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Editorial on the Research Topic

The importance of cognitive practice e�ects in aging neuroscience

Practice effects (PEs) on repeated cognitive testing is a well-known phenomenon, yet

it is rarely systematically taken into account and most often simply ignored. However,

failure to account for PEs can have a substantial negative impact in aging neuroscience.

This Featured Resarch Topic includes 11 original research papers (cited in this editorial).

We have divided them into seven non-mutually exclusive categories: (1) using level of

PEs to improve prediction of progression to cognitive impairment status (Almkvist and

Graff; Aschenbrenner et al.; Bender et al.; Ho and Nation; Jutten et al.; Tamburri et

al.; Zheng et al.); (2) identifying predictors of reduced PEs (Bender et al.; Glisky et al.;

Jutten et al.; Zheng et al.); (3) examining the magnitude of PEs associated with diagnostic

severity—from cognitively unimpaired, tomild cognitive impairment (MCI) to dementia

(Ho and Nation; Jutten et al.; Oravecz et al.; Tamburri et al.), or from asymptomatic

mutation carriers to symptomatic mutation carriers to autosomal dominant Alzhemer’s

dementia (Almkvist and Graff; Aschenbrenner et al.); (4) examining PEs in normal aging

(Glisky et al.); (5) adjusting cognitive scores for PEs to detectMCI earlier and characterize

its progression more accurately (Sanderson-Cimino et al.); (6) using burst designs and

dynamicmodeling to differentiate short-term and long-term PE fluctuations and to focus

on intraindividual variability (Bender et al.; Oravecz et al.; Tamburri et al.); and (7) using

PEs to improve evaluation of cognitive interventions (Smith et al.).

On the surface, PEs seem simple and straightforward, i.e., they are improvements

in performance on repeated testing. However, lack of improvement, and even cognitive

decline, does not necessarily mean an absence of PEs. As aptly noted by some authors,

it may only mean that normal aging-related or disease-related declines were still greater

than the PEs (Aschenbrenner et al.; Glisky et al.; Sanderson-Cimino et al.).

All too often, we find that people are interested in which is the best method for

examining PEs, frequently wanting to know if the approach being used is as good as
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some other approach or suggesting another approach would

be preferable. Importantly, here we want to emphasize that

different approaches often address entirely different issues and

serve very different purposes, so trying to determine which is

best is often amisguided goal. There is simply no one-size-fits-all

approach. For example, several of the articles addressed the issue

described in category 1 above in which the extent of PEs was

used to predict individuals who would likely progress to MCI,

Alzheimer’s disease (AD), or other dementia (Aschenbrenner

et al.; Bender et al.; Ho and Nation; Jutten et al.; Tamburri et

al.; Zheng et al.). Addressing the issue described in category

5 above, Sanderson-Cimino et al. adjusted test scores for PEs

based on comparison of test-naïve vs. returning participants.

Doing so meant that MCI could be detected earlier and MCI

progression characterized more accurately. Both sets of methods

provide useful adjunctive tools for improving clinical trials and

diagnostic accuracy, yet one is in no way substitutable for

the other. The former approach does nothing to alter how or

when the diagnosis is made. The latter does nothing to aid in

predicting progression to diagnosis.

Here we note some key take-home messages regarding PEs:

1. Some studies define PEs as improvement in performance

on retesting (Almkvist and Graff) or as improvement on

short-term, but not long-term, retest intervals (Oravecz

et al.; Tamburri et al.). However PEs are also consistently

observed over intervals of a year or more (Almkvist and

Graff; Bender et al.; Glisky et al.; Sanderson-Cimino et

al.). Therefore, we suggest that improvements or reduced

declines be referred to as PEs regardless of the size of the

test-retest interval.

2. PEs make it difficult to disentangle aging-related and

disease-related effects. Thus, PEs mask normal aging-

related cognitive change, making it difficult to accurately

characterize the course of longitudinal change. Only with

matched previously untested participants at follow-up is it

possible to accurately distinguish among change, effects of

attrition, and PEs.

3. There is no general cognitive PE, which raises questions

about the usefulness of global cognitive measures to assess

PEs. It should not be assumed that the magnitude of PEs

from one study would apply to another study. PEs may

differ depending on:

a. Cognitive domain

b. Tests within a domain

c. Age

d. Diagnosis

e. Duration of test-retest interval

f. Number of repeat assessments

g. Risk factors (e.g., AD biomarker status, brain

structure, sleep, psychological wellbeing)

4. Alternate forms have been suggested as a possible way

to reduce PEs (Aschenbrenner et al.). However, alternate

forms make it more difficult to differentiate actual PEs

from test version differences.

5. Slope of change (extent of PEs) may be a better predictor

of progression to diagnosis than baseline level of function

(Jutten et al.).

6. Burst designs or monthly testing are effective ways to

characterize change and can be particularly useful for

improved understanding of the dynamics of cognitive

change, and they highlight the additional potential

predictive value of within-individual variability in PEs

(Bender et al.; Jutten et al.; Oravecz et al.; Tamburri et al.).

7. PEs can be usefully applied in cognitive interventions

for prediction of likelihood of benefit and of transfer of

training (Smith et al.).

8. Accounting for PEs by comparisons with matched

previously untested participants at follow-up, results in

earlier and more accurate diagnosis based on associations

with reduced reversion rates of MCI and greater

concordance with AD biomarkers (Sanderson-Cimino et

al.).

In sum, accounting for cognitive PEs is important for

accurately characterizing longitudinal change and progression to

cognitive impairment status, and it is crucial to do it in a way that

differentiates PEs from aging-related or disease-related change.

Given the many factors that influence PEs, the magnitude

of PEs cannot be expected to be comparable across studies.

Incorporating PEs into clinical trials can improve participant

selection efficiency and result in earlier detection of diagnostic

outcomes. Such changes could also reduce study duration and

staff and participant burden, which in turn, would substantially

reduce costs. Only a single study in this set of papers examined

PEs in the context of a cognitive intervention. Also, only a single

study included matched previously untested participants at

follow-up. Such matched replacements are critical for accurately

distinguishing among change, the effects of attrition, and PEs.

Although normative data might appear to be a solution, it

provides no insight into the actual magnitude of PEs for a

given age group. Given that the goals of these latter 2 studies

are of great potential value, more work is called for in these

areas in addition to the other areas of focus in research

on cognitive PEs.
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Introduction: We investigated whether monthly assessments of a computerized

cognitive composite (C3) could aid in the detection of differences in practice effects (PE)

in clinically unimpaired (CU) older adults, and whether diminished PE were associated

with Alzheimer’s disease (AD) biomarkers and annual cognitive decline.

Materials and Methods: N = 114 CU participants (age 77.6 ± 5.0, 61% female,

MMSE 29 ± 1.2) from the Harvard Aging Brain Study completed the self-administered

C3 monthly, at-home, on an iPad for one year. At baseline, participants underwent

in-clinic Preclinical Alzheimer’s Cognitive Composite-5 (PACC5) testing, and a subsample

(n = 72, age = 77.8 ± 4.9, 59% female, MMSE 29 ± 1.3) had 1-year follow-up

in-clinic PACC5 testing available. Participants had undergone PIB-PET imaging (0.99

± 1.6 years before at-home baseline) and Flortaucipir PET imaging (n = 105, 0.62

± 1.1 years before at-home baseline). Linear mixed models were used to investigate

change over months on the C3 adjusting for age, sex, and years of education, and

to extract individual covariate-adjusted slopes over the first 3 months. We investigated

the association of 3-month C3 slopes with global amyloid burden and tau deposition in

eight predefined regions of interest, and conducted Receiver Operating Characteristic

analyses to examine how accurately 3-month C3 slopes could identify individuals that

showed >0.10 SD annual decline on the PACC-5.

Results: Overall, individuals improved on all C3 measures over 12 months (β = 0.23,

95% CI [0.21–0.25], p < 0.001), but improvement over the first 3 months was greatest

(β = 0.68, 95% CI [0.59–0.77], p < 0.001), suggesting stronger PE over initial repeated

exposures. However, lower PE over 3 months were associated with more global amyloid

burden (r = −0.20, 95% CI [−0.38 – −0.01], p = 0.049) and tau deposition in the

entorhinal cortex (r = −0.38, 95% CI [−0.54 – −0.19], p < 0.001) and inferior-temporal
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lobe (r = −0.23, 95% CI [−0.41 – −0.02], p = 0.03). 3-month C3 slopes exhibited good

discriminative ability to identify PACC-5 decliners (AUC 0.91, 95% CI [0.84–0.98]), which

was better than baseline C3 (p < 0.001) and baseline PACC-5 scores (p = 0.02).

Conclusion: While PE are commonly observed among CU adults, diminished PE over

monthly cognitive testing are associated with greater AD biomarker burden and cognitive

decline. Our findings imply that unsupervised computerized testing using monthly retest

paradigms can provide rapid detection of diminished PE indicative of future cognitive

decline in preclinical AD.

Keywords: computerized testing, remote assessment, practice effects, digital biomarkers, preclinical AD

INTRODUCTION

Alongside the increased focus on characterizing Alzheimer’s
disease (AD) in the preclinical stage, there is a need to detect
and track the cognitive changes that may emerge during this
stage more rapidly. However, capturing short-term cognitive
changes in preclinical AD is amajor challenge using conventional
paper-and-pencil cognitive tests, which typically require in-clinic
assessments at annual intervals and only detect subtle decline
over multiple years (Petersen et al., 2016; Mortamais et al., 2017;
Jutten et al., 2020b). This is a particular hurdle for AD secondary
prevention trials, which currently require large sample-sizes and
lengthy follow-up to enable the detection of an attenuation of
subtle cognitive decline.

Computerized cognitive testing has the potential to capture
changes in cognition earlier, by enabling standardized
administration and data analyses allowing for remote,
unsupervised, and more frequent assessments (e.g., monthly
rather than yearly) in a feasible way (Gold et al., 2018;
Koo and Vizer, 2019). Several computerized tests have been
developed for use in remote, unsupervised settings, including
the Computerized Cognitive Composite (C3) battery, which was
designed to assess cognitive processes that rely on the medial
temporal lobe (MTL) (Rentz et al., 2016; Buckley et al., 2017;
Papp et al., 2021b). The C3 comprises two well-validated episodic
memory paradigms: the Face Name Associative Memory Exam
(FNAME) (Rentz et al., 2011) and the Behavioral Pattern
Separation Task—Object Version (BPSO) (Stark et al., 2013),
and the Cogstate Brief Battery (CBB) (Maruff et al., 2009; Lim
et al., 2012). It was recently shown that unsupervised, at-home
C3 testing on an iPad was feasible and could provide data that
discriminated reliably between cognitively normal and impaired
adults (Rentz et al., 2016; Buckley et al., 2017; Papp et al., 2021b).

The higher frequency assessments afforded through use of
computerized tests enable the study of practice effects (PE)
that can occur with repeated cognitive assessments (Beglinger
et al., 2005). PE have typically been viewed as a source of bias
(Salthouse, 2012), but several studies showed that characterizing
PE could provide an indicator of cognitive impairment and,
more specifically, that lower PE reflect a decreased ability to
benefit from previous experience when re-exposed ot the same
stimuli (Duff et al., 2007, 2012; Jutten et al., 2020a). PE have
been reported for the individual C3 and CBB measures when

administered in clinically unimpaired (CU) adults (Baker et al.,
2019; Samaroo et al., 2020; Stricker et al., 2020). Interestingly, the
study by Samaroo et al. revealed diminished PE on the FNAME
test in CU with high levels of amyloid compared to CU with
low levels of amyloid, which was evident from only 4 months of
repeated assessments. This suggests that failure of learning due
to practice may already be evident in preclinical AD, and that the
magnitude of PE may have potential as a cognitive marker of this
very early manifestation of the disease.

The current study expands on previous work by investigating
whether characterizing PE across a range of memory tasks
included in the C3 battery could aid in the detection of early
cognitive change in preclinical AD. First, we investigated the
nature and magnitude of PE that arose from monthly repeated
exposure to at-home C3 assessments over 1 year. Upon seeing
improvement, we investigated whether PE on computerized
testing could be observed over the first 3 months, as we
expected that the PE signal would be strongest over the first
4–5 assessments (Watson et al., 1994; Calamia et al., 2012;
Samaroo et al., 2020). Next, we examined the relationship of
individual variation in shorter term PE (i.e., 3 months) with (1)
AD biomarker burden measured using neuroimaging and (2)
cognitive decline on standard paper-pencil cognitive testing over
1 year (Petersen et al., 2021).

MATERIALS AND METHODS

Study Participants
The current study describes data from the At-Home Digital
Cognition Sub-Study including participants from the Harvard
Aging Brain Study (HABS). HABS is an ongoing longitudinal
observational cohort-study of community-dwelling older adults
who are clinically normal at the time of enrollment. Inclusion
criteria for HABS have been described in detail elsewhere (Dagley
et al., 2017). The At-Home Digital Cognition Study started
recruiting participants in the 6th HABS year. For participation in
the At-Home Digital Cognition Study, participants were deemed
to be CU at the start of the study, which was determined by
clinician consensus based on cognitive and functional test results
and medical history (Papp et al., 2020). The study was approved
by an ethical review board, and all participants provided written
informed consent.
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Measures
Computerized Cognitive Composite
The C3 battery is a self-administered test battery presented on
an iPad using CogState software. It includes the Face Name
Associative Memory Exam (FNAME) (Rentz et al., 2011), a
version of the Behavioral Pattern Separation Task-Object version
(BPSO) (Stark et al., 2013), and the Cogstate Brief Battery
comprising four brief tests: the Detection Task (DET), the
Identification Task (IDN), One Card Learning Task (OCL) and
the One-Back Task (ONB) (Maruff et al., 2009). The C3 and
its individual measures have been described in detail elsewhere
(Papp et al., 2021b), and Supplementary Table 1 provides a
detailed overview of the individual outcomes.

Briefly, the FNAME is an associative memory paradigm
requiring participants to encode and subsequently recall and
match faces with corresponding names. Participants are shown
12 face-name pairs, and after a 12–15-min delay there are three
measures of memory including first letter name recall, face-name
matching and face recognition. For the current study, we focused
on the free recall measure, i.e., the first letter name recall test
(FNLT), since this is the FNAME measure that is expected to
have the fewest range restrictions in scoring and therefore most
likely to capture PE over repeated exposures. Participants are
asked to select the first letter of the name paired with that face,
and the primary outcome is the number of first letters correctly
recalled. Total score range is 0–12 with higher scores reflecting
better performance.

For the BPSO, participants are presented with a series of
unique images (encoding phase) and encouraged to attend
carefully to the physical characteristics of each object by having
them decide whether the object is used mostly outdoors or
indoors. This is followed by a recognition phase that includes
repeated, novel and distractor images (lures), which participants
are asked to categorize into Old, Similar, or New. Of the images
presented during the recognition phase, one third are identical to
those presented during encoding (for which the correct response
would be “Old”), one third of the images contains an object
that is visually similar, but not identical to an object presented
during the encoding phase (i.e., lures, for which correct response
would be “Similar”) and one third are objects that had not been
seen during encoding (i.e., foils, for which the correct response
would be “New”). The version of the BPSO that was used in the
current study differs from the original version in that the studied
items brought into the recognition phase are presented both as
repeated identical targets and as similar lures, with half of the
items having the target version presented first and half of the
items having the similar lure version presented first. The primary
outcome of the BPSO is a metric reflecting the ability to correctly
discriminate between stimuli that are similar but not identical to
previously learned items. That is, a Lure Discrimination Index
(LDI) is calculated as: Proportion of “similar” responses made
to Lure trials minus the proportion of “similar” responses to
Foil trials. The LDI range is 0–1, with higher scores reflecting
better performance.

The CBB uses playing cards as stimuli to measure reaction
time and working memory. The DET is a measure of attention,
and participants are asked to respond when a stimulus card is

turned face up. The IDN is a measure of attention and inhibitory
control, where a respondent must choose whether a flipped card
is red or not. Primary outcome measures for the DET and IDN
are reaction time. The OCL task is a non-verbal continuous
memory task in which playing cards are shown one at a time
with a subset of the cards repeating several times throughout
the task. The ONB task measures working memory by requiring
participants to serially match each card to the previous trial.
Outcome measures for the OCL and ONB include both reaction
time and number of correct responses.

In-clinic Cognitive Testing
Participants underwent standard paper-and-pencil in-clinic
cognitive testing including the Preclinical Alzheimer’s Cognitive
Composite 5 (PACC-5) (Donohue et al., 2014; Papp et al.,
2017). The PACC5 is a widely used cognitive outcome
measure in research and clinical trials of preclinical AD
and comprises well-validated paper-and-pencil tests including
the Mini-Mental State Examination (MMSE) (Folstein et al.,
1975), the Wechsler Memory Scale-Revised Logical Memory
Delayed Recall (Wechsler, 1987), the Digit-Symbol Coding Test
(Wechsler, 2008), the Free and Cued Selective Reminding Test
Free + Total Recall (Grober et al., 2009), and the Category
Fluency Test (Monsch et al., 1992). Here, the PACC5 is computed
as an averaged z-score of all individual measures.

Amyloid and Tau Biomarkers
We used neuro imaging to investigate whether the magnitude
of PE was associated with global amyloid burden and regional
tau deposition, since our current understanding of preclinical
AD is that amyloid pathology is diffusely distributed across
brain areas (Villemagne et al., 2011; Mormino et al., 2014)
whereas tau deposition is initially focally present in the MTL
regions (Johnson et al., 2016; Hanseeuw et al., 2019) where it is
found to be associated with episodic performance (Maass et al.,
2018). Amyloid burden and tau deposition were measured and
quantified using positron-emission tomography (PET) imaging
using 11C-Pittsburg Compound-B (PiB) and 18F-Flortaucipir
(FTP), respectively, in accordance with established protocols for
acquisition and analysis (Mormino et al., 2014; Johnson et al.,
2016). Briefly, PiB images were acquired using a 60-min dynamic
acquisition and FTP images were acquired from 75 to 105min
post-injection on a Siemens ECAT HR+ PET scanner. Following
acquisition, a mean PET image was created and coregistered
with the corresponding T1 MR image using the SPM12 package
(Wellcome Centre for Human Neuroimaing) and the resulting
coregistration transformation matrices were saved. FreeSurfer
(v6) regions of interest (ROIs) defined by segmenting the MR
images were transformed into the PET native space using
the inverse transformation matrices. PiB was expressed as the
distribution volume ratio (DVR, estimated with reference Logan
graphical method), and FTP as an averaged standardized uptake
value ratio (SUVR) over 70–105min corrected for partial volume
effects (PVC). For both PiB and FTP, bilateral cerebellum gray
matter was used as the reference region for DVR and SUVr
estimates respectively. For PiB, a global cortical aggregate was
calculated for each participant based on the average PiB DVR in
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frontal, lateral temporoparietal, and retrosplenial (FLR) regions,
and participants were dichotomized into low (Aβ−) vs. high
(Aβ+) groups (DVR cut-off-1.185). For FTP, we used the SUVR
PVC values of eight predefined ROIs: the entorhinal cortex,
inferior temporal lobe, amygdala, hippocampus [adjusted for
choroid plexus (Lee et al., 2018)], parahippocampal region,
fusiform gyrus, precuneus and posterior cingulate region.

Procedures
Baseline and conclusion of the At-Home Digital Cognition
Study coincided with participants’ annual HABS in-clinic visits.
At baseline (In Clinic Visit 1), participants completed an
iPad/Cogstate one-on-one training session with a trained HABS
rater and completed the first C3 assessment in the clinic.
Participants were then provided a study iPad to complete the
C3 at home. The first At-Home C3 assessment was done
independently at-home 1 week later (hereafter referred to as
visit 0.25). Thereafter, participants completed the monthly C3
for 12 At-Home sessions with 4-week intervals. The final C3
administration occurred in-clinic as part of the second annual
HABS visit (In-Clinic Visit 2), leading to a maximum of 15
C3 sessions. Participants received reminder calls prior to their
scheduled test dates and were encouraged to complete the C3 at
the same time monthly.

The C3 battery has a total administration time of 25–30min.
On screen instructions are provided, but participants do not
receive feedback upon completion of any of the individual
tests nor monthly assessments. Previous work indicated good
feasibility and usability in unsupervised settings after one in-
clinic training session, with a high percentage of older individuals
completed at-home assessments correctly including those with
lower computer literacy (Rentz et al., 2016; Samaroo et al., 2020;
Papp et al., 2021a).

The At-Home Digital Cognition study was initially designed
with all C3 tests being repeated using alternating versions.
However, a second version of the FNAME was added as
well, repeating the same version, based on the hypothesis that
repeating the same versions would lead to stronger PE. A recent
study comparing monthly performance on the FNAME alternate
vs. same versions confirmed this (Samaroo et al., 2020), and
we therefore decided to focus on the FNAME same version
in the current study. Thus, retest procedures differed across
individual C3 measures investigated in the current study. For the
FNAME, the same version was repeated each month (A-A-A-A).
For the BPSO, four alternate versions were used following the
same sequence for everyone (A-B-C-D). For the CBB measures,
alternate versions were used each month and the sequence of
versions was randomized for each participant.

Statistical Analyses
Prior to statistical analyses, completion and performance checks
were performed on all individual C3 measures to ensure the
integrity of the data, by applying previously defined task-specific
cut-offs (Supplementary Table 1). Scores that fell below these
cut-offs were excluded from further analyses.

Statistical analyses were conducted in R version 4.0.3.
Statistical significance was set at p < 0.05. To facilitate

comparison across C3 measures, all data from all individual C3
measures were z-transformed using the overall sample mean
and standard deviation (SD) at baseline. The BPSO, FNLT,
and OCL accuracy z-scores were summed into an overall C3
z-score (Papp et al., 2021b). Linear mixed models (LMM)
were used to investigate C3 performance over time (months,
continuous) correcting for age, sex, and years of education.
Since there were no significant interactions between time and
covariates (i.e., age, sex, and years of education) for any of
the C3 measures, interaction terms were not included in the
final models. We initially ran the LMM including all follow-
up data to describe monthly performance over 1 year, and
subsequently repeated the same models including only follow-
up data over the first 3 months to investigate the magnitude
of PE over the initial assessments. Mean to standard deviation
ratios (MSDRs) were calculated for each measure to compare
effect-sizes across measures over 3 months. Figures showing the
mean, SD and 95% confidence interval (CI) by study visit (i.e.,
time as categorical variable) are provided to visualize the overall
trajectory of C3 performance.

Next, individual covariate-adjusted slopes were extracted from
the aforementioned LMM to quantify PE over 3 months for each
participant. Pearson’s correlations were computed to investigate
the association between 3-month C3 slopes and baseline amyloid
burden (PiB DVR, continuous) as well as tau deposition in the
entorhinal cortex and inferior-temporal lobe (SUVR, partial-
volume corrected). After observing that correlations between C3
slopes and FTP uptake in the entorhinal and inferior temporal
regions were significant, we sought to explore the relationship
with a potential pattern of tau uptake in these and other
regions which have shown early accumulation (Johnson et al.,
2016). To that end, FTP data was analyzed using Partial Least
Squares (PLS) analysis performed using MATLAB. PLS is a data
reduction technique that produces predictive models when data
are highly collinear, and hence it can be applied to imaging data
as multivariate analysis method for identifying spatial patterns
that are optimally associated with task performance (McIntosh
et al., 1996). An additional advantage is that PLS analysis may
be more robust to noise in the data than univariate analysis.
Here, we used PLS analysis as a post-hoc hypothesis-driven
method to complement the univariate correlational analyses. We
explored associations between C3 baseline as well as C3 slope
measures and spatial distributions of tau uptake across eight
ROI: the entorhinal cortex, inferior temporal lobe, amygdala,
hippocampus [adjusted for choroid plexus (Lee et al., 2018)],
parahippocampal region, fusiform, precuneus and posterior
cingulate. PLS analysis was used to decompose the input data
(FTP data for the eight ROI: SUVR, all PVC) into components
that are maximally correlated with C3 slopes using MATLAB
build-in function “plsregress.” The number of components was
predefined to seven, as seven components accounted for at least
95% of the total variance in the input data based on principal
component analysis (PCA, MATLAB build-in function “pca”).
Only the first PLS component resulted in significant correlations
between PLS scores for FTP SUVR data and C3 slopes. This
remained the same when using fewer components. Therefore,
the first PLS component, representing the spatial patterns of tau
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uptake that most correlated with the C3 measures, was used for
further interpretations. We first ran PLS analyses in the overall
sample (corrected for the total PiB FLR load) separately for all C3
measures (baseline scores as well as slopes), and then repeated the
analyses separately in the Aβ− and Aβ+ groups. To protect from
Type I Error, a Bonferroni correction was conducted (adjusted
p-value <0.005). PLS weights (representing the contribution of
each ROI to the overall spatial pattern) were z-transformed, and
regions with a z-score weights > 1 or < −1 were considered
significant. Five-fold cross-validation was used tominimizemean
square errors. Figures including the optimal spatial pattern as
well as the correlation with the presentation of this pattern and
C3 slopes are provided.

Finally, individual PACC5 slopes were extracted using LMM
correcting for age, sex, and education for participants with
baseline and 1-year follow-up PACC5 testing available (n = 72).
Pearson’s correlations were used to assess the association between
3-month slopes on the C3 and change on the PACC5 over
1 year. We then conducted Receiver Operating Characteristic
(ROC) analyses to quantify how accurately C3 slopes could
identify individuals who would show more than 0.10 SD
decline on the PACC5 over 1 year, which has previously been
suggested as a clinically meaningful cut-off for annual decline
in amyloid positive cognitively normal individuals (Papp et al.,
2020; Petersen et al., 2021).

RESULTS

Sample Characteristics
Baseline characteristics of the total sample (N = 114) as well as
subsample with 1-year in-clinic follow-up (FU) available (n= 72)
are presented inTable 1. All participants had undergone PiB-PET
imaging (0.99± 1.6 years before at-home baseline) and FTP PET
was available for the majority (n = 105, 0.62 ± 1.1 years before
at-home baseline). Overall, adherence was high with an average
of 11.7 (SD = 3.2) FU C3 assessments, 96% of the participants
having at least 3 completed FU assessments, 91% having at
least 6 completed FU assessments and 75% having completed
12 or 13 FU assessments (Supplementary Figure 1). Within-
testing session discontinuation rates were low (3% in total over
all observations on all C3measures across all visits). Documented
reasons for non-completion mainly included technological issues
or lack of time. For completed assessments, integrity checks of
individual assessments were high, the criterion for performance
validity was met at a 99.2% for the BPSO, 99.1% for the DET,
98.9% IDN, 99% for ONB, 98.4% OCL, 99.8% for the FNLT.
Compared to the total sample, the subsample (n = 72) with 1
year in-clinic follow-up had completed more C3 assessments (p
< 0.001) but did not differ regarding other baseline clinical and
demographic characteristics (all p > 0.05).

Change Over Time on Monthly C3
Assessments
Table 2 displays the time (in months) estimates obtained from
LMM correcting for age, sex, and years of education for the C3
score as well as the individual C3 measures. Overall, individuals

TABLE 1 | Baseline characteristics for the overall sample and subsample with

in-clinic follow-up after 1 year.

Total sample

(N = 114)

Sample with

in-clinic

follow-up

(n = 72)

FU C3 assessments, M (SD) [range] 11.7 (3.2), [2–15] 12.8 (1.8), [2–15]*

N month 0.25/1/2/3 101/104/106/104 64/68/70/69

Age, M (SD) 77.6 (5.0) 77.8 (4.9)

Female, n (%) 70 (67.3%) 42 (60%)

Years of Education, M (SD) 16.5 (2.7) 16.3 (2.8)

Global CDR, 0/0.50 105/9 66/6

MMSE score, M (SD) 29.1 (1.3) 29.2 (1.2)

PACC5 score, M (SD) 0.22 (0.76) 0.29 (0.73)

PiB-PET years since C3 baseline −0.99 ± 1.6 −0.68 ± 1.7

Global cortical amyloid (DVR) 1.21 ± 0.23 1.22 ± 0.25

Aβ status 81 Aβ−/33 Aβ+ 50 Aβ−/22 Aβ+

N 105 66

FTP-PET years since C3 baseline −0.62 ± 1.1 −0.34 ± 1.2

FTP-PET ET Tau (SUVR, PVC) 1.38 ± 0.28 1.39 ± 0.27

FTP-PET IT Tau (SUVR, PVC) 1.50 ± 0.18 1.50 ± 0.16

N.B. *p < 0.001.

C3, Computerized Cognitive Composite; CDR, Clinical Dementia Rating scale; MMSE,

Mini-Mental State Examination; PACC-5, Preclinical Alzheimer’s Cognitive Composite-−5;

PET, Positron-emission tomography; PiB, 11C-Pittsburg Compound-B; Aβ, Amyloid-beta;

DVR, distribution volume ratio; FTP, 18F-Flortaucipir; SUVR, Standardized uptake value

ratio; PVC, Partial volume corrected.

improved over 1 year on the C3 (β = 0.23, 95% CI [0.21–
0.25], p < 0.001). However, improvement was greatest over
the first 3 months (β = 0.68, 95% CI [0.59–0.77], p < 0.001)
suggesting stronger practice over the initial exposures, which is
also visualized by the mean trajectory of C3 performance over
months (Figure 1).

When looking at the individual measures, a statistically
significant improvement was observed on most individual
measures over 1 year (all p-values <0.001), except for IDN
reaction time (Table 2). Time estimates from the models
including only the first 3 months were all greater than time
estimates over 1 year, particularly for the BPSO and FNLT
(Table 2). When comparing change over 3 months across the
C3 measures, improvement was greater for the FNLT (MSDR
1.37) and BPSO (MSDR 0.71) as compared to the OCL and
ONB accuracy measures (MSDRs 0.25 and 0.31 respectively). For
both the OCL and ONB, the reaction time measures exhibited
larger effect-sizes (MSDR 0.55 and 0.67 respectively) than the
accuracy measures.

Diminished Practice Over 3 Months Is
Associated With AD Biomarker Burden
We found moderate negative correlations between 3-month C3
slopes (covariate adjusted) and cross-sectional global amyloid
burden (r = −0.20, 95% CI [−0.38 – −0.01], p = 0.049)
(Figure 2A) as well as tau deposition in the entorhinal cortex (r
= −0.38, 95% CI [−0.54 – −0.19], p < 0.001) (Figure 2B) and
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TABLE 2 | Time estimates extracted from linear mixed models corrected for age, sex, and education.

Monthly change over 1 year Monthly change over first 3 months

Time 95% CI P-Value Time 95% CI P-Value MSDR

C3 0.226 0.207–0.245 <0.001 0.678 0.587–0.768 <0.001 1.39

BPSO 0.073 0.061–0.085 <0.001 0.212 0.157–0.268 <0.001 0.71

FNLT 0.098 0.088–0.108 <0.001 0.379 0.328–0.429 <0.001 1.37

OCL acc 0.051 0.041–0.060 <0.001 0.072 0.020–0.125 0.007 0.25

ONB acc 0.034 0.023–0.044 <0.001 0.100 0.041–0.158 0.001 0.31

DET rt −0.024 −0.036 to −0.012 <0.001 −0.051 −0.103–0.000 0.052 0.18

IDN rt −0.009 −0.020–0.001 0.073 −0.062 −0.115 to −0.010 0.021 0.22

OCL rt −0.032 −0.044 to −0.021 <0.001 −0.141 −0.188 to −0.095 <0.001 0.55

ONB rt −0.052 −0.063 to −0.041 <0.001 −0.163 −0.207 to −0.118 <0.001 0.67

N.B. C3 is summed z-score of BPSO + FNLT + OCL. Negative scores on reaction time measures reflect improvement.

C3, Computerized Cognitive Composite (computed as the sum of the BPSO, FNLT, and OCL accuracy z-scores); BPSO, Behavioral Pattern Separation Task—Object Version; FNLT,

First Name Letter Test; OCL, One-Card Learning; ONB, One Back; DET, Detection; IDN, Identification; acc, accuracy; rt, reaction time; MSDR, mean to standard deviation ratio.

FIGURE 1 | Mean trajectory of C3 performance over monthly visits.

inferior-temporal lobe (r = −0.23, 95% CI [−0.41 – −0.02], p
= 0.033) (Figure 2C), indicating that less improvement over 3
months is associated with greater amyloid and tau burden.

Multivariate PLS analyses revealed no spatial patterns of
tau distribution that were associated with any of the C3
baseline scores in the overall sample nor in the different Aβ-
groups. No spatial patterns of tau distribution were identified
that significantly correlated with C3 slopes in the overall
sample, but in the Aβ− group we observed a consistent
spatial pattern characterized by relatively lower tau uptake in
the entorhinal cortex. The expression of this spatial pattern
in Aβ− group was significantly associated with higher 3-
month slopes on the C3 composite (p < 0.001) (Figure 3).
The correlation was most pronounced on the BPSO (p <

0.001) and OCL accuracy measures (p = 0.004) (Figures 4,
5). In the Aβ+ group, we only observed a spatial pattern
characterized by relatively lower tau uptake in the amygdala

and entorhinal and relatively higher tau uptake in the posterior
cingulate. The expression of this pattern was associated
with higher 3-month slopes on the FNLT (p = 0.003)
(Figure 6).

Diminished Practice Over 3 Months Is
Associated With Annual Decline on the
PACC5
3-month C3 slopes were positively associated with annual change
on the PACC5 (r = 0.69, 95% CI [0.55–0.80], p < 0.001),
indicating that less improvement over 3months is associated with
greater annual PACC5 decline (Figure 7).

The ROC analyses presented in Figure 8 show that the
3-month C3 slopes exhibited good discriminative ability to
identify individuals who showed >0.10 SD annual decline on
the PACC5 (optimal cut-off: 0.7, area under the curve (AUC):
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FIGURE 2 | Relationship between C3 slopes over 3 months and global amyloid burden (A), tau deposition in the entorhinal cortex (B), and inferior-temporal lobe (C).

FIGURE 3 | Association between optimal spatial distribution of tau and C3 slopes over 3 months in the Aβ− group. Left panel (A) shows the correlation between PLS

subject scores (expression of spatial patterns of tau distribution) and C3 slopes; right panel (B) presents the spatial patterns of tau distribution of z-transformed PLS

weights in each ROI.

0.91, 95% CI [0.84–0.98], sensitivity = 88.9%, specificity =

81.1%), which was found to perform better than baseline C3
performance (AUC: 0.69, 95% CI [0.55–0.82], p < 0.001) and
baseline PACC5 performance (AUC: 0.75, 95% CI [0.63–0.86],
p= 0.02).

When looking at the individual C3 measures, 3-month BPSO
and FNLT slopes were more strongly related to annual PACC5
change (r = 0.68, 95% CI [0.51–0.79], and r = 0.53, 95%
CI [0.34–0.68] respectively, both p < 0.001), compared to
the OCL slopes which only reached trend-level significance
(r = 0.21, 95% CI [−0.02–0.42], p = 0.07). Only BPSO 3-
month slopes (optimal cut-off: 0.2, AUC: 0.90, 95% CI [0.83–
0.97]) showed significantly better discriminative ability than
PACC5 baseline scores (p < 0.001), whereas the FNLT 3-month
slopes (optimal cut-off: 0.4, AUC: 0.80, 95% CI = [0.70–0.90])
and OCL 3-month slopes (optimal cut-off: 0.1, AUC: 0.60,
95% CI= [0.46–0.73]) did not.

DISCUSSION

We demonstrated that CU adults improve over monthly
computerized cognitive testing, and that, overall, improvement
seems most apparent over initial repeated exposures (i.e.,
over the first four assessments compared to assessments
thereafter). However, individuals vary in their magnitude of
improvement over 3 months such that attenuated improvement
(i.e., diminished practice effect) was associated with greater
global amyloid burden and early tau deposition specifically in
the entorhinal cortex. Moreover, 3-month C3 slopes were able
to detect differences in spatial tau distribution better than C3
baseline scores. Finally, we showed that the magnitude of C3
slopes over 3 months was predictive of cognitive change over 1
year and could provide a valuable marker to identify individuals
who will show more than 0.10 SD annual decline on standard
paper-pencil cognitive testing.
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FIGURE 4 | Association between optimal spatial distribution of tau and BPSO slopes over 3 months in the Aβ− group. Left panel (A) shows the correlation between

PLS subject scores (expression of spatial patterns of tau distribution) and BPSO slopes; right panel (B) presents the spatial patterns of tau distribution of

z-transformed PLS weights in each ROI.

FIGURE 5 | Association between optimal spatial distribution of tau and OCL slopes over 3 months in the Aβ− group. Left panel (A) shows the correlation between

PLS subject scores (expression of spatial patterns of tau distribution) and OCL slopes; right panel (B) presents the spatial patterns of tau distribution of z-transformed

PLS weights in each ROI.

Improvement over cognitive testing sessions in the absence
of an intervention is thought to reflect practice, also referred to
as learning or retest effects, which have typically been viewed
as source of error or bias in the context of cognitive testing.
There is, however, a growing body of literature suggesting that
quantifying PE, and particularly lower or reduced PE, could
provide a meaningful clinical marker of (early) subtle decrements
in learning and memory performance in preclinical stages of
AD (Duff et al., 2007; Hassenstab et al., 2015; Jutten et al.,
2020a; Lim et al., 2020; Samaroo et al., 2020). One potential
explanation for this is that individuals with reduced PE do
not optimally benefit from previous exposure to test material,
suggesting worse consolidation and retention of recently learned
information induced by deficits in the integrity of their learning
and memory system. Impairments in learning and retention of

new information have been determined to be the earliest and
most robust manifestation of AD, which is in line with consistent
observations that AD pathology typically manifests earliest in
the MTL and specifically the hippocampal and perirhinal regions
that play a crucial role in the learning and consolidation system
(Reitz et al., 2009). Our finding that lower PE are associated
with greater global amyloid burden and tau deposition in the
entorhinal cortex contribute to previous work suggesting that
we can potentially capture the first, subtle alterations in learning
in preclinical AD by capitalizing on the phenomenon of PE
(Samaroo et al., 2020).

PLS results complemented the univariate imaging analyses
by showing that 3-month C3 slopes detected differences in
spatial tau distribution whereas baseline C3 scores did not. In
addition, the PLS analysis revealed that the expression of the
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FIGURE 6 | Association between optimal spatial distribution of tau and FNLT slopes over 3 months in the Aβ+ group. Left panel (A) shows the correlation between

PLS subject scores (expression of spatial patterns of tau distribution) and FNLT slopes; right panel (B) presents the spatial patterns of tau distribution of z-transformed

PLS weights in each ROI.

FIGURE 7 | Relationship between C3 slopes over 3 months and annual

change scores on the PACC5 (all scores covariate-adjusted).

tau pattern associated with C3 slopes seems different for Aβ−

vs. Aβ+ groups. That is, in the Aβ− group we observed a
consistent spatial pattern characterized by relatively lower uptake
in the entorhinal cortex only, and the expression of this pattern
was significantly associated with greater PE over 3 months. In
the Aβ+ group we observed a spatial pattern characterized by
lower uptake in entorhinal and amygdala and higher uptake in
precuneus and posterior cingulate, which was associated with
greater PE over 3months. This difference in spatial patterns could
be explained by the fact that Aβ+ group was more progressed in
terms of tau pathology than Aβ−, and different relative scales
of tau binding in the entorhinal cortex (affected earlier) and
posterior regions (affected later) across groups. This is in line

FIGURE 8 | ROC analyses for the identification of >0.10 SD annual decline on

the PACC5 (all scores covariate-adjusted).

with our current understanding that the entorhinal cortex is
among the earliest regions of tau accumulation where tau seems
to increase with age even before amyloid starts deposing (Maass
et al., 2018), whereas other MTL and more posterior regions
are affected once amyloid pathology induces the spread of tau
into the neocortex (Sanchez et al., 2021). Another interesting
difference is that spatial tau distribution in Aβ− was mainly
associated with the BPSO and OCL slopes, whereas in the Aβ+

group we only found a significant association with the FNLT
slopes. This could be explained by the fact that the nature of the
PE observed on the BPSO and OCL (alternate versions) is partly
different than the nature of PE on the FNLT (same version),
with the latter more heavily relying on remembering the exact

Frontiers in Aging Neuroscience | www.frontiersin.org 9 January 2022 | Volume 13 | Article 80012616

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Jutten et al. Monthly Computerized Testing in Preclinical AD

test content which may potentially be affected once amyloid
pathology is present.

Besides remembering the exact test content, another potential
explanation for the occurrence of PE is that increased familiarity
with the test-taking in general leads to the development
of strategies and/or reduced test anxiety and stress with
repeated testing. These task familiarity effects may be due
to procedural learning which is an aspect of cognition that
remains relatively spared in early stages of AD (Goldberg et al.,
2015). Task familiarity has likely played a role in the PE we
observed on particularly the OCL and BPSO, since alternate
versions were used for those measures and, thus, ruling out
the possibility that PE were only caused by the fact that
individuals learned/remembered the specific test items. However,
the discrepancy between our findings on the BPSO vs. the OCL
regarding the magnitude of PE observed over months and the
strength of their associations with annual PACC5 decline, also
suggest that test familiarity alone seems insufficient to explain
differences in PE. In fact, our findings imply that the nature of
the task, as well as the retest paradigm (i.e., same vs. alternate
versions) may both contribute to the occurrence and magnitude
of PE.

When comparing the different tasks and retest paradigms
included in the C3, we found that PE were strongest on the FNLT
for which the same version was administered at each time-point.
However, PE observed on the BPSO, which was administered
using an alternate version retest paradigm (A-B-C-D), showed
the strongest sensitivity to differences in early entorhinal tau
deposition and better predictive ability for annual decline on the
PACC5. The BPSO is ameasure of pattern separation, an aspect of
episodic memory dependent on hippocampal function (Kirwan
and Stark, 2007; Yassa and Stark, 2011) whereby information
from overlapping experiences is made independent of one
another to overcome interference. Our data showed that task
performance relying on this process of pattern separation can
improve with practice, even though the individual test items
at retest are not the same. This suggests that PE observed on
the BPSO are not (only) caused by remembering the exact test
items, but that practicing strategies to successfully apply pattern
separation plays a role as well. The OCL on the other hand, which
was also administered using an alternate retest paradigm and
initially designed deliberately to mitigate PE, was less sensitive
to PE than both the BPSO and FNLT. This could be explained
by the fact that the OCL is a “simpler” measure than the BPSO,
providing less room for practicing the required learning/memory
strategy, which is in line with previous reports that tests with
lower cognitive demand show usually lower PE as opposed to
tasks with a larger cognitive demand (Beglinger et al., 2005).

Our finding that PE are most strong with initial repeated
exposures is in accordance with a previous meta-analysis and
several reviews of PE in the context of longitudinal cognitive
aging studies (Beglinger et al., 2005; Calamia et al., 2012;
Machulda et al., 2013; Jutten et al., 2020a). These studies
show consistently that PE at a group level are most apparent
between the first- and second-time testing, and that improvement
plateaus after 4–5 repeated assessments. However, it is likely
that the moment that individuals reach their plateau differs

per individual. Therefore, besides quantifying the amount of
improvement over a fixed time-interval as we did in the current
study, it would be interesting to characterize learning curves
at an individual level and investigate whether the number
of assessments needed to reach one’s personal plateau could
provide an early marker of learning deficits in preclinical AD.
Additionally, since other studies have suggested that PE can
already be detected over days (Lim et al., 2020) or even over
repeated assessments within a single day (Darby et al., 2002),
it would be interesting to explore the feasibility and predictive
ability of defining even more short-term PE (days rather than
months) in the context of preclinical AD (Kaye et al., 2021; Papp
et al., 2021a).

Implications
Neuropsychological models have understood the cognitive
manifestation of AD in terms of change over years or even
decades. However, there is now a developing field that shows
how understanding changes in cognition over much shorter
periods, such as months, may help inform brain behavior models
of the disease, particularly in early or preclinical stages. Our
findings provide complementary evidence for the hypothesis
that characterizing short-term PE could aid in the detection
of individuals at risk for cognitive decline due to AD, above
and beyond baseline cognitive scores. This has important
implications for clinical trial design and recruitment strategies.
First, employing remote, monthly computerized assessments
could lead to more rapid recruitment and screening of large
samples in a cost-effective manner and maximize sample
generalizability by facilitating the inclusion of participants
who live in remote locations. Subsequently, characterizing PE
over 3 months could advance the more rapid detection of
early cognitive change, as well as the identification of those
who are at risk for short-term cognitive decline and, thus,
may be most likely to benefit from treatment. Ultimately,
quantifying PE as a more nuanced way of exploring subtle
alterations in cognitive functioning could hopefully increase
the rapidity of screening participants and detecting treatment
effects in trials that aim slow or halt disease progression in early
stages of AD.

Finally, remote cognitive testing may potentially advance
the monitoring of (incipient) cognitive impairment in clinical
practice. However, not much is known yet about the potential
clinical implications of applying a monthly at-home testing
paradigm for an individual. For example, the impact of at-home
testing on an individual’s willingness to have in-clinic follow-up
or seek care remains unknown and will thus be an important next
step to address in future research.

Study Limitations
An important limitation of the current study is the fact that
our study sample is a highly educated and predominantly White
cohort, and thereby it is unknown how generalizable our findings
are to other populations. Although adherence in our study was
high and missing data due to technical difficulties low, it is
important to address that a certain level of digital skills as well
as compliance to monthly testing are required to successfully
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implement these monthly computerized retesting paradigms.
The feasibility of at-home computerized testing has previously
been demonstrated inHABS and other cohorts (Rentz et al., 2016;
Perin et al., 2020), but this should also be determined in more
diverse populations and individuals with less digital literacy.
Furthermore, it should be noted that we used a study-issued iPad
including proprietary CogState software, which may, on the one
hand, have contributed to the good adherence, but on the other
hand, limits the scalability of the C3.

A general issue with unsupervised cognitive testing is the fact
that there is little control over the location, timing of testing, and
likelihood of participant distraction, which are all factors likely
to interact with task performance and may thereby threaten the
internal validity of test scores (Perin et al., 2020). However, a
previous study indicated that these factors mainly affect speed of
performance rather than accuracy scores (Backx et al., 2020), and
since we focused on accuracy measures to detect PE, we do not
expect that the uncontrolled environment has biased our findings
to a large extent. Furthermore, we applied previously defined cut-
offs to ensure the integrity and completion of each individual
task, which may also have limited the influence of uncontrolled
factors on our results.

A strength of our study is that we complemented univariate
imaging analysis with PLS. The main advantage of PLS
over univariate analysis is that PLS analysis can examine
the relationships between the tau uptake in various regions
simultaneously rather than localized tau uptake in each region
individually. PLS analysis results are thus expected to be more
robust when the input variables are collinear, which is the
case with tau uptake in the examined ROI (e.g., uptake in the
entorhinal and inferior temporal cortex especially in the Aβ+

group). In addition, PLS analysis may be more robust to noise
in the data than univariate analysis. However, it should also be
noted that only 8 ROI were included in the PLS analysis. This
selection of regions was a-priori defined, based on our initial
findings and on what is known about the spread of neocortical
tau in cognitively older adults (Johnson et al., 2016; Sanchez
et al., 2021). Since our sample consisted mainly of cognitively
normal individuals (of which themajority was amyloid-negative),
it is expected that there is little or no tau uptake beyond
those 8 ROI, and so adding in more regions would likely not
benefit our models. An interesting future step would be to
investigate the association between PE and tau uptake using
voxel-wise analysis. “In addition, it would be worthwhile to use
PLS to examine whether regional amyloid accumulation would
be associated with the magnitude of PE, especially in amyloid-
negative individuals that yet have subthreshold levels of amyloid
accumulation (Farrell et al., 2018).

Finally, regarding our investigation of the predictive ability of
PE for future cognitive decline, it should be noted that we only
had one-year prospective follow-up cognitive testing available.
This follow-up duration is particularly short in the context of
preclinical AD, which is presumed to be a stage that may last 20
years or longer before the onset of objective cognitive impairment
(Sperling et al., 2011). It remains uncertain as to which of our
participants would show further cognitive decline and eventually
progress to the MCI or dementia stage. Annual data-collection of

the HABS cohort is ongoing, which will allow us to address this
important question in future research.

CONCLUSION

We showed that, while PE commonly occur in CU adults,
diminished PE over monthly computerized cognitive testing are
associated with greater AD biomarker burden and cognitive
decline over one year. Our findings imply that unsupervised
computerized testing using monthly retest paradigms can
provide rapid detection of diminished PE indicative of future
cognitive decline in preclinical AD. This could aid in more rapid
detection of individuals at risk for cognitive decline and thereby
accelerate clinical trial recruitment and screening as well as the
detection of treatment effects.
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Episodic memory and executive function are two cognitive domains that have been
studied extensively in older adults and have been shown to decline in normally-aging
older individuals. However, one of the problems with characterizing cognitive changes in
longitudinal studies has been separating effects attributable to normal aging from effects
created by repeated testing or practice. In the present study, 166 people aged 65 and
older were enrolled over several years and tested at least 3 times at variable intervals
(M = 3.2 yrs). The cognitive measures were composite scores. Each composite was
made up of five neuropsychological tests, previously identified through factor analysis.
For one pair of composite scores, variance attributable to age was removed from
each subtest through regression analyses before z-scores were computed, creating
two age-corrected composites. A second pair of composites were not age-corrected.
Using linear mixed-effects models, we first explored retest effects for each cognitive
domain, independent of age, using the age-corrected composites. We then modeled
aging effects using the age-uncorrected composites after subtracting out retest effects.
Results indicated significant retest effects for memory but not for executive function,
such that memory performance improved across the three testing sessions. When these
practice effects were removed from the age-uncorrected data, effects of aging were
evident for both executive and memory function with significant declines over time.
We also explored several individual difference variables including sex, IQ, and age at
the initial testing session and across time. Although sex and IQ affected performance
on both cognitive factors at the initial test, neither was related to practice effects,
although young-older adults tended to benefit from practice to a greater extent than old-
older adults. In addition, people with higher IQs showed slower age-related declines in
memory, but no advantages in executive function. These findings suggest that (a) aging
affects both memory and executive function similarly, (b) higher IQ, possibly reflecting
cognitive reserve, may slow age-related declines in memory, and (c) practice through
repeated testing enhances performance in memory particularly in younger-older adults,
and may therefore mask aging effects if not taken into account.
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INTRODUCTION

Longitudinal studies of cognitive function in older adults have a
relatively recent history, with the bulk of the research appearing
in the literature since 2000. Much of this work initially focused
on memory and speed of processing, areas of cognition that
showed clear age-related differences in cross-sectional studies.
More recent longitudinal studies have included other cognitive
domains including executive function (e.g., Gross et al., 2015;
Hassenstab et al., 2015), but in most studies, little has been
said concerning what specific cognitive processes within a
domain might be implicated in changes over time. In addition,
studies have begun relating age-related cognitive changes to
corresponding brain changes (e.g., Kramer et al., 2007; Persson
et al., 2014; Armstrong et al., 2020; Gavett et al., 2021). Results
of these longitudinal studies, however, have not been entirely
consistent with respect to the cognitive domains most affected by
age, the rate of decline over time, and the variables that might
moderate change. Several researchers (e.g., Rabbitt et al., 2001;
Ferrer et al., 2004, 2005; Rönnlund et al., 2005; Wilson et al.,
2006; Salthouse, 2010) have also acknowledged that repeated
testing can influence and thereby mask age-related changes, and
have proposed different ways of accounting for and eliminating
such effects. Although practice effects are usually greatest after
short intervals, some studies have reported effects even 5-6 years
following initial testing (e.g., Elman et al., 2018). It has also been
suggested that practice effects themselves might reveal important
individual differences in the cognitive functioning of older people
(e.g., Machulda et al., 2013; Hassenstab et al., 2015).

For the present longitudinal study, we looked at composite
measures of episodic memory and executive function in a sample
of normally-aging older adults. Tests comprising each cognitive
domain were chosen to reflect a common process, and the
makeup of the composites was derived through factor analyses.
We incorporated a novel way to separate aging and practice
effects, and explored the impact of several individual difference
variables on both retesting and aging.

We first began gathering neuropsychological test data from
older adults in 1992 in the context of studying source memory.
At that time, some studies had shown that on occasions when
amnesic patients with medial temporal lobe damage recalled a
recently-presented fact, they could also recall its source —where
they heard it or who told them (e.g., Schacter et al., 1984). On the
other hand, patients with damage to the frontal lobes, who could
readily recall the facts, often could not recall their source (e.g.,
Janowsky et al., 1989). The two kinds of memory thus appeared
to depend on different brain regions—recently presented fact
memory on medial temporal lobe structures, and source memory
on frontal brain structures. Subsequent studies reporting source
memory deficits in older adults, further suggested that these
deficits might indicate declining frontal lobe function in older
people (e.g., Craik et al., 1990), but findings were inconsistent.

To test this hypothesis in older adults (Glisky et al., 1995),
we chose tests from our neuropsychological battery thought
to depend on each brain region. Specifically, we selected tests
of episodic memory that varied in stimulus properties (e.g.,
verbal, visual, facial), encoding processes (e.g., single items, pairs,

narratives), and retrieval processes (i.e., free recall, cued recall,
recognition), but shared processes involved in the fundamental
retention or consolidation of information over time, processes
dependent on the medial temporal lobes. On the other hand,
tests of executive function, thought to depend primarily on the
frontal lobes, were selected to reflect control processes that were
not involved in episodic memory, but instead were thought to be
similar to executive processes associated with working memory.
This assumption was supported in a later study by McCabe
et al. (2010), who reported a high correlation (0.96) between our
executive function composite (minus one common test) and a
composite measure made up of complex span tasks.

To verify that these tests were indeed measuring separate
constructs, we conducted a series of factor analyses. Because we
were interested in the differential contributions of neurocognitive
processes that were independent of age, variance attributable to
age was removed from each individual test through regression
analyses, and the residual scores were then submitted to factor
analysis. The initial principal components analysis revealed two
independent and uncorrelated factors. Composite factor scores,
representing the average of the component test z-scores (equally
weighted), were then assigned to each individual. Two later
confirmatory factor analyses on separate and larger groups
of older adults confirmed the two-factor solution and several
follow-up studies showed that the two factors were differentially
associated with item and source memory in older adults (Glisky
et al., 2001; Glisky and Kong, 2008).

Rather than re-calculate and re-assign z-scores for each study
sample going forward, we created a standardized reference group
based on 227 community-dwelling older adults, who received
these same tests, between 1998 and 2004. The data from this
group then provided the means, standard deviations, and age
corrections for classifying all past and future participants with
respect to their episodic memory and executive function. We also
created a parallel set of scores without the age correction, for
studies in which age was a variable of interest (e.g., Glisky and
Kong, 2008). The reference group, aged 65-90 (M = 73.4), had
a mean education level of 15.6 years, were in good health, were
not depressed or taking anti-depressant medications, reported no
previous psychiatric or neurological problems that might have
affected cognitive function, and had a score ≥ 26 (M = 28.9)
on the Mini-Mental State Examination (MMSE; Folstein et al.,
1975). As our experimental studies continued over time, several
people who had participated in our previous studies returned,
and were re-tested to ensure that their cognitive profiles were up-
to-date. Although not our primary goal at the time, this enabled
the collection of longitudinal data, which, after several years, has
allowed us to look at longitudinal changes in episodic memory
and executive function and to contribute to this special issue on
the importance of cognitive practice effects in aging neuroscience.

There are many reasons why practice effects should be
considered in longitudinal studies of aging, many or all of
which we expect will be addressed in this special issue. Our
interests lay specifically in documenting and understanding the
processes involved in “normal” cognitive aging, but because of
repeated testing of the same materials and/or procedures, this
was not a straightforward matter. Practice effects could elevate
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performance, making it difficult to assess the actual extent of
normal aging processes. Several questions about practice could,
and have been asked, including (a) Do all cognitive functions
benefit equally from practice, and (b) what individual difference
factors might influence practice effects? These were questions that
we hoped to address with our data. In addition, understanding
variability in the effects of practice might not only provide a
greater understanding of the normal aging processes and the
cognitive functions most affected, it might also help us in future
studies to identify those individuals who were not aging normally,
and perhaps suggest intervention strategies.

On the basis of prior studies, we expected that our episodic
memory factor would show improved performance across testing
sessions, and declines with increasing age. The few studies
that have included measures of executive function and working
memory have been inconclusive with respect to both retest and
aging effects, and so suggested no clear hypotheses with respect
to the executive function factor.

MATERIALS AND METHODS

Participants
The present study includes data for 166 older adults between
the ages of 65 and 91, who completed at least three testing
sessions, were recruited continuously over a period of 18 years,
and were retested at varying intervals (M = 3.2 yrs, SD = 1.4).
The recruitment of participants for initial testing was conducted
through the distribution of fliers in the local community,
advertisements in the local paper, and public talks to groups at
senior centers. Although some individuals continued to return
for further tests (e.g., 83 people had at least 4 tests), we will focus
here on the first three test sessions for which we have complete
data. To ensure that our sample continued to warrant the label
“normally-aging older adults,” we retained the exclusion criteria
that we used for our standard reference group (see above), and
removed people from the longitudinal study if they failed to meet
those criteria in any of their test sessions. Those whose composite
scores for either of the cognitive domains fell to more than 2 SDs
below the mean were also dropped from further participation. Of
the 547 older people who completed initial neuropsychological
testing between 1992 and 2010, 53% (N = 292) completed Time 2
testing, and 58% of those individuals completed the third session.
People failed to continue for a variety of reasons. Most dropouts
were attributable to lost contact, lost interest, or ongoing physical
or medical limitations. Of the 255 people who dropped between
Test 1 and Test 2, 99 failed to meet inclusion criteria; 14 of
those had neuropsychological scores more than 2 SDs below the
mean, and 3 had MMSE scores below 26. Fifteen people failed
to meet inclusion criteria for Test 3, two of whom had low
MMSE scores. Three people were subsequently excluded because
of missing FSIQ scores. Overall, those who dropped out tended
to be older and had lower cognitive scores. All older adults in
the present study, 114 women and 52 men, continued to perform
within normal limits throughout all test sessions. Their mean age
at Test 1 was 71.7 years (SD = 4.8), mean education 16.0 years
(SD = 2.5), and mean MMSE score 29.1 (SD = 1.0). All studies that

contributed data to the present study and their corresponding
consent forms were approved by the University of Arizona’s
Human Subjects Protection Program. Written informed consent
was obtained on each testing occasion.

Cognitive Tests and Measures
The primary outcome measures were the composite
z-scores representing performance on the two
uncorrelated neurocognitive factors, each derived from five
neuropsychological tests. Tests contributing to the executive
function (EF) factor included the number of categories achieved
on the Modified Wisconsin Card Sorting Test (Hart et al., 1988),
the total number of words produced to the cues F, A, and S
in a verbal fluency task (Spreen and Benton, 1977), Backward
Digit Span and Mental Control from the Wechsler Memory
Scale-R or III (Wechsler, 1987, 1997b), and Mental Arithmetic
from the Wechsler Adult Intelligence Scale-R (Wechsler, 1981).
Tests representing episodic memory function (MF) included
Logical Memory I, Verbal Paired Associates 1 and Faces 1
all from Wechsler Memory Scale-R or III (Wechsler, 1987,
1997b), Visual Paired Associates II from Wechsler Memory
Scale-R (Wechsler, 1987), and Long-Delay Cued Recall from
the California Verbal Learning Test (Delis et al., 1987). Two
z-scores were assigned to each participant for each cognitive
factor, one representing age-corrected performance and the
other age-uncorrected performance. Participants also completed
IQ tests, the full tests prior to 1999 (Wechsler, 1981, 1997a) and
the abbreviated version thereafter (Wechsler, 1999). Table 1
shows that at baseline (Test 1), individuals in the present study
were on average 1.7 years younger than the reference group and
performed at a somewhat higher level on the cognitive tests.

Data Analysis
Practice Effects
We used linear mixed effects models to examine the longitudinal
relation between repeated testing (1, 2, and 3) and age-corrected
EF and MF scores. As noted above, variance attributable to
age had been removed from these scores, eliminating any
effects of increasing age across tests. The models included test
session (centered such that test session 1 was the intercept)
as our predictor of practice effects. The coefficient for test
session reflects the longitudinal effect of repeated testing for
each additional test session. To examine individual differences
in the rate of change associated with one more test session,
we also included age at baseline, sex, and baseline FSIQ, and
their interactions with test session. We centered baseline age at
72 years, which was the round number closest to the average
baseline age of the cohort. FSIQ was centered at the round
number closest to the average FSIQ at baseline for the sample,
which was 124. We included random intercepts in these models.
Because test sessions 2 and 3 did not occur at fixed time intervals,
we also ran the models examining practice effects on age-
corrected EF and MF scores including two additional predictors:
years since baseline, and the interaction between years since
baseline and test session. However, these predictors were not
significant in either model, and model comparison indicated
that including them did not significantly improve model fit. For
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parsimony, we therefore did not include them in the final models
examining practice effects.

Aging Effects
We applied the same linear mixed effects modeling approach to
evaluate the role of increasing age on practice-corrected EF and
MF scores. In these models, the primary predictor was years since
baseline or “time,” to capture the effects of aging. The coefficient
for time reflects the longitudinal effect of one more year of age on
the cognitive outcomes. Whereas age-corrected scores were used
to examine practice effects, practice-corrected scores were used
to examine age effects. To derive these practice-corrected scores,
we calculated the absolute difference between the age-corrected
z-scores at session 1 and 2, and session 2 and 3, and subtracted
the relevant difference scores from the age-uncorrected z-scores
at session 2 or 3. Conceptually, this approach assumes that the
differences between the age-corrected z-scores in session 1 and
2, and 2 and 3, primarily reflects the effects of practice, which
are then removed from the age-uncorrected z-scores, creating
the practice-free z-scores. These models also included age at
baseline, sex, and baseline FSIQ, and their interactions with time
to determine whether they influenced the age-related decline. As
before, random intercepts were included.

RStudio was used for statistical analyses and data visualization
(R Core Team, 2019), including lme4 (Bates et al., 2015), lmertest
(Kuznetsova et al., 2017) to calculate p values, and “ggplot2” for
data visualization (Wickham, 2016).

RESULTS

Practice Effects
Mean z-scores for the two cognitive factors across the three test
sessions are shown in Table 1. These composite measures are
age-corrected such that increases in age over time cannot affect
any boost in scores attributable to retesting. The data indicate
little change in EF scores with repeated testing, but a substantial
increase in performance on the MF tests. Individual data are
shown in Figure 1. In this figure, each individual’s performance is
represented by a thin blue (EF Factor) or purple (MF Factor) line,
and the longitudinal effects of repeated testing from the linear
mixed effects models described below are overlaid on these raw
cognitive composite scores. Note that the interval between test
sessions is variable across individuals (M = 3.2 yrs), and so does
not represent continuous time.

For EF (Figure 1A), age-corrected z-scores actually showed
small but non-significant decreases with each repeated test
(β = −0.027, SE = 0.019, p = 0.144), suggesting an absence
of practice effects. This non-significant decline in EF scores
was moderated by baseline age, as indicated by a significant
interaction between baseline age and test session (β = −0.011,
SE = 0.003, p < 0.001), but was not affected by FSIQ (β = 0.001,
SE = 0.001, p = 0.306) or sex (β = −0.011, SE = 0.033, p = 0.729).
As shown in Figure 2, although individuals older than the mean
of 72 years on average (i.e., the old-older group (+1 SD = 5 yrs)
showed a significant decline over test session (β = −0.079,
SE = 0.025, p = 0.001), individuals at the mean or younger (i.e.,
the young-older group) on average showed neither a significant
increase or decrease across test sessions (mean age: β = −0.024,
SE = 0.019, p = 0.193; 1 SD below mean age: β = 0.031, SE = 0.024,
p = 0.194). There was therefore no evidence of significant practice
effects in EF in any age group.

On the other hand, for MF (Figure 1B), age-corrected z-scores
showed clear and significant increases with each repeated test
(β = 0.148, SE = 0.021, p < 0.001), reflecting practice effects.
Here too, practice effects were significantly moderated by baseline
age as reflected in the significant interaction with test session
(β = −0.011, SE = 0.004, p = 0.002), but not by FSIQ (β = 0.002,
SE = 0.001, p = 0.121) or sex (β = −0.030, SE = 0.038,
p = 0.426). However, as shown in Figure 3, there were robust
benefits of practice for MF scores regardless of baseline age (1
SD older than the mean: β = 0.097, SE = 0.028, p < 0.001;
mean age: β = 0.151, SE = 0.021, p < 0.001; 1 SD younger
than the mean: β = 0.204, SE = 0.027, p < 0.001). These
practice effects, however, were smaller in those who were older
on average at baseline, accounting for the interaction. Note
also that preliminary analyses found no effect of time since
baseline on practice effects, indicating that at long intervals
(> 2 yrs), the number of years since the prior test did not predict
practice effects.

Although only baseline age affected practice across testing
sessions in either cognitive function, all of the individual
difference variables contributed to cross-sectional differences in
performance at baseline. For EF, there was a significant effect of
baseline age (β = 0.018, SE = 0.008, p = 0.029), indicating that
being older than 72 at baseline was associated with higher EF
scores at the initial testing session. There was also a significant
effect of FSIQ (β = 0.025, SE = 0.003, p < 0.001): Individuals with
higher intelligence had higher baseline EF scores. Finally, there
was a significant effect of sex, such that men had higher baseline
EF scores than women (β = 0.203, SE = 0.087, p = 0.021).

TABLE 1 | Mean (sd) age-corrected composite z-scores, age, and FSIQ for reference group and study sample.

Reference Group
N = 227

Study Sample N = 166

Test 1 Test 2 Test 3

Age-corrected
EF Factor

−0.0006 (0.66) 0.13 (0.62) 0.15 (0.62) 0.07 (0.66)

Age-Corrected
MF Factor

−0.006 (0.63) 0.18 (0.62) 0.36 (0.63) 0.46 (0.60)

Age (yrs) 73.4 (5.4) 71.7 (4.8) 75.0 (4.9) 78.1 (5.0)

FSIQ 122.7 (13.8) 124.1 (12.2) 124.3 (11.4) 125.3 (12.1)
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FIGURE 1 | Effects of practice on age-corrected factor scores for (A) executive function (EF) and (B) memory function (MF). The dark blue (EF) and purple (MF) lines
reflect the overall trend across test sessions. The colored ribbon around these lines is the 95% confidence interval. Each participant’s scores across the three test
sessions are connected by a thin, light-colored line.

For MF, there was also a significant cross-sectional effect
of baseline age (β = 0.015, SE = 0.008, p = 0.044), indicating
that being older than 72 at baseline was associated with higher
baseline MF scores. There again was a significant effect of FSIQ
(β = 0.020, SE = 0.003, p < 0.001): Individuals with higher
intelligence had higher baseline MF scores. Finally, there was a
significant effect of sex, such that women had higher baseline MF
scores than men (β =−0.606, SE = 0.080, p < 0.001).

Aging Effects
The effects of aging on our two cognitive factors are shown in
Figure 4. For these analyses, we used practice-corrected EF and
MF scores (regardless of whether there were significant effects of

FIGURE 2 | The moderating effect of baseline age on the rate of change in
age-corrected EF scores across sessions. The solid line represents individuals
who were on average 1 SD older than the mean age at baseline; the
large-dashed line shows the performance of the mean age group, and the
small-dashed line portrays those 1 SD younger than the mean age The
colored ribbon around each line is the 95% confidence interval.

repeated testing) to ensure that age effects were not masked by
practice effects. The longitudinal effects of time from the models
below are overlaid on these raw cognitive composite scores.

For both EF (Figure 4A) and MF (Figure 4B), practice-
corrected z-scores significantly decreased as time passed,
indicating age-related cognitive decline in both cognitive
domains (EF: β =−0.071, SE = 0.007, p < 0.001; MF: β =−0.041,
SE = 0.007, p < 0.001).

For EF scores, decline over time was significantly moderated
by baseline age (B = −0.005, SE = 0.001, p < 0.001), but not by
FSIQ (β =−0.0009, SE = 0.0005, p = 0.104) or sex (β =−0.00007,
SE = 0.014, p = 0.996). As shown in Figure 5, practice-corrected
EF scores significantly decreased over time regardless of baseline
age (1 SD older than the mean: β =−0.094, SE = 0.010, p < 0.001;
mean age: β =−0.07, SE = 0.007, p < 0.001; 1 SD younger than the
mean: β = −0.046, SE = 0.010, p < 0.001), but the rate of decline

FIGURE 3 | The moderating effect of baseline age on the rate of change in
age-corrected MF scores across sessions. See Figure 2 for details.
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FIGURE 4 | Effects of aging on practice-corrected factor scores for (A) executive function (EF) and (B) memory function (MF). Each participant’s scores across the
three test sessions are connected by a thin, light-colored line. The dark blue (EF) and purple (MF) lines reflect the overall trend in factor scores with each additional
year of age. The colored ribbon around these lines is the 95% confidence interval.

FIGURE 5 | The moderating effect of baseline age on the rate of change in practice-corrected EF scores with each year of aging. See Figure 2 for details.

was greater in individuals who were older on average at baseline,
accounting for the interaction.

For practice-corrected MF scores, decline over time was
significantly moderated by baseline age (β = −0.003, SE = 0.001,
p = 0.009), and also by FSIQ (β = 0.001, SE = 0.0005, p = 0.022),
but not by sex (β = −0.016, SE = 0.013, p = 0.217). As shown
in Figure 6, practice-corrected MF scores significantly decreased
over time regardless of baseline age (1 SD older than the mean:
β = −0.057, SE = 0.009, p < 0.001; mean age: β = −0.040,
SE = 0.007, p < 0.001; 1 SD younger than the mean: β = −0.024,
SE = 0.009, p = 0.007), but the rate of decline was greater in

individuals who were older on average at baseline. Similarly, as
shown in Figure 7, practice-corrected MF scores significantly
decreased over time regardless of FSIQ (1 SD above the mean:
β = −0.027, SE = 0.010, p = 0.007; mean FSIQ: β = −0.041,
SE = 0.007, p < 0.001; 1 SD below the mean: β = −0.055,
SE = 0.009, p < 0.001), but the rate of decline was slower
in individuals who had higher FSIQs. Although FSIQ did not
significantly moderate change in practice-corrected EF scores,
this finding is shown in Figure 8 for comparison purposes.

Similar to the age-corrected scores, there were cross-sectional
effects of FSIQ and sex at baseline. Higher FSIQ scores were
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FIGURE 6 | The moderating effect of baseline age on rate of change in practice-corrected MF scores with each year of aging. See Figure 2 for details.

associated with higher baseline scores on both cognitive measures
(EF: β = 0.023, SE = 0.003, p < 0.001; MF: β = 0.019, SE = 0.003,
p < 0.001). Men had higher baseline EF scores (β = 0.196,
SE = 0.093, p = 0.037) and women had higher baseline MF
scores (β = −0.615, SE = 0.087, p < 0.001). However, for these
analyses of age-uncorrected scores, there was no significant effect
of age on baseline EF scores (β = −0.003, SE = 0.008, p = 0.742),
but there was an effect on MF scores (β = −0.023, SE = 0.008,
p = 0.006), such that individuals who were older at baseline
had lower baseline MF scores. This is consistent with the age
correction being greater for MF than for EF scores.

DISCUSSION

In the present longitudinal study, we found that in a group
of normally-aging older adults (65+), significant age-corrected
retest effects (across three sessions in approximately six years)
occurred in episodic memory but not in executive function. On
the other hand, normal aging independent of practice effects,
appeared to have similar effects on the two cognitive domains,
resulting in significant declines in both cognitive functions. In
general, young-older adults did better than old-older adults,
showing greater practice effects and slower rates of decline with
age. Interestingly, although full-scale IQ was associated with
higher levels of performance at baseline for both cognitive factors,
higher IQs did not enhance practice effects but were associated

with a slower rate of age-related decline in memory; they did not
significantly moderate the decline in executive function.

Practice Effects
These results, as a whole, seem to make it clear that practice
effects do not occur equally across all cognitive domains; that
is, there is no general cognitive practice effect. Previous studies
have reported similar findings. For example, Hassenstab et al.
(2015) found practice effects in episodic memory, but not in
several other cognitive domains including executive function
(using tests similar to ours) (see also Wilson et al., 2006, However,
Gross et al. (2015) did report practice effects in executive
function, but with tests that were mostly non-overlapping with
the ones used here. Elman et al. (2018), also using a different
set of tests, found smaller practice effects in executive function
than in episodic memory even in a younger group of adults
(aged 50-60), but no practice effects in executive function when
baseline cognitive ability was controlled. Together, these findings
suggest that practice effects may be domain-specific, or possibly
process-specific, occurring reliably in episodic memory but not
in executive function, at least in the executive functions that were
captured by our EF factor. Our findings also indicate that, when
testing memory, one must account for practice effects because
they can mask the effects of aging even at long delays (see also
Rönnlund et al., 2005; Elman et al., 2018). As seen in Table 1,
z-scores on the age-independent memory composite increase
from 0.18 to 0.36 to 0.46 (z-scores) across the three tests, showing
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FIGURE 7 | The moderating effect of full scale IQ (FSIQ) on the rate of change in practice-corrected MF scores with each year of aging. The solid line represents
those who on average have FSIQs 1 SD above the mean, the large-dashed line shows the group at the mean, and the small-dashed line portrays those whose FSIQ
scores were 1 SD below the mean. The colored ribbon around each line is the 95% confidence interval.

FIGURE 8 | The non-significant moderating effect of FSIQ on the rate of change in practice-corrected EF scores with each year of aging. See Figure 7 for details.

robust beneficial effects of repeated testing. If variance due to
age had not been removed from those scores, those scores would
have been 0.24, 0.29, and 0.28, and conclusions might have been

that episodic memory seems to hold up well with normal aging.
Nevertheless, our older people did show declines with age, once
practice effects were removed.
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So why did retesting improve memory but not executive
function? For episodic memory, two possible answers to this
question have generally been suggested (Goldberg et al., 2015):
(a) People remember some of the actual stimuli from a first
test and are therefore able to learn more, and (b) people
develop memory strategies during the prior experience, which
could later be employed to enhance memory further. Given the
variety of memory tests that made up the composite measure,
it seems unlikely that a common strategy or multiple strategies
would have been learned during a single testing session. In the
present study, memory continued to grow across two successive
retests, suggesting that people were accessing the same memory
representation and strengthening it on each occasion. We know
that in the short term, repetition strengthens a memory trace. In
the long term, retesting might enhance retrieval of a memory by
presenting partial cues. New information might then be added
to and strengthen the trace, which is then reconsolidated. In our
sample, although the original memory traces may have weakened
over time, they appeared still to be available and accessible when
good cues were provided at retest. This explanation for retest
effects fits well with the assumption that consolidation was the
common memory process across the five tests that comprised the
memory composite.

For executive function, although repetition might have
allowed one to access the prior experience, it might not have
helped one to perform the executive function tasks more
efficiently. The tasks that comprised the EF factor in this sample
all required attentional focus in the presence of interference, such
as those involved in most working memory tasks. These kinds
of tasks and processes lend themselves less well to the benefits
of practice; gains tend to be short-term and task-specific, and
require long hours of training (see Baddeley et al., 2015). Thus,
it is not surprising that our EF factor did not improve across just
two additional test sessions over several years.

Neither sex nor FSIQ influenced practice effects in either
cognitive domain, suggesting that the practice effects that
occurred in memory, may be at least partly automatic in
normally-aging individuals. Whether you are a young-older
person or amongst the oldest-old, intellectually gifted or less
so, male or female, practice will enhance episodic memory.
Our results did suggest, however, that improvements associated
with retesting in the memory domain were smaller in the
oldest, older adults. Interpretation of this finding, however,
is not straightforward. It may reflect a decline in some
automatic processes that are activated during retesting. For
example, although cues from current tests may activate memory
representations of prior sessions in older adults, the activation
process might be slower or less complete at older ages. On the
other hand, the representations themselves might be weaker in
older adults, leading to a smaller increase over tests. It should
be noted, however, that the baseline levels of performance at test
session 1 differed across age groups, with the older adults having
higher scores, and all age groups performing approximately
equivalently by the third session. This suggests that ceiling effects
might have reduced performance over time for those with higher
levels of performance at baseline, in this case, the oldest group.
The use of composite measures, however, limits ceiling effects

and the composite scores did not appear to approach the ceiling.
So overall, with respect to memory function, we conclude that
normally-aging older adults of all ages show significant benefits
of practice, although benefits may be smaller at oldest ages.

For executive function, there was a small but non-significant
decrease in performance across test sessions indicating no
effects of practice. Here, performance at baseline was also
significantly higher for the old-older adults, and the scores also
converged across age groups by the third test. Whereas the oldest
group showed a significant decrease in performance across test
sessions, the youngest group showed a non-significant increase.
It is unclear why the oldest group’s performance would have
declined across repeated tests. There may be another variable
associated with re-testing that negatively impacts performance
on our executive function tests. Alternatively, these results may
reflect a regression to the mean. The bottom line, however, is
that we did not find any significant benefits of retesting for
executive function.

What might seem rather anomalous in these findings is that
in both cognitive composites after age correction, the old-older
adults, in general, were performing at a higher level at baseline
than young-older adults. As noted earlier, however, individuals
who dropped out of the study for various reasons or were
removed for failing to meet inclusion criteria, tended to be older
and had lower levels of cognitive performance. This resulted in
a sample that was younger than the reference group on which
their scores were based, leading to more below average composite
scores amongst the young-older adults (i.e., a negative age
correction) and higher composite scores amongst the oldest-old
(i.e., a positive age correction). In the age-uncorrected data, the
oldest adults showed the expected lower levels of performance,
particularly in memory (see Figure 6, Time 0).

Aging Effects
For these analyses, measures represent age-uncorrected
performance levels. In Figure 5, one can see that there are no
significant cross-sectional effects of age at baseline for executive
function, but a significant effect of baseline age on memory
function (Figure 6). This differential effect of age on the two
cognitive composites accounts for the greater age-correction in
memory than in executive function (see Table 1).

Aging effects, namely change in performance over time/years
without any benefit from retests, are clearly evident in both
cognitive domains. In addition, baseline age moderated both
functions similarly, with the old-older people showing steeper
declines over time than the young-older people. This finding is
consistent with the notion that there might be a general aging-
related factor common to the two domains (cf., Wilson et al.,
2002; Salthouse, 2003).

At the same time, however, FSIQ, which was associated with
baseline levels of performance for both cognitive functions, had
no significant association with aging-related decline in executive
function, but a significant moderating effect on memory function,
such that those with higher IQs exhibited a slower decline
in memory than those with lower IQs. This suggests an age-
related process or function that differs across the two cognitive
domains. Most longitudinal studies of aging have not included
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IQ as an individual difference variable although several have
included education, with mixed results. We decided to include
FSIQ, rather than education, primarily because of the different
educational opportunities available to people across this wide
age range, such that less education in our oldest old might not
necessarily translate into lower intellectual function. We expected
that IQ would incorporate not only acquired knowledge and skills
gained in an educational context, but also a broader range of
experiences and abilities acquired over a lifetime. In addition,
education has often not shown any influence on age-related
decline in memory (e.g., Zahodne et al., 2011; Wilson et al., 2019)
or other cognitive functions (for review, see Seblova et al., 2020).
In the aging literature generally, both education and IQ have been
used as proxies for what has been called cognitive reserve (see
Stern, 2007, 2009) and it is in this context that we will discuss the
possible impact of IQ in the present study.

Here there are two related questions to be considered:
Why is FSIQ associated with performance at baseline in both
cognitive domains, and why does it moderate age-related decline
only in memory? Reserve theory would suggest that baseline
performance levels in both domains are related to brain reserve,
which is established through the development of a structurally
“better” brain (e.g., greater volume or connectivity) resulting
from more varied life activities and experiences, and is reflected
in the IQ measures. Brain reserve may benefit cognitive functions
more broadly, as evidenced by the higher levels of performance
at baseline in both executive and memory function for those with
higher IQs. Although brain reserve is considered to be a relatively
fixed entity at any one time, it also needs to be maintained over
time presumably by continuing engagement in life’s activities
(see Stern et al., 2020, 2022 for further elaboration). Cognitive
reserve, however, refers to a more flexible and dynamic ability to
adapt one’s cognitive processing in the light of declining brain
networks. Thus, in the present study, high IQ at baseline may
reflect greater brain reserve, which is supporting higher levels of
memory and executive function at baseline, whereas the ability
to moderate cognitive decline over time may reflect cognitive
reserve, which may be domain- or process-specific. In memory,
for example, older people tend to be more reliant on cues than
younger people to retrieve episodic memories. Those adults with
greater cognitive reserve may make more effective use of cues
at retrieval, and therefore be more likely to reactivate a fading
memory trace. On the other hand, the executive control processes
associated with working memory, namely attentional focus under
conditions of interference, may be less adaptable, and so less
responsive to cognitive reserve. Note (see Figure 8) that there
was a smaller but non-significant effect of FSIQ on age-related
changes in executive function.

Overall, these results suggest that there may be both a common
factor related to age-related declines in both cognitive functions,
but also domain-specific factor(s) that might be differentially
effective for different cognitive functions or processes.

Implications
The present results indicate that both episodic memory and the
executive functions associated with working memory decline
with age. They also suggest that episodic memory may be more

amenable to intervention than executive function in normally-
aging older adults; practice improves memory and cognitive
reserve helps to slow its decline. However, our sample included
only people who were determined to be aging “normally,” and
therefore does not speak to whether practice or cognitive reserve
could be recruited to help those people with mild cognitive
impairment or dementia. Prior studies that have included those
with cognitive impairments are inconsistent in this respect with
some studies showing improvements across retests (e.g., Gross
et al., 2015) and others showing minimal or no effects (e.g.,
Hassenstab et al., 2015). In the present study of normally-aging
older people, however, improvements in memory seemed to be
available to even the oldest old, although perhaps to a somewhat
lesser degree with increasing age.

From both a research and clinical perspective, the present
findings have a number of implications. The results are based
on a sample of people that are cognitively normal across all
three testing sessions. They do not include people who have
given any indication of underlying pathology that might affect
cognitive function at any time over the years, although clearly,
in the absence of any brain measures, we cannot rule that out.
The sample, however, is relatively high-functioning with only a
small number of individuals with IQs below 100. Although IQ
is not reported in many studies, several have noted education
levels of 16 years, comparable to our study (e.g., Wilson et al.,
2006; Salthouse, 2010; Armstrong et al., 2020). Thus we do
not think our sample is unique in that respect. It is, however,
possible that although there was no effect of IQ on practice
effects, those with still lower IQs might not show such benefits.
Nevertheless, we think that the sample in this study is a good
representation of normal cognitive aging in a community-
based sample against which other comparable samples may be
compared. We also feel confident in concluding that people who
are aging normally should show practice effects on memory
tests, but not necessarily on tests that require working memory
or tax attentional resources. Failure to show retest effects on
memory tests should therefore be considered a possible indicator
of abnormal aging, which should be evaluated further.

Clinically, when assessing an older person on more than one
occasion, especially in memory and even at long intervals, one
needs to be aware that simply repeating the tests may confer
some advantage and so scores may overestimate ability. One
might want to choose different memory tests or materials at
retest to offset, at least partly, the effects of practice, although
if strategies were learned at initial testing, they might still
provide some benefit. Accounting for practice effects may be
particularly important for accurate diagnosis of mild cognitive
impairment, particularly amnestic MCI. Eliminating the effects
of retests may enable earlier diagnosis and intervention, which
may prevent or slow the progression of the disease (see Elman
et al., 2018; Sanderson-Cimino et al., 2022). Acknowledging
possible effects of retesting might also be important in such
things as clinical trials designed to evaluate the effects of a
drug, for example (e.g., Goldberg et al., 2015). At the same
time, if one is interested in interventions with real-world
applications for normally-aging older adults, using a repeated
testing procedure is a well-known strategy for enhancing memory
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over time (Roediger and Karpicke, 2006). Attempted retrieval of
previously learned information has also been shown to improve
memory and enhance learning of new information in people with
memory impairments including those with Alzheimer’s disease
(e.g., Pastötter and Bäuml, 2014). Retention intervals in these
studies, however, are usually quite short (i.e., one month).There
are thus both positive and negative effects of retesting: In
longitudinal studies of aging, retesting may mask age-related
declines in memory, leading to missed diagnoses of MCI, but
in clinical interventions, retrieval practice may enhance memory
in everyday life.

Finally, we would like to re-emphasize that the failure to
find effects of practice or cognitive reserve in executive function
very likely depends on the specific tests and processes. Executive
function tasks rely on multiple processes, and although there
may be a common factor across tests, there are clearly several
different executive control processes grouped under the banner
of executive function (e.g., Miyake et al., 2000; Glisky et al.,
2021). Some of these may be modifiable by cognitive reserve
or susceptible to practice, others may not. Looking at different
types of executive functions longitudinally in an aging population
would be an important future endeavor, which could identify
more specifically the kinds of processes that are most amenable
to modification. These findings also support the benefits of using
composite measures made up of tests that might differ in many
ways but share a common process. Being able to identify specific
processes that are affected by aging, rather than focusing just at
the domain level, could further enhance our understanding of
aging and suggest interventions most likely to succeed.

Strengths and Limitations
One of the major strengths of this study, as already noted, was
the high probability that our sample included only older adults
who were aging normally with respect to their cognitive function.
This reduced the likelihood that any negative outcomes that
we observed might be attributable to incipient pathology. At
the same time, however, our sample was quite high functioning
and may not be representative of the population in general.
Second, as suggested and incorporated by many others, we used
composite scores to reduce variability and error, but in our study
(as in some others), the tests comprising the composites were
chosen to reflect a common process determined through factor
analysis. This allowed us to go beyond what many have said
before about what cognitive domains are or are not affected by
aging, and to begin identification of specific processes. Third,
we believe that we have introduced a relatively novel way of
separating practice and aging effects within an individual across
repeated tests. Many studies have looked at practice effects across
individuals, by comparing Time 1 performance in those who
completed only Time 1 to those from the same cohort at Time
2, but this comparison is still between-persons and could be
affected by other individual differences. Finally, we think that our
results showing robust within-person practice effects in memory
and no practice effects in our measure of executive function,
make a strong case for concluding that not all cognitive functions
show improvements with practice or retesting, and leaves room
for many more studies to explore this issue at the level of

processes. The findings with respect to aging also leave open the
possibility that there may be (a) a common age-related factor that
affects all cognitive processes, for example, global changes in the
brain, (b) a common domain-related factor that affects all tests
within a domain, or (c) process-specific factors within domains,
dependent on more specific brain regions.

Limitations of our study include a relatively small sample
size. In longitudinal studies that rely on community-based older
adult volunteers who need to be available for several years,
there are always many dropouts for a variety of reasons. In
our case, to ensure that our sample continued to age normally,
we also excluded people who had or developed psychiatric or
neurological conditions that might affect cognitive function. Our
sample size therefore limited to some degree the kinds of analyses
that we could do and our ability to explore additional factors.
Another limitation of our work is that we did not have any
direct measures of brain integrity or function, which might
support our cognitive findings. Although we suggested that the
common factor among our memory tests most likely reflected
consolidation dependent on medial temporal lobe regions, and
our executive function tests depended on prefrontal brain regions
associated with working memory, we could not determine that
from our study, and certainly we could not be more specific.
The recent advances in neuroimaging, however, which have
begun to relate longitudinal changes in cognitive functions to
corresponding changes in different brain regions (e.g., Persson
et al., 2014; Armstrong et al., 2020; Gavett et al., 2021), will
continue to lead to new ideas and discoveries that will add
considerably to our growing understanding of both normal and
pathological aging.
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Objective: Cognitive practice effects (PEs) can delay detection of progression from
cognitively unimpaired to mild cognitive impairment (MCI). They also reduce diagnostic
accuracy as suggested by biomarker positivity data. Even among those who decline,
PEs can mask steeper declines by inflating cognitive scores. Within MCI samples, PEs
may increase reversion rates and thus impede detection of further impairment. Within
an MCI sample at baseline, we evaluated how PEs impact prevalence, reversion rates,
and dementia progression after 1 year.

Methods: We examined 329 baseline Alzheimer’s Disease Neuroimaging Initiative MCI
participants (mean age = 73.1; SD = 7.4). We identified test-naïve participants who were
demographically matched to returnees at their 1-year follow-up. Since the only major
difference between groups was that one completed testing once and the other twice,
comparison of scores in each group yielded PEs. PEs were subtracted from each test
to yield PE-adjusted scores. Biomarkers included cerebrospinal fluid phosphorylated tau
and amyloid beta. Cox proportional models predicted time until first dementia diagnosis
using PE-unadjusted and PE-adjusted diagnoses.

Results: Accounting for PEs increased MCI prevalence at follow-up by 9.2% (272 vs.
249 MCI), and reduced reversion to normal by 28.8% (57 vs. 80 reverters). PEs also
increased stability of single-domain MCI by 12.0% (164 vs. 147). Compared to PE-
unadjusted diagnoses, use of PE-adjusted follow-up diagnoses led to a twofold increase
in hazard ratios for incident dementia. We classified individuals as false reverters if
they reverted to cognitively unimpaired status based on PE-unadjusted scores, but
remained classified as MCI cases after accounting for PEs. When amyloid and tau
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positivity were examined together, 72.2% of these false reverters were positive for at
least one biomarker.

Interpretation: Even when PEs are small, they can meaningfully change whether some
individuals with MCI retain the diagnosis at a 1-year follow-up. Accounting for PEs
resulted in increased MCI prevalence and altered stability/reversion rates. This improved
diagnostic accuracy also increased the dementia-predicting ability of MCI diagnoses.

Keywords: practice effects, cognitive aging, mild cognitive impairment, Alzheimer’s disease, biomarkers,
dementia progression

INTRODUCTION

Mild Cognitive Impairment Stability and
Reversion
Mild cognitive impairment (MCI) is characterized by cognitive
deficits in the presence of minimal to no impairment in
functional activities (Manly et al., 2008; Albert et al., 2011). MCI
is seen as a risk factor for Alzheimer’s Disease dementia (AD),
particularly when there is a memory impairment either alone (i.e.,
single-domain amnestic MCI) or in combination with deficits in
other domains (i.e., multi-domain amnestic MCI) (Manly et al.,
2008; Albert et al., 2011; Eppig et al., 2020; Thomas et al., 2020).
Individuals diagnosed with MCI are significantly more likely to
progress to AD, and do so at a faster rate than those without MCI
(Mitchell and Shiri-Feshki, 2009; Pandya et al., 2016). Individuals
with MCI who are on the AD trajectory often have AD biomarker
levels in between those diagnosed as cognitively normal (CN) and
those with AD (Edmonds et al., 2015a; Olsson et al., 2016).

Nearly all AD clinical trials have focused on treating
individuals with dementia in an effort to mitigate or reverse the
disease. Unfortunately, the failure rate for these trials is greater
than 99% (Cummings et al., 2014; Anand et al., 2017). As a result,
there has been a shift toward identifying and targeting individuals
at the earliest stages of the disease including at-risk CN and MCI
(Sperling R. et al., 2014; Sperling R. A. et al., 2014; Canevelli et al.,
2016; Anand et al., 2017; Alexander et al., 2021). As noted by
Canevelli et al. (2016), at least 274 randomized controlled trials
were recruiting MCI subjects in 2016. As such, accurate diagnoses
of earlier disease stages are necessary to further the treatment of
AD (Edmonds et al., 2018; Veitch et al., 2019; Eppig et al., 2020).

There is concern regarding stability of MCI diagnosis that
limits its use in clinical and research settings. Although 10–12%
of those with MCI are expected to convert to AD per year, 20–
50% of individuals revert from MCI to CN status within 2–5 years
(Pandya et al., 2016). Over a similar time frame, an estimated
37–67% of individuals retain their MCI diagnosis (Pandya et al.,
2016). One criticism of the MCI diagnosis has centered on the fact
that individuals are more likely to revert to CN or maintain their
MCI status than to convert to dementia each year (Canevelli et al.,
2016). On the other hand, long term follow-ups may be necessary
to more accurately determine the true proportion of those with
MCI who progress to dementia.

Much of the MCI reversion rate literature was published prior
to 2016 and was summarized by three articles (Canevelli et al.,
2016; Malek-Ahmadi, 2016; Pandya et al., 2016). These authors

highlighted the wide range in reversion rates and suggested
that this variability is likely due to multiple factors, including
the heterogeneity of MCI criteria and reversible causes such as
depression (Canevelli et al., 2016; Malek-Ahmadi, 2016; Pandya
et al., 2016). Malek-Ahmadi (2016) and Pandya et al. (2016) also
suggested that reducing reversion rates should be an essential
goal of future MCI methodology studies. Canevelli et al. (2016)
and Pandya et al. (2016) argued that MCI may be an unstable
condition where reversion to normal is expected, and that
its use as a prodromal stage of underlying neurodegenerative
diseases is questionable. Malek-Ahmadi (2016) suggested that the
utility of MCI diagnosis would benefit from further refinement
of statistical methods, the use of sensitive cognitive tests, and
greater utilization of biomarkers. All three reviews concluded
that reversion impairs our ability to treat AD by diluting samples
and reducing study power (Canevelli et al., 2016; Malek-Ahmadi,
2016; Pandya et al., 2016).

Practice Effects and Mild Cognitive
Impairment
Practice effects (PEs) on cognitive tests used to diagnose MCI are
a likely contributor to MCI reversion rates. They mask cognitive
decline by increasing scores at follow-up testing relative to how
an individual would have performed if they were naïve to the test.
PEs are due to familiarity with specific test items (i.e., content
effect), and/or increased comfort and familiarity with the general
assessment process (i.e., context effect) (Calamia et al., 2012;
Gross et al., 2017). PEs in participants without dementia have
been found across retest intervals as long as 7 years, and across
multiple cognitive domains (Ronnlund et al., 2005; Gross et al.,
2015; Elman et al., 2018; Wang et al., 2020). PEs after 3–6 months
have even been observed in those with mild AD who performed
very poorly on memory measures (Goldberg et al., 2015; Gross
et al., 2017). Although PEs may be small in cognitively impaired
samples, we have previously shown that utilizing that information
to change MCI classification increases diagnosis accuracy and
leads to earlier detection of decline (Goldberg et al., 2015; Jutten
et al., 2020; Sanderson-Cimino et al., 2020).

The MCI classification methods, particularly in research,
almost always rely on use of cut-off scores to define cognitive
impairment (Winblad et al., 2004; Jak et al., 2009). The same
cut-off is typically applied at baseline and follow-up visits. If
an individual with MCI at baseline experiences a PE greater
than their cognitive decline, then they may be pushed above the
threshold for impairment despite having no change or even a
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slight decline in their actual cognitive ability. Even if there was
no change in cognitive capacity, this individual would likely be
misclassified as CN at follow-up, appearing to revert when in fact
they still have MCI. The impact of PEs on MCI reversion rates
has not been explicitly studied, but it is often suggested when
reversion rates are discussed (Malek-Ahmadi, 2016; Thomas
et al., 2020).

Present Study
In the present analyses, we utilized a sample of Alzheimer’s
Disease Neuroimaging Initiative (ADNI) participants who were
diagnosed as MCI at baseline. We sought to (1) calculate
1-year follow-up cognitive classifications using PE-unadjusted
and PE-adjusted scores, (2) compare reversion rates and
diagnostic stability between PE-unadjusted and PE-adjusted
classifications, and (3) provide criterion validity for the PE-
adjusted classifications through baseline biomarker data and time
until first dementia diagnosis. We hypothesized that the PE-
adjusted scores would reveal false reverters, i.e., participants at
follow-up who were classified as CN via PE-unadjusted scores
but MCI via PE-adjusted scores. By retaining these participants
in the MCI pool, we expected the PE-adjusted classifications to
result in improved diagnostic stability and decreased reversion
rates. Also, we expected the biomarker profile and the time until
first dementia diagnosis of the false reverters to be more similar to
the stable MCI participants than to true reverters (i.e., individuals
classified as CN at follow-up based on both PE-adjusted and PE-
unadjusted scores). Finally, in a post hoc analysis, we modeled the
impact of PE adjustment on studies concerned with progression
to dementia, a common outcome in clinical drug trials and
research studies.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained
from ADNI1. The ADNI, led by Principal Investigator
Michael W. Weiner, MD, was launched in 2003 as a public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. For up-to-date
information, see www.adni-info.org. Participants from the
ADNI-1, ADNI-GO, and ADNI-2 cohorts were included.

Mild cognitive impairment was diagnosed using the Jak-
Bondi approach (Jak et al., 2009; Bondi et al., 2014; Edmonds
et al., 2018). Participants were classified as single domain MCI
(amnestic, dysexecutive, or language-impaired) if their scores
on 2 tests within the same cognitive domain were both greater
than 1 SD below normative means. They were diagnosed as
multi-domain MCI if they met the criteria for single domain
MCI in more than one cognitive domain (e.g., impaired on both
memory tasks and language tasks). The Jak-Bondi approach to

1adni.loni.usc.edu

MCI classification is favorable when compared with Petersen
criteria with regard to the likelihood of progression to dementia,
reversion rates, and proportion of biomarker-positive cases
(Bondi et al., 2014; Edmonds et al., 2018).

We identified 344 individuals who were classified as MCI at
baseline. Of those 344, 329 returned for a 12-month follow-
up visit and also completed all cognitive measures at both
assessments. Mean educational level of returnees was 16.4 years
(SD = 2.9), 61.4% (n = 202) were female, and mean baseline age
was 73.1 years (SD = 7.4).

Procedures
Six cognitive tests were examined across the approximately
12-month test–retest interval. Episodic memory tasks included
the Wechsler Memory Scaled-Revised, Logical Memory Story
A delayed recall, and the Rey Auditory Verbal Learning Test
(AVLT) delayed recall. Language tasks included the Boston
Naming Test and Animal Fluency. Attention-executive function
tasks were Trails A and Trails B. The American National Adult
Reading Test provided an estimate of premorbid IQ. Only
participants who had complete test data and completed the same
version of tests at the baseline and 12-month visits were included.

Z-scores were calculated for the PE-adjusted and -unadjusted
scores based on independent external norms that accounted for
age, sex, and education for all tests except the AVLT (Shirk et al.,
2011). The AVLT was z-scored based on the ADNI participants
who were CN at baseline (n = 889) because we were unable to find
appropriate external norms for this sample that also accounted
for age, sex, and education. AVLT demographic corrections were
based on a regression model that followed the same approach
as the other normative adjustments. Beta values were multiplied
by an individual’s corresponding age, sex, and education. The
products were then removed from the AVLT raw scores. These
adjusted AVLT scores were then z-scored.

Baseline biomarkers included cerebrospinal fluid amyloid-
beta (Aβ), phosphorylated tau (p-tau), and total tau (t-tau).
The ADNI biomarker core (University of Pennsylvania) used
the fully automated Elecsys immunoassay (Roche Diagnostics).
Sample collection and processing have been described previously
(Shaw et al., 2009). Cutoffs for biomarker positivity were2:
Aβ+: Aβ < 977 pg/mL; p-tau+: p-tau > 21.8 pg/mL; t-tau+:
t-tau > 270 pg/mL (Hansson et al., 2018; Elman et al., 2020).
There were 226 returnees with biomarker data.

Dementia was diagnosed according to ADNI criteria: (1)
Memory complaint by subject or study partner that is verified
by a study partner; (2) Mini-Mental State Examination score
between 20–26 (inclusive); (3) Clinical Dementia Rating score of
either 0.5 or 1; (4) An impaired delayed memory score on the
Logical memory test: ≤ to 8 for 16 or more years of education;
≤ to 4 for 8–15 years of education; or ≤to 2 for 0–7 more
years of education; (5) National Institute of Neurological and
Communicative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association criteria for probable AD (Petersen
et al., 2010). No participants met these criteria at baseline or at
the 12-month follow-up.

2http://adni.loni.usc.edu/methods
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Replacement-Participants Approach to
Practice Effects
Although review papers have noted that PEs can exist even
when there is longitudinal decline in observed performance,
as expected within a sample at risk for AD (Salthouse, 2010),
few have empirically demonstrated that claim (Goldberg et al.,
2015). In such situations, Calamia et al. (2012) suggested
that the most suitable approach is to utilize replacement
participants (Rönnlund and Nilsson, 2006). To our knowledge,
the replacement-participant approach has only been utilized in
two samples (Ronnlund et al., 2005; Elman et al., 2018). In
this method new participants are recruited for testing at follow-
up who are demographically matched to returnees. The only
difference between the groups is that replacements are taking the
tests for the first time whereas returnees are retaking the tests.
As age is one of the matching factors, any age-related decline
should be equal across the groups. Therefore, comparing scores at
follow-up between returnees and replacement participants (with
additional adjustment for attrition effects) allows for detection
of PEs when observed scores remain stable and—unlike other
methods—even when they decline. In both scenarios, scores
would have been lower without repeated exposure to the tests
(Ronnlund et al., 2005; Elman et al., 2018).

The goal of the replacement method is to obtain follow-up
scores at retest that are free of PEs and comparable to normative
data (which assume no presence of PEs). Some researchers have
used PEs in other ways, such in short-term retest paradigms (Duff
et al., 2011, 2014; Duff, 2014; Duff and Hammers, 2020). The goal
of this approach is to predict future decline and the likelihood of
progressing to MCI or dementia (Jutten et al., 2020). Rather than
predict decline, the goals of the replacement method are: (1) to
detect decline at a given point in time that has been masked due
to PEs, and (2) to revise the diagnosis of CN or MCI based on
cognitive scores that have been appropriately adjusted to reflect
the estimated magnitude of masked decline. Furthermore, only
the replacement method has been empirically shown to calculate
PEs when there is observable decline over time (Calamia et al.,
2012; Elman et al., 2018). This attribute of the method makes it
uniquely appropriate for samples that are impaired at baseline
and/or are expected to decline over time (Calamia et al., 2012).
Also, unique to this method is the fact that it allows for a change
in how early MCI may be diagnosed.

Practice Effect Calculation
Because replacement participants were not part of the original
ADNI study design, we created what we refer to as the pseudo-
replacement method of PE adjustment. We have fully described
this method previously in an examination of individuals who
were cognitively normal at baseline (Sanderson-Cimino et al.,
2020). Briefly, a bootstrap approach (5,000 resamples, with
replacement) was used to calculate PE values for each cognitive
test. At every bootstrap iteration, a subsample of returnees was
randomly selected (25% of sample) from the total number of
individuals who had a baseline and 12-month follow-up visit.
We then removed these selected returnees from the overall
baseline pool, leaving a subset of potential “pseudo-replacement

participants” that included returnees not chosen at that iteration
and those who did not return for a follow-up (approximately 75%
of the sample). From this potential replacement pool, a set of
pseudo-replacements was matched to selected returnees on age
at returnee follow-up, sex, years of education, and premorbid IQ
using one-to-one matching and propensity scores (R package:
MatchIt) (Ho et al., 2018). Additional t-tests and chi-squared tests
ensured that returnees and pseudo-replacements were matched at
a group level (ps > 0.8). Thus, this sample of pseudo-replacement
participants was demographically identical to the returnee
subsample. In a traditional replacement participants method of
PE-adjustment returnees and non-returnees are combined into a
“baseline” subsample that excludes replacements. In this method,
we used a “proportional baseline” subsample that included the
baseline scores for the returnees chosen at that iteration as
well as all other subjects not chosen to be pseudo-replacements
(approximately 75% of sample). However, the removal of the
pseudo-replacements from the sample led to an artificially high
portion of lower-performing baseline participants since the
pseudo-replacements perform at a similar level to returnees at
baseline. To correct for this issue, we calculated the retention
and attrition rates for that visit in the overall sample. Because the
PE for each test was calculated individually, we used test-specific
retention and attrition rates, which resulted in a slight variation
in rates; the average retention rate was 66% (65–70%) and the
average attrition rate was 34% (30–35%). We then used these rates
in the creation of the proportional baseline mean (see below).
Of note, due to the bootstrapping and matching procedure,
the number of participants in each group (i.e., returnees and
replacements) varied but was always greater than 80 participants.

The equations below were used to calculate the PE:

Difference score = ReturneesT2 − Pseudo-ReplacementsT1

Attrition effect = ReturneesT1 − Proportional BaselineT1

Practice effect = Difference score − Attrition Effect

Where ReturneesT2 represents the mean score of the returnee
sample at their second assessment, Pseudo-replacementsT1
represents the mean score of the pseudo-replacement sample (by
definition, at their first assessment), and ReturneesT1 represents
the mean score of returnees at their first assessment. The
Proportional BaselineT1 was a weighted mean calculated by
multiplying the returnee baseline scores by the test-specific
retention rate (65–75%) and the remaining portion of the
subsample by the test-specific attrition rate (30–35%%). The
difference score represents the sum of the PE and the attrition
effect. The attrition effect accounts for the fact that individuals
who return for follow-up are typically higher-performing or
healthier than those who drop out. Subtracting the attrition effect
from the difference score prevents over-estimation of the PE
(Ronnlund et al., 2005; Elman et al., 2018). Use of a proportional
baseline that retains the test-specific retention and attrition rates
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prevents overestimation of the attrition effect as removing the
pseudo-replacements from this sample artificially lowers the
baseline mean score. The PE for each test was calculated by
subtracting the attrition effect from the difference score.

Statistical Analysis
After calculation, the PE for each test was then subtracted
from each individual’s observed (unadjusted) follow-up test score
to provide PE-adjusted raw scores. Cohen’s d was calculated
for each PE by comparing PE-unadjusted and PE-adjusted
scores. Adjusted raw scores at follow-up were converted to
z-scores, which were used to determine PE-adjusted diagnoses.
Stated differently, a score was labeled as impaired if the
follow-up PE-adjusted score was greater than 1 SD below the
average demographic-corrected mean. To evaluate the impact
PE-adjustment had on cognitive classification, McNemar χ2

tests were used to compare differences in the proportion
of individuals classified as having MCI before and after
adjusting for PEs. To assess criterion validity of the PE-
adjusted diagnoses, McNemar χ2 tests were used to compare
the number of biomarker-negative reverters and biomarker-
positive stable MCI participants when using PE-adjusted versus
PE-unadjusted scores.

Time until first dementia diagnosis in months from baseline
was also used to validate PE-adjusted diagnoses. Cognitive data
used to diagnose dementia by ADNI were not adjusted for PEs.
Wilcoxon rank sum tests were used to compare groups due
to the non-normal distribution of months until first dementia
diagnosis. It was expected that those who reverted to CN
status at follow-up would progress to dementia more slowly
than those who remained classified as having MCI. As such,
if PE adjustment improved diagnostic accuracy by correctly
relabeling some false reverter (based on PE-unadjusted scores)
as MCI, then a comparison between MCI and CN groups should
show a larger and more statistically significant difference when
using PE-adjusted scores than when using PE-unadjusted scores.
PE-adjustment should also alter a comparison between those
who truly revert and the false reverters, with false reverters
progressing faster than true reverters. The following four time-
until-dementia comparisons were tested: PE-adjusted MCI versus
PE-adjusted CN; PE-unadjusted MCI versus PE-unadjusted CN;
False reverters versus PE-unadjusted MCI; and False reverters
versus PE-adjusted CN.

We also expected that the false reverters (based on PE-
unadjusted scores) would have a biomarker profile more similar
to the stable MCI participants than the true reverters. Thus, we
calculated rates of biomarker positivity for diagnostic groups
(Stable MCI and reverters) first using PE-unadjusted scores and
then with PE-adjusted scores.

In post hoc analyses, Cox proportional hazard models
compared progression to dementia between those who were
diagnosed as MCI at follow-up and those who reverted to CN.
All models used classification (Stable MCI vs. reverters) as the
independent variable of interest and months from baseline until
first dementia diagnosis as the dependent variable. Covariates
were age and education. Models were completed first with PE-
unadjusted scores and then with PE-adjusted scores.

Time-to-dementia analyses included a full model and three
timeframe-restricted models: 16–150 months (full sample data),
16–24, 16–36, and 16–48 months. The models with restricted
timeframes attempted to demonstrate how predictive the
classification was for studies with shorter follow-up periods.
Because, in these hypothetical studies, we could not know if a
participant progressed to dementia past the specified timeframe,
each model was right-censored with time to event defined as time
to first dementia diagnosis or time to last follow-up within the
restricted time period. As this project utilized existing data, the
maximum follow-up period was set to 150 months because that
was the longest available timeframe within ADNI.

RESULTS

PEs were non-zero for 5 of the 6 measures (Table 1) and ranged
in magnitude (Cohen’s d = 0.06–0.26). PE-adjustment resulted in
23 more participants (+9%) classified as MCI at 1-year follow-
up than when using PE-unadjusted scores (272 vs. 249). Of
the 23, 16 (+9%) were classified as single-domain MCI and 7
participants classified as multi-domain MCI (+9%). Regarding
specific cognitive domains, PE-adjustment resulted in 24 more
participants (+11%) classified with memory impairment (233
vs. 209), 6 more participants (+9%) classified with attention-
executive impairments (73 vs. 67), and 5 more participants (+7%)
classified with language impairments (72 vs. 67). Full results are
presented in Table 2.

The overall 1-year stability of MCI (lack of reversion to
CN) was raised by 7% when adjusting for PEs (PE-adjusted
stability rate = 82.7%; PE-unadjusted stability rate = 75.6%).
Across groups (single-domain MCI, multi-domain MCI) and
within each cognitive domain (memory, attention-executive, and
language), PE adjustment increased the number of participants
who retained their baseline diagnosis of MCI (Range: +2 [+3%]
to +22 [+11%]). In particular, there were significantly more
participants who remained in the impaired range at follow-up on
memory when using PE-adjusted data versus PE-unadjusted data
(+11%; 201 vs. 223). A similar significant result was also found
when considering stability of single-domain MCI (+12%; 147 vs.
164). Table 3 provides full stability results.

The overall reversion rate (i.e., being classified as CN at follow-
up) was 24.3% (n = 80) using PE-unadjusted scores and 17.3%
(n = 57) using PE-adjusted scores. This indicates that adjusting
for PEs resulted in a 28.8% reduction in the overall reversion
rate. Table 4 describes how PE adjustment affects reversion
rates across diagnostic subgroups and cognitive domains. Among
those with single-domain MCI at baseline, adjusting for PEs
reduced reversion rates by 27.4% (53 vs. 73 reverters). Regarding
specific cognitive domains, adjustment reduced the reversion rate
among those with baseline memory impairments by 33.3% (44
vs. 66). Adjustment also decreased reversion rates among the
remaining cognitive domains (attention-executive and language)
as well as among those who were multi-domain MCI at
baseline (reversion to CN rate reduction range: 6.5–13.3%),
but this equated to only a small change in the number of
participants (ns < 5).
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TABLE 1A | Descriptive statistics among participants at baseline and 1-year-follow-up.

Memory Attention/executive function Language

Raw mean score (SD) RAVLT Logical memory Trails A Trails B Boston naming Category fluency

Full sample baseline 1.55 (2.61) 5.81 (3.57) 39.27 (20.85) 106.14 (66.90) 27.82 (3.76) 15.88 (4.76)
Full sample follow-up 2.17 (3.09) 6.39 (4.55) 39.39 (20.67) 106.44 (74.67) 28.15 (4.10) 15.29 (5.51)

The “Full Sample” rows refer to the means (standard deviations) of all participants at baseline and at follow-up.

TABLE 1B | Descriptive statistics and calculated practice effects for tests among participants classified as mild cognitive impairment at baseline.

Memory Attention/executive function Language

Raw mean score (SD) RAVLT Logical memory Trails A Trails B Boston naming Category fluency

Proportional baseline 1.59 (2.61) 1.92 (3.68) 40.28 (22.75) 109.76 (75.03) 27.66 (4.16) 15.51 (4.82)
Returnees baseline 1.58 (2.61) 2.00 (3.56) 39.88 (21.73) 107.45 (68.16) 27.77 (3.94) 15.70 (4.81)
Returnees follow-up 2.45 (3.07) 2.84 (4.51) 39.30 (22.19) 107.73 (76.53) 28.11 (4.51) 15.02 (5.46)
Replacements follow-up 1.67 (2.57) 1.86 (3.72) 41.35 (22.63) 114.40 (74.90) 27.37 (4.51) 15.11 (4.81)
Attrition effect −0.01 [−0.13, 0.16] 0.09 [−0.10, 0.43] −0.40 [−1.57, 0.89] −2.31 [−6.64, 2.27] 0.11 [−0.14, 0.33] 0.43 [0.15, 0.72]
Practice effect 0.80 [−0.33, 3.08] 0.89 [−0.41, 3.33] −1.64 [−5.65, 2.41] −4.36 [−19.16, 9.57] 0.63 [−0.21, 1.53] NA
Cohen’s d 0.26 0.20 −0.07 −0.06 0.14 NA

Groups are based on the average performance across all 5,000 bootstrapped iterations. Means are based on transformed data that was reverted back to raw units.
“Proportional baseline” refers to a weighted mean that combines the returnee baseline group and a group that included all subjects not selected to be Returnees or
Replacements in that bootstrapped iteration. “Returnee Baseline” refers to baseline test scores for the subset of participants who returned for the 12-month follow-up
visit (ns > 80) and were selected at that iteration. “Returnee Follow-Up” refers to 12-month scores for the same subset of returnees who were selected for that iteration.
“Replacement Follow-up” refers to the pseudo-replacement scores (ns > 80). The scores for memory tasks indicate the number of words remembered at the delayed
recall trials. Scores on the attention/executive functioning tests indicate time to completion of task. On these tasks, higher scores indicate worse performance. Scores on
the Boston Naming Task indicate number of correct items identified; scores on Category Fluency indicate number of items correctly stated. Practice effects and attrition
effects are in raw units with the 2.5 and 97.5 percentiles in brackets. As such, the negative practice effects and attrition effects for the Trails tasks demonstrates that
practice decreased time (increased performance). Cohen’s d is given for the difference between PE-adjusted and unadjusted scores of returnees at follow-up. RAVLT,
Rey Auditory Verbal Learning Test.

TABLE 2 | Classification prevalence at baseline and follow-up.

Any MCI M MCI S MCI Memory impairment Attention/EF impairment Language impairment CN

Baseline 329 75 254 267 77 70 0

Unadjusted 249 79 170 209 67 67 80

Adjusted 272 86 186 233 73 72 57

Difference +23 +7 +16 +24 +6 +5 −23

% difference 9.23% 8.86% 9.41% 11.48% 9.00% 7.46% 28.75%

χ2; p-value 21.0; p < 0.001 5.1; p = 0.02 7.5; p = 0.006 22.0; P < 0.001 3.2; p = 0.07 3.2; p = 0.07 21.0; p < 0.001

Presents the number of participants who met criteria for mild cognitive impairment (MCI). The “unadjusted” and “adjusted” rows refer to diagnoses at the follow-up visit.
The “Any MCI” column presents the count of participants who meet criteria for MCI in any domain, combining those who are impaired in only one domain (single-domain
MCI: S MCI) and those who are impaired in 2 or 3 domains (multiple-domain MCI: M MCI). The impairment columns present the count of participants who were impaired
in each domain, regardless of whether they are impaired in another domain. Individuals who do not meet criteria for impairment (i.e., classified as Cognitively Normal; CN)
are displayed in the “CN” column.
The Difference row displays how many more participants meet criteria for that classification or impairment when adjusting for practice effects (i.e., Adjusted count –
Unadjusted count). The percent listed in this row displays the percent increase/decrease when accounting for practice effects: difference/Unadjusted count. McNemar
χ2 tests were used to evaluate the impact of practice-effect adjustment on classification or impairment count; p-values are presented.

We also compared how PE-adjusted and PE-unadjusted
classification affected rate of progression to dementia. Of the
329 returnees, 159 progressed to dementia (48% of sample).
As shown in Table 5, those who were diagnosed as MCI at
follow-up and progressed to dementia during the study were first
diagnosed in approximately the same time frame, regardless of
PE consideration (median = 25.0 months). Those who reverted to
CN and later progressed to dementia did so more slowly than the
stable MCI groups (PE-unadjusted median = 37.3 months; PE-
adjusted median = 60.3 months). In PE-unadjusted groups, based

on Mann–Whitney U tests, there was no significant difference
in time until first dementia diagnosis between stable MCI and
reverter participants (W = 1703; p = 0.177). However, in the same
comparison based on PE-adjusted scores, those in the stable MCI
group progressed significantly faster than those who reverted to
CN (W = 1240; p = 0.017).

Ten of the false reverters (6.2%) progressed to dementia.
These participants progressed to dementia in a similar time
frame as the those diagnosed with MCI via PE-unadjusted scores
(median = 30.03 months). The false reverters progressed to
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TABLE 3 | Impact of practice effects on classification stability and progression.

Stable M MCI Stable S MCI Progression to M MCI Stable impairment

Memory Attention/EF Language

Unadjusted 45 147 34 201 46 42

Adjusted 49 164 37 223 48 44

Difference +4 +17 +3 +22 +2 +2

% difference 8.89% 11.56% 8.82% 10.94% 4.35% 4.76%

χ2; p-value 2.25; p = 0.13 11.13; p < 0.001 1.3; p = 0.25 20.0; p < 0.001 0.5; p = 0.48 0.5; p = 0.48

Displays the number of individuals classified as impaired at follow-up via practice effect-unadjusted scores and -adjusted scores. The “Stable M MCI” column provides
the count of participants who met criteria for multiple domain mild cognitive impairment (M MCI) at baseline and at follow-up. The “Stable S MCI” provides the same
information about individuals with single domain MCI (S MCI). Individuals who progressed from S MCI at baseline to M MCI at follow-up are displayed in the “Progression”
column. The “Stable Impairment” section describes the number of individuals who retained an impairment in a specific cognitive domain at follow-up, regardless of
whether they met criteria for an impairment in another domain at either visit. The Difference row displays how many more participants meet criteria for that classification
or impairment when adjusting for practice effects (i.e., Adjusted count – Unadjusted count). The percent listed in this row displays the percent increase in stability when
accounting for practice effects: difference/Unadjusted count. McNemar χ2 tests were used to evaluate the impact of practice-effect adjustment on classification or
impairment stability; p-values are presented.

TABLE 4 | Practice effect-adjustment and reversion rates.

Reverters M MCI Reverters S MCI Reversion in specific domain

Memory Attention/EF Language

Count

Unadjusted 30 73 66 28 31

Adjusted 26 53 44 26 29

Difference −4 −20 −22 −2 −2

χ2; p-value 2.25 p = 0.13 18.1 p < 0.001 20.0 p < 0.001 0.5 p = 0.48 0.5 p = 0.48

Reversion rate

Unadjusted 40.5% 28.7% 24.7% 36.3% 44.3%

Adjusted 35.1% 20.9% 16.5% 33.8% 41.4%

Difference −5.4% −7.8% −8.2% 2.6% 2.9%

% change in reversion 113.3% 127.4% 133.3% 17.1% 16.5%

The “Count” section displays the number of participants who reverted from a classification or impairment based on practice effect-unadjusted and -adjusted data. Those
who reverted from multi-domain mild cognitive impairment (M MCI) at baseline to either single domain MCI (S MCI) or cognitively normal are displayed in the “Reverters M
MCI” column. Those who were classified as S MCI at baseline and reverted to cognitively normal at follow-up are listed in the “Reverters S MCI” column. The “Reversion
in Specific Domain” section refers to individuals who had a baseline impairment in a domain (memory, attention/executive functioning, or language) but not at follow-up;
participants in these columns may be impaired in other domains at either baseline or follow-up. The Difference row displays how many fewer participants reverted when
adjusting for practice effects (i.e., Adjusted count – Unadjusted count). McNemar χ2 tests were used to evaluate the impact of practice-effect adjustment on classification
or impairment reversion; p-values are presented.
The “Reversion Rate’ section lists the reversion percent for each column by dividing the counts provided above by the baseline prevalence of each classification shown
in Table 1. For example, 74 people were classified as M MCI at baseline and 30 reverted at follow-up when using unadjusted data. Therefore, the reversion rate for the
unadjusted M MCI reverters was 30/74. The difference row subtracts the reversion rate using Unadjusted data from the rate using Adjusted data. The “% change in
reversion” row shows the percent change in reversion rate by dividing the difference by the unadjusted reversion rate: e.g., 113.3 = 5.4/40.5.

TABLE 5 | Progression to dementia.

Full sample N = 159 Stable MCI Reverters False reverters N = 10

Months until DX Unadjusted N = 141 Adjusted N = 151 Unadjusted N = 18 Adjusted N = 8

Mean 37.48 36.17 36.32 47.77 59.44 38.44

Median 25.28 24.98 24.98 37.28 60.28 30.03

SD 21.90 20.66 20.66 28.68 33.34 21.70

Presents the time in months until first dementia diagnosis (DX) among those who converted to dementia. Of the 329 participants 159 have progressed to dementia
(“Full Sample”). Participants were classified as “Stable MCI” if they retained their mild cognitive impairment (MCI) classification at follow-up; participants were classified
as “Reverters” if they were classified as cognitively normal at follow-up. Classifications were made using practice effect-unadjusted (“Unadjusted”) and practice effect-
adjusted (“Adjusted”) data. Those who were classified as MCI by the practice effect-adjusted data but not the unadjusted data are referred to as “False reverters”. Values
are bolded to emphasize that the False reverters appear to be similar to the Stable MCI group in time to first dementia diagnosis.
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dementia more quickly than those who were classified as CN
based on PE-adjusted scores at follow-up. There was not a
significantly different rate of progression to dementia between
false reverters and PE-adjusted CNs, or between false reverters
and PE-unadjusted MCI based on Mann–Whitney U tests
(ps > 0.17).

When false reverters were removed by adjusting for PEs,
the median time until first dementia diagnosis was increased
(+23 months). To further investigate this finding, we performed
post hoc Cox proportional hazard models to compare progression
to dementia from 12-month follow-up between those who
were diagnosed as MCI at follow-up and those who reverted
to CN. Across all models, the hazard ratio associated with
increased risk of dementia progression among stable MCI
participants was nearly twice as large when adjusted for
PEs compared to PE-unadjusted diagnoses (average hazard
ratio: PE-adjusted = 8.9, PE-unadjusted = 4.2; average percent
increase = 110%). Figures 1, 2 displays hazard ratios and
survival curves for all models. Supplementary Figure 1 provides
additional Kaplan–Meier curves and risk tables for progression to
dementia by diagnosis group.

There were 226 participants with baseline biomarker data. As
shown in Table 6A, regardless of PE adjustment, approximately
70% of those who were diagnosed as MCI at follow-up were
Aβ positive and 70% were P-tau positive at baseline. Similarly,
regardless of PE adjustment, about 60% of reverters were Aβ

positive and 45% were P-tau positive. There were 18 false
reverters with biomarker data. The false reverter group had an Aβ

positivity of 55% and a P-tau positivity of 40%. Table 6B displays
the biomarker positivity rates for each classification group based
on amyloid and P-tau positivity (i.e., A−/T−, A+/T−, A−/T+,
and A+/T+). Regarding the false reverters, 72% (13/18) were
positive for at least one biomarker.

DISCUSSION

The validity and utility of MCI criteria are weakened by high
reversion rates, which have been a longstanding problem for
MCI as a construct (Pandya et al., 2016). As a result, some
practitioners are hesitant to use MCI as an early indicator of AD,
despite the field’s goal of identifying and treating those on the AD
trajectory as early as possible (Sperling R. A. et al., 2014; Canevelli
et al., 2016; Pandya et al., 2016; Alexander et al., 2021). Among
individuals in the ADNI sample who were diagnosed with MCI
at baseline, adjusting for PEs led to a significant reduction in
reversion to CN over 1 year (28.8% reduction in reversion rate).
This meant that classifications were more stable across time,
particularly for those with baseline amnestic MCI.

Pathologically, AD is characterized by a progressive change
in amyloid beta and tau protein levels in the brain (Anand
et al., 2017). Although there is conflicting evidence regarding
the temporal staging of AD biomarkers and cognitive symptoms
(Braak et al., 2011; Jack et al., 2013; Edmonds et al., 2015b;
Veitch et al., 2019; Elman et al., 2020), it is likely that in
most cases abnormal levels of amyloid beta are first reached,
followed by abnormal levels of tau, which in turn affect cognition

(Dubois et al., 2016; Jack et al., 2017, 2018). In our analyses,
approximately half of the false reverters were amyloid positive
while around a third were tau positive. Nearly three-quarters
of the false reverters were positive for at least one of the
two biomarkers. A comparison across all three groups – true
reverters, false reverters, and stable MCI – suggests that the false
reverters may be an intermediate/mixed biomarker group. Some
of the false reverters who were biomarker negative (A−/T−) may
have MCI that is unrelated to AD. However, it is also possible
that even some of the false reverters who were biomarker negative
may still be on the AD trajectory. We previously showed, for
example, that after controlling for tau, cognitive function in A−
individuals in the ADNI sample predicted progression to A+
status (Elman et al., 2020). Overall, the PE-adjustment reduced
the number of reverters, resulting in more stable MCI diagnoses
and may be identifying more people who are beginning to show
clinically significant levels of AD biomarkers.

Use of a robust normal sample partially addresses PEs as
the cut-off for MCI diagnosis varies at each timepoint based
on the distribution of scores among participants who remain
CN across all visits (Edmonds et al., 2015a; Eppig et al., 2017;
Thomas et al., 2017, 2019). In a similar ADNI subsample,
use of robust norms found a 1-year reversion rate of 15.8%
(Thomas et al., 2019), which is similar to the rate found in the
present study (17.3%). Whether the rates would be similar in
different studies remains an open question. Using robust normal
instead of normative data means that gauging impairment is
based on what is a “super-normal” group that is, essentially, by
definition, non-representative. This non-representativeness will
be compounded further if the sample itself is not representative.
For example, the robust normal group in ADNI is the highest
functioning subgroup of what is already a very highly educated
sample. In this approach there is no accounting for how PEs
may be affecting classification into the robust normal group
itself. It is possible that some individuals in that group might
actually be classified as having MCI at some follow-up if their
scores were adjusted for PEs at each time point based on a
replacement participants approach. Moreover, PE estimation can
be overestimated if attrition effects are not considered (Ronnlund
et al., 2005; Elman et al., 2018). PEs based on a robust normal
group may be inflated as compared to PEs within the overall
sample because, by definition, this group does not have attrition
(Eppig et al., 2017; Thomas et al., 2017). Finally, comparison
of results from the present study with that of our prior study
(Sanderson-Cimino et al., 2020) shows that it is important to
differentiate the cognitive status of individuals at baseline because
the magnitude of PEs differs for individuals who are CN at
baseline versus those who have MCI at baseline.

Proponents of MCI as a diagnostic entity note that individuals
with the diagnosis are more likely to progress to AD, and do so at
a faster rate than CN individuals (Mitchell and Shiri-Feshki, 2009;
Pandya et al., 2016). Those critical of MCI’s validity note that,
while MCI is associated with AD, individuals with MCI are more
likely to revert to CN over time than to progress to AD (Canevelli
et al., 2016). Here we found that the false reverters progressed
to dementia at approximately the same rate as individuals who
were classified as MCI at both time points. In contrast, those who
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FIGURE 1 | Full Cox proportional models for time until first dementia diagnosis by PE-unadjusted and PE-adjusted 12-month diagnoses. Cox proportional hazard
models compared progression to dementia between those who were classified with mild cognitive impairment at follow-up (Stable MCI) and those who reverted to
cognitively normal (Reverters). Models used classifications (Stable MCI vs. Reverter) as the independent variable of interest; months from baseline until first dementia
diagnosis as the dependent variable; and all variable data (16 – months from baseline). Covariates were age and education, fixed at the average level within the
sample (age: 73.1 years; education: 16.4 years). The left graph bases diagnoses on the PE-unadjusted 12-month data; the right graph uses diagnoses based on the
PE-adjusted 12-month data. Each model presents a hazard ratio (HR; [CI]) that indicates how much more likely the Stable MCI group was to convert to dementia
compared to the Reverters. Wald tests and likelihood-ratio tests (LRT) are also included with associated p-values to denote the significance of the HR. The Y-axis of
each model provides the survival probability and the X-axis of each model provides the time frame until dementia conversion.

were classified as CN (i.e., true reverters) at follow-up progressed
to dementia more slowly than the false reverters. These results
are consistent with the notion that misclassification of these false
reverters, caused by the failure to account for PEs, is weakening
the predictive ability of MCI. This point is echoed by the time-
to-dementia diagnosis of the reverter group. Removing the false
reverters from the reverter group increased the time until first
dementia diagnosis among those classified as CN by almost
2 years (37.28 versus 60.28 months).

Although adjusting for PEs slightly altered the median
time until first dementia diagnosis, statistical comparisons
between groups were non-significant. To further investigate
these findings, we completed Cox proportional hazard models.
Using PE-unadjusted data, we found that the stable MCI
group converted to dementia significantly faster than the (false)
reverter group, as expected. When models were completed
with PE-adjusted data, we found that the hazard ratios
sharply increased, suggesting that the PE-adjusted classifications
improved differentiation between the (true) reverters and the
stable MCI participants. Not accounting for PEs may thus
obscure true effects or push significance above threshold,
influencing subsequent interpretation.

Interestingly, hazard ratios were less different between
PE-adjusted and PE-unadjusted models when analyses were
completed over the full 150-month timeframe (HRs: 6.0. versus
3.7) compared to shorter time frames (24-month HRs: 8.9 versus
3.6; and 36-month HRs: 11.6 vs. 4.8). These results are consistent

with the idea that PE adjustment leads to earlier detection
of at-risk participants, which would be particularly important
for studies with shorter follow-up periods. Importantly, clinical
drug trials for AD typically involve shorter follow-up periods,
so increasing the number of individuals expected to progress
to dementia during the trial period will increase sensitivity to
treatment effects. Therefore, failure to account for PEs may have a
large impact on the design of treatment studies and interpretation
of their results. Earlier detection of at-risk individuals is also of
obvious importance for clinical care.

Strengths and Limitations
All participants completed the logical memory test at a screening
assessment, baseline, and 12-month visit; all other tests were
completed only twice. Therefore, it is possible that the PE for
logical memory is misestimated. However, as the effect size of the
logical memory PE is similar to that of the other memory task
(AVLT), it seems likely that our estimate is still valid.

Our time until dementia analyses did not account for death.
Of the 329 participants included in these analyses, 33 passed away
before study completion (10.0%). The modal time until death was
48-months past baseline visit (n = 8; 24% of deaths). Importantly,
all participants who passed away were diagnosed as stable MCI
(impaired at baseline and follow-up) by both the PE-adjusted and
PE-unadjusted datasets. As such, although mortality may have
impacted results, this effect was equal within the PE-adjusted and
PE-unadjusted analyses.
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FIGURE 2 | Full Cox proportional models for time until first dementia diagnosis by PE-unadjusted and PE-adjusted 12-month diagnoses. Cox proportional hazard
models compared progression to dementia between those who were classified with mild cognitive impairment at follow-up (Stable MCI) and those who reverted to
cognitively normal (Reverters). All models used classifications (Stable MCI vs. Reverter) as the independent variable of interest and months from baseline until first
dementia diagnosis as the dependent variable. Covariates were age and education, fixed at the average level within the sample (age: 73.1 years; education:
16.4 years). Models in the top row display results completed with PE-unadjusted scores; models in the bottom row display results completed with the PE-adjusted
scores. Each row designates the time frame for each model measured in months from baseline. Time frames were restricted to demonstrate how predictive the
classification was for studies with various follow-up periods. As these hypothetical studies would not know if a participant converted to dementia past their follow-up
period, those who converted after the endpoint of that specific model were censored (i.e., recoded as non-converters). Each model presents a hazard ratio (HR; [CI])
that indicates how much more likely the Stable MCI group was to convert to dementia compared to the Reverters. Wald tests and likelihood-ratio tests (LRT) are also
included with associated p-values to denote the significance of the HR. The Y-axis of each of the 6 models provides the survival probability and the X-axis of each
model provides the time frame until dementia conversion.

The ADNI sample was not designed to be a population-
representative study. It represents a population of older adults
likely to volunteer for clinical trials, and consists primarily of
white, highly educated individuals who may be at a higher
genetic risk for dementia than typical Americans. Results of
the present study may not be applicable to other studies with
different sample characteristics or retest intervals. Additionally,
age and education have been shown to impact PEs (Calamia
et al., 2012; Gross et al., 2017). We strongly believe that the exact
PE values found in this study should not be applied to other
samples, particularly if they involve CN individuals with different
demographics (i.e., age and education). However, a strength of
the replacement-participants method of estimating PEs is that it
is always tailored to the sample, including age and education, as
well as the retest interval being studied. For example, in addition
to the 1-year interval in the present study, the replacement-
participants method has been used successfully in studies with

intervals as long as 5–6 years (Ronnlund et al., 2005; Elman
et al., 2018). Participant demographics and cognitive tests are
always matched. Retest intervals may vary across studies, but
PEs are calculated for the specific interval(s) used within a given
study. Therefore, we explicitly recommend against using these
PE estimates in other studies. Rather we encourage others to
utilize the method within their study to more accurately generate
PEs given their specific demographics, measures, and test–
retest interval. The cost of including replacement participants
might seem prohibitive, but it is actually a relatively small
component in a large-scale study (Elman et al., 2018; Sanderson-
Cimino et al., 2020). Elsewhere, we have shown that it could
save millions of dollars in a large clinical trial because MCI
is detected earlier, resulting in reductions in study duration
and necessary sample size (Sanderson-Cimino et al., 2020). As
shown in the present study, the method can be adapted to
large studies that did not include replacements in their original
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TABLE 6A | Amyloid, total tau, and phosphorylated tau across classification groups.

Full sample N = 226 Stable MCI Reverters False reverters N = 18

Unadjusted N = 166 Adjusted N = 184 Unadjusted N = 60 Adjusted N = 42

Amyloid
Count 160 124 134 36 26 10
% 70.8% 74.7% 72.8% 60.0% 61.9% 55.6%
T-tau
Count 123 101 106 22 17 5
% 54.4% 60.8% 57.6% 36.7% 40.5% 27.8%
P-tau
Count 145 118 125 27 20 7
% 64.2% 71.1% 67.9% 45.0% 47.6% 39.9%

Presents the number of participants (Count) and percent of sample (%) for three cerebrospinal fluid biomarkers: amyloid beta (Abeta), Tau, and phosphorylated tau (Ptau).
Of the 329 participants, 226 had full biomarker data, which is presented in the “Full Sample” column. Participants were classified as “Stable MCI” if they retained their mild
cognitive impairment (MCI) classification at follow-up; participants were classified as “Reverters” if they were classified as cognitively normal at follow-up. Classifications
were made using practice effect-unadjusted (“Unadjusted”) and practice effect-adjusted (“Adjusted”) data. Those who were classified as MCI by the practice effect-
adjusted data but not the unadjusted data are referred to as “False reverters.” The percent sample (%) was determined by dividing the number of biomarker-positive
subjects in a cell by the total number of participants with that classification; e.g., 74% = 117/158.

TABLE 6B | Combined amyloid and tau positivity profiles.

Full Stable MCI Reverters False

Sample Unadjusted Adjusted Unadjusted Adjusted Reverters n = 18

A−T−
Count 39 22 27 17 12 5
Percent 17.3% 13.3% 14.7% 28.3% 28.6% 27.8%
A + T−
Count 42 26 32 16 10 6

Percent 18.5% 15.7% 17.4% 26.7% 23.8% 33.3%
A−T+
Count 27 20 23 7 4 3
Percent 11.9% 12.0% 12.5% 11.7% 9.5% 16.7%
A + T+
Count 118 98 102 20 16 4

Percent 52.2% 59.0% 55.4% 33.3% 38.1% 22.2%
A+ and/or T+
Count 187 144 157 43 30 13

Percent 82.7% 86.7% 85.3% 71.7% 71.4% 72.2%

Presents the number of participants (Count) and percent of sample (%) for combinations of cerebrospinal fluid biomarker positivity: biomarker-negative (A−/T−), amyloid-
positive and tau-negative (A+/T−), amyloid-negative and tau-positive (A−/T+), amyloid and tau positive (A+/T+), and positive for any biomarker (A+ and/or T+).

design. However, building it into the original study design is
clearly preferable.

CONCLUSION

Here we have shown that a replacement method of PE
adjustment significantly altered how we understand follow-
up status in individuals who have already been diagnosed
with MCI at the baseline assessment. Our results indicate
that the replacement-participants method of adjustment for
PEs results in fewer MCI cases reverting to CN, and
improved predictability of progression to dementia. In sum,
the results provide further support for the importance of
accounting for PEs on cognitive tests in order to reduce
misdiagnosis and increase earlier detection of progression to
MCI or dementia.
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Background: In longitudinal designs, the extraneous influence of retest effects can
confound and obscure estimates of developmental change. The current study provides
a novel approach to independently parameterize short-term retest effects and long-term
developmental change estimates by leveraging a measurement burst design and three-
level multilevel modeling. We further employ these short- and long-term slopes as
predictors of cognitive status at long-term follow-up assessments.

Methods: Participants included 304 older adults from Project MIND: a longitudinal
measurement burst study assessing cognitive performance across both biweekly
sessions and annual retests. Participants were classified as either Healthy controls (HC)
or Cognitively Impaired, not Demented (CIND) at baseline, the final burst assessment
(Year 4), and at an additional four-year follow-up (Year 8). Response time inconsistencies
(RTI) were computed at each burst occasion for a simple choice response time (CRT)
task and a one-back response time (BRT) task. Three-level multilevel models were
employed to simultaneously examine change in RTI for both CRT and BRT across weeks
within years, as well as across years, in order to dissociate within-individual retest effects
(short-term) from developmental (long-term) change slopes. Individual slopes were then
extracted and utilized in a series of multinomial logistic regression equations to contrast
short- vs. long-term RTI change as predictors of cognitive status.

Results: Separately parameterizing short- and long-term change estimates yielded
distinct patterns of variation. CRT RTI remained stable across short-term weekly
assessments, while significantly increasing across years. In contrast, BRT RTI decreased
significantly across short-term assessments but showed no change across long-term
assessments. After dissociating change estimates, short-term BRT as well as long-term
CRT and BRT estimates predicted cognitive status at long-term follow-ups; increases in
RTI, suggesting either an inability to benefit from retest or process-based developmental
decline, were associated with an increased likelihood of being classified as CIND.
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Conclusions: We showcase an innovative approach to dissociate retest effects from
developmental change across and within individuals. Accurately parameterizing these
distinct change estimates can both reduce systematic bias in longitudinal trend estimates
as well as provide a clinically useful tool by utilizing retest effects to predict cognitive
health and impairment.

Keywords: retest effects, practice vs. developmental change, longitudinal measurement burst design, cognitive
aging, multilevel modeling (MLM)

PARAMETERIZING PRACTICE IN A
LONGITUDINAL MEASUREMENT BURST
DESIGN TO DISSOCIATE RETEST
EFFECTS FROM DEVELOPMENTAL
CHANGE: IMPLICATIONS FOR AGING
NEUROSCIENCE

The analysis of change has posed numerous seemingly intractable
problems for both clinicians and researchers studying human
development, prompting contentions as to whether change
could, or even should, be measured (e.g., Cronbach and Furby,
1970; Willett, 1988). Such debates motivated a fundamental
conceptual shift in which developmental change became
viewed as a continuous process that fluctuates over time, as
opposed to mere increments between pre-post testing occasions
(Willett, 1988). This reconceptualization, paired with Baltes and
Nesselroade’s (1979) assertion that one of the primary objectives
of developmental research was to directly identify intraindividual
change (i.e., exploring within-person processes), facilitated the
development of increasingly sophisticated methodologies aimed
at providing richer and more accurate parameterizations of
between- and within-person change processes. The current
study aims to further extrapolate upon these methodologies by
employing innovative solutions to some of the more persistent
problems inherent in modeling development.

Within aging neuroscience, where developmental outcomes
are of central interest, longitudinal designs afford the
opportunity to directly observe both age- and process-related
change. Such designs allow researchers to avoid the biases
inherent in cross-sectional inferences of change (see Baltes
and Nesselroade, 1979; Hofer and Sliwinski, 2006; Schaie,
2008)—which employ between-subjects comparisons within
age-heterogeneous samples to draw conclusions about the
nature of age-graded development—and more appropriately
approximate the conceptualization of change as a continuous
and oscillatory process (Willett, 1988; Singer and Willett, 2003).
However, while advances in conceptual and technical approaches
have undoubtedly improved the ability to index change, many
problems remain that continue to obfuscate the understanding
and measurement of development.

Implicit in the reconceptualization of change as a continuous
and intraindividual process is the understanding that change
is modulated by a confluence of multiple influences occurring
across both short and long temporal intervals. There is a
pressing need to dissociate these processes, and their potentially

confounding impact on true underlying development, to
fully understand moderators of short- and long-term change.
Of particular interest, retest effects—changes in performance
attributable to previous exposure to the testing materials,
environment, and procedures—perturb estimates of aging and
development by systematically biasing inter- and intraindividual
change trajectories in longitudinal designs (Hoffman et al., 2011).
Retest effects, encompassing the more specific delineation of
practice effects (i.e., improvements attributable to the repetition
of the same or similar materials), are an oft-cited criticism of
longitudinal designs and represent an enduring problem in the
field of aging neuroscience (e.g., Schaie, 1965; Baltes, 1968).
Retest effects have long been known to confound estimates of
change across both short- (e.g., between first and second retest
occasions) and long-term intervals (e.g., across many years of
retest occasions; Thorndike et al., 1928; Ferrer et al., 2004;
Wilson et al., 2006; Rabbitt et al., 2009). Given that longitudinal
designs offer the only direct way of indexing intraindividual
development, overcoming this susceptibility to retest effects is of
critical importance to developmental researchers.

Appropriate quantification and parameterization of retest
effects are crucial for understanding their unique value as an
individual differences predictors. The magnitude of retest effects
has shown to be differentiable depending on both test (e.g.,
complexity, modality) and test-taker characteristics (e.g., IQ,
age, personality, mood, motivations; Bartels et al., 2010). The
parameterization of retest effects may therefore serve as a useful
cognitive variable, indicative of both an individual’s current
capacity and predicted cognitive trajectory. While the findings
in this domain are equivocal, some evidence suggests that an
individual’s ability to benefit from practice is informative of their
prospective cognitive health and disease risk—with smaller than
expected practice effects in older adults potentially presaging
cognitive decline, poorer response to intervention, and greater
risk of Alzheimer’s-related pathology (Duff et al., 2017; De
Simone et al., 2021). For persons with mild cognitive impairment
(MCI), inclusive of amnestic MCI (a-MCI), there is considerably
more controversy as to whether these individuals can benefit
from retest effects and, if so, across which cognitive domains
(see Duff et al., 2017 for review). These contentions are further
complicated as there is currently no widely accepted approach for
reliably and accurately modeling variance due to retest. However,
a recent investigation by De Simone et al. (2021) found that
lacking the expected benefits from practice on episodic memory
tests was an accurate prognostic indicator of late conversion to
Alzheimer’s disease in a-MCI patients. Distinguishing among
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individuals who will remain stable a-MCI vs. progress to
dementia is both a pressing objective and imposing challenge,
given the known lability and heterogeneity of this relatively broad
cognitive classification (Ganguli et al., 2004; Malek-Ahmadi,
2016). Among other benefits, innovations in parameterizing and
dissociating retest from development could facilitate a deeper
understanding of the utility of retest effects as sensitive predictors
for distinguishing between- and within-person differences in
cognitive function.

Formal attempts to control for retest effects have centered
upon three basic approaches: (1) materials, (2) research design,
and (3) quantitative modeling. A common method of material
manipulation used by researchers—the use of alternate forms
in cognitive testing—attempts to account for the most basic
of practice effects (i.e., repeated exposure to the same testing
material). However, this strategy has shown variable effectiveness
depending on the construct being tested (Watson et al.,
1994; Uchiyama et al., 1995; Benedict and Zgaljardic, 1998)
and fails to address issues attributable to the more general
impact of retest effects (e.g., previous exposure to the testing
environment, procedure, etc.). Therefore, various longitudinal
design considerations have been implemented to address this
more encompassing definition of retest effects and control for
their impact on developmental change.

Traditional longitudinal designs typically consist of widely-
spaced measurement occasions (e.g., spanning years) in an
effort to capture the timescale by which normative age-graded
changes take place. However, in such instances, aging and
retest effects are entirely conflated (e.g., 1-year increments
in chronological age for a design specifying one-year retest
intervals spanning five occasions), posing a particular challenge
for modeling distinct and unbiased estimates of either process.
Consequently, the failure to account for retest effects often
leads to inaccurate characterizations of the rate and pattern
of developmental change (e.g., change is underestimated), can
cause violations ofmodeling assumptions (e.g., age convergence),
and may undermine subsequent attempts of understanding
change through regression or correlation analyses (Sliwinski
et al., 2010a). More intricate longitudinal designs, such as
waitlist control designs, attempt to address retest effects at
the group level by employing a hold-out sample. Thorvaldsson
et al. (2006), for example, utilized a waitlist control design
to evaluate retest effects within several standardized cognitive
performance domains. Initially, the researchers randomly
selected one-third of their total sample to be assessed on
their cognitive performance between the ages of 70–81. The
remaining two-thirds of participants were prescribed as the hold
out sample, to be assessed at a later date. From ages 85 to
99 years the cognitive performance of both the participants
who were previously assessed (i.e., ‘‘original’’ participants),
and a random selection of the remaining two-thirds of
participants (i.e., ‘‘waitlist’’ participants), were then assessed
concurrently. The comparison of cognitive performance between
the original participants and waitlist participants facilitates an
estimation of group-level retest effects. However, while this
approach reasonably quantifies the average retest effects in
a population, it precludes the investigation of intraindividual

change and forces researchers to adopt questions of change
that accommodate a between-person design (Thorvaldsson et al.,
2006; Hoffman et al., 2011). Ultimately, when intraindividual
change is of interest, controlling for retest via design decisions
is exceptionally challenging. Indeed, the nature of repeated-
measures data presumes the influence of retest effects as
unavoidable (Salthouse’s, 2013) and thus cannot be overcome
by study design changes alone. Therefore, in addition to careful
design considerations, adept statistical modeling approaches are
also needed to more effectively address the impact of retest
effects.

Advanced quantitative modeling techniques attempt to parse
the effects of retest and aging into separately estimated model
parameters. These quantitative approaches frequently consist of
hierarchical or more sophisticated computational models (e.g.,
multilevel modeling, latent growth curve modeling, etc.) that
estimate both maturational influences (e.g., aging) along with
retest effects as separate parameters within a single analytic
model of intraindividual change (e.g., Ferrer et al., 2004;
Salthouse et al., 2004; Rabbitt et al., 2008). Although potentially
informative, these modeling techniques remain subject to
common, underappreciated pitfalls and assumptions that must
be explicitly addressed. For instance, satisfying assumptions
of age-convergence—that cross-sectional age differences and
longitudinal age changes converge onto a common trajectory—is
necessary in order to obtain meaningful parameter estimates of
aging and retest. Hoffman et al. (2011) assert that failing to test
and meet age-convergence assumptions can lead to significant
bias and increased Type 1 error rates in the estimation of retest
effects. This is particularly the case for traditional longitudinal
designs that often leverage equal interval designs where age and
retest occasion are perfectly correlated. Disconcertingly, most
studies that attempt to directly model retest effects often fail to
explicitly test for age-convergence assumptions (Sliwinski et al.,
2010b). Furthermore, while retest models attempt to estimate a
‘‘test naïve’’ aging trajectory that is dissociated from retest effects,
these models are, in actuality, estimating aging trajectories
by holding retest effects constant across time. This implicit
assumption, that retest effects are invariant in magnitude across
time, is potentially spurious when considering that retest effects
are (1) often most pronounced between the first and second
measurement occasion (Collie et al., 2003; Bartels et al., 2010;
Scharfen et al., 2018), (2) potentially affected by ceiling effects
(Calamia et al., 2012), (3) influenced by individual differences in
the amount and rate of time-dependent forgetting (MacDonald
et al., 2006), and (4) showcase interindividual differences in
magnitude dependent on test- and test-taker variables (Bartels
et al., 2010). Thus, while the combination of both analytical
and methodological advances has clearly informed the extant
literature, there are notable gaps remaining vis-a-vis optimal
approaches for effectively distinguishing retest effects from
change.

Researchers are evidently presented with numerous
permutations of both design and analytic strategies that provide
differential advantages and disadvantages when investigating
longitudinal change in cognition; however, when dissociating
and parameterizing retest effects is of critical interest, a
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recent recommendation suggests combining the advantages
of the seldom-used measurement burst design alongside the
well-known utility of multilevel modeling (Sliwinski, 2008;
Hoffman et al., 2011; Jones, 2015). Measurement burst designs
can explicitly measure retest effects by examining variability
across both short-term intervals—such as narrowly spaced retests
(e.g., daily, weekly) in which meaningful age-based change is
unlikely to occur—as well as long-term periods (e.g., yearly) over
which durable age-based developmental changes commonly
unfold. This design avoids common pitfalls of more traditional
longitudinal designs, including concerns of age-convergence
and equal-interval measurement occasions, and provides the
opportunity for more nuanced statistical analysis. Specifically,
multilevel modeling can be used to partial these distinct levels of
variability into separate slope parameters, separately estimating
and dissociating the impact of short-term retest-related change
from more durable developmental change.

Unfortunately, many current investigations of retest effects
employ two-level multilevel models for a research objective that
is optimally addressed using three-level nested data. Specifically,
for measurement burst designs and multilevel modeling to be
utilized effectively for modeling retest, the innovative application
of three-level multilevel models is required to systematically
dissociate variance within-persons across short-term retest
occasions (level 1) and long-term developmental intervals (level
2), as well as between-persons (level 3). Investigating two-level
models by inappropriately aggregating three-level data not only
yields an inaccurate dissociation of retest and developmental
change but also generates criticism regarding the leveraging of
short-term retest intervals as proxies for retest effects altogether.
Salthouse’s (2013), for example, has suggested that employing
short-term slopes as indices of retest effects is contingent
upon having identified positive, moderately strong associations
between short- and long-term change estimates—an intuitive
assumption given the expectation that shorter-term retest
gains should be positively linked to longer-term developmental
increases as well. In contrast to this expectation, Salthouse’s
(2013) reported a modest negative association between retest and
long-term change in cognition. Notably, however, these findings
were based upon a two-level analysis of change (i.e., a latent
change analysis) from a data set characterized by at least three
nested levels—sessions (level 1), within occasions (level 2), within
persons (level 3). Failing to properly account for the nestedness
inherent within a dataset can result in parameter estimates that
are confounded with extraneous sources of information and
violate modeling assumptions (e.g., data dependency) which
can result in inaccurate probability estimates and confounded
estimates of short- and long-term change. This is especially
problematic when the research questions and/or conclusions
are predicated upon having accurately quantified variance at
select levels. Thus, when considering the viability of using
short-term change slopes as indicators of retest effects, utilizing a
measurement burst design and a three-level modeling framework
will provide a more accurate dissociation and quantification of
retest and developmental variance.

Using data from ProjectMental Inconsistency in Normals and
Dementia (MIND), an innovative longitudinal measurement

burst design study, the current study employed advanced
quantitative models to dissociate short-term retest effects and
long-term developmental change and investigated the relative
predictivity of retest and change for differentiating cognitive
status subgroups at long-term follow-up assessments. Given that
retest and developmental change represent non-independent
time structures, we utilized three-level multilevel modeling
to separately estimate within-individual change in cognitive
function across short-term weekly retests (level 1) and long-term
yearly bursts (level 2), as well as between-individual differences
(level 3) in cognitive performance. The use of a three-level
hierarchical modeling structure, paired with the previously
suggested measurement burst design, represents a critical
extension of the existing literature that simultaneously
parameterizes within-person change across both short-term
biweekly assessments (i.e., retest) as well as across longer-term
annual assessments (i.e., developmental age-based change).
Specific research objectives included: (1) disaggregating short-
(weekly) from long-term (annual) change slopes to estimate and
empirically evaluate the patterns and association among these
estimates of retest and development; and (2) leveraging these
dissociable estimates of change, obtained during the course of
the 4-year measurement burst study, as independent individual-
differences predictors of cognitive status indexed at Year 4 (the
conclusion of the burst design) and Year 8 (the conclusion of the
Project MIND study). The first objective was accomplished by
investigating change in response time inconsistencies (RTI) for
two select cognitive measures—a simple choice response time
(CRT) task and a more complex 1-back choice response time
(BRT) task—using three-level multilevel models. By specifying
random effects in these multilevel models, it was possible to
derive person-specific change slopes that were extracted to
address our second research question which used multinomial
logistic regression models to contrast short- and long-term RTI
change as predictors of cognitive status at Year 4 and 8 of the
study.

Increasing evidence suggests that RTI represents a dissociable
dimension of performance relative to mean Response Time
(RT) (MacDonald and Stawski, 2015, 2020) that may better
capture underlying changes in physiological and cognitive
processes (Dixon et al., 2007; de Ribaupierre and Lecerf, 2018).
Previous research also suggests that within-person variability is
differentially sensitive to cognitive status groups, such that RTI
was most pronounced in subjects with more severe cognitive
impairment (Strauss et al., 2007; MacDonald and Stawski,
2020). The utilization of RTI is particularly beneficial for
the current investigation that leverages lability in cognitive
performance—which is particularly sensitive to retest effects and
generally resistant to floor and ceiling effects—as a proxy for
cognitive health status.

MATERIALS AND METHODS

Participants
Participants were 304 community-dwelling Caucasian older
adults aged 64–92 years (M = 74.02; SD = 5.95) who were
concerned about their cognitive functioning but had not been
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diagnosed with a neurological disorder. This study was approved
by the University of Victoria Human Research Ethics Board
and was conducted in accordance with institutional guidelines.
Participants (208 female and 96 male) resided in Victoria,
Canada and were recruited through local media advertisements
(radio and newspaper). Participants were generally well-educated
(M = 15.15; SD = 3.14; range = 7–24 years of education),
performed well on the Mini-Mental State Examination (MMSE;
Folstein et al., 1975) (M = 28.74; SD = 1.23; range = 24–30), and
were in relatively good health (total number of chronic health
conditions: M = 2.92; SD = 1.91; range = 0–10). Exclusionary
criteria at intake included physician-diagnosed dementia or an
MMSE score of less than 24, drug or alcohol abuse, psychotropic
drug use, current psychiatric diagnosis, a history of significant
head injury (e.g., loss of consciousness greater than 5 min),
other neurological or major medical illnesses (e.g., Parkinson’s
disease, cancer, heart disease), severe sensory impairment (e.g.,
difficulty reading newspaper-size print, difficulty hearing a
normal conversation), and lack of fluency in English.

Procedure
Participants were initially screened for inclusion and exclusion
criteria via a telephone interview. Baseline testing occurred
across seven sessions (one group and six individuals) scheduled
over approximately 3 months. The group testing session was
held at the university in our laboratories and the individual
testing sessions were conducted in the participant’s home.
The first two sessions (one group and one individual) were
used to obtain demographic and health information and to
administer cognitive measures. Participants then completed a
burst evaluation, consisting of five individual biweekly testing
sessions that varied across days of the week and times of
the day. Within these sessions, participants completed various
assessments including cognitive performance measures such as
RT tasks that were designed to assess short-term fluctuations in
response speed. The entire testing battery was repeated annually
four times. During each annual wave, the cognitive measures
(inclusive of the burst RT tasks) were identical, and the order
of presentation did not vary. However, for each subsequent year
after baseline, four (rather than five) biweekly testing sessions
were completed, yielding up to 17 total assessments for each
individual (see Figure 1). Follow-up demographic and cognitive
assessments were then conducted four years following cessation
of the burst portion of the study (i.e., at Year 8) to evaluate
long-term change in participants’ cognitive status. Eighty percent
of participants (N = 242) completed all four bursts and attrition
rates were 11.0%, 3.5%, and 4.5% of the sample between years
1–2, 2–3, and 3–4, respectively. The attrition rate between Year
4 and Year 8 was 26%, with 61% of the original sample (N = 185)
completing Year 8.

Cognitive Status
Cognitive status was ascertained for each year of study
according to participant’s performance on five cognitive tasks.
The cognitive performance tasks consisted of indicators for
perceptual speed (WAIS-R Digit Symbol Substitution; Wechsler,
1981), verbal fluency (Controlled Associations; Ekstrom et al.,

1976), vocabulary (Extended Range Vocabulary; Ekstrom et al.,
1976), episodic memory (Immediate free word recall; Hultsch
et al., 1990), and inductive reasoning (Letter Series; Thurstone,
1962). Participants were classified as cognitively intact healthy
controls (HC) or cognitively impaired, not demented (CIND)
based upon deficits (1.5 SDs relative to age and education
norms) spanning the five distinct cognitive domains. The age and
education norms were obtained from 445 adults aged 65–94 years
from the Victoria Longitudinal Study (Dixon and de Frias, 2004);
this normative comparison sample for deriving cognitive status
classifications was partitioned into four age and education groups
(age = 65–74 years and 75+ years; education = 0–12 years and 13+
years) with means and standard deviations computed for each of
the five cognitive reference measures. Participants classified as
CIND were further subdivided as CIND-S based on deficits for a
single cognitive measure or as CIND-M based on deficits across
two or more of the cognitive reference tasks. A more thorough
methodological account of Project MIND, inclusive of the testing
and cognitive status classification procedures, can be found in
Bielak et al. (2010).

Response Time
RT tasks were presented on a Panasonic CF-48 laptop computer
(Intel Pentium III 800-MHz processor, MS-DOS operating
system Version 4.10.2222) with a 14′′ color screen. The computer
processor controlled the stimulus presentation and timing for
each RT task. Participants responded to stimuli by pressing
keys on a custom-designed response console consisting of an
aluminum enclosure encompassing four response keys in a linear
array. This response box was interfaced with the laptop through
a PCMCIA Game Port, directly accessible by the CPU, in order
to ensure millisecond timing latency (±1 ms). The RT tasks were
programmed using C++ and were run on MS-DOS.

Choice Response Time (CRT)
Participants were presented with four plus signs displayed in a
horizontal row along with a response input device containing
four spatially-mapped keys. On each trial, following a 1,000 ms
delay, a box replaced one of the plus signs. For each trial,
participants were asked to respond to the location of the box as
quickly as possible. Ten practice trials were followed by 60 test
trials. The response latencies of the 60 test trials were used for
analysis (Bielak et al., 2010).

One-Back Choice Response Time (BRT)
The BRT task used the same display, response box, and
stimulus presentation design as the CRT task. However, for
each trial, participants were asked to respond to the location
of the box on the ‘‘previous’’ trial. A total of 10 practice trials
followed by 61 test trials were administered. As participants
did not respond on Trial 1, it was omitted and only the
response latencies of the remaining 60 test trials were used
for analysis.

Data Preparation
Outliers and Missing Values
All RT data were examined for outliers by examining the
distributions of raw latency scores at the individual level.
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FIGURE 1 | Parameterization of retest and developmental change using three-level multilevel modeling and a measurement burst design.

Exceptionally slow or fast responses were removed and
considered likely to represent sources of measurement error (e.g.,
accidental key press). Valid lower bound response times have
been provided by previous research (150 ms; Hultsch et al.,
2002), and valid upper bounds were identified by calculating
intraindividual means and standard deviations for each task
and measurement occasion; for each individual, any trials
that exceeded their personal mean by three or more standard
deviations were removed. For each of the CRT and BRT
tasks at Year 1, a total of 91,200 trials were possible across
individual assessments (60 trials per administration of each RT
task), sessions (five biweekly retests), and persons (n = 304;
60 × 5 × 304 = 91,200). For the CRT task, 0.13% of trials
were excluded due to missing values, 1.43% due to incorrect
responses, and 1.78% due to trimming outliers, leaving 96.65%
usable trials. For the BRT task, 0.20% of trials were excluded
due to missing values, 10.46% due to incorrect responses,
and 2.42% due to trimming outliers, leaving 86.93% usable
trials. This data preparation procedure for eliminating outliers
represents a conservative approach to examining intraindividual
variability in RT performance by reducing within-subject
variation.

Computation of Response Time Inconsistency (RTI)
RTI was indexed using residualized intraindividual standard
deviation (ISD) estimates. The residualized ISD estimates
were computed across RT trials for each session and burst,
residualizing select confounds from the raw data by fitting a
multilevel model in order to dissociate within- and between-
subject sources of variation (MacDonald and Stawski, 2020).
Removing systematic confounds yields RTI estimates that are
not conflated with mean age differences in response speed,
developmental change, or practice effects at the trial-to-trial level
(Stawski et al., 2019; MacDonald and Stawski, 2020). For each
session and burst, the computed residualized ISD scores were
then linearly transformed into standardized T scores (M = 50,

SD = 10). See Hultsch et al. (2008) for a full description of this
procedure.

Statistical Procedure
The nested three-level data structure for the present study is
characterized by weekly assessments (level 1) nested within
annual bursts (level 2) nested within persons (level 3). Using the
‘‘nlme’’ package in R (Pinheiro et al., 2022), we addressed the
first research objective by fitting three-level multilevel models to
predict change in RTI for both CRT and BRT across sessions
(biweekly assessments), bursts (annual retests), and persons.
Multilevel modeling decomposes total variability into within- vs.
between-person sources. Moreover, this multilevel framework,
coupled with the current measurement burst design, facilitates
parsing of intraindividual variability from intraindividual change
(Nesselroade, 2002), thereby separately yet simultaneously
indexing retest effects and developmental change, respectively.

Variance decomposition in CRT and BRT RTI across
weeks, years, and persons was based upon preliminary
fully unconditioned models. Two independent, conditioned
longitudinal models were then fit to examine change in CRT
and BRT RTI separately. Equation 1 demonstrates the modeling
of average linear change in CRT RTI as a function of weekly
and yearly assessments (fixed slope effects) and the variability
of change across individuals (random slope effects). Response
time inconsistencies on the CRT task (CRT RTIijk), for a given
week (i), year (j), and person (k), were modeled as a function
of that individual’s performance at baseline testing, plus their
average individual rate of change per each additional week and
year examined (the slopes), plus an error term (ε). A number
of random effects were also modeled, with the level-1 residuals
[Var(εijk)] reflecting within-person week-to-week variability,
and the level-2 residuals [Var(µ0jk)] indexing within-person
variability across the annual retest bursts. Variance in the level-3
residuals [Var(υ00k)] index between-person stable variability
averaged across all biweekly retests and annual burst assessments.
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Select fixed effects of interest include population estimates for
the average CRT RTI score (γ000), the average biweekly retest
(i.e., practice) effect (γ100) as well as the average yearly retest
(i.e., long-term developmental change) effect (γ010).

Equation 1

Level 1 CRT RTIijk = β0jk + β1jkWeekijk + εijk
Level 2 β0jk = δ00k + δ01kYearjk + µ0jk

β1jk = δ10k + µ1jk

Level 3 δ00k = γ000 + γ001Agek + γ002Sexk + υ00k
δ01k = γ010 + γ011Agek + γ012Sexk + υ01k
δ10k = γ100 + υ01k

Weekly (Level 1) and yearly (Level 2) linear effects were
centered at baseline (e.g., the first week for Year 1). Person (Level
3) covariates included age at baseline (γ001; centered at age 74)
and sex (γ002; centered as 0 = males/1 = females) Parameter
estimates were derived using full information maximum
likelihood (FIML) estimation, using all available data under the
assumption of missing at random (MAR; Grand et al., 2016).

For the second research question, we employed polytomous
(multinomial) logistic regression to examine changes in RTI
(both short-and long-term) as predictors of cognitive status in
Year 4 and Year 8. Healthy controls served as the referent group
for each model. Due to the small values of bi-weekly change
(i.e., retest) estimates for both CRT and BRT (a consequence
of millisecond temporal scaling), we rescaled these values as
seconds to facilitate the interpretability of model point estimates
and odds ratios.

RESULTS

Patterns of Retest and Development
Across Time
Sample characteristics are reported inTable 1. To address the first
researchobjective, and toprovide an indexof the data dependency
inherent in our repeated measures design, unconditional models
were first fit to decompose the total variability into within-person
(weekly and yearly) and between-person sources. Of the total
variability in CRTRTI across the sample, 68% reflected variability
between-persons, whereas 6% and 26% reflected within-person
variability across years and weeks, respectively. Comparable
patterns were found for BRT RTI in which 75% of the total
variability was between-persons, 7% within-persons across years,
and 18% within-persons across weeks.

Conditioned longitudinal change analyses were then fit using
three-level multilevel models to dissociate retest (i.e., short-
term) from developmental (i.e., long-term) change estimates.
Specifically, these models derived separate estimates of within-
person change across both weeks and years, with the former
estimate indexing change due to retest and the latter change
due to developmental processes (see Figure 1). Between-person
differences at baseline and across years were also explored, with
random intercept and slope effects estimated to facilitate the
derivation of individual slopes for use in subsequent logistic
regression equations.

TABLE 1 | Sample characteristics as a function of baseline cognitive status.

HC CIND-S CIND-M
Baseline N = 136 N = 88 N = 80

Age (years) 73.3 (5.4) 73.8 (6.0) 75.5 (6.6)
Sex (% males) 29 26 43
Education (years) 15.9 (3.1) 15.2 (3.1) 14.3 (3.2)
MMSE score 29.0 (1.0) 28.7 (1.1) 28.3 (1.5)
aMedications 5.8 (3.5) 5.4 (3.3) 6.5 (8.9)
bRisk Factor (% without) 84 83 73
CIND Classification Year 4 N = 138 N = 62 N = 45
CIND Classification Year 8 N = 112 N = 40 N = 33

aSelf-reported number of total prescribed medications. bPresence of risk factor
(Significant Hearing Loss, Neurological and/or Cardiac Condition). HC, Healthy
Controls; CIND-S, Cognitively Impaired, not Demented based on single task
deficit; CIND-M, Cognitively Impaired, not Demented based on >2 task deficits;
MMSE, Mini-Mental State Examination (Folstein et al., 1975).

Two separate models, controlling for age and sex, were
fit to evaluate CRT RTI and BRT RTI independently as
cognitive outcomes. Analyses revealed notable differences
between retest and developmental change parameter estimates
within each model, as well as between the two models.
Specifically, population estimates for the CRT outcome model
indicated non-significant short-term change in RTI (β = -0.02,
p > 0.05), with this stability across week-to-week assessments
connoting the absence of practice effects. However, RTI
significantly increased across years in the study (β = 0.15,
p = 0.005), demonstrating increasing cognitive variability in
CRT performance over longer developmental trajectories. In
contrast, our BRT model yielded an inverse pattern, perhaps
reflecting the inherent differences in cognitive demands between
the BRT and CRT measures. Within BRT, a task that requires
higher-order cognitive processes (e.g., executive functioning),
significant short-term declines in RTI (β = -0.06, p < 0.0001)
exemplified the expected benefits of practice in reducing
performance inconsistencies across week-to-week assessments.
Yet, non-significant change in long-term RTI slopes (β = −0.09,
p > 0.05) demonstrated stability in patterns of BRT consistency
across years. Regardless of RT task, short and long-term change
slopes—reflecting the presence of retest vs. developmental
change—yielded distinct sources of information. Of note, age
significantly predicted between-person differences in both the
CRT (β = 0.21, p < 0.001) and BRT (β = 0.28, p < 0.001) tasks,
such that increasing age resulted in increased inconsistencies for
each RT task. Sex did not significantly predict RTI (p > 0.05) in
eithermodel. The fixed effects from these conditionedmodels are
displayed in Table 2.

Retest and Developmental Change as
Predictors of Cognitive Status
The aforementioned results summarized our fixed effects which
describe the aggregated rates of change in the sample. However,
we also estimated random effects in order to derive individual
estimates of short- and long-term change for use as predictors
of cognitive status. Specifically, to assess whether individual
differences in retest effects and developmental change predicted
cognitive status at long-term follow ups (Years 4 and 8),
person-specific residuals were used to derive individual slope
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TABLE 2 | Fixed effects for CRT and BRT three-level multilevel models.

CRT RTI BRT RTI

Predictors β CI p β CI P
Intercept 7.44 6.91–7.96 <0.001 7.23 6.57–7.89 <0.001
Short-Term −0.02 −0.05–0.00 0.082 −0.06 −0.09 to −0.04 <0.001
Long-Term 0.15 0.05–0.25 0.005 −0.09 −0.02–0.02 0.124
Age 0.21 0.16–0.26 <0.001 0.34 0.28–0.40 <0.001
Sex −0.24 −0.87–0.38 0.439 0.25 −0.54–1.04 0.534

estimates for entry as predictors in several multinomial logistic
regressionmodels. These models investigated whether individual
differences in short- and long-term rates of change in CRT
and BRT RTI were predictive of CIND status upon conclusion
of the burst portion of Project MIND (Year 4), as well as at
the termination of the study (Year 8). At both Year 4 and
Year 8 follow-up assessments, four separate multinomial logistic
regression models, controlling for age and sex, were fit for
each of our four RTI-related predictors: short-term CRT RTI,
short-term BRT RTI, long-term CRT RTI, and long-term BRT
RTI. These models were fit independently to avoid potential
issues of collinearity between the short- and long-term slope
estimates within each cognitive measure. Parameter estimates for
these RTI predictors are presented in Table 3.

Short-term change slopes in CRT, indexing retest effects in
the present study, were not significantly predictive of CIND
status at either Year 4 or Year 8. However, short-term practice-
related gains in BRT RTI were significantly associated with an
increased likelihood of being classified as CIND-S [OR = 2.26,
95% CI (1.31, 3.88), p = 0.003] and CIND-M [OR = 3.82, 95% CI
(2.14, 6.84), p < 0.001] at Year 4, as well as CIND-M at Year 8
[OR = 2.50, 95% CI (1.26, 4.98), p = 0.009].

In contrast, elevated yearly RTI was associated with increased
odds of being classified as CIND relative to HC for both CRT
and BRT. Long-term developmental slope estimates for CRT
RTI were significantly associated with increased odds of being
classified as CIND-M [OR = 4.33, 95%CI (1.68, 11.05), p = 0.002]
at Year 4, with no significant associations at Year 8. Thus, holding
constant age and sex differences, year-to-year unit increases in
CRT RTI increased the likelihood of being classified as CIND-M
over healthy controls by 333 percent. Additionally, unit increases
in yearly BRT RTI were associated with an increased likelihood
of being classified as CIND-S [OR = 2.05, 95% CI (1.16, 3.62),
p = 0.014] and CIND-M [OR = 3.10, 95% CI (1.70, 5.68),
p < 0.001] at Year 4, as well as CIND-M at Year 8 [OR = 2.23,
95% CI (1.04, 4.77), p = 0.039].

To further inform these patterns, four separate multinomial
logistic regression models were fit using person-level baseline
MMSE scores to contrast the predictivity of long-term cognitive
status with our residualized RTI slope parameters. Specifically,
we were interested in identifying whether a simple baseline
cognitive measure would significantly contribute to model fit or
show comparatively accurate long-term predictions of cognitive
health status. Across all models, baseline MMSE performance
neither significantly contributed to model fit nor predicted
cognitive status at long-term follow ups, underscoring the utility
of retest effects as more sensitive prognostic indices of cognitive
health.

Our models also identified age as a significant predictor
of CIND status, with increasing age generally facilitating an
increased likelihood of being classified as cognitively impaired.
Specifically, at Year 4, age significantly predicted both CIND-S
and CIND-M for three of four models (with the exception of
yearly CRT RTI which predicted CIND-M only). At Year 8, age
was a significant predictor of CIND-M only, regardless of RT
task or weekly or yearly RTI. Depending on the model, older age
significantly predicted cognitive status such that each additional
year beyond age 74 resulted in a 5%–10% increased likelihood of
cognitive impairment, relative to controls. Sex (male or female)
did not significantly predict cognitive status in any of the eight
models.

Finally, to further delineate associations between individual
slopes of short- and long-term change, we computed simple
bivariate correlations for both CRT and BRT RTI. Correlations
between short- and long-term individual BRT RTI slopes were
significant and strong at the two-tailed level (r = 0.87, p< 0.001).
For CRT RTI, short- and long-term change slopes shared a more
modest but still significant association (r = 0.39, p< 0.001).

DISCUSSION

The current investigation showcases an innovative approach for
studying practice effects in community-dwelling older adults
using both novel design considerations and advanced statistical
methodology. By utilizing a measurement burst design—in
which data were collected across weeks within years, as well
as across years—and employing three-level multilevel models,
we were able to (a) dissociate short-term retest effects from
long-term developmental change, (b) demonstrate that within-
person change across these varying temporal intervals yields
distinct patterns of variation, and (c) leverage these retest and
change slopes as predictors of cognitive impairment status.
The difference in slope estimates between short- and long-term
change, and their respective predictive utility, highlights both
(a) the advantage of the current approach for dissociating retest
effects from developmental change, as well as (b) the promise of
employing retest as a proxy for individual differences in cognitive
health.

RetestCanBiasEstimatesof
DevelopmentalChange
An enduring criticism of longitudinal research concerns the
presence of retest effects which may obfuscate the magnitude,
shape, and even estimated direction of developmental change.
Although retest-related gains are thought to bias development
and age-related changes in cognitive performance (Wilson et al.,
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TABLE 3 | Multinomial logistic regression: weekly and annual RTI in relation to the likelihood of cognitive impairment status at Year 4 and Year 8.

Year 4 Year 8

CIND-S CIND-M CIND-S CIND-M

Variable OR 95% CI 95% CI OR 95% CI 95% CI OR 95% CI 95% CI OR 95% CI 95% CI
LB UB LB UB LB UB LB UB

Weekly CRT RTI 1.36 0.80 2.34 1.16 0.62 2.17 1.78 0.93 3.40 1.30 0.61 2.77
Yearly CRT RTI 1.81 0.76 4.34 4.33* 1.70 11.05 1.55 0.48 4.98 0.93 0.27 3.22
Weekly BRT RTI 2.26* 1.31 3.88 3.82** 2.14 6.84 1.94 0.99 3.81 2.50* 1.26 4.98
Yearly BRT RTI 2.05* 1.16 3.62 3.10** 1.70 5.68 1.68 0.81 3.51 2.28* 1.04 4.77

Note. Age is baseline age centered at 74 years. Sex is categorically coded with females (1) as the reference category. Healthy controls (HC) serve as the reference category.
CIND-S, cognitively impaired-not demented for a single cognitive outcome; CIND-M, cognitively impaired-not-demented for two or more cognitive outcomes; LB, lower bound;
UB, upper bound; CRT, choice reaction time; BRT, 1-back choice reaction time; RTI, response time inconsistency. *p < 0.05; **p < 0.001.

2006; Hoffman et al., 2011; MacDonald and Stawski, 2020), retest
effects are seldom systematically measured or controlled for, due
in part to the limitations of existing designs and quantitative
methodologies (Sliwinski and Mogle, 2008; Salthouse’s, 2013).
Therefore, novel longitudinal approaches that consider the
impact of retest effects and the utilization of advanced modeling
approaches are needed to adequately distinguish within-person
developmental change from retest-related change.

We investigated the extent to which weekly change
(i.e., influencedbyretest effects) andyearly change (i.e., influenced
by aging and development) reflect comparable or distinct sources
of information. Consistent with expectations, distinct and
divergent patterns were present between the weekly short-term
and annual long-term change slopes in both RT tasks. Non-
significant, stable change in RTI in the CRT task over short
retest intervals was differentiated from significant long-term
performance declines. This is consistent with the understanding
that simple psychomotor abilities (e.g., sensorimotor speed,
processing speed) are less susceptible to the influence of retest
and showcase normative declines with aging (Salthouse, 1996;
Duff et al., 2017). For RTI in the BRT task, our sample showed
the expected benefits of retest with significant short-term
performance gains but demonstrated non-significant change
over longer retest intervals. These patterns are also congruent
with previous research, as the BRT task—which draws uponmore
executive processes (e.g., updating)—is increasingly susceptible to
practice-related gains pursuant to repeated exposure (Grand et al.,
2016). The use of such a task helps bolster the idea that placing
more demands on cognitive processing resources may provide a
more sensitive evaluation of retest effects. Such disparate patterns
observed in the fixed effects for both the simplerCRT task, and the
more cognitively demanding BRT task, indicate that the within-
person change slopes acrossweekly and annual temporal intervals
reflect non-redundant sources of information.Neglecting toparse
cognitive performance according to these distinct time structures
would bias slope estimates, confounding retest effects with
developmental change. These results corroborate previous
research demonstrating the important and considerable impact
of retest on developmental change slopes (e.g.,Wilson et al., 2006;
Hoffman et al., 2011; Jones, 2015) and suggest that related but
unique associations exist between these constructs. Moreover,
overlooking the potential influence of retest effects may mask
underlying cognitive symptomatology or early detection of
cognitive decline.

The non-significant developmental slope in BRT RTI may,
despite our systematic parsing of short-term retest-related
variance from long-term parameter estimates, be indicative of
the more enduring, generalized impact of retest—which has
shown to exert influence across much longer retest (e.g., years)
intervals (Rabbitt et al., 2004; Salthouse et al., 2004). However, an
alternative explanation is that the observed long-term BRT RTI
stability is a consequence of collapsing individual performance
information across all cognitive status groups onto one linear
trajectory. The heterogeneity in cognitive status produces
diverging trajectories of RTI among CIND subgroups (see
MacDonald and Stawski, 2020), yet yields a relatively flat sample
average slope when combined. Notably, the shape andmagnitude
of the sample average slope are less consequential to our key
research focus, which is concerned with evaluating whether
a) there are individual differences in short- and long-term
change, and b) these individual differences in slopes are linked
to cognitive status. Therefore, the choice to model the data as an
average slope, irrespective of cognitive status (i.e., not including
a CIND status moderator), was intentional in order to derive
person-specific slopes (reflecting individual deviations in change
from the population average) which could predict cognitive status
at long-term follow-ups.

UtilizingRetest as aPredictor of
ProspectiveCognitive Impairment
The focus of our second research objective was to investigate
whether the unique intraindividual slopes derived from
our models were predictive of cognitive health outcomes
(i.e., CIND), for as many as four years following the completion
of cognitive testing. We examined within-person change
directly by investigating whether an individual’s short-term
retest slope predicted long-term cognitive status, and whether
their developmental slope reflected a reliable index of process-
based change (dissociable from short-term change). A series of
multinomial logistic regression models were used to contrast
short- vs. long-term CRT and BRT RTI as individual predictors
of cognitive status at the final burst assessment wave (Year 4)
as well as an additional four years later at the conclusion of the
study (Year 8). These follow-up assessments correspond with
the natural middle and endpoints of the study and afford a novel
opportunity to investigate the differential predictive utility of our
discrete cognitive slopes.
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Using this approach, we demonstrated that the likelihood of
being classified as CIND-M relative to HC at Year 4 was over
three times greater for individuals showcasing annual increases
in CRT RTI. This result, including the non-significant predictive
ability of short-termCRTRTI change, is consistentwith the extant
literature on psychomotor function and decline. Specifically,
the basic sensorimotor demands of the comparatively less
cognitively demanding CRT task resulted in less intraindividual
variability and diminished retest fromwhich to accurately predict
long-term cognitive status. However, interindividual differences
in annualized intraindividual change may be reflective of unique
intraindividual processes (e.g., normative or pathological aging)
or characteristics (e.g., health-related comorbidities) that facilitate
more accurate predictions of cognitive impairment status at
long-term follow-up (Stawski et al., 2015). Although annualized
CRTRTIwasnot significantlypredictiveof cognitive statusatYear
8, thismaybedue inpart to therelativeheterogeneityand labilityof
CIND classifications or the relative insensitivity of developmental
CRT RTI as a proxy for underlying bio-cognitive dysfunction.

In contrast to CRT RTI, increases in intraindividual BRT
RTI across both weeks and years were significantly predictive
of cognitive status at Years 4 and 8. These patterns reflect the
expected influence of both retest and developmental performance
on long-term cognitive status. Individuals who failed to benefit
from retest and exhibited increases in their short-term BRT
RTI were significantly more likely to be classified as CIND-S or
CIND-M at Year 4, as well as CIND-M at Year 8. These predictive
patterns support the potential clinical utility of retest, where the
ability to benefit from practice is postulated to be a function
of underlying cognitive health (Galvin et al., 2005; Duff et al.,
2011, 2012). Long-term increases in annual intraindividual BRT
RTI were also associated with increased odds of being classified
as CIND-S and CIND-M at Year 4, and CIND-M at Year 8.
Independent of age and sex differences, individuals characterized
by increasing BRTRTI across short- and long-term intervals were
associated with an increased likelihood of cognitive impairment
classification. The identical trends between weekly and annual
increases in BRT RTI underscore a key finding of our study:
when appropriately parameterized, both intraindividual retest
and developmental change slopes can yield distinguishable and
meaningful predictions of long-term health outcomes.

Retest as anEarly Indicator ofCognitive
Decline
The observed discrepancies between the CRT and BRT tasks are
consistent with previous research indicating that retest effects are
test-specific (Benedict and Zgaljardic, 1998; Wilson et al., 2006).
In comparison to the CRT task, the BRT task involves increased
cognitive demands that likely involve attention,workingmemory,
and inhibitory control which are more sensitive to retest effects
(Grand et al., 2016). This dependency on executive processes not
only underscores why BRT RTI is more sensitive to retests effects
but may also help elucidate why both short- and long-term BRT
performance showcasedgreaterpredictive accuracy for classifying
CIND status at Year 8.

More generally, RTI holds considerable promise as a sensitive
marker of normal and pathological aging and has received much

attention for its promise as a proxy for central nervous system
(CNS) health and an early indicator of cognitive impairment
or decline (Hultsch et al., 2000; Bielak et al., 2010; MacDonald
et al., 2011; MacDonald and Stawski, 2020). RTI has been
shown to predict late-life deleterious health outcomes (e.g., fall
risk, vascular impairment, dementia; for review, see MacDonald
and Stawski, 2015) and may enhance our understanding of the
dynamic relationship between individual fluctuations in cognitive
performance and underlying CNS integrity (Halliday et al., 2017).
RTI has also garnered empirical support as an indicator of lapses
of attention (particularly for tasks requiring executive control
processes; West et al., 2002), processing efficiency (Eysenck and
Calvo, 1992; Brose et al., 2010), and has been shown to fluctuate
depending on perceived competence in cognitive control (e.g.,
individual differences in control beliefs for age-related changes
in cognitive performance). For example, in a recent investigation
of RTI in both CRT and BRT measures, Cerino et al. (2020)
identified that increases in perceived competence were associated
with lowerRTIon theCRT task, andhigher (i.e.,maladaptive)RTI
performance on theBRT task in older adults. Taken together, BRT
RTI may serve as a unique cognitive health indicator, sensitive to
disruptions in executive function attributable to both labile (e.g.,
momentary fluctuations in attention reflectingmental noise, daily
variations in sleep or distress) or more chronic mechanisms (e.g.,
pathological aging, dopaminergic dysregulation, declining CNS
signaling fidelity) affecting higher-order cognition. In the context
of the present study, increased RTI for the BRT (vs. CRT) task
may be a more effective proxy for these underlying bio-cognitive
disturbances, whichmay account for BRT’s increased predictivity
at both the level of retest and development across longer time
periods.

Accordingly, RTI across both short-and long-term follow-up
intervals demonstrated stronger predictivity for differentiating
CIND-M from HC, compared to CIND-S; this dose-response
pattern was expected given that the CIND-M classification
represents deficits across multiple cognitive domains and was
more likely to include impairments inexecutive function.Findings
from the logistic regression models also speak to the known
lability of cognitive impairment classifications. Specifically, the
clinical trajectory of CIND is frequently recognized as unstable
andheterogeneous,withseveral studiesdemonstratingthat single-
domain cognitive impairment classifications (e.g., CIND-S) are
associated with higher instability and increased likelihood of
reverting to HC compared to multi-domain classifications (e.g.,
Diniz et al., 2009; Loewenstein et al., 2009; Ritchie and Tuokko,
2010; Sachdev et al., 2013).

AssociationsBetweenShort- and
Long-TermChange
The ability for retest effects to be leveraged as early indicators
of cognitive decline is predicated upon having accurately
parameterized retest-effect-related variance, as well as the idea
that short-term retest occasions are associated with long-term
developmental trajectories. As some theorists have argued,
short intervals may only serve as estimates of retest effects
in longitudinal designs when the associations between short-
and long-term change are positive and at least moderately
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strong. For example, Salthouse’s (2013) reported how short-
and long-term changes across several cognitive domains were
negatively correlated, whereby individuals showing the greatest
short-term gains (between first and second sessions within one
occasion) also exhibited the largest longer-term losses (across
occasions). On the basis of such negative associations, it has
been questioned whether short-term slopes can be reliably used
as estimates of retest effects (or correspondingly as individual-
differences predictors) in longitudinal models. Notably, however,
Salthouse’s (2013) criticism was based upon a two-level latent
change analysis (assessmentswithin persons) of three-level nested
data (sessions within occasions within persons)—a fact that raises
concerns about the impact of between-context dependency on the
direction, magnitude, and significance of the reported short- and
long-term change estimates (estimated separately as two-level
structures as opposed to derived simultaneously in three-level
models) as well as their negative association.

To circumvent these concerns, in the present study we
employed a novel three-level approach that more accurately
parameterized short- and long-term change estimates, prior to
deriving unbiased estimates of the association between retest and
developmental change. For CRT RTI, we found a significant
positive correlation between short- and long-retest intervals. This
moderate correlation is indicative of shifts in the rank-order
association between changes in short- vs. long-term CRT RTI
change estimates, with the lack of significant short-term retest
effects presaging the non-significant predictivity of Year 4 and
8 cognitive status. For BRT RTI, we identified a large-magnitude
positive correlation between short- and long-term intervals; those
who exhibited greater increases in variability across short-term
retests (i.e., benefitted less from practice) also exhibited greater
annualized developmental increases in RTI (a known indicator
of various deleterious, age-related outcomes; MacDonald and
Stawski, 2015). The increased association shown in BRT RTI
further supports the potential utility of modeling short-term
intervals as retest effects in longitudinal models, and is consistent
with the reported susceptibility of BRT to retest-related effects
(Bielak et al., 2010; Grand et al., 2016). This correlation also
corroborates our logistic regression results, where individuals
who benefited more from practice were also more likely to be
cognitively intact at long-term follow-up. For both CRT and BRT
RTI, the association between retest and developmental change
slopes was positive and robust. These results are in keeping with
the findingsof other researcherswhohave advocated for theutility
of short-term intervals as a proxy for retest effects and identified
robust positive correlations between short- and long-term change
(Zimprich et al., 2004; Hoffman et al., 2011).

Implications forAgingNeuroscience
Our results highlight several notable implications for research
on cognitive aging and the cognitive neuroscience of aging:
(1) increases in RTI, even on simple psychomotor tasks, are
associated with an increased risk of cognitive impairment up
to four to eight years post-baseline assessment; (2) long-term
developmental trajectories in cognition, while not substantially
different from short-term trajectories, yield larger odds of being
subsequentlyclassifiedascognitively impaired;and(3) individuals

who not only fail to benefit from expected retest-related gains
but also worsen in performance across years are at increased
odds of being classified as cognitively impaired at follow-up.
This latter result is consistent with previous literature asserting
that retest effects can be a useful indicator of cognitive decline
(Duff et al., 2011, 2012; Jutten et al., 2020). In the present study,
the predictive utility of short- and long-term slope estimates
to independently discriminate among cognitive status groups,
even as many as four years later, speaks to the promise of
individual differences in change for distinct time structures
as predictors of future cognitive impairment. By combining
modern design and analytics, researchers can systematically
disaggregate short- from long-term within-person variability
and utilize unbiased estimates of retest and developmental
change to predict cognitive health and impairment. By using
retest effects as a proxy for cognitive health, practitioners
and individuals may be able to track inconsistencies across
short-term temporal intervals, reducing the need for rigorous
annual cognitive neuropsychological testing batteries.Harnessing
the predictive validity of retest effects, by accurately parsing
them from developmental effects, can serve as a clinically
useful, non-invasive, and inexpensive tool for earlier detection
and increasing diagnostic accuracy of cognitive impairment.
Appropriate forethought and parameterization of retest effects
are therefore paramount to both reduce systematic bias in
longitudinal trend estimates as well as harness the unique
opportunity that retest effects offer as individual-differences
predictors.

StudyStrengths andLimitations
The current study showcases several strengths including the
exploration of differing psychomotor tasks based on lower and
higher-order cognitive demands (i.e., CRT vs. BRT), sufficient
sample sizes for each cognitive status classification, the 8-year
duration of the study permitting the examination of cognitive
impairment status for both near and distal follow-up periods, as
well as the use of performance variability (i.e., RTI) which has
been suggested to serve as an important proxy of CNS integrity
(Halliday et al., 2017). The present findings replicate previous
research on the clinical utility of RTI (e.g., MacDonald and
Stawski, 2020), as well as the predictive utility of retest effects
over shorter intervals (e.g., Duff et al., 2012; Jutten et al., 2020) as
early markers of shifts in cognitive health. Furthermore, previous
researchers have suggested the use of multilevel modeling and
intensive repeated measures burst designs for addressing retest
effects in developmental research (e.g., Nesselroade, 1991;
Sliwinski, 2008; Salthouse and Nesselroade, 2010; Sliwinski
et al., 2010a; Salthouse’s, 2013); this study is among the first
to combine such intricate design recommendations along
with appropriately matching quantitative analyses (three-
level multilevel modeling) for deriving unbiased estimates
of retest and their corresponding prediction of cognitive
status.

To be sure, this study is notwithout limitations. First, cognitive
status was determined using a battery of neuropsychological
measures and a distributional CIND classification, rather than
by clinical interview. Additionally, cognitive status classifications
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were determined by performance (below 1.5 SDs based on
age and education-matched peers) on the number of tasks;
classifications were not determined by the nature of cognitive
impairment (i.e., amnestic vs. non-amnestic) and therefore this
study could not address etiology-specific impairment subtypes
(MacDonald and Stawski, 2020). Second, the sample was fairly
homogeneous and composed of relatively healthy, well-educated
individuals which may restrict generalizability. Notwithstanding,
we were able to distinguish between cognitive subgroups in this
sample which highlights the robustness of our findings. It is
likely that a more heterogeneous, less healthy sample would
produce even stronger results. It is also recommended that
additional research employ this design and modeling approach
to prospectively identify whether individual differences in retest
slopes can predict cognitive impairment or dementia progression,
without a priori knowledge of cognitive groupings. Finally, our
model’s long-term developmental change estimates may remain
biasedby retest, given thatmere-exposure effects havebeen shown
to exert influence even across longer retest intervals spanning
years (Rabbitt et al., 2004; Salthouse et al., 2004). However, the
significantpredictiveabilityofour individualdevelopmental slope
estimates for BRT RTI in identifying individuals at risk of being
CIND-S and CIND-M at long-term follow-ups highlights the
utility of these slopes as predictors of cognitive status, irrespective
of whether corresponding long-term increases in RTI are slightly
underestimated due to generalized practice effects that spanmuch
longer retest intervals.

FutureDirections
Investigators seeking to further explore dissociable patterns
between retest and development should consider modeling
non-linear trends across short- and long-term trajectories.
Additionally, exploring whether retest effects can significantly
predict subtypes of CIND (e.g., non-amnestic vs. amnestic CIND)
will further elucidate the utility of retest effects as sensitive
indicators of cognitive decline. Finally, whereas the present study
focused on RTI, future investigations may utilize our approach
to explore the dissociable patterns of retest and developmental
change using other common metrics (e.g., central tendency,
accuracy) for cognitive function.

CONCLUSIONS

The present study overviews an innovative approach for
parameterizing retest effects in longitudinal designs where
developmental outcomes in older adulthood are of interest. We
leveraged an intensive repeatedmeasurement burst design as well
as three-level multilevel modeling to operationalize retest and
developmental change directly and distinctly in the same model.
Such an approach generates more definitive, less confounded
trajectories of change by disaggregating within-person short-
and long-term cognitive performance estimates. Further, when
investigating the predictive utility of short- and long-term
change in cognitive variability, we demonstrated that both retest
effects and developmental change estimate each independently
predicted cognitive status, thereby highlighting their potential
clinical utility as well as underscoring the importance of

accurately parameterizing both retest and developmental change
in longitudinal designs. Specifically, for measures implicating
executive functioning (i.e., BRT), individuals who fail to benefit
from the expected influence of retest and instead exhibit both
short- and long-term increases in RTI are at an increased risk
of being classified as cognitively impaired up to 4 years post
data collection. Researchers and clinicians alike may adopt the
synergistic advantagesof themeasurementburstdesignand three-
level multilevel modeling to facilitate better parameterization
of retest and developmental effects and improved predictivity
of cognitive function. In doing so, retest effects may serve as a
clinically useful tool for predicting prospective cognitive status
without the need for overly long or intensive neuropsychological
testing batteries.
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Demonstrating a slowing in the rate of cognitive decline is a common outcome
measure in clinical trials in Alzheimer’s disease (AD). Selection of cognitive endpoints
typically includes modeling candidate outcome measures in the many, richly phenotyped
observational cohort studies available. An important part of choosing cognitive
endpoints is a consideration of improvements in performance due to repeated cognitive
testing (termed “practice effects”). As primary and secondary AD prevention trials are
comprised predominantly of cognitively unimpaired participants, practice effects may
be substantial and may have considerable impact on detecting cognitive change.
The extent to which practice effects in AD prevention trials are similar to those from
observational studies and how these potential differences impact trials is unknown.
In the current study, we analyzed data from the recently completed DIAN-TU-001
clinical trial (TU) and the associated DIAN-Observational (OBS) study. Results indicated
that asymptomatic mutation carriers in the TU exhibited persistent practice effects on
several key outcomes spanning the entire trial duration. Critically, these practice related
improvements were larger on certain tests in the TU relative to matched participants from
the OBS study. Our results suggest that the magnitude of practice effects may not be
captured by modeling potential endpoints in observational studies where assessments
are typically less frequent and drug expectancy effects are absent. Using alternate
instrument forms (represented in our study by computerized tasks) may partly mitigate
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practice effects in clinical trials but incorporating practice effects as outcomes may
also be viable. Thus, investigators must carefully consider practice effects (either by
minimizing them or modeling them directly) when designing cognitive endpoint AD
prevention trials by utilizing trial data with similar assessment frequencies.

Keywords: practice effects, Alzheimer’s disease, clinical trials, learning, assessment frequency, alternative forms

INTRODUCTION

Phase 3 secondary prevention clinical trials in Alzheimer’s disease
aim to demonstrate the efficacy of drug or other interventions in
preserving or improving cognitive function in at-risk individuals.
Such trials typically use the slowing of the rate of cognitive decline
between a treatment arm and a placebo group as their primary
efficacy endpoint (Sperling et al., 2014; Bateman et al., 2017;
Cummings et al., 2020). Comprehensive neuropsychological test
batteries are administered at regular intervals (e.g., every 6–
12 months) to best characterize cognitive change across the
course of the trial and to monitor for adverse events such
as unexpected drops in performance. However, these repeated
administrations may have unanticipated consequences for trial
outcomes. Specifically, it is well-known that healthy adults
typically improve in performance (termed “practice effects”
or “PEs”) with repeated cognitive testing (Calamia et al.,
2012). These PEs can be attributed to several factors including
increased familiarity with task procedures, development of
testing strategies, or memorization of specific stimuli. These
gains are not limited to short time intervals and can persist
for as long as 7 years (Salthouse et al., 2004) after just one
exposure, a longer time span than a typical AD prevention
trial. It is also important to consider that in symptomatic AD
populations, where active neurodegenerative processes drive
worsening cognitive performance, practice effects do not always
translate to better performance from visit to visit. Rather, the
competing forces of disease and PEs can manifest as attenuations
of decline such that PEs may be observable as flat or simply less
negative slopes.

For these reasons, potential PEs must be taken into
consideration when planning a clinical trial. The two primary
analytical models used in AD trials either analyze change from
baseline to final test (e.g., mixed models for repeated measures
or MMRM) or conceptualize change as linear from baseline
to end of study (random intercept and slope models). When
PEs are present but unaccounted for in statistical models,
the magnitude of decline over the course of the trial can
be drastically underestimated (Hassenstab et al., 2015; Jacobs
et al., 2017) reducing the power to detect a treatment effect.
Therefore, it may be desirable to minimize the influence of
PEs in a clinical trial. One way to do so would be to include
multiple “screening” sessions (Goldberg et al., 2015) which
give participants experience with the cognitive battery prior
to the initiation of treatment, as PEs tend to be largest after
the first or second retest (Collie et al., 2003; Bartels et al.,
2010). Other methods for minimizing PEs include the use of
alternate forms, although this presents the additional challenge
of verifying that the different forms are truly psychometrically

equivalent (Gross et al., 2012), and yet still limit PEs due to
familiarity. Computerized cognitive assessments, depending on
the test paradigms, can protect against form-related PEs by
randomly selecting stimuli for each test administration, creating
an essentially endless number of alternate forms. But of course,
this requires additional equipment and study management that
can be costly and may not suit all trial protocols. Importantly,
none of these approaches are entirely successful at eliminating
practice effects (Beglinger et al., 2005; Falleti et al., 2006). Given
the difficulties with eliminating PEs in cognitive studies, some
studies have turned away from efforts at avoiding PEs opting
instead to determine if incorporating PEs as outcomes themselves
may reveal meaningful information about cognitive status. For
example, several studies have shown that the attenuation of PEs
in clinically healthy older adults can predict important outcomes
such as biomarker status or risk of progression to symptomatic
AD (Duff et al., 2011; Hassenstab et al., 2015; Machulda et al.,
2017; Oltra-Cucarella et al., 2018; Samaroo et al., 2020). PEs may
therefore serve as a subtle marker of early disease even if average
cognitive trajectories are relatively flat. It is critical, therefore,
to have a comprehensive understanding of factors that produce
or exaggerate practice effects and to develop statistical tools to
appropriately model them. Ultimately, the magnitude of PEs may
serve as an alternative or supplementary endpoint for trials.

Similar to clinical trials, observational studies of AD provide
systematic and longitudinal assessment of clinical, cognitive and
pathological progression of the disease, albeit in the absence of
a specific intervention. Although PEs have been relatively well
studied in community-based observational studies of sporadic
AD, to date, we are unaware of any systematic evaluation
of PEs in the context of a clinical trial. One might expect
that PEs would be attenuated in clinical trials if the study
protocol includes a comprehensive screening assessment, which
may provide exposure to the testing materials (Goldberg et al.,
2015). Alternatively, in some cases, trial participants might be
recruited from ongoing observational studies and hence are
already familiar with the process of cognitive testing and may
have exposure to the same test materials. Another important
difference from observational studies is the role of participant
expectations in clinical trials. Trial participants may exhibit
enhanced PEs due to a type of placebo effect, wherein motivation
and engagement may be higher in the trial compared to
observational studies where expectations and motivations for
participation may be different. As many trials rely on data from
observational studies to select appropriate cognitive measures as
endpoints and conduct power analyzes to determine the requisite
sample sizes needed to detect a hypothetical treatment effect, it is
critical to test the assumption that participants in observational
studies will perform similarly to those engaged in clinical trial
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research. If these two populations differ in terms of PEs or
overall cognitive trajectories, pre-specified cognitive endpoints
selected based on observational study data may not be suitable
for a clinical trial and sample sizes may be underestimated,
among other concerns.

To address these issues, we present analyzes from the recently
completed DIAN-TU 001 (TU) clinical trial (Mills et al., 2013)
and the associated DIAN Observational study (OBS, Bateman
et al., 2012). The DIAN-TU is a phase 2/3, double blind, placebo
controlled study of disease modifying therapies in autosomal
dominant AD (ADAD), a rare form of AD due to specific genetic
mutations that has similar pathological and clinical presentations,
other than in age at onset, as sporadic AD (Bateman et al.,
2011). These genetic mutations cause AD with virtually 100%
penetrance and onset of clinical symptoms begin at a predictable
and typically much younger age than sporadic AD (Ryman
et al., 2014). The expected number of years to symptom onset
(EYO) can be calculated based on the participant’s age and the
historical average age-at-symptomatic onset of gene-carriers with
the same mutation or from the same family. The predictability
of expected symptom onset as well as pathological similarities
to the more common sporadic form of AD, makes ADAD a
critical population in which to understand and build a model of
cognitive, clinical, and pathological disease progression (McDade
et al., 2018). To maintain participant blinding to their mutation
status, ADAD mutation carriers (MCs) and non-carriers (NMCs)
were enrolled in the trial, with all NMCs being assigned to
placebo in a double blinded manner. The DIAN Observational
study was launched in 2008 to provide natural history data on
the progression of clinical, cognitive, and pathological changes
in this population. Several participants who enrolled in the
OBS study later enrolled in the TU study. We utilized the
data from these two studies to answer the following questions:
(1) Do PEs in ADAD vary as a function of mutation status
or clinical status? (2) Do alternate forms that vary the stimuli
across repeated administration (computerized battery vs. pen and
paper) moderate the size of PEs? and (3) Do cognitive trajectories
in clinical trials differ from those in observational only studies?

MATERIALS AND METHODS

A total of 384 participants were included in our analyzes. One-
hundred ninety-three participants from the TU cohort and 191
from the OBS cohort. Both studies recruited a population of
ADAD mutation carriers and non-carriers to determine the
natural history (OBS) and to implement safe, efficient, and
effective clinical trials that have the highest likelihood of success
in advancing overall treatment (TU). Although the TU study
was not powered to determine cognitive effects at the higher
treatment doses that were ultimately used (5% power to detect a
30% slowing in the rate of cognitive decline), we have previously
shown the absence of a treatment effect on cognitive outcomes
in the TU (Salloway et al., 2021). Thus, given the relatively small
group differences between treatment and placebo arms, for the
present analyzes, all participants were combined and treatment
arm [e.g., drug (solanezumab/gantenerumab) vs. placebo] was

not considered. A small number of NMCs had clinical evidence
for impairment (3 in the TU and 7 in OBS), these participants
were removed prior to analysis due to small sample size, leaving
a total of 374 participants available for analysis.

Clinical/Cognitive Evaluation
Participants in both the TU and OBS studies underwent
comprehensive clinical and cognitive evaluations. Presence and
severity of dementia symptoms was ascertained using the Clinical
Dementia Rating R© (CDR) scale (Morris, 1993). A global rating
of 0 on the CDR reflects no dementia, while scores of 0.5,
1, 2, and 3 reflect very mild, mild, moderate, and severe
dementia, respectively. The Mini-Mental State Exam (Folstein
et al., 1975) (MMSE) was also given as a measure of general
cognitive function.

The cognitive batteries were largely similar across the two
studies. Neuropsychological tests that were given in common
across the two cohorts have been described elsewhere (Storandt
et al., 2014) and include Wechsler Memory Scale-Revised Logical
Memory Immediate and Delayed Recall (Wechsler, 1987) and
Digit Span, Trail making Parts A and B (Armitage, 1945),
Category Fluency for Animals and Vegetables (Goodglass and
Kaplan, 1983), and Digit Symbol Substitution from the Wechsler
Adult Intelligence Scale-Revised (Wechsler, 1981). In the TU,
participants were also administered the Cogstate computerized
battery which included Identification, Detection, One-Back, One
Card Learning, and the International Shopping List test. These
measures have been described extensively elsewhere (Hammers
et al., 2011; Lim et al., 2012). In the TU, most of these tests
were administered every 6 months except for category fluency
and the MMSE which were measured annually. All tests utilized
the same versions at each testing occasion with the exception of
the Cogstate tests which produced randomly generated stimuli
at each occasion. Assessment frequency in the OBS study ranged
from every 1–3 years depending on clinical status and when the
participant entered the study. The OBS study has enrolled over
575 participants to date, but for the purpose of these analyzes, we
selected participants that matched the enrollment criterion for
the TU. We included as many participants as possible who met
the following criteria: baseline global CDR score of 1 or less and
estimated years to EYO range from –15 to +10 years (Salloway
et al., 2021; See Table 1 for full demographics). For the purposes
of these analyzes, participants who were initially enrolled in the
OBS study and then transitioned to the TU (41% of the TU CDR
0 carriers, 32% of the TU CDR > 0 carriers and 33% of the TU
non-carriers started in the OBS study) were included in the TU
cohort but were excluded from analyzes in the OBS cohort.

Statistical Analysis
Our analyzes proceeded in several steps. We first compared
cognitive trajectories in the TU battery between NMCs, CDR
0 MCs and CDR > 0 MCs. We constructed linear mixed
effects (LME) models for each cognitive test and predicted
cognition from baseline EYO, time-in-study (hereafter referred
to as “time”), group and the group by time interaction. A random
intercept and random slope of time was also included in
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TABLE 1 | Demographic characteristics of the clinical trial (TU) and observational (OBS) study cohorts.

DIAN-TU DIAN Obs

NMC MC CDR 0 MC CDR > 0 NMC MC CDR 0 MC CDR > 0

N 46 85 59 115 35 34

Age 42.0 (9.2) 40.9 (8.5) 49.2 (10.1) 41.3 (8.9) 38.7 (9.5) 46.0 (8.3)

EYO –4.5 (6.3) –5.8 (6.3) 2.7 (4.8) –6.1 (6.8) –8.3 (6.0) 1.2 (3.9)

Sex (% female) 20 (43%) 45 (53%) 28 (47%) 70 (61%) 25 (71%) 22 (65%)

Education 15.5 (3.2) 15.6 (3.2) 14.1 (2.6) 14.9 (2.8) 14.3 (2.7) 13.2 (3.2)

Number of assessments 7.3 (3.6) 9.5 (2.2) 8.1 (2.5) 2.2 (1.3) 2.7 (1.1) 3.3 (1.2)

Length of follow-up 3.1 (1.8) 4.2 (1.1) 3.6 (1.3) 2.5 (2.5) 3.6 (1.9) 2.9 (1.6)

Results are reported as mean (SD) where appropriate.

all models with an unstructured covariance matrix. Follow-
up contrasts were constructed to compare slopes on each test
between the NMCs and the CDR 0 MCs, and between the CDR 0
MCs and the CDR > 0 MCs. For ease of comparison across tests,
all outcomes were z-scored to the baseline mean and standard
deviation of the CDR 0 non-carriers so that a score of “0”
represents the score of a relatively cognitively normal participant.
Scores were oriented such that a positive slope indicates an
improvement over time and a negative slope indicates decline.

A second set of LMEs were constructed to compare
performance in the TU vs. the OBS study. Specifically, we
analyzed performance on each cognitive test as a function of
time, group (NMC, CDR 0 MC, and CDR > 0 MCs) and
cohort (TU vs. OBS), and included all of the two and three-way
interactions while also controlling for baseline EYO. All models
were fit in the R statistical computing software (version 4.0.5,
R Core Team, 2021) using the lme4 package (version 1.1.27.1,
Bates et al., 2015). P-values were obtained using the lmerTest
(version 3.1.3, Kuznetsova et al., 2017) package. To ensure that
no influential, outlying data points were unduly biasing our
results, we used the infleunce.ME package (Nieuwenhuis et al.,
2012) to iteratively remove a single participant from each model
and re-run the statistical analysis. We checked for a change
in statistical significance in key model parameters (specifically,
the group by time or group by cohort by time interactions)
when a given participant was removed. Across all the analyses
we conducted, none of those parameters changed significance
suggesting no single person was exerting undue influence on
these results. Finally, although a relatively large set of statistical
comparisons were conducted in order to fully describe practice
effects across a range of cognitive tests, no corrections for
multiple comparisons were made.

RESULTS

Analysis 1: Clinical Trial Only
Slopes over time for each cognitive test and each group are
illustrated in Figure 1. Intercepts and slope scores for each test
can also be found in Supplementary Table 1. Not surprisingly,
the MC CDR > 0 group evinced significant decline on all
cognitive measures with some of the largest effects occurring
on tests of perceptual speed and attention (Cogstate Detection,

Identification and One back, Digit Symbol Substitution and
Trail Making Part A). In contrast, cognitive trajectories for
the MC CDR 0 group were relatively flat with a few notable
exceptions. There was significant decline on Category Fluency
for Animals, the ISLT and the Identification test, suggesting that
measures of semantic fluency, episodic memory and attention are
sensitive to preclinical cognitive decline. Interestingly, the Logical
Memory immediate and delayed recall tests showed significant
improvement over time in this population as did Cogstate One
Card Learning, a test of visual learning ability. NMCs did not
decline on any measure, which was expected in a relatively young
and cognitively healthy cohort. Showing the classic pattern of
practice effects, NMCs exhibited significant improvement over
time compared to a zero slope on several measures including
Logical Memory Immediate and Delayed Recall, Digit Symbol
Substitution, Digit Span Backward and One Card Learning.

In order to determine disease effects on learning and decline,
we next compared slopes between the NMCs and the MC CDR
0 group (shown in Figure 2) to determine if differences in rate
of change distinguished the groups. Slopes (reflecting change
per year in z-score units) were significantly different between
these two groups on the following measures: One Card Learning
(Difference = 0.10, p = 0.01, CI = 0.02:0.18), Logical Memory
Immediate (Difference = 0.16, p = 0.009, CI = 0.04:0.27), Logical
Memory Delayed (Difference = 0.14, p = 0.007, CI = 0.04:0.24),
Digit Span Forward (Difference = 0.11, p = 0.04, CI = 0.006:0.21),
Digit Span Backward (Difference = 0.13, p = 0.02, CI = 0.03:0.23)
and the ISLT (Difference = 0.19, p < 0.001, CI = 0.08:0.30).
These results indicate that while both MCs and NMCs exhibited
PEs (see Figure 1) on the Logical Memory and One Card
Learning tests, practice-related gains were significantly larger in
the NMCs. Moreover, NMCs improved over time on the Digit
Span Backward test whereas the MCs showed no significant
change. Finally, the NMCs did not show improvement or decline
on ISLT whereas the MCs significantly declined.

Analysis 2: Observational Versus Clinical
Trial
Intercepts and slopes for the eligible participants in the OBS
study are provided in Supplementary Table 2, and slopes for
each test and group are plotted in Figure 3, showing time-
dependent changes. First, similar to the TU, the MC CDR > 0
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FIGURE 1 | Slope estimates and 95% confidence intervals for each test and clinical group in the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU).
Slopes can be considered significant if the CI does not encompass zero. All tests were scaled such that a negative slope indicates decline. Slopes are in z-score
units change per year. (A) Plots non-carriers (N = 46), (B) plots Clinical Dementia Rating (CDR) 0 mutation carriers (N = 85), and (C) plots CDR > 0 mutation carriers
(N = 59). Due to dramatic performance differences across groups, the X-axis scale is not identical across the panels. ONB, one-back; OCL, one card learning; Det,
detection; Idn, identification; ISLT, international shopping list; Veg, category fluency for vegetables; animals, category fluency for animals; DigFor and DigBack, digit
span forward and backward; LM, logical memory; MMSE, Mini Mental State Exam.

FIGURE 2 | Differences in slopes (and 95% CIs) for each test between non-carriers and CDR 0 mutation carriers in the clinical trial (TU). A positive slope difference
indicates a larger or more positive slope (improvement) in the non-carriers compared to mutation carriers. Mean difference and 95% confidence intervals are pasted
along the left side.

group in the observational study declined significantly on all
measures. Second, the MC CDR 0 group again showed relatively
flat cognitive trajectories with the notable exception of the Digit

Symbol Substitution test which significantly declined by 0.12
z-score units per year. Most importantly, there was no hint of
practice related improvements in the MC CDR 0s, with lack
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FIGURE 3 | Slope estimates and 95% confidence intervals for each test and clinical group in the DIAN-Observational (DIAN-Obs) study. Slopes are expressed as
z-score units change per year and can be considered significant if the CI does not encompass zero. All tests were scaled such that a negative slope indicates
decline. (A) Plots non-carriers (N = 115), (B) plots CDR 0 mutation carriers (N = 35), and (C) plots CDR > 0 mutation carriers (N = 34). Due to dramatic performance
differences across groups, the X-axis scale is not identical across the panels.

of evidence of positive slope estimates, on any of the cognitive
measures. Finally, the NMC group significantly improved on
the Logical Memory Immediate and Delayed Recall tests but
the slopes for the other measures were relatively flat and not
significantly different from zero.

Direct comparisons between the symptomatic MCs in the OBS
and TU cohorts (Figure 4), revealed no significant differences in
slopes between the cohorts on any measure with the exception of
Logical Memory Immediate Recall (Difference = 0.18, p = 0.03,
CI = 0.02:0.34), in which participants in the TU showed slightly
less decline than in OBS. Interestingly, a number of differences
emerged when comparing the asymptomatic MCs across TU and
OBS (Figure 5). Specifically, on the Digit Symbol Substitution
test (Difference = 0.14, p = 0.02, CI = 0.02:0.25), Logical Memory
Immediate (Difference = 0.15, p = 0.03, CI = 0.02:0.28) and
Delayed recall (Difference = 0.15, p = 0.007, CI = 0.04:0.26)
slopes were markedly less negative in the TU as compared to the
OBS study. Finally, in the comparison of NMCs (Figure 6), the
OBS participants improved less on Logical Memory Immediate
(Difference = 0.19, p = 0.003, CI = 0.07:0.31) and Delayed recall
(Difference = 0.20, p < 0.001, CI = 0.10:0.30) compared to the
TU participants.

DISCUSSION

In this study, we compared performance on a comprehensive
cognitive battery in two cohorts to answer several important

questions regarding practice related improvements in
observational studies and clinical trials in AD populations.

Question 1: Does Mutation Status or
Clinical Status Moderate Practice Effects
in the Dominantly Inherited Alzheimer
Network Trials Unit?
Clinical status was an important predictor of PEs in the DIAN-
TU. Specifically, individuals who were CDR > 0 at entry
significantly declined on all cognitive measures and therefore
did not show practice-related gains. This is not to say that PEs
were not present in this group, only that any gains associated
with practice were overshadowed by the decline attributable
to AD pathology. More importantly, mutation status in the
CDR 0 groups also predicted magnitude of change in the TU.
MC CDR 0s declined significantly over time on measures of
attention, episodic memory, and semantic fluency whereas NMCs
showed no change in these domains. Interestingly, differences in
performance between MC CDR 0s and NMCs also emerged on
the ISLT (list recall, MCs declined more than NMCs), Logical
Memory (narrative recall, MCs improved less than NMCs),
Digit Span (working memory, MCs improved less than NMCs),
and One Card Learning (visual learning, MCs improved less
than NMCs). Together these findings suggest that differences in
the magnitude of practice related improvements in domains of
memory and learning might serve as a sensitive and supplemental
indicator of preclinical AD.
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FIGURE 4 | Differences in slopes (and 95% CIs) for each test between CDR > 0 mutation carriers in TU vs. the Obs study. A positive slope difference indicates a
larger or more positive slope (improvement) in the TU compared to the Obs study. Some tests, such as Logical Memory, had more improvement or practice effects in
the TU vs. Obs. Mean differences and 95% CIs presented along the right side of the graph.

FIGURE 5 | Differences in slopes (and 95% CIs) for each test between CDR 0 mutation carriers in TU vs. the Obs study. A positive slope difference indicates a larger
or more positive slope (improvement) in the TU compared to the Obs study. Some tests, such as Logical Memory and Digit Symbol, had more improvement or
practice effects in the TU vs. Obs. Mean differences and 95% CIs presented along the left side of the graph.

Question 2: Do Alternative Forms
Influence Practice Effects?
We expected a priori that computerized measures from the
Cogstate battery might show less practice effects due to the nature
of randomized stimuli which generates essentially unlimited
alternate forms. For example, many of these tasks use playing
cards as stimuli presented in a newly randomized order at
each administration. Such a design reduces the possibility of
memorizing specific items which can be a contributor to PEs.
This contrasts with Logical Memory in the DIAN studies,
for example, which presents the same narrative each time
the test is taken.

Our hypothesis was largely supported. Most of the
computerized tests were resistant to practice effects in the
NMCs or sensitive to decline in the MCs (e.g., ISLT and
Identification tests). Practice related gains were apparent on the
One Card Learning test and due to the nature of the randomized
stimuli, it is assumed that participants are developing or learning
some strategy besides rote memorization to improve over time.
One possibility is that this test might be particularly amenable to
visual strategies such as the method of loci (Gross et al., 2014).
As the cards are shown one at a time, participants may over time
learn to organize the items in a meaningful fashion (e.g., into
poker hands or by suit) which might aid recall.
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FIGURE 6 | Differences in slopes (and 95% CIs) for each test between non-mutation carriers in TU vs. the Obs study. A positive slope difference indicates a larger or
more positive slope (improvement) in the TU compared to the Obs study. Some tests, such as Logical Memory had more improvement or practice effects in the TU
vs. Obs. Mean differences and 95% CIs presented along the right side of the graph.

Question 3: Are Practice Effects Similar
Across Clinical Trials and Observational
Studies?
One of the most important questions addressed in this study was
whether cognitive trajectories were similar across a clinical trial
cohort and an observational study. For participants who were
CDR > 0 at baseline, the answer was clearly “yes”. Regardless
of the cohort, MC CDR > 0s declined significantly over time
and the magnitude of change did not differ significantly between
the TU and OBS with the sole exception of Logical Memory
Immediate Recall. This may reflect disease progression such
that symptomatic MCs have declined to the extent that any
practice related gains were outweighed by the task demands.
An interesting but complex question for future studies is to
determine the point at which PEs are effectively overwhelmed by
disease related declines.

For the MC CDR 0s, however, a few critical differences
did emerge. Specifically, OBS participants declined at a faster
rate than the TU participants on the Digit Symbol Substitution
test and improved less on the Logical Memory Immediate
and Delayed Recall tests. One obvious possible explanation for
these differences is the assessment frequency across the two
studies (every 6 months in the TU, ∼ every 2 years in OBS).
This explanation is likely for the Logical Memory tests, where
participants will hear the same story at each testing occasion
which reinforces encoding and aids in recall. It is less clear why
Digit Symbol Substitution would show such enhanced practice
effects in the TU when other measures of speed and executive
function did not (e.g., the Trail Making tests). Studies of retest
have shown performance gains on Digit Symbol Substitution, but
this test typically demonstrates less gains than episodic memory

measures (Calamia et al., 2012). Thus, frequency of assessment
needs to be carefully considered during trial design.

Another important possibility is an enhanced placebo effect
in the DIAN-TU. Specifically, TU participants were randomized
to treatment vs. placebo at a ratio of 3:1. Thus, there may
have been a greater expectation of being on active drug which
may have then impacted cognitive performance. Regardless
of the underlying mechanisms, these differences in practice
related gains are particularly noteworthy as the Logical Memory
and Digit Symbol tests feature heavily in multiple cognitive
composite endpoints (Sperling et al., 2014; Bateman et al., 2017).
Investigators should keep in mind potential differences between
observational and trial cohorts when planning their studies and
conducting power analyzes.

Using alternate instrument forms has been shown in some
studies to be a viable strategy to reduce PEs. For example, a
meta-analysis of test/retest effects found substantial reductions
in performance gains when alternate forms were used for verbal
list learning measures (Calamia et al., 2012). This finding is
similar to the results shown here, in which the computerized
tests were largely resistant to practice-related gains. The one
exception we found was One Card Learning, a visual learning
test that uses randomly generated sequences of cards such that
there are essentially hundreds of alternate forms. This task
produced the largest PEs in asymptomatic MCs enrolled in the
DIAN-TU clinical trial. We could not, however, determine if
this was due solely to clinical trial participation, as this measure
was not collected with sufficient samples in the OBS study
for comparison. In a recent study, the developers of the One
Card Learning test made a shorter and less difficult version of
the test (as evidenced by less floor effects in symptomatic AD
participants) that demonstrated no PEs in young cognitively
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normal participants across very short retest intervals (White et al.,
2021). The authors argue that the increased difficulty and length
of the longer version of the task may lead to participants forming
strategies that in turn lead to more PEs.

Although our results indicate that rates of change on key
cognitive outcomes may be underestimated in clinical trials
due to the presence of these practice effects, it is important to
highlight situations in which these practice effects might limit
the ability to detect treatment effects. Specifically, in clinical
trials that include a placebo arm in which participants undergo
identical clinical and cognitive assessments as participants on
active treatment, the negative impact of practice effects may be
minimal, to the extent that practice effects manifest similarly
in placebo vs. treated patients. However, this also assumes
that the influence of improved cognition due to treatment is
additive, rather than interactive, with improved cognition due
to practice effects, which may not be the case. Moreover, the
primary cognitive outcome is often a composite score formed of
multiple tests. If some tests exhibit practice effects while others
do not, as is the case in the present study, decline on a global
composite score may be very small, limiting the power to detect
any differences among groups.

It is unclear if attempts to avoid or reduce practice effects
are futile. Completely avoiding practice effects does seem an
impossible task. One of the most fundamental aspects of human
behavior is adaptation, or learning. As we and others have
previously shown, in the context of a cognitive assessment this
learning is not just limited to familiarity with test materials
but also to process factors like test strategies, effort, demand
characteristics, and expectancy effects, among others (Beglinger
et al., 2005; Hassenstab et al., 2015; Machulda et al., 2017).
Instead of avoiding PEs, trials that enroll cognitively normal
or mildly affected participants might consider designs and
statistical models that anticipate and account for the influence
of PEs. Such protocols might include extended baseline designs
that allow cluster assessments prior to dosing in so-called
“run-in” designs (Frost et al., 2008). Less emphasis might be
placed on spreading assessments out at regular time intervals
(e.g., one assessment every 6 months) in favor of clustering
assessments at key read-out times and averaging across the
clusters, which might not only minimize the effects of practice
but also reduce individual variability in scores (Valdes et al.,
2016). An alternative strategy is to incorporate PEs as outcomes
themselves. Several recent studies have deliberately measured
learning effects in cognitively normal older adults at risk for
AD (Hassenstab et al., 2015; Baker et al., 2020; Lim et al., 2020;
Samaroo et al., 2020). Effect sizes differentiating participants with
biomarker-confirmed preclinical AD from those with normal
biomarker levels are extraordinarily large for these paradigms,
suggesting that PEs may be a highly sensitive indicator of
disease progression.

There are many strengths to this study including use of a
comprehensive cognitive battery on very well-characterized
clinical cohorts, designed comparability between an
observational study and clinical trial, enrolling the same
population for both studies, and frequent assessments over many
years. However, some limitations need to be noted. First, because

this is a study of ADAD, a very rare form of AD, the sample
sizes included here could be considered small. Moreover, it is
unclear whether differences in practice related gains will translate
to the more common sporadic form of the disease. Second,
some participants in these studies may become aware of their
mutation status and this might alter their cognitive outcomes
(Aschenbrenner et al., 2020). It is unknown whether the number
of participants who did and did not learn their status were similar
across the two studies. Third, we did not have data from the
Cogstate testing battery in the DIAN-OBS study which precluded
a comparison of PEs between the trial and observational study on
these measures. Finally, we conducted many statistical tests due
to the large cognitive battery that was administered and although
many effects could have been predicted a priori this could be
seen as an additional limitation.

Nevertheless, these results highlight three important points.
(1) Practice effects were highly evident in the DIAN-TU-001
clinical trial in asymptomatic mutation carriers and non-carriers.
(2) Alternate forms may have attenuated practice effects, but
not for all measures. (3) The magnitudes of practice effects
were larger in the DIAN-TU-001 clinical trial than seen in
a well-matched sample from the DIAN Observational study,
suggesting that more frequent assessments and placebo effects
in clinical trials may drive increases in practice effects. Clinical
trials that utilize a cognitive endpoint should carefully consider
the potential for practice effects and select statistical modeling
strategies that can incorporate them directly.
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Background: Practice effects (PE), after repeated cognitive measurements, may mask
cognitive decline and represent a challenge in clinical and research settings. However,
an attenuated practice effect may indicate the presence of brain pathologies. This study
aimed to evaluate practice effects on the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) scale, and their associations with brain amyloid
status and other factors in a cohort of cognitively unimpaired older adults enrolled in the
CHARIOT-PRO SubStudy.

Materials and Methods: 502 cognitively unimpaired participants aged 60-85 years
were assessed with RBANS in both screening and baseline clinic visits using alternate
versions (median time gap of 3.5 months). We tested PE based on differences
between test and retest scores in total scale and domain-specific indices. Multiple linear
regressions were used to examine factors influencing PE, after adjusting for age, sex,
education level, APOE-ε4 carriage and initial RBANS score. The latter and PE were also
evaluated as predictors for amyloid positivity status based on defined thresholds, using
logistic regression.

Results: Participants’ total scale, immediate memory and delayed memory indices were
significantly higher in the second test than in the initial test (Cohen’s dz = 0.48, 0.70 and
0.35, P < 0.001). On the immediate memory index, the PE was significantly lower in the
amyloid positive group than the amyloid negative group (P = 0.022). Older participants
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(≥70 years), women, non-APOE-ε4 carriers, and those with worse initial RBANS test
performance had larger PE. No associations were found between brain MRI parameters
and PE. In addition, attenuated practice effects in immediate or delayed memory index
were independent predictors for amyloid positivity (P < 0.05).

Conclusion: Significant practice effects on RBANS total scale and memory indices
were identified in cognitively unimpaired older adults. The association with amyloid
status suggests that practice effects are not simply a source of measurement error
but may be informative with regard to underlying neuropathology.

Keywords: practice effect, cognitive test, older adults, amyloid pathology, memory

INTRODUCTION

Valid instruments and implementations of cognitive tests are
essential for the evaluation of cognitive status, decline and
subsequent dementia diagnosis, and the screening of at-risk
participants for clinical trials and population intervention
programs for dementia prevention. However, practice effects
(PE) after repeated cognitive measurements, which refer to
improvements in test performance due to repeated exposure to
test materials or procedures (Hausknecht et al., 2007; Goldberg
et al., 2015), often mask a potential cognitive decline and remain
a major issue in clinical and research settings (Houx et al., 2002;
Sanderson-Cimino et al., 2022). Failing to account for practice
effects in cognitive tests could delay diagnosis and clinical care for
patients with cognitive deficits. PE resulting from task familiarity
occurring with test repetition is distinct from learning effects
which refer to the recall of correct answers from previous tests.
The latter is often addressed in neuropsychological practice
through administration of alternate versions of the same task
(e.g., different word lists in verbal memory tests).

Exploring factors that influence practice effects can be
informative of potential heterogeneity of measurement bias
and in developing mitigation strategies to minimise such bias
(Calamia et al., 2012). On the other hand, the magnitude of
practice effect per se may also have indicative value for cognitive
impairment or existing brain pathologies (Duff et al., 2007; Jutten
et al., 2021). From this perspective, PE may represent not merely a
source of measurement error but potentially valuable information
from a clinical and scientific perspective (Duff et al., 2007).

Given the long preclinical stage of late-onset dementia (Elias
et al., 2000) with progressively accumulating neuropathology, it
is early detection in at-risk individuals that may prove essential
in reducing the burden of cognitive and functional decline
and dementia in the elderly population. Therefore, a deeper
understanding and characterisation of PE in validated cognitive
assessment tools among asymptomatic population is warranted.

This study aimed to evaluate PE in the Repeatable Battery
for the Assessment of Neuropsychological Status (RBANS)
(Randolph et al., 1998), and its associations with brain amyloid
status and other factors in a cohort of cognitively unimpaired
older adults in the United Kingdom Cognitive Health in
Ageing Register: Investigational, Observational, and Trial Studies
in Dementia Research: Prospective Readiness cOhort Study
(CHARIOT-PRO) SubStudy (Udeh-Momoh et al., 2021).

MATERIALS AND METHODS

Study Population
CHARIOT-PRO SubStudy is an on-going prospective
cohort study of cognitively unimpaired older adults in the
United Kingdom, which aims to examine longitudinal cognitive
changes in those with and without brain amyloid-beta (Aβ42)
pathology, and factors and markers of subsequent decline (Udeh-
Momoh et al., 2021). Following screening of 2425 individuals,
including amyloid status determination and multiple cognitive
tests, an equal number of participants above and below a binary
threshold of Aβ42 positivity were enrolled at baseline and in
subsequent longitudinal study. During screening, participants
whose performance on any RBANS index was poorer than 1.5
standard deviation (SD) below the population mean (population
norms from Randolph, 1998) were referred to an adjudication
panel of neurologists, psychiatrists and neuropsychologists to
detect any undiagnosed cognitive impairment which was an
exclusion criterion. The detailed inclusion/exclusion criteria
and study procedures have been described in previous papers
of our group (Nalder et al., 2021; Udeh-Momoh et al., 2021).
The study received approval from the National Research
Ethics Service (NRES) Committee London Central [reference
15/LO/0711 (IRAS 140764)], as well as independent ethics review
by committees from the local sites. All participants provided
informed consent before participating in the study.

A total of 502 participants aged 60–85 years completed RBANS
assessments in both screening and baseline clinic visits and were
included in this study (Udeh-Momoh et al., 2021). The median
time gap between the screening visit and the baseline visit was
3.5 months, which allowed us to examine the practice effects
in RBANS scale within a relatively short time period with less
concern that the test-retest score differences are (partially) due
to the cognitive decline during this time interval.

Measurements
Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS) (Randolph et al., 1998) is a validated and widely
used neuropsychological assessment. It is a 20-min composite
battery which consists of twelve subtests that measure five
cognitive domain indices (immediate memory, delayed memory,
visuospatial construction, language, attention). The sum of the
five index scores is converted to a total scale score based on a
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distribution with a mean of 100 and SD of 15. This assessment
was administered by trained assistant psychologists during the
in-person clinic visits. Version C and Version A of the RBANS
were administered at the screening and baseline assessments,
respectively, to avoid learning effects (i.e., recalling answers from
the same test received before).

Amyloid burden was determined during the screening visit
either by amyloid positron emission tomography (PET) scans
(in ∼90% of participants) or cerebrospinal fluid (CSF) Aβ42
measurements via lumbar punctures (in the remaining 10%). Aβ

positive was defined as above-threshold brain Aβ deposition on
PET (based on tracer-specific thresholds of the composite cortical
standardised uptake value ratio, SUVR) or below-threshold
CSF Aβ42 concentration (≤600 ng/L). Three F18-radiolabeled
amyloid tracers were used: florbetapir (Amyvid), flutemetamol
(Vizamyl) and florbetaben (Neuraceq). The composite cortical
SUVR threshold was 1.14 for Amyvid and 1.23 for Vizamyl
(both with whole cerebellum as reference region), and 1.20
for Neuraceq (with cerebellar grey matter as reference region)
(Udeh-Momoh et al., 2021).

Screening also included a brain magnetic resonance imaging
(MRI). Bilateral volumetric MRI parameters were obtained,
including whole brain volume (mL3), ventricular volume (mL3),
hippocampal volume (mm3) and AD signature cortical thickness
(mm) (Schwarz et al., 2016). Intracranial volume (ICV) was
used as the proxy variable for premorbid brain volume to
be adjusted for in the analyses of MRI parameters. All study
procedures and cut-off points have previously been reported
(Udeh-Momoh et al., 2021).

We also collected other information including age, sex,
ethnicity, education level, APOE genotype and National Adult
Reading Test (NART) score [as a proxy for premorbid
intelligence quotient (IQ)] (Nelson and Willison, 1991).

Statistical Analyses
Demographic and clinical characteristics of study participants
were compared according to amyloid pathology status (amyloid
positive vs. negative) using independent samples t-test, chi-
squared test, rank-sum test or general linear regression, where
appropriate. We assessed the internal consistency reliability
(Cronbach’s α coefficient) and test-retest reliability (Pearson
correlation coefficient r) of the RBANS scale in this cohort.
PE was estimated based on differences between test and retest
scores (i.e., measurements at the screening and baseline visits)
in RBANS total scale and domain-specific indices. Paired t-test
was used to test the statistical significance of PE; Cohen’s dz for
the within-subjects design (Cohen, 1988) was calculated as the
standardised effect size for PE (i.e., scaled difference scores).

Multiple linear regression model was used to examine whether
the magnitude of PE varies by amyloid status, with the test-retest
difference score in RBANS total scale or domain-specific index
as the dependent variable, amyloid status as the independent
variable of interest, while adjusting for age, sex, education
level, APOE-ε4 carriage and initial RBANS level. Following the
same procedure, we also explored other potential influencing
factors of PE in separate linear regression models, including
age group (60–69 years vs. 70–85 years), sex, education level

(below/above upper secondary education), APOE-ε4 (carrier
vs. non-carrier), test-retest time interval (1-3 months vs. 4-6
months), MRI parameters (below/above mean), National Adult
Reading Test score (below/above median), and initial RBANS
scores (below/above mean).

To assess the robustness of our main findings, we conducted
the following sensitivity analyses: (1) modelling MRI parameters,
age, test-retest time interval, initial RBANS score and NART score
as continuous variables instead of dichotomised variables when
exploring their associations with PE; (2) excluding 52 participants
who waited for over 6 months after the screening visit to attend
the baseline visit to avoid the loss of PE or occurrence of possible
cognitive decline during the prolonged time gap; (3) additionally
adjusting for test-retest time interval and modality of amyloid
(PET or CSF) when assessing the amyloid-PE association.

Finally, to explore the predictive value of PE, PE was also
assessed as a predictor together with initial RBANS score for
amyloid positive status using binary logistic regression, adjusting
for age, sex, education level, and APOE-ε4 carriage. The odds
ratio (OR) and 95% confidence interval (CI) of standardised
PE scores (i.e., centred and scaled) was reported, which reflects
the relative risk of the presence of amyloid pathology per 1
SD increase in PE.

Statistical analyses were conducted using Stata (version 15;
College Station, TX: StataCorp LLC). All statistical analyses
are two-sided. A P value of < 0.05 indicates a statistically
significant result.

RESULTS

Population Characteristics
Of the 502 participants assessed with RBANS scale in both
screening and baseline clinic visits with median time gap of 3.5
months (interquartile range: 2.9–4.4), the mean (SD) age was
71.4 (5.5) years, and 254 (50.6%) were females. 192 participants
(38.2%) were APOE-ε4 carriers and 247 (49.2%) were Aβ positive
based on CSF Aβ42 level or PET scans. Nearly all participants
(95.8%) were White. Most participants (85.7%) had completed
upper secondary education or above.

Participant characteristics are presented by amyloid pathology
status in Table 1. Aβ+ participants were slightly older and
more likely to be APOE-ε4 carriers compared with Aβ-
participants (P < 0.05). Differences in MRI parameters were
also observed between amyloid groups, with Aβ+ group having
lower hippocampal volume, whole brain volume, and AD
signature cortical thickness (P < 0.05). The RBANS test-retest
time interval was similar between Aβ+ group and Aβ- group
(P = 0.728).

Practice Effects in Repeatable Battery
for the Assessment of
Neuropsychological Status Assessment
The internal consistency reliability of RBANS scale in our study
sample measured by Cronbach’s α was 0.64, and the test-retest
reliability measured by Pearson correlation coefficient r was 0.79.
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TABLE 1 | Population characteristics by amyloid status (N = 502).

Characteristics Total Amyloid positive Amyloid negative P-value

N 502 247 255

Age (years), x ± SD 71.4 ± 5.5 72.3 ± 5.6 70.4 ± 5.4 < 0.001

Female, % 50.6 48.6 52.6 0.374

Ethnicity (White), % 95.8 96.8 94.9 0.298

Below upper secondary education, % 14.3 17.0 11.8 0.094

APOE-ε4 carrier, % 38.2 54.7 22.4 < 0.001

NART score, x ± SD 9.9 ± 6.7 9.5 ± 5.9 10.3 ± 7.3 0.202

Days between test and retest, median (IQR) 107 (87–133) 106 (86–133) 108 (87–136) 0.728

RBANS score (first test), x ± SD

Total scale 102.7 ± 11.8 102.6 ± 11.7 102.9 ± 11.9 0.734

Immediate memory index 101.6 ± 12.7 101.0 ± 12.3 102.2 ± 13.0 0.268

Delayed memory index 100.7 ± 10.1 99.8 ± 10.9 101.6 ± 9.2 0.045

Visuospatial construction index 95.7 ± 14.1 96.7 ± 13.9 94.9 ± 14.3 0.148

Language index 104.1 ± 11.5 104.5 ± 11.0 103.7 ± 12.0 0.422

Attention index 108.8 ± 14.5 108.5 ± 13.8 109.2 ± 15.2 0.607

MRI parameters, x ± SD

Hippocampal volume (mm3) 7754 ± 852 7621 ± 899 7883 ± 794 < 0.001

Whole brain volume (mL3) 1094629 ± 107552 1087603 ± 109462 1101408 ± 105861 0.005

Ventricular volume (mL3) 35701 ± 16987 36381 ± 16991 35045 ± 16886 0.304

AD signature cortical thickness (mm) 2.80 ± 0.12 2.79 ± 0.13 2.81 ± 0.12 0.028

SD, standard deviation; NART, National Adult Reading Test; IQR, interquartile range; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status;
MRI, magnetic resonance imaging; AD, Alzheimer’s disease. P-values were calculated by chi-squared tests, t-tests, rank-sum test, or general linear regressions to adjust
for intracranial volume for volumetric MRI parameters.

Participants had significantly higher scores in RBANS total
scale and immediate and delayed memory indices in the second
test than in the initial test (increased score = 3.9, 7.6, and 3.3,
respectively; P < 0.001; Table 2). After taking into account
the differences in variances of these indices, the calculation of
within-subject Cohen’s dz revealed a strong effect size for PE in
immediate memory index (0.70), and a low-to-moderate effect
size for PE in RBANS total scale (0.48) and delayed memory index
(0.35). In contrast, no significant PEs were identified for the rest
of the three domain indices (Cohen’s dz ranged from 0.05 to 0.06;
P > 0.05; Table 2).

Practice Effects in Repeatable Battery
for the Assessment of
Neuropsychological Status by Amyloid
Pathology Status
We examined the practice effects in RBANS total scale and
memory indices by amyloid pathology status (Figure 1). After
adjusting for potential confounding factors, the amyloid positive
group had significantly lower PE in immediate memory index
than the amyloid negative group (Cohen’s dz = 0.60 vs. 0.81;
P = 0.022). Similarly, a borderline statistical significance was
observed for lower PE in delayed memory index, in the amyloid
positive group (Cohen’s dz = 0.26 vs. 0.44; P = 0.059). However,
the difference in PE in RBANS total scale by amyloid status
did not reach statistical significance (Cohen’s dz = 0.46 vs. 0.50;
P = 0.387; Figure 1). We also generated spaghetti plots by amyloid
status to visualise the heterogeneity in practice effects across
individuals (Supplementary Figures 1–3).

Other Influencing Factors on Practice
Effect in Repeatable Battery for the
Assessment of Neuropsychological
Status
In the exploratory analyses for brain MRI parameters and PE,
we observed no significant associations of hippocampal volume,
whole brain volume, ventricular volume or AD signature cortical
thickness with the magnitude of PE in RBANS total scale or
memory indices (Supplementary Table 1).

Older adults (≥70 years), women, and APOE-ε4 non-carriers
had larger PE in one or more RBANS indices (P < 0.05;
Table 3). Those with worse performance in the initial RBANS
test had larger PE in both total scale and the individual
memory indices (P < 0.05; Table 3). Test-retest time interval,
education level and NART score had no significant association
with the magnitude of PE (Supplementary Table 1). Sensitivity
analyses revealed consistent results with the main findings
(Supplementary Tables 2–5).

Attenuated Practice Effect Is Indicative
of Above Threshold Amyloid Pathology
We further explored the indicative value of PE for brain
amyloid pathology. Results of multiple logistic regressions
showed that, besides age (OR = 1.09, 95% CI: 1.05–1.13
per year) and APOE-ε4 carriage (OR = 5.50, 95% CI: 3.60–
8.40), worse initial performance and lower PE in delayed
memory index were independent predictors for amyloid
positivity, with similar magnitudes of association (OR per 1
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TABLE 2 | Differences between test and retest performance in repeatable battery for the assessment of neuropsychological status (RBANS) (N = 502).

RBANS score, x̄ ± SD Test Retest Difference
score (mean)

Difference
score (range)

Cohen’s dz P-value

Total scale 102.7 ± 11.8 106.6 ± 12.9 3.9 –20, 38 0.48 < 0.001

Immediate memory index 101.6 ± 12.7 109.2 ± 13.4 7.6 –28, 35 0.70 < 0.001

Delayed memory index 100.7 ± 10.1 104.0 ± 10.6 3.3 –35, 36 0.35 < 0.001

Visuospatial construction index 95.8 ± 14.1 96.6 ± 14.3 0.8 –37, 41 0.06 0.176

Language index 104.1 ± 11.5 104.8 ± 13.0 0.7 –42, 41 0.06 0.209

Attention index 108.8 ± 14.5 109.3 ± 14.7 0.5 –31, 32 0.05 0.293

RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; SD, standard deviation. P-values were calculated by paired t-tests.

FIGURE 1 | Associations between amyloid status with magnitude of RBANS practice effects (N = 502). RBANS, Repeatable Battery for the Assessment of
Neuropsychological Status; CI, confidence interval. Estimates were adjusted for age, sex, education level, APOE-ε4 carriage and initial RBANS level, where
applicable.

SD increase = 0.78, 95% CI: 0.63-0.97). As for immediate
memory, lower PE (OR = 0.75, 95% CI: 0.61–0.94) but not
performance in the initial test (OR = 0.82, 95% CI: 0.66–
1.02) was a significant predictor for amyloid positivity. We
did not find an association between PE in RBANS total scale
and existing amyloid pathology (OR = 0.92, 95% CI: 0.75–
1.12).

DISCUSSION

In this prospective cohort study of cognitively unimpaired
older adults, enriched with fluid and neuroimaging biomarker
data, we comprehensively assessed the practice effect in RBANS
assessment and its potential influencing factors, with a focus
on brain amyloid pathology. We observed significant practice
effects for RBANS total scale and two memory indices, where
participants performed better after repeated measurement using
alternate versions of these tasks. The magnitude of practice effects
differed by amyloid pathology status, age, sex, APOE-ε4 carriage

and initial RBANS scores, but had no association with brain MRI
parameters, education level or NART score.

Our findings suggest that PE in cognitive tests may be
domain-specific. Of the five cognitive domains assessed by
RBANS scale, only the two memory indices presented significant
practice effects, whilst participants’ performance in visuospatial
construction, language and attention domains remained similar
between the first and second tests over a median of 3.5 months.
Our results were in line with a previous study of a much
smaller sample of 36 healthy adults (Bartels et al., 2010), where
clinically relevant PE was observed during high-frequency testing
within three months in learning and memory tests but not
in language and visuospatial tests. Similarly, a study of 947
cognitively normal older adults from the Mayo Clinic Study of
Aging showed large PE in learning and memory tests but low PE
in language tests, using the Mayo Clinic neurocognitive battery
(Machulda et al., 2013).

Regarding the memory domain indices, we observed a much
larger effect size of PE for immediate memory index than that
for delayed memory index or the RBANS total scale. This implies
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TABLE 3 | Associations between other characteristics and magnitude of repeatable battery for the assessment of neuropsychological status (RBANS) practice effects
(N = 502).

Characteristics No. of
participants

Increase of total
scale (95% CI)

P-value Increase of immediate
memory index (95% CI)

P-value Increase of delayed
memory index (95% CI)

P-value

Age (years) 0.565 0.146 0.009

60–69 208 4.1 (3.0, 5.2) 6.8 (5.3, 8.2) 2.0 (0.8, 3.2)

70–85 294 3.7 (2.8, 4.6) 8.1 (6.9, 9.3) 4.2 (3.1, 5.2)

Sex 0.018 0.002 0.712

Male 248 3.0 (2.0, 4.0) 6.1 (4.8, 7.4) 3.1 (2.0, 4.2)

Female 254 4.7 (3.7, 5.7) 9.0 (7.7, 10.2) 3.4 (2.3, 4.6)

APOE-ε4 0.164 0.004 0.337

Carrier 192 3.2 (2.1, 4.4) 5.9 (4.4, 7.3) 3.8 (2.5, 5.0)

Non-carrier 310 4.3 (3.4, 5.2) 8.6 (7.5, 9.8) 3.0 (2.0, 4.0)

Initial RBANS score 0.002 < 0.001 < 0.001

Higher than mean level 238 2.7 (1.6, 3.7) 4.7 (3.5, 6.0) 0.9 (–0.2, 1.9)

Lower than mean level 264 5.0 (4.0, 5.9) 10.7 (9.3, 12.0) 6.2 (5.0, 7.4)

RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; CI, confidence interval. Estimates were adjusted for age, sex, education level, APOE-ε4
carriage and initial RBANS level, where applicable.

that PE may be more pronounced in immediate memory tasks
where people tend to get better at doing these tasks following
familiarisation with the test materials or procedures, even when
assessed with different word lists (Houx et al., 2002). Thus, the
immediate memory test seems to be a more sensitive measure
of PE, compared with other domains or the global composite
score. The contrast between immediate and delayed memory
PEs might alternatively reflect differences in the content of the
measures. Specifically, the RBANS immediate memory index is
derived solely from tests of verbal recall, whereas the delayed
memory index also incorporates verbal recognition and visual-
constructional recall. Future systematic evaluation of practice
effects in individual test scores rather than the overall indices,
with larger sample size and careful control of multiple testing,
may help identify even more sensitive metrics.

Our data are in line with previous reports, suggesting the
predictive value of PE for the presence of amyloid pathology and
subsequent cognitive decline, in addition to merely evaluating
cognitive measurement. To be noted, on average, the RBANS
scores in our study participants were within “cognitively healthy”
boundaries, even in the amyloid positive group and would not
prompt further testing in a clinical scenario. This observation
underscores the potential value of diminished practice effects
as an adjunct metric to traditional assessments for the sensitive
detection of preclinical AD. Several previous studies have
consistently shown that diminished PE over repeated cognitive
testing (mainly episodic memory measures) was associated with
subsequent cognitive decline and increased risk of mild cognitive
impairment (MCI) or dementia (Duff et al., 2007; Sanchez-
Benavides et al., 2016; Jutten et al., 2020, 2021). In contrast,
previous evidence on the association between PE and AD
biomarkers and neuropathology remained inconsistent (Duff
et al., 2018; Ihara et al., 2018; Jutten et al., 2020). A previous
systematic review on PE in cognitive assessment identified four
papers reporting an association between higher amyloid uptake
on amyloid PET scans and lower PE, whereas two papers
did not detect this association (Jutten et al., 2020). In our

study, the attenuated PE in memory indices was associated
with the presence of high amyloid burden but not with brain
MRI features, including hippocampal volume, implying that PE
in memory tests could be more indicative of β-amyloidosis
[which is specific for Alzheimer’s disease (AD)] instead of
biomarkers of neurodegeneration or neuronal injury (Jack et al.,
2016). Consistent with our results, a recent report from the
Harvard Aging Brain Study, of 114 cognitively unimpaired
older adults, showed that lower PE in a self-administered
computerised cognitive composite battery over the first 3 months
was associated with more global amyloid burden (based on
PiB-PET imaging) and tau deposition in the entorhinal cortex
and inferior-temporal lobe (based on Flortaucipir PET imaging)
(Jutten et al., 2021). These findings imply the usefulness of PE
as an early detection tool for signs of disease burden prior to
the emergence of cognitive impairment, which might inform
participant stratification and biomarker testing strategies for
clinical trials.

In our exploratory analyses, practice effects in RBANS total
scale or memory indices were more pronounced in older
adults, women, APOE-ε4 non-carriers and those with worse
performance in the initial RBANS assessment (probably due
to larger room for improvement). Of note, these factors were
associated with different indices, indicating a complex domain-
specific PE population heterogeneity. Our finding of a positive
association between age and PE was inconsistent with a previous
meta-analysis report (Calamia et al., 2012) of a negative
association, in a much younger population (mean age of around
40 to 50 years). In the afore-mentioned Mayo Clinic report
(Machulda et al., 2013), no significant PE differences were found
on memory test scores between those aged below and above
80 years. A previous systematic review identified three papers
reporting an association between presence of ≥ 1 APOE-ε4 allele
and lower PE, whereas three papers did not detect this association
(Jutten et al., 2020). Further studies are warranted to elucidate
the nature and extent of these population heterogeneities in PE,
which could be crucial for clinical trials in obtaining unbiased
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effect estimate for tested treatment or intervention. If the factors
affecting PE are not well balanced between placebo and treatment
groups, the two groups may have different levels of PE, in which
case researchers need to control for these factors so that the
estimate of difference in cognitive outcomes between groups can
be attributed to treatment.

The availability of extensive phenotypic (including fluid and
neuroimaging biomarker) data is a key strength of our study.
Moreover, the relatively short test-retest interval (median of 3.5
months) was essential in minimising the risk of a potential
cognitive decline during the test-retest interval affecting the
presence and extent of PE. If given a long test-retest period, PE
may be masked by progressive cognitive decline over time and it
would be difficult to distinguish one from the other.

Several limitations need to be taken into consideration when
interpreting our results. Since we explored multiple influencing
factors on PE in our study, the risk of inflated Type 1 error in
multiple testing cannot be ruled out. Therefore, our exploratory
analyses need further validation. Moreover, RBANS does not
provide an isolated scale of executive function, a domain which
has been independently associated with early amyloidosis rather
than memory performance decrements in cognitively normal
adults (Tideman et al., 2022). Assessing diminished practice
effects in this domain may yet provide even more sensitive
markers of subtle cognitive signs. Due to the different modalities
and tracers used for amyloid testing in this study, we did not
evaluate the amyloid pathology on a quantitative scale which is
worth to be considered in future studies. In addition, we only
used data from two time points; future studies on longitudinal PE
across multiple measurements (with short between-test intervals)
are needed. For instance, it is worth exploring whether the
PE beyond the second test is not as large as that between
the first two tests, which may have important implications for
research and clinical purposes (e.g., recommending the second
assessment to be considered as baseline measure to minimise
PE in outcome assessment). Furthermore, since our test-retest
time gap mainly fell between 3 and 4 months, future large-
scale studies with time gaps of wider distribution could provide
insights for what might be too short vs. too long for detecting
PE, though it is possible that the optimal time gap could be
different for different cognitive domains or tasks. Finally, our
study population are cognitively unimpaired older adults; it
would also be interesting to investigate PE in MCI or AD
patients, which may show different profiles (Machulda et al.,
2013). Similarly, the study sample lacks ethnic and racial diversity

(95.8% White people) thereby limiting the generalisability
of our findings.

In conclusion, we identified significant PE in RBANS total
scale and memory indices among a cohort of cognitively
unimpaired older adults. PE is not simply a source of
measurement bias in cognitive assessment, but may be
informative with regard to a significant brain amyloid
pathology burden.
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Objective: Validation and widespread use of markers indicating decline in serial
neuropsychological exams has remained elusive despite potential value in prognostic
and treatment decision-making. This study aimed to operationalize neuropsychological
decline, termed “neuropsychological (NP) decline,” in older adults followed over 12
months in order to aid in the stratification of dementia risk along the cognitively
unimpaired-to-mild cognitive impairment (MCI) spectrum.

Methods: A prospective cohort study utilized 6,794 older adults from the National
Alzheimer’s Coordinating Center (NACC) database with a baseline diagnosis of normal
cognition, impaired without MCI or with MCI. Operationalization of NP decline over
12-month follow-up used regression-based norms developed in a robustly normal
reference sample. The extent to which each participant’s 12-month follow-up score
deviated from norm-referenced expectations was quantified and standardized to an
NP decline z-score. Cox regression evaluated whether the NP decline metric predicted
future dementia.

Results: Participant’s NP decline scores predicted future all-cause dementia in the
total sample, χ2 = 110.71, hazard ratio (HR) = 1.989, p < 0.001, and in the subset
diagnosed with normal cognition, χ2 = 40.84, HR = 2.006, p < 0.001, impaired without
MCI diagnosis, χ2 = 14.89, HR = 2.465, p < 0.001, and impaired with MCI diagnosis,
χ2 = 55.78, HR = 1.916, p < 0.001.

Conclusion: Operationalizing NP decline over 12 months with a regression-based
norming method allows for further stratification of dementia risk along the cognitively
unimpaired-to-MCI spectrum. The use of NP decline as an adjunctive marker of risk
beyond standard cognitive diagnostic practices may aid in prognosis and clinical
decision-making.
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INTRODUCTION

Early identification of older adults at risk for dementia
remains an important research goal, as preventative efforts
will likely require early intervention (Crous-Bou et al.,
2017). Although mild cognitive impairment (MCI) is an
important and useful diagnostic construct that represents
an intermediate level of cognitive impairment between
normal cognition and dementia (Petersen, 2011), recent
research has increasingly focused on earlier stratification
of dementia risk in cognitively unimpaired older adults
(Amieva et al., 2005; Machulda et al., 2013; Hassenstab
et al., 2015; Han et al., 2017). Efforts aimed at identifying
cognitively unimpaired older adults at risk for dementia have
predominantly emphasized the role of biological markers in
index underlying neuropathology (Jack et al., 2018). However,
numerous studies also indicate that subtle cognitive changes
are detectable on a neuropsychological exam in cognitively
unimpaired older adults at risk for dementia (Edmonds et al.,
2015b; Han et al., 2017; Ho and Nation, 2018; Thomas et al.,
2020).

There are inherent limits in the ability to establish cutoff
values and diagnostic criteria for the diagnosis of subtle or
mild impairments based on a single exam. Thus, longitudinal
assessment of cognitive change within an individual may aid in
the detection of early decline within normal range performance
(Koscik et al., 2019; Nation et al., 2019). However, serial cognitive
exams introduce practice effects and regression to the mean,
complicating the interpretation of decline (Crawford and Howell,
1998; Slick, 2006). Nevertheless, recent studies suggest that serial
cognitive performance may still be of value. For example, the
lack of a practice effect may actually be indicative of a subtle
cognitive decline in older adults at risk for dementia (Machulda
et al., 2013; Hassenstab et al., 2015; Duff et al., 2017; Papp et al.,
2020). These findings suggest the potential value of obtaining
normative data on serial cognitive exam performance in older
adults to supplement single exam data.

Obtaining information regarding the trajectory of cognitive
change may aid efforts to refine MCI diagnostic accuracy
and predictive value (Nation et al., 2019). Fluctuation in
cognitive performance and reversion from MCI to normal
performance across exams is common, even among individuals
with underlying neuropathology (Thomas et al., 2019). If the
trajectory of cognitive change was available in patients with MCI
through normative comparisons of cognitive change, further
characterization of MCI-associated risk could be possible.

To evaluate the predictive value of serial neuropsychological
exam analysis, we previously operationalized neuropsychological
decline, termed “NP decline,” over 1 year using the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study (Nation
et al., 2019). In this study, NP decline in cognitively
unimpaired older adults, and those diagnosed with MCI,
was associated with an increased risk for future clinical
diagnosis of Alzheimer’s dementia. This study sought to further
validate this previously developed NP decline metric and
determine its predictive value for all-cause dementia. We
hypothesized that, consistent with our previous results, NP

decline would be predictive of future Alzheimer’s disease, even
in a larger and more heterogeneous sample of 6,794 older
adults from the National Alzheimer’s Coordinating Center
(NACC) database.

METHODS

National Alzheimer’s Coordinating
Center Study Data and Participants
This prospective cohort study utilized longitudinal participant
data obtained from the NACC database, a repository of data
on aging and dementia gathered from Alzheimer’s Disease
Centers (ADCs) across the country using a Uniform Data
Set (UDS). The UDS includes harmonized protocols for data
collection and entry regarding information from in-person visits
for health and neurological examination, neuropsychological
testing, and psychosocial and biological measures. In this
study, NACC UDS data from the cognitive diagnostic exam
and neuropsychological exam were analyzed, and all available
follow-up data through December 2018 were included. The
duration of available participant follow-up data varied from
18 to 156 months after baseline. Given the switch in
verbal memory measures between UDS 2.0 and 3.0, we
included data from Logical Memory only and did not include
Craft Story data.

We limited our analysis to the 6,794 participants who were
aged 60 years and older, had been diagnosed “cognitively normal,”
“impaired without MCI” or “MCI,” according to the NACC
UDS protocol criteria, and had been followed for at least two
additional follow-up study visits extending more than 12 months
from baseline. All participants needed 12-month follow-up data
in order to calculate NP decline scores and needed to remain
non-demented at a 12-month follow-up in order to be included
in the analysis of 12-month NP decline as a predictor of
future dementia. Similarly, all participants required the third
evaluation after their 12-month follow-up exam in order to be
evaluated in terms of the predictive value of a 12-month NP
decline for the risk for future dementia. Thus, participants who
progressed to dementia within 12 months of baseline, had fewer
than 3 exams, or had less than ≤12 months of total follow-
up were excluded.

Participants from NACC are assigned a diagnosis following
adjudication by an experienced clinician or an interdisciplinary
team (Morris et al., 2006). Psychosocial functioning,
history, as well as test performance in various cognitive
domains (recall, attention, executive function, language, and
visuospatial functioning) are under consideration during
these adjudications. Diagnoses in NACC are informed by
neuropsychological testing, but are made clinically and are not
based on strict cutoff values on these measures. Participants
receive a diagnosis of (a) “cognitively normal” if they lack
significant functional or cognitive impairment, (b) “MCI”
if they have subjective or objective evidence of cognitive
impairment without significant functional impairment, and
(c) “demented” if they have both significant functional and
cognitive impairment.
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All contributing ADCs obtained informed consent from their
participants and maintained separate IRB review and approval
from their institutions prior to submitting data to NACC.
Recruitment methods and sample characteristics varied across
each ADC, representing a mixture of clinical- and community-
based sampling.

Baseline Versus 12-Month Diagnoses
For all analyses, participant clinical diagnostic groups were
determined based on the 12-month follow-up examination to
ensure that NP decline fell within the range of the appropriate
diagnostic classifications (i.e., decline within normal range
cognition, decline within no MCI range cognitive impairment,
and decline within MCI range cognition).

Regression-Based Norms for
Neuropsychological Decline Using the
Alzheimer’s Disease Neuroimaging
Initiative Database
To avoid circularity in our investigation into the predictive
utility of a neuropsychological marker for future dementia
risk (i.e., NP decline), we first developed the NP decline
marker using normative data from a reference sample in
one dataset (the ADNI data) and then applied these norms
to a separate test sample from another dataset (the NACC
data). To avoid circularity and criterion contamination of
clinical diagnosis by the neuropsychological markers themselves,
all findings were also confirmed using progression from a
CDR R© Dementia Staging Instrument score of 0 to a score
of 0.5 or higher as the criterion measure, rather than
clinical diagnosis.

The NP decline metric was operationalized by developing
linear regression equations in a robustly normal reference sample
from the ADNI database (n = 294). For this analysis, we used
methods described in detail recently (Nation et al., 2019). Briefly,
a robustly normal subset of cognitively normal older adults from
the ADNI study was identified using criteria established by prior
ADNI studies (Edmonds et al., 2015a): (1) participants were
identified as cognitively normal on baseline ADNI assessment
and (2) participants remained cognitively normal throughout the
duration of their study participation.

Linear regression was used to model the relationship between
baseline performance on a neuropsychological test and 12-month
follow-up performance on the same test using longitudinal
ADNI study data. Neuropsychological tests included Wechsler
Memory Scale – Revised (WMS-R) Logical Memory Story A
immediate (Logical Memory I) and delayed (Logical Memory
II) free recall, Trails A and B, and Animals and Vegetables.
Specific neuropsychological tests were chosen based on the
overlap between ADNI neuropsychological tests (reference
sample) and tests available in NACC (test sample), as well
as the desire to evaluate a balance of 2 tests per domain
across domains relevant to dementia risk, including memory,
attention/executive function, and language (Bondi et al., 2008).
Scores from Trails A and B exhibited significant skewness,
which was corrected by log transformation. These scores

were also inverted (i.e., multiplied by -1) such that higher
scores indicate better performance, consistent with all other
neuropsychological measures.

The result of linear regression analyses evaluating baseline
test performance as a predictor of 12-month follow-up test
performance produced linear regression equations that represent
the relationship between baseline and 12-month test performance
in a robustly normal sample (refer to Supplementary Table 1
for details regarding linear regression parameters in the
robustly normal ADNI sample). These regression-based norms
were developed for the purpose of calculating standardized
scores for NP decline over 12 months relative to normative
expectations (as in Nation et al., 2019). This study sought to
apply these ADNI-derived regression-based norms to a test
sample from the NACC database to determine whether the
resulting NP decline metric may be of value in predicting
future dementia among older adults who were cognitively
normal or mildly impaired during their first 12 months of
neuropsychological follow-up.

Applying Regression-Based Norms From
Alzheimer’s Disease Neuroimaging
Initiative to the National Alzheimer’s
Coordinating Center Database
In this study, the linear regression equations developed in the
robustly normal sample from ADNI (refer to earlier) were used
to quantify NP decline scores for all eligible participants in
the NACC database with a baseline clinical consensus diagnosis
of normal cognition, impaired without MCI or MCI. Below,
Eq. 1 shows the template for the normative regression equations
developed from raw scores in robustly normal participants in
ADNI and used to calculate the predicted 12-month performance
for each test for NACC participants (Eqs 2–7).

The NP decline metric was calculated as previously described
using three steps (Nation et al., 2019), namely, (1) baseline
NACC participant raw scores on neuropsychological testing
(refer to earlier for battery) were entered into the linear
regression equations (Eqs 2–7) developed using robustly normal
participants from ADNI. Linear regression equations used
baseline raw scores to calculate the predicted 12-month
performance on each neuropsychological test based on normative
expectations from the ADNI subsample. (2) For each participant,
the predicted 12-month performance based on the regression-
based norms from ADNI was then subtracted from the actual
12-month performance for each neuropsychological test, and
the resulting discrepancy between the 12-month predicted
performance and the actual performance was divided by the
standard error of the estimate for each linear regression
equation corresponding to each neuropsychological test (refer
to Eq. 8 below). (3) The standardized scores were averaged
across all 6 neuropsychological test scores to create the NP
decline z-score.

As shown in Eq. 8, NP decline raw scores were standardized
by dividing the standard error of the estimate (Sy.x) drawn from
each regression equation (Crawford and Howell, 1998; Crawford
and Garthwaite, 2006): Eq. 2 Sy.x = 2.7730, Eq. 3 Sy.x = 3.1780,
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Eq. 4 Sy.x = 0.1009, Eq. 5 Sy.x = 0.1374, Eq. 6 Sy.x = 4.0650; and
Eq. 7 Sy.x = 3.2700.

Predicted score = intercept +
(
coefficient × baseline score

)
(1)

Predicted Logical Memory I = 6.883 +
(
0.595 × baseline Logical Memory I

)
(2)

Predicted Logical Memory II = 4.810 + (0.680 × baseline Logical Memory II)
(3)

Predicted Trails A log =
[
0.589 +

(
0.598 × baseline Trails A log

)]
× − 1

(4)

Predicted Trails B log =
[
0.656 +

(
0.643 × baseline Trails B log

)]
× − 1

(5)

Predicted Animals = 8.410 + (0.623 × baseline Animals) (6)

Predicted Vegetables = 4.464 +
(
0.687 × baseline Vegetables

)
(7)

NP decline subtest z =
actual score− predicted score
standard error of the estimate

(8)

Individual Test Scores Versus Overall
Neuropsychological Decline Score
The examination of NP decline in individual test scores is
beyond the scope of this study, which is focused instead on
NP decline as a general cognitive decline factor assessed by
multiple test scores. The use of single test scores to determine
clinical status is also not advised, given the limited reliability
of individual neuropsychological test scores for determining
cognitive abnormality (Binder et al., 2009). Finally, our prior
study developed an optimized cutoff value for NP decline based
on the overall average NP decline across tests (Nation et al.,
2019), providing an opportunity for cross-validation using the
NACC data. For all these reasons, NP decline subtest z-scores
were averaged to create a global NP decline score for all statistical
analyses, as described earlier.

Neuropsychological Decline Cutoff
Values – Cross-Validation
The optimal cutoff values for NP decline in the ADNI study were
previously determined by receiver operating characteristic (ROC)
curve analysis. Results of the ROC curve analysis indicated
an optimal NP decline z-score of -0.5808, corresponding
approximately to the 28th percentile of the NP decline
distribution (Nation et al., 2019). This z-score represents an
optimal cutoff value for the NP decline metric in terms of

predicting the development of dementia. It is a z-score of the
distribution of NP decline, computed as predicted performance
for normal aging subtracted from actual 12-month follow-up
performance, and standardized by the standard error of the
estimate. Cognitively normal older adults performing below
this NP decline z-score at 12-month follow-up exhibited more
rapid progression to dementia, relative to those above the cutoff
value. This was regardless of demographic factors, biomarker
status, or APOE4 carrier status (Nation et al., 2019). For cross-
validation, this study used this same cutoff value derived from
the ADNI study to determine dementia risk based on NP decline
in the NACC sample.

Statistical Analyses
All study variables were evaluated for departures from normality
and potentially influential outliers. Trails A and B scores were
log-transformed to improve normality for the purposes of linear
regression models of NP decline (refer to Eqs 4, 5 above).

Participants were divided into groups based on the
combination of their 12-month NACC clinical diagnostic
status (cognitively normal, impaired without MCI, and MCI)
and their final diagnostic status (no dementia vs. dementia).
Participant groups were compared on their baseline demographic
and clinical measures, including age, sex, and education using
a 2 × 2 (diagnostic status × NP decline status) ANCOVA
controlling for age, sex, and years of education, with post-
hoc Bonferroni-corrected pairwise comparisons. Chi-squared
analyses were used to compare the rate of future dementia by
clinical diagnostic and NP decline status. Cox regression was
used to evaluate the predictive value of NP decline in the overall
sample and within each clinical diagnostic group, controlling for
age, sex, and education.

RESULTS

Participant demographics and clinical data are presented in
Table 1. Cognitively normal older adults with greater than
expected 12-month NP decline (below-established cutoff value)
were significantly more likely to develop dementia over all
follow-up relative to those above the cutoff value χ2 (1,
N = 4,692) = 55.02, p < 0.00001. Impaired without MCI
participants with greater than expected 12-month NP decline
(below-established cutoff value) were significantly more likely
to ultimately develop dementia over all follow-up relative to
those above the cutoff value χ2 (1, N = 470) = 4.78, p < 0.05.
Similarly, MCI participants with greater than expected 12-month
NP decline (below-established cutoff value) were significantly
more likely to ultimately develop dementia over all follow-up
relative to those above the cutoff value χ2 (1, N = 1,632) = 29.21,
p < 0.00001.

Results of 2 × 2 ANCOVA (baseline clinical
diagnosis × dementia outcome) with NP decline z-score as
the dependent measure are presented in Figure 1. Cognitively
normal older adults who ultimately developed dementia
exhibited significantly worse NP decline than those who did not
develop dementia (p < 0.001) and did not significantly differ
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TABLE 1 | Participant demographics and clinical characteristics.

Demographics Mean ± SD
or n

Range or %

Age (years) 74.01 ± 7.82 60-104

Education (years) 15.52 ± 3.21 0-30

Male to Female Ratio 2,618 to 4,176 38.5% male

NACC Diagnosis at 12-months

Normal Cognition 4,692 69.1%

Impaired MCI− 470 6.9%

Impaired MCI+ 1,632 24.0%

Progression to dementia

Dementia at Follow up 764 11.2%

Follow up (months) 58.97 ± 29.88 19-158

NACC diagnosis × NP decline % Dementia
conversion

Normal/NP− 3,557 52.4% 4.2%

Normal/NP+ 1,135 16.2% 10.0%

Impaired MCI−/NP− 308 4.5% 9.7%

Impaired MCI−/NP+ 162 2.4% 16.7%

Impaired MCI+/NP− 738 10.9% 20.6%

Impaired MCI+/NP+ 894 13.2% 32.6%

MCI−, Mild Cognitive Impairment absent; MCI+, Mild Cognitive Impairment
present; NP−, Neuropsychological Decline absent; NP+, Neuropsychological
Decline present; SD, standard deviation; NACC, National Alzheimer’s
Coordinating Center.

in NP decline from those who were impaired without MCI.
Similarly, impaired without MCI participants who progressed
to dementia displayed worse NP decline than those who did
not progress to dementia (p < 0.001) and did not significantly
differ from those who were diagnosed with MCI. Finally, MCI
participants who progressed to dementia exhibited significantly
greater NP decline than those who did not progress to dementia
(p < 0.001).

On longitudinal analysis, NP decline predicted future all-
cause dementia in the total sample, after controlling for age, sex,
and education, -2 log likelihood = 11,874.363, χ2 = 295.601.71,
hazard ratio [HR] = 2.806, p < 0.001, and in the subset with
normal cognition, -2 log likelihood = 3,776.938, χ2 = 40.842,
HR = 2.006, p < 0.001, impaired without MCI diagnosis, -2
log likelihood = 574.928, χ2 = 14.891, HR = 2.465, p < 0.001,
and impaired with MCI diagnosis, -2 log likelihood = 5,747.221,
χ2 = 55.772, HR = 1.916, p < 0.001. Results of Cox regression
analysis stratified by clinical diagnosis and NP decline status are
presented in Figure 2.

DISCUSSION

Among older adults with a baseline diagnosis spanning the
cognitively unimpaired-to-MCI spectrum, NP decline indicative
of worse than expected 12-month follow-up performance was
associated with an approximately 2-fold increase in risk for all-
cause dementia at each follow-up, even after accounting for
age, sex, and education. Thus, NP decline may represent a
valuable adjunctive tool for risk stratification in both normal and
mildly impaired older adults followed for at least 12 months.

FIGURE 1 | Results of 2 × 2 ANCOVA (baseline clinical diagnosis × dementia
outcome). Cognitively normal older adults who ultimately developed dementia
exhibited significantly worse NP decline (M = –0.46, SD = 0.57, range = 3.32)
than those who did not develop dementia (M = –0.14, SD = 0.59,
range = 3.98, p < 0.001) and did not significantly differ in NP decline from
those who were impaired without MCI. Similarly, impaired without MCI
participants who progressed to dementia displayed worse NP decline
(M = –0.58, SD = 0.60, range = 2.55) than those who did not progress to
dementia (M = –0.31, SD = 0.64, range = 2.50, p < 0.001) and did not
significantly differ from those who were diagnosed with MCI. Finally, MCI
participants who progressed to dementia exhibited significantly greater NP
decline (M = –0.79, SD = 0.58, range = 2.59) than those who did not progress
to dementia (M = –0.58, SD = 0.63, range = 2.35, p < 0.001).

Frequently used diagnostic criteria for MCI and for cognitive
decline in the context of Alzheimer’s disease rely heavily on
subjective self-report and informant report to assess the presence
of longitudinal decline (Jack et al., 2018), but subjective reports
of cognitive change are influenced by psychiatric symptoms,
personality traits, and other unrelated factors that may contribute
to diagnostic error (Edmonds et al., 2014, Edmonds et al.,
2018). The addition of an NP decline marker to the existing
protocols could aid in the identification and recruitment of high-
risk participants for clinical trials focusing on preclinical or
MCI populations.

Many prospective studies of aging follow participants
with annual or semi-annual neuropsychological exams, but
these data are not always used to determine dementia
risk. The NP decline approach presented earlier provides
simple equations for standardizing the discrepancy between
expected performance and actual performance at follow-up
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No. at risk
Normal / NP- 0 39 35 30 26 13 6 1
Normal / NP+ 0 40 26 23 11 10 4 0

Impaired MCI- / NP- 0 12 8 5 3 1 1 0
Impaired MCI- / NP+ 0 12 6 6 2 0 1 0
Impaired MCI+ / NP- 0 74 37 28 6 4 3 0
Impaired MCI+ / NP+ 1 164 73 30 15 7 1 0

FIGURE 2 | Progression to dementia stratified by cognitive status and NP decline status in the National Alzheimer’s Coordinating Center Database. Cumulative
progression to dementia from Cox regression analysis is displayed and stratified by baseline NACC diagnosis, including Normal Cognition (Normal), Impaired without
MCI (Impaired MCI−), Impaired with MCI (Impaired MCI+), and NP decline status at 12-month follow-up based on optimal cutoff values, including NP decline absent
(NP−, above 28th percentile) and NP decline present (NP+, at or below 28th percentile). The table below displays the number of participants who progressed to
dementia at each follow-up interval.

(Crawford and Garthwaite, 2006; Slick, 2006; Nation et al., 2019).
The NP decline metric may be valuable in the context of
these longitudinal aging studies since 12-month NP decline
can be easily calculated to determine whether participants are
showing worse than expected follow-up performance. Critically,
participants showing NP decline beyond optimal cutoff values
were at an increased risk for future dementia even if they were still
performing within the normative range at 12-month follow-up.
Clinicians often follow at-risk individuals on an annual or semi-
annual basis, yielding serial neuropsychological data that can be
easily evaluated using the provided equations and cutoff values
for NP decline quantification.

Data from 12-month NP decline may help inform clinician
judgments since decline beyond optimal cutoff values has now

been linked to an approximately 2-fold increase in risk for
dementia in two large longitudinal cohorts (Nation et al.,
2019). Thus, there may be immediate value in terms of both
research and clinical applications of the NP decline metric,
allowing clinicians to gather further prognostic information
beyond that obtained by the diagnosis of normal cognition
or MCI. It is also important to note that even short-term
practice effects (e.g., exams separated by 1 week) have also
shown to be indicative of later cognitive decline (e.g., Duff
et al., 2011). Practice effects across 1 week are related to
diagnosis (Duff et al., 2008), prognosis (Duff et al., 2007,
2011), and treatment response (Duff et al., 2010), showing
how the examination of these is another critical future
direction of this work.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 July 2022 | Volume 14 | Article 83845986

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-838459 July 12, 2022 Time: 15:20 # 7

Ho and Nation Neuropsych Decline Stratifies Dementia Risk

The potential application of NP decline analysis goes beyond
any specific dementia etiology, but it should also be noted
that recent research recommendations for the diagnosis of
Alzheimer’s disease have emphasized the evaluation of serial
cognitive test data to determine early or subtle cognitive decline
(Jack et al., 2018). Although prior study has focused primarily
on single exam methods for identifying older adults with subtle
cognitive decline (Donohue et al., 2014; Edmonds et al., 2015b;
Toledo et al., 2015), serial exams may be required in order to
detect the earliest cognitive changes represented by a decline
within normal range performance. The method employed in
this study allows for quantification and standardization of
longitudinal decline within normal range performance, which
may better detect subtle cognitive changes related to an incipient
neuropathological process. Numerous studies have emphasized
the role of biomarkers in the stratification of dementia risk
in cognitively unimpaired older adults (Jack et al., 2018), but
other studies have shown that many older adults with biomarker
abnormalities will never develop dementia (Ritchie et al., 2017).
Combining sensitive preclinical neuropsychological instruments
with preclinical biomarkers may aid in prognostic evaluation
and treatment decision-making beyond information obtained
through biomarker analysis alone (Nation et al., 2019).

Strengths of this study include the longitudinal analysis and
large sample size. Limitations include the variable clinical follow-
up and heterogeneity of NACC sampling methods that includes
a mixture of studies from numerous sites with both clinical- and
community-based studies. Furthermore, the NACC database has
limited ethnic diversity, with NACC participants being largely
Caucasian. However, of note, the NACC database does enroll
participants with diverse medical history, including dementia
of various etiologies, and this heterogeneity of NACC data
benefits the generalizability of the study findings, particularly
since the results coincided well with the recently published
data from the more curated ADNI study sample (Nation
et al., 2019). The use of neuropsychological test data to predict
future dementia risk has also been criticized for circularity.
Although neuropsychological test data can often be used to aid
in the diagnosis of dementia in conjunction with other data,
including measures of functional decline, informant reports,
behavioral observations, and clinician judgments, this study
evaluated the predictive value of neuropsychological markers in
older adults with normal to mildly impaired cognitive function.
Thus, neuropsychological markers may be useful prognostic
instruments capable of stratifying future dementia risk even
in patients with normative cognition, or only mild cognitive
changes, with no functional decline or very minimal functional
change. In this context, neuropsychological markers are not
diagnostic of dementia, but rather they are prognostic indicators
that may be of value in the detection of an incipient decline
in neurocognitive function, potentially presaging the future
development of major cognitive and functional impairments
that characterize dementia. The use of cognitive data to predict
dementia risk based on MCI diagnosis is a well-established
practice (Petersen, 2011) that is no more circular than the use
of neuropsychological markers to predict future dementia from
an even earlier stage, as in this study. Just as MCI is a risk factor

for dementia, NP decline is a risk factor for dementia. These risk
factors are not circular. One of the most valuable aspects of NP
decline is that it may be used in conjunction with MCI diagnosis,
or even in cognitively unimpaired older adults, further stratifying
and refining dementia risk assessment.

Additional research and development of methods for
longitudinal analysis of serial neuropsychological exam data will
improve our ability to determine patient cognitive trajectories,
which will have major implications for neuropsychological
research, clinical trials, and clinical practice in a variety of
patient populations.
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Standardized tests of learning and memory are sensitive to changes

associated with both aging and superimposed neurodegenerative diseases.

Unfortunately, repeated behavioral test administration can be confounded

by practice effects (PE), which may obscure declines in level of abilities and

contribute to misdiagnoses. Growing evidence, however, suggests PE over

successive longitudinal measurements may differentially predict cognitive

status and risk for progressive decline associated with aging, mild cognitive

impairment (MCI), and dementia. Thus, when viewed as a reflection of

neurocognitive plasticity, PE may reveal residual abilities that can add to our

understanding of age- and disease-related changes in learning and memory.

The present study sought to evaluate differences in PE and verbal recall

in a clinically characterized aging cohort assessed on multiple occasions

over 3 years. Participants included 256 older adults recently diagnosed as

cognitively unimpaired (CU; n = 126), or with MCI of amnestic (n = 65)

or non-amnestic MCI (n = 2085), and multi-domain amnestic dementia of

the Alzheimer’s type (DAT; n = 45). We applied a continuous time structural

equation modeling (ctsem) approach to verbal recall performance on the

Hopkins Verbal Learning Test in order to distinguish PE from individual

occasion performance, coupled random changes, age trends, and differing

measurement quality. Diagnoses of MCI and dementia were associated with

lower recall performance on all trials, reduced PE gain per occasion, and

differences in non-linear dynamic parameters. Practice self-feedback is a

dynamic measure of the decay or acceleration in PE process changes

over longitudinal occasions. As with PE and mean recall, estimated practice

self-feedback followed a gradient from positive in CU participants to null

in participants with diagnosed MCI and negative for those with dementia
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diagnoses. Evaluation of sensitivity models showed this pattern of variation

in PE was largely unmodified by differences in age, sex, or educational

attainment. These results show dynamic modeling of PE from longitudinal

performance on standardized learning and memory tests can capture multiple

aspects of behavioral changes in MCI and dementia. The present study

provides a new perspective for modeling longitudinal change in verbal

learning in clinical and cognitive aging research.

KEYWORDS

practice effects, aging, learning, mild cognitive impairment, verbal memory,
dementia, dynamic modeling, Alzheimer’s disease (AD)

Introduction

Standardized neuropsychological tests are sensitive to
cognitive declines associated with older age and incident
mild cognitive impairment (MCI) and dementia. Clinical
characterization of cognitive impairments and the tracking of
progressive declines requires repeated testing, but performance
on repeated standardized tests is contaminated by practice
effects (PE; Duff et al., 2001; Hawkins et al., 2004; Salthouse,
2010; Hoffman et al., 2011). This contamination arises due to
the incidental retention of information from prior exposure
to test format and content, which can enhance performance
at subsequent reinstatement (Wilson et al., 2000; Heilbronner
et al., 2010; Machulda et al., 2013). The potential of PE
to mask true cognitive declines in healthy and pathological
aging has motivated numerous attempts to remove PE from
estimates of level or change in performance (Rabbitt et al., 2001;
Salthouse and Tucker-Drob, 2008; Salthouse, 2010; Calamia
et al., 2012). However, as a measure of the capacity to
benefit from repetition, PE may represent an independent
behavioral dimension sensitive to declines in older age and
neurodegenerative disease (Yang, 2011; Duff et al., 2012). Thus,
rather than treat PE as noise, approaches to integrate modeling
of PE and cognition may provide novel clinical value in
characterizing cognitive impairment and dementia.

Notably, simulation study findings show PE are not easily
distinguished from true changes associated with aging or cohort
effects (Hoffman et al., 2011). Therefore, quantifying PE as
the change dimension of interest may better serve short-term
characterization of functional declines in MCI and dementia.
This proposition is in accord with suggestions that variation
in PE reflects individual differences in neurocognitive plasticity
(Baltes and Raykov, 1996; Yang and Krampe, 2009; Yang, 2011).
Others have reported PE as a marker of clinical declines in older
adults with mild cognitive impairment (MCI) or dementia of
the Alzheimer’s type (DAT; Duff et al., 2007, 2012; Fernandez-
Ballesteros et al., 2012; Sanchez-Benavides et al., 2016).
Lower PE is also associated with performance decrements in

cognitively intact adults with preclinical Alzheimer’s pathology
(Goldberg et al., 2015; Hassenstab et al., 2015). These
findings highlight the intrinsic dependencies between the
contributions of prior experience to cognitive performance and
vulnerability to decline.

Verbal learning tasks provide established clinical markers
of neuropsychological deficits associated with diagnoses of
MCI and DAT (Duff et al., 2001; Hawkins et al., 2004;
Blasi et al., 2009; Lonie et al., 2010; Summers and Saunders,
2012). Standardized tests of verbal learning and memory
typically involve serial auditory presentation of lists of verbal
stimuli, immediately followed by instructions to freely recall all
words remembered. Most standardized tasks then repeat this
procedure for multiple trials with the same stimuli, followed by
a delay and an additional free recall trial. Due to their repetitive
nature, verbal learning tasks are particularly vulnerable to PE
when content is repeated across longitudinal administrations
(Duff et al., 2001; Heilbronner et al., 2010; Machulda et al.,
2013; Campos-Magdaleno et al., 2017). Arguably, repeated
free recall performance on multiple trials distributed over
longitudinal occasions embodies the definition of a dynamic
process – i.e., one that constantly changes and progresses
(Zimprich et al., 2008). Moreover, serial recall represents
retrieval-based learning, in which retrieval of a representation
updates the representation itself (Karpicke et al., 2014).
Furthermore, each repeated trial involves not just encoding
and retrieval, but updating and retrieval monitoring, as well as
potential metacognitive processes (Hertzog and Dunlosky, 2004;
Bender and Raz, 2012). Thus, successful recall performance
involves multiple interactive executive processes, which may
also show decrements in the presence of phenotypic cognitive
impairment. Yet, the extent that task summary scores reflect
these dynamics is unclear.

To date, there is neither consistent operationalization
nor definition of PE in the contexts of clinical and basic
cognitive aging research. Studies report PE estimated both
in variable time scales ranging from minutes to years and
from a host of different behavioral tasks, conditions, and
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stimuli. In addition, PE is largely quantified in extant studies
of normative and pathological aging using difference scores
or via linear modeling frameworks (Raykov et al., 2002;
Salthouse et al., 2004; Duff et al., 2007; Bender et al., 2013,
2020; Goldberg et al., 2015; Hassenstab et al., 2015). However,
linear modeling approaches may fail to capture the interactive,
dynamic processes involved in longitudinal verbal learning
task performance. Modern dynamic modeling methods that
can quantify non-linear processes may provide novel markers
of PE or cognitive decline. In the context of longitudinal
changes in verbal recall, dynamic modeling can account for
the current level of performance at each trial and occasion to
help predict subsequent performance. Thus, within-occasion
and longitudinal performance are modeled as interdependent
processes that play out over time. Modeling performance on
each verbal recall trial as an individual interactive process,
manifest over multiple occasions, permits estimating PE as a
change process independent of overall mean performance and
trial-by-trial random effects.

The continuous time structural equation modeling
(ctsem; Driver et al., 2017) framework applies a differential
equations-based time series analysis for modeling ongoing
dynamic processes, coupled with a measurement layer to
delineate measurement noise from true change. While it
resembles latent growth and latent change score models,
ctsem permits treating time-in-study as a continuous
variable, in addition to other key enhancements. Relevant
to longitudinal verbal learning performance, the framework
permits specifying a non-linear measurement model to account
for factors such as differential measurement error across
groups or levels of performance. It also allows modeling
random effects to capture individual differences in all system
parameters, as well as covariates that can predict such
individual differences. Furthermore, these non-linear processes
may also be sensitive to phenotypic cognitive impairment,
possibly independent of level of performance or PE. Thus,
dynamic modeling of longitudinal verbal learning data
to decompose PE from trial-level performance may offer
additional value for clinical aging populations previously
reported to show a loss of PE.

Extant findings show diagnoses of MCI and multi-domain
amnestic dementia (DAT) are associated with reduced or
non-existent PE on standardized verbal learning tasks (Duff
et al., 2007, 2019; Calamia et al., 2012; Goldberg et al.,
2015; Gavett et al., 2016). However, it is unclear whether
differences in PE associated with MCI or dementia are
also influenced by other factors known to influence verbal
memory. For example, whereas older age is associated with
performance decrements on episodic memory tasks, female
sex is associated with better verbal episodic memory (Herlitz
et al., 1997; Herlitz and Rehnman, 2008; Bender et al., 2010).
Furthermore, greater educational attainment also confers a
higher initial level of premorbid performance on memory tasks
(Lovden et al., 2020). Still, it is unclear if such individual

differences may modify the larger effects of MCI or DAT
diagnosis on verbal recall or PE, particularly over less expansive
periods of assessment.

The University of Michigan Memory and Aging Project
(UM-MAP) includes older participants clinically characterized
as cognitively unimpaired (CU) or diagnosed with MCI or DAT.
The available data includes one to four occasions of annual
neuropsychological assessment, including the Hopkins Verbal
Learning Test (HVLT), which was administered using the same
stimulus lists on each occasion of measurement. This provided
an opportunity to apply ctsem for modeling longitudinal verbal
recall performance and PE as dynamic processes in a clinical
aging sample. To our knowledge, this is the first attempt to
apply dynamic modeling to quantify longitudinal changes in
verbal learning, particularly in a clinical aging context. Critically,
dynamically modeled estimates of PE in the present study served
as the primary measure of longitudinal change in performance,
rather than estimating change in ability and PE separately.
We hypothesized that both older age and diagnosed MCI and
DAT would be associated with poorer recall and lower PE.
We also expected the effects of clinical diagnosis would be
modified by individual differences in chronological age, sex,
and educational attainment. Specifically, we hypothesized that
higher education and female sex would be associated with better
verbal recall; however, we had no clear expectations regarding
how these would influence effects of MCI or DAT diagnosis
on recall or PE.

Materials and methods

Participants

The study sample was drawn from research participants in
the University of Michigan Memory and Aging Project (UM-
MAP), which is the primary clinical cohort at the Michigan
Alzheimer’s Disease Research Center (MADRC). The sample
included 256 participants (67% women) from 51 to 89 years
of age at the first assessment. At each measurement occasion
all participants underwent neuropsychological evaluation and a
consensus diagnosis was made during a consensus conference
by neurologists, neuropsychologists, nurses, social workers or
other specialists as appropriate using the National Alzheimer’s
Coordinating Center (NACC) criteria. The sample was divided
into three subgroups based on the last recorded diagnosis
for each participant (Table 1): cognitively unimpaired (CU;
n = 126; 71% women), amnestic or non-amnestic MCI (MCI;
n = 85; 67% women) and multi-domain amnestic dementia
(DAT; n = 45; 60% women) consistent with Alzheimer’s
disease and mixed dementia. Over the course of the study,
six participants progressed from diagnoses of aMCI to DAT
of the Alzheimer’s type, and an additional six participants
changed from CU to MCI diagnoses. In contrast, one
participant initially diagnosed with DAT was subsequently
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characterized as CU, and 15 participants characterized with
MCI at baseline reverted to CU at their final study assessment
2–3 years later.

Longitudinal organization

Following baseline assessment participants returned
annually for repeated testing. The present study data included
assessments on one to four separate measurement occasions
(Table 2), separated by mean intervals of 1.09 years. Mean
intervals between each occasion of measurement, separately by
subgroup are reported in Supplementary Table 1.

Cognitive testing

All participants were administered the Hopkins Verbal
Learning Test (HVLT; Brandt, 1991) on each occasion of
measurement and testing followed the published procedures.
The HVLT auditorily presents 12-item lists of semantically

TABLE 1 Participant characteristics by clinical diagnosis.

CU MCI DAT

Mean (sd) Mean (sd) Mean (sd)

Age 70.06 (6.43) 72.66 (8.04) 72.22 (9.31)

Education 15.90 (2.67) 15.60 (2.47) 15.51 (2.61)

Systolic BP 134.43 (22.97) 139.46 (22.10) 133.81 (15.67)

Diastolic BP 77.88 (11.35) 81.10 (12.03) 74.91 (9.76)

CDR 0.33 (0.41) 0.97 (0.75) 3.67 (2.08)

MoCA 26.85 (1.93) 23.03 (3.19) 15.45 (5.64)

GDS 1.13 (1.39) 1.43 (1.70) 1.60 (1.33)

Values are mean with standard deviation in parentheses. CU, cognitively unimpaired;
MCI, diagnosis of amnestic or non-amnestic MCI; DAT, diagnosis of multi-domain
amnestic dementia. Age and educational attainment are in years. Systolic and diastolic BP
are blood pressure measured in mmHg. CDR, clinical dementia rating; MoCA, montreal
cognitive assessment. GDS, geriatric depression scale.

TABLE 2 Participant counts for total number of measurement
occasions by clinical diagnosis.

Clinical diagnosis Total number of occasions

1 2 3 4 Total
CU 20 45 40 21 126

MCI 34 23 20 8 85

DAT 20 19 6 0 45

Total 74 87 66 29 256

CU, cognitively unimpaired; MCI, diagnosis of amnestic or non-amnestic MCI; DAT,
diagnosis of multi-domain amnestic dementia. Values represent counts of participants
by their total number of measurement occasions. For example, in the top row for CU
participants, 20 had HVLT data for only one occasion, 45 participants completed two
occasions, 40 had three occasions of data, and 21 CU participants had complete data for
all four occasions.

linked verbal stimuli, presented at a rate of 2 s per item.
Following presentation of all items, the participant freely recalls
as many as possible. The score per trial is the total number
of correctly recalled words. This is repeated for two additional
free recall trials, using the same verbal stimuli. A 20-min
delay follows the third recall trial, after which participants
are asked to freely recall as many words as possible without
re-presenting the stimuli. Notably, although the HVLT also
includes additional delayed recall and recognition measures,
the present study focused on the first four trials, i.e., the
three immediate and first delayed recall trials. Critically, the
present study repeated the same lists of verbal stimuli across all
occasions of measurement.

Data analysis

To analyze performance, change as a function of
PE, and individual differences therein, we developed
hierarchical Bayesian continuous time dynamic models
(Driver et al., 2017) implemented in the ctsem software
(Driver et al., 2017;Driver and Voelkle, 2021). A more detailed
description of the model and corresponding mathematical
apparatus follows below in the Supplementary Material.

Modeling practice effects and performance in
ctsem

To account for varying observation timing and to allow
for continuously interacting processes, ctsem estimates an
underlying continuous-time model, which is translated into
discrete time expectations and covariance matrices using
matrix exponentiation (Voelkle et al., 2012; Voelkle and Oud,
2013). To account for the multiple timescales at play (i.e.,
within and between occasion), each of the immediate (i.e.,
Trials 1, 2, and 3) and delayed recall trials (Trial 4) were
modeled as independent latent processes over four occasions
of measurement, with correlated random disturbances. This
means that although we may not have been able to predict every
fluctuation in performance, when an unpredicted fluctuation
occurs this contributes to predictions for the other trials within
and (potentially) across occasion. We estimated the standard
deviation and within-occasion correlations of the diffusion
process, separately for each Trial (e.g., Diffusion T1). These
parameters capture the extent of unpredictable random changes
across measurement occasions, which are nevertheless useful
for predicting performance on other trials within-occasion, or
across-occasion – thus more likely representing some genuine
aspect of performance. In contrast, the standard deviation
of the measurement error (i.e., measurement error) captures
unpredictable changes in observed performance that do not
provide value for prediction on other trials. The model also
contained a parameter reflecting Trial self-feedback (sf_Trial);
this parameter describes the persistence of the random changes
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between measurement occasions for each trial. Put differently,
sf_Trial represents the extent to which unpredicted shifts up
or down (independent of measurement error) on performance
for a specific trial, can be used to predict performance for
the same trial number on the next occasion, i.e., across-
occasion persistence. On top of this base structure allowing
for correlated random processes, PE was modeled as a latent
process that changed at the end of each occasion. As for
the trial specific processes, we also specified a Practice self-
feedback (sf_Practice) parameter to provide an estimate of total
feedback on PE; this parameter serves as a measure of the decay
or acceleration in the change to Practice effect process over
the observed range of occasions. Like sf_Trial, the sf_Practice
parameter reflects the extent that the current level of practice
(i.e., at the end of each occasion) contributes to the Practice
effect at the next occasion. Thus, a positive sf_Practice value
would reflect an increase in gains due to practice on later
occasions, whereas a negative sf_Practice value reflects a decay
or deceleration of learning processes that reduce total PE and
implies reducing gains due to further practice. Each model
output includes estimates of population means for all modeled
parameters, correlations between trial manifest means and the
PE parameter, and estimates of time independent predictor
effects and interactions.

Time independent predictors and covariates
Parameters of the system and measurement models also

varied on an individual level as a function of clinical diagnosis, as
well as random effects. The effects of other sources of individual
differences were examined in separate sensitivity models to
evaluate effect modification by individual linear covariates,
including baseline age, sex, and educational attainment. This
accounts for a broad range of phenomena, such as heterogeneity
of measurement error variance with age and performance.
Therefore, we first evaluated most recent clinical diagnosis of
MCI or DAT as time independent predictors, in relation to
CU participants. This was followed by independent subsidiary
sensitivity models that evaluated covariate effects age, sex, and
educational attainment (scaled and centered at the respective
sample means) on model parameters and their interactions with
diagnostic group. Last, independently for the three diagnostic
groups we evaluated each of the time independent predictors
age, sex, and education in separate models.

Bayesian estimation
Due to the large number of parameters and random

effects, we opted for Bayesian maximum a posteriori
estimation. Priors on the parameter means were relatively
broad and non-influential, while tighter priors (i.e.,
pushing estimates toward zero) were used for modeling
individual differences to mitigate over-fitting. Despite
yielding more conservative estimates, this permits a
more pragmatic approach for estimating and interpreting

models with many parameters and modest sample
sizes. For details on priors, and the expanded stochastic
differential equation and related measurement model see the
Supplementary Material.

Results

A guide to interpreting model results
and figures

The time independent predictor effects and interactions
are best represented by the accompanying expectation plots
(Figures 1–4). As these are likely to be unfamiliar to
most readers without prior dynamic modeling experience,
their interpretation benefits from some explanation. Figure 1
provides an example of the expected effects of educational
attainment on performance, uncomplicated by additional
interactions. The plot depicts model expectations of recall
performance, measured over four occasions, with each trial
type (i.e., 1–4) depicted separately in the four panels. The
y-axes represent the number of correctly recalled words on
a trial, and the x-axis represents time; the dashed vertical
lines depict the individual measurement occasions. The black
plotted line depicts the expectation of change in the total
sample, in the absence of any covariates. The level of the
line on the y-axis represents the number of words recalled
for a trial in the total sample and this expected value is
incrementally increased before the next measurement occasion
as a function of the estimated PE parameter. Starting at baseline
(T0) the line is flat until just before the second occasion (T1)
where PE is first relevant. The magnitude of the increase
reflects PE at that occasion. The slope of the line between
T1 to T2 and from T2 to T3 also reflects the amount of
positive feedback or decay in PE as estimated by positive or
negative sf_Practice – the feedback component on PE that
allows for increasing or reducing gains of further practice.
The dashed and solid red lines show model expectations when
the covariate in question is ±1 and all other covariates are
zero. For dichotomous covariates like sex, this reflects group
differences. Here, higher education (dashed red line) predicts
higher level of performance, with stronger effects on Trials 2–
4 and occasions T0–T2, but the difference is reduced at T3.
The lower education group (solid red line) has a higher PE
gain at the end of each occasion, despite the lower initial level.
In addition, this is accompanied by greater decay (i.e., less
positive practice self-feedback) on the PE process. Of note,
for interactions (e.g., Figures 2–4), the dashed or solid lines
represent only the interaction effect, not the interaction plus
main effects. For example, in the case of Sex × DAT, the +1
line shows only the additive effect of female sex and positive
DAT diagnosis, assuming the individual Sex and DAT diagnosis
covariates are 0.
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FIGURE 1

Expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0: baseline, T1: 1 year). The solid and
dashed red lines depict effect modification by education; higher (dashed) and lower (solid) levels of education predict different levels and
patterns of change. The complete guide to interpreting expectation plots can be found in Section “A Guide to Interpreting Model Results and
Figures.”

Diagnostic groups model

The model with diagnostic groups as the only time
independent predictor provided overall characterization of
the sample (Table 3). The estimated population mean of PE
was significantly positive, indicating overall improvement
in performance across longitudinal occasions of 0.4 words,
for the entire sample. The mean trial self-feedback (sf_Trial)
parameter was very negative, implying that random changes
at the trial level did not persist across occasions. In addition,
the mean for the sf_Practice parameter was not significant,
suggesting that gains in PE neither increase nor decrease
substantially, given further repetitions. The means for the
other parameters, including diffusion for each trial and total
measurement error were all positive. Furthermore, the means
for all four Trials were positively correlated within-subject,
but there were no significant correlations with PE gain
per occasion in the total sample. Evaluation of diagnostic

groups as time independent predictors showed MCI and
dementia diagnosis predicted lower mean performance on
all four trials (Table 4), as well as a non-significant trend
for DAT diagnosis predicting lower PE. Both MCI and
DAT diagnoses predicted significantly higher Diffusion
effects for Trial 3 only, implying that diagnoses of MCI and
dementia were associated with greater random changes
in Trial 3 that were nevertheless predictive of other
trials, thus likely representing genuine change and not
measurement error.

Sensitivity models

Next, we evaluated independent sensitivity models to
examine the modifying effects of individual differences in age,
sex, and educational attainment on main effects and interactions
with diagnostic group (Table 5).

Frontiers in Aging Neuroscience 06 frontiersin.org

95

https://doi.org/10.3389/fnagi.2022.911559
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-911559 July 22, 2022 Time: 14:56 # 7

Bender et al. 10.3389/fnagi.2022.911559

TABLE 3 Estimated population mean values and correlations for diagnostic group and sensitivity models.

Diagnostic groups Age Sex Education

Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI

Population means
sf_Practice 0.009 (0.256) −0.506, 0.523 −0.006 (0.244) −0.502, 0.475 −0.049 (0.280) −0.594, 0.504 −0.200 (0.314) −0.824, 0.429

sf_Trial −3.471 (1.065) −5.671,−1.650 −3.001 (0.749) −4.596,−1.669 −3.218 (1.051) −5.513,−1.454 −2.733 (0.691) −4.161,−1.545

Diffusion T1 3.795 (0.609) 2.702, 5.067 3.548 (0.445) 2.743, 4.467 3.748 (0.607) 2.688, 5.026 3.442 (0.466) 2.599, 4.432

Diffusion T2 3.523 (0.580) 2.538, 4.814 3.333 (0.431) 2.574, 4.247 3.512 (0.575) 2.487, 4.708 3.138 (0.417) 2.396, 4.009

Diffusion T3 2.781 (0.458) 2.025, 3.806 2.707 (0.352) 2.126, 3.439 2.801 (0.450) 1.993, 3.739 2.514 (0.348) 1.883, 3.244

Diffusion T4 5.499 (0.838) 4.089, 7.203 5.231 (0.650) 4.055, 6.515 4.816 (0.765) 3.449, 6.415 4.401 (0.582) 3.330, 5.583

Meas. error 0.299 (0.190) 0.080, 0.780 0.260 (0.173) 0.060, 0.713 0.233 (0.160) 0.054, 0.669 0.476 (0.923) 0.006, 2.934

Practice effect (PE) 0.399 (0.110) 0.184, 0.607 0.436 (0.117) 0.213, 0.665 0.388 (0.124) 0.145, 0.617 0.467 (0.123) 0.216, 0.714

Trial 1 6.087 (0.154) 5.781, 6.381 5.964 (0.163) 5.631, 6.263 5.939 (0.168) 5.611, 6.261 6.079 (0.161) 5.772, 6.389

Trial 2 8.782 (0.146) 8.514, 9.074 8.762 (0.149) 8.467, 9.046 8.663 (0.155) 8.366, 8.976 8.773 (0.141) 8.510, 9.056

Trial 3 9.837 (0.140) 9.578, 10.111 9.789 (0.141) 9.517, 10.055 9.733 (0.149) 9.428, 10.033 9.845 (0.136) 9.594, 10.114

Trial 4 8.478 (0.211) 8.054, 8.902 8.432 (0.212) 8.001, 8.839 8.297 (0.218) 7.877, 8.727 8.546 (0.199) 8.173, 8.925

Population correlations
Trial 1–PE 0.013 (0.251) −0.472, 0.474 −0.034 (0.224) −0.461, 0.396 0.037 (0.315) −0.552, 0.630 0.124 (0.331) −0.511, 0.707

Trial 2–PE 0.186 (0.271) −0.379, 0.681 0.102 (0.256) −0.381, 0.588 0.199 (0.328) −0.447, 0.766 0.293 (0.340) −0.435, 0.811

Trial 3–PE 0.135 (0.280) −0.463, 0.646 0.009 (0.260) −0.495, 0.503 0.172 (0.344) −0.505, 0.764 0.245 (0.363) −0.502, 0.810

Trial 4–PE 0.178 (0.246) −0.354, 0.627 0.048 (0.238) −0.403, 0.487 0.194 (0.308) −0.417, 0.727 0.249 (0.340) −0.470, 0.785

Trial 2–Trial 1 0.897 (0.049) 0.783, 0.958 0.889 (0.058) 0.743, 0.967 0.901 (0.047) 0.778, 0.965 0.892 (0.057) 0.750, 0.961

Trial 3–Trial 1 0.816 (0.057) 0.686, 0.910 0.800 (0.077) 0.606, 0.911 0.824 (0.065) 0.659, 0.919 0.801 (0.076) 0.619, 0.911

Trial 4–Trial 1 0.654 (0.084) 0.476, 0.791 0.613 (0.113) 0.359, 0.798 0.634 (0.086) 0.447, 0.782 0.675 (0.099) 0.459, 0.833

Trial 3–Trial 2 0.927 (0.038) 0.832, 0.974 0.910 (0.051) 0.763, 0.972 0.925 (0.042) 0.827, 0.976 0.916 (0.045) 0.805, 0.974

Trial 4–Trial 2 0.817 (0.064) 0.674, 0.909 0.773 (0.089) 0.552, 0.901 0.799 (0.069) 0.620, 0.901 0.831 (0.076) 0.649, 0.931

Trial 4–Trial 3 0.867 (0.056) 0.724, 0.944 0.839 (0.077) 0.657, 0.942 0.843 (0.064) 0.685, 0.933 0.902 (0.055) 0.759, 0.973

95% CI, values are upper (2.5%) and lower (97.5%) bounds. sf_Practice, practice self-feedback; sf_Trial, trial self-feedback; Diffusion, standard deviation of diffusion processes for a given
trial (e.g., T1 is Trial 1); Meas. error, measurement error; Trial represents manifest mean recall for each Trial, aggregated across occasions.

Age
The addition of years of age as a time independent predictor

showed on average, older age was associated with worse
performance on all four trials. However, this was qualified by
interactions of mean trial performance with clinical diagnosis.
Older age was associated with poorer performance on Trials 1, 2,
and 3 among those with MCI diagnoses, but with trends toward
better recall on trials 1 and 3 in those with DAT diagnoses
(Figure 2). Moreover, the negative effect of dementia on PE
gain per occasion was significant when accounting for age.
A significant negative interaction of Age × MCI × Diffusion
Trial 3 was due to older age attenuating the positive effects
of MCI diagnosis on Trial 3 Diffusion. Here, whereas MCI
diagnosis predicted higher levels of random variations in
Trial 3 that benefited model prediction, this was limited by
more advanced age.

Sex
Inclusion of participant sex in the model showed superior

mean performance by women on all four recall trials. This

was qualified by significant negative interactions of sex with
diagnostic group predictors on Trial 1 for MCI and on all
trials for DAT. As shown in the expectation plots (Figure 3),
female sex was associated with lower performance in diagnosed
DAT. In addition, significant positive interaction of sex
with MCI on Trial 1 Diffusion, was due to higher Trial
1 Diffusion among women than men with MCI diagnoses.
However, a significant negative interaction of sex with
DAT on Trial 4 Diffusion showed lower predictive random
changes in women than men with diagnoses of DAT on
delayed recall trials.

Educational attainment
Greater educational attainment was marginally associated

with higher performance on Trial 3 and 4 in the total sample.
However, this was qualified by positive interactions between
education and both MCI and DAT on Trial 4 only, where
higher education predicted better delayed recall performance
(Figure 4). More years of education also predicted lower
measurement error in the MCI group, but higher measurement
error in the DAT group.
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TABLE 4 Effects of diagnostic groups in the total sample.

Interaction Mean (SD) 95% CI

MCI× sf_Practice 0.063 (0.095) −0.121, 0.248

MCI× sf_Trial 0.043 (0.291) −0.548, 0.615

MCI× Diffusion T1 −0.477 (0.330) −1.181, 0.136

MCI× Diffusion T2 0.284 (0.264) −0.225, 0.800

MCI× Diffusion T3 0.466 (0.217) 0.052, 0.903*

MCI× Diffusion T4 0.012 (0.397) −0.835, 0.743

MCI×Meas. error 0.007 (0.065) −0.114, 0.148

MCI× Practice effect −0.120 (0.133) −0.372, 0.157

MCI× Trial 1 −1.423 (0.218) −1.846,−0.996*

MCI× Trial 2 −1.769 (0.210) −2.168,−1.356*

MCI× Trial 3 −1.778 (0.204) −2.191,−1.382*

MCI× Trial 4 −2.923 (0.310) −3.525,−2.350*

DAT× sf_Practice −0.002 (0.103) −0.198, 0.200

DAT× sf_Trial 0.182 (0.312) −0.454, 0.802

DAT× Diffusion T1 −0.047 (0.404) −0.835, 0.716

DAT× Diffusion T2 0.404 (0.323) −0.219, 1.071

DAT× Diffusion T3 0.730 (0.307) 0.168, 1.379*

DAT× Diffusion T4 −0.948 (0.638) −2.227, 0.215

DAT×Meas. error −0.013 (0.071) −0.160, 0.113

DAT× Practice effect −0.435 (0.257) −0.931, 0.068+

DAT× Trial 1 −2.328 (0.303) −2.866,−1.741*

DAT× Trial 2 −3.807 (0.297) −4.401,−3.211*

DAT× Trial 3 −4.409 (0.295) −4.993,−3.839*

DAT× Trial 4 −6.345 (0.410) −7.194,−5.554*

Values are mean with standard deviation in parentheses. 95% CI, values are upper (2.5%)
and lower (97.5%) bounds. sf_Practice, practice self-feedback; sf_Trial, trial self-feedback;
Diffusion, standard deviation of diffusion processes for a given trial (e.g., T1 is Trial 1);
Meas. error, measurement error; Trial represents manifest mean recall for each Trial,
aggregated across occasions. The asterisk * denotes significant effects; the + indicates
nonsignificant trends.

Subsidiary models by diagnostic
groups

In a series of models specific to each diagnostic group we also
evaluated separate models with the time independent predictors
age, sex, and educational attainment (Table 6). Complete details
of all model outputs, including population means, population
correlations and effects of time independent predictor are
provided in Supplementary Material.

Cognitively unimpaired
The three models limited to the CU participants showed

significant negative correlations between PE and mean
recall performance on Trials 3 and 4 (Supplementary
Table 2); those with better performance in the later and
delayed recall trials had lower PE gain per occasion.
Older age in CU participants was associated with higher
Diffusion on Trials 3 and 4, and with lower overall
mean performance on all trials (Table 6). In contrast,

analysis of sex differences in the CU subsample showed
men have higher Trial 3 diffusion and lower Trial 4
diffusion than women. Last, the education model showed
higher educational attainment was associated with higher
Trial 4 Diffusion, lower measurement error, and higher
Trial 3 mean recall.

Mild cognitive impairment
Notably, the mean estimated PE gain per occasion

parameter did not differ significantly from zero in the MCI
subgroup analyses (Supplementary Table 3). In addition, MCI
subgroup models did not show any significant correlations
between mean Trial performance and PE gain. As with the
CU analysis, older age in the MCI subgroup predicted lower
Diffusion on Trials 3 and 4 and lower mean performance
on Trials 2, 3, and 4. Modeling effects of sex in the MCI
subgroups showed women to have better recall on Trials 3
and 4. Higher educational attainment in the MCI subgroup
predicted better performance on Trials 1, 2, and 3, as well as
lower overall PE.

Dementia
The DAT subgroup models showed significantly negative

PE gain estimates (Supplementary Table 4). In addition, the
subgroup models for Age and Sex both produced significant
negative parameter estimates for the correlations between
PE and mean performance on Trial 2 and Trial 4. Older
age in the DAT subgroup predicted negative sf_Practice, but
better mean performance on Trials 2 and 3. Sex differences
were only manifest in mean level of Trial 3, where women
performed worse than men. Higher educational attainment
predicted higher Trial 4 Diffusion and trends for higher
measurement error and lower PE, but no apparent effects on
mean Trial performance.

Comparison of subgroup models
The individual models by clinical diagnosis demonstrated

effects that were modified by the inclusion of specific covariates,
as well as those that were consistent across subgroup sensitivity
models. The sf_Practice parameter appeared sensitive to clinical
diagnosis, with estimates that were more negative in the CU
group and closer to zero in MCI; in contrast, estimated
sf_Practice was positive in the DAT subgroup, and this was
magnified by older age. In addition, PE gain was negatively
correlated with Trial 3 and 4 recall performance for the
CU subgroup; no correlations were significant between PE
gain and performance in the MCI subgroup. The dementia
subgroup showed higher PE was associated with lower recall
performance only on Trials 2 and 4; however, this was
only manifest in sensitivity models with Age and Sex and
became non-significant when accounting for differences in
Education. Similarly, the manifest means for all four recall
Trials were consistently positively correlated across subgroup
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TABLE 5 Significant and trending covariate effects and interactions with diagnostic groups in sensitivity models of age, sex and education.

Age Mean (SD) 95% CI Sex Mean (SD) 95% CI Education Mean (SD 95% CI

Age× T1 −0.520 (0.152) −0.820,−0.219 Sex× T1 0.357 (0.158) 0.038, 0.653 Educ.× T1 0.060 (0.059) −0.053, 0.179

Age× T2 −0.255 (0.138) −0.520, 0.007 Sex× T2 0.302 (0.136) 0.049, 0.566 Educ.× T2 0.077 (0.051) −0.015, 0.186

Age× T3 −0.344 (0.130) −0.614,−0.089 Sex× T3 0.280 (0.129) 0.026, 0.528 Educ.× T3 0.081 (0.048) −0.008, 0.183

Age× T4 −0.521 (0.201) −0.915,−0.125 Sex× T4 0.448 (0.207) 0.072, 0.841 Educ.× T4 −0.031 (0.069) −0.167, 0.108

MCI× Diff. T1 −0.489 (0.305) −1.129, 0.045 MCI× Diff. T1 −0.700 (0.339) −1.445,−0.101 MCI× Diff. T1 −0.417 (0.317) −1.052, 0.207

MCI× Diff. T2 0.389 (0.220) −0.034, 0.778 MCI× Diff. T2 0.467 (0.220) 0.065, 0.931 MCI× Diff. T2 0.428 (0.203) 0.007, 0.818

DAT× Diff. T3 0.663 (0.281) 0.150, 1.241 DAT× Diff. T3 0.628 (0.301) 0.087, 1.283 DAT× Diff. T3 0.792 (0.271) 0.287, 1.324

DAT× Diff. T4 −1.355 (0.585) −2.535,−0.269 DAT× Diff. T4 −0.949 (0.629) −2.210, 0.253 DAT× Diff. T4 −1.435 (0.679) −2.850,−0.149

DAT× PE −0.514 (0.248) −1.003,−0.020 DAT× PE −0.463 (0.259) −0.981, 0.039 DAT× PE −0.472 (0.257) −0.980, 0.004

Age×MCI× sf_Prac 0.020 (0.107) −0.180, 0.231 Sex×MCI× sf_Prac 0.057 (0.101) −0.149, 0.258 Educ.×MCI× sf_Prac −0.097 (0.081) −0.254, 0.063

Age×MCI× Diff. T1 0.050 (0.281) −0.497, 0.576 Sex×MCI× Diff. T1 0.625 (0.312) 0.060, 1.273 Educ.×MCI× Diff. T1 0.178 (0.213) −0.252, 0.554

Age×MCI× Diff. T3 −0.455 (0.219) −0.893,−0.036 Sex×MCI× Diff. T3 0.126 (0.230) −0.336, 0.581 Educ.×MCI× Diff. T3 0.045 (0.136) −0.220, 0.308

Age×MCI× T1 −0.070 (0.204) −0.441, 0.339 Sex×MCI× T1 −0.483 (0.227) −0.925,−0.038 Educ.×MCI× T1 0.061 (0.089) −0.114, 0.230

Age×MCI× T2 −0.385 (0.194) −0.745,−0.019 Sex×MCI× T2 −0.167 (0.217) −0.595, 0.256 Educ.×MCI× T2 0.040 (0.083) −0.127, 0.197

Age×MCI× T3 −0.303 (0.186) −0.673, 0.062 Sex×MCI× T3 −0.104 (0.207) −0.503, 0.302 Educ.×MCI× T3 0.094 (0.081) −0.070, 0.242

Age×MCI× T4 −0.660 (0.276) −1.208,−0.149 Sex×MCI× T4 −0.208 (0.303) −0.777, 0.390 Educ.×MCI× T4 0.213 (0.119) −0.024, 0.447

Age× DAT× Diff. T4 −0.493 (0.576) −1.623, 0.618 Sex× DAT× Diff. T4 −1.519 (0.628) −2.800,−0.408 Educ.× DAT× Diff. T4 0.546 (0.433) −0.328, 1.436

Age× DAT×ME 0.002 (0.058) −0.107, 0.134 Sex× DAT×ME 0.005 (0.049) −0.084, 0.110 Educ.× DAT×ME 0.129 (0.279) −0.006, 0.985

Age× DAT× T1 0.549 (0.286) −0.016, 1.130 Sex× DAT× T1 −0.646 (0.301) −1.221,−0.048 Educ.× DAT× T1 −0.033 (0.126) −0.276, 0.216

Age× DAT× T2 0.352 (0.265) −0.147, 0.880 Sex× DAT× T2 −0.570 (0.283) −1.118,−0.008 Educ.× DAT× T2 0.120 (0.119) −0.111, 0.354

Age× DAT× T3 0.491 (0.258) −0.010, 0.985 Sex× DAT× T3 −0.705 (0.266) −1.240,−0.184 Educ.× DAT× T3 −0.014 (0.112) −0.248, 0.202

Age× DAT× T4 −0.037 (0.355) −0.729, 0.633 Sex× DAT× T4 −0.796 (0.376) −1.499,−0.037 Educ.× DAT× T4 0.444 (0.156) 0.125, 0.752

Table depicts significant effects and interactions present in one or more of the three sensitivity models. Covariate effects that were not significant in any model are not shown. 95% CI,
values are upper (2.5%) and lower (97.5%) bounds. MCI, diagnosis of amnestic or non-amnestic MCI; DAT, diagnosis of multi-domain amnestic dementia. sf_Prac, practice self-feedback;
T, trial; for Diff. T1 is standard deviation of diffusion process for Trial 1; values of T1, T2, T3, T4 refer to manifest mean recall for each Trial, aggregated across occasions. PE, practice
effect; ME, measurement error. Sex, men modeled as−1 and women as+1.

sensitivity models for CU and MCI subgroups, whereas the
dementia subgroup showed more variable patterns across
sensitivity models.

Comparison of covariate effects between subgroup and
sensitivity models (Table 5) shows that older age was
associated with lower mean performance on all trials for
CU and MCI subgroups, and with higher performance
on Trials 2 and 3 in the DAT subgroup (Table 6 and
Supplementary Table 5). Moreover, whereas older age predicted
higher Diffusion on Trials 3 and 4 in the CU subgroup,
the opposite effect was manifest for the MCI group. In
addition, older age only predicted more negative sf_Practice
in those with diagnosed dementia. There were fewer effects
of participant sex (Supplementary Table 6), although notably,
while women in the MCI subgroup had higher Trial 3
performance, this was reversed in the DAT analysis. Higher
educational attainment was associated with marginal benefits
on mean performance on Trials 1–3 in the CU and MCI
subgroups and with higher Trial 4 Diffusion in CU and
DAT subgroups, but not MCI (Supplementary Table 7).
Similarly, higher education was associated with lower PE only
in the MCI subgroup.

Reparametrized to estimate
within-occasion practice effects

The models reported in the present study focused on
longitudinal practice effects. To address whether trial-by-trial
improvements were also associated with clinical diagnosis
we reparametrized the original diagnostic groups model to
estimate relative within-occasion improvement. The new model
estimated a parameter for Baseline performance as well as
the deviations from Trial 1 for Trials 2, 3, and 4, rather
than absolute performance, while otherwise maintaining the
same model setup. Model results showed the population
means (Supplementary Table 8) were consistent with the
results from the original diagnostic groups model with one
exception. The reparametrized model showed higher estimated
level of Trial 3 Diffusion (mean = 4.873, sd = 0.384; 95%
CI = 4.169–4.857) than the original (mean = 2.781, sd = 0.458;
95% CI = 2.025–3.806). Time independent predictor effects
showed MCI and dementia diagnosis attenuated trial-by-trial
improvements (Supplementary Table 9). Diagnosis did not
interact with PE, measurement error, sf_Trial or sf_Practice, but
both DAT and MCI diagnosis predicted significantly lower Trial
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FIGURE 2

Education sensitivity model expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0:
baseline, T1: 1 year). The solid and dashed colored lines depict effect modification by time independent predictors: DAT diagnosis (red lines),
MCI diagnosis (green lines), Education (blue lines; higher: +1; lower: –1), and interactions of Education × DAT and Education × MCI. For
covariate effects, higher (dashed) and lower (solid) levels of the covariate are shown to modify the level and expected slope. All covariate effects
are in reference to 0 values of other covariates. The dashed red line reflects DAT, and the solid red line represents all other participants.
Interaction effects only represent the total additive value of the interaction holding the main effects at zero. For example, in Trial_4 (lower right),
the interaction of educational attainment and DAT shows higher education (+1) is associated with better performance in those with dementia
diagnoses.

3 Diffusion. Inspection of the estimated population correlations
between the trial-level deviations and parameter values for PE
and Baseline performance showed higher baseline performance
was associated with lower within-occasion improvement for
Trial 2 and Trial 3 only (Supplementary Table 9). However,
neither the trial-level deviations nor Baseline performance
estimates were significantly correlated with PE. In addition, all
three trial-level deviation parameters were positively correlated;
greater improvement from Trial 1 tended to generalize
across later trials.

Discussion

Dynamic modeling of PE from multi-occasion verbal
learning data revealed multiple notable effects associated with

clinical diagnoses of MCI and dementia. First, in accord with our
initial hypotheses both manifest recall performance and overall
PE varied as a function of diagnostic severity. In addition to
diagnosis-specific variation in levels of mean trial performance,
we observed a gradient of PE across the three diagnostic
groups – from positive in CU participants to significantly
negative in participants diagnosed with dementia. Whereas
repeated performance conferred subsequent improvements in
recall for unimpaired older adults, this was not consistently
the case in those with diagnosed MCI; moreover, we observed
ongoing decline in participants diagnosed with DAT, despite
repeated testing, as evidenced by negatively estimated PE.
Notably, modeling the four recall trials as individual processes
permitted estimating mean performance separately from PE.
Thus, mean trial performance is modeled as a stable, trait-like
factor, whereas estimated PE served as the primary measure of
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FIGURE 3

Age sensitivity model expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0: baseline, T1:
1 year). The solid and dashed colored lines depict effect modification by time independent predictors: DAT diagnosis (red lines), MCI diagnosis
(magenta lines), Age (light blue lines), and interactions of Age × DAT and Age × MCI. For main effects, higher (dashed) and lower (solid) levels of
the covariate modifies the level and expected patterns of change. All effects are in reference to 0 values on other covariates. The dashed red
line reflects DAT, and the solid red line represents all other participants. Interaction effects only represent the total additive value of the
interaction, when holding the main effects at zero.

change. This modeling perspective contrasts with most prior
efforts that model PE as a linear change within or between
occasions (Duff et al., 2007; Bender et al., 2013, 2020; Goldberg
et al., 2015; Gavett et al., 2016). In addition, the PE parameter
does not delineate between true decline and gains due to
practice, as these are not considered separable processes in a
dynamic system. The sensitivity of dynamic estimates of PE
and performance to clinical diagnosis demonstrates the value of
dynamic modeling in longitudinal clinical aging data.

Second, the present findings revealed previously unreported
relationships between clinical diagnosis and dynamic process
estimates. As with PE, the sf_Practice parameter followed
a gradient of positive to negative values that corresponded
with diagnostic severity. Practice self-feedback provides a non-
linear measure of the extent level that practice (i.e., after

completing all four trials for a given occasion) can boost
or reduce estimated PE at the next occasion. The more
positive estimates of sf_Practice in CU participants reflects an
increase in practice-related gains on subsequent occasions. In
contrast, both PE and sf_Practice were negatively estimated
in participants with diagnosed dementia. Thus, while recall
performance declined over time in these participants even with
repeated testing (i.e., as indicated by negative PE estimates),
dementia diagnosis was associated with less acceleration in
decline. In other words, performance appears to stabilize at
a lower level above floor in those diagnosed with dementia,
despite both the absence of retest improvements and overall
decline. In addition, both measurement error and diffusion
processes (particularly on Trials 3 and 4), were sensitive to
diagnostic group and other covariate effects. The standard
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FIGURE 4

Expectation plots for change in recall performance (black line) across four measurement occasions (e.g., T0: baseline, T1: 1 year) in the
sensitivity model of participant age. The solid and dashed colored lines depict effect modification by time independent predictors: DAT
diagnosis (red lines), MCI diagnosis (green lines), Sex (blue lines; women: +1; men: –1), and interactions of Age × DAT and Age × MCI. For
covariate effects, higher (dashed) and lower (solid) levels of the covariate are shown to modify the level and expected slope. All covariate effects
are in reference to 0 values of other covariates.

deviation of the diffusion processes reflects unpredictable
variations in trial performance that are nevertheless useful
in predicting performance on other trials. In tasks like the
HVLT, recall performance on later immediate recall trials
necessarily includes savings from the preceding recall trials.
The reported findings suggest that meaningful variations in
Trial 3 performance may provide a uniquely sensitive marker
of clinical cognitive impairment and dementia. Although the
interpretation of such unpredictable variations is not clear,
one possibility is Trial 3 diffusion processes may partly reflect
impaired executive or amnestic encoding abilities. For example,
reduced mental flexibility and working memory in MCI and
dementia may produce more inconsistent recall performance
across study occasions. Alternatively, higher Trial 3 diffusion
processes may capture increasing reliance on list recency due
to impaired short-term verbal encoding ability. Nevertheless,
multiple cognitive processes are potentially implicated, which
are likely to be further complicated by diagnosis and etiology.

Therefore, additional work relating differences in non-linear PE
estimates to more fine-grained neuropsychological performance
is needed to clarify the cognitive processes responsible for
variations in Trial 3 diffusion or other parameter estimates.

Third, evaluation of sensitivity and subgroup models
revealed important sources of individual differences that
modified multiple effects and qualified several interactions.
For example, older age predicted worse mean recall on all
Trials in the CU and diagnosed MCI subgroups, but better
recall on trials 2 and 3 among those with dementia diagnoses
(Table 6). This may suggest a survivor effect, as those who
reach more advanced age before onset of dementia may
maintain some residual abilities that enhance recall on these
trials. Age also modified trial-specific diffusion processes for
CU and MCI diagnosed participants, despite positive mean
Diffusion estimates in both groups (Supplementary Tables 2, 3).
Whereas older age predicted higher Diffusion on Trials 3 and
4 in the CU subgroup, the opposite effect was manifest for
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TABLE 6 Significant and trending covariate effects of participant age, sex, and education on model parameters by subgroup.

CU MCI DAT

Interaction Mean (sd) 95% CI Mean (sd) 95% CI Mean (sd) 95% CI

Age× sf_Practice −0.002 (0.095) −0.196, 0.175 0.044 (0.093) −0.130, 0.217 −0.067 (0.033) −0.130,−0.002*

Age× Diffusion T3 0.431 (0.210) 0.048, 0.909* −0.568 (0.331) −1.235, 0.085 −0.016 (0.360) −0.750, 0.712

Age× Diffusion T4 0.699 (0.365) 0.034, 1.473* −0.687 (0.409) −1.499, 0.069 −0.060 (0.133) −0.388, 0.138

Age× PE 0.080 (0.094) −0.107, 0.260 −0.181 (0.131) −0.435, 0.082 0.074 (0.201) −0.330, 0.468

Age× Trial 1 −0.489 (0.140) −0.763,−0.221* −0.706 (0.139) −0.980,−0.432* 0.163 (0.258) −0.324, 0.627

Age× Trial 2 −0.305 (0.124) −0.556,−0.067* −0.660 (0.155) −0.969,−0.375* 0.493 (0.203) 0.097, 0.893*

Age× Trial 3 −0.330 (0.104) −0.532,−0.136* −0.669 (0.145) −0.972,−0.400* 0.473 (0.224) 0.047, 0.900*

Age× Trial 4 −0.482 (0.167) −0.784,−0.175* −1.200 (0.256) −1.724,−0.703* −0.090 (0.215) −0.497, 0.313

Sex× Diffusion T3 −0.305 (0.194) −0.693, 0.073 −0.279 (0.304) −0.907, 0.307 −0.506 (0.348) −1.284, 0.135

Sex× Diffusion T4 1.113 (0.322) 0.471, 1.737* −0.019 (0.417) −0.838, 0.785 −0.057 (0.133) −0.403, 0.118

Education× Diffusion T4 0.753 (0.247) 0.336, 1.252* 0.305 (0.270) −0.223, 0.852 0.450 (0.316) 0.035, 1.144+

Education×Meas. Error −0.050 (0.010) −0.070,−0.032* −0.037 (0.050) −0.123, 0.094 0.024 (0.083) −0.033, 0.178

Education× PE −0.018 (0.040) −0.096, 0.062 −0.101 (0.058) −0.217, 0.015+ −0.081 (0.080) −0.240, 0.079

Education× Trial 1 0.035 (0.055) −0.069, 0.146 0.107 (0.062) −0.011, 0.227+ 0.016 (0.112) −0.205, 0.238

Education× Trial 2 0.063 (0.048) −0.034, 0.159 0.095 (0.069) −0.029, 0.233+ 0.101 (0.094) −0.088, 0.282

Education× Trial 3 0.072 (0.041) −0.007, 0.153+ 0.127 (0.065) −0.002, 0.255+ 0.074 (0.107) −0.128, 0.277

Significant interactions denoted by asterisk (*). CU, cognitively unimpaired; MCI, diagnosis of amnestic or non-amnestic MCI; DAT, diagnosis of multi-domain amnestic dementia. Values
are mean with standard deviation in parentheses. 95% CI, values are upper (2.5%) and lower (97.5%) bounds. sf_Practice, practice self-feedback; sf_Trial, trial self-feedback; Diffusion,
standard deviation of diffusion processes for a given trial (e.g., T1 is Trial 1); Meas. error: measurement error; PE, practice effect gains; trial represents manifest mean recall for each Trial,
aggregated across occasions. The + indicates nonsignificant trends.

the MCI group. This shows that in unimpaired adults older
age enhances the generation of unpredictable but meaningful
variation in performance but exerts the opposite effect in those
diagnosed with MCI.

Greater education weakly predicted higher mean immediate
recall abilities for CU and MCI. Higher educational attainment
was also weakly associated with lower PE in the two subgroups
with diagnoses of MCI or dementia (Table 6). Notably,
estimated PE did not differ from zero in the MCI subgroup even
though mean recall performance did not show a ceiling effect;
furthermore, PE and recall were not significantly associated
in this group. Thus, greater educational attainment in the
presence of manifest cognitive impairment may predict greater
loss of neurocognitive plasticity necessary to benefit from
repetition. Critically, this finding should be interpreted in the
context of recent reports showing education does not appear
neuroprotective or to confer resilience to cognitive decline or
neurodegeneration. Rather, more years of early-life education
may increase premorbid level of ability and positively offset
trajectories of decline (Wilson et al., 2019; Lovden et al., 2020;
Nyberg et al., 2021). However, for those whose neurocognitive
abilities have reached a functional threshold for impairment,
higher education may be associated with accelerated declines.
Here, PE appears to be a marker of such accelerated functional
declines. Similarly, the advantage of female sex on tests of
verbal memory (Herlitz et al., 1997; Herlitz and Rehnman, 2008;
Bender et al., 2010) was largely negligible, with one notable
exception. Whereas women in the MCI diagnosis subgroup

had better mean recall on Trial 3, this was reversed in the
more impaired participants with dementia diagnoses. As with
education, it is possible that this reflects a positive offset in
trajectories of decline due to higher premorbid level of verbal
memory abilities, resulting in steeper declines following onset of
dementia.

Under the present dynamic modeling framework,
performance on each occasion reflects ongoing processes that
are inherently altered by prior testing exposure or experience.
Here, PE reflects total intra-person change as the combination
of maintenance or decline in addition to contributions of
prior experience. Therefore, while the variable gains or losses
following practice are not clearly dissociable from ongoing
declines, separating level from change across trials captures
multiple behavioral dimensions relevant to clinical diagnosis.
For example, we note that the relationship between better
recall performance and lower PE was only observed in the
participants with CU or dementia diagnoses, but not in those
with MCI. Unimpaired participants performing closer to ceiling
had less room to improve and were more likely to show reduced
subsequent gains. In contrast, the negative estimates of PE in
the subgroup with dementia diagnoses captures longitudinal
declines – those with higher overall performance also had the
furthest to decline. However, the disconnection between PE
and level of performance in MCI suggests these two dimensions
may provide unique diagnostic or prognostic information.
This aligns with prior findings showing PE differences are a
meaningful indicator of progressive decline in older adults with
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MCI diagnoses who exhibit low-to-moderate levels of recall
performance (Duff et al., 2007; Rabin et al., 2009; Hassenstab
et al., 2015; Gavett et al., 2016).

The present findings point to greater inconsistencies in
responses, across trials and occasions as additional markers
of cognitive impairment and dementia. We found that mean
recall performance was consistently correlated across trials
in the CU and MCI subgroups, but not in those diagnosed
with dementia. Furthermore, correlations among Trials for
the dementia subgroup showed more variable patterns across
sensitivity models. In addition to declines in PE and mean recall
performance, it is possible that loss of neurocognitive plasticity
may also manifest as less consistent responses. Although the
models were specified to focus primarily on longitudinal
practice effects, such inconsistency may reflect reduced within-
occasion improvement across trials. We also observed MCI
and DAT diagnoses attenuated trial-by-trial improvements in
the reparametrized model. Similarly, reduced short-term PE
has previously been related to differences in clinical diagnosis,
cognitive function, and brain structure (Duff et al., 2007, 2012;
Fernandez-Ballesteros et al., 2012; Bender et al., 2020). These
findings support the view that dynamic estimates of PE within
and across occasions provides meaningful proxies for cognitive
plasticity associated with advanced age or pathology (Baltes and
Raykov, 1996; Yang, 2011). Further work is needed to identify
which aspects of PE provide the most sensitive behavioral
markers of ongoing declines.

Limitations and future directions

The present findings provide important evidence regarding
the value of dynamic modeling approaches in estimating
longitudinal change in performance as a function of PE.
The limitations in the present study methods and findings
must be acknowledged, while also highlighting corresponding
opportunities for further inquiry. The model treated clinical
diagnosis as a time independent predictor, but this did not
accurately represent the diagnostic variability manifest in 11%
of the study sample across study occasions. Six participants
with initial diagnoses of amnestic MCI converted to DAT, and
an additional six participants originally characterized as CU
later received diagnoses of MCI. In addition, 15 participants
with baseline MCI diagnoses were characterized as CU at their
most recent visit. Although the modeling approach used here
did not attempt to account for such variation in diagnosis,
further work is needed to evaluate dynamic modeling for
more transient changes in cognitive status. One alteration
from the present approach could be to model diagnosis as a
time varying measure, provided sufficient variation is present.
Similarly, data sampled more intensively or with more variable
timing would also make better use of capacity for modeling
time in ctsem. While it is possible that accounting for such
variation in assessed cognitive status may affect the results,

future work should examine how intra-individual variation
in clinical diagnosis is manifest in HVLT recall performance
and PE. Similarly, the dementia subgroup only included
participants with Alzheimer’s (including mixed dementia) and
including participants with other forms of dementia associated
with other neurodegenerative diseases such as Lewy bodies,
fronto-temporal dementia, or posterior cortical atrophy may
demonstrate further sensitivity of PE and dynamic performance
estimates to underlying pathologies. Furthermore, the same
stimulus lists were presented on each occasion in the present
study; future work should compare the effects of repeated vs.
non-repeated content.

In addition, the available data for participants with dementia
diagnoses was limited to three observations, although these
were distributed across the actual occasions of assessment.
While most statistical methods typically focus only on observed
data, prior findings show patients with moderate Alzheimer’s
dementia are more prone to non-response (Feng et al., 2020;
Wang et al., 2021). The HVLT is a challenging task for
patients with mild to moderate dementia and patients may
become quickly discouraged. The modeling of non-ignorable
missingness for statistical inference is a daunting task in
practice owing to its unknown nature and non-identifiable
model parameters. Although challenging, additional research is
needed on further implementation of methods for modeling
informative missingness in the context of estimating PE in a
Bayesian structural equation modeling framework.

The reported findings suggest that meaningful variations in
Trial 3 performance may provide a uniquely sensitive marker
of clinical cognitive impairment and dementia. This may show
that certain trials are more important in HVLT performance
and PE, which could be useful in clinical applications. More
work is needed to shed light on differences in individual trials
and their potential utility in clinical applications. However, this
would require substantially more individual data to generate
population-based normative estimates for direct comparison
with individual patient cases. Similarly, for other potential
applications of these methods, such as power estimation for
dementia prevention trials, a larger number of normative data
would help reduce uncertainty in parameter estimates (i.e.,
shrink confidence intervals) for such complex dynamic models.
Notably, prevention trials tend to have rigorously standardized
schedules of assessment, while ctsem benefits from more variable
timing across assessments in order to reduce uncertainty. Thus,
clinical trials may benefit from increased flexibility in timing to
better leverage dynamic modeling approaches. New methods for
intensive behavior sampling using smartphones provide a clear
opportunity to bridge this divide, as they allow for considerably
more dense measurement and greater variability in timing.
Future work should evaluate dynamic models of PE in large,
normative data sets from acquired with such methods.

In addition, the present study only evaluated HVLT task
data with 12 words per recall trial; however, the use of longer
lists of 15 or 16 words in other verbal learning tasks could
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conceivably modify effects where CU participants performed
close to ceiling. Future work should evaluate the effect of
differences in cognitive load as a function of varying lengths of
study lists. Similarly, the verbal nature of the data may confound
lexical fluency with memory and PE; future investigations
applying dynamic modeling approaches to estimate PE in non-
verbal tasks and response times.

The present study generated far more testable hypotheses
than it directly addressed. Nevertheless, the findings reported
here demonstrate the expanded potential for evaluating new
measures of performance affected by aging, neurodegeneration,
or clinical diagnosis afforded by modeling non-linear
dynamic processes.

Conclusion

The present findings highlight the sensitivity of dynamically
modeled estimates of PE and verbal recall to diagnosed MCI
and dementia. Modeling PE as the primary measure of change
of showed PE gains and non-linear practice self-feedback, as
well as mean level of recall performance are sensitive to severity
of cognitive impairment and clinical dementia diagnosis.
Moreover, applying dynamic modeling to longitudinal verbal
learning data captures new behavioral dimensions reflecting
intra-individual variations that are sensitive to cognitive
impairment and dementia. Dynamic modeling using the
ctsem framework provides a new perspective for modeling
longitudinal changes in performance due to aging and dementia.
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Cognitive and structural
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time series of daily task
performance during the learning
period
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Psychology, University of Texas at Dallas, Richardson, TX, United States, 3School of Arts and
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Investigation into methods of addressing cognitive loss exhibited later in life is

of paramount importance to the field of cognitive aging. The field continues

to make significant strides in designing e�cacious cognitive interventions to

mitigate cognitive decline, and the very act of learning a demanding task

has been implicated as a potential mechanism of augmenting cognition in

both the field of cognitive intervention and studies of cognitive reserve. The

present study examines individual-level predictors of complex skill learning

and day-to-day performance on a gamified working memory updating task,

the BirdWatch Game, intended for use as a cognitive intervention tool in

older adults. A measure of verbal episodic memory and the volume of a

brain region involved in verbal working memory and cognitive control (the

left inferior frontal gyrus) were identified as predictors of learning rates on the

BirdWatch Game. These two neuro-cognitive measures were more predictive

of learning when considered in conjunction than when considered separately,

indicating a complementary e�ect. Additionally, auto-regressive time series

forecasting analyses were able to identify meaningful daily predictors (that

is, mood, stress, busyness, and hours of sleep) of performance-over-time on

the BirdWatch Game in 50% of cases, with the specific pattern of contextual

influences on performance being highly idiosyncratic between participants.

These results highlight the specific contribution of language processing and

cognitive control abilities to the learning of the novel task examined in this

study, as well as the variability of subject-level influences on task performance

during task learning.

KEYWORDS

game learning, cognitive training, time-series analysis, aging, gray matter volume,

game intervention design

Frontiers in AgingNeuroscience 01 frontiersin.org

107

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.936528
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.936528&domain=pdf&date_stamp=2022-09-23
mailto:cbasak@utdallas.edu
https://doi.org/10.3389/fnagi.2022.936528
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2022.936528/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Smith et al. 10.3389/fnagi.2022.936528

Introduction

Investigation of factors that influence successful learning has

a long history in the psychological sciences. Aside from obvious

importance to the fields of learning and skill development, the

question of what factors influence individual learning rates is

also of central importance to the field of cognitive training in

normal aging. Several investigations of cognitive training have

found that learning outcomes during the training period directly

relate to training outcomes in terms of transfer to unrelated

or “far” cognitive measures (Basak et al., 2008; Bürki et al.,

2014; Basak andO’Connell, 2016). Based on their findings, Bürki

et al. (2014) concluded that an understanding of the individual

difference factors that influence the learning of the training task

is a critical step in the development of efficacious cognitive

intervention, and other researchers have expressed a similar

position (Taatgen, 2013; Gathercole et al., 2019). Past research

in this domain has revealed several cognitive and brain structure

factors which appear to predict success in novel complex task

learning in older adults (Erickson et al., 2010; Basak et al., 2011;

Ray et al., 2017; Smith et al., 2020).

Both cognitive and structural predictors of learning novel,

computerized tasks have been identified by past research.

Ray et al. (2017) reported that measures of working memory

were predictive of learning rates of two novel video games

in a lifespan sample. This finding was later replicated by

Smith et al. (2020). In addition to working memory, Ray

et al. (2017) found a measure of perceptual discrimination

(cued discrimination task; Posner, 1980) to be predictive of

learning for the strategy game that relied more on working

memory and cognitive control than the action game. In

terms of structural predictors, in younger adults, Erickson

et al. (2010) demonstrated that individual differences in

the gray matter volume (GMV) of the striatum predicted

learning outcomes on a lab-developed game-like computer

task designed to stress working memory, cognitive control,

and response time. In older adults, Basak et al. (2011)

identified a number of predominantly left fronto-parietal

gray matter regions (including left medial frontal gyrus,

left dorsolateral prefrontal cortex, anterior cingulate cortex,

and left postcentral gyrus) and cerebellum, whose volumes

predicted learning of a commercial real-time strategy video

game, which had shown transfer to laboratory-based measures

of cognitive control, working memory, and reasoning (Basak

et al., 2008). White matter correlates of novel computer task

learning have also been identified: Ray et al. (2017) identified

two discreet white matter microstructures (left cingulum-

hippocampus and right fornix-stria terminalis), the integrity

of which predicted the learning rate on two commercial

video games. Importantly, left cingulum-hippocampus integrity

predicted learning in the strategy game in both young and old

adults. In sum, left fronto-parietal gray matter volumes and

structural connectivity between the hippocampus and frontal

cortex have been predictive of novel strategy game learning in

older adults.

Another factor that may strongly contribute to individual

differences in task learning, especially in older adults, is

cognitive reserve. Cognitive reserve is known to be predictive of

performance on episodic and working memory tasks, executive

function, speed of processing, and general cognition (Opdebeeck

et al., 2016). Considering that all of these factors are likely

invoked in the learning of a complex, novel task, such as

those used in cognitive training interventions (Gathercole et al.,

2019), and the known relationship between cognitive reserve

and retained cognitive function in later life (Park et al., 2014; Bak

et al., 2016; Ward et al., 2020), an investigation of how cognitive

reserve interacts with novel task learning is similarly warranted.

As this body of work demonstrates, the field is continuously

making strides in identifying individual difference factors that

influence the learning of novel tasks. However, if our stated

goal is to apply this knowledge to develop efficacious cognitive

interventions for at-risk groups, particularly the elderly, the

above-summarized research exhibits some limitations. First,

most of the studies cited above used a young adult (Erickson

et al., 2010) or lifespan sample (Ray et al., 2017; Smith et al.,

2020), which limits the conclusions we can draw with regard

to our target population, that is, older adults aged 65 years and

above. Second, all but one of the above-cited studies (Basak

et al., 2011 being the exception) utilized short-term learning

periods of 2.5 h or less, which therefore limits any conclusions

we can draw from this research to this early period of task

learning. As most reported cognitive interventions in older

adults are of a substantially greater length (for a meta-analysis,

see Basak et al., 2020), an examination of how such predictors

affect learning at a later training phase is warranted. Third, the

act of task learning requires consistent invocation of episodic

memory, working memory, and cognitive control (Taatgen,

2013), and these capacities are susceptible to a wide range of

cognitive and psychosocial contextual factors (Stawski et al.,

2011). Considering this, it is likely that such factors have a

downstream influence on the task learning process itself, which

may contribute to the large individual differences in patterns of

task learning that have been observed (Bürki et al., 2014), but

examinations of such contextual effects on performance during

training tasks are lacking.

Based on the findings and limitations of the above-

summarized research, the present study was designed to further

examine cognitive and structural correlates of learning on a

working memory training task, as well as daily contextual

factors which may influence training task performance during

the training period. Reasoning and episodic memory were

selected as cognitive predictors in order to expand on the

past research which has already established working memory

ability as a correlate of task learning (Ray et al., 2017; Smith

et al., 2020). To evaluate the cognitive and structural correlates

and daily contextual factors of learning on a training task, we
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used data from a recently completed clinical trial in healthy

aging (registered at ClinicalTrials.gov as NCT03988829), where

variations of a PI-developed working memory training game

(“BirdWatch Game”) were used as interventions. For the present

study, we focused on the BirdWatch Game and baseline

measures of hypothesized cognition and gray matter volume

correlates of learning of that game. If episodic memory and

reasoning interact with BirdWatch Game learning as working

memory has been demonstrated to with other computerized task

learning, we would expect participants with greater pre-training

ability on those constructs to demonstrate more rapid learning

of the BirdWatch Game, and potentially higher maximum

attainment. Additionally, because the BirdWatch Game itself

is a working memory updating training paradigm, initial

performance on the BirdWatch Game can be interpreted as the

baseline working memory ability (both capacity and updating)

of participants in this study. By that conceptualization, we

predict that individuals with greater initial performance on the

BirdWatch Game will show more rapid learning of the task, in

line with past research (Ray et al., 2017). We hypothesize that

cognitive reserve will demonstrate a similar relationship to task

learning as the other examined cognitive constructs, considering

past research which has observed a correlation between

cognitive reserve and initial task learning (Lojo-Seoane et al.,

2020). Alternatively, lower cognitive construct/reserve measures

prior to training may relate instead to greater improvement on

the trained task due to lower initial performance, as similar

results have been observed in some past cognitive training

studies (López-Higes et al., 2018). We expect this alternate

hypothesis to be supported by greater progress in late learning

specifically, if indeed it is supported, considering the past

evidence that relatively lower cognitive ability/reserve results in

slow initial learning (Ray et al., 2017; Lojo-Seoane et al., 2020).

A recent meta-analysis on cognitive interventions across

both healthy aging and older adults with mild cognitive

impairments (Basak et al., 2020), which included 214 cognitive

training studies, found that the immediate cognitive gains

in the cognitive training group is significantly more than

the control group (net gain effect size = 0.28, p < 0.001).

Importantly, the most effective intervention that resulted in

the largest effects of near and far transfer trained either

executive functions or working memory. The PI and her team

designed a computerized cognitive training intervention, the

BirdWatch Game, based on the Theory of Working Memory

Adaptability (Basak and O’Connell, 2016), which predicts that

high cognitive control demands from unpredictable probe-cues

during working memory updating engender greater far transfer

than predictable probe-cues in healthy aging. However, Basak

and O’Connell had used well-learned verbal stimuli (digits), and

the training was not adaptive or gamified to ensure engagement.

The BirdWatch Game features qualities found to be effective

in past cognitive training, including adaptive scaling difficulty

(Boot et al., 2010; Payne et al., 2011; Brehmer et al., 2012; Cuenen

et al., 2016) and computer-based gamification with novel stimuli

that induce greater engagement and show transfer in older adults

(Lampit et al., 2014; for meta-analyses, see Basak et al., 2020).

Considering that the BirdWatch Game is a working memory

updating task, we hypothesize that the gray matter volumes

of regions known to be related to working memory and

cognitive control (e.g., frontal gyri, anterior cingulate cortex,

premotor cortex, etc.) will positively predict its learning. The

volumes of areas known to be related to learning in general

(i.e., hippocampus and striatum) are likely to demonstrate a

similar pattern. Additionally, considering the length of the

training period utilized in this study, this study may reveal a

differential relation between some of these examined volumes

and early vs. late stages of learning. Specifically, the volume

of the hippocampus may selectively relate to initial learning of

the BirdWatch Game, considering its critical role in declarative

learning (Burgess et al., 2002; Lim et al., 2020), and the

theoretical contribution of episodic memory function to the

cognition-dependent and strategy-dependent first and second

stage of procedural learning (Ackerman, 1988; Beaunieux et al.,

2006). Conversely, the volume of the striatum may selectively

relate to later learning of the BirdWatch Game considering that

region’s contribution to procedural/automatized learning which

occurs at later stages (Saint-Cyr and Taylor, 1992; Simonyan,

2019).

In terms of day-to-day predictors of task performance,

contextual factors of sleep duration, stress, busyness,

and physical and emotional wellbeing were examined as

determinates of day-to-day performance on the BirdWatch

Game learning. Sleep quality and duration are positively

related to multiple cognitive abilities (Holanda Júnior and

de Almondes, 2016; Lo et al., 2016; Rana et al., 2018; Zavecz

et al., 2020), but stress negatively impacts working memory and

cognitive control (Shields et al., 2016; Plieger and Reuter, 2020).

Subjective wellbeing is also a positive correlate of working

memory and cognitive control (Luerssen and Ayduk, 2017; Ihle

et al., 2021). A secondary goal of this study was to examine how

these contextual factors contribute to day-to-day performance

on the training task. These measures, assessed at the onset

of each training session, are hypothesized to predict overall

performance during that session. Specifically, we hypothesize

that stress and hours of sleep will have a strong aggregate effect

if high stress or a few hours of sleep recur over several sessions,

whereas wellbeing will relate positively to training performance.

Additionally, considering past evidence (Festini et al., 2016),

busyness may also relate positively to training performance.

Methods

Participants

A total of 55 older adults participated in a randomized

clinical trial (RCT) contrasting different computerized cognitive

training methodologies in healthy older adults (Basak,
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NCT03988829), from which the present study drew data. Of

the 43 participants randomized to the BirdWatch Game—Unity

(BWGU) training, 37 participants (Mage = 71.57, SDage = 4.23,

54% female) completed both baseline cognitive assessments and

BWGU training period sufficient to be included in the present

study. The remaining participants either explicitly ceased

involvement in the study due to the outbreak of the COVID-19

pandemic in early 2020 or ceased responding to scheduling

requests during the period of the pandemic.

Of the 37 participants included in this analysis, seven

participants were unable to complete the structural MRI scans

due to the periodic unavailability of MRI scanners due to the

COVID-19 pandemic, as outlined above, resulting in a sample

size of 30 participants (Mage = 71.17, SDage = 4.21, 57% female)

who contributed cognitive, MRI, and training data sufficient to

be included in all the analyses presented below. Additionally,

the difficulties of collecting data via in-person testing during

the 2020–2021 COVID-19 pandemic resulted in a higher than

expected number of participants with missing data (n = 7).

Five participants were unable to contribute CRIq data due to

technical difficulties arising from remote data collection during

the period of the pandemic. Analyses presented in the following

sections for which some participants were excluded due to

missing data are explicitly noted.

Development of the BirdWatch game
cognitive training program

At the core of this intervention program, titled the

BirdWatch Game—Unity (BWGU), is the n-match paradigm,

a modified n-back task in which participants must maintain

and unpredictably update a number of items in their

working memory simultaneously (Oberauer, 2006; Basak and

Verhaeghen, 2011; Basak and O’Connell, 2016; O’Connell and

Basak, 2018). In a typical n-back paradigm, participants are

presented with a continuous sequence of individual stimuli

and asked to compare the currently presented stimuli with the

stimuli presented n items ago (Owen et al., 2005). Performing

this task successfully requires participants to maintain the past

n presented items within their working memory, continuously

updating this information as new stimuli are presented (Jaeggi

et al., 2010), and manipulating n in this paradigm thereby allows

for the manipulation of participants’ cognitive load.

The n-match paradigm (Basak andO’Connell, 2016) extends

the traditional n-back paradigm by dynamically varying n

during a single run of the task. This is accomplished by randomly

presenting the stimuli in a set number of visuo-spatial contexts,

and requiring participants to compare the currently displayed

stimulus to the stimulus last displayed. For example, Basak

and O’Connell (2016) utilized the numbers 1–9 presented in

one to four different colors (the number of colors represented

the n contexts of n-match task), and tasked participants with

comparing the currently presented number with the most recent

number presented in that same color. An earlier work by Basak

and Verhaeghen (2011) utilized up to four different locations as

contexts in an n-match paradigm to a similar effect. Due to the

random presentation of context (color or location), participants

are forced to actively maintain all n items within their working

memory simultaneously and to unpredictably update this stored

information, thereby increasing cognitive effort compared to

a traditional n-back task where the n is fixed (Basak and

Verhaeghen, 2011; Basak and O’Connell, 2016). The advantage

of the n-match paradigm is that n can be dynamically varied

by varying the sequence order of the context (e.g., Basak and

O’Connell, 2016).

This intervention was based on the efficacy of executive

function training in older adults of which working memory

is an essential process (Basak et al., 2020), commonality of

working memory issues as a subjective complaint in older adult

populations (Newson and Kemps, 2006), and the theoretical

efficacy of using working-memory-based training to address

that complaint and contribute to general wellbeing (Luerssen

and Ayduk, 2017). We elected to utilize the n-match training

paradigm specifically as it has been shown to facilitate far

transfer to measures of reasoning and episodic memory in

older adults (Basak and O’Connell, 2016), and because the n-

match tasks stressed working memory updating rather than just

working memory span, which Miyake and Friedman (2012)

identify as separate contributors to executive functioning.

The n-match paradigm described above was modified in

several ways to produce the BWGU paradigm. First, to render

the n-match paradigm more engaging, the paradigm was

extensively gamified, i.e., modified to resemble a recreational

video game. Simplified renderings of birds were used for

individual stimuli, with trees in spatially distinct locations

utilized as contexts (see Figure 1). Both bird stimuli and tree

contexts are displayed on a rendering of an outdoor scene,

selected to be both aesthetically pleasing and to reinforce the

narrative that the BWGU training task is a “Bird Watching

Game,” as implied by the title of the task.

Additionally, we added game-like player feedback to BWGU

in the form of a score display and a “reward” system. The score

was calculated as follows:

Score= 100(Hit+CR) 50(Miss+FA)+ 1000d′(7−MaxRT)

In the above equation, Hit is the total number of hits from the

previous block, CR is the total number of correct rejections from

the previous block, Miss is the total number of misses from

the previous block, FA is the total number of false alarms from

the previous block, d’ is the memory discriminability measure

from the previous block, and MaxRT is the maximum allowed

response time for the previous block (see below). While this

scoring output is partially determined by performance metrics
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FIGURE 1

A single trial from BWGU, depicting a four-context trial.

relevant to the goals of the present study, this score display

was primarily implemented as an engagement tool that allowed

participants to have a general sense of how their performance

was progressing over time.

A “reward” system was implemented by the “unlocking”

of new background images as participants met performance

milestones, specifically whenever the performance threshold set

by the program was increased (see below). This system was

intended to somewhat reduce the monotony of performing

the same task over multiple hours of training by periodically

providing a different visual appearance over time, and to

reinforce participant’s success by tying this cosmetic change to

performance milestones.

To further gamify this task, we implemented BWGU within

the Unity game engine (Version 2018.4.2f1; 2018), a robust

game development toolkit commonly used in independent game

development. This allows BWGU to be deployed and run

across multiple electronic platforms (i.e., Windows computers,

Android and Apple phones, etc.) as if it were a recreational

video game. As an added benefit, the Unity engine is sufficiently

feature-rich and expandable to be comparable to data collection

software more commonly used in cognitive science research

(i.e., Eprime), which allowed for the collection of detailed

performance metrics as described in the sections below.

Several methods of adjusting the difficulty of the BWGU

task based on the participant’s real-time performance were

implemented within the paradigm based on past research, which

implicates individualized-adaptive training methodologies as

efficacious (Mihalca et al., 2011; Payne et al., 2011; Brehmer

et al., 2012; Cuenen et al., 2016). First, BWGU continuously

adjusts the number of contexts, n, utilized for a given block of

trials based on participant performance in the previous block.

Discrimination accuracy (d’) was utilized as the measure of

participant performance and was calculated as ZFA – Zhit , where

FA is the number of false alarms from the previous block,

and hit is the number of correct identifications made in the

last block. The 1/2N correction was applied to account for

floor and ceiling effects (Macmillan and Creelman, 2005). The

participant’s d’ for each block is compared to a performance

threshold, d’t , and n is incremented by 1 for the next block if

d’ is greater or equal. BWGU scales up to six contexts. Should a

participant perform above threshold, the performance threshold

is increased, and the number of contexts is reduced to one.

This increase in d’t is associated with the “reward system” with

each increase in d’t “unlocking” a new background display. The

performance threshold begins at 0.6, and increments by+0.2 for

each participant’s success on an n = 6 block, to a maximum of

d’t = 3. This system allows the BWGU paradigm to scale up the

difficulty in response to an individual participant’s performance

up to 72 times (six contexts by 12 increases in threshold) over

the course of training (see Figure 2).

Additionally, the response time window in which a

participant is able to enter a response to the current stimuli

also scales in two ways with participant performance. By default,
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FIGURE 2

Depiction of overall di�culty progression by the number of contexts (n) and performance threshold (d’t) in the BWGU paradigm.

participants have 5 s to respond to a new stimulus (i.e., MaxRT

= 5 s). If an input is not detected in that time, that trial is

marked as a “miss,” and the task progresses to the next trial. For

each 10% of the total expected training time elapsed, MaxRT is

decremented by 0.5 s to a minimum of 1 s. Conversely, for every

three consecutive failures to pass the performance threshold at

the end of a block of trials, MaxRT is incremented by 0.5 s, to

a maximum of 6 s. In this way, time pressure is both increased

and decreased in line with the participant’s performance and

progress through training.

Implementation of BWGU in a
multi-armed randomized controlled trial

The BWGU was utilized in two training arms of this RCT

that contrasted various degrees of cognitive control over 20 h

of training (Basak, NCT03988829). The two training arms of

BWGU varied only in the sequence order of the context within

a block, while all other features remained the same.

Recruitment

General inclusion criteria for the RCT were as follows:

minimum age of 65 years, at least a 10th-grade education,

learned English before the age of 5 years, and cognitively

unimpaired (i.e., a Montreal Cognitive Assessment/MoCA score

of 26 or greater; Nasreddine et al., 2005). Exclusion criteria

included a history of cardiovascular disease other than treated

hypertension, diabetes, psychiatric disorder, illness or trauma

affecting the CNS, substance/alcohol abuse, and medication

with anti-psychotics or hypnotics other than occasionally used

at bedtime.

In addition to the above criteria, participants in the

RCT were required to fulfill additional exclusion criteria in

order to undergo the structural MRI portion of the study.

Inclusion criteria for the MRI portion of the trial included

right-handedness. Exclusion criteria for the MRI portion of

the trial included metal medical implants, claustrophobia,

and pregnancy. Initial recruitment for the RCT targeted

only participants that fulfilled both the general and MRI

inclusion/exclusion criteria outlined above. However, the onset

of the COVID-19 pandemic in March of 2020 necessitated the

expansion of the study to include participants who did not meet

the criteria for MRI scans due to (a) high attrition of participants

due to the pandemic, and (b) the necessity to conduct only

remote cognitive testing between March 2020 and March 2021.

Training protocol and cognitive assessments at
baseline

Participants in both BWGU arms were asked to train for 20 h

over a period of 8 weeks on the BWGU paradigm. Participants

were asked to train for 2.5 h each week, divided across two to

three sessions. The training was performed at home using a 9.6’

Android tablet computer provided to the participants, with the

BWGU training program pre-installed on that device.

For the purpose of this longitudinal investigation, BWGU

was configured to administer continuous blocks of 80 trials, with

n, d’t , and MaxRT modulated between blocks as described in
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Section Development of the BirdWatch game cognitive training

program. Between blocks, the BWGU training program pauses

until the participant indicates they are ready to begin another

block or chooses to exit the program. In the latter case, the

current value of n, d’t , and MaxRT, as well as the total training

time completed, are saved by the program for use the next time

the participant activates the training program. An additional

feedback mechanism, a “progress bar,” was added to the BWGU

training program to aid participants in tracking their progress

through training. This progress bar, which can be seen in the top

center of Figure 1, fills relative to the participant’s progression

through the assigned 20 h of training, with the percentage of the

bar filled reflecting the percentage of total training time elapsed.

Trial-wise performance data collected by the program

includes participant accuracy, reaction time, and trial

characteristics (switch trial and update trial). Block-wise

performance data collected includes Score, n, d’, and d’t .

Cognitive reserve was assessed at baseline using the

Cognitive Reserve Index Questionnaire (CRIq; Nucci et al.,

2012). This self-report questionnaire assesses cognitive reserve

as an aggregate effect of occupational, educational, and leisure

activities over the lifetime, and has been demonstrated to both

be independent of measures of general intelligence (Nucci et al.,

2012) and reliable across a wide range of populations (Maiovis

et al., 2016; Ozakbas et al., 2021).

Episodic memory measures administered at baseline and

post-training included the Rey Auditory Verbal Learning Test

(RAVLT; Bean, 2011) and the Story Memory sub-measure of

the Mini-Mental State Examination (Folstein et al., 1975). The

RAVLT is a word-list learning task of 15 that includes measures

of simple learning, long-term memory (LTM) interference

after distraction, LTM interference after delay, and multiple

forms of LTM errors (source memory, semantic, and phonetic

confusions). The Story Recall task is a modified word-list

memory task in which the to-be-remembered items form a

simple narrative separated into 34 distinct units. Participants are

asked to read the story once, and then asked to recite it in as

close to the original language as possible. An everyday test of

memory was also administered, which included sub-measures

of prospective memory, non-verbal recognition memory, and

spatial-relational memory. However, the test proved infeasible

to administer remotely, and as a result of this and the co-

occurrence of the COVID-19 pandemic with data collection for

this study, six participants were unable to contribute data for this

everyday memory test. As a result of this, this test was dropped

as an episodic memory measure in the analysis.

Reasoning measures administered at baseline and post-

training included Visual Puzzles and Matrix Reasoning sub-

measures of the Wechsler Adult Intelligence Scale, 4th edition

(Drozdick et al., 2012). The Visual Puzzles test is a timed non-

verbal reasoning test in which participants are presented with a

series of puzzles of increasing difficulty. The Matrix Reasoning

test is, similarly, a timed non-verbal reasoning test in which

participants are presented with a series of incomplete visual

patterns of increasing difficulty.

The current study used only the pre-training baseline

assessments of the above-mentioned cognitive indices of far

transfer (reasoning, episodic memory, and cognitive reserve).

MRI protocol

Baseline and post-training scanning protocols were

conducted using a Siemens Magnetom Prisma scanner with a

32-channel head coil. High-resolution anatomical images were

acquired using a transverse MPRAGE T1-weighted sequence

with the following parameters: TR = 2,300ms; TE = 2.26ms;

flip angle = 8◦; acquisition matrix = 256 × 256; voxel size = 1

mm3; 208 slices.

Specific information regarding the additional neuroimaging

scans and behavioral assessments can be found in the

preregistration for the RCT (Basak, NCT03988829). Data

from these additional scans were not examined, as the

current study specifically examined brain volume predictors of

BWGU learning.

Daily survey of subjective wellbeing and sleep

To assess the impact of daily wellbeing on training

performance-over-time, a short “daily survey” of subjective

wellbeing and sleep measures was implemented in the BWGU

training program. Participants were required to complete this

survey each time they turn the program on, before their first

block of training (see Figure 3).

The daily survey consists of a four-item Likert questionnaire

on a 1–5 scale. Questions asked include (1) “How well did you

feel in the past 24 h?” (2) “How stressed did you feel in the

past 24 h?” (3) “How busy were you in the past 24 h?” and

(4) “How was your mood in the last 24 h?” Questions 1 and

4 were presented on a scale from “1: very poor” to “5: very

good,” and questions 2 and 3 were presented on a scale from

“1: not at all” to “5: very.” Participant responses to questions 1

through 4 on this survey were taken as the Wellbeing, Stress,

Busyness, and Mood variables, respectively. In addition to these

Likert measures, participants were also asked to estimate their

hours of sleep on the previous night, which was recorded as the

Sleep variable.

Analysis

Calculation of learning rates

The Difficulty Level of each block was assessed by counting

the number of times that the BWGU had adaptively increased

the demands of the task based on the participant’s performance

prior to the beginning of that block (see Section Participants).
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FIGURE 3

Screenshot of the Daily Survey Screen that appears just after the log-in screen in the BWGU.

This calculation can be formally represented as follows:

Difficulty Level= 6
d
′

t −.6

.2
+ n

In the above equation, d
′

t represents the d-prime threshold of

that block, and n represents the number of contexts for that

block. Functionally, this results in the Difficulty Level for a block

incrementing by +1 if either the number of contexts or the d’

threshold has been updated since the previous training block. As

the BWGUparadigm is designed to only adjust difficulty upward

in response to player performance, we can correctly assume

that any change in d
′

t or n to reflect an increase in difficulty,

and therefore the total number of adjustments equates to the

total difficulty of the training block. Assigning the first block of

training theDifficulty Level of 1 results in a range of 1–72 for this

variable (see Figure 2).

In order to differentiate performance on training blocks

of the same difficulty level, the Difficulty Level per block was

multiplied by that block’s unscaled accuracy (hits + correct

rejections, range 0–80, chance performance = 40), to produce

a Simple Score for each block. This Simple Score variable

was used to calculate learning rates for each participant, as

described below.

Past publications have used video game scores to calculate

participant learning rates by fitting logarithmic curves to

participants’ scores over time, and taking the growth rate of

that learning function as indicative of the rate of learning in

older adults (Basak et al., 2011; Basak and O’Connell, 2016; Ray

et al., 2017; Smith et al., 2020). Visual inspection of the Simple

Score variable suggested that it followed a similar logarithmic

pattern (see Figure 4), and so a similar method was employed

in this study. The following logarithmic function was fit to each

participant’s Simple Score block-wise performance:

Y= b0+ (b1 ∗ ln(t))

In the above equation, t is the block of training (ordered

sequentially, analog of training time/session), Y reflects the

participant’s Simple Score for a given t, b0 is the function’s x-

intercept, and b1 is the function’s growth rate or slope. The

growth rate of this function, as fitted to each participant’s

performance-over-time, was taken as that participant’s Overall

Learning Rate.

Compared to earlier studies that have used this method, the

current study utilized a longer training intervention of 20 h (for

an exception, see Basak et al., 2011, where training duration

was 20 h). To account for this longer duration of the training,

learning rates for early, middle, and late learning were calculated

for each participant, corresponding to 1–5, 6–10, and 10–20 h of

training, respectively, in addition to their Overall Learning Rate.

The decision to define early, middle, and late learning in this

way was based on a previous study where extensive practice on

the n-back tasks in young adults stabilized after 5 h of training
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FIGURE 4

Plots of block-wise Simple Score by 30-min training increment over 20h of training. (A) Depicts scores over time for individual participants

represented in grayscale, with the average score over time plotted in red. (B) Depicts average scores over time with 95% confidence intervals, as

well as demarcations of early, middle, and late training periods.
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(Verhaeghen et al., 2004). As can be observed in Figure 4A, older

participants also universally exhibited increasing performance

across the first 5 h of training. Similarly, those participants who

were able to reach asymptotic performance typically did so

by the 10th h of training, as indicated by a relatively stable

performance after 10 h of training. Based on these observations,

hours 1–5 were designated as “early” training, and hours 10–

20 as “late” training. The remaining period of hours 5–10 was

designated as “middle” training, as the majority of participants

appear to reach asymptotic performance within this range, but

with specific achievement being time-variant.

An alternative approach to designating these training

periods for the entire dataset would be to individually assign the

early, middle, and late learning labels based on each individual

subject’s performance curve. However, we elected against this

approach for two reasons. First, assigning learning periods

across the whole group allows these data to be more readily

comparable, a varying time period labeled as “early learning,”

for example, would make interpretation of results related to

that training period problematic. Second, defining those periods

for the entire dataset rather than per participant reduces the

potential for unconscious coder bias during the coder’s division

of the learning period for each individual.

Based on visual inspection of the learning data (see

Figure 4B), logarithmic functions were fitted to participants’

early learning period, with linear functions fitted to their middle

and late learning periods. As with the Overall Learning Rate, the

growth rate of the log function fitted to early learning data was

considered as each participant’s Early Learning Rate. Similarly,

the slope of the linear functions fitted to participants’ middle and

late learning data was considered as each participant’s Middle

Learning Rate and Late Learning Rate, respectively. Due to

variance in total training time, only Early Learning could be

fitted for all participants. Middle Learning could be fitted for 32

of the 37 participants, and Late Learning could be fitted for 31 of

the 37 participants. Information regarding variance in training

time and compliance can be found in Results Section BWGU

adherence and training outcomes.

Calculation of cognitive measures

As mentioned above, episodic memory measures

administered before BWGU training included the Rey

Auditory Verbal Learning Test (RAVLT; Bean, 2011) and the

Story Recall sub-measure of the Mini-Mental State Examination

(Folstein et al., 1975).

The RAVLT includes multiple outcomes of episodic

memory, where target list A is learned across five trials (A1–

A5), followed by incidental learning of non-target List B (B1),

followed by a surprise recall of target list A (A6) after the

interference from the non-target list, and 30-min delayed

memory recall (A7) and recognition test for the target list

(recognition A). Recognition of the target list also included

source monitoring errors on the recognition trial (recognition

B), semantic errors in the recognition trial (recognition SA),

phonetic errors in the recognition trial (recognition PA), and

compound source-semantic and source-phonetic errors on the

recognition trial (recognition SB and PB). To simplify the

outputs, we calculated several aggregate measures from the

RAVLT’s raw output. Trials A1 through A5 were summed to

produce a measure of overall learning (Learning Total). The

difference between trial A5 and A6 was taken as a measure of

interference cost (Interference Cost). The difference between trial

A6 and A7 was taken as a measure of delay cost (Delay Cost).

The sum of all errors on the recognition portion of the RAVLT

(recognition B, SA, PA, SB, and PB) was summed into a single

measure of recognition errors (Recognition Errors). These five

aggregate measures, along with the total score on the Story Recall

measure, constituted the episodic memory variables.

As mentioned above, reasoning measures administered

before BWGU training included the Visual Puzzles and Matrix

Reasoning sub-measures of the Wechsler Adult Intelligence

Scale, 4th edition (Drozdick et al., 2012). Participants’ total score

on each of these respective measures constitutes the reasoning

variables in this analysis.

Assessment of regional gray matter volumes

Cortical reconstruction and volumetric segmentation of the

structural MRI images taken at baseline were conducted with the

FreeSurfer 6.0 image analysis suite (Desikan et al., 2006; http://

surfer.nmr.mgh.harvard.edu/). FreeSurfer 6.0 was selected over

prior versions of FreeSurfer, as that version of the program

has been demonstrated to significantly mitigate segmentation

errors known to be present in previous versions (Brown et al.,

2020; Srinivasan et al., 2020). To further lessen the impact

of segmentation errors potentially resulting from Fressurfer’s

method of automated segmentation, aggregate volumes were

used when appropriate, as described below.

Gray matter regions with established links to cognitive

control, especially working memory updating and complex skill

learning in older adults, were selected as regions of interest

to reflect the cognitive demands of the BWGU; these regions

included superior, middle, and inferior frontal gyri (Adólfsdóttir

et al., 2014; Qin and Basak, 2020), middle temporal gyrus (Zhu

et al., 2019), anterior cingulate cortex (Basak et al., 2011; Qin

and Basak, 2020), and premotor cortex (Basak et al., 2011).

Additionally, the volumes of the hippocampus and striatum

were included, due to the known involvement of these regions’ in

declarative (Burgess et al., 2002; Lim et al., 2020) and procedural

learning (Saint-Cyr and Taylor, 1992; Erickson et al., 2010;

Doppler et al., 2019; Simonyan, 2019).

FreeSurfer volume outputs corresponding to each of these

above regions were summed for each participant to produce

an estimated volume of that region for that participant.

Striatal volume (Striatum) was estimated by summing the
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separate volume outputs for the caudate, putamen, and nucleus

accumbens. Volume estimates of the inferior frontal gyrus

(IFG) were created by summing the respective volume estimates

for the pars opercularis, pars orbitalis, and pars triangularis.

The rostral middle frontal and caudal middle frontal volumes

estimates of the middle frontal gyrus (MFG) were summed

into a single volume estimate of that region. Similarly, rostral

anterior cingulate and caudal anterior cingulate volumes output

by the program were summed into a single volume estimate

of the anterior cingulate cortex (ACC). As FreeSurfer does

not distinguish between premotor and supplementary motor

volumes, the output volume of the precentral gyrus as a whole

(Precentral) was utilized in this study. The FreeSurfer volume

estimates of the superior frontal (SFG) and middle temporal gyri

(MTG), as well as the Hippocampus, were used as outputs to

represent those regions.

Results

BWGU adherence and training outcomes

All participants in the BWGU training arms were instructed

to play 20 h of BWGUover the 2-month training period, but self-

monitored and self-reported their training time for the duration

of the intervention. As a result, a high amount of variance

was observed in terms of total training time (MTime = 17.35 h,

SDTime = 5.93 h). In total, 23 participants successfully reached

20 h of training time with the BWGU paradigm. Of those

participants who did not complete the full 20 h of training, five

participants explicitly discontinued training (MTime = 3.48 h,

SDTime = 1.02 h). The remaining nine participants self-reported

that they had completed 20 h of training time, but in fact had not

when the electronic records of their training time were assessed

(MTime = 16.01 h, SDTime = 2.95 h).

As stated above, participants were required to complete

a daily survey of subjective wellbeing and sleep each time

they activated the training program. On average, participants

completed 29 surveys over the course of the training period

(MSurvey = 29.22, SDSurvey = 14.11), with an average periodicity

of one survey every 0.67 h of training (SDSurveyTime = 0.32). The

number of surveys completed highly correlated with the total

training time (r = 0.67, p < 0.001).

To assess if our variables of interest significantly differed

between those participants who completed training and those

who did not, we next ran a series of one-way ANOVAs

comparing those participants who fully completed the training

(20+), those who completed the training at under 20 total hours

(>20), and those who discontinued training (“Discontinued”).

Variables assessed in this way included age, MoCA score, years

of education, CRIq, and all of our cognitive variables of interest

(RAVLT sub-measures, Matrix Reasoning, Visual Puzzles, and

Story Memory). These one-way ANOVAs demonstrated a

marginally significant difference between the three completion

groups in the RAVLT Total Learning and RAVLT Interference

Cost measures: Total Learning F(2/34) = 2.83, p = 0.073;

Interference Cost F(2,34) = 3.06, p = 0.06. Post-hoc comparisons

using Tukey’s method demonstrated that, in both cases,

these effects were driven by marginal differences between the

discontinued group and the other groups. The group that

discontinued training demonstrated a marginally lower Total

Learning than both the 20+ (p = 0.93) and >20 (p = 0.76)

groups, as well as a marginally higher Interference Cost than

both the 20+ (p = 0.65) and >20 (p = 0.76) groups. Those

that completed training at greater or less than 20 total hours

did not differ on these two measures (Total Learning p =

0.878; Interference Cost p = 0.958), and no other systematic

differences in our variables of interest were detected between

completion groups.

On average, participants reached level 51 of the BWGU

paradigm, the coarsest measure of maximal attainment in this

training paradigm, before ceasing training (MLevel = 51, SDLevel

= 18.22), with subjects reaching maximal performance at∼11 h

of training on average (MTimeHLR = 11.36, SDTimeHLR = 5.86).

A total of nine participants (24.3% of the sample) reached the

maximum difficulty level allowed by the program (72) over

the course of the training period. On average, participants

completed ∼468 individual blocks of the BWGU paradigm

throughout the training period (MBlocks = 467.97, SDBlocks

= 262.23), with each block lasting an average of 2.25min

(MBlockTime = 2.25, SDBlockTime = 1.21). Predictably, both

highest level reached and number of blocks completed highly

correlated with the total training time: HLR r(37) = 0.5, p =

0.002; Blocks r(37) = 0.59, p < 0.001.There were no significant

differences between the two BGWU arms regarding the total

hours played [t(36) = 0.2, p = 0.84], highest level reached [t(36)
= 0.79, p= 0.43], or number of blocks completed [t(36) =−0.29,

p = 0.77]. A summary of participant training statistics can be

found in Table 1.

Assessment of the relationship between
cognitive reserve and cognitive ability
prior to BWGU training

To assess if the cognitive reserve was related to baseline

cognitive measures, we ran a series of partial correlations

between the CRIq measure and the pre-training cognitive

measurements (RAVLT: Total Learning, Interference Cost, Delay

Cost, Recognition Errors; Matrix Reasoning; Visual Puzzles;

Story Memory), controlling for Age. CRIq did not demonstrate

any significant correlation with RAVLT sub-measures, Total

Learning r(29) = 0.16, p = 0.377; Interference Cost r(29) =

−0.15, p = 0.43; Delay Cost r(29) = 0.21, p =0.267; Recognition

Errors r(29) = −0.32, p = 0.082, nor with Matrix Reasoning,

r(29) = −0.01, p = 0.964, or Visual Puzzles, r(29) = 0.04,
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TABLE 1 Summary statistics for demographic variables, cognitive

measures, and the BirdWatch Game—Unity (BWGU) learningmeasures.

Measure Mean (SD)

Demographics

Age 71.57 (4.23)

Female 0.54

Education (years) 17.35 (3.15)

MoCA 27.89 (1.56)

Cognitive measures

CRIq 130.66 (34.66)

RAVLT Learning Total 48.51 (12.25)

RAVLT Interference Cost 2.12 (1.95)

RAVLT Delay Cost 0.27 (1.54)

RAVLT Recognition Errors 2.03 (3)

Matrix Reasoning 16 (4.06)

Visual Puzzles 12.51 (3.88)

Story Memory 13.68 (5.52)

BWGU learning measures

Time trained (hours) 17.35 (5.93)

Blocks completed 467.5 (262.23)

HLR 51 (18.2)

Overall learning (growth) 639.42 (348.27)

Early learning (growth) 712.67 (401.74)

Middle learning (slope) 3.08 (4.51)

Late learning (slope) 0.71 (2.02)

p = 0.827, or Story Memory, r(29) = 0.02, p = 0.93. These

results indicate that cognitive reserve, as measured by the

CRIq, is unrelated to pre-training (baseline) cognitive ability in

this study.

E�ect of individual di�erences in baseline
cognition and cognitive reserve on
BWGU learning

To assess the impact of variance in baseline cognitive

measures on learning of the BWGU task, a series of stepwise

multiple regressions were conducted with participants’ learning

variables (Overall, Early, Middle, and Late Learning) as

dependent variables. In each of these regressions, the cognitive

predictors (RAVLT: Learning Total, Interference Cost,Delay Cost,

and Recognition Errors; Story Memory; Matrix Reasoning; and

Visual Puzzles) were entered in a stepwise fashion until only

significant predictors remained.

Overall Learning was found to be marginally predicted by a

model containing only Story Memory, R2 = 0.14, F(1,35) = 5.86,

p = 0.021, Story Memory β = 22.34, t(35) = 2.21, p = 0.034.

Similarly, Early Learning was found to be significantly predicted

by a model containing only Story Memory, R2 = 0.16, F(1,35) =

6.48, p= 0.015, Story Memory β = 28.78, t(35) = 2.55, p= 0.015.

Models were not successfully fitted to Middle or Late Learning,

as no combination of the examined predictors produced amodel

with p < 0.1. To assess if the above relationships co-varied with

Age, we conducted a series of two-step hierarchical regressions

predicting Overall Learning and Early Learning, respectively.

Age was entered as a covariate in step 1 of these analyses, with

Story Memory entered in step 2. In the analysis correcting for

age, Overall Learning was found to be marginally significantly

predicted by a model containing both Age and Story Memory,

R2 = 0.16, F(2,34) = 3.26, p = 0.051. Within the model, only

Story Memory was significant, β = 22.34, t(34) = 2.21, p =

0.034. Similarly, Early Learning was found to be significantly

predicted by a model containing Age and Story Memory, R2

= 0.31, F(2,34) = 7.72, p = 0.002, where both Age and Story

Memory significantly contributed to that model in the expected

directions, Age: β = −38.23, t(34) = −2.78, p = 0.009; Story

Memory: β = 22.37, t(34) = 2.22, p= 0.033.

Next, a series of regressions were used to assess the

influence of cognitive reserve (CRIq) on BWGU learning. As

with the assessment of cognitive predictors, one regression was

performed with Overall, Early, Middle, and Late Learning as

respective dependent variables. In these regressions, Age was

entered in step 1 as a control variable, followed by CRIq in step

2 as the variable of interest. CRIq did not significantly predict

Overall Learning, R2 = 0.06, F(1,30) = 1.74, p = 0.197, or any

of the discrete learning periods examined [Early Learning: R2

= 0.03, F(1,25) = 1.04, p = 0.316; Middle Learning: R2 = 0.01,

F(1,35) = 0.16, p = 0.69; Late Learning: R2 = 0.01, F(1,25) =

0.23, p = 0.639]. Note that the combination of between-subject

variance in training time and the lack of CRIq data for some

participants resulted in these analyses having substantially lower

n as compared to the analysis of cognitive predictors (overall

and early learning: n = 37 for cognitive predictors, n = 32 for

CRIq; middle learning: n = 32 for cognitive predictors, n = 27

for CRIq; late learning n = 31 for cognitive predictors, n = 27

for CRIq).

E�ect of individual di�erences in gray
matter volume on BWGU learning

To assess the impact of variance in regional gray matter

volumes on learning of the BWGU task, a series of multiple

repressions were conducted with participants’ learning variables

(Overall, Early, Middle, and Late Learning) as dependent

variables. In each of these regressions, the gray matter volumes

from the baseline imaging session (left and right SFG,MFG, IFG,

ACC, Precentral, MTG, Hippocampus, and Striatum volume)

were entered in a stepwise fashion until only significant

predictors remained. These analyses produced a significant
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model of Early Learning (R2 = 0.16, F(1,28) = 5.36, p = 0.028),

where the volume of the left IFG was the sole contributor

(β = 0.109, t(28) = 2.31, p = 0.028). To evaluate if the

relationship between left IFG volume and Early Learning is

significant even after controlling for nuisance variables, a

stepwise regression was conducted with Early Learning as the

dependent variable, Age and estimated total intracranial volume

(eTIV) as covariates in step 1, and the left IFG volume in

step 2. This resulted in a significant model that predicted Early

Learning (R2 = 0.28, F(3,26) = 3.42, p = 0.032), with both

Age and left IFG volume as marginally significant predictors,

Age: β = −32.75, t(27) = −1.96, p = 0.061; left IFG: β = 0.1,

t(27) = 1.9, p= 0.064.

Combined e�ects of cognitive and gray
matter volume predictors on BWGU
learning

The above analyses identified one significant cognitive

predictor (Story Memory) and one significant brain structure

predictor (the volume of the left IFG) of early learning. The

influence of Story Memory on Early Learning contributed to its

influence on Overall Learning. To evaluate the combined effects

of these predictors, we conducted two stepwise regressions with

Overall and Early Learning as respective dependent variables.

In both regressions, Age and eTIV were entered in step 1 as

control variables, and both left IFG and Story Memory were

entered as variables of interest in step 2. This combinatorial

model was found to significantly predict Early Learning, R2 =

0.44, F(4,25) = 4.82, p = 0.005, with both Story Memory and left

IFG contributing significantly to the model, Story Memory, β =

35.59, t(25) = 2.6, p = 0.016; left IFG, β = 0.11, t(25) = 2.25, p

= 0.033. This combined model was also found to significantly

predict Overall Learning, R2 = 0.38, F(4,25) = 3.86, p = 0.014,

with both Story Memory and left IFG contributing significantly

to the model, Story Memory, β = 41.73, t(25) = 3.44, p = 0.002;

left IFG, β = 0.09, t(25) = 2.02, p= 0.054.

Impact of daily context on daily BWGU
performance: A time series forecasting
analysis

To assess the individual-level influence of daily psychosocial

factors on performance-over-time, we ran a series of auto-

regressive integrated moving average (ARIMA) analyses using

Simple Score as the dependent variable, Training Day as

the indexing variable, and Wellness, Stress, Busyness, Mood,

and Sleep as independent variables. This analysis was run

independently for each participant, allowing for individual

assessment of the impact of each moderator on performance-

over-time. A total of three participants entered the same

response for one or more of the psychosocial context questions

for the entire duration of their training, resulting in those

psychosocial variables exhibiting zero variance for those

participants. Thus, these invariant variables were removed from

those participants’ models.

These ARIMA analyses were accomplished using the

“forecast” package (Hyndman and Khandakar, 2008; Hyndman

et al., 2021) for R (R Core Team, 2013). Instead of setting

the AR, I, and MA, parameters of the ARIMA models a piori,

the auto.arima function of the “forecast” package was used

to procedurally select the ARIMA model that best fitted each

participant’s time series. This auto-ARIMA approach examines

all possible ARIMA models within the bounds specified, and

selects a final model based on the Akaike Information Criterion

(AIC), which is a model criterion that accounts for both

goodness-of-fit and parsimony of the model (Akaike, 1973,

1987; Sawa, 1978; Bozdogan, 1987, 2000). Maximum parameter

bounds for these auto-ARIMA analyses were set to AR ≤ 5, I ≤

1,MA ≤ 5.

Individual ARIMA models of best fit: Prior
performance forecasting future performance

The ARIMAmodels were successfully fit for 34 participants.

The ARIMA models did not fit the remaining three participants

due to a conjunction of low training time (all three

participants discontinued the study prior to completing 5 h

of training) and a sparsity of daily survey responses (i.e.,

longer play sessions resulting in fewer survey prompts occurring

during training).

High heterogeneity was observed in the models of best fit

across these 34 participants. Ten distinct models were found to

be the model-of-best-fit for at least one participant. Of these 10

models, the most common models of best fit were the AR = 0, I

= 0, andMA= 0 model (“000”) and the AR= 0, I = 1, andMA

= 0 model (“010”), each fitting n = 7 participants and together

fitting 14 (41%) participants. Both models-of-best-fit feature AR

and MA terms of 0, indicating that the performance of 14 (out

of 34) participants on a given day was not strongly influenced

by either their prior performances or the moving average of

error of their performance on previous days. A summary of

all models found to fit at least one participant can be found

in Table 2.

For the remaining participants, 17 (50%) participants’

data were best fitted by a model with an AR term of one or

higher (MAR = 1.41, range 1–3, see Figure 5), indicating a

predictive influence of previous days’ performance on the

current day’s performance. Five participants (14.71%) were

fitted by a model counting an MA term of 1, indicating that,

for those participants, current performance on the BWGU

task was predicted by the error term of their previous day’s
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performance. Eighteen participants’ data (52.94%) were

fit by a model that included an integration (I) term of 1,

indicating that these participants’ performance-over-time

exhibited non-stationarity which first-order integration

was able to account for (Papoulis, 2002). In total, the

performance-over-time of 19 participants (55.88%) was

predicted by their previous day’s performance, as indicated

by a model-of-best-fit which included a non-zero AR and/or

MA term.

TABLE 2 ARIMA models found to significantly explain

performance-over-time in at least one participant, grouped by

number of occurrences.

Model AR term I term MA term n

“000” 0 0 0 7

“100” 1 0 0 5

“200” 2 0 0 2

“300” 3 0 0 1

“010” 0 1 0 7

“110” 1 1 0 4

“210” 2 1 0 2

“011” 0 1 1 2

“111” 1 1 1 2

“211” 2 1 1 1

Individual ARIMA models of best fit: Wellbeing
and sleep as predictors of BWGU
performance-over-time

As with the model terms of each participant’s model-of-

best-fit, the value and significance of the psychosocial context

moderators and sleep on each participant’s performance-

over-time also demonstrated notable heterogeneity. Stress

significantly predicted performance-over-time at p < 0.05, in

seven participants (21.21% of the sample), and was found to

be the most common single contextual predictor. Wellness

significantly predicted performance-over-time on the BWGU

task at p < 0.05 in four participants (12.12% of the sample).

Busyness significantly predicted performance-over-time at p

< 0.05 in five participants (12.5% of the sample). Mood

significantly predicted performance-over-time at p < 0.05

in four participants (12.12% of the sample). Sleep also

significantly predicted performance-over-time (p < 0.05) in

three participants (8.82% of sample).

In total, 17 (50%) of the sample demonstrated performance-

over-time which was predicted by one or more of the examined

psychosocial context variables and sleep, whereas the remaining

17 (50%) participants demonstrated no such relationship.

For participants who exhibited significant relationships

between the psychosocial context variables (including sleep) and

BWGU performance-over-time, all five variables demonstrated

a negative relationship with performance: Wellness Mβ =

FIGURE 5

Histogram of AR term values in individual participant’s ARIMA model-of-best-fit.
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−200.67, σβ = 192.43; Stress Mβ = −1,012.94, σβ = 1,175.51;

Busyness Mβ = −201.64, σβ = 295.99; Mood Mβ = −292.19,

σβ = 365.52; Sleep Mβ = −775.64, σβ = 1,063.64. These

results demonstrate a highly individualized effect of the

examined psychosocial variables on BWGU performance-over-

time, including half of our sample for whom performance does

not appear to be influenced by the psychosocial context variables

examined. Full model reports for each participant can be found

in the Supplementary material.

Discussion

The present study was designed to investigate the cognitive

and brain structure correlates of learning a novel gamified

computerized working memory task (the BWGU), in order to

determine if this game is used as an intervention, what is its

potential for far transfer to reasoning and episodic memory and

to induce brain plasticity. The results presented above identify

one cognitive measure and one structural volume predictor of

learning on the BWGU, even after controlling for individual

differences in age, specifically of learning within the first 5 hours

of the task. In terms of cognitive performance, participant’s score

on Story Memory, a measure of episodic memory, positively

related to the participants’ learning rates during the first 5 h of

practice on the BWGU. In terms of structural volume predictors,

estimated gray matter volumes (GMVs) of the participants’ left

inferior frontal gyrus (IFG) were predictive of learning of the

BWGU task during the same period, even after controlling

for age.

The Story Memory task is a modification of a word-list-recall

episodic memory task, with the world list forming a narrative of

a coherent episode (Folstein et al., 1975). The strong narrative

aspect of the Story Memory paradigm may partially explain why

performance on that measure was predictive of performance on

the BWGU task specifically. One of the modifications made to

the BWGU paradigm to increase its efficacy over a traditional

n-match was the application of the “bird watching” narrative to

the task. It is possible that this narrative operated as a contextual

framing device that facilitated performance on the task. If that is

the case, the ability to represent and elaborate on this narrative in

a way that supports memory, indicated by higher Story Memory

performance, may have allowed participants to learn the BWGU

task at an increased rate.

A past study by Beaunieux et al. (2009) found a somewhat

similar pattern of results regarding episodic memory and novel

task learning to what was found in the present study. Beaunieux

et al. (2009) found that measures of both working and episodic

memory predicted a successful acquisition of a novel reasoning

task (the Tower of Toronto, Saint-Cyr et al., 1988) over four

training sessions. Additionally, Beaunieux et al. (2009) found

that episodic memory deficits in older adults (aged 65+ years)

in particular, as compared to their younger adult cohort, were

negatively predictive of learning on the reasoning task. From

this perspective, the results of this study can be interpreted as a

specific case of cognitive reserve: degree of retention (i.e., degree

of reserve) of episodic memory function, measured in this study

by the Story Memory measure, may have facilitated learning of

the BWGU Task, much as Beaunieux et al. (2009) theorized

that preserved episodic memory function did on the Tower of

Toronto task in their study.

If the relationship between Story Memory and BWGU

learning allows for speculation for transfer from training, it is

possible that training older adults on BWGU, especially for 5 h

or so, may engender transfer to Story Memory. This hypothesis

is supported by Basak and O’Connell (2016), where 5 h of

unpredictable n-match training engendered greater transfer to

Story Memory recall than the predictable n-match training in

older adults. Importantly, faster learning rates were related to

greater improvements in Story Memory.

Regarding gray matter volume, left inferior frontal gyrus

volume significantly predicted learning of the BWGU. As

with the Story Memory task, left IFG volume was not only

found to specifically predict learning during the early phase

of the training (hours 1–5), but also significantly contributed

to a model predictive of overall learning along with the

Story Memorymeasure. Considering the IFG’s well-documented

role in language processing (Hagoort, 2013; Fedorenko and

Thompson-Schill, 2014), the conjunction of left IFG volume and

Story Memory performance in predicting BWGU task learning

strongly suggests that language processing contributes to the

learning of the BWGU task. This is a plausible relationship if

it is assumed that participants tended to use a verbalization

or narrative-based strategy to aid in learning the BWGU task,

such as assigning names to the otherwise un-named bird stimuli

or applying/embellishing a narrative as a framing device to

aid in memory and retrieval of the most recent bird stimuli

observed. However, as no strategy self-reports were collected

from participants for this study, we cannot assume this is the

case. In the absence of confirmation of a language-based strategy

for engaging with the BWGU task, exactly how individual

differences in language processing would contribute to the

learning of the BWGU task remain nebulous.

The inferior frontal gyrus is not, however, exclusively

dedicated to language processing: there is ample evidence that

it is involved in expressing cognitive control over memory

processes more generally. A recent fMRI study by Qin and

Basak (2020) found that the IFG is activated not only in

younger but also in middle-aged and older adults during

the unpredictable two-match task, where digits needed to be

retrieved and continuously updated, along with other frontal

and parietal regions that are implicated in cognitive control

and working memory. Badre and Wagner (2007) concluded

based on a review of the literature available at the time that

IFG is specifically involved in enforcing cognitive control on the

memory retrieval process, a capability essential to the expression
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of language but not unique to that process (Fedorenko and

Thompson-Schill, 2014). A model proposed by Hagoort (2013)

specifies that the IFG serves to integrate information from

regions of the brain involved in attentional, integrational, and

memory processes in a way that allows for precise control of

language. This body of work suggests that the IFG is heavily

involved in the cognitive control processes of memory retrieval

and updating, which are generalizable to language and other

tasks. From this perspective, the observed relationship between

greater gray matter volume in the left IFG and faster learning of

the BWGU task can be interpreted not as dependent on language

processing specifically, but that individuals with greater left

IFG volume exhibit better cognitive control over their memory

retrieval processes during training, thereby producing swifter

learning of the task.

Importantly, even when considered together, these

predictors (Story Memory and Left IFG) were independent

contributors to the learning rate across the 20-h training

session, even after accounting for age. They were also predictive

of learning rates within the first 5 h of training. No significant

predictors of the “middle” (hours 5–10) or “late” (hours 10–20)

period of training were identified. Model fit and significance

were greater when fitting the Story Memory + IFG model to

Early Learning compared to Overall Learning (1R2 = 0.06),

which suggests the pattern seen in overall learning may in fact

be driven by the contribution of early learning to that variable.

Indeed, a simple linear regression confirms that variation in

Early Learning significantly explains ∼68% of the variance in

Overall Learning (R2 = 0.68, p < 0.001), with another 17%

of the variance being accounted for when Middle and Late

Learning periods are added to the model (R2 = 0.85, p <0.001).

These results would appear to confirm that learning within the

first 5 h of training on the BWGU was the primary determinant

of overall learning on that task.

The above relationship confirmed, why then were the

observed structural and cognitive predictors of learning of the

BWGU not related to learning rates in hours 5–10 or 10–20 of

the training? The learning model proposed by Ackerman (1988)

states that the first phase of learning is primarily determined by

cognitive factors, with later learning primarily determined by

the development of strategy and automatization of task-relevant

responses. Considering that the potential predictors of learning

that were examined in this study consisted of (a) cognitive

predictors and (b) gray matter volume of regions related to the

training task and cognitive predictors, it is no surprise then that

any relationship uncovered would pertain to the early learning

period specifically. The present study did not assess strategy

formation or use by participants, and as such does not include

a variable with sensitivity to Ackerman’s strategy-dependent

second phase of learning. The automatization-dependent third

stage of Ackerman’s model predicts stability of performance

but improvement of response time on time-sensitive tasks. This

flattening of performance is likely captured in the “late” learning

period of the present study, defined by asymptotic performance

on the BWGU tasks, but again no time-based variables sensitive

to the development of automatized processing were examined

in the analysis presented here. In short, strategy-based learning

and automatization may well have been facilitated over 20 h

of training on the BWGU task, but the game score analyzed

here was not sensitive to those processes. This is not to say

that this study’s findings related to early learning are spurious.

Rather, it should be recognized that variance in individual

learning rates from strategy-based or automatic processes, both

of which hypothetically contribute to later learning, are likely not

accounted for in these analyses due to predictor and outcome

variables utilized in this study.

Ackerman (1988) model of procedural learning offers an

explanation as to why cognitive predictors of early learning were

found in this study generally, but not why episodic memory

measure and left IFG volume specifically predicted early learning

of the BWGU task. Taken together, these predictors appear to

reflect participants’ ability to apply cognitive control to memory

retrieval and, as needed, update the memory to encode it even

for information that is tracked over a few seconds. As discussed

above, aspects of the BWGU task itself, such as heavy emphasis

on working memory updating, incorporating narrative framing

device, as well as the known sensitivity of the Story Memory

measure to n-back-based training (Basak and O’Connell, 2016)

may well account for this. However, past work by Beaunieux

et al. (2006) identified both episodic memory and cognitive

control as indicative of learning a reasoning task (the Tower

of Toronto). Beaunieux et al. (2006) concluded that episodic

memory and executive function contributed to the first stage

of learning in Ackerman’s model. While the authors do not

fully support that position based on the evidence provided by

Beaunieux et al. (2006) that a similar pattern of predictors

was found to relate to early learning on both the Tower of

Toronto and the BWGU task suggests that these results might be

generalizable beyond these select tasks, which is certainly worthy

of future study. This study showed that in older adults who

trained on a novel gamified, individualized-adaptive working

memory updating intervention, the BirdWatch Game—Unity,

for about 20 h, individual differences in a measure of episodic

memory and the volume of left inferior frontal gyrus predicted

individual’s learning rate. These relationships were specifically

applicable to the early phase of novel game learning, where

individuals display rapid gains in game performance.

Importantly, neuro-cognitive predictors of skill learning on

a task, such as BWGU, can inform us about the potential

transfer mechanisms that can result from training on such skills.

Another significance of this study is the potential identification

of individuals who may benefit most from BWGU training.

Notably, the included measure of cognitive reserve (CRIq)

did not reliably predict overall learning of the BWGU task, nor

learning in any of the discrete training periods examined. This

is perhaps not surprising as the cognitive reserve is typically
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conceptualized as a protective factor (Tucker and Stern, 2011;

Opdebeeck et al., 2016), rather than a factor that facilitates

cognitive function, and the existing evidence linking cognitive

reserve to task learning is somewhat weak (Lojo-Seoane et al.,

2020). This is not to say that the study has definitively produced

no evidence of reserve contribution to the learning of the

BWGU task: as mentioned earlier, the observed relationship

between Story Memory recall and BWGU learning may well

be evidence of cognitive reserve, especially considering the

degree of decline in episodic memory typically observed in

older adults (Park et al., 2002; Rozas et al., 2008). A similar

argument can be made regarding brain reserve. However, in

the absence of cognitive or brain structure measurements taken

from these participants earlier in life, these reserve arguments

cannot be directly supported. Importantly, cognitive reserve is

typically indexed by measures of life-time cognitive activity and

educational attainment, and has been found to interact with

cognitive training-related gains in cognition in healthy aging

(for a meta-analysis, see Basak et al., 2020). It can be concluded,

however, that cognitive reserve as measured by the CRIq as a

sum of educational attainments and self-report aggregate of life

experience does not relate to learning of the BWGU task.

The second goal of this study was to determine whether

fluctuating psychosocial context variables and sleep duration

influenced performance-over-time on the BWGU task. The

most general hypothesis that sleep and the psychosocial

variables examined would influence performance-over-time was

demonstrably true for 50% of the sample, or 17 total participants,

while the other 50% of the sample demonstrated no such

relation. This, obviously, limits the conclusions we can draw

based on this evidence. We cannot declare that a random

participant from this sample would be more likely than not to

be affected by one or more of the examined psychosocial context

variables, due to simple probability. However, this result still

allows for some definite conclusions to be drawn.

First, that performance-over-time of 50% of the sample of

this study was influenced by at least one of the daily survey

measures (that is, sleep, stress, busyness, mood, or wellbeing) is

far from a negligible fraction. Indeed, if we assume that these

results are generalizable, then it is fairly likely that performance-

over time on the BWGU task will be influenced by one or more

of these factors for a given participant. Additionally, there are

likely undetected moderators which partially determine whether

a given participant’s performance is influenced by a given

psychosocial context variable or sleep, which are important to

further investigate considering how pervasive the influence of

these psychosocial context variables and sleep are on cognition.

Considering the well-documented negative impact of disrupted

sleep (Holanda Júnior and de Almondes, 2016; Lo et al.,

2016; Rana et al., 2018; Zavecz et al., 2020) and high stress

(Shields et al., 2016; Plieger and Reuter, 2020) on cognitively

demanding tasks in the real world, understanding what variables

may moderate this relationship is of substantial real-world

importance. The results of the present study indicate that sleep

and the psychosocial context variables examined in this study

can have an impact on the performance and learning of complex

tasks, which is warranted enough for further investigation.

Second, while the generalization of these results is

problematic, thesemodels do offer significant explanatory power

with regard to each individual participant. This has potential

utility within the cognitive training domain as a method of

assessing the individual needs of a participant, and providing

cognitive training that is individually adaptive to those needs.

Accurate models were fitted for participants who completed as

little as 3 h of training, and for all participants who completed

more than 5 h of training. Within the timescale of a long-

term cognitive intervention, which typically involves 10-20 h of

training (Basak et al., 2020), an analysis like the one performed

in this study could be conducted with sufficient remaining

time to provide individuated participant feedback or adjust the

prescribed training, to account for any significant psychosocial

effects observed. This is an alternate approach to individualized-

adaptive training to the closed-loop strategy implemented in the

design of the BWGU paradigm, where training difficultly was

manipulated with respect to performance metrics (block-wise

d’ and consecutive failures), but not daily sleep or perceived

wellbeing. Our current approach is agnostic to idiosyncratic

influences on individual subjects, under the assumption that

such sporadic daily influences are reflected in each participant’s

overall performance. Identifying and accounting for specific

factors influencing performance-over-time, which the method

of analysis presented in this study could facilitate, may serve as

an effective additional method of adaptive training independent

of the performance-focused method implemented in BWGU.

Importantly, findings from the time series forecasting analysis

provide evidence for why the individualized-adaptive approach

to training has been generally successful at inducing positive

training outcomes (Payne et al., 2011; Brehmer et al., 2012;

Cuenen et al., 2016). A wide array of patterns of psychosocial

influence were observed even within the age and geographically

restricted sample utilized in this study, and it can be assumed

with some confidence that individuals undergoing any form of

cognitive training or intervention are subject to a similarly wide

array of moderating influences.

The analysis presented in this study also demonstrated

that 50% of the sample (n = 17) exhibited performance-over-

time that was reliably predictable by previous performance,

either through direct auto-regression of past performance onto

a given day’s BWGU score, or via a moving average of error

terms. The finding that for 50% of our sample, current BGWU

performance was not reliably predictable from past performance

is interesting, as it suggests that other factors are primarily

responsible for performance-over-time in this large proportion

of the sample. As discussed, psychosocial context variables

demonstrably accounted for variance in performance in half

of our sample, which includes 11 of the 17 participants for
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whom past performance did not relate to performance-over-

time. However, this still leaves six participants for whom none

of the examined variables, including their own performance,

was predictive of variability in performance-over-time. The

only conclusions that can be drawn about what these other

factors might be are that they (a) have periodicity longer than

the training period observed or (b) are transient events, as

otherwise evidence of any such predictable influence would be

detectable in the auto-regressive or moving average analysis.

In light of these findings, it is clear that individual influences

on performance-over-time on a complex task like the BWGU

task are highly varied, and that they can be very influential.

Further investigation of how these individual-level factors

can be identified, modeled, and accounted for can only

be a boon to efforts to develop efficacious, individualized

cognitive interventions.

As already mentioned, the design of this study limits some

of the conclusions we are able to draw from these results,

and these design limitations can be improved upon in future

iterations of this work. First, the present study did not take

participant strategy into account. This is a particularly pertinent

limitation to the findings of this study considering (a) the

possibility that participants were utilizing a verbalization or

narrative-based strategy to aid learning of the BWGU task,

and (b) the theoretical relevance of strategy generation toward

procedural task learning. A post-hoc self-report could potentially

allow for insight into the effect of strategy on BWGU learning;

however, this self-reported approach would need a much larger

sample size of 250 or more given the variability of self-generated

strategy reports and associated variables of interest, such as

personality factors (e.g., openness to experience), cognitive

flexibility, IQ, etc. Such a research agenda is challenging to

implement in cognitive interventions that last for months and

include brain measures. Another approach to studying the role

of strategy could be a strategy manipulation applied via varied

participant instructions, although this would require an in-lab

intervention and a much larger multi-arm RCT that would have

similar limitations of the feasibility of study implementation

in terms of time and resource as described before. Second,

the design of the present study did not allow for a detailed

investigation of the influence of cognitive/brain reserve on

learning of this task, beyond the retroactive self-report measure

utilized by the CRIq. Addressing this shortcoming is somewhat

difficult: A longitudinal approach by which trajectories of

cognitive/neurological change over time could be calculated

before the training period began could potentially enlighten and

specify the reserve-learning relationship, but this would require

a major expenditure of time and resources to accomplish.

Conclusion

This study showed that in older adults who trained on

a novel gamified, individualized-adaptive working memory

updating intervention, the BirdWatch Game—Unity, for about

20 h, individual differences in ameasure of episodicmemory and

the volume of left inferior frontal gyrus predicted individual’s

learning rate. These relationships were specifically applicable

to the early phase of novel game learning, where individuals

display rapid gains in game performance. These predictors

appear to reflect participants’ ability to apply cognitive control

to episodic memory functions, especially memory retrieval

and subsequently updating the memory to encode it even for

information that is tracked over a few seconds as in BWGU.

Importantly, neuro-cognitive predictors of skill learning on

a task, such as BWGU, can inform us about the potential

transfer mechanisms that can result from training on such

skills. In fact, prior research in older adults has shown that

just 5 h of training on working memory updating, where

stimulus sequence appeared in unpredictable order, results in

far transfer to Story Memory recall, the measure of episodic

memory that was found to be a significant predictor in the

current study. Taken together, these results suggest that neuro-

cognitive predictors of task learning can be informative about

whether we can see potential transfer to tasks that have the same

neuro-cognitive underpinnings. Another significance of the

current study is the potential identification of individuals who

may benefit most from BWGU training. Episodic memory is

considered to be an early marker of mild cognitive impairment;

therefore, it is possible that BWGU training may be beneficial

to not only healthy older adults but to build a reserve in

a key cognitive function known to be impacted in at-risk

older adults, such as those with mild cognitive impairment.

Finally, forecasting analysis on the time series of the game

shows that day-to-day psychosocial wellbeing and hours of

sleep can impact the game performance of that day or of

the next day, but only in about 50% of participants in this

study. Others did not exhibit any relationship between these

daily measures (sleep and wellbeing) and game performance.

Large-scale studies are warranted to understand why some

older adults show such dependencies, and whether resistance

to such dependencies results in the long-term maintenance of

cognition. Importantly, data from these time series forecasting

suggest that for a large proportion of individuals, the efficacy

of the intervention can be improved at an individual level by

incorporating sleep and psychosocial factors into the closed-loop

individualized-adaptive feedback design. Identification through

such modeling of how these individual-level daily variables

(task performance, sleep, mood, etc.) impact our learning

during an intervention can help us develop more efficacious,

individualized cognitive interventions.
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Monitoring early changes in cognitive performance is useful for studying

cognitive aging as well as for detecting early markers of neurodegenerative

diseases. Repeated evaluation of cognition via a measurement burst design

can accomplish this goal. In such design participants complete brief

evaluations of cognition, multiple times per day for several days, and ideally,

repeat the process once or twice a year. However, long-term cognitive

change in such repeated assessments can be masked by short-term within-

person variability and retest learning (practice) effects. In this paper, we show

how a Bayesian double exponential model can account for retest gains

across measurement bursts, as well as warm-up effects within a burst, while

quantifying change across bursts in peak performance. We also highlight how

this approach allows for the inclusion of person-level predictors and draw

intuitive inferences on cognitive change with Bayesian posterior probabilities.

We use older adults’ performance on cognitive tasks of processing speed

and spatial working memory to demonstrate how individual differences in

peak performance and change can be related to predictors of aging such as

biological age and mild cognitive impairment status.

KEYWORDS

retest learning, measurement burst design, double negative exponential model,
subtle cognitive decline, Bayesian multilevel modeling
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Introduction

Accurate and sensitive measurement of cognitive change
is required to advance the understanding of normative
cognitive aging and improve the detection of the subtle
cognitive changes that are associated with the preclinical stages
of neurodegenerative diseases, such as Alzheimer’s disease.
Although cumulative cognitive change over the course of
decades is quite robust, the amount of change expected over
a year or two is quite subtle, even in the case of prodromal
disease (Baker et al., 2016). Traditional methods relying on
infrequent lab-based assessment of cognitive performance make
it difficult to differentiate changes due to cognitive aging,
progression of neurodegenerative disease, and the possible
effects of interventions designed to improve or slow decline
in cognitive function. A major challenge to detecting subtle
cognitive change is the presence of retest, or practice effects,
which refer to the ubiquitous finding that performance on
cognitive tests improves with repeated testing.

Although widely recognized as biasing longitudinal
estimates and intervention effects, there is no consensus
on best methods to address retest effects (Jones, 2015).
Indeed, it is extremely difficult to disentangle retest related
effects from other sources of change (e.g., aging, disease
progression, and interventions) using data from conventional
longitudinal designs that consist of repeated single-shot
assessments, usually spaced over long time intervals. Figure 1
illustrates this point by depicting hypothetical longitudinal
data in which observed performance (black line) reflects
a mixture of two latent processes, retest related gains
(red line) and aging-related declines (blue line). Panel A
shows a case in which change in performance is flat, where
the stability is a product of retest related gains offsetting
aging-related decline. Comparing manifest performance
(black lines) in Figure 1, panels B and C suggests that
the former exhibited more cognitive decline and that
neither exhibited evidence of improvement in cognitive
performance that could be due to retest effects. However, the
underlying latent aging effects show equivalent longitudinal
decrements in Panels B and C, but differential latent retest
effects.

This example illustrates two important points. First,
processes that drive retest effects may be operating even if
manifest performance shows no improvement or even a decline.
That is, one cannot take the absence of overt performance gains
as evidence that retest effects are absent. Moreover, even in the
presence of manifest decline in cognitive performance, retest
effects may be a significant confound that obscures important
individual differences. Second, failure to accurately characterize
and account for retest gains could add considerable noise and
bias when testing for the effects of interventions, biological
markers of aging or disease progression, or other exposures (e.g.,
stress, environmental toxicants) on cognitive trajectories.

Conventional longitudinal designs place significant
constraints on approaches for disentangling retest effects from
other types of change. The use of a control group which receives
their first exposure to a cognitive test at follow-up may be useful
for estimating bias in the group averages but cannot assist in
correcting for retest effects at the individual level. Statistical
control procedures that involve covarying for the number of
retest assessments are susceptible to bias and are especially
sensitive to assumptions regarding the presence of age-cohort
effects (Hoffman et al., 2011). To overcome these limitations,
our approach utilizes a measurement burst design (Sliwinski,
2008) which consists of closely spaced “bursts” of repeated
measurements which are repeated over longer intervals.
This type of intensive longitudinal design (ILD) permits
modeling of retest effects using repeated administrations over
a short interval within bursts (e.g., daily) to render long-term
retest effects negligible and to model long-term trends using
measurements bursts repeated over longer intervals (e.g.,
annually) across bursts (Sliwinski et al., 2010; Rast et al., 2012).
In a proof of concept, Munoz et al. (2015) fit a non-linear
multilevel model to measurement burst data to disentangle
short-term retest effects from long-term declines in asymptotic
performance.

We propose a psychometric cognitive process model, the
Bayesian double exponential model (BDEM) to disentangle
retest learning effects from longitudinal changes in asymptotic
performance. The BDEM allows parameterizing performance
in terms of distinct retest features including learning rate (how
quickly someone reaches peak performance), retest gains (how
much overall improvement is observed), peak (asymptotic)
performance, and warm-up effects that occur at the beginning
of follow-up bursts. Once practice effects are accounted for, we
can link individual differences in peak performance and changes
in peak performance to person-level indicators such as age and
mild cognitive impairment (MCI) status.

While the primary aim of BDEM is to disentangle
learning features from peak performance (with the goal of
modeling asymptotic change over time), each model parameter
may also be of interest for understanding the dynamics of
cognitive change. For this reason, we also quantify individual
differences, in a multilevel framework, not only in terms of peak
performance and changes therein, but also for example in terms
of learning rate, and intra-individual variability in performance,
and test whether these are linked to cognitive aging (Lövdén
et al., 2007) or MCI status (Cerino et al., 2021).

Compared to earlier work with the double negative
exponential model, such as in Sliwinski et al. (2010), Broitman
et al. (2020), our approach casts the double negative exponential
model in a multilevel Bayesian statistical framework, which has
two main advantages. First, it allows for all double exponential
parameters to be person-specific and be regressed on person-
level predictors in a single step analysis, this way improving
estimation accuracy. Second, it allows for a more nuanced
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FIGURE 1

(A–C) Illustration of retest effects confounding measurement of cognitive decline.

inference in terms of person-specific characteristics, for example
the risk of cognitive decline can be articulated in terms of
individual specific probabilities, as illustrated later in the paper.

In the current study we analyzed data from the Einstein
Aging Study (EAS; Zhaoyang et al., 2021; Katz et al.,
2021), a longitudinal study that included annual conventional
assessments and ambulatory assessment bursts in a racially
diverse, systematically recruited community dwelling cohort of
older adults (age 70+). We evaluated the descriptive adequacy
of the BDEM to EAS data obtained from high frequency
cognitive assessments completed by participants using mobile
devices in naturalistic settings. We also examined whether
BDEM parameters, such as asymptotic performance, change
in asymptotic performance, learning rate, and intra-individual
variability, differentiated among individuals across different
ages and MCI status.

Materials and methods

Study design and procedure

Data were drawn from the ongoing EAS, a prospective,
longitudinal study of risk factors for MCI and dementia.
Systematic random sampling from New York City Registered
Voter Lists for Bronx County was used to recruit participants.
Further screening of participants was conducted via telephone
to ensure that participants met the study inclusion criteria:
English-speaking, community-residing, ambulatory, and aged
over 70 years. Exclusion criteria were: significant hearing
or vision loss, current substance abuse, severe psychiatric
symptoms, chronic medicinal use of opioids or glucocorticoids,
treatment for cancer within the past 12 months, and diagnosis of
dementia. All participants provided written informed consent

and the study was approved by the Albert Einstein College of
Medicine Institutional Review Board.

Figure 2 shows an illustration of the overall measurement
burst design deployed in the EAS project. Each year participants
completed a combination of clinic-based assessments and
ambulatory ecological momentary assessments (EMA). After
telephone screening, eligible participants were invited to
attend two in-person clinic-based assessments. The first
assessment day included completing self-report questionnaires
and neuropsychological assessment. The second assessment day
included a 1.5-h training session on how to use the study-
provided smartphone and complete the EMA portion of the
study. Participants who were assessed between March and
June 2020 completed modified versions of these assessments
and training remotely via telephone and received the study
smartphone via a package delivery service.

The ambulatory burst component of the study took place
in participants’ natural environments. While participants went
about their daily activities, they completed six brief assessments
(up to 5 mins each) during their typical waking hours, over
a period of 16th days−these assessments together formed a
“burst.” The assessments included brief self-report questions
as well as the cognitive assessments. The protocol included
a self-initiated wake-up assessment, a self-initiated end-of-day
assessment, and four quasi-random “beeped” assessments that
participants received a notification from the study phone to
complete. The beeped assessments were schedule approximately
3.5 h apart, and times varied across the days of the week.
After the ambulatory burst period, participants returned the
study smartphone at a third clinic visit and the data were
downloaded from the phone.

In the present study we analyzed baseline demographic and
MCI status data, as well as cognitive performance data from
Burst 1 and Burst 2, that were collected between May 2017
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FIGURE 2

Illustration of a measurement burst design with two bursts.

and June 2020. The sample consisted of 318 adults, of which
53.8% (n = 171) completed both bursts, while the remaining
participants had only baseline (Burst 1) data. Of the 147
participants who did not have follow up (Burst 2) data, 31.3%
(n = 46) had not yet been contacted for follow up, 24.0% (n = 35)
had chosen to not complete the EMA component of the study,
4.0% (n = 6) had missing or unusable data on the smartphone,
8.2% (n = 12) were unable to participate due to illness or death,
and 36.7% (n = 54) were withdrawn. Characteristics of the
sample are provided in the “Results” section.

Measures

Demographics
Participants self-reported demographic details via

questionnaire, including age in years, sex (male/female),
race and ethnicity (White/Black/Hispanic White/Hispanic
Black/Asian/more than one race), and education
(years in school).

Mild cognitive impairment status
As part of their participation all participants underwent

neuropsychological assessment to determine their cognitive
status. The neuropsychological assessment included measures
of memory, executive function, attention, language, and
visuospatial ability. Free recall from the Free and Cued Selective
Reminding Test (Buschke, 1984) and delayed recall of the
Benson Complex Figure (Possin et al., 2011) assessed memory
function; Trail Making Test – Part B (Reitan, 1958) and
Phonemic Verbal Fluency (Tombaugh et al., 1999) assessed
executive function; Trail Making Test – Part A (Reitan, 1958)
and WAIS-III Digit Span (Wechsler, 1987) assessed attention;
Multilingual Naming Test (Ivanova et al., 2013) and Category
Fluency (Monsch et al., 1992) assessed language; and immediate
recall of Benson Complex Figure (Possin et al., 2011) and
WAIT-III Block Design (Wechsler, 1987) assessed visuospatial

function. MCI status was classified algorithmically using criteria
from described in Jak et al. (2009) and described in detail in
Katz et al. (2021). Briefly, criteria included: (a) impaired scores
on two measures of the same cognitive domain; or (b) one
impaired score in three out of five cognitive domains; or (c)
having functional decline assessed by the Instrumental Activities
of Daily Living Scale (Lawton and Brody, 1969). Impairment
was defined as scores >1 SD below age-, sex-, and education-
adjusted normative mean.

Symbol search task
The symbol search task, shown on the left side of Figure 3,

measures processing speed. In the current study, on each trial
of the task, participants saw three symbol pairs at the top of the
screen and two symbol pairs at the bottom of the screen. They
were instructed to match as quickly and accurately as they could
one of the two pairs presented at the bottom to one of the three
pairs at the top. Participants completed 11 trials per session. We
analyzed daily aggregates of response times on correct trials with
the BDEM.

Grid memory task
Grid Memory is a free recall paradigm that assesses spatial

working memory, shown on the right side of Figure 3. This
task in the current study involved a brief study phase, during
which 3 dots are presented at random locations on a 5 × 5
grid for 3 s, an 8-s letter-cancelation distractor phase, followed
by free recall of locations occupied by dots during the study
phase. The free recall phase required participants to touch the
locations in an empty 5× 5 grid where the 3 dots were presented
initially. Participants completed two trials that incorporated all
three phases per session. The outcome of interest for this task
was the Euclidean distance between the location of the incorrect
dot to the correct grid (0 if correct). This gave partial credit
based on the deviation of the recalled compared to the correct
dot locations. We refer to this error distance as “units of error”
from here on.
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FIGURE 3

An example trial from the symbol search task (top) and the grid memory task (bottom).

Data analysis with the double
exponential model

First, we start by specifying a negative exponential model
for repeatedly administered cognitive performance data close
in time. This model can characterize change in performance
in terms of four parameters: learning rate, retest gain, peak
performance and intra-individual variability. By disentangling
the latent processes in observed performance, the negative
exponential model separates how much learning occurs (retest
gain) from how fast the learning occurs (learning rate). The
learning curve is characterized by an exponential shape, which
is supported by studies on learning (see, e.g., Heathcote et al.,
2000), as well as studies on aging (see, e.g., Sliwinski et al.,
2010). These curves will be derived for every person to
accurately dissociate learning from the person-level overall peak
performance.

Consider a study that only has one burst of measurements.
The top row of Figure 4 shows a graphical representation of
the negative exponential model (solid line) fit to a sequence
of a simulated cognitive performance measure (indicated by
dots), which in our case was either error distance or reaction
time. We will refer to this participant as the “baseline” for
later comparisons. At the start of the burst, their errors are
distinctly higher than near the end; that is, the participant shows
evidence of learning across sessions in a measurement burst.
This improvement is modeled through a negative exponential
function, which is parametrized as follows:

Yti = ai + gi × exp [−ri × Mti]+ eti (1)

The cognitive performance data over sessions t from an
individual i is denoted as Yti. Parameter ai stands for the
person’s asymptotic or peak performance (best performance
given unlimited practice), which was set to 2.00 in the current
example shown in the top row of Figure 4. The gain in
performance across measurements is quantified by gi, which
roughly corresponds to the height of the exponential (set to 0.50
in this example). The learning rate is captured by ri (set to 0.30),
the steepness of the exponential curve across measurements
(with measurement occasions denoted as Mti) in the study.
Finally, eti is a time-and-person-specific error term, with mean
zero and standard deviation σe,i (set to 0.05), where σe,i captures
the within-person variations (i.e., intraindividual variability)
across trials.

The bottom two rows of Figure 4 shows four additional
synthetic persons’ data and model fit, each with one parameter
different from the “baseline” in the top row. The participant in
the left panel of the second row has better peak performance
(less error): their asymptote settles at 1.75 instead of 2.00. The
right panel of the second row shows a participant with a higher
gain parameter across trials compared to the baseline person
in the top row (gi is 1.00 instead of 0.50); the exponential
starts out higher compared to baseline. The bottom left panel
depicts a faster learning rate (steeper exponential slope; ri is set
to 0.60 instead of 0.30) than the baseline; and it reaches peak
performance faster (given the same amount of gain). Finally,
the bottom right panel shows a participant with greater intra-
individual variation (σe,i), as indicated by the more scattered
dots around the fitted model (set to 0.10 instead of 0.05).
Simulation analyses showed good recovery of these parameters
with 10 data points per person, in terms of at least 95% of the
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FIGURE 4

Five synthetic participant’s data (gray dots) and model fit (solid line).

simulated values falling in the estimated 95% credible interval of
their corresponding parameter estimates.

The double negative exponential model extends the
previously introduced negative exponential model by
considering retest gains across bursts as well. It is specified as:

Yti = gi × exp[−ri × Mti] +

I(Bti > 1) × g∗i × exp [−ri × Tti]+ eti +

ai +4i × (Bti − 1) (2)

Parameters gi and ri again represent gain and learning rate,
as in Eq. (1), but now we have two sets of them: one (gi, ri)
set to capture continuous learning throughout the study [much
like in Eq. (1) when we only had one burst], shown in the first
line of the Eq. (2), and a second (g∗i , r∗i ) set that represents
warm-up processes after the first burst [i.e., I(Bti > 1)] – with
gain and learning rate parameters denoted by an asterisk (∗),
as shown in the second line of Eq. (2). This warm-up effect
also has an exponential functional form, and it operates on
the measurements nested within a burst (denoted with Tti).
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FIGURE 5

Illustration of the double negative exponential model.

Similarly to Eq. (1), eti again represents a time and person-
specific error term, with its standard deviation σe,i quantifying
the intraindividual variability in performance across all trials.

Most importantly, as shown in4i × (Bti − 1) of Eq. (2), we
are now modeling the change in asymptotic (peak) performance
between bursts. This is accomplished by parameter 4i, which
adjusts the asymptotic performance (ai), by some magnitude
of change in every burst following the first one. We then
investigate individual differences in these key parameters by
adding covariates such as age, sex, and MCI status to the model.

Figure 5 shows a graphical representation of the double
negative exponential model fit to cognitive performance
measures (error distances in this example, displayed as dots)
over trials t from a synthetic individual i, over three bursts (note
that in the dataset analyzed later there are only two bursts, but
we display three here for illustration purposes of the general
approach). We can see that in the beginning of the study, there
are more errors than at the end of the study, while also within
each burst the first error rates are higher than the rest. We also
observe retest gain across assessments: a learning process across
the whole study period (here parameter gi quantifies person i’s
gain across all measurements in the study, and ri represents their
corresponding learning rate). Also, in each burst after the first,
there is a warm-up gain, a within-burst learning process with
gain g∗i and learning rate r∗i parameters. In the first burst of data
(over measurement occasions 1−20), the asymptote represents
the person-specific initial peak performance, which becomes
worse with every burst in this example (higher asymptotes
correspond to more error). The amount of change in peak
performance is quantified by4i. As can also be seen in Figure 5,
due to the retest gain across assessments and within burst, there
seems to be an improvement in performance (decrease in error
distances overall across the study). However, if we look at the

long-term change in terms of the peak performance parameter
of the proposed model (i.e., change in asymptote), there is in
fact an incremental decline in performance, manifested through
an increase in errors (i.e., worsening peak performance across
bursts).

The warm-up effect represents an expected decrease in
performance from the peak performance of a prior burst to the
initial performance at its follow-up burst. It is an important
process to model as this decrease may not reflect true “cognitive
decline” and could instead represent some “forgetting” of
testing procedures (see also in e.g., Dutilh et al., 2009). Our
proposed modeling approach captures participants recovering
their previous gains overlaid on their continuous improvement.

Modeling cognitive performance in terms of the person-
specific double negative exponential parameters can help us
capture retest effects and isolate them from other cognitive
performance indicators. Investigating possible sources of
individual differences (e.g., age, MCI status) in these cognitive
parameters (i.e., learning rate, change in peak performance,
etc.) can help us learn about processes related to retest effects
and cognitive decline. In summation, our proposed model
represents a cognitive psychometric approach to interpreting
cognitive performance data. This model will require a nuanced
and flexible statistical framework for inference. We chose a
multilevel Bayesian framework (Gelman and Hill, 2007) for
implementing the double negative exponential model, discussed
next.

The multilevel specifications of the double
exponential model

In our proposed modeling approach, all double negative
exponential parameters, ai, 4i, gi, ri, g∗i , r∗i , and σe,i were
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allowed to be person-specific and are pooled together via group-
level (population) distribution. This represents a standard
multilevel modeling approach (Raudenbush and Bryk, 2002)
that has been proven useful for improving estimation accuracy,
as it allows for the person- and group-level trends to
simultaneously inform each other. Moreover, we also aim at
identifying possible sources of individual differences in these
parameters. Therefore, we regress person-specific cognitive
performance characteristics (e.g., peak performance, change
in peak performance, etc.) on a set of predictors, such as
age and MCI status. Note that these cognitive performance
characteristics are themselves model parameters, therefore they
are estimated with error. We use a one-step approach to regress
them on predictors to avoid generated regressor bias (Pagan,
1984).

More specifically, in our multilevel specification of the DNE,
the peak performance, ai, changes in peak performance, 4i,

and intra-individual variation in performance, σe,i, and learning
rates (ri, r∗i ) have group-level (population) distributions, the
means of which are decomposed into products of predictors and
regression coefficients. For example, the person-specific peak
performance, ai, parameters are assumed to follow a normal
distribution, parametrized as:

ai∼N(xiβa,σa),

where xi is a vector with a set of person-specific predictors
such as sex (i.e., male or female) and MCI status, and with
1 as its first element (for the intercept). Vector βa contains
the corresponding regression coefficients. Specifically, the first
coefficient of βa, that is βa, int, takes the role of an intercept
and quantifies the group (population)-level peak performance,
while the rest of the regression coefficients correspond to
the effects of the predictors in xi. In the analyses below
we used age at baseline, MCI status, sex, and years of
education as predictors. For example, regression coefficient
βa, age quantifies the association between peak (asymptotic)
performance and age at baseline, regression coefficient βa, MCI

quantifies the association between peak performance and MCI
status, regression coefficient β4, MCI quantifies the association
between change in peak performance and MCI status, and
so on. Parameter σa quantifies residual variation in standard
deviation units– that is individual differences remaining after
the predictors are accounted for.

In the analyses below, similar specifications were made for
4i, ri, r∗i , and σe,i, as well. The gain parameters were also
made person-specific and assigned group-level distributions:
gi∼N(µg,σg), where µg is the group-level mean gain across
bursts, representing the average rate of gain in the sample
throughout the study. The warm-up gain parameter g∗i is
assigned a group-level distribution that follows the same logic.
However, these gain parameters were not regressed on person-
level predictors the same way as the other parameters, as we

did not expect them to be meaningfully related to our chosen
set of predictors.

Finally, note that we are not specifying any particular
correlation structure on the person-specific parameters (i.e.,
random effects); we are not constraining the correlation to be
0. All parameters, including regression coefficients, negative
exponential model parameters and variances are estimated in a
Bayesian framework, introduced next.

Casting the multilevel double exponential
model in a Bayesian framework

In the Bayesian framework model parameters are thought
of as random variables that have their own probability
distributions. Bayesian modeling focuses on the estimation
of posterior probability distributions (i.e., posteriors) based
on available data (interpreted through a likelihood function)
and prior probability distributions (i.e., priors) on the model
parameters. Prior probability distributions are mathematical
summaries of any already existing information on the model
parameters. All inference is conditional on the priors, and they
need to be specified before seeing the data to genuinely reflect
the already existing information available on the parameters.
The prior distributions for this study were chosen to be
minimally informative, reflecting only the plausible, theoretical
range of the parameters. This involved truncating distributions
to match the parameter’s range. For example, given that reaction
times cannot be negative, peak performance of RT also cannot be
negative, therefore its prior was truncated at 0 so that it cannot
take on negative values.

Population means were given a prior that was distributed
normally with 0 mean and standard deviation 10, truncated
at 0 for across study (i.e., across bursts) and within-burst gain
parameters, such as:

µg∼N(0, 10) and µg∗∼N (0, 10).

Regression coefficients (except for intra-individual standard
deviation) were given the same priors, for example:

βa,age∼N(0,10),

was specified for the coefficient linking asymptote (peak
performance) and age. For the intra-individual standard
deviation, we chose a somewhat tighter normal distribution with
standard deviation equal to 1 to reflect that the likely range of
this parameter was between 0 and 1, for example as:

βσe,age∼N (0,1) ,

for the association between intra-individual standard
deviation and age.

The group-level standard deviation parameters that reflect
the heterogeneity across individuals were truncated to be on the
positive real line and were specified as:

σr∼N(0, 10),
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FIGURE 6

Six Einstein Aging Study (EAS) participants’ symbol search data and predicted BDEM trajectories.

where σr could be substituted with σr∗, σg, σg∗, σa, and σδ. The
standard deviation of the intra-individual standard deviation
was specified as:

σσe∼N(0, 1),

with range again truncated to the positive real line.

Implementation of double exponential
model

The Bayesian double negative exponential model was
implemented in Stan (Stan Development Team, 2022) called
from R via rstan (Stan Development Team, 2020) – the Rscript
for the estimation is available via OSF1.

The results below were based on 60,000 samples from the
posterior probability distributions of each model parameter.
Specifically, we ran 6 parallel chains drawing 12,000 samples
each, from which 2,000 per chain were discarded as warm-
up iterations, resulting in 60,000 total iterations for each
parameter. Sampling was performed via Markov chain Monte
Carlo (MCMC) algorithms implemented in Stan. We checked
MCMC sampling quality by calculating effective sample size

1 https://osf.io/h9yqk/?view_only=9e311fca177e462bbdb347c50736a
e21

(ESS) and R̂ statistics. ESS quantifies the number of independent
pieces of information in the posterior distribution and should
be at least 100, but preferably around 1,000 to get reliable
interval estimates. The R̂ statistic is indicative of convergence
of the sampled values, and values above 1.1 signal issues with
convergence (Gelman et al., 2013). In our analyses, the ESSs for
all parameters were above 100, and 98% of ESSs were also above
1,000 and all R̂s were below 1.1.

Model fit
Symbol search task

We calculated the R2 statistic to quantify the proportion
of the variance in reaction times explained by the BDEM. For
the current dataset the R2 was 0.89, which supports a good fit
of the model for the data. We also explored model fit visually
by plotting model predicted trajectories over the data points,
for every person, and concluded that the model followed the
characteristics of the data satisfactorily. Specifically, we looked
at whether the model predicted trajectory mimics the most
important characteristics of the person-level data, which were
whether (1) the height of the exponential curve overlaps with
the first couple of observed data points, (2) the asymptote of
the exponential curve overlaps with the best performances, and
(3) the change in performance across the observations has an
exponential shape. As an example, Figure 6 shows 6 persons’ raw
data (dots) and model predicted trajectories, these were chosen

Frontiers in Aging Neuroscience 09 frontiersin.org

136

https://doi.org/10.3389/fnagi.2022.897343
https://osf.io/h9yqk/?view_only=9e311fca177e462bbdb347c50736ae21
https://osf.io/h9yqk/?view_only=9e311fca177e462bbdb347c50736ae21
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-897343 September 24, 2022 Time: 10:44 # 10

Oravecz et al. 10.3389/fnagi.2022.897343

FIGURE 7

Six EAS participants’ grid memory data and predicted Bayesian double exponential model (BDEM) trajectories.

to give representative illustration of the overall trends of the
data.

Dot memory task

The BDEM showed sufficient fit to the grid memory data,
with R2 = 0.76, and predicted trajectories showing acceptable
patterns; see Figure 7 for examples. However, we note that the
fit of the BDEM was not as ideal for this data as for the symbol
search data2.

Results

We analyzed data for 318 participants, from which 171
completed both bursts, while the remaining participants had
only Burst 1 data. The mean age of the sample at baseline was
77.45 (4.83) years and 67% were female (n = 104 male, and
n = 214 female). The sample was racially and ethnically diverse
with 45.9% (n = 146) identified as non-Hispanic Whites, 39.9%
(n = 127) as non-Hispanic Blacks, 9.7% (n = 31) as Hispanic

2 Additionally, plots showing the raw data averaged across persons and
the corresponding model fits for both the symbol search task and dot
memory task can be found on the above referenced OSF site. These plots
showed satisfactory fit of the BDEM on the group level.

Whites, 2.8% (n = 9) as Hispanic Blacks, 1.3% (n = 4) as Asian,
and 0.3% (n = 1) as more than one race/ethnicity. The mean
education of the sample was 14.98 (3.55) years. On that basis of
the neuropsychological assessment and criteria described above,
31.8% (n = 101) participants were classified as having MCI at
baseline. There was no significant difference between those who
completed both bursts and those with only Burst 1 in terms of
age, years of education, race/ethnicity, or sex. But the group with
only Burst 1 data was significantly more likely to be classified as
MCI at Burst 1 (40.41% v. 24.42%, p = 0.003; please see table with
all comparisons on the paper’s OSF site). However, the BDEM
mixed effects models we used can handle the missing data under
the assumption that the data are missing at random (MAR).
That is, the missing data process may depend on the predictors
such as MCI status, covariates and the observed EMA cognitive
outcomes at Burst 1. The only requirement for the missing data
process is that conditional on MCI, covariates and Burst 1 EMA
cognitive data, the missing data at Burst 2 must be independent
of the unobserved Burst 2 cognitive performance.

The symbol search task

We note that we decided to scale the response times
in seconds to keep the above specified prior settings in the
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FIGURE 8

Histograms of person-specific estimates for key BDEM parameters based on data from the symbol search task. The horizontal axis shows the
(binned) parameter values while the vertical axis displays the frequency of occurrence of that value among participants.

estimation algorithm the same for the symbol search and for the
grid memory task data.

We did an initial data exploration by comparing the
differences in Burst 1 and Burst 2 manifest performances (i.e.,
no BDEM). For every person, we calculated their average
Burst 1 and Burst 2 reaction times, and created a difference
score based on these (Burst 2 – Burst 1) to see how their
performance changed across time. On average we found a 0.16s
improvement in reaction times (M = −0.16, 95% CI: [−0.20,
−0.12]), which was significantly different from 0 (t = −7.46,
df = 170, p = 4.28e−12). This would suggest that on average
participants got substantially faster in their reaction times in
a year’s time (between the two bursts) on this task. However,
analysis based on these simple aggregates is confounded by
practice effects. Next, we discuss how fitting the BDEM to this
data showed different results.

Group-level (population) estimates and
individual differences in the asymptote, change
of asymptote, learning rates and
intra-individual variability parameters based on
the Bayesian double exponential model

We found a considerable amount of individual variation
in asymptote, change of asymptote, learning rates and
intra-individual variability parameters. Figure 8 shows the
distributions of the person-specific point estimates of these
parameters. Correspondingly, Table 1 shows their group-level
averages (population mean estimates, e.g., βa,int for asymptote)
and the amount of individual differences in them (heterogeneity

TABLE 1 Group-level (population) estimates of Bayesian double
exponential model (BDEM) parameters based on data from the
symbol search task.

Process parameter Mean PSD

Asymptote averaged across individuals 2.83 0.06

Heterogeneity in asymptote (SD) 0.75 0.04

Change in asymptote averaged across individuals −0.07 0.03

Heterogeneity in change in asymptote (SD) 0.19 0.02

Intra-individual variability averaged across individuals 0.56 0.02

Heterogeneity in intra-individual variability (SD) 0.18 0.01

Learning rate across study, averaged across individuals 0.49 0.04

Heterogeneity in learning rate across study (SD) 0.27 0.02

Warm-up learning rate averaged across individuals 0.39 0.05

Heterogeneity in warm-up learning rate (SD) 0.14 0.03

PSD indicates posterior standard deviation of the estimates, which
quantifies standard error.

in terms of population standard deviation estimates, e.g.,
σa, for asymptote). The column labeled “Mean” displays a point
estimate for these parameters based on their posteriors, while
the column labeled “PSD” shows the corresponding standard
deviation around this point estimate, quantifying standard
error.

We can see that on average, the asymptote (i.e., peak
performance, βa, int) was 2.83 s (M = 2.83, PSD = 0.06) on this
task. This intercept value (and the ones below) is the across
person average corresponding to a participant who does not
have the MCI status, who is male, and whose age and years of
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education are at the sample mean level. There was considerable
between-person variability in the asymptote, as shown by the
standard deviation estimate (M = 0.75, PSD = 0.04) and the
histogram of the person-specific asymptote estimates (first plot
of Figure 8).

The (across-person) average difference in peak performance
(asymptotes) between the first and the second bursts (β4, int)
was −0.07 s (again, this corresponds to a participant who
does not have the MCI status, who is male, and whose age
and years of education are at the sample mean level), and it
was credibly negative (M = −0.07, PSD = 0.03). This suggests
that even when the retest effects were accounted for, there
was an improvement in reaction time performance across
bursts. However, the individual differences were considerable,
as shown in the second plot of Figure 8: for example,
for some participants, there was actually a slowing in
reaction times, as shown by their positive change in peak
performance estimate. In Section “Person-specific inference
on the change in asymptotic performance via Bayesian
probability distributions.,” we will show how we can further
scrutinize these individual-level estimates to get a probability
estimate on whether the detected change represents credible
decline in cognitive performance. Finally, we also note
that 171 participants did not have second burst data yet,
therefore their change estimates were informed by the
population mean so they were all concentrated around
−0.07.

The average intra-individual variation in RT (βσe, int) was
0.56 s (M = 0.56, PSD = 0.02), with a large amount of variation
across participants, quantified by the group-level standard
deviation of the intra-individual variation parameter (M = 0.18,
PSD = 0.01) and illustrated in the third plot of Figure 8. This
suggests that individuals differ from each other considerably
in terms of how much their cognitive performance fluctuates
across the days.

Finally, with respect to the learning rate, a quick visual
assessment of the plots in the second row of Figure 8 reveals
that person-specific learning rates across study (between bursts)
tend to be somewhat higher than the within-burst (warm-
up) learning rates (see also corresponding entries in Table 1:
M = 0.49 vs. M = 0.39); however, we can again see considerable
amount of individual differences. Next, we look at the results of
regressing these parameters on predictors to identify the sources
of the individual differences.

Explaining sources of individual differences in
the asymptote, change of asymptote, and
intra-individual variability parameters with the
Bayesian double exponential model

The person-specific asymptote, change in asymptote, intra-
individual variability, learning rate across study and warm-
up learning rate parameters were regressed on predictors
quantifying age at baseline (standardized to mean of 0 and

standard deviation 1), MCI status (coded as 0 and 1), sex
(with 0 for female and 1 for male) and years of education
(standardized similarly). Reported effects of age and education
were all corresponding to 1 SD unit increase (4.83 years for
baseline age, 3.55 years for years of education). Results on
the regression coefficients quantifying their associations are
summarized in Table 2. Just like in Table 1, the column labeled
“Mean” displays a point estimate for these parameters, while
the column labeled “PSD” shows the corresponding standard
error. The last two columns show the probability that the
regression coefficient is below and above 0, respectively, based
on the posterior probability mass. For a credible effect we want
to see at least 95% (0.95) probability of being either entirely
below 0 or entirely above 0. However, we will also discuss if
there was moderate evidence for effects, defined as at least 90%
(0.9) probability of being either entirely below 0 or entirely
above 0 (but not reaching the threshold of 0.95 for credible
effect).

The first part of Table 2 shows that individual differences in
asymptote (peak performance) were credibly linked to age, MCI
status and years of education. With older age at baseline, peak
performance reaction times showed credible slowing (0.11 s
for each standard deviation of age). With positive MCI status
there is also on average a 0.73 s slower peak performance
reaction time. In contrast, with more years of education, peak
performance reaction times tended to be faster [0.12 s faster
per 1 SD (3.5) increase in years of education]. We did not find
evidence for differences based on sex.

The second section of Table 2 summarizes the results
with respect to changes in peak performance over time – that
is between the two bursts in the study that were separated
on average by a year. We only found trending support for
association between age and change in peak performance: for
each additional year older at baseline, participants tended to
show a 0.03 s slowing of peak reaction times across the two
bursts. For this effect to be credibly different from 0 there was
0.94 probability, which is slightly below our 0.95 threshold for
credible effect. None of the other predictors showed credible
links with this parameter.

The third section of Table 2 shows that differences in
intra-individual variability in performance across time were
credibly linked to MCI status and years of education. With
positive MCI status there was a 0.15 s increase in the variability
(in standard deviation units), while participants with 1 SD
increases in years of education tended to show 0.04 s less
variation.

The last two sections of Table 2 summarize the links
between the learning rate parameters (across study and warm-
up) and the selected predictors. We found only one credible
link: participants with older age at baseline tended to show
faster warm-up rate, meaning that they reached their peak
performance faster in the second burst (0.05 s faster per one
standard deviation on change in age).
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TABLE 2 Summary of links between cognitive performance characteristics of the symbol search task and selected explanatory variables.

Process parameter Predictor Mean PSD <0 >0

Asymptote Age 0.11* 0.05 0.01 0.99

MCI status 0.73* 0.10 0.00 1.00

Sex 0.03 0.10 0.39 0.61

Years of education −0.12* 0.05 1.00 0.00

Change in asymptote Age 0.03ˆ 0.02 0.06 0.94

MCI status −0.03 0.05 0.74 0.26

Sex 0.01 0.04 0.37 0.62

Years of education −0.02 0.02 0.77 0.23

Intra-individual variability Age 0.01 0.01 0.25 0.75

MCI status 0.15* 0.03 0.00 1.00

Sex 0.01 0.02 0.34 0.66

Years of education −0.04* 0.01 1.00 0.00

Learning rate across study Age 0.01 0.02 0.38 0.62

MCI status −0.06 0.05 0.88 0.12

Sex −0.04 0.05 0.82 0.18

Years of education −0.01 0.02 0.68 0.32

Warm-up learning rate Age 0.05* 0.03 0.03 0.97

MCI status −0.06 0.05 0.88 0.12

Sex 0.01 0.05 0.41 0.59

Years of education −0.03 0.03 0.89 0.11

Estimates with an * are meaningfully different from zero (at least 95% probability of being either entirely above or below 0). Estimates with a ˆ denote moderate evidence for an effect (at
least 90% probability of being either entirely above or below 0). SD indicates posterior standard deviation of the estimates. Column “<0”/“>0” displays the probability of the parameter
being smaller/larger than 0.

The grid memory task

We did an initial data exploration for the grid memory
task−much like we did for the symbol search task−by
comparing differences in manifest performance between Burst
1 and Burst 2. We created person-specific difference scores
between Burst 1 and Burst 2 averages based on the error distance
measure. Across participants we found an improvement across
bursts, specifically 0.21 units less error (M = −0.21, 95%
CI: [−0.26, −0.15]), which was significantly different from 0
(t = −7.72, df = 170, p = 9.404e−13). This would suggest that
participants’ memory performance improved in a year’s time
(between the two bursts) on this task. However, as before, these
simple aggregates are confounded by practice effects. We discuss
results from the BDEM next.

Group-level estimates (population) estimates
and individual differences in the asymptote,
change of asymptote, learning rates, and
intra-individual variability parameters based on
the Bayesian double exponential model

Similar to the symbol search task, we found considerable
amount of individual variation in asymptote, change of
asymptote, learning rates and intra-individual variability
parameters. Figure 9 shows the distributions of the person-
specific point estimates of these parameters. Correspondingly,
Table 3 shows their group-level averages and the amount of

individual differences in them (following the same logic as in
Table 1).

We can see that on average, the asymptotic, peak
performance (βa, int) was 1.85 units of error (M = 1.85,
PSD = 0.09) on this task and that there was considerable
between-person variance in peak performance, as shown by the
standard deviation estimate (M = 0.69, PSD = 0.03) and the
histogram of the person-specific asymptote estimates (first plot
of Figure 9).

The (across-person) average difference in asymptotes (peak
performance) between the first and the second bursts (β4, int)
was 0.06 units of error (M = 0.06, PSD = 0.04). As opposed
to credible improvement in peak reaction times on the
symbol search task, this represents trending evidence for
decline in performance over time. The individual differences
in this peak performance change were also considerable,
as shown in the second plot of Figure 9: while for most
participants there was some level of decline in performance,
there were also some whose performance improved across
bursts.

The average intra-individual variation (βσe, int) was around
1 grid unit (M = 1.06, PSD = 0.02), with a large amount
of variation across individuals, quantified by the group-level
standard deviation of the intra-individual variation parameter
(M = 0.16, SD = 0.01) and illustrated in the third plot of Figure 9.
This provided further evidence that participants differ from
each other considerably in terms of how much their cognitive
performance fluctuates across the days.
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FIGURE 9

Histograms of person-specific estimates for key BDEM parameters based on data from the grid memory task. The horizontal axis shows the
(binned) parameter values while the vertical axis displays the frequency of occurrence of that value among participants.

Finally, with respect to the learning rate, we found a different
pattern than in the symbol search task: in this task the person-
specific learning rates across study (between bursts) tended to be
much lower than the within-burst (warm-up) learning rates, as
illustrated in the second row of Figure 9 (see also corresponding
entries in Table 3: M = 0.09 vs. M = 2.67); however, we can again
see large individual differences. We again look at the results of
regressing these parameters on predictors to identify the sources
of the individual differences next.

Explaining sources of individual differences in
the asymptote, change of asymptote, and
intra-individual variability parameters with the
Bayesian double exponential model

The first part of Table 4 shows that individual differences
in asymptote (peak performance) were credibly linked to
MCI status, sex and years of education. With positive MCI
status the peak performance error rates were higher (on
average by 0.44 units of error). In contrast, with being male
and with more years of education, peak performance error
rates tended to be lower (0.44 and 0.26 units of error,
respectively). We did not find evidence for differences based on
age.

The second section of Table 4 summarizes the results with
respect to changes in peak performance over time – that is
between the two bursts in the study that were separated on
average by a year. We found credible support for association
between age and change in peak performance: participants who
were older at baseline tended to show worsening error rates (by
0.05 units of error) across the two bursts. In contrast, with more

TABLE 3 Group-level (population) estimates of BDEM parameters
based on data from the grid memory task.

Process parameter Mean PSD

Asymptote averaged across individuals 1.85 0.09

Heterogeneity in asymptote (SD) 0.69 0.03

Change in asymptote averaged across individuals 0.06 0.04

Heterogeneity in change in asymptote (SD) 0.25 0.03

Intra-individual variability averaged across individuals 1.06 0.02

Heterogeneity in intra-individual variability (SD) 0.16 0.01

Learning rate across study, averaged across individuals 0.09 0.03

Heterogeneity in learning rate across study (SD) 0.04 0.01

Warm-up learning rate averaged across individuals 2.67 0.69

Heterogeneity in warm-up learning rate (SD) 0.99 0.23

PSD indicates posterior standard deviation of the estimates, which
quantifies standard error.

years of education participants tended to show improvement
in error rate over time (0.04 units less). None of the other
predictors showed credible links with this parameter.

The third section of Table 4 shows that differences in intra-
individual variability in performance across time were credibly
linked to age, sex, and education level: with older age, being
male, and with more years of education, there was less variability
(0.03, 0.08, and 0.02 in standard deviation units, respectively).

The last two sections ofTable 4 summarize the links between
the learning rate parameters (across study and warm-up) and
the selected predictors. We found credible links only with across
study learning rates, but the effect sizes were low. Older age at
baseline, males, and participants with more years of education
tended to be faster across study learning rates.
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TABLE 4 Summary of links between cognitive performance characteristics of grid memory task and selected explanatory variables.

Process parameter Predictor Mean PSD <0 >0

Asymptote Age 0.01 0.05 0.39 0.61

MCI status 0.44* 0.10 0.00 1.00

Sex −0.44* 0.10 1.00 0.00

Years of education −0.26* 0.05 1.00 0.00

Change in asymptote Age 0.05* 0.03 0.03 0.97

MCI status 0.05 0.06 0.22 0.78

Sex −0.05 0.05 0.84 0.16

Years of education −0.04* 0.03 0.95 0.05

Intra-individual variability Age −0.03* 0.01 0.99 0.01

MCI status 0.01 0.03 0.35 0.65

Sex −0.08* 0.03 1.00 0.00

Years of education −0.02* 0.01 0.96 0.04

Learning rate across study Age 0.01* 0.10 0.03 0.97

MCI status −0.01 0.03 0.82 0.18

Sex 0.03* 0.02 0.03 0.97

Years of education 0.02* 0.01 0.01 0.99

Warm-up learning rate Age −0.08 0.14 0.73 0.27

MCI status 0.03 0.86 0.56 0.44

Sex −0.01 0.33 0.52 0.48

Years of education −0.13 0.17 0.78 0.22

Estimates with an * are meaningfully different from zero (at least 95% probability of being either entirely above or below 0). Estimates with a ˆ denote moderate evidence for an effect (at
least 90% probability of being either entirely above or below 0). SD indicates posterior standard deviation of the estimates. Column “<0”/“>0” displays the probability of the parameter
being smaller/larger than 0.

Person-specific inference on the
change in asymptotic performance via
Bayesian probability distributions

As stated before, the result of the Bayesian inference is a
posterior probability distribution for every model parameter.
Based on these distributions, probabilities on different ranges
of the parameters can be calculated. This means, for example,
decisions on the “significance” of regression effects do not need
to be binary with an implausible null hypothesis of absolutely
no difference. Instead, we can just make an informed decision
by looking at the posterior probability distribution of the
regression coefficient.

Inference can be done similarly for the person-specific
parameters which are likely indicators of dementia risk, as on
the change in peak performance across bursts. An example is
shown in Figure 10 for symbol search and Figure 11 for grid
memory data featuring the same six example participants as in
Figures 6, 7. We can decide based on theoretical arguments
whether a less than 0.01 s difference in peak performance (or
0.01 unit of error) represents a practically relevant effect. Using
Monte Carlo integration, we can then calculate how much of
the posterior mass falls above 0.01 (indicated with a vertical
line in Figures 10, 11) – resulting in the probability of a
practically relevant decline based on the participant’s change in
performance on a particular task between two bursts.

In Figure 10, we can see that for the participants in the
first row and the first one in the second row, the posterior
probabilities do not provide much evidence for practically
relevant change – it is approximately the same amount of

probability mass on both sides of 0. However, for the participant
in the second plot of the second row of Figure 10, there is a 96%
chance of such decline in symbol search performance, and the
magnitude of decline is around 0.25 s, based on the peak of the
posterior distribution (a more accurate point estimate can also
be calculated). If we check the same participant’s change in peak
performance estimate from the grid memory task in Figure 11,
there is a 94% probability of decline there, with the magnitude of
decline being a bit less than 0.25 units of error, based on the peak
of the posterior distribution. Inferences like this could be drawn
for every person to evaluate their individual dementia risk.

As can be seen in Figure 11, the participants in the last row
show high probabilities of cognitive decline based on their grid
memory performance across the two bursts. For the participant
in the third plot of the second row, there was already some
support for decline on the symbol search task (70% chance,
see Figure 10). Numerical probability estimates could also be
combined together in a predictive modeling framework for
efficient inference.

Discussion

Peak performance and changes in peak
performance across bursts

In our analyses above, we aimed to isolate peak performance
from retest effects in repeated measures of cognitive
performance. We found that individual differences in the
peak performance estimates were meaningfully related to the
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FIGURE 10

Posterior probabilities of change in the symbol search task performance for 6 EAS participants.

FIGURE 11

Posterior probabilities of change in the grid memory task performance for 6 EAS participants.

selected predictors. For example, MCI status was linked to
decreased peak performance in both tasks.

When we explored the grid memory data by comparing
burst averages, we found significant improvement across
bursts. In contrast, the BDEM showed moderate evidence
for decline in cognitive performance across bursts on this

task. This suggests that disentangling learning processes from
other latent cognitive changes is critical for this type of data.
Individual differences in the change in peak performance
across bursts were plausibly related to age (more error)
and education (less error), further supporting the usefulness
of our approach.
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In contrast, on the symbol search task there was a 70-ms
improvement across bursts in peak performance RT, even when
retest learning effects were taken into account with the BDEM.
However, this improvement is still smaller than the difference
in burst averages (160 ms improvement), indicating that some
retest learning was indeed accounted for by the BDEM. There
are several possible reasons why we found improvement in peak
RT on this task. It could be partly because we only have two
bursts to examine change in peak performances across the years,
so that we might not have had enough information to accurately
capture the change process. Another reason for improvement in
RTs on the symbol search task could be related to the fact that
we were only modeling RTs from correct trials. Modeling all RTs
in combination with accuracies for example in a drift diffusion
model framework (see, e.g., Wagenmakers, 2009) could provide
more insight.

Within-person variability in
performance across days

While variability in performance is generally acknowledged
in repeated assessments of cognitive performance, it is treated
most often as a nuance. In the current study, we found that in the
symbol search data, participants with MCI status showed more
variability across days in their reaction times. Also, consistently
across the two tasks, individuals with more years of education
exhibited less variability. Paired with our previous findings that
intra-individual variation in performance predicts MCI status,
this may suggest that day-to-day variation reflects individual
differences in cognitive reserve (Cerino et al., 2021).

Learning rates across study and within
a burst

Learning effects confound the detection of cognitive change
by biasing estimates of the underlying performance on a
given assessment. In our study, we distilled these from
peak performance estimated, but also considered them as
potential indicators of cognitive change/decline given age- and
disease-related impacts on brain subsystems that support
learning. We extracted features of short- and long-timescale
learning/retention in terms of within-burst or warm-up learning
rate and across the study learning rate. On the symbol search
task, we only found limited evidence (88% probability) of
individuals with MCI status exhibiting slower learning; however,
this effect was consistent for across study and warm-up learning
rates (see Table 2). Surprisingly, on this task the only credible
link was between learning and age, where participants who were
older at baseline tended to show faster warm-up learning rate.
Similar credible age effect was found in the grid memory data
as well, although the effect was small and these participants

also tended to have worse peak performance, therefore the
steep learning might not indicate better brain health in this
context.

Limitations and future directions

The double negative exponential model applied to measured
burst data has the potential to provide a significant contribution
toward accurately detecting and quantifying cognitive decline
by disentangling practice effects from latent indicators
of cognitive performance (i.e., asymptotic performance).
It also provides clinically useful information in terms of
personalized probabilities of impairment and decline for
every individual, which can be useful to a clinician. We see
several extensions of the BDEM approach for future projects.
First, the BDEM parameter estimates on different tasks
could be compared in terms of their predictive performance
of neurodegenerative diseases. The goal is to optimize a
model that has several of the key BDEM parameters as
indicators, potentially from various cognitive domains (i.e.,
using more than one type of cognitive task). Second, while
the current analysis did not yield promising results on
linking learning process parameters with MCI status, it is
possible that further exploration with indicators that are
more specific to ADRD (such as blood biomarkers) could
provide more insight. This is particularly relevant given
that classification of MCI is a heterogenous classification,
which as we highlighted in the introduction can have limited
reliability. Finally, the BDEM could be combined with cognitive
process models, such as the drift diffusion model that breaks
down performances to meaningful cognitive characteristics.
Combining such a drift diffusion modeling approach with
the BDEM would allow us to simultaneously model and
map learning features (e.g., learning rate) and changes
in peak performance (and all associated random effects)
onto cognitive (drift rate), and meta-cognitive (boundary
separation) parameters.
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Practice e�ects in cognitive
assessments three years later in
non-carriers but not in
symptom-free mutation carriers
of autosomal-dominant
Alzheimer’s disease:
Exemplifying procedural
learning and memory?

Ove Almkvist1,2,3* and Caroline Gra�2,4

1Divisions of Clinical Geriatrics, Department of Neurobiology Care Sciences and Society, Karolinska

Institutet, Stockholm, Sweden, 2Theme Inflammation and Aging, Karolinska University Hospital,

Stockholm, Sweden, 3Department of Psychology, Stockholm University, Stockholm, Sweden,
4Divisions of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska

Institutet, Stockholm, Sweden

Practice e�ects (PEs) defined as an improvement of performance in cognition

due to repeated assessments between sessions are well known in unimpaired

individuals, while less is known about impaired cognition and particularly in

latent brain disease as autosomal-dominant Alzheimer’s disease. The purpose

was to evaluate the general (across tests/domains) and domain-specific PE

calculated as the annual rate of change (ARC) in relation to years to the

estimated disease onset (YECO) and in four groups of AD: asymptomatic

mutation carriers (aAD, n= 19), prodromal, i.e., symptomatic mutation carriers,

criteria for AD diagnosis not fulfilled (pAD, n = 4) and mutation carriers

diagnosed with AD (dAD, n = 6) as well as mutation non-carriers from the

AD families serving as a healthy comparison group (HC, n = 35). Cognition

was assessed at baseline and follow-up about 3 years later by 12 tests

covering six domains. The aAD and HC groups were comparable at baseline

in demographic characteristics (age, gender, and education), when they were

in their early forties, while the pAD and dAD groups were older and cognitively

impaired. The results on mean ARC for the four groups were significantly

di�erent, small, positive, and age-insensitive in the HC group, while ARC was

negative and declined with time/disease advancement in AD. The di�erences

between HC and aAD groups in mean ARC and domain-specific ARC were not

significant, indicating a subtle PE in aAD in the early preclinical stage of AD.

In the symptomatic stages of AD, there was no PE probably due to cognitive

disease-related progression. PEs were the largest in the verbal domain in both

the HC and aAD groups, indicating a relationship with cognitive vulnerability.
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The group-related di�erence in mean ARC was predominant in timekeeping

tests. To conclude, the practice e�ect in over 3 years was suggested to be

linked to procedural learning and memory.

KEYWORDS

practice e�ect, cognition, Alzheimer’s disease, autosomal-dominant, normal ageing,

progression

Introduction

The practice or retest or learning effect refers to a

phenomenon that individuals, who are assessed a second time

(not within the same session) with the same neuropsychological

test(s), show improved performance in the absence of an

intervention. The practice effect (PE) occurs both in normal

individuals (Calamia et al., 2012; Machulda et al., 2013, 2017;

Gross et al., 2015; Jutten et al., 2020; Samaroo et al., 2020; Lim

et al., 2021) and in patients diagnosed with cognitive impairment

(Machulda et al., 2013; Gross et al., 2018; Jutten et al., 2020).

The occurrence of PE is so common that the absence of PE is

considered a potential marker of disease progression (Zehnder

et al., 2007; Hassenstab et al., 2015; Elman et al., 2018; Jutten

et al., 2020; De Simone et al., 2021) and disease (Cooper et al.,

2004; Zehnder et al., 2007). The common knowledge of PE

is presented and summarized in large meta-analyses (Calamia

et al., 2012; Duff and Hammers, 2020; Jutten et al., 2020).

There are a number of core issues regarding PE. The size

has been estimated to be 0.2–0.6 standard deviations in normal

individuals (Van der Elst et al., 2008) although smaller and larger

estimates have been reported (Bartels et al., 2010; Scharfen et al.,

2018a; Duff and Hammers, 2020). The size of the effect may

vary with cognitive domain and the specific test (Calamia et al.,

2012; Salthouse, 2015; Gross et al., 2018; Samaroo et al., 2020),

premorbid/baseline level of cognitive function (Bartels et al.,

2010; Arendasy and Sommer, 2017; Scharfen et al., 2019), test

experience (Salthouse, 2015), task requirement (Arendasy and

Sommer, 2017; Scharfen et al., 2018b), personality, e.g., anxiety

(Jendryczko et al., 2019), length of retest intervals (Falleti et al.,

2006; Calamia et al., 2012; Machulda et al., 2013; Salthouse,

2015; Scharfen et al., 2018b; Jutten et al., 2020), retest interval

conditions, e.g., treatment (Jacobs et al., 2017; Jutten et al., 2020;

Wang et al., 2020), demographic characteristics such as age

(Salthouse, 2010; Calamia et al., 2012) and education (Bartels

et al., 2010), type and severity of disease ranging from dementia

(Cooper et al., 2004; Gross et al., 2015, 2018; Sánchez-Benavides

et al., 2016), to mild cognitive impairment (Cooper et al., 2004;

Bläsi et al., 2009; Calamia et al., 2012; Duff and Hammers, 2020),

presence of comorbidity and risk factor for cognitive decline

like APOE status and AD biomarkers (Zehnder et al., 2007;

Machulda et al., 2013; Oltra-Cucarella et al., 2018; Jutten et al.,

2020; Lim et al., 2021), and relationship with brain findings (Duff

et al., 2017, 2018; Wilson et al., 2018; Jutten et al., 2020; Samaroo

et al., 2020). Although there is a lot of knowledge regarding

PE, there is still incomplete knowledge of serial assessments

(Ivnik et al., 2000; Bartels et al., 2010; Heilbronner et al., 2010;

Wilson et al., 2018; Scharfen et al., 2019; Jutten et al., 2020;

Samaroo et al., 2020; Lim et al., 2021) and particularly on

PE in asymptomatic latent disease in the preclinical stage of

autosomal-dominant AD (adAD).

The purpose of the study was to investigate PE in repeated

assessments of cognitive functions in carriers and non-carriers

from six families with adAD. These individuals could be divided

into four groups associated with varying degrees of present

cognitive impairment: mutation carriers diagnosed with clinical

dementia of AD (dAD), mutation carriers with symptoms but

unfulfilled diagnostic criteria of AD, i.e., prodromal AD (pAD)

and mutation carriers lacking symptoms, i.e., asymptomatic AD

(aAD), who will develop Alzheimer’s dementia in future, and

finally non-carriers from adAD families serving as a healthy

comparison group (HC). These individuals were followed with

repeated clinical examinations including cognitive assessment

of performance in five domains. These domains are selectively

sensitive to brain involvement in AD; episodic memory is

considered most sensitive and affected early in the disease

course, while verbal knowledge is considered relatively stable

and affected relatively late in the disease course.

In adAD, there is an option to characterize each individual

in terms of disease advancement, i.e., years to estimated clinical

onset (YECO; Bateman et al., 2012; Almkvist et al., 2017).

Following this outline, the first aim was to investigate the

degree of PE measured as the annual rate of change (ARC)

between two assessments in the four groups of AD participants

(dAD, pAD, aAD, and HC). The hypothesis was that groups

differed in relation to stage of disease progression showing PE

in HC and possibly in aAD followed by the absence of PE in

pAD and dAD. The second aim was to compare PE in specific

cognitive domains/tests in HC and AD. The hypothesis was

that PE varies between cognitive domains in relation to regional

brain involvement linked to brain vulnerability in AD and aging.

The third aim was to identify when PE is observed, or conversely

when PE is not observed in disease progression in mutation

carriers. The hypothesis was that PE is inversely associated with
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disease progression (YECO) in mutation carriers and relatively

unrelated to age in non-carriers (YECO).

Materials and methods

Participants

Adult members of six families carrying an early onset

AD mutation were invited to a comprehensive clinical

examination at the Memory Clinic, Karolinska University

Hospital Huddinge, Sweden. Ninety-four individuals accepted

to participate in the baseline examination and most individuals

accepted follow-up examination (n = 64). There was no

significant difference between the 94 and the 64 individuals in

demographics (age, gender, and years of education), cognitive

screening (MMSE), or mutation status (carrier/non-carrier) (all

p-values of >0.1). The study concerned 29 mutation carriers

from six adAD families and 35 non-carriers from the same

six families.

Three families carried an APP mutation the Swedish APP

K670N/M671L (Axelman et al., 1994), or the Arctic APP E693G

mutation (Nilsberth et al., 2001), or the London APP V717I

mutation (Goate et al., 1991). Three families carried a PSEN1

I143T mutation (Keller et al., 2010); or the M146V mutation

(Haltia et al., 1994); or the H163Y mutation (Axelman et al.,

1998).

In autosomal-dominant AD families, it is possible to

estimate each individual’s time (years) to the expected clinical

onset (YECO) of symptoms based on information from previous

mutation carriers in each family. The family-specific mean age

at onset of clinical symptoms is 36 ± 2 years for PSEN1 I143T

(Keller et al., 2010), 36± 3 years for PSEN1M146V (Haltia et al.,

1994), 51 ± 7 years for PSEN1 H163Y (Axelman et al., 1998;

Thordardottir et al., 2015), 54 ± 5 years for APPSWE (Axelman

et al., 1994; Thordardottir et al., 2015), 56± 3 years for APPARC
(Nilsberth et al., 2001; Thordardottir et al., 2015), and 57 ±

5 years for London APP V717I (Goate et al., 1991). For each

participant, both mutation carriers and non-carriers, YECO was

calculated as the difference between the individual’s age at the

time of the examination minus the family-specific age at clinical

onset, i.e., YECO = the individual’s present age—the expected

family-specific onset of symptoms.

Procedure

All participants, mutation carriers and non-carriers, had

a comprehensive clinical examination at each visit, which

included somatic, neurological, psychiatric status, cognitive

screening with the Mini-Mental Status Examination (MMSE;

Folstein et al., 1975) and assessment of cognitive functions (see

below), sampling of blood, urine and cerebrospinal fluid for

standard analyses, and magnetic resonance imaging of brain

anatomy. Although clinical examinations started as far back as

1993, essentially the same protocol was followed throughout

the study.

Diagnosis

Based on the clinical examination at baseline, six mutation

carriers were diagnosed as having dementia according to

the Diagnostic and Statistical Manual of Mental Disorders

(DSM-IV) (American Psychiatric Association, 1994) and AD

according to the Alzheimer’s Disease and Related Disorders

Association (NINCDS-ARDRA) criteria (McKhann et al.,

1984). These individuals constitute the dAD group. Mild

Cognitive Impairment (MCI) was diagnosed following

revised Petersen criteria (Winblad et al., 2004) and four

mutation carriers were diagnosed as having MCI but

criteria for AD were not fulfilled; they constitute the

prodromal AD group. The 19 non-diagnosed mutation

carriers had no AD-related symptoms and were cognitively

unimpaired and considered to be asymptomatic although

they were mutation carriers; they constitute the asymptomatic

AD group.

At the first follow-up examination about 3 years after the

baseline examination, 10 mutation carriers were diagnosed

with AD (three pAD and one aAD at baseline developed

dementia at follow-up), two mutation carriers were diagnosed

as prodromal at follow-up, i.e., symptomatic, but AD criteria

were not fulfilled (one aAD at baseline changed into pAD and

one pAD remained as pAD). Seventeen mutation carriers were

still evaluated as asymptomatic at follow-up. All individuals

in the HC group were healthy and cognitively unimpaired.

One healthy non-carrier had lifelong selective non-progressive

cognitive difficulties due to a specific syndrome (topographical

disorientation); the data for this participant were retained in

the study but excluded for selectively impaired tests caused

by the specific syndrome. Another non-carrier had been a

boxer and participated in tournaments in young adulthood

and later he had been affected by multiple small brain

infarcts in middle age, which motivated to exclude him from

the study.

Procedure

All individuals went through a standard comprehensive

clinical examination, which included an interview with

the participant and often with a close informant. The

examination included somatic, neurological, and psychiatric

statuses, sampling of blood, and cerebrospinal fluid [(CSF);

(beta-amyloid, total, and phosphorylated tau)], brain

imaging using magnetic resonance imaging (e.g., global
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atrophy); and electroencephalography examination, and

assessment of cognitive function (see below). The same

protocol has been followed throughout the study during

follow-up visits.

Assessment of cognitive function

Premorbid global cognitive function was assessed based

on demographic information and reading test results

(Tallberg et al., 2006). The following tests were used to

assess cognitive domains: the Information and Similarities

tests from the Wechsler Adult Intelligence Scale-Revised

(Wechsler, 1981; Bartfai et al., 1994; WAIS-R) for verbal

ability, the Block Design from WAIS-R and the Rey–

Osterrieth Copy tests (Lezak et al., 2004) for visuospatial

ability, the Digit Span from WAIS-R and the Corsi Span

(Lezak et al., 2004) for short-term memory (STM), the

Rey Auditory Verbal Learning test, including learning and

retention after 30min, and the Rey–Osterrieth retention

after 30min (Lezak et al., 2004) for verbal and visuospatial

episodic memory, the Trail Making A test (Lezak et al.,

2004) for attention and the Digit Symbol from WAIS-R

and the Trail Making B (Lezak et al., 2004) for executive

function. Raw scores were converted to z-scores using a

reference group of healthy adults (Bergman et al., 2007). The

z-scores are always directed so that positive values indicate a

favorable performance.

Practice e�ect

The main outcome measure was the annual rate of

change (ARC) defined as the unweighted score of the test

result in z-score at the second visit—test result in z-score

at the first visit divided by the time interval in years (one

decimal) between the first and second visits for each of the

12 tests. Unweighted ARC score was computed for each

domain; verbal (Information and Similarities, visuospatial

(Block Design and Rey–Osterrieth Copy), STM (Digit Span and

Corsi Span), episodic memory (RAVL learning and retention

and Rey–Osterrieth retention), attention (TMTA), and finally

executive (Digit Symbol and TMTB). Missing data occurred

infrequently (total number of observations = 12 tests × 2

visits × 64 participants = 1,536, number of missing data

= 92, 6.0%, half of the missing data occurred in RAVL

retention due to inability, recorded as missing and not

as 0).

The follow-up examination occurred after about 3 years

(M±SD: 3.0 ± 3.5, range 0.6–20 years). Most participants

had retest intervals between 2 and 4 years. The few extremely

short and long retest intervals were due to participants’

personal conditions.

Statistical analyses

Descriptive statistics were used for background

characteristics. Bar graphs and scatter plots were used to

visualize the results. A one-sample t-test was used to analyze if

ARC deviated from 0. A one-way ANOVA was used to analyze

group differences on ARC. A multivariate ANOVA was used

to analyze the main effects of group and domain as well as the

group-by-domain interaction on ARC.

Results

The background characteristics of participants in the four

groups at the baseline visit are shown in Table 1. There was

no significant difference between groups in age, gender, years

of education, retest interval, premorbid IQ, and the number of

APOE e4 alleles (all p-values of >0.1), while groups differed

significantly in YECO (F = 4.84, df=3/59, p < 0.01, η2 =

0.20) and global cognition assessed by MMSE (F = 17.96, df

= 3/42, p < 0.001, η2 = 0.56) in relation to the progression

of AD.

The cognitive test results at baseline in each test for the

HC and AD (aAD, pAD, and dAD) groups are shown in

Supplementary Table 1. The groups differed significantly in 10

of the 12 tests and most strongly in episodic memory (RAVL

learning, RAVL retention, and Rey– Osterrieth retention),

executive function (Digit Symbol and TMTB), and visuospatial

performance (Block Design) (see Table 2). The HC and aAD

groups did not differ significantly in any test (all p-values

of >0.1). The aAD and pAD groups differed significantly in

two tests: TMTA (t = 2.60, df = 21, p < 0.05, Cohen’s d =

1.31) and TMTB (t = 3.50, df = 19, p < 0.01, Cohen’s d =

1.94). The pAD and dAD groups did not differ significantly

in any test (all p-values of >0.1), although the mean z-

scores were much poorer in the dAD group compared to the

pAD group.

I. PE across cognitive tests in AD groups (aAD, pAD, and

dAD) in comparison to HC

The practice effect was evaluated by the mean ARC in the

12 cognitive tests for the AD (aAD, pAD, and dAD) and HC

groups. In Figure 1, a bar graph shows the mean ARC for the

four groups. The hypothesis that the mean ARC equals 0 was

rejected for the HC (t = 2.89, df = 34, p < 0.01, Cohen’s d =

0.49) and dAD (t = 4.57, df = 4, p < 0.01, Cohen’s d = 2.04)

groups, but not for the aAD and pAD groups (p-value of >0.1).

ThemeanARC index differentiated the groups significantly (F=

14.59, df = 3/63, p < 0.001, η2 = 0.88). The difference in mean

ARC between the HC (M±SD: 0.05 ± 0.12) and aAD (M±SD:

0.01 ± 0.17) groups was not significant (p > 0.1), while the

difference in mean ARC between the aAD (M±SD: 0.01± 0.17)

and pAD (M±SD: −0.28 ± 0.44) groups was significant (t =

2.37, df= 22, p< 0.05, Cohen’s d= 1.19). The difference in ARC
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TABLE 1 Background characteristics at baseline in non-carriers (Healthy Comparison group, HC) and mutation carriers with AD (asymptomatic,

prodromal and diagnosed AD).

Non-carriers Mutation carriers

HC Asymptomatic Prodromal Diagnosed AD

N (females/males) 35 (17/18) 19 (6/13) 4 (1/3) 6 (2/4)

Age, y 39.7± 12.9 37.8± 10.1 51.3± 7.1 49.6± 7.1

Range, y 17–62 21–53 41–57 40–56

Education, y 11.0± 2.3 11.8± 2.1 12.5± 3.1 9.7± 1.8

Range, y 7–18 9–16 10–17 7–12

YECO at 1st visit, y −9.5± 6.7 −12.8± 8.1 −0.1± 2.3 +0.6± 5.5

Range −27 to+10 −26 to−3 −4 to+1 −6 to+6

Retest interval, y 3.4± 2.4 3.0± 1.9 3.3± 2.9 1.9± 0.8

Range, y 1–11 1–20 1–8 1–3

Premorbid IQ, iq-score 104± 7.7 110± 8.4 108± 9.8 111± 8.3

Range 91–116 94–123 97–116 97–111

MMSE, score 29.0± 1.6 28.8± 1.7 26.8± 1.5 21.0± 5.3

Range, score 23–30 27–30 24–28 14–26

APOE e4, frequency 10/35 7/19 0/4 2/6

TABLE 2 Practice e�ects expressed as the Annual Rate of Change (ARC) across cognitive domains at baseline in non-carriers (Healthy Comparisons

group, HC) and mutation carriers varying in stage of AD disease course (asymptomatic AD and combined prodromal AD and dementia AD).

Non-carriers Mutation carriers

Domain HC aAD pAD and dAD P η
2

Mean cognition +0.05± 0.11 +0.01± 0.17 −0.35± 0.33 *** 0.40

Verbal +0.19± 0.36 +0.10± 0.17 −0.13± 0.36 ** 0.15

Visuospatial +0.06± 0.34 −0.16± 0.68 −0.50± 0.49 * 0.11

STM −0.02± 0.37 −0.02± 0.14 −0.26± 0.31 * 0.12

Episodic memory +0.08± 0.26 −0.01± 0.16 −0.16± 0.28 Ns 0.08

Executive function +0.04± 0.28 −0.05± 0.12 −0.41± 0.62 *** 0.23

Attention −0.02± 0.40 +0.04± 0.28 −0.37± 1.04 ** 0.17

Significance and eta-square (η2) from one-way (group) ANOVA on each domain.

ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001.

between the pAD (M±SD: −0.28 ± 0.44) and dAD (M±SD:

−0.42± 0.21) was not significant (p > 0.1).

II. PE in cognitive tests/domains in HC and AD (aAD, pAD,

and dAD) groups

The practice effect was evaluated by means of ARC in each

cognitive test for the HC and AD groups; the descriptive data

are shown in Supplementary Table 2. The four groups were

significantly differentiated in 8 of the 12 tests. The practice effect

was strongest in three tests, in which performance was measured

by timekeeping (Digit Symbol, TMTA, and TMTB). The size

of PE in the HC group varied between tests from the largest

in the Similarities test (z = +0.23) followed by Information

(z = +0.15) and RAVL learning and Rey–Osterrieth retention

(z = +0.11) and Block Design (z = 0.08) and small in four

tests (Digit Span, RAVL retention, Digit Symbol, and TMTB).

Unexpectedly, the PE was negative in three tests (Rey–Osterrieth

Copy, Corsi Span, and TMTA). The pairwise group differences

were not significant in any test for the HC vs. aAD groups and

the pAD vs. dAD groups (all p-values of >0.1) probably due to

small sample sizes.

To increase the sample size in groups, the 12 test results

were aggregated into six a priori cognitive domains: verbal

(Information and Similarities), visuospatial (Block Design and

Rey–Osterrieth Copy), STM (Digit Span and Corsi Span),

episodic memory (RAVL learning, RAVL retention, and Rey–

Osterrieth retention), executive function (Digit Symbol and

TMTB), and attention (TMTA). The main outcome of a

multivariate analysis (MANOVA) with domain as within
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FIGURE 1

A bar graph showing the mean annual rate of change (ARC) with error bars in HC (non-carriers), aAD (asymptomatic mutation carriers), pAD

(symptomatic mutation carriers, AD diagnosis nor fulfilled), and dAD (mutation carriers with AD diagnosis).

independent factor and group as between factor on ARC as

dependent factor showed that the group effect was significant

(F = 7.14, df = 3/55, p < 0.001, η2 = 0.28), while the domain,

as well as the group-by-domain interaction effects, were not

significant (p-value of >0.1).

Still, the sample size was small in the pAD and dAD groups,

so these groups were combined into a symptomatic AD (sAD)

group encompassing mild and moderate cognitive impairment.

The domain-specific ARC data for the three groups and the six

cognitive domains are shown in Table 2. The group effect was

significant in five of the six domains (F = 10.89, df = 2/56, p

< 0.001, η2 = 0.28). The domain effect was not significant (p =

0.08), and the group-by-domain interaction was not significant

(p > 0.1). The addition of APOE e4 and/or education as

covariates did not influence the outcome (p-value of >0.1).

The largest PE in the HC group was seen in the verbal

domain (z=+0.19), and this was statistically different from 0 (p

< 0.01). In the aAD group, PEwas largest in the verbal domain (z

=+0.09, p < 0.05). In the sAD group, some retest changes were

negative and significant: visuospatial (z=−0.39, p< 0.05), STM

(z =−0.33, p < 0.05), and executive (z =−0.44, p<0.05).

III. PE in relation to disease advancement in HC and AD

(aAD, pAD, and dAD) groups

The relationship between PE and time of disease progression

(YECO) was analyzed including all participants. It was

hypothesized that PE is relatively stable in healthy individuals

but varies with the degree of cognitive impairment and finally

disappears in AD according to previous research. In Figure 2,

a scatter plot is presented showing the mean ARC in relation

to the time of disease advancement (YECO) for all participants

divided into two groups, HC vs. AD. The graph visualized

the regression line and the 95% confidence interval for the

two groups. The regression for the HC group was linear

and practically invariant in relation to time (r = 0.02). The

equation for the HC group was ARC = 0.058 + 0.000 x

YECO, i.e., PE = 0.058. The regression for the AD group

(combining the aAD, pAD, and dAD into one AD group) was

best described by a linear equation that was significant with

YECO as a single predictor (r = 0.53, F = 10.54, df = 1/27,

p < 0.05, r2 = 0.28); the equation runs as follows: mean

ARC = −0.267 – 0.530 × YECO. The intersection between

the HC and AD groups occurred at YECO∼ −20, i.e., about

20 years before the estimated clinical onset. Looking at the

intersection of confidence intervals, the HC and AD groups were

separated at YECO∼ −12. Compared to the linear model, a

curvilinear model was less powerful as well as models, in which

other possible predictors (APOE e4 and/or years of education)

were added. The alternative models did not increase the

explanatory power.

Looking at Figure 2, a number of individuals both in the

HC and AD groups were obvious outliers. In the HC group,

three individuals had high positive ARC values (>0.30). In the

AD group, there were at least three positive outliers (ARC > 0

and YECO > −4 close to the estimated onset) and five negative

outliers far below the lower confidence line.

Next, the relationship was analyzed in each of the six

domains. The non-linear regression of ARC in each domain

on time (YECO) is reported as LOcally WEighted Scatterplot
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FIGURE 2

A scatter plot showing the mean annual rate of change (ARC) in HC and all AD (aAD, pAD, and dAD) in relation to years to estimated clinical

onset (YECO) with a 95% confidence interval surrounding the linear regression line.

Smoothing lines, see Supplementary Figures 1–6. For the HC

group, the regression lines were practically linear and parallel to

the X-axis and ARC was very close to 0 in all domains, although

relatively small for the entire time course that was covered by

the study, see Figure 3 and Supplementary Table 1. For the AD

group, the mean ARC was positive in the very early preclinical

stage (YECO < −20), but later the mean ARC turned into

negative ARC values in all six domains that increased with time,

see Figure 3 and Supplementary Table 1. The decline started

early in the executive and episodic memory domains about 10

years before clinical onset. The decline in other domains began

later and was relatively close to the clinical onset of YECO.

Discussion

The study of PE with repeated cognitive assessments in

mutation carriers and non-carriers from six families with

autosomal-dominant Alzheimer’s disease included mutation

carriers varying in the stage of disease development in addition

to healthy non-carriers. The carriers were diagnosed with

Alzheimer’s Disease (dAD), or prodromal AD expected to

develop into dementia in the near future (pAD) or were lacking

symptoms and regarded as asymptomatic although they will

develop dementia in the distant future (aAD). All participants

were examined at a memory clinic with a standardized protocol

for patients with suspected dementia including a cognitive

assessment with 12 tests covering six domains.

The first aim was to study PE measured as the annual rate of

change (ARC) in cognition in the four groups (dAD, pAD, aAD,

and HC). Results showed that PE aggregated across cognitive

tests was positive in HC (M±SD: 0.056± 0.115), which is lower

than reported in the previous literature (Van der Elst et al.,

2008), probably depending on the length of the retest interval

that was relatively long in this study (about 3 years in HC, aAD,

and pAD, while it was about 1 year in dAD) compared short

in many studies (Gross et al., 2018; Jutten et al., 2020; Samaroo

et al., 2020). The hypothesis that mean ARC was equal to 0 was

rejected in HC, but not in aAD implying that PE was absent or

too small to be observed in aAD. The PE inHCwas larger than in

aAD individuals (M±SD: 0.007± 0.170), who lacked symptoms

and were cognitively unimpaired despite carrying a mutation

that will result in AD in the future. To speculate, the aAD

individuals may have a subtle and unrecognized disturbance at

this early stage about a decade prior to the estimated clinical

onset. The results also showed that there was a negative PE in

the dAD individuals, who were evaluated as mildly demented

(MMSEM±SD: 21.0± 5.3) and the PE was lower than PE in the

pAD group. This pattern of results supports that a practice effect

exists in normal aging and is absent in clinically diagnosed AD
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FIGURE 3

A bar graph showing the mean annual rate of change (ARC) in the HC and all AD groups (aAD, pAD, and dAD) in three stages of disease

development: Early preclinical (YECO < −20), late preclinical (−20 < YECO < −5), and in the clinical stage around the estimated clinical onset.

as reported previously (Zehnder et al., 2007; Hassenstab et al.,

2015; Elman et al., 2018; De Simone et al., 2021).

A few outliers in the mean ARC were observed. Two

participants had extremely low mean ARC values (<-0.7, see

Figure 1) and, in addition, they had short retest intervals that

may have resulted in unreliable estimates that exaggerated the

level of mean ARC. These mean ARC values are lower than

the expected global cognitive decline (average across nine tests)

previously estimated to be −0.43 in the mild stage of AD

dementia (Almkvist and Bäckman, 1993). Finally, it should

be pointed out that the negative ARC values represent values

of annual progression of AD when practice effects are minor

or absent.

The second aim was to study PE in specific cognitive tests

with the expectation to find differences in correspondence

with cognitive vulnerability associated with aging and disease

(Cooper et al., 2004; Calamia et al., 2012; Salthouse, 2015). In

order to improve stability across groups and tests, the pAD

and dAD groups were combined into a symptomatic group

and the 12 tests were aggregated into six domains (verbal,

visuospatial, STM, executive, and attention). Now, the groups

were differentiated in five of the six domains, and the effect

of the domain was not significant, as well as the group-by-

domain interaction. The largest power in differentiating the

groups was obtained in the executive and attention domains that

comprised timekeeping tests (Digit Symbol and TMTB as well

as TMTA). This significant differentiation was obtained based

on large negative and significant retest scores in the sAD group

in executive and attention domains and not by positive PE in

HC and/or aAD groups. In a similar vein, the preclinical decline

in adAD in attention and executive function has recently been

reported (Medina et al., 2021).

The significant and largest PE was observed in the verbal

domain in the HC group in line with previous research (Calamia

et al., 2012; Salthouse, 2015). PE was also positive in the

verbal domain in the aAD group, although not significant. To

speculate, the level of PE across cognitive domains in AD and

HC is linked to cognitive vulnerability, i.e., lowest in the most

vulnerable domains in AD considered to be episodic memory,

executive, and visuospatial functions (Bateman et al., 2012;

Almkvist et al., 2017). The largest PE was found in the verbal

ability which is considered to be the least vulnerable domain in

AD and in normal aging.

The third aim was to study the relationship between the

size of PE and disease advancement estimated by YECO in the

AD (mutation carriers with manifest and latent disease) and

HC (healthy and cognitively unimpaired non-carriers). In the

combined AD group, the relationship was linear and marked

in the mean ARC. The change in mean ARC across time was

about 0.06/year, which is less than the reported rate of change in
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previous research (Van der Elst et al., 2008). The low mean ARC

in this study could be due to the long retest interval compared

to the shorter retest intervals used in previous research (Falleti

et al., 2006; Calamia et al., 2012; Machulda et al., 2013; Salthouse,

2015; Scharfen et al., 2018a). The type of test (screening vs.

domain-specific) may impose variation in PE (Gross et al.,

2018).

In the AD group, the mean ARC began to deviate from

the mean level in the HC group about 20 years prior to the

clinical onset and the confidence interval for the AD and HC

groups occurred when YECO was 10–15 years ahead of the

estimated clinical onset. The intersection of regression lines and

confidence interval in the HC and AD groups in this study on

PE are in agreement with reports of trajectories in cognitive

tests using separate measures in AD (Bateman et al., 2012;

Almkvist et al., 2017; Medina et al., 2021). The finding that aAD

individuals did not demonstrate a significant PE or a significant

difference compared to HC individuals when assessed about 20

years ahead of the clinical onset is a novel finding.

It was observed that the level of PE varied a lot, particularly

in the early preclinical stage of disease in the aAD sub-group of

AD. However, the number of individuals in this group is too few

to analyze this finding further. One possibility may be to analyze

the relationship between mean ARC and a biomarker in general

by including all cases, both non-carrier and carriers.

The main body of recent research on PE has focused

on PE with short retest intervals and PE as a marker of

cognitive progression, while relatively few studies have focused

on PE observed at long retest intervals as in this study. It

has been suggested that the mechanism of PE is related to

various learning and memory processes, e.g., remembering test

items, answers, and problems related to explicit declarative

learning and retrieval processes related to the test content

(Gross et al., 2018; McDermott, 2021). In contrast, the PE

results of this study obtained with long test intervals and a

comprehensive cognitive assessment are suggested to be related

to procedural learning and memory when performing cognitive

tasks repeatedly. A similar suggestion was proposed (named

as a context effect) in a recent study of MMSE with a short

test interval (Gross et al., 2018). In theory, this memory has

been described as implicit and keeping knowledge relatively

intact across time. The division of learning and memory into

explicit declarative and implicit procedural systems varying in

learning mode (consciously vs. unconsciously) and retrieval

mode (recollection vs. acting) was suggested years ago (Squire,

2004; Squire and Dede, 2015). To this end, a meta-analysis has

shown that performance in procedural learning and memory

tasks appears to be preserved in individuals with aMCI and AD

dementia compared to healthy older adults (DeWit et al., 2021).

The distinction of performance in declarative and procedural

memory in AD was supported in a large study on MMSE

in patients with AD with reduced episodic memory by a

PE at retest 4 months later (Gross et al., 2018). Recently,

it was demonstrated that patients with MCI and cognitively

unimpaired adults did not differ in performance of the classical

procedural learning task (mirror tracking), while groups differed

in typical episodic memory (the RAVL test) (De Wit et al.,

2022).

In addition, a number of general factors operate during

testing the second time and later, for instance relief from factors

that hamper individuals from optimal cognitive performance

(uneasiness, concerns of being tested) and factors that may

improve performance the second time (coping/adaption

associated with the experience of testing, change in strategies

how to solve tasks) (Lievens et al., 2007). A favorable feature

of the present study that was the complete examination was

a 2-day long visit, the tests were the same, the psychologist

was the same, and personal was the same to a large extent

over the years. Taken together, it is suggested that part of

PE in the present study can be understood as an example of

procedural learning and memory that promote performance

in cognitive testing when repeated. Interestingly, the brain

structures involved in procedural learning and memory are

different from the structures involved in AD (De Wit et al.,

2021).

This study is based on a relatively small sample of mutation

carriers and non-carriers from six adAD families; this is a

disadvantage that has to be kept in mind. Particularly, the small

sample size was obvious in the pAD and dAD groups. The

material was analyzed both in terms of group comparisons

and in terms of regression analysis to find converging results

that could strengthen the conclusions. The fact that Alzheimer’s

disease was studied in four groups defined on genetics from no

disease in HC to the asymptomatic stage, across mild and finally

marked cognitive impairment in AD represents a favorable

and unique feature of this study in contrast to other studies

with clinically defined disease stages (Calamia et al., 2012; Duff

and Hammers, 2020; Jutten et al., 2020). It is also a favorable

feature that the retest interval was long and that cognition

was studied extensively with several tests from six cognitive

domains. This made it possible to compare PE across cognitive

domains in interaction with stages of AD development and in

relation to the estimated remaining time to the clinical onset

of AD.

There are some implications of the present findings for

clinical application and research. If the expected practice effects

of repeated cognitive testing were not considered, previous

results in follow-up clinical examinations and longitudinal

studies may need to be reinterpreted. Furthermore, clinical

trials may have come to incorrect conclusions on the effects of

treatment if the PE phenomena were not regarded. However,

the size of PE and the influence of covariates on PE has to be

established in future research before it could be used in research

and clinical application. The potential benefit of absent PE in

short retest intervals as a marker of cognitive decline in aging

and mild disease has been well documented in previous research
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(Zehnder et al., 2007; Hassenstab et al., 2015; Elman et al., 2018;

Jutten et al., 2020; Samaroo et al., 2020; De Simone et al., 2021).

Finally, the mechanism of PE is not well understood. This fact

makes it necessary to study both task-related cognitive factors as

well as covert affective reactions.

To conclude, PE measured as ARC based on long

retest intervals (about 3 years) were found in healthy and

cognitively unimpaired middle-aged individuals (non-carriers

from autosomal-dominant AD families) in age-insensitive

cognitive domains. PE were also found in asymptomatic

mutation carriers from AD families in the verbal cognitive

domain when they were assessed long before the estimated

clinical onset of AD. No PE, but a cognitive decline was

obvious in symptomatic mutation carriers with mild cognitive

impairment. In theory, PE are suggested to reflect that

the person uses procedural learning and memory to master

cognitive task demands in repeated testing.
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