silva database consisted of a set of more than 200,000
samples of known 16S sequences placed into alignment with
each other. Due to gaps and insertions, ~50,000 possible nucleic
acid positions are present in this alignment matrix for the full-
length 16S gene. The alignment matrix exhibits extreme sparsity
and any manipulation of it rapidly becomes computationally
infeasible. The number of features was therefore reduced by
eliminating nucleic acid base positions that were present in
less than 0.1% of sequences. The resulting matrix was given to
the Mothur (Schloss et al., 2009) software package as a template
and each of the 16S sequences from GenBank that were not in
that release of Silva were aligned to the template by Mothur tool
using default parameters. The resulting alignment matrix was
then trimmed to the V4 region resulting in 320 nucleic acid
positions (features) and 117,161 unique V4 sequences (samples).

To create the latent sequence space for V4, the pairwise
distances among each of the aligned V4 sequences in the V4
matrix (D) must be accurately reflected in the corresponding
distances among those samples in the latent space (d). First, each
V4 sequence was converted to a one hot vector, and then the
distance to each of the other V4 sequences was calculated based
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on the alignments and the data was sorted by this distance. The
distance (D) reflects the distance between the aligned sequences
and its detailed calculation is presented in the Supplementary
Material Choosing Proper Distance Metrics. Since it is not
computationally feasible to iteratively train the latent space while
rigorously adjusting all of the embedded latent space distances (d)
for every possible pair during every iteration, a sampling method
was used. In order to optimize the latent space to distinguish
single base pair variation, the 300 sequences most similar to each
V4 sequence based on the distance (D) were included in the
sampling. In addition to those 300 nearest sequences to the
current V4 sequence, 200 more were chosen for comparison
to the current sequence by sampling from the remaining 116,860
potential pairs using a dilation formula that biases toward the
most similar remaining sequences with the most distantly related
sequences receiving the lowest sampling representation. The
intention is to provide sufficient accuracy to distinguish closely
related sequences that may differ by as little as a single base using
the embedding distance d.

The mathematical details for the sampling method are given
here. For each known V4 sequence:

1. Convert the sequence to a one-hot vector, calculate and sort
by the distances from this known sequence to all other V4
sequences, selecting the n sequences with smallest distance
to this known sequence

2. Gather additional sampling from the remaining m–n V4
sequences using an exponential schedule such that the ith
sample is at position n p f i in the sorted samples, where the
dilation factor f is found by solving the relation:

N � n × fm−n andf � e
ln(N

n)/(m−n)

Where in this instance:

N = 117,161 unique sequences for the V4 region
m = 500 total number of samplings per sequence
n = 300 number of nearest neighbors included.

After completing these samplings for the distance
comparisons that will be used to ensure the constructed latent
space reflects the actual sequence distances, the next step was to
actually construct the space. Within the latent space, each of the
117,161 V4 sequences was represented as a 10-dimensional
vector. Initial values for each vector were filled at random
using a centered Gaussian with sigma = 10. Determining the
accurate placement for each unique V4 sequence vector in the
latent space was done during an iterative gradient descent
training by adjusting the distances (d) among pairwise
sequences within the 10-dimensional latent space to closely
match the distances calculated for each of the sampled 500
distance comparisons in the original sequence matrix (D).
Thus, for each V4 sequence, a total of 500 pairwise
comparisons were used in each iteration of the gradient
descent training to construct the latent space.

In mathematical terms, given the input sequence space S and
the embedding space E, we seek a mapping
f : S → E, such that for every x, y ∈ S and f (x), f(y) ∈ E, we
obtain D (x, y) ≈ d (f(x), f(y)), where D and d are distance
functions in the original sequence and embedding spaces,
respectively. To ensure that d corresponds to D, we used a
loss function that favors nearest neighbors. The form of this
loss to be used during gradient descent training is
L � (1 − d

D+ϵ)2 � (d−DD+ϵ)2. In addition to the accuracy promoted
by the sampling approach described above, this loss function will
also encourage high resolution for close sequences (small values
of D) for the facilitated detection of single nucleotide base
changes, while permitting lower resolution between highly
divergent sequences. The ϵ ~ 1 regularizes the loss for
vanishing phylogenetic distances.

FIGURE 1 |Overview of Step 1: The construction of a latent space that represents known V4 sequences and their alignment distances with reduced dimensionality
while maintaining a high degree of accuracy.
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The gradient descent training iteratively continued
adjusting distances within the space until the changes to the
average loss function with each iteration fell below five
significant digits. Finally, we note that the metadata was
carried through the process since each Silva/Genbank
sequence in the matrix was a known V4 sequence, so each
10-dimensional vector used in the training was associated with
a known V4 and its taxonomic identity. Additional
mathematical and algorithmic details for the calculation of
D and for the Gradient Descent and its subfunctions are given
in the Supplementary Material.

2. The second step was to train a deep learning algorithm so
that it could take any V4 sequence and map it into the previously
built latent space. A convolutional neural network was trained
using the 117,161 known unique bacterial V4 sequences and their
corresponding 10-dimensional vectors in the sequence space.
This V4 encoder was a subtype of convolutional neural
networks that is fully convolutional (e.g., Long et al., 2015;
Maggiori et al., 2016) sometimes also referred to as a fully
convolutional network (FCN) with a total of 90 layers, 32 of
which were convolutional. A max-pooling layer was inserted after
the first two convolutions to reduce the size of the network and
encourage translational invariance for spatial motifs. All
convolutional layers (except the last) were followed by batch
normalization to stabilize training, and a ReLU activation. The
final convolution produced the 10-dimensional vector encoding
that matched the target 10-dimensional vector for each input
sequence. We show a spreadsheet with all 90 layers in the
Supplementary Material. As for all trained deep learning
algorithms, the trained neural network can generalize and
produce 10-dimensional vectors even for sequences not
included in the training set, in this case, if new and previously
unknown V4 sequences are found experimentally. We trained
this CNN encoder within the PyTorch framework using an Adam
optimizer with learning rate = 0.0001, a loss function that was
simple Euclidean distance between the 10-dimensional output
and the precomputed 10-dimensional embeddings. Each training
batch of 200 training samples were randomly sampled from the
117,161 V4 SG dataset, training with a total of 50,000 batches.

3. The next step was to use the latent space and the trained
convolutional neural network to identify and measure the
abundance of the sequences obtained from microbiome
experiments. Sequence obtained from paired reads from a
microbiome sample were presented to the trained
convolutional neural network and mapped into the correct
position in the latent space. Note that this now comprised a
rapid classification process that was accomplished without any
explicit pairwise alignment of the sequences from themicrobiome
experiment. After each sequence was mapped, the result was a
collection of sequences from the microbiome experiment
represented as clusters in the latent sequence space. In
Figure 2, below we present an overview of this step, and of
the next and final step in the process, the denoising.

4. The final step was denoising by examining the experimental
microbiome data for possible sequencing errors and finalizing the
number of V4 ASVs and their abundance. To separate actual
sequence variants from sequencing errors, our denoising process
began with analyzing the relative abundances of closely related
sequences. Reads with sequence that occurred only once in the
microbiome sample were eliminated. For each remaining
sequence, a determination was made whether to consider it a
valid unique bacterial sequence variant or if it likely originated as
a sequencing error from a more abundant “parent” sequence. To
identify candidate parent reads, a fast Nearest Neighbor search
was done in the latent space using NanoFlann (https://github.
com/jlblancoc/nanoflann). A maximum of 20 nearest neighbors
were selected that were within at least a 15 bp radius in the latent
space and that were at least 20-fold more abundant than the
sequence under consideration. For each of these parent
candidates the edit distance was computed using Edlib
package (Šošic and Šikic, 2017) and only candidates with less
than 1 bp difference per 64 bases (98.5% match) were retained. If
a sequence had no candidate parents after this process, it became
an identified V4 ASV. Otherwise, remaining candidate parents
were sorted by edit distance and the closest was selected as the
likely parent (in event of a tie, the more abundant was favored).
The child sequence was now considered to be a likely sequencing
error originating from the parent sequence. Once the process was

FIGURE 2 | Analysis of Experimental Sequence Data: Paired reads from microbiome data were input to the trained neural network for identification. Resulting
clusters were analyzed for abundance and correction of likely sequencing errors resulting in output of each unique ASV and its corresponding abundances.
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completed, the parent-child relationships were traversed until a
sequence was identified that had no parent. Each sequence that
had no parent was then considered an identified V4 ASV and its
children and any grandchildren were then included into its
abundance count.

Standard chimera removal was accomplished using the
VSEARCH package uchime_denovo command. Since the
latent space training in the previous step had been conducted
with known V4 sequences, and the phylogenetic metadata from
the Silva/Genbank sequence matrix was carried through for each
10-dimensional vector during that latent space training, the 10-
dimensional vector for each resulting ASV in the latent space was
readily associated with phylogenetic information for its exact or
closest-associated known V4.

Analysis on Mock Community Data Sets
Two sets of experimental microbiome data for mock
communities were then analyzed using these methods. First,
the data were processed as in step 3 above and mapped by the
trained convolutional neural network. Next, they were processed
through step 4 for denoising and finalization of the ASVs. These
data sets were chosen from the mockrobiota resource (Bokulich
et al., 2016; http://caporaso-lab.github.io/mockrobiota/) for
samples that were created by sequencing bacterial mixtures of
known abundance and composition in order to rigorously assess
the performance of the method by using data for which the results
to be obtained are known. Mock 16 (Schirmer et al., 2015) was
selected to determine the robustness of the method for identifying
ASVs on a complex mixture of known composition, containing
49 bacterial and 10 archaeal species. Mock 12 (Callahan et al.,
2016) was chosen to examine the method across extreme
variation in concentration across the bacterial mixture. The
Mock 23 (Gohl et al., 2016) was chosen to give additional
statistical basis for abundance estimation and average speed
measurements on a relatively small and less complex data set.
Since it does not exceed the Mock 16 for diversity or the Mock 12
for concentration range, the analysis in addition to speed is shown
in the Supplementary Tables S5, S6. Each ASV identified for
each data set was validated by BLAST to confirm DERSI’s
taxonomic identification.

In most cases, the bacterial genomes contain more than one
copy of the 16S gene, and these additional copies may be
identical or varied in their V4 region sequences. In order to
provide a high level of rigor to the expected sequences and
their abundances, we therefore deemed it necessary in our
analysis to calculate the expected number of V4 sequences by
looking at the genomes of each bacterium and to adjust the
expected number of ASVs for each bacterium. In some cases,
the V4 sequences were identical between two different
bacterial genomes, and the number of expected ASVs was
accordingly reduced. In a few cases, full bacterial genomes
were not yet available and best estimates were made based on
numbers and sequences of closely related bacterial genomes.
The expected numbers of ASVs and OTUs depends upon
knowing how many variants are present in each genome.
And while copy number does not affect the number of
ASVs, it does affect the expected abundance measures.

Therefore, both the number of expected ASVs and their
expected % of the total composition were adjusted to reflect
the genomic composition of the mock community.

While these mock community data sets are intentional
compositions, previous work on these data sets has also
demonstrated the presence of unintentional contaminants (e.g.,
Callahan et al., 2016; Edgar, 2016; Nearing et al., 2018).
Calculating precision and recall for this type of data requires
determining exactly how a useful number can be rigorously
generated, given that unintended contaminants are present in
these data. A prior review of microbiome algorithms chose to
calculate precision based on perfect matches to a reference
sequence considered true positives versus noisy (less than
100%) matches to known sequence considered false positives
(Caruso et al., 2019), and we have based our approach largely
upon this. A second method was also presented that considered
all unexpected sequences to be false positives, and therefore was
likely to confound the accuracy of the experimental protocol and
its susceptibility to contamination with the accuracy of the
algorithms.

At very low concentrations it becomes very challenging to
assess false positives versus minor contaminants, and VSEARCH
has been previously shown to identify large numbers of such
sequences. Given the difficulty in assessing whether this shows
exceptional sensitivity to low abundance contaminants or a
severely elevated false positive rate, we chose to apply several
filters to the sequences that do not have a 100%match to a known
V4. We eliminated ASV/OTUs: 1) with less than 92% identity to
the closest known V4 sequence; 2) or with less than 0.01%
abundance and less than 99% identity to the closest known
sequence; 3) or with less than 0.001% abundance and less than
100% identity. At this level of stringency, those V4 sequences
found at very low concentrations are highly likely to be false
positives since at 99% identity they will be only one or two bases
different from a known V4 sequence.

Of the remaining ASVs/OTUs those identified at 100% to a
known sequence are considered to be true positives whether
intentionally added to the mock community or not. The
complete set of sequences to be used for calculating recall
numbers was the union of all such unique V4s with a 100%
match to a known sequence found by all four compared
algorithms.

Since we have conducted a genomic analysis to identify
expected values for each of the V4 sequences from the
intentionally input bacterial genomes, we are able to make a
comparison of the identified values to the expected values. A
Bhattacharyya coefficient (Bhattacharyya, 1943) was computed
over the abundances detected for both mockrobiota data sets to
give a measure of the overall accuracies of the abundance
estimates made by each algorithm. The Bhattacharyya
coefficient provides a divergence measure between two
multinomial populations and so is suitable to describe the
differences between the population of expected sequence
abundance values for the input mock community with the
second multinomial population being the values of those
sequence abundance values reported by the algorithm being
tested.
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Data Sets for Speed Comparison
The Mock 23 was included to give additional statistical basis for
average speed measurements on a relatively small and less
complex data set. We also included the Mock 12 and Mock 16
data, and these show increasing size.

Finally, to assess the speed performance on much larger data
sets than afforded by these mock communities, we selected the
first 1,072 samples from the Goodrich et al. (2016) microbiome
data set. Since this is a human biologically identified data set the
exact expected composition of the bacterial community and
associated abundances are not known and therefore a full
analysis against expected values was not performed, it was
only used for the speed comparisons.

Data Sets for Phenotypic Analysis
The motivation for the development of the DERSI method was
greater accuracy in the determination of ASVs combined with
high speed. However, to demonstrate that this approach also
supports phenotypic analysis, we chose several previously
published data sets for which to compare to published results
for experimental data sets where the exact composition of the
bacterial mixture is not known but the correct phenotype for the
overall sample is known.

We selected two microbiome datasets that used 16S V4
sequence from an analysis of the effects of water
decontamination method and choice of bedding material on
the fecal microbiome of mice (Bidot et al., 2018). We selected
the first data set of fecal microbiome samples for mice in which
both groups use corncob bedding but one group was given
autoclaved water and the other group water purified by
reverse osmosis. The second data set of fecal microbiome data
was from mice who were given either paper bedding and water
purified by reverse osmosis or corncob bedding and water
purified by autoclaving.

The third set of microbiome data was chosen from
Mezzasalma et al. (2018) comprising multiple microbiome
samples from three grape cultivars grown in the same
vineyard. Each sample was taken from a different vine and
consisted of consisted of a small bunch of grapes. The cultivar
was the phenotype to be predicted. The original V3–V4 reads
were trimmed to obtain the V4 sequencing data from this
experiment.

A fourth set of microbiome data for phenotypic analysis was
taken from a study of chicken ceca transplantation (Glendinning
et al., 2022). Microbiome samples from two ceca obtained from
donor chickens of the Roslin broiler breed were transplanted into
chickens of the Ross broiler breed. Additional chickens received
sham transplantations with saline as controls. Subsequently, the
microbiome samples from the transplant recipient chickens, the
two donor ceca and the controls were sampled and sequenced
using the V4 region of the 16S.

For all phenotype data sets, the V4 sequence reads were input
to the DERSI trained convolutional neural network. The output
data was then normalized using a trimmed mean and taking the
logarithm, followed by the denoising process described in step 4
above. PCA was then used to map each normalized sample into a
3D space for comparison to published results.

Benchmarks
The analysis of the diverse Mock 16 and the extreme
concentration variation Mock 12 data sets was benchmarked
against three widely used methods for microbiome analysis: an
OTU method, VSEARCH (Rognes et al., 2016) and two ASV
method DADA2 (Callahan et al., 2016) and UNOISE3 (Edgar,
2016). VSEARCH was chosen since it has been widely used for
OTU analysis, has been benchmarked against other algorithms
and is included in the QIIME2 microbiome pipeline. DADA2 has
been widely recognized as themost sensitive method for detection
of ASVs in multiple benchmarks and is also included in the
QIIME2 pipeline where it can be optionally selected. UNOISE3 is
private source software with a freeware 32-bit executable and has
been shown to give near comparable results to DADA2,
sometimes with greater specificity. VSEARCH and DADA2
were run using QIIME2, and the 32-bit UNOISE3 software for
Linux was downloaded from https://drive5.com/usearch/
download.html as part of the overall USEARCH package.

Speed for all four methods was measured on the same
System76 Oryx Pro Laptop using a Linux operating system
(Ubuntu 20.04). Multiple steps were included in the speed
measurements, including preprocessing and dereplication,
identification of ASVs/OTUs, denoising to correct potential
sequence errors, chimera removal and abundance calculations.

Parameters for Each Algorithm for Analysis
and Speed Comparisons
These are the details of the steps and parameters used for
comparison of the algorithms for the mock community
analysis and the speed comparisons. Primers were removed
from the mock community data sets Mock 16 and Mock 23
using multiple sequence alignment against our expanded Silva
database using mothur. Primers were not present in Mock 12.
Pooling of samples is an option for some algorithms, however, we
did not pool samples for these benchmarks in order to be close to
DADA2’s process and ensure a fair comparison.

DADA2 was run as included with its particular
preprocessing methods and defaults in QIIME2 except for
forward and reverse quality trimming. The only parameters
changed were the forward and reverse truncation, determined
by inspecting Q values for each data set (all other parameters
were left at their defaults):

mock12 -p-trunc-len-f 180 -p-trunc-len-r 140
mock16 and mock 23 -p-trunc-len-f 200 -p-trunc-len-r 180
Goodrich study -p-trunc-len-f 200 -p-trunc-len-r 140.

For VSEARCH, UNOISE3 and DERSI, after removing
primers, we performed the identical merging and quality
filtering so they would each receive the same input. This was
accomplished using the vsearch command --fastq_mergepairs to
merge pairs, with the following settings: -fastq_ascii 33;
--fastq_minlen 180; --fastq_minovlen 20; --fastq_maxdiffs 12;
--fastq_qmin 0; --fastq_qminout 0’; --fastq_qmax 41;
--fastq_qmaxout 41; --fasta_width 0; --fastq_maxns 0. We
then used the vsearch command --fastq_filter to quality filter,
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with following settings: --fastq_maxee 1.0; --fastq_minlen 225;
--fastq_maxlen 275; --fastq_maxns 0; --fasta_width 0.

The above two steps were common to VSEARCH, UNOISE3
and DERSI to ensure that each received the identical input to
dereplication. Each algorithm used its own dereplication method
but VSEARCH, USEARCH (UNOISE3) and DERSI’s
dereplications are equivalent. All three algorithms dropped
singletons. Reads were dereplicated using the vsearch/usearch
command: --fastx_uniques --minuniquesize 2. OTUs/ASVs
abundances were produced for VSEARCH with the following
commands: vsearch --cluster_size {} --id 0.97 and then vsearch
--uchime_denovo. For UNOISE3 the USEARCH commands:
usearch -unoise3 (all default settings; this does error
correction) usearch -otutab (this constructs abundances
querying original sequences including singetons). For DERSI,
dereplicated reads were encoded by the neural network, and these
embeddings were then used for error correction as described in
step 4 above. Chimera removal used vearch --uchime_denovo.

RESULTS

Latent Space Creation and Use
Training during Step 1 of the method continued until the loss
function achieved an average value of 0.1101 and the variation at
each iteration fell below five significant digits. The resultant latent

space is a dense, structured, 10-dimensional point cloud for all
known V4 sequences that reflects their aligned distances from
each other to a very high degree of accuracy.

A visualization of this space is shown in Figure 3 using PCA to
project the 10-dimensional space into three dimensions. In the
visualization, each dot represents a unique V4 sequence, and its
proximity to other dots accurately reflects their sequence
similarity. It can be seen that there are distinguishable groups
of closely related sequences. Archaea, for example, are shown in
green and are clearly more closely related to each other than to
other V4 sequences, as would be expected from molecular
phylogeny. Since the latent space created by this method lends
itself to this type of visual representation, it also enables the
results of the analysis of experimental data sets that are mapped
into this space by the trained convolutional neural network to be
projected onto this overall visualization. We show this in
Figure 3A for the Mock 12 data set and in Figure 3B for the
Mock 16 data set. It can be visually observed that the Mock 16
represents a highly diverse set with members distributed widely
over known bacterial genome space. In contrast, theMock 12 data
set that consisted primarily of Bacterioidies and Firmicutes,
shows a much more compact distribution.

Analysis of the Mock-16 Data Set
For the initial evaluation and testing of our new V4 deep learning
encoding approach DERSI, as well as for comparisons to the other

FIGURE 3 | The 10-dimensional V4 Latent Space: The latent space of all known bacterial V4 sequences projected into three dimensions using PCA for visualization;
the Archeal V4s clearly separate from other V4s. In (A) we show the projection of the mock 12 community sequences as mapped by our V4 encoders onto the overall
bacterial latent space. It can be visually observed that the mock 12consists of a relatively small number and not especially diverse set of bacteria. In (B), we projected the
highly diverse mock 16 community as mapped by the V4 encoder and this much greater diversity is readily observed. This demonstrates the ability of the method to
produce results that can offer informative visualizations.
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widely used identification and quantitation algorithms DADA2
UNOISE3 and VSEARCH, we chose the Mock-16 data set
because of its significant phylogenetic breadth, as it contains
59 species, 10 of which are Archaea. Although DNA from each of
the 59 species was added in equal amounts, bacterial species vary
in the copy numbers of the 16S gene and may have sequence
variation among those copies for the V4 regions. Some species
also share identical V4 regions. We have therefore calculated the
expected number of unique V4s in the mock community as 63,
details are shown in Supplementary Material.

A comparison of the output from analyzing the Mock-16 data
set with DERSI, DADA2, UNOISE3 and VSEARCH is shown in
Table 1. As detailed in the Materials and Methods for the
calculation of precision and recall, some sequences identified
at very low concentrations and with no exact matches to a known
sequence were eliminated from consideration since it cannot be
determined if they are false positives or represent actual
contaminants of novel sequences in very low amounts.

Each ASV identified was validated by BLAST to confirm
DERSI’s taxonomic identification, and all taxonomy was found
to be accurate. In our Supplementary Material, we provide the
details of how each unique ASV identified maps to a bacterial
species or group.

The output from DERSI, UNOISE3 and DADA2 shows
virtually the same ASVs until the read count is below 31 reads
per ASV. This is ~0.006% of a very large read count for a single
sample (~520,000 reads). Below this level each algorithm finds a
slightly different set of ASVs. DERSI finds 14, DADA2 finds 12,
VSEARCH finds 11 andUNOISE3 finds 12, with DERSI retaining
a slightly higher fidelity at these lower levels. We also note that in
some cases with this set of experimental data the sequencing
method itself failed due to no/low productivity of certain primer
sets resulting in lack of detection by all three algorithms. It has
been previously noted that the primers used for the V4 region do
not amplify all V4s with equal efficiency resulting in some ASVs
or OTUs that were not found in the sequence data (Allaband
et al., 2019).

VSEARCH tends to combine very closely related ASVs into a
single OTU, which can obscure the presence of closely related
species, for example, it has put Chlorobium phaeobacteroides
strain DSM 266, Chlorobium phaeovibrioides DSM 265 and
Chlorobium limicola strain DSM 245 into a single OTU
(Supplementary Material). This is in keeping with the

VSEARCH algorithm intended to predict at an OTU level
rather than at the finer-grained prediction of ASV methods.

Row 2 of the table contains ASVs that were not intentionally
included in the mock community but are detected and have 100%
match to a known bacterial sequence. These are not closely
related to the original input organisms and should not be
considered false positives, but likely arise from inadvertent
contamination. Many of these have been previously described
(Callahan et al., 2016) in the original analysis of the data set. We
have therefore included them in the precision and recall analysis.
We note that our algorithm DERSI does slightly better at
detecting such potential contamination.

Overall, VSEARCH performs considerably less well than
DERSI. While UNOISE3 and DADA2 perform relatively well,
DERSI has the best precision and recall of the four algorithms on
the mock 16 data set.

Analysis of the Mock-12 Data Set
For the second major test of our new algorithm, we analyzed the
data set listed as Mockrobiota Mock-12 since it has a 5-log unit
variation in the input abundances (see Table 2 first column). As
was true for Mock 16, the exact expected abundance may vary
from the input percentage of the bacteria due to multiple copies
within a genome and sequence variation in these multiple copies
(see Supplementary Table S3 for details). Three of the five
genomes in the most abundant two categories and two of the
genomes in the lowest abundance category have multiple V4
regions. A number of the species input still do not have a
complete genome in GenBank and in those cases the copy
number was estimated based on closely related genomes. We
show the resulting likely number of input V4s in Table 2 as the
expected count. The read abundance data does not vary
significantly from the expected abundance based on this
approximation (for a full list of expected abundances for each
bacterial species, see the Supplementary Material). Each ASV
identified was validated by BLAST to confirm DERSI’s taxonomic
identification, and the taxonomy provided was found to be
correct.

The analysis of the four algorithms follows similar outcomes to
that seen in theMock-16 analysis. DERSI and UNOISE3 create an
identical list of ASVs until the read count is below 17 or 0.0012%,
at which point DERSI performs significantly better. Whereas
VSEARCH tends to combine closely related V4s into single OTUs
(more details in SupplementaryMaterial). DERSI and UNOISE3
find two genomes, one (Bacteriodes fragilis) at the 0.01–0.1%
abundance category and one genome (Eubacterium rectale DSM
17629) in the second lowest abundance category that DADA2
folded into another ASV. UNOISE3 misses all, while DADA2
misses four of the genomes in the lowest abundance category.
DERSI and VSEARCH find seven of the 13 of the lowest
abundance ASVs or OTUs in the input data set; note that
none of the algorithms find any of the other six, they appear
to be missing from the set of reads.

In rows 7 and 8 of Table 2, we present a summary of sequences
identified in the mock community that were not expected based
on the intended bacterial inputs but match a known V4 at 100%
identity, and therefore likely represent contaminants. These

TABLE 1 | Algorithm performance on complex bacterial mixture in the mock
16 data.

V4 variants DERSI DADA2 UNOISE3 VSEARCH

Added to Mock 16
Found/expected

60/63 59/63 60/63 48/63

Contaminants (>0.001%)
Found/expected

21/22 21/22 19/22 17/22

False Positives (>0.01%)
Found

1 6 1 3

Precision/Recall 99/95 93/94 99/93 96/76
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appear only at the two lowest concentrations. All four algorithms
find the two most abundant contaminants (Enterococcus hirae
andAnaerostipes caccae). Whereas, DERSI finds 10, VSEARCH 8,
DADA2 two and UNOISE3 0 of the low level contaminants.

As shown in rows 9 and 10 of Table 2, DERSI identifies 0,
UNOISE3 2, VSEARCH 2, and DADA2 eight ASVs or OTUs that
have no known match at 100% and meet the criteria for false
positives.

The calculated precision and recall show that DERSI has the
highest precision and the highest recall of the four algorithms. In
fact, DERSI achieves 100% precision results on the Mock 12 for
ASV identification, and for recall, DERSI misses only six of the
lowest abundance V4s that appear to be actually missing from the
input sequence data.

Abundance Analysis
In Table 3, we present a summary of the accuracy of all four
algorithms in correctly identifying the known abundance across
the full mock 12, 16 and mock 23 data sets. Expected values were
created by examining both copy numbers of the 16S gene, and
whether the bacterial genomes contained multiple copies, some of
which may be variant within the V4 region.

To rigorously compare the results for each algorithm to the
expect values we applied the Bhattacharyya coefficient. The
Bhattacharyya coefficients computed for each algorithm
compare the abundances to the expected values for the input
mix of bacteria over the entire data set; higher scores are better.
Details of abundances for each individual bacterium in each data
set can be found in Supplementary Material. VSEARCH does
not perform as well as the other algorithms, likely due to the OTU
approach to grouping. The accurate performance of DERSI is
nearly identical to UNOISE3 exceeding UNOISE3 by only 0.02
overall, an amount that is statistically insignificant. DERSI does

very slightly better compared to DADA2 in reproducing expected
abundances, but there are only very slight variations among the
three algorithms.

Benchmark for Speed
We compared our algorithm, DERSI, to DADA2, UNOISE3
and VSEARCH on four data sets using the same laptop and
present the results in Table 4. The size of each data set is given
by the number of V4 sequence reads. One of the known
advantages of the OTU algorithm VSEARCH is its speed,
and indeed VSEARCH shows the best performance across
all data sets. Of the ASV methods, our algorithm DERSI
was the most rapid. We note that UNOISE3 is initially
faster than DADA2 but loses this advantage for the largest
data set. The UNOISE3 denoising algorithm itself is a very
rapid step but outputs only a list of ASVs without abundances.
The step to determine abundances in the USEARCH package is
much slower than the error correction but is included in the
measure since DERSI outputs both a list of ASVs and their
abundances as do DADA2 and VSEARCH. We conclude that
DERSI offers a speed advantage across a broad range of data
set sizes.

Phenotypic Prediction
Since DERSI was designed and optimized for accuracy in
identifying ASVs and their abundance, it is desirable to show
that this approach is still able to support phenotypic prediction
that relies on all the data for each sample as a whole. There are no
phenotypes associated with mock communities so to examine the
effectiveness of DERSI on experimental data of unknown
bacterial composition, but known sample phenotype, we
reanalyzed four published data sets to compare phenotypic
predictions to published results. All results are shown as

TABLE 2 | Algorithm performance across extreme abundance variation in the mock 12 data.

V4 variants DERSI found/expected DADA2 found/expected UNOISE3 found/expected VSEARCH found/expected

Added at >10% 2/2 2/2 2/2 2/2
Added at 1–10% 7/7 7/7 7/7 3/7
Added at 0.1–1% 4/4 4/4 4/4 4/4
Added at 0.01–0.1% 4/4 3/4 4/4 2/4
Added at 0.001–0.01% 4/4 3/4 4/4 3/4
Added at 0.0001–0.001% 7/13 4/13 0/13 7/13
Contaminant at 0.001–0.01% 2/2 2/2 2/2 2/2
Contaminant at 0.0001–0.001% 10/10 2/10 0/10 8/10
False positive at 0.01–0.1% 0 7 1 1
False positive at 0.001–0.01% 0 1 1 1
Precision/recall 100/87 77/67.5 92/50 94/67

TABLE 3 | Bhattacharyya coefficient comparing abundance estimates to
expected values.

Data set DERSI DADA2 UNOISE3 VSEARCH

mock 12 99.78 99.61 99.79 87.77
mock 16 96.24 96.00 96.29 91.12
mock 23 98.86 98.45 98.75 98.75

TABLE 4 | Speed in Seconds of Each Algorithm on four data sets.

Data set Sequence reads DERSI DADA2 UNOISE3 VSEARCH

mock23 329,358 13 316 15 5
mock16 592,231 22 427 60 11
mock12 2,040,485 48 813 93 29
Goodrich 467,643,460 7,548 12,387 21,080 847
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scatter plots using the first three principal components produced
by PCA.

In Figure 4A, the results of cecal transplants between breeds of
chickens are presented. One group (shown in red) represents
sham transplants using saline solution and are the same breed as
the transplant recipients. The other group shows two cecal
transplant donor microbiomes in black from a different
chicken breed than sham and actual donors, and the

transplant recipients in blue. It can clearly be seen that the
microbiome of the recipients is very similar to the donor
microbiomes with which they group. This matches the results
shown in the original publication.

In Figure 4B, we show the normalized results from DERSI on
the grape cultivar microbiome data (Mezzasalma et al., 2018). The
microbiomes from the three cultivars are linearly separable. Our
analysis shows that our increased accuracy for sequence variants

FIGURE 4 | Phenotypic Analysis: Each dot represents a sample from previously publishedmicrobiome data that was processed by DERSI into a set of ASVs. These
were then normalized and plotted using PCA. The axes represent the first three principal components. In (A), we the results of a chicken cecal microbiome
transplantation experiment. Clear separation was achieved between controls and the transplant recipients whose microbiomes cluster with their donors. In (B), we show
a grape microbiome experiment; each cultivar sample was a small bunch of grapes collected from the Alpine Italian Vineyard. Each cultivar is linearly separable,
exceeding the results in the original publication in which two of the three cultivars overlapped. In (C), we show the impact of choice of water purificationmethod onmouse
microbiomes, the two groups of microbiomes are separable. In (D) we show the separation of microbiomes of mice using paper bedding with osmosis purified water in
blue, to microbiomes of mice using corncob bedding and autoclaved water. Although the separation is relatively narrow, the distance between groups does exceed that
of the original publication. In all of these cases, DERSI’s output matched or exceeded that of previously published results showing that the method does support
phenotypic analysis.
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and abundance clearly also supports effective phenotype
prediction since it readily separates the microbiomes for all
samples from the three different cultivars in the Italian Alpine
Vineyard, whereas in the initial published analysis only one
cultivar (Sauvignon Blanc, yellow) could be cleanly separated
from the other two.

In Figures 4C,D, we show the results of phenotypic prediction
on two microbiome datasets from an analysis of the effects of
water decontamination method and choice of bedding material
on mice (Bidot et al., 2018). In C, a PCA of the microbiome
composition for two phenotypic groups, mice who shared the
same bedding type but whose water was purified either by
osmosis or by autoclaving. The two water phenotypes clearly
assort from each other and are represented by two distinct
groups. This meets or slightly exceeds the separation shown in
the original publication. Similarly, in the panel at right we show
mice who used paper bedding with osmosis purified water
compared to the microbiomes of mice who used corncob
bedding and autoclaved water. The separation between the
two groups appears to surpass that in Bidot et al. (2018).

Taken together, all four results support the conclusion that the
accuracy for sequence variants and abundance shown for DERSI
also supports quality phenotypic analysis that can match or
exceed published results.

DISCUSSION

To our knowledge, this is the first demonstration of the use of
latent space with a deep learning algorithm to make sequence
identifications, and moreover to be able to distinguish closely-
related sequence variations with single base accuracy. The first
step is a gradient descent training to form the latent space. This
10-dimensional space is an embedding of all of the sequences that
reflects their phylogenetic distance and is far more information-
rich than a typical two-dimensional phylogenetic tree while still
having reduced dimensionality. It becomes a reference
component of the method and is not repeated when
microbiome samples are being analyzed. This training need
only be redone when the collection of known V4 sequences
has grown to the extent that the reference space needs to be
refreshed.

The process of training the convolutional neural network
similarly creates a tool that becomes a stable part of the
method and is not repeated with each analysis run. Any
machine learning effort can be divided into two phases: 1) a
design and construction phase using training data and 2) a
deployment phase for predicting on new data. The first phase
is where the permanent structure and elements of the tool are
decided. For DADA2, VSEARCH, and UNOISE3, the equivalent
process consists of algorithmic structure but without any pre-
trained results; they must establish transitions probabilities
(DADA2) or k-mer features (VSEARCH, UNOISE3) with
every analysis run. In the example of a neural network,
including our convolutional neural network, an architecture is
chosen by a human before any processing of data and then the
network weights are fixed by the training procedure. This

construction phase is done only once for DERSI. Thereafter
the NN runs in its deployment phase, and it is standard
procedure to assess neural network speed and performance
including only its inference on new data, as we have done on
the four data sets for the benchmark. While there is additional
time devoted to the original development of the tool, for the runs
on data, DERSI was clearly the most rapid algorithm.

Some run time choices may also affect speed. We provide end
to end processing time for speed tests, from fastq files to OTU/
ASV abundance output, since this is the time a user will
experience running these algorithms. To be consistent with
DADA2, we employed denoising on a sample-by-sample basis
for VSEARCH, USEARCH UNOISE3, and DERSI (rather than
the much faster pooling of all reads into a single “super sample”).
The sample-by-sample approach helps preserve ASVs that might
otherwise be folded into close and more abundant variants. On
the other hand, besides speed, the pooling approach does have the
benefit of suppressing false positives (along with some true
positives just mentioned), on average elevating signal over
noise. Some advantages and disadvantage of pooling of
samples and sample-by-sample analysis are further discussed
by Edgar, (2016). The choice can largely be experimentally
driven. Both DERSI and UNOISE3/USEARCH could utilize
the pooling of samples instead of the single sample approach
we have used for the benchmarks here, and that would likely
greatly enhance the speed of both relative to the other algorithms.

We also note that our DERSI process is single threaded. The
other three algorithms are implemented in their software as
multi-threaded, so that much of their process can run in
parallel. There is no algorithmic barrier to multi-threading the
DERSI algorithm and that would also further enhance its speed.

Programming language choice and operating system may also
impact speed. Marrizoni et al. (2020) compared several
microbiome pipelines on two different operating systems and
found some differences in actual results among versions of the
same pipeline available for Mac OS and Linux. Deep learning
algorithms are also able to readily leverage GPUs which are fast
relative to CPUs, but it is unlikely that the others used in our
comparison could do so to great advantage.

Our convolutional network maps each sequence to the 10-
dimensional space that has been previously optimized to capture
both global and local phylogenetic sequence structure associated
with a large rRNA V4 database. Even without further potential
enhancements, it is this approach that enables the analysis of each
V4 data set to be accomplished with excellent speed, while still
providing the best available accuracy.

We are also unaware of any deep learning algorithms being
integrated into methods for sequencing error correction,
particularly removing sequencing noise while resolving true
genomic variations. While our error correction method bears
some similarity to the algorithmic approach of UNOISE3 the
major difference lies in the fact that clustering to find nearest
neighbors, and to seed potential ASVs occurs in the 10-
dimensional latent space leveraging the locations in that space
that have been assigned to each sequence by the trained CNN.
The analogous step in UNOISE3 (and in VSEARCH) uses kmers
to find nearest neighbors.
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At the time that many mock communities were added to the
Mockrobiota resource, not all bacterial species used had full
genomic sequence, and a few of the bacteria used still lack
complete genomic sequence. Since most bacteria have multiple
copies of the 16S gene, we adjusted our expected abundances
using not merely the percent of the bacteria that was used in
creating the mock community, but also how the genomic copy
number and the number of variants affect the expected
abundance. In the few cases where the genomes are still not
fully known, we used closest relatives to approximate the genome
copies. While previous studies compared the abundances found
among different algorithms, we did not find any prior work that
utilized the genomic information about copy number and
number of variants for the genomes intentionally added to the
mock community.We also note that we did not attempt to correct
the expected abundance percentages given that each mock
community appeared to have some bacterial contaminants.
There is no accurate way to know the true abundance of the
contaminant. Our use of the Bhattacharyya coefficient to
compare expected abundances of the intentionally added
sequences to the abundances found for them by each
algorithm would be expected to slightly lower the scores of all
algorithms due to contaminants but would have impacted all of
them equivalently so the comparisons would be expected to be
valid. Since most of the algorithms performed quite well at
abundance estimation, the impact of this appears to be quite
small. Moreover, despite the differences among the algorithms in
precision and recall, the three ASV methods are all near equally
good at abundance estimation, likely because most of the
differences occurred at the lowest concentration levels that
would least impact the coefficient over the entire data set.
While the coefficient showed a slim and likely statistically
insignificant advantage for DERSI over the others, the results
do clearly demonstrate that DERSI is able to at least match the
best available algorithms for accurate abundance estimation.

The dimensionality of the latent space was chosen empirically
by starting with three and increasing. We found 10 dimensions
achieved high precision and recall, good abundance recovery and
equaled or matched the best available current methods for the
analysis of the microbiome mock communities. In the future if
applying the method to longer sequences, it might become
necessary to use a higher dimensionality for the latent space,
potentially incurring somewhat higher computational overhead
in the one-time training for the embedding of all know sequences
of the chosen length, but should not have much impact on the
mapping into the space that is a rapid step using the trained CNN
that occurs when using the method on microbiome data sets.

Since Zhao et al. intended to improve phenotypic prediction
without an intermediate prediction of ASVs, they leveraged deep
learning to classify each individual sequence read for its
likelihood to belong to a phenotypic class. Our approach was
fundamentally different, although our encoder has a
convolutional architecture, it is usedfor mapping sequence
reads into a latent space that has reduced dimensions. The
reduced dimensions of the latent space enables computational
efficiencies. Our output is analogous to the separately trained
word embeddings that have been a critical ingredient supporting

recent advances in natural language processing (NLP). These
word embeddings serve as compact representations of word usage
that encode the contents of a document while reducing
dimensionality and are the input for larger neural network
such as BERT (Devlin et al., 2019). Our sequence embeddings
are analogous in that they are trained to faithfully represent a
biological sequence (instead of a word or phrase). This paper
focuses primary on the quality of those embeddings, as judged by
their usefulness in recovering true biological sequences in mock
communities. In the future, for phenotype studies, it would be
possible to develop even more powerful neural networks that
leverage these embeddings further for phenotypic classification,
just as BERT leverages its word embeddings to classify
documents. In the current work, we have demonstrated that a
simple purely linear network (i.e., Principle Component
Analysis) on the output ASVs for each sample is sufficient to
recover the phenotypic structure of the samples and obtains at
least equivalent or slightly improved results compared to
previously published work.

Moreover, creating a latent space using these methods for the
full 16S sequence should enable a 16S latent space to be used with
multiple convolutional neural networks, each trained to map a
different variable region of the 16S gene into the full 16S latent
space. This would offer a significant advancement in the ability to
directly compare microbiome studies conducted by sequencing
different variable regions of the 16S gene and enabling more
informative meta-analysis of the underlying biology, although
some caution would be warranted due to technical differences in
the amplification of diverse sequences (e.g., Bukin et al., 2019;
Darwish et al., 2021). As full-length 16S sequencing becomes
more economical and accurate, a convolutional neural network
could also be trained on the full length rather than just the
variable regions.

In fact, the method should be generalizable to many types of
experiments that rely on sequence identification in addition to
microbiome analysis, making this a promising area for future
research to fully explore the applicability of these methods to
additional biological studies. For example, rather than a latent
space intended for microbiome analysis, one could be created
from all known sequences for any particular protein or enzyme
family and applied to proteomics data. In addition, metagenomic
analysis is currently very computationally burdensome and
accuracy is challenging for low abundance organisms.
Potentially DERSI could shift that burden away from the
individual metagenomic experiments and onto the one-time
creation of a very large latent space and the training of
multiple deep learning algorithms. For these more demanding
analyses, reduction even in the one-time computational demands
of initially creating the latent space could be managed by
judicious choice of the metagenomic challenge to address. For
example, rather than full genomes, the system could be applied to
the phylogenetic classification of metagenomic samples by
training a number of individual neural nets on each of a
subset of the 92 core bacterial genes identified by the UBCG
pipeline (Na et al., 2018).

In conclusion, the current work demonstrates that our Deep
Learning for Rapid Sequence Identification (DERSI) algorithm
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that combines a latent sequence space with a deep learning
encoder can match or better the precision and recall of
existing widely accepted methods for microbiome analysis
while performing at greater speed. Potential exists for further
enhancing the speed of the algorithm, and of generalizing the
method to more types of data including metagenomics and
proteomics.
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microTrait: A Toolset for a Trait-Based
Representation of Microbial Genomes
Ulas Karaoz1* and Eoin L. Brodie1,2

1Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 2Department of
Environmental Science, Policy and Management, University of California, Berkeley, CA, United States

Remote sensing approaches have revolutionized the study of macroorganisms, allowing
theories of population and community ecology to be tested across increasingly larger
scales without much compromise in resolution of biological complexity. In microbial
ecology, our remote window into the ecology of microorganisms is through the lens of
genome sequencing. For microbial organisms, recent evidence from genomes recovered
from metagenomic samples corroborate a highly complex view of their metabolic diversity
and other associated traits which map into high physiological complexity. Regardless,
during the first decades of this omics era, microbial ecological research has primarily
focused on taxa and functional genes as ecological units, favoring breadth of coverage
over resolution of biological complexity manifested as physiological diversity. Recently, the
rate at which provisional draft genomes are generated has increased substantially, giving
new insights into ecological processes and interactions. From a genotype perspective, the
wide availability of genome-centric data requires new data synthesis approaches that
place organismal genomes center stage in the study of environmental roles and functional
performance. Extraction of ecologically relevant traits from microbial genomes will be
essential to the future of microbial ecological research. Here, we present microTrait, a
computational pipeline that infers and distills ecologically relevant traits from microbial
genome sequences. microTrait maps a genome sequence into a trait space, including
discrete and continuous traits, as well as simple and composite. Traits are inferred from
genes and pathways representing energetic, resource acquisition, and stress tolerance
mechanisms, while genome-wide signatures are used to infer composite, or life history,
traits of microorganisms. This approach is extensible to any microbial habitat, although we
provide initial examples of this approach with reference to soil microbiomes.

Keywords: functional traits, functional guilds, ecological strategy, trait-based model, profile hidden markov model,
microbial genome, fitness traits, trait inference workflow

IMPORTANCE

The rapid adoption of high-throughput microbial sequencing is leading to accumulation of microbial
genomes at an ever-increasing rate. These genomes represent instances from not only isolated
microbes but also microbial populations in their native environmental context as metagenome-
assembled genomes (MAGs) or single-cell amplified genomes (SAGs). We believe that an ability to
efficiently predict ecological traits directly from primary sequence data is a necessary interface
between microbial omics information and trait-based microbial ecology, and success here will
significantly advance our ability to uncover generalizable features of microbiomes and their
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environmental context. To streamline the process of going from
genome sequences to putative ecological traits, we developed
microTrait, a set of tools to efficiently discover and distill the trait-
based representation of a microbial genome.

INTRODUCTION

Linking microbiome structure and dynamics to ecosystem
functioning globally in a predictive way and in face of global
change has been a long-standing goal of microbial ecology (Finlay
et al., 1997; Prosser et al., 2007; Van Der Heijden et al., 2008; Todd-
Brown et al., 2012; Bier, Bernhardt et al., 2015). Efforts towards this
goal traditionally included taxon-centric measurement approaches
(Thompson et al., 2017; Ramirez et al., 2018) (Madin et al., 2020).
Genetic, physiological, and ecological characterization of cultured
isolates provided links between specific taxa and ecosystem
processes like contributions to elemental and nutrient cycles,
and biomass production. With the commoditization of high-
throughput sequencing of taxonomic marker sequences, much
effort in taxon-centric approaches shifted to extrapolating what
is learned from representative isolates in the lab to their
phylogenetic nearest neighbors detected with environmental
community sequencing (Langille et al., 2013; Asshauer et al.,
2015). Such approaches to infer functional groups via
phylogenetic markers inherently assume strong phylogenetic
conservation of microbial traits. Furthermore, without any
whole-genome data, they are limited to taxa with cultured isolates.

Microbial-biogeochemical models are crucial tools in linking
microbiome dynamics, environmental responses, and ecosystem
processes across scales. Wide-spread availability of taxon-centric
microbial measurements have naturally popularized taxon-
centric models including few species or functional groups
dominant at the local scale of interest. The upward scalability
of such models would be limited given the fact that no single taxa
would dominate at larger scales and with a limited number of
parameter sets, the model would have poor adaptive capability
both across scales and environmental conditions. Moreover,
trying to approach the complexity of real systems at larger
scales by adding more taxa or functional groups lead to
increasingly complex models with a continuous demand for
more parameters. Given these limitations of taxon-centric
approaches in modeling the diversity and activity of microbes
globally and with changing environmental conditions, trait-based
representation of microbes is becoming increasingly popular.

Trait-based approaches represent an intermediate approach to
modeling complex populations while also preserving key
mechanistic properties that determine fitness in dynamic
systems. The trait-based framework represents microbes with
traits that can be summarized by few parameters and that are
constrained by environmentally-dependent trade-offs. These
approaches were developed in the field of plant ecology
(Westoby and Wright 2006; Ackerly and Cornwell 2007), and
have more recently been applied within microbial ecology at
various scales, including global oceans and terrestrial
environments (Follows et al., 2007; Allison 2012; Bouskill et al.,
2012). The main underlying assumption is that combination of

traits determines physiological performance which influences
individual fitness and life history evolution. By abandoning the
taxon concept, the trait-based framework strives to achieve a
succinct description of the microbial communities with few
essential communities, avoiding the complexity trap of taxon-
centric modeling approaches. The challenge with this approach
is to identify the key properties or traits of members of microbial
communities and how these traits are regulated or trade-off against
other traits, and to use this information to parameterize or
constrain the functional potential of the modeled communities.

Traits may be identified through ‘omic approaches (e.g.
potential to produce or the detected activity of an extracellular
enzyme, the genes for a specific metabolic pathway, the genomic
capacity to replicate rapidly etc) or through physiological studies
(e.g. enzyme, substrate uptake or growth kinetics, cell surface
area, biomass stoichiometry, composition of storage pools etc.) or
they may be inferred by manipulation experiments such as stable-
isotope tracing with substrates at various concentrations to
determine relative affinities. The paradigm shift from a taxa-to
a trait-centric representation of microbiomes is partly stimulated
by the wide-use of omic technologies to illuminate the functional
potential of environmental microbial communities and their
interactions with each other, higher organisms, and their
environment (Sharon and Banfield 2013; Anantharaman et al.,
2016; Gupta et al., 2016; Sangwan et al., 2016; Woodcroft et al.,
2018). In particular, focusing on genome rather genes as
ecological units makes the incorporation of many concepts
from ecological and evolutionary theory into models possible
therefore increase the value of the omic data for trait-based
modeling (Prosser 2015). The rate at which isolate genomes,
single-cell assembled genomes (SAGs) and metagenome-
assembled genomes (MAGs) are being generated provide an
unprecedented resource to study patterns in fitness trait
conservation, trait linkage (i.e. co-occurrence patterns of traits
within ecological units), trait trade-offs, and trait-environment
relationships across scales. This continuous stream of microbial
genomes necessitates development of computational tools that
can efficiently and robustly extract potential traits from genome
sequences.

Currently, the methods used to infer functional traits from
genome sequences include 1) pairwise sequence alignments and
database search (Shaffer et al., 2020), 2) statistical learning
methods (Feldbauer et al., 2015; Weimann et al., 2016), and 3)
phylogenetic inference (Goberna and Verdu 2016). Homologous
inference from sequence alignments with tools like BLAST
(Altschul et al., 1990), USearch (Edgar 2010), or DIAMOND
(Buchfink et al., 2015) have large memory requirements and long
run times, which makes these methods challenging to scale for a
typical user to thousands of genome sequences. In addition, for
the detection of remote homologs, the sensitivity of alignment-
based methods is lower than the profile methods (Brenner et al.,
1998). Statistical learning methods to predict microbial traits
depend on the availability of extensive training sets to establish
genotype-phenotype relationships. Such data exist only for a very
limited set of core phenotypes and therefore the resulting models,
while they can be highly accurate, offer a narrow view of the
microbial trait space (Yabuuchi 2001; Ruan 2013). Phylogeny-

Frontiers in Bioinformatics | www.frontiersin.org July 2022 | Volume 2 | Article 9188532

Karaoz and Brodie Microbial Genomes to Traits

195

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


based methods predict missing trait values of new genomes based
on the traits of their evolutionary relatives. While phylogenetic
conservatism of certain traits has been documented for bacteria
and archaea, prokaryotic traits of ecological relevance have
overall weak phylogenetic signal (Martiny et al., 2013). In
addition, as the bulk of the current information on
phenotypes are centered around organisms of biotechnological
and medical interest, the accuracy of the phylogenetic trait
prediction remains low (Goberna and Verdu 2016).

To fill this need, we developed an R package, microTrait, that
provides a conceptual framework and associated pipelines to
translate a microbial genome into a suite of potential fitness traits.
microTrait maps a genome sequence into a hierarchical trait
space that covers energetic, resource acquisition, stress tolerance,
and life history traits that underlie microbial strategies describing
environmental microbes (Malik et al., 2020). Our pipeline makes
use of literature-supported omics markers defining trait-based
microbial strategies to quantify trait profiles for microbial

genomes. Given a genome sequence, individual gene markers
are detected with a model-based approach using a new HMM
database of protein families. The models have been trained with
protein sequences that represent sequence diversity from
genomes and metagenomes and their accuracy measured
independently with KEGG orthology database. The traits are
inferred from gene markers based on their presence/absence
patterns and presented in a hierarchical manner.

RESULTS

Microbial Traits With Genomic Basis
The overarching goal of our approach is to reduce the
dimensionality and complexity of the genomic information
such that a genome is represented as a feature vector where
individual features represent one or more aspects of an ecological
strategy (Lajoie and Kembel 2019). Microbial traits span a wide

FIGURE 1 |Conceptual overview of genome-derivable traits (gray boxes) underlying ecological strategies (blue boxes) represented inmicroTrait based on literature
surveys. For each trait, genomic features are indicated. Supplementary Table S1 provides full details for the microTrait hierarchy. Supplementary Table S8 lists
references for genomic features underlying ecological traits.

Frontiers in Bioinformatics | www.frontiersin.org July 2022 | Volume 2 | Article 9188533

Karaoz and Brodie Microbial Genomes to Traits

196

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


range of phenotypic, ecological, and metabolic characteristics.
The choice of specific traits and their representational granularity
depend on the research question of interest. We first review the
genome based traits inferred by microTrait, rationalize their
choice primarily following the frameworks proposed by (Green
et al., 2008) and more recently (Malik et al., 2020) (Figure 1).

At the very fundamental level, our approach takes as input a
genome sequence and maps it to a trait space in a computationally
scalable way. Here we adopt a microbial counterpart of the widely
used definition of “functional traits” for macroorganisms as
measurable characteristics that “impact fitness of an organism
via its effect on growth, reproduction, or survival” at the
individual level (Violle et al., 2007; Violle et al., 2014). Unlike
for macroorganisms, measuring traits at the individual microbe
level in complex communities is currently not feasible, although
single-cell imaging and ‘omic technologies are beginning to expand
our understanding of population heterogeneity at these native
scales (Wang and Bodovitz 2010; Bock et al., 2016). Genomes
have recently been proposed as the ecological units (Prosser 2015;
Turaev and Rattei 2016) at which genome-inferred traits should be
measured. Advances in DNA sequencing and computational
protocols has led to a more or less continuous stream of
provisional genomes not only from cultured isolates but also
from single-cells (SAGs) and metagenomes (MAGs) (Sharon
and Banfield 2013). Though as an ecological unit, the resolution
represented by MAGs may not currently match its counterpart for
macroorganisms, possibly representing mosaics and distorting or
masking intra-population differences, they nevertheless provide an
unprecedented window into complex microbiomes and provide
especially valuable insights into the physiology and metabolism of
uncultivated organisms in their natural environments. As such, a
genome-centric lens to traits allows scaling of organism level traits
to communities (through incorporation of genome abundances)
and therefore at larger scale as well as studying trait linkage across
ecologically relevant units.

We identified genomic features that can be mapped to
microbial ecological strategies, conceptualized under four
dimensions (Figure 1) organized as a hierarchy (“microTrait
hierarchy”: Supplementary Table S1). Within each strategy, the
trait information is organized as a hierarchy whose leaf nodes
map to specific genome derived features. Supplementary Table
S8 lists the full list of references that establish the links between
each genome derived feature and the ecological strategy at the
most granular level. Here we give an overview of the traits for
each ecological strategy:

Resource Acquisition Traits
A tremendous variety of substrates ranging from simple
inorganic ions to complex organic molecules serve as
resources for microbes. Microbes have adapted a suite of
concrete strategies with genomic basis to be competitive in a
wide range of environments with spatiotemporally variable
resource profiles. Many microorganisms have the potential to
produce exoenzymes that can disassemble complex resources
(substrate degradation), which can then be acquired through
uptake (substrate uptake) via membrane transporters (Berntsson
et al., 2010; Arnosti 2011; Zimmerman et al., 2013; Arnostil et al.,

2014; Courty and Wipf 2016; Bergauer et al., 2018). Thus, one
aspect of resource acquisition strategy concerns the investment in
both the number and diversity of exoenzymes and membrane
transporters a microbe would maintain in a microbial genome.
Substrate uptake is linked to substrate assimilation traits that
determine the capacity for assimilation of inorganic compounds.

Resource Use (Energy Generating) Traits
Redox reactions underlie all biological energy metabolism and
redox chemistry provides an organizing principle to connect
microscale to global scale processes (Falkowski et al., 2008;
Ramirez-Flandes et al., 2019). Genes whose protein products
catalyze redox reactions, their coupling to energy conservation,
and their genomic organization determine the basis for microbial
metabolic strategies. Historically, in the pre-genomic era, single
metabolic traits were evaluated in isolation to define “metabolic
functional groups” but genomic data has underlined the
tremendous metabolic flexibility of microbes (Anantharaman
et al., 2016). As a result, classical enumerations of microbial
metabolism are not sufficient to represent the linkage of
metabolic traits. Representation of microbes as a suite of
energy metabolism traits provides a more complete picture
and a data driven definition of metabolic guilds.

Stress Tolerance Traits
Stress may be induced by physical, chemical, or biological
conditions that adversely affect microbial growth and survival.
Microbes that use stress tolerance strategies respond to a variety of
stressors using several physiological and evolutionary mechanisms.
Though the specific stress response depends on the particular
suboptimal conditions, common traits with genomic
underpinnings have been broadly identified (General Stress
Tolerance Traits). These include increasing the concentration of
some molecular chaperones (stress proteins/heat-shock proteins)
to combat biomolecular damage in response to stress. This is a
universal feature across all domains of life but the relative
importance of genetic (i.e., diversity and gene copy number) or
regulatory (transcriptional, translational, and post-translational)
processes under different stressors is less clear (Feder and
Hofmann 1999; Hecker and Volker 2001; Yu et al., 2015).

Genomic bases of microbial traits that underlie stress tolerance
to specific physiochemical and chemical factors have also been
identified: 1) Temperature stress: a suite of heat shock genes serving
as chaperones and proteases are involved in the protection, repair,
and degradation of denatured/misfolded proteins. Response to cold
shock involves adaptation of the membrane via an increase in the
proportion of unsaturated fatty acids and activation of chaperone
cold shock proteins to restore mRNA functionality. 2) Desiccation,
osmotic, salt stress: Knownmolecular strategies to tolerate drought
and freezing include production or uptake of osmolytes like
trehalose and glycine betaine to reduce water potential and
maintain hydration or synthesis of extracellular polymeric
substances (Csonka 1989; Ko et al., 1994; Mindock et al., 2001;
Costa et al., 2018). 3) Oxidative stress: The response to oxidative
stress is a complex one that involves the coordinated regulation of
many genes most critically involving enzymes that scavenge
reactive oxygen species. The activation of such regulons requires
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redox sensing (two-component redox sensors and redox-sensitive
TFs). 4) pH stress: Similarly to general, oxidative, and temperature
stress, molecular mechanisms for protection from acid stress
include investment in chaperones, proteases and the ability to
sense and respond to redox conditions through two-component
systems and TFs. Unique mechanisms for maintenance of
intracellular pH include the consumption and extrusion of
intracellular protons by acid-inducible amino acid

decarboxylase-antiporter and urease systems, and the enzymatic
conversion of unsaturated fatty acids into cyclopropane fatty acids.

Life History Traits
Ecological and evolutionary processes leave their signatures in
overall microbial genome content and organization. A key
dimension of any ecological strategy is growth. Optimal
growth characteristics of microbes are key to understand how

FIGURE 2 | Overview of microTrait. (A) microTrait pipeline consists of a library of gene-level Hidden Markov Models (microTrait-HMMs) for detection of genome
features and logical rules (microTrait-rules) that map these features to traits. The output from the pipeline are trait matrices (genomes × traits) at different granularities
corresponding the levels of the microTrait hierarchy. (B) Workflow for construction of microTrait-HMMs. Each HMM models the diversity of sequences from IMG/M at
gene-level. (C) Benchmarking of microTrait-HMMs. The trusted cutoffs for microTrait-HMMs were determined through cross-references to KEGG orthologs
(whenever available).
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the key traits regarding resource acquisition, resource use, and
stress tolerance are realized to adapt to a particular environmental
niche. Traits that concern these characteristics are classified as life
history traits. Codon usage bias and ribosomal RNA (rRNA)
operon copy number are linked to maximum growth rate, a life
history trait constraining all other functional traits (Weider et al.,
2005; Vieira-Silva and Rocha 2010; Weissman et al., 2021).
Another key life history trait closely linked to the overall
genomic adaptation is optimal growth temperature (OGT).
Temperature is a master regulator of enzyme activity and
overall cell machinery. A combination of quantifiable
proteome-wide features predictable from genome sequences
allows OGT to be hypothesized solely from genomic sequence
(Zeldovich et al., 2007; Sauer and Wang 2019).

microTrait Pipeline
The computational pipeline to infer traits from primary genome
sequences has two major components (Figure 2A): 1) a database
of gene HMMs (microTrait-HMM) to model the diversity of
protein families based on sequences from genomes and
metagenomes with independently established accuracy to
detect genetic loci (Figure 2B and Supplementary Table S2),
2) a set of rules (microTrait rules) encoded in predicate logic to
infer traits from presence and absence of the set of loci modeled in
microTrait-HMM (Supplementary Table S4). The model-based
detection of genetic loci ensures decreased run-times and
interoperability across datasets (given model and scoring
cutoff). The rule-based framework to infer traits from primary
features gives the user the flexibility for redefinition and
refinement.

Cross References to External Databases
From microTrait-HMM
The statistical models inmicroTrait-HMM reflect the most recent
sequence diversity from both cultured and uncultured microbes
and therefore should have improved accuracy over existing
methods to detect genes underlying traits covered in
microTrait. To ensure interoperability of the microTrait
pipeline with the existing HMM databases and relevant
sequence database resources, for each gene model we provide
database cross references to KEGG (Kanehisa and Goto 2000),
Transporter Classification Database (Saier et al., 2016), and
Enzyme nomenclature database (through EC numbers) (1999).

Performance of Gene HMMs and
Assignment of Trusted-Cutoffs
We assessed the performance of each microTrait-HMM by first
determining the corresponding orthologous group (KO number)
in KEGG orthologs database (when the loci was represented in
KEGG) (Figure 2C). A test dataset for the gene model in question
was built by using IMG/M sequences labeled with the determined
KO number (“true positives”) and the remaining KO numbers
(“true negative”). IMG/M database was scanned with the profile
HMM using HMMER/hmmsearch. F-scores (harmonic mean of
precision and recall) were calculated as a function of “hmmsearch

scores” based on the test dataset with R using ROCR package
(Sing et al., 2005). The smallest score that maximizes F-scores was
assigned as the trusted cutoff. Supplementary Table S3
summarizes the performance of each model in microTrait-
HMM. Overall, at the determined trusted cutoffs, the
overwhelming majority of microTrait-HMMs (94.2%-1,686 out
of 1790 HMMs) had high sensitivity (≥75%) and low FPR (false
positive rate), with 92% of HMMs having an F-score >=0.8
(Supplementary Figure S1).

microTrait Pipeline: Derivation of Traits
From Genome Sequences
The input to microTrait is a genome sequence (.fa) or the
corresponding protein coding genes (.faa) in FASTA format.
When genomic rather than protein coding gene sequences are
supplied, Prodigal is used to predict open reading frames (Hyatt
et al., 2010). For each genome, protein sequences are scanned
against microTrait-HMM with HMMER/hmmsearch to generate
a count table for the detected genemodels. Binary and continuous
traits are assigned using the count table and predefined logical
rules mapping the presence/absence of genes(s) or other rules to
specific traits (Figure 3). The rules can be edited by the users
within the R package. Their role is twofold: On one hand they
allow modifications in the way some binary traits can be defined
(for instance based on one or more proteins in a large complex, or
one or more steps in a pathway) giving the user flexibility. They
can also be used to increase detection sensitivity for provisional or
lower quality genomes (i.e., SAGs and MAGs).

Modular Trait Definitions With Predicate
Logic
microTrait uses Boolean algebra to map protein family content
into traits through microTrait rules (Supplementary Table S5).
In this framework, each protein family is a Boolean variable (i.e.
equals 1 if detected, 0 otherwise) whose value is determined by the
output of the corresponding microTrait-HMM. The traits are
represented by rules whose arguments are one or more protein
families, other rules, or a combination of these. Conceptually, the
rules map to representations of protein complexes with multiple
subunits or a series of enzyme catalyzed reactions that transform
one molecular species into another. While the standard package
comes with a predefined set of rules, the rules themselves and the
mapping of rules to traits are modular and can be modified by the
user. As an example, consider denitrification traits (Figure 3A).
The canonical denitrification pathways, excluding accessory and
regulatory proteins, involve 4 protein complexes (NarGHI: the
inner membrane-bound nitrate reductase; NapAB: the
periplasmic nitrate reductase; NorBC, NorVW: nitric oxide
reductases) and 3 proteins (NirS, NirK: nitrite reductases;
NosZ: nitrous oxide reductase). Together, these are
represented by 12 protein families (italicized gene names in
Figure 3A) and the four individual enzymatic steps are
represented by 4 rules. From these rules, several denitrification
traits corresponding to individual functional guilds can be
defined.
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For transporters and polymer specific extracellular enzymes,
we compiled a list of the experimentally reported substrates of
each enzyme using the Transporter Classification Database
(TCDB) (Saier et al., 2016) and the Database of carbohydrate-
active enzymes (dbCAN) (Yin et al., 2012). We then classified
each reported substrate into broad substrate classes (Figure 3B
and Supplementary Table S6). The relevant rules for
transporters and extracellular enzymes let the user quantify
the number of protein complexes with a given substrate or
substrate class.

A challenge in assigning traits to genomes based on the
protein family signatures is the modularity of the underlying
pathways. This modularity might be truly reflecting the
genomic variation within a set of isolates, MAGs or SAGs
but also be an apparent manifestation of incomplete and noisy
genomic information. Starting with genomic sequences,
microTrait allows the investigation of this modularity across
a set of genomes. The resulting information can be used by the
user to define custom logical rules to assign traits based on the
protein family content.

Comparing microTrait With a
Taxonomy-Based Inference of Microbial
Functional Groups
Linking taxonomic classification with function is a commonly
used method to infer microbial traits. Faprotax is a manually

curated database that maps taxa to functional groups based on the
physiological studies for the cultured representatives of these taxa
(Louca et al., 2016). The taxonomic resolution is typically at
species or genus level but can also be less specific (i.e. family or
higher). Using a large collection of isolate genomes from
environmental ecosystems (refer to Materials and Methods for
construction of the genome collection) and literature references
for functional affiliations based on taxonomic names in Faprotax
(Supplementary Table S11), we have quantified the extent to
whichmicroTrait-rules recovered the validated culturable taxa for
different microbial functional groups. For each functional group,
we first matched the taxonomic names from literature, primarily
genus/species names but also extending to higher ranks for
certain functional groups, to canonical NCBI taxonomic
names. All available genomes from environmental ecosystems
with the respective taxonomic affiliation were considered as a
“positive” for that functional group according to the Faprotax
approach (Supplementary Table S12). We have then tested how
many of these assumed Faprotax positives themicroTrait pipeline
was able to recall solely based on the functional trait predictions
from genomes. In addition, for each functional group, we have
also evaluated the specificity of genome-based calls based on the
assumption that all negatives via the Faprotax taxonomic
affiliation were “true negatives” (Supplementary Table S13).

Among 41 functional groups, 29 had a recall rate over 70%.
Functional groups for which microTrait had low recall rates
included anammox (0 microTrait+ genomes out of 7

FIGURE 3 | Trait inference with microTrait rules. microTrait rules use simple boolean logic to map presence/absence of microTrait-HMMs (italicized) to traits. The
reconfigurability of the rules makes the exploration of the effect of different trait definitions on the microbial guilds possible and therefore enables a flexible microbial trait
extraction pipeline. Examples for trait definitions from rules for (A) denitrification traits. Rule-based inference allows flexible definition of traits, for example by end products
of denitrification. (B) substrate uptake.microTrait represents substrate uptake traits using the range substrates documented in TCDB (Transported Classification
Database) (shown as word cloud colored by substrate class). Traits relevant to the uptake of substrates (example for monosaccharides) can be defined in a hierarchical
manner with rules defined from other rules and microTrait-HMMs.

Frontiers in Bioinformatics | www.frontiersin.org July 2022 | Volume 2 | Article 9188537

Karaoz and Brodie Microbial Genomes to Traits

200

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Faprotax+ genomes; 0/7), dark iron oxidation (10/16), iron
respiration (19/86), aerobic nitrite oxidation (6/13), chlorate
reducers (3/6), dark sulfide oxidation (49/93), anoxygenic
photoautotrophy Fe oxidizing (9/16), dark sulfur oxidation
(71/124), sulfur respiration (82/139), thiosulfate respiration
(88/145). A close examination of the taxonomic identity of the
genomes “missed” by microTrait suggested a variety of
explanations for the functional groups with poor recall.

A primary advantage of inferring microbial traits directly from
genomic sequences rather than by taxonomic names is the ability
to resolve diversity (species or strain level), which increases the
prediction accuracy. We have observed that for many functional
groups defined in Faprotax, the genomes that were assigned to the
taxonomic clades lacked the required genetic repertoire for the
metabolic function in question. Some prominent examples are for
the “anammox” and “dark iron oxidation”. For anammox, among
the diversity of taxa (genus and species), only P. mendocina had
corresponding genomes in the isolate set (n = 7) and none of
those had the genomic features for anammox suggesting that this
is a strain specific trait for P. mendocina. Similarly, for dark iron
oxidation, genome features suggested that the trait can be strain
specific. Among 15 R. palustris and 2 M. ferrooxydans, a limited
number (9 and 1 genome respectively) was genome-supported to
carry the trait. There were also cases where the genomic evidence
suggested that trait conservation was limited to deep taxonomic
levels so a taxonomic inference at genus or family level would
have impacted the accuracy of Faprotax method. For instance,
methanotrophy is associated with Methylocystaceae (family) and
Methylocapsa (genus) yet the trait was specific to subfamily/
subgenus. Among 7 Methylocystaceae genera with genome
representatives, 2 genera (Methylocystis and Methylosinus)
had genome support for the trait. Similarly, 2 out 3
Methylocapsa species with genomes had evidence for the trait.

It should be noted that, there were also cases for which the
absence of the genomic signal reflected limited knowledge for the
genetic underpinnings of the trait. A typical example was for iron
respiration, a trait for which current evidence suggests that
electron transport for iron reduction proceeds in a different
and unknown mechanism in acidophiles compared with
Ferrimonas and Shewanella (Malik et al. 2018). Another
example was for chlorate reduction, a process whose genomic
trait sits in a region prone to horizontal transfer (Clark et al.,
2013) which impacts the accuracy of a gene-level profile HMM
approach. Overall, these disagreements between taxonomic and
genome-based approaches suggests that, a genomic feature-based
approach such as microTrait increases prediction accuracy and
precision, even when one considers single traits (such as
functional groups).

High-Throughput Extraction of Microbial
Traits from Genomes with microTrait
As an example of scalable extraction of traits from genomes, we
applied microTrait to publicly available isolate genomes and
MAGs. The datasets we used included 1) isolate genomes
from environmental ecosystems from IMG/M (n = 6,157), 2)
MAGs from an aquifer system (n = 2,545) (Anantharaman et al.,

2016), 3) MAGs from a thawing permafrost (n = 1,530)
(Woodcroft et al., 2018), 4) MAGs from hydrothermal
sediments (n = 666) (Dombrowski et al., 2018), and 5) MAGs
from publicly available metagenome samples, referred to as
Uncultivated Bacteria and Archaea Dataset (UBA) (n = 7,902)
(Parks et al., 2017). This compendium of datasets (genome
compendium) resulted in a total number of 20,062 genomes.

We tested microTrait on a machine with a 2.3 GHz 16-core
Intel Xeon Processor E5-2,698. When run using a single core,
with a single genome processed using that core, microTrait
processed that genome in 3.94 ± 2.59 min, with an average of
1.11 min/Mb of genome sequence (Supplementary Figure S2).
From these, we predict that microTrait can process an average
microbial genome of size 4 Mb in approximately 4.5 min. In all
runs, the memory footprint of microTrait was not larger than
60 MB. In a multiprocessor compute environment, microTrait is
easily parallelizable using a typical data-level parallelization
scheme (for instance using R’s parallel package (distributed as
part of R-core)) mapping genomes to separate logical processors.
In our tests, when run in a 64 processor compute node, the
processing of the compendium of 20,062 genomes (total size =
47.9 Gb) took 12.47 h.

microTrait Trait Matrix
When applied to multiple genomes, microTrait outputs a trait
matrix of “genomes x traits” with three types of qualitative
variables. Binary trait variables are calculated as presence/
absence of a specific functional capacity and span 1) energy
generation via specific electron acceptors/donors, 2) capacity
to degrade, assimilate, or acquire specific substrates.
Continuous trait variables are of two groups. The first group
of continuous traits are calculated starting from counts of specific
functional capacities in the genome and span 1) acquisition of
chemical classes of substrates with transporters or via
extracellular breakdown, 2) investment in extracellular
polysaccharides and osmolytes. For each genome, the counts
are normalized by genome size. The second group represent life
history traits and include 1) minimum generation time (unit: h−1)
predicted based on indices of codon-usage bias in ribosomal
protein genes (a proxy for highly expressed genes) (Vieira-Silva
and Rocha 2010) (Weissman et al., 2021), 2) optimal growth
temperature (unit: °C) predicted from a suite of features derived
from the nucleotide and protein sequences of the genome (Sauer
and Wang 2019).

Refinement of Functional Guilds Using
microTrait
To exemplify the use of microTrait in refining functional guilds,
we explored how denitrifier guilds can be defined based on the
genomic distribution of denitrification traits in the isolate
genomes from our compendium of genomes. Denitrification is
a key biologically catalyzed process by which nitrogen available to
plants is transformed to the atmospheric nitrogen pool as gaseous
forms of nitrogen as molecular N2 or as an oxide of N.
Denitrification occurs as a step-wise reduction of nitrogen
oxides with gaseous products. Four reductases are involved in
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the denitrification, NAR, NIR, NOR and N2OR, sequentially
catalyzing the reductions of NO3 -→NO2 -→NO→N2O→N2.
Several previous studies reported both genomic and phenotypic
evidence for truncated versions of the denitrification pathway but
a global genomic analysis is not currently available (Sanford et al.,
2012; Jones et al., 2014; Lycus et al., 2017; Liu et al., 2018; Gao
et al., 2019).

We used the microTrait pipeline to explore all of the publicly
available environmental genomes from the IMG/M database
(Supplementary Table S9). This resulted in a “genomes X
rules” matrix specifying for each genome whether each of the
rules was asserted as TRUE or FALSE. The matrix was subset to
rules underlying denitrification traits and the genomes were
clustered based on their denitrification trait profiles. The
clustering gave 13 denitrification-associated functional guilds,
with 58.3% of the screened genomes involved in at least one
denitrification-related process (Supplementary Figure S3). Only,
a small proportion of these had the genomic capacity to perform
complete denitrification to N2. Overall, the guilds correspond to
generation of the same end products from different starting
nitrogen compounds (e.g. guilds 1–4, 5−7, and 8−9 generating
N2, N2O, and NO respectively), or multiple end products with
missing steps (e.g. guilds 11–13). The default trait matrix in
microTrait defines denitrification traits by the end products of
denitrification (Supplementary Table S7) yet the workflow of
going from genomic features to traits via microTrait rules makes
redefinition of traits possible.

Testing Trait Dimensionality of Microbial
Genomes from a Given Ecosystem
microTrait hierarchy maps a microbial genome to a high-
dimensional space of putative functional traits of ecological
relevance. In trait-based ecological modeling, trait selection is
of central importance not only for biological but also for
computational, statistical, and practical reasons (Lajoie and
Kembel 2019). In our conceptualization of the relevant traits
for terrestrial ecosystems, the set of selected traits are assumed to
approximate the intrinsic (i.e. true underlying but unobserved)
dimensionality of microbial traits. Unlike for plants for which
accumulated evidence suggests that the intrinsic dimensionality
of functional trait space is low (Laughlin 2014), the intrinsic
dimensionality of the trait space of microbes in specific
ecosystems remains largely unknown. However, we can
assume that if the selected trait proxies are largely
independent of each other then, taken jointly, they should
represent the underlying functional differences, and improve
our ability to explain and predict microbial distributions.

To investigate whether the selected traits in microTrait are
largely independent, we used an extensive dataset of genomes of
microbes isolated from terrestrial ecosystems to study the
correlation structure of their microTrait profiles. The trait
matrix (at granularity 3) for a total of 4,116 genomes of
organisms isolated from terrestrial environments (ST9) was
computed using microTrait. A non-parametric rank-order
correlation metric was used to estimate the degree of
relatedness between all trait pairs, visualized as a correlation

matrix and reordered to elucidate the potential hidden structure
and pattern in the matrix (Figure 4A).

Overall, the bulk of the correlations were weak (|ρ| < 0.3)
suggesting that microTrait trait dimensions map to largely
independent traits (Figure 4B). On the extremes, strong
positive correlations would be indicative of redundancy of trait
dimensions while negative correlations would be indicative of
underlying tradeoffs for the ecosystem in question. Few strongly
positively correlated blocks corresponded to phototrophic
resource use traits linking the variety of phototrophic
pigments and photosystems.

Dimensionality Reduction with
Guild-Centric Analysis of Microbial
Genomes With microTrait
Metagenomics allow the recovery of the genomes of all detectable
members of an ecosystem along extensive spatiotemporal gradients.
The genomes then provide support for co-occurrence of ecologically
relevant traits of the members that together underlie the ecosystem
function. A typical genome-centric microbiome study involves the
analysis of hundreds to thousands of genomes leading to trait
matrices of high genomic dimensionality. This high
dimensionality poses a particular problem for statistical analyses
(Johnstone and Titterington 2009). Further, when attempting to
leverage the information from these genomes for downstream
modeling applications, there is both a practical need and
discovery opportunities in quantify and reducing this
dimensionality in a tractable manner. Organizing microbial
members of an ecosystem community into “putative guilds” can
reduce the dimensionality of ametagenomic dataset and hypothesize
the functional niche of community members and computationally
explore their interactions independently of their taxonomic origin.
Here, using the soil ecosystem as an example, we show how to define
microbial guilds in a data-driven manner using microTrait.

Given a set of genomes representing a habitat, microTrait can
be used to discover and define functional guilds, parameterize the
defined guilds with life history traits (minimum doubling time
and optimal growth temperature), and reduce the dimensionality
of the trait space in a quantifiable way. Figure 5 outlines the
guild-centric pipeline starting with a trait matrix leading to the
definition and characterization of the microbial guilds. Since
microTrait encompasses both continuous and binary traits, the
similarity between genomes are measured using a distance metric
suitable for mixed data types (Wishart 2003) (see Methods). The
resulting distance matrix (genomes x genomes) is clustered with
unsupervised hierarchical clustering, visualized with trait
presence/absence (i.e., treating continuous traits as binary
variables), and annotated with the distribution of life history
traits and trait prevalence across the dataset (Figure 5A).
Quantifying relationships between genomes based on their
trait profiles gives the opportunity to dynamically define guilds
in a data-driven way for any dataset. The proportion of inter-
guild variance explained can then be quantified as a function of
the number of guilds (Figure 5B). A larger number of guilds
corresponds to a smaller information loss at the expense of
greater complexity for downstream applications. The user
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decides here where to operate along the curve depending on the
shape (rate of change in steepness with increasing guilds) and the
application of interest. Once determined, the guilds can be
defined which results in a list of guilds, each representing a
number of genomes and the joint distribution of traits captured
by them. It is often useful to examine the distribution of the
number of genomes that underlies each guild as on average the
within-guild trait variance would be higher for guilds supported
by a smaller number of genomes. The user can filter the guilds by
number of genomes to generate a dataset that represents guild
profiles, that is a fingerprint of the co-occurrence of traits for each
guild and the within-guild distribution of life history traits
(Figure 5C and ST 16).

We applied the microTrait data-driven guild-definition
pipeline to soil isolate genomes from IMG (3,430 genomes
with GOLD Ecosystem Type = “Soil OR Rhizoplane OR
Rhizosphere OR Root”). All traits except “anaerobic ammonia
oxidation (anammox)” were detected at least once in the dataset
resulting in a trait matrix of dimensionality 3,430 genomes X 190
traits. To date no pure culture isolates of anammox organisms
have been obtained (Jetten et al., 2005). Clustering analysis
indicated that a total of 196 guilds captured 70% of the inter-
guild variance, with 16 guilds supported by at least 50 genomes.
Comparison of the trait profiles across guilds elucidates the
differentiating trait features of a set of guilds with respect to
other guilds.

FIGURE 4 | Correlation matrix for microTrait defined traits. The strength of the correlation (Spearman’s rho) is represented by the color intensity (positive: blue,
negative: red). Left upper panel: the distribution of trait-to-trait correlation values, left lower panel: comparison of the distribution of trait-to-trait correlations within and
between ecological strategies.
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For example, the top three guilds supported by the highest
numbers of genomes (guild 3, guild 23, and guild 4; 383, 375, and
340 genomes respectively) were each enriched in specific traits

under resource acquisition and resource use strategies (ST16).
Guild 23 compared to guild 3, and 4 was marked by enrichment
of the ability to assimilate simple C compounds, use 2 C

FIGURE 5 | Primary use cases and graphical outputs ofmicroTrait workflow. (A) Trait matrix provides clustering of a set of input genomes using trait profiles from
microTrait outputs based on a distance metric taking into account mixed data types (i.e. for binary and count traits). Heatmap visualization use presence (red)/absence
(white) of traits, with trait prevalence (% genomes positive) shown at the top panel. Life history traits (minimal doubling time and optimum growth temperature) are overlaid
on the right panel in continuous scale. (B) Trait variance across genomes based on the genome clustering is quantified as a function of the number of guilds using
analysis of variance using distance matrices. Guilds can be defined either at a fixed number of guilds or based on percent explained within-guild variance, which results in
a size (number of supporting genomes) distribution of guilds. (C) Visualization of trait profiles for the defined guilds (guilds × traits), with mean trait values visualized across
a color scale. Traits are ordered by ecological strategies (red: resource acquisition, green: resource use, blue: stress tolerance). For each trait, top panel shows the
statistical significance of comparison of mean trait values across guilds. The distribution of life history traits are shown on the right side panels.
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compounds in the absence of glucose via glyoxylate cycle, uptake
a variety of N compounds (elemental N and urea) as well
aromatic acids and biopolymers, and fix elemental nitrogen for
biomass. On the other hand, compared to guild 23, guild 3, and 4
represent a different strategy for incorporation of N compounds
into biomass through assimilatory nitrate reduction and a unique
ability to assimilate P compounds. Notably, although all three
guilds were enriched in the capacity to utilize glucose, guilds 23
and guilds 3, and 4 differed in their preferred glycolytic pathways
(canonical Embden-Meyerhoff-Parnass (EMP) pathway in guilds
3, and 4 vs. less common Entner–Doudoroff (ED) pathway in
guild 23) reflecting differing preferences in balancing production
of ATP (energy yield) and cost of protein synthesis to achieve
maximum fitness (Flamholz et al., 2013). Across these three
guilds (3, 23, and 4) differences in enrichment for stress
tolerance mechanisms were not apparent, however, other
guilds did display enrichment in specific stress tolerance
strategies. For instance, among all the guilds supported by at
least 50 genomes, guilds 7 and 14 were uniquely enriched in traits
for desiccation and pH stress tolerance respectively.

DISCUSSION

Genome sequencing, from a data perspective, now provides a
primary window into the traits that regulate fitness and function
across Earth’s microbiomes. Genomes are increasingly
recognized as a fundamental unit in the study of
microorganisms, however, the integration of this information
is required to understand how such genome units relate to
ecologically coherent behavior. Exploration of feedbacks
between microorganisms and their environments requires
numerical modeling approaches, and the assimilation of
genomic information has substantially lagged its generation.
This assimilation of microbiome information into numerical
models in an automated fashion remains a significant
challenge as microbial communities are ultra-diverse,
physiologically plastic, and dynamically adaptive. Trait-based
approaches to microbial ecology provide a framework to
represent microbial diversity in a way that facilitates
prediction, integration and generalization (Lajoie and Kembel
2019) and the rate at which isolate and metagenome-assembled
genomes are being generated provide an unprecedented resource
to explore patterns in microbial trait conservation and linkage.
The resulting information can be used to initialize and
parameterize mechanistic trait-based models spanning a scale
of complexities to explore the drivers of patterns in the
distribution and co-occurrence of microbial traits. With
microTrait, our goal was to provide an extendable toolset and
computational pipeline to infer microbial traits from genomic
data and show how the resulting information can be used to
define microbial guilds with varying parameters.

Our approach to infer ecological traits from genomic data
couples profile search methods with reconfigurable simple
predicate logic. This coupling provides important advantages
for deriving microbial traits from large numbers of
phylogenetically diverse microbial genomes. Profile methods

represent information across a family of evolutionarily related
sequences from a multiple sequence alignment and increase
sensitivity by incorporating position-specific information into
a model. Moreover, the set of sequences from which gene-level
microTrait-HMMs have been trained were selected from an
extensive sequence database (IMG/M (Chen et al., 2019)) that
not only includes genomes of cultured isolates but alsoMAGs and
SAGs, the majority of which had been derived from
environmental samples. Given that the bulk of the stream of
incoming genomes from new studies is expected from MAGs
with higher phylogenetic diversity compared to isolate genomes,
the ability to detect remote homologs underlying microbial traits
and explore sequence diversity from environmental samples is
critical to increase the accuracy of trait prediction. With future
releases of IMG, new sequences can be incorporated into multiple
sequence alignments and consecutivelymicroTrait-HMMs can be
updated.

To benchmark and determine the score thresholds for each
gene-level microTrait-HMM, we used the corresponding genes
from the corresponding KO (KEGGOrthology) group.While this
approach makes a systematic assessment of model accuracy
possible by balancing model precision and recall, it should be
noted that the computed thresholds may be overly strict for
certain applications. Sequences in the KO database correspond to
a highly curated set of sequences with a limited phylogenetic
scope, this may lead to high precision and low recall with respect
to the true labels especially for phylogenetically divergent or novel
genomes not well represented in KEGG (Jaffe et al., 2020). Since
the true orthologs for the underlying protein families are not
known but can only be inferred, the accuracy of the model can
only be estimated using independent labels such as those from
KEGG. For applications where a higher recall at the expense of a
lower precision is desired, it would be desirable to lower the
HMM cutoff thresholds depending on the user input. We leave
the implementation of such modifications for future work.

In this work, we focused on mechanistically well-studied traits
whose genetic underpinnings have previously been documented
and which can be conceptualized as Boolean rules. In addition to
extraction of microbial traits with a rule-based system, further
opportunities exist for unsupervised discovery of traits. For
example, genomes with metadata labels determined
experimentally or through text-mining (Alneberg et al., 2020)
(Brbic et al., 2016) indicating the ecological niches of the
organisms can be leveraged for exploring the genetic basis of
organismal adaptation. Statistical modeling of the organismal
niche and inference based on domain or gene content would be
the classical approach towards this (Zhalnina et al., 2018; Ceja-
Navarro et al., 2019). In addition, the exponential increase in the
availability of high-quality MAGs with rich metadata will make
feasible machine learning approaches that focus on prediction
rather than explainability using a much larger number of features
also feasible (Drouin et al., 2019).

Despite the increasing availability of genomic and
physiological data of microbes, the adoption of trait-based
approaches in microbial ecology is relatively recent. Unlike
plants and animals, working definitions of microbial traits and
conceptual frameworks to define functional guilds from these are
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lacking. The large diversity of microbial lifestyles manifest as a
large number of potential traits some of which might be
unobserved. Even with thousands of diverse genomes, the
high-dimensionality of the potential trait space poses a
challenge to define functional guilds for microbes. Here we
adopted an operational definition of microbial guild as
“groups consisting of diverse microorganisms with similar
traits” based on a synthesis of a relatively small number of
master traits that define microbial lifestyles. Depending on the
specific analysis goals, a user might want to fine tune the
granularity at which traits are defined (e.g., selection of
different pathway endpoints as in denitrification or
transporter/enzyme substrate classification). In microTrait, the
reconfigurability of the rules makes the exploration of the effect of
different trait definitions on the microbial guilds possible and
therefore enables a flexible microbial trait extraction pipeline.

Finally, a trait-based microbial ecology framework has the
potential to integrate ecological and genomic data. For this
promise to be achieved however, the availability of metadata
on the provenance and biogeochemical/ecological identification
of the underlying biological samples is essential. Environmental
metadata give essential context for genome data but current
isolation of metadata resources (GOLD (Mukherjee et al.,
2019) and NCBI’s BioSample (Barrett et al., 2012)) and lack of
rich ontological and data standards hinder interoperability and
reusability. Reusability of metadata is further hampered by
inability to download metadata in bulk. Even within a single
resource with a relatively consistent data schema, the fill rates for
the existent terms are very low leading to existence of a large
number of genomes without any usable metadata. For example,
within 162,711 bacterial and archaeal GOLD genomes (accessed
on 04/2021), only 17% had the Ecosystem field (GOLD: Study
Fields: Ecosystem) completed with one of the three categories
(Environmental, Engineered, or Host). Among the
Environmental genomes, only ~41% (7,868 genomes) had even
the broadest ecosystem classification completed (GOLD: Study
Fields: Ecosystem Category) leaving an overwhelming majority of
genomes unusable. For a trait-based framework to fulfill its full
potential in elucidating microbial trait-environment
relationships, significant community efforts towards higher
quality metadata standards and metadata enrichment such as
that led by National Microbiome Data Collaborative (NMDC,
https://microbiomedata.org/) towards higher quality metadata
standards and metadata enrichment will be much needed.

METHODS

Implementation
microTrait is implemented in R. Besides R-base functions, it
depends on R packages dplyr, tidyr, tidyverse, readr (Wickham,
2019; Hadley et al., 2018; Wickham et al., 2019; Wickham and
Henry, 2019) for efficient data access, manipulation and storage,
doMC (Weston and Calaway 2015) to implement multicore
functionality. microTrait is available from https://github.com/
ukaraoz/microtrait.

Construction of a Gene HMM Database of
Protein Families (microTrait-HMM)
We constructed an HMM database that model gene loci underlying
functional traits (called microTrait-HMM) based on archaeal and
bacterial sequence diversity from 1) genomes of cultured organisms,
2) single cell genomes, 3) metagenome-assembled genomes, and 4)
metagenomes from environmental, host associated and engineered
microbiome samples. For each gene loci, a profile HMMwas trained
as follows. Seed protein sequences were collected from the non-
redundant IMG/M database (img_core_v400) based on “EC
Number”, “Gene Symbol”, and “IMG Term and Synonym”
(Chen et al., 2019). Multiple sequences alignments (MSA) were
generated from the seed sequences using MAFFT with an accuracy-
oriented parameter set (--maxiterate 1,000 --localpair--anysymbol)
(Katoh et al., 2005). Profile HMMs were built with HMMER/
hmmbuild (Eddy 2008). We call the set of HMMs microTrait-
HMM (Supplementary Table S2). All seed sequences, MSAs, and
profile HMMs are available at https://github.com/ukaraoz/
microtrait-hmm.

Estimation of Life History Traits (Minimal
Doubling Time and Optimum Growth
Temperature)
To estimate minimal doubling time from genome-wide codon
usage bias, microTrait uses gRodon R package (Weissman
et al., 2021) using multiple linear regression models trained
on the dataset of maximal growth rates compiled by Vieira-
Silva and Rocha (Vieira-Silva and Rocha 2010). Optimum
growth temperature is estimated with the multiple linear
regression models based on the same features of tRNA and
16S rRNA genes, ORFs and translated ORFs determined by
Sauer and Wang (Sauer and Wang 2019), but reimplementing
their python pipeline in R as part of the microTrait package
itself to increase computational efficiency.

Inference of Guilds
Ecological guilds were inferred from microTrait trait matrix
with variance partitioning and clustering analysis. Trait values
for “count traits” were normalized by genome size to express
them as “per base-pair genomic investments”. The normalized
trait matrix was used to calculate genome-to-genome distances
using Wishart distance metric for mixed variable data
(Wishart 2003) as implemented in R kmed package.
Wishart distance is similar to the Gower distance (Gower
1971) for mixed variable data but applies a variance weight
rather than a range for the numerical variables and uses a
squared distance component. The resulting distance matrix
was used to cluster genomes using hierarchical clustering with
complete linkage. Next, we quantified variance in the genome
to genome distances as a function of the number of defined
guilds. We first cut the tree from hierarchical clustering into
clusters ranging from 2 clusters to the total number of genomes
in the dataset. Then, for each cut that corresponds to a given
number of clusters, we quantified the variance in the distance
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matrix using cluster identity as a source of variation (using
adonis2 in R vegan package) and plotted the resulting
coefficient of determination (R2) as a function of the
number of clusters. This allows the user the option to pick
the number of guilds capturing a given level of trait variance
across the dataset, and vice versa. Given a threshold for a trait
variance or a number of guilds, we then assign each genome to
a guild based on the corresponding tree cut from hierarchical
clustering. Finally, we visualize the trait profiles for the defined
guilds using trait positivity as a metric.
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Supplementary Figure S1 | Performance of microTrait-HMMs with respect to
cross-reference to KEGG orthologous families (KO). Each point corresponds to a
gene-level HMM with the estimated sensitivity (true positive rate) and specificity (as
false positive rate or 1-specificity) corresponding to the scoring threshold that

maximizes F-score. The inset shows the cumulative distribution for the maximum
F-scores.

Supplementary Figure S2 | microTrait runtimes. Distribution of running times for
isolate and metagenome-assembled genome sets normalized for genome size
(measured as time (minutes) per Mb of sequence). Each point in the distribution
corresponds to a genome. The normalized running times depend on the genome
content, with more HMM hits requiring longer processing.

Supplementary Figure S3 | Refinement of functional guilds using microTrait.

Supplementary Figure S4 | ExamplemicroTrait trait matrix for soil isolate genomes
as in Figure 5A, in high resolution.

Supplementary Table S1 |microTrait hierarchy. Hierarchical mapping of genome-
derived features into ecological function of increasing granularity in microTrait.
microTrait hierarchy is an unbalanced hierarchy with 3 levels, with certain leaves
spanning all 3 levels. References supporting the inference of traits from genome
derived features are given in Supplementary Table S8.

Supplementary Table S2 | microTrait HMMs. List of gene-level HMMs underlying
microTrait pipeline (“microTrait-HMMs”), with cross-references (“dbxref”) to KEGG,
EC, and Transporter Classification Database.

Supplementary Table S3 | Evaluation of microTrait HMMs. Performance of
microTrait-HMMs with respect to cross-reference to KEGG orthologous families
(KO). For each model, the model score maximizing F-score for the corresponding
KO is used as a trusted cutoff.

Supplementary Table S4 | microTrait rules. Each microTrait rule is a boolean
expression for presence/absence of microTrait HMMs or other microTrait rules.

Supplementary Table S5 |Mapping ofmicroTrait rules to themicroTrait hierarchy.
microTrait traits are either of type binary or count. Count traits can be counted by
themselves or by their substrate (microtrait_rule-type = “count_by_substrate”) in
case of transporters. Refer to ST6 for the mapping between substrates and the
microTrait hierarchy.

Supplementary Table S6 | Classification of substrates for substrate uptake and
degradation by chemical class.

Supplementary Table S7 | microTrait traits by strategy, type (i.e. binary, count),
and granularity.

Supplementary Table S8 | References for genome-derived features underlying
ecological traits.

Supplementary Table S9 | Selected GOLD genomes of organisms isolated from
aquatic or terrestrial environments. Environmental isolate genomes
(GOLD_organisms:Cultured == “Yes” AND GOLD_organisms:Ecosystem ==
“Environmental”) from GOLD database (https://gold.jgi.doe.gov/) were selected
and filtered using ecosystem category and sample collection site (GOLD_
organisms:Ecosystem Category == “Aquatic OR Terrestrial” OR GOLD_
organisms:Sample Collection Site (MIGS-13) == “soil OR sediment OR
rhizosphere”).

Supplementary Table S10 | Taxonomic breakdown of selected GOLD genomes.

Supplementary Table S11 | Mapping between taxa and functional groups based
on Faprotax database. Faprotax (Functional Annotation of Prokaryotic Taxa) (http://
www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download) is a
database that maps prokaryotic clades (e.g. class, order, family, genus, species) to
metabolic functions. For comparison with microTrait rules for the same metabolic
functions, we resolved the listed taxa names to standard names, which are listed in
this table (column: taxa).

Supplementary Table S12 | Mapping of Faprotax taxa name to the NCBI taxa
name.

Supplementary Table S13 | Functional group assignments with Faprotax and
microTrait. Each GOLD genome was assigned to a Faprotax functional group by
taxonomy (i.e. based on Faprotax database as in ST11) and bymicroTrait (i.e based
on genome sequence).

Supplementary Table S14 | Evaluation of microTrait traits (genome-based) with
respect to Faprotax functional groups (taxonomic name based). For each functional
group, validity of microTrait predictions is evaluated based on Faprotax
classifications (T: number of microTrait predicted positive genomes, N: number
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of microTrait predicted negative genomes, TP: number of true positive genomes,
TN: number of true negative genomes, FP: number of false positive genomes, FN:
number of false negative genomes, TPR: true positive rate, TNR: true negative rate).

Supplementary Table S15 | Correlations between traits. Spearman’s rank
correlation coefficient between pairs of traits.

Supplementary Table S16 | Guild trait profile matrix. Trait profiles (microTrait
granularity 3) for defined guilds as mean trait values.

Supplementary Table S17 | Guild taxonomic profiles. Taxonomic profiles for
defined guilds as relative abundance of genome taxonomy (phylum, class, order,
family, genus).
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Microbial time-series analysis, typically, examines the abundances of individual taxa over
time and attempts to assign etiology to observed patterns. This approach assumes
homogeneous groups in terms of profiles and response to external effectors. These
assumptions are not always fulfilled, especially in complex natural systems, like the
microbiome of the human gut. It is actually established that humans with otherwise the
same demographic or dietary backgrounds can have distinct microbial profiles. We
suggest an alternative approach to the analysis of microbial time-series, based on the
following premises: 1) microbial communities are organized in distinct clusters of similar
composition at any time point, 2) these intrinsic subsets of communities could have
different responses to the same external effects, and 3) the fate of the communities is
largely deterministic given the same external conditions. Therefore, tracking the transition
of communities, rather than individual taxa, across these states, can enhance our
understanding of the ecological processes and allow the prediction of future states, by
incorporating applied effects. We implement these ideas into Cronos, an analytical pipeline
written in R. Cronos’ inputs are a microbial composition table (e.g., OTU table), their
phylogenetic relations as a tree, and the associated metadata. Cronos detects the intrinsic
microbial profile clusters on all time points, describes them in terms of composition, and
records the transitions between them. Cluster assignments, combined with the provided
metadata, are used to model the transitions and predict samples’ fate under various
effects. We applied Cronos to available data from growing infants’ gut microbiomes, and
we observe two distinct trajectories corresponding to breastfed and formula-fed infants
that eventually converge to profiles resembling those of mature individuals. Cronos is freely
available at https://github.com/Lagkouvardos/Cronos.

Keywords: microbial profiles, microbiome, machine learning, De novo clustering, microbial communities, infant gut
maturation, multinomial logistic regression, time-series
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1 INTRODUCTION

Advances in sequencing technologies allowed the investigation of
diverse environments in terms of bacterial community structure
as standardized practice (Mukherjee et al., 2021). Studies of
microbial communities over time are steadily gaining in
popularity compared with the majority of studies, in which a
single time point is investigated, allowing for a further
understanding of community dynamics.

Microbial communities consist of multiple species entangled
in complex interactions that affect their individual behavior,
overall system dynamics, and environmental niche properties
(Stubbendieck et al., 2016). Internal phenomena include direct
interactions, such as mutualism (Morris et al., 2013) or
competition (Stubbendieck et al., 2016) and indirect
interactions, such as quorum sensing (Miller and Bassler,
2001). Internal interactions in combination with external
factors, such as antibiotics (Iizumi et al., 2017), infants’ birth
mode, or diet (Kim et al., 2019), affect the individual bacteria
behavior and shape the environment landscape (Tan et al., 2021).
Therefore, a complete understanding of microbial systems can
only be achieved by studying the overall microbial communities
rather than each microbial organism in isolation.

Time-series analysis of abundance and co-occurrence of
microbes have been investigated mainly via traditional
statistical methods (Chaffron et al., 2010; Steele et al., 2011).
Several bioinformatic tools for bacterial time-series analysis have
been developed, exploiting the increasing data availability. These
tools, along with other studies, focus mainly on single or specific
taxa and their relative abundance over time (Vergin et al., 2013;
Sharon et al., 2013; Xia et al., 2011; Ki et al., 2018; Zhang et al.,
2019). However, those approaches inherit the limitations and
assumptions of the statistical methods used. Relying on
experimental design labels may mask distinct patterns or
structures in each group and therefore misinterpret the
microbial community trajectories. Often, abundance values for
a given group of samples at a time point can exhibit multiple
modes implying the existence of more than one underlying
distribution. Comparing values among time points with
statistical methods relying on means or ranks is not
appropriate for multimodal datasets.

In the first 2 years of life, the gut microbiome is subjected to
many compositional changes (Bäckhed et al., 2015; Stewart et al.,
2018). The procedure toward the adult microbiome is often called
maturation (Mesa et al., 2020). Evidence suggests an association
between infant gut bacteria and diet (Pannaraj et al., 2017; Jiang
et al., 2018; Camacho-Morales et al., 2021), the way the infant was
delivered (Jakobsson et al., 2014), antibiotic usage (Korpela et al.,
2020; Lemas et al., 2016), maternal body mass index (Soderborg
et al., 2018), or even environmental factors (Sugino et al., 2021).
Alterations of the human gut microbiome during the maturation
procedure motivate the analysis of microbiome profiles using
time-series approaches.

In this study, we propose a novel framework for microbial
community time-series data analysis. Embedded in an R-based
tool, Cronos, is based on the following premises and concepts.
Intrinsic microbial community structures within a time point are

shaped due to specific attractor states (Estrela et al., 2022;
Goldford et al., 2018). These states can be identified by
unsupervised machine learning techniques. Microbial
communities’ evolution can be explored by capturing
transitions among attractor states over time. We developed an
implementation of this concept in Cronos software. Cronos
applies machine learning techniques to analyze complete
microbial profiles over time and describe the attractor states
(Costea et al., 2018). Our software explores the microbial
community profile evolution by capturing transitions among
clusters over time. As a consequence, it is able to predict
future community structure states. Cronos is freely available,
as an open-source code at https://github.com/Lagkouvardos/
Cronos.

2 MATERIALS AND METHODS

Cronos is an R script that performs the tasks of 1) dividing and
labeling the samples based on the time points, 2) calculating the
pairwise UniFrac distances among the samples at every time point,
3) performing de novo clustering of the samples profiles, 4)
calculating and visualizing the taxonomic representation of
clusters, 5) applying Markovian property test, 6) transition
modeling based on given metadata, and 7) predicting future states.

Cronos functions rely on R packages ade4, dplyr, GUniFrac,
phangorn, cluster, fpc, markovchain, spgs, caret, nnet, gtools,
mclust, igraph, and network, which Cronos installs automatically
if required, along with all of their dependencies. Cronos requires
three files as inputs. A table of microbial profiles (e.g., OTU or
ASV abundance tables), a mapping file containing information
about the time points and the corresponding metadata of the
samples, and a phylogenetic tree of all taxa in the profiles table.

2.1 De novo Clustering, Evaluation, and
Validation
Cronos calculates the GUniFrac, a beta-diversity distance metric
variant (Chen et al., 2012) of the UniFrac distance methods
(Lozupone and Knight, 2005), for each pair of samples at
every time point, using the phylogenetic tree input, to create a
dissimilarity matrix. Then, de novo clustering is performed via the
partitioning around medoid (PAM) method (Schubert and
Rousseeuw, 2021; Costea et al., 2018). Cronos assesses the
optimal number of clusters via the Calinski–Harabasz index.

Cronos applies a brute force method to select the optimal
number of clusters at every time point. Clustering via PAM is
performed using as the number of clusters (k) all the numbers
between two and nine. Due to computational constraints, the
maximum number of clusters was set to nine. The optimal
number of clusters is assessed using the Calinski–Harabasz
index (Calinski and Harabasz, 1974) also known as the
variance ratio criterion, from the fpc R package. The
Calinski–Harabasz index is translated into the ratio of the sum
of between clusters dispersion to intercluster dispersion. Higher
Calinski–Harabasz index values indicate better clustering
performance.
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Calinski–Harabasz (s) index is calculated as

s � tr Bk( )
tr Wk( ) p

n − k

k − 1
( ) (1)

where n is the sample size divided into k clusters, tr (Bk) is the
trace of the between cluster dispersion matrix, and tr (Wk) is the
trace of the within-cluster dispersion matrix defined by

Wk � ∑
k

p�1
∑
x∈Cp

x − Cp( ) x − Cp( )
T

(2)

Bk � ∑
k

p�1
np Cp − CE( ) Cp − CE( )

T
(3)

where Cp is the set of points in cluster p, CE the center of cluster E,
and np the number of points in cluster p.

In order to achieve high clustering resolution but avoid
overclustering, we determined the optimal number of clusters
based on two rules: The maximum consecutive

Calinski–Harabasz score difference and the difference between
the absolute maximum of Calinski–Harabasz scores and the one
with the highest difference. Such an approach, empirically,
demonstrated both high clustering resolution and avoided
meaningless overclustering.

First, we calculate the Calinski–Harabasz indexes for two to nine
clusters. Second, we calculate the difference between
Calinski–Harabasz indexes for every two consecutive numbers of
clusters and select the highest. Third, we calculate the difference in
Calinski–Harabasz scores between the preselected and the absolute
maximum of CH scores.

k � argmax Sk( ) ifmaxSk −maxSargmax Sk−Sk+1( ) ≥ max Sk − Sk+1( )| |
argmax Sk − Sk+1( ) ifmaxSk −maxSargmax Sk−Sk+1( ) < max Sk − Sk+1( )| |{

(4)
The optimal number of clusters is selected as

the absolute maximum of Calinski–Harabasz scores

FIGURE 1 | Clustering performed on a manually created dataset demonstrating the added insight on the structure achieved by selecting the number of clusters based
on clustering quality drop rather than simply using the clustering with the maximum score. (A) Calinski–Harabasz indexes calculated for PAM clustering with k ranging from
2 to 6. Although k = 2 shows the highest score suggesting the existence of two primary groupings in the dataset, k = 3 also fits well into the dataset, revealing the composite
nature of the second cluster. Further subclustering results in a large drop in the clustering quality suggesting that the dataset does not fit well to the number of clusters (B)
MDS plots of the dataset at different de novo clustering levels (i) MDS plot of the unclustered dataset, (ii–v) PAM clustering of the dataset for k = 2–5.
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if maxSk −maxSargmax(Sk−Sk+1)≥ |max(Sk − Sk+1)| or the
preselected k maxSk −maxSargmax(Sk−Sk+1)< |max(Sk − Sk+1)|.

The motivation behind this approach is that if we rely only
on the maximum CH score, we will detect just a crude clustering
of the data, overlooking, thus, any fine data clustering
(Figure 1). By assessing the value of k by the Eq (4), we will
obtain the highest possible resolution on a given time point (any
further refinement will diminish the clustering quality) while
keeping the CH score of clustering close to the absolute
maximum score. To highlight this approach we created a
hypothetical dataset manually derived from three Gaussian
distributions with standard deviations of 0.1, 0.4, and 0.6 and
means (6.5,6.5), (3,3), and (4,4), respectively. The absolute
maximum Calinski–Harabasz value indicates that the optimal
number of clusters for this dataset is 2, even though we
manufactured the dataset from three different Gaussian
distributions (Figure 1).

Since PAM clustering will divide the dataset into at least two
groups even when data contain no clusters, Cronos also performs a
validity check of clustering. To address this issue, we apply a
Bayesian information criterion (BIC)-based methodology to
evaluate whether k clusters (k > 1) are better than a scenario
with no clusters for each time point. We apply Gaussian mixture
model (GMM) clustering with 1 and the optimal number k of
clusters as components, using the mclust R package. To compare
the two clustering outcomes from GMM, the BIC score was
calculated using the same R package.

2.2 Transition Analysis
Clustering at each timepoint results in the characterization of
samples over time. To further understand the evolution of the
microbiome profiles, Cronos primarily checks for the Markovian
property of the transitions of clusters from each time point to the
next. A transition acquires the Markovian property when it
depends only on the current state and not on any previous one.
A custom test was created to verify the first-order Markovian
assumption (i.e., future state does not depend on the exact previous
one but only the current) among the transitions of all samples
based on the verifyMarkovProperty test ofmarkovchain R package.
The test examines all successive triplets of time points, in terms of
states–cluster assignments. Let x1, x2, . . ., xN be a set of
observations with N the optimal number of clusters selected
and nijk is the number of times t (1 ≤ t ≤ N − 2) such that xt =
i, xt+1 = j, xt+2 = k; then, if the Markov property holds, nijk follows a
Binomial distribution with parameters nij and pjk.

A classical chi-square test can check this distributional
assumption, since

∑
i

∑
j

∑
k

nijk − nijpjk( )
2

nijpjk
~ χ2 d( ) (5)

where d is the number of degrees of freedom. The number of
degrees of freedom d of the chi-square distribution is given by d =
r − q + s − 1, where s denotes the number of states i in the state
space such that ni > 0, q denotes the number of pairs (i, j) for
which nij > 0, and r denotes the number of triplets (i, j, k) for
which nijk > 0.

2.3 Transition Modeling
Cronos models the states at each time point (response variable)
as a function of the metadata at this time point and the state at
a previous time point (explanatory variables) by applying
multinomial logistic regression via the multinom function
of the nnet R package. For each time point, we create a
matrix of explanatory variables using the cluster label on a
given time point and the metadata as columns and the samples
as rows.

To evaluate the predictions, Cronos divides the dataset into
training and test sets using two different methods. First, we apply
a leave one out (LOO) procedure, where all the dataset is used to
train the model except one sample, which is used as the test set.
The second method refers to stratified splits, which is performed
via the createDataPartition function of the caret R package and
splits the dataset into train and test sets with the same ratio of
samples per label.

Cronos evaluates the accuracy of classification as the
percentage of correct predictions that the model made:

A � correctPredictions

N
(6)

where N is the number of samples on the set and returns the mean
accuracy over a prespecified number of iterations for both the
training and the test sets, all the divisionmethods, and all the time
points used to create the models. Mean accuracy of a model is
calculated as follows:

Acc � 1
T
∑
T

i�1

correctPredictions

N
(7)

where N is the number of samples on the set and T is the number
of iterations. Partitions with the LOOmethod are iterated over all
samples, whereas the stratified splits method assigns samples on
the test set ensuring that the train and test sets have
approximately the same percentage of samples of each target
class as the complete set.

Cronos performs classification to predict the cluster on all
time points but the first, with both partitioning methods for all
the possible combinations of metadata provided, combined
with cluster assignment, including models without metadata,
both for the training and test sets. The classification
performance of Cronos is compared to the random
classifier, which labels all the possible outcomes of the
predicted variable with the same frequency. Cronos’
complete pipeline is shown in Figure 2.

2.4 Cluster Representation
Every cluster of microbial profiles is represented via its
medoid. Cronos describes every medoid composition at all
taxonomic levels above the genus to provide further insight
into its community structure via binning (cumulative
abundance of all OTUs/ASVs belonging to the same taxon).
Furthermore, the profiles are illustrated as barplots. To
enhance the visualizations, there is an option to
agglomerate low abundance taxa into the category called
“Others” using a selected by the user threshold (default 5%).
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2.5 Case Study
Cronos was tested on the fecal microbiome data from a study
investigating the effects of formula milk and breastfeeding on
infants’ gut microbiome over the span of 2 years (Bazanella et al.,
2017). The dataset consists of 106 infants from theMunich region
with samples taken over 1, 3, 5, 7, 9, 12, and 24 months of age.
Information on the mode of delivery (vaginal or Cesarean) was
available and taken into account in our analysis. In addition to the
infant data, we used as a reference for matured gut microbiome

the sequence data from the stool samples from 216 healthy lean
students of the Technical University of Munich. None of the
students had been taking antibiotics in the last 3 months, had any
known diseases, or were on long-term medication. The
preprocessing of the raw data was performed with the IMNGS
platform (Lagkouvardos et al., 2016) implementing the UNOISE
version 3 (Edgar, 2016) and UPARSE (Edgar, 2013) pipelines,
using the default parameters. The primary analysis outputs were
used as inputs in Cronos. The raw data of the two studies are

FIGURE 2 |Cronos’ pipeline. The first section illustrates the procedures on Cronos from obtaining the data to forming complete clustering assignments.The middle
section demonstrates the modeling of transitions from clusters on a time point to any later. The third section displays the prediction procedure and classification metrics.
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publically available at European Nucleotide Archive under
accessions PRJEB21196 and PRJEB47555.

3 RESULTS

We applied Cronos to the data retrieved from the infant study
of Bazanella et al. (2017) combined with the healthy students
reference dataset. The samples were characterized in terms of
OTU abundance via the IMNGS platform; the outputs were
used as direct input for the Cronos tool.

3.1 De novo Profile Clustering
The Calinski–Harabasz indexes calculated for each clustering
procedure are graphically demonstrated and stored
automatically using Cronos (Supplementary Figure S1).
Cronos’ automated method for selection of the optimal
number of the de novo clusters suggested that partitioning
the data into two or three groups reflects the intrinsic

organization of the microbial profiles of the infants at each
time point and of the students used as an external reference
(Table 1).

3.2 Maturation Process
Maturation, as a time-dependent process, is illustrated in
Cronos via an MDS plot of all cluster medoids, to compare
the relative distances between clusters within the dataset and
any external reference time point given. Every microbiome
profile cluster is represented by its medoid. The evolution
trajectory of the microbiome over time is demonstrated by
connecting the medoids as shown in Figure 3.

Microbiome profiles of 24 months of age children are
relatively close to the adult external references, whereas
early life clusters occur closer to each other, highlighting
the maturation process. Three main areas of microbiome
profile similarity are shown in the graph. The first, on the
bottom left side, contains almost half of the early life clusters,
dominated by breastfed infants. The top center one contains
almost the other half of early life clusters and the bottom right
one holds the external reference and 2-year-old clusters. The
average distance of infant clusters on all time points compared
to the external reference clusters of students decreases as the
infants age (Supplementary Figure S5), emphasizing the
maturation process, as older infants have microbial profiles
relatively closer to the adult students.

3.3 Sample Transitions Through Time
Sample transitions between clusters over time are visualized
in Cronos via Alluvial graphs (Figure 4). For the first months

TABLE 1 |Optimal number of clusters selected automatically in Cronos for all time
points. The first row represents the time point in months of age, whereas the
second shows the different number of similar microbiome profiles.

Time
point
(Months
of age)

1 3 5 7 9 12 24 References

Optimal Number of Clusters 2 3 2 2 3 3 2 3

FIGURE 3 |MDS graph of cluster medoids of all clusters on all time points and the external reference as produced by Cronos. TP represents the time point and CL
the cluster. MM abbreviation stands for mature microbiome and refers to the external reference samples. Circle size is relative to the percentage of the samples found to
belong in the cluster, whereas the connecting arrows are directed from the earliest to the latest time point and their width is relative to the percentage of the samples
following the transition.

Frontiers in Bioinformatics | www.frontiersin.org August 2022 | Volume 2 | Article 8669026

Litos et al. Cronos Microbiome Analysis Over Time

216

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


and until the seventh month of age, infants’ profiles show
common transition patterns switching largely in unison
among the time point clusters. At later time points, the
infants’ microbiome endures many changes in terms of
composition, illustrated by cluster alterations (samples
entangled between clusters) on consecutive time points. As
the infants age, their microbiome profiles tend to
converge toward the adult reference. Longer periods
between sampling and the introduction of a third cluster
on 9 and 12-month-old children might explain the increase in
sample transitions between clusters during these stages.

3.4 Cluster Representation
Every cluster is represented by its medoid. Cronos’ automated
pipeline describes and illustrates the microbial composition
of all cluster medoids on all taxonomic levels above genus
(Supplementary Tables S1, S2, S3). The representation of
all clusters on a family level is shown in
Figure 3 (Supplementary Figures S3, S4 on Order and
Class levels).

The relative distances of cluster profiles can be shown even
at a family level, highlighting the importance of a beta-
diversity distance metric and the final number of cluster
decisions. Clusters of 1-month-old infants are highly
associated with the two types of diet. TP1-CL1 contains
significantly more breastfed infants than expected (one-
sided x2 test p = 0.00035), whereas TP1-CL2 contains more
than expected formula-fed infants (one-sided x2 test p =
0.03069). TP1-CL1 is dominated by the Bifidobacteriaceae
family, whereas TP1-CL2 has a more diverse profile, with
lower Bifidobacteriaceae and higher Streptococcaceae and
Enterobacteriaceae abundances (Figure 5). Clusters of 3, 5,
and 7 months of age have similar compositions (Figure 5),
reflected as close relative distances in the multidimensional
scaling projection (MDS plot, Figure 3). The majority of 9-
and 12-month-old infants’ profiles start diverging. TP9-CL1
and TP12-CL1 represent late immature profiles, where the
Bifidobacteriaceae family dominates. TP9-CL2 and TP12-CL2
show an increase in Bacteroidaceae family abundance,
whereas TP9-CL3 and TP12-CL3 have a higher abundance
of the Lachnospiraceae family (Figure 5). Microbial profiles
of 2-year-old infants separate into two clusters, where the
feeding groups co-occur. Thus, there is no association
between the two types of diet and microbial profile
clustering for any of the two clusters (one-sided x2 test p =
0.65 and 0.45, respectively). TP24-CL1 and TP24-CL2 are

FIGURE 4 | Alluvial graph of sample transitions between clusters over
time. NAs represent nonavailable data for the corresponding time point,
whereas 1, 2, and 3 represent the cluster on the corresponding time point.

FIGURE 5 | Every cluster composition at a family level. TP stands for time point and Cl for the cluster. Families with an abundance lower than 5% across all medoids
are cumulatively shown as Others.
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characterized by higher Bacteroidaceae and Lachnospiraceae
abundances, respectively, whereas both contain a sizable
proportion of Ruminococcaceae (20%). Clusters of 2-year-
old infants are relatively closer to the reference profiles of
mature individuals. The reference group is partitioned into
three clusters that resemble the described enterotypes with
MM-CL1 being the “Bacteroides” group, MM-CL2 the
“Prevotella” and MM-CL3 the “Ruminococcus” group
(Arumugam et al., 2011).

3.5 Transition Modeling
The dataset was split into train and test sets with the
aforementioned methods (LOO and stratified splits).
Microbiome profile transitions between clusters on
different time points of all possible train sets were modeled
by Cronos via multinomial logistic regression.
Furthermore, using the model created by the training sets,
Cronos predicted the clusters on all time points of the samples
based on the provided matrix with metadata.
Prediction performance was evaluated via the accuracy
metric. The achieved accuracies are visualized in Cronos
with multiple barplots according to the predicting and
explanatory time point. Moreover, Cronos’ automated
pipeline creates heatmaps for both splitting methods
(Figure 6).

All the predictions made by Cronos are compared to a
trivial classifier, the random one, where the probability of all
clusters is equal (i.e., 1/N where N is the number of clusters
Supplementary Tables S4, S5 show the comparison of the
highest accuracies achieved from models with LOO and

stratified splits methods to the trivial random classifiers into
the test sets).

4 DISCUSSION

4.1 De novo Clustering and Cluster
Validation
We apply a “Zoom out” methodology by assessing every sample
as its whole microbial profile, rather than individual taxa. Cronos’
automated pipeline incorporates the beta-diversity distance
between samples by exploiting the advantages of the GUniFrac
distance metric. Dirichlet multinomial mixtures (Holmes et al.,
2012) widely used on microbiome data (Hosoda et al., 2020;
Subedi et al., 2020) assume a prior distribution and are based on
the abundances. Here, de novo clusters reflect the profile distance
between samples adding another layer of information. For the
clustering of the samples, we apply the partitioning around
medoids algorithm, which allows us to represent every cluster
by its medoid. This method has been successfully applied in
studies spanning from the gut (Stokholm et al., 2018; Khine et al.,
2019; Lee et al., 2020) to saliva (Acharya et al., 2017) microbiome.

De novo clustering is applied to all time points separately to
specify the exact stages and future transitions of the microbial
profiles. The maturation process through clustering has been
well established (Stewart et al., 2018; de Muinck and Trosvik,
2018), whereas the divergence in specific time points remains
unexplored. Here, by dividing the dataset into time points and
applying clustering procedures to all, we provide a deeper
understanding of microbial profile divergence.

FIGURE 6 | Heatmaps presenting the prediction accuracies achieved from leave one out (A) and stratified splits methods (B) respectively. Time points from which
predictions are made are shown on the x axis while predicting time points are represented on the y axis.
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Anovel approach is incorporated to effectively divide the samples
at a time point into clusters of a similar microbial profile, based on
the GMM clustering algorithm (Pasarkar et al., 2021; Zhang et al.,
2017). We compare clustering results for the optimal number of
clusters to 1 as GMM components, in order to examine whether the
data effectively separate.

4.2 Transitions Through Time and Modeling
Exploring the sample transitions between clusters at different
time points enables the understanding of the effectors that shape
a microbial profile’s fate. Manymachine learning techniques have
been applied to microbiome data (Marcos-Zambrano et al.,
2021). Cronos operates under the assumption that minor
compositional differences among the members of a certain
cluster of profiles are less important when the fate of the
community as a whole is examined. When this assumption is
not fulfilled and the presence or absence of taxa with little
contribution to the overall cluster assignment determines the
future of the community structure, the accuracy of the method
might be low. The selection of cluster assignment rather than taxa
abundances, and the introduction of metadata results in a small
number of explanatory features. Due to the low number of
features and interpretability losses that come with high
complexity classification algorithms (Marcos-Zambrano et al.,
2021), we select multinomial logistic regression, a method widely
used on microbiome data (Kaszubinski et al., 2020; Lundgren
et al., 2018; Xia et al., 2013) to model the transitions between
clusters on different time points.

The importance of features on microbial profile fate is
translated as predictability. Features or combinations of
features that can better interpret cluster assignment on
predicting time points are deemed to be the most important
in the development of the microbiome profile in the time between
examining and predicting time points. Cronos models for every
possible transition and possible mixture of features to fully reflect
the predictability of features on all combinations of timepoints
and overall, aiming to detect the best time for interventions to
steer a microbial profile’s fate. Every model designed in Cronos is
compared to the trivial random classifier that predicts all classes
with equal probability.

4.3 Maturation
Our findings are in accordance with the well-documented
microbiome patterns of early life. Breastfed infant profiles
consist, mainly, of Bifidobacteriaceae family members,
whereas formula-fed infants show higher diversity,
colonized earlier by Enterobacteriaceae, Bacteroidaceae, and
Lachnospiraceae members (Milani et al., 2017; Fallani et al.,
2011; Koenig et al., 2011). Furthermore, our analysis, captures
the decrease in Bifidobacteriaceae and the gradual increase of
Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae

relative abundances, after the introduction of solid food,
until the second year of life as established before (Laursen
et al., 2016; Fallani et al., 2011). Cronos provides comparisons
of taxonomic composition for the cluster medoids as a proxy of
the corresponding cluster. The statistical comparisons of
similar profiles fall outside of the scope of the tool.
Therefore, using the outputs of Cronos, external tools like
Rhea (Lagkouvardos et al., 2017) or QIIME (Caporaso et al.,
2010) can easily perform these statistical comparisons of
taxa among clusters, considering all their constituting
members.

5 APPLICATIONS AND FUTURE WORK

Cronos is a bioinformatic tool that could also be used for other
types of environments where bacterial communities dominate,
such as soil or marine over the course of the year or several
years, aiming to understand the microbiome progression or
the suitable response to direct the microbial composition of the
environment. Uses of Cronos extend from natural
environments to man-made environments, such as open
pond bioreactors. Possible uses might also include human
gut microbiome over the progression of diseases, sampling
over different stages of the disease, aiming to discover the
proper antibiotic response or microbiome role in disease
progression and phenotype.

For further understanding of infant gut microbiome profiles,
more data are required, since the dataset used here as a case study
was obtained from a limited geographical region and thus may
not include all the possible states. Greater sample size could
furthermore benefit the prediction of future states by training a
model with more samples.

In future versions of Cronos, we want to include more
classification techniques, such as random forest and support
vector machines to acquire models that could enhance our
transition description. In addition, we would like to introduce
further classification performance metrics, such as precision,
recall, and F1-score in order to represent model prediction
performance extensively. Moreover, we would like to add
further clustering performance metrics, such as the Akaike
information criterion and silhouette coefficient to further
describe cluster divergence.
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