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Editorial on the Research Topic

DNA Repair and immune response

1 Introduction

1.1 Duality of the relationship between DNA damage
responses and immunity: Health and disease

Genetic stability allows for the reliable transfer of genetic information to succeeding

generations. In this regard, a complex and overlapping protein network operates to fix the

DNA damage caused by internal or external stressors (1). This so-called “DNA Damage

Response” (DDR) is a fine-tuning process and works actively to guarantee

systemic homeostasis.

The imbalance between DNA damage and repair mechanisms accelerates the aging

process and increases the risk of developing several age-related diseases such as cancer,

cardiovascular diseases, and neurodegeneration. However, not all genetic modifications

are harmful and some are essential for the correct functioning of the organism. Somatic

mutations, for instance, guarantee the diversification and broad repertoire of immune

receptors, ensuring an effective protective immunity against a wide variety of pathogens.

Thus, the cooperation between DDR and the immune system has been discussed and

offers a new field of investigation in which in-depth comprehension may provide new

insights into the cellular and molecular mechanisms of inflammatory diseases.
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1.1.1 An effective cooperation between DDR
and immunity promotes health

When DDR is unable to deal with extended and irreparable

DNA lesions, cellular alterations (e.g., misplaced cytosolic DNA

fragments) will be promptly recognized by innate immune

receptors and initiate or amplify inflammatory responses that

will work to remove potentially malignant cells and, thus,

preventing the perpetuation of DNA damages (Figure 1A).

Although there are DNA damage sensors that elicit an

immune response (e.g., Ku70, DNA-dependent protein kinase,

MRE11, Rad50, RNA polymerase III, and DExD/H-box

helicase 41), there are also effector components that play

multiple cellular roles, including in DDR and inflammation

such as the poly(ADP-ribose) polymerase-1 (PARP-1), the

enzyme mutY Homolog (MUTYH), and the 8-Oxoguanine

DNA glycosylase-1 (OGG1) (2). In this edition, Oliveira et al.

also discuss the role of apurinic/apyrimidinic endonuclease 1/

redox effector factor 1 (APE1/Ref-1), a member of the base

excision repair (BER) pathway, as another regulator of

immunity through control of cellular signaling, redox status,

senescence, and chromatin demethylation. Furthermore,

Zhang and Li report on relevant observations regarding the

structure and function of a versatile protein family belonging to

the E3 ubiquitin ligase superfamily, called Pellino (Pellino-1,

Pellino-2, and Pellino-3). The authors dissect Pellino’s roles in

the pattern recognition receptor, tumor, and microRNA

signaling pathways. Ye et al., in turn, notably discuss current

evidence on how DDR components communicate with both

innate and adaptive immunity.

The adaptive arm of the immune system, composed

essentially of lymphocytes and their subsets, requires random

and purposeful DNA breaks to generate a vast repertoire of

receptors that will recognize a broad range of antigens from

infectious agents. Even after the receptors have been correctly

produced during lymphocyte development, the DNA breaks

may continue later in the lymphocyte’s life. These processes

are called class switch DNA recombination (CSR) and somatic

hypermutation (SHM) and are essential for the generation of

immunological memory and the production of highly specific

antibodies. Any impairment of these mechanisms leads to

critical DDR deficiency-driven immune system disorders and

these are examined here by Gullickson et al.

CSR is a molecular mechanism that allows changing of

antibody class from one to another (e.g., IgM to IgG or IgA).

Previous studies showed that CSR requires DNA mismatch

repair (MMR) and non-homologous end joining (NHEJ)

pathways to replace the constant regions of immunoglobulins

(Jhamnani et al.). On the other hand, SHM is a mechanism that

introduces new mutations into antibody regions that recognize

the antigens to increase antibody affinity (Pilzecker and Jacobs).

This process is mediated and dependent on activation-induced

cytidine deaminase (AID), which putatively distributes the

A B

FIGURE 1

Relationship between inflammatory response and DNA damage in health and disease. (A) DNA damage response and immunity are closely
related systems. They work together to deal with several negative stressors as well as to perform some physiological processes that require
deliberate DNA breaks and rearrangement (e.g., lymphocyte receptor assembling, CSR, SHM), yielding a diverse set of immune receptors and
antibodies capable of recognizing a broad range of antigens. (B) Chronic low-grade inflammation induces persistent DNA damage, and vice-
versa, leading to cancer development. Current cancer treatment options envisage approaches targeting inflammatory or DNA-damaging agents
separately. However, combined therapies have gained special attention as a potential strategy to improve the efficacy of cancer treatment.
Here, we positioned the respective study from the manuscript collection closely to its main topic with the names of the authors highlighted in
yellow, featuring the importance of the study’s contribution to the field. CSR, class switch recombination; DDR, DNA damage response; ICIs,
immune checkpoint inhibitors; SHM, somatic hypermutation; UV, ultraviolet (radiation).
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mutations at G/C and A/T bases in similar ratios. However, even

with the development of high throughput sequencing

technologies, studying both CSR and SHM mechanisms

remains challenging considering the limitations of current in

vitro and in vivo approaches. Here, Lerner et al. describe that the

Ramos cell line, a commonly G/C mutation-prone in vitromodel

used to evaluate SHM mechanisms, is capable of recapitulating

the mutations at A/T bases by inhibiting ubiquitin-specific

protease 1 (USP1) deubiquitinase activity and reestablishing

the balance between proliferating cell nuclear antigen (PCNA)

ubiquitination and deubiquitination.

Dissecting physiological and pathophysiological

mechanisms is still the main path to the development of new

therapeutic strategies against cancer and other illnesses. Here in

this issue, Kajitani et al. show that the transgenic expression of

cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-

pyrimidone photoproducts (6-4PPs) photolyases in nucleotide

excision repair (NER)-deficient mice exposed to UVB

completely abrogated or reduced the inflammation, epidermal

thickness, and cell proliferation in basal keratinocytes, indicating

a central role of these cells in the control of responses to UVB-

induced DNA lesions.

1.1.2 When the cooperation between DDR and
immunity fails: the disease

When the organism is unable to counteract the high number

of DNA damage through DDR and immune responses, a chronic

low-grade inflammatory environment is established. This

process is considered one of the strongest risk factors for

cancer development (Figure 1B). In this issue, Cheong and

Nagel not only review the cancer risk from dysfunctional DDR

and immunity, but also discuss the influence of other factors

such as genetics, aging, environment, lifestyle, circadian rhythm,

and diet. The authors also emphasize the role of ongoing

technologies in the advancement of knowledge in the DDR-

immunity axis. In fact, the use of technology to determine both

DDR and immune profiles is useful to improve clinical

management since the intra- and inter-tumor heterogeneity

among the patients remains a challenging concern. For this

purpose, Lin et al. find two different profiles of patients with

hepatocellular carcinoma based on their genomic landscape of

DDR. The so-called “DDR-activated group” was categorized by

patients with aggressive cancer and poor outcomes, while the

“DDR-suppressed group” had a better prognosis.

Immune checkpoint inhibitors (ICIs) have revolutionized

cancer therapy with their capacity for modulating the immune

response (3). Because their use as single agents has shown

unprecedented clinical benefits, the present state-of-the-art

approach has focused on combining them with different anti-

tumoral drugs to improve clinical outcomes. Wanderley et al.

bring to light the potential of using ICIs with PARP1 inhibitors.

As previously mentioned, PARP1 has multiple cellular

functions, acting as a DDR agent and immune cell modulator.

A limitation of ICIs relies on their effectiveness in less

immunogenic tumors. In this regard, Silva et al. point out that

ICIs also show better prognosis when used in MMR-deficient

tumors and discuss ongoing approaches to increase ICI

sensitivity in homologous recombination (HR)-deficient

tumors. On the other hand, increased HR rates can also

mitigate the immune response to cancer. Meyer et al. observe

that ALDH1-positive breast cancer stem cells in phase S are

resistant to radiation by increased HR activity, being a potential

target to increase sensitization to radiotherapy.

2 Conclusion and perspectives

As evidenced by the latest cutting-edge research, DDR-

related proteins are not only restricted to DNA repair

processes, but also participate in other cellular circuits that

regulate immune cell signaling and function. The crosstalk

between DDR and immune response has only begun being

dissected, opening new perspectives for understanding

regulatory mechanisms controlling inflammation and

providing new potential strategies to treat inflammatory (age-

related) diseases by targeting the DDR-immunity axis.
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DNA Damage Repair Profiles
Alteration Characterize a
Hepatocellular Carcinoma Subtype
With Unique Molecular and
Clinicopathologic Features
Peng Lin, Rui-zhi Gao, Rong Wen, Yun He and Hong Yang*

Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Hepatocellular carcinoma (HCC) is one of the most common malignancies and displays
high heterogeneity of molecular phenotypes. We investigated DNA damage repair (DDR)
alterations in HCC by integrating multi-omics data. HCC patients were classified into two
heterogeneous subtypes with distinct clinical and molecular features: the DDR-activated
subtype and the DDR-suppressed subtype. The DDR-activated subgroup is
characterized by inferior prognosis and clinicopathological features that result in
aggressive clinical behavior. Tumors of the DDR-suppressed class, which have distinct
clinical and molecular characteristics, tend to have superior survival. A DDR subtype
signature was ultimately generated to enable HCC DDR classification, and the results
were confirmed by using multi-layer date cohorts. Furthermore, immune profiles and
immunotherapy responses are also different between the two DDR subtypes. Altogether,
this study illustrates the DDR heterogeneity of HCCs and is helpful to the understanding of
personalized clinicopathological and molecular mechanisms responsible for unique tumor
DDR profiles.

Keywords: hepatocellular carcinoma, DNA damage repair, multi-omics, immune, survival

INTRODUCTION

Liver cancer is the sixth most common cancer and the third most frequent cause of cancer-related
death globally (1). Hepatocellular carcinoma (HCC), the most common form of liver cancer,
accounts for about 90% of all cases and frequently develops in patients who are infected by hepatitis
B virus (HBV) or hepatitis C virus (HCV), alcohol abuse, or metabolic syndrome (2). HCC
commonly leads to inferior survival and requires molecules that help in refining prognosis and
monitoring treatment response. Any attempt to improve the prognosis of HCC should involve clear
recognition of HCC molecular characteristics. To date, several studies have proposed molecular and
immune classifications of HCC based on genomic, transcriptomic, and proteomic data (3–5). These
subtyping strategies broaden the knowledge into the molecular phenotype of HCC and provide
effective targeted therapy options. However, the molecular mechanisms’ response for the dismal
prognosis of HCC are still unclear.
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DNA damage repair (DDR) genes are the key to maintaining
the stability of the human genome. Conversely, the loss of DDR
function could lead to the onset and progression of cancer (6).
Furthermore, treatment strategies focused on altered DDR
function are becoming gradually realized. For example, Poly
(ADP-ribose) polymerase (PARP), nuclear enzymes that
recognize DNA damage, have been a therapeutic target for
cancer treatment (7). DDR genes could be divided into some
functional pathways based on their specific function in relation
to DNA damage (8). Previously, The Cancer Genome Atlas
(TCGA) work group comprehensively analyzed the influences
of DDR pathway-related genes in cancers (8). The excellent study
provides a rich resource for mechanistic and therapeutic analysis
of cancer. However, transcriptomic and proteomic analysis of
HCC from the perspective of DDR gene dysregulation and
heterogeneity is still limited, especially in HCC. HCCs are
complex ecosystems characterized by heterogeneity of
molecular features and immune infiltrations. DDR actively
participated in the processes of HCC carcinogenesis and
immune characteristics. Recently, Yang et al. found that an
important DDR gene TP53, its neoantigen may influence
survival of HCC patients by regulating anti-tumor immunity
thus could be an effective immunotherapy biomarker (9). Xu
et al. also explored relationships between DDR gene RAD51 and
immune infiltration in HCC (10). However, these studies mainly
focused on role of single DDR gene in immune characteristics of
HCC. Therefore, it is imperative to uncover the roles of DDR
in HCC.

Here, we aim to comprehensively analyze transcriptional
profile alteration of DDR genes in HCC. We have successfully
identified two DDR gene-based subtypes based on 276 DDR
genes. The two DDR-based subtypes have distinct clinical
outcomes and molecular characteristics. Our data based on
pan-cancer analysis also reveals heterogeneity among different
cancer types and provides an alternative immune treatment
response prediction approach. Our data shed light on the
aspects of DDR alterations in HCC, which could be useful in
guiding immunotherapy and prognosis monitoring.

METHODS

DNA Damage Repair Genes Curation
A total of 276 DDR genes were acquired from previous work by
TCGA DDR-AWG (8, 11, 12). These genes were assembled
based on MSigDB v5.0 and knowledge-based curation of DDR
pathways. DDR genes mainly belong to ten DDR pathways:
(1) base excision repair (BER); (2) nucleotide excision repair
(NER); (3) mismatch repair (MMR); (4) the Fanconi anemia
(FA) pathway; (5) homology-dependent recombination (HR);
(6) non-homologous DNA end joining (NHEJ); (7) direct
damage reversal/repair (DR); (8) translesion DNA synthesis
(TLS); (9) nucleotide pool maintenance (NP); and (10) genes
are either correlated with more than one DDR pathway, or
coordinate cellular and molecular responses to DNA damage.
This study of deidentified data was approved by the institutional

review board of First affiliated hospital of Guangxi Medical
University [2020(KY-E-119)].

DNA Damage Repair Genes-Based
Clustering
First, we evaluated the global DDR alteration and proposed DDR
gene-based subtypes based on two HCC cohorts included in the
study. (1) Training cohort: Considering TCGA includes multi-
omics resources for analysis, we characterized DDR
characteristics based on TCGA. 371 primary HCC patients
with RNA-seq date and corresponding survival information
available from TCGA-Liver Hepatocellular Carcinoma (TCGA-
LIHC) dataset. The RNA-seq dataset and the corresponding
clinical parameters were downloaded from UCSC-Xena (https://
xenabrowser.net/datapages/). Gene expression value was
transformed into log2 [Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) +1] for further analysis. (2)
Validation cohort: 231 primary HCC RNA-seq and clinical
information were downloaded from the International Cancer
Genome Consortium (ICGC) dataset [accession ID: Liver Cancer
RIKEN Japan (LIRI-JP)] dataset (13). Gene expression profiles
were also converted into log2 (normalized read count + 1) for
further analysis.

We performed K-means consensus clustering with
transcriptomic profile of 276 DDR genes to identify subgroups.
Consensus clustering was processed using the CancerSubtypes
package in R software (14). The following details were set for
subgrouping: number of repetitions = 1,000 bootstraps; pItem =
0.8 (resampling 80% of any sample); maxK=6 (k-means
clustering with up to 6 clusters). An appropriate number of
clusters was determined based on the clustering results and
clinical ease of use. Similar clustering processes were
performed in the training and validation cohorts. The Kaplan-
Meier (K-M) method with log-rank test was performed to
compare overall survival (OS) differences between the
two subgroups.

Clinical and Molecular Characteristics
Specific for the DDR Subtype
To observe clinicopathological and molecular characteristics
between different DDR subtypes. We also compared
clinicopathologic and molecular features between the
two subgroups. Chi-square test was used to explore
clinicopathological feature distribution between different DDR
subtypes. The somatic mutation profile of HCC patients from
TCGA was also downloaded from the TCGA database and
ICGC, respectively. The somatic mutation data were further
analyzed using the “maftools” R package (15).

We also compared transcriptomic alterations between the
DDR-activated subtype and the DDR-suppressed subtype by
using gene set enrichment analysis (GSEA). The GSEA
procedures were performed based on the ClusterProfiler
package in R software (16).

Here, we further conducted a metagene approach proposed
previously for 28 immune cell subpopulations for HCC tumor
microenvironment evaluation (17). Using the gene set variation
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analysis (GSVA) algorithm, the relative infiltration score of 28
immune cell subpopulations was estimated (18). Metagenes for
28 immune cell subpopulations were obtained from a previous
study (17). Then, immune profile differences between subtypes
were estimated by Wilcoxon test.

DDR Subtype Signature Development
and Validation
Considering too many genes, detection is hard for clinical
application. We developed a gene signature for DDR subtype
identification. Differentially expressed genes between DDR-
activated and DDR-suppressed subtypes were identified by
using Wilcoxon analysis. DDR genes with log2 (fold change)>1
and P-value <0.05 were considered as DDR subtype specific
genes. In the era of precision medicine, proteogenomics could
provide information about more direct executors and thus help
in making a more precise diagnosis and prognosis monitoring of
cancers. Considering that DDR-related proteins were major
executors, we further compared the relationships between
transcriptomic level and proteomic level. Proteomics data of
159 HCC patients were required from the clinical proteomic
tumor analysis consortium (CPTAC) data portal (3). In the
CPTAC cohort, 10,783 quantified protein expression levels
were identified based on the Isobaric tandem mass tags (TMT)
approach. Pairing transcriptomic and proteomic data were
identified by Spearman correlation analysis. Genes that showed
a significant correlation (spearman correlation coefficient >0.4)
between protein levels and mRNA levels were submitted to DDR
subtype signature construction. DDR genes that were
significantly up-regulated in the DDR-activated subgroup and
had high correlations between protein and mRNA levels were
used for DDR subtype signature development. The DDR subtype
signature score was calculated based on the average expression of
the included DDR genes.

Prognostic Value of DDR
Subtype Signature
To test the performance of the DDR subtype signature in survival
prediction, five cohorts of HCC patients were included, including
two RNA-seq datasets (TCGA, ICGC), two gene chips datasets
acquired from Gene Expression Omnibus (GEO) [accession
number: GSE14520 (19) and GSE54236 (20)] and proteomics
dataset CPTAC (3). GSE14520 includes 242 HCC patients, while
GSE54236 includes 78 HCC patients. Subsequently, we also
explore whether the DDR-subtype signature could be a pan-
cancer survival indicator. Therefore, RNA-seq data of 7779
cancer patients from 20 types of cancer were also downloaded
from the TCGA database similar to the TCGA HCC download
pipeline. Univariate Cox analyses were conducted in each cancer
type to explore relationships between DDR subtype signature and
OS. Hazard ratio (HR) and corresponding 95% corresponding
interval (CI) were calculated. Then, Stata 14.0 software was used to
integrate survival analysis results. Heterogeneity analyses used the
I2 and Q tests. When I2>50% and the Q test P<0.1, it was
considered that there was heterogeneity, and the random effect
model was selected.

DDR Subtype Signature for
Immunotherapy Response Prediction
To validate the value of the DDR subtype signature in
immunotherapy prediction, we analyzed relationships between
the DDR signature and immunotherapy response from the
IMvigor210 cohort (21). The IMvigor210 cohort included 348
patients with locally advanced or metastatic urothelial cancer
treated with an anti-PD-L1 agent (atezolizumab). The Kruskal-
Wallis test was used to explore DDR signature score differences
among different immunotherapy response groups [complete
response (CR), partial response (PR), stable disease (SD),
progressive disease (PD)]. The area under curve (AUC) was
used to estimate the DDR signature for immunotherapy response
(CR/PR VS. SD/PD).

Single-Cell Analysis for DDR
Heterogeneity Estimation
Single-cell data could provide higher resolution of gene alteration
information. After filter out low low-quality cells, single-cell
transcriptomic data of 12162 cells from 12 primary HCC
samples was used for analysis from previous study (22). To
explore DDR signature heterogeneity in different cell types, we
calculated DDR signature in each cell and compared difference
among different cell types. Seurat R package was used to generate
t-SNE plot for cell types visualization.

RESULTS

DDR Gene Alteration Profiles in HCCs
To reveal the DDR gene heterogeneity of HCCs, all 371 HCC
patients were divided into heterogeneous subtypes based on 276
DDR gene expression profiles (Figure 1). Considering the
consensus clustering results and clinical significance, two DDR
subgroups were identified. Cluster 1 (n=171, 46.1% of all HCCs)
was designated as the DDR-activated subtype, owing to the
relative upregulation of most DDR-related genes in this cluster.
Cluster 2 (n=200, 53.9% of all HCCs), thereafter designated
as the DDR-suppressed subtype based on the relative
downregulation of DDR genes (Figure 1A). Furthermore, the
two subtypes showed distinct clinical outcomes. K-M plots
suggested that patients who were divided into DDR-activated
subgroups suffered inferior OS (Figure 1B). We also compared
clinical parameters between the two groups and found that
advanced stage (chi-square value =5.757, P=0.016), high grade
(chi-square value =18.013, P<0.001), and presence of vascular
invasion (chi-square value = 4.135, P=0.042) were more
frequently observed in the DDR-activated subgroup (Figure 1C).

In the validation ICGC cohort, all 231 HCCs were also
divided into different subtypes based on the 276 DDR gene
expressions. Similarly, K-means clustering indicated that
patients who were also categorized into two subgroups had
similar DDR pathway alterations with the training cohort
(Figure 1D). Patients were also divided into DDR-activated
and DDR-suppressed subgroups. A similar survival difference
between two subgroups was also observed (Figure 1E).
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These findings further validate the inferior prognosis of patients
in the DDR-activated group.

DDR Genes-Based Subtypes
Show Distinct Clinical and
Molecular Characteristics
When considering genomic alterations, we also compared
gene mutation differences between two DDR subtypes. The

most common mutational genes in patients from the training
cohort were TP53 and CTNNB1 (Figure 2A). Considering the
importance of these two genes, we compared and found that
TP53 was more frequently mutated in the DDR-activated
subgroup (78/165 Vs. 29/194, chi-square= 44.53, P<0.001)
while CTNNB1 was more frequently mutated in the DDR-
suppressed subgroup (32/165 Vs. 58/194, chi-square= 5.24,
P=0.022, Figure 2B). In the validation cohort, we found TP53

A B

D E

C

FIGURE 1 | Consensus clustering for DNA damage repair (DDR) related genes in HCC patients. (A) The consensus matrix shows patients with two distinct DDR
statuses in the TCGA dataset. (B) Kaplan-Meier curves for overall survival based on DDR subgroups (Log-rank test) in TCGA dataset; (C) Tumor stage, grade, and
vascular invasion distribution differences between DDR subgroups; (D) The consensus matrix shows patients with two distinct DDR statuses in the ICGC dataset;
(E) Kaplan-Meier curves for overall survival based on DDR subgroups (Log-rank test) in ICGC dataset.
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also frequently mutated in the DDR-activated subgroup (40/
94 Vs. 26/135, chi-square= 14.66, P<0.001) while CTNNB1
was more frequently mutated in the DDR-suppressed
subgroup (13 /94 Vs . 45 /135 , ch i - squa r e= 11 . 15 ,
P=0.001, Figure 2C).

GSEA analysis revealed that DDR subtypes have distinct
transcriptomic alterations. The top five most activated gene
ontology terms in the DDR-activated subgroup were MCM
complex, condensed chromosome outer kinetochore, mitotic
chromosome condensation, single-stranded DNA-dependent
ATPase activity, and entry of the bacterium into the host cell
(Figure 3A). The top five most activated Kyoto Encyclopedia of
Genes and Genomes terms in DDR-activated subgroup were
DNA replication, mismatch repair, cell cycle, Fanconi anemia
pathway, and homologous recombination (Figure 3B).

DDR Subtypes Characterized Different
Immune Profiles
Immune cell infiltration markedly influenced tumor progression
and immunotherapy treatment response. Therefore, we also
explored differences in immune cell infiltrations between two
DDR subtypes. Notably, activated CD4 T cells, central memory
CD4 T cells, and effector memory CD4 T cells were significantly
up-regulated in the DDR-activated subgroup regardless of the
training (P=2.39E-17, 1.83E-06 and 7.01E-09 respectively,
Figure 4A) and validation cohort (P=8.78E-07, 5.52E-04
and 1.70E-03 respectively, Figure 4B). Mast cell and
neutrophil cell were significantly up-regulated in DDR-
suppressed subgroup in the training (P=0.025 and 0.001
respectively, Figure 4A) and validation cohort (P=0.017 and
0.014 respectively, Figure 4B).

A

B C

FIGURE 2 | Genomic alterations between DDR-activated and DDR-suppressed subgroups. (A) Landscape of mutation profiles in HCC samples. Mutation
information of each gene in each sample is shown in the waterfall plot. Top panel shows individual tumor mutation burden. The data shown were analyzed based
on the TCGA data portal. (B) The mutation rate of TP53 was higher in the DDR-activated subgroup, while CTNNB1 was higher in the DDR-suppressed subgroup
in the TCGA dataset. (C) The mutation rate of TP53 was higher in the DDR-activated subgroup, while CTNNB1 was higher in the DDR-suppressed subgroup in
the ICGC dataset.
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DDR Subtype Signature Is a Prognostic
Indicator for HCC’s OS
Considering that many gene expression detections are difficult
for clinical implication, it is imperative to have a signature that
could be used for DDR subtype identification. Differential
analysis indicated that 11 DDR-related genes, including TYMS,
RRM2, UBE2T, HMGB2, SOX4, FEN1, RFC4, H2AFX, FANCI,

PCNA, and RMI2, were most specifically upregulated in the
DDR-activated subtype. Correlation analyses from the CPTAC
cohort found that six genes (FEN1, H2AFX, HMGB2, PCNA,
RFC4, and RRM2) were significant correlated between
transcriptomic and proteomic data. Therefore, we used the
average expression of six markers for the DDR-activated
signature. AUC of ROC indicated that the gene signature

A

B

FIGURE 3 | Gene set enrichment analysis of DDR-subtype specific pathway analysis. (A) Top five most significant altered gene ontology terms in the DDR-activated
subgroup when compared with the DDR-suppressed subgroup. (B) Top five most significant altered KEGG pathways in the DDR-activated subgroup when
compared with the DDR-suppressed subgroup.
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could be useful for stratification patients in different DDR
subtypes (AUC= 0.909 in training cohort, Figure 5A;
AUC= 0.932 in validation cohort, Figure 5B). Therefore, the
six DDR gene signatures provided an alternative and clinically
accessible method for DDR subtype identification.

To validate generalization performance of DDR subtype
signature in different cohorts, a meta-analysis approach was
utilized to integrate survival analysis results from five cohorts
(TCGA, ICGC, GSE14520, GSE54236, and CPTAC). The DDR-
subtype signature showed statistical significance in five cohorts.
Meta-analysis revealed that a higher signature showed inferior
OS (HR, 1.89; 95% CI, 1.49–2.38, Figure 5C). Time-dependent
ROC was generated and showed that area under curves for 1, 3,
5 years were 0.71, 0.65 and 0.63 respectively (Figure 6A). K-M
plot showed that patients could be divided into two groups with
distinct prognosis based on median value of DDR signature
(Figure 6B). To find optimal cut-off of DDR gene signature
for risk stratification, we also evaluated the best significant
cut-off value (Figure 6C). The optimal cut-off value was 4.51,

which was also effective for risk stratification in ICGC
cohort (Figure 6D).

Pan-cancer analysis that included 7779 patients from 20 types
of cancer indicated that the DDR signature still remains a
prognostic indicator. A higher DDR signature score suggested
that patients had poor survival (HR, 1.26; 95% CI, 1.03, 1.54;
Figure 7A). However, marked heterogeneity was observed
among different cancer types (I-squared = 89.6%, p <0.001).
For example, two pathological subtypes of lung cancer, lung
adenocarcinoma and lung squamous cell cancer, showed distinct
prognoses of the DDR-subtype signature.

DDR Signature Is a Promising Predictor
for Immunotherapy
To explore the DDR subtype signature for immunotherapy
response prediction, we explored 348 samples from the
IMvigor210 cohort. For gene expression analyses with respect to
response, 298 patients were used to estimate DDR subtype score for
immunotherapy response prediction. We found that the DDR

A

B

FIGURE 4 | Immune profile alterations between the DDR-activated and DDR-suppressed subgroups. (A) TCGA; (B) ICGC. * represents P < 0.05, ** represents
P < 0.01,*** represents P < 0.01, **** represents P < 0.0001, ns represents no significant difference.
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signature score was higher in the CR or PR group when compared
with the SD and PD groups (Kruskal-Walls, P = 0.00014;
Figure 7B). The results of the ROC curve indicated that the
DDR signature could be used for immunotherapy response
prediction (AUC=0.671, 95%CI, 0.598-0.743, P<0.001; Figure 7C).

DDR Signature Is Heterogeneous in Tumor
Immune Microenvironment
In 12162 cells from 12 samples, cells were mainly divided into 10
types, including B cell, endothelial, epithelial, hepatic stellate cells
(HSCs), myeloid, NK, pDC, plasma, T cell and tumor cell
(Figure 8A). Results from single-cell analysis found that DDR
signature score was significant different distribute in different
clusters (Figure 8B). And DDR score was significant up-
regulated in some particular clusters, especially for tumor and
T cells. Kruskal-Wallis test also showed that DDR score was
significant different among different cells (Figure 8C).

DISCUSSION

Despite the progress in the approaches to therapy, the prognosis
of HCC remains poor owing to the high recurrence rate, even
after surgical resection. Molecular heterogeneity often tends to
limited treatment options and is a challenge for survival
monitoring. Hence, some excellent previous studies that aimed
at molecular-phenotypic subtype identification of HCC have
provided novel insights into HCC precision medicine (3, 4).
However, the roles of DDR in the ecosystems of HCC still need
to be deciphered. In this study, we analyzed multi-omics data
that included genomics, transcriptomics, and proteomics to
characterize differences between DDR-based subtypes in HCC.
Further study also explored immunotherapy response and
immune profile differences between DDR-based subtypes.

Our integrated analysis revealed that HCC patients have two
distinct DDR statuses: the DDR-activated subtype and the DDR-

A B

C

FIGURE 5 | DDR-subtype development and validation. Receiver operating characteristic curve (ROC) analyses of DDR signature to evaluate its performance in
TCGA (A) and ICGC (B) datasets. (C) Forest plots show that a high DDR signature score is correlated with inferior overall survival based on five cohorts.
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suppressed subtype. Patients in the DDR-activated subgroup are
characterized by aggressive clinical behavior, including advanced
stage, poor differentiation, and inferior prognosis. To identify the
molecular characteristics of distinct DDR subtypes in HCC, we
found that genomic alterations were significant between the two
subtypes. TP53 mutation was more frequently observed in the
DDR-activated subtype. The tumor suppressor p53 plays a key
role in DNA repair and somatically mutated in many types of
human cancers, including HCC (23). As the “guardian of the
genome,” TP53 mutations have been clinically recognized as an
inferior survival indicator for HCC (24). Interestingly, in the
DDR-suppressed subgroup, CTNNB1 was more frequently
mutated when compared with the DDR-activated subgroup.
CTNNB1 mutations activating ß-catenin and were mutually
exclusive with TP53 (25). A previous excellent proteogenomics
study revealed that the protein and phosphorylation differences

between CTNNB1 mutant and wild-type HCC were mainly
concentrated in metabolic pathways (3). In the era of
immunotherapy, more studies have found that Wnt/CTNNB1
mutations are the characterization of immune-excluded class
HCC (26, 27). Harding et al. showed that HCC patients
with CTNNB1 mutations did not respond to PD-1 blocking
therapy, which validated the hypothesis that HCC “cold tumors”
defined by Wnt/CTNNB1 mutations are not responsive to
immunotherapy (28).

GSEA analysis further indicated that our subgroup plan is
credible. The DDR opens news perspectives for understanding
the regulatory mechanisms of tumors. We also explore the
immune microenvironment in HCCs. DDR subtypes have
distinct immune profiles. Activated CD4 T cells, central
memory CD4 T cells, and effector memory CD4 T cells were
significantly up-regulated in the DDR-activated subgroup.

A B

DC

FIGURE 6 | Kaplan-Meier plots for DDR signature cut-off identification. (A) Time-dependent ROC for DDR signature survival prediction in TCGA database;
(B) survival difference between high and low DDR signature based on median value; (C) survival difference between high and low DDR signature based on best
separation in training cohort; (D) cut-off from TCGA cohort could be useful for risk stratification in ICGC dataset.
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CD4+ T cells can target tumor cells in a variety of ways, either
by eliminating tumor cells directly through cytolytic
mechanisms or indirectly by regulating TME (29, 30). Mast
cell and neutrophil cell were specifically enriched in the DDR-
suppressed subgroup. Tumor-infiltrating mast cells have been
identified as being associated with resistance to anti-PD-
1 therapy (31). These findings have shown that DDR
subtypes have distinct immune cell infiltration differences,
which hints at different immunotherapy responses between
subtypes. Therefore, we also found immunotherapy response

differences between distinct DDR subtypes. By applying ROC
curve analysis, we also identified that the DDR subtype
signature is valuable for immunotherapy response in patients
with metastatic urothelial cancer treated with the anti–PD-L1
agent. We found that the DDR subtype signature was
significantly higher in responders than in non-responders
undergoing checkpoint blockade therapy. However, the
performance of this signature in HCC should be further
tested through analysis of a large cohort of HCC patients
who have received immunotherapy.

A

B C

FIGURE 7 | Pan-cancer prognostic value and immunotherapy response prediction of DDR signature. (A) Pan-cancer analysis to evaluate prognostic value of DDR
signature. (B) TME scores in groups with different anti-PD-L1 clinical response statuses. (C) A receiver-operating characteristic (ROC) curve was used to measure
the performance of the DDR subtype signature in immunotherapy response prediction.
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To speed up clinical use, six DDR genes were composed as a
signature for DDR-subtype identification. The signature showed
high performance in dividing patients into distinct DDR
subtypes in the training and validation cohort. The
combination of RNA-seq data and mass spectrometry-based
proteomics could provide a more comprehensive view globally.
The DDR signature we proposed showed moderate prognostic
value in HCC patients based on RNA-seq, microarray, and
proteomics data. Their results also hinted that our results are
robust and repeatable. However, pan-cancer analysis suggested
that the prognostic value of the DDR signature is its
heterogeneity. DDR alterations characteristics in different
cancer types should be further analyzed.

Our study is not without its limitations. First, there is a lack of
randomized trials of HCC patients who receive immunotherapy
to validate the immunotherapy response prediction performance

of the signature. Second, different expression detection platforms
were used in our study, including RNA-seq, gene chip, and
proteomics. Future studies are needed to validate the optimal
cut-off for DDR subtype identification. Third, our study mainly
focused on multi-cohort data for providing solid information for
DDR-related survival information and molecular characteristics.
Future in vivo and/or in vitro mechanism exploration may
provide more information for DDR subtype alterations.

In conclusion, this study provides evidence of DDR
heterogeneity and DDR categorized subtypes in HCC patients.
Specific DDR subtype characteristics provide information for
HCC clinical management and decision-making assistance. Our
DDR subtype signature facilitates a deeper understanding of the
mechanisms associated with HCC inferior prognosis and assists
in developing more effective therapeutic targets and biomarkers
for immunotherapies in HCC patients.

A B

C

FIGURE 8 | The distribution and expression of DDR subtype signature in HCC. (A) The percentage of each type of cells in HCC. (B) The distribution of each type
and DDR score expression in HCC. (C) DDR scores in different cells are various.
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The DNA damage response (DDR) is an organized network of multiple interwoven
components evolved to repair damaged DNA and maintain genome fidelity.
Conceptually the DDR includes damage sensors, transducer kinases, and effectors to
maintain genomic stability and accurate transmission of genetic information. We have
recently gained a substantially improved molecular and mechanistic understanding of how
DDR components are interconnected to inflammatory and immune responses to stress.
DDR shapes both innate and adaptive immune pathways: (i) in the context of innate
immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream
STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive
immunity, the DDR is needed for the assembly and diversification of antigen receptor
genes that is requisite for T and B lymphocyte development. Imbalances between DNA
damage and repair impair tissue homeostasis and lead to replication and transcription
stress, mutation accumulation, and even cell death. These impacts from DDR defects can
then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune
responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune
responses. Furthermore, DDR defects plus the higher mutation load in tumor cells
synergistically produce primarily tumor-specific neoantigens, which are powerfully
targeted in cancer immunotherapy by employing immune checkpoint inhibitors to
amplify immune responses. Thus, elucidating DDR-immune response interplay may
provide critical connections for harnessing immunomodulatory effects plus targeted
inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint
blockade, and of combined therapeutic strategies.

Keywords: DNA repair, immune response, DNA damage, cGAS-STING, innate immunity, adaptive immunity,
immunomodulatory, cancer therapy
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INTRODUCTION

Key cancer hallmarks critically include genomic instability,
immune modulation, and altered DNA damage and other
stress responses to favor overall cell survival (1, 2). Every day,
tens of thousands of damaged DNA lesions occur in each human
cell that could impact cell survival and genomic integrity (3).
Importantly, the outcome of this DNA damage depends directly
upon the nature and actions of the DNA damage response
(DDR). Lesions become accurately or inaccurately repaired or
left as unrepaired mutations depending upon the DDR. As a
result, evolutionary selection ensures that the DDR is a carefully
orchestrated response system consisting of multiple signaling
pathways that largely maintain genomic stability and fidelity
despite high levels of DNA damage (4, 5). Yet, comprehensive
analyses of cancer genome databases reveal non-B DNA,
mitochondrial dysfunction, and the activation of DNA repair/
cell cycle pathways as major factors driving somatic mutation
loads in cancer cells (2, 6). From a mechanistic standpoint, the
positive correlations of these factors with mutations in cancer
cells likely arise from increased reactive oxygen species (ROS),
oncogenic replication and transcription stress, and the
combination of resulting excessive DNA damage plus its
escape from accurate repair.

In particular, DDR are activated by replication obstacles in
proliferating cells that lead to replication stress: replication fork
stalling, collapse or breakage, such as lesions from oxidation,
deamination and alkylation, DNA breaks, protein-DNA cross-
links, and non-B DNA structures including R-loops (RNA-DNA
hybrids formed by replication-transcription conflicts) (7–9).
DNA damage and activation of the DDR from endogenous
replication stress are seen at pre- or early stages of
oncogenesis, and adaptation to replication stress acts in tumor
development (10). In breast-cancer susceptibility gene 2
(BRCA2)-deficient cancer cells, the inactivation of replicative
stress response factors (e.g. poly (ADP-ribose) polymerase
[PARP1] or ATM and Rad3-related [ATR] inhibition) triggers
cyclic GMP-AMP synthase (cGAS)-STING-mediated innate
immune responses (11, 12). Furthermore, inherent DNA repair
defects in tumors may develop mutation-driven neoantigens that
can cause the immune system to recognize the tumor cells as
foreign while also increasing the amount of cytosolic DNA to
trigger a cGAS-STING response. Thus, the DDR that largely
protects against DNA damage in normal cells can often be
defective or defeated in proliferating cancer cells with
consequent impacts on immune responses. This finding
implies a fundamental importance of DDR for cancer biology,
for the elucidation of cancer vulnerabilities, and for optimal
applications of immunotherapy.

The DDR machinery can conceptually be divided into at least
six distinct DNA repair pathways responding to different types of
DNA damage: (i) homologous recombination (HR), which
repairs double-strand breaks (DSBs) using a homologous DNA
template; (ii) non-homologous end joining (NHEJ), which
repairs DSBs without a corresponding template; (iii) alternative
end-joining (A-EJ), which repairs DSBs with insertion and

deletion errors by employing micro-homology; (iv) nucleotide
excision repair (NER), which repairs bulky DNA lesions globally
or coupled to transcription; (v) mismatch repair (MMR), which
repairs DNA single-strand breaks (SSBs) predominantly
generated during DNA replication and recombination
processes plus mismatches that escaped replication fidelity; and
(vi) base excision repair (BER), which removes bases damaged by
oxidation, alkylation, deamination, and methylation to avoid
replication and transcription blocks and errors (4, 13–15).

The various DDR pathways share similarities in how they
respond to the stress of damaged DNA, whereby a damage
sensor that can also be a repair effector [e.g., RPA, MUTY,
PARP1, Ku70/80, MRE11-RAD50-NBS1 (MRN) complex]
recognizes specific DNA damage types (single-stranded DNA,
base mismatches, SSBs, and DSBs) before recruiting and
activating downstream transducer kinases (such as ATM, ATR,
DNA-PKcs), which in turn transduce the signal to effector
proteins (such as MRN, CHK1, EXO5, p53, RAD51, and
BRCA1/2). The ensuing complexes ultimately orchestrate
repair by employing damage removal and sequence
replacement by handoffs or dynamic machinery that have
evolved to avoid the release of toxic and mutagenic DNA
intermediates (15, 16). Thus, the DDR is an ancient and
evolutionarily conserved mechanism that is essential for
genome stability and cell survival (17, 18).

As the major stress response system essential for surviving
infection, the immune response is an evolved network of proteins
and complexes that respond to invading pathogens and their
associated toxins. Importantly, DDR defects can lead to
imbalance between DNA damage and repair, impairing tissue
homeostasis and leading to replication and transcription stress,
mutation accumulation or outright cell death: this imbalance can
drive tumorigenesis as well as secretion of inflammatory
cytokines, and aberrant immune responses (19–23). All
organisms possess mechanisms to detect and eliminate foreign
pathogens via the innate immune system. Additionally, higher
vertebrates employ a sophisticated adaptive immune system that
includes antibodies as well as B and T lymphocytes with virtually
limitless repertoires of receptors that mediate neutralization of
foreign pathogens and removal malignant cells (24–26). To
stimulate strong anti-tumor immune responses, cancer
immunotherapy typically employs immune checkpoint
inhibitors for the PD-1/PD-L1 and CTLA-4 pathways to
amplify immune system responses and also to harnesses
responses to neoantigens that are primarily tumor-specific
antigens resulting from the higher mutation load in tumor
cells (27–29). The validity of the PD-1/PD-L1 approach
requires the functional MHC class I complex, which itself is
often deleted during tumor evolution to escape immune
regulation (30).

For clarity this review is divided into five overall sections: 1)
Introduction, 2) DDR in innate immunity, 3) DDR in adaptive
immunity, 4) DDR inhibition in antitumor immunity, and 5)
Summary and prospects. Within these sections and their
subsections, we furthermore consider how these critical and
seemingly distinct DDR and immune stress responses are
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intertwined and where defining their interconnections may
enable novel insights into etiology and advanced molecular-
based treatment of cancer and other human diseases.

DDR IN INNATE IMMUNITY

Innate immunity is the first immunological defense system
against pathogens. Activation of the innate immune response
relies on Pattern Recognition Receptors (PRRs). These PRRs
detect Damage-Associated Molecular Patterns (DAMPs) or
Pathogen-Associated Molecular Patterns (PAMPs) to initiate a
signaling cascade resulting in production of interferons (IFNs),
cytokines and chemokines (24, 26, 31). Importantly, non-self
nucleic acids are the most well-characterized stimuli for the
innate immune response (32, 33); furthermore, endogenous
cytosolic DNA released from the nucleus or mitochondria
stimulates the innate immune system.

DNA damage caused by genotoxic stresses or DNA damage
stimulus (e.g., cytotoxic chemotherapy and radiation) can create
cytosolic chromosomal fragments that may be recognized by
cGAS, a cytosolic DNA sensor. Cytosolic exposure of
chromosomal DNA by micronuclei rupture, breakage of
chromatin bridges, or disintegration of micronuclei-like
cytosolic chromatin fragments activates cGAS (34). Once
bound to cytosolic DNA, activated cGAS can form dimers and
multimer assemblies that undergo liquid–liquid phase separation
to form biomolecular condensates that amplify cGAS activation
(35). Activated cGAS produces 2´-3´cGAMP (cGAMP) as a
second messenger to function in both the host cell and
adjacent cells via secretion or by passage through gap
junctions, which contributes to the bystander response to
radiotherapy in non-irradiated neighboring cells (36–40). In
the presence of cGAMP, STING is relocated from the ER to
Golgi, where it recruits and activates TANK-binding kinase
(TBK1), that activates interferon regulatory factor 3 (IRF3) and
NF-kB signaling (41). Activated IRF3 and NF-kB then induce
transcription of innate immune response genes, including IFNs
and cytokines (36, 37, 42).

Interestingly, cGAS is also found in thenucleus.Nuclear cGAS is
inactivated by its acidic patch binding to nucleosome core particles,
which prevents DNA binding, thus preventing autoreactivity (34).
Moreover, nuclear cGAS is recruited to DNA damage sites by
gH2AX, which promotes its interaction with Poly (ADP-ribose)
polymerase 1 (PARP1) and impedes formation of PARP1-Timeless
complex to thereby suppress HR but not NHEJ (43, 44).

Another important cytosolic DNA sensor is g-interferon-
inducible protein-16 (IFI16). Like cGAS, IFI16 can detect both
self and non-self dsDNA to promote IRF3 and NF-kB -dependent
interferon production via STING (26, 45).

Emerging data reveal that DNA repair pathways and cytosolic
pathological DNA sensing pathways have overlapping effectors
that recognize and respond to damaged nuclear DNA, cytosolic
endogenous DNA, or foreign DNA (46). These observations
provide compelling evidence for inextricable links between the
DDR and innate immune responses (Figure 1).

DDR Deficiency or Inhibition Enhances
Innate Immune Responses
Interference in DDR signaling elicits innate immune responses.
One of the most well-studied examples is PARP inhibition. PARP
inhibition generates cytosolic chromatin fragments and
significantly potentiates cGAS-STING-dependent immune
responses (11, 47–54). Similarly, DNA damage as a result of
cytotoxic chemotherapy, ionizing radiation (IR), metabolism, and
deficiencyofotherDDRelements (includingBRCA2,ATM,CHK1,
RPA, RAD51, TREX1 and FANCD2), also leads to increased IFN
signaling–mediated immune responses (11, 19, 55–61).

The RecQ–like BLM helicase partners with EXO5 and EEPD1
nucleases for stalled DNA replication restart and maintenance of
genome integrity (62, 63). BLM deficiency in Bloom syndrome
(BS) causes increased expression of inflammatory genes through
the cGAS–STING–IRF3 pathway, suggesting it prevents
unchecked inflammatory gene responses (64). ROS from
radiation therapy or cell stress lead to cGAS-STING-mediated
immune responses to cancer from DSBs as well as oxidative
adducts that must be removed by DNA glycosylases, such as
endonuclease VIII (Nei)-like proteins (NEIL) and oxoguanine
DNA glycosylase (OGG1) (65–67). Furthermore, high levels of
ROS that are not efficiently reduced by superoxide dismutases
and catalase can leave unrepaired 8-hydroxyguanosine (8-OHG)
(68, 69). 8-OHG stabilizes DNA against degradation by the
cytosolic DNA exonuclease TREX1, leading to accumulated
cytosolic DNA and increased cGAS activation (70). This ROS
effect can be amplified by vicious cycles of oxidative damage and
iron release from ROS-sensitive 4Fe-4S co-factors in multiple
replication and repair proteins (62, 71–73).

Metabolismand innate immunityconvergeat themitochondria,
which can orchestrate innate immune signaling pathways in
different cancer-relevant metabolic scenarios including a link to
PARylation and cell death (74, 75). Metabolic cues including
nucleotide imbalance can stimulate the release of mtDNA from
mitochondria that drives an interferon response with MRE11
playing a leading role (76). The fundamental importance of DNA
breaks in promoting such immune responses is evidenced by the
observation that mtDNA breaks synergize with nuclear DNA
damage to mount a robust cellular immune response (77).

In general, unresolved DNA damage can act as a mediator
linking the DDR and immune recognition, and this can involve
the formation of micronuclei as an initiating event in a cascade
promoting genomic instability and innate immune responses
(78, 79). Moreover, genome instability and imperfect cell cycle
checkpoints in tumor cells enhance formation of micronuclei,
making them more susceptible to targeting of the innate immune
response (5, 22, 79). DNA damage responses occur in minutes to
hours. Yet, there is a delayed onset of days for inflammatory
cytokines that modify tumor microenvironment by immune cell
recruitment as critical for local and systemic (abscopal) tumor
responses to radiotherapy.

DNA-PK in Innate Immune Response
DNA-dependent protein kinase (DNA-PK) is a trimeric nuclear
complex that functions as a central integrator of the DSB repair
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system. The protein complex consists of a large catalytic subunit,
DNA-PKcs, and the Ku70/80 heterodimer (Ku70/80) which
recognizes DSB ends (80). DNA-PKcs is a Ser/Thr protein
kinase and the largest member of the phosphatidylinositol 3-
kinase (PI3K)-related kinase (PIKK) family (81). Once activated
by Ku70/80, DNA-PK undergoes autophosphorylation and is
then positioned to phosphorylate other repair effectors and
promote a synaptic complex for ligation of two dsDNA ends
(80, 82–86). In recent decades, emerging evidence revealed that
DNA-PK is a critical component of innate immunity against
multiple viruses, including human immunodeficiency virus
(HIV), Herpes Simplex Virus 1 (HSV-1), alphavirus M1, and
vaccinia virus (87–92). As such, DNA-PK is a key DNA sensor
that modulates innate immunity through several critical
components of innate immune pathways.

In STING-dependent DNA sensing pathways, cGAS, IFI16,
and IRF3 are substrates for DNA-PK (89, 93, 94). However, the
role of DNA-PK within the cGAS-STING pathway remains
controversial. One recent study reported that DNA-PK directly
phosphorylates cGAS to suppress its enzymatic activity and thus
attenuate innate immune responses (93). To this end, DNA-PKcs
deficiency caused by missense mutations in its coding gene,

PRKDC, leads to an increased inflammatory response in both
human and mouse cells (93). In contrast, a pioneering study
showed that DNA-PK interacts with and phosphorylates IRF-3,
thus promoting its nuclear translocation (94). In a systematic
profiling study, DNA-PKcs directly phosphorylated the DNA
sensor IFI16 and promoted IFI16-driven cytokine responses
(89). Furthermore, regardless of its partner cGAS, STING can
localize to the inner nuclear membrane in breast cancer tumor
samples and promote cancer cell survival by resistance to DNA-
damaging agents through interacting with DNA-PK (95).
Therefore, further studies are warranted to better understand
mechanisms governing DNA-PK substrate selection within the
context of the innate immune response.

As described above, although a potentially suppressive role of
DNA-PK on cGAS was reported which may be context
dependent, most studies suggest that DNA-PK promotes a
STING-dependent innate immune response (96–100).
Mechanist ical ly , the HEXIM1-DNA-PK-paraspeckle
components-ribonucleoprotein complex (HDP-RNP),
containing DNA-PK subunits and paraspeckle proteins, is
required for foreign DNA sensing through the cGAS-STING
pathway. The HDP-RNP interacts with cGAS, and when

FIGURE 1 | Overview of DDR components in innate immune responses. DDR factors, including DNA-PK and MRE11, promote cytosolic DNA sensing signaling
pathways. When activated by cytosolic DNA, cGAS produces cGAMP, a soluble second messenger that initiates STING-IRF3 signaling both within the host cell and
adjacent cells. In addition, RAD50 associates with CARD9, leading to NF-kB activation and downstream cytokine production. XRCC4 interacts with RIG-I, which
promotes the RIG-I-MAVS-IRF3 pathway.
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stimulated by cytosolic DNA, the paraspeckle proteins from the
complex are released to recruit STING and activate DNA-PK
and IRF-3. Knockdown of HDP-RNP subunits including Ku70,
the DNA binding subunit in DNA-PK, resulted in loss of IFN
stimulatory DNA–mediated immune response (97). In addition,
Ku70 was identified as a cytosolic DNA sensor that translocates
to the cytoplasm to form a complex with STING and induce
production of IFN-l1 (98, 99).

Besides STING-dependent DNA sensing mechanisms, DNA-
PK also acts as a DNA sensor to trigger a robust and broad
antiviral response in a STING-independent DNA sensing
pathway (SIDSP) in human cells, but not in laboratory mice
(101), perhaps a reflection that DNA-PK levels in human cells
are much higher than in mouse cells (102–104). A recently
characterized DNA-PK partner is LINP1, a lncRNA that can
recruit multiple DNA-PK assemblies and promote formation of
phase condensates (105). As LINP1 is present in both cytoplasm
and nucleus, it will be important to test its potential role in
cytosolic immune activation.

Overall, DNA-PK is considered a cytosolic DNA sensor for
both STING-dependent and -independent DNA sensing
pathways. The extent to which the role of DNA-PKcs in the
innate immune response is distinct from its well-characterized
nuclear functions in NHEJ is under active investigation.

MRN Complex in Innate Immunity
MRN, a core orchestrator that senses DSB damage and activates
DNA repair cascades, is required to maintain genome integrity
(13). In recent years, the MRN complex, which acts in DSB
sensing, stabilization, signaling, and effector scaffolding (106),
has furthermore been found to localize to viral replication sites
and trigger innate immune responses (107–109).

An exemplary MRN role in regulating innate immunity
comes from the meiotic recombination 11 homolog A
(MRE11) nuclease subunit, which recognizes and processes
DSB DNA ends as a part of HR repair, replication fork
processing, and telomere length maintenance (110, 111).
MRE11 has both endonuclease and exonuclease activities that,
together, initiate HR repair (112). Furthermore, MRE11
functions as a key cytosolic DNA sensor in recognition of a
broad spectrum of dsDNA and activates STING trafficking and
type I IFN production in various cell types (108).

An intriguing observation is that nuclease activity is not
required for the cytosolic DNA-sensing function of MRE11,
which reinforces the notion that besides their nucleotide
processing activity DDR nucleases also function to recognize
and sculpt specific DNA structures (113–116). In fact, the
nuclease-inactive mutant form of MRE11 triggers an even
higher immune response than the wild-type form. Therefore,
MRE11 may act as a regulatory switch within the STING-
dependent immune response, initially functioning as a DNA
sensor to activate STING-mediated signaling, then subsequently
working as a nuclease to suppress excessive immune responses
(108). Obviously, further studies are required to better elucidate
the pro- and anti-immune–modulating mechanisms of MRE11
in STING-dependent signaling. Nevertheless, these data suggest
that STING-mediated signaling may be activated by one of the

existing MRE11 inhibitors (112, 117). It will also be interesting to
see if the adaptor regulator GRB2 complex with MRE11, which
promotes HR and suppresses A-EJ in the nucleus, plays a role in
STING-mediated signaling (118). Intriguingly, multiple GRB2
molecules can also bind to Linker of Activation of T cells (LAT)
to mediate its oligomerization, which is important for T-cell
signaling under limiting stimulating conditions. Furthermore,
GRB2 promotes metabolic reprogramming to support T cell
activation (119–121). These and other data support the notion
that tight protein and DNA binding plus conformational
sculpting can regulate activities and switch DNA repair
pathways (122).

MRE11 mutations that result in loss of binding ability to
Nijmegen breakage syndrome protein 1 (NBS1) induce type I
IFN comparable to wild-type MRE11 (108). This finding suggests
that NBS1 is not instrumental for sensing cytosolic DNA and
provoking an immune response. This concept is consistent with
the mechanistic role implied by the NBS1 structure and its MRE11
interface, to flexibly restrict DNA end processing and homologous
recombination activities to the vicinity of DSBs (123). On the basis
of prior data showing that NBS1 loss promotes cytosolic MRE11
distribution (124), we propose that a deficiency of NBS1 may
enhance cytosolic DNA sensing by MRE11.

The third component of the MRN complex is the ATP-
binding cassette-ATPase (RAD50). MRE11 nuclease activity is
regulated by ATP-dependent RAD50 helical coiled-coil
conformations that switch the MRE11-RAD50 complex
between DNA tethering, ATM signaling, and strand resection
(125, 126). RAD50 plays an important role in innate immunity
via a STING-independent signaling pathway (109). RAD50
binds a proinflammatory signaling adaptor amino-terminal
caspase-recruitment domain (CARD9) through its structurally
defined zinc-hook region (127). Together with MRE11, RAD50
recognizes cytosolic DNA and interacts with CARD9, which
leads to the recruitment of Bcl-10 to induce NF-kB activation
and pro-inflammatory cytokine IL-1b generation (109).

Other DDR Factors in Innate Immunity
BRCA1, which together with the MRN complex plays a central
role in HR DNA repair, interacts with IFI16 (128, 129). In
herpesvirus-infected cells, BRCA1 is required for IFI16-
mediated recognition of foreign DNAs, association with
STING, and subsequent IFN-b production (128). Aside from
DNA virus sensing, X-ray repair cross-complementing group 4
(XRCC4), a DNA ligase IV (LIG4)-associated protein essential
for NHEJ (130–132), acts in an RNA-sensing pathway through
interaction with retinoic acid-inducible gene I (RIG-I) (133).
XRCC4 promotes oligomerization and ubiquitination of RIG-I,
which results in enhancement of the RIG-I-MAVS-IRF3-type I
IFN signaling cascade and subsequent suppression of RNA virus
replication in host cells. Reciprocally, RIG-I competes with LIG4
to interact with XRCC4, and therefore it impedes XRCC4-
dependent NHEJ cascades and hinders retrovirus integration
into the host genome by suppressing the NHEJ pathway
(133). This finding highlights the critical role of XRCC4 in
defense against RNA viruses and in potentiating innate
immune response.
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DDR IN ADAPTIVE IMMUNITY

Unlike the innate immune system, characterized by rapid sensing
and elimination of pathogens as first line of defense, the adaptive
immune system provides broader and more accurate
discrimination between self and non-self immunogens based
on the process of positive and negative selection during
lymphocyte development (25). A robust adaptive immune
response to any pathogen or biological macromolecule seen for
the first time takes weeks to mount. However, subsequent
exposure to the same pathogen promotes a rapid “memory”
response that is often magnitudes stronger than the response
following the first exposure. In adaptive immunity, the DDR is
essential for lymphocyte development by facilitating the
assembly and diversification of antigen receptor genes (134,
135). Thus, DDR deficiencies are linked with immunological
disorders, including autoimmune diseases, such as systemic
sclerosis, pediatric systemic lupus erythematosus, and severe
sepsis (136–139).

Ataxia-telangiectasia (A-T), a disorder arising from ATM
germline mutations, was one of the first-identified disorders
whereby immunodeficiency was associated with an aberrant
DDR (140–142). Missense mutations of PRKDC, which
encodes the catalytic subunit in DNA-PK, were also found in
patients with the organ-specific autoimmunity phenotype (93,
143). In addition, autoantibodies directed against Ku 70/80 were
detected in autoimmune patient sera (144, 145). Indeed, Ku was
first identified via autoantibodies in sera from patients with the
autoimmune disease polymyositis-scleroderma overlap
syndrome (146).

Adaptive maturation of T and B lymphocytes is guided by
the “blueprint” of different cell surface receptors. During the
process of lymphocyte maturation, three highly regulated
processes, including variable, diversity, and joining [V(D)J]
recombination, class-switch recombination (CSR), and somatic
hypermutation (SHM) together with negative and positive
selection (147), lead to generation of a functional, genetically
diverse, and non-autoreactive antigen receptor repertoire.
Interestingly, these processes naturally generate DSBs and/or
trigger a DDR in adaptive immunity (Figure 2) (136, 148). In
this section, we review these pathways highlighting roles of
important DNA repair factors.

DDR in V(D)J Recombination
V(D)J recombination occurs in G1 phase of naive, progenitor T
and B lymphocytes, and enables rearrangement of gene segments
at both immunoglobulin and T-cell receptor loci in a lineage
specific and developmental stage specific manner (148, 149). V
(D)J recombination is initiated by the recombinase activating
gene (RAG) endonucleases RAG1 and RAG2, which is directed
by RAG recognition sequences (recombination signal sequences
[RSS]) (Figure 2A). The RAG complex creates a nick between
the coding segment and the flanking RSS which leads to a DNA
hairpin at the ends of the gene segment containing the coding
regions (coding-ends) and a blunt-ended DSB at the end of the
RSS, so called signal-ends. Alignment of coding regions, excision,

and formation of hairpin-ended coding-ends and blunt-ended
signal-ends takes place within the RAG1/2 complex, aided by
HMGB1 (148, 149). RAG-mediated DSBs are processed by the
NHEJ machinery to assemble genes encoding immunoglobulin,
and heterodimeric B- and T-cell receptors (150–152). The rapid
repair of RAG-mediated DSBs by NHEJ is essential for normal
lymphocyte development. Failure to repair RAG-mediated DSBs
in immature B cells leads to a DDR including ATM-mediated
upregulation of NF-kB signaling (134, 153–157).

DNA-PKcs in complex with Artemis, a member of the
metallo-b-lactamase protein family, is required for successful V
(D)J recombination and lymphocyte development. DNA-PKcs
interaction is required for Artemis endonuclease and
exonuclease activities for the RAG-mediated hairpin-opening
step in V(D)J recombination and for 5’ and 3’ overhang
processing in NHEJ (158). The two coding-ends, each
terminating with a DNA hairpin, are released from the RAG1/
2 complex first. Prior to rejoining, the DNA hairpins are opened
by the Artemis-DNA-PKcs complex, which cleaves 3’ to the apex
of the DNA hairpin. Artemis requires DNA-PKcs for its hairpin
opening activity but how this occurs is still an open question
(159, 160). Nevertheless, both the interaction of DNA-PKcs with
Artemis, and DNA-PKcs phosphorylation are important for
Artemis activation (161, 162).

Irrespective of the mechanism, DNA-PKcs protein and
Artemis are both required for opening the coding-end
hairpins, as the unopened hairpins accumulate in cells lacking
either Artemis or DNA-PKcs (158). Indeed, mice, dogs and
horses with mutations that compromise DNA-PKcs protein
levels are characterized by radiation sensitivity (due to defects
in NHEJ and DSB repair) as well as severe loss of T and B cells
resulting in severe combined immunodeficiency (SCID) (163–
165). Kinase-dead (KD) point mutation in the catalytic domain
of DNA-PKcs blocks end-ligation without abolishing hairpin
opening in knock-in mouse models (166). However, hairpin
opening in the DNA-PKcs-KD mice requires ATM kinase
activity (166). While pathogenic PRKDC mutation in humans
is rare, six patients with SCID and DNA-PKcs mutation have
been identified, five of whom share mutation of L3062R in the C-
terminal FAT domain (85). Interestingly, DNA-PKcs with the
L3062R mutation maintains full catalytic activity, but the
mutation appears to hinder activation of the Artemis nuclease
(167). In addition, one patient with two DNA-PKcs mutations
that severely impair (but do not completely ablate) catalytic
activity presented both with SCID and a severe neurologic deficit
incompatible with life (168). Description of this patient has led to
speculation that complete loss of DNA-PK in humans is not
compatible with life, and may have a unique function in neuronal
development. Deficiencies in Artemis are also associated with
SCID with radiation sensitivity (RS-SCID) (169–171).

Once the coding end hairpins are opened, they can be acted
upon by nucleases, and extended by error prone polymerases
such as V(D)J specific terminal deoxynucleotidyl transferase
(TdT) and/or the more general NHEJ polymerases mu and
lambda (148, 149, 172, 173). This processing of the coding-end
creates additional diversity for antigen selectivity. Finally, the
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processed coding-ends are ligated by the XLF-XRCC4-LIG4
complex in conjunction with Ku (174). The RSS signal ends are
released after the coding-ends and directly ligated by the Ku-XLF-
XRCC4-LIG4 complex (175–177). DNA-PKcs, but not Artemis,
also plays a role in rejoining of signal ends (166, 178, 179).

Although NHEJ is required for both repairing DSBs produced
by IR and those produced by the RAG endonuclease in V(D)J
recombination, there are both similarities and differences
between the two processes. IR introduces complex forms of
DNA damage resulting in DSB ends with diverse sequences
and overhanging ends, some of which will contain non-ligatable
ends (180). Thus, after IR, NHEJ must be able to 1) respond to
DSBs wherever they occur in the genome and 2) hold and tether
the ends while they are processed before ligating them. The
recently determined structures of NHEJ synaptic complexes
reveal how NHEJ proteins can both tether and secure DSB
ends while DNA-PKcs autophosphorylation provides a
mechanism for handover to end processing enzymes and
subsequent ligation by the XLF-XRCC4-LIG4 complex (82,

130, 181–184). In V(D)J recombination, defined DSBs with
discrete coding-ends and signal-ends are generated and held
within the RAG1/2 heterotetrameric complex (185, 186) before
being released and opened by DNA-PKcs-Artemis (coding-ends)
and ligated by Ku-XRCC4-LIG4 (coding-ends and signal-ends)
(177, 185–187). After hairpin opening, coding ends are processed
to include both additional antibody diversity (e.g. TdT) and
generate ligatable ends. It will be interesting to determine how
the NHEJ machinery interfaces with the RAG1/2 complex and
the DNA-PK/Artemis hairpin opening complex.

While the role of Artemis in V(D)J recombination is clear, its
role in NHEJ after IR is enigmatic (160). It may act to remove
overhanging DNA ends, acting at ds-to-ssDNA transitions as a
flap-endonuclease or by direct exonuclease activity and/or it may
be required to open secondary structure elements formed by
looping of ssDNA at the ends of DSBs. It is likely that Artemis is
required for repairing only a subset of DSBs after IR, as Artemis-
null cells are not as radiation sensitive as those lacking Ku,
XRCC4, LIG4 or DNA-PKcs (148, 188–191).

A B

C

FIGURE 2 | Overview of DDR components in adaptive immune responses. Certain DDR signaling pathways, such as MMR, BER, NHEJ, and A-EJ, are required in
V(D)J recombination (A), SHM (B) and CSR (C) processes, supporting successful lymphocyte development.
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Animals lacking DNA-PKcs, Artemis, Ku70 or Ku80 are
viable but radiosensitive due to defects in NHEJ and immune-
deficient due to defects in V(D)J recombination (192–195). For
V(D)J recombination in mice lacking functional DNA-PKcs or
Artemis, unopened coding-end DNA hairpins accumulate,
producing a profound defect in coding joint formation (192,
193, 196). Signal joints are unaffected by loss of Artemis whereas
mutation of DNA-PKcs has variable effects on signal joints (157,
175). In SCID horses signal ends are profoundly affected by
DNA-PKcs mutation, while SCID dogs and mice have
intermediate signal end rejoining, indicating species differences
in V(D)J recombination at signal ends, possibly due to relative
levels of DNA-PKcs and ATM (165). In contrast, in animals
lacking Ku70 or Ku80, both coding and signal joins are affected
(194, 195). Mice lacking XRCC4 or LIG4 are non-viable, with
embryos undergoing neuronal apoptosis, while cells lacking
XRCC4 or LIG4 are radiation sensitive and defective in coding
and signal joints, consistent with a more severe V(D)J
recombination defect (148, 188–190). Notably, deletion of Ku
rescued the embryonic lethality, but not the V(D)J
recombination defects in LIG4-null mice, likely through
aberrant end-resection and the repair by the Alt-EJ pathway
(197, 198).

Besides the DNA-PKcs-Artemis/Ku-XRCC4-LIG4 axis, the
MRN-associated kinase ATM plays a critical role in lymphocyte
development via direct or indirect involvement at various stages
of development. Although many details are still unclear, ATM is
required for stabilization of the RAG post-cleavage complex that
releases the DNA ends to the NHEJ pathway (157, 199, 200).
Inactivating somatic ATM mutations are associated with T- and
B-cell lymphoma (201, 202); dysregulated V(D)J recombination
results in translocations in ATM-deficient lymphocytes,
potentially promoting tumorigenesis (203, 204). While XLF-
deficient cells have significant V(D)J recombination, ATM
kinase activity and its chromatin bound DDR factors (e.g.,
53BP1 and H2AX), while dispensable for V(D)J recombination
in otherwise wild type cells, become essential for chromosomal
NHEJ during V(D)J recombination in XLF-deficient cells (205–
207). Indirectly, ATM-related repression of GSK3b and cyclin
D3 also plays an important role in thymocytes and pre-B cells
(208, 209). DSBs generated by both V(D)J recombination and
CSR induce ATM-dependent phosphorylation of GSK3b, which
is a constitutively active kinase known to promote cell death
(209, 210). The inactivation of GSK3b by DSB-initiated Ser389

phosphorylation protects B cells during V(D)J recombination
and CSR that are required for antigen-specific IgG antibody
responses following immunization. During T cell development,
GSK3b phosphorylation created by V(D)J recombination also
promotes survival of DN3 thymocytes undergoing TCRb
rearrangements, mimicking the results described in mice
harboring deficiency in several key DDR factors, including
ATM, NBS1 and H2AX (209, 211, 212).

DDR in CSR and SHM
The DDR is also essential for additional adaptive immune
responses that occur after antigen exposure in germinal center

B cells. V(D)J recombination-rearranged immunoglobulin (Ig)
variable regions are further modified by the process of SHM,
after which antibodies with highest affinity are selected. While in
CSR, the constant regions of immunoglobulin genes are
excised and rearranged to produce other isotypes (e.g. IgA and
IgG) from the initially expressed IgM or IgD isotypes (213, 214)
(Figures 2B, C). Both CSR and SHM are initiated by B cell-
specific, activation-induced cytidine deaminase (AID), a member
of the apolipoprotein B mRNA editing enzyme catalytic
polypeptide like (APOBEC) family of deaminases, which
converts cytosine to uracil on single-stranded DNA or RNA
(215, 216). Various DDR pathways are then involved in both the
generation of strand breaks and their repair.

During SHM, AID deaminates a particular trinucleotide
sequence in ssDNA of transcriptionally active genes, leaving
behind numerous uracil residues and producing predominantly
nucleotide substitutions in rearranged V genes on the heavy- and
light-chain loci, and switch (S) regions, which precede most C
genes on the heavy chain locus (217, 218). The mutagenic
outcome of uracil lesions can then be determined by one of the
following DDR responses: (i) Uracil can act as a template for
replication, resulting in a fixed C-T transition mutation; (ii) U-G
mismatches can be recognized by the error‐prone MMR
machinery, in which the MutSa complex (MSH2-MSH6)
detects the mismatch and recruits MutLa complex (MLH1-
PMS2) to nick the DNA, followed by the recruitment of Polh
(DNA polymerase h) to generate mutations (219, 220); (iii) Non‐
canonical BER initiated by uracil DNA glycosylase (UNG) can be
used to recruit proliferating cell nuclear antigen (PCNA) at the
lesions, and low‐fidelity polymerases such as Polh, which can
increase mutations during replication of common DNA fragile
sites (221), then can be recruited by PCNA ubiquitination and
utilized by both MMR and BER resulting in mutagenic repair
(149, 222–224). The nick generated by the UNG-dependent BER
pathway is particularly important for CSR, as UNG1 knock out
largely abolishes CSR (225).

During CSR, DSBs are generated in the switch regions that are
subsequently ligated by either the canonical NHEJ pathway or A-
EJ pathway which involves XRCC1, MRE11, plus FEN1 (which
threads and removes DNA flaps) and Pol theta for which there
are inhibitors (114, 149, 226–230). Although many details of this
important pathway remain to be determined, it has been
suggested that UNG removes AID-incorporated uracil to
create an abasic site which is then cleaved by apurinic/
apyrimidic endonuclease (APE) to create an SSB. Two closely
spaced SSBs on opposite DNA strands can create a DSB (213,
231, 232). Indeed, UNG inhibition sensitizes cells to high
APOBEC3B deaminase and to floxuridine (5-FdU), which are
toxic to tumor cells through incorporation of 5-FU into DNA
(233, 234).

Much of what we have learned about CSR has come from
disruption of DNA repair genes in mice leading to
immunodeficiency characterized by the production of IgM (the
first spliced constant region) but not IgA or IgG (products of
CSR) (136). As reviewed recently by Zha and colleagues (191),
the most dramatic defects (>90% reduction) in CSR have been
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observed in mice lacking the tumor suppressor p53-binding
protein (53BP1). In contrast, more modest defects (50-70%
reduction) occur in animals lacking MDC1, H2AX, Ku,
XRCC4, LIG4 and mice lacking DNA-PKcs, Artemis or ATM
have only a minor defect (<10%) in CSR (191, 235–239). Yet, a
recent report revealed that defects of 3’-flap endonuclease XPF-
ERCC1 in B cells impairs A-EJ-mediated CSR by impeding
joining of resected 3′ flap DSB ends (240). Since 53BP1 and
Shieldin both block resection and promote NHEJ, loss of either
would be expected to promote resection over NHEJ (241–245).
However, even loss of LIG4, which abolishes NHEJ, decreases
CSR by only 70% (236, 238). A major feature of CSR is removal
of large regions of chromatin between the switch regions to be
joined. 53BP1 plays a role in looping DNA at telomeres and is
required for rejoining of distal joins in V(D)J recombination
(246–248), suggesting that long-range conformational changes in
DNA may be disrupted in 53BP1-deficient cells, possibly
explaining the importance of 53BP1 in CSR (249, 250). Indeed,
loss of components of the shieldin complex, which protects DSB
ends to mediate 53BP1-dependent repair, also yield defects in
CSR (242, 245, 250–252). Alternatively, 53BP1 also recruits
PTIP, an evolutionarily conserved chromatin regulator that
binds gH2AX, acts as a major effector of ATM and ATR
signaling mechanisms, and is also implicated in CSR (253, 254).

Besides the direct usage of DDR pathways, there are several
indirect links between DDR elements in CSR and SHM. For
instance, targeting HR by RAD51 inhibitor reduces AID
expression, hampering the repair of AID-initiated lesions
(255). Interestingly, indirect links reach into RNA-binding
proteins such as the autism-associated protein vigilin, which
interacts with RAD51 and BRCA1, so its depletion impairs their
recruitment to DSB sites (256).

DDR INHIBITION IN ANTITUMOR
IMMUNITY

Emerging evidence supports the idea that DDR inhibition in
tumor cells remodels the inflammatory microenvironment (10,
257). Impaired DDR typically enhances the tumor foreignness by
increasing the number of tumor cell mutations/neoantigens (10,
258). When examined by CIBERSORT analysis through the
TIMER2.0 web server (259, 260), the mRNA levels of many
DDR factors, such as RPA1, Ku70, Ku80, MRE11A, RAD50,
NBS1, PRKDC, RAD51, PARG and XRCC4, were negatively
associated with cytotoxic CD8+ T cells infiltration levels across
various cancer types (Figure 3A). Indeed, as exemplified in
prostate adenocarcinoma, significant negative correlations
between gene expression and cytotoxic T cell infiltration levels
were found in 19 genes of the 22 DDR related genes we tested
(Figure 3A, B). These findings suggest enhanced anticancer
immunity in tumors with lower DDR factor expression and
imply substantial potential benefits from DNA repair inhibitors.
Thus, inhibitors of these DDR factors, such as poly(ADP-ribose)
glycohydrolase (PARG) inhibitors that impact DNA break repair

and replication fork restart, may be employed to activate the
innate immune response (261).

Antitumor immune responses can be promoted and utilized
to treat cancer via immune checkpoint blockade with use of
agents such as PD-1/PD-L1 and CTLA-4 inhibitors (29, 262,
263). The DDR also offers attractive targets for inhibition (264,
265). Preclinical and clinical efficacy of DDR inhibition in cells
with a defective DDR genetic background, are exemplified by the
success of PARP inhibitors in BRCA1/2-mutated advanced
cancers and of inhibitors to the PARG in cancer cells (261,
266, 267). Emerging evidence has progressively unveiled the
involvement of the DDR in antitumor immunity by enhancing
STING-dependent immune responses, further supporting the
immune-modulatory role of DDR inhibition in anticancer
immunity (Figure 4) (134, 135, 268, 269).

The most studied DDR inhibitors in anticancer
immunotherapies are those directed against PARP (PARPi). In
line with the usage of PARPi in DDR-deficient tumors (266),
PARPi combined with immune checkpoint blockade, including
PD-1/PD-L1 and CTLA-4, exerts remarkable efficacy in tumors
with BRCA1/2 or ERCC1 mutations via STING-dependent
immune responses and infiltration of cytotoxic T cells into
tumor (50, 51, 54, 270). There are also findings suggesting that
PARPi, with anti-PD-1 inhibitors, have strong therapeutic
potential regardless of BRCA1/2 status (49, 271, 272), although
the mechanisms involved remain unclear. Besides the STING-
dependent pathways, PARPi also increased PD-L1 expression in
breast cancer cell lines through inhibition of GSK3b (273), which
provided the rationale for combining PARPi with PD-L1 or PD-
1 immune checkpoint blockade, a strategy that has been tested in
clinical trials (49, 271, 274).

Recently, many other inhibitors targeting DDR components
have been developed and are in preclinical study. Recently,
several of them, including inhibitors of DNA-PKcs, ATM,
ATR, CHK1 and WEE1, have entered into clinical trials (275).
Inhibitors of DNA-PKcs promote radiation sensitization
through inhibition of NHEJ (276). Their importance in
modulating the innate immune response have also been
demonstrated. ATR inhibition can further increase cGAS-
positive micronuclei and cytokine production in PARPi-treated
cancer cells (12). Significantly, inhibition of DNA-PK with
AZD7648 resulted in IFN-dependent inhibition of tumor
growth following IR in immune competent mouse models,
indicating that inhibition of DNA-PK in combination with
radiotherapy could lead to durable immune-mediated tumor
control in cancer patients (277).

Another important application of DDR in antitumor
immunotherapy is the usage of the DDR status as biomarkers
to select the patients who are targetable to immune checkpoint
blockade. Currently, only a subset of patients respond to immune
checkpoint blockade. Predictive biomarkers for reliable response
could better guide therapeutic choices (104). As DNA
repair deficiencies that promote genome instability are
relatively common among tumors, mutational signatures and
DDR biomarkers may identify features associated with
response to immune-directed therapies. For instance, MMR
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status was reported to predict response to the PD-1 inhibitor
pembrolizumab in a phase 2 study of 41 patients with progressive
metastatic carcinoma (278, 279). Also, loss of BRCA1 and defects
of MMR in tumors resulted in many somatic mutations, leading
to continuous renewal of neoantigens, increased immune
response gene expression, and enhancement of immune
surveillance (20, 270, 278, 280). In non–small cell lung cancer,
deleterious mutations in several DDR-related genes correlated
with pembrolizumab clinical efficacy (281). A high mutation

level causing a high load of tumor neoantigens suppresses
immune evasion. Whereas aneuploidy of large chromosomal
regions (arm and whole-chromosome), which cause somatic
copy number alterations (SCNAs) and consequent protein
imbalances, can weaken cytotoxic immune cell infiltration
(282). Importantly, blockade of the immune system PD-1/PD-
L1 inhibitory pathway can restore exhausted immune responses
as an effective immunological strategy to overcome immune
evasion by chronic imbalances and infections (283). For

A B

FIGURE 3 | DDR factors negatively associate with CD8+ T cells infiltration levels in diverse cancer types. (A) A heatmap based on the CIBRSORT method shows
the purity-adjusted Spearman’s rho of DDR factors with CD8+ T cells across various cancer types. The boxes with indicate non-significant p values (p>0.05). The
figures was made using the TIMER2.0 web server based on CIBRSORT analysis (http://timer.cistrome.org/). (B) Detailed correlation between DDR factors and CD8+
T cells in prostate adenocarcinoma (PRAD) from panel (A) The purity-adjusted Spearman’s rho and p value are labeled in red. ***p < 0.001; ****p < 0.00001.
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monoclonal antibodies used to block checkpoint molecules, such
as PD-1 and PD-L1, to activate immune cells to kill tumor cells
more effectively, it may be worth adding designed features such
as metal ion binding sites to add to their capabilities or removing
free cysteines to improve their stability (284–286).

SUMMARY AND PROSPECTS

The DDR shapes how the innate immune system responds to
tumors, as well as how the adaptive immune system is recruited
to sites of malignancy. Consequently, the interconnections of the
DDR and the immune system, which maintain genomic fitness
and pathogen protection, can be utilized to improve cancer
therapeutic strategies (5, 135, 287–291). Yet, defining how the
DDR impacts immune responses has remained challenging as
immune activation can evidently be triggered by different types
of DDR components including DNA damage sensors,
transducers, and effectors (292).

Here, we assessed current molecular and mechanistic data
showing how the DDR induces and impacts immune responses.
At present, cancer immunotherapy is less widely used than surgery,
chemotherapy, or radiation therapy. As only a subset of patients
respond to immune checkpoint blockade, enhancements from

defining and modulating the DDR along with reliable predictive
biomarkers of response are needed to guide and improve
therapeutic strategies. DNA repair deficiency is common among
tumors, and emerging experimental and clinical evidence suggests
that features of genomic instability are associated with response to
immune-directed therapies. We propose that advancing all
successful cancer therapies will benefit from elucidating key
molecular and mechanistic relationships linking DDR, DNA
damage outcomes, and immune responses. In fact, the efficacy of
conventional chemotherapy and radiotherapy can depend in part
upon induction of innate and adaptive immunity.

In innate immunity (Figure 1), MRN (along with its
associated ATM and ATR kinases) and DNA-PK complex,
which co-regulates DNA DSB repair, can serve as master
cytosolic DNA sensors to initiate innate immune response.
DNA-PKcs expression with validated immune biomarkers can
guide patient selection for DNA-PKcs targeting strategies, DNA-
damaging agents, and their combination with an immune-
checkpoint blockade (293). Analogously, ATM inhibition
induces tumor growth delay and overcomes tumor resistance
to anti–PD-1 therapy (294). In addition, other DDR components
interact with and promote cytosolic DNA sensing pathways or
RIG-I–mediated RNA sensing signaling to trigger innate
immune response. Whereas mice and other model systems

FIGURE 4 | DDR Inhibition and Antitumor Immunity. DDR Inhibition and DDR defects can increase cytosolic DNA that activates the cGAS to generate cGAMP and
promote tumor neoantigen production. cGAMP can activate cell intrinsic STING pathway and spread the immunity to bystander cells. All these factors contribute to
an inflammatory tumor microenvironment and promote the recruitment of cytotoxic CD8+ T cells and constrict cancer growth effectively. Combining DDR inhibition
(such as PARP or PARG inhibition) with Immune checkpoint blockade (including PD-1/PD-L1 or CTLA4 blockade) may be a promising strategy with the potential to
improve survival outcomes.
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have proven to be of great value for testing these molecular
mechanisms, it is critical to consider possible impacts from the
far higher DNA-PKcs levels in human cells compared to
laboratory mice (104).

Most immune-related DDR components and immune
responses converge upon the STING-IFN signaling pathway,
which plays a crucial role in cancer cell immune-surveillance. In
adaptive immunity (Figure 2), DDR pathways (including MMR,
BER, NHEJ, and A-EJ) are required for V(D)J recombination,
CSR and SHM processes, which are critical to lymphocyte
development. From a pathology standpoint, DDR modulates
anticancer immunity via both innate and adaptive immunity,
with the underlying molecular mechanisms being increasingly
defined. Such knowledge is likely broadly applicable to human
disease, including cancer, infectious disease and atherosclerotic
disorders. For instance, SARS CoV-2 proteins, can hijack the
human immune response to pathogens and the DNA damage
repair system, thereby damaging both innate and adaptive
immunity (295, 296). Furthermore, the results of targeting
endonuclease V, a ROS response and structure-specific
nuclease that cleaves DNA and RNA at inosines as a regulator
of innate immune responses, suggests blocking such DDR-
related epitranscriptomic modifications to ameliorate carotid
atherosclerosis and ischemic stroke (297–299).

For advanced immunotherapeutic strategies, DDR defects
plus the increased mutation load in tumor cells produce
tumor-specific neoantigens. So chemical tools to alter the DDR
in predetermined ways can leverage the full power of cancer
immunotherapy. Importantly, advances in structural biology for
combining atomic resolution structures with X-ray scattering
and computation for solution conformations and assemblies are
providing critical enabling methods to define and target dynamic
complexes that can generally control mutation rates (66, 300–
302). We propose here that the dynamic DNA-PK and MRN-
activated ATM and ATR are potential master keys to unlock
DDR and their immune system roles. As DNA-PKcs, ATM, and
ATR inhibitors are already being evaluated in clinical trials as
sensitizers of chemotherapy and radiotherapy, we suggest that
these kinases may be both a predictive biomarkers and
therapeutic targets for immunotherapy in future clinical trials.

To effectively use such master keys, it will be important to
better define the molecular mechanisms orchestrating their
activities in DDR and immune system outcomes and their
potential as biomarkers for prognosis. We know that with

molecular mechanistic knowledge, examination of DDR status
can provide informed predictive biomarkers for patient selection
and therapeutic approaches (135). Moreover, like immune
checkpoint inhibitors, DDR inhibition strategies show great
potential to improve cancer treatment efficacy by harnessing
their immunomodulatory effects for radiat ion and
chemotherapies, immune checkpoint blockade, and combined
therapeutic strategies.
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GLOSSARY

5-FdU floxuridine
53BP1 p53-binding protein
8-OHG 8-hydroxyguanosine
A-EJ alternative end joining
AgR antigen receptor
AID activation-induced cytidine deaminase
APE2 Apurinic/apyrimidinic endodeoxyribonuclease 2
APOBEC apolipoprotein B mRNA editing enzyme

catalytic polypeptide like
ATM ataxia telangiectasia mutated
A-T Ataxia-telangiectasia
BCL10 B cell CLL/lymphoma 10
BER base excision repair
BLM bloom syndrome RecQ like helicase
BRCA1/2 breast-cancer susceptibility gene 1/2
BS bloom syndrome
CARD9 caspase-recruitment domain
CHK1 checkpoint kinase 1
CTLA-4 cytotoxic T-lymphocyte-associated antigen 4
cGAMP 2’-3’cGAMP
cGAS cyclic GMP-AMP synthase
CSR class-switch recombination
DAMPs damage-associated molecular patterns
DDR DNA damage response
DNA-PK DNA-dependent protein kinase
DSBs double-strand breaks
EEPD1 endonuclease/exonuclease/phosphatase

family domain containing 1
dsDNA double-stranded DNA
ERCC1 excision repair cross complementary gene 1
EXO1 exonuclease 1
EXO5 exonuclease 5
FANCD2 Fanconi anemia complementation group D2
FEN1 flap structure-specific endonuclease 1
GSK3b glycogen synthase kinase 3 beta
GRB2 growth factor receptor bound protein 2
H2AX H2A histone family member X
HDP-RNP HEXIM1-DNA-PK-paraspeckle components-

ribonucleoprotein complex
HIV human immunodeficiency virus
HMGB1 high mobility group box 1
HR homologous recombination
HSPA8 heat shock protein family A (Hsp70) member 8
HSV-1 herpes simplex virus 1
Ig immunoglobulin
IRF3 interferon regulatory factor 3
IFI16 IFN-inducible protein 16
IFN interferon
LAT Linker of Activation of T cells
LIG4 DNA ligase IV
LINP1 lncRNA in nonhomologous end joining

(NHEJ) pathway 1
IL7 interleukin 7
IR ionizing radiation

MAVS mitochondrial antiviral signaling protein
MDC1 Mediator of DNA damage checkpoint 1
MMR mismatch repair
MLH1 MutL homolog 1
MRE11 meiotic recombination 11 homolog 1
MRN MRE11-RAD50-NBS1
MSH2 MutS homolog 2
MSH6 MutS homolog 6
MUTY MutY DNA glycosylase
NBS1 Nijmegen breakage syndrome protein 1
NEIL endonuclease VIII (Nei)-like proteins
NER nucleotide excision repair
NF-kB nuclear factor kappa B subunit 1
NHEJ non-homologous end joining
OGG1 oxoguanine DNA glycosylase
p53 tumor protein p53
PARG poly(ADP-ribose) glycohydrolase
PARP poly (ADP-ribose) polymerase
PARPi PARP inhibitors
PAMPs pathogen associated molecular patterns
PCNA proliferating cell nuclear antigen
PD-1/PD-L1 prog rammed ce l l d ea th pro t e in 1 /

programmed cell death ligand 1
PIKK phosphatidylinositol 3-kinase (PI3K)-

related kinase
PMS2 PMS1 homolog 2
Polh DNA polymerase h
pre-BCR pre-B cell receptor
PRRs pattern recognition receptors
PRKDC P r o t e i n k i n a s e , DNA - a c t i v a t e d ,

catalytic polypeptide
RAD50 ATP-binding cassette (ABC)-ATPase 50
RAD51 ATP-binding cassette (ABC)-ATPase 51
RAG recombinase activating gene
RIG-I retinoic acid-inducible gene I
RPA replication protein A
ROS reactive oxygen species
RSS recombination signal sequences
SARS CoV-2 seve r e acu t e r e sp i ra to ry syndrome

coronavirus-2
SCID severe combined immunodeficiency
SHM somatic hypermutation
SCNAs somatic copy number alterations
SIDSP STING-independent DNA sensing pathway
SSBs single-strand breaks
STING stimulator of interferon genes
TBK1 TANK-binding kinase 1
TCRb T cell receptor beta
TdT terminal deoxynucleotidyl transferase
TREX1 three prime repair exonuclease 1
WEE1 WEE1 G2 checkpoint kinase
XLF XRCC4-like factor
XRCC1 x-ray repair cross-complementing group 1
XRCC4 x-ray repair cross-complementing group 4
UNG uracil DNA glycosylase
V(D)J variable, diversity, and joining.
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The Emerging Roles of Pellino
Family in Pattern Recognition
Receptor Signaling
E Zhang1 and Xia Li1,2*
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The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of
Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure
providing ubiquitin ligase activity without abrogating cell and structure-specific function. In
this review, we mainly summarized the crucial roles of the Pellino family in pattern
recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling,
NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling.
We also summarized the current information of the Pellino family in tumorigenesis,
microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of
the Pellino family in immunity.

Keywords: Pellino1, Pellino2, Pellino3, TLR, NLR, RIP, PRRs

INTRODUCTION

Immune responses aremainly divided into innate immunity and acquired immunity. Innate immunity
can respond rapidly to pathogens as the first line of defense mediated by macrophages, dendritic cells,
neutrophils, epithelial, and endothelial cells. It utilizes germ-line encoded pattern recognition receptors
(PRRs) to detect conserved microbial components known as pathogen-associated molecular patterns
(PAMPs) or endogenous ‘alarmins’ released during infection and inflammation. Toll-like receptors
(TLRs), nucleotide-binding oligomerizationdomain-like receptors (NLRs), retinoic acid-inducible gene
I-like receptors (RLRs), C-type lectin receptors (CLRs), DNA sensors, and melanoma 2-like receptors
are not part of the PRRs (AIM-2-like receptors).Mammalian TLRs recognize bacteria and nucleic acids
and sense inflammation caused by bacteria through binding to ligands on the cell surface and in the
nuclear body.NLRsandRLRs, on the otherhand, detect nucleic acids in the cytosol (1–3). PRRsmediate
their biological functions by activating transcription factors such as nuclear factor−kB (NF-kB),
activator protein-1 (AP-1), and interferon-regulatory factors (IRFs) to drive proinflammatory and
interferon (IFN) gene expression (1–4).

Ubiquitination, a posttranslational modification involving the conjugation of the 76 amino acid
proteins to the lysine residue of other proteins, is catalyzed by the sequential action of ubiquitin-
activating (E1), ubiquitin-conjugating (E2), and ubiquitin-ligating (E3) enzymes. Ubiquitin
contains seven lysine residues and one N-terminal methionine (M1) residue, each of which can
be attached to another ubiquitin moiety. The presence of these lysine residues and the M1 forms a
variety of ubiquitin chains (K6-, K11-, K27-, K29-, K33-, K48-, K63-, M1-linked ubiquitin chains
and mixed ubiquitin chains), which are recognized by substrate proteins with linkage-specific
ubiquitin-binding domains to trigger multiple biological functions such as K48- and K11-linked
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chains for protein degradation, M1 or K63-linked chains for
signal transduction (5). The substrate specificity of
ubiquitination is mainly determined by E3s, which directly
catalyzes ubiquitin transfer from E2s to the substrates (6). In
particular, the Pellino family, a novel E3 ubiquitin ligase family
(7–9), has been implicated in the regulation pattern recognition
receptors (PRRs) signaling pathway of immunity.

Pellino (Drosophila Peli, Human PELI, Mouse Peli), first
discovered in Drosophila, is a novel and evolutionarily conserved
protein with 424 amino acid residues and an estimated molecular
weight of 47 kDa (10). The Pellino family-related sequences are
conserved in different species (11, 12). The identical sequence
shared between C. elegans and Drosophila is 47%, and between C.
elegans andHuman is 40% (12). Inmammals, the Pellino family has
three sequence-conserved members, Pellino1 (13), Pellino2 (14),
and Pellino3 (two splicing variants Pellino3a and Pellino3b) (15),
located on chromosomes 2, 14, and 11 (13) respectively, with an
amino acid length ranging from 418 to 479 (16). Mouse Pellino1
and Pellino2 possess 75% sequence similarity, whereas Pellino3
shares 84 and 85% similarity with Pellino1 and Pellino2,
respectively (13). Each member of the Pellino family shows a
highly similar primary structure with a C-terminal RING-like
domain mediating K11, K48, and K63 linked conjugation of
polyubiquitination (7) and a cryptic phosphothreonine-binding
N-terminal hidden split forkhead associated (FHA) domain
attached by a “wing” or appendage structure (16) (Figure 1). The
“wing” can interact with phosphothreonine residues of proteins
such as interleukin-1 receptor-associated kinase 1 (IRAK1) and
interleukin-1 receptor-associated kinase 4 (IRAK4), which in turn
phosphorylate Pellino1, Pellino2, and Pellino3 (9, 16, 24, 28–31).

The Pellino family was thought to be a kind of “scaffolding”
protein in the signaling process of Toll-like receptors and
interleukin-1 receptors (TLR/IL-1R) (15) by interacting with
multiple intermediates such as IRAK4, IRAK1, TGF-beta
activated kinase 1 (TAK1), TAK1 binding protein 1 (TBK1),
receptor-interacting protein kinase (RIPK or RIP) and TNF
receptor-associated factor 6 (TRAF6) (15, 32–38). Subsequent
research showed that the Pellino family acted as a novel
interesting new gene (RING) E3 ubiquitin ligases (7, 14, 39)
rather than scaffold proteins (15). Similar to classical C3HC4
RING structure, the carboxyl termini of the Pellino family
possesses two stable Cys-Gly-His motifs and two conserved Cys-
Pro-X-Cys motifs, which determine and characterize the feature of
the RING class of E3 ligase (12). The Pellino family exerts their E3
ubiquitin ligase activity through its phosphorylation form. Some
proteins can phosphorylate the Pellino family, such as IRAKs
(IRAK1 and IRAK4), TAK1, TBK1, and IkB kinase ϵ (IKKϵ) (15,
32–36). Upon stimulation by interleukin-1(IL-1), tumor necrosis
factor a(TNFa), lipopolysaccharide (LPS) or polyinosinic–
polycytidylic acid [poly (I:C)] (18, 35), Pellino1 can be fully
activated by phosphorylation at some different sites (Ser-76,
Thr-86, Thr-288, or Ser-293) or a combination of other sites
(Ser-78, Thr-80, and Ser-82) (18, 31). As a critical family of E3
ubiquitin ligases, the Pellino family can mediate K11, K48, and
K63 linked polyubiquitination (7). Pellino1 can combine with E2
conjugating complex ubiquitin-conjugating enzyme 13 (Ubc13)–

ubiquitin E2 variant 1a (Uev1a) to catalyze the formation of
Lys63-linked polyubiquitin (K63-Ub) chain, with UbcH3 to
catalyze the formation of K48 polyubiquitination chain(K48-
Ub), and with UbcH4, UbcH5a or UbcH5b to catalyze the
formation of K11 and K48 polyubiquitin ubiquitination chains
(30). Inducing the formation of K63-Ub chains to ubiquitylate
IRAK1, IRAK4, myeloid differentiation factor88 (MyD88),
receptor-interacting protein kinase1 (RIP1), and receptor-
interacting protein kinase 2 (RIP2) (14, 22, 26, 30, 36, 37, 39,
40) demonstrate that Pellino family is a novel RING E3-ubiquitin
ligase (14, 39). In addition to interacting with IRAK4, IRAK1,
TAK1, TBK1, and TRAF6 (15, 32–36), each member has unique
binding partners. Pellino-1, but not Pellino2 or Pellino3, has been
reported to interact with MyD88 (20) and TBK1 (35). Similarly,
only Pellino3 was associated with NF-kB-inducing kinase (NIK)
(15, 39). Some other proteins can also interact with the Pellino
family, such as Smad6/7 (20, 21), BCL10 (23), and caspase-8 (26,
27) (Figure 1). Upon diverse stimulation, the key biological and
cellular function of the Pellino family has been identified in the
innate immune system (17, 31, 41–43), namely, initiating NF-kB
(44) and mitogen-activated protein kinase (MAPK) (22) to
regulate the production of inflammatory cytokine and
interferons (IFNs) (41), mediating cell death via receptor-
interacting serine/threonine kinases (RIPs), and other
phenotypic changes of cells and tissues (45–47).

THE ROLES OF THE PELLINO FAMILY
IN PATTERN RECOGNITION
RECEPTOR SIGNALING

IL-1R, TLRs, and NLRs were involved in innate immunity to
mediate the production of inflammatory cytokines (48, 49) and
interferons (50). Each member of the Pellino family is crucial to
PRR signaling pathways. We divided these pathways into five
categories: (i) MyD88-dependent TLR/IL-1R signaling, (ii)
TRIF-dependent interferons induction signaling, (iii) RIP-
dependent signaling, (iv) NLR-related signaling, and (v) B-cell
and T-cell signaling due to some key proteins, i.e., Myd88,
TRAF6, TAK1, Toll/IL-1 receptor domain-containing adaptor
inducing interferon-beta (TRIF), TBK1, RIPs, and NLRs in the
signaling conduction (51).

In the Drosophila genome, Pellino interacts with and
regulates plasma membrane MyD88-K48-Ub turnover to
balance Toll-mediated immune signaling positively or
negatively (52, 53). An ancestral Pellino protein from helminth
species binding and poly-ubiquitinating human IRAK1 displays
its E3 ligase activity and conservative function (54). In mammals,
the production of proinflammatory interleukin-1 b (IL-1b), IL-6,
C-X-C motif chemokine ligand 8 (CXCL8), and IFNs regulated
by Pellino1, Pellino2, and Pellino3 demonstrate the key roles of
the Pellino family in TLR/IL-1R signaling (25, 55–57). All of the
TRIF, RIP1, RIP3, NLRs, and the Pellino family participate in the
activation of NF-kB and MAPK/ERK kinase kinases (MEKKs)
signaling to regulate cell survival, apoptosis, and necroptosis (4,
25, 37, 38, 57).

Zhang and Li Pellino Family in PRRs Signaling
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Pellino Family in MyD88-Dependent TLR/
IL-1R Ssignaling
TLR/IL-1R family possesses an intracellular conserved Toll/IL-
1R (TIR) domain which can allow the recruitment of the adapter
MyD88 for the transduction of signals (58). In this section, we
mainly focus on the function of the Pellino family in MyD88-
dependent TLR/IL-1R signaling.

Pellino Family in MyD88-Dependent
IL-1R Signaling
IL-1 is an important endogenous pyrogen and proinflammatory
cytokine that can regulate hematopoiesis, recruit and activate
neutrophils, macrophages, T and B-lymphocytes, and mediate

inflammatory responses (59, 60). IL-1 induces signal conduction
via IL-1R and IL-1R-accessory proteins to recruit MyD88-
dependent signaling cascades, namely, IRAK4, IRAK1, IRAK2,
TRAF6, and TAK1, that leads to the activation of the MAPKs
and NF-kB (4, 61).

Pellino1, Pellino2, and Pellino3 can interact with IRAK1,
TRAF6, and TAK1 (8, 32–34). Being upstream of TAK1 and
downstream of IRAK1, Pellino1 is critical for the IL-1R-MyD88
dependent pathway through interaction with the IRAK4–
IRAK1–TRAF6 complex (33). During this process, the catalytic
activity of IRAK1 and IRAK4 is required for IL-1-stimulated
activation of Pellino1 in Mouse embryonic fibroblasts (MEFs)
(35). Aside from Pellino1, Pellino2 also interacted with IRAK4
(14, 57). Pellino3 physically interacts with IRAK1, TRAF6,

A

B

C

D

FIGURE 1 | Molecular features of the Pellino family (9). (A) The structure of the Pellino family. In mammals, the Pellino family comprises three family members
(Pellino1, Pellino2, and Pellino3) with an amino acid length ranging from 418 to 479. The Pellino family shows a highly similar primary structure with a C-terminal
RING-like domain mediating K11, K48, and K63 linked conjugation of polyubiquitination and a cryptic phosphothreonine-binding N-terminal hidden split forkhead
associated (FHA) domain attached by a “wing” or appendage structure. IRAK1 and IRAK4 can phosphorylate the Pellino family on Ser-76, Ser-78, Thr-80, Ser-82,
and Thr-86. Individual site Ser-76, Thr-86, Thr-288, or Ser-293 or a combination of Ser-78, Thr-80, and Ser-82 is necessary to activate the Pellino family (17) fully.
IKKϵ/TBK1 activates Pellino1 in vitro by phosphorylating Ser76, Thr288, and Ser293 (18). (B) The sites of Pellino1 interacting with other proteins. The amino acids
length of Pellino1 is 418 in both humans and mice. The 104th site of the FHA domain and 313th/336th sites of the RING-like domain are crucial to K48-linked
polyubiquitylation of IRAK1, RIP1, and RIP3 (19). The region between residues 198 and 345 is essential to the interaction between Pellino1 and Smad6/7 (20, 21).
(C) The sites of Pellino2 interacting with other proteins. The amino acids length of Pellino2 is 420 in humans and 418 in mice. The points 106, 187, 188, 287, 397,
and 400 are essential to the interaction between Pellino2 and IRAK1 (16, 22). The range between residues 169 and 233 is essential to the interaction between
Pellino2 and BCL10 (23). (D) The sites of Pellino3 interacting with other proteins. The amino acid length of Pellino3 is 469 in humans and 445 in mice. Residue 44 is
essential for the binding of Pellino3 to IRAK1 (24). Residue 316 is essential to Pellino3 autophagy-dependent degradation via p62 (25). The FHA and RING-like
domains are responsible for the interaction between RIP1 and caspase-8 (26, 27).
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TAK1, and NIK in HepG2 and 293 cells in an IL-1-dependent
manner (15). Pellino1 and Pellino2 can replace TRAF6 to
generate K63-Ub chains, activate TAK1, or induce IL-8
production via MyD88-IL-1b signaling in IL-1R cells that
express E3 ligase-inactive TRAF6 (40).

The Pellino family is associated with inflammatory mediator
production (35, 62). Pellino1 knockdown can lead to a reduction in
IL-1b-induced expression of proinflammatory cytokines in the
bronchial epithelial cells (BEAS-2B) (62) and inhibit IL-1-
mediated NF-kB activation and thus repress the production of IL-
8 (33). Furthermore, Drosophila mothers against decapentaplegic
protein 6 (Smad6) and Smad7 can bind to Pellino1 via mad
homology (MH2) domains to mediate growth factor-b (TGF-b).
It inhibited IL-1R signaling by preventing Pellino1 from forming a
complex with MyD88, IRAK1, IRAK4, and TRAF6, which further
suppressed IL-1b induced NF-kB activation and production of
proinflammatory cytokines (20, 21). Evidence shows that Pellino1
plays a critical role in IL-1R signaling viaMyD88, leading to NF-kB
activation and proinflammatory cytokine expression. However, this
conclusion is contradictory to other studies. Due to indistinct
variations in NF-kB activity and expression of TNF-a, IL-6, or C-
X-C motif chemokine ligand 10 (CXCL10) in mouse embryonic
fibroblasts between wild type (WT) and Pellino1 knockout (KO)
mice, Pellino1 is overlooked or unnecessary for the IL-1R pathway
(37). A similar phenomenon can be observed in Pellino1
knockdown airway primary epithelial cells with the insignificant
expression of proinflammatory cytokine CXCL8 induced by IL-1
(62). Furthermore, inactive-IRAK1induces Pellino1 significantly
impaired E3 ubiquitination ligase activity with a modest effect on
MAPK andNF-kB activation upon IL-1 (31). All the results indicate
that Pellino1 may not be necessary for inflammation production in
the MyD88 dependent IKK–NF-kB activation pathway. Whether
Pellino1 is necessary for IL-1R may be controlled by cell type.
Pellino2 also plays a critical role in IL-1R-mediated inflammatory
production and post-transcriptional control (22), and it may be a
positive regulator in the IL-1R pathway. The successive K63 and
K48 ubiquitination of IRAK1 and TAK1 are required for Pellino2 to
regulate IL-8 promoter activity by an NF-kB-dependent manner in
the human embryonic kidney (HEK) 293-EBNA cells and the
mouse embryonic fibroblast cell line C3H10T1/2 (22, 32). Upon
K63 ubiquitination (22) of IRAK1 by Pellino2, the intermediate
complex Pellino2–IRAK4–IRAK1–TRAF6 interacts with
membrane-bound pre-associated TAK1-TGF-b activated kinase
1/MAP3K7 binding protein 1 (TAB1)-TAB2, which results in the
formation of complex II (TAK1 complex, IRAK–TRAF6–TAK1–
TAB1–TAB2), and IRAK1 degradation, induced by K48-linked
ubiquitination of degradation. This is followed by translocation of
TRAF6–TAK1–TAB1–TAB2 (complex III) from the membrane to
the cytosol. TAK1 is activated and eventually leads to transcription
factors activation of NF-kB, AP-1, and Elk-1in MAPKs (8, 22, 34).
Pellino3 can also participate in the IL-1R signaling in HepG2 and
293 cells in an IL-1-dependent manner (15). However, Pellino3b
activates JNK leading to the activation of c-Jun and Elk-1 (8, 15),
and activates p38MAPK leading to cAMP-response element-
binding protein (CREB) activation (24) instead of NF-kB (15).
Mechanistically, upon IL-1 stimulation, upregulated Pellino3b

interacts with and inhibits TAK1 complex releasing from
membrane to cytosol, leading to attenuation of TAK1-dependent
NF-kB activation due to Pellino3b induced K63-polyubiquitination
and IL-1 induced K48 polyubiquitination competing for IRAK1-
K134 ubiquitination site (8). Pellino3 activates p38MAPK via
interacting with IRAK1, TRAF6, and TAK1. It also promotes
translocation of p38 substrate MAPK-activated protein kinase
(MK2) from the nucleus to the cytoplasm and activates the
transcription factor CREB in a p38 MAPK-dependent manner
(24). The ability of Pellino3 to activate p38 MAPK appears to be
unique in the Pellino family (Figure 2).

For downstream signaling, Pellino1 leads to the activation of
NF-kB (33) but not c-Jun N-terminal kinase (JNK) (24, 33, 34) in
HEK293 cells. Mouse Pellino2 is required for NF-kB activation
in mouse embryo fibroblast cells (32) and is involved in JNK
signaling, which leads to AP-1 and the effect of ETS-like 1
transcription factor (Elk-1) activation in HEK293 cells (34).
Pellino3 promotes c-Jun and Elk-1 activation in JNK signaling
in HepG2 human hepatoma cells (15) and acts as a promoter to
activate p38 MAPK in HEK293 cells (24) instead of NF-kB (15).
Pellino3b, an alternative splicing variant of Pellino3, can
negatively regulate IL-1-induced and TAK1-dependent NF-kB
activation in synoviocytes (8) (Figure 2). As a conserved E3
ubiquitin ligase family, each member activates the same or
different transcription factors to regulate different downstream
pathways. Perhaps each member of the Pellino family has a
different division of labor upon IL-1.

Pellino Family in MyD88-Dependent
TLR Signaling
All TLRs mediate the signal conduction via Toll/interleukin-1
receptor (TIR) like IL-1R. Upon stimulation of ligands, several
TLRs such as TLR2 and TLR4 recruit MyD88, IRAKs, TNF
receptor-associated factor 3 (TRAF3), and TRAF6 to activate
TAK1, leading to the activation of MAPK and NF-kB (3, 63).
Upon LPS binding, TLR4 recruits MyD88, TRAF6, TRAF3, and
cellular inhibitors of apoptosis proteins (cIAPs). There are two
downstream signaling pathways for TRAF6. One is to activate
TAK1 leading to MAPK and NF-kB activation (64–67). The
other is to induce proinflammatory cytokines by stabilizing
cIAPs via K63-Ub and then the TRAF3 K48-Ub degradation
leading to the production of c-Rel (6).

An overall brain proteomes study in Pellino1 knockout mice
showed that Pellino1 was involved in promoting antigen
presentation, enhancing activities of adaptive and innate
immune cells (68) with the contribution to microglial activation,
neuroinflammatory responses, and neurological deficits through
the activation of NF-kB and MAPK (42, 64, 66). Pellino1
positively regulates the production of inflammatory factors in
MyD88-dependent TLR signaling (69, 70) as MyD88 deficiency
hindered the expression of Pellino1, NF-kB, IL-1b, IL-6, Beclin-1,
and cyclooxygenase-2 (COX-2) in a cerebral ischemia/reperfusion
(I/R) mouse model (70). Pellino1 also positively regulates the
MyD88-dependent pathway by promoting K63 linked
polyubiquitination of IRAK1, TBK1, TRAF6, and TAK1 to
active the MAPK and NF-kB signaling pathways via TLR2 and
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TLR4 pathway (69, 71). Upon LPS stimulation, the expression of
Pellino1 is upregulated (69, 71, 72), possibly by increasing levels of
p65 and phosphorylated IKKa/b in microglia (73). Upregulated
Pellino1 activates microglia and enhances NF-kB production,
MAPK phosphorylation, and proinflammatory cytokines in
LPS-induced TLR4 signaling by increasing TRAF6 K63-linked
ubiquitination (64–66). In addition, Pellino1 promotes K63-Ub of
TRAF6 in the spinal cord to enhance morphine treatment (65).
However, Pellino1 is dispensable for inflammatory responses in
astrocytes (66). TRAF3 degradation contributes to the production
of inflammatory factors in the MyD88-TLR pathway. Pellino1 was
discovered to mediate K63 ubiquitination of cIAP, resulting in
cIAP K48 ubiquitin ligase activity, ubiquitin-dependent
degradation of TRAF3 (41, 74, 75) activation of microglia-
mediated chemokines, and proinflammatory cytokines via the
MyD88-dependent MAPK pathway (42, 66, 75). Pellino1 is also
involved in several neurogenic diseases. Upon trans-activating
protein (Tat), Pellino1 induces autophagy, interrupts expression of
tight junction protein zonula occludens1 (ZO-1), and increases the

permeability of the blood–brain barrier (BBB) by triggering K63-
Ub of Beclin1 (76). Pellino1 also impairs microglial amyloid b-
protein (Ab) phagocytosis through promoting CCAAT enhancer-
binding protein b (C-EBPb) degradation in Alzheimer’s disease
(AD) (77). In Parkinson’s disease, upregulation of Pellino1 by a-
synuclein leads to the degradation of lysosomal-associated
membrane protein-2 (LAMP2) and the buildup of autophagy
with decreased autophagy flux by microglial exosomes (78).

Although mediated by LPS, the Pellino family plays a different
role in endotoxin tolerance in macrophages. Endotoxin tolerance
abrogated Pellino1 induction by LPS in macrophages (69, 71, 72)
but an enhanced expression of Pellino3 (79). Elevated
transcription of TNFa and IL-6 driven by TLR2/4 and also
increased expression of C–C motif chemokine ligand 5 (CCL5)
driven by TLR4 were observed in Pellino3-deficient human
myeloid leukemia mononuclear cells (THP-1) in response to
TLR agonists (79). The Pellino3 inhibits TRAF6 downregulation
by reducing IRAK1 degradation via K63 polyubiquitination,
which competes with K48 ubiquitination, resulting in NF-kB

FIGURE 2 | Pellino family in the Myd88-dependent TLR/IL-1R signaling. Upon IL-1 stimulation, Pellino1, Pellino2, and Pellino3 can interact with IRAK1, TRAF6, and
TAK1 (8, 32–34). Pellino1 mediates the degradation of IRAK1 by K48-Ub, leading to the activation of TABs and TAK1 with the ultimate activation of NF-kB. Pellino2
leads the activation of NF-kB and JNK by successive K63-Ub and K48-Ub of IRAK1 and activation of TAK1. Pellino3 mediates the activation of JNK and p38 by
K48-Ub, which leads to IRAK1 degradation and negatively regulates NF-kB activation by IRAK1 K63-Ub. In the TLR pathway, TRAF6 induces cIAPs K63-Ub to
enhance TRAF3 K48-Ub degradation, elevating proinflammatory cytokine production by interrupting TRAF3 induced K48 ubiquitin-dependent degradation of c-Rel.
Pellino1 can also mediate cIAPs K63-Ub to accelerate the production of proinflammatory cytokines in microglia. In macrophages, Pellino3 represses NF-kB activation
by inhibiting TRAF6 downregulation. It also inhibits IRAK1 degradation via K63-Ub competing with K48-Ub of IRAK1, hindering NF-kB activation.
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suppression (36) in J774.1 cell lines. This is consistent with prior
Pellino3b results (8).

Several interesting results are discussed in the Pellino family-
related MyD88-dependent TLR/IL-1R signaling (Figure 2). IRAK1,
TRAF6, and MyD88 are crucial to the Pellino family, and the
IRAK1 is responsible for the activation of the Pellino family.
Pellino1 and Pellino2 can replace TRAF6 to generate K63-Ub
chains. MyD88 mediates the Pellino1 expression level. Whether
there is a similar phenomenon in Pellino3 needs further research.
Upon the same IL-1 stimulation, the members of the Pellino family
display different roles in regulating the IL-1R pathway. Pellino1 and
Pellino2 are positive IKK activation regulators; however, Pellino3 is
a negative regulator. This phenomenon is also present in TLR
signaling upon LPS stimulation. Pellino1 significantly induced
proinflammatory cytokines in microglial cells but showed no
inflammatory responses in astrocytes.

Interestingly, the downregulation of Pellino1 and upregulation
of Pellino3 were observed upon LPS induced endotoxin tolerance
in macrophages. However, each member of the Pellino family can
mediate the IKK activation or MAPK activation; not all the
members act as positive roles in the signaling. Perhaps the cell
type is critical in determining whichmember is accountable for the
associated pathway, and this should be researched further.

Pellino Family in TRIF-Dependent
Interferon Induction Signaling
TRIF plays a critical role in activating NF-kB via a MyD88-
independent pathway in TLR3 and TLR4 signaling (80, 81). In
addition to NF-kB activation, TRIF can also stimulate TANK
binding kinase1 (TBK1) and IKKϵ kinases to activate interferon
regulatory factor (IRF) transcription factors that drive the
expression of antiviral type I IFNs (80, 82). Upon LPS, poly(I:
C), and viral double-stranded RNA stimulation, TRIF is
recruited to promote TRAF3-dependent activation of TBK1 to
activate IRF3/7 leading to the induction of IFN expression (82,
83). IRF3 and IRF7 are the most important transcription factors
regulating type I IFN expression (80). Pellino1 possesses a novel
function in human viral pathogen infection (41, 62, 84, 85)
depending on TRIF. Pellino1, as a TLR3 positive regulator (18,
37, 86), is involved in modulating the production of
proinflammatory cytokines (37, 86) and induction of IFN-I in
the TLR3 pathway (41, 44, 86, 87). The deficiency of Pellino1
leads to inhibition of TLR3 and proinflammatory cytokines
production but without impairing IFN antiviral induction
under virus stimulation and TLR3 agonists in mice and
primary bronchial epithelial cells (PBECs) (62, 86). It seems
that Pellino1 is dispensable for IFN induction. However, further
studies showed that Pellino1 is upregulated by TRIF, TBK1, and
IKKϵ (18, 52, 69) via a TRIF-dependent manner in the TLR3
pathway but not the IRAKs-coupled and MyD88-dependent
pathway (37, 62). Perhaps there is a priority for Pellino1 to
decide which pathway to participate in. IKK ϵ and TBK1 can
enhance the activation of Pellino1 depending on IRF3 (18) and
K63-linked polyubiquitination of TBK1 (52, 55). As a new IRF3-
dependent gene, Pellino1 enhances the interaction of IRF3 with
the IFNb promoter to promote IFN production (44). In detail,

Pellino1 interacts with deformed epidermal autoregulatory factor
1 (DEAF1) independent of its E3 ligase activity, followed by
DEAF1 binding to IFNb promoters IRF3 and IRF7 to promote
IFNb gene transcription and IFNb secretion in MEFs (88). The
protein Bid can upregulate Pellino1 and enhance Pellino1
interaction with TBK1, leading to IRF3 production (73, 89).

Contrary to the above conclusion of upregulating IFNs level,
Pellino1 negatively mediates the induction of IFNs inmicroglia via
TRIF dependent TLRs upon the stimulation of poly(I:C), LPS, and
the RNA virus in the CNS (41). Perhaps due to this, Pellino1
allows the entry and replication of West Nile Virus (WNV) in
mouse macrophages, human neurons, and microglia (84), and the
enhancement of ZIKA virus (ZIKV) vertical transmission and
neuronal loss in vitro and in vivo (85). However, Pellino3 does not
act as a mediator of proinflammatory cytokine expression in
response to TLRs but as a key regulator to control TRIF
dependent type I interferon expression in the TLR3 pathway by
negatively regulating activation of IRF7 but not IRF3 (87). This
was demonstrated in Pellino3 deficient animals, which had
increased resistance to encephalomyocarditis virus and enhanced
type I interferon expression but not proinflammatory cytokines in
response to TLR3 activation (87). The possible mechanism is that
the TLR3 induces the Pellino3 level, which interacts with and
ubiquitinates TRAF6. This modification suppresses the ability of
TRAF6 to interact with and activate IRF7 leading to
downregulation of type I interferon expression (87). More
interestingly, Pellino3 inhibits LPS-induced IFNb expression in
oxidation-low-lipoprotein (Ox-LDL) induced macrophage-
derived foam cells via IRAK1/IRAK4/Pellino3/scavenger
receptor-A1(SR-A1) dependent mono-ubiquitination of TRAF
family member associated NF-kB activator (TANK) (90). In
detail, Ox-LDL activates IRAK1 and Pellino3, which provokes
mono-ubiquitination of the adaptor TANK in TRAF3-containing
signaling complex, leading to the failure of LPS-induced TBK1
recruitment, IRF3 activation, and IFNb expression in
macrophage-derived foam cells (90).

In the TRIF-dependent interferon induction signaling
(Figure 3), Pellino1 and Pellion3 display polar functions in the
production of IFNs (41, 44, 86, 87). The role of Pellino1 in the
induction of IFNs seemed to be unclear. First, Pellino1 is
dispensable or required to produce IFN in PBECs and MEFs.
IFN-b induction is attenuated in myeloid cells and MEFs
expressing a Pellino1 mutant lacking E3 ligase activity. Second,
the fact that Pellino1 deficiency profoundly promotes IFN-b
expression in microglia and Pellino1-deficient mice display
heightened IFN-I levels demonstrate a potentially negative role
of Pellino1 in the induction of IFN-b. The above results were
confusing. The Pellino1 might play a different role in different
cell types, and this needs to be further investigated. Unlike
puzzled Pellino1, Pellino3 serves as a negative regulator of
IRF7 but not IRF3 in TLR3 upon viruses (87). Perhaps there is
a hypothesis that the Pellino family may follow a not yet clear
priority rule to determine which member is responsible for the
regulation of IFNs. So far, there is no report on Pellino2 and IFN
production. More attention should be paid to the discrepancy of
the Pellino family.
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Pellino Family in RIP-Dependent Signaling
RIP1 was initially discovered as an adapter kinase involved in the
transduction of TNFR signals. It is required for the suppression of
nuclear factor kappa-B kinase (IKK) activation and apoptosis via a
RIP homology interaction motif (RHIM) in TRIF-dependent
signaling (73, 91, 92) and TNF signaling in the absence of TRIF.
In the TRIF-dependent pathway, RIP1 ubiquitination induced by
poly(I:C) is required for IKK activation (92). The discovery of the
kinase RIP3 (93, 94) and its substratemixed lineage kinase domain-
like protein (MLKL) (95, 96) leads to an awareness of this pathway.
However, TRIF does not employ RIP1 to initiate IRFs (91, 92), and
RIP3 is not required for NF-kB activation in TLR signaling (97).
Both TNF/RIP1/RIP3/MLKL signaling and TRIF/RIP1/RIP3
pathway participate in the activation of NF-kB/MEKKs in cell
survival, apoptosis, and necroptosis (4).

Pellino1 mediates RIP1 K63-Ub to active NF-kB signaling in the
TRIF-dependent TLR pathway to maintain cell survival (37, 38, 98).
Under LPS and dual hypoxia stimulation, destabilized Pellino1
(Ser39 phosphorylation and turnover) induced by death-associated

protein kinase 1 (DAPK1) leads to the release of TRIF-RIP1
signalosome to recruit caspase-8 and induces tubular damage and
cell apoptosis inacutekidney injury (AKI)model (98).Thebindingof
Pellino1, RIP1, and TIF inhibits tubular damage by hindering cell
apoptosis. In the TRIF-independent RIP pathway, IKK-related
kinases activate Pellino1 in TNFa-stimulated mouse embryonic
fibroblasts (MEFs) (35). According to an intriguing study, Pellino1
acts as a dual regulator of necroptosis and apoptosis. Pellino1 acts as a
pro-necroptosis K63-ubiquitin ligase role in necroptosis by forming
RIP1 andRIP3 complex in a RIP1 kinase activity-dependent way but
as an apoptosis inhibitor by reducing expression levels of cellular
FADD-like interleukin-1b converting enzyme inhibitory protein (c-
FLIP) in MEFs cells stimulated by TNFa (56). In contrast to the
previous result, Pellino1 might prevent HeLa cells aberrant
necroptosis by causing RIP3 hyperactivation and further
degradation via K48-linked polyubiquitylation (19). The results
reflect the different roles of Pellino1 in normal and cancerous cells.
However, Smad6 can block the interaction between Pellino1 and
RIP1 to inhibit NF-kB (84, 85). Pellino3 is also proved to be a novel

FIGURE 3 | The Pellino family in TRIF-dependent interferon induction signaling. Pellino1 is required for interferon production upon viral double-stranded stimulation
and is upregulated by TRIF, TBK1, and IKKϵ. IKKϵ and TBK1 enhance the activation of Pellino1 depending on IRF3 and K63 linked polyubiquitination of TBK1.
Pellino1 interacts with DEAF1 independent of its E3 ligase activity and leads to the binding of DEAF1 and IFNb promoters (IRF3 and IRF7) for IFNb gene transcription
and secretion. Bid upregulates Pellino1 and enhances the interaction of Pellino1and TBK1, leading to IRF3 production.
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regulator of cell survival upon TNFa. Pellino3 can impair TNFa-
inducedcomplex II formationandcaspase-8-mediatedRIP1cleavage
via interacting with RIP1 and caspase 8, leading to the inhibition of
apoptosis in vitro and in vivo (27).

In the RIP-dependent signaling (Figure 4), both Pellino1 and
Pellino3 were involved in two types of programmed cell death:
apoptosis and necroptosis. It seemed that the K63-Ub of RIP1 is
crucial to cell fate. For instance, stimulations of TLR3 and TLR4
induce the interaction of RIP1 andTRIF followed by recruitment of
Pellino1, which mediates K63-linked polyubiquitylation of RIP1,
leading to recruitment of TAK-1 for NF-kB induced cell survival
(19, 37). Upon TNFa, the K63-linked polyubiquitylation of RIP1 is
also necessary for the NF-kB pathway and cell survival (99).
Pellino1 can also mediate RIP1 K63-linked polyubiquitylation on
TNFa. Pellino1-induced RIP1 K63-linked polyubiquitylation
appears to be a critical factor in cell survival, apoptosis, and
necroptosis. Current studies show that Pellino1 only induces
RIP1 K63-linked polyubiquitylation to trigger necroptosis but is

not necessary for necrosome formation. Perhaps, the different
interaction sites between RIP1 and Pellino1 decide the signal
conduction. Interestingly, Pellion1 plays almost the exact
opposite role in necroptosis in different cell types, enhancing
necroptosis in normal cells (56) and preventing necroptosis in
Hela cells (19). As an important role in controlling complex II
formation in response to TNF, Pellino3 can interact with the
complex II components, caspase-8, and RIP1, to inhibit cell
death. Pellino3 plays a critical role in inhibiting the pro-apoptotic
effects of TNF independent of NF-kB (27). This is consistent with
previous reports indicating thatPellino3maynegatively regulate IL-
1-induced and LPS-induced activation of NF-kB (8, 36). More
efforts are needed to unravel the roles of the Pellino family in cell
survival and death.

Pellino Family in NLRs Related Signalings
NOD1, NOD2, and NLR Family Pyrin Domain Containing 3
(NLRP3) are involved in the anti-infection process by activating

FIGURE 4 | Pellino family in RIP-dependent signaling. Pellino1 induces the ubiquitination of RIP1 and RIP3 to regulate NF-kB activation in cell survival, apoptosis,
and necroptosis in TNFa, TLR3, and TLR4 signaling. Pellino1 targets RIP1 by K63-Ub to active NF-kB to maintain cell survival. Under the dual stimulation of LPS
and hypoxia, Pellino1 releases the TRIF-RIP1 signalosome to recruit caspase-8 and induces tubular apoptosis via DAPK1-mediated Pellino1 destabilization. Upon
TNFa, Pellino1 is a dual modulator in necroptosis and apoptosis. Pellino1 plays a positive role in necroptosis by K63-Ub to form RIP1 and RIP3 pro-necroptosis
complex in a RIP1 kinase activity-dependent way but as an apoptosis inhibitor by reducing expression levels of c-FLIP. Smad6 blocks the interaction between
Pellino1 and RIP1 to inhibit NF-kB activation. Pellino1 can induce RIP3 hyperactivation and degradation via K48-Ub to inhibit necroptosis.
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the NF-kB signaling pathway, type I IFN signaling pathway,
autophagy-related pathway, and pyroptosis pathway (100, 101).

In NOD2 related signaling, Pellino3 exerts a protective
function via NOD2 in chemical drugs induced models of
colitis (26). Pellino3 promotes magnesium-dependent
phosphatase (MDP) induced K63-Ub of RIP2 and recruits
TAK1 and IKK complexes to active NF-kB and MAPK in an
inhibitor of apoptosis family of protein (IAP)-independent
manner to maintain cell survival (26) (Figure 5).

Two pathways are involved in IL-1b secretion, TLR/IL-1R-
mediated upregulation of precursor pro-IL-1b and NLR-induced
activation of caspase-1 that cleaves pro-IL-1b to yield mature IL-
1b secretion (102). Pyroptosis is a novel programmed cell death
featured by IL-1b secretion (103). In NLRP3-related pyroptosis,
the oligomerization of NLRP3, pro-caspase-1, and the
inflammasome adaptor apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) causes pro-

caspase-1 to be converted into active caspase-1, which then
cleaves pro-IL-1b and pro-IL-18, resulting in the maturation
and secretion of proinflammatory cytokines (104). Pellino1,
Pellino2, and Pellino3 are demonstrated to mediate the release
of IL-1b and IL-18 in cell pyroptosis (57, 105, 106). A new study
reveals that Pellino1 is required for NLRP3-induced caspase-1
activation and IL-1bmaturation (106). Pellino1 increases NLRP3
inflammasome activation, which results in IL-1b production, by
facilitating ubiquitination of the inflammasome adaptor ASC
K63, enhancing the ASC/NLRP3 interaction and ASC
oligomerization (106). Pellino2 is also essential for the priming
and activation of inflammasome to induce pyroptosis (57, 105).
In Pellino2 deficient macrophages, the activation of the NLRP3
inflammasome is suppressed (57). Pellino2 isolates IRAK1 from
NLRP3 via ubiquitination and mediates K63 ubiquitination of
NLRP3 to increase NLRP3 activation for mature IL-
1b generation in mice and bone marrow-derived macrophages

FIGURE 5 | Pellino family in the NLR-dependent signaling. Pellino1 mediates the K63 ubiquitination of inflammasome adaptor ASC, which enhances the ASC/
NLRP3 interaction and ASC oligomerization to facilitate NLRP3 inflammasome activation leading to induction of IL-1b secretion. Pellino2 induces IRAK1 isolation from
NLRP3 via ubiquitination and mediates K63 ubiquitination of NLRP3 to promote the activation of NLRP3 for mature IL-1b production in response to LPS. Pellino2
can co-localize with NLRP3 and ASC during inflammasome activation in macrophages upon the effect of potassium efflux. Pellino3 acts as a potential partner of
SQSTM1/p62, which leads to Pellino3 autophagy-dependent degradation in TLR4-signaling, thereby impairing Pellino3-dependent pro-IL-1B proinflammatory
expression. Pellino3 promotes MDP-induced K63 ubiquitination of RIP2 and recruits TAK1 and IKK complexes to active NF-kB and MAPK in an IAP-independent
manner to maintain cell survival.
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(MDMs) in response to LPS (57). Further studies show that
Pellino2 can co-localize with NLRP3 and ASC during
inflammasome activation in macrophages upon the effect of
potassium efflux (105). Both Pellino1 and Pellino2 are
implicated in NLRP3-mediated pyroptosis, demonstrating the
importance of the Pellino family in pyroptosis. Furthermore, the
autophagy-dependent degradation of Pellino3 induced by
sequestosome-1 (SQSTM1/p62) hindering IL-1b secretion
upon LPS offers a strong backup for the roles of the Pellino
family in pyroptosis (25).

The above results show that the Pellino family is crucial to
ubiquitin-dependent inflammasome activation and inflammatory
release (Figure 5). Previous studies reported that the Pellino family
is a key mediator for activation of NF-kB (37), and NF-kB is
involved in NLRP3 induction. The most surprising is that Pellino1
deficiency did not reduce the induction ofNLRP3 expression (106).
Pellino1, Pellino2, and Pellino3 may play a role in the division and
cooperation to mediate NF-kB activation, inflammasome
activation, and inflammatory release in pyroptosis. In NOD2
related signaling, Pellino3 is still a protective regulator to
maintain cell survival, consistent with Pellino3 in TNF signaling.
Perhaps Pellino3 may differ from Pellino1 and Pellino1 in special
cells and contexts. More efforts are needed to reveal the roles of the
Pellino family in programmed cell death.

Pellino Family in B-Cell and
T-Cell Signaling
In addition to the above functions in immunity, Pellino1 shows a
potent negative function in T cell and B cell activation (43, 107).
Under normal circumstances, Pellino1 is highly expressed in
mouse splenic B cells and T cells (107). Pellino1 inhibits T cell
activation and prevents autoimmunity by ubiquitinating c-Rel, a
downstream important protein in NF-kB activation, with specific
K48-Ub (107). Pellino1 is seemed to be unique for T cell
activation and maintenance of peripheral immune tolerance
for its high expression in lymphocytes (107). Pellino1
deficiency promoting B cell activation hints that Pellino1
negatively regulates B cells specifically in response to poly(I:C)
and noncanonical NF-kB stimulation (43, 108). Pellino1 inhibits
noncanonical NF-kB activation and alleviates lupus-like disease
in systemic lupus erythematosus by K48 ubiquitination of NIK to
downregulate nuclear p52 and Rel B (43) (Figure 6).

Ubiquitinationhasemergedasa criticalmechanismregulatingT
cell and B cell activation (109). Pellino1 is critical in regulating IKK
activation by TRIF dependent TLR signaling, although it is largely
dispensable for IKK activation in MyD88-dependent TLR/IL-1R
(37). However, in B-cell and T-cell (Figure 6), the reason it is
dispensable to active IKKbyTCR signalsmay be the degradation of
c-Rel induced by Pellino1specific K48 ubiquitination (107). The
noncanonical NF-kB pathway critically regulates B cell activation
and antibody production. It is reported that TRAF2-cIAPs
mediated the K48 ubiquitination of NIK as E3 ligases (110–112).
Pellino1 is also required for TLR-induced cIAPs ubiquitination and
activation in microglia (75). So it is reasonable to assume that
Pellino1-mediatedNIK ubiquitinationmay be due to the activation
of cIAPs by Pellino1.

PELLINO FAMILY IN TUMOR AND
MicroRNAs RELATED SIGNALINGS

Pellino Family in Tumorigenesis
Pellino1 plays a novel role in angiogenesis, a typical phenotype in
tumorigenesis (113).

As a downstreamof vascular endothelial growth factor receptor 2
(VEGFR2), Pellino1 induces the AKT and MAPK activated protein
kinase 2 (MK2) phosphorylation to restore cell migration potential,
proangiogenic responses and the wound healing ability with
VEGFR2 deficiency in vitro and in vivo (114). Further studies
demonstrated that Pellino1 is a novel proangiogenic molecule
directly regulated by VEGFR (115). In mouse ischemia models,
Pellino1 deletion increases oxidative stress, reduces cIAP2-NF-kB
cell survival, decreases angiogenic response, and lowers tissue
function (116). Transgenic mice constitutively expressing human
Pellino1had a shorter lifespan, awide rangeof lymphoid tumors, and
prominent B-cell infiltration (117). Pellino-1 may be an oncogene in
cancer based on its proangiogenic and tumor development function.
The association of Pellino1 with protooncogene-MYC, B cell
lymphoma 6 protein (BCL6), murine double minute X (MDMX),
and p53 demonstrates the role of Pellino1 in cancer (117–120). In
diffuse large B-cell lymphoma, Pellino1 directly interacts with and
induces oncoprotein BCL6 K63-Ub (117). Pellino1 is required for
DNA damage in the promotion of HR repair by feedback activation
of ataxia telangiectasia-mutated gene (ATM) via NBS1
ubiquitination (121) and p53 activation upon exposure to DNA
damaging agents (120). Pellino1 negatively regulates and sequesters
MDMX via ubiquitylation in the cytoplasm and free p53 to activate
responsive genes such as p21 (119). Furthermore, Pellino1
downregulation causes MDMX nuclear localization, lowers p53
activity, and speeds up c-MYC-induced carcinogenesis linked with
a reduction in p53 function (119). IAP may be a positive partner of
Pellino1 in regulating tumor cell survival (116, 122). High expression
of Pellino1 inhuman lung cancer cell lines upregulates the expression
of IAP proteins (cIAP1 and cIAP2) through K63-Ub, which leads to
cell survival but not apoptosis (122). Pellino1 can also promote
epithelial-mesenchymal transition (EMT) by inducing K63-Ub of
Snail and Slug, contributing to tumorigenesis (47, 123).
Fundamentally, Pellino1 causes homeostatic regulation of the
mitotic cell cycle and checkpoints to be inhibited, contributing to
the initiation and progression of the neoplastic chromosome
aneuploidy through ubiquitination-mediated downregulation
budding uninhibited by benzimidazoles related1 (BubR1) and
induced mitotic dysfunction (124). This may be crucial evidence to
demonstrate Pellino1 to be an oncogene.

As a positive regulator of inflammatory factors, Pellino1 induces
the production of inflammatory factors followed by the change of
inflammatory microenvironment leading to the transformation of
normal cells to tumor cells. So it is necessary to study the
inflammatory microenvironment induced by the Pellino family in
normal cells, tumor cells, and even cell co-culture systems.

Pellino Family in microRNAs
Related Signalings
MicroRNAs (microRNAs) are small non-coding RNAs with the
capability ofmodulating gene expressionat the post-transcriptional
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level either by inhibitingmessengerRNA(mRNA) translationorby
promoting mRNA degradation (125). Several microRNAs are
involved in interactions with the Pellino family. MicroRNA-21
(126–128), microRNA-153-3p (129), and microRNA-155 (130,
131) are involved in T cell regulation; MicroRNA-590-5p (132),
microRNA-142a-3p (133), microRNA-155-5p (133), and
microRNA-744 (134) in inflammatory disease; MicroRNA-128-
3p (134) in tumor disease.

A positive correlation between microRNA-21 and Pellino1
suggests that microRNA-21 and Pellino1 might be associated
with autoimmune primary ovarian insufficiency (POI) patients
(126). MicroRNA-21 targets the Pellino1–c-Rel pathway to
promote glucose metabolism of pathogenic T helper cell 17
(TH17) cells by activating the NF-k B with a decrease in
Pellino1 and an increase in c-Rel (128). In systemic lupus
erythematosus, upregulated microRNA-153-3p represses
Pellino1 in vitro. It induces immune dysregulation by lowering

umbilical cord mesenchymal stem cells (UC-MSCs) proliferation,
migration, and mitigates the decrease in T follicular helper (Tfh)
cells and increases T regulatory (Treg) cells (SLE) (129).
MicroRNA-155 represses the expression of Pellino1, leading to
the abrogation of the c-Rel, which controls cellular proliferation
and CD40L expression in Tfh cells (130). MicroRNA-155 (131),
microRNA-590-5p (132), microRNA-142a-3p (133), and
microRNA-155-5p (133) can all target and reduce Pellino1
expression, leading to the suppression of pro-inflammatory
production in neuroinflammation. MiR-744 interacting with the
3’ untranslated region (UTR) represses Pellino3 expression and
leads to upregulation of the IFN-dependent chemokines C–C
Motif Chemokine Ligand 5 (CCL5) and CXCL10 (135). In non-
small cell lung cancer, levels of Pellino3 are positive to the long
non-coding RNA (lncRNA) MIAT but negatively related to miR-
128-3p (134). It is clear that microRNAs primarily suppress the
expression of Pellino1 to modulate immune responses. More

FIGURE 6 | Pellino family in B cell and T cell. Pellino1 inhibits noncanonical NF-kB activation by K48 ubiquitination of NIK to downregulate nuclear p52 and Rel B
in the noncanonical NF-kB pathway. Pellino1 also negatively regulates T cell activation and prevents autoimmunity by specific K48 ubiquitination of c-Rel to inhibit
NF-kB activation.
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research should be conducted to determine the association
between microRNAs and the Pellino family.

CONCLUSION

As a highly conserved protein and positive regulator in immunity
discovered in Drosophila (52), the structure of Pellino in other
species is also conserved, e.g., viral Pellino (136), Freshwater
Prawn (137), Zebrafish (138), Crassostrea hongkongensis (139),
and Japonicas (140). Viral Pellino should be studied further for a
poxviral homolog of the Pellino protein capable of inhibiting Toll-
like receptor signaling independent of IRAK1 and inhibiting
Pellino3-mediated activation of the p38 MAPK pathway (136).
The function of viral Pellino suggests that the mammalian Pellino
family may act as a barrier or enhancer during viral infection.

There are two important conserved domains for the Pellino
family: the FHA domain promoting phosphorylation with IRAKs
(16, 24, 28–31)and the RING domain, which determines E3 ligase
features (7, 14, 39). The FHA domain in the Pellino family differs
from the classical FHA domain by containing an additional
appendage or “wing” that is formed by two inserts in the FHA
region (16). Interestingly, multiple IRAK phosphorylation sites in
the “wing” region and the importance of this appendage region for
IRAK binding remain to be experimentally addressed. More
interesting is that different domains can interact with the same
protein. Pellino1 can interact with RIP3 depending on the FHA
and RING-like domains (19, 37). The FHA and RING-like
domains are responsible for Pellino3 interacting with RIP1,
RIP2, and caspase-8 (26, 27). These suggest that the activation
of different sites may be a key factor in determining the cell to
survive or be dead dependent or independent on the RIP family.

There are some conflict points about the Pellino family in
regulating PRR signalings. In contrast to the positive role in
regulating proinflammatory cytokine induction (37), Pellino1
negatively regulates T-cell activation in autoimmunity (107); and
promotes microglia-mediated CNS inflammation (75) by negatively
regulating type I interferon induction and antiviral immunity in the
microglial cells (41). Pellino1 and Pellion3 display polar functions in
the induction of IFNs (41, 44, 86, 87). Unlike peripheral
macrophages expressing Pellino1, Pellino2, and Pellino3,
microglia predominantly express Pellino1 (75). The induction of
IFNs in MEFs and peripheral cells induced by Pellino1 deficiency
showed no significance (37). However, IFN-b induction is
attenuated in myeloid cells and MEFs expressing a Pellino1
mutant lacking E3 ligase activity (44). The more intriguing aspect
is that Pellino1 performs different roles in necroptosis and apoptosis
in the same cell, as a critical modulator of TNF-a-mediated cell
death pathways, enhancing necroptosis and inhibiting apoptosis by
modifying K63-Ub of RIPK1 with the inconstant expression of c-
MYC and c-FLIP (56). These indicate that specific tissue expression
of Pellino1 may promote their specialized roles in specific cells.
According to the current studies, the Pelino1 tissue expression level
is from high to low in peripheral blood, leukocytes, placenta, lung,
liver, kidney, spleen, thymus, skeletal muscle, brain, small intestine,
colon, and heart (33). Pelino3 tissue expression level is from high to
low is brain, testis, heart, liver, lung, placenta, stomach, kidney,

spleen, small intestine, colon, and muscle (15). Perhaps the tissue
expression levels of Pellino1 and Pellino3 may be a clue to explain
the polarized function of the Pellino family. More attention should
be paid to Pellino2 and Pellino3 for a better understanding of the
roles of the Pellino family.

Several studies have shown that Pellino1 acts as an oncogene
role in tumorigenesis to maintain cell survival (116, 122) and even
upregulates other oncogene levels, e.g., Bcl6 and c-Myc (122). As a
positive regulator of inflammatory factors, Pellino1 induces the
production of inflammatory factors followed by the change of
inflammatory microenvironment leading to the transformation of
normal cells to tumor cells. It is necessary to study the
inflammatory microenvironment induced by the Pellino family
in normal cells, tumor cells, and even cell co-culture systems.

Only a few proteins have been reported tomediate the Pellino1,
e.g., Smad6/7 (20, 21), DEAF1 (88), Bid (89), and DAPK1 (98),
which positively or negatively regulate the Pellino family. A new
study reports six novel interaction partners of Pellino-2 in the liver
cells, insulin receptor substrate 1 (IRS-1), NIMA-related kinase 9
(NEK9), tumor necrosis factor receptor-associated factor 7
(TRAF7), roundabout homolog 1 (ROBO-1), and disheveled
homolog 2 (DVL-2) (141). More efforts are needed to study the
expression and binding partners of the Pellino family in both
the immune cells and non-immune cells. Understanding the
regulatory mechanism between the Pellino family and other
proteins can assist us in acquiring a comprehensive knowledge
of the cross-talk among PRRs signaling.

This paper mainly reviews the roles of the Pellino family in the
PRR signaling pathways. According to a flow of studies, we can
preliminarily infer that the Pellino family has indeed been involved
in the PRRs related pathways with the major function of regulating
IFNs and inflammatory factors leading to cell survival or death.
Maybe the different cell types and ligands stimulation play crucial
roles in the Pellino family-related PRRs signalings. However, there
are still many contradictory phenomena that cannot be explained
very well. The Pellino family might play different roles in different
cell types and contexts. Currently, Pellino1 has attracted a lot of
attention and more efforts will be needed to study Pellino2 and
Pellino3 in order to have a better understanding of the whole family
in immunity. The future focus is to probe a more detailed and clear
mechanism of the Pellino family in the immune system to improve
related immune diseases.
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Immune Checkpoint Inhibitors in
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Cancer cells harbor genomic instability due to accumulated DNA damage, one of the
cancer hallmarks. At least five major DNA Damage Repair (DDR) pathways are recognized
to repair DNA damages during different stages of the cell cycle, comprehending base
excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR),
homologous recombination (HR), and non-homologous end joining (NHEJ). The
unprecedented benefits achieved with immunological checkpoint inhibitors (ICIs) in
tumors with mismatch repair deficiency (dMMR) have prompted efforts to extend this
efficacy to tumors with HR deficiency (HRD), which are greatly sensitive to chemotherapy
or PARP inhibitors, and also considered highly immunogenic. However, an in-depth
understanding of HRD’s molecular underpinnings has pointed to essential singularities
that might impact ICIs sensitivity. Here we address the main molecular aspects of HRD
that underlie a differential profile of efficacy and resistance to the treatment with ICIs
compared to other DDR deficiencies.

Keywords: immune checkpoint inhibitors, homologous recombination, DNA damage repair, mismatch
repair, oncology

INTRODUCTION

The central DNA Damage Repair (DDR) pathways comprise base excision repair (BER), nucleotide
excision repair (NER), mismatch repair (MMR), homologous recombination (HR), and non-
homologous end joining (NHEJ), which are collectively responsible for repairing DNA damages
during different stages of the cell cycle (1). In tumor cells, defects on DRR pathways, by one hand,
works as a source of genetic diversity and mutations that are beneficial for tumor evolution. On the
other hand, it exposes the tumor cell to fragilities not observed in normal cells. In this context, the
functional status of the DDR system has long been recognized as a biomarker for a broad range of
treatments (2).

Different therapies could take advantage of DDR pathways’ defects to induce additional tumor
genetic structural damage, as with radiotherapy, cytotoxic chemotherapies, or targeted DNA repair
mechanisms such as PARP inhibitors, to enhance tumors cells’ lethality (3). In addition, recently,
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mismatch repair-deficient (dMMR) tumors have consistently
been shown to harbor greater immunogenicity and be highly
effective to immune checkpoint inhibitors (ICIs) (4, 5).
Consequently, dMMR granted accelerated approval by the
FDA to ICIs agnostic use to treat advanced solid tumors (6).

From this point onwards, understanding whether this effect also
extends to other DDR pathways started to be deeply investigated.
Althoughany typeofDDRdysfunction can lead to the accumulation
of tumoral mutations, there is a wide variety in burden and type of
mutations, depending on the DNA level each repair mechanism
actuates (7). However, the impact of those different pattern of
mutations on immunogenicity and, consequently, on the response
to immunotherapy is still a matter of debate.

The benefits achieved with ICIs in tumors with dMMR have
prompted efforts to extend this efficacy to tumors with HRD,
which are highly sensitive to chemotherapy or PARP inhibitors
and expected to be highly immunogenic. Nonetheless, molecular
underpinnings of HR defects have pointed to singularities that
might impact antitumor immune response and ICIs effectiveness.
This review will summarize the main molecular aspects of HRD
that underlie a differential profile of efficacy and resistance to the
treatment with ICIs compared to other DDR deficiencies.

DDR in Current Clinical Practice
Mismatch Repair
The most significant evidence linking DNA repair deficiency with
ICIs activity stems from tumors with a deficiency in mismatch
repair (MMR) (dMMR). Roughly 18% of endometrial cancers,
11% of ovarian cancers, and 4% of metastatic colorectal cancer
present with mutations or epigenetic silencing in genes
comprising the MMR system (8). In a phase II clinical trial
evaluating pembrolizumab in a set of treatment-refractory
dMMR tumors, the response rates were as high as 40% to 70%
(9). The studies Checkmate 142 (10) and Keynote 164 (11), which
evaluated nivolumab and pembrolizumab, respectively, led to
ICIs’ first approval, in dMMR tumors, for colorectal cancer
previously submitted to chemotherapy. In addition, the Keynote
177 study (12) currently supports pembrolizumab use in the first-
line setting of colorectal cancers. Finally, the Keynote 158 study
(6) led to pembrolizumab approval for previously treated dMMR
tumors irrespective of histology. Such an efficacy led to MMR
status evaluation in current clinical practice for a broad set of
other tumor histologies wherein this DDR deficiency can also be
noticed, such as stomach, biliary tract, pancreas, prostate, and
small intestine cancer (13).

Homologous Recombination
Homologous recombination (HR) is the most likely DDR
mechanism found when considering a non-selected histology-
based population (14). It is a crucial pathway to repair double-
strand DNA breaks due to its error-free repairing system that
relies on an intact sister chromatid instead of the non-homologous
end joining (NHEJ) process (7). The incidence of pathogenic HRD
varies according to histology, staging, and previous treatment
burden (15). Notwithstanding, HRD is currently most
recognized in tumors for which PARP inhibitors are currently

approved based on a biomarker-guided BRCA or HR loss of
function: ovarian cancer (40-50% with HRD), prostate cancer
(20-25%), breast cancer (18%), and pancreatic cancer (12%) (16–
20). Recently, many other malignancies were also shown to have a
high incidence of HRD, such as endometrial (34%), biliary tract
(28%), bladder (23%), hepatocellular (20%), and gastroesophageal
cancer (20%) (14).

In contrast to the high clinical efficacy of ICIs in MMR
deficient tumors, the clinical benefits are not consistent with an
HRD. In phase II KEYNOTE 100 study, response rates with
pembrolizumab in patients with advanced ovarian cancer were
less than 10% among those harboring an HRD, with no statistical
difference found when comparing BRCA-mutated versus wild-
type counterparts (21). Despite other HRD genes being currently
tested in ovarian cancer through NGS platforms, no prospective
clinical data have evaluated their differential effectiveness, such
that all available clinical data stem from BRCA-mutated tumors.
Moreover, in phase III Keynote 119, patients with previously
treated triple-negative breast cancers - approximately 50% of
whom have HRD – derived no benefit from pembrolizumab
compared to chemotherapy concerning response rate or survival
(22). Although this study was not designed to evaluate patients
with breast cancer having HRD specifically, both those ovarian
and breast early clinical data shed light on a significant difference
in clinical efficacy compared to what is seen early on with ICIs for
dMMR tumors. In addition, those evidence has ultimately
contributed to shifting strives for various ICIs combinations that
are now undergoing prospectively to overcome such immune
restoration mitigation – through anti-PD-1/PD-L1 –, which is
taking place in the presence of HRD and remain underrecognized.

DDR and Immunogenicity
Deficient DDR processes that predispose to genetic alterations at
the DNA sequence level, such as in dMMR, have the highest
potential to elicit antigenicity due to the vast number of
mutation-associated neoantigens (23). Since it has been shown
that only a tiny fraction of predicted neo-epitopes are presented
through MHC-I to enable T-cell responses (24, 25), it seems
likely that tumors with a higher number of tumor mutation
burden (TMB) are more likely to present with neoantigens that
effectively stimulate the immune system (26).

Extensive mutational assessments have demonstrated
enrichment in single- and multi-nucleotide variants (SNVs and
MNVs) in tumors with dMMR, resulting in a high TMB,
generally higher than 17 mutations/Mb (27). In the rare
inherent genetic condition of bi-allelic germline dMMR,
tumors can display >250 mutations/Mb (28). Due to dMMR
tumors’ high immunogenicity, ICIs are substantially effective in
various settings, thus warranting approval on an agnostic
indication basis. Regarding other hypermutated tumors, yet
non-dMMR, a TCGA analysis has shown that somatic
mutations in polymerase epsilon (POLE) or delta POLD1 also
comprise a DDR deficient group with high TMB (29). Like in
dMMR, impairment in the proofreading capability of POLE and
POLD1 leads to genetic alterations at the DNA sequence level.
Pathogenic somatic mutations in the proofreading exonuclease
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domain of POLE confer similar phenotypes regardless of the
tumor tissue type, resulting in a large mutation rate, especially
TCT>TAT and TCG>TTG transversions and, more rarely,
concomitant microsatellite instability (30). Although somatic
mutations in POLE have been identified in 2–8% of colorectal
cancer and 7–15% of endometrial carcinoma (31), there are little
data available reporting ICIs efficacy in these DDR populations
due to their low incidence and the absence of systematic
screening in daily practice (32, 33). Interestingly, extensive
mutational profiling of 21.074 patients from 23 cancer types
and subtypes suggested that POLE/POLD1 mutation was not
independently associated with survival to ICIs treatment after
adjusting for TMB. The study concludes that mutations in the
proofreading domain of POLE/POLD1 are more likely to result
in DNA repair defects featuring extremely high TMB, which
contribute to more significant benefits from ICI treatment (34).

Tumors with HRD also have a higher mutational load and
predicted neo-epitopes than those without DDR deficiencies
(35). Intriguingly, when considering patients with high TMB
tumors that are not MMR, POLE, or POLD1 deficient, there is no
difference in survival compared to patients with low (<10 mut/
Mb) TMB tumors also submitted to ICIs therapy (36). Although
such an analysis did not specifically evaluate HRD, it emphasizes
that TMB alone should not be considered a biomarker of
sensibility to ICIs. Furthermore, the accumulation of genetic
errors at the DNA strands’ breaks level leads to a different set of a
mutational landscape than DNA sequence alterations that
characterize dMMR tumors (37), thus supporting that a high
TMB in the presence of HRD may not correlate with the same
efficacy seen in MMR or POLE/POLD1 deficiencies.

Pan-tumor studies have shown that patients with genetic
alterations classified as HR deficient frequently present with a
high number of small deletions (indels) with flanking
microhomology at the breakpoint, in addition to copy number
variations (CNVs) (38). Notably, a pan-cancer TCGA analysis
demonstrated that the levels of CNVs inversely correlated with a
cytotoxic immune signature and clinical benefit from ICIs therapy
(39). Moreover, when comparing tumors having a similar
oncogenetic driver background but differing with respect to a
BRCA1 or BRCA2 mutation, there is a significant difference in
the levels of CNVs between each of these different HR deficient
subtypes, in addition to a distinct set of immunoregulatory genes
and ICIs efficacy (40). Conversely to BRCA2 tumors, those with
BRCA1 deficiency presented with an immunoregulatory infiltrate
and a limited response to ICIs. Moreover, another in-depth TCGA
analysis also pointed to the coexistence of anti-tumoral immune
transcripts downregulation, such as IFN-g related genes, with the
upregulation of immunosuppressive markers related to myeloid
tolerogenic cells activity in BRCA1 mutated breast cancers (41).
Altogether, these data suggest that the tumoral HR-related genetic
modifications could differentially regulate immune responses.

The molecular mechanisms supporting why CNVs or other
specific genetic features associated with HRD mitigate immune
responses remain unclear. Speculative hypothesis resides on
large-scale mutational alterations leading to protein imbalance
that impair tumor signals needed for cytotoxic immune cell
infiltration or to deregulation of tumor signaling pathways that

ultimately regulate immune cell recruitment (39). For a proper
tumor antigen presentation, extensive integrity within the large
HLA complex and the whole antigen processing machinery
should be met (42). That complexity highlights the various
vulnerable points that might lead to a dysfunctional tumor
antigen presentation. The presence of CNVs can be associated
with impaired antigen presentation owing to proteotoxic stress.
Accordingly, the increased flux of unstable wild-type proteins
may saturate critical chaperones and the proteasome complex
while generating more self-peptides that ultimately place
neoantigens at a further competitive disadvantage for loading
onto limiting MHC protein (43).

Somatic copy number variation may also hinder tumor
antigenic recognition through the downregulation of MHC I
molecules. Extensive TCGA analyses demonstrate that loss of
heterozygosis (LOH) in any MHC I genetic complex loci
frequently accompanies tumors harboring chromosomal
instability owing to alterations in cell cycle checkpoint genes
such as TP53, in addition to HR deficient genes. Furthermore,
tumor models with genomic instability frequently evolve with
DNA hypermethylation silencing of genes belonging to the
antigen presentation through MHC class I pathways (44). It is
also noteworthy that a non-linear correlation between HLA-I
LOH, TMB, and neoantigen burden has been suggested, such
that HLA-I LOH is a frequent immune evasion mechanism in
tumors overall, except for those with an either low or high (>30
mut/Mb) TMB, the latter of which are commonly represented by
MMRd tumors (45).

In order to leverage neoantigen load and, thus, tumor
recognition by immune cells, ongoing prospective studies are
now evaluating PARPi added to ICIs in various HR deficient
scenarios. Although it is attempting to speculate that further
inducing inflammation in a somewhat immune-excluded tumor
might restore anti-tumoral immune responses, some concerns
may still be set. As aforementioned, neoantigen presentation’s
multifaceted and complex processes may hamper tumor
recognition despite efforts to enhance immunogenicity by
fostering tumor mutations, particularly in settings where at
least a non-low tumor mutation burden and neoantigen load
predominates. In such conditions, immune-tolerance likely
occurs due to multiple coexisting mechanisms such as
dysfunctional neoantigen presentation and CD8+ cells
exhaustion mediated by cell-cell interactions and other non-
ligand-receptor interactions that lead to immune resistance. As
such, none of these mechanisms would be reversed by the
primary intention of using iPARP to enhance tumor
neoantigen load. Furthermore, PARP inhibitors in the presence
of HR defects could foster the emergence of subclonal mutations
that contribute to establishing intratumor heterogeneity under
the pressure of the immunoediting process (46, 47). Indeed,
intratumor heterogeneity has also been associated with ICIs
resistance (48).

DDR and PD-L1 Expression
Cancer cells with dysfunction at the DNA strand break repairing
apparatus increase the rate of DNA repair basal activity to establish
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genome stability, particularly in the presence of constant cell
proliferation. When molecular cascades featuring the homologous
repair system are operating, checkpoint kinase 1 (Chk1) activation
can also trigger the STAT1 – STAT3 – IRF1 signaling pathway,
inducing PD-L1 expression in tumor cells (49). This model of tumor
intrinsic PD-L1 expression, which is dependent on oncogenetic
tumor features, has been defined as constitutive to distinguish the
so-called acquired expression, in which tumor cells express PD-L1 in
response to IFN-g expression mediated by antitumor lymphocyte
activity (50). The DNA repair signaling pathway ATR/Chk1/STAT3
can also upregulate CD47 and, through the engagement of SIRPa,
suppress the capacity of antigen-presenting cells (APCs) to
phagocytose and cross-present (51).

Concerning the constitutive tumor PD-L1 expression, ICIs
may poorly correlate with response and survival, paradoxically
predicting less benefit with the anti-PD-1/PD-L1 blockade in some
tumors. Although PD-L1 expression is strongly correlated with
clinical benefit in non-small cell lung cancer, tumors with EGFR
activated-mutations, which can upregulate PD-L1 expression (52),
do not derive benefit from ICIs’ treatment (53). Likewise, in the
context of PD-L1 expression mediated by HRD, BRCA1 mutated
breast cancer has been demonstrated to have a higher PD-L1
tumor score than BRCA2mutated, even though clinical efficacy is
inferior (41, 54). Not only do these data support that the PD-L1
expression does not represent a perfect biomarker for ICIs
response across all tumor settings, but also suggest that a non-
canonical tumor PD-L1 expression (i.e., constitutive) might even
associate with mechanisms of immune resistance.

The HR-driven constitutive PD-L1 expression, which occurs
in a non-canonical fashion, irrespective of effector T cells activity,
might mitigate ICIs efficacy by hypothetical mechanisms. Firstly,
and simplistically, a sufficient lymphocyte infiltration to be
restored by ICIs is essential for an effective immune response
to take place. Indeed, tumor immune infiltrates (TIL) are a
known biomarker predicting clinical efficacy to ICIs in various
tumors (55, 56). In this regard, the simple fact of witnessing PD-
L1 expression does not guarantee that this results from the
positive pressure (i.e., INF-g driven) of the presence of an
immune infiltrate. Secondly, even in the presence of an
adequately primed effector immune infiltrate, the constitutive
tumor PD-L1 expression fomented by HRD could provide an
overwhelming pool of ligands to the PD-1-expressing immune
cells that might occupy the tumor microenvironment. Therefore,
this could help to polarize immune responses towards a
suppressive spectrum, as exemplified by the PD-L1 persistent
inducement of FOXP3 expression (FOXP3 high) in PD-1+ T-cells
(57), which are characteristically associated with a decreased
capacity to reinvigorate into anti-tumoral responses despite ICIs’
activity (58, 59). Lastly, the constitutive expression of PD-L1 may
also provide evolutionary metabolic advantages to cancer cells by
fostering tumor glycolysis and, in turn, impacting immune cells’
metabolic fate (60). As such, the PD-L1 expression in cancer cells
can directly regulate tumor metabolism through Akt/mTOR
signaling, independently of the PD-1 engagement, therefore
upregulating tumor glycolysis that leads to microenvironment
glucose deprivation and lactic acid concentration (Figure 1).

DDR and Metabolic Reprogramming
Tumor cells with DDR defects have a high requirement to restore
DNA damage through compensatory pathways. Ataxia-
telangiectasia mutated (ATM) and DNA-dependent kinases
(DNA-PK) are crucial proteins to recognize DNA damage and
initiate repair signaling cascades. Besides their function in DNA
strand-break repair, these proteins can remodel cancer
metabolism through upregulation of glucose transporter
(GLUT) channels and pyruvate kinase M2 (PKM2) enzyme,
thus fostering tumor glycolysis (61). Hyperactivation of
glycolysis is one of the hallmarks of cancers and has been
implicated in immune evasion owing to nutrient competition
and toxic metabolites accumulation, such as lactic acid (60).
Furthermore, ATM activity can also induce glucose-6-
phosphate dehydrogenase (G6PD) expression, which is
fundamental to enable the pentose phosphate pathway (PPP)
(62). The oxidative PPP generates ribose-5-phosphate, a
precursor for nucleotide synthesis, and reduces the potential in
the form of NADPH, which is needed for nucleotide biosynthesis
and lipogenesis (Figure 1). Previous studies also demonstrated
that BRCA1 mutation and PARP1 activity also influence tumor
metabolism. The BRCA1 lack in breast cancer was associated
with increased glycolytic metabolism than BRCA1-WT (63, 64).
Furthermore, it was demonstrated that PARP1 works as a
transcriptional coactivator for PKM2 driving the expression of
glycolytic genes (GLUT and LDH) in tumor cells (65). However,
the role of metabolic changes induced by BRCA1 and PARP1 on
primary resistance to ICIs remains unknown.

DDR and STING
A dysfunctional HR status predisposes cancer cells to DNA
strands fragmentation in the presence of additional DNA
damaging factors, such as radiotherapy, chemotherapy, or
PARP inhibitors. Furthermore, DNA instability can occur
spontaneously owing to the high tumor cell turn-over coupled
with cell cycle checkpoints suppression and enhanced
metabolic stress due to tumor metabolism deregulation and
microenvironmental hypoxia. This background predisposes to
frequent cytosolic DNA exposure in cancer cells. The cytosolic
DNA activates the stimulator of IFN genes pathway (STING
pathway) and IRF3 activity, thus inducing the transcription of
IFN type I and chemoattractive cytokines (CXCL10 and CCL5),
which mediates monocytes and neutrophil recruitment in an
antigen-independent manner (66). Although type I IFN is a
known contributor to T cell priming by inducing MHC I antigen
cross-presentation in APCs, there have been growing insights
linking STING-IFN molecular pathways to mechanisms
mitigating effective immune responses (67, 68). Accordingly,
an enhanced baseline STING-IRF3 activity can promote the
sustained recruitment of monocytes in response to CXCL10
and CCL5 chemokines, inducing a chronic myelocytic
inflammatory infiltrate that could further contribute to
establishing an immune tolerogenic state (69). Those constant
levels of DNA damage featuring HR deficient tumors can also
activate an alternative STING pathway through ATM-TRAF6
driven transcription of TGF-b that promotes protumor M2-like
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macrophage and Treg cell differentiation, respectively (70).
Lastly, the STING signaling pathway can also contribute to
establishing a tolerogenic tumor microenvironment by
inducing immune-suppressive soluble factors. An increase in
IDO expression was shown to occur in STING mediated fashion
when in the presence of mild tumor antigenicity (71). Moreover,
the augmented IFN-a expression has been shown to upregulate
the ectonucleotidase CD73 and leverage adenosine production in
a tumor microenvironment wherein DDR might be fostering
ATP production (72) (Figure 1).

SUMMARY AND FUTURE PERSPECTIVES

The data summarized in this review suggest that HRD tumors have
a differential profile of efficacy and resistance to ICIs’ treatment
compared to other dMMR. Each DDR deficient pathway could
lead to the emergence of a singular tumor mutational background,
but the correlation between such a range of mutational patterns
and the response to ICIs remains unclear. Furthermore, various
mechanisms potentially impacting immune responses could

emerge from the increased DDR pathways activity, which leads
to tumor metabolic rearrangements and microenvironmental
recruitment of immune-suppressive factors. The TMB
status may not be a pan-cancer predictive biomarker for
immunotherapy response, and the incorporation of tumor DDR
pathways might be necessary for future genomic biomarker
refinements. As such, it would be interesting to carry out
studies on tumors harboring different defects in DNA
repair pathways.
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FIGURE 1 | Increased rate of DNA double strands breaks due to deficiency in HR might evolve with molecular events that lead to challenges in restoring immune
responses through immune checkpoint inhibitors. (1) DNA double-strand breaks association with CNV and large structural genetic alterations contribute to an
increased flux of unstable mRNA and, ultimately, proteins that may saturate critical chaperones and the proteasome complex, thus leading to a dysfunctional tumor
antigen presentation. (2) ATM plays a central role in recognizing DNA strand breaks but can also upregulate glycolysis and PPP to replenish nucleotides and NADPH
supply for the upcoming anabolic reactions to restore DNA damages. This metabolic regulation might deprive glucose in the tumor microenvironment and export
acid lactic, impacting immune responses. (3) CHK1 is crucial to repair strands breaks but may also activate the STAT1-STAT3-IRF1 signaling pathway that
contributes to upregulating PD-L1 expression. (4) Cytosolic DNA censoring can lead to STING-IRF3 production of IFN-I, which might recruit monocytes that will be
further exposed to a range of tolerogenic stimuli in the tumor microenvironment. Moreover, the STING signaling pathway might induce IDO1, and the expression of
IFN-I might upregulate CD73, thus contributing to producing inhibitory molecules in the tumor microenvironment. Created with BioRender.com.
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Efficient DNA Repair Mitigates
Replication Stress Resulting in
Less Immunogenic Cytosolic
DNA in Radioresistant Breast
Cancer Stem Cells
Felix Meyer1†, Anna Maria Engel1†, Ann Kristin Krause1, Tim Wagner1, Lena Poole1,
Anna Dubrovska2,5, Claudia Peitzsch2,4,5, Kai Rothkamm1, Cordula Petersen6

and Kerstin Borgmann1*

1 Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiation Oncology, Center of
Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 2 OncoRay-National Center for Radiation
Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden,
Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, 3 Helmholtz-Zentrum Dresden-Rossendorf, Institute of
Radiooncology-OncoRay, Dresden, Germany, 4 German Cancer Consortium (DKTK), partner site Dresden and German Cancer
Research Center (DKFZ), Heidelberg, Germany, 5 National Center for Tumor Diseases (NCT), Partner Site Dresden: German
Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische
Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, 6 Department of Radiotherapy
and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Cancer stem cells (CSCs) are a major cause of tumor therapy failure. This is mainly
attributed to increased DNA repair capacity and immune escape. Recent studies have
shown that functional DNA repair via homologous recombination (HR) prevents radiation-
induced accumulation of DNA in the cytoplasm, thereby inhibiting the intracellular immune
response. However, it is unclear whether CSCs can suppress radiation-induced
cytoplasmic dsDNA formation. Here, we show that the increased radioresistance of
ALDH1-positive breast cancer stem cells (BCSCs) in S phase is mediated by both
enhanced DNA double-strand break repair and improved replication fork protection
due to HR. Both HR-mediated processes lead to suppression of radiation-induced
replication stress and consequently reduction of cytoplasmic dsDNA. The amount of
cytoplasmic dsDNA correlated significantly with BCSC content (p=0.0002). This clearly
indicates that HR-dependent avoidance of radiation-induced replication stress mediates
radioresistance and contributes to its immune evasion. Consistent with this, enhancement
of replication stress by inhibition of ataxia telangiectasia and RAD3 related (ATR) resulted
in significant radiosensitization (SER37 increase 1.7-2.8 Gy, p<0.0001). Therefore,
disruption of HR-mediated processes, particularly in replication, opens a CSC-specific
radiosensitization option by enhancing their intracellular immune response.

Keywords: immunogenic cytosolic dsDNA, radioresistance, replication stress, ATR inhibition, cellular
immuneresponse, DNA repair, homologous recombination, breast cancer stem cells (BCSCs)
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INTRODUCTION

Accumulation of DNA in the cytoplasm in the cell activates the
innate immune response through cyclic GMP-AMP synthase
(cGAS) and binding to the activator protein stimulator of
interferon genes (STING). STING induces phosphorylation
and translocation of the transcription factor interferon
regulatory factor 3 (IRF3) and initiates the expression of type-1
interferon (type-1 IFN). This intracellular immune response
primarily serves to defend against foreign DNA but cannot
distinguish it from its own cytosolic DNA. The accumulation
of self-DNA in the cytosol is triggered by DNA damage and leads
to the production of type-1 IFN (1). The trigger for the increased
occurrence of cytosolic DNA may be a defect in DNA repair
mechanisms (2, 3). This has been observed when a defect in the
DNA repair pathway homologous recombination (HR) is
present (3–5). Increased accumulation of cytosolic DNA and
activation of the cGAS/STING pathway have also been observed
in RAD51-, BRCA1-, or BRCA2-deficient carcinoma cell lines.
HR is the major DNA double-strand break repair pathway of the
S phase. It serves to repair direct and replication-associated DNA
double-strand breaks (DSBs) in an error-free manner. In
addition, factors of HR, such as RAD51, BRCA1 and BRCA2,
stabilize DNA at active replication forks and protect it from
degradation by nucleases such as MRE11 (6, 7). This mediates
repair and restart of replication forks, prevents formation of
single-ended replication-associated DSBs, and thus avoids DNA
replication stress. HR is activated by the kinases Ataxia
telangiectasia and Rad3-related (ATR) and checkpoint kinase 1
(CHK1). ATR is recruited to replication protein A (RPA)-bound
ssDNA, which occurs at DNA replication forks in the presence of
DNA damage or dNTP deficiency and at resected DNA DSBs.
ATR phosphorylates CHK1 and initiates the intra-S phase
checkpoint. This leads to cell cycle arrest, prevents further
firing of replication origins, and CHK1 is itself also involved in
protecting stalled replication forks (8, 9). Through
phosphorylation of BRCA2 and RAD51, CHK1 directly
initiates HR-mediated DNA repair (10). Recent studies showed
that disrupting the S-phase damage response by inhibiting ATR
significantly increased the amount of cytosolic DNA after
irradiation in breast cancer cells (11). Thus, the S-phase DNA
damage response and DNA repair by HR to avoid DSB and
replication stress are critical factors for the activation of the
intracellular immune response.

Tumors are composed of a heterogeneous population of cancer
cells with diverse replicative, tumorigenic, metastatic, and therapy-
resistant capabilities. In particular, highly plastic subpopulations
of stem-like cells within the tumor bulk, termed cancer stem cells
(CSCs), tumor initiating cells (TICs) or tumor stem cells (TSC)
have been described for breast cancer and are now considered to
drive tumorigenesis, chemoresistance, and metastasis. This is
mainly attributed to their upregulated DNA damage response
and DNA repair capacity. Their radiosensitivity directly correlated
with the number of CSCs in xenograft tumor models (12). In fact,
repeated irradiation even led to an accumulation of CSC in vitro
and in vivo in HNSCC, breast cancer, glioblastoma, and pancreatic
cancers (13–18). It has long been assumed that CSC, just like tissue

stem cells, are mostly in a quiescent state and DNA damage is
mainly repaired by classical non-homologous end-joining
(cNHEJ) (19). However, for CSC in glioblastoma and breast
cancer, it has been shown that only about one third of CSC are
quiescent and re-enter into the cell cycle after irradiation (16, 20).
In fact, a higher proportion of S/G2 phase in CSC of triple-
negative breast cancer (TNBC) compared to bulk cells was
observed (21). Controversial experimental data are available
about the contribution of cNHEJ to radiation resistance of CSC.
So far, only an increased activation of DNA-dependent protein
kinase (DNA-PKcs) after irradiation has been observed in
glioblastoma CSC (22, 23). Other studies, however, showed a
decreased activation of DNA-PKcs and ataxia telangiectasia
mutated protein (ATM) after irradiation in CSC of NSCLC or a
generally decreased cNHEJ activity in glioblastoma CSC (24, 25).
Most studies observed a key role of the intra-S-phase kinase CHK1
in radiation resistance in glioblastoma CSC and breast cancer (14,
15, 26, 27). Increased expression of CHK1 was shown (14, 26, 27),
as well as significantly stronger phosphorylation after irradiation
(15, 26, 27). Phosphorylation of CHK1 resulted in cell cycle arrest
and activated DNA repair by HR (28). Several studies
demonstrated a dependence of CSC on HR and its key protein
RAD51 (29). Glioblastoma CSCs showed high protein expression
of RAD51 and dependence of CSC on HR repair after irradiation.
Accordingly, the protein expression of RAD51 significantly
decreased during differentiation (30). Correspondingly,
inhibition of RAD51 resulted in significant radiation
sensitization of glioma CSC (31). ALDH1-positive CSC of
TNBC also showed increased RAD51 protein expression
compared to ALDH1-negative cells, resulting in resistance to
olaparib (32). After irradiation, isolated CSC from TNBC
culture showed significantly more RAD51 foci than bulk culture
(21). It is unclear what role ATR plays in this context, as CHK1 is
one of the major downstream targets of ATR. ATR initiates cell
cycle checkpoint, both during normal progression and in response
to DNA damage. Therefore, most previous observations of BCSC
resistance mechanisms suggest more effective DNA repair during
replication mediated by CHK1 and its upstream kinase ATR.

In addition to a more effective DNA repair capacity,
mechanisms of immune evasion were observed in CSC. A
decreased expression of the antigen processing gene-associated
transporter (TAP) and the co-stimulatory molecule CD80 was
observed in ALDH1-positive BCSC, resulting in decreased
susceptibility to T cells (33). Furthermore, an increased
expression of PD-L1 was observed, which also suppresses T
cell stimulation (34). Recently, it was also shown that DNA-
damage in S-Phase leads to the activation of cGAS/STING
pathway and further increases the expression of PD-L1,
counteracting T-cell stimulation by the innate immune
response. This was attributed to the activation of the ATR-
CHK1 signaling pathway, leading to expression of the IRF1 gene
via STAT3 and STAT1 phosphorylation, which resulted in
increased PD-L1 gene expression (35). Thus, there appears to
be a direct link between DNA damage response and immune
evasion triggered by HR-mediated processes and activation of
DNA damage response in S phase. The observations further
imply that the innate immune response, particularly in BCSC,
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should be exploited by inhibiting its effective DNA repair
mechanisms to successfully employ novel immunotherapies.
This question is the subject of the presented study and was
investigated using three TNBC breast cancer cell lines, a luminal
reference cell line, their isogenic radioresistant clones, and
isolated ALDH1-positive CSC.

MATERIALS AND METHODS

Cell Culture and Treatments
All cell lines used in the study were either purchased from the
American Type Culture Collection (ATCC, Manassas, VA, USA)
or kindly provided by Prof. Dr. H. Wikman. The MCF7 is of the
luminal subtype, the MDA-MB-231 is of the TNBC subtype. The
MDA-231 BR (Brain) and -SA (Sarcoma) are derivatives of
the MDA-MB-231 which were originally selected with respect
to their metastatic behavior in xenograft (36, 37). In Xenografts
they induce a primary tumor and only brain- (MDA-MB-231
BR) or only bone metastases (MDA-MB-231 SA). All cell lines
were cultivated in DMEM medium with 10% FCS, 2% glutamine
and 1% penicillin streptomycin in incubators at 37°C, 5% CO2

atmosphere and 100% humidity in cell culture flasks. ATR-
inhibition was achieved by using the small molecule inhibitor
VE-821 at 2 µM for 2h, for the inhibition of CHK1 the small
molecule inhibitor MK-8776 was used at 2µM for 2h.

Generation of Radioresistant Clones
Cells were irradiated with 4 Gy X-rays (200 kV, 1.2 Gy/min),
surviving cells were pooled, cultivated for 10-14 days and
irradiated again. This procedure was repeated 10 times to a
total dose of 40 Gy. Radiosensitivity was checked 14 and 42 days
after the last irradiation.

Homologous Recombination Assay
HR capacity was measured by stable or transient transfection of
the pDR-GFP (Addgene #26475, kindly provided by M. Jasin)
plasmid, linearized by digestion with I-SceI enzyme prior to
transient transfection. Briefly, 1 µg of linearized plasmid (pDR-
GFP) was transfected into cells with FuGENE (Roche) at a ratio
of 1:3 µg/µl according to the manufacturer’s instructions. In cells
with stably integrated pDR-GFP 1µg I-SceI plasmid was
transfected with FuGENE (Roche) at a ratio of 1:3 µg/µl. To
measure transfection efficiency, cells were transfected with
pEGFP-N1 (1 µg) in a parallel approach. After 24 hours, cells
were harvested, and the percentage of GFP-positive cells
determined by flow cytometry. HR capacity was calculated
according to GFP-positive cells (pDR-GFP) and transfection
efficiency (pEGFPN1) [Supplementary Figure S2D (38, 39)].

DNA Fiber Assay
Exponentially growing cells were pulse labeled with 25 mM CldU
(Sigma) followed by 250 mM IdU (Sigma) for 30 min each.
Hydroxyurea (HU) was added for 4h between both labels.
Labeled cells were harvested, DNA fiber spreads prepared and
stained as described (40). Fibers were examined using an

Axioplan 2 fluorescence microscope (Zeiss). CldU and IdU
tracks were measured using ImageJ (40). At least 300 forks per
sample were analyzed.

Clonogenic Survival
250 cells per well were seeded in a 6-well plate 6h before
irradiation and were cultured for 14 days. Cells were fixed and
stained with 1% crystal violet in ethanol (Sigma-Aldrich, St.
Louis, MO). Colonies with more than 50 cells were counted and
normalized to untreated samples. Each survival curve represents
the mean of at least three independent experiments.

Immunofluorescence
Cells were seeded on culture slides. Cells were pulse labeled with
10 µM EdU for 20 minutes prior to treatment. After treatment
the cells were fixed, permeabilized and blocked. Foci were
detected using anti-53BP1 (Rabbit-anti 53BP1, 1:2000, Novus
Biologicals), RPA (Mouse-anti RPA, 1:400, Santa Cruz), yH2AX
(Rabbit-anti yH2AX, 1:250, Novus Biologicals), RAD51 (Rabbit,
1:500, Calbiochem), IFN-ß1 (Rabbit-anti IFN-ß1, 1:1000, Cell
signaling) or IRF3 (Rabbit-anti IRF3, 1:400, Cell Signaling)
followed by Alexa Fluor 488 goat anti rabbit IgG (Cell
Signaling, 1:600), AlexaFluor 488 goat anti mouse IgG (Cell
signaling, 1:500), AlexaFluor 594 goat anti rabbit IgG (Abcam,
1:600) or AlexaFluor 647 goat anti rabbit IgG (Cell Signaling,
1:600) and mounted (Vector Laboratories). EdU was stained
with Alexa Fluor Azide 594 (Life Technologies, 1:500) and nuclei
were stained with DAPI. Foci and fluorescence Intensity were
quantified manually by capturing fluorescence images using a
Zeiss Axioplan 2 fluorescence microscope equipped with a
charge-coupled device camera and Axiovision software
followed by quantification by Image J software. RPA/yH2AX-
Foci were quantified automatically by the Aklides®-system
(Medipan). Foci and fluorescence intensities of 100 cells per
dose per slide and experiment were quantified.

Flow Cytometric Analysis of CD44high/
CD24low Cells
Cells were harvested and washed in phosphate-buffered saline
(PBS) with 0.5% fetal bovine serum. Combinations of
fluorochrome-conjugated monoclonal antibodies against CD44
[APC, DB105, Miltenyi Biotec, 130-095-177 (1:100)] and
unconjugated CD24 [CD24-biotin, eBioSN3 (SN3 A5-2H10),
eBioscience, 13-0247-80 (1:50), followed by Alexa Fluor 405
(Cell signaling, 1:500)] were used. Primary antibodies or the
respective isotype controls (BD Biosciences) were added to the
cell suspension, as recommended by the manufacturer, and
incubated at 4°C in the dark for 20 min. The labeled cells were
analyzed via flow cytometry.

Flow Cytometric Analysis of
ALDH1-Activity
Cells were harvested, washed in PBS, incubated with
ALDEFLUOR™ reagent (StemCell Technologies, Grenoble,
France) and incubated at 37˚C for 45 minutes. Meanwhile, 5 ml
of diethylaminobenzaldehyde (DEAB), a specific ALDH
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inhibitor, was added to 0.5 ml of ALDEFLUOR™-stained cells as
a negative control. ALDH1-positive cells were then quantified by
flow cytometry.

PicoGreen® Assay
Cells were irradiated with 8 Gy, harvested after 16 hours, washed
in cold PBS and incubated with protease-inhibitors (Thermo
Scientific Halt™ Protease Inhibitor Cocktail). Nuclear and
cytoplasmatic fractions were separated with a nuclear and
cytoplasmatic extraction reagent (Thermo Scientific NE-
PER™). Cytoplasmatic dsDNA was stained using the Quant-
iT™ PicoGreen® dsDNA Reagent and Kits (Thermo Scientific).
A standard curve was prepared and measured together with the
samples in a Spark® Microplate reader.

Statistical Analysis
Statistical analysis, curve fitting and graphs were performed
using Prism 6.02 (GraphPad Software). Data are given as mean
(+SEM) of 3-5 replicate experiments. Unless stated otherwise,
significance was tested by Student’s t-test.

RESULTS

Cytosolic DNA Correlates With Breast
Cancer Cell Proportion (BCSC)
The appearance of cytosolic dsDNA is crucial for the initiation of
the intracellular immune cascade (41). Cells with a DNA repair
defect in HR experience increased activation of the cGAS/STING
pathway and subsequent activation of the intracellular immune
response due to elevated cytosolic dsDNA (4). It has not been
investigated whether CSCs can suppress the induction of
cytosolic dsDNA and thus an intracellular immune response,
through efficient DNA repair mechanisms. To this end, the
importance of the DNA damage response in relation to CSC
content on radioresistance and the appearance of cytosolic
dsDNA was investigated in three isogenic, triple-negative
(TNBC) and one luminal cell lines and their corresponding
radiation-resistant subclones. Figure 1A shows that TNBC cell
lines have lower amounts of cytosolic dsDNA after than the
luminal cell line, with only 0.55 ± 0.06, 0.74 ± 0.02 and 0.8 ± 0.01
in the MDA-MB-231 WT/BR/SA compared to the amount
observed in MCF7 cells (p=0.04).

To investigate the relevance of the proportion of BCSC for
this observation, ALDH1 activity was determined using the
ALDEFLUOR™ assay (Figure 1B). TNBCs had almost twice
as many ALDH1-positive cells compared to MCF7 cells (73 ± 6
versus 39 ± 1%, p<0.001), while the three TNBC cell lines
examined had comparable proportions. The observed
differences in CSC proportion were confirmed by further CSC
markers such as plating efficency, migration ability and the
proportion of CD44high/CD24low cells (Supplementary
Figures S1A–C).

To further increase the proportion of BCSC, cell lines were
repeatedly treated with ionizing radiation (Figure 1C), and the
effects for cellular survival were analyzed (Figure 1D) (13, 14).

Consistent with the assumption that the proportion of ALDH1-
positive cells determines radiosensitivity, the initial cell lines already
showed significant differences in radiosensitivity corresponding to
their ALDH1-positive proportion. Accordingly, the radioresistant
subclones (RR clones) of each cell line showed a marked increase in
radioresistance compared to thebaseline cell lines,with an increase in
D37 between 1.2-1.8 (Figure 1D and Figure S1D). To confirm that
radioresistancewasdue to theproportionofALDH1-positiveBCSCs,
the ALDEFLUOR™ assay was performed (Figure 1E). As expected,
all RR clones showed an increase in the proportion of ALDH1-
positive cells.MCF7 cells showed the highest increase, approximately
25%, whereas TNBC cell lines showed only a slight increase in the
already high proportion in the parental cell lines, ranging from 5% to
20%.Thus, ahighproportionofALDH1-positiveBCSCs resulted in a
lower incidence of cytosolic dsDNA and was consistent with the
generally accepted concept that the more BCSCs present, the higher
the radiation resistance (Figure 1F).

Radiation Resistance Of BCSC Is Mainly
Mediated In S Phase
Radiation sensitivity is significantly influenced by DNA repair in
addition to other factors such as proliferation, cell cycle distribution.
Therefore, it was tested whether the observed radioresistance of
ALDH1-positive cells was due to enhanced DNA repair. Figure 2A
shows examples (top) and quantification (bottom) of the number of
53BP1 foci remaining after 24 h in cells that were either outside of S
phase (EdU-, Figure 2A bottom left) or actively replicating (EdU+,
Figure 2A bottom right) at the time of irradiation with 6 Gy. All
radioresistant clones showed significantly fewer 53BP1 foci after
irradiation than the parental cell lines. This difference was even
more pronounced when the cells were in S phase during irradiation.
Here, MCF7/RR and MDA-MB-231/RR showed the strongest
reduction in 53BP1 foci compared to their parental cell lines with
4.1 ± 0.57 vs. 8.9 ± 0.81, (p<0.0001) for MCF7/RR and 3.8 ± 0.56 vs.
7.3 ± 0.79 for MDA-MB-231/RR (Figure 2A, bottom right). MDA-
MB-231BR/RR and -SA/RR also showed a significantly lower
number of 53BP1 foci than the respective parent cell line with
11.9 ± 0.8 vs. 16.8 ± 0.9, (p=0.0001) and 11.6 ± 0.8 vs. 17.0 ± 0.9,
(p<0.0001). Even in cells that were not in S-phase at the time of
irradiation (Figure 2A, bottom left), enhanced DNA repair was also
detected in the RR clones, but to a significantly lower level, with
5.3 ± 0.3 vs. 6.5 ± 0.4 for MCF7/RR (p=0.02), 3.2 ± 0.4 vs. 4.8 ± 0.5
for MDA-MB-231/RR (p<0.05), 6.2 ± 0.6 vs. 8.5 ± 0.9, for MDA-
MB-231BR/RR (p=0.02) and 10.4 ± 0.7 to 13.5 ± 0.6, MDA-MB-
231SA/RR (p=0.0007).

These results suggest that all, but especially the DNA repair
pathways in S phase are upregulated in the RR clones. Since DSBs
in S phase are mainly repaired by HR, investigations were
focused on the analysis of HR-dependent processes. All cell
lines examined showed HR competence, evident from the
successful formation of RAD51 foci formation after treatment
with mitomycin C (MMC) (Supplementary Figure S2A) as well
as successful DNA repair of the HR specific reporter construct,
after both transient and stable transfection (Supplementary
Figures S2B, C) (39). Interestingly, in the RR clones
significantly higher HR capacity compared to the respective
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parental cell line was observed, with 1.28 ± 0.08 vs. 1.05 ± 0.05 for
MCF7/RR (n.s) and 1.34 ± 0.08 vs. 0.98 ± 0.05 for MDA-MB-
231/RR (n.s). MDA-MB-231 BR-RR even showed a 2-fold and
MDA-MB-231 SA-RR a 3-fold increase in HR capacity with 2.0 ±
0.1 vs. 1.01 ± 0.45, (p=0.012) and 2.95 ± 0.1 vs. 1.0 ± 0.07,
(p=0.003), respectively (Supplementary Figures S2B, C) (39).

Since HR has its highest activity in S phase (28) it was important
to ensure that the observed differences in HR capacity were not due

solely to differences in cell cycle distribution in favor of increased S
phase content in the RR clones. Figure 2C shows the percentage of S
phase cells for the RR clones compared to the parental cell lines. It
was apparent that the RR clones all had a lower S phase content
than the parental cell lines, with 24.9 ± 1.1% vs. 40 ± 5.0% inMCF7,
31.6 ± 3.0% vs. 38.5 ± 6.2% in MDA-231, 36.8 ± 8.3% vs. 44.8 ±
3.0% in BR, and 38.9 ± 7.5% vs. 42.9 ± 0.5% in SA, which was not
significant in any of the cell lines.

A C

B

D

E F

FIGURE 1 | BCSC proportion correlates with cytosolic DNA and radioresistance. (A) Cytosolic dsDNA in TNBC and luminal cells. Cytoplasmatic fractions were
isolated, dsDNA stained with PicoGreen®reagent and quantified in a Spark® reader. (B, E) Detection of ALDH1 positive cells. Cells were treated with

ALDEFLUOR™ reagent, harvested and the ALDH1 positive cells quantified by FACS. (C) Scheme to generate radioresistant sub cell lines. Cells were irradiated,
pooled, and irradiated again after two weeks. The procedure was repeated ten times. (D) Cellular survival after irradiation. Cells were seeded 6 hours prior to
treatment, irradiated with indicated doses, fixed after 14 days and the numbers of colonies was counted. (F) Correlation of the percentage of ALDH1-positive
cells and cellular survival. Shown are means from three independent experiments ± SEM. Asterisks (*) represent significant differences (n.s., not significant;
*p < 0.05; **p < 0.01; ***p < 0.001; Student’s t-test).
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Taken together, these data indicate that the observed
radioresistance is largely mediated by DNA repair processes
involving HR in S phase through increased HR-dependent
DNA repair in RR clones. It is unclear whether this is solely
attributable to more efficient double-strand break repair (DSB
repair) or whether the replication-associated functions of HR are
of much greater importance.

Avoidance Of Replication Stress
By Functional HR Mediates
Radioresistance Of BCSC
To ensure that the increased radioresistance and HR capacity was
attributable to the proportion of ALDH1-positive BCSC, they

were isolated by FACS sorting from the parental MCF7 as well as
the radioresistant MCF7 clone (Figure 3A) and their
radiosensitivity was determined (Figure 3B). There was a
comparable increase in radioresistance for both ALDH1-positive
subpopulations to a D37 of 4.1 ± 0.1 compared to 3.0 ± 0.2Gy for
the parental MCF7 cell line and for the already radioresistant
subclone with a D37 to 5.8 ± 0.1 Gy compared to 4.8 ± 0.2 Gy. The
same scenario was observed for HR capacity with an increase in
HR capacity in both ALDH1-positive subpopulations (Figure 3C).
A 2-fold increase in HR capacity was seen for the ALDH1-positive
cells of the parental MCF7 with 2.3 ± 0.09 vs. 1.0 ± 0.06, p=0.0002
and a 4-fold increase in HR capacity compared to the RR clone
with 4.1 ± 0.1 vs. 1.0 ± 0.05, p=0.0002.

A

CB

FIGURE 2 | Radiation resistance of BCSC is mediated in S phase. (A) 53BP1 foci (green) in non-S phase (EdU-, bottom left) and S phase (EdU+, bottom right) cells
after irradiation. Cells were irradiated with 6 Gy after pulse labeling with 10 µM EdU for 20 min. Immunostaining was per-formed 24h after treatment with a specific
antibody against 53BP1 and a fluorescent second anti-body. Nuclei were stained with DAPI, replicating cells were discriminated by incorporated EdU stained with
the “click-it”-reaction. Foci were quantified with Image J Software for EdU+ and EdU- cells (n = 100). (B) HR repair of DSB. Cells were transiently transfected with the
linearized DR-GFP plasmid for 24h. The number of GFP-expressing cells was analyzed by FACS and HR capacity of the radioresistant clones was normalized to the
absolute HR capacity of the parental cell lines. (C) Percentage of S Phase cells. Exponentially growing cells were pulse-labeled with 10 µM EdU for 20 minutes, fixed
and EdU stained with the “click-it” reaction. Nuclei were counterstained with DAPI. The number of EdU+ and EdU- cells was counted (n=100). Shown are means of
three independent experiments ± SEM. Asterisks (*) represents significant differences (n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001,
Student’s t-test).
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Inaddition to theextensivelydescribed importanceofHRforDSB
repair, several studies showed that HR proteins play an essential role
in stabilizing active replication forks and that their loss led to
nucleolytic degradation (6, 7). To verify whether the increased HR
capacity also translates into a stronger defense against nucleolytic
degradation of active replication (6), both replication fork stability
and restart after treatment with HU, which depletes the nucleotide
pool without damage induction, were examined by the DNA fiber
assay (Figure 3D). Parental MCF7 cells show a significant
degradation of already synthesized DNA, which was manifested by
significantly shorter chromatin fibers compared to the untreated
control, with 11.9 ± .0.2µm vs. 14.7 ± 0.17 µm (p<0.0001) (Figure 3E
left). In contrast,neither the radioresistant clonenor the twoALDH1-
positive subpopulations showed pronounced degradation of the
already synthesized DNA with 10.3 ± 0.12 vs. 10.5 ± 0.19 µm, 11.3
± 0.32 vs. 10.8 ± 0.13 µm and 11.3 ± 0.36 vs. 11.1 ± 0.18µm,
respectively. Moreover, these results surprisingly showed that the
three subpopulations replicated significantly slower than the parent
MCF7 cell line, with 0.84 ± 0.02 kb/min in MCF/ALDH1-positive

cells, 0.81 ± 0.03 kb/min in theRR clone ofMCF7 cells, 0.9 ± 0.03 kb/
min in theALDH1-positivesof theRRclonescompared to1.06±0.03
kb/min in wild type MCF7 cells, indicating that CSC-enriched
populations exhibited significantly more endogenous replication
stress than the baseline cell line.

Analysis of replication fork restart after HU removal (IdU
labeling), another characteristic of functional HR (42), also
showed significant differences (Figure 3E right). The longest time
for replication restart was required by the parental cell line, evident
by the shortest replication tracts with 3.4 ± 0.2 vs. 8.1 ± 0.3,
(p<0.0001). Slightly faster, the ALDH1-positive cells of the
parental MCF cells reached replication restart with a length of
4.1 ± 0.2 to 8.2 ± 0.2 (p<0.0001). Again, surprisingly, both the RR
clone and the ALDH1-positive subpopulation derived from it were
significantly faster capable to resume replication, with 4.5 ± 0.2 vs.
6.9 ± 0.3 (p<0.0001) and 6.2 ± 0.2 vs. 7.6 ± 0.2, (p<0.0001). After
irradiation, a similar pattern is seen in both CldU shortening and
replication restart (Figure 3F, left). MCF7 cells show significant
shortening of CldU labeling, which is not observed in the RR clone

A
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C

FIGURE 3 | Avoidance of replication stress by functional HR mediates radiation resistance of BCSC. (A) Isolation of ALDH1 positive cells. Cells were treated with

ALDEFLUOR™ reagent, harvested and ALDH1-positive cells isolated by FACS sorting. (B) Cellular survival after irradiation. Cells were seeded 6 hours prior to
treatment, irradiated with the indicated doses, fixed after 14 days and the number of colonies was counted. (C) HR repair of DSB. Cells were transiently transfected
with the linearized pDR-GFP construct for 24h. The number of GFP-expressing cells was analyzed by FACS and HR capacity of the ALDH1 positive cells was
normalized to their respective parental cell lines. (D–F) Replication tract lengths after HU or irradiation. MCF7 cells were sequentially labelled with CldU and IdU for
30min and either treated with HU or MCF7 and MDA-MB-231 cells irradiated with 6 Gy between both labels. DNA was spread on slides, fixed, and incorporated
nucleotides were detected by immunofluorescence. The lengths of the DNA fibers were measured with the Image J software. Shown are means of three independent
experiments ± SEM. Asterisks (*) represent significant differences (n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001, Student’s t-test).
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of MCF7 cells or in ALDH1-positive cells of either line. Similarly,
replication restart is significantly faster in the populations with
increased CSC content, such as the ALDH1-positiveMCF7 cells, the
MCF7-RR clone, and the ALDH1-positive cells of the RR clone, as
revealed by significantly longer IdU strands. Interestingly, the
respective cell lines showed differences in replication restart
depending on their radiosensitivity (Figure 3F, left), the more
radioresistant, the longer the IdU strand. In MDA-MB-231 cells,
which already have a CSC content of about 80% in the initial
population (Figure 1B), the RR clone and ALDH1-positive cells of
the RR clone show no pronounced irradiation effect on the length of
the already synthesized DNA (Figure 3F right CldU labeling).
However, there was a clear dependence between restart of DNA
replication and radiation resistance: the longer the IdU tract, the
higher the radiation resistance (Figure 3F, far right).

Next, the questionwaswhether differences in the ability to protect
active replication forks directly impacts the number of DSB. To this
end, RPA and yH2AXwere analyzed in parallel after treatment with
HU and irradiation (Figures 4A, B). It was observed that stalled
replication forks resulted in single-stranded DNA in all cell lines
examined (RPA foci), but significantly less frequently in theALDH1-
positivewith2.2±0.2andthe radioresistant clonewith2.14±0.1 than
in the parental cell line with 2.8 ± 0.2, with the ALDH1-positive
population of the radioresistant clone having the lowest number of
RPA foci with 1.7 ± 0.2.

In parallel, the number of DSB (yH2AX) also showed
significantly lower values with increase in CSC content in the
cell lines studied, with the difference from MCF to ALDH1-
positive MCF7 cells being most pronounced with 4.7 ± 0.3 for
WTMCF7 to 1.89 ± 0.3 and only slightly reduced in the RR clone
and its ALDH1-positive cells at 1.61 ± 0.07 and 1.6 ± 0.19,
respectively (Figure 4A, right), supporting the lower replication
stress observed after HU in these cell lines (Figure 3E).

After irradiation, however, a different pattern emerges. While
all cell lines examined showed a comparable number of RPA foci,
those with an increase in CSC content showed a decrease in DSB
3 h after irradiation (Figure 4B).

The Amount Of Cytosolic DNA Depends
On The ALDH1-Positive BCSC Fraction
Next, it was of interest to determine whether the enhanced DNA
repair capacity via HR of RR clones and their respective ALDH1-
positive BCSC fractions affect the amount of cytosolic dsDNA after
irradiation (Figure 5A). There was a significantly decreased
accumulation in cytosolic dsDNA, both in the RR clone and their
ALDH1-positive cells after irradiation compared with the parental
cell line in all cell lines examined. Among them, MCF7 cell line
showed the most obvious and MDA-MB-231 the smallest decrease
of cytosolic DNA in ALDH1-positive cells compared to the baseline
cell lines and their RR clones, from 1.62 ± 0.1 to 1.28 ± 0.1 and 1.08

A

B

FIGURE 4 | Lower DNA replication stress leads to less DSB in BCSC after treatment. Cells were incubated with HU (A) for 2h or irradiated with 6 Gy (B).
Immunostaining was performed 3h after treatment with a specific antibody against RPA and уH2AX and fluorescent secondary antibodies. Nuclei were stained
with DAPI, quantification of the foci was performed by automatic foci detection in the Aklides®-system (Medipan). For each analysis the foci of at least 100 cells
were quantified. Shown are means of three independent experiments ± SEM. Asterisks (*) represent significant differences (*p < 0.05; **p < 0.01; ***p < 0.001,
****p < 0.0001, Student’s t-test).
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± 0.2, respectively, p<0.05 inMCF7 and 1.57 ± 0.1 inMDA-MB-231
to 1.28 ± 0.2 and 1.2 ± 0.1 in MDA-MB-231, respectively (n.s.). The
other TNBC cell lines behaved in the same manner. Thus,
irradiation led to an increase in cytosolic dsDNA in all cell lines,
which became lower with increasing ALDH1-positive BCSC
content. Indeed, the proportion of ALDH1-positive cells
correlated significantly with the amount of cytosolic DNA after
irradiation with R2 of 0.8, p<0.05 (Supplementary Figures S3A, B).
Supporting this, IFN-ß1 showed a correspondingly lower expression
in the ALDH1-positive cells compared to the RR clones and WT
MCF7 and MDA-MB-231 cells after irradiation (Figure 5B).

DSB repair by HR and control of DNA replication stress are
both dependent on the activation by the ATR-CHK1 pathway (10).
To test whether radioresistance of the RR clones depended on the
functionality of the S phase checkpoint, ATR was inhibited
(Figure 5C). Notably, the RR clones were severely sensitized by
ATR inhibition, whereas the parental cell lines showed only a
moderate radiosensitization, with a reduction of the D37 about
1.7 Gy in the RR clone compared to only 1.0 Gy in the parental cell
line, p=0.02 and p=0.004, respectively. p=0.002 (Supplementary
Figure S3C). Additionally, the inhibition of the ATR downstream
kinase CHK1 with the CHK1-inhibitor MK-8776 also led to a
specific radiosensitization of the RR clones of the MCF7 and the
MDA-MB-231, confirming the importance of the ATR-CHK1
signaling pathway to their radioresistance (Supplementary Figure
S3C). Thus, radioresistant, ALDH1-positive BCSC are particularly
dependent on the S phase damage checkpoint, HR-mediated DSB
repair and replication fork protection.

Of particular interest was whether inhibition of ATR affects
activation of the intracellular immune response after irradiation.
Activationof the intracellular immune response by the appearance of
cytosolic dsDNA occurs through pSTING phosphorylated and
thereby activated IRF3, which is translocated by this process to the
nucleus where it induces typeI IFN expression (43) (Figures 5D, E).
As expected, irradiation alone inRR clones of both cell lines leads to a
lowtranslocationof IRF3 into thenucleus (p=0.006andn.s.),whereas
a significant increasewas observed in theparental cell lines (p<0.0001
and p=0.02). Also here, the extent of nuclear IRF3 after irradiation
correlated with the percentage of cytosolic DNA after irradiation
(Supplementary Figure S4A). In contrast, inhibition of ATR alone
led to a significantly higher translocation of IRF3 to thenucleus inRR
clones compared toparental cells (bothwithp<0.0001),whereas only
weak translocationof IRF3wasobserved in theparental cell lines.The
combined treatmentofATR inhibitionwith irradiation resulted in an
additive increase in IRF3 translocation, with a significantly stronger
expression in theRRclones (bothp<0.0001).Thus, inhibitionofATR
enhances the activation of intracellular immune response after
irradiation in BCSC by suppressing their functional S-phase DNA
damage response.

DISCUSSION

Here, we show that the increased radioresistance of ALDH1-positive
BCSC in S phase is mediated by both enhanced DSB repair and
improved replication fork protection due to HR. Both HR-mediated
processes lead to suppression of radiation-induced replication stress

and consequently reduction of cytoplasmic dsDNA. The amount of
cytoplasmicdsDNAcorrelated significantlywithBCSCcontent. This
clearly indicates that HR-dependent avoidance of radiation-induced
replication stress mediates radioresistance and contributes to its
immune evasion. Consistent with this, enhancement of replication
stress by inhibition of ATR resulted in significant radiosensitization.
Therefore, disruption of HR-mediated processes, particularly in
replication, opens a CSC-specific radiosensitization option by
enhancing their intracellular immune response.

An abundance of CD44high/CD24low and ALDH1 positive cells
in the TNBC cell lines compared to the luminal MCF7 cell line was
observed (Figures 1B, E and Supplementary Figure S1C). Ma and
colleagues already showed an enrichment of CD44high/CD24low cells
in TNBC (44). This putative high proportion of BCSC is confirmed
by work of others, who reported ~45% of CD44high/CD24low cells in
untreated TNBC and only ~5% in luminal A tumor biopsies (45,
46). Compared to Glioma with only ~2-4% of CD133+ CSC found
in human specimens, the proportion in TNBC is enormous and
clearly shows the relevance of BCSC in TNBC (15). For the
identification of BCSC both the CD44high/CD24low phenotype and
ALDH1 activity are important, but CD44high/CD24low is limited to a
mesenchymal phenotype, whereas ALDH1 is a more general BCSC
marker due to its independence from the current cell state (47, 48).
This explains the higher proportion of ALDH1-positive cells in
comparison to CD44high/CD24low cells. A weakness of both markers
is that they are also expressed by progenitor cells. To overcome this
problem, others considered only the 1% of cells with the highest
ALDH1-activity as CSC, the cells with the lowest 1% of ALDH1-
activity as progenitor cells (49). Since both populations with
ALDH1-activity remained tumorigenic, it was assumed - based
on surface markers or ALDH1 activity – that there is no clear
distinction between stem and progenitor cells.

Baumann and colleagues postulated that radiation resistance
is due to the proportion of CSC (12). This is also confirmed by
our data showing a clear correlation between radiation resistance
and ALDH1-positive BCSC (Figure 1F).

It has been previously reported that repeated irradiation with
fractions ranging from4-6Gy to a total dose of 12-56Gyworked as a
strategy to increase the endogenous CSC proportion in breast and
HNSCCcell lines (13, 14). In linewith thiswe achieved an increase in
the ALDH1-positive CSC proportion and a significantly increased
survival after irradiation in all investigated cell lines, independent of
themolecular subtype (Figures 1E, F). This acquired radioresistance
can be attributed to i) selection of pre-existing, radioresistant clones,
ii) radiation-induced de-differentiation to a stem cell phenotype (17)
and iii) alterations of DNA repair processes (14). We found that
radioresistance was indeed determined by the ALDH1-positive cell
fraction (Figures 3A–C). We also found that the ALDH1-positive
cells from the MCF7 cell line were more radiosensitive than the
radioresistant clone, suggesting that not only clonal selection, but also
alterations of DNA repair processes due to repeated irradiation
played a role. This is in line with observations in radioresistant
BCSC showing a ZEB1 dependent stabilization of CHK1, mediating
radioresistance (14).

It is generally believed that CSC, similar to tissue stem cells, are
mostly quiescent (19), but studies in glioma- and breast cancer cell
lines showed, that only one-third of the CSC were dormant, but
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FIGURE 5 | The amount of cytosolic DNA and intracellular immune response depends on the ALDH1-positive BCSC proportion. (A) Relative increase of cytosolic
dsDNA after irradiation. Cells were irradiated with 8 Gy, cytoplasmatic fraction isolated and dsDNA stained with PicoGreen®reagent, quantified in a Spark® reader
and normalized to the untreated control or (B) Expression of IFN-ß1 after irradiation. Cells were irradiated with 8 Gy and proteins were extracted 24h later. Proteins
were separated and transferred by Western blotting. IFN-ß was detected specific primary antibodies, followed by fluorescence-coupled secondary antibodies. ß-
Actin served as a loading control. The Expression of IFN-ß was normalized to the wild type cell lines. (C) Cellular survival after irradiation. Cells were seeded 6 hours
prior to treatment, treated with +/- VE821 2h prior to irradiation, irradiated with the indicated doses, fixed after 14 days and the number of colonies was counted.
(D, E) Nuclear IRF3 accumulation. Cells were incubated with 1µM VE821 for 2h, irradiated with 6Gy and fixed 16h later. IRF3 was stained with a specific primary
antibody, followed by a fluorescent secondary antibody. Nuclei were stained with DAPI. Fluorescence intensity (FI) of IRF3 was quantified with Image J Nuclear IRF3
was calculated by subtraction of the cytoplasmatic FI from the nuclear FI. Shown are means of three independent experiments ± SEM. Asterisks (*) represent
significant differences (n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001, Student’s t-test).
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entered the cell cycle after irradiation (16, 20). We found that in
non-S phase cells the radioresistant clones had significantly lower
amounts of residual DSBs than the parental cells after irradiation,
suggesting increased DNA repair by NHEJ in BCSC (Figure 2A,
EdU-negative). Even more striking was that these differences were
even more significant when the cells were irradiated during S phase
(Figure 2A, EdU-positive). In S phase HR is the most important
DNA repair pathway for the repair of frank DNA-DSB and the
avoidance of DNA replication stress by replication fork protection
(39). Here, we demonstrate that HR capacity is greatly increased in
in the RR clones due to the ALDH1-positive cell fractions
(Figures 2B, 3C). These effects were not due to cell cycle changes
in favor of the S phase, the RR clones provided a slightly lower S
phase proportion than the parental cell lines, so the actual HR
capacity of the RR clones could be higher than depicted in the figure
(Figures 2B, C) (28). However, we demonstrate here for the first
time a functional stabilization of DNA replication forks in ALDH1-
positive BCSC, which further supports the increased DSB repair by
HR (Figures 3C, D). Other than the parental MCF7 cell line the
ALDH1-positive BCSC showed no replication fork degradation
after HU treatment and improved replication fork restart (7).
Since a functional DNA damage response (DDR) is necessary for
replication fork protection (50), these results compensate the
potential lack of DDR activation for measuring the HR capacity
with the plasmid reconstruction assay (51). This functional HR led
to a lower occurrence of DNA-replication stress markers after HU
and irradiation (Figures 4A, B) (52). Thus, our study demonstrates
the importance of ATR and CHK1, avoiding degradation of nascent
DNA strands. These findings further extend observations in glioma
and breast CSC (14, 25, 29, 31). The S-Phase kinase ATR and its
downstream kinase CHK1 activate HR (10, 53). These kinases also
regulate DNA replication processes and support replication fork
protection (50, 53–55). Others observed an increased expression
and activation of CHK1 after irradiation in breast- and glioma CSC
(14, 15, 27). Here we show that the inhibition of ATR and CHK1
lead to a significant radiosensitization of the RR clones (Figure 5B
and Supplementary Figures S3C, D), suggesting a critical role of
the ATR-CHK1 signaling cascade in preventing radiation-induced
replication stress and protection of replication forks in BCSC. To
our knowledge this is the first study that shows a targeted
radiosensitization by ATR inhibition in BCSC. Yet, similar effects
were only observed in CD133+ colon carcinoma stem cells, where
ATR inhibition abrogated the tumorigenicity of CD133+ CSC (56).
Thus, the activation of the ATR signaling cascade mediates
radioresistance in BCSC by activating HR.

It has been previously shown that efficient DSB repair and
avoidance of DNA replication stress by functional HR prevents the
formation of radiation-induced cytosolic dsDNA (4). Consistent
with this, we show that the proportion of ALDH1-positive BCSCs
significantly affects the amount of cytosolic dsDNA after irradiation
(Figure 5A and Supplementary Figure S3B). The resulting lower
amount of cytosolic DNA led to decreased activation of the
intracellular immune response, as evidenced by decreased nuclear
IRF3 levels in the radioresistant BCSC (Figure 5C and
Supplementary Figure S4). This suggests that upregulated HR
processes protect BCSC not only from DNA damage, but also from
the activation of the intracellular immune response. This would

indirectly contribute to the CSC-specific mechanisms of immune
escape and complement their enhanced expression of PD-L1 (33,
34). Consequently, disruption of HR by inhibition of ATR not only
resulted in a specific radiosensitization of BCSC, but also in a
significantly increased translocation of IRF3 to the nucleus, thus
abrogating their low activation of the intracellular immune response
after irradiation alone. This is in line with other in vitro and in vivo
studies showing a significantly increased the activation of the
immune response, expression of inflammatory genes and the
infiltration of CD8+ T-cells after combination of irradiation with
ATR inhibition in comparison to irradiation alone (11, 57, 58).
Thus, the inhibition of the ATR signaling cascade specifically
sensitizes BCSC to irradiation and increases the activation of the
intracellular immune response, potentially overcoming CSC-
mediated tumor protection.
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APE1/Ref-1 Role in Inflammation
and Immune Response
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Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a
multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the
major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a
redox-dependent regulator of several transcription factors, including NF-kB, AP-1, HIF-1a,
and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and
inflammatory pathways. In addition to regulating cytokine and chemokine expression
through activation of redox sensitive transcription factors, APE1 participates in other
critical processes in the immune response, including production of reactive oxygen
species and class switch recombination. Furthermore, through participation in active
chromatin demethylation, the repair function of APE1 also regulates transcription of some
genes, including cytokines such as TNFa. The multiple functions of APE1 make it an
essential regulator of the pathogenesis of several diseases, including cancer and
neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is
highly expressed in the central nervous system (CNS) and participates in tissue
homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have
been elucidated. This review discusses known roles of APE1 in innate and adaptive
immunity, especially in the CNS, recent evidence of a role in the extracellular
environment, and the therapeutic potential of APE1 inhibitors in infectious/
immune diseases.

Keywords: cytokines, NF-kB, biomarker, innate immunity, DNA repair, inflammation, reactive oxygen species,
oxidized DNA damage

INTRODUCTION

APE1 - From Structure to Function
Apurinic/apyrimidinic endonuclease 1/Redox Factor-1 (APE1/Ref-1) is a multifunctional 35.6 kDa
protein that responds to DNA damage (primarily DNA damage caused by oxidative stress) (1, 2).
The C-terminal domain of APE1 processes apurinic/apyrimidinic (AP) sites generated by DNA
glycosylase in the base excision repair (BER) pathway. The AP endonuclease activity of APE1
hydrolyzes the phosphodiester bond at these sites, generating a 3′-hydroxyl end (3′-OH) and a 5′-
deoxyribose phosphate (5′-dRP) terminus. DNA polymerase b (Polb) then removes the 5′-dRP and
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inserts the correct nucleotide. DNA ligase IIIa in complex with
XRCC1 seals the phosphodiester bond, terminating the BER
pathway. Occasionally, several nucleotides are removed by other
enzymes through a sub-pathway known as long patch repair
(1, 3, 4). Although other endonucleases act in the BER pathway,
APE1 is the major AP endonuclease that repairs damage caused
by oxidative stress, maintaining genome integrity in mammals
(2, 5).

The N-terminal domain of APE1 has redox activity and
contains a nuclear localization signal in its first 33 amino acids.
APE1 reduces the cysteine residues of target transcription factors
(TFs) through exchange of protons with cysteine residues present
in its N-terminal region (6). The functional domains of APE1 are
shown in Figure 1. The redox function of APE1 activates TFs,
such as NF-kB, p53, activator protein 1 (AP-1), hypoxia-inducible
factor-1a (HIF-1a), signal transducer and activator of
transcription 3 (STAT3), and early growth response 1 (EGR1)
(7–12). Therefore, APE1 regulates the expression of genes that
directly affect several cellular processes, including inflammatory
responses (13, 14). For example, APE1 reduces HIF-1a, increasing
its DNA-binding activity. This induces expression of vascular
endothelial growth factor (VEGF), which promotes angiogenesis
(15–17). Additionally, because APE1 regulates STAT3, NF-kB,
EGR1, and AP-1, it directly influences the immune system by
regulating the expression of cytokines and chemokines, including
tumor necrosis factor alpha (TNFa), interleukin (IL)-6, and IL-8
(18–21). APE1 also interacts with ERK2 rescuing ERK2 from

oxidative inactivation through its redox activity (22). The MEK-
ERK1/2 pathway is a critical regulator of lipopolysaccharide
(LPS)-induced responses (23).

The DNA repair activity of APE1 has recently been observed
to play a role in transcriptional regulation. 8-oxoguanine (8-
oxoG) is the most frequent DNA lesion caused by oxidative
stress (24). This lesion is removed by 8-oxoguanine glycosylase
(OGG1) and APE1 in the BER pathway. The presence of 8-oxoG
can delay RNA polymerase progression, inducing transcriptional
arrest and initiating DNA repair. Thus, 8-oxoG functions as a
repressor in transcriptional regulation of genes (25). Some
studies suggest that 8-oxoG can function as an epigenetic
signal that favors the expression of several genes (26–29). Pan
et al. observed that TNFa treatment induces an increase in 8-
oxoG and OGG1 binding in promoters of proinflammatory
genes, stimulating NF-kB binding to these sites, leading to
gene activation and cytokine expression (27). Corroborating
these data, 8-oxoG generation in G-quadruplex promoter sites
favors OGG1 recruitment, generating AP sites that are substrates
of APE1. The presence of APE1 in these promoters leads to TF
recruitment and gene activation (30). Similarly, demethylation of
histone H3, mediated by lysine-specific histone demethylase 1A,
produces H2O2, leading to formation of local 8-oxoG lesions.
Occurrence of 8-oxoG, and recruitment of OGG1 and APE1
have been observed to enhance the DNA-binding activity of
MYC to its target gene promoters, thereby increasing gene
expression (31).

FIGURE 1 | Representative scheme of the functional domains of Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). The N-terminal domain
(amino acids 1 to 127) contains redox activity and the nuclear localization signal. The C-terminal domain (amino acids 161 to 318) contains apurinic/apyrimidinic
endonuclease activity. Both domains may be involved in the transcriptional regulation of some genes, such as VEGF.
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Enzymes of the BER pathway, including APE1, are associated
with active chromatin demethylation. This process is initiated by
oxidation of 5-methylcytosines by ten-eleven translocation
(TET). This oxidized base is removed by glycosylases such as
thymine-DNA glycosylase (TDG), which generate AP sites.
Thus, the endonuclease activity of APE1 is also involved in
regulating chromatin and gene expression (24–27) [reviewed in
(32)]. Thus, some genes, including VEGF, and cytokines, are
regulated by the redox and repair functions of APE1 (33, 34).

In addition to regulating TF activity and maintaining
genomic stability through DNA damage repair, APE1 plays an
essential role in cell senescence by maintaining telomere stability
and size through interaction with the telomere-protective
proteins TRF1 and TRF2, and with POT1 (35, 36). APE1 also
processes mRNAs that contain oxidized bases, thus preventing
abnormal protein synthesis (37, 38). In addition to regulating
mRNAs, APE1 can cleave siRNAs in vitro (38). APE1 has also
been linked to numerous pathological processes, owing to its
multiple functions in cellular homeostasis. APE1 is frequently
overexpressed in cancer cells and is associated with increased
resistance to chemotherapy (39). APE1 participates in signaling
pathways involved in immune and inflammatory responses,
which regulate gene expression of several innate and adaptive
immune system mediators and is also involved in antibody
production. In the following sections, the roles of APE1 and its
functions in the immune system are described.

APE1 IN INNATE IMMUNITY

The mammalian immune system is divided into innate and
adaptive systems. The innate immune system recognizes
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) through germline-
encoded receptors, such as pattern recognition receptors
(PRRs). In the presence of PAMPs and DAMPs, cells of the
innate immune system initiate an acute inflammatory response
by secreting cytokines, chemokines, reactive oxidative species
(ROS), and other inflammatory mediators to attract immune
cells to the site of damage (40–42). ROS production plays a
central role in inflammatory signaling by eliminating pathogens
in phagocytic cells or acting as signaling molecules. ROS are
endogenously produced in the mitochondria, peroxisomes, and
endoplasmic reticulum, and by NADPH oxidases (NOX) in
phagocytes and endothelial cells (42, 43). Chronic ROS
exposure or imbalance between ROS and antioxidants plays a
critical role in the progression of inflammatory diseases,
including inflammatory bowel disease (44, 45), hepatitis (46),
atherosclerosis (47), and multiple sclerosis (48).

At least two highly interconnected ROS-related processes
occur in the innate immune system. First, ROS can induce an
inflammatory response leading to APE1 expression. Several
studies have shown that ROS induces APE1 expression and
activity in different cell types, including macrophages and
human gastric epithelial cell lines infected with Helicobacter
pylori (49–51). In these cells, H. pylori infection and TNFa
treatment induced activation of NF-kB, and AP-1 and IL-8

expression were inhibited by APE1 silencing (52, 53). APE1
inhibition also prevented H2O2-induced increase in IL-6 and
IL-4 expression in mast cells (54). Antioxidant enzymes, such as
Peroxiredoxin 1, also appear to regulate cytokine and chemokine
expression in an APE1-dependent manner. Nassour et al.
reported that APE1 interacts with Peroxiredoxin 1 in HeLa cells
under physiological conditions or with H2O2 treatment. This
interaction may prevent APE1 from reducing TFs, including NF-
kB, and decrease IL-8 expression, attributing an APE1-dependent
anti-inflammatory role to Peroxiredoxin 1 (21).

Second, the inflammatory response can induce ROS
production. For example, APE1-deficient human cells infected
with H. pylori show high Rac1 activation and NOX1 expression.
Consistent with these findings, APE1 overexpression decreased
ROS levels, Rac1 activation, and NOX1 expression in H. pylori-
infected cells. APE1, through its N-terminal lysine residues,
interacts with Rac1, decreasing NOX1 expression and ROS
generation (55). Therefore, APE1 appears to have an inhibitory
effect on ROS production. Granzyme K is a tryptase that is highly
expressed in natural killer (NK) cells and is necessary for NK
cell-mediated cytolysis. Granzyme K -mediated apoptosis is
initiated by ROS accumulation and cytochrome C release (56).
Granzyme K cleaves APE1, abrogating its antioxidant activity
(57). The resultant decrease in APE1 levels correlates with NK
cell-mediated apoptosis of tumor cells or virus-infected cells,
indicating that APE1 is essential for maintaining cell viability.

Cytokine- and chemokine-mediated signaling is involved in
both innate and adaptive immunity. These signaling molecules are
often transcriptionally regulated by TFs, including NF-kB, AP-1,
EGR1, and STAT3, which are activated by the redox function of
APE1, which in turn increases their DNA-binding capacity (11,
12, 58). APE1 exerts a proinflammatory role in stimulating
cytokine and chemokine expression. APE1 knockdown in
keratinocytes treated with synthetic lipopeptide or zymosan
resulted in decreased NF-kB activation and TNFa and IL-8
expression (18). Treatment of macrophages with APE1 redox
inhibitor E3330 decreases NF-kB and AP-1 activation, and
consequently, TNFa, IL-6, IL-12, PGE2, and COX-2 expression
(19). E3330 also inhibits IL-8 expression in TNFa-induced JHH6
cells (59). E3330 (also called APX3330) is a quinone derivative and
a specific inhibitor of APE1 redox functions (60–62). E3330 acts
by binding to APE1 and increasing the formation of disulfide
bonds between cysteine residues (Cys65 or Cys93) which are
critical for redox function (61, 63), without affecting AP
endonuclease activity (60–62, 64). In addition, in a gastric
inflammation model of H. pylori, APE1 redox inhibition
reduced cytokine expression, decreased immune cell infiltration,
and exerted neuroprotective effects on the enteric nervous system
(65). These studies demonstrate the role of APE1 redox activity as
a positive regulator of cytokine and chemokine expression in
innate immune system cells.

Many studies have demonstrated dual roles of APE1 in
inflammation. Ectopic APE1 overexpression appears to play an
anti-inflammatory role in some cells. In the macrophage-like
THP-1 cell line, APE1 transfection decreased the expression of
IL-6, TNFa, and IL-1 induced by oxidized LDL (66) and TNFa
and COX-2 expression induced by HMGB1 (67). In addition,
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using the APE1 gene cloned in an expression vector and
administered via retrograde renal vein injection, Maruyama
et al. demonstrated that APE1 expression inhibits the
development of tubulointerstitial fibrosis and modulates the
immune system through different pathways, including IL-6,
TNFa, and IL-1b (68). The dual role of APE1 in cytokine and
chemokine expression can be attributed to specific functions of
APE1 in different cell types. Yuk et al. observed a contradictory
effect in the same cell line (THP-1) by analyzing the effects of
APE1 overexpression and siRNA knockdown on HMGB1-
induced inflammatory responses. The authors observed that
siRNA-mediated inhibition decreased APE1 nuclear and
cytoplasmic expression and impaired HMGB1-mediated
cytokine expression and MAPK pathway activation.
Furthermore, APE1 overexpression by adenoviral vectors has
been reported to increase cytoplasmic APE1 expression, leading
to a decrease in ROS levels, cytokine secretion, and
cyclooxygenase-2 expression. A reduction in p38 and c-Jun N-
terminal kinase activation and extracellular release of HMGB1
has also been observed (67). The authors suggested that APE1
compartmentalization may explain the contrasting functions
described above (67). The role of cytoplasmic APE1 in the
inflammatory process remains to be clarified.

APE1 deficiency in mice is associated with increased
expression of inflammatory mediators in senescent cells. APE1
deficiency is also associated with decreases in the size of several
organs including the brain (14). These events may be associated
with senescence-associated secretory phenotype stimulation,
which includes changes in the cell protein secretion profile,
such as proinflammatory cytokines (IL-1a and IL-6),
chemokines (IL-8), and growth factors (VEGF), many of which
are regulated by the redox function of APE1 (69).

NF-kB and AP-1 are the main TFs observed in studies of
APE1 expression or inhibition in inflammatory models.
However, several TFs interact with the APE1 redox region.
Occasionally, these factors also play a role in the inflammatory
response or immunity. For example, HIF-1a, a classical target of
APE1 redox activity (15, 16),is essential in glycolysis and
angiogenesis. HIF-1a also participates in the immune
response, and its inactivation decreases macrophage invasion,
aggregation, and motility (70). APE1 redox function also
regulates STAT3 transcriptional activity (7), affecting dendritic
cell maturation and anti-inflammatory signaling in phagocytes
and inflammatory responses related to cancer (71, 72). Table 1

lists the principal TFs regulated by APE1, their functions, and
studies reporting their involvement in the immune response.

In general, the studies cited above describe the associations of
APE1 redox function or reduced APE1 expression with
inflammatory regulation. However, our group recently showed
that inhibition of AP site repair by methoxyamine inhibits the
expression of IL-8, IL-6, TNFa, IL-10, and MCP1 in LPS-
induced U937 cells (34). This treatment also decreased
expression of genes involved in prostaglandin biosynthesis and
MyD88-independent toll-like receptor signaling pathway genes.
Reduced ELK1 expression after chemical inhibition of APE1 by
E3330 or methoxyamine was also observed. ELK1 expression is
regulated by ERK pathway, EGR1, and TET enzymes (82–84). In
this context, our findings suggest that both redox and DNA
repair activities of APE1 regulate ELK1 expression through
independent but overlapping mechanisms (34). Together, these
data suggest a role of DNA repair in regulating gene expression,
influencing the expression of inflammatory mediators.

Figure 2 summarizes the main roles of APE1 in the
inflammatory response. The potential of this response to be
cell type-specific must be considered. Therefore, more studies are
required to better understand the role of APE1 repair activity in
the transcriptional regulation of proinflammatory genes.

APE1 IN NEUROINFLAMMATION

Increased APE1 expression in the nervous system is well-
documented (85–87). APE1 expression varies in different
tissues under normal physiological conditions. High APE1
levels are observed in the dentate gyrus granule cells, cerebellar
Purkinje cells, and piriform cortex neurons (85). However, APE1
expression is significantly increased in the brain and spinal cord
of individuals affected by diseases including amyotrophic lateral
sclerosis (ALS), compared to healthy controls (88). Excessive
ROS production in neurons in response to certain stimuli is
associated with APE1 expression (89). ROS originate from many
sources but have mainly been attributed to high mitochondrial
respiration activity or malfunctioning organelles. Thus, many
studies have focused on neuronal mitochondrial dysfunction
during ischemia to assess the role of APE1 (90, 91).

APE1 upregulation generally protects neuronal structure and
function during transient global cerebral ischemia (90, 91). This
protection has been mainly attributed to its role in BER, which

TABLE 1 | Transcription factors regulated by apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) and their functions in the immune response.

TFs Immune system function Function inhibited Refs

NF-kB Inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis Redox and repair (10, 27)
AP-1 Proliferation, differentiation, and apoptosis Redox (11)
STAT3 Dendritic cells maturation, activation, and anti-inflammatory signalization in phagocytes Redox (7, 72)
HIF-1 Invasion, aggregation and motility of macrophages, and energy homeostasis Redox and repair (16, 33, 73)
EGR1 Differentiation of myeloid cells Redox (74, 75)
P53 Apoptosis, antiviral defense, induction of type I IFN, enhanced pathogen recognition, and immune

checkpoint regulation
Redox and redox-independent
functions

(76–78)

PAX5 B lymphopoiesis Redox (79, 80)
PTEN DC maturation and T cell polarization – (76, 81)
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corrects damage induced by ROS. Although BER is the
predominant mechanism for repairing oxidized DNA damage
in neurons, APE1 also participates in non-homologous end-
joining repair mechanisms in cortical neurons (92). In addition,
APE1 helps regulate the nucleotide excision repair pathway to
repair DNA adducts induced by cisplatin in sensory neurons (93).

Oxidative stress in neurons plays a critical role in aging and in
the pathogenesis of several neurological diseases, including ALS,
Parkinson’s disease, Alzheimer’s disease, and brain infections,
such as bacterial meningitis (94–98). The inflammatory response
in the nervous system is one of the primary endogenous sources of
ROS in some neurological conditions, and APE1 plays an essential
role in these conditions. For example, during neuroinflammation
caused by pneumococcal meningitis, higher APE1 expression was
observed in the cortex and hippocampus of rats than that inmock-
infected animals. Rats supplemented with vitamin B6 showed
reduced APE1, glutamate and ROS levels, and decreased cell death
and oxidative stress during neuroinflammation (99). Furthermore,
in aluminum chloride-induced neuroinflammation in rats,
administration of resveratrol as an anti-inflammatory agent was
associated with increased APE1 levels and reduced inflammatory
responses (100).

The functions of APE1 in inflammatory responses during
neuroinflammation are not entirely understood. Some studies
have attributed a coactivator role to APE1 redox activity
associated with NF-kB and AP-1, promoting proinflammatory
cytokines, such as TNFa and IL-8 (10, 18, 52, 101). APE1
translocation from the nucleus to the cytoplasm, followed by
p50 reduction, appears to be an essential mechanism for the
binding of NF-kB to DNA, thereby triggering inflammation
(102, 103). In rats with inflammatory pain, changes in
subcellular APE1 distribution can be effected via intrathecal
injection of E3330, leading to reduced IL-6 levels and
alleviation of pain (104). Beyond reducing inflammation,
changes in APE1 expression and subcellular distribution also
seem to be mediated by APE1 redox function (104).

To observe the role of extranuclear APE1 in regulating
neuroinflammatory processes, APE1 with a deleted N-terminal
nuclear localization signal (DNLS-APE1) was overexpressed in
hippocampal astrocytes stimulated with LPS (105). Cytoplasmic
APE1 overexpression suppressed NF-kB transcriptional activity
and reduced TNFa and iNOS levels, but did not reduce AP-1,
showing an anti-inflammatory effect of APE1. These studies also
suggested that the inhibitory effect of APE1 on LPS-induced NF-kB

A B

FIGURE 2 | Involvement of APE1 in expression of cytokines and chemokines and reactive oxygen species (ROS) regulation. (A) The stimulation of Toll-like receptors
promotes NF-kB activation and its translocation to the nucleus. APE1 redox function reduces transcription factors, such as NF-kB and AP-1, and increases expression of
cytokines. APE1 also inhibits Rac1 and ROS production by NADPH oxidase. Inhibition of APE1 redox function decreases the expression of NOX1, P65, and ELK1
(represented in red color). (B) The DNA repair activity of APE1 also regulates expression of cytokines. 8-Oxoguanine DNA glycosylase and APE1 recruitment to damaged
sites is essential for downstream recruitment of transcription factors. Additionally, inhibition of APE1 DNA repair activity decreases the expression of various genes/proteins
(represented in red color).
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activation was not mediated by IkB kinase activity. Additionally,
overexpression of APE1 inhibited p300-mediated acetylation of
p65 by suppressing intracellular ROS levels following LPS
treatment (105). Acetylation of p65 plays a vital role in
regulating the inflammatory response (106). The above study
demonstrated the involvement of APE1 in this mechanism.

In summary, APE1 plays a multifunctional role in regulating
neuroinflammation, acting as an activator or repressor of TFs
depending on cellular redox status, APE1 expression level,
subcellular compartmentalization, and post-translational
modifications, exerting a proinflammatory or anti-inflammatory
effect depending on cellular context.

APE1 IN ADAPTIVE IMMUNITY

The adaptive immune system is triggered by responses generated
by the innate immune system upon antigen contact at the
infection site. T and B-lymphocytes are involved in the adaptive
response and responsible for secreting cytokines and antibodies,

respectively. These cells can proliferate and differentiate into
memory cells with the help of specialized cells in peripheral
lymphoid organs, allowing faster and more efficient responses
when encountering the same antigen a second time (107, 108).

The role of APE1 in adaptive immunity has been described in
several studies (Figure 3). According to Akhter et al. (109), the
redox activity of APE1 is essential for T helper cell 1 (Th1)
response through antigen-presenting cells. The authors observed
that in splenocytes from OT-II mice stimulated with ovalbumin,
treatment with E3330 increased IFN-g-producing T cells by
altering functions of antigen-presenting cell, suggesting
suppression of Th1 immune responses. Inhibition of APE1
redox function induced p38 MAPK activation, upregulation of
IL-12 gene expression, and IL-12 cell surface retention. APE1
redox activity also regulated Pax5a, a TF essential for B cell
development. Repression of APE1 protein synthesis blocked
CD40-mediated B cell activation by impairing Pax5a activity (110).

Another essential process in the adaptive immune response is
class switch recombination (CSR), which is responsible for
antibody diversity and is initiated by activation-induced cytidine

FIGURE 3 | Effect of APE1 redox and repair activities in adaptive immunity. Repair activity of APE1/Ref-1 participates in class switch recombination, while redox
activity downregulates Th1 responses and regulates B cell activation.
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deaminase (AID) in B cells located in the germinal center (GC)
(111). APE1 endonuclease activity is involved in CSR through
recognition of AP sites created by uracil-DNA glycosylase (UNG).
AID recruits UNG, which converts cytosine into uracil, initiating
the BER pathway. This process is crucial for IgA class switching.
Although, APE1 redox function regulates CSR, this process is still
observed in cells deficient in APE1 endonuclease activity (112).
APE1 also mediates CSR through IL-6 signaling, and is involved in
proper IgA expression (112, 113). However, once in the GC, B cells
undergo somatic hypermutation (SHM), also initiated by AID,
and proliferate rapidly, inhibiting the activities of UNG and APE1.
APE1 expression is lower in GC B cells than in non-GC B cells and
contributes to an increase in SHM (111). According to Xu et al.
(114), APE1 endonuclease activity is dispensable for SHM, but
may be involved in processing of DNA ends, enabling the ends to
participate in CSR.

Due to the multifunctional nature of APE1, researchers have
focused on roles of APE1 in tumor cells, and have demonstrated
that APE1 expression is associated with poor prognosis in some
cancer types including lung, liver, and gastric cancers (115–118).
In patients with non-small cell lung cancer, APE1 expression is
correlated with tumor-infiltrating lymphocytes, and low APE1
expression together with CD4+ T cell infiltration is correlated
with good prognosis, suggesting that APE1 levels regulate the
function of CD4+ T cells (119). APE1 was also found to be active
in leukemia T cells; however, when inhibited by E3330, it
promoted apoptosis and downregulation of survival genes
(120). Furthermore, CD8+ T cells and NK cells can release
granzymes, such as granzyme A, which cleaves APE1, blocking
cellular repair and leading to apoptosis (121). Thus, APE1 could
serve as a molecular target for targeted therapies.

Interestingly, APE2 (a less efficient homolog of APE1) was
highly expressed in splenic B cells in vitro. APE2 deficiency causes
severe defects in lymphopoiesis, and prevents B cell progenitors
from proliferating in the bone marrow, indicating that APE2 also
plays a role in adaptive immunity. APE2 expression is also
increased in GC B cells, and protects proliferating B cells from
oxidative damage (111, 122–127). Guikema et al. demonstrated that
APE1 and APE2 are essential for CSR, as a decrease in this process
was observed in splenic B cells of ape1+/−, ape2Y/−, and double-
deficient mice compared to wild type mice (122). However, the role
of APE2 in CSR remains unclear, asAPE2 gene deletion in CH12F3
cells does not affect CSR even in APE1 deficient cells (125). APE2
deficient mice show decreased SHM frequency, indicating that
APE2 is involved in this process. APE2 interacts with proliferating
cell nuclear antigen, facilitating the recruitment of translesion
polymerases to AID-induced lesions, which favors an increase in
mutagenesis (111, 127). Stavnezer et al. demonstrated that
downregulation of APE1 and high expression of APE2 in GC B
cells are associated with error-prone repair of AID-induced lesions,
and contribute to an increase in mutations in A:T base pairs (111).

APE1 AS A SEROLOGIC BIOMARKER

In recent years, several studies have shown the presence of
extracellular APE1 and have suggested its potential use as a

biomarker in certain clinical conditions. Although most studies
have focused on cancer models which show high APE1 expression
(128–131), increasing interest is focused on characterizing APE1
expression in plasma and serum in different diseases, including
aging-associated disorders. Serum APE1 levels in patients with
coronary artery disease and rheumatoid arthritis have been shown
to be elevated compared to levels in healthy controls (132, 133).
Furthermore, an experimental murine myocarditis model showed
that serum APE1 levels increased until later infection, suggesting
the potential use of APE1 as a valuable tool to assess myocardial
injury without endomyocardial biopsy (134). Serum APE1
autoantibodies have also been detected in humans. In patients
with non-small cell lung cancer, serum APE1 autoantibodies were
significantly higher than those in healthy controls, and were
closely related to APE1 antigen levels in tumor tissues and
peripheral blood (135). Although significant evidence shows
that APE1 is delivered through exosomes in response to
genotoxic stresses (136), a recent study showed the endogenous
hormone 17b-estradiol (E2) significantly increased APE1
secretion in plasma of ovariectomized mice (137). These data
suggest that APE1 secretion may also be a natural response in
cellular physiology that does not necessarily depend on stress.
Therefore, the extracellular functions of APE1 require
further investigation.

Some studies have suggested an essential role of APE1 in
triggering cell-to-cell communication in the inflammatory
response of the local tissue microenvironment. In monocytes
secreting APE1 upon inflammatory challenges, extracellular
APE1 treatment increased the binding of phospho-p65 to the
IL-6 promoter, resulting in activation of gene expression. High
IL-6 expression suggests a possible distinct signaling cascade
initiated via cell surface binding of extracellular APE1 (20).
Recently, APE1 was shown to be upregulated in aortic
endothelial cells and macrophages of atherosclerotic mice, and
its plasma levels were positively correlated with neutrophil/
lymphocyte ratios, which indicate systemic inflammation
(138). Anti-inflammatory effects have also been associated with
extracellular APE1. Using a secretory APE1 adenoviral vector
system, Joo et al. evaluated the role of secreted APE1 in cell
culture and LPS-induced systemic inflammation in mice.
Extracellular APE1 inhibited TNFa-induced VCAM-1
expression in human umbilical vein endothelial cells and LPS-
induced Cox-2 expression in Raw264.7 cells. Secreted APE1 in
the blood showed an anti-inflammatory effect in mice, as LPS-
induced systemic inflammation was reduced together with a
decrease in myeloperoxidase release and VCAM-1 expression.
This anti-inflammatory effect was associated with APE1 redox
function, as mutation in its cysteine residues (C65A/C93A)
affected its anti-inflammatory activity. In addition, extracellular
APE1 resulted in lower levels of TNFa, IL-1b, and IL-6, and
chemotactic cytokines, including MCP-1, in LPS-challenged
mice (139). In TNFa-stimulated endothelial cells treated with
trichostatin A, an inhibitor of deacetylases, increased protein
acetylation, induction of APE1 secretion, and inhibition of TNFa
receptor 1, leading to a considerable reduction in VCAM-1
expression were observed. This anti-inflammatory activity may
be associated with conformational changes in TNFa receptor 1
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via thiol-disulfide exchange through the redox activity of
extracellular APE1 (140, 141).

To date, the functions of extracellular APE1 and the secretory
mechanisms involved are poorly understood. A classical
secretory signal peptide is not found in APE1 (141). However,
two main nonclassical mechanisms have been proposed:
secretion via exosomes (136, 142) and ATP-binding cassette
(ABC) transporter A1 (143). Furthermore, these signaling
mechanisms for APE1 translocation from the nucleus to the
cytoplasm and subsequent secretion into the extracellular
environment seem to depend on acetylation of lysine residues
(K6R/K7R) (141). Acetylation is required to direct APE1 to the
plasma membrane for translocation via the ABCA1 transporter
(143). The importance of APE1 acetylation for modulating DNA
repair activity is well known (144), but the reason for acetylation
of extracellular APE1 is poorly understood. Cell-to-cell
communication in the extracellular environment appears to be
insensitive to unmodified extracellular APE1, requiring post-
translational modification to trigger responses including cell
death. In triple-negative breast cancer cells, acetylated APE1
initiates apoptosis by binding to the receptor for advanced
glycation end products, resulting in significant decrease in cell
viability (142). Some studies have demonstrated that secreted
APE1 retains redox function (140) and DNA repair activity
(136). Mangiapane et al. demonstrated that APE1 is secreted
through exosomes from several cancer cell lines. The authors
identified APE1 p37 and APE1 p33, forms generated by
proteasomal degradation, in exosomes. The two forms are
enzymatically active, and under genotoxic stress, secretion of
APE1 p33 is stimulated, suggesting that APE1 may be a new
damage-associated molecular pathway factor, with p33 and p37
forms playing different roles. There is still much to discover
about the function of extracellular APE1 and its pathways to
establish APE1 as a promising biomarker with high sensitivity
and specificity. However, post-translational modifications and
complex interactions between APE1 and several targets limit its
use as a serological biomarker for specific diseases.

APE1 SINGLE-NUCLEOTIDE
POLYMORPHISMS AND IMMUNE/
INFECTIOUS DISEASES

Several APE1 variants have been identified in humans (145, 146).
Most of these genetic variants are single nucleotide polymorphisms
(SNPs) and some have been linked to genomic instability and
carcinogenesis (147, 148). Owing to its high frequency in the
human population, the most studied and cited APE1 SNP is
rs1130409 (c.444T>A). The nucleotide change (T>A) results in
substitution of aspartic acid (D) for glutamic acid (E) at position
148 (D148E), located between the redox and AP endonuclease
domains of APE1. Despite its high frequency in the global
population (~45%, in dbSNP, NCBI) (149), the clinical
significance of this SNP has not been reported in ClinVar, and its
functional significance has been predicted to be benign, unknown,
or nonexistent (146, 149–151). However, several associations with

conditions, including sporadic colorectal, gastric and lung cancers
(152–154) and infectious diseases, such as meningitis, have been
reported (155). In a study on bacterial meningitis, patients carrying
the D148E polymorphism had reduced levels of IL-6, IL-1Ra, IL-8/
CXCL8, and MCP-1/CCL2 compared with patients not harboring
the polymorphism. In addition, variant allele carriers show more
DNA damage accumulation, and children with the D148E allele
have a higher IgG/IgA ratio (155). These findings show that this
SNP affects the role of APE1 in immunoglobulin production, DNA
repair, and expression of cytokines and chemokines. Recently, it
was demonstrated that the presence of the D148E polymorphism
results in protein structural instability that can affect the ability of
APE1 to associate with other BER enzymes (156).

Inflammatory and immune responses are also associated with
DNA damage and carcinogenesis. It has been noted that DNA
damage and inflammation can promote a positive feedback loop
which can drive mutations and consequently, cancer development
(157). Immune cells and inflammatory mediators are directly
involved in tumor processes, such as angiogenesis, cell
proliferation, and invasiveness (158). Meira et al. observed that
alkyladenine DNA glycosylase deficiency in a mouse colitis model
increased tissue damage and neoplasia development compared to
control mice (159). Ulcerative colitis is a chronic inflammatory
disease associated with an increased risk of cancer, and Bardia
et al. observed that the genotype frequency of APE1-D148E was
higher in patients with ulcerative colitis than in healthy controls.
In addition, they also observed an increase in necrotic and late
apoptotic cells and ROS levels in patients harboring this SNP
(160). APE1-D148E is also associated with the development of
colorectal cancer (161). Inhibition of APE1 redox function exerts
neuroprotective effects on the enteric nervous system, as observed
in a spontaneous chronic colitis mouse model (65).

R237C is another variant associated with endometrial cancer
(150) and is characterized by the formation of weaker complexes
with DNA and impaired association with downstream enzymes
in the BER pathway, including XRCC1 and Pol b. The R237C
variant showed an approximately 60% decrease in exonuclease
function compared to the wild-type enzyme, and an ~3-fold
reduction in 3′ to 5′ exonuclease activity (151) and AP incision
capacity in nucleosomes (162), but the AP incision activity on
naked DNA was not affected (162).

In a study of patients with immunoglobulin A deficiency and
common variable immunodeficiency syndrome, two novel APE1
SNPs were identified: Q51H (rs1048945) and one in the 5′ UTR
(rs2307490), only the latter showed an association with common
variable immunodeficiency syndrome (163). Another ten
polymorphisms were investigated in a study that analyzed the
structural effects of amino acid changes in the APE1-DNA
complex using predictive methodologies. Two of these were
predicted to be deleterious variants, I64T (rs61730854) and
P311S (rs1803120), and have been suggested as suitable
biomarkers to evaluate the risk of certain diseases (164).

L104R and D283G are uniquely associated with ALS, also
known as Lou Gehrig’s disease (165), but this association needs to
be confirmed. ALS is a neurodegenerative disease caused by loss of
motor neurons and glial reactions. Neuroinflammation is an early
event in the development of this disease. Immune system genes
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C9orf72, TBK1, and OPTN are causative genes for ALS (166).
Increased APE1 expression has been observed in patients with
ALS (88). Furthermore, increased interaction between APE1 and
NPM1, observed in patients withC9orf72mutations, suggests high
APE1 repair activity (167). However, the roles of APE1 and SNPs
in ALS development and their relationships with the immune
system require further investigation.

Finally, the influence of APE1 SNPs on redox and repair
activities should be further investigated. Furthermore, owing to
their varied roles in the immune response, it is necessary to study
the effects of APE1 variants on susceptibility to diseases associated
with immune, infectious, or inflammatory components.

APE1 INHIBITORS AND POTENTIAL
THERAPEUTIC DRUGS

Several compounds have been reported as APE1 inhibitors. Some
of these compounds inhibit APE1 directly, while others have
indirect actions. Despite the recent discovery of the involvement
of AP sites in regulation of inflammatory response, inhibition of
DNA repair is not the best alternative for treating inflammatory
and immune disorders. Accordingly, inhibitors of endonuclease
activity have been investigated for cancer treatment. The
overexpression of APE1 is associated with resistance to
chemotherapy. Therefore, inhibition of APE1 associated with
temozolomide treatment has been used as an alternative to
increase chemotherapeutic efficacy in cancer treatment (168).

Methoxyamine (MX) is an alkoxyamine derivative and
indirect APE1 endonuclease activity inhibitor. MX can bind to
abasic sites, thereby blocking endonuclease activity (169, 170).
MX has been studied in clinical trials for the treatment of solid
tumors and lymphoma (NCT01851369). Although MX decreased
the expression of LPS-induced cytokines and negatively regulated
genes involved in prostaglandin production in monocytes (34),
the role of MX in inflammatory disorders requires further
exploration. Similarly, lucanthone inhibits DNA repair activity
of APE1 without affecting the redox function (39) and is in phase
II clinical trials for treatment of brain metastases secondary to
non-small cell lung cancer (NCT02014545).

APE1 redox function has been studied more in relation with
inflammatory and immune disorders due to its role in regulating
TFs. The APE1 redox inhibitor E3330 has been suggested as a
potential treatment for neoplasms, as it can inhibit the growth and
migration of pancreatic tumor cells (63) and also exerts inhibitory
effects in other cancer types (13). A recent phase I clinical trial in
patients with cancers showed that E3330 treatment was safe (171,
172). However, the therapeutic potential of E3330 in inflammatory
diseases requires further exploration. The protective effects of E3330
have been observed in in vivo studies of liver diseases, such as
alcoholic liver injury (173) and hepatitis in mice, in which E3330
treatment mitigated TNFa, AST, and ALT levels in the plasma
(174). In Sprague Dawley rats, E3330 decreases IL-6 expression and
inflammatory pain sensitization caused by complete Freund’s
adjuvant (104). Recent studies have shown that E3330 could be a
promising therapeutic strategy for inflammatory bowel disease.
Winnie mice with spontaneous chronic colitis treated with an

APE1 inhibitor showed decreased rectal prolapse, edema, and
reduced bleeding after 14 days of treatment. In addition, mice
also showed decreased loss of mesenteric neurons, reduced
oxidative stress, and associated DNA damage (65).

Resveratrol is a natural phenol with antioxidative, anti-
inflammatory, anticancer, and anti-neurodegenerative
properties (175). In vitro studies have shown that resveratrol
can inhibit the redox activity of APE1 and decrease AP-1 DNA
binding (176). However, it remains unclear whether resveratrol is
a direct and specific inhibitor of APE1. In LPS-induced U937
monocytes, the addition of resveratrol did not directly affect
APE1 expression, but reduced cytoplasmic localization and
acetylation of APE1, contributing to downregulation of the
inflammatory response (177). Another natural compound,
curcumin, has also been described as an APE1 redox inhibitor.
Similar to resveratrol, curcumin exhibits anti-inflammatory,
antioxidative, and antineoplastic effects. An in vitro study
showed that curcumin reduces the APE1 dependent DNA-
binding of AP-1 (178). Other studies have shown that
curcumin regulates APE1 expression (179, 180). Additionally,
isoflavones found in soybeans, including genistein, daidzein, and
glycitein, have been studied as APE1 inhibitors and potential
therapeutic options for cancer. Isoflavones have been shown to
suppress radiation-induced APE1 expression and decrease HIF-
1a and NF-kB DNA binding in A549 cells (181). Similar results
have been observed in PCa and PC3 cells (182, 183). Liu et al.
observed that genistein treatment decreased APE1 expression
and TGF-b1, IL-1b, TNFa, and IL-6 levels in the serum of mice
with radiation-induced pneumonitis (184). Despite these
findings, evidence that these natural compounds act directly to
inhibit APE1 remains limited. Therefore, E3330 and its analogs
are currently the APE1 inhibitors with the most potential for use
in inhibiting the inflammatory response and immune system.

CONCLUSIONS

APE1 plays multiple roles in immune responses, including ROS
regulation and cytokine expression in cells mediating innate
immunity, including monocytes (34), macrophages (19),
keratinocytes (18), dendritic cells (7), neurons (94, 95, 97, 99),
and astrocytes (105), and regulation of B cell activation and CSR
in adaptive immunity (112). Despite its role in cytokine
expression, it is still necessary to determine whether this
regulatory control extends to all cell types or is cell type-
specific. Additionally, it is necessary to observe how different
stimuli influence this regulation. For example, whether the effect
of APE1 is the same in a bacterial-triggered response (e.g., LPS),
or virus-triggered response, or by transcriptional regulation of
inflammatory mediators, also needs more attention.

The recently reported secretion of APE1 in the extracellular
environment also plays a role in LPS-induced inflammation
(139). However, validation of the use of serum APE1 as a
disease biomarker or prognostic marker requires further
investigation. Identifying APE1 polymorphisms associated with
immune diseases can clarify the full role of APE1 and the
consequences of its malfunction in the immune system.
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Finally, APE1 inhibitors have been extensively studied for cancer
treatment, and some studies have also identified their potential
effectiveness in inflammatory diseases (174, 178). Thus, APE1
redox inhibitors, such as E3330 may prove to be good
alternatives in inflammatory diseases or in controlling
inflammation in neoplastic processes.
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Photorepair of Either CPD or 6-4PP
DNA Lesions in Basal Keratinocytes
Attenuates Ultraviolet-Induced Skin
Effects in Nucleotide Excision Repair
Deficient Mice
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Wesley L. Fotoran3, Juliana F. R. dos Santos1, Gijsbertus T. J. van der Horst4,
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2 Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro
Preto, Ouro Preto, Brazil, 3 Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo,
São Paulo, Brazil, 4 Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands,
5 University Hospital of Cologne, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases
(CECAD), Institute for Genome Stability in Aging and Disease, Cologne, Germany, 6 Princess Maxima Center for Pediatric
Oncology, ONCODE Institute, Utrecht, Netherlands

Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the
environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane
pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These
photolesions interfere with essential cellular processes by blocking transcription and
replication polymerases, and may induce skin inflammation, hyperplasia and cell death
eventually contributing to skin aging, effects mediated mainly by keratinocytes.
Additionally, these lesions may also induce mutations and thereby cause skin cancer.
Photolesions are repaired by the Nucleotide Excision Repair (NER) pathway, responsible
for repairing bulky DNA lesions. Both types of photolesions can also be repaired by
distinct (CPD- or 6-4PP-) photolyases, enzymes that specifically repair their respective
photolesion by directly splitting each dimer through a light-dependent process termed
photoreactivation. However, as photolyases are absent in placental mammals, these
organisms depend solely on NER for the repair of DNA UV lesions. However, the individual
contribution of each UV dimer in the skin effects, as well as the role of keratinocytes has
remained elusive. In this study, we show that in NER-deficient mice, the transgenic
expression and photorepair of CPD-photolyase in basal keratinocytes completely
inhibited UVB-induced epidermal thickness and cell proliferation. On the other hand,
photorepair by 6-4PP-photolyase in keratinocytes reduced but did not abrogate these
UV-induced effects. The photolyase mediated removal of either CPDs or 6-4PPs from
basal keratinocytes in the skin also reduced UVB-induced apoptosis, ICAM-1 expression,
and myeloperoxidase activation. These findings indicate that, in NER-deficient rodents,
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both types of photolesions have causal roles in UVB-induced epidermal cell proliferation,
hyperplasia, cell death and inflammation. Furthermore, these findings also support the
notion that basal keratinocytes, instead of other skin cells, are the major cellular mediators
of these UVB-induced effects.

Keywords: photolesions, photolyase, nucleotide excision repair, xeroderma pigmentosum, UVB ultraviolet
radiation, inflammation, cell death

INTRODUCTION

Ultraviolet (UV) radiation is the main exogenous physical factor
involved in carcinogenesis, capable of directly damaging DNA by
inducing the formation of covalent bonds between adjacent
pyrimidines of the same DNA strand, producing pyrimidine
dimers (1). The main DNA photolesions caused by UV radiation
are cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4)
pyrimidone photoproducts (6-4PPs). These lesions distort the helical
DNA duplex molecule by interfering with proper base-pairing and
thus interfere with essential cellular processes, such as transcription
and replication (2, 3). Both DNA photolesions can be repaired by
photolyases, enzymes capable of directly repairing either CPDs or 6-
4PPs through a process known as photoreactivation. During this
photorepair process, the photolyase binds to the pyrimidine dimer
and breaks the covalent bond in a light-dependent reaction, reverting
the lesion back to the original monomers (4). Moreover, photolyases
act in a specificmanner, with CPD-photolyases repairing only CPDs
and 6-4PP-photolyases repairing only 6-4PPs. Due to their
specificities, photolyases can be used as tools to study the distinct
effect of each photolesion (5).

Although photolyase genes are generally found in all domains of
life, they are absent in some groups, most notably placental
mammals (6). Mammals remove CPD and 6-4PP lesions by the
nucleotide excision repair (NER) pathway. NER is a well-conserved
mechanism responsible for removing a wide variety of lesions that
distort the DNA double helix structure, including those induced by
the UV component of sunlight (7). Two distinct NER sub-pathways
differ in DNA damage recognition: transcription-coupled repair
(TC-NER) and global genome repair (GG-NER). DNA lesions at
the transcribed strand of active genes stall RNA polymerase II
transcription, signaling for TC-NER. DNA damage located
throughout the genome are recognized by the XPC/HR23B
protein complex for GG-NER (8). As a result of these distinct
mechanisms, TC-NER and GG-NER differ in their capacity to
recognize DNA lesions. Particularly in mice, CPDs are essentially
removed mainly by TC-NER, which rescues transcription and thus
promotes cellular survival, as CPDs are poorly repaired in the non-
transcribed strand and non-transcribed genomic regions. In contrast,
6-4PPs are rapidly repaired in the entire genome by GG-NER (9).

Xeroderma Pigmentosum (XP), a rare recessive, autosomal
genetic disorder, is mainly caused by mutations in genes (XPA-
XPG) involved in the NER pathway (10). A milder type of XP
that does not present defective NER is named XP variant (XP-V).
XP-V is instead caused by mutations in the POLH gene, which
codes for the translesion DNA polymerase eta (8). XP is
characterized primarily by a marked increased risk of skin

neoplasia and cutaneous hypersensitivity to UV radiation, with
XP patients often displaying severe sunburn and blistering of the
skin after minimal sunlight exposure (8, 11).

UV radiation can promote cutaneous inflammation, in which
skin cells, especially keratinocytes, produce and activate proteins
associated with pro-inflammatory processes. These include the
transcription factor NF-kB, cytokines such as IL-1a, IL-1b, TNFa,
as well as proteins involved in the inflammasome complex (12–
14). In addition, these molecules contribute to the expression of
proteins integral to the inflammatory process, such as ICAM-1
(15) and metalloproteinases (MMPs) that allow neutrophils and
macrophages to enter the skin tissue and initiate inflammation.

Interestingly, the transgenic expression of CPD-photolyase and
photorepair in NER-proficient mice reduces UV-induced skin
inflammation, suggesting that DNA damage itself is sufficient to
trigger this biological process (16). Photorepair of CPD, but not 6-
4PP, in NER-proficient mice also inhibits other UV-induced effects,
namely skin hyperplasia, cell death and tumorigenesis (17).
Photorepair of CPD, but not 6-4PP, in cell cultures also reduces
UV-induced cell death in NER-proficient cells. However, in cells
derived from XP patients, photorepair by either CPD or 6-4PP-
photolyase reduces theapoptotic effect ofUVradiation.Concomitant
photorepair by both photolyases further reduced UV-induced
apoptosis, indicating that both CPD and 6-4PP lesions participate
in UV-induced effects in NER-deficient models (2).

In this study, we show that in vivo photoreactivation through
K-14 promoter driven expression of either CPD or 6-4PP-
photolyase in basal keratinocytes reduces acute UVB-induced
apoptosis in NER-deficient Xpa knockout mice. The
photoremoval of either photolesion in this model also decreased
UV-induced inflammation, as the expression of either photolyase
diminished ICAM-1 levels and active neutrophils present in the
skin of UVB-irradiated Xpa-deficient mice. In contrast, only CPD
removal abolished chronic UV-induced skin cell proliferation and
hyperplasia, with 6-4PP removal having a minor impact on these
UV-induced effects. These findings indicate that both types of
DNA lesions directly participate in inducing apoptosis,
inflammation, and hyperplasia. Furthermore, these results also
support the notion that basal keratinocytes are the key mediators
of these UV-induced effects.

MATERIALS AND METHODS

Mouse Lines
Xpa knockout mice expressing CPD- or 6-4PP-photolyase were
obtained by generational crossing between the Xpa-/- mice
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described in (18) with transgenic K14-CPD-PL or K-14-64PP-PL
photolyase mice (19), hereafter referred to as CPD or 6-4PP-
photolyase mice, respectively. Both photolyase genes are under
the control of the basal keratinocyte-specific K-14 promoter (19).
All strains used in this projectwere initially obtained at theErasmus
Medical Center University, Rotterdam (the Netherlands) were in a
C57BL/6J or hairless C57BL/6J/SKH-1 genetic background,
established models for UV radiation (18, 20). Xpa-/- mice were
maintained by homozygous crosses, while photolyase expressing
genes and the hairless gene were maintained by heterozygous
crosses. All animals used for experiments were 8- to 10-week-old. As
there are no differences regarding UV sensitivity between males and
females, mice of both genders were used for all experiments. Housing,
breeding, genotyping, and experimentation were performed in
accordance with the regulations established by the ethical committee
for experimentation with animals of the Institute of Biomedical
Sciences of the University of Sao Paulo (Protocol #121-11-03).

Genotyping was performed on mouse tail DNA followed by
polymerase chain reaction (PCR) of target genes. PCR conditions
of the K14-CPD-PL and K14-64PP-PL genes are described in
Supplementary Tables S1, S2, and primer sequences in
Supplementary Table S3.

UV Radiation and Photoreactivation
of Mice
Mice were irradiated with a Philips TL12-40W UVB lamp, using
a VLX-3W UV dosimeter (Vilber Loumart, Torcy, France) to
measure the intensity of UV radiation. No UVC (254 nm)
radiation was detected, and UVA (365 nm) radiation was
below <0.05 J/m2/s. The distance between the UVB lamp and
the mice dorsal skin was 1.10 meters. Immediately after UV
irradiation, mice were exposed to photoreactivating light (four
white lamps Polylux XL F36W/840) for three h, positioned 40 cm
above the mice. Minimal erythemal dose (MED) of Xpa-/- mice
was determined as 20 J/m2 of UVB by analyzing the macroscopic
induction of erythema, wounding, skin peeling, skin thickening
and pigmentation.

Chronic UV Irradiation of Hairless Xpa-/-

Mice for Assessment of Tissue
Hyperplasia and Cell Proliferation
Xpa-/- hairless mice expressing either CPD- or 6-4PP-photolyase
were irradiated for 30 consecutive days, at approximately 2:00
pm, with a 1 MED UVB (20 J/m2) dose followed by 3 h
photoreactivation. Animals were observed daily for signs of
distress, epidermal thickness, and pigmentation. 48 h after the
last day of irradiation, mice (n=4) were euthanized and 1 cm2

mice dorsal skin was collected. Two h prior to euthanasia,
animals were intra-peritoneally injected with BrdU (5 mg) for
cell proliferation analysis.

Tissue Fixation for Histology Analysis
Skin samples were fixed overnight at 4°C in 4% formaldehyde
(Merck, Kenilworth, NJ, USA). Samples were then dehydrated at

room temperature by sequential immersion for 1 h in each of the
following solutions: PBS 1X, 50% ethanol (Merck), 70% ethanol,
80% ethanol, 90% ethanol, 2x 100% ethanol and 2x xylene
(Sigma-Aldrich, Saint Louis, MO, USA). After dehydration,
samples were twice incubated in paraffin 60°C for 1 h each,
mounted in paraffin blocks and kept at RT until further
processing. Skin tissue sections (5 mm) were obtained using a
microtome, placed on Starfrost (Knittel-Glaser) slides and kept
in 10% ethanol at 50°C until total fluid evaporation. For fixation
on the slide, skin sections were maintained at 37°C overnight and
stored at RT until staining.

Quantification of Epidermal Thickness
Tissue slides were deparaffinized and hydrated through
sequential immersion in xylene (100% twice), ethanol (100%
twice, 95%, 70% and 50%) and dH2O under room temperature.
Slides were then stained with hematoxylin and eosin (H&E).
Stain excess was washed under indirect water flow, and tissue
was subsequently dehydrated through immersion in ethanol and
xylene. Slides were then mounted using Entellan and Menzel-
Glass coverslips.

Epidermal thickness was quantified using Axiovert 200 (Zeiss,
Oberkochen, Germany) optical microscope under a 100x
objective. Epidermal thickness was defined as the distance
between the end of the outer epidermal layer and the basal
lamina. Invagination sites, such as sweat glands and hair follicles
were not considered in this analysis. Three measurements were
performed per field, using three fields in each slice, and three
slices per animal, with a total of twenty-seven measurements
per animal. Axiovision Rel. 4.8 (Zeiss) software was used
for quantification.

Tissue Cell Proliferation
BrdU detection using immunohistochemistry was performed to
quantify cell proliferation. Tissue slides were deparaffinized and
hydrated as previously described, then incubated for 30min in 50%
methanol 1% H2O2 (30%, Merck) for endogenous peroxidase
inactivation, followed by two PBS washes. Samples were then
incubated in pepsin (18 U/ml) diluted in 100 mM HCl at 37°C for
30 min, followed by two PBS washes and incubation at 56°C for
20min in 1MHCl. pHwas neutralizedwith 100mMsodiumborate
inPBS(pH8.5), followedby threePBSwashes. Slideswere incubated
in blocking solution (5% FBS in 1% PBS/BSA) for 10 min, at RT,
followed by incubation with anti-BrdU (M0744, DAKO), diluted
1:100 in blocking solution overnight at 4°C. Slides were washed in
PBS and incubated for 1 h with HRP anti-mouse (Sigma-Aldrich,
A9044), diluted 1:100 in blocking solution. Substrate reaction was
done with 3,3’-Diaminobenzidine (DAB, Spring) until nuclei were
stained.Counter stainingwasperformedwithhematoxylin (Merck).
Slides were mounted with Entellan and coverslips. Images were
obtained with Axiovert 200 Optic Microscope (Zeiss) under 100x
objective using Axiovision Rel. 4.8 (Zeiss) software. We performed
three blind measurements per skin tissue of BrdU+ basal and
suprabasal cells, analyzing 3 slices per animal. Quantification of
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BrdU-positive cells was performed by calculating the ratio between
stained basal layer cells and total basal layer cells, while
quantification of suprabasal BrdU-positive cells was performed
considering the ratio between these cells and the total number of
basal layer cells.

Immunohistochemistry for the Detection
of Photolesions
CPD and 6-4PP were immunodetected in skin tissue sections to
confirm that the photolyases expressed in the mice models were
repairing their respective photolesions. Tissue slides were
deparaffinized and hydrated as previously described, then
incubated in 18 U/ml pepsin diluted in 100 mM HCl at 37°C
for 30 min. Slides were washed twice using PBS, then incubated
at 56°C for 20 min in 1 M HCl, followed by three PBS washes.
Tissues were then incubated for 20 min in blocking solution (5%
FBS in 1% PBS/BSA) at RT. After blocking, tissues were
incubated overnight at 4°C in anti-CPD (TDM-2, Cosmo Bio,
Tokyo, Japan) or anti-6-4PP (64M-2, Cosmo Bio), diluted 1:1000
and 1:300, respectively, in the blocking solution. Slides were then
washed twice with PBS and incubated in secondary antibody
anti-mouse IgG conjugated with Alexa fluor 555 for 90 min.
Slides were washed twice with PBS, followed by counterstaining
with DAPI fluoroshield (Sigma-Aldrich) solution. Images were
obtained with Axiovert 200 Optic Microscope (Zeiss) under 40x
objective using Axiovision Rel. 4.8 (Zeiss) software.

Acute Irradiation of Xpa-/- Mice for
In Vivo Assessment of Inflammation
and Cell Death
Photolyase-expressing Xpa-/- mice were anesthetized and shaved
24 h before irradiation. Mice were then irradiated with a single
UV-dose of 200 J/m2 (10 MED).

To assess early inflammation induced by UVB light, mice
(n=4) were injected with anti-ICAM-1/DiD fluorophore
(excitation 640 nm, emission 680 nm) nanoparticles to detect
ICAM-1 expression 6 h after UVB irradiation (21). Furthermore,
after 6 and 24 h of irradiation, mice were inoculated with the
XenoLight RediJect Chemiluminescent Inflammation Probe
(PerkinElmer) to detect active, myeloperoxidase-expressing
neutrophils (n=2). Probe fluorescence and chemiluminescence
were detected using the in vivo imaging system (IVIS) Spectrum
(PerkinElmer), located in the Core Facility Center for Research
Support of the University of Sao Paulo (CEFAP-USP). We also
used the MMPSense 645 FAST probe (PerkinElmer) to detect
several MMPs (2, 3, 7, 9, 12, and 13, n=2).

Mice were assessed for in vivo cell death (n=3) 48 h after UV
irradiation using Annexin-V/DiD fluorophore nanoparticles (22),
injected intravenously 2 h prior to detection by IVIS Spectrum.

When imaging, mice were kept under anesthesia using
isoflurane. Image analysis and quantification was performed
with Living Image 4.0 (PerkinElmer) software. Radiances were
normalized using non-irradiated control mice.

Statistical Analysis
Data were expressed as mean ± standard deviation and analyzed
with one-way ANOVA followed by Bonferroni’s multiple
comparison test. p value < 0.05 was considered significant,
with “*” indicating p ≤ 0.05, “**” p ≤ 0.01 and “***” p ≤ 0.001.

RESULTS

Effects of Basal Keratinocyte-Specific
Photoremoval of CPD or 6-4PP on
Hyperplasia and Cell Proliferation in
Chronically Irradiated Xpa-/- Mice
NER-deficientXpa-/- mice show hypersensitivity to UV radiation, as
low UVB doses can produce excessive skin abrasion (19). Thus,
establishing a Minimal Erythemal Dose (MED) was necessary to
determine a biologically relevant dose for the experiments. TheMED
for Xpa-/- hairless mice was determined to be 20 J/m2, used as a
reference dose henceforth. To assess the role of CPDs and 6-4PPs on
the inductionofhyperplasia,mice (n=4) receivedover30daysa single
daily dose of 20 J/m2 UVB radiation followed by 3 h exposure to
photoreactivating light to allow photorerepair by the respective
photolyase, an exposure time previously shown to remove both
photolesions by transgenic photolyase expression in basal
keratinocytes (19), (Supplementary Figure S1). Epidermal
thickness was quantified using H&E-stained sections (Figure 1A).
Xpa-/- mice not expressing any photolyase under chronic UV
radiation developed hyperplasia, while CPD photorepair in
keratinocytes inhibited this UV-induced effect, evidencing the
causative role of CPD lesions for UVB-induced hyperplasia.
Curiously, removing 6-4PPs in keratinocytes also affected UVB-
induced hyperplasia, decreasing but not abrogating this chronic UV
response in Xpa-/-mice.

UVB-induced cell proliferation was also analyzed in these
chronically irradiated mice (Figure 1B). CPD photoremoval in
keratinocytes again prevented the UVB-induced cell proliferation
effect both in basal and suprabasal epidermal layers. Similarly, the
removal of 6-4PPs attenuated this effect in the basal layer and fully
inhibited it in the suprabasal epidermal layer of Xpa-/- mice,
corroborating the hyperplasia results.

Photorepair of Either CPDs or 6-4PPs in
Basal Keratinocytes Reduces UV-Induced
Apoptosis in Xpa-/- Mice
Apoptotic cell death was analyzed in vivo through nanoparticle
probes linked to Annexin-V and DiD-fluorophore (Supplementary
Figure S2). In addition, higher UVB dose (200 J/m2, or 10 MED)
was used to evaluate the acute, UV-induced in vivo effects.

Resultsdemonstrated that48hafterUVBirradiation immediately
followed by photoreactivation, expression of CPD-photolyase in
keratinocytes of Xpa-/- mice significantly reduced the apoptotic
signal compared to Xpa-/- mice not expressing photolyases,
suggesting the participation of persistent CPDs in UVB-induced in
vivo cell death (n=3). Furthermore, similar resultswere obtainedwith
6-4PP-photolyase-expressing mice, suggesting that both CPDs and
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A

B

FIGURE 1 | CPD removal in keratinocytes abrogates UV-induced hyperplasia and cell proliferation, while 6-4PP removal decreases these effects in Xpa-/- mice.
(A) Epidermal thickness of Xpa-/- mice daily irradiated or not with UVB (20 J/m2) followed by photoreactivation of CPD- or 6-4PP-Photolyase (phl) for 30 consecutive
days. Quantitative analysis of epidermal thickness was performed by perpendicular measurements of the tissue extension in skin sections stained with H&E (n = 4),
with representative images (40x) shown. (B) Quantification of cell proliferation in the basal and suprabasal layers of chronically UV-irradiated Xpa-/- mice, with
representative images (40x). Tissues were stained for BrdU+ cells by immunohistochemistry counterstained with hematoxylin (n = 4). Asterisks (*) indicate a
statistically significant difference between the designated group and the negative, Xpa-/- non-irradiated, controls, while the pound signs (#) indicate a significant
difference between the designated group and the positive control group, Xpa-/- mice with no photolyase UVB-irradiated. “*” or “#”: p<0.05, “**” or “##”: p<0.01,
and “***” or “###”: p<0.001.

FIGURE 2 | In vivo effect of keratinocyte-specific photorepair of CPDs and 6-4PPs on UVB-induced apoptosis in Xpa-/- mice. Apoptosis was analyzed by in vivo
imaging using Annexin-V/DiD fluorophore containing nanoparticles, 48 h after UVB (200 J/m2) irradiation. Radiance of DiD containing nanoparticles were quantified in
the central region of Xpa-/- mice exposed dorsal skin using Living Image 4.0 software, n = 3. Asterisks (*) indicate a statistically significant difference between the
designated group and the negative, Xpa-/- non-irradiated, controls, while the pound signs (#) indicate a significant difference between the designated group and the
positive control group, Xpa-/- mice with no photolyase UVB-irradiated. “*” or “#”: p<0.05, “**” or “##”: p<0.01, and “***” or “###”: p<0.001.
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6-4PPs participate in apoptosis triggering events following UV
irradiation in these NER-deficient mice (Figure 2).

UVB-Induced Inflammation in Xpa-/- Mice
Is Reduced by CPD or 6-4PP-Photorepair
in Basal Keratinocytes
UVB-induced inflammation was measured 6 and 24 h after UVB
(200 J/m2) irradiation and photoreactivation. Using in vivo probes
(Supplementary Figure S3), we measured the expression ICAM-
1, a cell surface protein responsible for neutrophil adhesion. We
also used a commercial chemiluminescent probe for detecting
myeloperoxidase (MPO), an enzyme highly expressed by active
neutrophils and a key mediator of inflammation-dependent
oxidative stress. Interestingly, both CPD or 6-4PP removal
in keratinocytes decreased ICAM-1 levels (n=4) 6 h after

UVB irradiation (Figure 3A). Similarly, CPD and 6-4PP
photoremoval also lessened the infiltration of active neutrophils
in the skin, as measured by in vivo MPO expression 6 and 24 h
(n=2) after UVB irradiation (Figures 3B, C respectively), as well as
shown in H&E-stained skin sections (Supplementary Figure S4),
which indicates that these two photolesions participate in the
inflammatory event of leukocyte tissue extravasation following
UV irradiation.

Neither CPD nor 6-4PP Photoremoval
Altered MMP Activation in UVB
Irradiated Xpa-/- Mice
Matrix Metalloproteinases (MMPs), enzymes that modulate
innate immunity, and tissue remodeling were measured in vivo
using a commercial fluorescent probe capable of detecting active

A

B

C

FIGURE 3 | Leukocyte infiltration and activation in vivo imaging of Xpa-/- mice expressing CPD or 6-4PP-photolyase in basal keratinocytes. (A) In vivo imaging of
ICAM-1, an inflammation marker, coupled to a DiD fluorophore containing nanoparticle. Imaging was performed in photolyase (CPD- or 6-4PP-phl) expressing Xpa-/-
mice 6 h after irradiation with 200 J/m2 UVB, n = 4. (B, C) MPO, an active neutrophil marker, was measured in vivo 6 (B) and 24 h (C) after UVB radiation of Xpa-/-
mice by using a chemiluminescent probe, n = 2. Radiance and luminescence were measured using Living Image 4.0 software. Asterisks (*) indicate a statistically
significant difference between the designated group and the negative, Xpa-/- non-irradiated, controls, while the pound signs (#) indicate a significant difference
between the designated group and the positive control group, Xpa-/- mice with no photolyase UVB-irradiated. “*” or “#”: p<0.05, “**” or “##”: p<0.01.
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members of the MMPs, including MMP2, 3, 7, 9, 12, and 13.
Surprisingly, unlike our previous results, the removal of neither
photolesion significantly reduced the UVB-induced MMP tissue
presence 24 h after radiation (n=2). Although there was a trend
towards lower MMP levels after CPD photorepair, it was not
significant (p=0.1488) (Figure 4).

DISCUSSION

In this work, we used NER-deficient, Xpa-/- mice to investigate
the in vivo effects of transgenic photolyase-mediated lesion-
specific removal of CPDs or 6-4PPs in basal keratinocytes after
UV radiation. We observed that removal of CPDs strongly
prevented UVB-induced hyperplasia and cell proliferation,
while the removal of 6-4PP reduced these effects to a lesser
extent. In cultured cells, UVB-induced photolesions suppress cell
proliferation by stalling cell cycle progression through p53-
dependent mechanisms (23, 24). In vivo, however, basal
keratinocytes display a different response to photolesions, as
previously reported using NER-proficient mice expressing CPD-
photolyase (17, 19). CPDs not only upregulate the expression
of genes typically associated with DNA damage response and
pro-apoptotic genes, but also genes associated with cell
proliferation (19).

Photorepair of 6-4PPs, however, does not prevent any UVB-
induced cell proliferation in NER-proficient mice, an effect
interpreted to be due to the rapid repair of 6-4PP lesions by
NER (19, 25). Since CPD lesions are generated at a higher rate
than 6-4PPs when DNA is exposed to UV radiation (25, 26), it is
expected that, in a NER-deficient background, CPDs will be
present in higher amounts than 6-4PP lesions. We thus
hypothesize that the remaining 6-4PP lesions in Xpa-/- mice
expressing CPD-photolyase do not exceed the necessary damage
threshold to initiate cell proliferation signaling in the present
study settings. Interestingly, photorepair of 6-4PPs in Xpa-/-

mice also attenuated this response, further indicating that the
presence of UV-induced DNA photolesions are a major factor
to UV-induced cell proliferation and hyperplasia.

Furthermore, both unrepaired CPD and 6-4PP lesions also
contribute to UVB-induced apoptosis in Xpa-/- mice, as the
expression of either photolyase leads to a reduction in this cell
death process. These results and previous in vivo studies using
NER-proficient mice expressing CPD- or 6-4PP- photolyase (17,
19) corroborate with in vitro studies (2). The removal of CPD,
but not 6-4PP lesions in NER-proficient cells, reduces apoptosis
induction, while in XP-A NER-deficient cells, the removal of
either lesion resulted in the reduction of apoptosis (2). As
previously mentioned, CPD lesions are generated at a higher
rate than 6-4PPs as a result of UVB irradiation (25, 26).
Therefore, it stands to reason that activation of apoptotic
pathways by UV irradiation depends not only on the number
but also on the type of photolesion (2).

While less numerous, 6-4PP lesions cause a more pronounced
distortion on the DNA molecule, i.e. generating a 44° bend of the
DNA helix, contrasting to a 9° helix bend caused by CPDs (3, 27).
These structural differences have a significant impact on DNA
replication, which is obstructed by 6-4PP, but not CPD lesions
(27). In addition, both CPD and 6-4PP lesions stall transcription
by RNA polymerases in a cell-free transcription elongation
system (28). In cells, RNA pol II has been shown to bypass
certain DNA lesions, including CPDs, by a translesion
transcription mechanism, albeit with low efficiency (29). Both
replication and transcriptional stress can activate proapoptotic
signaling (3, 30), and the greater distortion of the DNA molecule
by 6-4PP lesions may generate different responses to
polymerases (27), explaining the distinct role these lesions have
in the apoptotic cell death observed in UVB-irradiated Xpa-/-

mice and in XP-A cells. Interestingly, photolesions have also
been implicated in skin inflammation (14, 16, 19), as DNA
damage-induced replication and transcriptional stress induces
pro-inflammatory cytokines (21, 31–33).

FIGURE 4 | In vivo effects of keratinocyte-specific photorepair of CPDs or 6-4PPs in Xpa-/- mice after a single, high UVB irradiation dose. MMPsense was used to
measure in vivo the presence of MMPs in mice skin 24 h after UVB irradiation, n=2. Radiance quantifications of fluorescent and chemiluminescent probes were
performed in the central region of the mice exposed dorsal skin with equivalent sized regions of interest using Living Image 4.0 software. Asterisks (*) indicate a
statistically significant difference between the designated group and negative, Xpa-/- non-irradiated, controls.
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UV radiation promotes inflammation through several distinct
mechanisms, such as activation of the inflammasome and pro-
inflammatory cytokines, as well as major inflammation-related
signaling pathways such as NF-kB and p38 (34, 35). IL-1a has
also been suggested to act as a DNA damage sensor, as it
colocalizes with CPD lesions and is secreted after genotoxic
stress. Interestingly, removal of CPD lesions in NER-proficient
animals reduces the pro-inflammatory effects of UV (16, 19),
again linking CPD photolesions to inflammation. Our study
further characterizes this association by showing that both CPDs
and 6-4PPs have a role in these effects on NER-deficient mice, as
removing either lesion in basal keratinocytes caused a reduction
in UVB-induced neutrophil infiltration and activation in the
skin. Similar to the apoptotic response, this suggests that the
inflammatory responses elicited by photolesions might also
depend on the lesion type, and not only on the amount of
damage. Furthermore, these results indicate that basal
keratinocytes have a major role in regulating UV radiation-
related inflammation, in agreement with previous studies
(12, 36).

Despite the anti-inflammatory effect of photorepair, the
removal of neither CPD nor 6-4PP displayed any significant
effects regarding the level of Matrix Metalloproteinases
(MMPs) in the skin following UVB irradiation. Notably, the
methodology of the present study did not differentiate between
different kinds of MMPs, as the probe used can be activated by
MMP 2, 3, 7, 9, 12, and 13. Different MMPs generally have
distinct effects and may participate in both inflammation
initiation and resolution (37). For instance, MMP2, MMP3,
and MMP9 have a role in activating the pro-inflammatory
cytokines TNF-a and IL-1b, while MMP3 may also participate
in the degradation of mature IL-1b depending on the context
(38). Moreover, as the photolyases were expressed only in basal
keratinocytes, it is possible that other cells, such as fibroblasts
residing in the upper dermis layer (19), also contributed to the
release of MMPs. There is also the possibility that photolyase-
expressing mice presented a decrease in MMP expression, but
no signal reduction could be detected due to an over-
saturation of the MMP fluorescent signal caused by a high
dose of UVB irradiation on Xpa-/- mice. Therefore, further
studies regarding specific MMPs are required to better
elucidate the role of CPDs and 6-4PPs on the induction of
these molecules.

In summary, by using Xpa-/-, keratinocyte-specific photolyase-
expressing mice, we were able to demonstrate that both CPD and
6-4PP lesions participate in UV-related effects such as hyperplasia,
cell proliferation, inflammation, and apoptosis using in vivo NER-
deficient models, with keratinocytes having a major role regarding
these effects. These results corroborate previous studies
concerning photolesion effects on apoptosis and hyperplasia and
have novel implications regarding DNA damage as a pro-
inflammatory stimulus. These discoveries also have important
implications for XP patients, incapable of repairing UV-induced
photolesions. These patients have a much higher skin
carcinogenesis predisposition and different mutation spectra in
skin tumors (39). This could be related the pro-inflammatory

effects of both photolesions, with inflammation being a critical
factor in tumor progression and DNA damage due to releasing
oxidizing agents (40). Furthermore, unlike NER-proficient
models, in which CPD lesions are the main photolesion
responsible for triggering the studied effects, NER-deficient
models have both CPDs and 6-4PPs participating in these
effects, with 6-4PPs possibly having a different role in XP
tumorigenesis (2), with the tumors from these individuals
having different causative lesions compared to the rest of the
population. Additional investigations on the molecular
mechanisms of the activation of the UVB effects in NER-
deficient models could shed light on XP carcinogenesis and how
the photolesions interact with the multitude of molecular
pathways involved in these UVB-induced responses.
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Expression of Constitutive Fusion of
Ubiquitin to PCNA Restores the Level
of Immunoglobulin A/T Mutations
During Somatic Hypermutation in the
Ramos Cell Line
Leticia K. Lerner1,2,3,4†‡, Dorine Bonte1,2,3‡, Morwenna Le Guillou1,2,3,
Mahwish Mian Mohammad1,2,3,5, Zeinab Kasraian1,2,3, Alain Sarasin1,2,3,
Emmanuelle Despras1,2,3† and Said Aoufouchi1,2,3,5*

1 Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France, 2 Gustave
Roussy, Villejuif, France, 3 Université Paris-Saclay, Orsay, France, 4 Department of Microbiology, Institute of Biomedical
Sciences, University of São Paulo, São Paulo, Brazil, 5 Sorbonne Université, Paris, France

Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is a B cell specific process
required for the generation of specific and high affinity antibodies during the maturation of
the immune response against foreign antigens. This process depends on the activity of
both activation-induced cytidine deaminase (AID) and several DNA repair factors. AID-
dependent SHM creates the full spectrum of mutations in Ig variable (V) regions equally
distributed at G/C and A/T bases. In most mammalian cells, deamination of deoxycytidine
into uracil during S phase induces targeted G/Cmutagenesis using either direct replication
of uracils or TLS mediated bypass, however only the machinery of activated B
lymphocytes can generate A/T mutagenesis around AID-created uracils. The molecular
mechanism behind the latter remains incompletely understood to date. However, the lack
of a cellular model that reproduces both G/C and A/T mutation spectra constitutes the
major hurdle to elucidating it. The few available B cell lines used thus far to study Ig SHM
indeed undergo mainly G/C mutations, that make them inappropriate or of limited use. In
this report, we show that in the Ramos cell line that undergoes constitutive G/C-biased
SHM in culture, the low rate of A/T mutations is due to an imbalance in the ubiquitination/
deubiquitination reaction of PCNA, with the deubiquitination reaction being predominant.
The inhibition of the deubiquitinase complex USP1-UAF1 or the expression of constitutive
fusion of ubiquitin to PCNA provides the missing clue required for DNA polymerase h
recruitment and thereafter the introduction of A/T base pair (bp) mutations during the
process of IgV gene diversification. This study reports the establishment of the first
modified human B cell line that recapitulates the mechanism of SHM of Ig genes in vitro.

Keywords: immunoglobulin somatic hypermutation, PCNA monoubiquitination, Ramos B cell line, USP1 inhibition,
A/T mutation pathway
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INTRODUCTION

The process of SHM in germinal center (GC) B cells is basically
the result of two distinct molecular mechanisms taking place in
separate phases of the cell cycle (1). Both mechanisms start with
the introduction of uracils along the region that is subject to SHM
in immunoglobulin (Ig) genes by AID-dependent deamination of
deoxycytidine residues. When this occurs during S phase of the
cell cycle, this leads to mutations mainly focused on dC/dG pairs
creating both transitions and transversions. This mutagenic
process involves either the action of uracil DNA glycosylase
(UNG), which creates an abasic site by removing the uracil that
is subsequently bypassed by translesion DNA polymerases (TLS
pols), or through the direct copy of the deoxy-uracil (dU) by the
replicative DNA polymerases (2). These dU could be either
generated during S phase or as shown recently generated during
G1 of the cell cycle and survive until S/G2 due to the activity of
Fam72a that reduces UNG levels in G1 (3, 4). Conversely, the
mutations are spread on the surrounding A/T bases using an
error-prone gap filling reaction by DNA polh (5–7). This latter is
initiated by MSH2/MSH6 recognition of the dU:dG mismatch,
followed by the action of exonuclease 1 (EXO 1), which creates
the single-stranded gap in a process called noncanonical
mismatch repair (ncMMR) (8–10). Furthermore, the
monoubiquitination of proliferating cell nuclear antigen (mUb-
PCNA) is a major posttranslational modification (PTM) required
for the generation of mutations at A/T base pairs during SHM
(11). PCNA undergoes monoubiquitination (mUb) mainly in
response to replication fork stalling (12). This PTM orchestrates
polymerase switching that favors the recruitment of TLS
polymerases for lesion-bypass DNA synthesis during replication
(13). However, in the case of SHM of Ig genes, how PCNA is
monoubiquitinated in G1 in the absence of DNA lesions and how
it participates in the specific recruitment of polh remain
unknown. PCNA that forms the eukaryotic DNA sliding clamp
is an auxiliary factor of DNA polymerases. Active PCNA is
composed of the association of three monomers in a ring-
shaped structure (14). In mammalian cells, to ensure cell
survival, PCNA is modified at a conserved site, K164, via a
single ubiquitin polypeptide moiety by RAD6 and RAD18 in
response to various DNA damaging agents (15). When the lesion
is bypassed, the ubiquitin polypeptide is removed mainly by
ubiquitin-specific protease 1 (USP1) to allow the recruitment of
high-fidelity DNA polymerases and resume replication. Previous
work from H. Jacobs’s group (The Netherlands Cancer Institute,
Amsterdam) has shown that a mouse expressing PCNA with a
lysine-to-arginine mutation at residue 164 preventing the mUb
displays a phenotype similar to polymerase h and mismatch
repair-deficient B cells with a strong reduction of somatic
mutations at A/T bases in Ig V region (IgV) associated with a
compensatory increase at G/C mutations (11). A similar result
was obtained using knockout mice for PCNA expressing
exogenous PCNA with the K164R mutation (16). However,
in activated B lymphocytes, the situation is particular since the
PMT of PCNA takes place in the absence of undamaged DNA via
an unknown mechanism, and the main goal is to generate
mutations (17).

The search for lymphoid cell lines that could provide a
tractable system for investigating in vitro the process of SHM
in general and, more specifically, the process of A/T mutagenesis
in particular started several decades ago (18–22). Many mouse
and human B cell lines have been identified. Among them, the
human Burkitt lymphoma cell lines CL-O1, BL2 and Ramos have
been extensively studied. These cells were transformed in the
germinal center (GC) during the process of antibody affinity
maturation (23). Induction of somatic mutations in CL-01 cells
requires cross-linking of the BCR and T cell contact through
CD40/CD40 ligand and CD80/CD28 co-engagement. The BL2
cell line undergoes VH diversification on culture in the presence
of an anti-immunoglobulin and coculture with activated T cells
(18) or through simultaneous aggregation of three surface
receptors, IgM, CD19 and CD21 (21, 22). Ramos cells,
however, diversify the IgV domain constitutively during
culture (19, 20, 24). IgV gene diversification in both cell lines
exhibits the major hallmarks of in vivo Ig SHM: the mutations
are (I) largely base substitutions (II) targeted to transcribed V
genes and especially concentrated at selected hotspot motifs
RGYW/WRCY (R: purines, Y: pyrimidines and W: A or T)
(III) dependent on AID activity and (IV) biased for transitions
over transversions. However, despite the presence of intact
components of the Ig A/T mutational machinery (24), the
major drawback of these cells remains their inability to
efficiently perform A/T mutagenesis. Therefore, they display a
mutation pattern biased toward G/C mutations (80 to 90%), thus
greatly limiting their use for elucidating the mechanism of A/T
mutagenesis. In this report, we discovered that in Ramos cells,
the paucity of A/T mutations is due to an imbalance in the
ubiquitination and deubiquitination of PCNA, the latter being
predominant. The inhibition of the deubiquitinase responsible or
the expression of a constitutive fusion of ubiquitin to PCNA
significantly increases the rate of A/T mutations, thus reviving
the SHM A/T mutagenesis pathway and consequently providing
the first in vitro system that can be used to elucidate the A/T
mutagenesis process.

MATERIAL AND METHODS

Plasmids, Plasmid Construction
and Cell Transfection
The His7-Ub-PCNA-K164R dsDNA fragment was synthesized
by Eurofins Genomics . To avoid USP1-dependent
deubiquitination, the C-terminal Gly codon of the ubiquitin
gene was replaced by Arg, and PCNA Lys164 was replaced by
Arg to avoid endogenous ubiquitination. The synthetized open
reading frame was cloned into the plasmid vector
pcDNA3.1.puro (Thermo Fisher) to make an N-terminal
(mUb-PCNA-) fusion protein. pcDNA.3.1.zeo (Thermo Fisher)
expressing full-length human pol eta full-length dsDNA was
previously described (25). The pIRES-Hygro2 vector (Clontech,
Palo Alto, CA) expressing full-length human AID was a gift from
CA Reynaud (21). Ramos cells were transfected with the desired
plasmid by electroporation (Amaxa) according to the
manufacturer’s protocol. Stably transfected clones were selected
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with the appropriate antibiotic. Stable transfectants were isolated
and further propagated in medium containing 600 ng/mL
puromycin (In vivoGen) for the cells expressing His-mUb-
PCNA, 150 mg/mL Zeocin (In vivoGen) for clones expressing
exogenous POLH or 500 mg/mL hygromycin (Roche,
Mannheim, Germany) for clones expressing exogenous AID.

Cell Lines and Culture Conditions
We cultured Ramos and both Burkitt lymphoma and mantle cell
lymphoma cells in RPMI 1640 +GlutaMAX medium (Gibco)
supplemented with 10% fetal calf serum (FCS) and penicillin/
streptomycin (Invitrogen). The non-B cells were cultured as
reported in the literature. Human tonsils were obtained as
discarded material from routine tonsillectomies. B cell isolation
was performed as described in (26).

Cell Treatments
For H2O2 treatment, cells were exposed to 1 mM H2O2 (Sigma–
Aldrich) for 20 min at 37°C in MEM without FCS. After
treatment, the cells were washed once with PBS and incubated
in complete medium prior to harvesting. For UVC light treatment,
the culture medium was removed, and cells in a dish were exposed
to 254-nm UV irradiation at a dose of 10 J/m2. The culture
medium was immediately added, and the cells were returned
to incubation.

For immunoblotting, cells were collected 2 h later, and total
protein was extracted and analyzed using SDS–PAGE and
western blot.

Inactivation of the POLH and AID Genes in
Ramos Cells
For gene deletion, a pair of single guide RNAs (sgRNAs) were
designed with the CRISPOR program. One plasmid expressing
bo th gRNA, Cas9 and green fluore scent pro te in
(LentiCRISPRV2GFP, Plasmid # 82416 Addgene) was nucleofected
into Ramos cells using Amaxa (Lozano) according to the
manufacturer’s protocol. At 24 h after transfection, GFP cells were
sorted with BD FCAS Aria II and plated into single clones in 96-well
plates. Individual clones were genotyped by PCR to identify mutated
clones by insertion or deletion. Candidate clones were further
confirmed by Sanger sequencing and western blot. Guide RNA
sequences: pol eta gRNAfor: 5’-GGTGAGGTTAGCTTTCCCAC-3’
and pol eta gRNARev: 5’-GTGGGAAAGCTAACCT-CACC-3’,
AICDA gRNAfor: 5’-GTGGAATTGCTCTTCCTCC-3’, AICDA
gRNARev: 5’-GGAGGAAGAG CAATTCCAC-3’. A vector
expressing full-length human polh was described previously (27),
and a vector expressing full-length human AICDA was described in
(21) and used for complementation of the KO cell lines. polh Zeocin-
and AID puromycin-resistant clones were selected with 150 mg/mL
Zeocin (Roche, Mannheim, Germany) and 600 ng/mL puromycin
(Invitrogen), respectively.

Analysis of SHM in Ramos Cells
Genomic DNA was isolated after 42 days of culture and cell
sorting. The rearranged VH4DJH6 region was amplified with two
rounds of PCR using Phusion DNA polymerase (Thermo Fisher
Scientific), the primers Vh4.1 for 5′- CAGGTGCAGCT

ACAGCAG -3′ and Jh6.1Rev 5′- GCTGA- GGAGACGGT
GACC -3′ for the first round and the primers Vh4.2 for 5′-
TGGGGCGCAGGACTGTTGAA -3′ and Jh6.2 Rev 5′-
GACCGTGGTCCCTTGGCC -3′, for the second round. The
conditions for the first PCR amplification were 98°C for 2 min,
20 cycles at 98°C for 10 s, 70°C for 20 s and 72°C for 20 s, and for
the second PCR, 30 cycles at 98°C for 10 s and 72°C for 30 s. For
amplification of the constant Cmu 2-4 region, we used the primers
Cmu. for 5’- CGGACCAGGTGCAGGCTGAGGCC -3’ and Cmu.
Rev 5’- CTCCCGCAGGTTCAG CTGCTCCC -3’ with the
following program 98°C for 2 min, 35 cycles at 98°C for 10 s
and 72°C for 20 s. The PCR products were gel-purified with a
QIAquick gel extraction kit (Qiagen, Hilden, Germany) and
cloned with CloneJET PCR cloning kit (ThermoFisher
scientific). Plasmid DNA extracted from individual bacterial
colonies and sequencing using Sanger sequencing were
performed by Eurofins Genomics.

Flow Cytometry and Sorting
Cells were collected and labeled with anti-human IgM-FITC
antibodies (Ref# 31575; Invitogen) at 4°C for 20 min and then
washed with PBS/1% BSA. To estimate the percentage of IgM-
negative cells, FACS analyses were performed using a BD Accuri
C6 flow cytometer (BD Biosciences). Cell sorting of IgM-
negative cells was performed using a FACSAria III or Influx
(BD Biosciences).

Proliferation and Cell Cycle Analyses
Approximately 2x106 cells were pelleted by centrifugation at
1200 rpm for 5 min. After Centrifugation, cells were washed in
cold PBS and resuspended in PBS. The suspended cells were
transferred dropwise into 4.5 mL of 70% ethanol and then fixed
overnight at 4°C. The ethanol-suspended cells were then
collected, washed and resuspended in 50 mg/mL propidium
iodide (Sigma, P 4170)/0.1% (v/v) Triton X-100 staining
solution with 100 µg/mL RNase A in the dark for 1 h at 37°C.
A BD Accuri C6 flow cytometer (BD Biosciences) was used for
analysis of cells. For cell proliferation, at day 0, 104 viable cells
were seeded in 48 plates in 200 µL of complete medium and
incubated at 37°C and 5% CO2. Cells were counted at 24, 48, 72
and 96 h in the presence of Trypan blue using a Countess II FL
automated cell counter (Life Technologies). All experiments
were done in triplicates.

Western Blotting and
Cellular Fractionation
Samples were collected and placed on ice in a lysis solution [50 mM
Tris–HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% NP-40, 10%
glycerol] containing 0.5% SDS and 2 mM PMSF with a protease
inhibitor cocktail (Sigma P-8340, 1:100). Cellular proteins were
resolved on a 12.5% SDS–PAGE gel. The membrane was incubated
for 1 h at room temperature in 5% skim milk in PBS with 0.05%
Tween-20 (PBST), and the membrane was probed with anti-PCNA
PC10 (Ref # sc56; Santa Cruz), anti-alpha tubulin (Ref# MA1-
80017; Thermo Fisher Scientific), anti-actin (Ref #MA1-744;
Thermo Fisher Scientific), anti-Vinculin (clone 7F9, Ref# 14-
9777-80; eBioscience), anti-AID (Ref #14-959-82; Thermo Fisher
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Scientific), anti-polh (Ref# ab17725; Abcam), anti-FancD2 (Ref#
sc20022; Santa Cruz), anti-USP1 (Ref # ab108104Ref; Abcam), anti-
Msh2 (Ref #A300-451A; Bethyl), and anti-Msh6 (Ref # A300-022A;
Bethyl) antibodies. Immunoreactivity was detected using a
horseradish peroxidase-conjugated secondary antibody.

Nickel Beads Pull-Down
Whole-cell extracts were prepared in lysis buffer without EDTA
supplemented with benzonase. The extracted proteins were
adjusted to 20 mM imidazole and incubated with Ni-NTA-
agarose (Qiagen) overnight at 4°C. Beads were then washed
three times with the same lysis buffer without EDTA and
containing 30 mM imidazole. Following the last wash, the
beads were resuspended in 2X Laemmli buffer and boiled at
98°C for 5 min. The bound proteins were analyzed by
immunoblotting using the indicated antibody.

RESULTS

Low PCNA Monoubiquitination in Ramos
Cells After Treatment With Genotoxic
Agents Correlates With a High Amount of
USP1 Deubiquitinase
Ramos cells lines, like most Burkitt lymphoma cell lines that
undergo SHM in culture, display a strong bias in favor of
mutations at G/C over A/T (18, 19, 28, 29). To date the reasons
of such bias remain unknown. During SHM, A/T mutation
induction requires, on the one hand, the activity of several
factors, including AID, DNA mismatch repair proteins (MSH2/
MSH6), polh and, on the other hand, the monoubiquitination of
PCNA. We and others have shown previously that Ramos cells

express unmutated full-length cDNA ofAID, UNG, POLH, PCNA,
MSH2, MSH6 and EXO1. In addition, the cells are both BER and
MMR proficient (22, 24, 30). Thus, there were no mutations, no
lack of expression and no obvious evidence of dysfunction of any
of these factors in Ramos cells. On the other hand, mUb of PCNA
at the conserved K164 site is necessary for the recruitment of polh
(11, 16), which is the sole mutator of A/T bases in the normal
physiological context during SHM (7). We therefore asked
whether the ubiquitination pathway of PCNA is deregulated in
these cells. In mammalian cells, PCNA is monoubiquitinated by
RAD6 and the RAD18 ubiquitin ligase complex in response to UV
irradiation or other genotoxic agents; therefore, we used this
property to investigate the induction of mUb-PCNA in Ramos
cells under these conditions. To do so, we treated the cells with
either UVC light or H2O2 and monitored the monoubiquitination
of PCNA by western blotting. As shown in Figure 1A, mUb-
PCNA was not or hardly detectable in either Ramos or BL2 cells
(even after long exposure) compared to non-Burkitt MRC5 and
U2OS cells, which showed clear mUb regardless of treatment.
These results could suggest that the monoubiquitination of PCNA
in response to genotoxic stress is defective, weak or inefficient in
Ramos cells. Nevertheless, monoubiquitination of PCNA is a
reversible process, and its removal is catalyzed by the
deubiquitinase USP1. Thus, the balance between the opposing
actions of specific ubiquitin ligases and USP1 ultimately
determines the ubiquitination status of PCNA. Therefore, we
next asked whether the deubiquitination reaction is
predominant due to abnormal expression of USP1 in Ramos
and BL2 cells compared to normal B cells. To answer this
question, we analyzed the expression of USP1 by western
blotting in Ramos and several other Burkitt lymphoma (BL) and
non-BL cell lines. To establish a comparison scale, we used
tonsillar B cells, which represent physiological counterpart cells,

A

B C D

FIGURE 1 | Induction of monoubiquitination of PCNA and USP1 expression in Ramos and BL2 cells. (A) B cell lines Ramos and BL2 cells (left pannel) and non-
B cells MRC5 and U2OS cells (right pannel) were exposed to UVC light (10 J/m2) or incubated in the presence of H2O2 as indicated in the M&M. Total protein
extracts were prepared 2 hours post-treatment, separated by SDS–PAGE and analyzed by immunoblotting using an anti-PCNA antibody. (B, C) Protein extracts
were prepared from the indicated cell lines and analyzed as described above using an anti-USP1 antibody. In B–D actin was used as loading control. (D) Protein
extracts from Ramos and Tonsillar B cells were loaded side by side to facilitate comparison.
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to estimate the physiological quantity of USP1 expressed in B cells.
As shown in Figures 1B–D, Ramos and all BL cell lines analyzed
expressed high levels of USP1 compared to tonsillar B cells.
Interestingly, with the exception of MCF7 cells, the expression
in all other non-BL cells remained within the range of B cell
physiological expression (Figure 1C). In addition, it should be
noted that in BL cells, high USP1 levels do not depend on their
EBV status since both EBV-positive (Daudi, BL16 and Raji cells)
and EBV-negative (Ramos, BL2, BL1, BL29, BL74) BL cells have
similar levels. Similar elevated expression of USP1 was found in
human B cells derived from mantle cell lymphoma (Figure 1D).
Together, these data suggest that the high expression/activity of
USP1 in Ramos and probably most BL cell lines is responsible for
the observed low mUb status of PCNA and consequently could
explain the origin of the alteration in the A/T mutation pathway.

USP1 Inhibition Increases the
Half-Life of PCNA Monoubiquitination
in the Ramos Cell Line
We have shown above a possible imbalance in PCNA mono-Ub/
de-Ub reactions due to the elevated expression of USP1. We
therefore anticipated a higher ongoing deubiquitination reaction
in those cells mimics PCNA monoubiquitination deficiency. To
test this hypothesis, we first treated Ramos cells for 3 to 24 hours
with increasing concentrations of ML323, a selective inhibitor of
USP1, and monitored both the efficacy and toxicity of the drug.
As shown in Figure 2A, after 3 hours of treatment, we detected a

dose-dependent increase in the levels of mUb-PCNA. At 24
hours, treatment with 10 mM ML323 maintained a detectable
fraction of mUb-PCNA in the cells. Exposure to higher
concentrations induced rapid and greater mUb-PCNA at 3
hours, but this increase was followed by a sharp decrease at
24 h, probably due to the toxicity of the drug at high
concentrations (Figure 2B). Indeed, while more than 95% of
cells remain alive in the presence of 10 mM ML323 at 48 hours,
exposure to 30 mM kills 60% of the cells at 24 hours and more
than 90% at 48 hours of treatment. Incubation with 20 mM killed
10% of the cells at 24 hours and 30% at 48 hours. Similar results
were obtained with the BL2 cell line (data not shown). We
therefore decided to use a dose of 10 mM as an effective and
nontoxic concentration for the next experiments. In parallel to its
role in the process of TLS, USP1 participates in the Fanconi
anemia pathway through monodeubiquitination of FANCD2
during DNA interstrand crosslink lesion repair (31, 32). As
expected, treatment of both Ramos and BL2 cells with ML323
led to the detection of a clear band that corresponded to mUb-
PCNA and mUb-FANCD2 even in the absence of any genotoxic
treatment (Figure 2C). Furthermore, the combination of USP1
inhibition and UVC irradiation further increased mUb-PCNA
levels (Figure 2D). Together, these results confirm that in Ramos
cells, the PCNA monoubiquitination reaction is efficient and
UV-inducible. We conclude that the observed absence of mUb-
PCNA in Ramos cells is the consequence of high ongoing
monodeubiquitination reactions that result from higher USP1
expression and activity.

A B

C

D

FIGURE 2 | Inhibition of USP1 increases the monoubiquitination of both PCNA and FANCD2. Ramos cells were incubated with increased doses of ML323, and the
monoubiquitination of PCNA and the cell toxicity of the drug at the indicated times were determined by SDS–PAGE and immunoblotting in (A) and using a cell
survival assay in (B), respectively. The data in B represent the mean of three independent experiments. (C) Ramos and BL2 cells were treated for two hours with 10
mM ML323, and monoubiquitination of PCNA and FANCD2 was analyzed by SDS–PAGE and immunoblotting. (D) Ramos cells were treated with UVC, ML323 or
both, and the monoubiquitination of PCNA was analyzed as described above. Vinculin and red Ponceau were used as loading controls.
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Inhibition of PCNA Deubiquitination
Increases the Rate of A/T Mutations
To assess whether increasing the mUb-PCNA half-life can
restore the rate of A/T mutations during SHM, we treated
Ramos cells with 10 mM ML323 continuously for 6 weeks to
allow the cells to accumulate a sufficient number of mutations.
To maintain elevated levels of mUb-PCNA throughout that
period, we added fresh medium containing the drug every 2
days. Ongoing SHM in Ramos cells in culture generates diverse
IgM-loss subclones without affecting cell viability due to the
occurrence of stop codons, indels and frameshift mutations in
the VH (19). Therefore, the detection of IgM-negative cells by
fluorescence-activated cell scanning (FACS) provides a quick
read-out and convenient semiquantitative measure of SHM.
During the 6 weeks of treatment, surface IgM was assessed by
FACS (Figure 3A). We observed an accumulation of IgM-
negative Ramos cells over time in both the presence and
absence of ML323. However, USP1 inhibition further increased
the percentage of IgM-negative cells. Of note, BL2 cells that do
not undergo constitutive SHM do not show IgM-negative cell
accumulation even in the presence of ML323. This suggests that

the increase in cellular mUb-PCNA levels quantitatively
participates in the processes of SHM that generate the IgM-
population. At the end of treatment, the IgM- cells were FACS
sorted, and VH4 segments were PCR amplified, cloned, and
sequenced to appreciate whether the treatment impacts only
quantitatively the process of SHM or causes a mutation pattern
change or both. Interestingly, the data presented in Table 1 show
both quantitative and qualitative changes. USP1 inhibition in
three independent experiments (E1-3 Table 1), led not only to an
overall increase in unique mutation frequency in treated versus
nontreated cells (0.19 versus 0.086 mut/100 bp) caused mainly by
the increase of number of mutation per sequence (Figure 3B),
but also to significant increases in the rate of A/T mutations.
Indeed, while the rate of A/T mutations remained at
approximately 13% (7 to 18%) for the nontreated cells, the rate
increased significantly to 31% (24 to 38%) in treated cells
(Table 1). Collectively, these results suggest that an increase in
the availability of mUb-PCNA in the cell is sufficient to promote
the induction of A/T mutations and further confirm that the high
turnover of mUb-PCNA is responsible for the low rates of A/T
mutations during SHM in Ramos cells.

A B

FIGURE 3 | Treatment of Ramos cells, but not BL2 cells, with a USP1 inhibitor increased IgM loss compared to that of nontreated cells. (A) Cells were treated with
10 mM ML323 (+) or DMSO (–), and the percentage of surface IgM was measured by FACS at the indicated time points. (B) Sequence analysis of SHM in the
amplified Ramos VH region. Relative amounts of sequences with the indicated number of mutations (from 0 to 4) are given in the pie charts. The total number of
analyzed sequences is indicated in the right of each chart and corresponds to the pool of the three experiments reported in Table 1.

TABLE 1 | Somatic mutations in VH4 sequence (338 bp) from Ramos cell treated or not with USP1 inhibitor.

IgM- cells(6 weeks) Total nucleotides
sequenced*

Number of mutated
sequences(Unique)

Number of
substitutions

Mutation frequency
(per 100 bp)

Number of AT/GC
mutations

% AT/
GC

AT % mean
value(SD)

Ramos E1 16900 10 15 0.089 1/14 6.7/
93.3

13.6
(6.219)

E2 16900 13 16 0.095 3/13 18.75/
81.25

E3 16900 11 13 0.077 2/11 15.4/
74.6

Ramos +
ML323 (USP1i)

E1 16900 18 25 0.148 6/19 24/76 33
(7.810)E2 16900 25 35 0.201 13/22 37/63

E3 16900 30 42 0.249 16/26 38/62

E1 means experiment number 1. E1, E2 and E3 are independent experiments. *50 clones. P= 0.0282; Two-tailed P value in unpaired t test for the AT% mean value comparison; SD.
standard deviation.
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Mimicking mUb-PCNA in Ramos Cells by
Ubiquitin-PCNA Fusion: Validation of the
Experimental Approach
Artificial Ub and PCNA fusion proteins have been successfully
used in both yeast and mammalian cells to mimic native
ubiquitinated PCNA (33–36). To avoid the use of inhibitors
that could interfere with the physiological functions of the cell,
we provided an exogenous modification by stably expressing
mUb-PCNA fusion. The human PCNA K164R mutant sequence
was used for this construction to prevent additional in vivo
PCNA ubiquitination at the K164 residue during Ig SHM. We
next added N-terminal fusion with 7x His-tagged ubiquitin to
mimic PCNA-K164 monoubiquitination and to facilitate
purification and analysis. Finally, to prevent its cleavage by
USP1 in the cell, the C-terminal glycine-glycine residue was
removed from the Ub polypeptide in the fusion construct
(Figure 4A). Stable clones were obtained after plasmid
transfection and puromycin selection. First, we performed
several experiments to show that mUb-PCNA fusion
expression does not perturb cell growth and participates in
DNA replication as the endogenous. (i) We showed that the
constitutive expression of mUb-PCNA does not modify the cell
cycle and does not affect cellular proliferation (Figures 4B, C),
indicating that mUb-PCNA fusion proteins do not affect DNA
replication. (ii) We verified that the exogenous mUb-PCNA
fusion protein was able to interact with endogenous PCNA to
form a physiological homotrimeric ring. To this end, we used
nickel beads to pull down exogenous mUb-PCNA containing a
poly-His tag in the N-terminal region of ubiquitin and searched
for the presence of endogenous PCNA in the pulled down

fraction. As expected from previous studies (35), Figure 4D
shows that the pulled down fraction contains similar quantities
of endogenous and mUb-PCNA, consistent with the fusion
proteins being able to interact equally with the untagged
protein molecules. Together, these data demonstrate that
USP1-resistant mUb-PCNA fusions behave similarly to the
endogenous form. Therefore, Ramos cells expressing such a
construct can be confidently used to study in vitro the
mechanisms of SHM.

Expression of Mono-Ub PCNA Fusion
Protein Is Sufficient to Increase the Rate
of A/T Mutations
Taking into account the aforementioned validations, we
measured the impact of mUb-PCNA expression on the rate and
pattern of SHM. After 6 weeks in culture, genomic DNA was
extracted from several clones, and VH4 segments were PCR
amplified, cloned, and sequenced. As shown in Table 2A, the
clones expressing exogenous mUb-PCNA showed an increase of
mutation frequency as seen above after the use of USP1 inhibitor,
with an increase of both mutated sequences and number of
mutation/sequence (Figure 4E). Interestingly we observed an
increased rate of A/T mutations of approximately 30% (22 to
40%) compared to nonexpressing clones, which remained around
10% (5-15%). It should be noted that, as reported before, there is
variability in the rate of A/T mutations in the different clones
(discussed below); nevertheless, in general, the mutating clones
expressing mUb-PCNA show significantly higher A/T mutation
rates compared to nonexpressing clones. We next compared the
mutation profile of both clones expressing and non-expressing

A B E

C

D

FIGURE 4 | Schematic diagram of the mUb-PCNA fusion construct and validation in Ramos cells. (A) Schematic diagram of the mUb-PCNA fusion construct used.
(B) Cell proliferation analysis. Cell growth was estimated by counting the viable cells on the indicated days. (C) Cell cycle analysis by DNA content estimation with
flow cytometry and represented as histograms showing the relative percentage of cells at the indicated phases of the cell cycle. The data in B and C represent the
mean of three independent experiments. (D) His7-UbPCNA was pulled down with nickel beads, and the fraction pulled down was analyzed by SDS–PAGE and
immunoblotting using an anti-PCNA antibody. I, input; NA nonadsorbed, PD pull down. (E) Sequence analysis of SHM in the amplified Ramos VH region. The pie
segments represent the proportion of clones that contained the specified number of mutations (from 0 to 4) indicated. The total number of analyzed sequences is
indicated in the right of each chart and corresponds to the pool of the data obtained from the five clones reported in Table 2A.
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TABLE 2A | Somatic mutations in VH4 sequence (338 bp) from mUb-PCNA expressing and non-expressing Ramos clones.

IgM- cells (6 weeks) Total nucleotides
sequenced*

Number of mutated
sequences (unique)

Number of
substitutions

Mutation frequency
(per 100 bp)

Number of AT/GC
mutations

% AT/
GC

AT % mean value(SD)

Ramos + Ub-PCNA R4.16 33800 55 90 0.266 36/54 40/60 30.38
(6.861)R2.4.6 33800 52 79 0.234 27/52 34/66

R1.16 33800 40 70 0.207 20/50 28.5/71.5
R3.2 33800 37 62 0.183 17/43 27.4/72.6
R3.7 33800 35 50 0.148 11/39 22/78

Ramos control (empty vector) R13.5 33800 17 20 0.060 1/19 5/95 9.18
(3.571)R2.4.8 33800 21 24 0.071 3/24 12.5/87.5

R1.12 33800 20 25 0.074 3/23 13/87
R2.5 33800 26 30 0.089 2/28 6.7/93.3
R3.8 33800 19 25 0.074 2/23 8.7/91.3

*100 clones.
P= 0.0003 (two-tailed P value, unpaired t test) for the AT% mean value comparison; SD, standard deviation.

TABLE 2B | Somatic mutations in Constant m-region sequence (550 bp) from mUb-PCNA expressing Ramos clones after six weeks and three months in culture.

IgM- cells Total nucleotides
sequenced* (x103)

Number of mutated
sequences (unique)

Number of
substitutions

Mutation frequency
(per 100 bp)(x10-3)

Number of AT/GC
mutations

% AT/GC AT %
mean value

Ramos + Ub-PCNA
6 weeks

R4.16 55 0 0
R2.4.6 55 1 1 1.8 0/1
R1.16 55 1 1 1.8 1/0
R3.2 55 0 0
R3.7 55 0 0

Ramos + Ub-PCNA
3 months

R4.16 55 1 1 1.8 0/1
R2.4.6 55 1 1 1.8 1/0
R1.16 55 2 2 3.6 0/2
R3.2 55 0 0
R3.7 55 1 2 3.6 0/2

*100 clones.
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mUb-PCNA expressing and non-expressing mUb-PCNA. The
distribution of point-mutations along the amplified Ramos VH
region presented in Figure 5 showed in addition to an increase of
number of mutations, differences in their base substitution
characteristics. Indeed, we observed that most of the A/T
mutations induced following mUb-PCNA expression (base
substitution in blue) are targeted to the described polh hotspots
(WA/TW). Furthermore we observed within these hotspots (red

color) a clear A to G and T to C transition bias (Figure 5). Since
the preferred mutation of Polh when copying normal DNA is the
incorporation of Gs opposite Ts, thereby generating T to C and A
to G transition mutations, thus strongly suggesting that these
mutations are introduced by polh.

Together, these results indicate that the expression of stable
mUb-PCNA is sufficient to retrieve the A/T mutagenesis
pathway in Ramos cells.

FIGURE 5 | Distribution of point-mutations along the amplified Ramos VH region. Independently occurring base substitutions are indicated at each nucleotide
position. The Pol h hotspots (WA/TW) targeted following the expression of mUb-PCNA are in indicated in red. The figure represent the pool of base substitution
obtained from the clones indicated in Table 2A. The Nucleotide Substitutions in blue indicated above the Ramos VH sequence are from the 5 clones expressing
mUb-PCNA and those below in green are from the five control clones.

A B

FIGURE 6 | Inactivation and restoration of polh and AID in the R4-16 clone. CRISPR/Cas9 was used to inactivate and gRNA editing were used to inactivate polh
or AID. (A) The absence of the corresponding proteins was confirmed in two selected clones by immunoblot analysis. (B) KO clones were reconstituted by stable
expression of POLH or AID cDNA. Left panel: R4-16E13-CE1 and R4-16E13-CE2 are two clones derived from the human polh deficient clone R4-16E13 after
transfection with polh-expressing vector. Right panel: R4-16A12-CA1 R4-16A12-CA2 are two clones derived from the AID-deficient clone R4-16A12 after transfection
with the human AID-expressing vector. Actin and red Ponceau staining were used as loading controls. *Nonspecific band.
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Induction of A/T Mutations Is AID- and
POLH-Dependent in Ramos-Ub Cells
Since polh is the major A/T mutator in both mice and humans
during SHM, we asked whether the induced A/T mutations
following the expression of mUb-PCNA are generated through a
genuine SHM process that requires AID activity and are polh-
dependent. To this end, we inactivated the genes encoding AID
(AICDA) or polh (POLH) using CRISPR/Cas9 technology in the
Ramos R4-16 subclone. It should be noted that, among the
clones with increased rates of A/T mutations we chose clone R4-
16 to continue our investigations, for two main reasons: (i) it
displays a higher rate of A/T mutations and (ii) it is stable and
retained ongoing SHM when maintained in culture for up to 3
months. The absence of AID and POLH protein expression was
validated by immunoblotting (Figure 6A). POLH-deficient
clones were grown for 6 weeks, and the expressed V(D)J was
amplified and sequenced. Table 3 shows that in the polh-
deficient clones, A/T mutations decreased to the level of the
wild-type Ramos cell population. Induction of A/T mutations
was restored upon re-expression of human POLH cDNA in these
clones to frequencies comparable to those observed in the Ramos
mUb-PCNA parental clone (Figure 6B, left and Table 3). In
addition, inactivation of AID completely abolished both A/T and
G/C mutations. Similarly, the re-expression of AID restored the
mutations to the level of the parental clone (Figure 6B, right and
Table 3). Altogether, these results confirm that the A/T
mutations induced following mUb-PCNA expression result
from a genuine immunoglobulin V gene diversification
mechanism initiated by AID and generated by polh activity.

Absence of Genome Wide Mutagenesis
Since mUb-PCNA preferentially recruits low-fidelity TLS
polymerase, we wondered whether the constitutive expression
of mUb-PCNA could also promote mutations elsewhere in the
genome. To answer this question, on the one hand, we sequenced
the m-constant region known not to be targeted by physiological
SHM and on the other hand estimated the mutation rate at the
hypoxanthine-guanine phosphoribosyl transferase (HPRT)
locus17. As shown in Table 2B, mutations did not accumulate
in Cm even after 3 months in culture. Furthermore, we found a
similar mutation rate at the HPRT locus, approximately 1.5 to
2.1 X 10-7 mutations per locus and per generation, determined by
fluctuation analysis of resistance to 6-thioguanine in both clones
expressing or not expressing mUb-PCNA (data not shown).
Collectively, these results allow us to conclude that the
constitutive expression of mUb-PCNA in Ramos cells induces
and targets A/T mutations to the Ig locus and does not induce a
general mutator phenotype.

DISCUSSION

We report the establishment of a cell line that can be used to
address in vitro the mechanism of A/T mutations during the
process of somatic hypermutation of Ig genes. The Ramos
Burkitt cell line has been widely used to study the mechanism T
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of SHM in vitro (19, 37, 38). Ramos cells exhibit most of the
features of SHM in vivo except that the spectrum of mutations
displays a deficiency in A/T mutations. Indeed, 85 to 90% of the
mutations are at G/C residues compared to in vivo, where
mutations are distributed equally on the G/C and A/T bases.
We have demonstrated in this study that the paucity of A/T
mutations in Ramos cells is due to the high activity of USP1,
which favors the deubiquitination of mUb-PCNA. To bypass this
limitation, we either selectively inhibited the activity of USP1 or
constitutively expressed mono-Ub PCNA. In both cases, we
increased the rate of A/T mutations at the expressed Vh gene.
Finally, we showed that these mutations are genuine SHM,
depending on both AID and polh. The SHM mechanism
depends on the deaminase activity of AID, which converts
deoxycytidines (dCs) to deoxyuridines (Us) in both strands of
DNA. The processing of the U/G mismatch, thus created by
several DNA damage responses, is generated at the site of the
leading to G/C mutations, both transitions and transversions,
and A/T mutations around the lesion, resulting in similar rates
of mutation at both A/T and G/C bp. Although the current
knowledge of DNA repair mechanisms in mammalian cells can
explain the spectrum of G/C mutations following high rate
deamination of dC in S phase of the cell cycle regardless of its
origin, introduction of mutations at the A/T bases that occurs
mainly in G1 phase of activated B cells is more challenging.
Furthermore, this pathway is restricted to the diversification of Ig
genes during the maturation of the immune response, it results
from diverted DNA repair factors and remains poorly
understood to date. Investigations to decipher the underlying
molecular mechanisms are limited by the absence of a cellular
model able to faithfully reproduce the mechanism of both G/C
and A/T base mutagenesis.

In this report, we used a Ramos cell line that constitutively
diversifies its rearranged immunoglobulin V gene during in vitro
culture. This ongoing process does not require the help of
activated T cells, added cytokines, or B cell antigen receptor
signaling. However, these cells mainly use the G/C mutation
pathways to diversify their Igs. The absence or low rate of the A/
T mutagenesis process led to the neglect of this model. In B cells,
the U/G mismatch is recognized by Msh2-Msh6 and recruits
exonuclease I (ExoI), which creates a long single-stranded gap.
Then, polh is recruited via mUb-PCNA, leading to error-prone
gap filling (7, 11, 39). The specific activity of polh when copying
undamaged DNA, which copies Ts with very low fidelity,
generates the majority of mutations at A/T bases away from
the AID-modified C base. We therefore postulated that either
one or several components of the A/T pathway are missing or
malfunctioning in Ramos cells.

We showed that the paucity of A/T mutations is due to the
high activity of ubiquitin-specific protease 1, which is responsible
for the short half-life of mUb-PCNA. We have shown that the
inhibition of USP1 activity using ML123, a potent and specific
inhibitor, increases the fraction of cellular mUb-PCNA in Ramos
cells, which in turn favors an increase in the rate of A/T
mutations at the Ig locus. These data indicate that although the
reaction of PCNA ubiquitination is intact in Ramos cells, its
deubiquitination rate is higher, greatly shortening its half-life

and thus limiting its participation in the A/T mutagenesis
pathway. Of note, elevated expression of USP1 has been
reported in several human cancers, including osteosarcoma,
non-small-cell lung cancer, and breast and colorectal cancers
(40–42). This study reports for the first time elevated expression
of USP1 protein in both Burkitt lymphoma and mantle
cell lymphoma.

Since PCNA is not the only USP1 target in mammalian cells
and to avoid any nonspecific or off-target effects, we substituted
the use of USP1i, which served as proof of principle, by stably
expressing the mUb-PCNA fusion in Ramos cells. Indeed,
artificial Ub and PCNA fusion proteins have been successfully
validated and used in both yeast and mammalian cells to mimic
native ubiquitinated PCNA and bypass the requirement for
PCNA monoubiquitination in response to UV DNA damage
(34–36). We showed that the stable expression of USP1-resistant
mUb-PCNA in Ramos cells resulted in an increase in the rate of
Ig A/T mutations without affecting cell proliferation or the cell
cycle profile. mUb-PCNA pull-down experiments in Ramos
show that the latter interacts with endogenous PCNA and
participates in the formation of the sliding ring, suggesting that
this fusion protein fulfills cellular function(s) similar to
endogenous monoubiquitinated PCNA. This result is in
agreement with previous reports showing (i) that yeast cells
can survive mUb-PCNA fusion in the absence of endogenous
PCNA and (ii) that in mammalian cells, mUb-PCNA fusion can
be loaded onto DNA and is able to protect host cells from UV-
induced DNA damage, with characteristic TLS activities, thus
mimicking endogenous PCNA monoubiquitination (36). Of
note the analysis of the mutation pattern show that beside the
high increase of A/T mutations, we observed also a small increase
of G/C mutations. This latter was not expected since in vivo the
analysis of SHM in PCNAK164R expressing cells show mainly
an impact on A/T mutations. Although we cannot propose any
obvious explanation, we observed within the G/C mutation an
increase of C to G and G to C (107 out of a total of 238 G/C
mutations in the presence of mUb-PCNA (45%) versus 57/137
(39.4% in its absence); this could be partly attributed to higher
recruitment of Rev1 in the presence of constitutive expression of
USP1 resistant mUb-PCNA. The permanent availability of
USP1-resistant mUb-PCNA into the cells may provide mUb-
PCNA more time, although to a lesser extent, to recruit other
TLS that are normally not recruited under physiological
conditions where PCNA is continuously ubiquitinated and
de-ubiquitinated.

Importantly, we demonstrate that the introduced A/T
mutations in Ramos cells expressing mUb-PCNA fusion are
genuine SHM for several reasons: i) are mainly targeted to WA
hotspots with a strong A to G and T to C transition bias which is
strictly attributable to the enzymatic specificity of pol h ii) they
depend on the A/T pathway master genes AID and POLH.
Importantly we found that both A/T and G/C mutations are
absent in the AID-deficient clones, and polh deficiency leads to
low A/T mutation even in the presence of constitutive expression
of mUb-PCNA. iii) they are strictly targeted to the expressed V
gene. Indeed, no mutations were detected in the constant m-
region, and the constitutive expression of mUb-PCNA does not
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lead to an overall increase in genome-wide mutagenesis as
assessed by the rate of mutations at the HPRT locus. These
results are in agreement with previous studies showing that the
expression of mUb-PCNA fusion does not cause an increase of
spontaneous mutations (34, 35)

Although the mUb-PCNA fusion has been used to study the
mechanism of DNA damage tolerance in response to replication-
blocking lesions induced by a variety of genotoxic agents (in
human and yeast cells), this study is the first to address its role in
the specific recruitment of polh during the mechanism of Ig A/T
base mutations that occur in the absence of any DNA lesion, by
DNA gap filling in instead of bypass and likely independently of
replication stress or fork stalling signaling.

The Ramos BL cell line used in the laboratory was first
described as a population that constitutively mutates its
rearranged V(D)J region at a rate of 2 to 3x10-5 mutations/bp/
generation (19). In this study, we found that the expression of
mUb-PCNA fusion modifies both the pattern and the rate of
mutations. Similar to what has been shown previously (43), the
analysis of several individual subclones expressing mUb-PCNA
isolated from the original population after transfection revealed
the presence of 15 to 20% nonmutated clones and that almost 35
to 50% of clones progressively lost the ability to mutate their V
region over time when maintained in culture (1 to 3 months)
regardless of the expression of AID and/or mUb-PCNA. The
remaining 20 to 30% display variable ongoing mutation rates
ranging from 2 x 10-5 to 6 x 10-4 mutations/bp/generation.
Despite this finding that suggests a clonal variation and
instability of Ramos clones that should be taken into account
when working with this cell line, the expression of mUb-PCNA
increased the mutation rates of A/T bases in all clones that
continue to undergo SHM when maintained in culture. Finally,
we observed that in the clones with the highest mutation rates,
the A/T mutations did not reach 45 to 50%, as expected. This
could be partially attributed to the decrease in the number of
AID hot spots in the V(D)J sequence over time compared to the
corresponding germline sequence due to the ongoing SMH. It
would be interesting to use the recombinase-mediated cassette
exchange system established by MD Scharff’s lab (38) to
exchange endogenous V(D)J in Ramos cells expressing mUb-
PCNA, analyze the rate and pattern of A/T and C/G mutations
and compare them to the in vivo pattern.

In summary, we have established and validated a cell model
with few limitations that reproduces the full process of somatic
hypermutation of Ig genes in vitro and can be used to answer
questions concerning the A/T mutation pathway that cannot be
addressed otherwise. For example, how, in activated B cells,
ncMMR activity is targeted to Ig loci and becomes active in G1

phase of the cell cycle? While mUb-PCNA is required for pol h
recruitment for TLS in response to replication-blocking UV
lesions, it remains unclear how polh is selectively recruited to
fill in the gap created by ncMMR activity. How are the other
DNA polymerases, both error-free and error-prone, actively
excluded? We expect that these questions and others will be
addressed with the use of this in vitro cellular model.
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The Role of DNA Repair in
Immunological Diversity:
From Molecular Mechanisms
to Clinical Ramifications
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An effective humoral immune response necessitates the generation of diverse and high-
affinity antibodies to neutralize pathogens and their products. To generate this assorted
immune repertoire, DNA damage is introduced at specific regions of the genome.
Purposeful genotoxic insults are needed for the successful completion of multiple
immunological diversity processes: V(D)J recombination, class-switch recombination,
and somatic hypermutation. These three processes, in concert, yield a broad but highly
specific immune response. This review highlights the importance of DNA repair
mechanisms involved in each of these processes and the catastrophic diseases that
arise from DNA repair deficiencies impacting immune system function. These DNA repair
disorders underline not only the importance of maintaining genomic integrity for preventing
disease but also for robust adaptive immunity.

Keywords: immunological diversity, immunodeficiency, antibodies, DNA damage, DNA repair

INTRODUCTION

A functional immune system is defined by a diverse repertoire of cells, surface receptors, and
antibodies needed to effectively respond to pathogenic challenges (1). Endogenous DNA damage is a
potent driver of disease and aging (2), can trigger innate immune responses, and drive loss of cells
via apoptosis, necrosis, and senescence (3–5). However, deliberate DNA damage is necessary for
vertebrates to respond to the limitless variability of pathogen-related antigens (6, 7). Programmed
DNA double-strand breaks (DSB) that occur in B and T cell receptor genes are necessary for
lymphocyte development and maturation (6, 8, 9). These programmed DNA breaks occur at specific
sites and serve as critical intermediates for rearrangements required for V(D)J recombination
(Figure 1) (9). Through this process, the nearly 1012 B and T cells in an individual express millions
of unique combinations of antibody and T-cell receptor genes (10). Immune repertoires of any two
individuals may overlap by only a fraction of a percent even though these repertoires are formed by
Variable, Diversity, and Joining gene segments that are shared by all humans (11, 12). The diversity
between two individuals at the immunoglobulin loci is greater than their germline diversity.
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Antibodies (immunoglobulins) directly neutralize pathogens
and their gene products (13). In addition, antibodies recruit
cellular effectors of immunity to eliminate pathogens and tumor
cel ls . During development, variable regions of the
immunoglobulin (Ig) locus undergo V(D)J recombination of
both the heavy (IGH) and light chains (IGL) to generate 1011

to 1014 novel combinations of genetic material (13–15). Upon
stimulation, further diversifications of Ig genes can be induced by
Class Switch Recombination (CSR) and Somatic Hypermutation
(SHM) (Figure 1). Antibody effector function is governed by its
antibody class or isotype. In response to antigen stimulation and
costimulatory signaling, programmed DNA damage in the
constant region of the IGH locus of mature B cells initiates
CSR, causing cells to undergo antibody class switching (13, 16).
This allows antigen-activated B cells, which are initially IgM+ or
IgD+, to change heavy chain constant domains and express one
of the other isotypes encoded downstream in the locus, thus
altering antibody function and tissue distribution (6).

Germinal center B cells undergo affinity maturation in
lymphoid tissue germinal centers to generate high-affinity
antibodies that enable a more effective humoral immune
response (17, 18). This process relies upon SHM to generate
single point mutations in the IGH and IGL loci (19, 20). While
CSR acts on the constant region of the IGH and IGL loci, SHM is
directed at the variable region. CSR and SHM act in concert to
create high-affinity immune responses to each pathogen
encountered. VDJ, CSR, and SHM are absolutely dependent on
intentional but tightly regulated induction of DNA damage at
discrete areas of the genome (20). Multiple components of the
DNA repair machinery: sensors, binding proteins, kinases,
helicases, recombinases, nucleases, polymerases, and ligases are
required for the resolution of the programmed DNA damage
that occurs in each of these processes (19, 21). This review
highlights the pathophysiological consequences caused by
mutations in genes encoding these DNA repair enzymes
required for immune diversification.

V(D)J RECOMBINATION

V(D)J recombination is the process that assembles the variable
domain of immunoglobulin and T-Cell Receptor (TCR) genes
via DNA rearrangements (22). V(D)J recombination increases
the sequence heterogeneity of a defined gene fragment during the
early stages of lymphocyte development. It shapes the immune
system repertoire by forming T-cel l receptors and
immunoglobulins in immature B cells. V(D)J recombination
involves multiple DNA repair proteins, including DNA-PKcs,
Ku70, Ku80, XRCC4, DNA Ligase IV, and the Cernunnos-XLF
protein, all required for non-homologous end-joining of DSBs.
Initiation of V(D)J recombination requires lymphoid-specific
DNA recombinases RAG1 and RAG2, which recognize
recombination signal sequences that flank all V, D, and J gene
units and as a complex introduce site-specific DSBs (23–26).
MRE11, RAD50, and EXO1 repair proteins are then needed to
join the broken DNA ends and resolve the DSB. Mutations in
DNA repair factors that participate in V(D)J recombination can
severely impact immune function. Mutations in the above genes
encoding the above DNA modifying proteins cause varied effects
on T and B cell immune cell repertoires. Immunological diseases
that arise from DNA repair defects impacting V(D)J
recombination are discussed below.

A

B

C

FIGURE 1 | Mechanisms of generating diversity in adaptive immunity.
(A) V(D)J recombination relies upon RAG-mediated recombination for the
rearrangement of immunoglobulin and T cell receptor variable (V), diversity
(D), and joining (J) gene segments during lymphocyte development. Many
enzymes involved in non-homologous end joining (NHEJ) and other DNA repair
mechanisms are required to correct the programmed DNA double-strand
breaks (DSB) that initiate gene segment rearrangement. (B) Class-switch
recombination (CSR) of the immunoglobulin heavy chain locus swaps antibody
isotype via recombination of different constant (C) regions. CSR requires
activation-induced cytidine deaminase (AID) to initiate a DNA DSB break at the
switch (S) region, which is subsequently repaired by classical and alternative
NHEJ. The schematic shows a CSR event that leads to the production of IgG
antibody isotype. (C) Somatic hypermutation (SHM) utilizes AID-dependent
programmed mutations in the variable region of antibody gene segments to
create a large number of antibodies with goal of creating greater affinity for
antigen. Antibody heavy (VH) and light (VL) chains, as well as antigen (black
circle) are illustrated. Figure created with BioRender.com.
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Severe Combined Immunodeficiency
Severe combined immunodeficiency (SCID) is a rare genetic
disorder characterized by impaired development of the immune
system and absence of T and B lymphocytes. Mutations in
human DNA repair genes RAG1, RAG2, DCLRE1C, PRKDC,
NHEJ1, and LIG4 cause SCID (27). These genes all encode
proteins that incise (RAG1-RAG2 complex), excise (DCLRE1C
Artemis protein) or participate in NHEJ DSB repair (PRKDC/
DNA-PKcs,NHEJ1/XLF4, and LIG4). Loss of function mutations
in RAG1/2, PRKDC, KU70, or KU80 preclude T and B cell
development, leading to SCID (26, 28) (Table 1).

Artemis deficiency, caused by null mutations in DCLRE1C,
also causes SCID. Artemis is an exonuclease essential for the
repair of DSBs via non-homologous end-joining (NHEJ) and
plays a critical role in V(D)J recombination. Artemis mutations
create a broad spectrum of phenotypes that range from SCID to
antibody deficiency (29, 44, 45). NK cell number and function
are unaffected in Artemis-deficient SCID patients. However,

these patients commonly have radiation sensitivity consistent
with a DSB repair defect (44). The impact of a mutation on NHEJ
repair and capacity can vary between individuals with mutations
in DCLRE1C and do not correlate well with clinical severity (46).

DNA-PKcs is a key component of DNA Protein Kinase
complex (DNA-PK), which plays a critical role in NHEJ.
Artemis is a substrate for DNA-PKcs kinase activity and
phosphorylation is required for its nuclease activity that cleans
up broken DNA ends. Artemis binds DNA-PKcs and the
Artemis-DNA-PK complex cleaves 5’ and 3’ overhangs of
hairpins generated by the RAG complex. Mutations in PRKDC
can also impair Artemis activation or its ability to bind DNA
ends during DSB repair. DNA-PK also has a role in recruiting
other NHEJ proteins like XRCC4 and LIG4 to DSBs. As the
NHEJ pathway is critical in V(D)J recombination, hypomorphic
and null mutations in PRKDC lead to dysfunction in the
development of T and B cells. PRKDC mutations were only
discovered relatively recently in a SCID patient that exhibited

TABLE 1 | DNA repair deficiency-induced immunological disorders.

Pathway Disease Genes Description Refs

V(D)J
Recombination

Severe Combined
Immunodeficiency
(SCID)

RAG1, RAG2,
DCLRE1C,
PRKDC, NHEJ1,
LIG4

SCID patients have T and B lymphocyte deficiency. At least 4 diseases can be distinguished by
clinical phenotypes and the gene affected.

(18)

V(D)J
Recombination

SCID with
ARTEMIS
deficiency

DCLRE1C Subclinical immunodeficiency: reduction of naïve T cells with increased terminally differentiated T
cells due to a reduction in T-cell proliferation. Some patients have reduced B-cell numbers.

(29)

Hypomorphic mutations in DCLRE1C can cause atypical SCID, Omenn syndrome, Hyper IgM
syndrome, or inflammatory bowel disease.

V(D)J
Recombination

SCID with Ligase
IV deficiency

LIG4 Microcephaly and neurodevelopmental delay. (30)
T- and B-lymphocytopenia and varying degrees of hypogammaglobulinaemia often associated with
high IgM due to defective CSR. Some patients present with features of Omenn’s syndrome and
autoimmunity.

V(D)J
Recombination

SCID with
Cernunnos-XLF
deficiency

XLF T and B-cell lymphopenia, growth retardation, microcephaly, and increased sensitivity to ionizing
radiation.

(31)

V(D)J
Recombination

SCID with DNA-
PKcs deficiency

PRKDC Radiosensitive, growth retardation, microcephaly, and immunodeficiency due to profound T and B
cell lymphopenia. (32, 33)

V(D)J
Recombination

Ataxia
Telangiectasia
(A-T)

ATM Progressive cerebellar degeneration leading to ataxia, telangiectasia*, immunoglobulin deficiency
(IgA), lymphopenia (T cells), recurrent sinopulmonary infections, radiation sensitivity, premature
aging, and a predisposition to cancer, especially lymphomas.

(34)

Other abnormalities include poor growth, gonadal atrophy, delayed puberty, and insulin resistance,
ataxia: abnormal control of eye movement and postural instability.
Telangiectasia: abnormal, tortuous blood vessels
(*telangiectasia not present in all A-T patients)

V(D)J
Recombination
and, CSR

Ataxia
Telangiectasia-like
disorder (ATLD)

MRE11 Lack of specific functional antibodies causing minimal immunodeficiency, ataxia, and dysarthria. (35)

V(D)J
Recombination

Nijmegen
breakage
syndrome

NBN Progressive microcephaly presenting in utero, dysmorphic facial features, mild growth retardation,
mild-to-moderate intellectual disability, and, in females, hypergonadotropic hypogonadism. (36, 37)
Immunodeficiency (decreased T cells and reduced IgG/IgA) and a high incidence of pediatric
malignancies, mostly lymphomas and leukemias.

CSR and NHEJ RIDDLE syndrome RNF168 Radiosensitivity, Immunodeficiency, Dysmorphic features, and Learning difficulties, increased serum
IgM and reduced IgG levels. (38, 39)

CSR, SHM,
BER

Hyper IgM
Syndrome Type 5

UNG Elevated serum IgM with low IgG and IgA, increased susceptibility to bacterial infections and
lymphoid hyperplasia.

(40)

CSR and SHM Hyper IgM
Syndrome Type 2

AICDA Elevated serum IgM levels, low IgG, low IgA. lymphoid hyperplasia, and recurrent infections. (41)

CSR and MMR PMS2 or MSH6
deficiency

PMS2 Elevated serum IgM and low IgG and IgA, recurrent infections, cafe-au-lait spots. Associated with
Lynch Syndrome and colorectal and endometrial cancer. (42, 43)
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symptoms similar to patients with RAG or DCLRE1C mutations
(32). The patient was practically devoid of B and T cells while NK
cell numbers were normal. The patient did not display signs of
microcephaly or intellectual disability observed in other DNA
repair disorders impacting the immune system (32).

DNA ligase IV syndrome, which has features of SCID, is
caused by a LIG4 deficiency. This rare autosomal recessive
disorder is characterized by microcephaly, abnormal facial
features, sensitivity to ionizing radiation, and SCID (30). Only
30 patients with Ligase IV syndrome have been described, and
while they all are sensitive to ionizing radiation (47), they exhibit
a broad spectrum of clinical features. Patients typically exhibit
low T and B cell numbers and low serum Ig levels, resulting in
immunodeficiency (30).

Ataxia Telangiectasia
Ataxia Telangiectasia (A-T) is a genetic neurodegenerative
disorder that is characterized by progressively cerebellar
atrophy with impaired coordination of voluntary movements
(ataxia), the development of reddish lesions of the skin and
mucous membranes due to dilation of blood vessels
(telangiectasia), and immune dysfunction (cellular and
humoral immunodeficiency resulting in increased susceptibility
to infections, cancer and malignancies, in particular lymphoid
malignancies) (34). A-T is caused by mutations in the AT-
mutated (ATM) gene, the gene product of which is a key
component of the DNA damage response. Mutations in ATM
cause aberrant V(D)J recombination and apoptosis during
lymphocyte development, resulting in patients having
immunoglobulin deficiencies and lymphopenia (48–50). A-T
patients with inactivating mutations in ATM sporadically have
T cell prolymphocytic leukemia (T-PLL), B cell chronic
lymphocytic leukemia (B-CLL), and mantle cell lymphoma
(MCL) (51). CSR deficiency is also characteristic of A-T,
resulting in high serum IgM levels, with low IgA and IgG
levels (35).

Nijmegen Breakage Syndrome
Nijmegen breakage syndrome (NBS) is a rare autosomal
recessive syndrome of chromosomal instability mainly
characterized by microcephaly at birth, SCID, and a
predisposition to malignancies. It is caused by mutations in
NBN, which encodes NBS1 (36, 52). NBS1 forms a multimeric
complex with MRE11 and RAD50 nuclease (MRN complex) via
its C-terminus. The function of NBS1 is to recruit and retain the
complex at sites of DNA damage by directly binding to histone
H2AX, a histone phosphorylated by PI3-kinase family members
such as ATM, in response to DNA damage. The MRN complex
facilitates the rejoining of DBSs predominantly by homologous
recombination repair rather than NHEJ (52, 53). NBS patients
have variability in immunodeficiency, as the number of CD8+ T
cells could be normal, elevated, or considerably reduced, with
decreased CD4+ T cell counts. However, universally there is an
increase in unresolved recombination-mediated breaks in IGH
and a compensatory proliferation of mature B cells as absolute B
cell numbers are decreased, consistent with a V(D)J
recombination defect (36, 37).

CLASS SWITCH RECOMBINATION

The ability of the immune system to fight and eliminate a wide
array of pathogens is made possible by the production of a variety
of antibody isotypes, each with unique effector functions. Naïve B-
cells produce only membrane-bound antibodies IgM and IgD.
Following infection, naïve B cells are activated and can be induced
to undergo CSR (13, 18, 54). CSR occurs in the DNA encoding the
constant region of IGH (16). Here, deletional recombination
occurs between DSBs intentionally introduced at switch (S)
regions between IGH constant region genes (18) (Figure 1).

The process of introducing DSBs begins with activation-
induced cytidine deaminase (AID), which demethylates
cytosines to uracil at immunoglobulin switch regions (55, 56).
Next, uracil-DNA glycosylase (UNG), a component of the base
excision repair (BER) pathway, excises the uracils, leaving abasic
sites that are further processed to create DNA single strand
breaks (SSB) (57, 58). If SSBs occur in both strands of the DNA
in close proximity, then a DSB results. DNA mismatch repair
(MMR) can also create DSBs following AID-induced
demethylation (16). MMR recognizes U:G mismatches and
resects single-stranded DNA created by mismatch-induced
DNA unwinding. If there is a SSB on the opposite strand in
the resected region, then a DSB is introduced. The DSBs at the
switch regions are recognized, recombined, and then repaired
using primarily NHEJ, similar to VDJ recombination (59). In
CSR, alternative end-joining (A-EJ) also plays a role in repairing
DSBs (60). In contrast to the classical NHEJ (c-NHEJ), A-EJ is a
relatively slower and more error-prone process that relies upon
annealing at microhomologies. A-EJ is also considered as a
prominent source of genome instability (59). A-EJ is
substantially less efficient than NHEJ but enables CSR in
c-NHEJ-deficient cells (60). Many factors including, stage of
the cell cycle, also influence which repair pathway is utilized (61).
Some DNA repair factors have distinct contributions in A-EJ
versus c-NHEJ. For example, 5-Hydroxymethylcytosine binding,
ES cell-specific-protein (HMCES) is dispensable for c-NHEJ but
the significant CSR defect observed in HMCES-deficient primary
B cells is due to its downstream role in A-EJ (62). Elevated end-
resection, non-productive interchromosomal translocations and
inversions were observed during sequence analysis of CSR
junctions of kinase-dead DNA-PKcs but not DNA-PKcs-
deficient B cells (63). ERCC1-XPF, whose role in CSR is not
fully understood, removes non-homologous 3’ overhangs that
result from annealing at microhomologies during A-EJ (64).

While most CSR-related diseases (discussed below) result
from non-functional CSR proteins, the initiation of AID-
induced damage outside of the IGH locus can lead to
translocations and B cell lymphomas (65–68). Beyond AID’s
role in CSR, it also participates in a phenomenon called locus
suicide recombination (LSR) which abolishes B cell function (69,
70). In LSR, AID initiates recombination between the most
upstream IGH switch region (Sm) and a “switch-like” region
near the 3’ regulatory region resulting in the deletion of the IGH
constant region, rendering the B cell non-viable. Although its
regulation is not well understood, the balance between CSR and
LSR may play a critical role in B cell fate. These studies illustrate
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the deleterious aspects of AID-mediated recombination that
yield non-productive antibodies and B cell death (69, 71).

DNA Repair Syndromes
Affecting CSR
DNA repair is critical for antibody diversification through CSR,
which is evident in the numerous CSR-related diseases caused by
mutations in DNA repair proteins (Table 1). When CSR is not
functioning properly, individuals exhibit immunodeficiency due
to an impaired ability of B-cells to switch to IgA, IgG, and/or IgE
production. The characteristic phenotype of CSR-related diseases
is elevated serum IgM levels with low IgA, IgG, and/or IgE levels
(6, 13). There is substantial variation in clinical phenotypes both
within a disease and between diseases with impaired CSR. For
example, a study of patients with MSH6 deficiency found that one
patient had elevated IgM levels and reduced IgG, four had elevated
IgM and normal IgG, two had normal IgM and reduced IgG, and
one had normal IgM and normal IgG (72).

Although AID is not technically a DNA repair protein, its
intentional introductions of DNA damage are crucial for the
initiation of CSR. Mutations in AICDA, the gene that encodes
AID, cause hyper-IgM syndrome (HIGM) type 2 (41). Patients
with HIGM type 2 typically present with elevated serum IgM levels
with low IgA and IgG levels (73, 74). Following the replacement of
cytosine DNA bases in switch regions with uracil by AID, BER and
MMR proteins play critical roles in producing DSBs. Mutations in
UNG, coding for the BER protein UNG, result in the HIGM Type
5 (Table 1). Like HIGM type 2, this syndrome is characterized by
high serum IgM levels, low IgG levels, and low IgA levels (40, 42).
Additionally, patients with PMS2- and MSH6-driven MMR
deficiency exhibit defective CSR, which is also the case in MLH1
and MSH5-deficient mice (Table 1) (43, 72, 75, 76).

Defects in DSB recognition and signaling proteins can cause
CSR-related immunodeficiency. The MRN complex (MRE11-
RAD50-NBS1) recognizes DSBs and activates ATM, the key
transducer of signaling in response to DSBs. Ataxia Telangiectasia
(A-T), Ataxia Telangiectasia-Like Disorder (A-TLD), and NBS,
caused by mutations in ATM, MRE11, and NBS1, respectively, all
lead to CSR defects (34, 35). NBS patients have a defect in CSR as
well as VDJ recombination. A-T and A-TLD share many clinical
phenotypes such as ataxia, dysarthria, and abnormal eye
movements. However, A-T and NBS result in more similar
immunodeficiency phenotypes than A-T and A-TLD. Patients
with A-T and NBS often exhibit elevated serum IgM levels, low
IgA levels, and low IgG levels (Table 1) (77–79). In contrast, A-TLD
patients exhibit very mild immunodeficiency, with reductions in
some specific antibody isotypes observed (35, 80). RNF168 is
another protein involved in signaling and repair protein
recruitment following recognition of DSBs (38). RIDDLE
syndrome is caused by RNF168 mutations and is characterized by
defective CSR resulting in low serum IgG levels (39). Mutations
affecting critical NHEJ proteins often cause CSR-related
immunodeficiency. Low or absent serum IgA and IgG levels are
common in Cernunnos-XLF- and DNA-PKcs-deficient patients
(81, 82). In addition, DNA Ligase IV deficiency often results in
low serum IgG levels (30) (Table 1).

SOMATIC HYPERMUTATION

SHM is another example of intentional DNA damage being
induced to enable antibody diversification in germinal center B
cells. SHM introduces point mutations in the Ig locus primarily
in the antibody variable (V) region that codes for the antigen-
binding site of immunoglobulin heavy and light chains
(Figure 1). This allows for the production and selection of B
cells with high-affinity antibodies (17, 83, 84). The mutation
frequency in SHM is a million-fold higher than the basal genome
mutation rate. How B cells restrict SHM to the V region while
maintaining genome-wide integrity is not well understood. AID
initiates antibody affinity maturation through SHM, analogous to
initiating CSR. Centroblast B cells in the germinal centers of
lymphoid organs express large amounts of AID to initiate SHM
(85). Numerous point mutations occur at both the site of uracil
incorporation and proximal nucleotides through three
predominant mechanisms: replication, BER, and MMR. Uracil
incorporated by AID can persist into the S phase during which
DNA replication can result in C to T (or G to A) transition
mutations (86). However, replication accounts for less than half
of all the mutations incorporated during SHM (83). Error-prone
non-canonical BER and MMR can combine to diversify
mutations introduced during SHM (87, 88). Similar to CSR,
SHM-associated uracils are excised by UNG creating an abasic
site during BER. Abasic sites are then bypassed by an error-prone
translesion synthesis (TLS) DNA polymerase, like Rev1, which
can introduce C:G transversion (88, 89). Alternatively, a non-
canonical MMR pathway can recognize and repair AID-induced
U:G mispairs. This pathway utilizes the error-prone TLS DNA
polymerase h, which primarily creates mutations at A:T base
pairs (88, 90, 91). Inactivating mutations in AID can result in
HIGM type 2 and UNG mutations can result in HIGM type 5
(41, 57, 92). In both conditions, the patients have defects in CSR
and SHM and are susceptible to infections (Table 1).

CONCLUSION

While genotoxic injury is looked upon as unfavorable, it is quite
beneficial for certain processes like meiotic recombination and
immunological diversity. Deliberate induction and repair of
DNA damage serve as a catalyst to expand our immune
repertoire. V(D)J and class-switch recombination yield unique
antibody combinations and establish effector function (6). Both
pathways incorporate many components of the DNA damage
response, recombinases, and enzymes from NHEJ repair
pathway in addition to other components of the DNA repair
machinery, including helicases, nucleases, polymerases, and
ligases. Lastly, intentional de novo mutations in the variable
region of immunoglobulin genes by SHM create high-affinity
antibodies. While DNA repair-deficient murine models have
been used to explore disease mechanisms and driver events in
tumorigenesis, samples from DNA repair disorder patients have
provided great insight into the functional consequences of
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impaired DNA damage on diversification and development of
the adaptive immune system. Future exploration to investigate
immune perturbations in other monogenic diseases of DNA
repair may provide insight into other DNA repair mechanisms
that contribute to immune responses.
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Reinvigorating the antitumor immune response using immune checkpoint inhibitors (ICIs)
has revolutionized the treatment of several malignancies. However, extended use of ICIs has
resulted in a cancer-specific response. In tumors considered to be less immunogenic, the
response rates were low or null. To overcome resistance and improve the beneficial effects
of ICIs, novel strategies focused on ICI-combined therapies have been tested. In particular,
poly ADP-ribose polymerase inhibitors (PARPi) are a class of agents with potential for ICI
combined therapy. PARPi impairs single-strand break DNA repair; this mechanism involves
synthetic lethality in tumor cells with deficient homologous recombination. More recently,
novel evidence indicated that PAPRi has the potential to modulate the antitumor immune
response by activating antigen-presenting cells, infiltrating effector lymphocytes, and
upregulating programmed death ligand-1 in tumors. This review covers the current
advances in the immune effects of PARPi, explores the potential rationale for combined
therapy with ICIs, and discusses ongoing clinical trials.

Keywords: cancer, immunotherapy, DNA damage, immune response, PARP (poly(ADP-ribose) polymerase
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INTRODUCTION

Cancer immunotherapy has revolutionized the field of oncology
by demonstrating that the use of immune checkpoint inhibitors
(ICIs) alone or in combination with other therapies prolongs the
survival of patients with advanced disease, including melanoma,
genitourinary, lung, gastric, and more recently breast cancer (1–
4). However, the efficacy of ICIs varies depending on the type of
cancer and within the same tumor tissue cohort (5). Ultimately,
the benefits of ICI therapy in the overall population could be
considered low, especially in some common tumor types, such as
prostate and breast cancers (6, 7).

In this context, strategies to enhance the benefit of ICIs have
focused on patient selection based on biomarkers such as
programmed death ligand-1 (PD-L1) or the use of ICIs combined
with other agents, including chemotherapy or targeted therapy (4, 5).

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a
class of drugs that inhibit single-strandDNA repair, leading to DNA
damage and apoptosis (8). Notably, this process ofDNAdamage can
modulate the antitumor immune response by activating antigen-
presenting cells (APCs), infiltrating effector lymphocytes, and
upregulating PD-L1 in tumors. In this review, we summarize the
current knowledge on the immune-mediated effects of PARPi and
the rationale for clinical trials that combine these agents with ICIs.

DNA DAMAGE REPAIR PATHWAYS
AND CANCER

The genome of every cell is constantly exposed to endogenous and/
or exogenous sources of DNA damage. Usually, a chemical addition
or disruption to a base of DNA or a break in one or both chains of
DNA strands is characterized as DNA damage (9). DNA damage
mechanisms for detecting and repairing DNA, collectively termed
DNA damage response (DDR), are activated to ensure cell survival
(10). Thus, dysregulation and mutations in these DDR factors and
their modulators have implications for human health and disease,
including increased susceptibility to DNA mutations that can lead
to neoplastic transformation (9, 10). High levels of replication stress
often induce DNA damage in cancer cells and their survival relies
on certain DNA repair pathways (11). Understanding the broader
role of DDR pathways in cancers has led to the development of
pharmacological interventions for cancer therapy, such as drugs
targeting poly (ADP-ribose) polymerases (PARP) (12).

DNA Repair and PARP
PARP belongs to a family of 17 enzymes involved in several cellular
processes, including DDR (13). Poly (ADP-ribose) polymerase 1
(PARP1), the most well-known enzyme in this family, is involved in
the detection and repair of DNA single-strand breaks (13, 14).
Functionally, PARP1 can rapidly detect DNA damage. The binding
of PARP1 to DNA alters its catalytic domains, causing PARP1 to
catalyze the post-translational polymerization of ADP-ribose units
(15). PARP1 enables the auto-PARylation and PARylation of
histones and other chromatin-associated proteins. Finally, PARP1
recruits additional DNA repair molecules, such as X-ray repair cross

complementing 1 (XRCC1), to the site of damage, promoting the
effective repair of DNA (8, 16, 17). However, when PARP fails or is
pharmacologically inhibited, single-stranded breaks accumulate and
become double-stranded breaks (18). Cells with an increasing
number of double-strand breaks become more dependent on
other repair pathways, mainly homologous recombination (HR)
and non-homologous end joining (NHEJ) (19). The two main
pathways involved in DNA double-strand break repair are
described below:

Homologous Recombination (HR)
HR is an efficient and high-fidelity DNA repair mechanism based
on a homologous template (8, 20). The HR pathway mainly occurs
during the S/G2 phase of the cell cycle (21). HR is initiated by the
MRN-complex, composed of meiotic recombination 11 (MRE11),
RAD50 homolog (RAD50), and Nijmegen breakage syndrome 1
(NBS1), which is recruited to the sites of double-strand breaks (22).
The MRN complex produces a 3 overhang of single-stranded DNA
that is coated by replication protein A (RPA) to avoid DNA
secondary structure formation (8, 20). Breast cancer susceptibility
genes 1 and 2 (BRCA1 and BRCA2) enable DNA repair protein
RAD51 homolog 1 (RAD51) recombinase to displace RPA and
stabilize RAD51-single-stranded DNA filaments (20, 23). These
filaments invade a sister chromatid to execute the homology search,
and repair-associated DNA synthesis is terminated by the
generation of a double-Holliday junction, which leads to the
effective repair of the DNA double-strand break (21). Therefore,
tumor cells with defective HR, such as those with a BRCA1/2
mutation, are susceptible to impairment of PARP, facilitating cell
death, or can be alternatively repaired by the error-prone NHEJ
pathway, resulting in genomic instability before cell death (24, 25).

Non-Homologous End Joining (NHEJ)
NHEJ repairs double-strand breaks in DNA without a template
strand. Consequently, NHEJ is an error-prone double-strand break
repair mechanism. It does not require a template strand and can be
activated in all phases of the cell cycle (8, 26). The initial step in
NHEJ is recognition and binding of the Ku heterodimer protein
(Ku70/80) to double-strand breaks. The Ku-DNA complex acts as a
scaffold for DNA-dependent protein kinase (DNA-PKcs) and
enzymes such as X-ray cross-complementing protein 4 (XRCC4),
XRCC4-like factor (XLF), and DNA ligase IV, which ligate DNA
and mediate the ligation of the double-strand break (8, 26). In this
context, PARPi in HR-deficient cells promotes NHEJ DNA repair
and induces genomic instability or cell death.

PARP INHIBITORS (PARPI)

Currently, four agents (olaparib, rucaparib, niraparib, and
talazoparib) are approved for the treatment of different tumors,
including ovarian, breast, prostate, and pancreatic cancers. The
success of PARPi in cancer treatment is believed to originate
from their ability to induce synthetic lethality (27, 28). Synthetic
lethality arises when the co-occurrence of two gene conditions
causes cell death, whereas a deficiency in only one of the genes
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does not determine cell lethality (29). Mechanistically, PARPi
anticancer agents compete with nicotinamide (NAD+) for the
PARP catalytic site, inhibiting single-strand break repair (8, 30,
31). This effect promotes the accumulation of single-strand
breaks that result in the collapse of the replication fork and
replication associated with the double-strand break.
Subsequently, tumor cells become more dependent on the HR
or NHEJ repair pathways (18, 19). In tumors with HR defects,
such as those with BRCA1/2mutations, PARPi induces synthetic
lethality. BRCA2-deficient cells compared to BRCA2-proficient
cells are 90 times more sensitive to PARP inhibition (18, 32).
Although there is a consensus that PARPi mechanisms of action
rely on inducing synthetic lethality in tumors with defective HR,
more recent findings suggest that PARPi also modulates the
antitumor immune response.

IMMUNE EFFECTS OF PARP INHIBITORS

Previous reports have noted an association between DDR defects
or failure with the activation of anticancer immunity through the
response-dependent type I interferon (IFN) pathway or via the
accumulation of mutations and neoantigens (33–35). In this
context, novel findings have demonstrated that the
pharmacological inhibition of PARP can mimic this condition,
dramatically affecting the balance of the immune response in the
tumor microenvironment.

The DNA Damage Induced by PARPi
Induces Antitumor Immune Response
DNA sensing through the cyclic guanosine monophosphate–
adenosine monophosphate synthase (cGAS)/stimulator of
interferon genes (STING) pathway participates in host defense
by detecting aberrant entry of DNA into the cytosol (36). This
pathway is classically involved in defense against viruses;
however, new evidence indicates that the cGAS-STING
pathway is also activated by fragments of endogenous DNA
generated by cancer treatment, driving an effective antitumor
immune response (36–38).

In preclinical studies, PARPi effectiveness in BRCA1-deficient
tumors was found to be dependent on CD8 T-cell recruitment
via intratumoral cGAS/STING pathway activation. The use of
PARPi in DRR-defective tumors produces single-and double-
strand breaks in DNA that bind to cGAS, leading to the
production of a second messenger molecule that stimulates the
adapter protein STING. STING, via kinases TANK-binding
kinase 1 (TBK1) and IkappaB kinase (IKK), activates
transcription factor interferon regulatory transcription factor 3
(IRF3) and factor nuclear kappa B (NF-kB), which translocate
into the nucleus to trigger type I IFN signaling (39).

It is well known that IFNs play a central role in antitumor
immunity (40). The seminal demonstration that interferon-a/b
receptor (IFNAR) or signal transducer and activator of
transcription 1 (STAT1) knockout mice fail to reject
immunogenic tumors (41, 42). Numerous studies have shown
that the expression levels of IFNs are positively correlated with

CD8 + T cell lymphocyte infi ltration in the tumor
microenvironment (39, 43, 44). Thus, the introduction of DNA
damage by PARPi can trigger the transformation of tumors
from cold to hot (39). Moreover, CD8 T lymphocytes kill
malignant cells upon recognition by the T-cell receptor (TCR)
of specific antigenic peptides present on the surface of the target
cells (45). In this context, effective antitumor immunity relies on
cross-presentation of tumor antigens by APCs to CD8 T
lymphocytes. APC activation requires type I IFN signaling,
which can be initiated by cGAS-STING activation (40, 42, 46,
47). Therefore, cGAS-STING signaling can act as a bridge
between DNA damage and the activation of anticancer
immune responses.

However, in parallel, type I IFNs activate pathways that
control the exacerbated inflammatory immune responses. For
example, IFN-b has been shown to induce the expression of PD-
L1 in tumor cells, which contributes to the immune escape by
cancer cells (48). In line with our premise, PARPi induces
upregulation of PD-L1 in tumor cells (49).

The Genomic Instability Induced by PARPi
Triggers Antitumor Immune Response
In tumor cells, DDR failure can result in the accumulation of
mutations in drive genes that produce survival advantages and
accelerate tumor development (50). However, this genomic
instability can encode tumor-specific neoantigens, which may
make tumors more attractive to the immune response (51, 52).
There is a correlation between tumor mutational burden and the
likelihood of response to ICIs. Preclinical studies have shown that
cancer cells with microsatellite instability (MSI) or defective
mismatch repair (dMMR) grow in immune-deficient mice but are
unable to grow in immune-competent mice (53). In clinics, MSI or
dMMR are biomarkers for predicting responses to ICIs approved by
the FDA (54). In this context, it has been discussed whether drugs
that modulate DDR pathways, such as PARPis, can promote genetic
instability and neoantigen formation.

It has been experimentally demonstrated that in BRCA-deficient
cells, PARPi induces chromosomal instability typified by the
accumulation of chromosomal breaks and eventual lethality via
NHEJ (24). In another study, genomic instability and cell death
induced in BRCA1-deficient cells by PARPi were found to be
dependent on the NHEJ factor p53-binding protein 1 (53BP1)
(55). Although this mechanism still needs to be further explored
clinically, these primary findings suggest that the pharmacological
blockade of PARP has the potential to increase genomic instability
and lead to dynamic mutational profiles, resulting in the persistent
renewal of neoantigens and engagements of an immune response.

THE RATIONALE FOR THE COMBINATION
OF ICIS AND PARPI

Immune checkpoints represent a set of modulatory pathways
essential for exacerbating inflammatory responses and
maintaining self-tolerance (56). The receptors cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and PD-1,
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expressed mainly in lymphocytes, and PD-L1, expressed in
APCs, are part of the immunological checkpoint system (57).
The interaction between CTLA-4 and CD80, CD86, or PD-L1/
PD-1 reduces T cell activity, leading to suppression of the
inflammatory response and preservation of tissues (57, 58).
However, this mechanism favors cancer progression, enabling
the escape of the anti-tumor immune response. Therefore, the
use of monoclonal antibodies (mAbs) to block CTLA-4, PD-1, or
its ligand PD-L1, ICIs, reactivates and drives the immune
response to detect and destroy tumors by overcoming the
negative feedback mechanism of the immune response (59).

Although there is no doubt that ICI therapy positively
impacts cancer treatment in several neoplasms, ICIs may not
be sufficient for optimal antitumor activity in some patients,
particularly those with a defect in cancer antigen-specific T-cell
activation or impairment of T-cell infiltration into tumors (60).
Thus, efforts to enhance these responses are needed. The
interaction between tumor DNA damage and the immune
system plays a role in driving the response to ICI. DNA-
damaging agents include chemotherapy (CT), ionizing
radiation (RDT), and targeted DNA repair therapies. CT
activates the immune system by inducing immunogenic cell
death pathways. RT causes several types of DNA damage.
DNA repair targeted agents include PARPi. In particular,
combination strategies with PARPi can potentially maximize
the benefit from ICIs, and its plausible synergistic effect resides in
the immune properties of PARPi at different points in the cancer
immune response. PARPi may facilitate a more profound
antitumor immune response and synergize with ICIs by
inducing DNA damage, producing a T helper 1 (Th1)
immune-mediated response via IFN signaling, activation of
APC cells, increased recruitment of effector lymphocytes, and
promoting upregulation of PD-L1 in tumor cells (39, 49, 61).

In summary, DNA damage induced by a PARPi can promote
antitumor immunity via the cGAS-STING/type I IFN/CD8 army
(positive effect). In contrast, type I IFN induces PD-L1
expression and promotes tumor immune escape (a negative
effect). In this context, the combination of PARPi and ICIs has
particular translational appeal owing to its potent immune-
stimulatory anticancer effects (Figure 1).

PARPI AND ICIS COMBINATION IN
PRECLINICAL STUDIES

In preclinical models, PARPi has demonstrated synergy with
ICIs in a variety of tumor models regardless of BRCA1/2-defect.
It was demonstrated that PARPi-based therapy synergizes with
anti-PD-1 against both MSI and microsatellite stable (MSS)
colon cancer models, with a potential sensitizing effect of anti-
PD-1 therapy against MSS tumors (61). In another study, PARPi
led to the accumulation of cytosolic double-stranded DNA,
thereby activating type I IFN-related immune response. Shen
et al. (2019) (62) demonstrated the combined use of PARPi and
ICIs against colon and ovarian experimental tumors, regardless
of the BRCA1/2 mutation status of the cell lines assessed both in

vitro and in vivo. Furthermore, PARPi treatment upregulated
PD-L1 expression in vitro and in vivo in breast cancer cell lines,
xenograft tumors, and syngeneic tumors. Although PARPi
attenuated anticancer immunity via upregulation of PD-L1, the
combination of PARPi and anti-PD-L1 therapy compared with
each agent alone significantly increased therapeutic efficacy (49).
Investigating the effects of the PARP1/2 inhibitor niraparib in
combination with ICI therapy in BRCA-deficient and BRCA-
proficient breast cancer tumor models, it was observed that the
combined regimen demonstrated synergistic antitumor activity
in both BRCA-proficient and BRCA-deficient tumors.
Interestingly, mice with tumors cured by single-agent niraparib
completely rejected tumor growth upon rechallenge with the
same tumor cell line, suggesting the potential establishment of
immune memory (63).

Together, these data reinforce that PARPi in combination
with ICIs may be beneficial in tumors, regardless of DNA repair
status, which has important clinical implications.

PARPI AND ICIS COMBINATION IN
CLINICAL STUDIES

Combination of a PARPi With Anti-PD1/
PD-L1 ICIs: What Do We Already Know?
Phase I study analysis of this combination showed toxicities
manageable with supportive care, and no new adverse events
were noted compared with the PARPi or ICI toxicities in
monotherapy (64, 65) A phase I study of solid tumors tested a
combination of durvalumab, an anti-PD-L1 agent, and olaparib.
Durvalumab was administered at 10 mg/kg every 2 weeks or
1,500 mg every 4 weeks, and olaparib tablets were administered
twice daily. No dose-limiting toxicity was observed for
durvalumab plus olaparib. Two partial responses (≥15 months
and ≥ 11 months) and eight stable diseases ≥ 4 months (median,
8 months [4–14.5 months]) were seen in patients who received
this combination, generating an 83% disease control rate (65).

Here, we explored clinical trials evaluating the efficacy of
PARPi and anti-PD1/PD-L1 ICIs in ovarian and breast cancers.
Studies with breast cancer and ovarian cancer patients, as
summarized in Table 1, demonstrate interesting response rates
with acceptable toxicity.

MEDIOLA is a phase II basket study assessing the efficacy and
safety of a chemo-free combination of olaparib and durvalumab
in patients with solid tumors (NCT02734004) and germline
BRCA1/2 (gBRCA1/2) mutations. Patients received olaparib for
4 weeks, followed by a combination of olaparib and durvalumab
until disease progression. The primary endpoints were the
disease control rate (DCR) at 12 weeks, safety, and tolerability.
Patients with platinum-sensitive recurrent ovarian cancer (n=34)
received at least one prior line of platinum therapy. The 28-week
DCR was 65.6%, while the overall response rate (ORR) was
71.9%, with a total of seven complete responses (CRs). The
median progression-free survival (PFS) was 11.1 months (95%
CI: 8.2, 15.9), with a median duration of response (DOR) of 10.2
months. The median overall survival (OS) for all patients is not
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A B

FIGURE 1 | Combining PARP inhibition and immune checkpoint blockade. (A) Antitumor immunity depends on a series of stepwise events. Primarily this process
includes the capture and processing of Tumor-associated antigens (TAAs) by Antigen-presenting cells (APCs), such as dendritic cells or macrophages in the tumor
microenvironment (step 1). Next, APCs cells presented antigen to CD8+ T cells at the lymph nodes (step 2). This process promotes the prime and activation of
effector CD8 T cells (step 3). Finally, the activated effector T cells migrate from lymphocytes (step 4) and infiltrate into the tumor microenvironment to recognize and
eliminate tumor cells (step 5), completing the cancer-immune cycle. However, the continued immune attack may enable cancer cells to evolve mechanisms for the
escape of immune attacks. Molecules that negatively regulate T lymphocyte activation, called immune checkpoints are central players involved in tumor immune
escape. In the cancer-immune cell cycle the ICIs (anti-CTLA-4, anti-PD-1, or anti-PD-L1) reactivate and drive the immune response to detect and destroy tumors by
overcoming the negative feedback mechanism of the immune response acting in steps 3 and 5. (B) Poly-ADP-ribose polymerase inhibitors (PARPi) have effects in
the early steps of the cancer-immune cell cycle. PARPi induce DNA breaks in BRCA1/2-deficient cells which can result in cell death or genomic instability and
neoantigen formation. Furthermore, the DNA damage induces the release of DNA fragments into the cytosol which causes the cGAS/STING pathway activation in
tumor cells and the production of type I IFN and chemokines (CCL5 and CXCL10). This effect culminates with paracrine activation of APCs such as dendritic cells
(step 1 and 2) and with the recruitment of CD8 cells for the tumor microenvironment (step 4). Another important immune effect of PARPi is associated with the
increased expression of Programmed death ligand-1 (PD-L1) in tumor cells (step 5). Therefore, the combined use of PARPi with Immune checkpoint inhibitors (ICIs)
has the potential to amplify the entire cancer immune cycle (image created at Biorender).

TABLE 1 | Clinical trials evaluating the combination of PARP inhibitors and immune checkpoint inhibitors in breast cancer ovarian cancer.

Studies in Breast Cancer Immunotherapy PARPi Patients Outcome

NCT02657889 (TOPACIO/
KEYNOTE-162)
Phase II

Pembrolizumab (200
mg Q3W)

Niraparib
(200 mg QD)

N=55 Advanced/Metastatic TNBC ORR 21% with 5 CRs and 5 PRs (better BRCA-mutated
tumors), DCR 49%

NCT02734004 (MEDIOLA)
Phase II

Durvalumab (1500
mg Q4W)

Olaparib
(300 mg BID)

N=34
gBRCAm HER2 negative mBC

28-week DCR 47%, ORR 56%, PFS 6.7 months.

NCT03330405
(JAVELIN PARP
Medley)
Phase Ib/II

Avelumab
(800 mg Q2W)

Talazoparib
(1mg QD)

N=34 Previously
Treated advanced solid tumors

First-cycle DLT 25%
ORR 8% with 1 PR, SD 50%

Studies in ovarian cancer
NCT02571725
Phase I

Tremelimumab
(10 mg/kg Q4W)

Olaparib
(300 mg BID)

N=3
gBRCAm recurrent ovarian cancer

No DLT or grade 3 AE
ORR 100% with 3 PRs

NCT02484404
Phase II

Durvalumab
(1500 mg Q4W)

Olaparib (300
mg BID)

N=35 Platinum-resistant recurrent
ovarian cancer

ORR 14% with 5 PRs,
DCR 71%, mPFS 3.9
months

NCT02657889
(TOPACIO/KEYNOTE-162
Phase II

Pembrolizumab
(200 mg Q3W)

Niraparib
(200 mg QD)

N=60 Platinum-resistant recurrent
ovarian cancer

ORR 18% with 3 CRs and 8 PRs (irrespective of BRCA
and HRD status), DCR 65%
mPFS 3.4 months

NCT02734004
(MEDIOLA)
Phase II

Durvalumab
(1500 mg Q4W)

Olaparib
(300 mg BID)

N=32 gBRCAm platinum-sensitive
ovarian cancer

12-week DCR 81%, ORR 63% with 6 CRs and 14 PRs

NCT02660034
Phase I

Tislelizumab (200 mg
q3W)

Pamiparib
(40mg BID)

N=49 advanced and previously
treated solid tumors

ORR 20%.
RP2D

TNBC, triple-negative breast cancer; gBRCAm, germline breast cancer gene mutation; BRCA, breast cancer gene; N, number of patients; ORR, overall response rate; CR, complete
response; PR, partial response; SD, stable disease; DCR, disease control rate; PFS, progression-free survival; HRD, homologous recombination deficiency; DLT, dose-limiting toxicities.
RP2D: recommended phase 2 dose. QD, daily; BID, two times per day; Q2W, 2 week cycle; Q3W,, 3 week cycle; Q4W, 4 week cycle.
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yet reached, with 87.0% of patients alive at 24 months (66).
Thirty-four patients were enrolled in the human epidermal
growth factor 2 receptor (HER2)-negative metastatic breast
cancer group. The 12- and 28-week DCRs were 81% and 47%,
respectively. The ORR for the overall cohort was 56%, with one
patient with CR and six (19%) patients with progressive disease
(PD). The median PFS was 6.7 months (95% CI: 4.6, 11.7
months). The most common grade 3 or 4 adverse events
reported were anemia (11.8%), neutropenia (8.8%), and
pancreatitis (5.9%) (67). Therefore, we concluded that the
combination of olaparib and durvalumab was well tolerated
and showed promising median PFS and DOR for ovarian
cancer, breast cancer, and gBRCA1/2 mutations.

The TOPACIO/KEYNOTE-162 phase I/II study evaluated
the efficacy and safety of nivolumab plus pembrolizumab in
platinum-resistant recurrent ovarian cancer and metastatic
triple-negative breast cancer (TNBC). This trial included
patients with or without gBRCA mutations. The primary
outcome was ORR. In the ovarian cancer group (n = 60), ORR
18% with 3 CRs and 8 PRs (irrespective of BRCA and HRD
status), and DCR 65%. The median PFS was 3.4 months, with
acceptable toxicity. Responses in patients without tumor BRCA
mutations were higher than expected with either agent as
monotherapy (68). Of 46 breast cancer evaluable patients, 20
(49%) achieved durable clinical benefit (any complete response/
partial response or stable disease ≥16 weeks), with stronger
activity in BRCA-mutated tumors (69).

The PARPi talazoparib was also evaluated in the phase Ib/II
study. Patients with advanced solid tumors who had received ≥1
prior standard of care chemotherapy regimen were treated with
Avelumab in combination with Talazoparib. In phase 2 cohorts,
eligible patients had metastatic TNBC (cohort 2A) or hormone
receptor-positive (HR+), HER2 negative, DNA damage repair
defect-positive breast cancer (cohort 2B). Patients in cohort 2A/B
had received 0 to 2 prior therapies (no progression on prior
platinum-based chemotherapy). The primary endpoint was the
objective response. A total of 22 patients had been treated in both
cohorts. In cohort 2A, 12 patients were evaluable for disease
assessment: PR in 1, SD in 6, and PD in 5. All 3 patients in cohort
2B were non-evaluable for response at data cutoff. Treatment-
related Adverse events (AEs) of any grade occurred in 94.7% of
patients, the most common AEs were anemia, nausea, fatigue,
and thrombocytopenia; 9 patients (47.4%) had grade ≥3 AEs.
Therefore, Avelumab administered in combination with
Talazoparib in patients with advanced solid tumors showed
preliminary antitumor activity and a manageable safety profile.
The study is ongoing (70).

Michael Friedlander and colleagues reported the findings of a
phase 1a/b trial of the combination of a PARPi (Pamiparib) and
ICI (Tislelizumab) in 49 patients with previously treated,
advanced solid tumors. The results from the dose-escalation
stage, phase 1a/b trial, show that the combination was generally
well tolerated and associated with antitumor responses (20%) in
patients with advanced solid tumors supporting further
investigation of the combination (64).

Combination of PARPi With ICIs: Ongoing
Studies
There are numerous ongoing trials (phases I-III) exploring the
combination of PARPi and anti-PD1/anti-PD-L1 agents, and
some trials with new immunotherapy agents such as TSR-022.
TSR-022 is a monoclonal ant ibody against T-ce l l
immunoglobulin and mucin domain molecule 3 (TIM-3) (also
called HAVCR2), an immune checkpoint receptor. Table 2
summarizes the ongoing phase III studies with a combination
of immunotherapy and PARPi.

The association between PARPi and anti-CTLA-4 has been
less studied. The combination of PARPi and CTLA-4 blockade is
tolerable in heavily pretreated women with recurrent BRCA-
associated ovarian cancer (62). Preliminary results of a phase I
study combining olaparib and tremelimumab demonstrated
evidence of therapeutic effects, supporting the ongoing
evaluation of this regimen in phase II trials: NCT02571725 (71).

Targeting DNA Damage Signaling
Proteins: Beyond PARP Inhibitors
The mechanisms that have inspired numerous PARPi-based
combination therapies, including immunotherapy, also
capitalize on the potential synergistic effects of different
inhibitors of the DDR pathway, such as ataxia telangiectasia
and Rad3-related (ATR), ataxia telangiectasia mutated (ATM),
and Checkpoint kinase 1 (CHK1) inhibitors.

Preclinical data have demonstrated a synthetic lethal
interaction between ATR and the ATM-p53 pathway in cells
that respond to DNA damage. In a large proportion of cancer
cells, where ATM-p53 signaling is defective, initiation of DNA
replication continues and DNA damage accumulates, leading to
cell death (72). It was demonstrated that combined treatment
with ATR and CHK1 inhibitors leads to replication fork arrest,
single-stranded DNA accumulation, replication collapse, and
synergistic cell death in cancer cells in vitro and in vivo (73).

Strikingly, in addition to direct cytotoxic effects, ATM, ATR,
and CHK1/2 inhibitors potentiate antitumor immunity.
Inhibition of ATM/Chk2 led to replication stress and
accumulation of cytosolic DNA, which subsequently activated
the STING-mediated immune response (74). Vendetii et al.
(2018) and Sheng et al. (2018), the ATR kinase inhibitor
AZD6738 combined with radiation therapy boosted
infiltration, increased cell proliferation, enhanced IFNg
production by CD8 T cells, and caused a decrease in the
number of Tregs and exhausted T cells in the tumor in mouse
models. Mechanistically, this study revealed that the antitumor
effect of AZD6738 relied on the activation of the cGAS/STING
pathway. These findings indicate that inhibitors of key DRR
mechanisms, beyond PARP, promote the antitumor immune
response through activation of the STING pathway (75, 76).

The proposed rational approach to enhance the efficacy of
ICIs to utilize DRR inhibitors, to increase tumor DNA damage
and thereby ‘prime’ tumors for response to immune ICIs have
been explored in mouse models. The genic deletion of ATM
induced IFN response and enhanced lymphocyte infiltration into
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the tumor microenvironment via cGAS/STING activation. This
effect potentiated ICI therapy in mouse melanoma (B16) and
breast cancer (4T1) tumors (77). In another study, tumor
immunogenicity was evaluated after the pharmacological
inhibition of ATM following PD-L1/PD-1 checkpoint
inhibition. ATM inhibition increased the tumoral expression of
type-I IFN in a TBK1- and SRC-dependent manner.
Furthermore, ATM silencing increased PD-L1 expression,
tumoral CD8 cells, and the sensitivity of pancreatic tumors to
ICIs, suggesting that the efficacy of ICIs in pancreatic cancer can
be enhanced by ATM inhibition (78). Similarly, ATM inhibition
in tumors with a mutation in AT-rich interactive domain-
containing protein 1A (ARID1A), a component of the
chromatin-remodeling complex switch/sucrose-nonfermentable
(SWI/SNF), selectively potentiates replication stress and
accumulation of cytosolic DNA, which subsequently activates
the DNA sensor STING-mediated innate immune response in
ARID1A-deficient tumors. In patients, tumors with mutations or
low expression of both ARID1A and ATM/CHK2 exhibit
increased tumor-infiltrating lymphocytes and are associated
with longer patient survival (74).

The combination of SRA737, an oral CHK1 inhibitor, with or
without anti–PD-L1/anti-PD-1 leads to an antitumor response in
multiple cancer models, including Small Cells Lung Cancer

(SCLC). The combination of low-dose non-cytotoxic
gemcitabine with SRA737 plus anti–PD-L1 increased the
expression of type I IFN genes and chemokines (CCL5 and
CXCL10), and the number of CD8, dendritic cells, and M1
macrophages in the tumor microenvironment. Using the
PARPi (olaparib) or the CHK1 inhibitor (prexasertib) in
combination with anti-PD-L1, a significant increase in
cytotoxic T-cell infiltration inducing tumor regression was
observed in the SCLC mouse model (79). Mechanistically, it
was demonstrated that the treatment with DDR inhibitors
activated the STING/TBK1/IRF3 pathway, leading to increased
levels of chemokines (CXCL10 and CCL5), which recruited and
activated CD8 T lymphocytes into the tumors (80).

In the clinics the ATR inhibitor ceralasertib has been tested in
phase I in combination with chemotherapy, olaparib, or an anti-
PD-L1 antibody. The durvalumab plus ceralasertib combination
arm enrolled 25 patients with advanced head and neck squamous
cell carcinoma or non-small cell lung cancer (NSCLC). The
primary objective was to recommend a phase 2 dose of
ceralasertib. Of the 21 patients evaluated, one complete
response and three partial responses were observed,
independent of tumor PD-L1 expression. They concluded that
this combination is tolerated in dose escalation, with preliminary
signals of antitumor activity in patients with advanced solid

TABLE 2 | Ongoing studies with a combination of immunotherapy and PARP inhibitors.

Ongoing Phase III
Studies

Immunotherapy PARPi Agent Patients Outcome

NCT03740165
(KEYLYNK-001)

Pembrolizumab + CT Olaparib
(maintenance)

First-Line Treatment of Women with BRCA Non-mutated Advanced
Ovarian Cancer

PFS

NCT04191135
(KEYLYNK-009)

Pembrolizumab Olaparib First-Line in Triple Negative Breast Cancer after induction CT +
embrolizumabe

PFS

NCT03737643
(DUO-O)

Durvalumab +/-
Bevacizumab

Olaparib
(maintenance)

Newly diagnosed advanced ovarian, fallopian tube or primary peritoneal
carcinoma or carcinosarcoma

PFS

NCT03598270
(ANITA)

Atezolizumab + Platinum-
based Chemotherapy

Niraparib Patients with Recurrent Ovarian Cancer PFS

NCT03522246
(ATHENA)

Nivolumab Rucaparib Maintenance Treatment Following Response to Front-Line Platinum-
Based Chemotherapy in Ovarian Cancer Patients

PFS

NCT03642132
(JAVELIN OVARIAN
PARP 100)

Avelumab Talazoparib Maintenance therapy in Untreated Advanced Ovarian Cancer patients PFS

NCT03602859
(FIRST)

Platinum-based Therapy
With TSR-042

Niraparib First-line Treatment of Stage III or IV Nonmucinous Epithelial Ovarian
Cancer

PFS

Ongoing phase I/II trials
NCT03101280 Atezolizumab Rucaparib Participants with Advanced Gynecologic Cancers and TNBC AE; DLTs

Recommended Dose
of Rucaparib3.

NCT02849496 Atezolizumab Olaparib BRCA Mutant Non-HER2- Locally Advanced or Metastatic Breast Cancer PFS; ORR
NCT03307785 TSR-022 & TSR-042 Niraparib Patients with Advanced or Metastatic Cancer DLT; AE;

ORR3
NCT03565991
(Javelin BRCA/ATM)

Avelumab Talazoparib Patients with BRCA or ATM Mutant metastatic Solid Tumors OR; TTR; DOR;
PFS; OS

NCT02660034 Tislelizumab Pamiparib Subjects with Advanced Solid Tumors AE; DLT;
ORR; PFS;
DOR; OS

NCT02484404 Durvalumab Olaparib and/
or Cediranib

Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple
Negative Breast, Lung, Prostate and Colorectal Cancers

ORR; RP2D

CT, chemotherapy; BRCA, breast cancer gene; TNBC, triple-negative breast cancer; ATM, ataxia telangiectasia mutated; HER2, human epidermal growth factor 2 receptor; AE, adverse
events; PSF, progression-free survival; ORR, overall response rate; DOR, duration of response; OR, objective response; TTR, time to tumor response; DLT, dose-limiting toxicities; RP2D,
recommended phase 2 dose.
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tumors (81). Berzosertib, another ATR inhibitor, has been tested
in a phase IB/II study of combination chemotherapy and
pembrolizumab in patients with advanced NSCLC with
squamous cell histology; the estimated enrollment was 18
participants (NCT04216316).

CONCLUSION AND PERSPECTIVES

The combination of PARPi and ICIs is promising and has been
explored in various clinical trials. While most studies with this
combination have focused on patients with ovarian or breast
cancer harboring germline pathogenic variants in BRCA1/2
genes, other tumor histologies, including prostate cancer and
pancreatic cancer, have been studied (82). Biomarkers trying to
identify patients whose tumors have HR defects without
germline BRCA mutations that could benefit from this

combinatorial approach have also been explored. The results of
ongoing phase III studies are awaited and can change the
landscape of treatment for these patients.
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Human Variation in DNA Repair,
Immune Function, and Cancer Risk
Ana Cheong and Zachary D. Nagel*

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States

DNA damage constantly threatens genome integrity, and DNA repair deficiency is
associated with increased cancer risk. An intuitive and widely accepted explanation for
this relationship is that unrepaired DNA damage leads to carcinogenesis due to the
accumulation of mutations in somatic cells. But DNA repair also plays key roles in the
function of immune cells, and immunodeficiency is an important risk factor for many
cancers. Thus, it is possible that emerging links between inter-individual variation in DNA
repair capacity and cancer risk are driven, at least in part, by variation in immune function,
but this idea is underexplored. In this review we present an overview of the current
understanding of the links between cancer risk and both inter-individual variation in DNA
repair capacity and inter-individual variation in immune function. We discuss factors that
play a role in both types of variability, including age, lifestyle, and environmental exposures.
In conclusion, we propose a research paradigm that incorporates functional studies of
both genome integrity and the immune system to predict cancer risk and lay the
groundwork for personalized prevention.

Keywords: DNA repair, immunity, inter-individual variation, cancer risk, personalized medicine

1 INTRODUCTION

Why some individuals are more susceptible to cancer than others remains a fundamental
unanswered question in cancer biology. Both immunodeficiency and DNA repair deficiency are
associated with elevated cancer risk. The canonical hypothesis regarding DNA repair deficiency is
that unrepaired DNA damage leads to increased somatic mutations and malignant transformation
of somatic cells. An alternative, underexplored hypothesis is that DNA repair deficiency increases
cancer risk, at least in part, by leading to impaired immune cell function. Immunodeficiency is
associated with profound defects in some DNA repair pathways, but for some, like nucleotide
excision repair, how they contribute to immune function is not yet understood. Furthermore, it
remains unclear how inter-individual variation in immune function and DNA repair capacity
(DRC) among the general population collectively contribute to cancer risk. We propose that
integrating blood-based genome integrity assays and immunophenotyping could afford improved
predictions of cancer risk and ultimately open new opportunities for precision prevention and
treatment of cancer.

Here we provide an overview of the current understanding of the origins of inter-individual
variation in both DNA repair and immune function, and the extent to which they have been shown
to contribute to cancer risk. We have structured two sections on inter-individual variation in DNA
repair (Section 2) and immune function (Section 3) similarly to underscore the many parallels
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between two fields that have largely developed independently.
We discuss the role of each process in cancer risk, as well as
genetic and non-genetic mechanisms contributing to inter-
individual variation. After discussing the potential for
integrating immunophenotyping and genome integrity assays
into cancer risk prediction (Section 4), we highlight emerging
technologies that are increasingly making such analyses feasible
(Section 5), and close with a list of open questions
recommendations for future studies (Section 6) and a brief
synopsis (Section 7).

2 VARIATION IN DNA REPAIR AND ITS
RELATIONSHIP TO CANCER RISK
AND CARCINOGENESIS

2.1 DNA Repair Protects Against Cancer
Genome integrity is constantly threatened by endogenous and
environmental DNA damaging agents. These agents include
reactive oxygen species (ROS) generated by normal cellular
metabolism, errors in DNA replication, ultraviolet (UV) light,
ionizing radiation, and mutagenic chemicals (1). While
unrepaired DNA damage can lead to disease by promoting cell
death, transcriptional stress, senescence, and mutations (2),
DNA repair limits these processes by maintaining genome
integrity. Depending on the agent, DNA can be damaged in
numerous ways. The types of DNA damage include base damage,
single strand breaks, inter- and intra-strand crosslinks, bulky
adducts, methylated DNA adducts, mismatches, and double-
strand DNA breaks (DSBs). Complexes of DNA repair proteins
form DNA repair machines that specialize in the removal of
particular types of DNA damage, and defects in one or more of

the DNA repair pathways increase the frequency of specific types
of mutations in the genome (3) (Figure 1). As DNA damage and
repair have been extensively reviewed elsewhere (1, 4, 5), we will
not cover the detailed mechanisms here.

2.2 Defects in DNA Repair Are Linked to
Cancer-Prone Genetic Disorders
Genome instability is a hallmark of cancer, and nearly all cancers
are caused by one or more somatic mutations induced by DNA
replication in the presence of DNA damage (6, 7). As our
understanding of the etiology of cancer mutation signatures
advances rapidly, it is becoming evident that genomic
alterations in individual cancers can often be attributed to
specific DNA damaging agents and DNA repair defects (3, 8–
11). Historically, much has been learned from constitutional
DNA repair deficiency syndromes that are associated with
elevated cancer risk in humans. Below we highlight examples
for several DNA repair pathways. In subsequent sections, we
discuss variability in DNA repair in the general population,
which is emerging as a potential predictor for cancer risk (12,
13) (14) (15).

Nucleotide excision repair defects in xeroderma
pigmentosum (XP) patients are associated with an extremely
high risk of skin cancers due to the inability to repair UV-
induced DNA damage (16). Early studies revealed seven
complementation groups that correspond to the DNA repair
genes XPA, XPB, XPC, XPD, XPE, XPF, and XPG. Deficiency in
the translesion DNA polymerase eta (aka POLH or XPV) also
causes XP in humans (17) (18). Cells from these individuals
exhibit normal NER, but are deficient for accurate replicative
bypass of unrepaired UV-induced DNA damage, resulting in an
increased rate of UV-induced mutagenesis. In the case of
combined XP and Cockayne syndrome (XP-CS), mutations in

FIGURE 1 | DNA repair pathways and their association with cancer and immune disorders. Genome integrity is maintained by multiple DNA repair pathways.
Depending on the type of DNA damage, specific subsets of DNA repair proteins recognize and repair the damage. For instance, single strand breaks, abasic sites,
and single base lesions are primarily repaired by base excision repair (BER). Some types of alkylation damage, such as O6-methylguanine and 1-methylguanine, are
repaired by direct reversal (DR). Intra-strand crosslinks and bulky lesions are repaired by nucleotide excision repair (NER). Mismatched bases are repaired by
mismatch repair (MMR), whereas double strand breaks are resolved by homologous recombination (HR) or non-homologous end joining (NHEJ). Unrepaired DNA
lesions may give rise to somatic mutations and cancer. Deficiency in BER, NER, MMR, and NHEJ is also associated with immunodeficiency, which increases cancer
risk(s).
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XPB, XPF, XPD, or XPG have been detected among patients.
These patients display a mild XP phenotype. Yet, despite the
universality of DNA repair deficiency, skin cancers are rare
except in those with mutations in XPB or XPD (19). XP-CS
patients with mutations in XPG are photosensitive and have skin
freckling, but skin cancers are rare. This may be in part due to
very early mortality, but the severe photosensitivity phenotype
that commonly accompanies XPG-CS also leads to early
diagnosis and better sun protection for these patients.

Numerous diseases are associated with defects in double
strand break repair. Fanconi Anemia is caused by mutations in
a group of genes involved in both DSB repair and the repair of
DNA inter-strand cross-links (20). Patients commonly
experience immunodeficiency due to bone marrow failure and
are at increased risk of acute myeloid leukemia (21). Mutation in
Werner syndrome protein (WRN) predisposes to cancer. WRN
is a RecQ family DNA helicase with well-established roles in both
non-homologous end joining (NHEJ) and homologous
recombination (HR), as well as emerging roles in base excision
repair (BER) and nucleotide excision repair (NER) (22). Patients
withWerner syndrome display premature aging, and have higher
risks of cancer and cardiovascular disease (23–26). WRN patients
develop thyroid epithelial neoplasms, melanoma, and soft tissue
sarcomas, as well as leukemia and primary bone neoplasms (27).
RECQL4 is involved in NHEJ (28, 29), HR (30), NER, and BER
(31), and its mutation is known to induce trisomy, aneuploidy,
and chromosomal rearrangements. RECQL4 deficiency is
associated with several diseases, including Rothmund-Thomson
syndrome (RTS), RAPADILINO syndrome, and Baller-Gerold
syndrome (BGS) (32). Patients with RTS or RAPADILINO have
higher risk for osteosarcoma and lymphoma (33, 34). LIG4
syndrome is caused by deficiency in Ligase IV, which is
essential for NHEJ (35). Patients with LIG4 syndrome exhibit
severe combined immunodeficiency due to the role of NHEJ in V
(D)J recombination, a key process for antibody diversification
(36). Ataxia telangiectasia (A-T) is a DNA damage response
disorder caused by mutations in the Ataxia telangiectasia
mutated (ATM) gene. Among other symptoms, patients with
A-T experience immunodeficiency and are at increased risk for
cancer, particularly lymphoid malignancies (37).

Several diseases are associated with defects in base excision
repair and single strand break repair (38) (39). MutY DNA
glycosylase (MUTYH) -associated polyposis (MAP) arises from
germline mutation of MUTYH. Characterized mainly by the
biallelic germline mutations of Y165C or G382D in MUTYH,
MAP is associated with colorectal adenomas and carcinomas (40,
41). As a BER protein, MUTYH functions to remove adenine
opposite 8-oxo-7,8-dihydroguanine (OG), which is left
unrepaired by 8-oxoguanine DNA glycosylase (OGG1), and
thereby prevent G:C to T:A transversion mutations (42). Some
MUTYH variants are associated with diminished OG:A repair
(43), leading to higher colorectal cancer (CRC) risk (44) (45).
Defects in uracil DNA glycosylase (UNG) result in an extreme
immunodeficiency known as Hyper-IgM syndrome due to the
central role of this enzyme in antibody diversification (46). While
UNG deficiency is too rare to allow reliable estimates of its

consequences for cancer risk, in general Hyper-IgM patients
suffer from higher rates of malignancy (47). Similarly, deficiency
in the Nth like DNA glycosylase 1 (NTHL1) is associated with a
tumor syndrome that is dominated by colorectal cancer but
includes several other malignancies (48–50).

Constitutional mismatch repair deficiency is an extremely
rare disease that is associated with increased risk of a wide range
of malignancies (51). Lynch syndrome is another DNA repair
deficiency syndrome associated with cancer. It arises from the
presence of one or more mismatch repair (MMR) gene
mutations (52). While the normal tissues in Lynch syndrome
patients often do not exhibit detectable MMR defects, Lynch
syndrome is associated with MMR-deficient cancers with high
microsatellite instability (MSI) (53).

2.3 Factors That Contribute to Variation
in DRC
While much has been learned from diseases associated with
DNA repair deficiency, they are relatively rare and represent the
extremes of inefficient DNA repair in human populations. In the
general population, DNA repair gene polymorphisms, age,
environmental exposures, and lifestyle are several major factors
thought to give rise to inter-individual variation (12). Variation
in DRC is a consequence of the collective influence of
these factors.

2.3.1 Genetics
A large number of polymorphisms have been identified in DNA
repair genes, and their associations with cancer imply functional
consequences. While relatively few studies have investigated
functional significance directly, accumulating research supports
genetic variation as an important driver of inter-individual
variation in DRC (Table 1). For example, variant alleles of X-
Ray repair cross complementing 3 (XRCC3) are associated with
higher levels of bulky DNA adducts (59). XRCC1 variants may be
associated with either higher or lower BER repair activities (60,
62–64). XPD polymorphisms decrease XPD expression, with the
most pronounced effect seen in older individuals (55). Some
OGG1 variants are associated with higher percentage tail DNA
measured using comet assays (% tail DNA). Variant genotypes of
BER and NER genes have also been associated with a wide variety
of markers of genome instability. These include micronuclei and
baseline %TD (58, 61, 66), chromosome breaks (62), sister
chromatid exchanges (56, 60, 61), deletions and dicentric
chromosomes (56), DNA adduct levels (59), overall BER repair
activities (65), repair of radiation-induced damage (54) (58) (56),
and repair of oxidative damage (54) (43), with cumulative effects
for individuals with variant alleles in multiple DNA repair genes
(57). While genetic determinants of DRC might be presumed
exert similar effects on all tissues, this may not be true in light of
evidence from animal models indicating tissue-dependent allele
specific expression (67).

2.3.2 Aging
An age-dependent decline in DRC and DNA damage
accumulation has been proposed as a key mechanism
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underlying aging (68), and ongoing studies are beginning to
uncover interventions that may mitigate the effects of
compromised genome integrity in older individuals (69). The
presence of age-dependent changes and the potential for
interventions that may reverse them underline the likely role
for age in inter-individual variation in DRC. Here we highlight
studies testing this idea directly in human populations.

Assays that measure the accumulation of DNA damage
provide indirect evidence for age-dependent changes in DRC.
Peripheral blood mononuclear cells (PBMCs) isolated from older
individuals have a higher frequency of dicentric and ring
chromosomes (70) and a higher degree of negative
supercoiling (71). Levels of single-strand breaks (SSBs) and
oxidized bases (detected as formamidopyrimidine DNA
glycosylase (FPG)-sensitive sites) in PBMCs are lower in
younger individuals (age <65 years) when compared with older

individuals (age >65 years) (72), although basal levels of SSBs and
alkali sensitive sites in lymphocytes were age-independent in a
separate study (73).

Direct measurements of DNA repair provide further insights
into age-dependent changes in genome integrity. A study that
used neutral comet assays to measure double strand break (DSB)
repair and fluorometric analysis of DNA unwinding (FADU) to
measure SSB repair in X-irradiated lymphocytes found
diminished DSB repair in older individuals (74). Another study
found that while overall rates of repair were similar, a
subpopulation of repair deficient lymphocytes was significantly
more abundant in older individuals (73, 74). Higher levels of
DNA damage might intuitively be interpreted to reflect
inefficient DNA repair, but the situation may be more
complex. For example, one study found that the level of SSBs
correlated positively with OGG1 activity (72), which was higher

TABLE 1 | Polymorphism in DNA repair genes and their association with genome integrity.

Genes Genotype DNA damage and repair activities Ref.

Base excision repair
OGG1 Ser326Cys; GG Lower OGG1 activity vs. CC and CG genotypes (54)

Ser326Cys Higher DNA damage vs OGG1 326 Ser/Ser genotype (55)
Inefficient repair of oxidative DNA damage a (54)

MUTYH G382D, Y165C, and Q324H Less efficient in repairing 8oxoG:A mispairs vs. wild-type MUTYH (43)
APE1 Asn148Gln Inefficient repair of oxidative DNA damage (54)

Associated with repairing of X-ray induced DNA damage (54, 56)
Associated with mitotic delay following X-irradiation (57)

Nucleotide excision repair
ERCC/XPC Lys939Gln Associated with repairing of X-ray induced DNA damage (58)
ERCC2/XPD D312N in exon 10 reduced XPD expression b (55)

K751Q in exon 23 reduced XPD expression b (55)
R156R in exon 6 reduced XPD expression b (55)
312Asn Not associated with repair of X-ray induced DNA damage (56)

Reduction in dicentric chromosomes and two-fold increase in translocation and chromatid exchange (56)
751Gln Not associated with repair of X-ray induced DNA damage (56)

Reduction in dicentric chromosomes and two-fold increase in translocation and chromatid exchange (56)
Lys751Gln Higher levels of bulky DNA adducts (59)

Not associated with higher mean SCE frequency c (60)
Gln751Gln Higher SCE frequency vs. Lys/Lys and Lys/Gln (61)

Single strand break repair
XRCC1 399Gln Lower BER activities (60, 62–65)

Associated with repair of X-ray induced DNA damage (56, 58)
Higher mean SCE frequency c (60)
Increase in deletions (56)

Arg399Gln Lower irradiation-specific DNA repair rates (54)
Associated with mitotic delay d (57)

Arg399Gln; Gln/Gln More chromosome breaks per cell vs. other genotypes (62)
Arg399Gln; AA Higher DNA adduct levels vs. AG and GG genotypes among non-smokers (59)
194Trp Higher BER activities (60, 62–64)
194Try Not associated with repair of X-ray induced DNA damage (56)

Increase in chromatid exchange (56)
Arg194Try Inefficient repair of oxidative DNA damage (54)
Arg194Try; Arg/Arg More chromosome breaks per cell vs. other genotypes (62)
Arg280His Inefficient repair of oxidative DNA damage (54)

Double strand break repair
XRCC3 Thr241Met Higher levels of bulky DNA adducts (59)

241Met Not associated with repair of X-ray induced DNA damage (56)
Increase in deletions (56)

adominant effect, with repair capacity of oxidative DNA damage decreases with increasing number of variant alleles in OGG1 Ser326Cys and in combination with other gene
polymorphisms (XRCC1 Arg194Try, Arg280His, and Arg399Gln, and APE1 Asn148Glu).
beither single or in combination, reduced XPD expression.
cindependent of age, race, and family history of lung cancer.
donly among individuals with family history of breast cancer.
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in older individuals. The higher levels of SSBs may thus reflect
the accumulation of unresolved repair intermediates
downstream of BER initiation, and phenomenon that has been
termed BER imbalance (75–79). Elevated OGG1 activity in
lymphocytes from older individuals has been observed in
additional studies (72, 80). Nevertheless, in another study
OGG1 repair activity in lymphocytes was reported to decrease
with age (81). The decrease in OGG1 activity was more
pronounced among individuals with Cys/Cys, Ser/Cys, than
with Ser/Ser genotypes at position 326, suggesting that study
design and the genetic makeup of cohorts may at least partially
explain the differences among studies. By contrast with OGG1,
AP site incision capacity is not associated with age (82).

Evidence for age-dependent changes in DRC have also come
from studies wherein cells have been challenged with DNA
damaging agents. Repair replication declines in lymphocytes
irradiated with ultra-violet light (UV), with the rate of UV-
induced decrease in DRC estimated to be about 30% from 20 to
90 years (83). By contrast, repair replication in UV-irradiated
keratinocytes is comparable between infant and older adults,
suggesting that age effects may be heterogeneous across human
tissues (84). Similar to the decline in repair of UV-induced
damage, rejoining of chromosomes following X-irradiation
decreases with age in human leukocytes (85). Consistent with
higher rates of BER initiation following oxidative DNA damage,
a study that compared individuals in three groups based on age
of 35-39 years (Group 1), 50-54 years (Group 2), and 65-69 years
(Group 3) using an ELISA assay in PBMCs following challenge
with hydrogen peroxide revealed significantly higher levels of
single stranded DNA in Group 3, but not Group 2, when
compared to Group 1 (86). This finding is consistent with a
second study that made use of comet assays (80),, as well as those
in the previous section finding elevated OGG1 activity in older
individuals. A rare in vivo study in which the epidermis of
subjects was subjected to UV-irradiation followed by skin
biopsies found that the efficiency in removing irradiation-
induced cyclobutane pyrimidine dimers (CPD) is lower in
older subjects, consistent with ex vivo studies in cultured
primary cells (87).

Host cell reactivation assays have provided important insights
into age-dependent changes in DRC. For instance, in one study
skin fibroblasts from younger donors had higher efficiency in
repairing UV-irradiated plasmids than those from the older
donors (88). However, the same study found no relationship
between age and the removal of genomic UV-induced adducts,
and a second study found the repair UV-induced induced
plasmid lesions was similar in skin fibroblasts from donors of
age 21-96 years (89). The differences between the HCR studies in
fibroblasts might reflect the relatively small samples sizes (N=8-
10), which limit statistical power; a somewhat larger study
(N=20) using host cell reactivation assays in fibroblasts did
find an age-dependent decrease in DRC (90). In lymphocytes,
repair of UV irradiated plasmids decreases with age, with an
estimated average 0.61% decrease per year between 20 and 60
years of age (91). These results were consistent with a second
study using HCR in lymphocytes that found an age-dependent

decline in repair of UV-induced damage, which was notably
absent among basal cell carcinoma cases, for whom DRC was
lower than in controls at younger age (92). Another study that
stands out for its analysis of pathways other than NER using host
cell reactivation assays in primary skin fibroblasts indicated that
both NHEJ and HR decline strikingly with age (93). Taken
together, the findings suggest that age-dependent changes in
DRC may depend in a complex manner on the cell type, DNA
repair pathway, and the health status of the study participants.

Age-associated changes in DRC may be explained in part by
the differential expression of DNA repair genes. The expression
levels of excision repair cross-complementing group 1 (ERCC1)
(94, 95), XPA (94), XPF (95), XRCC4, ligase 4 (LIG4), LIG3 (93),
DNA polymerase delta 1 (POLD1) (88, 96), POLE, replication
factor C (RFC) (88), and replication protein A (RPA) (94)
decrease with age. On the contrary, the expression levels of
CSA and XPG seemed to increase with age, but the change could
not be confirmed by qPCR (88). There is no difference in the
expression levels of proliferating cell nuclear antigen (PCNA)
(88), NHEJ factors DNA PKcs, artemis, XRCC4-like factor (XLF)
(93),, Ku70 and Ku80 (93, 97) and HR factors breast cancer
associated gene 2 (BRCA2), meiotic recombination 11 (MRE11),
RAD51, Nijmegen breakage syndrome 1 (NBS1), and RAD51
(93) among different age groups. While these studies were
performed in either human PBMCs and primary fibroblasts,
whether these changes in the expression of DNA repair factors
resemble those in other tissues from the same individual have not
been studied.

Though a detailed review of animal models is beyond the
scope of this article, we note that they recapitulate several aspects
of human aging biology with respect to genome integrity,
including age-dependent increases in DNA damage levels (98)
(99), accumulation of mutations (100, 101), and dysregulation of
DNA repair (102) (103) (104) (105) (106).

2.3.3 Environmental Factors
Mounting evidence indicates that environmental exposures can
alter DRC. Here we focus on two well-established examples,
namely arsenic and smoking. Like tobacco smoke, arsenic is an
environmental agent classified as carcinogenic to humans by the
International Agency for Research on Cancer (107), and causes
cancer at least in part by directly inducing DNA damage (108,
109). Exposure to arsenic is associated with chromosome
aberrations in human PBMCs (110) and DNA damage (111,
112). Children with in utero exposure to arsenic have higher
salivary 8-hydroxydeoxyguanosine (8-OHdG), a biomarker of
DNA damage caused by oxidative stress, than their unexposed
counterparts (113) (114). Consistent with a key role for DNA
damage in the etiology of arsenic associated malignancies,
arsenic exposure is associated with a distinct mutational
signature (115). Furthermore, individuals with lower DRC and
those with select polymorphisms in DNA repair genes are more
susceptible to arsenic induced skin lesions (109) (108) (116, 117)
(110) (118).

Population studies provide extensive evidence in support of
the concept that arsenic exposure leads to alterations in DNA
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repair. Arsenic exposure is associated with decreased expression
of MutS homolog 2 (MSH2) and mutL homolog 1 (MLH1),
though not PMS1 homolog 2 (PMS2) (119). Urinary arsenic
concentrations are positively associated with MLH1 promoter
methylation, which is consistent with an epigenetic mechanism
of arsenic-induced dysregulation of MMR (120). Arsenic
exposure also leads overexpression of excision repair cross
complementation group 2 (ERCC2/XPD) and less efficient
NER (121). ERCC1 expression may be influenced by arsenic
exposure (122) (111), but there appear to be complex
dependencies on dose, duration, and speciation of arsenic
exposure (122), as well as the age of the exposed population
(94, 95). Diminished expression of XPF and XPB, but increased
in XPG expression have been associated with arsenic
exposure (123). At the functional level, repair of DNA damage
induced by hydrogen peroxide, ionizing radiation and 2-
acetylaminofluorene (2-AAF) is impaired in arsenic-exposed
individuals relative to unexposed controls (112) (117) (111).
These population studies are broadly consistent with in vitro
studies indicating that arsenic exposure synergizes with the DNA
damaging effect of UV (124, 125) and inhibits repair of DNA
damage induced by a variety of agents (124) (126) (127).
Collectively, these findings indicate that, in addition to the
direct induction of DNA damage, arsenic exposure likely
sensitizes cells to the DNA damaging effects of other
mutagenic agents.

Exposure to environmental tobacco smoke (ETS), also known
as passive smoking, compromises genomic stability. Passive
smokers have higher levels of several types of DNA damage
than unexposed individuals (128). They also excrete higher levels
of 5-hydroxymethyluracil (129), which is not directly induced by
tobacco smoke but may result from ETS-induced oxidative
stress. Though passive smoking has not been correlated with
levels of 8-OHdG in serum or leukocyte DNA (128, 130),
lymphocytes from passive smokers have a longer comet tail
length, more Fpg-sensitive sites, and are slower in repairing
H2O2-induced DNA damage (131). Furthermore, buccal
epithelial cells of passive smokers have higher micronuclei
frequency when compared to non-smokers (132). Interestingly,
allele variants and expression levels of several DNA repair genes
have been associated with lung cancer risk and genome
instability among never-smokers, including XRCC1 (132),
OGG1, XPD (133), and AGT (134). A study using nasal
epithelial cells further revealed that NER was among the top 6
pathways with altered gene expression in association with third
hand smoking (135). While these data underscore the potential
role of environmental exposures in modulating DRC, the
mechanism by which passive smoking affects the activity of
specific DNA repair pathways is incompletely understood.

2.3.4 Circadian Rhythm, Lifestyle, and Dietary
Factors
Lifestyle factors have been shown to influence DRC. One of the
most studied factors is circadian rhythm, which has been
reviewed extensively (136–138) (139). It has recently been
shown directly that individuals subjected to a night shift

schedule exhibit diminished DRC (140). Diet can also affect
the efficiency of DNA repair (141). Mounting evidence indicates
that calorie restriction is associated with changes in DNA
damage and repair (142). While these phenomena await more
detailed study in human populations, animal models provide
substantial support for the influence of diet on DNA repair. In
mice, calorie restriction enhances NHEJ (143), and increases the
fidelity of DNA polymerase and DNA excision repair in the liver
(144). It also reverses the age-related decline in BER in brain,
liver, spleen, and testis, and lowers their mutation frequency
(145). In rat hepatocytes, caloric restriction altered the induction
and repair of DNA damage in a manner that depended on age
(146). Findings from an Ercc1D/- mouse model of premature
aging further show that dietary restriction from 10% to 30%
could preserve genome integrity, mitigate premature-aging
associated decline in gene transcription, and prolong their
lifespan (147). This supports the hypothesis that dietary
restriction may attenuate the aging process. Similarly, chronic
supplementation of melatonin reduces DNA damage by
upregulating APE and OGG1 (148). The underlying
mechanism and whether additional DNA repair pathways are
affected require further investigation. Overall, the findings in
humans and animal models support a role for lifestyle and
circadian rhythm in DNA repair, adding a layer of complexity
to the origins of inter-individual differences.

3 VARIATION IN IMMUNE FUNCTION AND
ITS RELATIONSHIP TO CANCER RISK
AND CARCINOGENESIS

The immune system defends against both infection and
malignancy. Based on the response time, mode of initiation,
and the cell types involved, there are two immune subsystems.
The innate immune system is activated rapidly upon recognition
of pathogenic antigens and stress signals. It is, in part, comprised
of dendritic cells (DC), monocytes, macrophages, granulocytes,
and natural killer cells (NK). These cells phagocytose pathogens
and activate inflammation signaling pathways and the
complement cascade. The adaptive immune system, on the
contrary, is more flexible in recognizing antigens. Its cellular
components, including T lymphocytes (T cells) and B
lymphocytes (B cells) can undergo mutagenesis to create novel
and specific antigen receptors. T cells can be further subdivided
into naïve T cells that recirculate between blood and lymph
nodes to scout for specific antigens and memory T cells that are
long lived and can mount a response to previously encountered
immunogenic stimuli. Cytotoxic T cells (or CD8+ T cells) secrete
granzymes to induce apoptosis in target cells and pore-forming
perforin to punch holes in the target cell membrane for
granzymatic actions. T helper cells (or CD4+ T helper cells)
secrete cytokines to activate macrophages and further activate
cytotoxic T cells. B cells express membrane-bound and secretory
antigen-specific immunoglobulins (or antibodies) to defend
against pathogens. Like NK cells, they are also involved in the
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activation of CD4+ T cells (149). Thus, immune response to
foreign antigens depends on the specific functions of and
interplay between the two immune subsystems that are
comprised of a wide variety of immune cells.

Due to the presence of neoantigens that arise from genome
instability and can be presented on the cell surface, cancer cells
can be immunogenic. They can accordingly be recognized and
eliminated by immune cells in the process of immune-
surveillance (2). However, cancer cells are capable of escaping
surveillance by altering antigen expression and hijacking the
immune system to favor tumor growth. Through cytokine
secretion, they can induce the differentiation of myeloid
suppressor cells, which are inflammatory monocytes capable of
inhibiting the activities of cytotoxic T and NK cells, as well as DC
maturation (150). Moreover, as innate immune cells, including
macrophages and neutrophils, infiltrate into tumors through
chemotaxis, they can be polarized towards a pro-tumor
phenotype and increase the secretion of proinflammatory
cytokines to support, rather than suppress, tumor growth (151).

Current cancer immunotherapies that leverage the cytotoxicity
of immune cells have proven efficacy in suppressing tumor
growth. For example, NK and NKT cell populations expanded
and activated in vitro have demonstrated potent cytotoxicity
against liver cancer (152). T cells engineered with chimeric
antigen receptors (CAR-T) are highly effective in targeting
CD19-expressing tumors (153). DC vaccines that capitalize on
the cytotoxicity of monocyte-derived DCs induce a tumor-specific
immune response, although the effects differ by vaccination route
and do not correlate with overall survival in phase I/II clinical
trials (154). To date, immune checkpoint blockade therapies that
target the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
programmed death 1 (PD-1) and its ligand PD-L1 have
demonstrated improved responses and better overall survival for
multiple cancers (155). Pembroluzuimab, which is an anti-PD-1
antibody, has been approved by the Food and Drug
Administration to treat patients with metastatic melanoma.
Another anti-PD-1 antibody, Nivolumab, has also been
approved to treat patients with metastatic melanoma and
patients who are previously treated for advanced or metastatic
non-small cell lung cancer. These emerging therapeutic strategies
form the basis for numerous ongoing clinical trials (156). For the
purpose of this review, we highlight them as evidence in support of
immune control of cancers.

3.1 Defects in Immune Function Are
Linked to Cancer
Impaired immune function has been linked to increased cancer
risk. By analogy to genetic diseases of DNA repair deficiency,
patients with impaired immune function have provided insights
on the role of the immune system in cancer. Numerous primary
immunodeficiency disorders are associated with increased risk of
malignancy (157) (158) (159) (160). Notably, since the DNA
repair machinery plays integral roles in multiple aspects of
immune function, some immunodeficiency disorders are
caused by genetic defects in DNA repair as outlined in Section
2.2. In the general population, individuals with low cytotoxic

activity of peripheral blood lymphocytes have higher risk of
cancer (161). Immunosuppression due to organ transplantation
and some viral infections are likewise factors that impair the
immune response. Patients receiving immunosuppressants to
prevent organ rejection have higher risk for non-melanoma skin
cancer (162). This may explain why transplant recipients are
generally more likely to develop cancer than those without organ
transplantation (163–166). Cancers in transplant patients are
also more aggressive and are associated with poor overall survival
(167–169). Viral infection can suppress the immune system and
increase cancer risk. Human immunodeficiency virus (HIV)
-infected patients develop more aggressive cancer (164) and
have higher risk for Kaposi’s sarcoma, B-cell non-Hodgkin’s
lymphoma, and multiple myeloma (170).

Despite the strong evidence in support of a role for the
immune system in controlling cancers, there are notable
exceptions. Individuals with severe combined immunodeficiency
due to loss of LIG4 function and those with dendritic cell
deficiency tend to be susceptible to hematologic malignancies,
but are not notably predisposed to solid malignancies (160, 171).
Similarly, immunodeficient mice do not necessarily develop
cancer. NOD scid gamma (NSG) mice have a relatively low risk
of developing tumors over a life-span of about 89 weeks (172),
and nude mice do not frequently develop spontaneous tumors
(173), despite being highly susceptible to infection (174, 175).

3.2 Factors That Contribute to Variation in
Immune Function
Inter-individual variation in immune function has been
postulated as a driver of variations in cancer susceptibility.
While age appears to be the most prominent intrinsic driving
factor for variation in immune function, environmental exposures
can also have a significant impact. Genetic variation associated
with autoimmunity, inflammatory disease, and susceptibility to
infection, is estimated to explain to 20-40% of the immune
variation (176), leaving the remainder to be explained by other
mechanisms. In this section, we review how immune function can
be affected by heritable factors, and describe how environmental
exposures may further explain inter-individual variation in the
immune response across populations.

3.2.1 Genetics
Reminiscent of the situation for DRC, significant inter-individual
differences in immune function have been reported. In a recent
detailed repeated measures study, inter-individual variation in
immune cell composition and plasma cytokine levels revealed
that differences between individuals are generally larger than
longitudinal variability within person (177). Plasma levels of the
chemokine CC chemokine ligand 20 (CCL20) are negatively
associated with the proportion of central memory and effector
memory cells in CD4+ and CD8+ T cell lineages, and individuals
with extremely high counts of these immune subsets are found to
have low levels of plasma CCL20 and CCL22. Plasma levels of IL-
16 are also negatively associated with the proportion of central
memory T cells in CD4+ and CD8+ lineages, and CD56dim NK
cells. Overall, plasma levels of 21 proteins accounted for nearly
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80% of the variation in the abundance of central memory T cells.
In a separate study, the abundance of CD8+CD45RO+ memory T
cells and CD3+CD56+ NKT cells was found to vary significantly
between individuals in repeated measures taken from 25
individuals over at least a three-week interval, but levels were
largely stable within-person (178) Of note, differences in
immunophenotype have been associated with age, sex, body
mass index, and race (177, 179–183). Environmental exposure,
vaccination (184, 185), and infection (186–189) can furthermore
lead to within-person variation. Nevertheless, the observation
that the immune cell composition and cytokine levels of an
individual are relatively stable throughout a year (177) suggests
that some variability may be determined by genetics or processes
that occur during development.

Several lines of evidence support a role for genetics in human
variation with respect to immune function. Although studies in
monozygotic and dizygotic twins indicate that immune
responses are dominated by non-heritable factors, numerous
parameters including serum proteins and immune cell
population composition are heritable (190). Single nucleotide
polymorphisms (SNPs) in the IL-12B gene, which codes for IL-
12p40, are associated with immune-related diseases such as
psoriasis (191) and asthma (192). Eight SNPs have also been
identified to be associated with IL-10 levels (181). Furthermore,
studies in twins indicate that ex vivo lipopolysaccharide (LPS)-

induced IL-1b production, as a measure of innate immunity, is
heritable (180). This suggests that varying levels of LPS-induced
secretion of tumor necrosis factor alpha (TNFa), which ranges
widely from 0.187 to 2.714 ng/ml in healthy blood donors may be
explained at least in part by genetics (193). In further support of
genetic variation as a driver of differences in immune responses,
a functional study using toll-like receptor (TLR) ligand-
stimulated cord blood mononuclear cells has detailed the
association between cytokine production and SNPs in innate
immune genes (182). Taken together, the available data support a
role for genetics in inter-individual variation in immune function
in the general population.

3.2.2 Aging
It has long been appreciated that the immune system undergoes
age-related changes, which are collectively referred to as
immunosenescence and notably include the accumulation of
DNA damage in immune cells (194). Although age-dependent
changes in immune cell function have been reported in bone
marrow (187), bronchoalveolar lavage (179), and thymus (195),
this review will focus on PBMCs because they are most
immediately amenable to population studies. Several studies
have found age-dependent changes in total leukocyte counts
(196) or the composition of leukocyte subtypes (179, 197, 198)
(199) (183, 198) (Table 2).

TABLE 2 | Age-dependent changes in the population of immune cell subtypes.

Immune system Cell types Cell subtypes Age-dependent
change

Rate of change Ref

Adaptive immune
system

Total
lymphocytes

Decrease Not studied (196)

T lymphocytes CD4+ T cells Slight decrease An average of 9.8 cells/ml/year
ranging from -120 to +170 cells/ml/year

(199)

Naïve CD4+ T cells
(CD45RA+CD28+)

Decrease An average of 4.3 cells/ml/year
ranging from -80 to +108 cells/ml/year

(199)

Decrease −0.3%/year (200)
Treg
(CD4+CD25+FOXP3+)

Increase An average of 1.4 cells/ml/year
ranging from -4 to +10 cells/ml/year

(199)

CD4+CD28- T cells Increase An average of 1.6 cells/ml/year
ranging from -23 to +60 cells/ml/year

(199)

Increase 0.24%/year (200)
CD8+ T cells Decrease An average of -1.3 cells/ml/year

ranging from -163 to +69 cells/ml/year
(199)

Naïve CD8+ T cells Insignificant change An average of -1.8 cells/ml/year
ranging from -121 to +53 cells/ml/year

(199)

CD8+CD28- T cells Insignificant change An average of 0.9 cells/ml/year
ranging from -121 to +53 cells/ml/year

(199)

B lymphocytes Mature B cells Insignificant change -6.6 cells/ml/year (199)
Naïve B cells No difference -5.5 cells/ml/year (199)

Decrease −0.36%/year (200)
Memory B cells No difference -0.1 cells/ml/year (199)

Innate immune system NK cells No difference An average of 25.3 cells/ml/year
ranging from -180 to 100 cells/ml/year

(199)

Increase Not studied (196, 201,
202)

CD56bright NK cells Decrease Decrease from 15.6 cells/ml to 8.1 cells/ml in 60
years

(196)

CD56dim NK cells Increase Not studied (201)
Monocytes Trend of increase Not studied (203)
Dendritic cells Plasmacytoid DCs Decrease Not studied (203)

Myeloid or classical DCs Increase Not studied (203)
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Age-related changes in adaptive immune cells have been noted.
A major study involving 177 individuals, who were sampled every
six months for three years, has identified an age-dependent
decrease in CD4+ and CD8+ recent thymic emigrant T cells and
transitional B cells (183). This decrease coincides with the
reduction in thymus and bone marrow activity and an increase
in the inflammatory population and CD8+ T cells. In particular,
the proportion of CD4+ T cells decreases with age (198, 199)
whereas that of CD4+ NKT cells increases with age [(198);
Table 2]. Based on the expression of CD27 and CD28, T cells
can be further subdivided into naïve and early-differentiated cells
(CD27+CD28+) and fully differentiated (CD27-CD28-) CD4+ and
CD8+ T cells (204, 205). A younger cohort had a significantly
larger CD27+CD28+ subpopulation when compared to an older
cohort (206). Similarly, based on the expression of a leukocyte
common antigen isoform, CD45RA, and chemokine receptor
CCR7, T cells can be subdivided into naïve (CD45RA+CCR7+),
central memory (CD45RA-CCR7+), effector memory (CD45RA-

CCR7-), and terminally differentiated effector memory
(CD45RA+CCR7-) cells (207). Within the CD8+ subset, older
individuals had fewer CD45RA+ naïve T cells and more central
memory and terminally differentiated effector cells when
compared to younger individuals (208). In contrast, within the
CD4+ subset, a decrease in the CD27+CD28+ cells was the only
difference observed in older individuals. These findings imply that
the naïve T cells shift towards a more terminally differentiated
subpopulation upon aging. This may limit the plasticity of the
naïve T cells to differentiate and respond to novel antigens. The
concomitant loss of the central memory and terminally
differentiated CD8+ T subsets suggests that regardless of the
activation by CD4+ T cells, the cytotoxic T cell response is
compromised in the elderly.

Age-dependent, subset-specific changes in innate immune cell
counts have been documented. The proportion of NK cells
increases with age (196, 199, 201, 202) (Table 2) Based on the
expression level of the pathogen recognition receptor CD56 (209),
NK cells can be further divided into CD56bright, which resides in
the lymph node (210) and are immunoregulators due to their
cytokine production capacity (211), and CD56dim NK cells, which
have cytotoxic potential (212). The CD56bright subset is less
abundant in cord blood when compared to adult blood (202),
and decreases further with age (196). By contrast, the CD56dim

subset increases with age (201, 203). Similarly, the proportion of
monocytes increases with age (203). This monocyte population
includes the classical, transitional, and CD14+CD16+ non-classical
subsets. Among the non-monocytes, the proportion of myeloid-
derived DCs increases with age, whereas that of plasmacytoid DCs
decreases with age. In view of the age-dependent changes in
immune cell composition, associating the cell count and their
functions will help map the landscape of immunophenotype
throughout life. Integrating this information may help identify
phenotypic and functional biomarkers for immunosenescence,
treatment response, or higher susceptibility to diseases including
infections and cancers.

Molecular markers of immune function, including cytokine
production and response to antigenic stimuli also change with
age. In particular, the production of cytokines interferon gamma

(IFN-g), interleukin (IL) -4 (IL-4) and IL-6 has been shown to
increase with age whereas that of IL-2, IL-10, and TNF-a
decreases with age (97, 180, 183, 213). Since the cytokine
production capacity of CD4+ T cells is invariant with age,
changes in T cell subtype composition are proposed to explain
age-related changes in function (206). Interestingly, expression
levels of IL-7 are lower in nonagenarians than middle aged
individuals (214). Genes in the IL7R gene network are also
differentially expressed between the age groups. The fact that
higher IL-7R expression level is associated with better
prospective survival suggests a role for cytokines and immune
response in longevity.

The ability of T cells to respond to mitogenic stimuli is also
affected by age. Aging attenuates the proliferation of PBMCs
induced by stimuli including phytohemagglutinin (PHA),
concanavalin A, pokeweed mitogen, and anti-CD3 (aCD3) or
anti-CD28 (aCD28) monoclonal antibodies either alone or in
combination (97, 197, 213). In particular, CD4+ T cells from
elderly individuals have a lower proliferative response to
staphylococcal enterotoxin B (206). Activated T cells also have
lower induction of nuclear factor kappa B (NFkB) in response to
anti-CD3, phorbol myristate acetate (PMA), and TNFa (215).
Notably, treatment with phorbol dibutyrate and calcium
ionophore A23187 induces higher nuclear translocation of
NFkB in neonatal than adult T cells, though the composition
of NFkB is similar between the two groups (216). Collectively,
these results imply that T cells from older individuals are less
sensitive to stimuli.

Similar to T cells, NK cells isolated from elderly individuals
have diminished proliferation activity and CD69 induction
following treatment with IL-2 when compared to the younger
group (201). The response of CD8+ CD45RO+ memory T cells
and CD3+CD56+ NKT cells to IL-23 also decreases with
increasing age. T cell receptor repertoire diversity decreases and
clonality increases with age (217). Taken together, the findings
support the notion that age-dependent decrease in immune cell
function, based on proliferation and cytokine production induced
by antigenic stimuli, and cytotoxicity, has an impact on cancer
risk. How age-dependent changes in immune function modify
cancer risk warrants further investigation.

3.2.3 The Environment
Exposure to environmental agents can have major effects on the
immune system (218). Given that the exposure effects have been
well documented, to underscore parallels with environmental
agents that affect DNA repair, we will focus on how the immune
system is impacted by the same cancer-causing agents (arsenic
and smoking) that were discussed in Section 2.3.3. We will
review how environmental exposure may contribute to inter-
individual variation in immune function. As with DNA
damaging agents, extensive experimentation has been carried
out in vitro and with animal models to understand the biological
mechanisms underlying the immune effects of environmental
exposures, but they are beyond the scope of this review.

Arsenic-induced changes in the immune system are
implicated by epidemiological studies. Subjects exposed to
higher levels of arsenic have higher serum levels of

Cheong and Nagel Immunity, DNA Repair, and Cancer

Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 8995749145

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


immunoglobulin (Ig) A (219). Urinary arsenic levels are also
positively associated with the number T helper (Th) 17 cells
(220), whereas nail arsenic levels are associated with lower
counts of CD56+ NK cells (221), after adjusting for
confounding factors. Consistent with impairment of the
immune system, lymphocytes isolated from arsenic-exposed
individuals have a longer average doubling time in vitro (222).
They also secrete lower levels of cytokines, including IL-2, IL-4,
IL-6, IL-10, tumor necrosis factor alpha (TNFa), and IFNg
under basal conditions (223) and following stimulation with
concanavalin A (Con A) (224). Monocyte-derived macrophages
isolated from the exposed individuals display abnormal
morphology, diminished adhesion, and have reduced
phagocytic capacity (225). These findings indicate arsenic
exposure disrupts both innate and adaptive immune responses.
Notably, arsenic exposure often leads to skin lesions (219) but
not necessarily cancer. Whether the immunomodulation
induced by arsenic contributes to excess cancer risk in exposed
populations awaits further investigation.

Early life exposure to arsenic may also impact the immune
system. Children with prenatal exposure to arsenic have higher
risk of respiratory illness (226), and diminished cell-mediated
immune function (227). Prenatal arsenic exposure alters cord
blood immune cell composition, increases the proliferation of
effector T and T cells, and reduces the suppression by T
regulatory (Treg) cells in a dose-dependent manner (228)
(229). Prenatal arsenic exposure is also inversely associated
with the percentage of naive and activated T helper memory
cells in cord blood, with notable sex-dependent differences in the
strength of the association (230). Moreover, lymphocytes isolated
from children with prenatal arsenic exposure secrete lower levels
of CX3CL and tumor necrosis factor alpha following PHA
stimulation (231). Proteomic analyses of cord blood further
revealed aberrant levels of chemokine (C-X-C motif) ligands,
macrophage migration inhibitor factor (232), and interleukins
(233). This implies that the prenatal period may be a critical
window of susceptibility for disruption of immune responses by
environmental arsenic exposure. Nevertheless, further studies are
needed to determine whether these arsenic effects can be causally
linked to higher cancer risk later in life.

Smoking suppresses the immune system (234), but the impact
of passive smoking is less studied. One study involving non-
smoking adult volunteers has shown that serum levels of the
nicotine metabolite cotinine correlate with an increase in the
naïve CD3+ and CD4+ T cell subsets and a decrease in
the memory CD3+ and CD4+ T cell subsets in peripheral blood
(235). Other studies have focused on immune cells in the saliva
and nasal lavage, which are primary target tissues due to their
proximity to the exposure route of ETS. For instance, ETS is
associated with a higher percentage of phagocytic cells in the
saliva (236). ETS is also correlated with the level of
immunoglobulin E and immunoglobulin A in nasal lavage
following exposure to ragweed (237). By contrast, ETS has no
effect on the levels of cytokines IL-2, IL-5, IL-13, and IFNg in the
nasal lavage. These findings indicate that ETS has differential
effects on the subsets of peripheral T cells, and may induce
inflammatory responses. Interestingly, parental smoking dose-

dependently decreases IFNg production in mitogen stimulated
PBMC and is associated with active wheezing in children (238).
In view of the above findings, exposure to ETS in children is
suggested to be associated with asthma and cancer (239). In
summary, the findings reported in this section underscore the
significant impacts of two exemplar environmental exposures
that can modify immune function, and which are associated with
increased cancer risk.

2.3.4 Circadian Rhythm, Lifestyle, and Dietary Factors
As is the case with DNA repair, accumulating evidence indicates
that immune function can vary substantially within an individual
over the course of the day. Circulating immune cell populations
undergo cyclic diurnal changes (240) (241). Among the immune
cell subpopulations investigated, rhythmic changes are strongest
among naïve CD4+ and CD8+ T cells (242, 243), and weakest,
albeit still significant, among B cells (240). These observations
have been made in both humans and mouse models (244), which
have provided insights into how circadian rhythm regulates the
trafficking of immune cells (245) (246). Notably, mice
immunized with T cell dependent antigen trinitrophenyl-
ovalbumin (OVA) in the evening have higher serum levels of
antibodies when compared to those immunized in the morning
(247). Consistent with these findings in animals, individuals
receiving bacillus Calmette-Guerin vaccination in the morning
exhibit stronger trained immunity and adaptive response when
compared to those vaccinated in the evening (248). It is thus
postulated that the timing of immunotherapy or cancer vaccine
administration may affect the tumor suppressing effect. With
these considerations in mind, chronotherapy is emerging as a
novel research field that may improve the efficacy of cancer
treatment (138).

Rhythmic changes in the immune cells are associated with
levels of hormones and regulated by changes in cytokine levels
and the expression of molecular clock genes (249–252). Levels of
the stress hormone cortisol level peak near the time of awakening
and then decline throughout the day (240). Its serum level
negatively correlates with the abundance of circulating T cell
subsets, including total CD4+ and CD8+ T cells (243). In vitro
treatment with cortisol further shows that the suppression is
most pronounced in native T cells, when compared to central
memory and effector memory T cells. By contrast, the effector
CD4+ and CD8+ T cells remain unaffected. Melatonin is the
pineal hormone responsible for circadian synchronization (253)
and its level peaks at night (240). Treatment in vitro with
melatonin does not affect T cell proliferation upon simulation
with Con A (254). However, higher salivary melatonin levels
measured in the morning are associated with a higher percentage
of HLA-DR+ monocytes and CD16+ lymphocytes, a higher CD4/
CD8 ratio, lower lactate dehydrogenase activity in lymphocytes,
and fewer CD3+ and CD8+ cells when compared to low salivary
melatonin levels (255). High salivary melatonin levels in the
evening are associated with a different constellation of immune
system characteristics including lower phagocytic activity of
granulocytes, lower CD4/CD8 ratios, and lower circulating
levels of HLA-DR monocytes and CD16+ lymphocytes.
Moreover, melatonin inhibits the secretion of T-cell
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independent antibodies (IgM, IgG1, IgG2b, and IgG3) in mice
(247). These findings indicate that hormonal disruption of
circadian rhythm can impact the immune response in
complex ways.

Similar to the situation with DNA repair (139), animal
models reveal that immune cells are subject to regulation by a
circadian clock at a molecular level. For instance, rhythmic
changes in the expression of clock genes including brain and
muscle ARNT-like 1 (Bmal1), nuclear receptor superfamily 1,
group D, member 1 (Rev-erba) Period circadian regulator 1
(Per1), Per2, and Clock have been identified in mouse bone
marrow derived macrophages (256), peritoneal macrophages
(257), splenic macrophages, DCs, and B cells (256). In human
CD4+ T cells, rhythmic changes in the expression of clock genes
are synchronized with the production of IFNg, IL-2, IL-4, and
CD40L (258). In wild type mice, serum levels of LPS-induced
cytokines display rhythmic changes (259), which are lost in
Bmal1 deficient mice. Similarly, rhythmic change in serum
levels of IL-6 is lost in Rev-erba−/− mice (259). These findings
reveal that the rhythmic control of immune function is tightly
regulated by an intrinsic circadian clock, and the available data
currently support a stronger role of the circadian clock in the
innate immune response.

How nutrition modifies the immune system is a continually
evolving field of research. Early studies focused primarily on the
effects of vitamins and trace elements on the immune function
have been reviewed (260). For instance, deficiency in vitamin B6
impairs lymphocyte maturation, proliferation, antibody
production, and activity of T cells. It also attenuates NK cell
activities. Deficiency in folate attenuates proliferation of CD8+ T
cells and NK cell activities. Deficiency in vitamin B12 reduces
total lymphocyte counts and the number of CD8+ cells. Vitamin
C has also been shown to stimulate neutrophil chemotaxis, but
its anti-inflammatory effects remain incompletely understood.
Deficiency in vitamin A impairs phagocytosis and increases
production of IL-12 and TNFa, which promotes inflammation.
Deficiency in vitamin D impairs the innate immune response.
Deficiency in trace elements including selenium, zinc, copper,
and iron, can also disrupt the immune system. Comparisons
between high and low fat diets have revealed impacts on cytokine
levels that may impact the homeostatic balance between Treg
and Th17 cells (261). Children following a Mediterranean diet
for a year have higher salivary levels of an anti-inflammatory
cytokine IL-10 and lower levels of IL-17 (262). A variety of
dietary components, including red grape polyphenols, prebiotics,
probiotics and symbiotics have been suggested to boost immune
function in older individuals (263). Taken together, these
findings establish an important role for diet-dependent
immune-modulation, which may affect cancer susceptibility, as
has been recently reviewed (263–265).

Several lines of evidence support a role for exercise in
modulating immune function. Regular exercise and physical
fitness can delay the onset of immunosenescence and
tumorigenesis (265). Exercise improves the circulation and
function of innate immune cells (266–268). Although the
increase in immune cells is transient, it leads to a 40-50%

decrease in the number of days with upper respiratory tract
infection among adults during winter season (269). By contrast,
exercise routines that induce muscle and tissue injury are pro-
inflammatory and suppresses immune response transiently
(265). Thus, the effects of exercise on the immune system
appear complex and require further investigation.

Collectively, the data presented in this section outline
numerous potential non-heritable sources of inter-individual
variation in immune function. Taken together with the effects of
aging, genetics, and the environment, these findings are consistent
with a highly dynamic model of immune function. As with DNA
repair, assessments of immune function at the individual level
may provide important insights into disease susceptibility, but
must be carried out in a manner that takes the many sources of
variability into account. In the next section, we discuss a possible
strategy for surveying both immunophenotype and genome
integrity in human populations.

4 POTENTIAL FOR SIMULTANEOUS
PROFILING OF IMMUNOPHENOTYPE
AND GENOME INTEGRITY FOR MORE
ACCURATE ASSESSMENTS OF
CANCER RISK

Although DNA repair and immune function are distinct
biological processes, they are subject to many of the same
influences, and they both play important roles in cancer
susceptibility. It has long been appreciated that several DNA
repair pathways play integral roles in the immune system (270)
(271). Furthermore, one of the most acute consequences of
exposure to DNA damaging agents is suppression of the
immune system (272) (273) (273). As outlined in this review,
environmental exposures such as arsenic and passive smoking,
circadian disruption, and lifestyle factors can modulate both
DNA repair and immune function. It is noteworthy that defects
in DNA repair and immune function are two of the most
prominent hallmarks of cancer (2). Accordingly, efforts are
underway to perform functional profi ling in human
populations, with the goal of identifying biomarkers that could
be used for personalized prevention and treatment of cancer.
While the idea of functional profiling has been framed
independently in the context of genome integrity (13), and
immune function (274), we propose that considering both
simultaneously would increase the accuracy and robustness of
cancer susceptibility predictions (Figure 2).

Patients with defects in nucleotide excision repair provide an
excellent example of elevated cancer risk in individuals who are
deficient in DNA repair and, perhaps, immune function (275–
277). XP patients have a massively higher risk of developing UV-
induced skin cancers (278), but also have an increased risk of
developing internal tumors including glioblastoma, leukemia,
lymphoma, and lung cancer (279, 280). The prevailing
hypothesis regarding cancer susceptibility, both in XP patients
and among those with lower NER capacity in the general
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population (14), has been that increased genome instability leads
to higher rates of mutation and thus greater cancer susceptibility.
However, it was noted in early case reports and small studies that
XP patients also suffer from some forms of immune dysfunction
(281) (275). Lymphocytes from XP patients have a larger clone
size in response to allogeneic leukocytes (282), suggesting that
lymphocytes of XP patients are more diverse, possibly due to a
higher somatic mutational burden. Earlier studies have shown
that lymphocytes from XP patients are less responsive to
stimulation with mitogens (275, 277). Notably, serum from XP
patients can attenuate the response of normal lymphocytes to
PHA (275). A case study has also shown that DCs isolated from a
trichothiodystrophy (TTD) patient with an XPD mutation have
lower expression of CD86 co-stimulatory molecules and HLA
glycoproteins, and are defective in stimulating native T
lymphocytes (277). Notably, TTD patients commonly suffer
from infections and there are several documented cases of
immunodeficiency (283). Since some TTD patients do not
appear to exhibit defects in DNA repair, these findings raise
the possibility that NER proteins could have a role in immune
function that is distinct from their role in DNA repair. NK cells
from XP patients of multiple complementation groups display
impaired lytic activity and lower IFNg production in response to
poly I:C stimulation, though the total NK cell count is normal
(276). Moreover, XP patients have higher tolerance to the
grafting of skin from a normal HLA-incompatible donor (275).
Taken together, these findings suggest that innate and adaptive
immune cell function may be defective in patients with

nucleotide excision repair defects, but the underlying
mechanism and the extent to which these findings may extend
generally to patients with XP and other NER deficiency disorders
remain unknown. Additional, comprehensive studies in larger
cohorts of patients with NER deficiency are needed to assess
whether their cancer-prone phenotypes can be explained in part
by an accompanying immune defect. Such studies would also
illuminate whether inter-individual variation in NER can be
expected contribute to variation in immune function in the
general population.

In the case of xeroderma pigmentosum variant (XP-V),
patients express a truncated POLH, which reduces the
expression and activity of DNA polymerase h (Pol h) (284).
POLH is involved in translesion synthesis (TLS), which
promotes tolerance of CPDs, thymidine dimers, and 8-
oxoguanine lesions (285, 286). Loss of POLH leads to error
prone-repair of CPDs by mutagenic polymerases zeta, kappa,
and iota (287). Interestingly, UVA irradiation induces a
mutational signature that suggests a role for basal mutagenesis
induced by oxidative damage in the elevated risk for internal
cancers in XPV patients (288). XP-V patients also have lower
frequency of A/T mutation and higher frequency of deletion in Ig
genes in activated B cells, which likely reflects the role of POLH
in somatic hypermutation in B cells (289). POLH deficiency may
thus drive the higher cancer incidence among XP-V patients via
multiple mechanisms. In contrast with the severe combined
immunodeficiency often associated with LIG4 syndrome due
to disrupted V(D)J recombination (35), XPV patients do not

FIGURE 2 | Simultaneous assessment of genome integrity and immune function may be a more robust strategy for personalized prevention and treatment of
cancer. Most population studies use blood samples to assess genome integrity and immune function because blood draws are less invasive than the procedures for
collecting other tissues from human subjects. A key assumption is that fundamental processes in cancer etiology (blue boxes) as measured in blood (red boxes) are
sufficiently related to be considered a surrogate for the corresponding target tissue (pink boxes). Since blood and its components are heavily involved in immune
processes, this tissue can provide extensive insights into immunophenotype. Likewise, lymphocytes provide extensive insights into inter-individual variation in
genome integrity mechanisms, including those underlying risk of numerous solid malignancies as reviewed herein. In addition to its role in preventing mutagenesis
and immunosuppression that can be induced by DNA damage, DNA repair is extensively involved in the differentiation and activation of immune cells. Nevertheless,
variation in immune function and genome integrity pathways is independent and challenging to predict from genetics and indirect genomic markers. Therefore
simultaneous functional assessment of DNA repair activities and immune function in studies using blood may improve the accuracy and precision of cancer risk
estimates beyond what is possible when considering either process alone.
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present with pronounced immunodeficiency, possibly due to
compensatory activities of other polymerases in somatic
hypermutation. A small group of patients deficient for a
subunit of another polymerase (POLE) does exhibit
immunodeficiency and points to the possibility for additional
rare polymerase deficiency disorders yet to be discovered (290).

Population studies offer numerous opportunities for
simultaneous investigation of immune function and genome
integrity. In identifying cancer risks and associating genome
instability with cancer outcomes, these studies almost exclusively
rely on blood samples due to its safe and relatively less invasive
sampling method when compared with other types of biopsies.
Furthermore, the multitude of cellular and molecular markers of
immune function in blood represent a rich source of information
that can be paired with analyses of genome integrity in
lymphocytes. Some studies have already taken advantage of the
opportunity to measure both genome integrity and immune
function in a single population. For example, it has been
observed that immunosuppressive drugs suppress DNA repair in
human PBMCs (291, 292). As discussed in the following section,
emerging technologies have greatly increased the feasibility of
simultaneous profiling of DRC and immunophenotype in
human populations.

5 TECHNOLOGICAL ADVANCEMENTS
THAT WILL HELP SHAPE THE FUTURE
OF PRECISION MEDICINE

Significant technological advances have recently yielded
functional tools for the interrogation of genome integrity and
immune function. Here we review a sampling of emerging
technologies that hold promise for enabling combined
phenotyping with respect to DNA repair and the immune
system in human populations.

As has been reviewed recently, several technologies are now
available for analyses of genome integrity in human populations
(13). Fluorescence-based multiplex flow-cytometric host cell
reactivation (FM-HCR) assay measures the ability of live cells
to repair site-specific DNA lesions (293). The assay is designed to
have each fluorescent plasmid engineered to incorporate a
specific type of DNA damage, including mismatches, abasic
sites, oxidized bases, or DSB. The use of multiple fluorescent
proteins enables multiplexing analyses for DNA repair activities.
FM-HCR has thus been applied in a variety of settings, including
in primary human lymphocytes (294–299).

The high throughput CometChip has been developed based
on the established single gel electrophoresis assay (300, 301). Due
to its 96-well format and automated image analysis, the
CometChip is amenable to analyse large numbers of samples.
It has recently been applied in a population study (302) and has
been widely adopted for genotoxicity testing (303–305).
CometChip technology has also been modified to interrogate
DNA methylation status (306), levels of specific DNA adducts
(307), and DNA damage in spheroids, which is also known as
SpheroidChip (308).

A fluorescence-based unscheduled DNA synthesis (UDS)
assay provides a substantially more convenient and user-
friendly approach for measuring NER in populations. The
original UDS assays used radio-labeled thymidine and
autoradiography, making them laborious and inconvenient for
routine clinical use (309). A new fluorescence-based method
incorporates a thymidine analogue 5-ethynyl-2-deoxyuridine,
which is conjugated to a fluorescent azide after UV irradiation
and can be quantified by flow cytometry (310) (311). This
technology is now being used to support the diagnosis of rare
DNA repair deficiency disorders (312).

Single-cell whole-genome sequencing has opened up a new
venue for studying somatic mutation and identifying mutational
hotspots within the genome (313–316). This technology
leverages single-cell multiple displacement amplification
(SCMDA) procedure for detecting a full spectrum of base
substitutions in a somatic cell. The technology has been used
to reveal age-dependent changes in somatic mutations of B
lymphocytes. The mutations in normal B lymphocytes not
only resemble the COSMIC signatures in cancer (317), the
data imply the age-dependent accumulation of somatic
mutation is pivotal to the development B cell cancers (316).
Thus, SCMDA, in combination with single-cell whole genome
sequencing, is the tool for dissecting interindividual variation in
mutation burdens influenced by genetics, age, environmental
exposure, and lifestyle factors.

Single-cell RNA and DNA sequencing technology has
advanced rapidly in recent years and found application in
nearly every dimension of human biology (318). This
technology analyzes the transcriptome of single cells within a
heterogeneous population (319). It provides a powerful unbiased
alternative to immunophenotyping approaches such as flow
cytometry mass cytometry (CyTOF), which are less expensive
but require labeling of surface markers and reveal little additional
information at the single cell level (320) (321) (322). Single cell
RNA sequencing enables the interrogation of cell-cell
interactions, identification of changes during cell fate
specification, and dissection of regulatory networks associated
with cellular functions at single-cell level and based on cellular
subtypes, which are not feasible in whole tissue analyses (323–
326). Although single cell technologies remain expensive,
continuous innovation raises the prospect of their eventual
application in population studies. The emerging theory of
clonal hematopoiesis of indeterminate potential (CHIP)
describes the presence of somatic mutation in the cancer driver
gene at a variant allele frequency of at least 2% in blood and bone
marrow cells of a healthy individual (327–329). This process of
clonal selection effectively amplifies mutations in a manner that
makes them detectable by bulk sequencing. CHIP is induced by
DNA damaging agents, and associated with increased risk of
both leukemia and solid malignancies. It can thus be presumed to
represent a molecular ruler that reflects both exposure to DNA
damaging agents and the ability to repair DNA damage at the
individual level.

Cellular indexing of transcriptomes and epitopes by
sequencing, also known as CITE-seq, is a high throughput
single-cell RNA sequencing analysis that is coupled with
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epitopes to interrogate expression of cell surface proteins (330).
Since immune cell subtypes express specific surface markers,
which can be captured by specific epitopes, CITE-seq has been
widely used for determining the transcriptome profile of specific
immune cells within a heterogeneous population (331, 332).
Though CITE-seq and single-cell RNA sequencing serve similar
purposes, CITE-seq has a shallower sequencing depth and relies
heavily on the protein expression of specific cell surface marker.
Its design better fits for studying immune cells.

Historically, it has not been feasible to perform functional
screens of such nuanced phenotypes as those associated with
modest defects in genome integrity or immune function. But
these emerging technologies, particularly when used in
combination, will enable such studies. Since blood samples are
routinely collected for molecular epidemiological studies that
focus on either genome integrity or immunophenotyping, the
tissue could be maximally leveraged to understand how both
processes may interact and contribute to cancer risk.
Furthermore, studies combining immunophenotyping with
genome integrity assays may shed light on whether mild DNA
repair deficiencies in the general population lead to increased
cancer risk, at least in part, by limiting the efficiency of
immune responses.

6 OPEN QUESTIONS AND FUTURE
STRATEGIES FOR POPULATION STUDIES

Here we briefly propose a framework for future studies aimed at
understanding the joint influence of inter-individual variation in
DRC and immune function on cancer risk. We pose several
questions in the field that we view as important areas to
investigate, followed by broad recommendations for pursuing
population studies at the intersection of immune function and
genome integrity.

6.1 Open Questions
1. Is blood a reliable surrogate for other tissues? Blood is an
extremely rich source of data, including a variety of immune
cells, cytokines, circulating DNA, and small molecules that can
be analyzed to assess immune function, DNA damage and repair,
and environmental exposures (Figure 3). Because it can be
collected relatively easily and in a repeated manner, sampling
blood is also among the most feasible approaches for population
studies. Nevertheless, circulating immune cells may not reflect
the biology of tissue resident immune cells and tissue-specific
microenvironments. For these reasons, whenever possible, ideal
studies would include sampling the tissue of interest and, in the
case of cancer studies, the tumor as well.

2.Which immune markers are the best predictors of cancer
risk and outcomes? The emerging technologies described in the
previous section provide an unprecedented opportunity for deep
analysis of immunophenotypes, but because they have been
developed so recently, they have only begun to be applied
towards understanding the relationship between immune
function and carcinogenesis. Studies surveying a broad array of
immune markers are needed; these would include a census of

circulating immune cells, measurements of cytokines, and tests
for immune cell function.

3. Which combinations of functional assays are the best
predictors of cancer risk and outcomes? Emerging functional
assays described above and numerous established assays for
immune cell activation and proliferation (333) integrate
complex regulatory mechanisms and can complement ‘omics
approaches (genotyping, transcriptional profiling, proteomics
and DNA sequencing). Functional assays for DNA repair often
outperform polygenetic cancer risk scores (334), and even
stronger associations are seen in limited cases where multiple
functional assays for different pathways have been applied to the
same set of samples (335). But it is not possible to predict which
functional biomarkers provide the most useful information to
support mathematical models that would predict cancer risk or
cancer outcomes. Thus, cancer case-control studies should be
designed to integrate as many functional assays as is feasible for
the same set of subjects. Given the practical constraints of
funding and expertise, biological materials should be banked
appropriately to enable future analyses.

4. How do markers of genome integrity and immune
function change over the life course? As detailed in section 2
and section 3, the phenotypic markers we propose to survey
with the goal of advancing personalized medicine are subject to
time-dependent variation due to a variety of factors including
lifestyle, environmental exposures, health status, and aging. To
use these functional biomarkers as predictive tools, it will be
necessary to carry out longitudinal studies wherein they are
measured prospectively.

5. Does NER contribute to immune function? Numerous
DNA repair pathways are already implicated in the mutagenic
processes that occur during immune cell development and
activation. In addition to those processes, emerging roles for
DNA damage and DNA repair in gene regulation (336, 337),
together with the growing recognition that many proteins
“moonlight” in multiple roles within the cell (338), raise the
possibility of as yet unrecognized mechanisms by which DNA
repair pathway might contribute to immune function. By
carrying out detailed immunophenotyping in individuals with
profound defects in DNA repair, such as patients with XP, CS,
and TTD, it can be determined whether NER deficiency, perhaps
specifically which global genome (GG-NER) or transcription-
coupled (TC-NER) NER subpathways, is associated with an
immune disorder.

6. Can stem cell-derived cells recapitulate DRC of primary
human tissues? A growing number of studies have found
associations between DRC in blood cells and cancer risk, and
the simplest interpretation is that the blood cells accurately
represent genome maintenance in the tissue where the cancer
develops. However, DNA repair varies with cell type and as a
function of cell cycle and the tissue microenvironment. It is
therefore possible that at least some of the associations between
cancer risk and genome integrity as measured in immune cells is a
reflection of immune cell function, rather than genome integrity
in the target tissue. This question can in principle be unraveled by
studies that measure DNA repair in multiple cell types from the
same individual, but it likely will not be feasible to collect most
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tissues as part of a population study. By differentiating stem cells
into cell types of interest, it may be possible to recapitulate
physiological cell programming and make tissue-specific
assessments of DRC on an individualized basis.

6.2 Recommendations
1. Focus on human studies: The framework we are proposing is
at least in part discovery-based and centers human subjects, not
biological model systems. This is a notable departure from the
traditional approach more familiar to mechanistic biologists,
wherein simple genetic models are used to test hypotheses
before broaching the complexity of human systems. Instead, in
this framework, one would first identify promising biomarkers in
humans, and then follow up with confirmatory studies in model

systems that best approximate the human biology. Taking the
differences in telomere biology in mice and humans as an
example (339), one can appreciate the value of prioritizing
mechanistic characterization of biomarkers that have shown
promise in human studies, and doing so in a model system
that recapitulates the human biology. Though highly controlled
genetic model systems such as CRISPR knockouts are not a
feature of population studies, there are invaluable natural
experiments and edge cases that can be leveraged for
analogous purposes. For example, the phenotypes associated
with rare genetic disorders that disrupt key aspects of genome
maintenance and/or immune function such as those discussed in
previous sections can be taken as upper or lower bounds for
phenotypic variation in the general population. Likewise,

FIGURE 3 | Simultaneous assessment of genome integrity and immune function using human blood samples. Following density gradient centrifugation of peripheral
blood, peripheral blood mononuclear cells (PBMCs) are enriched in the buffy coat layer. Different immune cell subtypes within the PBMC population can be further
identified based on their specific cell markers. Genomic integrity of the immune cell subtypes can be comprehensively evaluated by integrating various
complementary approaches. Fluorescence-based multiplex host cell reactivation (FM-HCR) evaluates the ability of cells to repair specific DNA lesions. The
CometChip assay reveals the magnitude of genomic DNA damage and repair kinetics in a high throughput manner. Single-cell whole genome sequencing identifies
somatic mutations, whereas RNAseq (CITE-seq and single-cell RNAseq) measure the transcriptome. Moreover, hematopoietic stem cells isolated from the blood
sample can potentially be used to generate induced pluripotent stem cells (iPSCs). Upon differentiating these iPSCs into a somatic cell type of interest, it becomes
feasible to obtain large number of patient-derived, tissue-specific somatic cells, which may otherwise be scarce or not feasible to obtain. Red blood cells (RBCs),
which are enriched in the bottom layer, bind cell-free DNA to minimize inflammatory responses. The plasma layer contains cytokines and chemokines secreted from
the immune cells. These signaling molecules can be pro-inflammatory or anti-inflammatory, depending on the cellular status and presence of antigens. Notably, cell-
free DNA and extracellular vesicles (EVs) are present in the plasma.
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biological samples from patients undergoing therapy with
immunogens, immunosuppressants, or DNA damaging agents
provide opportunities to understand physiological human
responses to potentially carcinogenic real-world exposures.
This is particularly so when the studies are conducted
longitudinally, such that functional assays can be applied to
samples collected before and after the exposure. Samples from
individuals participating in studies that collect detailed personal
environmental monitoring data present similar opportunities,
and hold the advantage of avoiding the potential bias introduced
by focusing on individuals with pre-existing health conditions, as
is common in clinical studies.

2. Maximize the use and preservation of biological sample
(s): The comprehensive functional characterization of human
populations we are proposing is ambitious and may require some
realignment of funding agency priorities and philosophies to
reach its full potential. The prioritization of hypothesis-driven
research commonly constrains the scope of projects and forces
researchers to make decisions to severely limit the collection and
analysis of biological samples. However, as illustrated in
Figure 3, biological samples have extraordinary potential to
provide insights into the many mechanisms driving human
variation. To address this mismatch in the meantime,
researchers should preserve biospecimens as comprehensively
as possible. In the case of blood samples, this would entail
banking each of the components and preserving them in a
manner that is compatible with future downstream analyses,
which may require live cells, for example.

3. Engage in team science: Population studies that make use
of emerging technologies to characterize biological samples are
inherently interdisciplinary. It is generally not within the
capacity of a single investigator to have the expertise needed
for establishing a human study cohort, developing and applying
new technologies, interpreting biological data that span multiple
fields, and, when applicable, treating and evaluating patients. In
addition to a diverse group of scientific and medical experts who
cover the technical expertise, the team should ideally include
stakeholders who stand to benefit from the research. These
stakeholders can also guide the focus of the study from its
inception and ensure that vulnerable and underserved
populations are included.

7 CLOSING REMARKS

Many of the syndromes associated with defects in immune
function or genome integrity have been discovered in recent
years as genotyping technology has advanced. But these studies
importantly relied upon functional characterization of variants

of unknown significance, or the discovery of patients with a
familiar disease of unknown etiology. The data suggest there are
many more deficiency syndromes still to be discovered.
Functional assays such as those outlined herein present
powerful tools for identifying individuals with deficiencies in
immunity or genome maintenance. By integrating these assays
with modern genomics tools, it should be possible to accelerate
the discovery and annotation of rare variants as well as
functional associations with disease. Population studies are
most easily carried out with blood, which contains the
circulating cells and cytokines that can be used to define the
immunophenotype. Therefore blood samples represent a largely
untapped resource for analyzing both genome integrity and
immune function simultaneously. Studies that compare these
biological features between cancer patients and healthy
counterparts will provide important clinical insights. Yet,
simply surveying the complexity of the functional landscape
across populations to define the range of variability is also a
useful precursor to developing predictive models that
incorporates the variability to explain disease susceptibility.
Leveraging the advanced technologies and our current
understanding of DRC, immune function, mutation, and
cancer, it is timely to address these questions and improve the
precision of strategies that assess and manage cancer risk for the
welfare of population health.
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