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Editorial on the Research Topic
Human-centred computer audition: sound, music, and healthcare
1. Introduction

At the time of writing this editorial, OpenAI has announced its newest model called

chatGPT-4 Turbo.1 When dreaming for the blue print that we can better the life via this

revolution of AI technologies by foundation models, it is a time for almost every person

to think how to live with the powerful artificial intelligence (AI) models in the future.

A future that may also challenge our societies and current living in many ways (1)

including or even particularly in healthcare (2). Thinking especially of audio, a similar

rise of increasingly capable and powerful foundation models appears at highly accelerated

pace and with increasingly emergent behaviour. One of the latest at the time of writing is

Uniaudio—showing an overly impressive range of zero-shot abilities (3).

For a long time in the field of health, machines have been taught to “see” and/or to

“read” rather than to “listen.” This is one of the reasons why more progress was achieved

in the field of computer vision (CV) and natural language processing (NLP) rather than

computer audition (CA) in this domain. Nevertheless, the promising contributions of

audio cannot be ignored for its excellent performance in healthcare (4).

Motivated by the concept of human-centred AI (HAI), we organised the research topic

on “Human-Centred Computer Audition: Sound, Music, and Healthcare,” which lasted from

April 2021 to January 2023. Finally, 10 articles were accepted and published after a rigorous

peer-review process. There are 57 authors involved in this research topic.
1https://openai.com/blog/new-models-and-developer-products-announced-at-devday
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In the remainder of this editorial, we will briefly introduce the

published research articles in this research topic collection. Then,

insights and perspectives will be given towards the future work.
2. Contributions

The published contributions have covered the planned scope,

e.g., computational analysis of sound scenes and events, digital

music, computer audition for healthcare, computational

paralinguistics, and explainable AI in computer audition. In the

following, grouped by categories, we provide a brief description

of the collected articles.
2.1 Fast screening of COVID-19

Whether audio could serve as a novel digital phenotype for

detection of COVID-19 has been increasingly studied in the past

three years (5, 6). Coppock et al. summarise the contributions in

the organised INTERSPEECH 2021 Computational

Paralinguistics Challenges: COVID-19 Cough, (CCS) and

COVID-19 Speech, (CSS) (7). They indicated that, a classifier

trained by the infected individuals’ respiratory sounds can

achieve moderate detection rates of COVID-19. However,

whether the audio biomarkers in respiratory sounds of infected

individuals are unique for COVID-19 or not is still a question to

be answered. Chang et al. introduced a “CovNet” which uses a

transfer learning framework to improve the models’

generalisation. Experimental results show their models’ efficiency

by considering a parameter transferring strategy and an

embedding incorporation strategy. Akman et al. propose an end-

to-end deep neural network model (called “CIdeR”) for exploring

the methodological adaptation to new datasets with different

modalities. From the experiments, their proposed model can

serve across multiple audio types. However, they found that it is

difficult to train a common COVID-19 classifier due to the

limitations of a joint usage of datasets.
2.2 Domestic activity

Audio tagging of domestic activities can provide important

information on health and wellbeing. Yang et al. present an

explainable tensor network for monitoring domestic activities via

audio signals. They indicated that, the combination of the tensor

network can reduce the redundancy of the network.
2.3 Music and brain

Music therapy appears promising for its non-drug

characteristic, specifically for treatment of mental disorders (8).

However, the influences of music on the brain are still an open

question to be answered. Wei et al. contribute a review on

neurocognition for timbre perception. They conclude that, timbre
Frontiers in Digital Health 025
perception is promising in psychological application. Further. Liu

et al. studied timbre fusion of Chinese and Western instruments.

This bears interest, given that in a recent study, timbre features

are found to be strongly associated with the human affective

states (9). Next, Miyamoto et al. introduce a meta-learning

strategy in a music generation system. More fundamentally,

Corona-González et al. presented a study on personalised theta

and beta binaural beats for brain entrainment. The conclusion

made is that the neural resynchronisation was met with both

personalised theta and beta binaural beats whereas there seemed

to be no different mental conditions achieved.
2.4 Artificial hearing

A disyllabic corpus that could be used to examine the

performance of pitch recognition of cochlear implant users was

introduced. Wang et al. found that, higher scores of tone

recognition tend to be achieved by listeners with longer cochlear

implant listening experience.
2.5 Speech emotion recognition

Speech emotion recognition is a widely-studied field in affective

computing. The combination of task-specific speech enhancement

and data augmentation as a strategy has been used for improving

the overall multimodal emotion recognition in noisy conditions.

This contribution of Kshirsagar et al. can benefit the speech-

based affective information retrieval task in real-world applications.
3. Insights and perspectives

When reading over the collection of this research topic, one

finds promising potential of computer audition that can benefit

manifold health-related aspects of our life. However, one needs

to fully consider the current limitations and keep an eye on the

future progress of computer audition.

First, data scarcity is still a serious challenge (10) that

constrains the fast development of audio based large models. The

hardware limitations and further factors impede the collection of

high-quality audio data at large scale which could provide

sufficient training for current state-of-the-art large models in this

domain. Besides, the annotation of audio data (specifically for

medical applications) is often difficult. Therefore, advanced

strategies such as meta-learning (11), and self-supervised learning

should be taken into account prior to the event of generalist

(medical) AI (12).

Second, fundamental studies on features, models, and strategies

are of interest but limited. Among this collection, we can see some

contributions focus on extracting novel audio features to improve

the performance of models. We hope to see more works in the

future towards the interpretation of the models (13).

Third, the mechanism of the brain’s perception of audio is

worth exploring in considerably more depth. It will not only be
frontiersin.org
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beneficial for building brain-inspired deep learning models, but

also for our understanding more deeply music/audio therapy.

Last but not the least, how to leverage the power of the coming

large models to discover more possibilities of computer audition is

an open question to be answered.
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Personalized Theta and Beta
Binaural Beats for Brain Entrainment:
An Electroencephalographic Analysis
César E. Corona-González* , Luz María Alonso-Valerdi and David I. Ibarra-Zarate

Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico

Binaural beats (BB) consist of two slightly distinct auditory frequencies (one in each ear),
which are differentiated with clinical electroencephalographic (EEG) bandwidths, namely,
delta, theta, alpha, beta, or gamma. This auditory stimulation has been widely used to
module brain rhythms and thus inducing the mental condition associated with the EEG
bandwidth in use. The aim of this research was to investigate whether personalized
BB (specifically those within theta and beta EEG bands) improve brain entrainment.
Personalized BB consisted of pure tones with a carrier tone of 500 Hz in the left
ear together with an adjustable frequency in the right ear that was defined for theta
BB (since fc for theta EEG band was 4.60 Hz ± 0.70 SD) and beta BB (since fc for
beta EEG band was 18.42 Hz ± 2.82 SD). The adjustable frequencies were estimated
for each participant in accordance with their heart rate by applying the Brain-Body
Coupling Theorem postulated by Klimesch. To achieve this aim, 20 healthy volunteers
were stimulated with their personalized theta and beta BB for 20 min and their EEG
signals were collected with 22 channels. EEG analysis was based on the comparison of
power spectral density among three mental conditions: (1) theta BB stimulation, (2) beta
BB stimulation, and (3) resting state. Results showed larger absolute power differences
for both BB stimulation sessions than resting state on bilateral temporal and parietal
regions. This power change seems to be related to auditory perception and sound
location. However, no significant differences were found between theta and beta BB
sessions when it was expected to achieve different brain entrainments, since theta
and beta BB induce relaxation and readiness, respectively. In addition, relative power
analysis (theta BB/resting state) revealed alpha band desynchronization in the parieto-
occipital region when volunteers listened to theta BB, suggesting that participants felt
uncomfortable. In conclusion, neural resynchronization was met with both personalized
theta and beta BB, but no different mental conditions seemed to be achieved.

Keywords: binaural beats, beta, theta, EEG, brain entrainment

Abbreviations: AP, Absolute power; BB, Binaural beats; BBC, Brain Body Coupling; BOLD, Blood Oxygen Level Dependent;
dB HL, Decibels hearing level; EEG, Electroencephalography; fc, Central frequency; FRear , Right ear stimulation frequency;
HR, Heart rate; PSD, Power spectral density; RP, Relative power; S1, Session 1 (theta BB); S2, Session 2 (beta BB); SPL, Sound
pressure level; SR, Resting state session.
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INTRODUCTION

In 1839, Heinrich Wilhelm Dove found that providing two
slightly different tone frequencies, one in each ear, were perceived
as a third phantom frequency depicted by the difference of these
two frequencies, which was called binaural beats (BB; Keeley,
2006). It was until the 1950’s when Robert Monroe formally
started to research the clinical application of BB, establishing
that the dissimilarity of both frequencies must be within the
electroencephalographic (EEG) spectrum, that brain entrainment
could be elicited (Berger and Turow, 2011). Later, Worden
and Marsh (1968) were investigating about electrophysiological
effects of sound on the brain. They found that an auditory
stimulus provokes a synchronous-neural evoked response which
reproduces the frequency and waveform of the incoming
stimulus throughout the central auditory pathway. This effect
was coined as Frequency Following Response (FFR; Marsh and
Worden, 1968; Worden and Marsh, 1968).

Neurons oscillate in several well-known EEG frequency bands.
These are delta (δ = 0.1–4 Hz), theta (θ = 4–8 Hz), alpha (α = 8–
13 Hz), beta (β = 13–30 Hz), and gamma (γ > 30 Hz). Normally,
delta band is present while deep sleep; theta band is in extremely
relaxation, drowsiness, or meditation; alpha is best seen at rest
with eyes closed; beta is present during problem solving and
focusing; and gamma is characterized by cognitive and motor
functions (Siuly et al., 2016). In terms of EEG frequency bands,
BB has a frequency difference within the band range of interest.
For each EEG frequency band, the following corresponding BB
can be generated: (1) delta BB, theta BB, alpha BB, beta BB, and
gamma BB. In theory, each BB produces neural oscillations at
the corresponding EEG frequency band, inducing the associated
mental state. Tone frequencies stimuli between 450 and 500 Hz
are recommended (García Argibay, 2018).

Theta and beta BBs are of particular interest since they may
cause states of relaxation and attentiveness, respectively, which
are opposite mental states so that they can be easily compared. In
a study performed by Jirakittayakorn and Wongsawat (2017b),
brain entrainment in theta wave was achieved when subjects
listened to a 6 Hz BB for 10 min, promoting meditative
states (Jirakittayakorn and Wongsawat, 2017b). Moreover,
overwrought states due to insomnia were diminished by theta BB
(Choi et al., 2019). In addition, beta BB has been used to improve
(1) short-term (Gálvez et al., 2018) and long-term memory
(García-Argibay et al., 2017), (2) working memory (Beauchene
et al., 2016), (3) focusing levels and problem solution (Simmons,
2016), and (4) attention (Park et al., 2018). Conversely, López-
Caballero and Escera (2017) disagree with brain entrainment
due to BB, since no differences in EEG power between baseline
and BB exposure were found while using theta, alpha, beta,
gamma, and upper gamma BB (López-Caballero and Escera,
2017). Additionally, other studies failed on promoting brainwave
entrainment using theta (Goodin et al., 2012; Orozco Perez et al.,
2020) or beta BB (Goodin et al., 2012; Vernon et al., 2012).
Another example is the work undertaken by Gao et al. (2014),
where EEG signals were studied while delta, theta, alpha, and beta
BB were applied. They did not find any brain entrainment after
20 min of BB stimulation (5 min per band, followed by a 2-min

break between bands). Nevertheless, relative power variations
within the four bands were thought to yield neural connectivity
changes (Gao et al., 2014).

As shown by past studies, contradictory findings have been
found. On one side, BB has shown to be successful in practice.
On the other side, no EEG modulation (brainwave entrainment)
has been achieved in all the BB studies. It is hypothesized that the
BB effect can be always achieved if individual frequency bands of
brain oscillations are found and used to generate BB. According
to the Brain Body Coupling (BBC) theorem established by
Klimesch (2018), brain and body (e.g., gastric waves, motion
oscillations, blinks, and heart rate) oscillations are coupled to
each other at rest (Klimesch, 2018). Therefore, individual brain-
body frequency bands can be found if one of the brain-body
oscillations is known, for example, heart rate (HR). On this basis,
it is proposed to generate personalized theta and beta BB in
accordance with individual theta and beta EEG frequency bands
(previously found by BBC theorem), and then analyze the EEG
modulation obtained after theta and beta BB exposure. For this
purpose, the present investigation was undertaken as follows.
First, 20 volunteers were recruited to whom audiometry was
applied, and resting HR was taken (see section “Participants”).
Second, theta and beta BBs were generated according to the HR
of a participant (see section “Binaural Auditory Stimuli”). Third,
the experiment was performed in two phases: (1) environment
for binaural stimuli, where subjects were instructed about the
experimental procedure (see section “Environment for Binaural
Stimuli”) and (2) presentation of binaural stimuli, where EEG
recordings were collected while participants were exposed to BBs
(see section “Presentation of Binaural Stimuli”). Finally, EEG data
analysis was carried out, which consisted in preprocessing (see
section “Preprocessing”), processing (see section “Processing”),
and statistical evaluation (see section “Statistical Evaluation”).

MATERIALS AND METHODS

Participants
For this study, 20 healthy students of Tecnológico de Monterrey
(six women and 14 men) aged between 19 and 24 years
old were recruited (i.e., a convenience sampling method was
undertaken). All of them reported not having musical experience
and voluntarily consented to their participation in the study. This
study was previously approved by the Ethical Committee of the
Medicine School at Tecnológico de Monterrey (CONBIOETICA-
19-CEI-011-20161017).

Data Acquisition and Equipment
To record EEG activity, the mBrainTrain system was used. This
is a Bluetooth-interface EEG device of 24 channels (Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz,
Pz, M1, M2, AFz, CPz, POz) positioned according to the 10/20
international system, as shown in Figure 1. The channels M1
and M2 were set as references and the channel FCz as ground.
The sampling frequency was 250 Hz. The mBrainTrain has the
Smarting Streamer software, which was used to verify electrode
impedances to be below 5 k�. To set up the experimental
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FIGURE 1 | 10/20 system. Electroencephalographic (EEG) montage consisted of 24 channels, whereby 22 of them were recording sites (yellow electrodes), one
reference (blue electrodes), and one ground (green electrode).

paradigm, OpenVibe was employed. OpenVibe is a free software
commonly used in the neuroscience field to design and test brain-
computer interfaces and to develop experimental paradigms for
offline records (Renard et al., 2010).

To perform the audiometry, an audiometer Interacoustics-
AD226 was utilized. Tonal audiometry within ranges from
250 Hz to 2 kHz was used to determine auditory thresholds.
Measurements were taken in dB HL. Finally, HR was taken with
pulse oximeter Hergom-MD300 and auditory stimuli was given
through open-back headphones SHURE-SRH1840.

Binaural Auditory Stimuli
According to Klimesch (2013), biosignals do not vary randomly
or arbitrarily. Namely, brain and body signals oscillations are
aligned with each other and form a single frequency architecture.
The interaction between brain and body may be described as
a complex system that couples and decouples according to a
specific harmony frequency described by,

fd (i) = s ∗ 2i (1)

where s is the scaling factor, i refers to the biosignal of interest,
and f is the fundamental frequency of the biosignal oscillation.
When i = 0, fd refers to cardiac activity. When i < 0, fd refers
to breathing rhythms (including Mayer waves that are the lowest
frequency in the respiratory process), blood pressure waves,
rhythmic fluctuations in the blood oxygen level-dependent
(BOLD) signal at intrinsic mode fluctuations, and gastric waves.
When i > 0, fd refers to brain oscillations [delta (i = 1), theta
(i = 2), alpha (i = 3), beta (i = 4), gamma (i = 5)]. In addition,
upper, and lower frequencies of each fundamental frequency can
be, respectively, estimated by,

ufb (i) =
1.25 × 2i+1

g
(2)

lfb (i) = (1.25 × 2i−1) × g (3)

Recently, Klimesch (2018) empirically demonstrated that the
resonance of a biosignal is harmonized with other ones at resting
state. Some examples are:
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• During respiration, HR increases at inhalation and
decreases at exhalation.
• Heart rate presents a clear tendency 10:1 frequency ratio

relative to breathing rate owing to energy demands and
emotional regulation.
• Gastric waves explain 8% of alpha band modulation of EEG

signals, and 15% of the BOLD variance is explained by
the gastric phase.
• The slow frequency that modulates the envelope of

the electromyographic signals is originated from
neural mechanisms of motor control and resonance
frequency of body parts.

In the light of the above evidence, this research proposes the
design of personalized BB based on individual HR. That is, when
i = 0 in Eq. (1) then,

fd (0) = s ∗ 20
= s = HR [Hz]

Having estimated s, central frequency (fc) of theta and beta EEG
rhythms were calculated in accordance with the individual HR
at hand. Note that resulting fundamental frequencies were not
subjective, they were rather relative to the human body function,
and their values are around the well clinically established
frequency bands.

As theta BB consisted of pure tones of 500 Hz for the left ear, fc
of theta EEG band was used to adjust the frequency for the right
ear (FR_ear). Similarly, beta BB consisted of pure tones of 500 Hz
for the left ear. Then, fc of beta EEG band was used to adjust the
frequency for the right ear. That is,

FR_ear = 500 Hz − fc (4)

The resulting EEG frequency bands for each volunteer, and
the corresponding BB produced after the individual EEG
frequency band identification, are reported in Table 1. The
computational algorithm to generate personalized BB in
accordance with the BBC theorem was programmed in MATLAB
programming language and was published in MathWorks File
Exchange Forum1.

Experimental Paradigm and Protocols
Each volunteer participated in two BB sessions on different days.
In the first session (S1), theta BB was applied, and in the second
session (S2), beta BB was used. Both BB exposures were for
20 min, since listening to BB longer than 20 min may lead
to mental fatigue (Jirakittayakorn and Wongsawat, 2017a). All
the participants were seated on a comfortable chair and in a
quiet room. All of them were asked to keep their eyes closed
during BB stimulation. The procedure was conducted in two
steps: (1) environment for binaural stimuli and (2) presentation
of binaural stimuli.

Environment for Binaural Stimuli
First, the purpose of the study was explained to the participant,
and after agreeing to their participation, they signed a consent

1https://www.mathworks.com/matlabcentral/fileexchange/99544-personalized-
binaural-beats-generator

form. Second, the Neurologic Evaluation Questionnaire from
Neuroscience Institute of University of Guadalajara (Balart
Sánchez, 2017) was applied to assess their medical history about
neurological health. Third, tonal audiometry and the HR at
resting state were taken. Audiometry and HR per volunteer
are reported in Table 2. Fourth, the volunteer was asked
to sit down and relax while putting on the EEG cap and
electrodes impedances were controlled to be kept below 5 k�.
Finally, paradigm instructions were given to the participant.
Figure 2 shows the whole preparation sequence. For S2, volunteer
preparation started from step 6 in Figure 2.

Presentation of Binaural Stimuli
First, volunteers were instructed to keep their eyes closed for
3 min. Hereinafter, this EEG recording is referred to as to baseline
or resting state session (SR). Second, volunteers were stimulated
with their personalized theta and beta BB for 20 min in S1
and S2, respectively. The sound level was 60 dB SPL for both
sessions (World Health Organization [WHO] and International
Telecommunication Union [ITU], 2019).

Signal Analysis
Power spectral density is a method to extract the power
content of a signal in the frequency domain. Power spectral
density (PSD) utilizes the Discrete Fourier Transform to obtain
the periodogram. Welch’s method is one of the most applied
algorithms to estimate PSD (Zhang, 2019). In this study, PSD was
calculated for the three different mental states: (1) SR, (2) S1, and
(3) S2. The analysis was carried out in two steps: (1) preprocessing
and (2) processing.

Preprocessing
Electroencephalographic signals were preprocessed in MATLAB
using the EEGLab toolbox, developed by the Swartz Center for
Computational Neuroscience at the University of California, San
Diego (Martínez-Cancino et al., 2020). For preprocessing, the
sampling frequency was 250 Hz, the Direct Current component
was removed, and a bandpass filter from 0.1 to 100 Hz was
utilized along with a band-stop filter for removing 59–61 Hz.
Both filters were IIR Butterworth 8th order. FCz was set as
the ground electrode and re-referencing was regarding M1 and
M2 average. Then, visual inspection was required for cleaning
up EEG signals from abrupt changes due to muscular artifacts.
Finally, Independent Component Analysis was applied for ocular
and cardiac artifacts removal. Figures 3A,B exemplify the
muscular and ocular artifacts of one of the volunteers. The raw
EEG data set is freely accessible and is available in the Mendeley
database at https://data.mendeley.com/datasets/ppz3r5j2n2/2.

Processing
To quantify BB effects, PSD was extracted from all volunteers in
SR, S1, and S2 conditions. For Fourier transform algorithms, such
as Welch’s method, stationarity must be satisfied. However, EEG
signals can be segmented into short windows where stationarity
is assumed (Nunez et al., 2016), especially when emotional
processes are mediated by visual or audio-visual stimuli (Aydın,
2020). For that reason, PSD was applied to each volunteer dataset
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TABLE 1 | Volunteer data.

Volunteer EEG fundamental frequency (fc) Theta BB (S1) Beta BB (S2)

Theta (Hz) Beta (Hz) Left (Hz) Right FRear (Hz) Left (Hz) Right FRear (Hz)

1 4.33 17.33 500 495.67 500 482.67

2 4.8 19.2 500 495.2 500 480.8

3 4 16 500 496 500 484

4 3.87 15.47 500 496.13 500 484.53

5 5.4 21.6 500 494.6 500 478.4

6 4.2 16.8 500 495.8 500 483.2

7 5.13 20.53 500 494.87 500 479.47

8 4.67 18.67 500 495.33 500 481.33

9 5.93 23.73 500 494.07 500 476.27

10 4.73 18.93 500 495.27 500 481.07

11 4.67 18.67 500 495.33 500 481.33

12 5.93 23.73 500 494.07 500 476.27

13 3.87 15.47 500 496.13 500 484.53

14 4.53 18.13 500 495.47 500 481.87

15 4.73 18.93 500 495.27 500 481.07

16 3.2 12.8 500 496.8 500 487.2

17 4 16 500 496 500 484

18 5.53 22.13 500 494.47 500 477.87

19 4.87 19.47 500 495.13 500 480.53

20 4.73 18.93 500 495.27 500 481.07

Mean 4.60 18.42 Mean 495.34 Mean 481.37

S.D 0.70 2.82 S.D 0.70 S.D 2.82

fc for theta and beta bands and FRear for BB customizing for S1 and S2.

TABLE 2 | Heart rate (HR) and audiometry values per volunteer.

Volunteer HR Right ear (dB) Left ear (dB)

250 Hz 500 Hz 750 Hz 1 kHz 1.5 kHz 2 kHz 250 Hz 500 Hz 750 Hz 1 kHz 1.5 kHz 2 kHz

1 65 25 10 15 0 0 0 10 10 10 5 0 0

2 72 15 10 10 5 5 0 20 10 10 5 0 0

3 60 15 10 10 10 0 5 10 10 10 5 5 5

4 58 25 20 15 15 10 5 20 15 20 15 10 15

5 81 10 10 5 5 10 10 10 5 5 0 5 5

6 63 20 5 10 5 10 5 10 10 5 5 5 0

7 77 10 5 5 10 0 0 5 5 5 0 0 5

8 70 10 15 15 10 5 5 5 10 10 10 5 5

9 89 20 10 15 10 10 5 10 5 10 5 5 0

10 71 5 15 10 0 0 0 15 20 15 5 0 0

11 70 10 15 15 10 5 5 15 15 15 10 5 5

12 89 20 15 10 15 10 5 15 5 10 10 5 0

13 58 10 5 10 10 5 0 0 5 5 5 0 0

14 68 5 0 0 0 5 0 0 5 5 0 0 0

15 71 10 5 5 5 5 0 15 5 5 0 5 0

16 48 15 10 10 5 10 5 20 10 10 5 5 0

17 60 5 5 10 5 10 0 10 5 5 0 0 0

18 83 30 25 15 10 5 5 25 15 20 10 5 0

19 73 5 5 10 5 10 0 10 5 5 0 0 0

20 71 15 10 10 5 10 5 10 10 10 5 10 0

HR was taken at rest in each volunteer, whereas audiometry was performed from 250 Hz to 2 kHz.
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FIGURE 2 | Environment for Binaural Stimuli. The preparation stage in S1 was about 47 min long. For S2, it was about 21 min long since the procedure started at
step 6 (sitting down the volunteer).

FIGURE 3 | Main EEG artifacts are ocular and muscular electrical activity. On the left (A), muscular artifacts are shown, and on the right (B), ocular artifacts are
presented. The sections shaded in blue indicate examples of the muscular (on the left) and eye (on the right) artifacts themselves.

using a windowing of 1 s and an overlapping of 50%. The analysis
was carried out taking into consideration two parameters from
PSD: (1) absolute power (AP) from SR, S1, and S2; and (2)
relative power (RP) from S1/SR and S2/SR. Analyzing AP can
provide spectral information regarding neural activity before and
after listening to theta or beta BB (Park, 2020). Thus, brain
entrainment can be identified in S1 if theta BB triggers the
highest AP in theta EEG band. Similarly, brain entrainment
can be detected for S2 if beta BB elicits the highest AP in
the beta EEG band. However, as comparing AP for the three
mental states, it is difficult to differentiate precise changes in
EEG frequencies. Therefore, using RP for S1/SR and S2/SR allows
to directly compare the influence of both theta and beta BB
over resting state, so that brain entrainment can be supported.
Figure 4 summarizes these two analyses.

Power Spectral Density – Absolute Power
Power spectral density was calculated for SR, S1, and S2 to obtain
the AP of each mental state. AP values were allocated in three

different matrices (one for each state), which dimensions refer
to volunteers (20) by channels (22) by AP values (126). Then,
these matrices were averaged by volunteers and transformed into
a decibel (dB) scale. As the highest frequencies of interest are in
the beta range, only frequencies from 0 to 30 Hz were considered
for the analysis. Finally, power values within these frequencies
were compared in every channel for SR, S1, and S2.

Power Spectral Density – Relative Power
Once PSD for SR, S1, and S2 was individually estimated, a data
standardization was performed to the power values of S1 and S2,
both regarding SR. The standardized value represents the Relative
Power (RP) between BB session and SR. Eq. (5) summarizes the
calculation of RP:

RPv
s =

APv
s
/

APv
R

(5)

where,

RPv
s represents the relative power of volunteer “v” and session

“s” (theta BB or beta BB).
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FIGURE 4 | Power spectral density (PSD) analysis. Absolute power (AP) and
relative power (RP) were extracted from EEG data in order to identify brain
changes that can denote brain entrainment.

APv
s is AP from PSD of volunteer “v” of session “s” and

APv
R is AP from PSD of volunteer “v” at resting state.

It should be noted that Eq. (5) was applied to every channel.
Therefore, RP for every volunteer across all channels has been
calculated until now. After that, two averaged-by-volunteer
matrices were computed, one for S1/SR and the other for
S2/SR. Finally, dB transformation was applied. These ratios may
manifest the power variation on theta, alpha, and beta bands
and may confirm if brain entrainment has been achieved for the
specific band (i.e., increase in theta band activity due to theta BB
or increase in beta band activity due to beta BB). Owing to the
wide frequency range of the gamma band, it was excluded from
this analysis. Considering that the theta band was the minimum
frequency range for inducing the FFR effect, the delta band was
also rejected for the analysis.

Maximum power in theta and beta EEG bands was
expected when volunteers were listening to theta and beta BBs,
respectively. Therefore, changes in magnitude power of EEG data
could be seen and brain entrainment may be accomplished.

Statistical Evaluation
Statistical analysis was carried out for AP and RP estimates. With
respect to AP estimates, the comparison was between sessions (1)
SR with S1, and (2) SR with S2. First, the Shapiro–Wilk test for
normality (Ahad et al., 2011) was applied for these two pairs of
data. Once normality was confirmed for both cases, a separate
t-test was performed to find significant differences between SR-
S1 and SR-S2 through all channels. Afterward, Cohen’s d effect
size was utilized to estimate the magnitude of these differences
as “negligible” (d < 0.2), “small” (0.2 ≤ d < 0.5), “medium”
(0.5 ≤ d < 0.8), or “large” (d ≥ 0.8) (Magnusson, 2021).
Regarding RP estimates, normality was also tested using the
Shapiro–Wilk test for the power difference between theta, alpha,
and beta bands in both S1 and S2 in every channel. Subsequently,
two alternately two-way ANOVA tests were performed to RP
in S1 and S2. The tested values included averaged RP values,

channels, and bands. These two ANOVAs were aimed to verify
if statistically significant changes in RP amongst EEG bands and
channels were achieved after BB stimulation. Finally, a Tukey test
was realized (Daniel and Cross, 2013) to locate these differences.
A significance level of 0.05 was used in all statistical tests.

PRODUCTION OF THETA AND BETA
BINAURAL BEATS SOUND

Theta and beta BB were designed in MATLAB at .wav format,
with a sampling frequency of 44,100 Hz (Pejrolo and Metcalfe,
2017). BB had an amplitude-modulated sound composed of two
pure frequency tones. According to HR estimations shown in
Table 2, fc for each EEG band was calculated based on BBC
theorem (Klimesch, 2018). By way of illustration, assuming an
HR of 70 bpm, s turns out as:

70/60 = 1.166̄;

From Eqs (1) and (4), it is explained the mathematical procedure
for individual fc for theta and beta bands, and FRear for the
personalized design of BB routines, respectively. These values are
calculated as follows:

• Theta band:

fc = 1.166̄ ∗ 22
= 4.67 Hz

FRearθ = 500 Hz − 4.67 Hz = 495.33 Hz

• Beta band:

fc = 1.166̄ ∗ 24
= 18.67 Hz

FRearβ = 500 Hz − 18.67 Hz = 481.33 Hz

Hence, stimulation frequencies to create theta BB were 500 and
495.33 Hz and for beta BB were 500 and 481.33 Hz. Table 1 shows
fc and FR_ear values of all volunteers.

RESULTS

Twenty volunteers aged between 19 and 24 were recruited, who
reported normal hearing thresholds, good neurological history,
and no musical experience. Before S1 was performed, SR was
taken as the baseline for 3 min. Afterward, S1 and S2 lasted 20 min
each. The data analysis was based on AP and RP of EEG signals
within 0 and 30 Hz. Findings are mentioned below.

Comparison Between Theta and Beta
Binaural Beats Effects: Absolute Power
Estimation
Absolute power from S1 and S2 were compared with SR to
identify if BB exposure elicited changes in neural activity. In
Figure 5, it is exhibited average AP from the three conditions in
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FIGURE 5 | Comparison of PSD from S1, S2, and SR. AP in dB (Y-axis) are shown from 0 to 30 Hz (X-axis). Black dashed line represents average AP from SR,
whereas solid lines depict average AP from theta binaural beats (BB) (red) and beta BB (blue). The colored background separates theta (blue), alpha (green), and
beta (red) bands.

FIGURE 6 | Cohen’s d effect size values. The bar plot depicts Cohen’s d values to estimate the magnitude of statistical differences in absolute power when S1 (red
bar) and S2 (blue bar) were compared with SR. X-axis exhibits EEG channels whereas Y-axis is the Cohen’s d value, ranging from 0 to 1. The colored background
regions represent the intervals to specify the magnitude of the differences throughout channels and between sessions, such as negligible (yellow), small (green),
medium (red), and large (blue).
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FIGURE 7 | Power spectral density from theta and beta BB, regarding resting state. RP values from theta BB (blue solid line) and beta BB (red solid line) are shown,
where X-axis is depicted by frequency ranging from 0 to 30 Hz and Y-axis is the averaged power ratio between S1/SR and S2/SR in dB. Every plot represents a
different channel, which was labeled in the lower-right corner. Measurements are highlighted in blue for the theta band, in green for the alpha band, and in red for the
beta band.

dB within the frequency range of 0–30 Hz. PSD was estimated
across all channels.

At an initial glance, it seemed that average S1, S2, and SR
triggered similar brain activity. To dismiss this issue, a paired
t-test was applied to AP values of (1) S1 with SR and (2) S2 with
SR, for all channels. Significant differences were found across all
the channels in both comparisons (p < 0.05). However, a Cohen’s
d effect size test was implemented to estimate the magnitude of
these differences. Cohen’s d values are graphically expressed in
Figure 6.

Comparison Between
Electroencephalographic Frequency
Bands: Relative Power Estimation
In order to confirm if brain entrainment was achieved, the
following conditions must be met: (1) for theta BB, an increase in
S1/SR ratio in the theta band, or (2) for beta BB, an increment in
S2/SR ratio in the beta band. Thus, RP from S1/SR and S2/SR were
compared across theta, alpha, and beta bands. Figure 7 shows

RP from all channels in dB, throughout EEG frequency ranges
where theta, alpha, and beta were colored in blue, green, and
red, respectively.

So far, it is known that statistical differences in all channels
were identified between BB sessions and resting state, but it does
not confirm if brain entrainment was attained. For this reason,
a two-way ANOVA was consecutively applied to RP from S1 and
S2 to verify if neural activity between bands were dissimilar due to
BB. The ANOVA data for each matrix contained RP values from
S1 or S2, channels, and bands (theta, alpha, and beta). Significant
differences were found for alpha-theta bands (p = 0) and alpha-
beta bands (p = 0). Nevertheless, no statistical difference was
obtained for theta-beta (p = 0.5577).

DISCUSSION

This study was focused on investigating if brain entrainment
could be achieved from the modulation of EEG signals by
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personalized theta and beta BB stimulation. The EEG analysis
followed two approaches: (1) AP, obtained from individual PSD
of S1, S2, and SR, and (2) RP, computed by S1/SR and S2/SR power
ratios. In the following, the results of this research are discussed
for each method.

Absolute Power Estimation
As can be seen from Figure 6, T7 and T8 showed the highest
differences when BB sessions were compared against SR, followed
by medium differences in P7, P8, and O2. After listening to either
theta or beta BB, small to medium changes in AP occurred in the
remaining channels, suggesting that significant effects due to BB
were not entailed or, in other words, brain entrainment was not
achieved. As the greatest changes were seen over the temporal
lobe, followed by the parietal one, they may be associated with
auditory perception and sound location (Benarroch, 2006; Bizley
and Cohen, 2013; Goldstein, 2014).

Relative Power Estimation
Since data standardization was carried out, a 0 dB value means
that BB session and baseline neural activity were comparable. On
the contrary, when dB > 0, brain activity was stronger during
BB exposure than baseline. Thus, either theta or beta BB elicited
neural synchronization. Similarly, given a dB < 0, it implies that
brain activity was higher in the resting state in comparison with
the BB session, which means that neural desynchronization was
induced (Watkinson and Clarke, 2018).

According to Cohen (2014), an oscillation from −2 dB to
+2 dB implies a percentage change from −36.9 to +58.8%.
In other words, if RP was equal to −2 dB, it means that
baseline activity was higher than in BB session by 36.9%, (i.e.,
BB induced 36.9% of neural desynchronization). Moreover, a
+2 dB change means that the BB session had stronger brain
activity than baseline by 58.8% (i.e., BB triggered 58.8% neural
synchronization) (Cohen, 2014).

Interestingly, RP in the parieto-occipital region was lesser
than −2 dB for alpha EEG band while listening to theta BB,
specifically over Pz, P4, P8, O1, POz, and O2 recording sites.
This decrease in dB value is explained by greater brain activity
at the resting state regarding theta BB. For these channels, as
alpha desynchronization occurred only for S1, we suggest that
theta BB probably disturbed volunteers instead of inducing them
into meditative or relaxed states, even though when they were
just seated with closed eyes and doing no task. A theory of
this behavior may be related to volunteers feeling uncomfortable
when listening to the theta BB (Crespo et al., 2013; Lee et al.,
2019).

In conclusion, neural resynchronization was met with both
personalized theta and beta BB, but no different mental
conditions seemed to be achieved.

Limitations of the Study
The aim of the study was mainly limited due to (1) conditions
of participants, and (2) the use of open-back headphones. First,
for more specificity in sample selection, hours of sleep in the
night before the study and psychological conditions, such as

stress or anxiety, should have been considered. These factors can
disturb brain oscillations. Second, as BB was delivered through
open-back headphones, the environment auditory stimuli could
bias neural information. Therefore, the study should have been
implemented in an isolated room.

Future Work
In order to develop a full picture of brain activity due to BB
exposure, a suggestion would be that the application of other
kinds of BB not used in this study such as alpha BB (Park et al.,
2018; Shekar et al., 2018) or gamma BB (Colzato et al., 2017;
Shekar et al., 2018). Additional studies that give an insight into
brain signal modulation are needed for further understanding of
which effects BB induces on humans. Empirical studies where BB
effects are behaviorally measured are not enough to demonstrate
binaural sound influence on the human mental state.
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Since the COronaVIrus Disease 2019 (COVID-19) outbreak, developing a digital

diagnostic tool to detect COVID-19 from respiratory sounds with computer audition

has become an essential topic due to its advantages of being swift, low-cost, and

eco-friendly. However, prior studies mainly focused on small-scale COVID-19 datasets.

To build a robust model, the large-scale multi-sound FluSense dataset is utilised to help

detect COVID-19 from cough sounds in this study. Due to the gap between FluSense and

the COVID-19-related datasets consisting of cough only, the transfer learning framework

(namely CovNet) is proposed and applied rather than simply augmenting the training

data with FluSense. The CovNet contains (i) a parameter transferring strategy and (ii) an

embedding incorporation strategy. Specifically, to validate the CovNet’s effectiveness, it

is used to transfer knowledge from FluSense to COUGHVID, a large-scale cough sound

database of COVID-19 negative and COVID-19 positive individuals. The trainedmodel on

FluSense and COUGHVID is further applied under the CovNet to another two small-scale

cough datasets for COVID-19 detection, the COVID-19 cough sub-challenge (CCS)

database in the INTERSPEECH Computational Paralinguistics challengE (ComParE)

challenge and the DiCOVA Track-1 database. By training four simple convolutional neural

networks (CNNs) in the transfer learning framework, our approach achieves an absolute

improvement of 3.57% over the baseline of DiCOVA Track-1 validation of the area under

the receiver operating characteristic curve (ROC AUC) and an absolute improvement of

1.73% over the baseline of ComParE CCS test unweighted average recall (UAR).

Keywords: transfer learning, COVID-19, cough, FluSense, COUGHVID

1. INTRODUCTION

Since the year 2019, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic1. As of August 2021,
there have been more than 202, 000, 000 confirmed cases of COVID-19 worldwide, including
more than 4, 000, 000 deaths, reported by the World Health Organization (WHO)2. The daily

1https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-

(covid-2019)-and-the-virus-that-causes-it; retrieved 10 August 2021.
2https://covid19.who.int/; retrieved 10 August 2021.
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increasing COVID-19 cases and deaths have resulted in global
lockdown, quarantine, and many restrictions (1). Along with
the above measures, a set of following problems have appeared,
including the economic downturn (2) and mental health
problems (e.g., depression and stress) (1).

Swift and accurate diagnosis of COVID-19 is essential to
give patients appropriate treatments and effectively control
its transmission (3). The reverse transcription PCR (RT-PCR)
from oral-nasopharyngeal swabs identifies viral RNA and is
a commonly used instrument for the diagnosis of COVID-
19. Nevertheless, high false negative rate and stability issues
have been reported (4). In contrast to RT-PCR, chest CT
was proven to have high sensitivity and be expedited for
diagnosing COVID-19(4). Serological instruments are utilised to
diagnose/confirm late COVID-19 cases by measuring antibody
responses to the corresponding infection (5). Compared to the
above laboratory instruments, which require professionals and
special medical equipment, rapid antigen and molecular tests
using nasopharyngeal swabs are commercially available due
to their swift and simple test procedures, reduced mortality
of COVID-19 patients, internal hospital costs, and in-hospital
transmission (6). However, rapid tests are still hard-to-follow for
non-specialists and are not environment-friendly.

Artificial intelligence has been widely applied to respiratory
sounds in the healthcare area (7–9). In a study by (8), a multilayer
perceptron based classifier was developed on features extracted
from respiratory sounds to screen lung health. Random forests
are applied on the filter bank energy-based features to pre-
screen the lung health abnormalities (9). COVID-19 patients
were reported to have seven common symptoms, including
fever, cough, sore throat, headache, myalgia, nausea/vomiting,
and diarrhea (10). Among these symptoms, the first two
symptoms of COVID-19 are fever and cough (10). As a fast
and non-invasive way to detect potential infections in public
areas, body temperature measurement has been commonly
employed (11). Traditional body temperature measurement
with a thermometer usually requires relatively close contact
with potential COVID-19 positive individuals (12). Although
infrared (IR) thermal cameras provide a non-contact way for
mass fever detection, they may not be valid because of the
absence of calibration, non-homogeneous devices/protocols, and
poor correlation between skin temperature and core body
temperature (11). The reading of IR thermal cameras could
also be affected by the environmental temperature (11). On the
other hand, cough, as a common symptom in many respiratory
diseases, is a worthwhile consideration when diagnosing a
disease (13). Cough sounds have been used to diagnose asthma,
bronchitis, pertussis, pneumonia, etc. (13). Recent studies have
also investigated the feasibility of detecting COVID-19 infections
from cough sounds. For instance, cough sounds were shown
to contain latent features distinguishable between COVID-19
positive individuals and COVID-19 negative individuals (i.e.,
normal, bronchitis, and pertussis) (14). In Brown et al.’s study
(15), cough sounds from COVID-19 positive individuals were
reported to have a longer duration, more onsets, higher periods,
lower RMS, and MFCC features with fewer outliers. Due to
the development of the internet-of-things (IoT), the algorithms

for detecting potential COVID-19 positive individuals from
cough sounds can be integrated into mobile phones, wearable
devices, and robots. Such a rapid, easy-to-use, and environment-
friendly instrument will be helpful for real-time and remote
pre-screening of COVID-19 infections, thereby supplementing
clinical diagnosis and reducing the medical burden.

Since the outbreak of COVID-19, several studies have
collected cough samples from COVID-19 positive patients
(and COVID-19 negative individuals) to detect COVID-19
infections. Coswara (16) is a crowd-sourced database consisting
of various kinds of sounds, including breathing (shallow
and deep), coughing (shallow and deep), sustained vowel
phonation (/ey/ as in made, /i/ as in beet, /u:/ as in cool),
and number counting from one to twenty (normal and fast-
paced). Another crowd-sourced database, COUGHVID with
cough sounds only (17), was collected via a web interface. To
date, the latest version of COUGHVID is publically released
with 27, 550 cough recordings.3 The crowd-sourced University
of Cambridge COVID database was reported to have more
than 400 cough and breathing recordings (15). The Virufy
datasets consist of a Latin American crowd-sourced dataset (31
individuals) and two South Asian clinical datasets (362 and
63 individuals, respectively). Due to the difficulty of collecting
cough sounds of confirmed COVID-19 patients and multi-sound
(non-cough)/noise in crowd-sourced datasets, most of the above
databases are small-scale, leading to a challenge for training
robust machine learning models.

With this in mind, we propose a hybrid transfer learning
framework for robust COVID-19 detection, where several
convolutional neural networks (CNNs) are trained on large-scale
databases and fine-tuned on several small-scale cough sound
databases for verification. Note that the focus of this paper is not
to outperform the state-of-the-art neural networks models for
COVID-19 detection from cough sounds; rather, the aim of this
study is to provide a framework for mitigating the effect of noise
or irrelevant sounds in the crowd-sourcing datasets applied to
COVID-19 by training robust CNN models with the transferred
knowledge from Flusense and/or COUGHVID. The workflow
of this study is indicated in Figure 1. The code of this paper is
publicly available on GitHub4.

• The FluSense database (18) was collected in a platform to track
influenza-related indicators, such as cough, sneeze, sniffle, and
speech. Since it contains various types of sounds existing in
crowd-sourced cough datasets, the FluSense dataset is applied
in this study.

• Due to the gap in sound type between FluSense and
databases with cough sounds only, the COUGHVID database
is considered as the target data when CNNs are trained
on FluSense as the source data. The trained models on
COUGHVID are further adapted to the other two smaller
test databases, i.e., Computational Paralinguistics challengE
(COMPARE) 2021 COVID-19 cough sub-challenge (CCS) (19)
and DiCOVA 2021 Track-1 (20).

3https://zenodo.org/record/4498364#.YRKa3IgzbD4
4https://github.com/ychang74/CovNet
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FIGURE 1 | The workflow of this study. CovNet is the proposed transfer

learning framework, which includes transferring parameters and incorporating

embeddings. CovNet is first applied on the Flusense as the source data,

COUGHVID as the target data. Afterwards, to further validate the effectiveness

of CovNet, the CovNet based pre-trained COUGHVID models are applied on

two smaller Computational Paralinguistics challengE (ComParE) 2021

COVID-19 cough sub-challenge (CCS) dataset and DiCOVA 2021

Track-1 dataset.

• We propose two transfer learning pipelines, i.e., transferring
parameters from the source database to the target database
for fine-tuning models and incorporating embeddings for
expanding models’ capability of extracting useful features.

In the following sections, the transfer learning framework is
first introduced in section 2, followed by the architecture of
the models for COVID-19 detection in section 3. Next, the
experimental details are described, and the results are presented
and discussed in section 4. Finally, our study is summarised, and
the outlook is given in section 5.

2. TRANSFER LEARNING FRAMEWORKS

Transfer learning aims at applying the knowledge learnt from
source data to different but related target data and achieving
better performance in a cost-effective way (21–23). The source
data and target data should be similar, otherwise negative transfer
may happen (22, 24). Transfer learning has been successfully
applied to COVID-19 detection based on acoustic data (14, 15).
In Imran et al.’s study (14), the knowledge was transferred from
the cough detection model to the COVID-19 diagnosis model.
Brown et al. (15) discovered that VGGish pre-trained on a large-
scale YouTube dataset was utilised to extract audio features from
raw audio samples for COVID-19 diagnosis.

In this study, two ways of transfer learning are applied. One
is to fine-tune the parameters of the networks with the target
data. The other is extracting the embeddings from the pre-
trained network and applying the embeddings when training
the new network for the target dataset. Since the crowd-sourced
cough recordings usually contain non-cough audio signals other
than cough sounds, such as speech and breathing, the FluSense
dataset and the COUGHVID dataset contain similar sound types.
Therefore, the knowledge learnt from FluSense data can be
employed to improve the performance of models trained on the
COUGHDVID dataset. In Figure 2, DFluSense is the FluSense
dataset, and DCOUGHVID means the COUGHVID dataset; convs0
and convs1 represent the convolutional layers/blocks in the
neural networks on the FluSense dataset and the COUGHVID

dataset, respectively; FCFluSense and FCCOUGHVID denotes the
fully-connected (FC) layer of corresponding models. When
separating the left part with the right part in Figures 2A,B, with
the training data (x0, y0) and (x1, y1), we separately train the
CNNs on the FluSense and COUGHVID datasets to produce the
predicted values ŷ0 and ŷ1, respectively.

With the parameters and embeddings from the pre-trained
FluSense models, as highlighted in blue in Figure 2, the
COUGHVID models are given the potential to discriminate
between the various audio signals, which further helps its
COVID-19 detection from crowd-sourced cough signals.
Notably, the predicted value ŷ1 is the final output of the proposed
transfer learning framework.

To further investigate the generalisation ability of CovNet,
we apply it to some other small-scale crowd-sourced datasets
for COVID-19 detection. In the following, we introduce the two
transfer learning methods in greater detail.

2.1. Transferring Parameters
Fine-tuning pre-trained models is an effective transfer learning
method by sharing some parameters across tasks (21, 22). In
the computer vision area, parameters of pre-trained models on
ImageNet (25) are often applied for transfer learning on a wide
range of image-related tasks (26–29). Similarly, parameters of
pre-trained models on the Audio Set are transferred to many
audio-related tasks (30–32). Parameters of pre-trained CNN
models on the Audio Set are transferred to the adapting networks
for acoustic event recognition (30, 31). Several pre-trained audio
neural networks trained on the Audio Set dataset were proposed
for other audio pattern recognition tasks (32).

In this study, as indicated in Figure 2A, the parameters of
the first n convolutional layers/blocks, convs11,2,...,n, of models
trained on the COUGHVID dataset, are initialised by the
corresponding layers/blocks convs01,2,...,n of models pre-trained
on FluSense dataset. The parameters of convs11,2,...,n are frozen
and not trained, and only the remaining randomly initialised
parameters of convs1n+1,n+2,...,N and FCCOUGHVID are updated
during the training procedure.

2.2. Incorporating Embeddings
The embeddings generated by the convolutional layers carry
either low-level edge information or high-level discrimination-
related features (22, 23). Moreover, the performance of
embeddings appears to be highly scalable with the amount
of training data (33). In this study, the pre-trained FluSense
models produce embeddings representing high-level or low-level
characteristics of various audio types, which can be applied as an
additional input to help develop the target model.

Specifically, we feed the crowd-sourced cough recordings
from the COUGHVID into the pre-trained Flusnese model and
extract the embeddings after certain convolutional layers/blocks.
Figure 2B exhibits this strategy. Data-point (x1, y1) enters the
pre-trained FluSense model, and the output embeddings of
the n-th convolutional layer/block convs0n are extracted to
be concatenated (on the channel dimension) or added with
the embeddings generated by the corresponding convs1n. The
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FIGURE 2 | The proposed transfer learning framework :CovNet. (A) Parameters of the first n convolutional layers/blocks (convs1) of the current COUGHVID model are

frozen and initialised by the corresponding first n convolutional layers/blocks (convs0) of the pre-trained FluSense model. (B) Embeddings are extracted after the n-th

convs0 of the pre-trained FluSense model. The extracted embeddings are concatenated or added to the current embeddings generated after the n-th convs1 of the

COUGHVID model.

concatenated or added embeddings enter the next convolutional
layer/block convs1n+1 for the task of COVID-19 detection.

3. AUTOMATIC COVID-19 DETECTION

Convolutional neural networks have been successfully applied
in image-related areas, such as image classification (34–37).
When processing audio signals, CNNs have demonstrated their
capabilities in extracting effective representations from the log
Mel spectrograms (38, 39). In this study, we choose four typical
CNN models: base CNN (34), VGG (40), residual network
(ResNet) (41), and MobileNet (42). We focus on the proposed
transfer learning framework, CovNet, instead of competing with
the state-of-the-art models on COVID-19 detection. Therefore,
in order to highlight the effectiveness of CovNet, we construct
four simple CNN models (i.e., CNN-4, VGG-7, ResNet-6, and
MobileNet-6), each of which only has three convolutional
layers/blocks. A detailed description of each model is given and
analysed in the following subsections.

The log Mel spectrograms are calculated by Mel filter banks
and logarithmic operation worked on the spectrograms, which
are produced by the Short-Time Fourier Transforms (STFTs)
on the original waveforms. In this section, to better evaluate
the effectiveness of the proposed transfer learning framework
and compare the performance differences among different
CNN architectures, four CNNs are employed to deal with the
extracted log Mel spectrograms: CNN-4, VGG-7, ResNet-6, and
MobileNet-6. Log Mel spectrograms (T,F) are extracted from the
audio signals as the input to the CNNs, where T represents the

sequence length, and F denotes the log Mel frequency. Before
entering the final FC layer, the matrix has the dimension (CN ,N),
where CN is the output channel number of the last convolutional
layer, and N is the class number. Specifically, for the FluSense
database, N is set to be 9; for the other datasets used in this
study, N equals 2. For comparison convenience, we regard the
convolutional layers and blocks equally when ordering them in a
specific model. In this notation, ResNet-6 and MobileNet-6 have
“block2” following the first convolutional layer.

3.1. CNN-4
As shown Figure 3A, we propose a simple 4-layer CNN, CNN-
4, constructed by three 5 × 5 convolutional layers. To speed up
and stabilise the training procedure, each convolutional layer is
followed by batch normalisation (43) and the Rectified Linear
Unit (ReLU) activation function (44). Afterwards, we apply max
pooling for downsampling. The first three local max pooling
operations are conducted over a 2 × 2 kernel, and the last max
pooling is a global one to summarise the features along the
dimension of the sequence length and frequency. Before the final
FC layer for the final predicted result, a dropout (45) layer is
utilised to address the overfitting issue.

3.2. VGG-7
Very deep CNN, known as VGG, were originally designed with
up to 19 weight layers and achieved great performance on the
large-scale image classification task (40, 46). VGG or VGG-
like architectures were applied to extract audio features from
respiratory sound data for COVID-19 detection and obtained
good performances (15, 47).
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FIGURE 3 | Models’ architecture: (A) Convolutional neural network-4 (CNN-4), (B) VGG-7, (C) residual network-6 (ResNet-6), (D) MobileNet-6. “conv” stands for the

convolutional layer, and “block” indicates the convolutional block. The number before the “conv” is the kernel size; the number after the “conv” is the output channel

number. The number after “FC” is the input neurons’ size.

As indicated in Figure 3B, we adapt the VGG (40) with 7
layers, VGG-7, which is composed of three convolutional blocks
and a final FC layer. Although the VGG-7 is simple, different
from its original “deep” design, it is still worthwhile to include
it for fair comparison with other CNNs in this study. Each
block contains two 3 × 3 convolutional layers, each of which is
followed by batch normalisation (43) and the ReLU function (44)
to stabilise and speed up the training process. Afterwards, a local
max pooling layer with a kernel size of 2×2 is applied. Following
the three blocks, there is also a global max pooling layer working
on the sequence length and logMel frequency dimensions. Before
the FC layer, a dropout (45) layer is applied.

3.3. ResNet-6
TheDeep ResNet is proposed to address the degradation problem
existing in training deeper networks (41) by incorporating
shortcut connections between convolutional layers. In Hershey
et al.’s (48) study,ResNet has outperformed other CNNs for audio
classification on the Audio Set (49). A ResNet based model is
constructed for COVID-19 detection from breath and cough
audio signals (50).

In this study, we mainly adopt the above mentioned
shortcut connections to construct a 6-layer ResNet, ResNet-6. In

Figure 3C, after the first convolutional layer with a kernel size
of 7 × 7 followed by batch normalisation (43) and the ReLU
function (44), we apply two convolutional blocks, each of which
contains the “shortcut connections” to add the identity mapping
with the outputs of two stacked 3× 3 convolutional layers.

Inside “block2” and “block3,” after the first 3×3 convolutional
layer, the batch normalisation (43) and ReLU function (44) are
applied, whereas only the batch normalisation is utilised after
the second 3 × 3 convolutional layer. For the channel number
consistency, the identity is processed by a 1 × 1 convolutional
layer followed by batch normalisation (43); after the addition of
the identity and the output of two stacked convolutional layers,
we apply the ReLU function (44). The max pooling after the 7×7
convolutional layer is a local one with a kernel size of 3×3 and the
max pooling layers in “block2” and “block3” are also local with a
kernel size of 2×2; similarly, the last max pooling is a global one,
followed by a dropout (45) layer and the FC layer.

3.4. MobileNet-6
Based on depthwise separable convolutions, light-weight
MobileNets have been widely applied in mobile and embedded
image related applications (42, 51). MobileNets are cost-effective
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and are explored herein for potential solutions embedded in
mobile devices for COVID-19 detection.

We adapt the MobileNet with 6 layers only. As shown in
Figure 3D, after the first 3 × 3 convolutional layer followed by
batch normalisation (43) and the ReLU function (44), each of
“block2” and “block3” contains a 3 × 3 depthwise convolutional
layer and a 1 × 1 pointwise convolutional layer, respectively.
Similarly, batch normalisation (43) and ReLU function (44) are
applied after each convolutional layer. Similar to the original
MobileNet architecture, we only set one global max pooling layer
before the dropout (45) layer and the final FC layer.

4. EXPERIMENTAL RESULTS

With the aforementioned transfer learning framework, the
experiments will be presented in this section, including the
databases, experimental setup, results, and discussions.

4.1. Databases
To verify the proposed transfer learning framework in this study,
the following four datasets are employed.

4.1.1. FluSense

The FluSense (18) project applied a part of the original Audio
Set dataset (49), which includes weakly labelled 10-s audio clips
from YouTube. After the re-annotation by two human raters
for more precise labels in the FluSense (18) project, there are a
total of 45, 550 seconds samples in Audio Set that are considered
in this study, and they are labelled with the classes of breathe,
burp, cough, gasp, hiccup, other, silence, sneeze, sniffle, snore,
speech, throat-clearing, vomit, and wheeze. To mitigate the effect
of data imbalance on the classification performance, those classes
with a number of samples less than 100 are not considered in
our experiments. Therefore, the audio samples labelled with the
following nine classes are employed: breathe, cough, gasp, other,
silence, sneeze, sniffle, speech, and throat-clearing. For all audio
recordings in the above nine classes, we first re-sampled them
into 16 kHz. Second, as the audio samples have various time
lengths, we split the original samples with a length of greater than
or equal to 0.5 s into one or more 1 s segment(s). In particular, for
audio samples with a length between 0.5 and 1 s, the audio repeats
itself until a full 1 s segment is reached. For those samples with
a length greater than 1 s, after a certain number of 1 s segments
are split, the remaining signals repeat themselves until a full
segment is reached if the remaining one has a length of greater
than or equal to 0.5 s; otherwise, the remaining signals are simply
abandoned. Furthermore, we split the segments into train/val
subsets with a ratio of 0.8/0.2 in a stratified manner. The data
distribution of FluSense before and after the pre-processing is
shown in Table 1.

4.1.2. COUGHVID

The on-going crowd-sourced COUGHVID dataset (17) is
collected via a web interface5. All participants voluntarily record
and upload their cough sounds lasting for up to 10 s. In

5https://COUGHVID.epfl.ch/; retrieved 09 July 2021.

TABLE 1 | Data distribution of the FluSense data.

Original Pre-Processing

# Train Val
∑

Breathe 167 238 58 297

Cough 2,486 6,148 1,537 7,685

Gasp 337 315 79 394

Other 3,863 15,059 3,765 18,824

Silence 832 1,116 279 1,395

Sneeze 611 540 135 675

Sniffle 589 604 151 755

Speech 2,615 16,614 4,154 20,768

Throat clearing 102 118 29 147
∑

11,602 40,752 10,188 50,940

The “original” column indicates the number of audio samples; whereas the “pre-

processing” columns show the number of segments with unified length of 1 s.

TABLE 2 | Data distribution of the COUGHVID data.

# Train Test
∑

Negative 5,660 1,415 7,075

Positive 559 140 699
∑

6,219 1,555 7,774

the meantime, the COVID-19 status of each cough sample is
self-reported by each participant: healthy, symptomatic without
COVID-19 diagnosis, and COVID-19. The information of each
participant is optionally self-reported, including the geographic
location (latitude, longitude), age, gender, andwhether she/he has
other pre-existing respiratory conditions, and muscle pain/fever
symptoms. As there might be some low-quality audio samples
(e.g., noise, speech, etc.), the data collectors trained an extreme
gradient boosting (XBG) classifier on 215 audio samples (121
cough and 94 non-cough) to predict the probability of a
recording containing cough sounds. For all audio recordings, the
sampling frequency is 48 kHz.

In this study, only the classes of healthy (i.e., COVID-
19 negative) and COVID-19 (i.e., COVID-19 positive) are
considered, as the audio samples with symptomatic status were
not explicitly reported by the participants as to whether they
were diagnosed with COVID-19 or not. Furthermore, only
audio samples with cough sound probabilities greater than
0.9 are included to ensure each audio sample contains cough
sounds. Finally, 7, 774 audio samples (COVID-19 negative:
7, 075, COVID-19 positive: 699) are selected for our experiments.
Similarly, we split the selected samples into train/test subsets
with a ratio of 0.8/0.2, respectively in a stratified manner. Table 2
shows the data distribution of COUGHVID.

4.1.3. ComParE 2021 CCS

In the INTERPSEECH 2021 ComParE (19), the CCS provides a
dataset from the crowd-sourced Cambridge COVID-19 Sound
database (15). The participants are asked to provide one to three
forced coughs in each recording via one of the following multiple
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TABLE 3 | Data distribution of the Computational Paralinguistics challengE

(ComParE) COVID-19 cough sub-challenge (CCS) data.

# Train Val Test
∑

Negative 215 183 169 567

Positive 71 48 39 158
∑

286 231 208 725

TABLE 4 | DiCOVA Track-1 data distribution of each fold of cross-validation.

# Train Val
∑

Negative 772 193 965

Positive 50 25 75
∑

822 218 1040

platforms: Aweb interface, an Android app, and an iOS app.6 The
CCS dataset consists of 929 cough recordings (1.63 h) from 397
participants. The data distribution of CCS is shown inTable 3. All
recordings from the CCS dataset were resampled and converted
into 16 kHz. The official training, validation, and test sets in the
COMPARE challenge are used in this study.

4.1.4. DiCOVA 2021 Track-1

The Track-1 of the DiCOVA challenge 2021 (20) provides
cough recordings from 1, 040 participants (COVID-19 negative:
965, COVID-19 positive 75). In the challenge, the dataset was
split into five train-validation folds. Each training set consists
of 822 cough samples (COVID-19 negative: 772, COVID-
19 positive: 50), and each validation set contains 218 cough
samples (COVID-19 negative: 193, COVID-19 positive: 25). The
additional test set is not used in this study, as it is blind. All
cough recordings are sampled at 44.1 kHz. The data distribution
of DiCOVA 2021 Track-1 is indicated in Table 4.

4.2. Experimental Setup
For faster progress (38), all audio files in the four datasets are
re-sampled into 16 kHz. The log Mel spectrograms are extracted
with a sliding window size of 512, an overlap of 256 units, and 64
Mel bins.

As for the evaluation metrics, we mainly use unweighted
average recall (UAR), since it is more adequate for evaluating
the classification performance on imbalanced datasets than
accuracy,—the weighted average recall (52, 53). Apart from the
UAR, we also calculate the area under the receiver operating
characteristic curve (ROC AUC) score.

The proposed CNNs consist of three convolutional
layers/blocks. The number of output channels for the three
convolutional layers/blocks is 64, 128, and 256, respectively.
During the training procedure of the neural networks, the
cross-entropy loss is utilised as the loss function. To overcome
the class imbalance issue, we re-scale the weight parameter for
each class in the loss function. Since this study focuses on the

6https://www.covid-19-sounds.org/; retrieved 15 July 2021

transfer learning framework, we do not further mitigate the class
imbalance issue through down-/up-sampling.

For single learning (i.e., training from scratch) on the FluSense
and the COUGHVID datasets, the optimiser is set to “Adam”
with an initial learning rate of 0.001, which is scheduled to
be reduced by a factor of 0.4 when there is less than 0.01
improvement of the UAR after every 4 of 30 epochs in total.
When transferring parameters, we set the initial learning rate as
0.0001; for incorporating embeddings, the initial learning rate is
set to be 0.001.

When applying the strategy of transferring parameters
introduced in section 2.1 to training the COUGHVID model, we
experiment with only setting the following layer(s) trainable: the
FC layer, the convolutional layer/block (conv/block) 3 & FC layer,
conv/block 2 − 3 & FC layer, and conv/block 1 − 3 & FC layer,
respectively. The remaining layer(s)/block(s) are initialised based
on the pre-trained FluSense models’ corresponding parameters
and are frozen during the whole training procedure. As for the
incorporating embeddings strategy described in section 2.2, we
investigate the concatenation and addition of two embeddings
generated from the conv/block 3, conv/block 2, and conv/block
1, respectively. One embedding is from the pre-trained FluSense
model, and the other one is the COUGHVID model trained
from scratch.

To further validate the effectiveness of the CovNet, we
apply the pre-trained COUGHVID models on the COMPARE
CCS dataset and the DiCOVA Track-1 dataset. Specifically, we
train the four CNNs introduced in section 3 from scratch.
Afterwards, we choose up to two COUGHVID models with the
best performance (best AUC or best UAR) as the pre-trained
models. With the chosen pre-trained COUGHVID models and
their strategies (layer(s)/block(s) number and transfer learning
strategies), we transfer the parameters or embeddings of the
above chosen COUGHVID models to the current train-from-
scratch models on the COMPARE and DiCOVA datasets during
the training. Finally, we choose the best results to compete
with official baselines: the average validation AUC 68.81% (20)
for the DiCOVA Track-1 dataset, and test UAR without fusion
64.7% (19) for COMPARE CCS. Similarly, when training models
from scratch or applying the incorporating embeddings method,
we set the initial learning rate as 0.001, whereas if the transferring
parameters are utilised, the initial learning rate is set as 0.0001.

4.3. Results
In Table 5, we focus on performance differences on the
COUGHVID test dataset between single learning (training from
scratch) models and the models produced by the proposed
transfer learning strategies in section 2. For convenience, the
best test AUC and test UAR of every model under three transfer
learning strategies are shown in bold face. We can see that
there are some improvements in test AUC/UAR, especially for
the VGG-7 and MobileNet-6. In the following analysis, we
compare the absolute difference between performances. On the
COUGHVID test dataset, with the transfer learning, the VGG-7
obtains an improvement of 2.62% AUC (p < 0.1 in a one-tailed
z-test) and an improvement of 3.75% UAR (p < 0.05 in a one-
tailed z-test); the MobileNet-6 achieves 3.77% improvement in
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TABLE 5 | Models’ performances [AUC/UAR %] on FluSense and COUGHVID test datasets.

Layers CNN-4 ResNet-6 VGG-7 MobileNet-6

Single Learning
FluSense — 93.55/65.27 93.91/64.76 93.23/63.86 91.26/58.24

COUGHVID — 66.14/59.43 68.86/60.43 65.15/56.42 64.17/54.83

Transfer Learning

Parameters

FC 58.59/53.68 61.35/57.50 54.68/54.14 56.91/53.93

conv/block 3 & FC 68.04/57.04 67.01/57.97 64.97/57.15 67.88/59.71

conv/block 2-3 & FC 69.05/60.98 67.89/59.25 64.92/59.79 67.94/58.93

conv/block 1-3 & FC 69.43/55.54 66.23/56.31 67.31/56.17 65.21/55.64

Embeddings Cat

conv/block 3 67.73/60.65 67.21/59.45 65.85/58.27 64.32/56.46

conv/block 2 67.30/57.81 66.17/55.59 65.58/52.30 67.36/52.31

conv/block 1 65.15/59.30 65.35/59.77 58.67/51.92 66.37/53.77

Embeddings Add

conv/block 3 66.76/59.30 64.27/58.88 66.08/60.17 65.94/58.24

conv/block 2 66.39/58.82 64.55/57.27 67.77/58.55 64.37/57.19

conv/block 1 65.91/57.17 64.63/58.21 63.85/58.97 64.17/56.60

Single learning indicates training from scratch and transfer learning includes “Parameters” (transferring parameters), “Embeddings Cat,” and “Embeddings Add” (incorporating

emebdddings). The Models’ performances with transfer learning are based on the COUGHVID dataset. For “Parameters,” the “Layers” column indicates the layers that are randomly

initialised and trainable during the training procedure, and the remaining layers are frozen and initialised by the pre-trained FluSense models; for “Embeddings Cat,” “Embeddings Add,”

and “Layers,” the column lists the convolutional layer/block (conv/block), after which embeddings incorporation happens. For convenience, the best test AUC and test UAR of every

model under three transfer learning strategies are shown in bold face.

AUC (p < 0.05 in a one-tailed z-test) and 4.88% improvement
in UAR (p < 0.005 in a one-tailed z-test). Moreover, for all
constructed CNN models, only setting the FC layer trainable
and freezing other layers with parameters transferred from pre-
trained FluSense models achieves almost the lowest AUC/UAR
among all transfer learning settings.

For the transferring parameters strategy, we can see that
most best test AUC/UAR cases are obtained by only setting
the convolutional layer/block (conv/block) 2 − 3 & FC layer
trainable or the conv/block 1 − 3 & FC layer trainable. With
the embeddings cat method, models’ performances are mostly
better than single learning models’ and the most best results
are achieved by concatenating the embeddings output by the
conv/block 3. With the embeddings addition method, models
also mostly outperform the single learning ones, and similarly,
most best results are obtained by adding embeddings after the
conv/block 3.

In Table 6, first, we can see that with the proposed transfer
learning strategies on the pre-trained COUGHVID models

generated by the CovNet, most of the models’ performances

improve a lot compared with the single learning models’
performance. Specifically, transferring parameters improves the

test UAR on COMPARE by 9.05% for the VGG-7 (p < 0.05
in a one-tailed z-test); the transferring parameters improves the
validation AUC on DiCOVA by 1.12, 3.86, and 5.22% for the
CNN-4, ResNet-6, and VGG-7, respectively (in a one-tailed z-
test, not significant, p < 0.05, and p < 0.005, respectively). The
incorporating embeddings improves the test UAR on COMPARE
data by 1.47, and 1.11% for the CNN-4, and VGG-7, respectively;
the incorporating embeddings improves the validation AUC
of DiCOVA by 3.62%, 8.85, 7.46, and 2.20% for the CNN-
4, ResNet-6, VGG-7, and MobileNet-6, respectively (in a one-
tailed z-test, p < 0.05, p < 0.001, p < 0.001 and not
significant, respectively).

Second, as the numbers in bold indicate better performance
than the baseline, we can see that most models learnt through
the transfer learning framework outperform the official baselines,
even though the models here are quite simple. Notably, the best
test UAR 66.43% onCOMPARECCS data is achieved by the VGG-
7 with transferring parameters, which is 1.73% above the official
baseline; the CNN-4 with incorporating embeddings the achieves
the best validation AUC 72.38% on the DiCOVA Track-1, which
is 3.57% higher than the baseline (p < 0.05 in a one-tailed z-test).
Figure 4 displays the confusion matrices for above-mentioned
best UAR on the COMPARE CCS dataset and best validation AUC
on the DiCOVA Track-1 dataset. We can see that the models
recognise negative samples very well, but the positive ones are
frequently confused with the negative ones.

4.4. Discussion
In Table 5, if comparing the performance of single learning
CNNs and transfer learning CNNs, we find that there is
no improvement or even slightly worse performance of
transfer learning methods on the ResNet-6 model. ResNet
gains accuracy from increased neural network depth (41),
which may explain the performance of the simple ResNet-
6 in this study. Apart from fine-tuning the parameters of
FC layers only, almost all other CNN models obtain better
performance after the transfer learning, proving the usefulness
of the knowledge transferred from the FluSense dataset for
recognising COVID-19 on the COUGHVID dataset. Setting FC
layers trainable only limits the generalisation of the pre-trained
FluSense models.

For fine-tuning parameters of different layers, fine-tuning the
weights of the convolutional layers/blocks 2 − 3 & FC layer
obtains better performance. Since the target dataset COUGHVID
is not large-scale enough compared with the FluSense one, fine-
tuning the entire network (convolutional layers/blocks 1 − 3 &
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FIGURE 4 | Confusion matrices for the best performance on the COMPARE CCS test set and the DiCOVA validation set. For the DiCOVA dataset, since its test dataset

is not accessible, the numbers are averaged over the five cross-validation folds.

TABLE 6 | Models’ performances [%], validation AUC on the DiCOVA Track-1 dataset, and test UAR on the ComParE dataset, with single learning (train from scratch),

and the proposed transfer learning strategies.

Dataset Baseline CNN-4 ResNet-6 VGG-7 MobileNet-6

Single Learning –
ComParE 64.70 63.35 61.78 57.38 63.80

DiCOVA 68.81 68.76 62.53 64.88 64.27

Transfer Learning

Parameters
ComParE – 61.24 60.01 66.43 57.22

DiCOVA – 69.88 66.39 70.10 63.29

Embeddings
ComParE – 64.82 60.67 58.49 63.37

DiCOVA – 72.38 71.38 72.34 66.47

Pre-trained COUGHVID models and their corresponding transfer learning settings are chosen based on the best performance in Table 5. “Embeddings” here include

addition/concatenation. The numbers in bold are higher than the baseline.

FC layer) might encounter an overfitting issue (23). Specifically,
earlier layers/blocks generate low-level, generic features, which
do not change significantly during the training procedure (23).
Conversely, the convolutional layer/block 3 herein generates
more high-level, domain-dependent representations. As for
the embeddings incorporation, concatenation and addition of
the embeddings achieve similar results, which indicates that
both operations equally transfer the knowledge learnt from
the FluSense dataset. Furthermore, we find that incorporating
the embeddings after the convolutional layer/block 3 mostly
outperforms the operations on other layers/blocks. This can be
caused by more discrimination power obtained by applying the
pre-trained FluSense models.

From Table 6, we further validate the generalisation ability of
the proposed CovNet with the DiCOVA Track-1 and COMPARE
CCS datasets. By competing with the official baselines, even
simple CNNs can also achieve better performance with the
proposed transfer learning methods. Therefore, the considered
CovNet appears robust and can provide useful knowledge when
detecting COVID-19 from crowd-sourced cough recordings.
However, the performance improvement over the COMPARE
CCS baseline by incorporating the embeddings method is

not obvious, which might be caused by the inherent data
difference between the FluSense and COUGHVID datasets
and the COMPARE CCS dataset. Moreover, the CovNet works
very well on the DiCOVA track-1 dataset, especially the
incorporating embeddings. Perhaps, the embeddings from
the pre-trained COUGHVID models carry more beneficial
knowledge compared with parameters of convolutional layers on
the DiCOVA dataset.

The main purpose of this study is to introduce and prove the
usefulness of the transfer learning framework CovNet, instead of
competing with the state-of-the-art performance on the DiCOVA
Track-1 dataset (54–56) and COMPARE CCS dataset (19). The
constructed four CNN models are so simple that each of them
only contains three convolutional layers/blocks; we do not apply
any data augmentation techniques and the only input to the
networks are the original log Mel spectrograms.

5. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a transfer learning framework,
CovNet, containing transferring parameters and incorporating
embeddings. Transferring parameters indicate fine-tuning the
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models by initialising and freezing some parameters with the pre-
trainedmodel; incorporating embeddings describe concatenating
or adding the embeddings generated by a pre-trained model with
the embeddings produced by the current model.

The effectiveness and generalisation ability of the proposed
transfer learning framework was demonstrated when developing
simple CNNs for COVID-19 detection from crowd-sourced
cough sounds. In the future, one should consider deeper neural
networks to further improve performance through transfer
learning. Moreover, other knowledge transfer architectures, such
as multi-task learning (57) and domain adaption (58) can
be explored.
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As one of the basic elements in acoustic events, timbre influences the brain collectively

with other factors such as pitch and loudness. Research on timbre perception involve

interdisciplinary fields, including physical acoustics, auditory psychology, neurocognitive

science and music theory, etc. From the perspectives of psychology and physiology,

this article summarizes the features and functions of timbre perception as well as their

correlation, among which the multi-dimensional scaling modeling methods to define

timbre are the focus; the neurocognition and perception of timbre (including sensitivity,

adaptability, memory capability, etc.) are outlined; related experiment findings (by using

EEG/ERP, fMRI, etc.) on the deeper level of timbre perception in terms of neural cognition

are summarized. In the meantime, potential problems in the process of experiments

on timbre perception and future possibilities are also discussed. Thought sorting out

the existing research contents, methods and findings of timbre perception, this article

aims to provide heuristic guidance for researchers in related fields of timbre perception

psychology, physiology and neural mechanism. It is believed that the study of timbre

perception will be essential in various fields in the future, including neuroaesthetics,

psychological intervention, artistic creation, rehabilitation, etc.

Keywords: timbre perception, neurocognitive, psychology, EEG, ERP, fMRI

1. INTRODUCTION

Timbre is a complex and abstract concept. Compared to other acoustic characteristics such as
pitch and loudness, academic research on timbre started late and drew less attention, since
timbre has been considered one of the most difficult acoustic features to comprehend. The
Acoustical Society of America defined timbre in the 1960s as follows: the attribute of auditory
sensation which enables a listener to judge that two nonidentical sounds, similarly presented
and having the same loudness and pitch, are dissimilar. However, this definition only describes
timbre from the dimension of loudness and pitch, rather than from the nature of timbre
itself. In fact, timbre is not a single property, since it arises from an event produced by a
single or several sound sources that are perceptually fused or blended into a single auditory
image (Siedenburg et al., 2019). It contains not only auditory superficial features, but also
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rich auditory cognitive characteristics. Therefore, to
systematically study timbre, it is necessary to integrate timbre
perception with neurocognition, which requires a high-level
interdisciplinary combination of psychology, physiology,
neurology, physics, etc. To some extent, the difficulty of
interdisciplinarity also leads to the fact that most of the
timbre-relevant research works still stay in the exploratory stage.

Meanwhile, with the increasing progress of brain science and
cognitive science, the last decade has witnessed an upsurge of
interest in timbre. As far as research methods are concerned,
besides the traditional behavioral science and psychology, the
neural mechanism research based on brain imaging technologies
such as EEG and fMRI has been increasingly applied. Regarding
the spatial response of the brain stimulated by the timbre, the
exploration range has extended from the initial auditory cortex
to the overall analysis of multiple brain regions. Moreover,
in the exploration of neural representation of timbre, besides
peripheral auditory system, neurons researches at the mesoscopic
level have also made further breakthroughs. For example,
by imitating over 1,000 neurons in the mammalian primary
auditory cortex as well as from simulated cortical neurons,
Patil et al. (2012) constructed a neuro-computational framework
to explore timbre classification. Meanwhile, the timbre stimuli
also become increasingly complex, which have developed from
simple mode of auditory stimuli (such as monophonic and
synthetic sounds) to more complex stimuli with cognitive
sensations (such as melody and natural sounds). These studies
impose great significance on both the neural mechanism of
the brain reaction to timbre and the aesthetic perception
of timbre.

This article aims to summarize the existing timbre-related
research works in the field of neurocognition, which are sorted
out into four parts. The first part addresses how researchers
link the perceptual dimension of timbre to the quantitative
dimension of acoustics from the perspective of psychophysics.
The second part gives a comprehensive discussion on the
brain’s perception of timbre,which includes memory capability,
adaptability etc. The third part focuses on the research of event-
related potentials that are related to timbre. Finally, in the fourth
part, the spatial distribution characteristics of brain perception on
timbre are summarized. Besides, the overall diagram addressing
the structural relationship of these four parts is illustrated
in Figure 1.

2. DIMENSIONS OF TIMBRE

The earliest research of timbre can be traced back to the
work of Helmholtz and Ellis (1855) and Stumpf (1926), and
their research mostly studied timbre just from the perspective
of physics which ignored the perceptual qualities of timbre.
However, with the deepening of the timbre research, it has
been found that timbre, as a complex perceptual property of
a specific fused auditory event, is also involved in psychology
and other disciplines. In the 1970s, a pioneering work was
started by Plomp (1970) and Wessel (1973), who studied

timbre perception from the perspective of the psychophysics.
Following this, multiple dimensions were developed to study
the psychological perception of timbre (Grey, 1977; McAdams,
1993; Handel, 1995; Hajda et al., 1997; Toiviainen et al.,
1998). The following will describe in detail how these
dimensions arise and what they refer to, from which we
will also reveal some important but unsettled problems
for discussion.

2.1. Timbre Space
Through the exploration of the internal properties of timbre
perception, the concept of timbre space was established through
the well-known Multidimensional Scaling (MDS) research
method (Grey, 1977; McAdams, 1993; Handel, 1995; Hajda
et al., 1997; Toiviainen et al., 1998). This method links
the people perception (psychology) to the timbre’s physical
properties (physics) via inference from the rating data of
pairwise timbres, which can implement categorization of timbres
without relying on any prior processing of the physical or
perceptual structure of the timbre. Firstly, pairwise coupling
is conducted among the given timbre set (i.e., any timbre
should be transversely paired with other timbres). Secondly,
all listeners are asked to rate the differences of all timbre
pairs subjectively. Thirdly, these rating results are compared
with each other so that a geometry space named “the
timbre space” (an example of a three-dimensional timbre
space diagram was illustrated in Figure 2) can be generated,
from which the Multidimensional Scaling (MDS) model can
be built up. In such timbre space, those timbres with
similar properties tend to be closer to each other, and
vice versa.

The basic MDS modeling method is based on the underlying
assumption that all timbres are equally treated and all listeners
are of the same level of perceptual ability (Kruskal, 1964a,b;
Plomp, 1976). In other words, this modeling neither imposes
any weight on certain special timbre nor makes any distinction
among listeners. To further improve the modeling performance,
a series of variants of MDS modeling approaches emerged by
means of moderately relaxing this assumption. Among them,
the EXSCAL algorithm (Krumhansl, 1989;Winsberg and Carroll,
1989) incorporates the specificity of every timbre. For the
INDSCAL algorithm (Carroll and Chang, 1970; Wessel, 1973;
Miller and Carterette, 1975; Plomp, 1976; Grey, 1977) and
CLASCAL algorithm (Winsberg and Soete, 1993; McAdams
et al., 1995), the listeners need to be categorized into several
groups in terms of their abilities (or specificities) of timbre
perception, which are treated with different weights accordingly.
The CONSCAL algorithm (Winsberg and Soete, 1997; Caclin
et al., 2005) can yield accurate models customized for individual
listeners through continuous mapping operations on the timbre
positions along perceptual dimensions by using spline functions.
Generally speaking, since the above modified MDS algorithms
can provide more accurate multidimensional timbre space,
these variants tend to perform better in describing features,
structures, and qualities of different timbres compared to the
basic MDS method.
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FIGURE 1 | Overall structural diagram of this review.

2.2. Acoustic Interpretation of Timbre
Dimensions
The timbre space generated by the MDS modeling is about
perception dissimilarity for sounds with similar pitch, duration,
and loudness, and it represents the common perception
dimension of timbre. A basic assumption is that these perceptual
dimensions are orthogonal and should be represented by
independent physical properties. These physical properties are
used as an acoustic interpretation of timbre, which are called the
audio descriptors.

These audio descriptors can be acquired by combining
different perceptual dimensions and acoustic-related physical
parameters, which can be categorized into descriptors of
temporal, spectral, and spectrotemporal (Peeters et al., 2011).
Temporal descriptions refer to the time aspect of sound. Some of
them are directly extracted from waveforms, but most are usually
extracted from time energy envelopes. Spectral descriptions
usually refer to the local features of frequency contents.
Spectrotemporal descriptions usually refer to the spectral changes
across multiple time frames.

Generally speaking, most studies (Grey and Gordon, 1978;
Iverson and Krumhansl, 1993; Krimphoff et al., 1994; McAdams
et al., 1995; Kendall et al., 1999) agree that the following
descriptors can represent the characteristics of different timbres:
(1) Spectral centroid: It represents the relationship between low
and high harmonics. Specifically, the greater the amplitudes of
the high- frequency components relative to the low-frequency
components are, the higher the spectral centroid is and thus the
clearer and brighter the sound is. For example, the oboe has a
higher spectral centroid than the French horn. (2) Attack time:
It indicates a transition period, during which the amplitude of
a particular harmonic increases from the perceptible threshold

level to the maximum value. The shorter the attack time is, the
more acute the timbre feels. For example, string instruments have
a longer attack time than percussion instruments. (3) Spectral
flux: The evolving degree of the spectral shape within a duration.
(4) Spectral irregularity: It is relevant to the intensity of even
harmonics relative to odd harmonics. If the amplitudes of even
harmonics are relatively lower than odd harmonics, the sound
tends feel hollow.

Audio descriptors play important roles in characterizing
the psychoacoustics of timbre, which help explain the timbre
perception in acoustic fields. However, the current research on
timbre descriptors is still in confusion: how many descriptors
can comprehensively describe a timbre? How does people
perceive timbre?—with a linear or nonlinear combination
of descriptors? How to evaluate the interpretability of
an individual descriptor? These questions are still worth
further exploration.

3. TIMBRE PERCEPTION

Limited by the multidimensional and complex characteristics
of timbre, either the traditional research based on acoustic
characteristics or the spectrum analysis and the psychological
subjective evaluation meets challenges in exploring timbre
perceptions. Since timbre perception is ultimately fulfilled by the
brain, some studies attempted to combine physical cognition and
neural perception of timbre for the purpose of uncovering the
interactions between different timbre dimensions. For example,
Caclin et al. (2006) showed that different dimensions of timbre
are processed in parallel when the brain perceives timbre. In
conclusion, it is an indispensable work to explore the mechanism
on how the brain processes timbre perception.

Frontiers in Psychology | www.frontiersin.org 3 March 2022 | Volume 13 | Article 86947531

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wei et al. Timbre Perception

FIGURE 2 | The three-dimensional timbre space diagram of five different

timbres. The geometric distance between two timbres corresponds to the

perceived differences between them, and the spatial dimensions are correlated

with acoustical physical properties.

3.1. Sensitivity of Timbre Perception
Studies have found that the human brain can perceive the
difference of timbre. Peynirciou et al. (2016) attempted to acquire
timbre perception difference through the artificial mixture of real
musical instruments. They conducted two experiments. In one
experiment, the subjects were asked to hear several fragments
of the mixture of different instruments, from which they judged
the mixing degree of these musical instruments. In the other
experiment, the participants were asked to identify the different
timbres that contained specific proportion of mixed instruments.
These two experimental results showed that participants could
accurately perceive the timbre differences of these instruments.
Moreover, it was also found that the subjects who received
music training and those who did not receive music training
showed similar response patterns. Meanwhile, Samson et al.
(1997) conducted experiments using synthesized timbres, which
only subtly differed in frequency spectra and time information.
They proved that the human brain was very sensitive to the
perception of timbre differences, which was consistent to the
conclusion drawn by Peynircioǧlu.

3.2. Adaptability of Timbre Perception
The human brain has a certain degree of adaptability to the
perception of timbre (i.e., the perceptual after-effect). To verify
this effect, Piazza et al. (2018) asked the participants to be
repeatedly exposed to two sounds (e.g., clarinet and oboe, male
and female voice) and then these subjects were asked to hear one
of them. The results showed that: when the subjects solely listened
to sound A (or B), they naturally incorporated the auditory

perception effects of A with those of B. Moreover, the experiment
also proved that such after-effects were robust for moderate pitch
changes. This adaptation contributes to the stability of timbre
perception and the extensibility of familiar timbre. It actually
enhances the sensitivity to novel or rare auditory objects, such
as the timbre of an unfamiliar human voice.

3.3. Timbre Memory
It is often taken for granted that timbre can be easily memorized
in the brain. However, the memory of timbre actually requires
a complex mnemonic architecture, which delicately keeps track
of sound identities and concurrently manages timbre operations
(such as sensory processing, information storage, and matching
of representations). Poulin-Charronnat et al. (2004) found that
changing the instrumental timbre will affect the memory of
tonal excerpts in human brain during the study of tonal and
atonal music memory. Trainor et al. (2004) also found that the
timbre change perturbs infants’ melody memory. In the study
on synthesized timbres, Golubock and Janata (2013) found that
all the differences along the dimensions of spectral centroid,
attack time, and spectral flux would influence the capacity of
working memory. Meanwhile, Schellenberg and Habashi (2015)
studied the memory capability influenced by the lags of timbre
stimuli. Specifically, in the melody recognition test, by altering
the lags between exposure and test spanning, which were set
as 10 min, 1 day, and 1 week, they surprisingly discovered
that the lag alternations did not significantly affect the timbre
memory capability.

3.4. Mental and Physical Interactions With
Timbre
In some circumstances, changing in timbre may awaken
people’s overall physiological and psychological responses, which
is especially obvious in sensorimotor system. Many studies
(Behrens and Green, 1993; Gabrielsson and Juslin, 1996; Leman
et al., 2009) have found that musicians can use gesture language
to convey emotional intentions under the influence of timbre.
Therefore, people may not just passively listen to different
timbres, which means, timbre changes in turn can also promote
the extent of musicians’ involvement in the overall state of the
body (Halpern et al., 2004). Overy and Molnar-Szakacs (2009)
proposed the “shared affective motion experience” (SAME)
hypothesis based on the basic level of noisy and normal
timbres. Combined with behavioral research, Blumstein et al.
(2012) proved that noisy timbre could cause more vigorous
physical activity than non-noisy timbre in terms of evoking the
limbic nervous system response. Following this, Wallmark et al.
(2018) supplemented the consensus of the predecessors through
the embodied cognition research paradigm. They conducted
experiments on different monophonic timbres and composite
music timbres, which were then converted into noisy timbres
by means of pitch shifting techniques. Their experimental results
show that, such noisy timbres are able to arouse greater physical
exertion and produce a lower emotional response than a non-
noisy timbre, and that the noisy timbres can evoke responses in
the motor system of the brain. It can be seen that, in addition to
the significant impact on the human brain’s auditory dimensions,

Frontiers in Psychology | www.frontiersin.org 4 March 2022 | Volume 13 | Article 86947532

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wei et al. Timbre Perception

timbre can also inspire a listener to produce emotional actions,
which in turn reflects the perception of the listener.

Although efforts have been extensively made to study the
brain responses of timbre, there are still many unsolved problems
including the brain perception process of timbre identification,
the exploration of brain regions for different functionalities of
timbre perceptions etc. Therefore, the field of timbre perception
study is still very young, which is expected to bring about
breakthroughs through integrating varieties of neurocognitive
experimental methods and new techniques of data processing
such as EEG/ERP and fMRI.

4. RESEARCH ON TIMBRE PERCEPTION
IN EVENT-RELATED POTENTIALS

As a popular physiological means to effectively reflect
human brain activities, EEG (electroencephalogram) has been
increasingly used in the research of brain cognitive mechanism.
The EEG arises from the potential oscillations in the brain (i.e.,
excitatory postsynaptic potentials), and the current is afferent
from the cortex of the thalamus to activate the parietal dendrites
(Schaefer, 2017). Early EEG experiments mainly focused on
the oscillation of the brain wave (which refers to spontaneous
EEG), whose voltage can be collected in the experimental
process. In contrast, later studies paid more attention to a
special EEG component that had a time-locked relationship
with psychological events, namely ERP (event-related potential).
ERP has three notable features: one is that the waveform change
is either positive or negative; the second is that the waveform
change should behave as a sufficiently high intensity (amplitude);
and the third is that the wave change occurs at a specific moment
after the stimulus (latency period) are triggered (Wang, 2011).
Because ERP can reflect mental activity in millisecond accuracy
and thus has a high time resolution without causing any brain
damage, it is applicable to explore the brain cognitive mechanism
of short-term sound stimulus, such as the brain response to
transient timbre stimulation.

4.1. AEP (Auditory Evoked Potential) of
Timbre
Early studies have found that for auditory stimuli, N1 (Näätänen
and Picton, 1987) and P2 (Celesia, 1976) are typical ERP
components that reflect human auditory perception and auditory
classification. Therefore, in numerous electrophysiological
studies (Auzou et al., 1995; Liu et al., 2018; Hamlin et al., 2019;
Banerjee et al., 2021) of timbre perception, researchers often
treat N1 and P2 as indicators to reveal the neural mechanism of
timbre processing.

Many studies (Helmholtz and Ellis, 1855; Fletcher, 1934;
Seashore, 2008) have found that the timbre is closely related to the
harmonic structure. Therefore, some researchers have carried out
investigations on pure tone (lacking harmonic structures) and
complex tone with the same baseband but different harmonics.
Meyer et al. (2006) obtained ERP from 16 healthy subjects,
who were required to distinguish between complex instrumental
monophonic sounds (piano, trumpet, and violin) and simple

pure sounds that lacked timbre characteristics. Analyses showed
that, compared to pure tones, N1 and P2 responded more
strongly to the tones of the instrument. At the same time,
Tardón et al. (2021) attempted to discover the variations of the
electrophysiological responses of the brain by simultaneously
changing the acoustic characteristics of music, demonstrating
that the amplitudes of the N1 and P2 components increased when
the spectral flux, one of the dimensions of timbre, was mutated.
Moreover, Pantev et al. (2001) observed that, for professional
trumpet players and violinists, the timbre arising from playing
their own instruments tended to evoke stronger N1 event-related
potential components than other timbre did.

Besides the timbre stimuli, AEP can also be evoked via
auditory imagination of timbre. Studies (Tuznik et al., 2018) have
proved that the difference in imaginary timbre can be reflected
in event-related potentials. Specifically, they found that timbre
imagination is able to evoke other ERPs such as LPC in addition
to N1 and P2. Moreover, LPC was found more sensitive to timbre
changes of imagined sounds than other AEPs. In addition, it
was also discovered that, once the ERP was successfully evoked,
whether a subject had experienced music training or not, the
magnitude of N1, P2, and LPC potentials were not affected.
Nevertheless, when performing the same auditory imagination
tasks related to timbre, the success rate of musicians was higher
than that of non-musicians.

4.2. Timbre-Induced MMN Components
MMN (Mismatch Negativity) is an important component of
event-related potentials (Luck, 2009), which is obtained by the
Oddball paradigm. This paradigm involves two types of sound
stimuli: standard stimuli and deviation stimuli. The standard
stimuli appear with high probability, whereas deviation stimuli
appear with low probability. To acquire MMN, ERPs evoked by
both the standard stimuli and the deviation stimuli is need to be
respectively superimposed and averaged. Then, the ERP evoked
by the deviation stimuli is subtracted from the ERP evoked by the
standard stimuli, from which a difference wave can be generated
and treated as the desired MMN. The waveform of a MMN
appears as a negative deflection, which occurs during 100–250
ms after the stimulus (i.e., the latency period is 100–250 ms;
Näätänen et al., 2004). Particularly, the MMN can also be evoked
even if the listener is in the coma state, which can be applied as
an automatic indicator of the hearing mechanism recovery in the
early treatment on the hearing-impaired.

Christmann et al. (2014) explored how timbre variation
affected theMMN on the condition that other variables remained
unchanged by means of the spectrally rotated technique. The
experiment proved that, MMN evoked by instrumental sounds
with timbre characteristics occurred earlier than those evoked by
pure tones without timbre characteristics. This result indicates
that the brain tends to be more sensitive to tones with rich
harmonic structures, but is not influenced by pitch changes.
Caclin et al. (2008) measured the variations of MMN by altering
single-dimensional timbre characteristics (attack time, spectral
centroid, even harmonic attenuation) and their combinations,
from which he concluded that there existed some neural cells
dedicatedly processing acoustics in the brain. Torppa et al.
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(2018) found that when the children with cochlear implants
(CIs) perceived timbre differences (from piano to Cymbal) in
noise, the amplitude of MMN would change significantly. This
conclusion suggests the importance of MMN in studying the
timbre perception of children with CIs in noisy circumstances.

Since MMN is sensitive to varieties of timbre characteristics,
it is usually employed as an indicator for timbre classification.
Specifically, by altering the types of standard timbre stimuli
or deviation timbre stimuli, MMN of different features (such
as amplitudes, latency periods) can be evoked, thus reflecting
listeners’ abilities in identifying varieties of timbres, such as
distinguishing between pure tones and overtones (Tervaniemi
et al., 1997), distinguishing timbres with different spectral
complexities (Tervaniemi et al., 2000), and distinguishing
musical timbres that convey different emotions (Goydke et al.,
2004). In addition, concerning applications of MMN, it was
found that people with cochlear implants still had the ability
to distinguish timbres although they were weaker than normal
people (Koelsch et al., 2004).

In general, various ERP components induced by timbre
actually provide a window to observe brain responses to
timbre changes, which also helps researchers explore the neural
mechanism of the brain’s timbre perception. Nevertheless, to
further discover this mechanism, it is necessary to analyze the
timbre response distinctions across different brain areas.

5. EXPLORATIONS OF TIMBRE
PERCEPTION ACROSS BRAIN AREAS

With the development of magnetic resonance imaging
technology, fMRI (functional Magnetic Resonance Image)
and PET (Positron Emission Computed Tomography) have
gradually been adopted, through which the response mechanism
of the brain to timbre perception in different spatial locations is
being discovered. Related studies cover the spatial characteristics
of brain’s perception on spectral and temporal information of
sounds (Zatorre and Belin, 2001; Hall et al., 2002), the effect
on the spatial location distribution of brain from variations of
timbre harmonics (Menon et al., 2002), the response difference
of brain locations to the sound spectrum envelope (Warren et al.,
2005), etc. These studies related to spatial features will facilitate
the extension of explorable brain regions for timbre perception,
such as the areas spreading from the auditory cortex to the
whole brain.

5.1. Brain Hemispheres Difference in
Timbre Perception
Some studies based on auditory perception have found that the
left brain has an advantage in the processing of sound properties
in the time domain (Robin et al., 1990), while the right brain has
an advantage in dealing frequency-domain information (Zatorre
and Belin, 2001; Menon et al., 2002). And based on the disclosure
that timbre is closely related to both harmonic structure and
time structure, researchers have found that timbre discrimination
relies on the whole auditory cortex in the brain, while at the same

time timbre perception also has the right-side advantage (Platel
et al., 1997).

Studies have proved that the temporal lobe is involved in the
brain’s processing of timbre. On this basis, Samson and Zatorre
(1994) carried out the timbre discrimination study on patients
with unilateral temporal lobe resection, and found that only
those subjects with right temporal lobe resection were affected in
timbre discrimination. These findings supported the functional
role of the right temporal lobe in timbre discrimination, and
the responses of those subjects with left temporal lobe resection
were not obvious. Leaver and Rauschecker (2010) also proved
that right superior temporal regions were active in the processing
of different timbres on instruments. However, their conclusion
that the basic attributes of music perception were mainly biased
toward the right hemisphere was then challenged by Johnsrude
et al. (1997). Specifically, their study examined the processing of
attack time in non-percussion sounds by using PET technology,
which showed that the subjects had obvious activation foci
in the left orbitofrontal cortex and left fusiform gyrus. Later,
Samson et al. (2002) also showed that both the left and right
hemispheres were involved in timbre processing. They found that
the patients with left temporal lobe lesions were not influenced
in distinguishing single sounds, but when the single sounds
appeared in the background of a melody, the patients were
unable to judge the degree of dissimilarity. At the same time,
Menon et al. (2002) also revealed that the left brain and right
brain exhibited some asymmetry in reaction to timbre stimuli.
Such asymmetry expressed in the fact that the activation of the
left temporal lobe was significantly posterior compared with the
right hemisphere.

5.2. Relevance of Brain Areas in Timbre
Perception
At present, studies have shown that the response of cerebral
cortex to sound stimulus is mainly distributed in areas of
the primary auditory cortex, superior temporal gyrus, superior
temporal sulcus and Heschl’s gyrus, prefrontal ventrolateral area,
etc. (Platel et al., 1997; Caclin et al., 2007; Samson et al., 2011;
Wallmark et al., 2018). Beside the above areas, some researchers
believe that timbre, as a complex multi-dimensional perceptual
property, may be related to the activities of brain areas that do not
correspond to the processing of some low-level auditory stimuli.
Thus, Meyer et al. (2006) used the EEG imaging method of low-
resolution electromagnetic tomography (LORETA) and proved
that timbre perception involved not only the two sides of the
auditory cortex, but also the middle region of the brain that
was related to emotion and auditory imagination. The research
of Alluri et al. (2012) proved that when participants listened to
timbres of “bright” qualities, the putamen (basal ganglia) would
be activated.Wallmark et al. (2018) explored the neural dynamics
of single-tone timbres at different noise levels to determine which
areas of the brain were involved in the processing of noisy brain
stimuli. It turned out that timbre processing was related to the
sensorimotor area. At the same time, Blumstein et al. (2012)
confirmed that themotion and edge responses caused by different
timbres had certain differences.
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The brainstem, an important part of the central auditory
system, has also been studied to explore timbre perception.
Strait et al. (2012) revealed that, a musician’s auditory brainstem
behaved as unique responses to his own frequently-exercising
instrument, whereas it also showed insensitivity to other
instruments with distinct timbres. By reviewing the work on
the auditory brainstem’s ability to respond to complex sounds,
Anderson and Kraus (2010) found that timbre can be applied as
an objective neural index for hearing-in-noise abilities.

6. DISCUSSION

On basis of the above retrospect, the findings of timbre
perception can be obtained by either psychological approaches
or physiological approaches. The psychological approaches
typically refer to the basic multi-dimensional scaling modeling
method and its variants, from which a series of audio
descriptors concerning the related dimensions can be derived.
The physiological approaches usually rely on signal acquisition
means that are related to cerebral neural activities including
EEG/ERP, fMRI, and PET, which provide various perspectives to
explore the neural mechanism of the brain’s timbre perception.

In general, it can be concluded that timbre perception is
promising in psychology- and neurocognition-related fields.
Specifically, timbre perception can play crucial roles in future
applications such as music creation, auditory neuroaesthetics,
and human-computer interaction experiences, if efforts are made
in the following directions.

(1) Interdisciplinary fusion should be strengthened. Up to
now, in both the timbre space modeling and timbre abstract
encoding from low to high levels in the brain, the inter-
discipline permeation is still not sufficient. For example, the
aforementioned mental and physical interaction with timbre
stimuli can hardly be interpreted well due to the lack of inter-
discipline permeation. Therefore, it is urgent to integratemultiple
academic fields including psychology, neurocognition, physical
acoustics etc. Only in this way can the mechanism of the timbre-
relevant perception be explored deeply.

(2) More attention should be paid to the relevance with
other acoustic characteristics. Most of the existing timbre
research only focuses on the characteristics of timbre itself.
In fact, because timbre rarely appears in a single form,
timbre perception inevitably is affected by other characteristics
such as pitch, loudness, melody, and rhythm. Therefore, it
is necessary to incorporate the relevance between timbre
and other characteristics. Essentially,if the timbre research is
placed in a comprehensive environment which organically links
all these elements, the study of timbre perception will be
more productive.

(3) More emphasis should be placed on individual
differences. At present, only few studies address individual
differences in timbre perception, and most of them only
focus on the difference between musicians and non-
musicians. Nevertheless, higher diversity should be considered
concerning individual difference. For example, individuals
with hearing impairments or with poor auditory perception
should also be considered. The efforts on exploring the
characteristics of special individuals’ timbre perception will
further promote the advancement of auditory aesthetics
and neuromedicine.
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Neural Network Model Based on the
Tensor Network for Audio Tagging of
Domestic Activities
LiDong Yang1, RenBo Yue1, Jing Wang2* and Min Liu3

1School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China, 2School of Information
and Electronics, Beijing Institute of Technology, Beijing, China, 3China Mobile Research Institute, Beijing, China

Due to the serious problem of population aging, monitoring of domestic activities is
increasingly important. Audio tagging of domestic activities is very suitable when the visual
data are unavailable due to the interference from light and the environment. Aiming at
solving this problem, a neural network model based on the tensor network is proposed for
audio tagging of domestic activities that is more interpretable than traditional neural
networks. The introduction of the tensor network can compress the network
parameters and reduce the redundancy of the training model while maintaining a good
performance. First, the important features of a Mel spectrogram of the input audio are
extracted through the convolutional neural networks (CNNs). Then, they are converted into
the high-order space corresponding with the tensor network. The spatial structure
information and important features can be further extracted and retained through the
matrix product state (MPS). Large patches of the featured data are divided into small local
orderless patches when using the tensor network. The final tagging results are obtained
through the MPS layers which is just a tensor network structure based on the tensor train
decomposition. In order to evaluate the proposed method, the DCASE 2018 challenge
task 5 dataset for monitoring domestic activities is selected. The results showed that the
average F1-score of the proposed model in the test set of the development dataset and
validation dataset reached 87.7 and 85.9%, which are 3.2 and 2.8% higher than the
baseline system, respectively. It is verified that the proposedmodel can perform better and
more efficiently for audio tagging of domestic activities.

Keywords: tensor network, matrix product state (MPS), tensor train decomposition, audio tagging, neural network

1 INTRODUCTION

The world is facing the problem of population aging. It is estimated that by 2050, the number of
people over 64 years will exceed 20% of the world’s population. According to the survey, 40% of the
elderly will live alone at home [1]. This will lead to many social problems, such as the increase in
diseases and healthcare costs, the shortage of nursing staff, and the increase in the number of people
unable to live independently. Therefore, it is imperative to develop ambient intelligence-assisted
living tools to help the elderly live independently at home [2]. The first task is to detect what is
happening at home. Audio tagging is very suitable when the visual data are unavailable due to the
interference from light and the environment. Audio tagging associate tags with the audio and
identifies the events that generate the audio. Audio tagging of domestic activities has important
applications in smart home robots, monitoring of domestic activities, and the lives of the elderly [3].
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For the problem of audio tagging, Gong [4] proposed PSLA, a
collection of model-agnostic training techniques. It includes
ImageNet pre-training, balanced sampling, data augmentation,
label augmentation, and model aggregation. The results we
obtained outstripped the best previous systems. Puy [5]
proposed a model based on separable convolutions, which uses
separable convolutions in channel, time, and frequency
dimensions to control the complexity of the network and
achieved good results in terms of effect and complexity. The
widely used dataset for audio signals is DCASE (Detection and
Classification of Acoustic Scenes and Events). DCASE 2018
Challenge Task 5 [6] is specifically used for audio tagging for
domestic activities. This tagging task provides the development
and validation datasets and baseline system and requires
identifying nine classes of events in domestic activities within
10-s clips. The audio data are collected by four linearly arranged
microphones. There are many ways to process microphone array
audio, among which Wang [7] proposed a modeling method that
uses the channel mode, time mode, and frequency mode as the
three dimensions to construct a three-dimensional tensor space,
which has achieved good results. In the tensor completion
method proposed by Yang [8], tensor modeling of multi-
channel audio signals with the missing data has achieved good
results.

Among the submitted systems in DCASE 2018 Challenge Task
5, the baseline system of this task trains a single classifier model
that takes a single channel as the input. The learner in the baseline
system is based on a neural network architecture using
convolutional and dense layers. As input, log Mel-band
energies are provided to the network for each microphone
channel separately [9]. Inoue [10] put forward a combination
method of a data-enhanced front-end module and a back-end
module based on the CNN classification method. First, it
enhances the input data by shuffling and mixing the sound
clips. Its data enhancement method helped increase the
variation of training samples and reduce the impact of
unbalanced datasets. Then, the input of the CNN, as a
classifier, is the log-Mel spectrogram of the enhanced data.
The system proposed by Tanabe [11] is a combination of the
front-end modules based on blind signal processing and the back-
end modules based on machine learning. The front-end modules
employ blind dereverberation and blind source separation. They
use spatial cues without machine learning to avoid overfitting.
The back-end modules employ one-dimensional convolutional
neural network (1DCNN)-based architecture and VGG16-based
architecture for the individual front-end modules. All of the
probability outputs are ensembled. In addition, through mix-
up-based data augmentation, overfitting is avoided in the back-
end modules. TC2DCNN [12] is extended by operating the
convolutions along the two dimensions of time and channel,
not along the frequency axis, since similar patterns in different
frequency bands do not necessarily belong to the similar audio
event. INRC_2D [13] combines a deep neural network with a
scattering transform. Each audio segment is first represented by
two layers of scattering transform. The four denoised transforms
of each of the two layers are combined together. Each of the fused
layers is processed in parallel by two neural network (NN)

architectures, RESNET, and a long short-term memory
(LSTM) network, with a joint fully connected layer. The
VGGish model proposed by Kong [14], which has an
AlexNetish 8-layer CNN with global max pooling, has
achieved good results.

The tensor network is a sparse data structure designed for the
efficient representation and manipulation of the ultra-high
dimensional data to achieve better interpretability of the data.
It is similar to the kernel method in machine learning [15].
Through feature mapping, the original linearly inseparable data
are converted to a high-dimensional space. In this space, a
hyperplane can be linearly separable. But the number of
parameters will be very large. Tensor train decomposition
(also called the matrix product state) is a kind of tensor
decomposition specifically for high-dimensional data. Wang
[16] uses tensor train decomposition in a compressed HRTF,
which is closer to the original HRTF than other methods.
Therefore, tensor train decomposition is used to approximate
the tensor networks. Matrix product state is the first tensor
network to be discovered and used, which can be efficiently
used in the simulation of the ground state of an infinite one-
dimensional system. In recent years, tensor networks based on
matrix product states have shown good performance in
classification. For example, Stoudenmire [17] encoded the
MNIST data into a tensor network, and the tensor network
was trained to obtain the probability of each class to complete
the classification. Efthymiou [18] proposed a new contraction
method for Fashion-MNIST, which realizes the parallel
compression of the horizontal edges, and then the vertical
compression, which further accelerates the training speed.
Selvan [19] proposed a lonet tensor network, which overcomes
the shortcomings of the MPS tensor network, that is, the loss of
spatial correlation when used for large resolutions. It is used for
the two-dimensional classification of medical images and has
achieved good results. While achieving good results, compared
with other models, the GPU usage is significantly lower than that
of the other models. PEPS [20] is a two-dimensional extension of
the matrix product state. Although it has achieved great success,
its algorithmic complexity is much higher than that of the matrix
product state. MERA [20] is an experimental state of the ground
state of a one-dimensional quantum system, which is inherently
scale-invariant. In the MERA, tensors are connected to reproduce
the holographic geometry. There are also other kinds of tensor
network structures which have higher complexity than the MPS
and can be used in other applications such as applied
mathematics, chemistry, physics, machine learning, and many
other fields.

In the article, a neural network model based on the tensor
network is proposed for audio tagging of domestic activities. This
article draws on the research results of the simplest and most
mature matrix product state in the tensor network, hoping to
achieve a balance between the complexity and effectiveness of the
network model. An end-to-end tensor network-based neural
network model is constructed and trained with the Mel
spectrograms. After going through the convolutional layers,
important features are extracted. Then, the MPS tensor
network further extracts the features and gives the tagging
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results. This can not only achieve good tagging results but also
compresses the network through tensor train decomposition,
which has a smaller number of parameters than the traditional
CNN. The F1-score is used to evaluate the performance of the
proposed method. In terms of tagging performance, the
performance of the proposed model is compared with other
models. Compared with the results of the development dataset
and the validation dataset of DCASE 2018 challenge task 5, the
proposed method achieved better results. This article is a
beneficial attempt to combine the tensor networks and neural
networks and can also be extended to other deep learning sound
signal processing fields.

The rest of this article is organized as follows: Section 2
introduces the neural network model based on the tensor
network proposed in this article in detail. Section 3 introduces
the parameter settings and experimental results of the proposed
method, which are analyzed in terms of precision, recall, and F1-
score, respectively. This article is concluded in Section 4.

2 NEURAL NETWORK MODEL BASED ON
TENSOR NETWORK

As the experimental flowchart shows in Figure 1, the proposed
audio tagging method consists of three main stages, namely, data
preprocessing, data augmentation, and neural network model based
on the tensor network. Data preprocessing first performs channel
fusion [21] on the audio, then takes the log after FFT, and then the
Mel spectrogram is obtained by mapping the Mel frequency.

The structure of the neural network model based on the tensor
network is shown in Figure 2. Convolutional layers are used for

extracting deeper feature representations. Important spatial
structure and time information will be retained in the middle
MPS layers. Finally, the retained information enters the MPS
decision layer after being flattened to obtain the audio tagging
results.

2.1 Data Preprocessing and Augmentation
The Mel spectrogram as the audio feature of the original signal is
used in the proposed method. The Mel spectrogram converts the
ordinary frequency scale of the spectrogram into the Mel
frequency scale. After framing, the fbank feature is extracted
through the Mel filter bank [22]. The energy value distribution
range is summarized and is then linearly corresponded to blue-
yellow [23]. In this article, 128 triangular filters are used to form a
Mel filter bank, which corresponds to the objective law that the
higher the frequency, the duller the human ear is.

Data augmentation uses horizontal flip, vertical flip, and
random rotation to enlarge the training data, avoid overfitting,
and enhance the robustness of the model.

2.2 Neural Network Model Based on the
Tensor Network
2.2.1 CNN Feature Extraction
CNN [24] is used to process the multi-dimensional data, such as the
two-dimensional images with many channels. CNN uses shared
weights, local connections, pooling, and other layers to organize the
attributes of natural signals. The convolutional layer, ReLU layer,
and pooling layer are the most commonly used CNN layers.

The basic purpose of the convolutional layer is to determine
the local connections between the features and map their

FIGURE 1 | Flow chart of audio tagging.

FIGURE 2 | Structure of the neural network model based on the tensor network.
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information to a specific feature map. The convolution of the
input I with filter F ∈ R2a1+2a2 is given as follows:

(IpF)n,m � ∑a1
k�−a1

∑a2
l�−a2

Fk,lIn−k,m−l, (1)

where a1 and a2 determine the size of the convolution kernel
along the x and y directions. ReLU (g(z) � max(0, z)) [25] is a
non-linear function which is applied to feature mapping created
by the convolutional layer. The BN [26] layer normalizes each
mini batch throughout the entire network, reducing the internal
covariate shift caused by the progressive transforms. The BN layer
is used to reduce the training time of the CNN and the sensitivity
of network initialization. Therefore, this layer is used for
normalization in the proposed network model.

2.2.2MPS Tensor Network
The tensor network notation is a brief graphical representation of
the high-dimensional tensors. It not only makes it easier and
more intuitive to process the high-dimensional tensors but also
provides an insight into how to achieve more efficient operations.
For a more comprehensive introduction to the tensor networks,
references in [27]can be referred.

The MPS (matrix product state) [17, 18] is a one-dimensional
tensor network structure, which is based on tensor train
decomposition [28]. It uses chain-connected small tensors to
represent the high-dimensional tensors.

For a neural network model based on the tensor network, the
generated Mel spectrograms must first be mapped to the high-
dimensional space corresponding to the tensor network.
According to Eq. 2, each pixel of the Mel spectrogram is
mapped to a two-dimensional space.

∣∣∣∣x[l]
n 〉 � cos

x[l]
n π

2
|0〉 + sin

x[l]
n π

2
|1〉, (2)

where |〉 is the Dirac symbol in physics, representing the state
vector. |0〉 means blue with low energy, and |1〉 means yellow
with high energy, where l represents the order of the Mel
spectrogram, and n represents the pixel order in the Mel
spectrogram. The function with cos(πx/2) and sin(πx/2) is one
of the mapping methods. After inputting the spectrogram, the
data of each pixel are normalized to be between 0 and 1; using
cos(πx/2) and sin(πx/2) can accurately represent the information
in the pixel. After mapping, |x[l]n 〉 can represent all the
magnitudes of energy in the Mel spectrogram. After all the
pixels are mapped, Mel spectrograms can be expressed as Eq.
3 and also be expressed as Eq. 4 using the tensor network
notation. ∣∣∣∣X[l]〉 � ∣∣∣∣x[l]

1 〉 ⊗
∣∣∣∣x[l]

2 〉 ⊗ ... ⊗
∣∣∣∣x[l]

N 〉, (3)
Φ(x) � ϕ(x1) ⊗ ϕ(x2) ⊗ ... ⊗ ϕ(xN), (4)

where ⊗ represents the tensor product. x represents the Mel
spectrogram of each input, andN is the total number of pixels in
the Mel spectrogram. ϕ(x1) is the representation of the first pixel
in the Mel spectrogram mapped to a two-dimensional space, and
Φ(x) is the high-dimensional mapping form of the Mel

spectrogram. Given the high-dimensional features, for the
input Mel spectrogram, the decision function of the event
tagging can be expressed as

fm(x) � ψm ·Φ(x), (5)
m � argmaxfm(x). (6)

Here, m represents M categories, m � [0, 1, ...,M − 1], where
ψm is the trainable weight tensor. The model of the decision
module in audio tagging is shown on the left of Figure 3 and
in Eq. 5. ψm is a weight tensor, and its dimension is as high as
M · 2N, which is difficult to be calculated. After decomposing ψm

into the chained small tensors through the MPS, the two-
dimensional space that can be mapped with each pixel can be
contracted with the weight tensor ψm. In this way, the calculation
can only be carried out between the small tensors, without directly
calculating the weight tensors with high dimensionality. Figure 3 is
a linear model of the decision module in audio tagging represented
by the tensor network notation. For details on the tensor network
notation, reference in [27]can be referred. As shown by the small
green tensor in Figure 3, Φ(x) is the form in which the two-
dimensional spacemapped by each pixel is connected to the weight
tensor ψm. The nodes in the first column are the pixels of eachMel
spectrogram after being mapped to the two-dimensional space.
They are connected to the weight tensor obtained after the training.
There is an indexm on the right side ofψm, whose dimension is the
number of the final tagging classes.

FIGURE 3 | Linear model of the decision module in audio tagging.
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This mapping method will result in a huge number of
parameters in the weight tensor. The matrix product state is
the name for tensor train decomposition in physics. It
approximates a large tensor to the product form of several
second-order and third-order tensors. In this way, the
contraction can be performed in the way on the right side of
Figure 3, to avoid the direct calculation of the ultra-high
dimensional tensor, and the calculation amount will be greatly
reduced. A high-dimensional tensor T is decomposed into an
approximate tensor ~T by the tensor train [28], as shown in Eq. 7.

~T � ∑
a1a2 ...aN−1

A(1)
S1a1A

(2)
S1a1a2 ...A

(N−1)
SN−1aN−2aN−1A

(N)
SNaN−1 . (7)

The weight tensor ψm is approximated by the product form of
some two-dimensional and three-dimensional tensors according
to Eq. 7. The approximated weight tensor is shown in Eq. 8 and
on the right of Figure 3.

ψm,i1 ,i2 ,...,iN � ∑
α1 ,α2 ,...αN

Ai1
α1
Ai2

α1α2
Ai3

α2α3
...Am,ij

αjαj+1 ...A
iN
αN
, (8)

whereA is the decomposed second-order and third-order tensors.
The subscript ij is called the free index, and the free index m
corresponds to the right side of Figure 3, and its dimension is the
number of tagging classes. The subscript aj is an auxiliary
indicator, and its dimension is called the bond dimension,
which controls the quality of the approximation. The size of
the bond dimension determines the size of the tensor. The
components of the tensor A are the variational parameters
determined through the training.

2.2.3 Local Orderless Operation
Since MPS is a one-dimensional tensor network, the neighboring
pixels in the spectrogram are usually highly correlated. Therefore,
directly flattening and inputting the Mel spectral feature into the
MPS layer will cause the loss of spatial information. Spatial
information includes the information of a single frame in the
vertical direction, as well as the information between the frames
in the horizontal direction, which is very important for audio
tagging. In order to solve this problem, the local orderless
operation according to the local orderless theory is used in the
tensor network [29, 30]. The local orderless operation divides a large
patch into many small patches. After the small patches are

contracted, the dimension of the output vector is v , and v is set
to the same size as the bond dimension. This step can be interpreted
as using a vector of dimension v to represent small patches of
information, similar to feature extraction. Each small patch contains
global features, which can better preserve the spatial information.

First, the Mel spectrogram is divided into four parts, as shown
in Figure 4. The first pixel of each part is taken out and combined
into a 2 × 2 local orderless small patch, as shown in the red box in
Figure 4. Then, the pixels of each part are combined according to
this step, until the last pixel in the black box, as shown in Figure 4.
The pixel order in the patch is shown in Eq. 9.

ΡK � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
K , K + W

2

K + H × W
2

, K + (H + 1) × W
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∀K

� 1, ..., (H × W)/4, (9)
where PK represents the local orderless small patch, the
superscript K represents the sequential number of small
patches, and H and W represent the height and width of the
Mel spectrogram, respectively.

Then the small patches are flattened and input into the MPS
layer to contract. Then all the output vectors v are reshaped into
images. The converted graph has a smaller resolution than the
previous Mel spectrogram, but the important information will be
preserved. This operation is repeated on the converted image.
After the three MPS layers, the resolution of the generated image
is already very small, but the features and spatial information of
the original Mel spectrogram are well-preserved.

2.2.4 Contraction and Optimization
After the three MPS layers of contraction, a small size image has
been generated. It has spatial structure information and
important features of the Mel spectrogram. It is flattened into
the last MPS layer, as shown in Figure 4. In line with the
implementation method from the MPS in Miller [31], the
horizontal edges are first contracted in parallel to get the
contracted tensors, and then, these tensors are contracted
vertically. The output is generated by connecting the free
indicators of the tensor. A recent work has proposed a more
effective calculation method [32, 33], which is expected to further
accelerate the calculation speed.

FIGURE 4 | Local orderless operation and contraction.
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3 EXPERIMENTS

3.1 Datasets
In the experiment, development and validation datasets of
DCASE 2018 challenge task 5 are used to evaluate the audio
tagging for domestic activities. DCASE 2018 challenge task 5 is a
derivative of the SINS dataset. It contains a continuous recording
of one person living in a holiday home over a period of 1 week. It
was collected using a network of 13 microphone arrays
distributed over the entire home. The microphone array
consisted of four linearly arranged microphones. For this task,
seven microphone arrays are used in the living room and kitchen
area combined. The continuous recordings are split into audio
segments of 10 s. These audio segments are provided as individual
files along with the ground truth. The dataset contains 72,984
audio files. Each audio segment contains four channels. It is
organized with nine class labels consisting of absence, cooking,
dishwashing, eating, social activity, vacuum cleaning, watching
TV, and working. The audio files are recorded with 16 kHz
sampled frequency, and the number of files in each class are
not the same.

3.2 Evaluation Method
In this experiment, the development dataset and validation
dataset are divided into the training set, validation set, and
test set with a ratio of 8:1:1, respectively. The evaluation
criteria include the precision rate, recall rate, and F1-score.
Precision is the ratio of real positive samples to samples that
are predicted to be positive, which is specific to the predicted
samples. Recall is the ratio of the correct predictions to the
positive cases in the sample, which is specific to the actual
samples. The F1 score is calculated based on recall and
precision. The experimental results in this article are the
results of the development and the validation datasets in the
divided test set, respectively. These criteria are obtained by
calculating the confusion matrix given by Eqs 10–12.

Precision � TP

TP + FP
, (10)

Recall � TP

TP + FN
, (11)

F1 − Score � 2 × Precision × Recall

Precision + Recall
� 2TP
2TP + FP + FN

, (12)

where TP is the number of true positive results, TN is the number
of true negative results, FP is the number of false positive results,
and FN is the number of false negative results.

3.3 Experimental Setup and Result
There are four channels (C1, C2, C3, C4) within one audio signal.
The four channels are manually averaged [21] to yield C5, where
C5 � (C1 + C2 + C3 + C4)/4 so as to better fuse the four channels
and augment the dataset. The audio signal is converted to a Mel
spectrogram, as described in Section 2. The window type,
window size, overlap, and FFT size parameters are set to
Hamming, 480, 240, and 480, respectively. The Hamming
window is adopted for signal framing as it can effectively
overcome the leakage phenomenon [34]. The dimension of the

Mel spectrogram is 336 × 336 × 3 as the input of the neural
network model based on the tensor network, which is composed
of the two convolutional layers and four MPS layers. It is then the
horizontal flip, vertical flip, and random rotation that enlarge the
training data, avoid overfitting, and enhance the robustness of the
model. The batch size is set to 256, bond dimension is set to 5, and
the initial learning rate is 0.001. The optimizer and loss function
used in the training are Adam and cross-entropy loss function.
The structure of the neural network model based on the tensor
network is shown in Figure 2, and the states of TP, TN, FP, and
FN in the test set of the development dataset are shown for each
class on the confusion matrix in Figure 5.

As can be seen from the confusion matrix in Figure 5, the
abscissa is the true class, and the ordinate is the predicted class.
The blue square indicates that the predicted class is the same as
the true class. The color intensity corresponds to the number of
audio tagging. It can be found from Figure 5 that the proposed
model judges 165 working audios as absence and 134 absence
audios as working. Because people may make very small noises at
work, it is easy to confuse it with the absence class. In addition, the
model judges 39 and 33 other class audios as absence and working
class, and many labels for other class audios cannot be
distinguished since the other class is not a class of specific
activities. There are many types of features extracted from the
other class audio, and the common features of other class are
difficult to learn. As a result, a lot of audio signals are near the
decision boundary, and it is easy to be misjudged as absence,
working, and eating. But for the prediction results, it can be found
from Figure 5 that the prediction results for the other class are
more accurate, proving the better learning ability of the tensor
network model.

In order to compare with other models more intuitively, other
performance criteria including precision, recall, and F1-score are
separately given in Table 1 for each class of DCASE 2018
challenge task 5. It can be seen from the Table 1 that the

FIGURE 5 |Confusionmatrix for the test set of the development dataset.
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precision rate of the other class is much higher than the recall rate.
This shows that the prediction of the other class is more accurate,
but many other class audios are prone to judgment errors. Since
the other class is not a class of specific activities, the tensor
network can better learn the common features of the class. But for
the other class audio with less commonality, it is less possible to
identify the deeper rules.

Table 2 is a comparison between the proposed model and
other models, which represent several typical and commonly
used networks, including the CNN, RESNET, and LSTM. This
experiment selected the three models to compare with the
neural network model based on tensor network (NNMBTN)
model, namely, the baseline system [9], TC2DCNN [12], and
INRC_2D [13]. The baseline system uses a neural network
architecture based on the convolutional layers and dense
layers. TC2DCNN is extended by operating the
convolutions along the two dimensions of time and
channel. INRC_2D is processed in parallel by RESNET and
long short-term memory (LSTM) network, with a fully joint
connected layer.

It can be seen from Table 2 that the F1-score of the proposed
method on the test set of the DCASE 2018 challenge task 5
development set is 87.70%, which is 3.2% higher than the
baseline system, 1.95% higher than the TC2DCNN system,
and 0.86% higher than INRC_2D system. The proposed
method has five classes that are higher than the baseline,
TC2DCNN, and INRC_2D. This shows that the tensor

network model can identify the important features well after
obtaining the features extracted by the convolutional layer. At
the same time, the spatial information of the audio is well-
preserved. Compared with the other models, the tensor network
has powerful representation ability in the high-dimensional
space and can separate the different classes of audio with
hyperplane. There is little difference in the F1-score
performance on cooking, vacuum cleaning, and working. The
score advantage of other classes is more obvious, 5.61% higher
than the INRC_2D system, which shows that for classes of not
specific activities, the tensor network can also learn the features
better.

The data provided in the evaluation set are based on the sensor
nodes that do not exist in the development set and can provide
data from the same nodes in the development set. The F1-scores
of each model in the test set of the validation set are shown in
Table 3.

Compared with the results on the development set, it can be
seen from Table 3 that the proposed model in the test set of the
validation set is lower than the other models in the two categories
of eating and social activities and higher than the other models in
both categories of dishwashing and vacuuming. The advantages
of the other categories are still obvious. The average F1-score
reaches 85.9%, which is 9.0% higher than TC2DCNN, 4.2%
higher than INRC2D, and 2.8% higher than the baseline. The
F1-scores of the neural network model based on the tensor
network are relatively stable, which proves that the proposed
network has a good generalization ability. On the whole, the
proposed model has better ability to extract and learn the
important features of the data.

In order to better demonstrate the compression ability of
the MPS to the network, the MPS layer in the proposed model
is replaced by the convolutional layer, max pooling layer, and
fully connected layer. We compared the proposed model
(NNMBTN: 2CNN+4MPS) with the traditional CNN-based
model which is composed of four CNNs, Maxpool, and a fully
connected layer. The model comparison results are shown in
Table 4.

It can be seen from Table 4 that the parameters of the
proposed model are one quarter smaller than that of the
traditional neural network after replacement, and the effect is
also better than that of the traditional neural network, which

TABLE 1 | Neural network model based on the tensor network performance
criteria in the test set of the development dataset.

Class Precision/% Recall/% F1-score/%

Absence 89.00 92.63 90.78
Cooking 95.69 95.30 95.49
Dishwashing 82.61 79.72 81.14
Eating 82.61 74.03 78.09
Other 79.84 50.00 61.49
Social activity 96.11 94.95 95.53
Vacuum cleaning 98.00 100.00 98.99
Watching TV 99.79 99.57 99.68
Working 87.18 89.14 88.15

Average value 90.09 86.15 87.70

TABLE 2 | Comparison of the neural network model based on the tensor network with other models in the test set of the development dataset.

Class Detecting F1-score (%) for the used methods

Baseline system [9] TC2DCNN [12] INRC_2D [13] NNMBTN

Absence 85.41 86.62 83.95 90.78
Cooking 95.14 93.34 95.47 95.49
Dishwashing 76.73 72.68 78.00 81.14
Eating 83.64 87.03 89.68 78.09
Other 44.76 53.81 55.88 61.49
Social activity 93.92 93.94 93.97 95.53
Vacuum cleaning 99.31 99.79 100.00 98.99
Watching TV 99.59 99.38 99.40 99.68
Working 82.03 85.14 85.22 88.15

Average value 84.50 85.75 86.84 87.70
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shows that the MPS layer has better compression ability for the
network.

To further investigate the effect of combining the proposedmodel
with the state-of-the-art model, separable convolutions network [5]
are used to verify the feasibility of the proposed model. Separable
convolutions network consists of four convolutional layers using
5 × 5 filters, followed by a global pooling layer and a final MLP
(Multilayer Perceptron). The separate convolution network
structure is improved to be combined with the MPS tensor
network in which only two layers of separate convolutions
network are retained. In the comparison experiments, only the
network structure was changed, and the rest remained
unchanged. The experimental results are shown in Table 5.

It can be seen from Table 5 that the GPU occupancy in the
training procedure is reduced by 55% after combining with the
tensor network under the same conditions except for the network
structure. This shows that the tensor network can better reduce
the redundancy of the network during the training. In terms of
parameter quantity, the parameter quantity of the separate
convolution is slightly smaller than that of ordinary
convolution. The F1-score is slightly lower than the split
convolutional network. Compared with the state-of-the-art
model, the combination of the tensor network can reduce the
redundancy of the network to achieve a balance between
efficiency and accuracy. In the future, more research practices
could be carried out to find a better way when combining the
tensor network with the new neural network approaches.

4 CONCLUSION

In this article, the neural network model based on the tensor
network is proposed for audio tagging of domestic activities,
which takes the advantage of the CNN in extracting spatial
features and the MPS tensor network for better interpretability
and the ability to compress the network with tensor train
decomposition. The MPS is one-dimensional tensor network
structure, which is based on tensor train decomposition. It uses
the chain-connected small tensors to represent the high-
dimensional tensors. The proposed model is composed of
two convolutional layers and four MPS layers. The function
of the first three MPS layers is to extract the features, and the
last MPS layer is used as a classifier. The DCASE 2018
challenge task 5 datasets are considered in the experiment,
and the F1-score is calculated for performance evaluation. The
experimental results show that the neural network model
based on the tensor network proposed in this article has a
good learning ability. The results show that the average F1-
Score of the proposed neural network model based on the
tensor network in the test set of the development dataset and
validation dataset of DCASE 2018 challenge task 5 reached
87.7 and 85.9%, which were 3.2 and 2.8% higher than the
baseline system, respectively. When compared with the state-
of-the-art model, the combination of the tensor network can
reduce the redundancy of the network to achieve a balance
between the efficiency and accuracy. It is verified that the

TABLE 3 | Comparison of the neural network model based on the tensor network with other models in the test set of the validation dataset.

Class Detecting F1-score (%) for the used methods

Baseline system [9] TC2DCNN [12] INRC_2D [13] NNMBTN

Absence 87.7 79.8 79.7 90.2
Cooking 93.0 88.7 86.9 95.0
Dishwashing 77.2 71.8 73.8 82.3
Eating 81.2 78.9 82.2 77.0
Other 35.0 17.6 42.7 55.5
Social activity 96.6 96.2 97.1 93.4
Vacuum cleaning 95.8 94.4 97.4 98.2
Watching TV 99.9 99.7 99.9 99.5
Working 81.4 64.6 75.5 82.3

Average value 83.1 76.9 81.7 85.9

TABLE 4 | Performance and parameter comparison between the proposed model and the traditional neural network.

Model Precision/% Recall/% F1-score/% Parameter quantity (M)

4CNN + Maxpool + fully connected 74.11 64.08 65.8 23.70
NNMBTN (2CNN+4MPS) 88.08 84.13 85.9 17.74

TABLE 5 | Performance comparison between the separable convolution model and the separable convolution model combined with tensor networks.

Model F1-score/% Parameter quantity (M) GPU(GB)

Separable Convolutions [5] (batch size = 128) 90.78 4.20 3.85
(2SepConv+3MPS) (batch size = 128) 89.52 4.16 1.72
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proposed model can function better for the task of audio
tagging of domestic activities.

In the future, it is necessary to extract more representative
audio features in the face of a huge database. There are some other
structures of tensor networks, such as PEPS and MERA, and the
combination of these models with the neural networks deserves a
further in-depth study. In addition, the classes of the sound events
in household activities are more complex, so expanding the
dataset and improving the audio tagging accuracy are also
necessary.
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Music is often used for emotion induction. ince the emotions felt when listening to it

vary from person to person, customized music is required. Our previous work designed

a music generation system that created personalized music based on participants’

emotions predicted from EEG data. Although our system effectively induced emotions,

unfortunately, it suffered from two problems. The first is that a long EEG recording is

required to train emotion prediction models. In this paper, we trained models with a

small amount of EEG data. We proposed emotion prediction with meta-learning and

compared its performance with two other training methods. The second problem is that

the generated music failed to consider the participants’ emotions before they listened to

music. We solved this challenge by constructing a system that adapted an iso principle

that gradually changed the music from close to the participants’ emotions to the target

emotion. Our results showed that emotion prediction with meta-learning had the lowest

RMSE among three methods (p < 0.016). Both a music generation system based on

the iso principle and our conventional music generation system more effectively induced

emotion than music generation that was not based on the emotions of the participants

(p < 0.016).

Keywords: electroencephalogram (EEG), emotion induction, emotion prediction, music generation, meta-learning,

iso principle

1. INTRODUCTION

Appropriate emotional induction is important for mental health (1–3). Many research attempts
have used music to induce emotions. Even though such musical elements as rhythm and tempo
induce emotions (4), not every person feels the same emotions when they listen to the same piece
of music (5). In addition, the same person might experience different emotions depending on the
situation. Therefore, it is challenging to induce emotions using music that takes into account the
emotions of participants (6, 7). Using a subjective evaluation is a simple method for obtaining
the emotions of participants. The Self-Assessment Mannequin (SAM) is often utilized for such
emotional evaluation (8). However, since real-time subjective evaluations burden participants,
using physiological signals has been proposed to predict emotions. Since electroencephalogram
(EEG) has a high temporal resolution and are expected to be used for computer-human interaction,
our work induces emotions by generating music with emotions predicted from them.

48

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://doi.org/10.3389/fdgth.2022.873822
http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2022.873822&domain=pdf&date_stamp=2022-06-06
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:miyamoto.kana.mk4@is.naist.jp
https://doi.org/10.3389/fdgth.2022.873822
https://www.frontiersin.org/articles/10.3389/fdgth.2022.873822/full


Miyamoto et al. EEG-Based Emotion Induction System

We developed a system that generates music based on
participants’ emotions using their EEG data (9). It consists of
three elements. The first is a music generator. We treat emotions
on two axes, valence and arousal, based on the circumplex model
(10). The target emotion’s valence and arousal to be induced are
set in a range from 0 to 1 and input to a music generator, which
creates music that induces an emotion similar to the inputted
emotion. Note that depending on the individual differences in
the feeling of an emotion and the participant’s state, the input
emotion and the actual emotionmay not be identical. The second
element is emotion prediction based on EEG. We previously
showed that a convolutional neural network (CNN), which takes
into account the positional relationships of EEG electrodes,
effectively predicted emotions (9). The system uses a CNN to
predict the participants’ emotions while they listen to music in
real-time. The third element is the control of a music generator.
The system calculates the difference between the target emotion
and the participants’ emotion predicted by the EEG and adds it
to the music generator’s previous input. By changing the inputs
of the music generator based on the participants’ emotions,
the system creates music that matches their characteristics.
We previously verified our system that consists of these
elements with six participants. We used a baseline method that
generates music without considering the participants’ emotions
by continuously inputting the target emotion into the music
generator. Our proposed method used the system to generate
music from the participants’ emotions in real-time. After
comparing these two methods, the distance between the target
emotion and the emotion that was finally induced was smaller
in the proposed method, suggesting the effectiveness of the
system. However, it has two problems, which we address in
this paper.

The first problem is that it takes a long time to record EEG data
for training the emotion prediction models because a sufficient
amount of EEG data is required to train them. In our experiment,
the EEG data were recorded for only 30 min, considering the
burden placed on the participants. Because of this time factor,
we trained an emotion prediction model using EEG data for 30
min and used the system on a different day. Even though the
EEG recording time must be shortened to improve the system’s
usability, a lack of EEG data negatively impacts model training
(11). Previous studies solved this problem by proposing transfer
learning (9, 12), which adapts a pre-trained model from one
domain to another (13). With a small amount of EEG data
to retrain a pre-trained model which was trained on a large
amount of EEG data, more accurate predictions can be made
than with just a small amount of EEG data. However, in previous
studies, the pre-training model mixed the EEG data of multiple
people and treated them as one big amount of data (9, 12).
Perhaps individual EEG characteristics cannot be taken into
account because no individuals are recognized. Meta-learning,
which is an effective solution to this problem, has been used
for few-shot learning, fast many-shot optimization, robustness
to domain-shift, and so on (14). It helps models acquire
experience through multiple tasks with which to improve future
learning performance. There are gradient-descent, reinforcement

learning, and evolutionary search as its optimizer. Some previous
studies on EEG predictions trained models with one person’s
EEG data as a single task and demonstrated the effectiveness
of meta-learning. Model-agnostic meta-learning (MAML) (15)
is one popular type of meta-learning with gradient-descent.
MAML trains an initial model that easily adapts to any task
from multiple tasks. Therefore, the initial model can adapt
to new tasks with a small amount of data. Previous studies
predicted sleep levels (16) and motor imagery (17) using EEG
with MAML. MAML was also used for emotion prediction using
EEG, and its effectiveness was investigated using the DEAP
dataset with music video stimuli and the SEED dataset with
movie stimuli (18). However, we use only music, which is an
auditory stimulus. Since the type of stimulus influences emotion
elicitation (19), we believe that the effectiveness of applying
MAML must be tested for emotion prediction while listening
to music. We have two baseline methods: one trains a model
using multiple participants’ EEG data without MAML, and the
other trains a model with a small amount of a single participant’s
EEG data. We compared the emotion prediction performance
of the proposed method with two baseline methods and
constructed an emotion induction system using a model trained
with MAML.

The second problem is that the music generator creates music
without identifying the participants’ emotions before they listen
to it. We showed that the inputs to the music generator and the
emotions felt by the participants are similar. Therefore, we tried
to increase/decrease the music generator’s inputs based on the
participants’ emotions using empirically-determined formulas.
Here is an example of a case where we want to induce a high
valence. First, a high valence, which is the target emotion, is input
into the music generator. The participants listen to the generated
music. If they experience a low valence, the next valence input
will be higher, and the music generator will try to induce a
higher valence. As shown above, we proposed a method that
makes music that rapidly moves a participants’ emotion toward
the target emotion, starting from the beginning of listening
to a piece of music, and adjusts the music generator’s inputs
based on their states. The proposed method more effectively
induced emotions than the baseline method in which the target
emotion is continuously input to the music generator. In music
therapy, the iso principle, which is used in emotion induction
(20, 21), plays music that is close to the participant’s emotion
and gradually leads them to the target emotion. In a previous
study (22), participants with sadness listened to two pieces of
music: sad music or happy music. The results showed that
listening to happy music after sad music induced more positive
emotions. Our previously proposed method rapidly induced
emotions to target emotions without considering the emotions
of the participants before they listened to music. In this paper,
we develop a system based on this iso principle and investigate
whether music generation with it and our conventional music
generation effectively induce emotions.

Our paper provides the following two contributions:

1. It verifies EEG-based emotion prediction usingmeta-learning.
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FIGURE 1 | Model structure: Upper part is a CNN that predicts emotion from EEG data. Right part is a neural network that uses predicted emotions from CNN and

music generator’s inputs for emotion prediction.

2. It evaluates an emotion induction system using meta-learning
and the iso principle.

This paper is an extension of our previously proposed emotion
induction system (9). To improve it, we utilized emotion
prediction with the meta-learning of our previous work (23)
and newly investigated the relationship between the amount of
training data and the performance of models trained by meta-
learning. We also adopted the iso principle as a new music
generation method and evaluated a new emotion induction
system that applied meta-learning and the iso principle.

2. EEG EMOTION PREDICTION WITH
META-LEARNING

In Section 2, we train a highly accurate emotion predictionmodel
with a small amount of a participant’s EEG data while listening to
music. First, we describe the EEG dataset and the features and
the model structure for training models. We then introduce our
proposed method using meta-learning and two baseline methods
and emphasize its effectiveness by comparing the performances
of the three methods.

2.1. Dataset
In our previous work, we created a dataset containing EEG
data and subjective evaluations of emotions felt by participants
while they listened to music (9). The experiment was approved
by the Ethics Committee of the Nara Institute of Science and
Technology. Its participants were 10 males and 10 females. The
music was created using a music generator designed based on
a previous study (6) that made music that induced emotions
similar to its valence and arousal inputs. We created 41 pieces of
music by inputting 41 various emotions into the music generator.
The detailed input values are described in our previous work (9).
The sample music can be heard here: https://sites.google.com/
view/music-generator. We used a 3-s EEG before listening to
the music for a baseline correction based on a previous study
(24). The participants silently gazed at a cross mark in the center
of the monitor for 5 s for the baseline correction because the
initial silent state may contain body movement noise. They then
listened to a 20 s piece of music while continuing to gaze at the

cross mark. In studies using music to induce emotion, using 30–
60 s of music is appropriate (25). However, we tried to record
EEG using a variety of music. To incorporate the burden on the
participants who wore the electroencephalograph, the music was
set to 20 s, referring to previous studies (6, 26). After listening to
the music, they evaluated the valence they felt using SAM on a
9-point scale between 0 and 1 and then evaluated their arousal in
the same manner. This procedure was repeated for all 41 pieces
of music. The EEG data were recorded using a Quick-30 headset
manufactured by CGX.

2.2. Features and Model Structure
For each piece of music, we recorded 5 s of EEG data before
they listened to the music and 20 s while they listened. We
used the last 3 s before listening for a baseline correction and
divided these 23 s of EEG data into 1 s pieces without overlap.
Then we used band-pass filters and divided them into five
frequency bands: theta (4–7 Hz), alpha (8–13 Hz), low beta (14–
21 Hz), high beta (22–29 Hz), and gamma (30–45 Hz). We
calculated the logarithms of the variances of the EEG waveforms
as features and subtracted the average feature values of the three
samples before listening to the music from each feature of the 20
samples for baseline correction. Although Quick-30 provides 29
EEG channels, emotion prediction using a selection of 14 EEG
channels provided higher performance in our previous work (9).
We also used 14 EEG channels in this paper and calculated 20
samples of features with a total of 70 dimensions per piece of
music. The features calculated as described above were mapped
to matrices, shown in the upper left corner of Figure 1. The
matrices took into account the position of the EEG channels
and the characteristics of the frequency bands. The grid is 6 ×
6 × five matrices. The areas without electrodes are embedded
with zeros.

We used a CNN for the emotion prediction using EEG. The
structure is shown in Table 1 and at the top of Figure 1. We used
an SGD optimizer.

2.3. Emotion Prediction Methods
We compared the following three methods for predicting
emotions using a small amount of EEG data while listening to
music:
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TABLE 1 | Structures of CNN and neural network: Conv is convolutional layer, BN

is batch normalization layer, FC is fully connected layer, and Drop is drop-out layer.

Model Layer Kernel Channels Stride Drop-out rate

CNN Conv+BN+ReLU 2×2 8 1 –

Conv+BN+ReLU 2×2 8 1 –

Conv+BN+ReLU 2×2 8 1 –

FC – 2 – –

Neural network FC+ReLU+Drop – 8 – 0.2

FC – 2 – –

• Method A: multiple participants’ EEG with MAML;
• Method B: multiple participants’ EEG without MAML;
• Method C: a single participant’s EEG.

We set one participant as a target. Methods A and B were
trained by the pre-training models with/without MAML using
the EEG data of multiple participants. The pre-trained models
were trained without the target participant’s EEG data. Then the
pre-training models were fine-tuned by the target participant’s
EEG data. Method C was trained with just the target participant’s
EEG data.

2.3.1. Method A: Multiple Participants’ EEG With

MAML
We first describe method A, which is our proposed scheme. We
usedAlgorithm 1, and the training procedure is shown at the top
of Figure 2.

For pre-training, we randomly extracted 10 participants’ data
from our dataset. We considered one participant’s data as one
task and selected the data of 20 pieces of music from each task
i. We set EEG data x and labels y of the emotions felt by the

participant as support set Di = {x, y} and EEG data x
′

and labels

y
′

of the remaining 21 pieces of music as query set D
′

i = {x
′

, y
′

}.
We first used initialized model parameters θ and updated them
using the support set in each task. These updated parameters were
evaluated with the query set, and the loss was calculated in each
task. After all the tasks were computed, model parameters θ were
updated to minimize the loss for all of them. This process was
repeated. The hyperparameter sets were α ∈ {10−1, 10−2}, and
β = 10−1. The number of hyperparameters was small because we
needed to train 20 pre-trained models for each target participant
to reduce the computation time. We used all of the data from the
remaining nine participants in the dataset and set them as the
validation data. The hyperparameters were determined using the
validation data. The model was trained until the validation loss
did not decrease for five consecutive iterations.

We fine-tuned our pre-trained model using the target
participant’s data. To reduce the preparation time of using the
emotion induction system, a small amount of data must be
collected from the participants before the emotion induction.
Therefore, we examined how much to reduce the amount
of data for fine-tuning. We prepared four different kinds
of training data to investigate the relationship between the
amount of training data and the model performance. We

Algorithm 1 :MAML for emotion prediction using EEG data.

Require: p(T ): distribution over tasks
Require: α,β : learning rate
1: Randomly initialize θ

2: Sample training tasks Ti ∼ p(T )
3: for each iteration do

4: for each Ti do

5: Select data of 20 pieces of music Di = {x, y} from Ti

6: Evaluate ∇θLT i(fθ ) using Di and LT i

7: Update parameters: θ
′

i = θ − α∇θLT i(fθ )

8: Select data of about 21 pieces of music D
′

i = {x
′

, y
′

}

from Ti

9: end for

10: Update θ ← θ − β∇θ

∑
Ti∼p(T ) LT i(fθ ′i

) using each D
′

i

and LT i

11: end for

created the music used for the training data by inputting the
following emotions into the music generator: five pieces of
music ({val,aro}={0,0}; {0,1}; {0.5,0.5}; {1,0}; {1,1}), nine pieces
of music (five pieces of music + {val,aro}={0,0.5}; {0.5,0};
{0.5,1}; {1,0.5}), 13 pieces of music (nine pieces of music +
{val,aro}={0.25,0.25}; {0.25,0.75}; {0.75,0.25}; {0.75,0.75}), and
25 pieces of music (13 pieces of music + {val,aro}={0,0.25};
{0,0.75}; {0.25,0}; {0.25,0.5};{0.25,1};{0.5,0.25};{0.5,0.75};
{0.75,0};{0.75,0.5};{0.75,1};{1,0.25};{1,0.75}). We selected these
music generator inputs to be taken uniformly on the valence
and arousal coordinates. The learning rate was set to 0.1 and the
iterations to 13. These parameters were determined based on our
previous work (23). The fine-tuned model was evaluated using
16 pieces of music, which were not included in the training data.

2.3.2. Method B: Multiple Participants’ EEG Without

MAML
Next we describe method B, which is a baseline method whose
training procedure is shown in the middle of Figure 2.

For pre-training, we randomly extracted the data of 10
participants from our dataset. Multiple participants were
regarded as one large amount of data. Initial parameters θ

were trained with a batch size of 1,024 using the data. The
hyperparameter sets were learning rate ∈ {10−1, 10−2}. We
used all of the data from the remaining nine participants in
the dataset and set them as the validation data from which
the hyperparameters were determined. The model was trained
until the validation loss did not decrease for five consecutive
iterations. The pre-trained model was fine-tuned using the target
participant’s data. We prepared four different kinds of training
data to investigate the relationship between the number of
training data and the performance as well as the proposed
method. The learning rate was set to 0.1 and the iterations to 10.
We evaluated the fine-tuned model using the test data as well as
the proposed method.
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FIGURE 2 | Three emotion prediction methods using a single target participant’s small amount of EEG data.

2.3.3. Method C: Single Participant’s EEG
Next we describe method C, which is a baseline method whose
training procedure is shown at the bottom of Figure 2. It has no
pre-training. The model was trained from initial parameters θ by
the same procedure as in the fine-tuning of the proposed method
and the other baseline method. We prepared four different
kinds of training data to investigate the relationship between the
amount of training data and the performance as well as the other
methods. The learning rate was set to 0.1 and the iterations to 25.
The fine-tuned model was evaluated using the test data like the
other methods.

2.4. Comparison of Three Methods for
Predicting Emotions Using EEG
We trained 20 models with different target participants in each
method. The emotion prediction results are shown in Table 2

and Figure 3, which show the RMSE between the label values of
the dataset and the values predicted by the CNN. We found a
significant difference among the three methods using the same
amount of data in both valence and arousal in the Friedman test
(p < 0.05). We used Wilcoxon signed-rank tests with Bonferroni
correction to compare the three methods. In the valence results,
there was a significant difference between methods A and B
and methods A and C with any amount of data (p < 0.016).
However, for methods B and C, there was a significant difference
when nine pieces of music were used (p < 0.016). In the arousal
results, there was a significant difference between methods A and
B, between methods A and C, and between methods B and C
with any amount of data (p < 0.016). Proposed method A had
a significantly lower RMSE than the two baseline methods for

both valence and arousal. We also found a significant difference
in the RMSE trained by four different training data amounts of
proposed method A of both valence and arousal in the Friedman
test (p < 0.05). The results indicated that the performance of the
emotion prediction depended on the amount of training data.

These results showed that in the case of arousal prediction
with a small amount of EEG data while listening to music,
methods A and B had lower RMSE than method C. Moreover,
method A had a lower RMSE than method C for the prediction
valence. In the case of using multiple participants’ EEG data,
method A had a lower RMSE than method B in the predictions of
both the valence and arousal. Furthermore, the RMSE was lower
when the amount of training data was larger in proposed method
A, indicating that the amount of training data is important for
highly accurate emotion prediction.

2.5. Predicting Emotions Using EEG and
Music Generator Inputs
Our previous work argued that a neural network using emotions
predicted from EEG and a music generator’s inputs can
predict participants’ emotions with high performance (9). Since
the music generator makes music to induce emotions that
resemble its inputs, we considered its inputs the predicted
emotions felt by the participants when they listened to music.
We also used an emotion prediction neural network in this
paper to stabilize the predictions by using two types of
information as its inputs: the emotion predicted by the CNN
with MAML using EEG and the music generator’s inputs.
We compared the prediction performance of the following
two models:
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TABLE 2 | Participants’ mean and standard deviation of RMSEs of felt and predicted emotions using EEG data: Bold indicates RMSE of proposed method with a

significant difference from baseline methods.

Method 5 pieces 9 pieces 13 pieces 25 pieces

Val Aro Val Aro Val Aro Val Aro

A 0.298 0.298 0.275 0.290 0.262 0.285 0.256 0.274

(0.121) (0.071) (0.101) (0.071) (0.096) (0.066) (0.098) (0.058)

B 0.347 0.328 0.325 0.323 0.318 0.320 0.312 0.308

(0.122) (0.082) (0.103) (0.080) (0.099) (0.077) (0.101) (0.067)

C 0.378 0.391 0.355 0.366 0.338 0.354 0.331 0.344

(0.080) (0.079) (0.084) (0.068) (0.071) (0.070) (0.070) (0.069)

FIGURE 3 | Box plots of 20 participants’ RMSEs of felt and predicted emotions using EEG data.

• Model A: CNN
• Model B: CNN + neural network.

The neural network’s structure is shown in Table 1 and in the
right part of Figure 1. We used an SGD optimizer, fine-tuned
the CNN pre-trained by MAML, and trained the neural network
using the target participant’s data. CNN’s fine-tuning method was
identical as in Section 2.3.1. The learning rate was set to 0.1 and
the iterations to 100 for training the neural network.

The emotion prediction results are described in Table 3 and
Figure 4, which show the RMSE between the label values of the
dataset and the predicted values using model B or the music
generator’s inputs of each target participant. Compared with

Table 2, we found a significant difference among the following
three predictions using the same amount of data in both the
valence and the arousal in the Friedman test (p < 0.05):
using model A, model B, and the music generator’s inputs. We
used Wilcoxon signed-rank tests with Bonferroni correction to
compare the three predictions. In the valence results, there was a
significant difference between models A and B when any amount
of data was used (p < 0.016). For model B and using the music
generator’s inputs, there was a significant difference when 13 or
more pieces ofmusic were used (p< 0.016). In the arousal results,
there was a significant difference between models A and B when
any amount of data was used (p < 0.016). For model B and using
the music generator’s inputs, there was a significant difference
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TABLE 3 | Participants’ mean and standard deviation of RMSEs of felt and predicted emotions using EEG data and music generator’s inputs: Music gen. indicates

emotion prediction using music generator’s inputs.

Model B: CNN + neural network Music gen.

5 pieces 9 pieces 13 pieces 25 pieces

Val Aro Val Aro Val Aro Val Aro Val Aro

0.202 0.204 0.194 0.196 0.181 0.192 0.171 0.184 0.251 0.258

(0.088) (0.044) (0.093) (0.043) (0.078) (0.041) (0.075) (0.039) (0.084) (0.086)

Bold indicates RMSE with a significant difference from both predictions using model A and music generator’s inputs.

FIGURE 4 | Box plots of 20 participants’ RMSEs of felt and predicted emotions using EEG data and music generator’s inputs: Music gen. indicates emotion

prediction using music generator’s inputs.

when nine or more pieces of music were used (p < 0.016). We
also found a significant difference in the RMSE trained by four
different amounts of training data of model B in both the valence
and the arousal in the Friedman test (p < 0.05).

These results showed that for emotion prediction with a
small amount of EEG while listening to music, model B
had lower RMSE than model A. Furthermore, model B had
lower RMSE than using the music generator’s inputs in the
predictions of both the valence and arousal when 13 or more
pieces of music were used. The RMSE values were lower when
the amount of training data was larger in model B. This
result indicates that the amount of training data is important
for highly accurate emotion prediction, as in the results
of Table 2.

In this section, we experimentally used a small amount
of EEG data while our participants listened to music to
train the emotion prediction models. The results showed
that MAML was effective for emotion prediction. We also
developed a neural network using the emotions predicted
by a CNN trained by MAML and the music generator’s

inputs. A neural network using both the EEG data and
the music generator’s inputs improved the performance of
the emotion prediction. In the next section, we construct
and validate an emotion induction system using the CNN
trained by MAML and a neural network as an emotion
prediction model.

3. EMOTION INDUCTION USING MODELS
TRAINED BY META-LEARNING

In Section 3, we construct an emotion induction system using
a CNN trained by MAML and a neural network for emotion
prediction (Figure 5). Since the music generation method
used in the conventional system ignored the emotions of
the participants before they listened to music, we developed
a music generation method based on the iso principle. Our
system generates music that resembles a participant’s emotion
before he listened to music and gradually generated music that
was close to the target emotion. We investigated whether a
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FIGURE 5 | Emotion induction system using meta-learning: Red text is newly implemented methods in this paper.

system using meta-learning and the iso principle effectively
induced emotion.

3.1. Utilization of Emotion Induction
System
We used our system into which we embedded an EEG-based
emotion prediction model trained by MAML to generate music
in real-time. We next present information on the data collection
during emotion induction.

3.1.1. Participants
Ten healthy people (age: 26.6 years; eight males, two females)
participated in this experiment, which was approved by the
ETHICS Committee of the Nara Institute of Science and
Technology. They did not participate in the previous experiments
described in Section 2. We used Section 2’s dataset to train
a pre-training model for the emotion prediction. If the same
participant’s data were used for pre-training and fine-tuning,
we believe that the emotion prediction performance might be
distorted by using the same participant’s data for pre-training
and fine-tuning. For this reason, we carefully recruited these
participants.

3.1.2. Target Emotions
We set the following five types of target emotions to be induced in
the participants: {val,aro} = {0.125,0.125}; {0.125,0.875}; {0.5,0.5};
{0.875,0.125}; {0.875,0.875}. Although in our previous work we
set nine target emotions (9), here we reduced them to five due
to experimental time limitations. These five emotions were taken
from the nine target emotions of our previous work.

3.1.3. Pre-training Model
In Section 2, we showed that training a CNN with MAML
predicted emotions best when using a small amount of
EEG data. Therefore, we used MAML to train the pre-
training CNN with EEG data. We used our dataset with 10
participants for the training data and 10 for the validation
data and tuned the learning rate and the iterations. We

fine-tuned the pre-training model with the data of a target
participant who joined the experiment in Section 3. The neural
network’s effectiveness is also shown in Section 2 using the
emotions predicted by the CNN and the music generator’s
inputs. We only trained the neural network with the target
participant’s data.

3.1.4. Experimental Protocol
At the experiment’s beginning, the participants wore earphones
at a desk with a monitor and listened to five 15 s samples
with the following input values to the music generator:
{val,aro}={0,0};{0,1};{0.5,0.5};{1,0};{1,1}.

Then we conducted a practice session. In this experiment,
we trained the models for predicting the participants’ emotions
using a pre-training model in task 1 and induced emotions by
generating music in a system embedded with the models in
task 2. The details of each experiment are shown in Figure 6.
Our participants practiced each task once to understand how to
perform both tasks. First, we introduce task 1, which trained the
models for predicting the participants’ emotions. They silently
gazed at a cross mark in the center of the monitor for 5 s and
then listened to each 20 s music sample while continuing to gaze
at the cross mark. After listening to the music, they separately
evaluated their emotions using SAM on a 9-point scale from
0 to 1 for valence and arousal. They practiced the experiment
with one of two pieces of music: {val,aro}={0.125,0.25} or
{0.875,0.75}. Next we introduce task 2, which is the emotion
induction procedure of music generation in the system. Before
listening to the music, our participants separately evaluated
their emotions using SAM on a continuous value from 0 to
1 for valence and arousal. They again silently gazed at the
cross mark for 10 s and listened to each 20 s music sample
that has 20 measures while continuing to gaze at the cross
mark. After listening, they evaluated their emotions using SAM;
then they took a 10 s break. They practiced the experiment
with one of two pieces of music: {val,aro}= {0.875,0.75} or
{0.125,0.25}.
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FIGURE 6 | Experimental protocol.

After the practice, the participants put on a Quick-30 headset
manufactured by CGX. We repeated the same procedures
from the practice session to record the EEG data and the
subjective evaluations of their experienced emotions while
they listened. Section 2 showed how the emotion prediction’s
performance improved with more training data. We used the
13 pieces of music to record the EEG data and the subjective
evaluations so that the participants continued to wear the
electroencephalograph for <30 min. Next we fine-tuned the
pre-training model using the recorded data. The preprocessing
method is the same as described in Section 2. The learning rate
was set to 0.1 and the iterations to 13 for fine-tuning model
A’s CNN. The learning rate was set to 0.1 and the iterations to
100 for training model B’s neural network. Then we conducted
emotion induction by music generation for the system embedded
with the model in task 2. The participants listened to 15 pieces
of music using three different music generation methods. Each
method generated music that was intended to invoke five target
emotions. EEG data from 2 to 5 s after the onset of silence were
used as a baseline correction. The emotion before listening to
music was predicted using the EEG data from 5 to 6 s after the
onset of silence just using model A. Emotions while listening to
music were predicted once every four measures using model B.
For this prediction, we used a 1 s EEG after the beginning of the
first measure in four measures. The EEG’s sampling frequency
in the whole experiment was 100 Hz, and the tools used in the
experiment included MATLAB (2021b), Lab Streaming Layer,
Psychtoolbox (8, 27, 28), Cakewalk, and LoopBe1.

3.2. Music Update Methods
We applied the following three methods for the music updates
using Algorithm 2:

• Music update A: music updates with the iso principle;
• Music update B: music updates without the iso principle;
• Music update C: fixed music without participants’ emotions.

Algorithm 2 : Update music generator’s inputs.

1: Record 1 s EEG during the silent state
2: Predict emotion before listening to music using EEG
3: ifMusic update A then

4: Set a music generator’s inputs as a participant’s emotion
before listening to music

5: else ifMusic update B or C then

6: Set a music generator’s inputs as a target emotion
7: end if

8: for each update do
9: Start generating music using the music generator’s inputs
10: Record a 1 s EEG
11: Predict the current emotion using EEG
12: ifMusic update A then

13: Update the music generator’s inputs using formulas (2)
and (4)

14: else ifMusic update B then

15: Update the music generator’s inputs using formulas (5)
and (6)

16: else ifMusic update C then

17: Update the music generator’s inputs using formulas (7)
and (8)

18: end if

19: end for

3.2.1. Music Update A: Music Update With Iso

Principle
Neither method from our previous work took into account the
participants’ emotions before they listened tomusic (9). However,
the iso principle showed that using music that is close to the
participant’s emotion at the beginning and gradually changing
it to induce the target emotion effectively induces emotion. In
this method, the music generator’s inputs were changed based
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on the iso principle once every four measures using participant’s
emotion and determined by the following formulas:

mid_targetval(s+ 1) =

{
predval(s) if s=0,

predval(0)+ s ∗ (targetval − predval(0))/(smax − 1) if 0<s<smax. (1)

inputval(s+ 1) =

{
mid_targetval(s+ 1) if s=0,

mid_targetval(s+ 1)+ 0.5 ∗ (mid_targetval(s)− predval(s)) if 0<s<smax. (2)

mid_targetaro(s+ 1) =

{
predaro(s) if s=0,

predaro(0)+ s ∗ (targetaro − predaro(0))/(smax − 1) if 0<s<smax. (3)

inputaro(s+ 1) =

{
mid_targetaro(s+ 1) if s=0,

mid_targetaro(s+ 1)+ 0.5 ∗ (mid_targetaro(s)− predaro(s)) if 0<s<smax. (4)

In the formulas, s represents the number of times the inputs
are updated, s = 0 denotes the period before the music
generator starts making music, and s = 1 denotes when the
music generator starts making music. Updates were made up
to s = 5. smax represents the number of times the music was
updated, and smax = 5. input represents the input emotion to
the music generator, target represents the target emotion in the
induction,mid_target represents the intermediate target emotion
determined by the number of times the music was updated,
and pred represents the emotion predicted from the EEG while

inputval(s+ 1) =

{
targetval if s=0,

inputval(s)+ 0.5 ∗ (targetval − predval(s)) if 0<s<smax. (5)

inputaro(s+ 1) =

{
targetaro if s=0,

inputaro(s)+ 0.5 ∗ (targetaro − predaro(s)) if 0<s<smax. (6)

listening to music. First, the system predicts the participant’s
emotion before listening to the music using only model A. The
difference between the target and predicted emotions was divided
by four, which is the maximum number of times the inputs to the
music generator were updated using the participant’s emotion;
the intermediate target emotion was set for each update. In the
first loop, the participant’s emotion before listening was input
directly to themusic generator. In the next loop, the system added
half of the difference between the intermediate target emotion
and the participant’s emotion predicted by model B to the next
intermediate target emotion. We used a half value because the
music generator’s inputs were between 0 and 1 for both the
valence and arousal. Inputs outside the range were set to 0 or 1.
If the difference value is large, the music generator will continue
to receive a constant input, such as 0 or 1, and the music will
not change. For these reasons, half of this difference was added.

In this way, the system generated music that gradually induced
emotions while taking into account how the participants were

feeling. We show a conceptual scheme of the music generator’s
control in the yellow dotted line (Figure 7).

3.2.2. Music Update B: Music Update Without Iso

Principle
In this method, the system first created music by inputting the
target emotion into the music generator and adjusting the inputs
once every four measures using the participant’s emotion. The
inputs were determined by the following formulas:

First, the system predicted the emotion of the participants before
they listened, although the predicted emotion was not used for
the music generation. In the first loop, the target emotion was
input directly to the music generator. In the next loop, the system
added half of the difference between the target and the predicted
emotions of the participant to the previous inputs of the music
generator. In this way, the system generated music that rapidly
induced emotions while taking into account how the participants
felt. We show a conceptual scheme of the music generator’s
control in the red dotted line in Figure 7.

3.2.3. Music Update C: Fixed Music Without

Participants’ Emotions
In this method, the system kept inputting the target emotion
to the music generator. The inputs were determined by the
following formulas:
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inputval(s) = targetval if 0 < s < smax. (7)

inputaro(s) = targetaro if 0 < s < smax. (8)

The system predicts the emotions of the participants before they
listened to the music and while they listened to it, although the
predicted emotions were not used formusic generation.We show
a conceptual scheme of the control of the music generator in the
blue line in Figure 7.

3.3. Evaluation of Emotion Induction
System
We fine-tuned the emotion prediction model of the emotion
induction system for each participant in this experiment

FIGURE 7 | Conceptual scheme of control of music generator using three

methods: Target denotes target emotion for emotion induction. Initial denotes

participant’s emotion before listening to music.

described in Section 3. The model’s performance is important
because two music generation methods used the emotions
predicted by it. We first confirmed the performance of the
trained emotion prediction models of the 10 participants. The
emotion prediction results are shown in Table 4, which shows
the RMSE between the label values evaluated by the participants
of their emotions and the predicted values by models A or B
before/after listening to all the music. As a reference of the
conventional system, the following are the means of the RMSE
of the emotion predictions after listening to music with model
B for all the participants: valence: 0.201 and arousal: 0.180. The
conditions of the conventional system and the current system
are different: the number of participants and target emotions,
the structure of the emotion prediction model, the emotion
evaluation method, and the length of silence before listening to
the music. Therefore, comparing the conventional and current
systems is impossible. However, from the conventional system’s
results as a reference, no large difference seems to exist in the
RMSE of emotion prediction.

We also investigated the effect of emotion induction by the
system. We evaluated the emotion induction performance by
calculating the distance between the target emotion and the final
predicted emotion by model B using following the formula:

distance =

√
(targetval − predval(smax))2 + (targetaro − predaro(smax))2. (9)

The calculated means of the distances of the five types of
emotional induction are shown in Table 5. In the conventional
system of our previous work, the following are the means of the
distances for all the participants: music update B: 0.248 andmusic
update C: 0.296. The results showed that both the current and
conventional systems effectively induced emotions by taking into
account the participants’ emotions.

We not only compared the current system with the
conventional one but also the performances of the three methods

TABLE 4 | RMSE of felt and predicted emotions before or after listening to music in current system: Bold indicates performance of CNN and neural network used by

system to generate music.

Before listening to music After listening to music

Par. Model A Model A Model B

Val Aro Val Aro Val Aro

1 0.183 0.117 0.159 0.162 0.144 0.193

2 0.170 0.317 0.259 0.198 0.126 0.155

3 0.117 0.203 0.297 0.329 0.265 0.311

4 0.163 0.196 0.221 0.239 0.168 0.164

5 0.301 0.199 0.458 0.379 0.321 0.191

6 0.200 0.183 0.233 0.163 0.132 0.163

7 0.251 0.264 0.490 0.358 0.200 0.225

8 0.317 0.167 0.318 0.322 0.253 0.326

9 0.190 0.248 0.192 0.210 0.152 0.155

10 0.242 0.203 0.332 0.356 0.196 0.200

Mean 0.213 0.210 0.296 0.272 0.196 0.208

SD 0.063 0.055 0.109 0.086 0.065 0.062

Frontiers in Digital Health | www.frontiersin.org 11 June 2022 | Volume 4 | Article 87382258

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Miyamoto et al. EEG-Based Emotion Induction System

in the current system. We found a significant difference among
them in the Friedman test using the distances calculated for
all the pieces of music for all the participants (p < 0.05). We
used Wilcoxon signed-rank tests with Bonferroni correction
for comparisons of the three methods. There was a significant
difference between music updates A and C and between music

TABLE 5 | Distance between target and induced emotions: Bold indicates

distance with a significant difference from baseline method.

Par. Music update A Music update B Music update C

1 0.483 0.496 0.450

2 0.399 0.371 0.401

3 0.387 0.445 0.348

4 0.318 0.345 0.418

5 0.385 0.353 0.378

6 0.299 0.296 0.393

7 0.234 0.190 0.362

8 0.267 0.284 0.318

9 0.309 0.287 0.340

10 0.224 0.303 0.338

Mean 0.331 0.337 0.375

SD 0.082 0.087 0.041

updates B and C (p< 0.016). From the above results, we conclude
that music updates A and B, which generated music according
to the participants’ emotions, more effectively induced emotions
thanmusic update C that didn’t generatemusic according to their
emotions. However, we found no significant difference between
music updates A and B. We show plots of the music generator’s
inputs and the emotions predicted from model B in Figure 8.
This is the result for participant eight; the target emotion is
{val,aro} = {0.875,0.125}, and music update A provided more
effective emotion induction than the other two methods. The
number of updates is zero before listening to music, and the
music generator created music from five updates. Music updates
B and C suddenly generated music that induced the target
emotion, and music update A generated music that gradually
induced the target emotion, starting from music close to the
participant’s emotion before listening to the music. Music update
A led to an emotion closer to the target than the other two
methods (Figure 8).

4. CONCLUSION AND FUTURE WORKS

Our conventional emotion induction system using music and
EEG suffered from two problems. It took a long time to record
EEG to train the emotion prediction model, which is a required
step for constructing our system. The second problem was that

FIGURE 8 | Plots of inputs of music generator and emotions predicted from CNN and neural network in participant eight: Target emotion is {val,aro} = {0.875,0.125}.
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the music generator’s control method created music without the
participants’ emotions before they listened to music. We solved
these problems by developing a new system that uses meta-
learning and the iso principle. To solve the first problem, we
proposed a meta-learning method using a small amount of EEG
data while listening to music. The proposed method predicted
emotions with higher performance than the baseline methods
without meta-learning. In addition, the system into which the
trained model with meta-learning was embedded effectively
induced emotions. Therefore, we conclude that meta-learning
reduced the EEG recording time and increased the usability of
our emotion induction system.

To solve the second problem, our system induced emotions
through music generation using the iso principle. The methods
with/without it, which took the participants’ emotions into
account, more effectively induced emotions than the methods
that did not consider them. We found no significant difference
between the methods with/without the iso principle. In previous
studies on it, emotions opposite to the target emotion were
induced in the participants beforehand, and then the participants
were led to the target emotion (22). In our experiment, we did
not induce emotions opposite to the target emotion before our
participants listened to music. We believe that music generation
with the iso principle may be more effective than the other two
music generation methods when the participants are induced
to the target emotion from an opposite emotion. We set the
length of the music sample to 20 s. The results are limited in
terms of the music duration. We need to consider how many
seconds of music to use for more effective emotion induction in
the future.

Our future works will investigate two problems. The first is
to improve meta-learning for more efficient emotion prediction.
Meta-learning has been actively studied in recent years, and
improvements are being developed (29, 30). Improvements in

meta-learning that address the EEG characteristics will raise
the accuracy of emotion prediction. The second problem is the
investigation of more diverse music generation methods. We
used predefined formulas to control the music generator. In the
future, we will develop a method using deep learning to control it
based on the participants’ characteristics.
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Timbre fusion is the theoretical basis of instrument acoustics and Chinese and Western

orchestral acoustics. Currently, studies on timbre fusion are mainly focused on Western

instruments, but there are some studies on the timbre fusion of Chinese instruments.

In this paper, the characteristics of timbre fusion for Chinese and Western instruments

are explored, focusing on the subjective attributes and objective acoustic parameters,

and a series of experiments is carried out. First, a database containing 518 mixed timbre

stimuli of Chinese and Western instruments was constructed to provide basic data that

are necessary for the subjective and objective analyses of timbre fusion. We designed

and conducted a subjective evaluation experiment of timbre perception attributes based

on the method of successive categories. The experimental data were processed using

statistical approaches, such as variance analysis, multidimensional preference analysis,

and correlation analysis, and we studied the influence of the temporal envelopes and

instrument types on fusion, segregation, roughness, and pleasantness. In addition, the

differences between Chinese and Western instruments were compared based on these

four perception attributes. The results show that fusion and segregation are the most

important attributes for Chinese instrument timbre, while roughness is the most important

attribute for Western instrument timbre. In addition, multiple linear regression, random

forest, and multilayer perceptron were used to construct a set of timbre fusion models for

Chinese andWestern instruments. The results show that these models can better predict

the timbre fusion attributes. It was also found that there are some differences between

the timbre fusion models for Chinese and Western instruments, which is consistent with

the analysis results of subjective experimental data. The contribution of acoustic objective

parameters to the fusion model is also discussed.

Keywords: timbre, fusion, auditory perception, acoustic parameters, Chinese and Western instruments,

instrument acoustics, cross-cultural
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INTRODUCTION

Background
Since the twentieth century, Western music culture has been
gradually introduced in China. Western symphony orchestras,
with their rich instrument timbre, powerful expressive force, and
standardized orchestral arrangements and sound effects, have led
to new inspirations and musical forms of Chinese folk music.
The “fusion” of all musical instruments is the basic aesthetic
principle of Western symphony. In the long-term development
of symphonic creation, both harmony and orchestration have
formed relatively mature acoustic theory and have been relatively
successful with respect to practical experience. “Fusion” refers
to a relationship that occurs after the combination of timbre,
that is, the combined effect produced by the simultaneous
sound of different instruments. From acoustic theory, fusion
can be understood as the degree of harmonic integration of
musical instruments (Li, 2020). Most instruments in Western
symphony orchestras have a high degree of consonance, which
means that each harmonic is, basically, an integer multiple of
the fundamental frequency, making the overall sound effect is
integrated and unified (Wang et al., 2016).

Instruments in Western symphony orchestras have many
timbre characteristics that are not prominent, so it is easy to
achieve the effect of fusion by producing compound timbre
in orchestration, which refers to the timbre composed of two
musical instruments whose timbre is very similar (Li, 2020).
When these two instruments play the same or octave melody at
the same time, it is difficult to distinguish them. For example,
the sound of a violin and viola can be considered a “compound
timbre.” Here, “compound timbre” corresponds to “timbral
emergence,” which was proposed by Sandell (1995); that is,
all sounds are blended and unidentifiable (McAdams, 2019).
Due to the differences between Chinese and Western cultural
backgrounds, symphony orchestras and Chinese orchestras have
different orchestration ideas. For a long time, musicians have
explored the diversification of Chinese musical instruments’
timbre in practice and philosophy, borrowed compositional
techniques from traditional music, and formed their own
aesthetic principles. It is difficult to produce the so-called
“compound timbre” between Chinese instruments, but a “mixed
timbre” can be produced between them. The so-called “mixed
timbre,” which is both harmonious and independent and
both related and separated, refers to the timbre combined
and superimposed by different musical instruments (Li, 2020).
Here, “mixed timbre” corresponds to “timbral heterogeneity,”
which was proposed by Sandell (1995). Timbral heterogeneity
is a unique timbre characteristic of Chinese orchestral music,
where a beautifully mixed sound with both individuality
and combination is formed. In fact, this paper states that
Western instruments more easily achieve the fusion effect in
orchestration, which means that the maximum fusion effect
between Western instruments is better than that of Chinese
instruments. The fusion mentioned in this manuscript does
not refer to the composer’s orchestration. In other words, for
a Western orchestra, if the composer wants a fusion effect,
he or she can achieve it through a combination of existing

Western instruments. For a Chinese orchestra, it is difficult
for the composer to find a combination of two or more
instruments to achieve the effect of fusion. We have previously
performed experiments on the timbre contrast between Chinese
instruments and Western instruments and found that the timbre
of Chinese instruments is, overall, rougher than that of Western
instruments. Moreover, the distribution of Chinese instruments
is more dispersed in the three-dimensional timbre space, and the
timbre similarity is lower (Jiang et al., 2020).

Currently, the orchestration theory and music practice of
Chinese orchestras are still in the exploration stage, and
the problem of the fusion between instruments in Chinese
orchestra still exists. The Chinese orchestra is composed of folk
instruments, most of which have evolved from ancient Chinese
instruments and have a distinctive timbre. Therefore, the sound
of the Chinese orchestra as a whole has the auditory feeling
of “sharp, dry, messy, and noisy.” In addition, there are some
problems in the Chinese orchestra, such as volume imbalance
of the vocal part, low degree of integration between timbres,
and uncertain composition of the orchestra. Therefore, on the
basis of the aesthetic principles of Chinese music and timbre
characteristics of Chinese musical instruments, we should further
explore the timbre combination rules for musical instruments.

This paper takes musical instrument combinations as the
research object to discuss the differences in the timbre fusion
of different musical instrument combinations. A comparative
analysis of the fusion of timbre combinations in Western
symphony and Chinese orchestra is also presented, and
references and theory for Chinese orchestra orchestration are
provided. Next, the current research status is summarized from
three aspects: the definition of fusion, perception experiments of
fusion, and subjective and objective parameters that affect fusion.

Definition of Fusion
Currently, there is more than one definition of timbre fusion
within the academic circle. For example, McAdams (2019)
proposed that the result of combining sounds concurrently in
orchestration is a timbral blend, when events fuse together, or
timbral heterogeneity, when they remain separate. Concurrent
grouping determines how components of sounds are grouped
together into musical events, a process referred to in psychology
as auditory fusion. In describing sound quality as a whole, the
sense of fusion is one of the important attributes that are used
to express the degree of acoustic integration between the whole
band or chorus, solo instruments or collaborative instruments,
and singing or accompaniment.

The concept of fusionmay have been first proposed by Stumpf
(DeWitt and Crowder, 1987), who proposed the principle of
tonal fusion, defining the fusion as the degree to which two
simultaneous monophonic tones are perceived acoustically as
one sound. He believed that fusion was the basis of tonal
consonance (Apel, 2003). Subsequently, DeWitt and Crowder
(1987) further developed Stumpf ’s theory. They performed
three experiments and investigated Stumpf ’s fusion principle of
tonal consonance. The results of this experiment showed that
fusion may represent the tendency for people to interpret pitch
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combinations that could represent harmonics, resulting from a
single fundamental as timbres rather than as chords.

Timbre emerges from the perceptual fusion of acoustic
components into a single auditory event, including the blending
of sounds produced by separate instruments in which the illusion
of a “virtual” sound source is created (McAdams, 2019). Bregman
and Pinker demonstrated the interplay of concurrent fusion and
sequential stream formation and conceived a sort of competition
between the two auditory organization processes. Therefore,
the attack asynchrony and the decomposition of simultaneities
into separate auditory streams, whose events are timbrally
similar, work together to reduce the degree of perceptual fusion
(Bregman and Pinker, 1978). Timbre is a property of fused
auditory events.

Perceptual Experiments on Fusion
Concerning the term “fusion” and its different interpretations,
we structured perceptual experiments on fusion into (1) its
involvement in concurrent groupings, as in spectral fusion, which
forms a timbral identity and (2) the special case of instrument
combinations, where it has commonly been referred to as the
timbral blend.

McAdams proposed the concept of spectral fusion (McAdams,
1982), which belongs to the first category. An important
perceptual aspect of the formation of auditory images evoked
by acoustic phenomena is the distinguishing of different sound
sources. To form images of sound sources, the auditory system
must be able to perceptually fuse the concurrent elements that
come from the same source and separate the elements that come
from different sources. Then, the relationship between spectral
fusion auditory sensory cues was further studied (McAdams,
1984). The results showed that the acoustic cues that contribute
to the formation and distinction of multiple, simultaneous source
images that are investigated include the harmonicity of the
frequency content, the coherence or low-frequency frequency
modulation, and the stability and/or recognizability of spectral
form when coupled with frequency modulation. Shields and
Roger (2004) studied the relationship of timbre to dissonance
and spectral fusion. In this experiment, listeners rated dissonance
and blend levels for a set of dyads involving fourteen interval
sizes and twenty-five orchestral combinations. The researchers
related dissonance and spectral fusion to the timbre of time-
variant steady-state dyads. The experimental results show that
interval size and orchestration are significantly influenced by
both dissonance and blend ratings.

At approximately the same time, Carterette and Kendall
(1989) and Kendall and Carterette (1991) also conducted
similar experiments on timbre. Sandell (1989a,b) reported
preliminary work on the “blend” of “concurrent timbres” using
15 of Grey’s (1975) line-segment approximations of brief real
instrument tones. The results of interest demonstrated that a
blend is related to the summed distribution of energy in the
harmonic series of the two tones, with a less blend correlated
with more energy in higher harmonics compared to lower
harmonics. Sandell’s (1991) doctoral thesis provided a detailed
overview of the concept of fusion. This study investigated
the acoustical correlates of a blend for 15 natural-sounding

orchestral instruments presented in concurrently sounding
pairs. Sandell’s acoustically based guidelines for a blend, which
augment instance-based methods of traditional orchestration
teaching, provided underlying abstractions that are helpful for
evaluating the blend of arbitrary combinations of instruments.
Sandell (1995) also proposed three possible perceptual results
of instrument combinations: timbral heterogeneity, timbral
augmentation, and timbral emergence. Kendall and Carterette
(1993) reported on a series of experiments directed toward
questions concerning the timbres of simultaneous orchestral
wind instruments. In this study, researchers ascertained the
degree of a blend and identifiability of soprano orchestral winds.
It was found that the degree of a blend corresponded with the
positions of instruments in a two-dimensional similarity space.

Subjective and Objective Parameters
Affecting Fusion
Regarding the subjective perception attributes describing the
fusion of timbre, different studies have provided representative
terms from different perspectives. In the experiment of Bregman
and Pinker (1978), compound sounds composed of two pure
tones with different frequencies were used as experimental
stimuli. Compound sounds are somewhat dissonant and are
described as “rough” or “complex.” DeWitt and Crowder (1987)
further supplemented Stumpf ’s theory and proposed three pairs
of evaluation terms to describe musical intervals: consonance-
dissonance, smoothness-roughness, and pleasant-unpleasant.
Kim (2018) investigated howmusicians perceive and compensate
for the interacting effects of timbre, blend and sensory dissonance
when tuning and rating harmonic intervals. In this experiment,
timbre terminology, such as rough, unpleasant, smooth, and
pleasant, was used to describe the timbre perception properties
of the trumpet and vibraphone. Sounds that differ acoustically
are organized by the auditory system into separate percepts called
auditory streams (Bregman and Campbell, 1971). A physical
sound source can produce a sequence of successive acoustic
events. To examine this phenomenon, Fischer et al. (2021) used
naturalistic orchestral excerpts from the symphonic repertoire to
examine perceptual segregation.

Beating is an important factor causing roughness. In this
experiment, dyads are in pitch unison or octave. These dyads
thus exhibit a very low degree of roughness. In our previous
pre-experiment, we found a certain negative correlation between
roughness and a degree of fusion. Previous research studies
have, indeed, shown that dyads in pitch unison are perceived
to be more blended than dyads involving non-unison pitches
(Kendall and Carterette, 1993; Jingyu, 2013; Lembke et al.,
2019). Combining all of these studies, we have chosen four
timbre perception attributes, fusion, roughness, segregation, and
pleasantness for subjective evaluation experiments.

Researchers have also explored the relationship between
fusion and objective acoustic parameters. Fusion is affected by
sensory cues, such as whether the acoustic components begin
synchronously, whether they are related by a common period,
and whether there is coherent frequency and amplitude behavior
(McAdams, 1984). The coherent behavior cues are related to the
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Gestalt principle of common fate. In other words, sounds that
change in a similar manner are likely to have originated from the
same source (Bregman, 1994).

The degree of fusion also depends on spectrotemporal
relations among the concurrent sounds (Siedenburg et al., 2019).
Sandell (1995) demonstrated that sounds blend better when they
have similar attack envelopes and spectral centroids, as well as
when their composite spectral centroid is lower. This experiment
also found that the more similar these parameters are for the
two combined sounds, the greater their blend. Tardieu and
McAdams (2012) performed two experiments on combinations
of pitched impulsive and sustained sounds. They highlighted
the audio descriptors, underlying the perception of a blend and
the perception of emergent timbre for dyads composed of one
impulsive and one sustained sound. In both experiments, the
attack time was very important, as it was one of the two most
important factors in predicting both a blend and emergent timbre
perception. Chon and Huron (2014) proposed the concept of
timbre salience. In this paper, they examined the identification
of an instrument sound in concurrent unison dyads. As a salient
timbre is defined as one that captures listeners’ attention easily
and tends not to blend well with concurrent sounds (Chon and
McAdams, 2012), we can logically expect that a salient timbre will
be easily identified.

In addition to the acoustic parameters mentioned above,
researchers have proposed other features that describe the
fusion of timbre. Rossetti (2016) discussed timbre and sound
morphology in live electroacoustic and instrumental music
from a compositional standpoint and convergence issues in live
electroacoustic music. They proposed that timbre fusion should
be addressed based on the concepts of jitter, permeability, and
timbre of movement. In addition to the study of timbre fusion for
Western symphonies, some researchers have studied the timbre
characteristics of African music (Fales and McAdams, 1994).
The authors presented the results of perceptual and acoustic
investigations of the fusion and “layering” of noise and tone.
The results also exemplified the fusion of two extremely different
timbres with implications for the blending of instrumental
timbres in an orchestral setting.

In addition to global descriptors, such as the spectral centroid,
research has been conducted on the role of local descriptors
of formant structure (Siedenburg et al., 2019). Goodwin (1980)
studied the acoustic parameters of individual voices in choral
blends. The phenomenon of a choral blend was investigated by
identifying spectral differences between vocal sounds produced
in solo singing and in unison ensemble singing to achieve
the optimum blend. Reuter (2003) studied the relationship
between stream segregation and formant areas. The results are
as follows: Alternating timbres with equivalent main formant
areas tend to produce one sole, continuous melody in perception.
Alternating timbres with non-matching formant areas tend
to produce two distinct melodies in perception. Lembke and
McAdams (2012, 2015) investigated the acoustical and perceptual
factors involved in timbre blending between orchestral wind
instruments based on a pitch-invariant acoustical description
of wind instruments. A possible perceptual relevance for these
formants was tested in their experiments, employing different

behavioral tasks. The results showed that the relative frequency
location and magnitude differences between formants can be
shown to bear a pitch-invariant perceptual relevance to blend for
several instruments.

In the context of perceptual blending between orchestral
timbres, holistic acoustical descriptions of instrument-specific
traits can assist in the selection of suitable instrument
combinations (Lembke et al., 2013). Researchers have proposed
several parameters, such as spectral maxima or formants,
which have been shown to influence timbre blending involving
frequency relationships between local spectral features, their
prominence as formants, and constraints imposed by the human
auditory system. Computational approaches to predict a timbre
blend have been proposed that are based on these factors and
explain∼85% of the variance in behavioral timbre-blend data.

In summary, research on timbre fusion has mostly focused
on Western instruments, and there is, currently, no study on
Chinese instruments. To explore the rules of timbre fusion for
Chinese instrument combinations and compare the differences
between Chinese and Western instruments, a dataset has been
constructed for this study that contains a combination of Chinese
and Western instruments. Through the statistical processing of
experimental data, the differences between Chinese and Western
musical instruments in timbre fusion are analyzed, and the
subjective and objective acoustic parameters affecting timbre
fusion are also analyzed. In addition, a timbre fusion model for
Chinese and Western instruments, which provides basic theory
and data support for the orchestration of Chinese and Western
instruments, is constructed for this study.

The following sections of this paper are arranged as follows. In
Section Methods, the second part, the four-part method, which
includes the participants, stimuli, apparatus and procedure, is
introduced. In Section Subjective Evaluation Experiment and
Data Analysis, the statistical analysis of the experimental data,
including the factors affecting the fusion and the comparison of
the timbre fusion between Chinese and Western instruments, is
presented. In Section Construction of the Timbre Fusion Model,
the construction of the timbre fusionmodel is described.Multiple
linear regression, random forest, and multilayer perceptron
methods were used to construct the fusion model of Chinese
instruments andWestern instruments. In Section Discussion, the
discussion and summary are presented.

METHODS

Participants
Thirty-two participants, including 15 males and 17 females
(between 18 and 35 years of age), took part in this test. All the
participants had received routine listening training for more than
1 year (M = 1.62, SD = 0.38). All the participants listened to
different types of Chinese music, such as Jiangnan Sizhu, Fujian
Nanyin, Guangdong music, and Chinese orchestral symphony,
and Western music, such as pop, rock, classical, blues, and
R&B. Among the participants, 22 of them listened to Chinese
and Western music in a concert hall. All the participants met
the required hearing threshold of 20 dB HL by a pure-tone
audiometric test with octave-spaced frequencies from 125 to
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FIGURE 1 | Production of single-tone stimuli.

FIGURE 2 | Production of mixed timbre experimental stimuli.

8 kHz (Martin and Champlin, 2000). The participants, who were
university students raised in China, were recruited in Beijing.
The participants signed an informed consent form and were
compensated for their participation.

Stimuli
There were 518 mixed timbre (composed of two timbre) stimuli.
The process of making mixed timbre stimuli consisted of two
steps. The first step was to determine the types of single-tone
instruments to be mixed. Then, single-tone stimuli were created.
The second step was to combine the single-tone stimuli to form
some mixed stimuli based on two tones. The following is a
detailed description of the stimuli production process, which is
shown in Figures 1, 2.

Production of Single-Tone Stimuli
Fifty-two kinds of instrument timbres were selected in this
experiment. There were 24 Western instrument timbres,
including wood wind instruments, brass wind instruments,
bowed string instruments, hammered string instruments, and
percussion instruments, and 28 Chinese instrument timbres,
including wind instruments, bowed string instruments, plucked
instruments, and percussion instruments. The experiment
stimuli comprised four phrases in the lyric paragraph of the
second part of the Spring Festival prelude. The music score is
shown in Figure 1 of theAppendix. The range of each instrument
is used most often by composers. The experimental stimuli were
made by the combination of MIDI and a sampling sound source.
Among them, the stimuli of Western instruments were produced
by the Vienna Symphonic Library,1 and the stimuli of Chinese
instruments were produced by the Kong Audio Sound Library2.

1Website of the Vienna Symphonic Library: https://www.vsl.co.at/en/.
2Website of the Kong Audio Sound Library: http://www.kongaudio.com/.

The audio file format was saved in theWAV format, the sampling
frequency was 44.1 kHz, and the quantization accuracy was 16
bits. The timbre types of the Chinese and Western instruments
and the specific range of each instrument are shown in Table 1 of
the Appendix.

According to the definition of timbre, it is necessary to
exclude the influence of pitch and loudness when studying it.
Previous studies have shown that, in some cases, timbre and
tone are inseparable (Melara and Marks, 1990). Therefore, the
timbre perception features extracted in this paper also included
the pitch factor. To avoid the influence of loudness on the
perception results, all stimuli were first calibrated based on
a loudness measurement algorithm (ITU-RBS 1770-4, 2015).
Then, three audio engineers with music backgrounds fine-tuned
the signal level based on the results of the music loudness
balance experiment. The specific process of the loudness balance
experiment and the statistical analysis of the experimental results
have been detailed in previous research results (Zhu et al., 2018).

Production of Mixed Timbre Experimental Stimuli
Twenty-eight single-tone stimuli of Chinese instruments were
divided into four groups: wind instruments, bowed string
instruments, plucked instruments, and percussion instruments.
By combining these stimuli in pairs within and between groups,
we obtained 259 mixed timbre stimuli of Chinese instruments.
Twenty-four single-tone stimuli of Western instruments were
divided into five groups: wood wind instruments, brass
wind instruments, bowed string instruments, hammered string
instruments, and percussion instruments. By combining these
stimuli in pairs within and between groups, we obtained
259 mixed timbre stimuli of Western instruments. In fact,
the 24 Western musical instruments and 28 Chinese musical
instruments each have more than 259 kinds of combinations.
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Considering the amount of experimental data, we only evaluated
the common timbre combination methods in the orchestration.
These dyads are often used by composers. The combination of
these dyads references the Chinese National Orchestra Practical
OrchestrationManual. Similar to the single-tone stimuli, to avoid
the influence of loudness on the perception results, all mixed
experimental stimuli were first calibrated based on a loudness
measurement algorithm (ITU-RBS 1770-4, 2015). Finally, a
collection of 518 mixed stimuli was obtained, as shown in Table 2
of the Appendix.

Apparatus
The experiment was carried out in a listening room, conforming
to standards (EBU-TECH 3253, 2008). The reverberation time
of the listening room was 0.3 s, the sound field distribution
was uniform, and there was no bad acoustic phenomenon
or body noise. A Genelec 1038B three-way active midfield
monitoring speaker was used to replay the experimental signals.
Its parameters, which conform to international standards, are
shown in Table 3 of the Appendix.

Because the experimental results are affected by the listening
sound pressure level, it is necessary to ensure that the participants
listen at the standard level (EBU-TECH 3253, 2008), and that
this level remains unchanged throughout the experiment. The
equipment used in the calibration test system is a Lenovo
T460 notebook computer, a BK4231 sound calibrator, a BK2250
sound-level meter, and a YAMAHA 01V96i digital mixer. The
actual listening pressure level is 74 dBA, which conforms
to the international listening standard (EBU-TECH 3253,
2008). Experimental stimuli were played using Adobe Audition
software. The seats in the listening room were arranged in
triangles. That is, in the listening area, one listener sat in the first
row, two listeners sat in the second row, and so on. To avoid
presentation level changes caused by the shielding of the front
seats from the back seats, the back seats were all 15 cm higher
than the front seats. In the process of listening, the ear height
of the participants should be at the same level as the midpoint
of the vertical line in the high and low sounds of the speakers.
We calibrated the test system with the sound-level meter. After
the system was calibrated, white noise was used as the test signal.
The sound-level meter was located in the center of the listening
seat triangle. The system volume was adjusted so that the A-
meter sound level of the system was 74 dBA (as read from the
sound-level meter).

Procedure
The experimental steps included four stages: the experimental
introduction stage, the pre-experimental stage, the training
stage, and the formal experimental stage. The experimental
introduction stage: The background of the experiment was
introduced, and the participants were informed of the purpose
of the experiment to enhance their cognition. Then, we
explained the concept of the timbre perception attribute to
the participants and used the example audio stimuli as an
aid so that the participants could accurately understand the
meaning of each attribute. The pre-experimental stage: We
explained the corresponding relationship between the value of

the 9-level evaluation scale and the degree of integration to
the participants. Then, we randomly played all audio stimuli
to familiarize the participants with their variation range. The
training stage: Three timbre stimuli were randomly selected.
The participants were asked to evaluate the fusion, segregation,
roughness, and pleasantness of the stimuli according to their
subjective feelings using the 9-level evaluation scale (1–9). The
purpose of this step was to familiarize the participants with
the experimental process and to avoid any experiment impacts
related to unfamiliarity with the experimental process in the
formal experimental stage. These data were not used for the
analysis of the final results. The formal experiment stage: Thirty-
two subjects were randomly divided into four groups. Each group
consisted of eight subjects. A total of 518 stimuli were randomly
divided into 52 stimuli groups. The order within a stimuli group
was fixed, which was generated by a random program. And the
order of the groups was random. To avoid the possibility of
participant fatigue from listening to the sounds for a long amount
of time, all experimental stimuli were divided into three sets. The
experimental time of each set was no more than 30min, and
the rest, between each set, was 15min. Each participant used a
smartphone app to provide his or her responses. Then, we played
the stimuli groups for each subject group. The participants were
not allowed to communicate with one another during the test.
The participants evaluated the fusion, segregation, roughness,
and pleasantness of the timbre stimuli they heard and filled
out the forms accordingly. The experimental data were collected
by the app, in which we can select scores and export data.
The app interface is shown in the figure below (Figure 3). The
experiment was carried out according to the above steps, and the
data collection was completed. The above steps were followed
to conduct subjective evaluation experiments and complete the
data collection.

SUBJECTIVE EVALUATION EXPERIMENT
AND DATA ANALYSIS

The steps for the subjective evaluation of the experimental
data analysis are as follows. First, the original experimental
data were tested for reliability and validity, in which the
reliability test was conducted by calculating Cronbach’s alpha,
and the validity test was conducted by calculating the standard
deviation. Then, the method of successive categories was
used to statistically analyze the experimental data, and the
psychological scales of all samples in the four dimensions of
fusion, segregation, roughness and pleasantness were obtained.
These data were used for the comparative analysis of the timbre
fusion of Chinese andWestern instruments and the construction
of timbre fusion modeling. Third, analysis of variance was
used to statistically analyze the fusion, segregation, roughness,
and pleasantness, and the differences in the four-dimensional
attributes of different musical instrument timbre combinations
were obtained. Finally, correlation analysis andmultidimensional
preference analysis were used to explore the relationship between
the timbre perception dimension, musical instrument types,
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FIGURE 3 | The interface for the listening test.

and temporal envelopes, and conclusions from the analyses
were given.

Reliability and Validity Tests
Cronbach’s alpha is used to evaluate the internal consistency
of questionnaires and is applicable to the reliability analysis
of attitudes, questionnaires or scales. Cronbach’s alpha value
is between 0 and 1. The higher the alpha coefficient is, the
higher the reliability and the better the internal consistency
of the questionnaire. Generally, a questionnaire with an alpha
coefficient above 0.8 has value that is useful, and a questionnaire
with an alpha coefficient above 0.9 shows that the reliability of
the questionnaire is very good. The calculated Cronbach’s alpha
values of the four timbre perception attributes are shown in Table
4 of the Appendix. As seen from this table, the Cronbach alpha
values were 0.932 for fusion, 0.941 for segregation, 0.926 for
roughness, and 0.918 for pleasantness. These measures indicated
that all scales had very good internal consistency among the
32 participants.

The validity test was designed to examine the validity of the
experimental results. The higher the validity is, the better the

measure shows the characteristics it is intended to measure.
Different experiments have different purposes and require
different levels of validity. The validity test for this experiment
was to calculate the standard deviation of the experimental data
for the 32 subjects for each experimental stimulus and to consider
the experimental data beyond 1.5 times the standard deviation
to be invalid and to eliminate them. Since the statistical model
of the method of successive categories to be used next requires
that there be no missing values in the experimental data, the
data within 1.5 times the standard deviation of each stimulus
were averaged, and the mean was used to fill in the missing
values that were eliminated. After the reliability and validity
tests, the data were statistically analyzed using the method of
successive categories.

Data Statistics Based on the Method of
Successive Categories
The experimental data were counted by the method of successive
categories (Zihou, 2008). The theoretical basis of this method is
to assume that the psychological quantity is a random variable
that is subject to a positive Pacific distribution, and the boundary
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of each category in the method of successive categories is
not a predetermined value but a random variable determined
according to the experimental data. According to the Thurstone
model, the preference of object ai is the probability variable Xi

on the preference scale, which follows the normal distribution,
and its preference psychological scale f (ai) = Si. The
dividing line between category g and category g + 1 is the
random variable Tg on the subjective preference scale, which also
follows the normal distribution (Tg , σ 2). Tg and f (ai) satisfy the
following relationship. The category judgment model is shown in
Table 1.

The category judgment model was used to calculate
statistics of the fusion, segregation, roughness, and pleasantness
experimental data, and the psychological scale of all samples
on each timbre perception attribute was obtained, as shown
in Figures 4–7. N + N refers to non-sustaining instruments
and non-sustaining instruments, S + N refers to sustaining
instruments and non-sustaining instruments, and S + S refers
to sustaining instruments and sustaining instruments. The
abscissa represents the psychological scale distribution of each

TABLE 1 | The category judgment model.

ai

Ci C1 C2 … Cm−1

a1 t1 − f (a1) = z11 t2 − f (a1) = z21 … tm−1 − f (a1) = zm−11

a2 t1 − f (a2) = z1 t2 − f (a2) = z22 … tm−1 − f (a2) = zm−12

an t1 − f (an) = z1n t2 − f (an) = z2n … tm−1 − f (an) = zm−1n
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)
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1
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∑
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)

dimension, and the ordinate represents the serial number of each
stimulus. It can be seen intuitively from the figures that there
are certain differences in the distribution of timbre perception
attributes with different temporal envelopes. The next section
further analyzes these specific differences by combining one-way
ANOVA and two-way ANOVA.

Analysis and Discussion of Experimental
Results
The listening test was a 3-×-2 mixed-measures design with
two between subjects, the temporal-envelope factors and the
instrument-type factors. There were three types of temporal-
envelope factors: a combination of sustaining instruments and
sustaining instruments (S + S), a combination of sustaining
instruments and non-sustaining instruments (S + N), and a
combination of non-sustaining instruments and non-sustaining
instruments (N + N). There were two types of instrument type
factors: Western instruments (W) and Chinese instruments (C).

In this part, the fusion, segregation, roughness, and
pleasantness experimental data were analyzed. The analysis
idea of each timbre perception dimension was as follows.
First, based on the analysis results of the method of successive
categories, the timbre combination forms of different temporal-
envelope factors were statistically analyzed to compare the
timbre perception attributes of different temporal envelopes.
Second, one-way ANOVA was used to explore the effects of
the temporal-envelope factors and instrument-type factors on
each timbre perception attribute. Finally, two-way ANOVA was
used to explore the differences in timbre perception attributes
under the interaction between the temporal envelopes and
instrument types.

FIGURE 4 | Fusion psychological scales.
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FIGURE 5 | Segregation psychological scales.

FIGURE 6 | Roughness psychological scales.

Fusion

Fusion Data Distribution Statistics
To further explore the relationship between the temporal
envelope factor and fusion, we calculated the number
and percentage of audio stimuli with different temporal

envelopes in each category of fusion (Table 5 of the
Appendix). Then, the frequency statistical histogram of
each category of fusion was drawn according to the data
in Table 5 of the Appendix, and the results are shown in
Figure 8.
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FIGURE 7 | Pleasantness psychological scales.

FIGURE 8 | Distribution statistical histogram of fusion category.

It can be seen from Table 5 of the Appendix and Figure 8 that
the fusion of S + S was mainly distributed in categories C6, C7,
andC8 andwas relatively high (M= 5.97, SD= 3.44). In contrast,

the fusion of S + N was mainly distributed in categories C2, C3,
and C4 and was relatively low (M= 3.98, SD= 1.61). There were
no obvious distribution characteristics for the fusion of N + N
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FIGURE 9 | Fusion comparisons between Western and Chinese instruments.

instruments, and there was a certain distribution in the range of
categories C3–C7 (M= 5.51, SD= 2.07).

The relationship between the instrument type factor and the
distribution of fusion was further discussed. We divided the
experimental data into two groups according to the type of
a musical instrument (i.e., Chinese instruments and Western
instruments) and calculated the statistical characteristics of the
fusion for each group. The results are shown in Figure 9. It can
be seen from this figure that, for the same temporal envelope,
the average fusion values for Chinese instruments and Western
instruments were close, and the change law of the fusion from
time to time was consistent; that is, the order of fusion from
largest to smallest was S+ S > N+ N > S+ N.

Influence of Instrument Types and Temporal Envelopes
To explore the influence of instrument types and temporal
envelopes on the fusion, the one-way ANOVA model was used
for statistical analysis. Before one-way ANOVA, the normality of
the experimental fusion data was tested. The experimental data
were grouped according to the instrument types and temporal
envelopes, the normality of each group of data was tested,
and the normal P-P was drawn, as shown in the Figure 2
of the Appendix. In this figure, the ordinate represents the
cumulative probability of prediction, and the abscissa represents
the cumulative probability of the actual data. If the measured
curve is closer to the predicted cumulative probability (i.e., a line
with a slope of 1), the actual data distribution is closer to the

normal distribution. It can be seen from this figure that the data
distribution of fusion met normality for both instrument type
and temporal-envelope factors.

First, the experimental data were divided into two groups:
Chinese instruments and Western instruments. The data of
each group were analyzed by one-way ANOVA. The results are
shown in the Table 6 of the Appendix. It can be seen from
this table that the temporal envelope had an impact on both
Western instruments [p < 0.0001, F(2,256) = 48.080] and Chinese
instruments [p< 0.0001, F(2,256) = 44.694] with respect to fusion.

We further analyzed the influence of temporal envelopes
on the fusion of Chinese and Western instruments and the
differences between different temporal envelopes. Here, the
Student–Newman–Keuls (SNK) method was used for pairwise
comparisons between groups. The results are shown in the Tables
7, 8 of the Appendices.

For Western instruments, the three temporal envelopes were
divided into two subgroups. The fusion scores of S + S and N +

N were similar, and they were divided into the same subgroup.
The significance p = 0.326 > 0.05 indicated that there was no
difference between the average values of various types in the
subgroup. The mean value of fusion in the second subgroup was
greater than that in the first subgroup. For Chinese instruments,
the three temporal envelopes were divided into three subgroups:
S+ S, S+N, andN+N. The fusion scores of the three subgroups
were different, and the order of fusibility from largest to smallest
was S+ S > N+ N > S+ N.
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From the above results, it can be concluded that the three
temporal envelopes of both Chinese and Western instruments
have an impact on the fusion. Moreover, temporal envelopes have
a greater impact on the fusion of Chinese instruments but lesser
impact on the fusion of Western instruments.

Then, we analyzed the factors of instrument type. The
experimental data were divided into three groups: S + S, S +

N, and N + N. The results are shown in the Table 9 of the
Appendix. It can be seen from this table that under, any time
domain property condition, the significant P-value of instrument
types was >0.05 [S + S: p = 0.863 > 0.05, F(1,224) = 0.030; S +

N: p = 0.564 > 0.05, F(1,225) = 0.334; N + N: p = 0.319 > 0.05,
F(1,63) = 1.008], indicating that there is no difference in the fusion
score between Chinese andWestern instruments under the three
time domain property conditions; that is, the instrument type has
no effect on the fusion.

Interaction Between Temporal Envelopes and

Instrument Types
The above one-way ANOVA only considered the difference
in fusion under the same factor. Next, we further studied
the analysis model, considering both temporal envelopes and
instrument types. Here, the two-way ANOVA model was
used to analyze the fusion. Similar to one-way ANOVA,
two-way ANOVA also requires normality testing. The P-
P diagram of the normal probability distribution (normal
P–P) was calculated and drawn, as shown in the Figure
3 of the Appendix. It can be seen from this figure that
the measured curve was close to the predicted cumulative
probability, indicating that the distribution of the experimental
data met normality.

The results of two-way ANOVA for the experimental data
are shown in the Table 10 of the Appendix. It can be seen
from this table that the significance of instrument types and
temporal envelopes was >0.05 (p = 0.581 > 0.05), indicating
that the interaction between instrument types and temporal
envelopes was not statistically significant. To make the model
more concise, this interaction can be removed from the model,
and the model can be fitted with only the main effect. The
results are shown in the Table 11 of the Appendix. This
table shows that the instrument types [p = 0.906 > 0.05,
F(5,512) = 0.014] had no effect on fusion, while the temporal
envelope [p < 0.0001, F(5,512) = 92.469] had an effect on
fusion. That is, whether Chinese or Western instruments
are utilized, the temporal envelope impacts the fusion. This
conclusion is the same as that of one-way ANOVA, which
further explains the relationship between the temporal envelope
and fusion.

Combining the results of the descriptive statistical analyses,
one-way ANOVA and two-way ANOVA, we can draw the
following conclusions: (1) The temporal envelopes have a certain
influence on the fusion; that is, the fusion of different temporal
envelopes is different. The instrument types have no effect on
fusion. For both Chinese and Western instruments, the order
of fusion from largest to smallest is S + S > N + N > S + N.
There is no significant difference in the ranking trend of fusion
between Chinese and Western instruments. (2) An interaction

between temporal envelopes and instrument types has not been
found; that is, the difference in fusion between different temporal
envelopes is, basically, the same in different instrument types.

Segregation

Segregation Data Distribution Statistics
Using the same methods as those used for fusion degree analysis,
we obtained the frequency distribution statistics of each category
of segregation (Table 12 of the Appendix) and the distribution
statistical histogram of the segregation category (Figure 10).

It can be seen from Table 12 of the Appendix and Figure 10

that the segregation of S+ S was mainly distributed in categories
C2, C3, and C4 and was relatively low (M = 4.35, SD = 3.22).
In contrast, the segregation of S + N was mainly distributed in
categories C7 and C8 and was relatively high (M = 6.53, SD =

1.67). The fusion of N + N did not show obvious distribution
characteristics, and there was a certain distribution in the range
of categories C2–C8 (M= 5.01, SD= 1.97).

The relationship between the instrument-type factor and the
distribution of segregation was further discussed by the same
method as that used for fusion degree analysis. The results are
shown in Figure 11. It can be seen from this figure that, for the
same temporal envelope, the average values of the segregation
for Chinese instruments and Western instruments were close,
and the change law of the segregation from time to time was
consistent; that is, the order of the segregation from largest to
smallest was S+ N > N+ N > S+ S.

Influence of Instrument Types and Temporal Envelopes
We tested the normality of the experimental data of segregation
and then analyzed them by one-way ANOVA. The results are
shown in Figure 4 and Table 13 of the Appendices. It can be
seen from this table that the temporal envelope had an impact
on both Western instruments [p < 0.0001, F(2,256) = 58.651] and
Chinese instruments [p < 0.0001, F(2,256) = 54.167] with respect
to segregation.

We further analyzed the influence of temporal envelopes
on the segregation of Chinese and Western instruments and
the differences between different temporal envelopes. Here, the
Student–Newman–Keuls (SNK) method was used for pairwise
comparisons between groups. The results are shown in the Tables
14, 15 of the Appendices.

For Western instruments, the three temporal envelopes were
divided into two subgroups. The segregation scores of S + S
and N + N were similar, and they were divided into the same
subgroup. There was no difference between the average values of
various types in the subgroup (p= 0.108> 0.05). Themean value
of segregation in the second subgroup was greater than that in
the first subgroup. For Chinese instruments, the three temporal
envelopes were divided into three subgroups: S+ S, S+N, and N
+ N. The segregation scores of the three were different, and the
order of segregation from largest to smallest was S+ N > N+ N
> S+ S.

From the above results, it can be concluded that the three
temporal envelopes of both Chinese and Western instruments
have an impact on segregation. Moreover, temporal envelopes
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FIGURE 10 | Distribution statistical histogram of segregation category.

FIGURE 11 | Segregation comparisons between Western and Chinese instruments.
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have a greater impact on the segregation of Chinese instruments
but a lesser impact on the segregation of Western instruments.

Then, we analyzed the factors of instrument type. The
experimental data were divided into three groups: S + S, S +

N, and N + N. The results are shown in the Table 16 of the
Appendix. It can be seen from the table that, under any time
domain property condition, the significant P value of instrument
types was> 0.05 [S+ S: p= 0.732> 0.05, F(1,224) = 0.117; S+N:
p= 0.505> 0.05, F(1,225) = 0.445; N+N: p= 0.268> 0.05, F(1,63)
= 1.249], indicating that there is no difference in the segregation
score between Chinese andWestern instruments under the three
time domain property conditions; that is, the instrument type has
no effect on the segregation.

Interaction Between Temporal Envelopes and

Instrument Types
The above one-way ANOVA only considered the difference in
segregation under the same factor. Next, we further studied
the analysis model, considering both temporal envelopes and
instrument types. Here, the two-way ANOVA model was
used to analyze segregation. Similar to one-way ANOVA,
two-way ANOVA also requires normality testing. The P–P
diagram of the normal probability distribution (normal P–
P) was calculated and drawn, as shown in the Figure 5
of the Appendix. It can be seen from this figure that the
measured curve was close to that of the predicted cumulative
probability, indicating that the distribution of the experimental
data met normality.

The results of two-way ANOVA for the experimental data
are shown in the Table 17 of the Appendix. It can be seen
from this table that the significance of instrument types and
temporal envelopes was >0.05 (p = 0.492 > 0.05), indicating
that the interaction between instrument types and temporal
envelopes was not statistically significant. To make the model
more concise, this interaction can be removed from the model,
and the model can be fitted with only the main effect. The results
are shown in the Table 18 of the Appendix. This table shows
that the instrument types [p = 0.785 > 0.05, F(5,512) = 0.075]
had no effect on segregation, while the temporal envelope [p <

0.0001, F(5,512) = 112.211] had an effect on segregation. That
is, whether Chinese or Western instruments are utilized, the
temporal envelope impacts segregation. This conclusion is the
same as that of one-way ANOVA, which further explains the
relationship between the temporal envelope and segregation.

Combining the results of the descriptive statistical analyses,
one-way ANOVA and two-way ANOVA, we can draw the
following conclusions: (1) The temporal envelopes have a certain
influence on segregation; that is, the segregation of different
temporal envelopes is different. The instrument types have no
effect on segregation. For both Chinese andWestern instruments,
the order of segregation from largest to smallest is S + N > N
+ N > S + S. There is no significant difference in the ranking
trend of segregation between Chinese and Western instruments.
(2) An interaction between temporal envelopes and instrument
types has not been found; that is, the difference in segregation
between different temporal envelopes is, basically, the same for
different instrument types.

Roughness

Roughness Data Distribution Statistics
Using the same methods as those used for fusion degree analysis,
we obtained the frequency distribution statistics of each category
of roughness (Table 19 of the Appendix) and the distribution
statistical histogram of the roughness category (Figure 12).

It can be seen from Table 19 of the Appendix and Figure 12

that the roughness of S + S was mainly distributed in categories
C3 and C4 and was relatively high (M = 4.96, SD = 2.94).
In contrast, the roughness of S + N was mainly distributed in
categories C2, C3, and C4 and was higher (M= 4.42, SD= 2.60).
The roughness of N+Nwas mainly distributed in categories C3,
C4, and C5 and was relatively low (M= 3.54, SD= 0.93).

The relationship between the instrument-type factors and the
distribution of roughness was further discussed by the same
method as that used for fusion degree analysis. The results are
shown in Figure 13. It can be seen from this figure that, for S +
S and S+N, the mean roughness values for Chinese instruments
and Western instruments were close, and the variation law of
roughness from time to time was consistent; for N + N, the
mean roughness of Chinese instruments was larger than that
for Western instruments. However, for all western and Chinese
instruments, the roughness still had the same law from largest to
smallest, i.e., S+ S > S+ N > N+ N.

Influence of Instrument Types and Temporal Envelope
Similarly, we tested the normality of the experimental roughness
data and then analyzed them by one-way ANOVA. The results
are shown in Figure 6 and Table 20 of the Appendices. It can be
seen from this table that the temporal envelope had an impact
on both Western instruments [p < 0.0001, F(2,256) = 15.902] and
Chinese instruments [p = 0.0001, F(2,256) = 6.833] with respect
to roughness.

We further analyzed the influence of temporal envelopes
on the roughness of Chinese and Western instruments and
the differences between different temporal envelopes. Here, the
Student–Newman–Keuls (SNK) method was used for pairwise
comparisons between groups. The results are shown in the
(Tables 21, 22 of the Appendices).

For Western instruments, the three temporal envelopes were
divided into three subgroups: S + S, S + N and N + N. The
roughness scores of the three subgroups were different, and the
order of roughness from largest to smallest was S + S > S + N
>N+N. For Chinese instruments, the three temporal envelopes
were divided into two subgroups: the roughness scores of S +

N and N + N were similar, so they were divided into the same
subgroup. There was no difference between the average values of
various types in the subgroup (p= 0.209> 0.05). Themean value
of roughness in the second subgroup was greater than that in the
first subgroup.

From the above results, it can be concluded that the three
temporal envelopes of both Chinese and Western instruments
have an impact on the roughness. Moreover, temporal envelopes
have a greater impact on the roughness of Western instruments
but a lesser impact on the roughness of Chinese instruments.

Then, we analyzed the factors of instrument type. The
experimental data were divided into three groups: S + S, S +
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FIGURE 12 | Distribution statistical histogram of roughness category.

FIGURE 13 | Roughness comparisons between Western and Chinese instruments.
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N, and N + N. The results are shown in the (Table 23 of the
Appendix). It can be seen from this table that, when the time
domain property condition was S+ S or S+N, the significant P-
value of instrument type was >0.05 [S + S: p = 0.249 > 0.05,
F(1,224) = 1.335; S + N: p = 0.369 > 0.05, F(1,225) = 0.809],
indicating that there was no difference in the roughness score
between Chinese and Western instruments. However, when the
time domain property condition was N + N [p = 0.001 < 0.05,
F(1,63) = 13.010] there were some differences between Chinese
and Western instruments under the three time domain property
conditions; that is, the instrument type affected the roughness
when the time domain property condition was N+ N.

Interaction Between Temporal Envelope and

Instrument Types
The above one-way ANOVA only considered the difference
in roughness under the same factor. Next, we further studied
the analysis model, considering both temporal envelopes and
instrument types. Here, the two-way ANOVA model was used
to analyze roughness. Similar to one-way ANOVA, two-way
ANOVA also requires normality testing. The P–P diagram of the
normal probability distribution (normal P–P) was calculated and
drawn, as shown in the Figure 7 of the Appendix. It can be
seen from this figure that the measured curve was close to the
predicted cumulative probability, indicating that the distribution
of the experimental data met normality.

The results of two-way ANOVA of the experimental data
are shown in the Table 24 of the Appendix. It can be seen
from this table that the significance of instrument types and
temporal envelopes was greater than 0.05 (p = 0.053 > 0.05),
indicating that the interaction between instrument types and
temporal envelopes was not statistically significant. To make the
model more concise, this interaction can be removed from the
model, and the model can be fitting with only the main effect.
The results are shown in the Table 25 of the Appendix. The
table shows that the instrument types [p = 0.478 > 0.05, F(5,512)
= 0.505] had no effect on the roughness, while the temporal
envelope [p < 0.0001, F(5,512) = 21.654] had an effect on the
roughness. That is, whether Chinese or Western instruments are
utilized, the temporal envelope has an impact on the roughness.
This conclusion is the same as that of one-way ANOVA, which
further explains the relationship between temporal envelopes
and roughness.

Combining the results of the descriptive statistical analyses,
one-way ANOVA and two-way ANOVA, we can draw the
following conclusions: (1) The temporal envelopes have a certain
influence on the roughness, that is, the roughness of different
temporal envelopes are different. For both Chinese and Western
instruments, the order of roughness from largest to smallest is
S + S > N + N > S + N. There is no significant difference in
the ranking trend of roughness between Chinese and Western
instruments. (2) Interactions between temporal envelopes and
instrument types have not been found; however, when the time
domain property is N + N, the instrument type has an effect on
the roughness. That is, when the time domain property is N +

N, the roughness of Chinese instruments is larger than that of
Western instruments.

Pleasantness

Pleasantness Data Distribution Statistics
Using the same methods as those used for fusion degree analysis,
we obtained the frequency distribution statistics of each category
of pleasantness (Table 26 of the Appendix) and the distribution
statistical histogram of the pleasantness category (Figure 14).

It can be seen from Table 26 of the Appendix and Figure 14

that the pleasantness of S+ S wasmainly distributed in categories
C3–C6 and was relatively low (M= 4.64, SD= 2.23). In contrast,
the pleasantness of S + N was mainly distributed in categories
C5–C7 and was relatively high (M = 5.26, SD = 2.43). The
pleasantness of N + N was mainly distributed in categories
C6–C8 and was higher (M= 6.36, SD= 1.07).

The relationship between the instrument-type factors and the
distribution of pleasantness was further discussed by the same
method as that used for fusion degree analysis. The results are
shown in Figure 15. It can be seen from this figure that, for the
same temporal envelope, the average values of pleasantness for
Chinese instruments and Western instruments were close, and
the change law of pleasantness from time to time was consistent;
that is, the order of pleasantness from largest to smallest was N+

N > S+ N > S+ S.

Influence of Instrument Types and Temporal Envelope
Similarly, we tested the normality of the experimental
pleasantness data and then analyzed them by one-way ANOVA.
The results are shown in Figure 8 and Table 27 of theAppendices.
It can be seen from this table that the temporal envelope had
an impact on both Western instruments [p < 0.0001, F(2,256) =
17.417] and Chinese instruments [p < 0.0001, F(2,256) = 18.807]
with respect to pleasantness.

We further analyzed the influence of temporal envelopes
on the pleasantness of Chinese and Western instruments and
the differences between different temporal envelopes. Here, the
Student–Newman–Keuls (SNK) method was used for pairwise
comparisons between groups. The results are shown in the Tables
28, 29 of the Appendices.

For Western instruments, the three temporal envelopes were
divided into three subgroups: S + S, S + N, and N + N. The
pleasantness scores of the three subgroups were different, and the
order of pleasantness from largest to smallest was N+N> S+N
> S + S. For Chinese instruments, the three temporal envelopes
were also divided into three subgroups: S + S, S + N, and N +

N. The pleasantness scores of the three subgroups were different,
and the order of pleasantness from largest to smallest was N+ N
> S+ N > S+ S.

From the above results, it can be concluded that the three
temporal envelopes of both Chinese and Western instruments
have the same impact on pleasantness.

Then, we analyzed the factors of instrument type. The
experimental data were divided into three groups: S + S, S +

N, and N + N. The results are shown in the Table 30 of the
Appendix. It can be seen from this table that, under any time
domain property condition, the significant P-value of instrument
type was>0.05 [S+ S: p= 0.926> 0.05, F(1,224) = 0.009; S+N: p
= 0.900 > 0.05, F(1,255) = 0.016; N+ N: p= 0.148 > 0.05, F(1.63)
= 2.147], indicating that there is no difference in the pleasantness
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FIGURE 14 | Distribution of statistical histogram of pleasantness category.

FIGURE 15 | Pleasantness comparisons between Western and Chinese instruments.
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TABLE 2 | Correlation matrix and test results of timbre perception attributes.

Fusion Segregation Roughness Pleasantness

Fusion Pearson correlation 1 −0.945** −0.471** 0.471**

Sig. (2-tailed) p < 0.0001 p < 0.0001 p < 0.0001

Segregation Pearson correlation −0.945** 1 0.371** −0.370**

Sig. (2-tailed) p < 0.0001 p < 0.0001 p < 0.0001

Roughness Pearson correlation −0.471** 0.371** 1 −0.892**

Sig. (2-tailed) p < 0.0001 p < 0.0001 p < 0.0001

Pleasantness Pearson Correlation 0.471** −0.370** −0.892** 1

Sig. (2-tailed) p < 0.0001 p < 0.0001 p < 0.0001

**Correlation is significant at the 0.01 level (2-tailed).

score between Chinese andWestern instruments under the three
time domain property conditions, that is, the instrument type has
no effect on the pleasantness.

Interaction Between Temporal Envelope and

Instrument Types
The above one-way ANOVA only considered the difference in
pleasantness under the same factor. Next, we further studied
the analysis model, considering both temporal envelopes and
instrument types. Here, the two-way ANOVA model was used
to analyze pleasantness. Similar to one-way ANOVA, two-way
ANOVA also requires normality testing. The P–P diagram of the
normal probability distribution (normal P-P) was calculated and
drawn, as shown in the Figure 9 of the Appendix. It can be seen
from this figure that the measured curve was close to that of the
predicted cumulative probability, indicating that the distribution
of the experimental data met normality.

The results of two-way ANOVA of the experimental data are
shown in the Table 31 of the Appendix. It can be seen from
this table that the significance of instrument types and temporal
envelopes was >0.05 (p = 0.624 > 0.05), indicating that the
interaction between instrument types and temporal envelopes
was not statistically significant. To make the model more concise,
this interaction can be removed from the model, and the model
can be refitting with only the main effect. The results are shown
in the Table 32 of the Appendix. This table shows that the
instrument types [p= 0.738> 0.05, F(5,512) = 0.112] had no effect
on pleasantness, while the temporal envelope [p< 0.0001, F(5,512)
= 35.505] had an effect on pleasantness. That is, whether Chinese
or Western instruments are utilized, the temporal envelope has
an impact on pleasantness. This conclusion is the same as that
of one-way ANOVA, which further explains the relationship
between temporal envelope and pleasantness.

Combining the results of the descriptive statistical analyses,
one-way ANOVA and two-way ANOVA, we can draw the
following conclusions: (1) The temporal envelopes have a
certain influence on pleasantness; that is, the pleasantness of
different temporal envelopes is different. The instrument types
have no effect on pleasantness. For both Chinese and Western
instruments, the order of pleasantness from largest to smaller is
N + N > S + N > S + S. There is no significant difference in
the ranking trend of pleasantness between Chinese and Western

instruments. (2) An interaction between temporal envelopes and
instrument types has not been found; that is, the difference in
pleasantness between different temporal envelopes is, basically,
the same in different instrument types.

Interaction of Timbre Perception Attributes
Here, the correlation analysis was carried out by using the
Pearson’s correlation coefficient for four timbre perception
attributes, fusion, segregation, roughness, and pleasantness. The
correlation matrix and test results can be calculated by a two-
tailed test, as shown in Table 2. As seen from this table, there
is a strong negative correlation between fusion and segregation
(r = −0.94, Sig < 0.01), indicating that these two attributes
tend to move in opposite directions. There is also a strong
negative correlation between roughness and pleasantness (R
= −0.0.94, Sig < 0.01), indicating that these two attributes
tend to move in opposite directions. In addition to the above
two pairs of strong correlations, other correlations among the
four timbre perception attributes were weak. To further analyze
the relationship between these attributes, multidimensional
preference analysis was used to process the experimental data.

Multidimensional preference analysis is also called principal
component analysis of classified data. The principle of
this algorithm is to combine the idea of optimal scaling
transformation and principal component analysis. In essence,
this method is an extension of factor analysis and principal
component analysis (Bechtel, 2019). Compared with principal
component analysis and factor analysis, multidimensional
preference analysis has several advantages. Considering various
possible factors in data collection, the optimal scaling technique
was introduced in multidimensional preference analysis. This
allows the analysis of distance (continuous) variables and order
(discrete) variables (such as rating and ranking), thus greatly
broadening the application scope of this method. In addition, the
results of multidimensional preference analysis can be intuitively
presented in the form of a perception map. In other words, the
sample and variable loadings can be plotted directly on a single
diagram, making it easier to read information from it.

The experimental data can be statistically processed by
multidimensional preference analysis. The component loadings
of the four timbre perception attributes of the perception map
and preference space can be obtained (Table 3, Figure 16). In
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TABLE 3 | Component loads of timbre perception attributes in two dimensions.

Dimension 1 Dimension 2

Fusion 0.839 −0.511

Segregation −0.789 0.588

Roughness −0.787 −0.569

Pleasantness 0.793 0.561

the preference space, the origin represents the average level
of the whole sample. Starting from the origin, the further the
scatter is from the origin, the stronger its tendency is. Points
falling in the same direction from the origin in roughly the same
region are related to each other. Variable scatter may represent a
potential factor.

As seen from Figure 16, the four variables, which represent
the fusion, segregation, roughness, and pleasantness timbre
perception attributes, are distributed in the four quadrants of
the preference space, which shows that these four attributes
are representative for evaluating the combined timbre. In
addition, fusion and segregation show opposite distributions,
and roughness and pleasantness also show opposite distributions,
indicating that these two pairs of attributes tend to move in
opposite directions, which further verifies the results of the
correlation analysis.

For the time domain characteristic factors, the timbre of the
N + N type is distributed near the loading component of the
pleasantness attribute, indicating that pleasantness is the main
factor affecting this type of timbre. The timbre of the S + N
type is distributed above the loading component of segregation,
indicating that segregation is the main factor affecting this type
of timbre, while the pleasantness attribute also has a slight
influence on this type of timbre. The timbre of the S + S
type is distributed in the middle of the fusion and roughness
components, indicating that both fusion and roughness have
a certain influence on the timbre of the S + S type, and the
influence of fusion is slightly greater than the influence of
roughness. For instrument-type factors, the scatter points of
Chinese and Western instruments are very close to the origin,
indicating that instrument type is not the main factor affecting
timbre perception attributes. In summary, the results based on
multidimensional preference analysis are consistent with the
previous results of variance analysis, which further demonstrates
the reliability of the conclusion.

CONSTRUCTION OF THE TIMBRE FUSION
MODEL

To explain the influencing factors of perception fusion, this paper
draws on the analysis ideas of existing research and uses audio
information processing methods to extract mixed audio features
from time-domain waveforms and frequency spectra. Then, we
attempted to establish the correlation between objective acoustic
parameters and subjective perception.

Extracting Acoustic Characteristic
Parameters
Timbre is a multidimensional perception attribute that is closely
related to the time-domain waveform and spectral structure of
sound (Jiang et al., 2020). Objective acoustic parameters refer to
any values acquired using a mathematical model, representing
a normal sound signal in the time and frequency domains. To
establish a timbre fusion model, an objective acoustic parameter
set was constructed using 27 parameters extracted from the 518
stimuli in the timbre fusion database. These 27 parameters can be
divided into 6 categories (Peeters et al., 2011):

(1) Temporal shape features: calculated from the waveform or the
signal energy envelope (e.g., attack time, temporal increase or
decrease, and effective duration).

(2) Temporal features: autocorrelation coefficients with a zero-
crossing rate.

(3) Energy features: referring to various energy contents in the
signal (e.g., global energy, harmonic energy, or noise energy).

(4) Spectral shape features: calculated from the short-time
Fourier transform (STFT) of the signal (e.g., centroid,
spread, skewness, kurtosis, slope, roll-off frequency, or Mel-
frequency cepstral coefficients).

(5) Harmonic features: calculated using sinusoidal harmonic
modeling of the signal (e.g., the harmonic/noise ratio, the
odd-to-even and tristimulus harmonic energy ratio, and
harmonic deviation).

(6) Perceptual features: calculated using a model for human
hearing (e.g., relative specific loudness, sharpness,
and spread).

Considering that the parameters of the audio stimuli change
with time, we calculated the time-varying statistical of these
parameters, including the maximum, minimum, mean, variance,
standard deviation, interquartile range, skewness coefficient,
and kurtosis coefficient so as to produce an objective acoustic
parameter set, containing 216 parameters. We screened these
parameters before establishing the regression equation. The
correlation between 216 parameters and fusion was analyzed, and
it was found that the correlation between mean, interquartile
range, and fusion was relatively high. Therefore, the mean and
interquartile range of 27 parameters were retained, and a total of
54 parameters were retained. Considering the nine parameters
attack time, log attack time, decrease time, effective duration,
release time, attack slope, decrease slope, frequency modulation,
and amplitude modulation are mainly calculated for a single
note, whereas stimuli featured a melody, these parameters were
relatively unimportant, for which reason the interquartile range
was omitted. This produced an objective acoustic parameter set,
containing 45 parameters (see Table 4).

The calculation methods of some important acoustic
parameters are as follows:

(1) Zero-crossing rate: It is defined as the number of times the
audio signal waveform crossing the zero amplitude level
during a 1-s interval, and it provides a rough estimator of
the dominant frequency component of the signal (Alías et al.,
2016).
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FIGURE 16 | A preference space location map.

(2) Spectrum centroid: SC for short, defined as the centroid of
spectral energy (Marchetto and Peeters, 2015). It can be
defined as the first moment of the amplitude spectrum of the
signal frame (the mean value of the frequency position), which
represents the geometric center of the spectrum, and the unit
is hertz. f (n) is the frequency after ERBfft transformation, and
P[E(n)] is the probability value of the spectral energy of each
point on the total energy.N is the length of the DFT transform.

SpecCent=

N∑

n=1

f (n)P (E (n)) (1)

(3) Spectrum flatness: It is a measure of the uniformity of
the power spectrum frequency distribution. It can be
calculated as the ratio of the sub-band geometric average
to the arithmetic average (equivalent to the MPEG-7 audio
frequency spectrum flatness (ASF) description Character
(Grzywczak and Gwardys, 2014).

SFM (tm)=

(∏K
k=1 ak (tm)

) 1
K

1
K

∑K
k=1 ak (tm)

(2)

(4) Harmonic energy: Harmonic energy is the energy of the signal
explained by the harmonic partials (Sharma et al., 2020). It is
obtained by summing the energy of the partials detected at
a specific time. In the equation, ah(tm) is the amplitude and
frequency of partial h at time tm. H partials are ranked by
increasing frequency.

EH (tm)=

H∑

h=1

a2h (tm) (3)

(5) Spectral roll-off: This parameter was proposed by Scheirer and
Slaney (1997). It is defined as the frequency fc(tm) below,
which 95% of the signal energy is contained, where sr/2 is
the Nyquist frequency and af is the spectral amplitude at
frequency f . In the case of harmonic sounds, it can be shown
experimentally that spectral roll-off is related to the harmonic
or noise cutoff frequency. The spectral roll-off also reveals an
aspect of spectral shape as it is related to the brightness of
a sound.

fc(tm)∑

f=0

a2f (tm)= 0.95

sr
2∑

f=0

a2f (tm) (4)
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TABLE 4 | An acoustic parameter list.

Classification Parameter name Statistics

Time domain Temporal centroid Mean, IQR

Attack time Mean

Log attack time Mean

Decrease time Mean

Effective duration Mean

Release time Mean

Attack slope Mean

Decrease slope Mean

Frequency modulation Mean

Amplitude modulation Mean

Zero-Crossing rate Mean, IQR

Frequency domain Spectral centroid Mean, IQR

Spectral spread Mean, IQR

Spectral decrease Mean, IQR

Spectral skewness Mean, IQR

Spectral kurtosis Mean, IQR

Spectral roll-off Mean, IQR

Spectral-flatness measure Mean, IQR

Spectral crest measure Mean, IQR

Spectral flux Mean, IQR

Root mean square energy Mean, IQR

Harmonic domain Harmonic energy Mean, IQR

Noisiness energy Mean, IQR

Tristimulus Mean, IQR

Harmonic spectral deviation Mean, IQR

odd-to-even ratio Mean, IQR

Noisiness Mean, IQR

In this paper, the Timbre Toolbox (Peeters et al., 2011) and
MIRtoolbox (Lartillot and Toiviainen, 2007) were used for
feature extraction. The corresponding acoustic parameters were
extracted from stimuli in the timbre fusion database, and the
acquired data were used to construct a model of timbre fusion.

Model Parameter Fitting
Subjective and objective correlations were adopted in the
construction of the fusion model. The subjective label is
the mean value of the fusion value, and the objective data
are 45 dimensional objective acoustic parameters. This study
uses multiple linear regressions, random forest, and multilayer
perceptron to predict the subjective degree of fusion. The
following is an introduction of the model and parameter settings.

(1) Multiple linear regression: We used multiple linear
regression (Olive, 2017) to fit the data of the independent
variable’s 45 dimensional objective acoustic parameters and the
degree of fusion of the dependent variable. The criterion of
minimizing the mean square error and the gradient descent
method are used to determine the linear regression coefficients.
Adding Lasso regularization on the basis of standard multiple
linear regression makes it easier to make the weight close to 0,
which can be used for feature selection (Fonti and Belitser, 2017).

(2) Random forest: The random forest is composed of multiple
decision trees (Pal, 2005). The root node of the decision tree
is randomly selected from the training sample. The objective
acoustic parameters of the sample are randomly selected by tree
splitting. There is no correlation between multiple decision trees.
Sklearn is used in this paper to fit the random forest model
(Feurer et al., 2019). In this model, the adjustable parameters
include bootstrapping, the maximum number of features for
one decision tree, the maximum number of leaf nodes, and the
number of decision trees.

We adjusted the parameters for the number of decision trees
and the maximum number of features for one decision tree, and
we adopted default values for other parameters. The increasing
number of decision trees makes the model perform better, but
too many trees may cause overfitting. The objective acoustic
parameters in this paper are 45 attributes, and there are obvious
category divisions and feature correlations between the features,
so we set the maximum number of features of the decision
tree as 6. The number “6” is determined by experience. If the
number of features is too large, the accuracy of the model will be
affected. The number of decision trees is determined according
to the empirical value and the number of samples, which ranges
from 9 to 11 in this paper. A total of 10 decision trees are
optimally selected by testing the integration of Chinese and
Western instruments and the results of the integrated model. The
output result is determined jointly by each decision tree, which is
the mean value of the predicted results of the test samples by the
10 decision trees.

(3) Multilayer perceptron: The multilayer perceptron consists
of an input layer, a hidden layer, and an output layer. The layers
are fully connected (Ramchoun et al., 2016). The units between
the layers are connected as weight coefficients and biases, and
ReLU is used as the activation function. The optimization of
model training uses stochastic gradient descent (SGD) (Wu et al.,
2020), and the gradient parameter update learning rate was set
to 0.001.

To evaluate the accuracy of the prediction results of the model
constructed by different algorithms, the goodness of fit R2 was
used as the evaluation index, which is defined as follows (Brook
and Arnold, 2018). The SSR is the regression sum of squares, SSE
is the residual sum of squares, and SST is the total deviation of
squares. In addition, 0 < R < 1, the closer R is to 1, the better the
prediction result.

R2 =
SSR

SST
= 1−

SSE

SST
= 1−

∑ (
y− ŷ

)2

∑ (
y− y

)2 (5)

Four-fold cross-validation was performed on 518 audio data
stimuli. Each time the model was built, 3-folds were taken, and
the remaining fold was used for verification. The average value
of R2 was taken as the prediction accuracy of the model. The 259
pieces of Chinese and Western audio data were divided for 4-
fold cross-validation, which was the same processing method as
described above. The results are as follows (see Table 5).

The constructed linear regression model is expressed as
follows. Using this model, objective acoustic parameters with
an absolute value of regression coefficient >4 are selected
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TABLE 5 | Comparison of accuracy of fusion models.

Name R2 (Chinese and Western) R2 (Chinese) R2 (Western)

Linear lasso 0.414 0.541 0.305

Random forest 0.417 0.563 0.363

Multilayer perceptron 0.464 0.573 0.443

to characterize their contribution to fusion. In the following
formula, X is an acoustic objective parameter.

The linear model of the fusion of Chinese musical instruments
is as follows: where FChinese is the fusion degree of Chinese
musical instruments.

FChinese = 14.2XHarmErg + 7.7XSpecCent − 7.6XSpecFlat

− 6.9XNoiseErg + 5.6XZcrRate + 4.8XSpecRolloff (6)

The linear model of the fusion of Western musical instruments
is as follows: where FWestern is the fusion degree of Western
musical instruments.

FWestern = 18.7XHarmErg − 11.6XNoiseErg − 10.9XSpecFlat

− 10.3XSpecCrest − 9.2XZcrRate − 8.9XRMSEEnv

+ 7.2XSpecSpread (7)

The comprehensive linear model of Chinese and Western
musical instruments is as follows: where Fall is the fusion of
Chinese and Western musical instruments.

Fall = 13.8XHarmErg − 13.6XSpecKurt + 13.3XSpecSkew

− 11.1XNoiseErg + 10.5XSpecCent − 10.3XSpecFlat

− 7.5XSpecCrest − 5.7XZcrRate (8)

The parameters in the above equations are the temporal statistical
mean of the parameters. The regressors in the equations can be
divided into three categories: spectral centroid, spectral roll-off,
and zero crossing rate are related to the perceptual brightness and
can be classified as brightness factors. Harmonic energy, noisiness
energy, and RMS relate to signal energy and can be classified as
energy factors. Spectral flatness, Spectral crest, Spectral spread,
Spectral skewness, and Spectral kurtosis are related to an Spectral
envelope, which can be classified as an Spectral envelope factor.

For Chinese instruments (Equation 6), the spectral centroid,
spectral roll-off, and zero crossing rate are positively correlated
with the fusion, and these three parameters are brightness factors.
The brighter timbre of the dyad, the better the degree of fusion
is. This is opposite to the experimental results of Sandell (1995).
Sandell’s experimental stimulus was western instruments, and the
result was that the higher the composite centroid of the spectrum,
the worse the fusion. This result shows that the perceptual fusion
degree of Chinese instruments is different from that of Western
instruments. This may be related to the differences in timbre
between Chinese and Western instruments or to the cultural
background of the subjects. Previous studies have shown that
cultural background is an important factor affecting the timbre
with respect to an emotional perception (Wang et al., 2021).

For Western instruments (Equation 7), the zero crossing rate
is negatively correlated with the fusion, and this parameter is
a brightness factor. That is, the less bright timbre of the dyad,
the better the perception of fusion. This is consistent with the
experimental results of Sandell (1995). This proves that the higher
the composite spectral centroid of western instruments, the worse
the fusion.

From the perspective of the energy factor, harmonic energy
is positively correlated with fusion, while noisiness energy is
negatively correlated with fusion for both Chinese and Western
instruments. This shows that the more prominent the musical
characteristics of the dyad, the better the perceptual fusion.
The more prominent the noise characteristic is, the worse the
perception fusion is. This is also one of the main reasons for
the worse perception fusion of Chinese-plucked instruments.
Plucking instruments produce a large number of dissonant noise
components at the moment when fingernails or picks touch the
strings. As a result, the fusion of the whole strumming group
is poor.

In addition, the RMS of Western instruments is negatively
correlated with the fusion. Although RMS is an energy factor,
there is a certain relationship between the energy of an
instrument’s sound (playing intensity) and timbre brightness.
When an instrument is played with greater force, more high-
frequency components are activated, resulting in a brighter tone.
That is, the higher the RMS value, the brighter the tone, the worse
the perceptual fusion.

DISCUSSION

Through the statistical processing of experimental data, the
following analysis and discussion can be made:

Sustaining and non-sustaining temporal envelopes are
important factors that affect the perception attributes of timbre.
Moreover, for different timbre attributes, the temporal envelopes
have different effects. For the fusion and segregation attributes,
the temporal properties have an impact on both Chinese
and Western instruments, although these impacts are more
pronounced for Chinese instruments than Western instruments.
Specifically, a timbre combination with the same temporal
envelope has a higher degree of fusion and a higher degree of
segregation. The values of fusion from high to low are S + S > N
+ N > S + N (W: 5.95 > 5.67 > 3.94; C: 5.99 > 5.31 > 4.04), while
the values of the degree of segregation are opposite to those of
fusion: S + N > N + N > S + S (W: 6.58 > 4.84 > 4.40; C: 6.47 >
5.23 > 4.32).

For the roughness attributes, the temporal properties have
an impact on roughness for both Chinese and Western
instruments, although the impact is more pronounced for
Western instruments than Chinese instruments. Specifically,
timbre combinations with more sustaining instruments have
higher roughness. The values of roughness from high to low are
S + S > S + N > N + N (W: 5.12 > 4.50 > 3.18; C: 4.85 >
4.31 > 3.98). This may be because sustaining instruments contain
more beating, which is an important factor that causes roughness.
Similarly, for the pleasantness attributes, the temporal properties
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have an impact on pleasantness for both Chinese and Western
instruments. However, the values of pleasantness are exactly
opposite to those of roughness: N + N > S + N >S + S (W: 6.54
> 5.25 > 4.65; C: 6.16 > 5.27 > 4.63).

Moreover, through the correlation analysis and
multidimensional preference analysis for the four timbre
attributes, it is found that the ranking of segregation is opposite
to that of fusion. The ranking of roughness is also opposite
to that of pleasantness. The results further confirm the above
conclusions. These results further support the conclusion of
Tardieu and McAdams (2012) and Lembke et al. (2019) that
fusion is reduced in the presence of non-sustaining instruments
with mixed timbre. Similarly, the results of our manuscript are
consistent with the conclusions drawn by Fischer et al. (2021),
namely, decreasing temporal differences reduce segregation
ratings. In addition, the comparison of the results of these
three papers shows that the higher the similarity of timbre, the
higher the fusion, and the lower the segregation, and vice versa.
This is consistent with the conclusion of the multidimensional
preference analysis in our manuscript.

From the experimental results, it can be seen that, in most
cases, the instrument type (i.e., Chinese instruments or Western
instruments) has less influence on the four timbre attributes.
However, when the temporal envelope is N + N, the roughness
will be affected by the instrument type, and the roughness of
Chinese instruments is greater than that of Western instruments.

According to the variance analysis for the four timbre
attributes, there is no interaction between the instrument type
and the temporal envelope. That is, the difference in timbre
perception attributes caused by different temporal envelopes is,
basically, the same between Chinese and Western instruments.

According to the experimental data of the four timbre
perception attributes, the values of fusion and segregation vary
more for different temporal envelopes of Chinese instruments.
However, the value of roughness varies more for different
temporal envelopes when using Western instruments. That is,
fusion and segregation are important attributes to evaluate the
timbre combination of Chinese instruments, while roughness is
an important attribute to evaluate the timbre combination of
Western instruments.

Comparing the models used for analysis, the random forest
and multilayer perceptron models are more effective than the
linear regression models. For the model of fusion, the best
accuracy is 46.4% for Chinese and Western instruments, 57.3%
for Chinese instruments, and 44.3% for Western instruments.
It shows that these algorithms have some limitations, and the
accuracy of the model can be greatly improved. Comparing
the models used for analysis, the random forest and multilayer
perceptron models are more effective than the linear regression
models. These two machine learning algorithms non-linearly fit
the data to achieve better performance. Comparing the models
of the fusion of Chinese and Western musical instruments, it
can be seen that the linear regression model fits Chinese musical
instrument fusion better than Western musical instruments. The
model could be even more accurate. This is partly because we
have a limited amount of data. However, the algorithm that we
used was not state of the art enough. All of these factors have

some influence on the accuracy of the model. In future research,
we will attempt to further increase the amount of data and adopt
deep learning algorithms to improve the accuracy of the model.

Overall, the prediction effect of the integration model for
Chinese musical instruments is better than that for Western
musical instruments. This difference may be related to the
distribution of musical instruments. Chinese instruments are
more comprehensive and evenly distributed, so the model can
learn more stably and achieve effective predictions, while, in the
Western fusion dataset, audio data with a high fusion degree
have a larger proportion, and the model-learned features are
insufficient. This result is also consistent with the distribution
characteristics of the perception results from the auditory
perception experiment.

Comparing the coefficients of the linear regression models of
Chinese musical instruments and Western musical instruments,
we can see the contributions of various objective acoustic
parameters to timbre fusion. For Chinese musical instruments,
the important parameters that affect fusion are harmonic energy,
spectrum centroid, spectrum flatness, noise energy, zero crossing
rate, and spectrum roll-off. The fusion of Western musical
instruments is mainly affected by objective acoustic parameters,
such as harmonic energy, noise energy, spectral flatness, spectral
crest factor, zero-crossing rate, root mean square energy, and
spectrum expansion.

The important objective acoustic parameters of integrated
models of Chinese and Western musical instruments are
harmonic energy, spectral kurtosis, spectral skewness, noise
energy, spectral centroid, spectral flatness, spectral crest factor,
and zero crossing rate. These parameters combine the objective
acoustic parameters that have made outstanding contributions to
the fusion of Chinese musical instruments and Western musical
instruments. It also proves the rationality and effectiveness of the
model. Comparing the models of Chinese musical instruments
and Western musical instruments, their common parameters
are harmonic energy, noise energy, and spectral flatness. These
parameters are all related to the perceptual consonance of timbre
(Wang and Meng, 2013). Therefore, we believe that objective
acoustic parameters related to perceptual harmony are important
factors that affect timbre fusion.

CONCLUSION

In this paper, the characteristics of the timbre fusion of Chinese
and Western instruments were explored, and a subjective
evaluation experiment of a timbre perception based on the
serial category method was designed and implemented. The
effects of time domain characteristics and instrument types on
fusion, segregation, roughness, and pleasantness were studied
by statistical processing, which included variance analysis,
multidimensional preference analysis, correlation analysis, and
machine learning algorithms. The differences in the four
timbre perception attributes between Chinese and Western
instruments were compared. Through carrying out relevant
subjective and objective experiments, the following conclusions
were obtained.
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Sustaining and non-sustaining time domain characteristics
are important factors affecting the perception attributes of
timbre. Moreover, for different timbre attributes, the time
domain characteristics have different effects. According to the
experimental data of the four timbre perception attributes, fusion
and segregation are important attributes for evaluating the
timbre combination of Chinese instruments, while roughness is
an important attribute for evaluating the timbre combination of
Western instruments. This conclusion further explains why the
acoustic theory of symphonic orchestration is mostly based on
roughness. For the study of the orchestration theory of Chinese
instruments, it is necessary to explore the general rules of timbre
fusion for Chinese instruments.

Multiple linear regression, random forest, and multilayer
perceptron were used in this paper to construct a set of timbre
fusion models for Chinese and Western instruments. The results
showed that these models can better predict the timbre fusion
attributes. From this research, it was also found that there
are some differences between the timbre fusion models for
Chinese and Western instruments, which is consistent with the
analysis results of subjective experimental data. In addition, the
spectrum centroid and spectrum roll-off were found to have an
important influence on both the fusion model of Chinese and
Western musical instruments. These parameters are all related
to the brightness of the tone. Therefore, we can consider the
parameter related to timbre brightness as important factors that
affect the fusion of Chinese and Western instruments, although
the impact is more pronounced in Chinese instruments than
Western instruments. The contribution of the above parameters,
especially the important parameters of the spectral centroid, was
basically consistent with the results of Sandell (1991). However,
there is no parameter, such as the attack time, in the regression
model of the fusion degree, which was different from previous
studies. This may be due to the melody content used in the
fusion timbre database used in this experiment. Compared with
monophonic audio data, the effect of vibration time on the entire
time sequence was less obvious.

In this paper, the research on fusion is still in the exploratory
stage, and this work needs to be further improved and
supplemented. For example, the amount of data needed to build
the database has yet to be expanded. Due to the limitation of
data quantity, only a conventional algorithm was implemented
in this paper to build the fusion degree model, and it is necessary
to adopt deep learning to build the model on the large-scale
dataset in later stages. In a follow-up study, we plan to make a
special study on the timbre integration of Chinese instruments.
In the aspect of database construction, a larger scale timbre
fusion stimuli library should be built, and timbre fusion with
different harmonies should be discussed. In addition to the
timbre combinations of two instruments, the complexities of
three or more timbre combinations should be considered. Future
experiments should use real instrument sampling so that the
research results can be extended to the practice of orchestration
of Chinese and Western orchestras. From the perspective of
research methods and theory, objective parameters related to

timbre fusion should be further explored and analyzed, and the
mathematic model should be explained from the perspective of
instrument acoustics. It is also necessary to study how to apply
relevant models to the orchestration practice and instrument
reform of Chinese orchestral music, e.g., the development and
construction of computer-aided Chinese orchestration software.
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Several machine learning-based COVID-19 classifiers exploiting vocal biomarkers of

COVID-19 has been proposed recently as digital mass testing methods. Although

these classifiers have shown strong performances on the datasets on which they are

trained, their methodological adaptation to new datasets with different modalities has

not been explored. We report on cross-running the modified version of recent COVID-19

Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from

cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end

deep learning neural network originally designed to classify whether an individual is

COVID-19-positive or COVID-19-negative based on coughing and breathing audio

recordings from a published crowdsourced dataset. In the current study, we demonstrate

the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough

and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR

achieves significant improvements over several baselines. We also present the results of

the cross dataset experiments with CIdeR that show the limitations of using the current

COVID-19 datasets jointly to build a collective COVID-19 classifier.

Keywords: COVID-19, computer audition, digital health, deep learning, audio

1. INTRODUCTION

The current coronavirus pandemic (COVID-19), caused by the
severe-acute-respiratory-syndrome-coronavirus 2 (SARS-CoV-2), has infected a confirmed
126 million people and resulted in 2,776,175 deaths (WHO)1. Mass testing schemes offer the
option to monitor and implement a selective isolation policy to control the pandemic without
the need for regional or national lockdown (1). However, physical mass testing methods, such
as the Lateral Flow Test (LFT) have come under criticism since the tests divert limited resources
from more critical services (2, 3) and due to suboptimal diagnostic accuracy. Sensitivities of
58% have been reported for self-administered LFTs (4), unacceptably low when used to detect
active virus, a context where high sensitivity is essential to prevent the reintegration into society

1As of 29th March 2021 https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

88

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://doi.org/10.3389/fdgth.2022.789980
http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2022.789980&domain=pdf&date_stamp=2022-07-07
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.akman21@imperial.ac.uk
https://doi.org/10.3389/fdgth.2022.789980
https://www.frontiersin.org/articles/10.3389/fdgth.2022.789980/full
https://www.who.int/emergencies/diseases/novel-coronavirus-2019


Akman et al. Evaluating the CIdeR

of falsely reassured infected test recipients (5). In addition
to mass testing, radar remote life sensing technology offers
non-contact applications to combat COVID-19 including heart
rate tracking, identity authentication, indoor monitoring and
gesture recognition (6).

Investigating the potential for digital mass testing methods
is an alternative approach, based on findings that suggest
a biological basis for identifiable vocal biomarkers caused
by SARS-CoV-2’s effects on the lower respiratory track (7).
This has recently been backed up by empirical evidence
(8). Efforts have been made to collect and classify a range
of different modality audio recordings of COVID-19-positive
and COVID-19-negative individuals and several datasets have
been released that use applications to collect the breath
and cough of volunteer individuals. Examples include the
“COUGHVID” (9), “Breath for Science”2, “Coswara” (10),
COVID-19 sounds3, and ‘CoughAgainstCovid’ (11). In addition,
to focus the attention of the audio processing community onto
the task of binary classification of COVID-19 from audio,
two INTERSPEECH competitions: the INTERSPEECH 2021
Computational Paralinguists Challenge (ComParE)4 (12) with its
COVID-19 Cough and Speech Sub-Challenges, and Diagnosing
COVID-19 using acoustics (DiCOVA)5 (13) have been organized
with this focus as their challenge.

Several studies have been published that propose machine
learning-based COVID-19 classifiers exploiting distinctive sound
properties between positive and negative cases to classify these
datasets. Brown et al. (14) and Ritwik et al. (15) demonstrate
that simple machine learning models perform well in these
relatively small datasets. In addition, deep neural networks
are exploited in Laguarta et al. (16), Pinkas et al. (17),
Imran et al. (18), and Nessiem et al. (19) with proven
performance at the COVID-19 detection task. Although there
are works that try to combine different modalities computing
the representations separately, Coppock et al. (20) (CIdeR)
proposes an approach computing joint representation of a
number of modalities. The adaptability of this approach to
different types of datasets has not to our knowledge been explored
or reported.

To this end, we propose a modified version of COVID-19
Identification ResNet (CIdeR), a recently developed end-to-end
deep learning neural network optimized for binary COVID-
19 diagnosis from cough and breath audio (20), which is
applicable to common datasets with further modalities. We
present the competitive results of CIdeR to the two COVID-
19 cough and speech Challenges of INTERSPEECH 2021,
ComParE and DiCOVA. We also investigate the behavior
of a strong COVID-19 classifier across different datasets by
running cross dataset experiments with CIdeR. We describe
the limitations of current COVID-19 classifiers with these
experiments regarding the ultimate goal of proposing a universal
COVID-19 classifier.

2https://www.breatheforscience.com
3https://www.covid-19-sounds.org/en/
4http://www.compare.openaudio.eu/
5https://dicova2021.github.io/

2. METHODS

2.1. Model
CIdeR (20) is a 9 layer convolutional residual network. A
schematic detailing of the model can be seen in Figure 1. Each
layer or block consists of a stack of convolutional layers with
Rectified Linear Units (ReLUs). Batch normalization (21) also
features in the residual units, acting as a source of regularization
and supporting training stability. A fully connected layer with
sigmoid activation terminates the model yielding a single logit
output which can be interpreted as an estimation of the
probability of COVID-19. As detailed in Figure 1 the network is
modified to be compatible with a varying number of modalities,
for example, if a participant has provided cough, deep breathing,
and sustained vowel phonation audio recordings, they can be
stacked in a depth wise manner and passed through the network
as a single instance. We use PyTorch library in python to
implement CIdeR and baseline models.

2.2. Pre-processing
At training time, a window of s-seconds, which was fixed at 6 s for
these challenges, is sampled from the audio recording randomly.
If the audio recording is less than s-seconds long, the sample is
padded with repeated versions of itself. The sampled audio is then
converted into Mel-Frequency Cepstral Coefficients (MFCCs)
resulting in an image of width s * the sample rate and height
equal to the number of MFCCs. Three data augmentation steps
are then applied to the sample. First, the pitch of the recording
is randomly shifted, secondly, bands of the Mel spectrogram are
masked in the time and Mel coefficient axes and finally, Gaussian
noise is added. At test time, the sampled audio recording is
chunked into a set of s-second clips and processed in parallel. The
mean of the set of logits is then returned as the final prediction.

2.3. Baselines
The DiCOVA team ran baseline experiments for the track
1 (coughing) sub-challenge; only the best performing (MLP)
model’s score was reported. For the track 2 (deep breathing/vowel
phonation/counting) sub-challenge, however, baseline results
were not provided. Baseline results were provided for the
ComParE challenge but only Unweighted Average Recall
(UAR) was reported rather than Area Under Curve of the
Receiver Operating Characteristics curve (ROC-(AUC)). To
allow comparison across challenges, we created new baseline
results for the ComParE sub-challenges and the DiCOVA Track
2 sub-challenge, using the same baseline methods described
for the DiCOVA Track 1 sub-challenge. The three baseline
models applied to all four sub-challenge datasets were Logistic
Regression (LR), Multi-layer Perceptron (MLP), and Random
Forrest (RF), where the same hyperparameter configurations that
were specified in the DiCOVA baseline algorithm was used (13).

To provide a baseline comparison for the CIdeR track 2
results, we built a multimodal baseline model. We followed a
similar strategy with the provided DiCOVA baseline algorithm,
while extracting the features for each modality. Rather than
individual training for different models, we developed an
algorithm that concatenates input features from separate
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FIGURE 1 | A schematic of the COVID-19 Identification ResNet, (CIdeR). The figure shows a blow-up of a residual block, consisting of convolutional, batch

normalization, and Rectified Linear Unit (ReLU) layers.

TABLE 1 | ComParE sub-challenge dataset splits.

CCS CSS

# Train Val Test Train Val Test

COVID-19-postive 71 48 39 72 142 94

COVID-19-negative 215 183 169 243 153 189

Total 286 231 208 315 295 283

Values specify the number of audio recordings, not the number of participants.

modalities. Then, this combined feature set was fed to the
baseline models: LR, MLP, and RF.

We used 39 dimensional MFCCs as our feature type to
represent the input sounds. For LR, we used Least Square Error
(L2) as a penalty term. For MLP, we used a single hidden layer
of size 25 with a Tanh activation layer and L2 regularization.
The Adam optimiser and a learning rate of 0.0001 was used. For
RF, we built the model with 50 trees and split based on the gini
impurity criterion.

3. DATASETS

3.1. ComParE
ComParE hosted two COVID-19 related sub-challenges, the
COVID-19 Cough Sub-Challenge (CCS) and the COVID-19
Speech Sub-Challenge (CSS). Both CCS and CSS are subsets of
the crowd sourced Cambridge COVID-19 sound database (14,
22). CCS consists of 926 cough recordings from 397 participants.
Participants provided 1–3 forced coughs resulting in a total of
1.63 h of recording. CSS is made up of 893 recordings from 366
participants totalling 3.24 h of recording. Participants were asked
to recite the phrase “I hope my data can help manage the virus
pandemic” in their native language 1–3 times. The train-test splits
for both sub-challenges are detailed in Table 1.

TABLE 2 | DiCOVA sub-challenge dataset splits.

Track-1 Track-2

# Train + Val Test Train + val Test

COVID-19-postive 75 blind 60 21

COVID-19-negative 965 blind 930 188

Total 1,040 234 990 209

The test set labels were withheld by the DiCOVA team, contestants had to submit

predictions for each test case, on which a final AUC was returned.

3.2. DiCOVA
Once again, DiCOVA hosted two COVID-19 audio diagnostic
sub-challenges. Both sub-challenge datasets were subsets of the
crowd sourced Coswara dataset (10). The first sub-challenge,
named Track-1, comprised of a set of 1,274 forced cough
audio recordings from 1,274 individuals totalling 1.66 h. The
second, Track-2, was a multi-modality challenge, where 1,199
individuals provided three separate audio recordings; deep
breathing, sustained vowel phonation, and counting from 1 to
20. This dataset represented a total of 14.9 h of recording. The
train-test splits are detailed in Table 2.

4. RESULTS AND DISCUSSION

The results from the array of experiments with CIdeR and the
3 baseline models are detailed in Table 3. CIdeR performed
strongly across all four sub-challenges, achieving AUCs of 0.799
and 0.787 in the DiCOVA Track 1 and 2 sub-challenges,
respectively, and 0.732 and 0.787 in the ComParE CCS and
CSS sub-challenges. In the DiCOVA cough sub-challenge, CIdeR
significantly outperformed all three baseline models based on
95% confidence intervals calculated following (23), and in the
DiCOVA breathing and speech sub-challenge it achieved a
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TABLE 3 | Results for CIdeR and a range of baseline models for 4 sub-challenges across the DiCOVA and ComParE challenges.

Sub-challenge* CIdeR Baseline

LR MLP RF

DiCOVA Track 1** 0.799 ± 0.058 - 0.699 ± 0.068 -

Track 2 0.786 ± 0.057 0.647 ± 0.014 0.684 ± 0.072 0.776 ± 0.063

ComParE CCS 0.732 ± 0.068 0.722 ± 0.069 0.765 ± 0.065 0.753 ± 0.066

CSS 0.787 ± 0.060 0.583 ± 0.072 0.656 ± 0.070 0.628 ± 0.070

Testing is performed on the held-out test fold once final model decisions have been made on the validation sets. The Area Under Curve of the Receiver Operating Characteristics curve

(AUC(-ROC)) is displayed. A 95% confidence interval is also shown following (23). CIdeR scores which are statistically higher than the best baseline results with a 95% confidence are

in bold. The three baseline models are Logistic Regression (LR), Multi-layer Perceptron (MLP), and Random Forrest (RF). All baseline models were trained on MFCC features.

*Track 1: coughing, Track 2: deep breathing+ vowel phonation+ counting, CCS: coughing, CSS: speech—“ hopemy data can help managethe virus pandemic”. ** As the demographics

were not provided for the Track 1 test set, when calculating the AUC confidence intervals, it was assumed that there was an equal number of COVID-19-positive and COVID-19-negative

recordings.

higher AUC although the improvement over the baselines was
not significant. Conversely, while CIdeR performed significantly
better than all three baseline models in the ComParE speech sub-
challenge based on 95% confidence intervals calculated following
(23), it performed no better than baseline in the ComParE cough
sub-challenge. One can speculate that this may have resulted
from the small dataset sizes favoring the more classical machine
learning approaches which do not need as much training data.

4.1. Limitations
A key limitation with both the ComParE and DiCOVA COVID-
19 challenges is the size of the datasets. Both datasets contain very
few COVID-19-positive participants. Therefore, the certainty in
results is limited and this is reflected in the large 95% confidence
intervals detailed in Table 3. This issue is compounded by the
demographics of the datasets. As detailed in Brown et al. (14) and
Muguli et al. (13) for the ComParE datasets and the DiCOVA
datasets, respectively, not all demographics from society are
represented evenly—most notably, there is poor coverage of
age and ethnicity and both datasets are skewed toward the
male gender.

In addition, the crowd-sourced nature of the datasets
introduces some confounding variables. Audio is a tricky sense
to control. It contains a lot of information about the surrounding
environment. As both datasets were crowd-sourced, there could
have been correlations between ambient sounds and COVID-
19 status, for example, sounds characteristic of hospitals or
intensive care units being more often present for COVID-19-
positive recordings compared to COVID-19-negative recordings.
As the ground truth labels for both datasets were self reported,
presumably the participants knew at the time of recording
whether they had COVID-19 or not. One could postulate that
the individuals who knew they were COVID-19-positive might
have been more fearful than COVID-19-negative participants
at the time of recording, an audio characteristic known to be
identifiable by machine learning models (24). Therefore, the
audio features which have been identified by the model may not
be specific audio biomarkers for the disease.

We note that both the DiCOVA Track 1 and ComParE CCS
sub-challenges were cough recordings. Therefore, there was an
opportunity to utilize both training sets. Despite having access

TABLE 4 | The results for cross dataset experiments.

Test set

Train set DiCOVA ComParE COUGHVID

DiCOVA 0.799 0.554 0.464

ComParE 0.512 0.732 0.552

COUGHVID 0.395 0.518 0.566

All 0.673 0.717 0.531

to both the DiCOVA and ComParE datasets, training on the
two datasets together did not yield a better performance on
either of the challenges’ test sets. Additionally, a model which
performed well on one of the challenges test sets would see a
marked drop in performance on the other challenge’s test set. We
run cross dataset experiments to analyse this effect further. For
these experiments, we also included the COUGHVID dataset (9)
in which COVID-19 labels were assigned by experts and not as
a results of clinically validated test. The results in Table 4 show
that the trained models for each dataset do not generalize well
and perform poorly on excluded datasets. This is a worrying find,
as it suggests that audio markers which are useful in COVID-19
classification in one dataset are not useful or present in the other
dataset. This agrees with the concerns presented in Coppock et al.
(25) that current COVID-19 audio datasets are plagued with
bias, allowing for machine learning models to infer COVID-19
status, not by audio biomarkers uniquely produced by COVID-
19, but by other correlations in the dataset such as nationality,
comorbidity and background noise.

5. FUTURE WORK

One of the most important next steps is to collect and evaluate
machine learning COVID-19 classification on a larger dataset
that is more representative of the population. To achieve optimal
ground truth, audio recordings should be collected at the
time that the Polymerase Chain Reaction (PCR) test is taken,
before the result is known. This would ensure full blinding
of the participant to their COVID-19 status and exclude any
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environmental audio biasing in the dataset. The Cycle Threshold
(CT) of the PCR test should also be recorded, CT correlates
with viral load (26) and therefore would enable researchers to
determine the model’s classification performance to the disease
at varying viral loads. This relationship is critical in assessing
the usefulness of any model in the context of a mass testing
scheme, since the ideal model would detect a viral load lower than
the level that confers infectiousness6. Finally, studies similar to
Bartl-Pokorny et al. (8), directly comparing acoustic features of
COVID-19-positive and COVID-19-negative participants should
be conducted on all publicly available datasets.

6. CONCLUSION

Cross-running CIdeR on the two 2021 Interspeech COVID-
19 diagnosis from cough and speech audio challenges has
demonstrated themodel’s adaptability acrossmultiplemodalities.
With little modification, CIdeR achieves competitive results in
all challenges, advocating the use of end-2-end deep learning
models for audio processing thanks to their flexibility and
strong performance. Cross dataset experiments with CIdeR have
revealed the technical limitations of the datasets for joint usage
that prevent from creating a common COVID-19 classifier.

6Seventy-third SAGE meeting on COVID-19, 17th December 2020.
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Despite pitch being considered the primary cue for discriminating lexical tones,

there are secondary cues such as loudness contour and duration, which

may allow some cochlear implant (CI) tone discrimination even with severely

degraded pitch cues. To isolate pitch cues from other cues, we developed

a new disyllabic word stimulus set (Di) whose primary (pitch) and secondary

(loudness) cue varied independently. This Di set consists of 270 disyllabic

words, each having a distinct meaning depending on the perceived tone. Thus,

listeners who hear the primary pitch cue clearly may hear a di�erent meaning

from listeners who struggle with the pitch cue and must rely on the secondary

loudness contour. A lexical tone recognition experiment was conducted,

which compared Di with a monosyllabic set of natural recordings. Seventeen

CI users and eight normal-hearing (NH) listeners took part in the experiment.

Results showed that CI users had poorer pitch cues encoding and their

tone recognition performance was significantly influenced by the “missing”

or “confusing” secondary cues with the Di corpus. The pitch-contour-based

tone recognition is still far from satisfactory for CI users compared to NH

listeners, even if some appear to integratemultiple cues to achieve high scores.

This disyllabic corpus could be used to examine the performance of pitch

recognition of CI users and the e�ectiveness of pitch cue enhancement based

Mandarin tone enhancement strategies. TheDi corpus is freely available online:

https://github.com/BetterCI/DiTone.
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1. Introduction

Linguists define “lexical tone” as the phenomenon when two

syllables which differ in their pitch contour but are otherwise

identical can have different meanings. Mandarin Chinese is a

tonal language in which each syllable has four typical tones,

each has a characteristic pitch contour. By convention, Tone 1

has a high-flat pitch, Tone 2 a rising pitch, Tone 3 is falling-

then-rising in a relatively low pitch range, and Tone 4 has

a falling pitch. Linguistic meaning can be distinguished by

these four tones. The register and range of pitch contours vary

among utterances and persons. Psychoacoustical studies have

shown that pitch-related acoustic cues are complex and manifest

within multiple features in both temporal and spectral domains

of sounds (Schnupp et al., 2011; Oxenham, 2018). Normal

hearing (NH) listeners of tonal languages can use pitch cues

to distinguish lexical tones robustly even when acoustic signals

are degraded by environmental noise, low-fidelity playback,

human speech production variability, etc. In contrast, for

most cochlear implant (CI) recipients, lexical tone perception

is still challenging (Lu et al., 2022), and performance varies

significantly across recipients and in environments (Chang

et al., 2016; Liu et al., 2017; Mao and Xu, 2017; Li et al.,

2018; Tang et al., 2019). This is perhaps unsurprising given

CI recipients’ weaker and more variable abilities to extract

pitch cues from acoustic signals (Tao et al., 2015; Mok et al.,

2017; Vandali et al., 2017). Limitations in pitch extraction

can occur on multiple stages of the CI supplied auditory

system, from the device’s signal processing strategy through

peripheral auditory neural processing, all the way to auditory

cortical processing and cognition (Zhang, 2019; Zhou et al.,

2022).

However, speech researchers have long recognized that pitch

cues are not the only acoustic cues that could be used for lexical

tone discrimination. Secondary cues, such as amplitude contour

(Whalen and Xu, 1992; Kuo et al., 2008), duration (Fu and Zeng,

2000; Xu et al., 2002; Yang et al., 2017), and spectral (timbre)

contour (Liang, 1963), tend to covary with the pitch cues and

may be useful when pitch cues are significantly degraded. Thus,

loudness and timbre can occasionally serve as alternative cues

in tasks which are classically thought of as pitch-dependent,

including lexical tone and musical melody perception, and this

has been observed in both NH and, more strongly, in CI listeners

(McDermott et al., 2008; Cousineau et al., 2010; Luo et al., 2014,

2019). Manipulating the timbre contour for tone enhancement

in speech is problematic since changing the spectral shape would

likely affect the formant structure of the manipulated speech. In

contrast, the amplitude contour could bemanipulated to co-vary

more strongly with the fundamental frequency (F0) contour to

facilitate Mandarin tone perception with CIs (Luo and Fu, 2004;

Kim et al., 2021), and some studies indicated that these kinds of

strategies can be effective in actual CI users (Ping et al., 2017;

Meng et al., 2018).

The confounds created by co-varying pitch and non-pitch

cues to the Mandarin tone also imply that previous Mandarin

tone recognition experiments with CI participants, which simply

used naturally recorded speech stimuli, will have measured the

ability to utilize some combination of several types of acoustic

cues. These experiments therefore cannot give an independent

estimate of the CI user’s ability to use specifically pitch cues to

discriminate lexical tones. Indeed, secondary cues can be quite

reliable and could be strong enough to lead to ceiling effects

in tone identification. This could perhaps explain why some

previous tests of lexical tone enhancement strategies found no or

only little improvement (Han et al., 2009; Vandali et al., 2017).

Pitch and duration cues for lexical tone perception have

been studied by Peng et al. (2009, 2017). They orthogonally

manipulated F0 (pitch) contour, intensity (loudness) contour,

and duration, to study how the interaction between these cues

influence the perception of English intonation (Peng et al.,

2009) or Chinese lexical tone (Peng et al., 2017). Covarying

cues generally caused better results than conflicting cues for

CI listeners, but no significant difference was found for NH

listeners. In the tone perception study by Peng et al. (2017),

the pitch contour and duration of the second syllable /jing/

in the disyllabic word /yǎn jing/ were manipulated to generate

two alternative meanings: /yǎn j̄ing/ (Tone 1) means eyes,

and /yǎn jìng/ (Tone 4) means eyeglasses. Using disyllables

rather than monosyllables for tests of this nature is preferable

because Chinese monosyllables tend to have many homophonic

meanings, while the meaning of disyllables tends to be much

more unambiguously determined by the tone, creating less

uncertainty in the participants’ mind. While Peng et al. (2017)

did study pitch and duration cues for lexical tone, they did not

investigate the role of the amplitude contour, even though this is

a powerful secondary cue.

In order to dissociate the contributions of pitch and non-

pitch cues to tone recognition, we developed a set of Mandarin

syllables where the pitch cues of target tones vary independently

of secondary loudness and duration cues. This was inspired

by Peng et al. (2009, 2017). In our preliminary study (Meng

et al., 2018), we manipulated the pitch contour and the

loudness contour of the second syllable /shi/ of a disyllable

/lǎo shi/ independently to generate speech sounds that could

be interpreted to convey one of three possible word meanings:

/lǎo shī/ (Tone 1) means “teacher”, /lǎo shí/ (Tone 2) means

“well-behaved”, and /lǎo shì/ (Tone 4) means “always”. Different

weighting strategies were found in four CI participants, in that

two participants relied more on loudness cues, and the other

two participants relied more on pitch cues. The influence of

loudness (or amplitude) contour on CI tone recognition has

been demonstrated in several studies (Luo and Fu, 2004; Meng

et al., 2016, 2018; Ping et al., 2017; Kim et al., 2021).

In this study, amuch larger CI participant cohort was used to

expand the findings, and more disyllables were carefully selected

to generate an expanded speech corpus. The disyllable corpus
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includes five disyllabic words, which were decomposed and

resynthesized into words whose primary (pitch) and secondary

(loudness) cues varied independently. The syllables with flat tone

were resynthesized to have either a high-flat, a rising, or a falling

pitch contour. The pitch-manipulated monosyllables were then

amplitude-modulated by three loudness gain functions, which

are flat, rising, or falling. These resynthesized syllables formed

a stimulus set of 270 disyllabic words (denoted by “Di”), each

having a distinct meaning depending on the perceived tone.

Thus, listeners who hear the primary pitch cue clearly will often

hear a different meaning from listeners who are insensitive to

the pitch cue and must rely on the secondary cue given by the

loudness contour. The new stimulus sets thus make it possible

to evaluate the contribution of pitch contour cues to lexical tone

perception in CIs in isolation.

A tone recognition experiment was carried out with the new

disyllabic set Di as well as with a set of natural monosyllabic

recordings (“Mono”) (Wei et al., 2004) so that responses could

be directly compared. TheMono stimuli consist of monosyllabic

words with four tones which were recorded naturally from a

female speaker. As noted before, natural Mandarin recordings

contain pitch cues as well as co-varying secondary cues that can

both help listeners identify lexical tones. In contrast, while Di

includes only three tones (Tone 1, 2, and 4), its pitch contours

and loudness contours were manipulated to vary independently,

so that secondary loudness cues were no longer reliable, and

pitch cue performance can therefore be assessed in isolation.

In order to train the participants to use pitch contour as

much as possible, participants were given trial-by-trial feedback

of whether their answers were correct according to the pitch

contour. Since pitch contour is the primary cue on which NH

Mandarin speakers overwhelmingly rely for tone recognition, we

scored a word as “correctly identified” when the listener reported

the meaning of the word that corresponds to the lexical tone

given by the pitch contour, irrespective of (secondary) loudness

contour cues values.

2. Materials and methods

2.1. Participants

In total, seventeen CI recipients and eight NH listeners

participated in this study. The CI recipients were recruited in

Guangdong Province, and the NH listeners (age 18–32) were

college students from two universities (South China University

of Technology and Sun Yat-Sen University) in Guangdong

Province. Further details about the CI recipients are shown in

Table 1. The selection criteria for these CI participants were: (1)

severe-to-profound sensorineural hearing loss in both ears, (2)

more than 1-year CI use experience, (3) self-reported efficient

speech communication ability without the use of visual cues,

and (4) capable of cooperating to complete the experiment. Note

that most of the participants were from Southern China, and

some of them may use a Southern Chinese dialect to complete

their day-to-day conversation with family members, such as

Cantonese, so Mandarin may not have been their “mother

tongue”. Participation was compensated and all participants gave

informed consent in accordance with the Shenzhen University’s

ethical review board.

2.2. Stimuli

The new disyllables corpus consists of five main disyllabic

words (i.e., /Lǎo Shī/, /Róng Huā/, /Shè J̄i/, /Píng Fāng /, and

/Huā Xiāng/), each recorded from 2 speakers (1 male and 1

female) in a studio at a sampling rate of 22,050Hz and resampled

using MATLAB resample.m to a sampling rate of 16,000 Hz.

The STRAIGHT toolbox (17/09/2005) (Kawahara et al., 2004)

was used to manipulate the pitch and loudness contours of the

recorded signals. Firstly, the recorded words were decomposed

according to a source-filter model to extract the excitation and

spectral envelope related information. Then all the syllables with

Tone 1 (i.e., the flat tone) were transformed to have 9 different F0

contours (changing linearly with time) including 3 flat contours,

3 rising contours, and 3 falling contours. Specific settings are

shown in the Figure 1. For the female speaker, the 3 flat contours

are 300, 250, and 200 Hz, respectively; the 3 rising contours

are 150 to 300, 250, and 200 Hz, respectively; and the 3 falling

contours are 300 to 220, 170, and 120 Hz, respectively. For the

male speaker, the 3 flat contours are 200, 170, and 130 Hz,

respectively; the 3 rising contours are 100 to 220, 180, and 150

Hz, respectively; and the 3 falling contours are 180 to 140, 110,

and 80 Hz, respectively. These F0 values and frequency steps

were selected with reference to the range of naturally recorded

Chinese lexical tone frequency variations (Traunmuller and

Eriksson, 1993;Moore and Jongman, 1997). The transformation

was done by changing the F0 of the excitation signal accordingly

and keeping the spectral envelope parts unchanged. This kept

almost all information other than the pitch contour unchanged

in the resynthesized signals. Finally, the amplitude of the voiced

portion of each pitch-modified monosyllable was multiplied by

three gain functions (i.e., 0 dB flat, −10 to +10 dB rising, and

+10 to −10 dB falling) to generate different loudness contours.

Figures 1A,B shows some examples of how the new disyllables

were generated from the original recordings.

Permuting the 9 pitch contours with the 3 loudness

contours, we generated 27 stimuli from each of the ten original

disyllabic words (five for each gender), all having the same

duration but differing independently in pitch and loudness

contours. Thus, we obtained 270 stimuli (5 original disyllabic

words × 2 speakers × 9 pitch contours × 3 loudness contours)

in total. These 270 disyllabic stimuli formed our new Mandarin

tone perception test stimulus set. Among the 270 disyllabic

tokens, 90 tokens have the same pitch contours and loudness
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TABLE 1 Participant demographic and device information.

Participant Gender Age range (yr) CI experience (yr)
CI processor

(R: Right; L: Left)
Etiology

C21 F 31–35 7 R: Cochlear CP900 Drug-induced

C28 F 36–40 11 R: Cochlear N6 Ototoxicity

C30 F 21–25 1 R: Cochlear Freedom Unknown

C34 M 11–15 13 R: Med-El OPUS2 Genetic

C36 M 16-20 L:4 L: Med-El OPUS2 Virus infection

R:14 R: Med-El OPUS2 Virus infection

C37 M 11–15 10 L: Cochlear N6 Jaundice

C38 F 6–10 5 L: Med-El OPUS1 Pregnancy infection

C39 M 6–10 7 R: Cochlear N5 Unknown

C40 F 11–15 8 R: Cochlear Freedom Unknown

C41 F 11–15 9 R: Cochlear CP900 Unknown

C42 M 21–25 18 R: Cochlear Freedom Gentamicin allergy

C43 M 11–15 8 R: Med-El OPUS2 Ototoxicity

C44 F 31–35 8 R: Nurotron NSP560b Progressive hearing loss

C45 M 11–15 10 R: Med-El OPUS2 Genetic

C46 F 21–25 1 L: Med-El OPUS2 Unknown

C47 F 16–20 10 L: Med-El OPUS2 Ototoxicity

C48 F 6–10 6 R: Med-El OPUS2 Ototoxicity

contours (both contours are high-flat, rising or falling, denoted

by “Cov”), whereas the rest 180 have different pitch contour and

loudness contours (denoted by “Conf”).

The synthesized syllables could be identified as one of the

15 disyllabic words shown in Figure 1C. It organizes them

according to whether the second syllable has Tone 1, Tone 2,

or Tone 4. Note that all the words created in this manner are

common, easily understood, and easily distinguished words of

Mandarin. Their English meanings are also shown in Figure 1C.

An existing stimulus set of naturally producedmonosyllables

(Wei et al., 2004) was used for comparison. It includes 100

tokens (25 monosyllabic words, each having four tone patterns)

pronounced by a female speaker. For convenience, the disyllabic

stimulus set generated in this study is noted as “Di” and the

monosyllable set by Wei et al. (2004) is noted as “Mono”.

Note that the Mono stimulus set consists entirely of unaltered

recordings of naturally spoken Mandarin, and pitch and non-

pitch cues to lexical tone will therefore naturally co-vary

in the Mono stimulus set. In contrast, the Di stimuli are

resynthesized so that pitch and loudness cues to lexical tone vary

independently by design.

2.3. Procedure

For each participant, the 270 Di stimuli were divided in a

random order into 6 sessions, each with 45 stimuli. Between

the third and fourth Di sessions, a test session with the 100

monosyllables from Mono was conducted, with all stimuli in a

random order. The session order is shown in Figure 2A. The

sound levels of all stimuli were normalized to have the same

root-mean-square amplitude. Each stimulus was presented in

one trial through an audio interface (Focusrite Scarlett 2i4)

and a loudspeaker (Yamaha HS5I) at a sound pressure level of

about 70 dBA in a sound-proof room. For the Di trials, a three-

alternative-forced-choice (3AFC; T1, 2, or 4) task was used; for

the Mono trials, a 4AFC was used (T1, 2, 3, or 4). In each

trial, three or four buttons including the Chinese characters and

Mandarin Pinyin were shown in a graphic user interface for

the subjects to select using a mouse, and the correctness of the

subject’s choice (according to the pitch-tone) was shown as green

(correct) and red (incorrect) colors in another user interface

element.

2.4. Statistical analysis methods

A Wilcoxon signed rank test was used to compare within-

subject conditions; a Wilcoxon rank sum test was used to

compare between-subject conditions; a Holm-Bonferroni

correction was used for multi-pair comparison; and a

Spearman’s rank correlation analysis was used to quantify

correlations between performance and CI hearing experience.

In the result figures, the raw percentage correct scores are
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FIGURE 1

Illustrations of disyllabic stimulus generation. (A) The word /Shè J̄i/ spoken by a female; (B) /Huā Xiāng/ spoken by a male. The left column
shows the original waveforms and spectrograms. The middle column shows the strategies for manipulating the pitch and loudness contours. As
shown, although the loudness-manipulation strategies are consistent for both male and female, the pitch-manipulation parameters are di�erent
between genders, reflecting the fact that females generally have higher pitched voices than males. The right column shows waveforms and
spectrograms for /Shè J̄i/ with a rising pitch contour (150–250 Hz) and three di�erent loudness contours and /Huà Xiàng/ with falling pitch
contours (180–110 Hz) and three di�erent loudness contours. (C) Words in the new disyllabic stimulus set “Di”.
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FIGURE 2

Mandarin tone recognition the new disyllabic stimulus set (denoted by “Di”) and the old monosyllabic set (denoted by “Mono”) for 17 CI (B–E)
and 8 NH (F–I) participants. (A) Session procedure of experiment. Both Di sessions and Mono session were equally grouped or divided into three
groups for analyzing the training e�ects of pitch-contour based correctness feedback. (B,F) Comparing results with three subgroups of Di. (C,G)
Comparing results with three parts of Mono. (D,H) Individual results (shown by colored lines) and boxplots of the scores with Di and Mono
stimulus sets, respectively. (E,I) Sensitivity index transferred from D&H. Significant di�erences between di�erent conditions are illustrated by
asterisks. Red plus signs indicate outliers, i.e., data exceeding 1.5 times the interquartile range. They are included in the formal analysis.

shown for simplicity, but to make the results from Di 3AFC

and those from Mono 4AFC tests quantitatively comparable,

irrespective of their differing chance % correct levels, sensitivity

index (d-prime, d′) values were computed and statistical

tests were carried out on the d′ values. The dprime.mAFC

function from the psyphy library of the R programming

language was used for this conversion. The mapping between

percentage scores and d′ can also be found in Hacker and

Ratcliff (1979).

3. Results

3.1. Training e�ects

Feedback was given in each trial based on whether the

response was correct according to the pitch cue of the stimulus.

This encouraged the subjects to use pitch-contour information

to do the task. For the CI subjects, the median scores pooled

over Di Sessions 1 & 2 were significantly lower than those for
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Sessions 3 & 4 (Z = −2.771, p < 0.01, n = 17, Wilcoxon signed

rank test) and 5 & 6 (Z = −2.699, p < 0.01, n = 17). No

significant difference was found when comparing the pooled

median scores from Di Sessions 3 & 4 against 5 & 6 (Z =−0.466,

p = 0.641). Also, no significant difference was found between the

median scores obtained with three parts of Mono (Z = −1.434,

−0.035 and −1.846, respectively, p > 0.05 for all comparisons,

n = 17) (see Figures 2B,C). For the NH subjects, the median

scores between three subgroups of Di and between three parts

of Mono showed no significant difference (Z = −2.521, −0.542,

0.000, −1.511, 0.000, and −1.121, respectively, p > 0.05 for all

comparisons, n = 8) (see Figures 2F,G). Therefore, a significant

training effect was found over the first two sessions of Di with

CIs. The performance reaches a ceiling from session 3 onwards.

Consequently, the results from Di Sessions 3, 4, 5, and 6 were

pooled to compute the performance scores for both CI and NH

cohorts in the Di task.

3.2. CI vs. NH

The Mandarin tone recognition scores for both Di and

Mono stimulus sets are summarized in Figures 2D,H. The

median scores of the CI participants (79.3% for Di and 85.9%

for Mono) were significantly lower than those of the NH

participants (98.8% for Di and 93.4% for Mono) [Z = −2.521

(Di) and −2.240 (Mono), p <0.05 for two comparisons, n =

25, Wilcoxon rank sum test, Holm-Bonferroni corrected]. NH

listeners recognized the words from both stimulus sets with

general good scores (see Figures 2H, 3A). The only difficulty for

NH with Mono is they sometimes (26.0%) identified the Tone 3

as Tone 2. For Di, Tone 3 was not included, so this confusion was

not examined. What’s more, in the Di stimulus set, where pitch

and loudness cues often diverged, the primary cue (pitch) clearly

dominated for NH listeners, as NH listeners were hardly ever

misled by conflicting loudness cues. In contrast, CI users scored

more poorly, particularly in the tests involving the Di speech

material, where accurate pitch coding is particularly important.

3.3. Di vs. Mono

Indeed, for the CI cohort, the median performance with

Di (79.3%, d′ = 1.61) was significantly lower than with Mono

(85.9 %, d′ = 2.02) (Z = −2.911, p = 0.004, n = 17, Wilcoxon

signed rank test on d′ values, see Figure 2E). In contrast, for the

NH cohort, the median score with Di (98.3%) and the scores

of most (6/8) participants was higher than those with Mono

(see Figure 2H), even though this median d′ difference was not

statistically significant (3.62 with Di, and 2.75 with Mono) (Z

= −1.823, p > 0.05, n = 8, see Figure 2I. Thus, Di was more

difficult than Mono for CI users, as expected given the at times

conflicting secondary cues.

3.4. Dominant cues for CIs

In Figures 3A,B, we also show the results of CI listeners using

the disyllabic stimuli subdivided according to whether the pitch

and loudness cues were “Covarying” or “Conflicting”. CI users

performed significantly better in covarying conditions than in

conflicting conditions (see Figure 3A). The median score in the

covarying condition was significantly higher than that in the

conflicting condition (Z = −2.215, p < 0.05, n = 17, Wilcoxon

signed rank test) (Figure 3B). When comparing Mono with the

subgroups of Di, the median score with Mono was significantly

higher than the score for the Conflicting (Z = −3.006, p < 0.05,

n = 17, Wilcoxon signed rank test, Holm-Bonferroni corrected)

but did not differ significantly from the Covarying stimulus

trial results (Z = −1.728, p > 0.05). These results indicate that

secondary cues were used by most CI users for tone recognition.

3.5. Correlations with CI listening
experience

Figure 3C shows the correlations between the tone

recognition scores with two stimulus sets and the CI subjects’

listening experience. No significant correlation was found

between the tone recognition scores obtained with the two

stimulus sets (r = 0.160, p = 0.539, Spearman’s rank

correlation analysis). With the Mono stimulus set, no significant

correlation was found between tone recognition results and

CI listening experience (r = 0.179, p = 0.492). With Di

stimulus set, however, a highly significant correlation was

found between tone recognition results and the amount of

CI listening experience (r = 0.601, p = 0.011). In the CI

cohort, subjects with longer experience generally also have an

earlier implantation age. A significant (albeit somewhat weaker)

correlation was also found between tone recognition results

with Di and their implantation ages (r = −0.537, p = 0.026).

4. Discussion

Many studies have shown that Chinese CI users have

reasonably good Mandarin tone recognition in quiet

environments, usually higher than 60% on average, and

higher than 90% for some star participants (Wang et al., 2011,

2012; Tao et al., 2015; Gu et al., 2017; Mao and Xu, 2017; Vandali

et al., 2017; Li et al., 2018). However, all these experiments

used stimulus sets of naturally produced sound recordings, in

which secondary cues, such as loudness contour and syllable

duration, can also contribute to a CI user’s tone recognition,

and pitch contours are not the only cues. Therefore, it is hard

to attribute a CI participant’s performance in Mandarin tone

recognition specifically to the strengths or weaknesses of their

pitch encoding, even if pitch cues are generally acknowledged to
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FIGURE 3

(A) Confusion matrices for pitch tone in CI and NH listeners using di�erent corpus (the number represents the tone recognition percentage
scores). (B) Boxplots of Mandarin tone recognition percentage scores of CI listeners based sensitivity index with sub-conditions (Cov and Conf)
of “Di” conditions, compared with “Mono” conditions. The significant di�erences between Di conditions and Mono are illustrated by the
asterisks. (C) Correlations between Mandarin tone recognition scores with “Mono” and “Di” and the CI participants’ listening experience. The
significant correlation is marked by an asterisk. Di, the new disyllabic stimulus set; Mono, the old monosyllabic stimulus set; Cov, covarying pitch
and loudness contours; Conf, conflicting pitch and loudness contours. Red plus signs indicate outliers (like that in Figure 2).

dominate tone perception in NH listeners (a fact also confirmed

in this study). Furthermore, multiple cues may lead to ceiling

effects in performance, which make it difficult to evaluate

the effectiveness of pitch-based tone enhancement strategies

(Vandali et al., 2017).

Our new disyllabic stimulus set isolates pitch cues from

secondary cues by eliminating duration cues and varying

amplitude contour cues orthogonally to pitch cues. Results

from CI users revealed a substantial drop in median tone

recognition scores when they were tested with our new stimuli

in comparison to the existingmonosyllabic stimulus set in which

multiple cues covaried (see Figure 2D). The tone recognition

scores with both Di and Mono were much higher for NH

listeners than for CI users. This indicates that considerable

shortcomings remain in the encoding of pitch cues for tone

recognition through CIs. Furthermore, the tone recognition

performance of CI users was better when secondary cues co-

varied with the pitch cues compared to when these varied

independently. This discrepancy was not found in NH listeners

(see Figure 3A). These observations can be explained if we

assume that the pitch and amplitude cues to Mandarin tone are

weighted differently in NH and CI listeners. While NH listeners

appear to rely on pitch cues almost exclusively, some CI users

who have difficulty using pitch cues (i.e., poor tone recognition

in Conf conditions) may learn to rely more on secondary cues

instead. The fact that in the DI corpus pitch and secondary cues

vary independently makes it possible to determine the extent to

which individual CI users are able to rely on primary pitch or

secondary loudness contour cues respectively when attempting

to identify lexical tones.

Furthermore, the scores with the new stimulus set correlated

strongly and significantly with the CI participants’ implantation
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ages and listening experience, in contrast with the scores

obtained with the older stimulus set which conflates multiple

cues, and which therefore cannot accurately assess the users’

ability to discriminate pitch cues for tone recognition. Thus,

the ability to utilize pitch cues for tone recognition tasks

improves both with earlier implantation and longer hearing

experience with CIs (see Figure 3C). However, NH listeners

recognized the new disyllabic tones more accurately than the

monosyllabic tones, which might benefit from the context

of pitch between the two syllables, and the removal of the

Tone 3 (falling-then-rising), which is easily confused with

Tone 2 (rising) (Figure 3A). In addition, the naturalness of

the stimuli could perhaps be somewhat compromised by the

fact that the tones of the disyllabic words are synthetic.

However, the STRAIGHT method used is generally capable

of synthesizing quite naturally sounding speech samples.

Interested readers familiar with the sound of Mandarin can

of course download the Di speech samples from the github

repository and judge for themselves how natural they sound.

In any event, the fact that NH cohorts were able to score

very highly with the Di corpus, and no worse than with

the Mono corpus which consisted of natural recordings

(Figures 2F,G), suggests that the naturalness of the Di stimuli is

at least adequate to facilitate highly accurate word recognition

among native Mandarin speakers, giving confidence that the

stimuli are adequate for the intended purpose in audiological

assessment.

An important application of the new Di stimulus sets

is to reduce the confounds and ceiling effects that can be

caused by the secondary cues, and which can plague the

evaluation of some tone enhancement strategies (Vandali et al.,

2017). In the light of our findings, it seems likely that CI

users with poorer pitch coding may compensate by weighting

loudness and duration cues more heavily, which would mask

the true extent of their pitch coding deficits. Some authors

have sought to reduce the ceiling effects by adding noise (Wei

et al., 2004; Gu et al., 2017; Mao and Xu, 2017; Vandali

et al., 2017). Understanding speech in noise is a challenge

that both NH and CI listeners often have to contend with.

However, the addition of noise may mask both pitch and

loudness contour cues in complex ways that will depend on

the type of background noise and may be hard to predict.

It would therefore be very useful to conduct speech-in-

noise recognition experiments with stimulus sets like the one

developed here, which make it possible to study the relative

effects of noise on pitch and loudness cue processing for lexical

tone independently.

5. Conclusion

A new Mandarin tone corpus consisting of five main

disyllabic words from two speakers was developed in this

study. In this corpus, there is no reliable secondary cue

that could be used by listeners to facilitate the pitch-

contour based tone recognition (i.e., loudness contours change

independently of pitch contours). When compared to NH

listeners, CI users had poorer pitch cue encoding, and their

tone recognition performance was significantly influenced

by the “missing” or “confusing” secondary cues with this

corpus. The corpus could be used to examine the performance

of pitch recognition of CI users and the effectiveness of

pitch cue enhancement based Mandarin tone enhancement

strategies. Listeners with longer CI listening experiences

tend to get higher scores of tone recognition with this

corpus.
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The COVID-19 pandemic has caused massive humanitarian and economic damage.
Teams of scientists from a broad range of disciplines have searched for methods to
help governments and communities combat the disease. One avenue from the
machine learning field which has been explored is the prospect of a digital mass
test which can detect COVID-19 from infected individuals’ respiratory sounds. We
present a summary of the results from the INTERSPEECH 2021 Computational
Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).

KEYWORDS

COVID-19, machine learning, Digital Health, computer audition, deep learning

Introduction

Significant work has been conducted exploring the possibility that COVID-19 yields unique

audio biomarkers in infected individuals’ respiratory signals (1–14). This has shown promising

results although many still remain sceptical, suggesting that models could simply be relying on

spurious bias signals in the datasets (15, 12). These worries have been supported by findings that

when sources of bias are controlled, the performance of the classifiers decreases (16, 17). Along

with this, cross dataset experiments have reported a marked drop in performance when models

trained on one dataset are then evaluated on another dataset, suggesting dataset specific bias (18).

Last summer, the machine learning community were called upon to address some of these

challenges, and help answer the question whether a digital mass test was possible, through the

creation of two COVID-19 challenges within the Interspeech Computational Paralinguistics

challengE (ComParE) series: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS) (19).

Contestants were tasked to create the best performing COVID-19 classifier from user cough

and speech recordings. We note that another COVID-19 detection from audio challenge was

run at a similar time to ComParE, named DiCOVA (20), and point the inquisitive reader to

their blog post1 which details a summary of the results.
1https://dicova2021.github.io
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Challenge methodology

Both COVID-19 cough and speech challenges were binary

classification tasks. Given an audio signal of a user coughing or

speaking, challenge participants were tasked with predicting

whether the respiratory signal came from a COVID-19 positive or

negative user. After signing up to the challenge, teams were sent

the audio files along with the corresponding labels for both the

training and development set. Teams were also sent the audio files

from the test set without the corresponding labels. Teams were

allowed to submit five predictions for the test set from which the

best score was taken. The number of submissions was limited to

avoid overfitting to the test set.

The datasets used in these challenges are two curated subsets of

the crowd sourced Cambridge COVID-19 Sounds database (1, 21).

COVID-19 status was self-reported and determined through either

a PCR or rapid antigen test, the exact proportions of which are

unknown. The number of samples of both positive and negative

cases for these selected subsets are detailed in Table 1. The

submission date for both COVID-19 positive and negative case

recordings are detailed in Figure 1A. Figure 1B shows the age

distribution for both CSS and CCS challenges.
TABLE 1 ComParE COVID-19 sub-challenges dataset splits. Values specify
the number of audio recordings. We note that disjoint participant train,
development, and test splits were ensured.

CCSa CSSb

Train Dev Test Train Dev Test

COVID-19-positive 71 48 39 72 142 94

COVID-19-negative 215 183 169 243 153 189

Total 286 231 208 315 295 283

aCCS – COVID-19 Cough Sub-Challenge.
bCSS – COVID-19 Speech Sub-Challenge.

FIGURE 1

(A) Is a cumulative plot detailing when COVID-19 positive and negative subm
distribution of COVID-19 positive and negative participants for the CCS and CS
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Overview of methodologies used in
accepted papers at interspeech 2021

Last year, 44 teams registered in both the ComParE COVID-19

Cough Sub-Challenge (CCS) and the COVID-19 Speech Sub-

Challenge (CSS) of which 19 submitted test set predictions. Five of

the 19 teams submitted papers to INTERSPEECH which were then

accepted. Results for both CCS and CSS were reported in two of

these papers, while two papers reported results exclusively for CCS

and one paper exclusively for CSS. In this section, we provide a

brief overview of methodologies used in these accepted works

which included data augmentation techniques, feature types,

classifier types, and ensemble model strategies. Teams that did not

have their work accepted at INTERSPEECH 2021 will be named

NN_X to preserve anonymity. NN refers to nomen nescio and X is

the order in which they appear in Figure 2. The performance

measured in Unweighted Average Recall (UAR) achieved by these

methodologies is summarised in Table 2; UAR has been used as a

standard measure in the Computational Paralinguistics Challenges

at Interspeech since 2009 (26). It is the mean of the diagonal of

the confusion matrices in percent and by that, fair towards sparse

classes. Note that UAR is sometimes called “macro-average,’ see (27).
Data augmentation

To combat the limited size and imbalance of the Cambridge

COVID-19 Sounds database, the majority of the teams used data

augmentation techniques in their implementation. Team Casanova

et al. exploited a noise addition method and SpecAugment to

augment the challenge dataset (23). Team Illium et al. targeted

spectrogram-level augmentations with temporal shifting, noise

addition, SpecAugment and loudness adjustment (25). Instead of

using a data augmentation method to manipulate the challenge

dataset, team Klumpp et al. used three auxiliary datasets in
ission to both the CCS and CSS were made. (B) Details the age and sex
S Sub-Challenges.

frontiersin.org

https://doi.org/10.3389/fdgth.2023.1058163
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 2

Team performance on the held out test set for the COVID-19 Cough Sub-Challenge.

TABLE 2 Summary of methodologies used in accepted papers at Interspeech 2021 along with their classification performance. Unweighted Average Recall
(UAR) and Unweighted Average F1 (UF1) metrics are provided [%].

Team name Data
Aug.

Feature type Classifiers Ensemble Cough Speech

UAR UF1 UAR UF1

Solera-Urena et al.
(22)

✗ TDNN-F, VGGish, PASE+ SVM ✓ 69.3 65.2 – –

Casanova et al.
(23)

✓ MFCC, mel-spectrogram SpiraNet, CNN14, ResNet-38,
MobileNet

✓ 75.9 69.6 70.3 71.0

Klumpp et al. (24) ✓ mel-spectrogram CNN, LSTM, SVM, LR ✗ – – 64.2 64.3

Illium et al. (25) ✓ mel-spectrogram Vision transformer ✗ 72.0 71.1 – –

Baseline (19) ✗ openSMILE, openXBOX, DiFE,
DeepSpectrum, auDeep

SVM, End2You ✓ 73.9 – 72.1 –

Coppock et al. 10.3389/fdgth.2023.1058163
different languages aiming their deep acoustic model to better learn

the properties of healthy speech (24).
Feature type

The teams chiefly used spectrogram-level features including mel-

frequency cepstral coefficients (MFCC) and mel-spectrograms. For

higher-level features, the teams used the common feature extraction

toolkits openSMILE (28), openXBOX (29), DeepSpectrum (30), and

auDeep (31), where a simple support vector machine (SVM) model

was built on top of these features. Team Solera-Urena et al.

exploited transfer learning to extract feature embeddings by using
Frontiers in Digital Health 03
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pre-trained TDNN-F (32), VGGish (33), and PASE+ (34) models

with appropriate fine-tuning on the challenge dataset. Team Klumpp

et al. targeted to extract their own phonetic features by using an

acoustic model consisting of convolutional neural network (CNN)

and long short-term memory (LSTM) parts.
Classifier type

Team Solera-Urena et al. (22) and the challenge baseline (19)

fitted a SVM model to high level audio embeddings extracted using

TDNN-F (32), VGGish (33), and PASE+ (34) models, and the

openSMILE framework (28), respectively. While the challenge
frontiersin.org
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baseline (19) searched for the complexity parameter of the SVM

ranging from 10�5 to 1, team Solera-Urena et al. (22) explored

different kernels (linear, RBF), data normalisations (zero mean and

unit variance, [0,1] range) and class balancing methods (majority

class downsampling, class weighting). In addition to the SVM

model, the baseline explored using the multimodel profiling toolkit

End2You (35) to train a recurrent neural network using Gated

Recurrent Units (GRUs) with hidden units of 64. Team Casanova

et al. (23) utilised the deep models: SpiraNet (36), CNN14 (37),

ResNet-38 (37), and MobileNetv1 (37) where they explored kernel

size, convolutional dilatation, dropout, number of fully connected

layer neurons, learning rate, weight decay and optimizer. Team

Klumpp et al. (24) trained SVM and logistic regression (LR)

models to perform COVID-19 classification on top of phonetic

features extracted by their deep acoustic model. They explored the

complexity parameter of the SVM ranging from 10�4 to 1. Team

Illium et al. (25) adapted a vision transformer (38) for mel-

spectrogram representations of audio signals. Tree-structured

Parzen Estimator-algorithm (TPE) (39) was exploited in (25) for

hyperparameter search mainly exploring embedding size, learning

rate, batch size, dropout, number of heads and head dimension.

The teams Solera-Urena et al., Casanova et al., and the baseline

also reported classification results by using the fusion of their best

features and classifiers. To conclude, Casanova et al. performed

best among the accepted papers with a consistent performance

over both CCS and CSS. This showed the importance of using

proper data augmentation techniques and exhaustive exploration of

deep models and hyperparameters for a transfer learning approach.
2UAR is the established ComParE evaluation metric. UAR is equivalent to

balanced accuracy. We note that if F1 had been the evaluation metric, Illium,

et al. (25) would have infact won the cough sub challenge. This is thanks to

their model’s superior precision performance, i.e., what proportion of the

model’s positive predictions are correct.
Assessment of performance measures

Figure 4 visualises a two-sided significance test (based on a

Z-test concerning two proportions, (40), section 5B) employing the

CCS and CSS test sets and the corresponding baseline systems

(19). Various levels of significance (a-values) were used for

calculating an absolute deviation with respect to the test set, being

considered as significantly better or worse than the baseline

systems. Due to the fact that a two-sided test is employed, the

a-values must be halved to derive the respective Z-score used to

calculate the p-value of a model fulfilling statistical significance for

both sides (40). Consequently, significantly outperforming the best

CCS baseline system (73.9% and 208 test set samples) at a

significance level of a ¼ 0:01 requires at least an absolute

improvement of 6:7%; for CSS (best baseline system with 72.1%

and 283 test set samples), the improvement required is 6:0%. Note

that Null-Hypothesis-Testing with p-values as criterion has been

criticised from its beginning; see the statement of the American

Statistical Association in Wasserstein and Lazar (41) and Batliner

et al. (42). Therefore, we provide this plot with p-values as a

service for readers interested in this approach, not as a guideline

for deciding between approaches.

Another way of assessing performance measures as for their

“uncertainty” is computing confidence intervals (CIs). Schuller

et al. (19) employed two different CIs: first, 1000� bootstrapping

for test (random selection with replacement) and UARs based on

the same model that was trained with Train and Dev; in the
Frontiers in Digital Health 04
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following, the CIs for these UARs are given first. Then, 100�
bootstrapping for the corresponding combination of Train and

Dev; the different models obtained from these combinations were

employed to get UARs for test and subsequently, CIs; these results

are given in second place. Note that for this type of CI, the test

results are often above the CI, sometimes within and in a few cases

below, as can be seen in (19); obviously, reducing the variability of

the samples in the training phase with bootstrapping results on

average in somehow lower performance. For CCS with a UAR of

73.9%, the first CI was 66.0%–82.6%; the second one could not be

computed because this UAR is based on a fusion of different

classifiers. For CSS with a UAR of 72.1%, the CIs were 66.0%–

77.8% and 70.2%–71.1%, respectively. Both Figure 4 and the

spread of the CIs reported demonstrate the uncertainty of the

results, caused by the relatively low number of data points in the

test set.
Results and discussion

Figures 2 and 3 detail the rankings for the 19 teams which

submitted predictions for the test set. We congratulate (23) for

winning the COVID-19 Cough Sub-Challenge with an UAR of

75.9% on the held out test set.2 We note that for the COVID-19

Speech Sub-Challenge, no team exceeded the performance of the

baseline which scored 72.1% UAR on the held out test set. To

significantly outperform the baseline system for the cough

modality, with a significance level of a ¼ 0:1, as detailed in

Figure 4, would require an improvement of 6.7%, an improvement

which the winning submission fell short of by 4.7%.

For both Sub-Challenges, teams struggled to outperform the

baseline. Postulating why this could be the case one could suggest

one, or a combination, of the following: COVID-19 detection from

audio is a particularly hard task, the baseline score—being already

a fusion of several state-of-the-art systems for CCS—represents a

performance ceiling and that higher classification scores are not

possible for this dataset, or, as a result of the limited size of the

dataset, the task lends itself to less data hungry algorithms, such as

the openSMILE-SVM baseline models for CSS.

It is important to analyse the level of agreement of COVID-19

detection between participant submissions. This is shown

schematically in Figures 5 and 6. From these figures, we can see

that there are clearly COVID-19 positive cases which teams across

the board are able to correctly predict, but there are also positive

COVID-19 cases which all teams have missed. These findings are

reflected in the minimal performance increase of 0.3% and 0.8%

for cough and speech tasks, respectively, obtained when fusing n

best submission predictions through majority voting schemes. The
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FIGURE 4

Two-sided significance test on the COVID-19 Cough (A) and Speech (B) test sets with various levels of significance according to a two-sided Z-test.

FIGURE 3

Team performance on the held out test set for the COVID-19 Speech Sub-Challenge.
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results from fusing n best models using majority voting are detailed

in Figures A2 and A3 . This suggests that models from all teams are

depending on similar audio features when predicting COVID-19

positive cases.

Figures 5 and 6B,C detail the level of agreement across

submissions for curated subset of the test set, where participants

were selected if they were displaying at least one symptom (b) and

when they were displaying no symptoms (c). These figures can be

paired with Figure A1 which details the recall scores for positive

cases across these same curated test sets. From this analysis, it does

not appear that there was a trend across teams to perform
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favourably on cases where symptoms were being displayed or vice

versa. While this does not disprove worries that these algorithms

are simply cough or symptom identifiers, it does not add evidence

in support of this claim.
Limitations

While this challenge was an important step in exploring the

possibilities of a digital mass test for COVID-19, it has a

number of limitations. A clear limiting factor of the challenge
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FIGURE 5

Schematic detailing the level of agreement between teams for each test instance for the COVID-19 Cough Sub-Challenge. Each row represents a team’s
submission results. The teams have been ordered by Unweighted Average Recall, from the bottom up (team Casanova et al.’s predictions represent the
highest scoring submission). Each column represents all teams predictions, across the competition, for one test instance. The test instances appear in the
order in which they are in the test set. (A) Details all the test instances, (B) details only the test instances which were experiencing symptoms at the time
of recording, and (C) details only the test instances which were experiencing no symptoms at the time of recording.
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FIGURE 6

Schematic detailing the level of agreement between teams for each test instance for the COVID-19 Speech Sub-Challenge. Each row represents a team’s
submission results. The teams have been ordered by Unweighted Average Recall (UAR), from the bottom up (team yoshiharuyamamoto’s predictions
represent the highest scoring submission). Each column represents all teams’ predictions, across the competition, for one test instance. The test instances
appear in the order which they are in the test set. note: There are more test cases in the COVID-19 Speech Sub-Challenge than in the COVID-19 Cough
Sub-Challenge. (A) Details all the test instances, (B) details only the test instances which were experiencing symptoms at the time of recording, and (C)
details only the test instances which were experiencing no symptoms at the time of recording.
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was the small size of the dataset. While many participants

addressed this through data augmentation and regularisation

techniques, it restricted the extent to which conclusions could

be taken from the results, particularly investigating teams’

performance on carefully controlled subsets of the data.

We look forward to the newly released COVID-19 sounds

dataset (21) which represents a vastly greater source of

COVID-19 samples.

A further limitation of this challenge is the unforeseen

correlation between low sample rate recordings, below 12 kHz,

and COVID-19 status. In fact all low sample rate recordings in

the challenge for both CCS and CSS were COVID-19 positive.

For CCS and CSS there were 30 and 37 low sample rate cases,

respectively. The reason for this is that at the start of the study

the label in the survey for COVID-19 negative was unclear, and

could have been interpreted as either “not tested” or “tested

negative.” For this reason no negative samples from the time

period were used. This can be seen in Figure 1A. This early

version of data collection also correlated with the study

allowing for lower sample rate recordings, a feature which later

was changed to restrict submissions to higher sample rates.

This resulted in all the low sample rate recordings being

COVID-19 positive. As can be seen in Figures A4, A5, A6 and

A7, teams’ trained models were able to pick up on the sample

rate bias, with most teams correctly predicting all the low

sample rate cases as COVID-19 positive. When this is

controlled for and low sample rate recordings are removed

from the test set, as shown in Figures A6 and A7, teams’

performances drop significantly. For the challenge baselines this

too was the case, with the fusion of baseline models for CCS

falling from 73.8% to 68.6% UAR and the opensmile-SVM

baseline for CSS dropping from 72.1% to 70.9% UAR. This is a

great example of the effect of overlooked bias which expresses

itself as an identifiable audio feature, leading to inflated

classification scores. We regret that this was not found earlier.

Inspecting Figure 1A) further, one will also realise that all the

COVID-19 negative individuals were collected in the summer

of 2020, one could argue that this ascertainment bias injected

further imbalance between COVID-19 negative and positive

individuals. An example of this is that individuals are much

less likely to have the flu in summer (43), resulting in

respiratory symptoms having an inflated correlation with

COVID-19 status in the collected dataset compared to the

general population. This has been shown to artificially boost

model performance at COVID-19 detection (44–46). In future

more factors, which can be a source of bias, should be

controlled for, namely in this case, age of participant,

gender, symptoms, location of recording and date of recording.

Matching on these attributes would yield more realistic

performance metrics.

As with most machine learning methods, it still remains

unclear how to interpret the decision making process at

inference time. This results in it being tricky to determine

which acoustic features the model is correlating with COVID-

19. Whether that be true, acoustic features caused by the

COVID-19 infection or other acoustic bias (15, 44). We also

note that this is a binary classification task, in that models
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only had to decide between COVID-19 positive or negative.

This “closed word fallacy” (42) leads to inflated performance

as models are not tasked with discerning between confounding

symptoms such as heavy cold or asthma. Tasking models to

predict COVID-19 out of a wide range of possible conditions/

symptoms would be a harder task. The test set provided saw a

complete temporal overlap with the training set, in future it

would be nice to experiment with time disjoint test sets, as in

(44) to investigate whether the signal for COVID-19

changes over time. Collecting a dataset which yields a test set

with a higher proportion of COVID positive individuals is

also desirable.

In this challenge, participants were provided with the test set

recordings (without the corresponding labels). In future challenges,

test set instances should be kept private, requiring participants to

submit trained models along with pipeline scripts for inference.

Teams’ test set predictions can then be run automatically by the

challenge organisers. This will help in reducing the possibility of

overfitting and foul play. We note that there was no evidence of

foul play, e.g., training in an unsupervised manner on the test set,

in this challenge.

Another limitation of this challenge was the lack of meta data

that organisers could provide to participants. This tied teams’

hands to some extent in evaluating for themselves the level of

bias in the dataset and so their opportunity to implement

methods to combat it. This was not a desired feature. However,

we now point teams towards the newly open sourced COVID-

19 Sounds database (21) which also provides collected meta

data. It is this dataset from which a subset of samples was taken

for this challenge.
Conclusion

This challenge demonstrated that there is a signal in

crowdsourced COVID-19 respiratory sounds that allows for

machine learning algorithms to fit a classifier which achieves

moderate detection rates of COVID-19 in infected individuals’

respiratory sounds. Exactly what this signal is, however, still

remains unclear. Whether these signals are truly audio biomarkers

in respiratory sounds of infected individuals uniquely caused by

COVID-19 or rather identifiable bias in the datasets, such as

confounding flu like symptoms, is still an open question to be

answered next.
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Appendix

Here we present some results from ablation studies of teams’

performances through evaluating performance on curated subsets

of the test set. Figure A1 details the effect of controlling for

symptom cofounders on teams’ performance. Figures A6 and
FIGURE A1

Team performance on the full test set (NoControl) and two curated test sets
symptom (AnySymptoms) or were displaying no symptoms at all (NoSymptoms
are shown, calculated via the normal approximation method. (A) Correspond
Speech Sub-Challenge, CSS.
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A7 repeats this analysis however controlling for sample rate.

Figures A4 and A5 details the level of agreement between

teams for the low Figures A4A, A5A and high A4B, A5B

sample rate test cases. Figures A2 and A3 detail the

classification performance of a fusion of teams’ predictions on

the test set.
featuring only test instances where the participants either had at least one
). The metric reported is recall for positive cases. 95% confidence intervals
s to the COVID-19 Cough Sub-Challenge, CCS, and (B) the COVID-19
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FIGURE A2

The performance of the fusion model of n-best models for the COVID-19 Cough Sub-Challenge using majority voting.

FIGURE A3

The performance of the fusion model of n-best models for the COVID-19 Speech Sub-Challenge using majority voting.
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FIGURE A4

Schematic detailing the level of agreement as in Figure 5 with test instances
with either a low sample rate (below 12 kHz) (A) or high sample rate (above
12 kHz) (B).

FIGURE A5

Schematic detailing the level of agreement as in Figure 6 with test
instances with either a low sample rate (below 12 kHz) (A) or high
sample rate (above 12 kHz) (B).
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FIGURE A6

Team performance on two curated test sets from the COVID-19 Cough Sub-Challenge. (A) Controls for test samples with a sample rate of greater than 12 kHz
and (B) controls for test samples with a sample rate of 12 kHz and below. The metric reported is recall for positive cases. 95% confidence intervals are shown,
calculated via the normal approximation method.
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FIGURE A7

Team performance on two curated test sets from the COVID-19 Speech Sub-Challenge. (A) Controls for test samples with a sample rate of greater than 12 kHz
and (B) controls for test samples with a sample rate of 12 kHz and below. The metric reported is recall for positive cases. 95% confidence intervals are shown,
calculated via the normal approximation method.
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Automatic emotion recognition (AER) systems are burgeoning and systems based

on either audio, video, text, or physiological signals have emerged. Multimodal

systems, in turn, have shown to improve overall AER accuracy and to also provide

some robustness against artifacts and missing data. Collecting multiple signal

modalities, however, can be very intrusive, time consuming, and expensive. Recent

advances in deep learning based speech-to-text and natural language processing

systems, however, have enabled the development of reliable multimodal systems

based on speech and text while only requiring the collection of audio data.

Audio data, however, is extremely sensitive to environmental disturbances, such

as additive noise, thus faces some challenges when deployed “in the wild.” To

overcome this issue, speech enhancement algorithms have been deployed at

the input signal level to improve testing accuracy in noisy conditions. Speech

enhancement algorithms can come in di�erent flavors and can be optimized

for di�erent tasks (e.g., for human perception vs. machine performance). Data

augmentation, in turn, has also been deployed at the model level during training

time to improve accuracy in noisy testing conditions. In this paper, we explore the

combination of task-specific speech enhancement and data augmentation as a

strategy to improve overall multimodal emotion recognition in noisy conditions.

We show that AER accuracy under noisy conditions can be improved to levels

close to those seen in clean conditions. When compared against a systemwithout

speech enhancement or data augmentation, an increase in AER accuracy of 40%

was seen in a cross-corpus test, thus showing promising results for “in the wild”

AER.

KEYWORDS

multimodal emotion recognition, BERT based text features, modulation spectrum

features, data augmentation, speech enhancement, context-awareness

1. Introduction

Affective human-machine interfaces are burgeoning as they provide more natural

interactions between the human and the machine (Zeng, 2007). Automated emotion

recognition (AER) systems have seen applications across numerous domains, from

marketing, smart cities and vehicles, to call centers and patient monitoring, to name a few.

In fact, the COVID-19 pandemic has resulted in a global mental health crisis that will have

long-term consequences to society, economy, and healthcare systems (Xiong et al., 2020).

Being able to detect changes in affective states in a timely and reliable manner can allow
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individuals and organizations to put in place interventions to

prevent, for example, burnout and depression (Patrick and Lavery,

2007).

AER systems can rely on a wide range of modalities, including

speech, text, gestures/posture, and physiological responses (e.g.,

via changes in heart/breathing rates). For so-called “in the

wild” applications, multimodal systems are preferred in order to

compensate for certain confounds and to improve overall AER

accuracy by providing the system with some redundancy and

complementary information not available with unimodal systems

(Naumann et al., 2009; Parent et al., 2019). Multimodal systems,

however, can be very time consuming to implement, costly to

run, and potentially intrusive to the users (e.g., requiring on-body

sensors with physiological data collection) and their privacy (Sebe

et al., 2005). Notwithstanding, with audio inputs, one may be able

to devise a multimodal speech-and-text system with the use of

an advanced speech-to-text system, thus relying on a single input

modality. As such, text and speech have emerged as two popular

AER modalities.

Recent advances in deep learning architectures, such as

transformers (Vaswani et al., 2017), have redefined the performance

envelope of existing AER systems. In fact, most state-of-the-

art systems today rely on deep neural network architectures in

some way. For example, for text-based systems, self attention

and dynamic max pooling has been proposed by Yang et al.

(2019). The widely-used Bidirectional Encoder Representations

from Transformers (BERT) model (Devlin et al., 2018), in turn,

has been used to detect cyber abuse in English and Hindi texts

(Malte and Ratadiya, 2019). The work by Lee and Tashev (2015)

and Kratzwald et al. (2018), in turn, relies on recurrent neural

networks (RNN) to better consider long-range contextual effects

and to better model the uncertainty around emotional labels.

For speech-based AER systems, in turn, mel-spectral features

combined with a convolutional neural networks (CNNs) have been

extensively explored, specially with self-attention mechanisms to

extract emotionally-informative time segments (e.g., Chen et al.,

2021). Long-short term memory networks (LSTM) have also been

extremely popular (e.g., Haytham et al., 2017; Tripathi et al., 2018;

Zhao et al., 2019) and end-to-end solutions have also been explored

(Tzirakis et al., 2017).

As mentioned previously, one major advantage of the audio

modality is that recent advances in automated speech-to-text

conversion have allowed for multimodal speech-and-text-based

systems to emerge while requiring the collection of just one signal

modality (Chuang and Wu, 2004). Text and speech have been

shown to be very useful modalities for multimodal AER systems

(Patamia et al., 2021). In this regard, attention-based bidirectional

LSTM models (Li et al., 2020), bi-directional RNNs (Poria et al.,

2017), transformer-basedmodels (Siriwardhana et al., 2020), multi-

level multi-head fusion attention mechanisms (Ho et al., 2020),

graph-based CNNs (Zhang et al., 2019), gated-recurrent units

(Poria et al., 2019), early and late fusion strategies (Jin et al.,

2015), and cross-modal attention (Sangwan et al., 2019) have been

explored as strategies to optimally combine information from the

two modalities.

One major disadvantage of speech-based systems (either uni-

or multi-modal), however, is their sensitivity to environmental

factors, such as additive and convolutional noise (e.g., room

reverberation). These factors can be detrimental to AER systems

(Patamia et al., 2021; Maithri et al., 2022). Commonly, speech

enhancement algorithms are applied at the input level stage

to minimize environmental factors for in-the-wild speech

applications. Enhancement methods can range from more classical

methods, such as spectral subtraction and Wiener filtering (Cauchi

et al., 2015; Braun et al., 2016), to more recent deep neural network

(DNN) based ones (e.g., Parveen and Green, 2004; Lu et al.,

2013; Pascual et al., 2017; Zhao et al., 2018). The use of speech

enhancement for AER in-the-wild has shown some benefits (e.g.,

Avila et al., 2021).

Speech enhancement methods can have two very different

purposes. If aimed at improving intelligibility/ quality, for

example, human perception becomes the main driving factor

and quality/intelligibility improvements are typically used as a

figure of merit (e.g., Fu et al., 2021). However, if enhancement is

used to improve downstream speech recognition applications then

other machine-driven outcome measures, such as word error rate

improvements, are more appropriate. As such, depending on the

final task, the enhancement procedure can be very different. The

work by Bagchi et al. (2018), for example, showed that mimic loss-

based enhancement was optimal for automatic speech recognition

(ASR) downstream tasks. Having this said, it is hypothesized

that for multimodal speech-and-text AER systems the use of two

different enhancement procedures will be useful, with a quality-

driven one used for the speech branch (mimicking how humans

perceive emotions from speech) and a machine-driven one for the

speech-to-text branch. We will test this hypothesis herein.

Lastly, with deep learning based approaches showing the latest

state-of-the-art results, data augmentation has emerged as a useful

technique to make systems more robust to in-the-wild distortions

at the model training stage (e.g., Hannun et al., 2014). With

data augmentation, the training set is increased multi-fold by

applying certain transformations to the available training signals,

including time-reversal, time-frequency masking, pitch alterations,

background noise addition and reverberation corruption, to name

a few. For AER specifically, the work by Etienne et al. (2018)

showed that vocal track length perturbations served as a useful

data augmentation strategy. In this paper, we further explore the

advantages that data augmentation can provide, in addition to

speech enhancement, for multimodal in-the-wild AER.

The remainder of this paper is organized as follows. Section 2

describes the proposed system. Section 3 describes the experimental

setup. Experimental results and a discussion are presented in

Section 4 and conclusions in Section 5.

2. Proposed method

Figure 1 depicts the block diagram of the proposed multimodal

AER pipeline. In the case of interest here, speech S(i) is assumed

to be corrupted by additive background noise N(i), resulting in

noisy speech signal Y(i) = S(i) + N(i). With the multimodal

AER system, the top branch focuses on extracting emotion-relevant

features directly from the speech component, whereas the bottom

branch relies on a state-of-the-art automatic speech recognizer

(ASR) to generate text from the noisy speech signal. Features are

then extracted from the text transcripts. We concatenated Speech
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and text features, then these concatenated features are input to

a deep neural network for final emotion classification. As noisy

speech is known to corrupt AER/ASR performance, here we also

include a speech enhancement step, one optimized for speech

quality improvement (top branch) and another for ASR. Each

sub-block is described in detail in the subsections to follow:

2.1. Speech enhancement

Enhancement and noise suppression has been widely used

across many different speech-based applications. In human-to-

human communications, the goal of enhancement is to improve

the quality of the noisy signal, not only to increase intelligibility,

but also to improve paralinguistic characterization that humans

do so well, such as emotion recognition. In human-to-machine

interaction (e.g., ASR), however, improving quality may not be the

ultimate goal, and instead, improvement in downstream system

accuracy could be regarded as a better optimization criterion.

Here, we explore the use of a quality-optimized enhancement

algorithm for the speech branch of the proposed method and an

ASR-optimized algorithm for the text generation branch. The two

algorithms used are described next:

2.1.1. MetricGAN+: A quality-optimized
enhancement method

MetricGAN+ is a recent state-of-the-art deep neural network

specifically optimized for quality enhancement of noisy speech

and shown to outperform several other enhancement benchmarks

(Fu et al., 2019, 2021). In particular, two networks are used.

The discriminator’s role is to minimize the difference between

the predicted quality scores (given by the so-called PESQ,

perceptual evaluation of speech quality, rating Rix et al., 2001) and

actual PESQ quality scores. PESQ is a standardized International

Telecommunications Union full-reference speech quality metric

that maps a pair of speech files (a reference and the noisy

counterpart) into a final quality rating between 1 (poor) and

5 (excellent). PESQ has been widely used and validated across

numerous speech applications.

The generator’s role, in turn, is to map a noisy speech signal

into its enhanced counterpart. The discriminator and generator

models are trained together to enhance the noisy signal in a

manner that maximizes the PESQ score of the enhanced signal.

MetricGAN+ builds on the original MetricGAN (Fu et al., 2019)

via two improvements for the discriminator and one for the

generator. More specifically, for the discriminator training, along

with the enhanced and clean speech signals, the noisy speech

was also used to minimize the distance between the discriminator

and target objective metrics. The second improvement is that

the speech generated from the previous epochs is reused to

train the discriminator to avoid the catastrophic forgetting of the

discriminator. For the generator, in turn, the learnable sigmoid

function was used for mask estimation. The interested reader is

referred to Fu et al. (2019, 2021) for more details on theMetricGAN

and MetricGAN+ speech enhancement methods.

2.1.2. Mimic loss: An ASR-optimized
enhancement method

Spectral mapping-based speech enhancement is an

enhancement method specifically optimized for downstream

ASR applications (Bagchi et al., 2018). We refer henceforth to

this method as ‘mimic loss based enhancement’ as the model uses

mimic loss instead of student-teacher learning, thus the speech

enhancer is not jointly trained with a particular acoustic model.

We use this enhancement model as it has been shown to be a

useful pre-processing method for many ASR systems, thus offers

some flexibility on the choice of ASR model to use (Bagchi et al.,

2018). The overall system is comprised of two major components: a

spectral mapper and a spectral classifier which are trained in three

steps.

First, a spectral classifier is trained to predict senone labels

from clean speech with a cross-entropy criterion, resulting in a

classification loss LC between predicted and actual senones. The

weights of this spectral classifier are then frozen and used in

the last step. Second, a spectral mapper is pre-trained to map

noisy speech features to clean speech features using a mean

squared error (MSE) criterion. This results in a fidelity loss

LF between the denoised features and features from the clean

speech counterpart. Bagchi et al. (2018) relied on log-spectral

magnitude components extracted over 25ms windows with a 10-

ms shift as features and a deep feed-forward neural network

for mapping.

Lastly, noisy speech is input to the pre-trained spectral

mapper, resulting in a denoised version, which is input to

the “frozen” spectral classifier, resulting in a predicted senone.

In parallel, the clean speech counterpart is also input to the

frozen spectral classifier, resulting in a soft senone label and a

mimic loss LM between the soft senone label and the predicted

senone. The spectral mapper is then retrained using joint

loss (LF and LM), thus allowing the enhancer to emulate the

behavior of the classifier under clean conditions while keeping

the projection of noisy signal closer to that of the clean signal

counterpart. The same hyperparameters described by Bagchi

et al. (2018) were used herein. The interested reader is referred

to Bagchi et al. (2018) for more details on the mimic loss

enhancement method.

2.2. Automatic speech recognition

In order to generate text from speech, a state-of-the-art

automatic speech recognizer is needed. Here, wav2vec 2.0, an end-

to-end speech recognition system is used (Baevski et al., 2020). A

complete description of the method is beyond the scope of this

paper, hence only an overview is provided; the interested reader

can obtain more details from Baevski et al. (2020). Wav2vec 2.0

relies on the raw speech waveform as input. This 1-dimensional

data then passes through a multi-layer 1-d CNN to generate speech

representation vectors. Vector quantization is then used on these

latent representations to match them to a codebook. Half of the

available speech data is masked and the remaining quantized data

is fed into a transformer network. By using contrastive loss, the

model attempts to predict the masked vectors, thus allowing for
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FIGURE 1

Experimental pipeline for AER using audio and text features.

pre-training on unlabeled speech data. The model is then fine-

tuned on labeled data for the subsequent down-streaming ASR

task.

2.3. Speech feature extractor

Several AER systems have been proposed recently, and they

have relied on different speech feature representations. Here, we

focus on the three most popular representations, namely: prosodic,

eGeMAPS, andmodulation spectral features. In particular, prosody

features include fundamental frequency (F0), intensity measures,

and voicing probabilities, as these have been widely linked to

emotions (Banse and Scherer, 1996). Next, the so-called extended

Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) (Eyben

et al., 2016), which has been widely used in many recent emotion

recognition challenges (e.g., Valstar, 2016; Ringeval et al., 2019;

Xue et al., 2019), is also explored and contains a set of 88

acoustic parameters relating to pitch, loudness, unvoiced segments,

temporal dynamics, and cepstral features. Lastly, modulation

spectral features are explored as they capture second-order

periodicities in the speech signal and have been shown to convey

emotional information (Wu et al., 2011; Avila et al., 2021).

Modulation spectral features (termed MSFs) were extracted using

a window size of 256 ms and a frame step of 40 ms. The interested

reader is referred to Falk and Chan (2010b) and Avila et al. (2021)

for complete details on the computation of this representation.

2.4. Text feature representations

Text has also been used to infer the emotional content

of written material and several state-of-the-art methods and

techniques exist. Here, we explore three recent methods, namely

BERT (Bidirectional Encoder Representations from Transformers),

TextCNN, and Bag-of-Words (BoW). A brief overview of each

method is given below:

2.4.1. BERT-bidirectional encoder representations
from transformers

BERT is based on a transformer network and attention

mechanism (Devlin et al., 2018) that also learns contextual relations

between words in the text (Tenney et al., 2019). BERT comes in two

flavors: BERTBase and BERTLarge. The BERTBase model uses 12

layers of transformers block with a hidden dimension of 768 and 12

self-attention heads; overall, there are approximately 110 million

trainable parameters. On the other hand, BERTLarge uses 24 layers

of transformers block with a hidden size of 1024 and 16 self-

attention heads, resulting in approximately 340 million trainable

parameters. Here, we employ the BERTBase model for text feature

extraction. The BERT hidden state vector is used as input to the

AER system. The interested reader is referred to Devlin et al. (2018)

for more details on BERT.

2.4.2. TextCNN
TextCNN is a deep learning model for short text classification

tasks and has been used as a baseline model for text classification

(Zhang et al., 2018). TextCNN transforms a word into a vector

using word embeddings, which are then fed into a convolutional

layer, followed by a max-pooling layer, and a fully connected output

layer. In our experiment, TexCNN embeddings were extracted

using the model described by Poria et al. (2018). We used three

convolutional layers with 64 filter and kernel sizes of 3, 4, and 5

respectively in each layer, followed by max-pooling and finally 150

dense layers to extract the final text features. Specifically, with pre-

trained 300-dimensional GloVe vectors (Pennington et al., 2014),

we first extracted the semantic vector space representation and then

fed them to a 1-D-CNN to extract 100-dimensional text features

vector.

2.4.3. Bag-of-Words
The bag-of-words (BOW) method is commonly employed

in natural language processing (Alston, 1964). The approach is

straightforward and flexible and can be used in many ways to

extract features from documents. BOW represents the text by

describing the occurrence of words within a document. It consists

of two parts: a vocabulary of known words and a measure of the

presence of these words. It is called a “bag” of words because

any information about the order or structure of words in the

document is discarded. The model is only concerned with whether

known words occur in the document, not wherein the document.

In this method, first, a word histogram is generated within a text

document. Next, the frequencies of each word from a dictionary are

computed, and finally the resultant vector is fused and used as the
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FIGURE 2

Valence-arousal emotional space with the three discrete emotions
considered here.

text features. For our experiment, we used CountVectorizer from

the sklearn library. A 652-dimensional feature vector was used for

each utterance and the unigram model was used to generate the

BOW representation.

2.5. Multimodal AER classifier

Here, we rely on a fully connected deep neural network

for multimodal emotional recognition. Three dense layers (of

dimensions 256, 128, 32) were used, plus a final classification layer.

A dropout rate of 0.6 was used, batch normalization was performed

after every layer, and class weights of [1, 1.8] were assigned during

training. Grid search was performed on the validation set to

obtain the optimal hyperparameters. Rmsprop, Adam, and SGD

optimizers were explored, and learning rates of 0.01, 0.001, and

0.0001 were tested to find the optimal combination. Once the

best parameters were found with the validation set, we reported

the best performance on our test data. Experimentation codes are

available on github1. The network is trained with and without data

augmentation in order to explore its effect on in-the-wild AER

performance.

3. Experimental setup

In this section, we present the setup used in our experiments.

3.1. Datasets used

The dataset used for experimentation is the Multimodal

EmotionLines Dataset (MELD) (Poria et al., 2018). It is a

multimodal emotion classification dataset which has been created

by extending the EmotionLines dataset (Chen et al., 2018). MELD

1 https://github.com/shrutikshirsagar/Speech-enhancement-Audio-

Text-ER

contains approximately 13,000 utterances from 1,433 dialogues

from the TV series ‘Friends’. Each statement is annotated with

emotion and sentiment labels and encompasses audio, visual,

and textual modalities. The MELD dataset contains conversations,

where each dialogue has utterances from multiple speakers.

EmotionLines was created by crawling the discussions from

each episode and then grouping them based on the number

of statements in conversation into four groups of utterances.

Finally, 250 dialogues were sampled randomly from each group,

resulting in the final dataset of 1,000 dialogues. The utterances in

each dialogue were annotated with the most appropriate emotion

category.

For this purpose, the six universal emotions (joy, sadness, fear,

anger, surprise, and disgust) were considered. This annotation list

was extended with two additional emotion labels: neutral and non-

neutral. Each utterance was annotated by five workers from the

Amazon Mechanical Turk platform. A majority voting scheme was

applied to select a final emotion label for each utterance. While the

MELD dataset has labels for several emotions, here we focus on two

specific binary tasks to gauge effects across the valence and arousal

dimensions. More specifically, we first focus on two tasks. Task

1 comprises anger vs. sad classification to explore the benefits of

the proposed tool for low/high arousal classification (Mower et al.,

2010; Metallinou et al., 2012). Task 2, in turn, comprises joy vs.

sad classification for positive-valence-high-arousal and negative-

valence-low-arousal characterization (Park et al., 2013; Li et al.,

2019). Figure 2 depicts the arousal-valence emotional space and the

three discrete emotions considered. As such, the MELD dataset was

split into three disjoint sets: training, test, and development. These

were split as follows:

1. Training: angry (1,109 samples), joy (1,743 samples), and sad

(682 samples);

2. Validation: angry (153 samples), joy (163 samples), and sad (111

samples);

3. Testing: angry (345 samples), joy (402 samples), and sad (208

samples).

To test the robustness of the proposed methods to in-the-wild

conditions, the MELD dataset is corrupted by multi-talker babble

noise, cafeteria noise, and noise recorded inside a commercial

airplane at different SNR levels: –10,–20, 0, 5, 10, 15, and 20 dB. The

AURORA (Hirsch and Pearce, 2000) and DEMAND noise datasets

(Thiemann et al., 2013) are used for this purpose. Note that only a

subset of these conditions are used during augmentation, including

airport and babble noise and SNR levels of 0, 10, and 20 dB. The

remainder are left as unseen conditions during testing.

Next, we utilized the IEMOCAP dataset to show the

generalizability of the proposed model. The IEMOCAP dataset has

12 h of audio-visual data from 10 actors where the recordings

follow the dialogue between a male and a female actor in both

scripted or improvised topics. After the audio-video data was

collected, it was divided into small utterances of length between

3 and 15 s, which were then labeled by evaluators. Each utterance

was evaluated by 3–4 assessors. The evaluation form contained ten

options (neutral, happiness, sadness, anger, surprise, fear, disgust,

frustration, excitement, and others). We consider only three: anger,

sadness, and happy so as to remain consistent with the previous

MELD data experiments and to be able to directly test the models
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trained on the MELD dataset. To this end, the dataset was split

into three disjoint sets: training (70%), development (10%) and test

(20%). IEMOCAP contains utterances from the disjoined speakers

in training and testing. More specifically, we used sessions 2,3,4,

and 5 for training and session 1 for testing purposes. These were

split as follows:

1. Training: angry (772 samples), happy (416 samples), and sad

(758 samples);

2. Validation: angry (111 samples), happy (60 samples), and sad

(110 samples);

3. Testing: angry (220 samples), happy (119 samples), and sad (216

samples).

Finally, we also utilized the spontaneous “in the wild” English-

language Emoti-W database (Dhall et al., 2017). It was made

available through the 2017 Emotion Recognition in the Wild

Challenge. Some level of background noise was present in the

recording as Emoti-w is “in the wild” dataset. The labels for the

EMoti-W challenge dataset were created from the closed captions

available in movies and TV series. Complete details about the

Emoti-W dataset can be found in Dhall et al. (2017). The data is

available in a sampling frequency of 48 kHz; videos are available

in MPEG-2 format with 25 frames per second. Emotion labels

are available for seven emotion categories: anger, disgust, fear,

happiness, neutral, sadness, and surprise were available in this

dataset. We consider only three: anger, sadness, and happy/joy so

as to remain consistent with the previous MELD data experiments

and to be able to directly test the models trained on the MELD

dataset as mentioned earlier. Again, we use only the labeled training

and development subsets in our experiments. Training, testing and

validation split of Emoti-W dataset are as follows:

1. Training: angry (110 samples), happy (120 samples), and sad

(90 samples);

2. Validation: angry (11 samples), happy (24 samples), and sad

(17 samples);

3. Testing: angry (64 samples), happy (60 samples), and sad

(61 samples).

3.2. Benchmark systems

To gauge the benefits of the proposed method, two benchmark

systems are used, namely BcLSTM and DialogueRNN and results

are reported in Table 1 for task 1 and 2. BcLSTM is bi-directional

RNN proposed by Poria et al. (2017). It is comprised of a two-

step hierarchical training process. First, it extracts embeddings

from each modality. For text, GloVe embeddings (Pennington

et al., 2014) were used as input to a CNN-LSTM model to

extract contextual representations for each utterance. For audio,

Openmsile based features (Eyben, 2013) were input to an LSTM

model to obtain audio representations for each audio utterance.

Next, contextual representations from the audio and text modalities

are fed to the BcLSTMmodel for emotion classification.

DialogueRNN, in turn, employs three stages of gated recurrent

units (GRU) to model emotional context in conversations (Poria

et al., 2019). The spoken utterances are fed into two GRUs:

global and party GRU, to update the context and speaker state,

TABLE 1 Benchmark system performance for the two AER tasks based on

the MELD dataset.

Task 1 Task 2

Model F1-score BA F1-score BA

bcLSTM 0.70 0.72 0.82 0.83

DialogueRNN 0.72 0.72 0.84 0.85

Proposed system 0.74 0.73 0.87 0.87

respectively. In each turn, the party GRU updates its state based

on i) the utterance spoken, ii) the speaker’s previous state, and

iii) the conversational context summarized by the global GRU

through an attention mechanism. Finally, the updated speaker

state is fed into the emotion GRU, which models the emotional

information for classification. The attention mechanism is used

on top of the emotion GRU to leverage contextual utterances by

different speakers at various distances. Lastly, our proposed system

comprises a feedforward DNN model and a 768- dimensional

BERT(base) text feature vector fused ( at the feature level) with a

311-dimensional vector comprised of eGEMAPs andMSF features.

3.3. Figures-of-merit

Balanced accuracy and F1-score are used as figures of merit

to assess the performance of the proposed emotion classifier. In

summary, precision shows us how many positive samples classified

by the model are actually positive, i.e.,

Precision =
TP

TP + FP
, (1)

Where TP corresponds to true positives and FP to false positives.

Recall, in turn, calculates how many of the true positives are

captured by the model. This is also called true positive rate or

sensitivity and given by

Recall =
TP

TP + FN
, (2)

Where FN corresponds to false negatives. Moreover, F1-score

represents the harmonic mean of precision and recall and is useful

in binary tasks where classes are unbalanced and is given by:

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
. (3)

Lastly, balanced accuracy is given as the arithmetic mean of

sensitivity (true positive rate or recall) and specificity (true negative

rate) which, in turn, is given by:

Specificity =
NP

TN + FP
, (4)

Where TN corresponds to true negatives. As such, balance accuracy

(BA) is given as:

BA =
Sensitivity+ Specificity

2
. (5)

The interested reader is referred to Powers (2020) for more details

on these classical performance metrics.
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3.4. Quality scores

To gauge the improvements in quality and intelligibility of the

enhancement algorithms, two objective speech quality measures

are used, namely, PESQ and the short-term objective intelligibility

(STOI) (Taal et al., 2011). While PESQ estimates the perceived

speech quality on a 5-point mean opinion score scale ranging from

bad to excellent, STOI measures the intelligibility of the signal on

a 0–1 scale, with higher values suggesting greater intelligibility.

Both methods are termed “intrusive” as they require access to the

enhanced and a reference signal. More details on the PESQ and

STOI measurement algorithms can be found in Rix et al. (2001).

4. Experimental results and discussion

In this section, we present and discuss the obtained

experimental results.

4.1. Ablation study 1

In this first ablation experiment, we wish to explore the optimal

set of text and speech features to include in the final system. We

consider speech and text modalities separately in this study. We

start with clean speech to find the best feature per modality and,

subsequently, test the robustness of such set under unseen noisy

conditions. In this study, babble and airport noises are considered.

In both cases, the emotion classifier is trained on clean speech

only. Table 2 shows the performance obtained for each modality

individually for task 1. In the table, the feature termed ‘fusion’

corresponds to the fusion of MSF and eGeMAPS features.

As can be seen, for clean speech conditions and text-only AER,

BERT-based text features resulted in the best performance across

all metrics, hence corroborating previous reports (Yang et al., 2019;

Stappen et al., 2021; Yang and Cui, 2021). As such, only BERT

features are explored in the unseen noisy conditions. Babble noise

is shown to degrade overall performancemore severely than airport

noise. Overall, BERT based features under 0 dB noise conditions are

shown to achieve accuracy inline with that achieved by textCNN

features under clean conditions, thus further suggesting improved

robustness of the BERT text features. Given this finding, the final

proposed system shown in Figure 1 will rely on BERT based text

features.

As for speech features, under clean conditions eGeMAPS

showed the highest overall performance of the three tested

feature sets, thus corroborating findings by Eyben et al. (2013).

Further gains could be seen with the fused feature set, however,

thus suggesting the complementarity of spectral and modulation

spectral features. As such, only the fused feature set is explored

in the noisy mismatch condition. Moreover, similar to the text

features, at low SNR levels, babble noise degraded performance

more drastically compared to airport noise. Overall, the achieved

performance with text-based features only was higher than what

was achieved with audio features alone, thus corroborating the

results reported by Patamia et al. (2021).

4.2. Ablation study 2

This second ablation study is an oracle experiment in which

one modality in the multimodal system is kept clean and the other

is corrupted by noise at varying levels and types. This study will

allow us to gauge whichmodality is most sensitive to environmental

factors and would benefit the most from speech enhancement.

In all cases, the emotion classifier is trained on clean speech

only. Table 3 show the performance obtained for Task 1 and Task

2, respectively.

As can be seen, the fusion of speech and text features in the

clean condition (first row in the tables) showed improvements

relative to each modality alone (i.e., Table 2) by as much as 2% for

text and 7% for audio in terms of F1 score for Task 1. Furthermore,

using noisy speech to generate “noisy” text resulted in more severe

performance degradations for both Tasks, thus suggesting that

more powerful machine-tuned enhancement algorithms may be

useful for in-the-wild applications to assure the highest possible

quality for text generation. Overall, on average, over the two types

of noise, a drop of 32, 24, and 21% in F1 score was observed at

0, 10, 20 dB SNR levels relative to clean conditions, respectively,

for Task 1. On the other hand, corrupting only the speech content

had a less pronounced effect. Overall, on average, over the two

types of noise, a drop of 16%, 13%, and 9% in F1 score was

observed at 0, 10, 20 dB SNR levels over clean conditions for Task

1, respectively.

For Task 2, similar findings were observed. Overall, on

average, over the two types of noise, a drop of 65, 33, and

28% in F1 score has been observed at 0, 10, and 20 dB

SNR levels relative to clean conditions, respectively, when only

text was corrupted. The drops in accuracy when the audio

was corrupted were of 41, 27, and 25%, respectively. These

findings corroborate those by Kessous et al. (2010) and Patamia

et al. (2021) who showed that text modality achieved higher

performance than audio in clean conditions. The drops in

accuracy, however, under noisy conditions motivate the need

for strategies to improve accuracy in the wild, as in the

proposed system.

4.3. Ablation study 3

This third ablation study is an oracle experiment in which we

wanted to test the hypothesis if we need two separate enhancement

for improving ASR accuracy. Asmentioned earlier, we used quality-

(MetricGAN+) and ASR-optimized (mimic loss) enhancement

algorithms for the speech and text branches shown in the proposed

model in Figure 1. This study will allow us to gauge which

combination of speech enhancement is better suited for this task.

In all cases, the emotion classifier is trained on clean speech only.

Table 4 show the performance obtained for Task 1 and Task 2.

As can be seen, for both Task 1 and Task 2, the best combination

comprised the use of a quality-optimized enhancement algorithm

for the top speech branch and an ASR-optimized (mimic loss)

method for the bottom text branch. This combination resulted in

the best accuracy for very extreme conditions (i.e., 0 dB SNR levels)

and emphasizes the need for task-specific enhancement algorithms

for AER.
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TABLE 2 Ablation study 1: Performance comparison of di�erent features for each individual modality.

Noise type Feature F1-score BA Feature F1-score BA

Text Audio

Clean BERT 0.72 0.76 Prosodic 0.62 0.61

Clean TextCNN 0.56 0.54 eGEMAPS 0.69 0.67

Clean BoW 0.62 0.59 MSF 0.66 0.67

Clean Fusion 0.69 0.71

Airport (0 dB) BERT 0.54 0.52 Fusion 0.51 0.51

Airport (10 dB) BERT 0.60 0.57 Fusion 0.53 0.50

Airport (20 dB) BERT 0.62 0.59 Fusion 0.55 0.52

Babble (0 dB) BERT 0.58 0.56 Fusion 0.51 0.52

Babble (1 dB) BERT 0.61 0.58 Fusion 0.52 0.51

Babble (20 dB) BERT 0.61 0.58 Fusion 0.52 0.51

Feature termed “fusion” corresponds to the fusion of eGeMAPS and MSFs.

TABLE 3 Ablation study 2: Performance comparison of multimodal oracle system for Task 1 and Task 2.

Task 1 Task 2

Audio Text F1-score BA F1-score BA

Clean Clean 0.74 0.73 0.87 0.87

Clean Airport (0 dB) 0.57 0.58 0.55 0.53

Clean Airport (10 dB) 0.61 0.58 0.67 0.62

Clean Airport (20 dB) 0.62 0.59 0.68 0.63

Clean Babble (0 dB) 0.58 0.59 0.50 0.51

Clean Babble (10 dB) 0.61 0.58 0.63 0.58

Clean Babble (20 dB) 0.61 0.58 0.67 0.62

Airport (0 dB) Clean 0.65 0.62 0.60 0.66

Airport (10 dB) Clean 0.65 0.63 0.68 0.68

Airport (20 dB) Clean 0.68 0.65 0.70 0.68

Babble (0 dB) Clean 0.62 0.60 0.63 0.67

Babble (10 dB) Clean 0.65 0.62 0.68 0.67

Babble (20 dB) Clean 0.68 0.65 0.69 0.67

TABLE 4 Ablation study 3: Performance comparison of enhancement system for Task 1 and Task 2.

Task 1 Task 2

Noise Enhancement-1 Enhancement-2 F1-score BA F1-score BA

Airport (0 dB) MetricGAN+ MetricGAN+ 0.60 0.60 0.53 0.50

MetricGAN+ Mimic-loss 0.65 0.64 0.56 0.51

Mimic-loss MetricGAN+ 0.61 0.59 0.54 0.52

Mimic-loss Mimic-loss 0.61 0.60 0.55 0.52

Babble (0 dB) MetricGAN+ MetricGAN+ 0.59 0.59 0.56 0.51

MetricGAN+ Mimic-loss 0.62 0.59 0.57 0.51

Mimic-loss MetricGAN+ 0.60 0.60 0.56 0.51

Mimic-loss Mimic-loss 0.61 0.61 0.56 0.52
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4.4. Overall system performance

This last study explores the performance of the proposed

system described in Figure 1, combining speech enhancement

optimized for each branch (speech and text), as well as data

augmentation to provide robustness at the model training level.

Data augmentation methods are useful to solve imbalanced data

problems. It also helps the model to learn the complex distribution

of the data and helps prevent overfitting. The work by Hu et al.

(2018) showed that adding noisy versions of the clean speech

data to the training set improved speech recognition accuracy in

mismatched noisy conditions. Therefore, in this work, we utilized

the same strategy. Table 5 show the obtained results in rows

labeled ‘Data augmentation only’ for Task 1 and Task 2. As can

be seen, data augmentation alone already improved AER results,

thus corroborating findings by Trinh et al. (2021); Neumann and

Vu (2021), and Kshirsagar and Falk (2022a,b).

Next, we gauge the benefits of using speech enhancement

alone. As before, AER models are trained solely on clean

speech. During run time, we pre-process the test data with the

MetricGAN+ algorithm for the speech branch and the mimic

loss enhancer for the text branch, as described in Section 2.

Table 5, show the obtained results in rows labeled ‘Enhancement

only’. As can be seen, applying speech enhancement improves

overall performance relative to the noisy conditions, but the final

results are still below what was achieved in clean conditions,

as well as what was achieved with data augmentation. The

gains observed were typically more substantial at low SNR

values, thus corroborating results by Triantafyllopoulos et al.

(2019).

In an attempt to better understand the reason behind the

poor AER performance with speech enhancement alone, Figure 3

depicts an average modulation spectrogram, from top to bottom,

for clean, noisy (airport at 0 dB SNR), MetricGAN+, and mimic-

loss enhanced speech for angry (left) and sad (right) emotions,

respectively. Modulation spectrograms are a frequency-frequency

representation where the y-axis depicts acoustic frequency and

the x-axis modulation frequency. From the clean plot, we can

see the typical speech modulation spectral representation with

most modulation energy lying below 16 Hz (Falk and Chan,

2010a) and a slowing of the amplitude modulations with the

sad emotion (Wu et al., 2011). Noise, in turn, is shown to

affect the modulation spectrogram by smearing the energy across

higher acoustic and modulation frequencies, as suggested by

Falk et al. (2010). The enhancement algorithms, however, are

not capable of completely removing these environmental artifacts

and seem to be introducing other types of distortions that can

make the AER task more challenging. Combined, these factors

result in the reduced gains reported in the Tables. This was in

fact confirmed by listening to the outputs of the MetricGAN+

enhancement algorithm. We have also presented the PESQ, and

STOI scores in Table 6. This verifies the significance of having task-

specific enhancement for improving the AER performance in noisy

conditions.

Finally, we test the combined effects of speech enhancement

and data augmentation, as in the proposed system, to gauge

the benefits of noise robustness applied at both the input

and model levels, respectively. For Task 1, gains (relative to

TABLE 5 Performance comparison of the proposed method in di�erent

noisy test conditions for Task 1 and Task 2.

Task 1 Task 2

Signal F1-score BA F1-score BA

Clean 0.74 0.73 0.87 0.87

Noisy-Airport (–20 dB) 0.49 0.49 0.43 0.53

Data augmentation only 0.51 0.49 0.53 0.52

Enhancement only 0.56 0.52 0.51 0.48

Proposed 0.56 0.54 0.52 0.50

Noisy-Airport (–10 dB) 0.53 0.46 0.44 0.57

Data augmentation only 0.53 0.52 0.52 0.50

Enhancement only 0.57 0.52 0.54 0.51

Proposed 0.59 0.54 0.57 0.56

Noisy-Airport (0 dB) 0.57 0.55 0.50 0.50

Data augmentation only 0.67 0.68 0.61 0.61

Enhancement only 0.65 0.64 0.56 0.51

Proposed 0.65 0.63 0.62 0.59

Noisy-Airport (10 dB) 0.59 0.57 0.55 0.51

Data augmentation only 0.69 0.70 0.66 0.66

Enhancement only 0.68 0.65 0.61 0.55

Proposed 0.71 0.69 0.65 0.62

Noisy-Airport (20 dB) 0.60 0.58 0.60 0.55

Data augmentation only 0.69 0.68 0.67 0.66

Enhancement only 0.67 0.65 0.62 0.56

Proposed 0.71 0.69 0.67 0.65

Noisy-Babble(–20 dB) 0.52 0.49 0.49 0.49

Data augmentation only 0.52 0.49 0.54 0.54

Enhancement only 0.57 0.52 0.54 0.51

Proposed 0.58 0.58 0.56 0.51

Noisy-Babble (–10 dB) 0.54 0.51 0.52 0.51

Data augmentation only 0.56 0.51 0.55 0.52

Enhancement only 0.59 0.54 0.54 0.51

Proposed 0.56 0.52 0.59 0.54

Noisy-Babble (0 dB) 0.59 0.57 0.54 0.51

Data augmentation only 0.66 0.66 0.58 0.59

Enhancement only 0.62 0.59 0.57 0.51

Proposed 0.64 0.61 0.61 0.58

Noisy-Babble (10 dB) 0.60 0.58 0.58 0.54

Data augmentation only 0.72 0.71 0.63 0.62

Enhancement only 0.68 0.66 0.61 0.55

Proposed 0.70 0.68 0.66 0.64

Noisy-Babble (20 dB) 0.61 0.58 0.61 0.56

Data augmentation only 0.74 0.72 0.67 0.67

Enhancement only 0.70 0.67 0.66 0.60

Proposed 0.70 0.69 0.67 0.64
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FIGURE 3

Modulation spectrogram for di�erent conditions, from (top–bottom): clean, (airport) noisy at 0 dB, MetriGAN+, and mimic-loss enhanced speech.
(Left) plots correspond to angry and (right) plots to sad emotion.
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TABLE 6 Performance comparison of PESQ and STOI score.

Signal PESQ STOI

Noisy-Airport (–20 dB) 1.107 0.219

MetricGAN+ 1.130 0.312

MimicLoss 1.054 0.244

Noisy-Airport (–10 dB) 1.094 0.367

MetricGAN+ 1.132 0.412

MimicLoss 1.112 0.368

Noisy-Airport (0 dB) 1.102 0.620

MetricGAN+ 1.225 0.657

MimicLoss 1.112 0.627

airport (10 dB) 1.583 0.791

MetricGAN+ 1.899 0.812

MimicLoss 1.622 0.800

Noisy-Airport (20 dB) 2.800 0.885

MetricGAN+ 2.979 0.895

MimicLoss 2.894 0.886

Noisy-abble (–20 dB) 1.100 0.188

MetricGAN+ 1.154 0.254

MimicLoss 1.038 0.229

Noisy-Babble (–10 dB) 1.103 0.342

MetricGAN+ 1.151 0.363

MimicLoss 1.138 0.356

Noisy-Babble (0 dB) 1.139 0.576

MetricGAN+ 1.229 0.639

MimicLoss 1.180 0.591

Noisy-Babble (10 dB) 1.577 0.764

MetricGAN+ 1.939 0.789

MimicLoss 1.605 0.768

Noisy-Babble (20 dB) 2.792 0.871

MetricGAN+ 2.968 0.880

MimicLoss 2.799 0.871

using each strategy individually) were seen for the airport noise

condition at higher and lower SNR conditions. In fact, with data

augmentation alone, accuracy inline with what was achieved with

clean speech was obtained. For Task 2, in turn, the proposed

model showed improvements over the other methods for almost

all tested conditions in terms of F1 score, thus showing the

importance of the proposed method to classify between opposing

emotions in extremely noisy scenaerios; in the case here, joy

vs. sad. Notwithstanding, for Task 2 a gap of 23% remained

between the best achieved performance and the clean speech

accuracy. Furthermore, we also tested the generalization ability

of the proposed system using unseen Cafeteria noise type and

unseen SNR levels such as 5 dB and 15 dB. As can be seen

in Table 7 the model was able to generalize across mismatched

TABLE 7 Performance comparison of the proposed method in unseen

noise and SNR levels for Task 1.

Task 1 Task 2

Signal F1-score BA F1-score BA

Noisy - Cafeteria (5dB) 0.58 0.57 0.52 0.47

Data augmentation only 0.63 0.60 0.67 0.64

Enhancement only 0.66 0.64 0.64 0.59

Proposed 0.68 0.65 0.67 0.65

Noisy - Cafeteria (15dB) 0.61 0.58 0.54 0.48

Data augmentation only 0.65 0.62 0.68 0.63

Enhancement only 0.69 0.66 0.67 0.61

Proposed 0.70 0.69 0.71 0.70

TABLE 8 Cross-corpus performance on unseen IEMOCAP and Emoti-W

datasets for Tasks 1 and 2.

Task 1 Task 2

Experiment Dataset F1-score BA F1-score BA

1 0.94 0.94 0.85 0.85

2 IEMOCAP 0.49 0.55 0.50 0.60

3 0.64 0.69 0.72 0.70

1 0.67 0.66 0.61 0.62

2 Emoti-W 0.46 0.52 0.48 0.53

3 0.58 0.60 0.56 0.56

noise types and noise levels with significant performance gain

with the proposed methodology. For comparison purposes, the

state-of-the-art DialogueRNN system achieved an F1 score of

0.59 and 0.55 for Task 1 and Task 2, respectively, when

corrupted with airport noise at 0 dB. The proposed system,

in turn, was able to outperform this benchmark by 10 and

12%, respectively. Overall, the obtained results suggest that data

augmentation combined with speech enhancement can be a

viable alternative for robust in-the-wild automatic multimodal

emotion recognition while requiring access to only one signal

modality: audio.

4.5. Generalizability of proposed method

To test the generalizability of the proposed method, six

additional experiments have been conducted on IEMOCAP and

Emoti-W datasets. First, we retrain the proposed AER model

using the IEMOCAP training dataset partition and test it on the

IEMOCAP test set to obtain an upper bound on what can be

achieved on this particular dataset. Next, to gauge the advantages

brought by the proposed system, we retrain the AER system shown

in Figure 1 but without the enhancement and data augmentation

steps. Training was done on the MELD dataset and the model was

then tested on the unseen IEMOCAP test data and the unseen

Emoti-W testset. This gives us an idea of how challenging the

cross-corpus task is when the proposed innovations are not present
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and should give us a lower bound on what could be achieved

cross-corpus. Finally, we tested the full proposed method trained

on the MELD dataset and tested on the unseen IEMOCAP and

Emoti-W test data. Experimental results are reported in Table 8.

As can be seen, cross-corpus testing is an extremely challenging

task where performance accuracy can drop to chance levels if

strategies are not put in place. The proposed innovations, on the

other hand, provides some robustness, and gains of 30% and 44%

on IEMOCAP and 26% and 17% on Emoti-W could be seen with

the proposed system for Tasks 1 and 2, respectively, over a system

without task-specific speech enhancement and data augmentation.

The gaps to the upper bound obtained with Experiment 1 suggest

that there is still room for improvement and emotion-aware

enhancement and/or alternate data augmentation strategies may

still be needed.

5. Conclusions

This paper has explored the use of task-specific speech

enhancement combined with data augmentation to provide

robustness to unseen test conditions for multimodal emotion

recognition systems. Experiments conducted on the MELD

dataset show the importance of BERT for text feature extraction

and a fused eGEMAPS-modulation spectral set for audio

features. The importance of data augmentation at the training

stage and of task-specific speech enhancement at the testing

stage are shown on two binary speech emotion classification

tasks. Lastly, cross-corpus experiments showed the proposed

innovations resulting in 40% gains relative to an AER system

without enhancement/augmentation. While the obtained

results suggest that task-specific enhancement, combined

with data augmentation are important steps toward reliable

“in the wild” emotion recognition, speech enhancement

algorithms may still be suboptimal and may be removing

important emotion information. As such, future work should

explore the development of emotion-aware enhancement

algorithms that can trade-off noise suppression and emotion

recognition accuracy.
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