
EDITED BY : Haofeng Hu, Jingping Zhu, Hao Jiang and Ji Qi

PUBLISHED IN : Frontiers in Physics

ADVANCES IN POLARIMETRY AND 
ELLIPSOMETRY: FUNDAMENTALS 
AND APPLICATIONS

https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/journals/physics


1 September 2022 | Advances in Polarimetry and EllipsometryFrontiers in Physics

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83250-261-7 

DOI 10.3389/978-2-83250-261-7

https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/journals/physics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


2 September 2022 | Advances in Polarimetry and EllipsometryFrontiers in Physics

Topic Editors: 
Haofeng Hu, Tianjin University, China
Jingping Zhu, Xi’an Jiaotong University, China
Hao Jiang, Huazhong University of Science and Technology, China
Ji Qi, Imperial College London, United Kingdom

Citation: Hu, H., Zhu, J., Jiang, H., Qi, J., eds. (2022). Advances in Polarimetry and 
Ellipsometry: Fundamentals and Applications. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-83250-261-7

ADVANCES IN POLARIMETRY AND 
ELLIPSOMETRY: FUNDAMENTALS 
AND APPLICATIONS

https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/journals/physics
http://doi.org/10.3389/978-2-83250-261-7


3 September 2022 | Advances in Polarimetry and EllipsometryFrontiers in Physics

04 Editorial: Advances in Polarimetry and Ellipsometry: Fundamentals and 
Applications

Haofeng Hu, Hao Jiang, Qi Ji and Jingping Zhu

06 Surface and Subsurface Quality Assessment of Polished Lu
2
O

3
 Single 

Crystal Using Quasi-Brewster Angle Technique

Chengyuan Yao, Wanfu Shen, Xiaodong Hu and Chunguang Hu

14 Polarization-Based Haze Removal Using Self-Supervised Network

Yingjie Shi, Enlai Guo, Lianfa Bai and Jing Han

24 Effects of Measurement Configurations on the Sensitivity of Morpho 
Butterfly Scales Based Chemical Biosensor

Zhengqiong Dong, Hang Zhao, Lei Nie, Shaokang Tang, Chenyang Li and 
Xuanze Wang

34 Polarimetric Imaging in the Environment Containing Medium and Object

Daqian Wang, Xin Wang, Peifeng Pan and Jun Gao

49 Error Analysis for Repeatability Enhancement of a Dual-Rotation Mueller 
Matrix Ellipsometer

Zhou Jiang, Song Zhang, Jiaming Liu, Qi Li, Hao Jiang and Shiyuan Liu

62 Enhanced Measurement Accuracy for Nanostructures Using Hybrid 
Metrology

Poul-Erik Hansen, Sabrina Rostgaard Johannsen, Søren Alkærsig Jensen 
and Jonas Skovlund Møller Madsen

72 Mueller Matrix Ellipsometric Approach on the Imaging of Sub-Wavelength 
Nanostructures

Tim Käseberg, Jana Grundmann, Thomas Siefke, Petr Klapetek, 
Miroslav Valtr, Stefanie Kroker and Bernd Bodermann

84 Polarization-Based Histopathology Classification of Ex Vivo Colon 
Samples Supported by Machine Learning

Deyan Ivanov, Viktor Dremin, Tsanislava Genova, Alexander Bykov, 
Tatiana Novikova, Razvigor Ossikovski and Igor Meglinski

95 Mueller Matrix Ellipsometric Characterization of Nanoscale Subsurface 
Damage of 4H-SiC Wafers: From Grinding to CMP

Huihui Li, Changcai Cui, Jing Lu, Zhongwei Hu, Wuqing Lin, Subiao Bian 
and Xipeng Xu

105 Angular-Based Mueller Matrix Polarimetry Parameters for Subwavelength 
Pore Size Differentiation

Jiachen Wan, Chuhui Wang, Chunnan Wang, Shuqing Sun and Hui Ma

112 Polarimetric Imaging Through Scattering Media: A Review

Xiaobo Li, Yilin Han, Hongyuan Wang, Tiegen Liu, Shih-Chi Chen and 
Haofeng Hu

136 Multi-Angle Polarization Index System for Pollen Type Bioaerosol 
Recognition

Qizhi Xu, Nan Zeng, Wei Guo, Jun Guo, Yonghong He and Hui Ma

147 Polarization Reconstruction Algorithm of Target Based on the Analysis of 
Noise in Complex Underwater Environment

Qiang Song, Xiao Liu, Honglian Huang, Rufang Ti and Xiaobing Sun

Table of Contents

https://www.frontiersin.org/research-topics/21386/advances-in-polarimetry-and-ellipsometry-fundamentals-and-applications#articles
https://www.frontiersin.org/journals/physics


Editorial: Advances in Polarimetry and
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Editorial on the Research Topic

Advances in Polarimetry and Ellipsometry: Fundamentals and Applications

Polarization is a fundamental property of light waves. Originating from polarization, there are two
categories of techniques: polarimetry and ellipsometry. Polarimetry is the technique for measuring
and interpreting polarization information, and ellipsometry usually refers to the polarimetry that
characterizes thin films and surfaces using polarization changes. In the past decades, polarimetry and
ellipsometry have shown promising applications in various fields, including target detection,
biomedical imaging, characterization of surfaces and thin films, etc., while the theory,
instrument, and polarization information interpretation for polarimetry and ellipsometry are
constantly developing at the same time. We are glad to see that this special issue collects 13
articles, which report both the latest technological advances and the applications of polarimetry and
ellipsometry.

In the field of polarimetry, remarkable works on polarimetric imaging in scattering media and
polarimetry for biomedical applications have been covered in the current Research Topic. Shi et al.
proposed a method to remove haze by using a self-supervised neural network that combines scene
polarization information, which does not require any haze-free image as the constraint for neural
network training. Song et al. proposed a method of polarization-imaging recovery in complex
underwater environment based on investigating the scattering characteristics of underwater
suspension particles and bubble by using the theory of radiation transfer. Wang et al.
investigated the propagation of linear and circular polarized light in the scattering medium.
They found that both the linear and circular polarimetric imaging had an ability to reduce the
image degradation caused by smoke, and the propagation of the polarized light, especially the
circular polarized light, is determined by medium conditions. Hu et al. review the recent advances of
polarimetric imaging through scattering media from the perspectives of the principle, basic model,
imaging configuration and applications, and they provide a brief summary and comparison across
various methods in this Topic. Ivanov et al. measured theMueller matrices of multiple formalin-fixed
human colon samples including healthy and malignant regions, and investigated several
unsupervised and supervised machine learning algorithms for histopathological classification
based on polarimetric data. Wan et al. proposed a new angular-based Mueller matrix
polarimetry parameter, and demonstrated that the proposed parameter can differentiate
subwavelength pore sizes well. Xu et al. proposed a high-throughput method for online
identification of bioaerosols based on multi-angle polarization index system, and showed that
bioaerosols like pollen can be distinguished from other types of aerosols with this method.
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In the field of ellipsometry, remarkable works on
instrumentation, methodology and applications have been
covered in the current Research Topic. To achieve enhanced
repeatability of the instrument in the applications in Integrated
Circuit (IC) industry, Jiang et al. proposed a general optimal
instrument matrix to minimize the estimation variance for both
Gaussian additive noise and Poisson shot noise as well as a peak
matching algorithm to compress the repeatability errors due to
the bias of the trigger signal and the limited sampling frequency.
Hansen et al. reported an improved calibration method for
Mueller ellipsometry to detect the geometrical anisotropy of
the structure, and further combined it with multiple
instruments as a hybrid metrology to improve the
measurement accuracy on three-dimensional periodic
structures. Käseberg et al. reported their in-house Mueller
matrix microscope based on an imaging system and a dual-
rotating compensator configuration for the ellipsometric system,
and further carried out the comparison of the results on a specific
designed sample containing geometrical nanostructures with
lateral dimensions ranging from 50 to 5000 nm to traceable
atomic force microscopy measurements. Yao et al. proposed
the quasi-Brewster angle technique (qBAT) based on
ellipsometry to inspect the quality of polished Lu2O3 single
crystal, to achieve fast, nondestructive, and high-sensitive
surface/subsurface damage assessment. Li et al. utilized the
Mueller Matrix Spectroscopic Ellipsometry on the nanoscale
subsurface damage detection of 4H-SiC wafers induced by
grinding and polishing, which could be expected to benefit
process optimization in the whole wafer manufacturing. Dong
et al. introduced their analysis model based on the rigorous

coupled-wave analysis (RCWA) method to retract the
correlation between the incidental and azimuthal angles and
the reflectivity of different diffraction orders, with the
objective to show the potential of the Morpho butterfly scales-
based biosensor.

In summary, we hope that the collection presented in this
Research Topic, “Advances in Polarimetry and Ellipsometry:
Fundamentals and Applications”, will contribute to the
progress of research and development activities in the field.
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Surface and Subsurface Quality
Assessment of Polished Lu2O3 Single
Crystal Using Quasi-Brewster Angle
Technique
Chengyuan Yao1, Wanfu Shen1,2, Xiaodong Hu1 and Chunguang Hu1*

1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China, 2Nanchang Institute
for Microtechnology, Tianjin University, Tianjin, China

The sesquioxide Lu2O3 single crystal has attracted tremendous attention as potential host
material for high-power solid-state lasers. As polishing is the terminal process of
conventional ultra-precision machining, the quality of polished crystal directly impacts
the crucial performance indicators of optics. The high melting point of Lu2O3 single crystal
makes crystal preparation difficult. Therefore, investigations on the surface/subsurface
quality inspection of polished Lu2O3 single crystal are scarce. In this paper, we utilize the
quasi-Brewster angle technique (qBAT) based on ellipsometry to inspect the quality of
polished Lu2O3 single crystal, achieving fast, non-destructive, and high-sensitive surface/
subsurface damage assessment. A systematic crystal processing scheme is designed and
polished Lu2O3 crystal samples are obtained. To verify the results of qBAT, the surface and
subsurface quality are tested using optical profilometer and transmission electron
microscope, respectively. The consistency of the test results demonstrates the
feasibility, high sensitivity, and accuracy of the qBAT. To our knowledge, this is the
first time that the qBAT is applied to investigate the polished surface/subsurface quality of
Lu2O3 single crystal. In conclusion, this method provides a powerful approach to the high-
precision characterization of the surface/subsurface quality of Lu2O3 single crystal, and
has significant potential for material property study and process optimization during ultra-
precision machining.

Keywords: Lu2O3 single crystal, polishing, surface damage, subsurface damage, quasi-Brewster angle technique,
ellipsometry

INTRODUCTION

Lu2O3 single crystal as sesquioxide has proven to be prospective for high-power solid-state lasers,
high-energy radiation detection, and semiconductors due to its high thermal conductivity, low
phonon energy, high-density scintillators, high absorption efficiency, wide band gap, and robust
thermal stability [1–7]. Polishing, as the terminal process of traditional ultra-precision machining,
can achieve high surface flatness and roughness, but inevitably produces surface and subsurface
damage. Typical surface and subsurface damage include pits, scratches, subsurface cracks, residual
stresses, dislocations, etc. [8, 9]. Surface/subsurface damage directly diminishes the strength, lifetime,
coating quality, imaging quality, and laser damage threshold of optics. However, investigations on
the surface/subsurface quality of polished Lu2O3 single crystals are scarce, which severely limits the
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design, fabrication, and application of related devices. The
prerequisite for effective suppression and removal of surface
and subsurface damage is high precision inspection. Therefore,
the assessment of surface/subsurface damage on polished Lu2O3

has momentous theoretical research significance and
practical value.

Conventional surface inspection methods, such as optical
profilometer, atomic force microscope (AFM), and scanning
tunneling microscope (STM), are sufficient for surface quality
testing needs [10–13]. Since subsurface damage is overlapped by
the sample surface, high precision assessment of subsurface
damage is challenging. In addition, as ultra-precision
machining moves toward atomic and close-to-atomic scale
manufacturing (ACSM), subsurface damage scales approach
the nano/sub-nano level and are coupled, further increasing
the difficulty of detection [14]. Subsurface damage detection
methods are categorized into destructive and non-destructive
methods according to its destructiveness to the sample.
Destructive detection methods normally employ physical or
chemical approaches to remove the portion covering the
subsurface damage, thereby exposing the subsurface damage
directly, and then using conventional methods for defect
detection. Destructive methods include transmission electron
microscopy (TEM), magnetorheological finishing (MRF)
polishing, chemical etching, etc. [15–18]. Although the
accuracy is relatively high, they will cause irreversible and
permanent damage to the sample, making it extremely
restrictive in many fields. Non-destructive methods are mainly
optical methods, depending on the interaction between light and
matter. They have advantages such as contact free and high speed,
and they include optical coherence tomography (OCT), laser
scattering, X-ray diffraction (XRD), quasi-Brewster angle
technique (qBAT), etc. [19–22]. Non-destructive methods have
relatively low measurement accuracy and can usually only
measure samples with low damage. In addition, they are
susceptible to environmental interference.

Quasi-Brewster angle technique (qBAT) based on
ellipsometry achieves simultaneous detection of surface and
subsurface damage by measuring the phase difference curves
of the sample in the vicinity of the Brewster angle. Specifically, the
slope at the quasi-Brewster angle reflects the surface roughness,
and the quasi-Brewster angle shift (qBAS) represents the
subsurface damage. The qBAT has been utilized to investigate
the surface/subsurface quality of fused silica, quartz crystal, CaF2
crystal [22, 23]. In our previous work, surface/subsurface damage
of gadolinium gallium garnet (GGG) crystals at the rough and
fine polishing processes was investigated using the qBAT [24]. By
establishing appropriate optical models for various polishing
processes, the applicability of qBAT is extended to rough
polishing. Moreover, the trend of Slope falling and then rising
during polishing was observed first, which was verified by the
surface morphology measurement results. In summary, related
studies have amply demonstrated that qBAT is a promising
method for polished surface/subsurface quality assessment.

In this paper, the surface/subsurface quality of Lu2O3 single
crystal at the fine polishing and chemical mechanical polishing
(CMP) processes was assessed using qBAT. By designing

systematic crystal processing scheme, Lu2O3 single crystals
with different surface/subsurface qualities were obtained at the
fine polished and CMP processes, respectively. The phase
difference curves of different samples were measured near the
Brewster angle employing variable angle ellipsometer. The
measurement data were analyzed based on the principle of
qBAT to obtain the surface/subsurface quality of the different
samples. To verify the measurement results of qBAT, the surface
and subsurface damage were measured using optical profilometer
and TEM, respectively. The consistency of the results illustrates
the validity and high sensitivity of qBAT. In conclusion, this study
provides a powerful approach for polished surface/subsurface
quality assessment of hard and brittle materials such as Lu2O3

single crystal and explores the potential applications of qBAT.

MATERIALS AND METHODS

Polishing Process
Lu2O3 single crystal samples were prepared by the edge-defined
film-fed growth (EFG) method, and the details of the crystal
preparation are given in [25]. The sample diameter is about
12 mm and the thickness is 1 mm. To obtain fine polished and
CMP samples with different surface/subsurface damage, we
designed a processing scheme as shown in Table 1. The
processing scheme consists of two processes, lapping and
polishing. Lapping is divided into rough lapping and fine
lapping, and polishing is classified into rough polishing, fine
polishing, and CMP. This study focuses on the fine polishing and
CMP, and a total of nine samples were obtained. Five fine
polished samples were polished for 20–100 min, with one
piece removed from the polishing equipment at a 20-min
interval. Four CMP samples were polished for 20–80 min with
a 20-min interval. Note that the processing scheme is progressive
from lapping to polishing. This is considered from the machining
efficiency, as the material removal rate of polishing is far lower
compared with lapping. Thus, the scheme guarantees a relatively
fast removal of crystal defects caused by the preceding processes
such as wire cutting and grinding. In addition, as ellipsometry
measurements in the oblique incidence configuration are
susceptible to interference from backside reflections, the
samples are polished on one side and roughened on the other.

Quasi-Brewster Angle Technique (qBAT)
The prerequisite for qBAT is to build a reasonable optical model
for the damage of samples. Figure 1A, Figure 1B, and Figure 1C
show the schematic diagrams of the optical models corresponding
to the ideal crystal (Ideal), only surface roughness (SR), and
simultaneous existence of surface roughness and subsurface
damage (SSD), respectively. In this paper, it is assumed that
the ideal crystal is Lu2O3 single crystal without any surface
roughness and subsurface damage. The model is the reference
to evaluate the effect of surface roughness and subsurface damage
on the phase difference curve, which is not available in the actual
fabrication. Crystal processing normally results in both surface
roughness and subsurface damage. The surface quality is
relatively high in the fine polishing and CMP, and the surface
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roughness is generally in the nanometer scale. The sample surface
contains pits, scratches, and height undulations, and the
subsurface damage is more complex and diverse and coupled
with each other. To simplify the model, they are equated as
surface roughness (SR) layer and subsurface damage (SSD) layer,
respectively. In addition, there is no strict boundary between
surface roughness and subsurface damage, and the boundaries in
Figure 1B and Figure 1C are schematic lines. The surface
roughness layer and subsurface damage layer are characterized
using the effective medium approximation (EMA) model [26], as
shown in

f1
ε1 − ε

ε1 − 2ε
+ (1 − f1)

ε2 − ε

ε2 − 2ε
� 0 (1)

where ε1, ε2 are the corresponding dielectric constants of medium
1 and medium 2, here are air and Lu2O3 single crystal,
respectively. ε is the calculated effective dielectric constant. f1
and (1−f1) are the corresponding porosities of medium 1 and

medium 2, accordingly. It should be noted that the porosities of
the surface roughness layer and the subsurface damaged layer are
different.

Based on qBAT, surface roughness is evaluated by analyzing
the slope of the phase difference curve at the quasi-Brewster angle
(θqb); subsurface damage is assessed by the shift between θqb and
the Brewster angle (θb). The θqb is defined as the angle of
incidence corresponding to the phase difference equals to 90°

in the optical model shown in Figure 1C. The expressions for
Slope and the quasi-Brewster angle shift (qBAS) are shown in Eqs
2, 3:

Slope � f′(θ,Δ)∣∣∣∣θ�θqb (2)

qBAS � θqb − θb (3)

where θ and Δ are the incident angle and phase difference,
respectively. f′ (θ, Δ) is the first-order derivative equation
of the corresponding fitted curve of the phase difference

TABLE 1 | Lu2O3 single crystal processing scheme

No Process Consumables Parameters

1 Rough lapping Cast iron plate Lapping disc speed 50 r/min
W40 emery Lapping load 107 g/cm2

Lapping time 20 min
2 Fine lapping Cast iron plate Lapping disc speed 60 r/min

W20 emery Lapping load 127 g/cm2

Lapping time 60 min
3 Rough polishing Asphalt polishing pad Polishing pad speed 70 r/min

W2.5 Al2O3 Polishing load 127 g/cm2

Polishing time 100 min
4 Fine polishing IC1000 polishing pad Polishing pad speed 70 r/min

W0.1 diamond power Polishing load 127 g/cm2

Polishing time 20–100 min
Take out one piece every 20 min

5 Chemical mechanical polishing Flannel polishing pad Polishing pad speed 70 r/min
SiO2 polishing solution Polishing load 107 g/cm2

Polishing time 20–80 min
Take out one piece every 20 min

FIGURE 1 | (A–C) are the corresponding optical models for ideal crystal (Ideal), only surface roughness (SR), and both surface roughness and subsurface damage
(SSD), respectively; (D) is the corresponding simulation result.
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curve. Details of the derivation of θb, θqb, and Δ are given
in [24].

Figure 1D shows the simulation results of the phase difference
curves near Brewster angle for the corresponding optical models
in Figure 1A, Figure 1B, and Figure 1C. The wavelength is 640
nm, and the corresponding refractive indices for air and Lu2O3

single crystal are 1 and 1.9296, respectively [27]. The incident
angle ranges from 62.3 to 62.8° in steps of 0.001°. The
corresponding EMA models for both the surface roughness
layer and the subsurface damage layer are mixtures of air and
Lu2O3 single crystal with porosities of 0.5 and 0.002, respectively.
The simulation experiments were done in MATLAB software.
The phase difference curve corresponding to ideal crystal changes
abruptly by 180° when the incident angle is θb, as shown by the
black line in Figure 1D. When only surface roughness exists, the
slope of the phase difference curve at Brewster angle decreases
and is no longer an abrupt change. However, the Brewster angle
hardly shifts, as shown in the red and green lines in Figure 1D. It
is worth noting that the Slope of the green curve in Figure 1D is
smaller than the Slope of the red curve in Figure 1D. It indicates
that Slope represents the surface roughness, and the thicker the
surface roughness layer, the smaller the Slope. When the surface
roughness layer and subsurface damage layer coexist, the Slope
changes and the θqb shifts, indicating that the qBAS reflects the
subsurface damage, as shown by the blue and magenta lines in
Figure 1D. In addition, the absolute value of the qBAS
corresponding to 100 nm subsurface damage layer thickness
(|θqb2−θb|) is larger than that of 50 nm (|θqb1−θb|), indicating
that the more severe the subsurface damage, the larger the

absolute value of qBAS. The thickness of the surface damage
layer is fixed at 1 nmwhen varying the thickness of the subsurface
damage. This is rational because the surface quality in fine
polishing and CMP is high, with roughness basically in the
nanometer scale. The results of related studies and the
measurements of the optical profilometer in Results and
Discussion verify this conclusion [28, 29]. In summary, qBAT
can achieve rapid and synchronous inspection of surface
roughness and subsurface damage.

RESULTS AND DISCUSSION

Surface/Subsurface Quality Measurement
Based on Optical Profilometer and TEM
To obtain surface morphology and surface roughness (Sa), all
samples were measured using optical profilometer (Sneox,
Sensofar). Typical measurements selected from fine polishing
and CMP are shown in Figure 2. The measurement area is 877.2
× 660.5 μm using ×20 objective and PSI algorithm. Many
scratches exist at the start of fine polishing, and as polishing
proceeds the scratches gradually decrease until they disappear, as
shown in Figure 2A–C. The surface of the CMP samples is
smoother and free from obvious defects such as scratches, as
shown in Figure 2D–F. The surface roughness (Sa) shows
decreasing trend with respect to the fine polished samples.
Each sample was measured at three randomly selected
locations in the center area, and the average of the three
measurements was used as the final surface roughness (Sa).

FIGURE 2 | (A–C) are typical measurements of optical profilometer for 20, 60, and 100 min samples of fine polishing, respectively; (D–F) are typical measurements
of optical profilometer for 20, 60, and 80 min samples of CMP, respectively.
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The final measured results of Sa of all samples are shown in
Figure 5B. The overall Sa tends to decrease as polishing
progresses, and the surface roughness of all CMP samples is
lower than that of the fine polished samples. In addition, the error
bar is relatively large, which is attributed to the surface that is
already smooth and the surface roughness (Sa) is around 1 nm,
when a slight sub-nanometer undulation of the surface will lead
to significant deviation. The measurement area (877.2 ×
660.5 μm) is a tiny fraction of the sample surface size (about
12 mm in diameter), so multiple measurements at different
locations are bound to vary slightly.

Transmission electron microscopy (FEI, Talos F200X,
operating at 200kV) is utilized to analyze subsurface damage
of samples. Owing to the weak conductivity of Lu2O3 single
crystal, Au conductive layer needs to be pre-deposited on the
sample surface to facilitate the TEM specimen preparation. The
Pt protective layer was deposited again to prevent additional
subsurface damage caused by focused ion beam (FIB) during the
TEM specimen thinning process. Two typical samples with
60 min of fine polishing and 60 min of CMP were selected for
cross-sectional TEM measurement, as shown in Figure 3A and
Figure 3C. No apparent subsurface damages, such as subsurface
cracks, deformation layers, and residual stresses, are observed in
both the fine polished and the CMP samples. To further
investigate the minute subsurface damage of both, high
magnification TEM tests were performed on the areas in the
dashed boxes in Figure 3A, C, respectively, as shown in
Figure 3B, D. It can be seen that the lattice distribution is
regular and uniform, and there are almost no dislocations,
twins, and amorphous and other defects. In conclusion, the
TEM measurement results demonstrate that there is virtually
no subsurface damage in either of the two typical samples. It
should be emphasized that since the TEM specimen preparation
will damage the sample, the actual measurement procedure is
optical non-destructive tests, including optical profilometer and
ellipsometer measurements, followed by TEM.

qBAT Measurement Results
The phase difference of all polished samples near Brewster angle
was measured using variable angle ellipsometer (J.A. Woollam,

FIGURE 3 | (A) and (C) are the cross-sectional TEM images of the 60 min fine polished and 60 min CMP samples, respectively; (B) and (D) are the high
magnification images of the positions in the dashed boxes in (A) and (C), respectively.

FIGURE 4 | Phase difference curve measurement results for all samples.
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RC2), and all phase difference curves are shown in Figure 4. The
incident angle range is 60–66°, 0.1° as increment, and the long axis
and short axis of elliptical measurement spot are about 6 and
4 mm, respectively. The phase difference measured data
corresponding to the wavelength of 640 nm are selected. As
with the optical profilometer test, we selected three locations
in the central area of the sample for measurement, and the
average of the three measurements was adopted as the final
result. The solid and dotted lines are the phase difference
curves of the five fine polished samples and the four CMP
samples, respectively. All the phase difference curves are steep
and the Slope is close to 90°, indicating that the surface roughness
is small, which is in agreement with the measurement results of
the optical profilometer. To observe the details in the vicinity of
Brewster angle, the data in the range of 62.3–62.8° incidence angle
were magnified, as shown in the inset of Figure 4. The Slope of the
CMP samples is significantly larger than that of the fine polished
samples, which shows that the surface roughness of the CMP
samples is lower than that of the fine polished ones. Also, the
preliminary judgment is that the Slope shows a rising trend with
the increase of polishing time. Note that the θqb for all the fine
polished and CMP samples is rarely shifted, indicating that the
subsurface damage is basically unchanged.

Figure 5A shows the Slope and qBAS measured results for all
samples, which are calculated by fitting the phase difference
curves in Figure 4. The horizontal axis is the total polishing
time, and the CMP polishing time is to be added to the 100 min of

fine polishing. The corresponding 3D optical profilometer surface
roughness (Sa) measurement results are shown in Figure 5B. Slope
tends to rise as polishing proceeds and basically remains stable at CMP
process, indicating that the surface roughness tends to decrease and
eventually stabilize. The results match with the optical profilometer
measurements, as shown in Figures 2, 5B, and demonstrate the
feasibility of qBAT to inspect the polished surface roughness. During
the whole polishing process, the change of Sa is basically within 1 nm,
and the trend of Slope variation can coincide with it, revealing the sub-
nanometer level sensitivity of the qBAT to surface roughness. In
addition, the Slope trend does not correspond precisely to the Sa
measurement due to the larger measurement area of the ellipsometer,
which is about 33 times larger than that of the optical profilometer.
Slopemeasurements are more representative of surface roughness for
large-size crystal and not susceptible to local surface undulations. The
relatively large roughness error bar of the 100min fine polished
sample indicates that the uniformity of the surface roughness is
poor. The magenta line in Figure 5A is the qBAS measured result,
which remains basically stable around −0.03°, approaching the ideal
value of 0°. It implies that the subsurface damage of all samples is
virtually identical and subsurface damage is rare, which is consistent
with the TEM measurement results, as shown in Figure 3. The
feasibility of qBAT to evaluate subsurface damage is verified.When no
subsurface damage exists, the theoretical value of qBAS is 0, but the
actual measurement is about −0.03°. This is attributed to that qBAS is
directly influenced by the refractive index of the selected Lu2O3 single
crystal. The refractive index in the reference literature is inevitably

FIGURE 5 | (A) Slope and qBAS measurement results for all samples. (B) Surface roughness Sa measurement results for all samples.
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deviated from the actual refractive index, which leads to shifts between
the qBAS measurements and the theoretical values.

CONCLUSION

In this study, the surface and subsurface damage of fine polished
and CMP Lu2O3 single crystal was investigated using the qBAT.
To obtain samples with various surface/subsurface damage, a
crystal processing scheme was designed. To verify the
measurement results of the qBAT, the surface and subsurface
quality were characterized by commercial 3D optical profilometer
and TEM, respectively. The consistency of the measured results
demonstrates the feasibility and high sensitivity of qBAT for
evaluating surface and subsurface damage on polished Lu2O3

single crystal. Consequently, the qBAT enables fast, non-
destructive, and facile inspection of polished surfaces and
subsurface damage. It overcomes the intrinsic drawbacks of
conventional inspection methods, which are complicated, time
consuming, and costly. Rapid and simultaneous analysis of
surface and subsurface damage based on Slope and qBAS
measurement results provides critical guidance for the
optimization of polishing processes during machining. In

conclusion, this study provides an efficient approach for
polished Lu2O3 surface/subsurface damage assessment and
further broadens the application of qBAT.
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Polarization-Based Haze Removal
Using Self-Supervised Network
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Atmospheric scattering caused by suspended particles in the air severely degrades the
scene radiance. This paper proposes a method to remove haze by using a neural network
that combines scene polarization information. The neural network is self-supervised and
online globally optimization can be achieved by using the atmospheric transmission model
and gradient descent. Therefore, the proposed method does not require any haze-free
image as the constraint for neural network training. The proposed approach is far superior
to supervised algorithms in the performance of dehazing and is highly robust to the scene.
It is proved that this method can significantly improve the contrast of the original image, and
the detailed information of the scene can be effectively enhanced.

Keywords: polarization, dehazing, neural network, selfsupervised, haze remove method

1 INTRODUCTION

The existence of haze, due to the tiny water droplets or solid particles suspended in the air, brings
many inconveniences to daily life. The air can no longer be regarded as an isotropic medium which
leads to scattering of the transmitted light. The scene image received by the camera or human eyes
has a severe degradation. As the distance from the target increases or the concentration of suspended
particles increases, the scattering becomes more and more serious. Therefore, the details of the
distant target are more severely lost, and the contrast of the captured image is also reduced more.
Eliminating the influence of haze on the collected image is often required which canmake it easier for
the observer to identify the target.

The current methods for dehazing mainly include the data-driven method [1–3], the method
based on prior knowledge [4–6], and the method based on physical models [7–10]. The first two
types of methods hardly contain physical models, therefore, the problem these methods solved is
essentially ill-posed. Data-driven methods often need to obtain a large number of hazy-clean pairs in
advance for training and use deep learning or image feature extraction methods to achieve haze
removal. The method based on prior knowledge mainly combines some statistical characteristics in
the image contained haze. Appropriate parameters need to be selected and combined with the prior
model to remove haze in the acquired image. Most of these methods can achieve dehazing through
one image, but the limited information contained in the single image cannot provide the unique
characters of the scene. Changes of the scene or objects with special colors in the scene may cause the
failure of dehazing [4, 11, 12]. As another type of approach, methods based on physical models can
solve the shortcomings of the above two types of methods to a certain extent. Physical-model-based
methods often use the depth map or analyze the changes in the polarization state of the scene. These
methods often need to take multiple images, through the depth map of the scene or the polarization
intensity difference, to obtain the transmission map during the scattering process. Both of these
methods can construct a unique model based on the characteristics of the scene itself, so the haze can
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be removed more accurately. But sometimes methods based on
physical models also require empirical knowledge to select
appropriate filtering parameters [13–15].

Many data-driven or prior knowledge-based methods have
emerged in the field of computer vision to achieve haze removal.
Cai et al. realized dehazing through a single frame image by an
end-to-end structure Convolutional Neural Network (CNN) [1].
A total of 100,000 sets of data are used for the model training
during the experiment; such a huge amount of data consumes a
lot of time in the collection and calculation process. Akshay et al.
used the Generative Adversarial Networks (GAN) to achieve
dehazing with a single frame image. The simulation data is
used in the training process, and this strategy causes the
trained model to not be well applied to actual scenarios [16].
He et al. analyzed the color distribution in the haze image and
proposed a Dark Channel Prior (DCP) method for dehazing. But
this method may be invalid when the target color in the scene is
inherently similar or close to the background airtight (such as a
white wall, snowy ground, etc.) [4].

The earliest dehazing process often uses polarization
information to build a physical model. Schechner et al. used the
polarization state difference of the scene due to scattering to achieve
haze removal. However, it is necessary to manually select the
window in the picture to determine the airlight intensity, which
will introduce a lot of errors [7]. In recent years, polarization-based
methods have been continuously developed. Shen et al. proposed a
dehazing method by using the polarization state information to
iteratively find the transmission map [17]. Liu et al. used
polarization to separate the high-frequency and low-frequency
information of the scene to achieve dehazing [13]. Shen et al.
used the fusion of polarization intensity, hue, and saturation to
achieve dehazing [18]. Because scene information such as depth
can be extracted from the polarization difference of the two frames
scene image, these methods can be used in most scenes without a
priori. These methods may need to adjust the angle of the polarizer
to obtain the two images with the largest polarization difference, so
the data collection process is cumbersome.

This paper proposes a Polarization-based Self-supervised
Dehazing Network named PSDNet that combines the
difference of polarization information with deep learning to
eliminate the influence of haze on the image. The feature map
of the neural network is activated through the transmission map
calculated by the scene polarization state. Then the transmission
map with more accurate depth information is estimated and has
richer detail. The transmission map, haze-free image, and airlight
can be calculated by the network and a self-supervised closed loop
is formed to optimize the network. Because the physical model is
used as a constraint, huge amounts of data are no longer needed
to optimize the weight of the network. PSDNet only needs two
frames of orthogonal polarization state images of the scene as
input to remove scene haze based on online training. The global
optimization of the neural network also solves the problem of
inaccurate selection of airlight and makes it dehaze more
accurately. Compared with similar methods, the proposed
method can more effectively improve the visibility of target
details and is highly robust to the scene.

2 METHOD AND MODEL DESIGN

2.1 Basics of Polarization-Based Dehazing
When imaging through the atmosphere containing haze, the
particles in the atmosphere will cause scattering of the scene
radiance which leads to degrading the target image. As shown in
Figure 1, the scattered scene radiance and the scattered light from
the illumination are received by the camera. The intensity of
airlight increases as the distance increases, which can be
expressed as

A � A∞(1 − t(x)), (1)

where A∞ is the intensity of atmospheric light at infinity, and t(x)
represents the rate of transmission at position x, describing the
scattering and absorption of radiance in the atmosphere, t(x) is
given by

t(x) � exp −∫

x

0

β(x′) dx′⎛⎜⎜⎝ ⎞⎟⎟⎠, (2)

where β(x′) is the extinction coefficient caused by scattering or
absorption. When the extinction coefficient in the atmosphere
does not change with distance, β(x′) � β, Eq. 2 can be written as

t(x) � exp(−βx). (3)

The process of removing the haze from the image is to restore
the radiation intensity and color information of the original
scene, which is usually modeled as

I(x) � L(x)t(x) + A∞(1 − t(x)), (4)

where L(x) is the radiance of the scene at position x when there
are no scattering particles in the atmosphere, and it is also the
“clear image.” L(x) can be expressed as

L(x) � I(x) − A∞(1 − t(x))
t(x) , (5)

where I(x) denotes the degraded version of L(x) by atmospheric
scattering. The effects of scattering on the polarization
characteristics have been extensively studied. Generally, in the
process of imaging through the atmosphere containing scattering
particles, the degree of polarization of the original scene is almost
negligible. The polarization is more related to the scattering
process in the transmission of optical signals and is sensitive
to the scattering distance [7]. Therefore, the transmission map
can be calculated according to the difference in the polarization
state in the captured image. A plane can be defined according to
the light ray from the source to the scatterer and the line of sight
from the camera. The airlight can be divided into two polarization
components that are parallel and perpendicular to this plane,
named A‖ and A⊥ respectively. The degree of polarization of
airlight can be calculated by

p � A⊥ − A‖

A
, (6)

where
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A � A⊥ + A‖, (7)

is the total radiance due to airlight, and A also equal to A∞(1 −
t(x)). The intensity of A‖ and A⊥ is related to the size of the
scattering particles in the scene. In some published dehazing
methods by using polarization, the parallel component is
associated with the minimum measured radiance at a pixel
and the perpendicular component is associated with the
maximum radiance. This limitation requires rotating the
polarizer during data collection to ensure that the two
components have the largest difference, which increases the
time for data collection. PSDNet only needs two images that
have a polarization difference and has no limitation to the degree
of polarization difference, so only two frames of orthogonal
polarization scene images at any angle are needed. To avoid
confusion in the calculation, stipulate thatA⊥ >A‖. The airlight at
any point in the captured picture can be estimated by

Ascene � I⊥ − I‖

p
(8)

where I⊥ and I‖ are the scene images taken when the polarization
direction is the same as A⊥ and A‖. The transmission map t is
calculated by

t � 1 − Ascene

A∞
� 1 − (I⊥ − I‖)

pA∞
� 1 − (I⊥ − I‖)A

(A⊥ − A‖)A∞
(9)

therefore, the airlight intensity at infinity A∞ only needs to be
estimated to recover the radiance of the scene without haze. The
brightest point in the image is often considered ted as A∞.
Although those strategies have good performance in most
scenes, the brightest light intensity cannot accurately express
A∞ when white objects appear in the scene. The accuracy of
manually selecting the A∞ will also affect the final dehazing
result. In addition, the reliability of the transmission map also
determines the quality of the haze removed image, and the
accuracy of the atmospheric degree of polarization also affects
the accuracy of the transmission map. Airlight is generally

considered as partially linearly polarized light. With the
rotation of the polarization axis of the polarizer, the rise and
fall of the light intensity can be observed. The maximum and
minimum light intensity are needed in the degree of polarization
calculation, and if the polarization axis orientation of the
polarizer cannot correspond to the direction of the airlight
polarization, the degree of polarization is calculated
inaccurately, which will cause the calculation error of the
transmission map. Given the limitations of these methods,
PSDNet is designed in which all calculations are in the same
optimization process, so the transmission map and the airlight
can be estimated simultaneously and accurately.

2.2 Model Design
To remove haze and get clear images, it is essential to obtain the
transmission map and airlight, so PSDNet consists of three
subnetworks, as shown in Figure 7. PSDNet-L, PSDNet-T,
and PSDNet-A are used to calculate the target radiation Lobject,
transmission map, and the scene airlight Ascene respectively. Both
PSDNet-L and PSDNet-T consist of convolution layers and
pooling layers, and the structure of the network does not have
a downsampling process which can reduce the loss of more detail.
The last layer of all sub-networks uses the sigmoid function to
normalize the output. Since the attributes of airlight are not
related to the original scene distribution, PSDNet-A is composed
of an encoder and a decoder, which are down-sampled and up-
sampled respectively to extract global features and estimate the
airlight [19].

The subnetwork PSDNet-T consists of two segments:
PSDNet-T1 and PSDNet-T2. PSDNet-T1 can extract the
features of the scene from the haze image, then the
transmission map estimated by the network is obtained.
Meanwhile, the transmission map by using the conventional
approach also can be calculated, and this calculation process
uses the airlight estimated by PSDNet-A and the original image.
When the scene polarization difference is minor as shown in
Figure 2B, the calculated transmission map can respond to any

FIGURE 1 | Schematic diagram of scattering model and data collection process. The illumination light (such as the sunlight) is scattered by atmospheric particles as
airlight. The intensity of airlight increases as the distance increases and the object radiance is scattered and attenuated along the optical path. Two scenes with
orthogonal polarization states are collected by rotating the front polarizer of the camera.
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part of the scene but is often discontinuous. To be able to carry
out effective dehazing, those transmission maps need to be
properly filtered. The neural network can extract continuous
feature maps as shown in Figure 2A, but details may be lost
due to the lack of label constraints. Therefore, the PSDNet-T2 is
designed to fuse the feature maps and the transmission map
calculated by polarization, and the transmission map involved in
dehazing is obtained finally. In the fusion results as shown in

Figure 2C, the inaccurate rate of transmission is corrected, and
the transmission map has a higher contrast which will enhance
the final dehazing effect.

Finally, the clean image, transmission image, and atmospheric
light estimated by the neural network are synthesized according
to Eq. 4. The Mean Square Error (MSE) is used as a loss function
to calculate the difference between the synthesized haze image
and the real image. The MSE is formulated as:

FIGURE 2 | Comparison of the transmission map. (A) Transmission map estimated by PSDNet-T1. (B) Transmission map calculated by scene polarization state.
(C) Transmission map for the final use dehazing after fusion by PSDNet-T2.

FIGURE 3 | The performance of different methods in the open-source dataset. (A) Original haze image. (B–D) Result of the DCP method, IIDWP method, and the
proposed method respectively.
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MSE � 1
HpW

∑
H

i�1
∑
W

j�1
[I′(i, j) − I(i, j)]2, (10)

where I ′ is the synthesized haze image and the I is the image
collected in the real scene. H and W are the height and width of
those images, respectively. Different from the supervised
algorithm, the self-supervised constraint strategy makes
PSDNet not need a lot of haze-free images as the Ground
Truth (GT) to constrain the optimization of the neural
network. The results of dehazing depend on the quality of the
transmission map and airlight. The effective use of polarization
information makes it easy to estimate the transmission map more
correctly, and the structure of the network combined with the
physical model allows airlight to be estimated more accurately,
then the original irradiance of the scene can be restored more
effectively.

3 EXPERIMENT

3.1 Experimental Comparison on the
Open-Source Dataset
An iterative image dehazing method with polarization (IIDWP) is
proposed by Linghao Shen et al. [17]. Both the IIDWPmethod and
the method proposed in this paper use the iterative optimization
approach and scene polarization for dehazing. However, the
IIDWP method only performs the iterative operation in the
transmission map calculations process, and the final haze-free
image quality may still be affected by airlight estimation or
parameter selection. The method proposed in this paper is
based on global learning optimization. And there is no need to
set algorithm parameters; the airlight estimation and transmission
map calculation are in the same iterative process, which makes it
easier to optimize to the globally optimal result. Shen et al. provide
an open-source dataset that contains haze images with orthogonal
polarization states [17]. And this open-source dataset is utilized to
compare dehazing performance among different methods firstly. A
classicmethod using a single-frame for dehazing, themethod based
on the Dark Channel Prior (DCP) [4], is also selected as a
comparison. The provided original image resolution is 942*609
pixels, and all images are resized as 960*576 pixels to facilitate
convolution calculation in neural networks. In the comparison
experiment, the dehaze results exposed by the author who provided
the original data are used directly.

Two scenes with severe pattern degradation are selected for
comparison, as shown in Figure 3. In these two selected scenes,
detailed information such as the ends of branches is severely lost
due to the high density of haze. In terms of increasing image
contrast, all three dehazing methods work admirably; however,
the results by using methods based on DCP or IIDWP have
substantial color aberrations in the sky. Thanks to the global
optimization strategy of the PSDNet, the optimal airlight and the
corresponding transmission map can be estimated more
accurately. Therefore, the proposed method not only can
better enhance the scene details but also preserve the color
information of the original image.

3.2 Comparison With Similar Approach on
the Captured Dataset by Ourselves
Although the proposed method is learning-based, it can perform
self-supervision based on the polarization prior and physical
model. So the PSDNet does not require GT as a constraint of
the neural network compared with supervised networks. It is
worth noting that Li et al. designed an end-to-end neural network
named AOD-Net, which also incorporates the atmospheric
transmission model [12]. As a representative of learning-based
supervised algorithms for dehazing, the performance of AODNet
is used as a comparison. In addition, the result of a method based
on DCP is also used to compare the performance of the different
approaches.

The nature of the supervised algorithm determines that
AODNet requires a lot of data to build the association
between haze images and haze-free images. It is difficult to
collect massive hazy-clean pairs in the real scene, but the
depth information of the picture is easier to obtain, so the
dataset required for network training can be generated based
on Eq. 4, 1. Haze image provided by NYU-Depth V2 [20] is
simulated based on the depth images, which is the public dataset
of New York University. Both the simulated haze dataset and the
real outdoor dataset RESIDE-beta collected in Beijing [21] are
used as the training dataset. A total of 50,000 hazy-clean pairs are
used to train AOD-Net, and the other 10,000 pairs are used to
verify the effectiveness of the trained model.

The data used for comparison was taken on a hazy morning,
and the scenes are filmed from a distance of between 1 and 4 km.
The system for pictures collection consists of a rotatable polarizer
(ϕ � 50.8 mm, extinction ratio � 1,000:1) and a color industrial
camera (Basler, acA1920-40gc), and a telephoto industrial camera
lens (f � 100 mm, 8 megapixels) is mounted on the camera. All
original images have a raw resolution of 1920*1,200 pixels, and
the center area with a size of 1920*1,156 pixels is cropped and
rescaled to 960*576 pixels.

The final savedmodel is used to compare the dehazing effect of
the method. The reference training epoch of AODNet is 40. To
further improve the accuracy of the trained model, the final
training epoch is increased to 50 and more than 36 h are used for
training. In contrast, the proposed approach does not need to be
trained in advance with the data mentioned above, only the haze
image is needed as input and perform online learning. Therefore,
the online training epoch of PSDNet is 800 but the consumed
time is less than 5 min. And all the training environment is
PyTorch 1.2.0 with RTX TITAN with I7-9700 CPU under
ubuntu 16.04.

The scene image used to compare the effectiveness of different
methods is captured in severe haze weather. The original scene
image is shown in Figure 4A, and buildings in the distance need
to be carefully discerned to see the outline, and the details are
almost indistinguishable. Figure 4B shows the result of dehazing
by the supervised algorithmAOD-Net. Although this method can
effectively remove haze in the close-up of the scene, specifics
about the distant scene are almost no enhancement. The main
reason is that although huge amounts of data are used to train the
network, these data cannot contain all scenarios in practice.
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Ultimately, the trained models cannot be well applied to the
widely varying real scenarios. Figure 4C shows the result of using
the DCP to recover the original scene. The contour information
in the long-distance can be distinguished after multiple parameter
selection and tuning, but some details still cannot be recovered
effectively. Figure 4D shows the dehazing result by using the
proposed method, and haze removal can be more successful
whether the scene is a close-distance or a long-distance. In the
first scene, the windows on the buildings can be distinguished
after dehazing by the proposed method, but it is completely
sightless in the original image. And the tower crane in the
zoomed-in area achieves visibility in the second scene, which
is sightless too in the original.

The above comparison is almost intuitive; in terms of
objective criteria, the result of image edge extraction can
reflect the contrast level of the image. The edge extraction
results of a high contrast image are more complete, and the
target in the image is easier to distinguish. In the event of an
image with low contrast, the opposite outcome is produced.
Therefore, the dehazing results of different methods are
subjected to edge detection to compare the image
cleanliness from a more objective point of view. The Prewitt
operator is a discrete differential operator which is often used
in edge detection algorithms. At each point in the image, the
result by using the Prewitt operator is either the corresponding
gradient vector or the norm of the vector. The Prewitt operator
is used to extract the edges of the dehazing results. Because the
gradient approximation has a certain smoothing effect on the
noise, edges cannot be extracted in low-contrast images, which
is more conducive to contrast. The haze concentration in the
far-field is much greater, and it is less visible in the original
image without dehazing, so the detail and completeness of the
edges extracted can reflect the quality of the dehazing result.

As shown in Figure 5, the original haze image and the
dehazing result by AOD-Net can barely extract the edge
contours of the distant buildings. Although the dehazing result
by the DCP method can be detected to a certain extent, some
distant building outlines are incomplete. The most complete edge
of the distant contours can be extracted in the PSDNet dehazing
results. The superior dehazing ability of PSDNet compared with
other methods is shown, and the results of the comparison are
also consistent with the visualization effect.

Since the proposed method does not require clean images as GT
constrains neural networks, there are no haze-clean pairs used to
assess haze removal quality. Therefore, the image quality
assessment method that requires reference data cannot be used.
But in order to analyze the ability of different methods to remove
haze more objectively, contrast, saturation, and ENIQA [22] are
selected as evaluation indexes to analyze the results of haze removal
corresponding to different methods. Haze significantly reduces the
contrast and saturation of the captured image, so for dehazing
results, the higher the two indicators, the better the resolution of
the target details. ENIQA is a high-performance general-purpose
no-reference (NR) image quality assessment (IQA) method based
on image entropy. The image features are extracted from two
domains. In the spatial domain, the mutual information between
the color channels and the two-dimensional entropy is calculated.
In the frequency domain, the two-dimensional entropy and the
mutual information of the filtered sub-band images are computed
as the feature set of the input color image. Then the support vector
machine is used to classify and give the indicator, and the final
output score is between 0 and 1; the lower the score, the higher the
image quality. In addition, different methods have great different
dehazing abilities of different distance scene images, so the image is
divided into two parts that is distant scene and the nearby scene in
the objective indicators calculation process.

FIGURE 4 | The performance of different methods in real haze images collected by ourselves. (A)Original scene image. (B–D)Result of the AOD-Net, DCPmethod,
and the proposed method respectively.
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The average haze removal indicator for the part of the picture
that contains a distant scene is shown in Table 1, and the
indicator for the part that contains a nearby scene is shown in
Table 2. From the point of view of picture contrast and saturation
index, the proposed method can be more effectively dehazing in
the distant scene, and AODNet can be more effectively dehazing
in the nearby scene; the conclusion is also consistent with
subjective evaluation. This is mainly because AODNet
conducts point-to-point optimization through haze-clean pairs
in the training process, and the dehazing ability is limited to the
scenes in the training set. And this approach cannot adapt to
images with large differences in haze distribution compares to the
training dataset. The proposed method utilizes the property of
polarization changing of light during transmission in an
atmosphere containing haze; therefore, a distant scene where

the light travels further can be used to estimate the transmission
map more accurately, and the clearer details can be recovered.
Besides, as the distance increases the effect of haze on image
quality becomes more severe, the enhancement of detail in the
image containing distant scenes is more useful. In addition, when
ENIQA is used as evaluate indicator, the proposed method can
improve the image quality in both scenes.

3.3 Robust and Efficiency of PSDNet
To demonstrate the robust of PSDNet, experiments, in which
trained models of different scenes are used to remove the haze on
one against another, are designed. Two types of scenes are
selected in the training process, as shown in Figure 6; scene 1
has similar distribution with scene 3, and scene 2 has major
differences with scene 3. Compared with scene 3, scene 1 is
collected on the same day and has the same haze distribution.
In both scenes with trees in the near and buildings in the far
distance, it should be noted that they are collected at different
angles and the target distribution is not the same. Scene 2 is the
hazy polarization data disclosed by Shen et al. [17]. The two
scenes of weather, target distribution, and illumination are
different, moreover, scene 2 is composed of plants and without
buildings at a distance.

As shown in Figure 6E, when the model trained with scene 1 is
used as the pre-loaded model, the dehazing result of scene 3 by
direct inference in the detail improvement surpasses the result by
using the method based on DCP. During this dehazing process,
only the pre-loaded model is used, and PSDNet without any
online training. Performance in the final comparison also reflects
that the PSDNet combined with the physical model has good
robustness to the different scenes. When the model trained with
scene 2 is used to remove the haze of scene 2, the result is shown in
Figure 6F; only 25 iterations of online learning are required to get

FIGURE 5 | The result of edge detection by using the Prewitt operator after dehazing. (A) Original scene image. (B–E) The edge extraction result of the original
image, the AOD-Net dehazing result, the DCP dehazing result, and the dehazing result of our method respectively.

TABLE 1 | Indicator for the part of the image that contains a distant scene.

Original AODNet DCP Ours IIDWP

Contrast 0.047 0.070 0.133 0.158 0.135
Saturation 0.074 0.083 0.093 0.106 0.089
ENIQA 0.392 0.381 0.391 0.274 0.280

Bold values indicate the best values.

TABLE 2 | Indicator for the part of the image that contains a nearby scene.

Original AODNet DCP Ours IIDWP

Contrast 0.116 0.278 0.235 0.128 0.240
Saturation 0.076 0.224 0.179 0.138 0.163
ENIQA 0.392 0.190 0.285 0.137 0.239

Bold values indicate the best values.
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FIGURE 6 | Cross-scene dehazing capability comparison. (A) Pre-training scene 1. (B) Pre-training scene 2. (C) Scene 3 to be dehazed. (D) Dehazing results by
using the DCP-based method. (E) Scene 3 dehazing results by using the scene 1 training model for direct inference. (F) haze removal results using the training model of
scene 2 as a pre-training model and 25 gradients are back-propagation for updates. The distant scenes with severe image degradation are locally zoomed in and edge
extraction is performed to compare the dehazing ability of different methods.

FIGURE 7 | Schematic diagram of PSDNet.
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superior dehazing outcomes than those obtained using the DCP
method. In addition, when the pre-trained model is loaded, only
the computational process of the Dehazing Process in Figure 7 is
required, so the running efficiency of the network can be greatly
improved.

As mentioned above, supervised algorithms need a big quantity
of data for training; aside from the collection of haze-free pairs that
take a lot of time, the model training procedure takes a significant
amount of computer resources and time. AODNet, for example,
takes more than 36 h to train 50 epochs, but PSDNet takes less than
5 min to train 800 epochs in the same computational environment,
and less than 10 s is needed to complete 25 epoch of training when
the pre-trainedmodel is loaded. PSDNet is unquestionably quicker
than supervised algorithms.

As shown in Table 3, the time required by different algorithms
for haze removal is compared. There is a preparation time since
AODNet and PSDNet need to load the model to the GPU, but the
model only has to be loaded once, and then the network can
remove the haze of numerous pictures. In terms of time
comparison, the single frame dehazing time of PSDNet only
takes 0.34 s. The dehazing speed of PSDNet, which is significantly
faster than AODNet and DCP-based methods, makes it possible
to achieve quasi-real-time dehazing.

4 DISCUSSION

According to the experimental results, we have the following
discussions.

1) PSDNet combined with the physical model can efficiently
utilize the scene polarization information for accurate
estimation of the transmission map and form a self-
supervised closed loop. Therefore, haze-free images are not
required as GT for constraint during all training processes,
which reduces the dependence on data. Compared with the
dehazing results of traditional methods using polarization and
the dehazing results of supervised networks, PSDNet has
better performance in enhancing scene details and color
retention, and can almost achieve the enhancement from
unseen to visible target in some scenes.

2) PSDNet is robust for different scenarios. Because the
physical models included in the neural network are built
based on actual haze scenes, PSDNet is effective at most
scenes. And the network structure incorporated physical
priors can help the models trained with different scenes to
migrate or online learning. The training times can be

reduced to 1/32 of the original by loading the pre-
trained model (from 800 epochs to 25 epochs, result as
shown in Figure 6F). For similar scenes, the pre-trained
model can be directly used to remove haze without
retraining (result as shown in Figure 6E).

3) Because PSDNet does not require a large amount of data for
training, this advantage not only drastically reduces the data
acquisition time but also saves the time for model training.
Compared to the supervised algorithm AODNet, which takes
36 h to train 50 epochs, PSDNet takes less than 5 min for 800
iterations, and the training time can be compressed to less
than 10 s when loading the pre-trained model. When
performing model inference for dehazing, PSDNet is three
times faster than traditional methods based on DCP, and also
faster than similar supervised class algorithms.

5 CONCLUSION

This paper proposes a method that combines the polarization
difference of the scene with the neural network to achieve
dehazing. Since the polarization prior can effectively guide and
activate the extracted feature maps of neural networks, the
proposed network does not need haze-free pairs as GT to
constrain the training process. Only two frames of scene
images with orthogonal polarization at any angle are
required as input, then the self-supervision and global
online optimization learning approach are used for haze
removal. The airlight can be better estimated by the self-
supervised closed-loop optimization process. Therefore, the
proposed method has good results in preserving the color of
the original image and enhancing the details compared to
similar algorithms based on polarization or supervised
learning-based. In actual dense haze scenes, almost invisible
details of distant targets can be identified by using the
proposed approach for dehazing. The training time and
dehazing efficiency of the network have obvious advantages
in the comparison of similar methods, and it is expected to
achieve real-time haze removal. The proposal of this method
promotes the development of the combination of deep
learning and physical models in the field of anti-scattering.
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TABLE 3 | Comparison of calculating time using different methods.
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Effects of Measurement
Configurations on the Sensitivity of
Morpho Butterfly Scales Based
Chemical Biosensor
Zhengqiong Dong1,2†, Hang Zhao2†, Lei Nie2*, Shaokang Tang2, Chenyang Li2 and
Xuanze Wang1,2

1Hubei Key Laboratory of Manufacture Quality Engineering, Wuhan, China, 2School of Mechanical Engineering, Hubei University
of Technology, Wuhan, China

The Morpho butterfly wing with tree-shaped alternating multilayer is an effective chemical
biosensor to distinguish between ambient medium, and its detection sensitivity is
inextricably linked to the measurement configuration including incident angle, azimuthal
angle, and so on. In order to reveal the effects and the selection of measurement
configuration. In this work, the model of the Morpho butterfly wing is built using the
rigorous coupled-wave analysis method by considering its profile is a rectangular-groove
grating. On basis of the above model, the reflectivity of different diffraction orders at a
different incident angle and azimuthal angle is calculated, and the influence of incident
angle and azimuthal angle on performance of Morpho butterfly scales-based biosensor is
analyzed. The optimal incident angle at each azimuthal angle is given according to the
proposed choice rule, then the azimuthal angle and the corresponding incident angle can
be selected further.

Keywords: chemical biosensor, morpho butterfly, measurement configuration, sensitivity, rigorous coupled-wave
analysis

INTRODUCTION

In recent years, the Morpho butterfly wings are widely studied for their selective absorption and
reflection of electromagnetic waves with different wavelengths [1–6]. The structural color—Morpho
blue is the main color of the Morpho butterfly wing in connection with various optical phenomena
such as scattering, interference, and diffraction [7, 8]. Several optical modeling methods such as
finite-difference time-domain (FDTD) [7, 9, 10] and rigorous coupled-wave analysis (RCWA)
[11–13] have been introduced to analyze the optical properties of theMorpho blue. The analysis has
shown that the tree-like microstructure existed in the wing scales is the major cause ofMorpho blue
formation [11]. According to their conclusion, many applications of the tree-like microstructure
have been proposed, including the establishment of color selection ability by fabricating the tree-like
structure [10, 14–16], distinguishing between different vapors [2, 17, 18] and different ambient
liquids [13, 19, 20] with butterfly wing.

In a famous application proposed by Potyrailo [18] which is using the butterfly wing as a biosensor
to distinguish vapors, they showed that the iridescent scales of the Morpho sulkowskyi butterfly have
different optical responses when it acts on different individual vapors, and this optical response
dramatically outperforms the existing nano-engineered photonic sensors. By further expanding the
application range of butterfly wing-based biosensors, Yang et al. [13] also found that the color and the
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brightness of the butterfly wings change significantly when the
surrounding medium of the butterfly wing was altered. Namely,
they demonstrated that the reflectance peak shift (RPS) is
proportionate to the refractive index of the ambient medium.
However, the simulations and experiments were inclined to
conduct at normal incidence with an azimuthal angle of 0°

under TM mode. This leads us to consider several questions:

1) Does the measurement configuration which is the
combination of normal incidence and zero-degree
azimuthal angle is the only one that can ensure the RPS is
proportional to the refractive index of ambient medium?

2) Does the law that the RPS is proportional to the refractive
index of the ambient medium still fulfilled if the measurement
configuration varies?

3) Can we select an optimal measurement configuration to
maximize the RPS for an ambient medium?

To answer these questions, we simulated the reflectance for the
tree-like structure under different ambient media at different
incident angles and azimuthal angles.

MODELING BASED ON RCWA METHODS

One essential feature in theMorpho butterfly wing scale which is
widely studied is the tree-shaped alternating multilayer as shown
in Figure 1A. According to the previous work [7], the multilayer
interference phenomenon and grating diffraction phenomenon
are the two main reasons that cause the structural colours of the
Morpho butterfly wing. This sliced structure is suitable for
calculating in RCWA, here we choose to emphasize the
grating diffraction phenomenon using RCWA. The complex
refractive indexes of region 1 and region 2 are n1 and n2
respectively. In the rectangular coordinate system, incident
angle and azimuthal angle are respectively θ and φ, the
intersection angle between incident electric vector Einc and
incident wave vector k1 is polarizing angle ψ. The tree-shaped
alternating multilayer model is an ordered array of ridges with

lamellae running nearly parallel to the substrate of the scale and
periodically staggered on both sides of each ridge, which can be
characterized by the following parameters: the thickness of the
lamellaeHr; the thickness of the air gapHg; the offset ΔH between
the left lamellae and the corresponding right lamellae along the
Z-axis; the width of the bottom lamellae Wr; the width of the
trunkWt; the height between the top surface of the substrate and
the bottom surface of the longest lamellaeHo; the thickness of the
substrate Hs; the height of the trunk Ht; and the period Λ. As
shown on the right-hand side of Figure 1B, the tree-shaped
structure is easy to be sliced into 33 layers, and layer l can be
regarded as a rectangular grating with width and height ofWl and
Hl respectively. For the sliced structure, it is obvious that it’s a
typical multiple overlay model.

In the grating region, the periodic relative permittivity of layer
l is expandable in the forms of Fourier series [21, 22]:

εl(x) � ∑
n

εl,n exp(j
2πn
Λ

) (2-1)

where εl,n is the nth component of the Fourier series of layer l.
The electrical component of the incident plane wave defined as

an incident normalized electrical field is given by:

Einc � u exp(−jk1 · r) (2-2)

Where u is the normalized electrical component, r is the position
vector of an arbitrary point on the wave plane.

According to the Rayleigh expansion, the normalized
solutions in region 1 (Z < 0) and region 2 (Z > Ht) are
expressed as [23, 24]:

E1 � Einc +∑
i

Ri exp[ − j(kxix + kyy − k1,ziz)] (2-3)

E2 � ∑
i

T i exp{ − j[kxix + kyy + k2,zi(z − d)]} (2-4)

Where Ri and Ti are amplitude vectors of ith incident wave and
reflected wave. kxi, ky, and km,zi (m � 1,2) are the X, Y, and Z
components of the ith diffraction wave vector, respectively. The
mathematic expressions of kxi, ky and km,zi are given by:

FIGURE 1 | (A) Geometry of the Morpho butterfly wing scale; (B) layers division for inverse modeling based on RCWA.
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kxi � k0(n1 sin θ cosφ − iλ/Λ) (2-5)

ky � k0n1 sin θ sinφ (2-6)

km,zi �
⎧⎪⎨
⎪⎩

+
���������������
(k0nm)2 − k2xi − k2y

√
, (k0nm)2 ≥ k2xi + k2y

−j
���������������
k2xi + k2y − (k0nm)2

√
, (k0nm)2 < k2xi + k2y

, m � 1, 2

(2-7)

In the grating region (0 < Z < D), the electrical field and
magnetic field of layer l can be expressed by the Fourier expansion
of the harmonic waves in space as follows [22]:

El,g � ∑
i

[Sl,xi(z)x̂ + Sl,yi(z)ŷ + Sl,zi(z)ẑ] exp[ − j(kxix + kyy)]

(2-8)

H l,g � − j

��
ε0
μ0

√

∑
i

[Ul,xi(z)x̂ +Ul,yi(z)ŷ + Ul,zi(z)ẑ] exp[ − j(kxix

+ kyy)]

(2-9)

where Sl,i(z) � Sl,xi(z)x̂ + Sl,yi(z)ŷ + Sl,zi(z)ẑ and U l,i(z) �
Ul,xi(z)x̂ + Ul,yi(z)ŷ + Ul,zi(z)ẑ related to Wl and Hl are the
electrical and magnetic components of the ith space harmonic
vector in layer l, respectively. And El,g and Hl,g satisfy Maxwell’s
equation in the grating region:

∇ × El,g � −jωμ0H l,g (2-10)

∇ ×H l,g � jωε0εl(x, y)El,g (2-11)

Where ε0 and μ0 are permittivity and permeability in free space.
By substituting (2-8), (2-9) into (2-10), (2-11) and eliminating

El,gz andHl,gz (the Z components of El,g andHl,g), and applying the
inverse rule [25], the coupled-wave equations under TEmode can
be obtained:

[z2Sl,y/z(z′)
2
] � [Al][Sl,y] (2-12)

Where, Sl,y is the Y component of ∑ Sl,i(z), Al � Kx − El and Kx

is an N-dimensional diagonal matrix (N is the number of Fourier
series) whose diagonal elements are defined by kxi/k0, El is an
N-dimensional Toeplitz matrix composed of εl,g, whose element
of the pth row and the qth column is εl,p−q.

Likewise, the coupled-wave equations under TM mode can be
obtained:

[z2Ul,y/z(z′)
2
] � [Fl]−1[Bl][Ul,y] (2-13)

Where, U l,y is the Y component of ∑ Sl,i(z), Fl is an
N-dimensional Toeplitz matrix composed of (1ε)l,g, whose

element of the pth row and the qth column is (1ε)l,p−q.Bl is

expressed by Bl � KxE−1
l Kx − I.

Then the Sl,i(z) and U l,i(z) can be obtained by solving the
coupled-wave equations (2-12) and (2-13).

Finally, to get the electric field component Rs under TE mode
(ψ � 90°) and magnetic field component Rp under TM mode
(ψ � 0°) of the reflected wave, the continuous conditions should
be considered on the boundaries of every layer and at interfaces of
the adjacent region.

SIMULATIONS AND DISCUSSIONS

In simulations, the tree-shaped structure has the same complex
refractive index 1.56 + 0.06i [26] as the substrate, and the complex
refractive index is constant in the wavelength range [27], which is
from 193 to 1,000 nm with a wavelength step of 5 nm. The
difference between adjacent lamellae on both sides of the
trunk is a constant of 20 nm. The tree-shaped alternating
multilayer is periodic along the X-axis with a pitch Λ of
700 nm. The values of other structural parameters shown in
Figure 1 are set in Table 1. The modeling and parameters
solution is carried out with the program we have written in
MATLAB.

Before studying the impact of measurement configurations on
the sensitivity of Morpho butterfly scales-based chemical
biosensor, we take account of a special condition in Zhu’s
study [7]. In which case a diffraction grating consists of
alternating multilayers was illuminated by a beam at normal
incidence with a specified wavelength under TM polarization.
Then the reflectivity under different diffraction orders was
calculated. The results showed that only the first-order
diffraction is mainly responsible for the reflectivity peak that
causes the structural colour with waveband of visible light.
Likewise, we simulated the reflectivity at normal incidence
under zeroth and first-order diffraction for the structure in
Figure 1 with visible light. Since an arbitrarily polarized light
can be transformed into a linear combination of TE and TM
polarized light, we focus on the simulations for TE and TM
polarization. In the simulations, the surrounding mediums of the
structure are air, carbinol, and ethanol, respectively.

The results shown in Figure 2 indicate that the reflectivity
under first-order diffraction is indeed mainly responsible for the
peak of total reflectivity in the three cases, while the reflectivity
under zeroth-order diffraction is suppressed owing to the
destructive interference of the multilayer in the visible waves.
However, the effects of reflectivity caused by different incident
angles and azimuthal angles are rarely considered. For a
diffraction grating, different measurement configurations differ
in their sensitivity grades [28–30]. Once the optimal
measurement configuration is obtained, the optimal
measurement does become available.

For the Morpho butterfly scales-based chemical biosensor,
the refractive index of ambient gas or liquid is characterized
through the colour of theMorpho butterfly’s wing. Therefore, to
find the optimal measurement configuration and enhance the
colour change more markedly. We simulated the reflectivity of
the structure in Figure 1 at different incident angles and
azimuthal angles (the range of the incident angle was set
from 0 to 89° with an increment of 0.05°, and the range of
the azimuthal angle was set from 0 to 170° with an increment of
10°) using visible light under the TE mode. Since the difference

TABLE 1 | The values of structural parameters.

Hr Hg ΔH Wr Wt Ho Hs Ht

Value (nm) 80 120 120 270 100 400 600 2000
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FIGURE 2 | Simulated results of the reflectivity of zeroth and first-order diffraction under TE and TM mode.

FIGURE 3 | Simulated results of zeroth-order diffraction reflectivity of air under TE mode.
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between carbinol and ethanol is only the refractive index, we
do not simulate both. In the following simulations which are
from Figures 3 to 6, the ambient materials are air (refractive
index equals 1) and ethanol (refractive index equals 1.36),
respectively.

In Figure 4, the reflectivity of the total diffraction orders
was simulated for the Morpho butterfly’s wing with the
ambient air. When compared to Figure 3 apples-to-apples,
we find that the sum of the reflectivity aside from zeroth-order
diffraction is mainly responsible for the left part of each
subfigure. Namely, it is the chief cause of structural colour.
And the left part of each subfigure varies with the azimuthal
angle, which means the sum of the reflectivity of the diffraction
orders other than the zeroth order is sensitive to the azimuthal
angle. These phenomena show that if we want to characterize
the structural parameters or the optical parameters of the
butterfly wing using the Optical Critical Dimension (OCD)
liked method, the zeroth-order should not be used. In addition,
visually, we can find that the structural colour of the Morpho
butterfly is not always blue under some specified incident
angle and azimuthal angle—The simulation is carried out
under the condition of 110° azimuthal angle for example.
The total reflectivity of the butterfly wing is low in the
incident angle region which is from 42 to 70 under the 110°

azimuthal angle, in which case the colour of the Morpho
butterfly will look a lit bit like black to the naked eye. Then
we have carried out other simulations for the butterfly wing
which is surrounded by the liquid of ethanol, the simulations
are shown in Figures 5, 6.

When doing the apples-to-apples comparison with Figures
3, 5 shows the same characteristic, the reflectivity of zeroth-
order diffraction is insensitivity to the azimuthal angle, and
there is an upper threshold of incident angle below which the
reflectivity is quite low under all the wavelengths. The direct
difference between Figures 3, 5 is that the reflectivity obtained
above the incident angle of 80° is more regular in Figure 3. In
contrast, there are many peaks and valleys on the top of each
subfigure in Figures (4–6) share similar characteristics that
result from the sum of the total diffraction orders except for
the zeroth-order. Also, the sum of the non-zeroth diffraction
orders is sensitive to the azimuthal angle when the butterfly wing
is surrounded by the liquid of ethanol.

In Yang’s study [13], they showed that the reflectance peak
migrates from 475 to 565nm and 570 nm when the surrounding
medium change from air to carbinol and ethanol, respectively.
Moreover, the law that the wavelength of the reflectivity peak of
total orders increases with the refractive index of ambient
medium can be discovered. It must be stressed that the
simulation and experiment were conducted in the conditions
of normal incidence and the azimuthal angle of 0°. But when we
adjust the incident angle and azimuthal angle in the simulation,
the law introduced above no longer obtain in some cases. The
simulation results are shown as follows:

We can detect that the two curves which denote the RPS of
carbinol and ethanol under total diffraction orders have some
intersections. These appearances show that the RPS of the
carbinol is bigger than that of ethanol under some specified
incident angles and azimuthal angles. Take the case of the

FIGURE 4 | Simulated results of total diffraction orders reflectivity of air under TE mode.
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FIGURE 5 | Simulated results of zeroth-order diffraction reflectivity of alcohol under TE mode.

FIGURE 6 | Simulated results of total diffraction orders reflectivity of alcohol under TE mode.
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sub-figure in the top-left corner of Figure 7, we can see that the
RPS of the carbinol is smaller than that of the ethanol with
incident angle range of 60–75°, it quite coheres with the
conclusion in Yang’s paper [13]. However, the RPS of the
carbinol is bigger than that of the ethanol between the
incident angle of 75 and 85°. Thus, if the RPS should be used
for distinguishing between ambient media of the butterfly wing
scale-based biosensor, the measurement configuration must be
selected carefully to ensure that the RPS is proportional or
inversely proportional to the refractive index of ambient medium.

In most researches of nano/micro-structures, zeroth-order
diffraction is the highest priority. Hence, we also simulate the
RPS under zeroth-order diffraction for the ambient medium of
carbinol and ethanol, respectively. The simulation result is shown
in Figure 8.

It is obvious that the curves in Figure 8 show more volatility
compared with the curves in Figure 7, and we can hardly
determine whether one is higher between two curves. In other
words, the zeroth-order diffraction is not a very appropriate
observation parameter to distinguish two ambient media with
similar refractive index. Even so, we can find that when the
azimuthal angle is set as 80, 90, and 100°, the number of
oscillations is much less than the other sub-figures, and the
curve has longer smooth parts.

Since the RPS is used to represent and characterize different
ambient media in the Morpho butterfly wing-based biosensor,
the difference between the RPSs should be maximized for

ambient medium with a similar refractive index.
Furthermore, not all measurement configurations can
guarantee that the RPS is proportional to the refractive index
of ambient medium in the simulations discussed above, and
given the uncertainty (including random noise, system noise,
the uncertainty of tool’s incident angle, and azimuthal angle,
etc.) in the practical measurement, those continuously increased
incident angles under a specified azimuthal angle should be
select to guarantee a trend that the relative bigger refractive
index corresponds to a bigger RPS. Hence, the measurement
configuration such as the incident angle and azimuthal angle
should be set prudentially. We have extracted those
measurement configurations that can satisfy the relationship
of direct proportion between the RPS and refractive index for
both zeroth-order diffraction and total diffraction orders
beforehand. The statistical result is shown in Figure 9 (the
range of incident angle in the above simulations is from 0 to 89°

with an increment of 0.25°, which means the number of incident
angles is 357):

In Figure 9, the “excellent” incident angles mean that if the
measurement is conducted under these incident angles, the RPS is
proportional to the refractive index of ambient medium. From
the two sub-figures, we can observe that the number of “excellent”
incident angles under zeroth-order diffraction is bigger than that
of the total diffraction orders for most of the azimuthal angles.
One issue is that the difference of RPS for ambient medium
should be maximized to ensure good sensitivity of the biosensor.

FIGURE 7 | Simulated results of RPS of total diffraction orders.
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Hence, the incident angle that canmaximize the difference should
be picked up from those “excellent” incident angles under a
specified azimuthal angle. The other issue is that the continuous
sub-range of incident angle that contains our picks should strive
to be longer, because of the uncertainty of tool’s incident angle,

etc. in the practical measurement. Based on this strategy, the well-
chosen incident angles which we called optimal incident angles
are shown in Figure 10B.

In Figure 10A, the maximal difference of RPS between
ambient carbinol and ethanol under total diffraction orders is

FIGURE 8 | Simulated results of RPS of zeroth-order diffraction.

FIGURE 9 | The number of “excellent” incident angles of total diffraction orders and zero-order diffraction.
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275 nm at the azimuthal angle of 80°, and the corresponding
optimal incident angle is 68°. However, for the zeroth-order
diffraction, the RPS is over 200 nm under all the azimuthal
angles. In Figure 10B, the continuous ranges not only contain
the optimal incident angle but also ensure the RPS is
proportional to the refractive index of the ambient medium.
For the azimuthal angle of 80°, the continuous range of
corresponding incident angle is too short, it will lead to the
criterion of direct proportion may not be valid at larger
uncertainty in practical measurement. Compared with the
total diffraction orders, the zeroth-order diffraction can
provide a bigger difference of RPS between the carbinol and
ethanol under a few incident angles and azimuthal angles.
However, the continuous ranges of incident angles have
shorter lengths for most of the azimuthal angles. Thus, if we
want to distinguish two different ambient media accurately, a
perfect tradeoff should be gained among the RPS and the
continuous range before measuring.

CONCLUSION

In this paper, the impact of incident angle and azimuthal angle
on Morpho butterfly scales-based biosensors has been
investigated. According to the simulation result of
reflectivity under zeroth-order diffraction and non-zeroth
order diffraction, we can conclude that the reflectivity of
zeroth-order diffraction is less sensitive to the azimuthal
angle than of non-zeroth order diffraction, and the non-
zeroth order diffraction is a major contributor to structural
color for most incident angles. Thus, we suggest that zeroth-
order diffraction should not be used to characterize the
structural parameters or the optical parameters of the
butterfly wing by the method parallel to OCD. Furthermore,
we have calculated the RPS of carbinol and ethanol relative to

the air, the law obtained at normal incidence and zero-degree
azimuthal angle is no longer active in some cases. The
appropriate incident angle and azimuthal angle must be
reconsidered. On the one hand, we hope the RPS is
proportional to refractive index, and have obvious
difference among ambient media with similar reflectivity
index. On the other hand, we also expect the incident angle
that satisfies previous point to have a wider contiguous range.
Therefore, a compromise between above two points can be
made, according to the maximal RPS difference and the
continuous range of optimal incident angles at each
azimuthal angle we have given. Theoretically, the selected
configuration can provide better robustness and accuracy
especially if exist in larger uncertainty of measurement. In
the future work, we will carry out experiments for further
verification of this beneficial effect.
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Polarimetric Imaging in the
Environment Containing Medium and
Object
Daqian Wang*, Xin Wang, Peifeng Pan and Jun Gao

School of Computer and Information, Hefei University of Technology, Hefei, China

Polarimetric imaging has been studied and applied to the problem of visibility restoration in
various scenarios such as haze, mist and underwater. Although studies have shown that
under certain conditions, circular polarimetric imaging has certain advantages over linear
polarimetric imaging, however, for a complex environment containing both scattering
medium and object, the performance of linear and circular polarimetric imaging is affected
by many factors. In this paper, the propagation of linear and circular polarized light in the
scattering medium is theoretically analyzed, then the simulation experiments under
different experimental conditions are carried out and the conclusions are summarized.
In order to validate the simulation results, the measurement experiments are carried out in
dynamic smoke scenarios with different smoke concentrations. The results show that, the
propagation of the polarized light, especially the circular polarized light, is determined by
medium conditions. Generally, both the linear and circular polarimetric imaging had an
ability to reduce the image degradation caused by smoke, however, under some certain
environment conditions, unlike the linear polarized channels, the difference between the
orthogonal circular polarized channels may be approached or even reversed, which may
limit the circular polarization-based difference imaging and visibility restoration
performance.

Keywords: polarimetric imaging, propagation of polarized light, mixed medium, linear polarization, circular
polarization

1 INTRODUCTION

When the polarized light propagates in the scattering medium, it undergoes multiple scattering with
particles, leading to randomization of its direction, phase, and polarization state [1]. Due to the
differences of material, structure and shape between the object and the background, their
polarization properties are significantly different. Polarimetric imaging can enhance the
difference between the object area and the background medium and highlight the details of the
object by measuring and processing the polarization information. Nowadays, Polarimetric imaging
has been applied in fields like object detection [2–4], biomedical imaging [5, 6].

Existing studies have shown that polarization gating can eliminate the contribution of scattered
photons that lose the original polarization information caused by multiple scattering, and retain the
photons that experience few scattering times that maintain the original polarization state
component, so as to improve the image contrast [7, 8]. In addition, the circular polarimetric
imaging is implemented in some scenarios, due to its advantages over the linear polarization [9–11].
However, due to the polarization memory effect, the helicity of circular polarized light can be
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reversed in some cases [12, 13]. Therefore, the law of the
propagation of circular polarized light in the medium is more
complex than that of linear polarized light and the influence of
polarization memory effect should be fully considered in
application.

We study the propagation of polarized light in a mixed
environment including medium and object. Thus, we should
model the polarimetric scattering in the medium and the
polarimetric reflection by object surface. Linear polarimetric
imaging is widely used in research and application, but due to
some advantages of circular polarimetric imaging, however, we
are still interested in the performance of linear and circular
polarimetric imaging under different experimental conditions.
This paper first studies the propagation of linear and circular
polarized light in scattering medium. On this basis, simulation
experiments are implemented based on Monte Carlo simulation
program and the variation of the intensity of orthogonal
polarization channels affected by different factors are analyzed.
In addition, in order to validate the simulation results, a
polarization setup is built for measurement experiments and a
series of experimental data of different polarization channels are
collected and the results are analyzed. The results show that, the
propagation of the polarized light, especially the circular
polarized light, can be affected by the medium factors such as
concentration, wavelength and distance. Generally, both the
linear and circular polarimetric imaging had an ability to
reduce the image degradation caused by smoke, however,
under some certain environment conditions, unlike the linear
polarized channels, the difference between the orthogonal
circular polarized channels may be approached or even
reversed, which may limit the circular polarization-based
difference imaging and visibility restoration performance.

2 SIMULATION OF THE PROPAGATION OF
POLARIZED LIGHT IN MIXED MEDIUM

In order to fully understand the propagation of polarized light in
mixed media, we developed a Monte Carlo based simulation
program [14, 15], and studied the process of polarized light
propagating in medium through a series of simulation
experiments. The significance of carrying out the simulation
experiments is that, the propagation of polarized light in real
scenarios is affected by many factors, such as the wavelength, the
particle size, the concentration, the refractive index and the
thickness of medium. However, it is difficult to evaluate the
impact of each factor and include all the factors in measurement
experiments. Therefore, the simulation experiments can help us
better understand the propagation of linear and circular polarized
light in different medium conditions.

2.1 Theoretical Basis of Propagation of
Polarized Light
For linear polarimetric imaging, numerous polarization-
maintaining photons can be detected at the upper layer of the
scattering medium [1, 7]. As the photons penetrate into the

deeper layer, due to the multiple scattering, the photons lose their
initial polarization state and become randomized [1]. Therefore,
the polarization difference imaging is to eliminate multiple
scattered photons, so as to highlight the details and contrast of
the object area. In addition, for circular polarimetric imaging,
after photons scattered at large angles or reflected by the object
surface, their helicity will be reversed compared with the initial
helicity, while photons scatter forward at small angles will
maintain the helicity [16, 17]. Some studies also pointed out
that the helicity reversal is related to the relative size of photon’s
wavelength and medium particle size [12, 18]. However, in the
environment containing both medium and target, the situation
will become more complicated when the polarimetric scattering
and reflection have to be considered simultaneously.

2.2 Structure of the Program
The scenario can be simplified as a mixture of the smoke medium
in the upper layer and the object in the lower layer. Monte Carlo
based simulation program can track the photon’s movement in
the medium and update the photon’s polarization state. By
counting the energy of backscattered photons on the receiving
plane, the radiance of orthogonal polarization channels can be
obtained.

The flow chart of the simulation program is shown in Figure 1,
which mainly includes three main modules:

1) The scattering medium module can process the scattering of
photons in the medium, and update the photon’s position,
direction and polarization parameters after each movement;

2) The surface geometric modeling module can carry out
geometric modeling on the object surface [19, 20], and
update the photons’ reflection direction from the object
surface;

3) The material modeling module can convert the object surface
material into the corresponding optical parameters, generate
the corresponding Mueller matrix [21, 22] and update the
photons’ polarization state after reflection.

2.3 Simulation Experiments Under Different
Experimental Conditions
The simulation experiments were carried out and the
experimental conditions were set to match the measurement
scenarios. The simulations focused on the radiance of
orthogonal polarization channels in the environment
containing medium and object. Because the particle size of the
medium has a huge impact on the interaction between polarized
photons and particles. Our simulation experiments chose two
particle diameters, small-sized (0.2 μm) and large-sized (8.0 μm),
and study the factors of concentration, wavelength and detection
distance.

2.3.1 Effect of Concentration on the Propagation of
Polarized Light
In the measurement experiment, the concentration of smoke is an
important factor, affecting the polarimetric imaging
performance. Theoretically, with the increase of smoke
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concentration, the number of particles per unit volume of the
medium increases, the scattering coefficient of particles increases
[23], the step size of photons generally decreases, the penetration
depth of photons decreases, and the diffusion radius of photons
increases. However, the propagation of polarized light with
different initial polarization states is different. We simulated
the backscattered intensity of linear and circular polarization
with concentrations in the medium of small-sized and large-sized
particles. The receiving plane was placed 10 cm above the object
[24]. The smoke as the scattering medium was filled between the
object and the receiving plane. The pencil beam light source was
vertically incident into the environment at 10 cm above the
object, and the refractive index of smoke particles at 0.630 μm
was 1.57 + 0.4277i [25]. The refractive index of the object surface
was set to 1.5, which corresponded to the material of the standard
color chart (Spydercheckr) [26]. We set the medium
concentration to a reasonable value to ensure that the

calculated scattering coefficient was within the normal range
in the actual scenarios [27]. The absorption coefficient was
usually set to a small value [28]. The detailed simulation
parameters were shown in Table 1.

The 3D distributions of backscattered intensity of polarization
channels in the medium with small-sized particles were shown in
Figure 2. The backscattered intensity at the centre of the plane
was high because of the reflection, while the radiance at the
periphery was low. The backscattered intensity at the centre of
each distribution was marked in each subgraph. As shown in
Figure 2A, for the horizontally linear polarized illumination, the
horizontal linear polarized (co-polarized) light dominated the
backscattered intensity, while for the right circular polarized
illumination, an obvious helicity reversal phenomenon
happened, that is, the left circular polarized light dominated
the backscattered intensity, as shown in Figure 2B. Therefore,
for the medium with small-sized (0.2 μm) particles, with the

FIGURE 1 | The flow chart of simulation program.
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gradual increase of medium concentration, the intensity of co-
polarized light and left circular polarized light decreased
significantly, while that of cross-polarized light and right
circular polarized light maintained at a very low level.

The 3D distributions of backscattered intensity of polarization
channels in the medium with large-sized particles (8.0 μm) were
shown in Figure 3. With the gradual increase of the
concentration, the intensity of co-polarized and left circular
polarization channel first decreased and then increased, while
the intensity of cross-polarized and right circular polarization
components increased significantly. Especially, the intensity of
right-handed circular polarization component exceeded the left-
handed polarization component when the concentration reached
a certain degree. This was because when the medium
concentration was low, the collision probability between
photons and particles was low, backscattered photons were
mostly reflected from the surface, or scattered at a large angle,
so the helicity was mainly reversed. With the increase of medium
concentration, the scattering coefficient of particles increased, the
collision probability between photons and particles increased,
and the multiple scattering of photons could be decomposed into
multiple small angle scattering, therefore, the number of photons
that maintained the original helicity increased as a whole.
Therefore, for a particle polydisperse medium with different
concentrations, the difference between the orthogonal linear
polarized channels is maintained, while the difference between
the orthogonal circular channels may be approached or even
reversed.

2.3.2 Effect of Wavelength on the Propagation of
Polarized Light
In the measurement experiment, the wavelength also has an
important impact on the results of polarimetric imaging. We
carried out simulation experiments under different wavelengths
and most of the simulation parameter settings were the same as
the previous. As shown in Table 2, the concentration was set as a
constant. The wavelength was selected in the range of visible light
wavelength: 0.43, 0.48, 0.53, 0.58, 0.63 μm. The 3D distributions
of backscattered intensity of polarization channels were shown in
Figures 4, 5, respectively. For the medium with small-sized
particles, the scattering coefficient of particles decreased
gradually with the increase of initial wavelength, then the step
size of photons generally increased, photons were easier to reach
and reflect from the object surface, therefore for the co-polarized

light and left circular channel, the intensity of the received
backscattered light increased gradually, while the cross-
polarized and right circular channel were insensitive to the
variation of the wavelength, as shown in Figure 4. In addition,
for the medium with large-sized particles, the scattering
coefficient did not change significantly with the increase of
wavelength, because the effective cross-section of the particle
(proportional to scattering coefficient) [23] is large enough
relative to the wavelength. Therefore, the intensity of all the
polarization channels varied slightly, as shown in Figure 5, and
the intensity of right circular component was higher than that of
left circular component at all wavelengths. This was because in
the medium with large-sized particles, the scattering coefficient of
particles was high, the collision probability between photons and
particles was large, and the multiple scattering of photons could
be decomposed into multiple small angle scattering, so the
number of photons that maintained the original helicity
increased as a whole, and the number of photons reflected by
the target surface decreased. Therefore, the difference between
orthogonal linear polarized channels was more obvious
compared with circular polarized channels.

2.3.3 Effect of Detection Distance on the Propagation
of Polarized Light
In the measurement experiment, in the medium with uniform
distribution, the distance between the detector and the object
determines the thickness of the scattering medium. When the
moving distance of photon in the medium exceeds its transport
mean free path (MFP), the scattering direction will become
randomized, which affecting the intensity of backscattered
polarized channels [24]. Therefore, when studying the
influence of detection distance on the propagation of polarized
light, the photon’s transport MFP in the medium should be fully
considered. For the medium with small-sized particles, the
transport MFP was about 12.1 cm, while for the medium with
large-sized particles, the transport MFP was about 6.9 cm.
Therefore, for different medium environments, we set different
detection distances for the simulations. The simulation
parameters were listed in Table 3.

For the medium with small-sized particles, with the increase of
the detection distance, the backscattered intensity of co-polarized
and left circular polarized channel decreased significantly, while
the intensity of cross-polarized and right circular polarized
channel decreased slightly, as shown in Figure 6; while for the

TABLE 1 | Simulation parameters of medium with different concentrations.

Parameters 0.2 μm 8.0 μm

Illumination Linear Polarized, Circular Polarized Linear Polarized, Circular Polarized
Wavelength 0.630 μm 0.630 μm
Anisotropy g 0.2052 0.7646
Density 4 × 10−4, 12 × 10−4, 20 × 10−4, 28 × 10−4 particles/μm3 2 × 10−7, 4 × 10−7, 6 × 10−7, 8 × 10−7 particles/μm3

Scattering coefficient μs [27] 0.0348, 0.1042, 0.1737, 0.2432 cm−1 0.2059, 0.4118, 0.6177, 0.8236 cm−1

Absorption coefficient μa [28] 0.0100 cm−1 0.0100 cm−1

Refractive index (Smoke particle) [24] 1.57 + 0.4277i 1.57 + 0.4277i
Refractive index (Object) [26] 1.50 1.50
Number of photons 50,000 50,000
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medium with large-sized particles, the backscattered intensity of
all channels first decreased rapidly and the decrease amplitude of
co-polarized and left circular polarized channels was much higher
than that of cross-polarized and right circular polarized channels.

With the gradual increase of detection distance and reaching
the photon’s transport MFP, the right circular component
exceeded the left circular component, as shown in Figure 7.
This was because the receiving plate was gradually away from

FIGURE 2 | Radiance of polarization channels at different concentrations in the medium with small-sized particles (0.2 μm). (A) co-polarized and cross-polarized
radiance, (B) right circular and left circular polarized radiance.
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the target, the number of received helicity reversal photons due
to object surface reflection was greatly reduced. As the distance
continued to increase, the intensity of all channels remained
nearly stable and did not change significantly with the increase
of distance.

3 POLARIZATION BASED VISIBILITY
RESTORATION METHOD

In order to compare the performance of linear and circular
polarization imaging on visibility recovery, we described the

FIGURE 3 | Radiance of polarization channels at different concentrations in the medium with large-sized particles (8.0 μm). (A) co-polarized and cross-polarized
radiance, (B) right circular and left circular polarized radiance.
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TABLE 2 | Simulation parameters of medium with different wavelengths.

Parameters 0.2 μm 8.0 μm

Illumination Linear Polarized, Circular Polarized Linear Polarized, Circular Polarized
Wavelength 0.430, 0.480, 0.530, 0.580, 0.630 μm 0.430, 0.480, 0.530, 0.580, 0.630 μm
Anisotropy g 0.2052 0.7646
Density 12 × 10−4 particles/μm3 6 × 10−7 particles/μm3

Scattering coefficient μs 0.3151, 0.2290, 0.1884, 0.1405, 0.1042 cm−1 0.6290, 0.6277, 0.6785, 0.6737, 0.6177 cm−1

Absorption coefficient μa 0.0100 cm−1 0.0100 cm−1

Refractive index (Smoke particle) 1.57 + 0.4277i 1.57 + 0.4277i
Refractive index (Tissue) 1.50 1.50
Number of photons 50,000 50,000

FIGURE 4 | Radiance of polarization channels at different wavelengths in the medium with small-sized particles (0.2 μm). (A) co-polarized and cross-polarized
radiance, (B) right circular and left circular polarized radiance.
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FIGURE 5 | Radiance of polarization channels at different wavelengths in the medium with large-sized particles (8.0 μm). (A) co-polarized and cross-polarized
radiance, (B) right circular and left circular polarized radiance.

TABLE 3 | Simulation parameters of medium with different distances.

Parameters 0.2 μm 8.0 μm

Illumination Linear Polarized, Circular Polarized Linear Polarized, Circular Polarized
Wavelength 0.630 μm 0.630 μm
Anisotropy g 0.2052 0.7646
Density 12 × 10−4 particles/μm3 6 × 10−7 particles/μm3

Scattering coefficient μs 0.1042 cm−1 0.6177 cm−1

Absorption coefficient μa 0.0100 cm−1 0.0100 cm−1

Refractive index (Smoke particle) 1.57 + 0.4277i 1.57 + 0.4277i
Refractive index (Tissue) 1.50 1.50
Number of photons 50,000 50,000
Distance 5 cm, 10 cm, 15 cm, 20 cm 2.5 cm, 5 cm, 7.5 cm, 10 cm
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polarization-based visibility restoration method. The
polarization-based image degradation model for orthogonal
polarization state was written as:

{
I‖ � J‖t+A‖(∞)(1 − t)
I⊥ � J⊥t+A⊥(∞)(1 − t) (1)

FIGURE 6 | Radiance of polarization channels at different distances in the medium with small-sized particles (0.2 μm) (A) co-polarized and cross-polarized
radiance, (B) right circular and left circular polarized radiance at 5 cm, 10 cm, 15 cm, 20 cm, respectively.
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where I and J represent the results of polarimetric imaging with
and without a scattering medium, respectively, A is the intensity
of environment light with infinite optical depth, meaning that the
object radiance is completely obscured by the scattering medium,

t is the transmission parameter which describes the proportion of
the sample’s signal attenuated in the scattering medium, the
subscript ‖ and ⊥ indicate that the polarization state of the
variable is parallel or orthogonal to the incident polarization state.

FIGURE 7 | Radiance of polarization channels at different distances in the medium with large-sized particles (8.0 μm) (A) co-polarized and cross-polarized
radiance, (B) right circular and left circular polarized radiance at 2.5 cm, 5 cm, 7.5 cm, 10 cm, respectively.
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The polarization difference calculation was implemented to
estimate the parameters of the model. When the incident light
penetrates the scattering medium and reaches the object layer, the
polarization state of the photons will become randomized due to
multiple scattering. We can assume that the polarization
components J‖ and J⊥ after passing through the transparent
medium and reflected by the target are nearly equal in
intensity [18]. Therefore, the polarization component reflected
from the object can be ignored and the polarization difference
calculation could be written as:

∣∣∣∣I‖ − I⊥
∣∣∣∣ � A‖(∞)(1 − t) (2)

The reason for adding the absolute value calculation here is
because for the circular polarization imaging, the helicity of the
backscattered circular polarization state may be reversed. Then
the transmission parameter of the degradation model could be
estimated as:

t � 1 −
∣∣∣∣I‖ − I⊥

∣∣∣∣
A‖(∞) (3)

The parameter A can be estimated by the proposed algorithm
in [29].

In summary, the visibility restoration result could be
estimated as:

J � J‖+J⊥ � I‖ + I⊥ − A‖(∞) − A⊥(∞)
t

+A‖(∞)+A⊥(∞) (4)

4 MEASUREMENT EXPERIMENTS

In order to validate the conclusion from simulation results, we
carried out the polarimetric imaging experiment in the
measurement scenario. We built a polarization imaging setup
which can realize linear polarization and circular polarimetric
imaging with nearly consistent conditions. A series of
experimental data of different polarization channels were
collected and the results were analyzed.

The experimental setup was shown in the Figure 8. The
polarization state generator (PSG) was composed of an LED
white illuminant GI-060411 (440–670 nm), a calibrated 45° linear
polarizer and a calibrated quarter wave plate. The polarization
state analyzer (PSA) was composed of a LUCID-TRI050S
polarization camera and a quarter calibrated plate. Retaining
or removing the quarter wave plate from the PSG can realize the
switching between circular polarization and linear polarimetric
imaging device. All the equipment was placed in a container with
a black foam cover, and a fogger could generate smoke through
heating the fog fluid and could inject into the container through a
pipe. The SpyderCheckr was selected as the object, and two pairs
of orthogonal backscattered polarization channels were collected.
According to the parameters of the fogger and observation of the
sedimentation velocities of particles [30], the smoke particle size
was mainly in the range of 1–5 μm.

For circular polarization imaging, the axis direction of linear
polarizer was at an angle of 45° with the fast axis or slow axis

direction of the quarter wave plate, which could generate right or
left circular polarized incident light, respectively. The fast axis of
the quarter wave plate of PSA was placed along the vertical
direction, and the intensities of left and right circular polarization
were presented on the 45° and 135° channels of polarization
camera, respectively. For linear polarization imaging, in order to
minimize the variation of experimental conditions, the quarter
wave plate of PSA was retained while that of PSG was removed.
At this time, the incident light was 45° linear polarized light, and
the intensities of linear co-polarized and cross-polarized were
presented on 135° and 45° channels, respectively.

5 RESULT AND DISCUSSION

In the measurement experiment, the horizontal linear and right
circular polarized light were used as the illumination. We filled
the smoke into the container until the object signal was
completely obscured by the scattering medium. With the
settlement of smoke particles, the smoke concentration
gradually decreased. We continuously captured the
backscattered images of orthogonal polarization channels at
different concentrations. We selected the intensity of
orthogonal linear and circular polarization channels at four
different concentrations, as shown in Figures 9, 10 respectively.

By comparing Figures 9A, F and Figures 10A, F, in the smoke
free scenario, as the linear polarized incident light was reflected by
the object, the co-polarized component was still dominant in the
backscattered intensity, while for the circular polarized
illumination, the helicity of the reflected circular polarized
light was reversed, the intensity of left circular component was
higher than that of right circular component.

In order to quantitatively analyzed the impact of the increase of
smoke concentration on the intensity of each channel, we selected
eight color blocks from the SpyderCheckr and quantitatively study
their intensity varies with the smoke concentration, as shown in
Figure 11. For the linear polarimetric imaging, as the smoke
concentration increased, the intensity of color blocks with
high RGB value (Primary Yellow, Apple Green) gradually
decreased, because the signal is gradually obscured by the

FIGURE 8 | The polarization setup.
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smoke, but the intensity of color blocks with low RGB value
(Blueprint, Violet) gradually increased, because the smoke has
a color of gray and it will lead to the increase of the intensity. A
significant difference between orthogonal linear polarized
channels could be observed, that was the co-polarized
component was higher than that of cross-polarized
component at all concentrations. However, for the circular
polarimetric imaging, as the smoke concentration increased,
the left circular component gradually decreased at all
concentrations, because as the scattering coefficient
increased, the photons were harder to reach the object,
which then influence the intensity of left circular
component generated by surface reflection. While for the
right circular component, the trend was similar to that of
linear polarized component, the photons relatively
maintained their polarization state in a series of small
angle scattering, and when the concentration reached a
certain degree, the intensity exceeded the left circular
component. The conclusions drawn by measurement
experiments are consistent with those obtained from the
simulations.

In addition, the visibility of the smoke images was restored
based on the proposed method. The polarization difference
results were shown in Figure 9 and Figures 10K–N, and the

visibility restoration results under different concentrations were
shown in Figure 9 and Figures 10O–R. Combining the
qualitative and quantitative comparisons, it can be concluded
that, under these concentration conditions, both the linear and
circular polarimetric imaging had an ability to reduce the image
degradation caused by smoke. For linear polarimetric imaging,
the difference between co-polarized and cross-polarized
component is maintained at different concentrations.
However, as the smoke concentration increased, the left
circular component gradually decreased while the right
circular gradually increased, the polarization difference may be
invalidated under certain medium scenarios and lead to failure of
visibility restoration.

The main reasons for the differences between the simulations
and the measurement experiments are as follows:

1) According to Malus’ law, the linear polarizer is not ideal and
can be partially passed by the light with other polarization
state, therefore, in the smoke free scenario, the difference
between co-polarized and cross-polarized channel, right
circular and left circular was not obvious as the simulation
results.

2) The experimental scenario was a particle polydisperse
medium, in addition, a white luminant with wide

FIGURE 9 | The results of linear polarimetric imaging: the intensity of co-polarized (A) and cross-polarized (F) in smoke-free scenario, the intensity of co-polarized
(B–E) and cross-polarized (G–J) channels at four different concentrations, the corresponding polarization difference results (K–N) and visibility restoration results (O–R).
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wavelength range was used in the measurement but usually a
single wavelength for the simulation, which will lead to the
difference between the simulation and measured results.

3) Since the removal of the quarter-wave plate led to the
variation of the intensity of incident light, and the two
imaging experiments were carried out successively, so it
was not possible to ensure that the smoke concentration
was at the same level. Therefore, we couldn’t directly
compare the intensity of linear and circular polarization
channels at different concentrations as in simulation
experiments, and we also couldn’t directly compare the
visibility restoration performance of linear and circular
polarimetric imaging.

6 CONCLUSION

For polarimetric imaging in scattering medium, the selection of
appropriate experimental conditions has an important impact
on the polarimetric imaging. In order to study the propagation
of linear and circular polarized light in the environment

containing medium and object, based on the Monte Carlo
simulation program, simulation experiments were carried
out and the influence of factors such as concentration,
wavelength and detection distance on the propagation of
linear and circular polarized light were studied. In addition,
the polarization setup was built to collect the intensity of linear
and circular polarization channels under different medium
concentrations. The variation of the intensity of color blocks
with the concentration and the visibility restoration
performance was studied and analyzed. The results show
that in the scattering medium containing the object, factors
such as concentration, wavelength and distance will change the
number of scattering times of polarized light in the medium,
thereby affecting the propagation of the polarized light.
Generally, both the linear and circular polarimetric imaging
had an ability to reduce the image degradation caused by
smoke. For linear illumination, as the number of scattering
increases, the backscattered intensity of the co-polarized
component decreases, and the intensity of the cross-
polarized component gradually increases, but the difference
between orthogonal linear polarization channels is maintained

FIGURE 10 | The results of circular polarimetric imaging: the intensity of right circular polarized (A) and left circular polarized (F) in smoke-free scenario, the intensity
of right circular polarized (B–E) and left circular polarized (G–J) channels at four different concentrations, the corresponding polarization difference results (K–N) and
visibility restoration results (O–R).
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but the difference will gradually decrease. For right circular
illumination, in a medium with a small number of scattering
times, the helicity of the reflected light from the object is
reversed so that left circular polarized component will
dominate the backscattered light. As the number of
scattering times increases, the left circular component

continues to decrease while that of the right circular
polarization gradually increases. However, under some
certain conditions, right circular component may approach
or exceed the left circular component, which may limit the
circular polarization-based difference imaging and visibility
restoration performance.

FIGURE 11 | The intensity of orthogonal polarization channels at with different concentrations (A) co-polarized channel, (B) cross-polarized channel, (C) left circular
polarized channel, (D) right circular polarized channel, (E) the selected eight color blocks in SpyderCheckr. The ordinate indicates the normalized backscattered intensity.
The abscissa indicates the concentration level of scattering medium, (level) 0 represents a smoke-free scenario, and (level) 1–4 represents a gradual increase of the
smoke concentration.
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Error Analysis for Repeatability
Enhancement of a Dual-Rotation
Mueller Matrix Ellipsometer
Zhou Jiang1, Song Zhang1, Jiaming Liu1, Qi Li 2*, Hao Jiang1* and Shiyuan Liu1

1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology,
Wuhan, China, 2National Institute of Metrology, Beijing, China

Since the Mueller matrix ellipsometer has been used as a highly accurate tool for thin film
measurement, the error analysis and repeatability enhancement of such a tool are of great
importance. The existence of the Poisson–Gaussian mixed noise and the random bias of
the trigger signal in the optical measurement system may reduce the repeatability and
accuracy of a measurement. Utilizing the probabilistic analysis, the random errors in the
Mueller matrix measurements are quantified. A quantitative analysis on the instrument
matrix has been carried out to assess the individual effects for different error sources. We
proposed a general optimal instrument matrix which is capable of minimizing the
estimation variance for both Gaussian additive noise and Poisson shot noise. Besides,
a peak-matching algorithm is proposed to compress the repeatability errors due to the bias
of the trigger signal and the limited sampling frequency. The effectiveness of the proposed
methods is shown using both virtual simulations and experiments carried out on our self-
developed instrument, which potentially paves a way to reduce the requirements on motor
performance, acquisition card resolution, and trigger accuracy, which are critical to cost
reduction.

Keywords: Mueller matrix ellipsometer, thin film measurement, noise, error, repeatability

1 INTRODUCTION

Benefiting from the characteristics such as high-precision, fast, non-contact, easy-to-integrate,
ellipsometer has been used as a practical standard tool in the semiconductor industry [1, 2], for
optical properties measurements of thin films [3–5] and the thickness measurement of ultrathin
oxide films [6]. Besides, there exists an increasing trend in the modern ellipsometry to deal with
increasingly complex media such as biomedical specimens [7]. To achieve ultrahigh accuracy in a
measurement, various systematic errors as well as random errors [8–12] have to be seriously
considered.

Although an ellipsometer can provide ultrahigh measurement precision, it is always disturbed by
detector noise (such as signal-independent Gaussian additive noise and signal-dependent Poisson
shot noise) [13–16] and the bias of the trigger signal, which induce the random fluctuations and
offsets of the intensity signals. In ellipsometric experiments, the major sources of the random errors
are the inevitable thermally generated noise in light sources, detectors, and electronic circuits [17].
Usually, random noise can be reduced by signal averaging and can be measured by performing
multiple identical runs and by calculating the mean and standard deviation [18].

Reducing the estimation variance is a feasible way to improve the measurement precision [14, 16,
19–23]. Up to now, many researchers have explored reducing the estimation variance of Mueller
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matrix elements as well as the ellipsometric parameters to
improve the repeatability accuracy [13–16, 19–29], among
which optimizing the instrument matrices is an effective way
[15, 20, 22, 26]. The objective of these optimization methods may
focus on minimizing the total variance of all the 16 Mueller
matrix elements as well as the elements in the diagonal boxes for
most of the applications such as the isotropic film thickness
metrology. Since the elements on the off-diagonal blocks of such
samples are zeros, the measurement precision only depends on
the eight elements related to the ellipsometric parameters.
Therefore, the optimal instrument matrix for all the 16
Mueller matrix elements could no longer be the best option
for the accuracy enhancement [15].

In the instrumentation of the ellipsometer, trigger signals are
usually used to start intensity acquisition. In addition to the
random error sources mentioned previously that from the
detector, there is another random error source that arises from
the random bias of the trigger signals, which exhibits as the
random offset of the initial azimuth of the wave plates. Such a
random error due to the hardware constraints is mainly caused by
unstable trigger signals and the resolution limitation of the
acquisition board. Averaging the multiple measurements is a
commonly used and effective method to reduce the timing
repeatability error and various random errors in the existing
ellipsometer data processing [30]. However, such method may
distort the voltage data within the cycle when a random offset of
the intensity signal exists and then degrades the accuracy of the
measurement. Therefore, it is necessary to eliminate the random
offset of the acquired signal.

In this article, first, we measured the Gaussian additive noise,
the Poisson shot noise, and the signal drift caused by the random
bias of the trigger signal, and then the three kinds of random
errors are quantified using probabilistic analysis where the
associated error model can be used for the simulation
experiment. Second, a generalized random error propagation
model is proposed to describe the transitive relation between
the system parameters and theMueller matrix elements, when the
Gaussian additive noise, the Poisson shot noise, and the bias of
the trigger signal exist in the instrument system. Then, the system
matrices of the instrument are evaluated which make the
estimation variance of the Mueller matrix elements minimum.
At the same time, the random error caused by the bias of the
trigger signal in the ellipsometer has rarely been studied seriously.
So, an offset elimination method based on the peak-matching
algorithm is proposed, with which the offset can be reduced by 4
times. Then, the random error model is fed into the proposed
general error propagation model for verification. The results
show that the estimated variance can be effectively reduced by
the proposed method. Last, we use practical experiments to show
the effectiveness of the proposed methods. The results show that
the variance of the measured thickness of the standard silica is
significantly reduced with the proposed methods applied.

Such a significant enhancement indicates that the
requirements on motor performance, acquisition card
resolution, and trigger accuracy can be reduced with the help
of the proposed method, which may be highly valuable for the
cost reduction of instrumentation.

2 INSTRUMENT AND PRINCIPLE

Figure 1 illustrates a system layout of a single wavelength
ellipsometer (SWE), which consists of three parts: a CW
He–Ne laser (HRS015B 100-240VAC, Thorlabs,
United States), a polarization state generator (PSG), and a
polarization state analyzer (PSA). The light source is installed
on an adjustment frame to precisely control the laser light path.
The laser light transmits through an optical isolator (IO-2D-
633-VLP, Thorlabs, United States) which prevents the
interference of reflected light and is divided into two beams
with an intensity ratio of 1:9 by a beam splitter (BS025,
Thorlabs, United States). One of the beams enters a detector
1 (PDA36A2, Thorlabs, United States) directly for the
elimination of the intensity fluctuations of the light source
and the other enters the main optical path. After passing
through a bandpass filter (FLH633-5, Thorlabs,
United States) and being reflected on a mirror (64-013,
Edmund, United States), the light incidents on a sample
through the PSG at an angle of 65°. Then, the reflected light
from the sample was modulated by the PSA and collected by the
detector 2 (PDA36A2, Thorlabs, United States).

With the aforementioned configuration, the instrument
can acquire the full Mueller matrix of the sample. The light
path is controlled by six diaphragms with an adjustable
aperture size. In order to fulfill the requirements of high-
precision real-time measurement, a high-precision data
acquisition card (USB6281, NI, United States) is required.
In addition, our self-developed SWE is equipped with a
micro-spot component for the measurement in specific
situations.

It should be emphasized that in order to improve the
measurement accuracy and stability of the instrument as much
as possible, the azimuth angle of each optical component in the
instrument and the gain coefficients of the photodetector can be
optimized.

Figure 2 shows the SWE that we built it in the laboratory.
Since we have adopted sophisticated mechanical design and
manufacturing, the self-built SWE has high accuracy. Due to
the unique optical path design, a series of factors such as light
source fluctuation error, ambient light interference, incident
angle tilt error, and improper installation error of the
polarizer and wave plate, can be eliminated. In order to
minimize the beam-wandering effect, we adopt the specific
mechanical design. The pitching of the laser can be adjusted
accurately by the adjusting device I. A dual-aperture III and
dual-reflecting-mirror II design is introduced to ensure the
accurate alignment of the laser in PSG. By adjusting the
attitude of the reflecting mirrors to guide the laser pass
through the small apertures, the accuracy of the alignment
can be evaluated by observing the shape of the laser spot. In
the PSA part, another pair of apertures V and a dual-axis
moving stage IV are used. A camera is used to analyze the spot
shape when the stage is moving. When the optical path is
perfectly aligned, the small round spot will be achieved. In this
way, the beam-wandering effect could be significantly
compressed.
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When a thin film is measured, the light intensity matrix Idec
received by the photodetector can be expressed bymultiplying the
matrixG of the PSG, theMueller matrixMS of the sample, and the
matrix A of the PSA.

Idec � A ·MS · G , (1)

The Stokes vector of the incident beam after passing through
the PSG and the reflective beam after passing through the PSA are
described as Eqs 2 and 3, respectively [31].

SkPSG � {R[−Ck
1] ·MC1(δ1) · R[−Ck

1]} · {R[−P] ·MP · R[P]} · Sin ,
(2)

FIGURE 1 | Critical components and beam path of the SWE. The ellipsometer is composed of a He–Ne laser light source (He–Ne laser), an optical isolator (IO), a
beam splitter (BS), two detectors (D1 and D2), a narrowband filter (FB), a beam expander (BE)(GBE-03A, Thorlabs, United States), six apertures (AP1-AP6)(SM1D12CZ,
Thorlabs, United States), two mirrors (M1 and M2), two polarizers (P1 and P2)(LPVISC100-MP2, Thorlabs, United States), two continuously rotating wave plates (WP1
andWP2)(WPQ10M-633, Thorlabs, United States), two focus lenses (L1 and L2), and a CCD camera (Mer-503-20 GM-P, DAHENG, China). Incident and reflected
beams are denoted in red.

FIGURE 2 | Instrumentation of SWE (A) front view and (B) top view.
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Hk
PSA � {R[−A] ·MA · R[A]} · {R[−Ck

2] ·MC2(δ2) · R[−Ck
2]} ,

(3)

where the θ (θ � P, A) is the azimuth angle of the corresponding
component in the PSG and PSA, and δy (y � 1, 2) is the
retardation due to the weak linear birefringence of the
polarizer material. The first and second compensators are
driven by two servo hollow motors (AgilityRH, Applimotion,
United States), and their fast axis azimuths are changing
according to the relations: C1

k � ω1tk + CS1 and C2
k � ω2tk +

CS2, where CS1 and CS2 are the initial azimuths of the
compensators.

In a single measurement cycle, the matrixG andA consisted of
the Stokes vector SPSG

k and HPSA
k that outputs polarized light

from the PSG and PSA can be expressed as:

G � [S1PSG S2PSG S3PSG /SKPSG] , (4)

A � [H1
PSA H

2
PSA H

3
PSA /HK

PSA] , (5)

We use nonlinear regression intensity fitting algorithm (the
Levenberg–Marquardt algorithm) to quickly and accurately
extract the sample’s Mueller matrix and optical parameters
from the measured periodic signal. To achieve high
performance of the instrument, the system needs to be
carefully calibrated [32]. The instrument was calibrated by
carrying out the measurements on the standard silica film
samples. Since the theoretical Mueller matrices of the sample
could be calculated from the refractive indices (n, k), thicknesses
d, and incidence angles θ of the measurements, the instrument
can provide the measured Mueller matrices. Utilizing the
intensity fitting method [33], the parameters of the system p �
(d, θ, P, A, δ1, δ2, C1, C2) could be accurately determined. Since in
the present work we mainly focus on the issues induced by
Gaussian additive noise, Poisson shot noise, and the bias of
the trigger signal, the details of the calibration could refer to
[34]. Besides, we have developed a broadband MME and
proposed a series of general methods on system calibration
[34], wave plate alignment, and calibration [35–39] as well as
depolarization correction [40] to ensure the performance of the
developed instrument. The system parameter p can be obtained
from the following equation:

p � argmin
p∈Ωp

[Imeas − Icalc(p)]
T
Γ+
Imeas[Imeas − Icalc(p)] , (6)

where Imeas is the actual measurement intensity matrix, and Icalc is
the theoretical intensity matrix. Ωp indicates the value range of
the system parameter. Then, the system parameter MS can be
obtained from the following equation:

MS � argmin
MS∈ΩM

[Imeas − Icalc(p,MS)]
T
Γ+
Imeas[Imeas − Icalc(p,MS)] ,

(7)

whereΩM indicates the value range of the systemMueller matrix,
Γ + Imeas is the Moore–Penrose pseudo-inverse of the covariance
matrix of the measured intensity matrix, and Γ + Imeas�(Γ + Imeas

·Γ Imeas)−1·Γ T Imeas. Then, the thickness d can be obtained from
the following equation:

d � argmin
d∈Ωd

[Mmeas −Mcalc(a*, d)]
T
Γ+
Mmeas[Mmeas −Mcalc(a*, d)] ,

(8)

where Ωd indicates the value range of the thickness, a* denotes
the priori value of reconstruction and Mmeas is the measurement
Mueller matrix andMcalc is the theoretical Mueller matrix and Γ +
Mmeas is the Moore–Penrose pseudo-inverse of the covariance
matrix of the measuredMueller matrix and Γ +Mmeas�(Γ +Mmeas

·Γ Mmeas)−1·Γ T Mmeas.

3 SOURCES OF ERRORS AND
CALIBRATION

In this article, Gaussian additive noise, Poisson shot noise, and
the random bias of the trigger signal have become three of the
most important factors affecting the repeatability accuracy. The
variances of the final measurement results of the Mueller matrix
element and thickness are influenced by these three factors
seriously. The distribution of the three kinds of random errors
must be calibrated respectively.

First of all, we measured the thermal noise and dark noise of
the detectors at different gain levels which are typical Gaussian
additive noise. Figure 3 shows the probability density function
histogram of the Gaussian additive noise such as dark noise and
thermal noise of the two detectors at 632.8 nm. The dark noise
obeyed Gaussian distribution as expected. Then, the mean and
variance can be obtained from the detected data through the
Gaussian fitting. The generic signal independent noise (Gaussian
additive noise) model can be described by

P(x) � 1




2π

√
δ
e−(x−μ)/2δ2 , (9)

where P(x) is probability density function, x is the value of the
dark noise, μ is the mean of x, δ is the standard deviation of x, and
δ2 is the variance of x.

As shown in Figure 3, the bars represent the probability
density function from the measurements, and the red line
shows the Gaussian fit. The dark noise’s mean value of
detector 1 is 0.0184 V when we take different gain levels. The
variances of 10 dB, 20 dB, and 30 dB are 3.2e-05, 4.3e-05, and
7.8e-05, respectively. The dark noise’s mean values of detector 2
are 0.0140 V, 0.0141, and 0.0143 V for the gain levels 10 dB,
20 dB, and 30 dB, respectively. The variances of 10 dB, 20 dB, and
30 dB are 6.0e-05, 6.5e-05, and 9.2e-05, respectively.

The gain 30 dB is usually selected in the actual measurement.
The variance and the mean values of the dark noise of the detector
2 are 9.2e-05 and 0.0143 V, respectively. The generic signal
independent noise model is given by Eq. 6. We generate the
intensity measurements in the simulation, and eachmeasurement
is corrupted by the noise-obeying Gaussian distribution model in
the following section.
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Second, the Poisson shot noise of detector 2 was calibrated
separately as shown in Figure 4. A silicon photoelectric detector
captures a periodic intensity produced by a rotating polarizer.
The mean and variance of the Poisson shot noise are calculated
after multiple measurements. Poisson shot noise will be modeled
from the measured raw data.

As shown in Figure 5, the variance of the Poisson shot noise
and the mean of the intensity conform the cubic nonlinear

relation. A general analytical model is deduced to describe the
Poisson shot noise as

P(x) � a · PPoisson(x) + b · P2
Poisson(x) + c · P3

Poisson(x) , (10)

PPoisson(x) � λxe−λ

x!
, (11)

where P(x) is the probability density function, PPoisson(x) is the
probability density function of Poisson distribution, a, b, and c are

FIGURE 3 | Calibration results of Gaussian additive noise of detector 1 and detector 2.

FIGURE 4 | Solution for Poisson shot noise calibration of the detector (A) schematic diagram and (B) experiment setup.

FIGURE 5 | Calibration results of Poisson shot noise of detector 2 at (A) 20 dB and (B) 30 dB at 632.8 nm.
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the adjustment parameters, and λ is equal to the expected value of
x when that is also equal to its variance. The maximum variances
of intensity measurements are 3 × 10-4 and 9 × 10-4 for gain levels
20 dB and 30 dB, respectively.

We use the proposed analytical model to generate the
simulated shot noise and get its mean and variance
respectively. Measured noise and normalized noise calculated
by the general analytical model are shown in Figure 5, and the
data match well. We generate the intensity measurements in the
simulation, and each measurement is corrupted by the noise-
obeying Poisson distribution model in the following section.

Last, usually due to the delay or advancement of the external
trigger and the limited sampling frequency of the acquisition
board, the initial point of each measurement will be offset, which
causes the timing repeatability error. It can be observed that the
period shift intensifies with the increase of measurement time.
Such error is shown as the initial angle deviation of the two wave
plates associated to the motor speed and sampling frequency.

The intensity data are collected in the same cycle each time
after the acquisition board is triggered, and we take the
measurement 30 times. Figure 6 shows that the 30
measurements result with 5,000 points in a cycle are
superimposed together when the sampling frequency is
20 kHz. It can be observed that there is a staggered situation
between cycles which is completely random due to the triggers
start randomly and inaccurately. The period is staggered by about
2 ms (0.002 s), which causes the distortion of the data when these
periodic data are taken on an average. Therefore, it is necessary to
reduce the timing repeatability error through hardware or
algorithm. The motors rotate the wave plate with the speed of
1,440°/s and 7,200°/s, so that the period shift will cause the offset
of the initial azimuth of the wave plates. The relationship between
the range of the initial azimuth deviation should be the same as
the relationship between the motor speed because the range of the
initial azimuth deviation is calculated by multiplying the motor
speed and the offset time 2 ms. The random initial azimuth bias
ranges of first and second wave plates are CS1±1.44° and CS2±7.2°,
respectively.

4 ERROR PROPAGATION SIMULATION
AND OPTIMIZATION METHOD

The errors caused by Gaussian additive noise and Poisson shot
noise are random errors that affect the repeatability accuracy of the
system. Besides, the timing repeatability error caused by the limited
sampling frequency and random trigger is a random error as well.

According to the system model and error propagation model,
the variance caused by the random error can be calculated. First,
we inject the instrument random error into the SWE system, and
then we can calculate the variance of the Mueller matrix and the
thickness of the film. In order to evaluate the effect of the random
error on the measurement accuracy, we address the noise
properties of MME by theoretical analysis and simulations and
further determine the correlation between the random errors and
the estimate variance of the measurement system for the
optimization.

4.1 Error Propagation
In this article, the data analysis for MME is the nonlinear
regression iteration. Standard ellipsometry measures the
ellipsometric parameters of the samples. We can estimate the
ellipsometric parameters by measuring the Mueller matrix MS.
Let us denote [15].

MS �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11

m21
m31

m41

m12

m22
m32

m42

m13

m23
m33

m43

m14

m24
m34

m44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (12)

the 4 × 4 Mueller matrix of the sample. The ellipsometric
parameters can be measured by anMME, which consists of a light
source, a PSG with an instrument matrix G, and a PSA with an
instrument matrix A. Equation 1 can be expressed in the form of
vector as [14–16, 19]:

Vec(Ik) � Vec(Ak ·MS · Gk) � (GT
K ⊗ Ak)Vec(MS)(k ∈ [1, K]) ,

(13)

FIGURE 6 | Time repeatability error due to the synchronization error of the external trigger and the limited sampling frequency of data acquisition.
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where k represents the tk-measured flux, and K is the number of
sampling point.

Ik � S0 · (GT
K ⊗ Ak) · Vec(MS) , (14)

where Vec (MS) is a 16-dimensional vector obtained by reading
the Mueller MatrixMS in a lexicographic order and ⊗ denotes the
Kronecker product. Gk and Ak are vectors, and they can be
derived by Eqs. 2 and 3, respectively. S0 is the intensity of the
light source, as

Gk(C
k
1 , P, δ1 ) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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k
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sin2(2Ck
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1)cos(2C
k
1)sin(2P)cosδ1

sin2(2Ck
1)sin(2P) + sin(2Ck
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k
1)cos(2P) −/

sin(2Ck
1)cos(2C

k
1)cos(2P)cosδ1 + cos2(2Ck
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;

(15)

Ak(C
k
2 , A, δ2 ) �
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.

(16)

Since the initial fast axes of the retarders are C1
initial andC2

initial

and K flux measurements are performed during the fundamental
optical period π/ω with a rotating frequency ratio [41, 42] of 5ω:
Nω, the fast-axes azimuth combinations of (C1

k, C2
k) can be

determined as [13, 36].

(Ck
1 , C

k
2 ) � {

5(k − 1)
K − 1

π + Cinitial
1 ,

N(k − 1)
K − 1

π + Cinitial
2 }

k ∈ [1, K];
N ∈ [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25]

,

(17)

We can denote the instrument matrix as

Vec(I) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GT
1 ⊗ A1

GT
2 ⊗ A2

/
GT

k ⊗ Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· Vec(MS) � T · Vec(MS) , (18)

where the Vec(I) is the K-element vector of intensity measured by
the detector 2, and T is the K × 16 instrument matrix of the
Mueller matrix ellipsometer.

When the measurements are disturbed by Gaussian additive
noise, the estimation variance of each element of the measured
Mueller matrix Vec (MS) can be denoted as [14].

σ2
i (C

k
1, P, δ1, C

k
2, A, δ2, N) � σ2

Gaussian[(T
TT)

−1
]
ii
,∀i ∈ [1, 16] ,

(19)

where the variance is the function of (C1
k, P, δ1, C2

k, A, δ2, N) and
σ2Gaussian, and we can observe the relationship between the
variance and the variates from the equation.

When the measurements are disturbed by Poisson shot noise,
the estimation variance of each element of the measured Mueller
matrix Vec (MS) can be denoted as [14].

σ2i (C
k
1, P, δ1, C

k
2, A, δ2, N, Vec(MS))

� [(TTT)
−1
(TTΓIT)(T

TT)
−1
]
ii
,∀i ∈ [1, 16], (20)

where

ΓI �
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/
0
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/
0

/
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0
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K ⊗ AK) · Vec(MS)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(21)

where the variance is the function of (C1
k, P, δ1, C2

k, A, δ2, Vec
(MS)), and we can observe the relationship between the variance
and the variates from the equation. Contrary to the case of
Gaussian additive noise, we found that the estimation variance
of Poisson shot noise is dependent on the Mueller matrix of the
sample.

Besides, when the measurements are disturbed by the random
bias of the trigger signal, the relationship between the sample
matrices is obtained by the experimental measurement, and the
actual Mueller matrix can be expressed as:

MS � M0 + ΔM � M0 + μM + εM , (22)

where the MS is the experimentally measured sample Mueller
matrix, M0 is the true value of the sample Mueller matrix, ΔM is
the overall measurement error of the sample Mueller matrix, μM
is the Mueller matrix systematic error, and εM is the Mueller
matrix random error.

The random bias of the trigger signal will cause the offset of the
initial azimuth of the wave plate within an approximate angle.
Then, we can think of the random error as a random combination
of many system errors which is the deviation of the azimuth. The
Mueller matrix systematic error can be denoted as

μM � Q(p*)(ΔD + rD)M0 ≈ Q(p*)ΔDM0 � Q(p*)JDp|p�p*ΔpM0 ,

(23)

where theQ (p*) is the calibrated systemmatrix, ΔD is the system
matrix error caused by system parameter deviation, rD is the
system matrix error caused by the optical component
characterization model, M0 is the true value of the sample
Mueller matrix, JDp|p=p* is the Jacobian matrix of the system
matrix D to the partial differential coefficient of the system
parameter p at p=p*, and Δp is the system parameter
deviation. We will quantitatively analyze the variance (Var
[M0+μM]) caused by the errors on the measurement results by
simulations.

4.2 Optimization Method
In view of the aforementioned three kinds of random errors,
optimization methods can be proposed to improve the
repeatability accuracy of the instrument according to the
error propagation equation. For the Gaussian additive noise
and Poisson shot noise, the instrument matrix can be
optimized to improve measurement results. For the bias of
the trigger signal error, a method based on timing signal peak
matching is proposed to reduce the offset of the wave plate’s
azimuth.
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4.2.1 Gaussian Additive Noise
From Eq. 15, we know that the estimation variance varies with
(C1

k, P, δ1, C2
k, A, δ2, N) and σ2Gaussian. Then, the impact of the

different dependent variables can be observed. First, P and A are
assumed to be 0°, and the relationship between the estimation
variance and (δ1, δ2) is shown in Figure 7A. It can be observed
that the total estimation variance reaches the minimum when the
δ1 � δ2 � 130.1°. Second, δ1 and δ2 are assumed to be 130.1°, and
the relationship between the estimation variance and (P, A) is
shown in Figure 7B. It can be observed that the total estimation
variance is minimized when P is around 45.5°/−45.5° and A is
around −45.5°/45.5°. The dark blue area in Figure 7B represents
the values of P and A, which minimize the total variance
estimation.

As shown in Figure 8A, the estimated variances are
independent to the rotating frequency ratio of MME when the
Gaussian additive noise is dominant. Then, we cannot reduce the

variances by changing the rotation ratio of the motors. The
estimated variance is also inversely proportional to the
number of sampling K. As shown in Figure 8B, in the actual
instrument configuration, we can find the function of variance
and the number of flux measurements is variance � (426.8/
K)·σ2Gaussian . With the number of K increasing, the variance
reduces rapidly until K is 5,000.

4.2.2 Poisson Shot Noise
From Eq. 16, we know that the estimated variance varies with the
parameters (C1

k, P, δ1, C2
k, A, δ2, N) and the Mueller Matrix of

samples Vec (MS). When the Poisson shot noise is dominant, the
estimated variance is strongly correlated with the sample. Here,
we use the standard silica films with different thicknesses as
simulation samples to study the impact of instrument matrix
parameters. As shown in Figure 9A, the 16 Mueller matrix
elements vary with the thicknesses of the samples, and we can

FIGURE 7 | Calculated total estimation variances for Gaussian noise when (A) retardance δ1 ≠ δ2 (δ1, δ2)∈[-180°,180°], P � A � 0° and (B) retardance δ1 � δ2 �
130.1°, P≠A (P, A)∈[-180°,180°].

FIGURE 8 | Theoretical analysis for Gaussian noise (A) estimation variances of Mueller matrix elements when the ratio of motors’ rotation speed is 5ω:Nω and (B)
total estimation variances dependency on the number of sampling points.
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observe that the different Mueller matrix elements have different
tendencies when the retardances of wave plates change. As shown
in Figure 9B, we can observe that the total variance becomes
larger as the thickness increases when the retarders are 90° (a
quarter-wave plate). However, the thickness parameter of
different standard silica samples is out of action when δ1 � δ2
� 130.1°, and the minimum of total variance can be obtained.

4.2.3 The Bias of the Trigger Signal and
Peak-Matching Algorithm
The random bias of the trigger signal will cause the random offset
of the retarder’s azimuth. In order to eliminate the effect of the
timing repeatability error, a peak-matching algorithm is proposed
to relieve the strict requirements of initial angle compensatory
and synchronicity of triggers in the instrument. When several
periods of the intensity are collected, the signals are processed by

a low-pass filter first to remove the high-frequency noise. Then,
the peaks of the sampled periods will be picked out to record their
sequence number. To avoid the data distortion, the peak should
be included in one optical cycle. The reset of points for further
process could be determined by taking the points before and after
the peak sequence number continuously. Specifically, if we
sampled M points in one optical cycle, we need to select M
data including the peak. Without losing generality, suppose the
peak sequence number is j, we can define an optical cycle is from
the sampling points with sequence number of (j-i,M + j-i), where
i could be an arbitrary number. By applying the same process on
the data collected in each cycle, the peak in each cycle will be
guaranteed with the same sequence, so that the distortion of the
data could be eliminated.

Figure 10 shows a signal waveform after applying peak-
matching algorithm. Comparing with the previous

FIGURE 9 | Theoretical analysis for Poisson shot noise (A) Mueller matrix elements estimation variances dependency on retardance for samples with different
thicknesses and (B) total estimation variances dependency on retardance for samples with different thicknesses.

FIGURE 10 | Signal waveform after using peak-matching algorithm.
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measurement result shown in Figure 6, the reduction of the
timing repeatability error (staggers of the periods) can be clearly
observed. As reported in Figure 10, the offset is reduced from
0.002 to 0.0005 s. After multiplying the motor speed by the offset
time, we can calculate that the corresponding random initial
azimuth bias ranges of the two wave plates are reduced from
±1.44° and ±7.2° to ±0.36° and ±1.8°, respectively.

5 NUMERICAL SIMULATION

First, the Gaussian additive noise attribution measured by the
experiment in the previous work is added to the system. The
influence on the standard deviations of Mueller matrix elements

and thickness can be observed. As shown in Figure 11, the
standard deviations of Mueller matrix elements and the
thickness are obviously reduced when the instrument matrix is
optimized, and the level of standard deviation fluctuation is about
10-5. The impact of Gaussian additive noise on theMueller matrix
elements is independent to the sample, and this phenomenon
conforms to the theoretical expectation. However, the standard
deviation of the calculated thickness increases slightly with the
increase of the sample thickness.

Second, the Poisson shot noise attribution measured by the
experiment is added to the numerical system. The
improvements of the repeatability in the Mueller matrix and
the thickness measurements are shown in Figure 12. When the
instrument matrix is optimized, the level of standard deviation

FIGURE 11 | Simulation results for Gaussian noise (A) estimated standard deviation of Mueller matrix elements for the samples with different thicknesses and (B)
thickness-dependent standard deviation of the measured thickness.

FIGURE 12 | Simulation results for Poisson shot noise (A) estimated standard deviation of Mueller matrix elements for the samples with different thicknesses and
(B) thickness-dependent standard deviation of the measured thickness.
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fluctuation of the optimized simulation result is below 0.5 × 10-
4. The standard deviation of the calculated thickness results
increases slightly first and then falls with the increase of sample
thickness.

Last, we set the sampling frequency as 20 Khz, then the
rotation speed of the PSG motor and PSA motor are 1,440°/s
and 7,200°/s, respectively. Moreover, the timing repeatability
errors of the PSG motor and the PSA motor are randomly
varying within the range of ±1.44° and ±7.2°, respectively. The
standard deviation of the thickness fluctuates within the level of
about 10-3. The statistical results are shown red in Figure 13.
Compared to the red dot which stands for the standard deviations
before optimization, the blue dots shown in Figure 13 show the
clear error compression on the Mueller matrix and the thickness
measurements when the proposed peak-matching algorithm was

introduced. We can also observe that the error increases as the
film thickness increases.

As can be seen from Figure 13B, after optimizing the
instrument matrix and taking the method of peak-matching
algorithm, the repeatability accuracy can be increased by an
order of magnitude.

6 EXPERIMENT RESULT AND DISCUSSION

To verify the validity of the proposed method, thin film
measurement experiments on standard silicon dioxide film
samples have been carried out. At first, a tag is attached to the
center of the sample surface, whose edge is parallel to the locating
edge of the sample. Themeasurements are carried out 30 times on

FIGURE 13 | Simulation results for the random bias of the trigger signal (A) estimated standard deviation of Mueller matrix elements for the samples with different
thicknesses and (B) thickness-dependent standard deviation of the measured thickness.

FIGURE 14 | Diagram of the point positioning (A) silicon wafer and (B) in situ measurement.
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the point next to the left edge of the tag. During the measurement,
the sample is held by a vac-sorb pump installed on the sample
stage to ensure no movement is introduced during the test. After
changing the system configuration, the tag and the locating edge
will be used to limit the spatial variance of the testing area. Then,
the measurement will be carried out another 30 times. The
standard deviation of the thicknesses will be calculated, and
the result of the two tests will be compared to evaluate the
effectiveness of the proposed method.

Three different thickness silicon dioxide films are prepared first,
whose nominal thicknesses are about 2, 15, 55 nm (Standard
Silicon Dioxide, Eoptics, China). Each standard silicon dioxide
film is measured 30 times with our self-developed SWE. The
Mueller matrix elements as well as the standard deviation of 30
measurements for each element can be obtained. The standard
deviations of 16 measuredMueller matrix elements can be reduced
to 1 × 10-4 when the proposed methods are applied. Besides, the
thicknesses of each film are calculated with the algorithm
represented by Eq. 8. It can be observed from Table 1 that the
standard deviation of the thickness has been drastically reduced.
For example, the measurement standard deviations for the
measuring point of Sample 1, Sample 2, and Sample 3 have
been reduced by 78.785, 55.779, and 79.781%, respectively.

7 CONCLUSION

In this work, an instrument matrix optimization method and a
peak-matching algorithm have been proposed to improve the
repeatability accuracy for ellipsometry. The analysis on the
correlation between the random errors and the system
configurations is carried out to search the optimal instrument
matrix for film measurements. The estimation variances on
individual Mueller matrix elements are derived analytically for
Gaussian noise, Poisson noise, and the bias of the trigger signal.
Numerical simulations show that the proposed method is robust
and can dramatically improve the measurement repeatability

accuracy. The experimental results show that the proposed
method can significantly compress the standard deviation of
the measured Mueller matrix elements and thickness. The
results show that the proposed method can reduce the
standard deviations of measurement results by more than 50%
on silicon dioxide films of different thickness measurements. The
proposed methods pave a potential way to reduce the
requirements on motor performance, acquisition card
resolution, and trigger accuracy, which are critical to cost
reduction.
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Enhanced Measurement Accuracy for
Nanostructures Using Hybrid
Metrology
Poul-Erik Hansen*, Sabrina Rostgaard Johannsen, Søren Alkærsig Jensen and
Jonas Skovlund Møller Madsen

Danish Fundamental Metrology A/S, Hørsholm, Denmark

Light-matter interplay is widely used for analyzing the topology of surfaces on small scales
for use in areas such as nanotechnology, nanoelectronics, photonics, and advanced
materials. Conventional optical microscope imaging methods are limited in resolution to a
value comparable to the wavelength, the so-called Abbe limit, and cannot be used to
measure nano-sized structures. Scatterometry andMueller ellipsometry are spectroscopic
optical methods that can measure structures smaller than the wavelength. However, the
relative uncertainties of the structure dimensions measured with scatterometry increase
with decreasing structure size, and the industry is therefore replacing simple intensity
based scatterometry with Mueller ellipsometry for the most demanding measurements.
The accuracy of Mueller ellipsometry and scatterometry are closely related to the ability of
the employed regression and regularization algorithms to extract the structural dimension.
In this work, we demonstrate how the measurement accuracy on three-dimensional
periodic structures may be increased by measuring the same periodic structure with
multiple techniques and applying a χ2-regression method that finds the best solution
based on the input from all the instruments. We furthermore report on a new and improved
calibration method for Mueller ellipsometry and demonstrate how the Mueller matrix may
be used to find the geometrical anisotropy of the structure.

Keywords: metrology, Mueller ellipsometry, inverse modelling, scatterometry, nanostructures

1 INTRODUCTION

Nanostructures have a wide array of applications in optics, diagnostics, food science, sensing, and
process inspection monitoring. Some of these applications include enhancing waveguide coupling,
improving linear encoders, making hyperspectral cameras and printing color images [1–4]. Imaging
technologies like Optical Microscopy (OM), Atomic Force Microscopy (AFM) and Scanning
Electron Microscopy (SEM) are the dominating quality assesment technologies in low volume,
high-cost nanoscale manufacturing, whereas scatterometry and Mueller ellipsometry are the
preferred technologies for high volume manufacturing. However, the measurement accuracy for
all of the above-mentioned technologies is decreasing with the ever decreasing nanostructure sizes.
OM cannot measure the shape of objects with lateral sizes less than 1 μm; AFM cannot accurately
measure shape but canmeasure the nanostructure height if the separation width is longer than the tip
width; lateral and vertical dimensions from SEM pictures are hard to obtain if the width of the
borderline produced by the secondary electron becomes a significant part of the dimension to be
measured [5]. Scatterometry and Mueller ellipsometry can measure the shape of periodic
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nanostructures [6–8]; however, the accuracy of the shape
dimensions decrease with decreasing nanostructure sizes and
increasing complexity. We proposed to use hybrid metrology
that combines scatterometry, Mueller ellipsometry, and AFM for
shape reconstruction of nanostructures. Scatterometry can be
defined as the measurement and analysis of light diffracted by
structures using fixed polarization settings.

The scattered (or diffracted) light is a signature or
“fingerprint” which reflects the details of the structure itself.
For a periodic device, such as a series of lines and spaces
in silicon, the scattered light consists of distinct diffraction
orders at angular locations specified by the well-known grating
equation. The fraction of the incident power diffracted into any
order is sensitive to the shape and dimensional parameters of the
diffracting structure andmay therefore be used to characterize the
structure itself [9]. This is done using a mathematical model of
the structure based on a priori information and a rigorous
simulation of the light-structure interaction. Rigorous Coupled
Wave Analysis (RCWA) [10] is the common workhorse for
scatterometry modelling due to its speed, convergence and
relatively simple implementation. In RCWA, the nanostructure
is approximated by rectangular slabs, and Maxwell’s equations
are solved by coupling the boundary conditions between the slabs.
The dimensional parameters are obtained using a best-fit
procedure between experimental data and calculated values [11].

Ellipsometry measures the polarization-dependent optical
response from a sample [9]. In the conventional configuration,
an amplitude and a phase parameter, describing the change in
polarization in an isotropic sample, are measured. Mueller
ellipsometry is a more advanced method, which may be
further divided into two groups: Non-normalized Mueller
ellipsometers that measure all 16 Mueller matrix elements, and
normalized Mueller ellipsometers in which the 16 Mueller matrix
elements are normalized with the first Mueller matrix element
m11. The sensitivity of Mueller ellipsometry comes from the
measurement of both the magnitude and phase of the Fresnel
response/reflection from the sample, and as a rule of thumb, the
sensitivity increases with asymmetries and increased density of
the structure. Furthermore, it is possible to use the same
mathematical modelling method as in scatterometry. Several
strategies exist for precision Mueller ellipsometry measurement
and have been investigated by a number of authors [12–16]. A

necessary prerequisite for high precision Mueller ellipsometry
measurements is accurate calibration of the Mueller ellipsometer.
We have developed a new calibration method consisting of a fast
method for monitoring the most important experimental settings
on a daily basis and a more comprehensive method for
monitoring of the entire instrument. The method, explained in
section 2.1, makes it possible to correct for fluctuation in the
dominating experimental parameters on a much shorter
timescale and easily monitor the linearity of the instrument
response.

In this paper, we report on the progress of accurate
determination of the dimensional parameters of three-
dimensional periodic nanostructures by measuring the same
periodic structure with multiple technologies and applying a
χ2-regression method with regularization that finds the best
solution based on the input from all the instruments. We have
measured a square patterned periodic grating with truncated cone
shapes with a 200 nm period in the x and y direction, see Figure 1,
using scatterometry, Mueller ellipsometry, and AFM. The χ2-
regression method contains two parts, the first part includes the
scatterometry and Mueller ellipsometry contribution, while the
second part is a Tikhonov regularization part used for including
the AFM height measurement. We demonstrate that the hybrid
metrology approach improves the accuracy of the obtained
dimension. In particular, we observe an improvement for
strongly correlated parameters. The paper is organized in the
following way: In Section 2, we describe the experimental
scatterometry and Mueller ellipsometry setups together with
the newly developed method for calibration of the Mueller
ellipsometer. In section 3, the forward model used for
simulating the light-matter interaction is presented. In section
4, we explain the applied inverse method, showing how it is used
to find the dimensional parameters and calculate the
corresponding uncertainties. Section 5 is devoted to the
discussion of the obtained results, and section 6 summarizes
the results obtained.

2 MATERIALS AND METHODS

The experimental system is a combined goniometric and
spectroscopic setup. In this work, we use only the

FIGURE 1 | Illustration of the truncated cone model and the parameterization used to describe the physical sample. The parameters (periods, Λx and Λy, height, h,
and width, w) specified by the manufacturer are shown on the left, while the additional parameters used (sidewall angles, θ, and corner rounding radii, Rtop and Rbot) are
shown on the right. The width is defined as the full-width-half-max of the cone.
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spectroscopic scatterometry and Mueller ellipsometry
measurement modes. A sketch of the setup can be seen in
Figure 2. As radiation source, we use a Laser-Driven Light
Source (LDLS) (Energetiq, EQ-99X). The LDLS lamp covers
a wavelength range from 170 to 2,200 nm. The light is focused
onto a 150 μm pinhole using parabolic mirrors and secondly
collimated by an UV-to-NIR corrected triplet lens (Edmund
Optics, 180 mm). The collimated light passes through a
polarization state generator (PSG) made from an α - BBO
polarizer (Edmund Optics, 68–827) followed by a photo
elastics modulator (PEM, Hinds Instrument, I/FS50). At
this point the beam diameter is roughly 1.5 mm. The angle
of incidence on the sample may be varied between +/- 90° via
a rotation stage (Thorlabs, NR360S) equipped with angular
encoder (Heidenhain, ERA 4200C). The detector arm can be
scanned over nearly the complete diffraction plane, +/- 175°,
and is equipped with a polarization state analyzer (PSA),
made from a photo elastic modulator (Hinds Instrument,
I/FS60) and an α - BBO polarizer (Edmund Optics, 68–827),
followed by a spatial mirror (Thorlabs, RC08APC-P01) that
focuses the light into a fiber coupled monochromator
(Spectral products, DK242). The monochromator is
equiped with two gratings, a UV-optimized grating for
wavelengths below 400 nm and another for the
wavelengths above. The output from the monochromator
is focused on a PMT detector (Hamamatsu, R928P). The
detected signal is split into a DC and an AC signal using an
analog filter (SIM 965, Stanford Research System) with a low-
pass frequency cut at 30 Hz. The DC signal is fed into an
analog PID controller (SIM 960, Stanford Research System)
that together with a custom build PMT amplifier, controls the
high voltage power supply (PS 310, Stanford Research
System) of the PMT such that the recorded signal is
always taken at the same DC value ((1.35 ± 0.005) V in
the presented work). A digitizer (Agilent L4534A) is used for
simultaneous sampling of the recorded signal together with
the PSG and PSA waveforms. The waveforms are long-pass

filtered at 1 MHz and voltage limited to +/- 8 V in the
digitizer prior to data analysis. By rotating these PEMS to
different angles (labeled θm0 and θm1), one can probe different
elements of the Mueller Matrix. The PEM waveforms and the
signal are analyzed by fast Fourier transformation. Eq. 4 in
the Supplementary Material of ref. [17] shows that the
recorded Mueller ellipsometer signal may be written as a
Fourier expansion of frequencies in the following way:

I � IDC + If0 cos ω0t + ϕ0 −
π

2
( ) + If1 cos ω1t + ϕ1 −

π

2
( )

+I2f0 cos 2ω0t + 2ϕ0( ) + I2f1 cos 2ω1t + 2ϕ1( )
+If0+f1 cos (ω0 + ω1)t + ϕ0 + ϕ1( )

+I2f0+f1 cos (2ω0 + ω1)t + 2ϕ0 + ϕ1 −
π

2
( )

+If0+2f1 cos (ω0 + 2ω1)t + ϕ0 + 2ϕ1 −
π

2
( )

+I2f0+2f1 cos (2ω0 + 2ω1)t + 2ϕ0 + 2ϕ1( ) + . . . (1)

Where ωi � 2πfi, i � 0, 1 and ϕ0, ϕ1 are the angular frequencies and
phases of the photo elastic modulators. Ifi are the amplitudes and
IDC is the DC value that is kept constant for all measurements.
The measurands obtained from Fourier transformation of the
signal are:

IDC and Ifi, fi ∈ f0, f1, 2f0, 2f1, f0 + f1, 2f0{
+f1, f0 + 2f1, 2f0 + 2f1} (2)

It is demonstrated in [17] that the nine measurands in (2) give
a complete description of the signal, I, in Eq. 1. The normalized
intensities Afi � Ifi/IDC can be directly related to the Mueller
matrix elements as explained in section 2.1, and the 15
normalized Mueller matrix elements may be obtained by
measuring Afi for different angular positions of the PSG (θm0)
and PSA (θm1). The Muller ellipsometry data obtained are
normalized with the m11 Mueller matrix element. The Mueller
matrix element, m11, can be measured using scatterometry.
During the scatterometry measurements, the PEMs were not
oscillating and the outgoing light was connected via fiber to a UV
to NIR spectrometer (Ocean optics, FLAME-S-XR1-ES) instead
of the monochromator.

2.1 Data Acquisition and CalibrationMethod
for Mueller Ellipsometry
The details of the data acquisition are explained in the
Supplementary Material. Here we continue by showing how
precision calibration of the setup can be made prior to
measurement. The main results of this section are Eqs 4, 6.
Eq. 4 presents new expressions for improving the measured
Bessel amplitudes, and Eq. 6 is a high precision formulation
of the standard formulas in [15]. The notation used in the
derivations are similar to the one used in [15]. The prior-to-
measurement calibration is by far the most important calibration
since PEMs are very stable devices. However, regular system
calibration is needed to monitor the performance of the entire
system, and a simple method for this is described in the
Supplementary Material.

FIGURE 2 | Schematic illustration of the experimental setup. The main
components are the light source, the two photo elastic modulators (PEM0 and
PEM1), a monochromator and a detection system based on a photomultiplier
tube (PMT), a high voltage power supply (PS) and electronics measuring
the AC and DC components of the signal (AC/DC).
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The quantities measured with the Mueller ellipsometry setup
are the eight normalized intensities Afi � Ifi/IDC, see (2). In this
section we show that the normalized intensities Afi are well
defined functions of the Mueller matrix elements (mij), the Bessel
amplitudes (A0, A1) and the static strain (δ0, δ1) of the PEM phase
retardation, the two polarizer angles (θp0, θp1), the two PEM
angles (θm0, θm1) used to select the Mueller matrix elements of
interest, and the Bessel functions of the first kind Jn. With a
suitable choice of polarizer and PEM angles, a normalized
intensity Afi is dominated by a single Mueller matrix element
as indicated in Eq. 6. However, the influences of other Mueller
matrix elements are only eliminated if all the Bessel amplitudes
A0, A1 have been adjusted so that J0 (A0) � J0 (A1) � 0 (e.g. A0 � A1

� 2.404 8), if the static strains δ0, δ1 are zero, and if all polarizers
and PEM angles are perfectly set. This optimal situation can
hardly be obtained in practice, so precise calibrations are needed.
We perform a system calibration in which all of the system is
calibrated, and a prior-to-measurement calibration of the Bessel
amplitudes and the static strain. During calibration, we find the
optimal voltages for each PEM in order to make sure that the
value of A0 and A1 are within the range from 2.28 to 2.38 for all
the measured wavelengths. This range ensures that we are within
the linear range of the Bessel functions and safely away from the
point where J0 changes sign. In practice, this is done by making a
calibration function (polynomial of second degree) for each
combination of PEM and monochromator grating, resulting in
four wavelength-voltage calibration functions. The measurement
of the Bessel amplitudes is obtained from transmission calibration
measurements without sample in the Mueller ellipsometer, using
θp0 ≈ θp1 ≈ − 45° and θm0 ≈ θm1 ≈ 0° and assuming J0 (A0) ≈ J0
(A1) ≈ 0, so that we can expand the Bessel function as

J0 A0( ) ≈ C Ap − A0( )

J0 A1( ) ≈ C Ap − A1( )
(3)

where C � 0.519 6 and Ap � 2.4048. After derivation, see
Supplementary Material, we find the following very useful
expressions for A0 and A1

A0 � Ap − A2f1

2CD J2 Ap( ) + J1 Ap( ) − J3 Ap( )( )
A2f0

4CDJ2 Ap( )
⎛⎝ ⎞⎠

A1 � Ap − A2f0

2CD J2 Ap( ) + J1 Ap( ) − J3 Ap( )( )
A2f1

4CDJ2 Ap( )
⎛⎝ ⎞⎠

(4)

where D � cos(2(θm1 − θm0)) ≈ ± 1 is a measure of the relative
angular position of the PEMs. Eq. 4 is very important for high
precision measurements since the normalized intensities Afi are
strongly dependent on the correct values for the Bessel amplitudes.
The static strain measurement is performed in order to see if the
assumption δ0, δ1 ≈ 0 holds for all wavelengths, the measurements
are performed by setting θp0 ≈ − 45°, θp1 ≈ 0, θm0 ≈ 0, θm1 ≈ − 45°

and measuring A2f0+f1, Af0+2f1,

δ0 � A2f0+f1 1 + Cb0Cb1Cm0Cm1 + Cb0Sm0 + Cb0Cb1Sm0Sm1( )
−2J2 A0( )J1 A1( )

δ1 � A2f1+f0 1 + Cb0Cb1Cm0Cm1 + Cb0Sm0 + Cb0Cb1Sm0Sm1( )
−2J2 A1( )J1 A1( )

(5)

where Cb0 � cos(2(θm0 − θp0)), Cb0 � cos(2(θm1 − θp1)),
Cm0 � cos(2θm0), Cm1 � cos(2θm1), Sb0 � sin(2(θm0 − θp0)),
Sb0 � sin(2(θm1 − θp1)), Sm0 � sin(2θm0) and Sm1 � sin(2θm1).
Figure 3 shows typical Bessel amplitude and static strain
values for the measurement system. Assuming that δ0, δ1 ≈ 0,
Sb0 � ±1b0, Sb1 � ±1b1, Cb0 � 0 and Cb1 � 0, like in most setups, we
can write the expressions that relate the normalized intensity
Afi � Ifi

IDC
and the Mueller matrix elements, mij

FIGURE 3 | Typical Bessel amplitudes A0, A1 and static strains δ0, δ1 as a function of wavelength. We note that the Bessel amplitudes are in the desired range from
2.28 to 2.38. A jump is seen around the wavelength of 400 nm, where the monochromator grating and PEM calibration function is changed.
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Af0 ≈ 2J1(A0)m14 ±1b0( )
IDC

IDC0

Af1 ≈ 2J1(A1) −m41 ±1b1( )( )
IDC

IDC0

A2f0 ≈ 2J2(A0) −m13Cm0 ±1b0( ) +m12 ±1b0( )Sm0( )
IDC

IDC0

A2f1 ≈ 2J2(A1) −m31Cm1 ±1b1( ) +m21 ±1b1( )Sm1( )
IDC

IDC0

Af0+f1 ≈ − 2J1 A0( )J1 A1( )( −m44(±1b0)(±1b1)) IDC

IDC0

A2f0+f1 ≈ 2J1(A1)J2(A0)( −m42Sm0 ±1b0( ) ±1b1( )

+m43Cm0 ±1b0( ) ±1b1( ))
IDC

IDC0

Af0+2f1 ≈ 2J1(A0)J2(A1)(m24 ±1b0( ) ±1b1( )Sm1

−m34Cm1 ±1b0( ) ±1b1( ))
IDC

IDC0

A2f0+2f1 ≈ 2J2(A0)J2(A1)(−m32Cm1 ±1b0( ) ±1b1( )Sm0

+m33Cm0Cm1 ±1b0( ) ±1b1( )+
m22 ±1b0( ) ±1b1( )Sm0Sm1 −m23Cm0 ±1b0( ) ±1b1( ))Sm1

IDC

IDC0

(6)

where the ratio between the correct DC value and the measured

DC value (
IDC0
IDC

) is given by,

IDC0

IDC
≈ 1−C( Ap −A0( ) −m13Cm0 ±1b0( )+m12 ±1b0( )Sm0( )+ Ap −A1( ) −m31Cm1 ±1b1( )+m21 ±1b1( )Sm1( ))

IDC

≈ 1−
C Ap −A0( )

A2f0

2J2 A0( )+ Ap −A1( )
A2f1

2J2 A1( )( )

IDC
.

(7)

Eq. 7 demonstrates that the correction term vanishes for perfect
Bessel amplitudes and that it gets less important with higher IDC
values. A high value and low variation are thus optimal. In this paper,
we have used a value of (1.350 ± 0.005) V. The calibration Mueller
matrix is the Mueller matrix of air, which is a non-depolarizing
Mueller matrix. However, the measured calibration Mueller matrix
may be influenced by small depolarization (0.98< β(λ)< 1) from
the components in the setup, for λ > 300 nm. This depolarization
may be found from the following formula [18–20]:

1

β2(λ) ∑
4

i,j�1
m2

ij(λ) � 4m2
11(λ). (8)

The measured Mueller matrix, with the sample in place, is
renormalized with the instrument depolarization in order to
exclude the influence of the system components in the data
fitting. The beta values are shown in Figure 4. For the sample,
we see a large dip for wavelenghts below 300 nm. This is
attributed to our signal quality in this spectral region. We
have increased the measurement uncertainty in this region to
lower the effect on the final measurement.

2.2 Sample and Measurements
A periodic patterned silicon structure Γx � Γy � 200 nm was
purchased from Eulitha AG.

The Mueller ellipsometry measurements were performed at
70° angle of incidence, and 15 Mueller matrix elements have been

measured by performing measurements at PSG angles,
θm0 � [180, 135, 135, 180]° and PSA angles
θm1 � [135, 135, 180, 90]°. The Mueller matrix elements were
calculated from the measured intensities in (2) following the
procedure described in section 2.1 and in the Supplementary
Material. Scatterometry measurements I(λ) were also performed
at a 70° angle of incidence together with a reference measurement
Iref(λ) taken on a flat piece of Si100, and a dark measurement
Idark(λ) obtained by blocking the light source. The light was
polarized perpendicular to the incidence plane during all
measurements. The diffraction efficiencies, η (λ), are calculated
from the three scatterometry measurements in the following way:

η λ( ) � R λ( ) I λ( ) − Idark λ( )
Iref λ( ) − Idark λ( ) (9)

where R (λ) is the wavelength-dependent reflection coefficient of
the material used for the reference measurement.

For the AFMmeasurements of the heights of the gratings, we used
a metrology AFM (Park Systems, NX20, Suwon, South Korea) in
tapping mode, equipped with Point Probe Plus tips (Nanosensors),
with a specified apex radius < 10 nm. The AFM has an xy-stage
equipped with optical distance sensors and a z-flexure stage equipped
with strain gauge distance sensors. The microscope was calibrated in
the z-direction using a step height standard as described in [21]. The
area measured by the AFM was well within the area covered by the
beam spot in the optical measurements. The images were analyzed
using the step height module in Scanning Probe Image Processor
(SPIP) (ver. 6.7.3, Image Metrology) and following the ISO 5436
standard for measuring step heights. We stress that only the height is
measured by the AFM. Following this standard, we eliminate the
effect of sample-tip convolution on the measured height.

2.3 RCWA for Nanostructure
Characterization
Light scattering from the periodic patterened nanostructure is
modeled by rigorously solving Maxwell’s equations in the

FIGURE 4 | Measured values of the depolarization β with and without a
sample (Air). For wavelengths below 300 nm, we see a steep drop for the
sample measurements, which is not present in the air measurement. This
demonstrates sample depolarization for lower wavelengths. The
depolarization measured without the sample is referred to as the instrument
depolarization.
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relevant frequency domain. The rigorous coupled-wave (RCWA)
software described in [11] has been extended to handle arbitrary
repeated profiles with complex material distributions. The profile is
approximated by division into multiple slabs. Each slab consists of
Nq building blocks that all have the same height hq. Each building
block within a slab is furthermore labeled with an index i. Each
building block b(q, i) is then characterized by its widthswx(q, i),wy(q,
i) and offsets x(q, i), y(q, i) in the x- and y direction, respectively.
Furthermore, each block is characterized by its permittivity ϵ(q, i)
and permeability μ(q, i). The lateral periodicities of the slabs are
given by the periodicity of the microstructure.

The new software runs within the Matlab environment and is
used for forward calculations of the diffracted fields and
efficiencies. The model structure used in the forward
calculation is based on a priori information from the sample
manufacturer, together with scanning electron microscope
images of similar structures. These investigations showed that
the nanostructure could be represented by the truncated cone
geometry shown in Figure 1. The periodic truncated cone
geometry may be characterized by a set of geometrical

quantities a0 (e.g. period Γx, Γy height h, width w, sidewall
angle θ, an oxide layer of thickness d, and corner radii R1 and
R2). The Fresnel reflection coefficients rpp, rsp, rps, rss are
calculated using RCWA as function of wavelength λ, angle of
incidence θ, azimuth angle ϕ of the nanostructure relative to the
scattering plane, refractive index n + ik of the material, and for a
specified set of geometrical sample quantities a0. The Fresnel
coefficients from the RCWA simulations are related to the
Mueller matrix by

M �
1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rpp rps
rsp rss

( ) ⊗
r*pp r*ps
r*sp r*ss

( )( )

1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(10)

where ⊗ denotes the Kronecker product and * denotes complex
conjugation. The full polarization properties of a sample are
contained in the 4 × 4 Mueller matrix (M), which for oblique
incidence relates the Stokes vectors of the incident (Si) and
reflected (Sr) directions.

FIGURE 5 | Experimental Mueller ellipsometry measurements (black crosses) and fitted Mueller ellipsometry results (red lines). The upper left corner shows an AFM
picture of the structure. A strong agreement between model and fit are found within all Mueller matrix elements for wavelengths > 300 nm. All the anisotropic Mueller
matrix elements: m13, m14, m23, m24, m31, m32, m41 and m42 have been set to zero in the model.
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Sr � MSi (11)

In this work, we use normalized elements and m11 ≡ 1. The
Stokes vector has the components

Sr �
I
Q
U
V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

Ip + Is
Ip − Is

I+45 − I−45
IR − IL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

where Ip, Is, I+45, and I−45 are, respectively, the irradiances of
polarized light components parallel (p), perpendicular (s), at
+45° and at -45° relative to the plane of incidence; IR and IL are
the intensities of right- and left-handed circularly
polarized light.

2.4 Inverse Modelling Method
Generally speaking, the inverse problem we consider is the task of
calculating from a set of measurements the dimensional
parameters that produced those results. Several techniques can
be applied to solve inverse problems [10, 11]. The approach used
here is based on setting up a regression problem in the following
sense: Given a vector ofmeasurement data y ∈ Rn, an RCWAmodel
function, fRCWA, that maps the parameter, p ∈ Rm, describing the
truncated cone geometry that we want to determine to the
measurement space fRCWA: R

m → Rn. The mapping function
maps the parameter p into calculated scatterometry diffraction
efficiencies (ηc) and calculated Mueller ellipsometry parameters
(mc

ij), resulting in an approximation of the measurement data. If
one has additional knowledge about the measurement errors, e.g. if
one knows the variances σ2i of each of the measured values yi, one
can use this knowledge to weight the different measurements
accordingly, hence limiting the influence of observations that
are expected to have a large error. If more knowledge of the
parameters p exists fromother experiments, this knowledgemay be
incorporated into the χ2-function as a penalty term. The most
common penalty terms are Bayesian and Tikhonov regularization.
Tikhonov regularization can be used to incorporate measurands of
one or more parameters included in p from other instruments in a
direct and appealing way. The χ2-regularization method used in
this work contains two parts, the scatterometry and Mueller
ellipsometry contribution and the AFM height measurement.
The latter is incorporated as a Tikhonov regularization used to
penalize the model from fitting a height, hc, different than the
height, h, measured by AFM.

χ2 p( ) � 1
2

h − hc( )2
σ2AFM

+ 1
7N

∑
N

i�1

m12(λi) −mc
12(λi, p)( )2

σm12(λi)2
[⎛⎝

+ m21(λi) −mc
21(λi, p)( )2

σm21(λi)2
+ m33(λi) −mc

33(λi, p)( )2

σm33(λi)2

+ m44(λi) −mc
44(λi, p)( )2

σm44(λi)2
+ m34(λi) −mc

34(λi, p)( )2

σm34(λi)2

+ m43(λi) −mc
43(λi, p)( )2

σm43(λi)2
+ η(λi) − ηc(λi, p)( )2

ση(λi)2 ]) (13)

where the superscript c indicates calculated values, and N is the
number of wavelengths. The above equation can be minimized by
applying a combination of global and local optimization
algorithms, in our case we use differential evolution as a
global optimization method [22] and the Levenberg-
Marquardt method for local optimization. Once we have
determined the best fit, we can also estimate the uncertainties,
u(p), from the diagonal elements of the covariance matrix (Σ)
using

Σ � JTU−1J( )
−1

(14)

where U is a matrix containing all the squared measurement
uncertainties in the diagonal while all other entries are zero, and J
is the Jacobian of the elements mc

ij, η
c and hc in Eq. 13 with

respect to the truncated cone parameters; height (h), width (w),
and sidewall angle (θ). J be expressed as

J �

zmc
ij(λ1)
zh

zmc
ij(λ1)
zw

zmc
ij(λ1)
zθ

« « «

zmc
ij(λN)
zh

zmc
ij(λN)
zw

zmc
ij(λN)
zθ

zηc(λ1)
zh

zηc(λ1)
zw

zηc(λ1)
zθ

« « «

zηc(λN)
zh

zηc(λN)
zw

zηc(λN)
zθ

zhc

zh

zhc(λn)
zw

zhc

zθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

3 RESULTS AND DISCUSSION

The fitting of the Mueller ellipsometer and scatterometry signal
for the silicon structures was performed as described in the
previous sections and the results are shown in Figure 5 and
Figure 6.

The nonzero values of the elements in the off-diagonal blocks of
the Mueller-matrix in Figure 5 allow for an investigation of their
interrelationships. A careful inspection provides the following
relationships for all wavelengths: m12 � m21, m13 � m31,
m14 � m41, m23 � m32, m24 � m42, m34 � − m43, m33 � m44

leading to 8 unique elements that are reduced to 7 independent
elements by Eq. 8. Of particular interest is when the sample is
illuminated with unpolarized light Si � [1,0,0,0]T (T denotes
transpose). In this case according to Eq. 11, the Stokes vector
of the reflected beam is determined from the elements in the first
column of the Mueller-matrix Sr � [1, m21, m31, m41]T, the so-
called polarizance of the sample. It can be noticed thatm31 � 0,m21

≠ 0, andm41 > 0, indicating that the incident light is reflected with
right-handed polarization, and that the most positive values ofm41

are found at low wavelengths. This conversion is possible if the
sample has periodic structural anisotropy such that TE and TM
waves experience different refractive indices (form birefringence
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[23]. The state of polarization of light can be visualized with the
polarization ellipse and explained by two parameters: the
ellipticity e and the azimuth angle ϕ. We will also use the
ellipticity angle ε � arctan(e). The parameters ε and ϕ are related
to the Stokes vector S in Eq. 11, which for the special case of
incident unpolarized light can be expressed as [24].

ε � 1
2
arcsin

m41�������������
m2

21 +m2
31 +m2

41

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ϕ � arctan
m21

m31
( ).

(16)

Eq. 16 yields e ≈ 0.1 and ϕ ≈ π
2. We are thus lead to the

conclusion that the truncated cone in Figure 1 is not completely
symmetric, but has shape anisotropy in the y-direction. We
believe that it is this anisotropy that gives rise to the generally
observed disagreement between experimental data and fit at
lower wavelengths in Figure 5.

Figure 7 shows the results obtained using only one of the
methods (AFM, scatterometry and Mueller ellipsometry) and the
results obtained by combining more than one method. We
observe that all individual methods give a fair estimate of the
measurand(s), with Mueller ellipsometry having the lowest
uncertainties. The combination of the three technologies is
expected to improve the results obtained from Eqs 13–15
since the three technologies measure the dimensions by
probing different physical measurands. AFM measures the
physical height directly through contact forces between tip and
sample, scatterometry optically assesses part of the Mueller
matrix element m11, and normalized Mueller ellipsometry
measures the rest of the Mueller matrix elements, divided by
m11. The direct AFM height measurement constrains the height
search to a more narrow region set by the Tikhonov penalty term

FIGURE 6 | Experimental scatterometry data (black crosses) and the
corresponding optimal ηc found byminimizing the expression inEq. 13 (red line).

FIGURE 7 | Measurement results for the patterned silicon structure, Γx � Γy � 200 nm, with uncertainties. The fully drawn line corresponds to the result found by
combining all instruments, and the dashed lines denote the upper and lower boundary defined by the uncertainties. The uncertainties shown are the 2σ taken at 95%
confidence level. We use the abbreviations A for AFM, S for scatterometry, andM for Mueller ellipsometry in the figure. The corner roundings and the oxide layer has been
locked to Rtop � Rbot � 5 nm and d � 2 nm. AFM was only used for height measurement of the structures. The shown values are tabulated in Supplementary
Table S1.
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and is thus expected to influence the results if a strong correlation
between grating parameters p exist in the optical measurements.
We furthermore observe that the results obtained by the
combination of data from more than one method show a
reduced sidewall angle, whereas smaller relative variations are
observed in height and width. The results obtained from
combining all methods are assumed to give the most robust
results, and is therefore considered to be the best estimate of the
correct results. Figure 7 shows that the combination of AFM
measurement with one of the optical methods moves the sidewall
angle towards the best estimate, and that the combination of AFM
and Mueller ellipsometry nearly gives the best estimate. It is also
evident from the figure that the combination of the two optical
methods reproduces the results obtained by combining all the
methods. This shows that AFM measurement with the given
uncertainty does not improve the result of combined Mueller
ellipsometry and scatterometry, demonstrating that the
combination of the two technologies reduces the correlation
between the grating parameters p.

Precise measurement of sidewall angle has become
increasingly important in the semiconductor industry for high
precision measurement of the full width half maximum gate
linewidth [5]; with decreasing gate line-width dimension. The
most common source of sidewall angle variation is photoresist
exposure due to focus variation. The sidewall angle is not well
monitored by top-down CD-SEMs, which is typically employed
to measure the top gate line-width [6]. Inverse modeling
techniques like Mueller ellipsometry and scatterometry has an
advantage by enabling complete sample profile control that allows
simultaneous monitoring of height, width and sidewall angle. This
work suggests that non-normalized Mueller ellipsometry in the
form of combined Mueller ellipsometry and scatterometry is the
optimal solution since it gives the same results as data fusion
between AFM, Mueller ellipsometry and scatterometry. In our
case, this is fortunate since scatterometry can be performed in the
Mueller ellipsometry setup without moving the sample and at
nearly no additional time cost. This work furthermore emphasizes
the need for the development and calibration of an automated non-
normalized Mueller ellipsometer for precision metrology
inspection of nanostructures.

4 CONCLUSION

In the current work, the importance of hybrid metrology was
discussed as a method for precision measurements of two
dimensional periodic structures. We have presented and
demonstrated the use of new and improved formulas for high
precision Mueller ellipsometry. The analysis was carried out by
setting up a regression problem that minimizes a χ2 loss function.
The input to the loss function could be data from a single
instrument or data from multiple instruments. The analysis
demonstrates that data fusion from multiple instruments can
be used to reduce the correlation between the dimensional
parameters measured by the optical methods. The results for
non-normalized Mueller ellipsometry, combination of
scatterometry and normalized Mueller ellipsometry, is

particularly interesting since it gives more accurate results
than the other methods and the same accuracy as applying all
hybrid methods. This demonstrates that non-normalized Mueller
ellipsometry is a versatile method for periodic nanostructure
reconstruction. The results also demonstrated that parameters
such as sidewall angle, that were highly correlated for only one
instrument, became less correlated if data for more instruments
were analyzed together, making it possible to determine these
parameters with higher accuracy. This study also suggests that at
a certain point you do not get any improvement by adding input
from more instruments if you already have found the best
possible parameter set. The results of this work demonstrate
that the developed method is capable of meeting the demands of
height and width uncertainties less than 1 nm. This paper has also
put great emphasis on instrument calibration, since it is very
important for precision measurements. Finally, it has been
demonstrated that the polarization ellipsoid obtained from
Mueller ellipsometry can be used to determine the anisotropic
shape of the geometrical structure, giving a better understanding
of the data than if only scatterometry data is available.
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Conventional spectroscopic ellipsometry is a powerful tool in optical metrology. However,
when it comes to the characterization of non-periodic nanostructures or structured fields
that are much smaller than the illumination spot size, it is not well suited as it integrates the
results over the whole illuminated area. Instead, imaging ellipsometry can be applied.
Especially imaging Mueller matrix ellipsometry is highly useful in nanostructure
characterization and defect inspection, as it is capable to measure the complete
Mueller matrix for each pixel in a microscope image of the sample. It has been shown
that these so-called Mueller matrix images can help to distinguish geometrical features of
nanostructures in the sub-wavelength regime due to visible differences in off-diagonal
matrix elements. To further investigate the sensitivity of imaging Mueller matrix ellipsometry
for sub-wavelength sized features, we designed and fabricated a sample containing
geometrical nanostructures with lateral dimensions ranging from 50 to 5,000 nm. The
structures consist of square and circular shapes with varying sizes and corner rounding.
For the characterization of their Mueller matrix images, we constructed an in-houseMueller
matrix microscope capable of measuring the full Mueller matrix for each pixel of a CCD
camera, using an imaging system and a dual-rotating compensator configuration for the
ellipsometric system. The samples are illuminated at 455 nm wavelength and the
measurements can be performed in both transmission and reflection. Using this setup,
we systematically examine the sensitivity of Mueller matrix images to small features of the
designed nanostructures. Within this contribution, the results are compared with traceable
atomic force microscopy measurements and the suitability of this measurement technique
in optical nanometrology is discussed. AFM measurements confirm that the fabricated
samples closely match their design and are suitable for nanometrological test
measurements. Mueller matrix images of the structures show close resemblance to
numerical simulations and significant influence of sub-wavelength features to off-
diagonal matrix elements.

Keywords: metrology, nanometrology, ellipsometry, mueller ellipsometry, imaging ellipsometry, nanostructures,
mueller matrix ellipsometry
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1 INTRODUCTION

When it comes to nanostructure characterization via optical
metrology, spectroscopic ellipsometry is one of the most
powerful and versatile tools available today [1–7]. Especially
Mueller matrix ellipsometry, which measures all polarizing
properties of the sample under investigation and summarizes
them in a 4 by 4 Mueller matrix, is a useful method in layer
composition characterization or the retrieval of geometrical
parameters of periodic nanostructures [8–10]. As an optical
technique, its advantages compared to other methods like
atomic force microscopy (AFM) or scanning electron
microscopy (SEM) lie in its non-invasive nature, speed, and
low setup complexity. However, conventional spectroscopic
ellipsometry meets its limits regarding measurements of
structured fields smaller than the illumination spot. The
measurement signal is usually integrated over the whole
illuminated area on the sample. Thus, when the structured
fields are inherently smaller than the illumination spot,
unwanted signals from the surrounding disturb the
measurement signal and lead to distorted results. An
additional example where conventional ellipsometry is not
well-suited is the measurement of structures that are non-
periodic. The integrated Mueller matrix of an individual, non-
periodic nanostructure can barely be distinguished from one
measured on the substrate alone.

In the cases where conventional ellipsometry does not provide
reliable measurement results due to the geometry of the sample,
imaging ellipsometry can be used instead. In imaging Mueller
matrix ellipsometry, an imaging system is integrated into the
analyzing arm of the ellipsometer. This way, the influence of the
sample on the polarization is examined spatially and a Mueller
matrix for each pixel in an image of the sample is the result. Using
such a setup, we can examine the polarizing properties of the
sample locally, not limited by the illumination spot size. It is also
possible to distinguish different regions of interest in the same
measurement that possibly feature different structure
characteristics, which makes it also a promising tool for defect
inspection measurements [11–20].

The evaluation of Mueller matrix images is usually carried out
using the same techniques as in conventional ellipsometry.
Measurement results are averaged over homogeneous areas in
the images and structural or material parameters are then
determined with approximative models by solving the inverse
problem [14, 19, 20]. In this paper however, we treat Mueller
matrix images with rigorous three-dimensional models of single
individual structures instead, by solving the inverse problem from
numerically simulating the Mueller matrix images to find
relations between nanostructure geometries and measurable
effects in off-diagonal elements of the Mueller matrix. For this
purpose, we realized an imaging Mueller matrix ellipsometry
setup for reflection and transmission measurements at visible
wavelengths, which for the first time also features a mode that
enables reflection measurements under normal incidence. Thus,
the setup combines an imaging Mueller matrix ellipsometer with
a Mueller matrix microscope and allows fluid transitions between
measurements from angles of incidence ranging between 0° and

90° without laborious reconstructions. Besides our setup, we show
and discuss AFM and Mueller matrix measurements on a sample
specially designed to test and demonstrate the sensitivity of
Mueller matrix images to the form (ranging from circular to
square) of individual nanoscale structures. The comparison of
measurements and numerical simulations shows clear
connections between the shape of nanostructures and their
local influence on the Mueller matrix, which can help to
reconstruct the non-periodic nanostructures from optical
measurements alone. As a potential application for this serves
the characterization of the resolution-induced corner rounding
present in nanolithographically manufactured structures like
semiconductor contact holes with symmetries comparable to
the structures examined in this contribution. This paper is
organized as follows: In Section 2, a thorough description of
our imaging Mueller matrix ellipsometry setup as well as of the
samples is given. Section 3 presents the results of the
measurements on the samples, followed by a discussion of the
results in Section 4. In the end, Section 5 summarizes our results.

2 MATERIALS AND METHODS

2.1 Imaging Mueller Matrix Ellipsometry
Our setup is schematically depicted in Figure 1. The general
layout of the setup follows the dual-rotating compensator
ellipsometry configuration [21], but with the arms moving in
the horizontal plane as can be seen in the photography in
Figure 2. A large aperture rotation stage forms the basis of
this setup. It is used to rotate the analyzing arm of the
ellipsometric system around the sample. The sample is
mounted in the middle of the aperture of the large rotation
stage on top of a smaller rotation stage and linear adjustment
stages. This way, the sample can be rotated independently from
the analyzing arm, which allows for measurements at arbitrary
sets of incidence and reflection angles.

The illuminating arm (left side of Figure 2) begins with a light
source, which is a blue LED with a center wavelength of 455 nm.
The advantage of using monochromatic light with a short
wavelength is that a higher resolution in the imaging system
can be reached while keeping chromatic aberrations low. For
applications at different wavelengths, the LED can be replaced by
a white light LED and several filters. The light from the LED is
then collected by a large lens, focused onto an aperture and then
collimated. The lens system around the aperture serves as a
telescope to guide the light through the following optics as
well as to emulate a point source for easier collimation.
Afterwards, a 90:10 beam splitter plate guides a portion of the
light to a powermeter as an intensity reference before it hits the
sample. The remaining light then passes a linear Glan-Thompson
polarizer (PGT 2.10 from Bernhard Halle Nachfl. GmbH) as well
as a superachromatic quarter-wave plate (RSU 1.4.10 from
Bernhard Halle Nachfl. GmbH), which together form the
polarization state generator. For the measurements shown
here, the polarizer is fixed to a horizontal position while the
quarter-wave plate is rotated to generate different states of
polarization. After passing a 50:50 beam splitter cube (which
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is used for perpendicular incidence measurements described
below), the polarized light is then focused onto the back focal
plane of an objective (M Plan Apo NIR B 50x from Mitutoyo).
Due to the collimated light being focused on the objective’s entry
pupil, the light hitting the sample is mostly collimated again,
leading to a homogeneous illumination of the sample in the
imaging system. In optical microscopy, this configuration is
referred to as Koehler illumination [22, 23]. Contrary to
conventional, non-imaging ellipsometry, it is more important
to generate a homogeneously illuminated image in this setup than

to produce a small focal spot, because the results will be later
evaluated for each individual pixel in the image instead of being
integrated over the illuminated area.

The analyzing arm mostly mirrors the illuminating arm. It
starts with another objective (M Plan Apo NIR B 50x from
Mitutoyo) with a working distance of 25.5 mm, a numerical
aperture of 0.42 and a ×50 magnification. The long working
distance of the objectives allows for the measurement of samples
with a diameter of up to 5 cmwithout restricting themovement of
the arms around the sample. This enables a fluent transition

FIGURE 1 | Imaging Mueller matrix ellipsometry setup, top view sketch. P: polarizer, λ/4: quarter-wave plate.

FIGURE 2 | Imaging Mueller matrix ellipsometry setup.
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between reflection and transmission measurements. In reflection,
angles of incidence between 90° and 37.5° can be reached, limited
only by the size of the objectives. The polarization state of the
light is then analyzed by another set of quarter-wave plate and
linear polarizer, which both can again be rotated around the
optical axis. Afterwards, a tube lens focuses the light onto the chip
of a CCD camera. The camera chip features 2,688 by 2,200 pixels
with a size of 4.54 μm by 4.54 μm [24].

Measurement results are presented as 4 by 4 Mueller matrices
where each element contains one image with the values of this
particular matrix element for each pixel in the image. To show a
simple example for how measurements are presented in this
contribution, an idealized transmission measurement without
sample is shown in Figure 3. The values of the dimensionless
matrix elements are color-coded, where red stands for a positive
sign and blue represents a negative sign. The Mueller matrix of
the free space is just the identity matrix, so all matrix elements in
Figure 3 are zero except for those on the main diagonal where
they are 1. Figure 3 also contains the common naming for the
individual matrix elements, which are usually numbered in the
following way:

M �
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

2.1.1 Microscopy Mode
For measurements at normal incidence, our setup features a
special microscopy mode. In this mode, the analyzing arm is
moved to a position in a 90° angle to the illuminating arm and a
mirror is placed between the objective and the polarization state
analyzer. The setup now resembles the layout of a conventional
optical microscope with perpendicular incidence. This is also
illustrated in Figure 1 as the transparent beam path. The light

reflected from the sample back into the objective of the
illuminating arm is then guided by the beam splitter over the
mirror and another beam splitter into the analyzing arm. This
way, reflection measurements at normal incidence can be carried
out without major reconstructions of the system. Additionally,
the sample can still be rotated independently for angle corrections
or potentially for minor scatterometric applications.

2.1.2 Measurement Procedure
The setup is operated with a standard dual-rotating compensator
configuration [21]. During the measurement, the polarizers are
fixed to parallel positions for high intensity throughput. The first
polarizer imprints a linear polarization on the illumination from
the light source while the second polarizer analyzes the state of
polarization after interaction with the sample. Meanwhile, the
first quarter-wave plate rotates in steps of 5°, and the second
quarter-wave plate rotates in steps of 25°, which is a way to create
a harmonic modulation of the states of polarization. The
modulated intensity measured at each pixel of the CCD
camera depends not only on the polarizing optics in the
system, but also on the influence of the Mueller matrix of the
sample, and can be described as:

I � c · ∑
4

i,j�1
aipjmij, (1)

where p and a represent the elements of the Stokes vectors
resulting from the influence of the optical components in the
illuminating and the analyzing arm, respectively, starting from an
unpolarized light source. The elements of the Mueller matrix of
the sample are described by mij (compare Figure 3), while c is a
constant factor for the camera sensitivity [21]. This modulated
intensity can be evaluated by a Fourier analysis in each individual
pixel of the CCD camera to obtain the Mueller matrix elements
mij for each pixel and thus Mueller matrix images [25].

The stepwise movement of the compensators allows for a
better control of the measurement as well as a better quality of the
measured images in the CCD camera. At each step, several images
can be recorded and averaged for a reduction of image noise. This
method leads to measurement times of about 7 minutes for a full
rotation of the first compensator. Alternatively, a continuous
rotation mode where the movement of the retarders is
synchronized with the frame rate of the camera is possible to
speed up the measurement at the expense of image quality. The
evalutation of the Mueller matrix images is performed using a
custom built Python program.

2.2 Nanoform Sample
For systematic tests on the influence of the form and symmetry of
nanostructures on off-diagonal Mueller matrix elements, we
designed and fabricated a sample consisting of individual
structures written into a 100 nm thick layer of
polymethylmethacrylat (PMMA) on a 100 mm diameter
silicon wafer using electron beam lithography. The structures
are placed in the middle of 5 mm by 5 mm sized fields on the
sample to prevent interactions between different structures and to
leave enough room for the illumination spot of the measurement

FIGURE 3 | Mueller matrix example for a transmission measurement
without sample.
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system to only illuminate one structure at a time. An overview of
the sample is depicted in Figure 4. The fields are organized in rows,
labeled from A to D, for different structure types and in columns,
labeled from 1 to 10, for different feature sizes. Row A contains
square structures with 5 μm width and height and varying corner
radii between 100 nm and 2 μm, resulting in a transition from
nearly perfect square to nearly perfect circle. Rows B and C contain
square and circular structures, respectively, ranging in diameter
from 50 nm to 2 μm. Row D contains small arrays of 1 μm sized
squares with 10 and 20 μmpitch and up to 4 by 4 squares per array.
For a more detailed list of the sample parameters, Table 1.
Previously, a test wafer has been produced and characterized
concerning the feature size fabrication accuracy using SEM [26].

2.3 Simulations
For an elaborated evaluation of ellipsometric measurements, the
solution of the inverse problem is usually needed. In this course, a
model of the examined structures is built and then fitted to the
measurement results to retrieve information like layer
thicknesses, structure geometries, or material parameters.
However, in the case of imaging ellipsometry on non-periodic

structures, their simulation is inherently more complex than for
simple layer structures, periodic structures, or in non-imaging
ellipsometry. The reason for this is the need for three-dimensional
models of the structure itself which take significantly higher
computational costs compared to the periodic two-dimensional
models in conventional ellipsometry or the layer-stack models
usually used in imaging ellipsometry [4, 27]. Only by modelling
the nanostructures in three dimensions, the local influence of the
geometric parameters of non-periodic nanostructures on the Mueller
matrix can correctly be accounted for. Additionally, for a correct
reconstruction of the Mueller matrix images measured with an
imaging system, the simulation of microscope images with a
defined illumination would be needed. This includes the
superposition of many simulations at different pupil points inside
the numerical aperture of the light illuminating the sample. In doing
so, a high number of pupil points is as important as their distribution
inside the numerical aperture, and both affect the computational costs
of solving the inverse problem as a whole [28, 29].

For this reason, we modelled the structures on the sample
using the finite element method (FEM) Maxwell solver JCMsuite
[30] based only on the target values for a qualitative comparison.
The illumination was simulated using only one pupil point, which
corresponds to a plane wave illumination, at 455 nm wavelength
under perpendicular incidence. Using mesh sizes of up to 500 nm
and finite element degrees up to 5, computational costs for the
simulation of one structure included about 350 GB RAM and
about 2 h of computation time.

3 RESULTS

3.1 Imaging Mueller Matrix Measurements
The structures in row A on the sample feature 5 μm by 5 μm sized
square structures with different corner radii. We measured the
Mueller matrix images of these structures at our setup, using the
perpendicular incidence microscopy mode. As an example,
Figure 5A) shows the results for structures A1, A5, and A10.

FIGURE 4 |Overview of the sample with nanoform structures. (A)Wafer with columns and rows. Structure parameters are varied over the columns. (B)Sketches of
the structures in the different rows. Red arrows highlight which parameters are varied. (i): Corner rounding of fixed size squares. (ii): Size of squares. (iii): Size of circles.
(iv): Pitch and number (N) of structures in a small array.

TABLE 1 | Sample design feature parameter overview.

Row A B C D

Feature Corner radius Width Diameter Number, pitch

Column — — — —

1 100 nm 50 nm 50 nm 1 × 1, 10 μm
2 150 nm 75 nm 75 nm 2 × 2, 10 μm
3 200 nm 100 nm 100 nm 3 × 3, 10 μm
4 300 nm 200 nm 200 nm 4 × 4, 10 μm
5 400 nm 250 nm 250 nm [empty]
6 500 nm 500 nm 500 nm 1 × 1, 20 μm
7 750 nm 750 nm 750 nm 2 × 2, 20 μm
8 1,000 nm 1,000 nm 1,000 nm 3 × 3, 20 μm
9 1,500 nm 1,500 nm 1,500 nm 4 × 4, 20 μm
10 2,000 nm 2,000 nm 2,000 nm [empty]

Fixed Width � 5 μm — — Width � 1 μm
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For comparison, the structures of row A on the sample were also
simulated using FEM. The resulting Mueller matrix images for
the structures A1, A5, and A10 are presented in Figure 5C).
Images and results of the remaining structures can be found in the
supplement.

The square and circular structures in rows B and C range in
size from 50 nm to 2 μm. To test the resolution of our setup, we
measured Mueller matrix images of the circular structures in row
C. As square structures tend to degenerate into circular ones for
very small structure sizes due to the fabrication process, we
focused on the evaluation of the circular structures first.
Figure 6 shows the measured Mueller matrix images of the
structures C6 and C10 as an example.

3.2 AFM Measurements
For comparison with the measurements at our imaging Mueller
matrix ellipsometry setup, we performed measurements using a

metrological scanning probe microscope (SPM) [31] and a
commercial AFM with a high aspect ratio probe that was
calibrated using the metrological SPM and a transfer standard.
The scan size and resolution were adapted to the feature size,
typically using 1,024 by 1,024 pixels per image. The data was
processed in the open-source software Gwyddion [32].

For row A, the structures A1, A5, A6, and A10 were measured.
Measurements on the structures in row A were evaluated using
the Gwyddion function “Fit shape” and using a parametric model
for a hole with round corners. Measured images are shown in
Figure 7 and an example of the fitted shape difference from the
measured data is shown in Figure 8. Measured feature sizes are
summarized in Table 2. The measurement uncertainty was
estimated to be 20 nm. The uncertainty estimations given here
are based on the typical uncertainties of the microscopes,
repeatability, and estimates of the major uncertainty influences
during the measurement (fast axis direction, feedback loop

FIGURE 5 |Mueller matrix images of structures A1, A5, and A10, (A) not corrected for thermal drift, (B) corrected for thermal drift, and (C) simulated. Target feature
sizes: 5 μm width and height, corner radii: 100 nm (A1), 400 nm (A5), 2000 nm (A10).
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effects, tip convolution, drift, fit error). The biggest contribution
is the tip shape, which affects nearly all the measurements on
smaller spots, as can be also seen from the images.

Measurements of the structures B4, B6, C4, C6, D4, and D9 are
shown in Figure 9. Results for the structures are collected in
Table 3. The uncertainty is predominantly influenced by the tip

FIGURE 6 | Mueller matrix images of structures C6 and C10 not corrected for thermal drift. Target feature sizes: 500 nm width (C6) and 2000 nm width (C10).

FIGURE 7 | AFM measurements of structures in row A.
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radius. This component was estimated to be 13 nm for width
measurements and 30 nm for pitch measurements.

4 DISCUSSION

The sizes of the nanoform structures were characterized using
traceable AFM. For row A, the structures A1, A5, A6, and A10
were examined. The measured outer widths deviate on average by
1.4% from the fabrication target value of 5 μm. The measured
corner radii of these structures deviate from the design by 6.8% on
average. Width and corner radius deviation are largely influenced
by partial resist damage in structure A6 as visible in Figure 7. For
the structures in row B and C, the measured feature sizes deviate
on average by 8 nm from the design, which is smaller than the
estimated measurement uncertainty of 13 nm due to the tip
shape. The pitches of the structures measured in row D match
the design with a deviation of 14 nm for D4 and 22 nm for D9,
which is smaller than the uncertainty estimation for pitch
measurements of 30 nm for D4 and 61 nm for D9. The size of
the structures varies only by 0.4% nm on average. All in all, the

fabricated structures on the sample closely match the design and
can be used for further nanoform characterizationmeasurements.

Mueller matrix image measurements on the structures A1, A5, and
A10 are depicted in Figure 5A). As usual, theMueller matrix elements
are all normalized to the first element m11 in the upper left corner,
except for this element itself, as it mostly represents the overall
measured intensity. The measurements were performed in the
perpendicular incidence mode, so the light passed a couple of
mirrors on its way to the camera. For this reason, the Mueller
matrix images look like transmission measurements, with all main
diagonal elements being positive comparable to Figure 3, although the
light was measured in reflection from the sample. Furthermore, the
images were normalized to a reference measurement on the substrate
that was taken right after themeasurement of the structure to eliminate
polarizing effects from the optical elements as well as influences from
the substrate itself. The first elements of each Mueller matrix show a
certain blur that also reappears in the other matrix elements. This blur
is most likely caused by thermal drift of the sample during the
measurement. It is accounted for by a drift correction algorithm: In
each image of ameasurement series, the structure under investigation is
detected and the image then recentered to the center of mass of the

FIGURE 8 | Example for fitted shape difference of AFM measurements.

TABLE 2 | Feature sizes of structures in row A, measured by AFM.

Structure Outer width/μm Inner width/μm Radius/nm Target radius/nm

A1 5.007 4.855 111 100
A5 4.967 4.829 394 400
A6 5.210 4.697 571 500
A10 4.977 4.806 2013 2000
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FIGURE 9 | AFM measurements of structures (A) B4 and B6, (B) C4 and C6, and (C) D4 and D9 with (D) details of single squares.
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structure. This way, we obtained the drift corrected Mueller matrix
images presented in Figure 5B) for the structures A1, A5, and A10. A
more detailed view of selected images is given in Figure 10.

The drift corrected Mueller matrix images show distinct
polarization effects at the edges of the structures. These effects
would not be measurable in conventional, non-imaging
ellipsometry. The effects visible in the uncorrected images are
noticeably more pronounced, but are also mostly caused by the
thermal drift of the structure. However, the edge effects that are
left after the drift correction are inherently local polarization effects
caused by the sample. This is confirmed by the simulation results
depicted in Figure 5C). The simulation results represent idealized
measurement results, because for the simulation, the design target
values where used and the illumination was assumed to be a perfect
plane wave from only one pupil point. Duringmeasurements with the
setup in perpendicular incidence mode, the light that was reflected
from the sample back into the first objective is guided to the analyzing
system by several mirrors. In this course, each reflection changes the
sign of some of the Mueller matrix elements. Because of this, the
measured Mueller matrix looks like a transmission measurement.
However, the simulation does not take these mirrors into account.
Therefore, some simulatedMueller matrix elements have the opposite
sign compared to the measurements, which is most prominent in the
m22 element. Nevertheless, even without an optimization of the

geometrical parameters towards the measured values or using a
more elaborate model of the illumination, the local polarization
effects visible at the edges and corners of the structures closely
resemble the ones observed in the drift corrected measurements,
indicating a successful suppression of the drift effect from the
correction algorithm.

Concerning their metrological use, the off-diagonal
Mueller matrix images deliver additional information
channels for structure form characterization exceeding
optical microscopy alone. In Figure 10, the Mueller matrix
elements m11 and m24 of the measurements as well as m24 of
the simulations of the structures A1, A5, and A10 are
visualized with color bars adjusted to the range of only
these elements. Although the m11 elements of structures A1
and A5 are visibly indistinguishable, the off-diagonal matrix
elements show clear indications on the changing corner
rounding from 100 to 400 nm. Especially in element m24,
the change is evident from the absolute value of the matrix
element in the corners changing by 15% in the measurements
and 85% in the simulations. The change from A5 to A10 is
with about 160% in both measurements and simulations even
more pronounced. Other off-diagonal matrix elements, like
m42, m13 and m31, also show increasing absolute values in the
corners or on the edges of the structures with an increased
corner radius. Thus, local geometry features like the
orientation of an edge or the curvature of a corner do have
significant connections to the sign and value of the local
Mueller matrix, even for changes below the wavelength of
the illumination, which can be exploited for example by fitting
an appropriate three-dimensional model to the structure to
solve the inverse problem and retrieving the structural
parameters.

The measurements on the smaller structures in rows B and
C were also affected by the thermal drift discussed earlier, as
can be seen from the example measurements in Figure 6 on C6
and C10. However, the drift correction algorithm was not able
to reliably recognize these structures because of their small
size. Therefore, these measurements could not be corrected yet
and no meaningful comparison with simulated results would
be possible on the uncorrected images. Thus, no clear
indications about the resolution limits of our measurement
technique could be gained by now. However, the visible
difference in off-diagonal matrix elements for structures A1
and A5 with corner radii 100 and 400 nm, respectively,
promises a possible distinction of feature sizes well below
the wavelength of the system.

FIGURE 10 | Selected Mueller matrix images of structures A1, A5, and
A10: Measured m11 element and measured and simulated m24 elements.
Measurement results from drift corrected measurements.

TABLE 3 | Feature sizes of structures in row B, C, and D, measured by AFM.

Structure Structure diameter/nm Target diameter/nm Pitch/μm Target pitch/μm

B4 189 200 — —

B6 499 500 — —

C4 182 200 — —

C6 499 500 — —

D4 1,005 1,000 10.014 10
D9 1,002 1,000 20.022 20
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5 CONCLUSION

In this contribution, we presented our imaging Mueller matrix
ellipsometry setup which we constructed and tested on specially
designed nanostructures to further investigate in the link between
geometrical features and off-diagonal Mueller matrix elements.
Our setup has a horizontal positioning of the analyzing ellipsometer
arm, enabling us to perform measurements in transmission as well as
reflection at arbitrary angle combinations in the visible wavelength
regime. Therefore, reflection measurements can be performed
between 37.5° and 90° angles of incidence. Additionally, our setup
features amicroscopymode that allows for reflectionmeasurements at
perpendicular incidence without major reconstructions of the setup.
To examine the influence of the form of nanostructures on Mueller
matrix elements, we designed and fabricated a collection of structures
with simple geometrical shapes and sizes ranging from50 nm to 5 μm.
Traceable AFM measurements showed that the fabricated samples
closely match the design, with average size deviations of 2.1% and
average corner radius deviations of 6.8%. These deviations can
partially be explained by the finite tip shape of the AFM, but are
most likely due to fabrication tolerances. The overall small deviation
from the design makes the structures suitable for further
nanometrological test measurements. We measured structures of
the rows A and C using our Mueller matrix microscopy setup.
Due to thermal drifts of the sample, the smaller structures in row
C could not be evaluatedmeaningfully. For the larger structures in row
A, a drift correction algorithm was successfully implemented and the
resulting corrected Mueller matrix images compared to FEM
simulations of the design structures. Even without fitting the
simulations to the measurements, we could observe a close
resemblance of the measurements to the simulations. Furthermore,
the measurements as well as the simulations showed a significant
influence of a change in the corner radius of the structures from100 to
400 nm on off-diagonal Mueller matrix elements, most prominently
m24 andm42. This reinforces the potential of imaging Mueller matrix
ellipsometry in metrological applications towards the characterization
of sub-wavelength sized nanostructures.
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In biophotonics, novel techniques and approaches are being constantly sought to assist
medical doctors and to increase both sensitivity and specificity of the existing diagnostic
methods. In such context, tissue polarimetry holds promise to become a valuable optical
diagnostic technique as it is sensitive to tissue alterations caused by different benign and
malignant formations. In our studies, multiple Mueller matrices were recorded for formalin-
fixed, human, ex vivo colon specimens containing healthy and tumor zones. The available
data were pre-processed to filter noise and experimental errors, and then all Mueller
matrices were decomposed to derive polarimetric quantities sensitive to malignant
formations in tissues. In addition, the Poincaré sphere representation of the
experimental results was implemented. We also used the canonical and natural indices
of polarimetric purity depolarization spaces for plotting our experimental data. A feature
selection was used to perform a statistical analysis and normalization procedure on the
available data, in order to create a polarimetric model for colon cancer assessment with
strong predictors. Both unsupervised (principal component analysis) and supervised
(logistic regression, random forest, and support vector machines) machine learning
algorithms were used to extract particular features from the model and for
classification purposes. The results from logistic regression allowed to evaluate the
best polarimetric quantities for tumor detection, while the use of random forest yielded
the highest accuracy values. Attention was paid to the correlation between the predictors
in the model as well as both losses and relative risk of misclassification. Apart from the
mathematical interpretation of the polarimetric quantities, the presented polarimetric model
was able to support the physical interpretation of the results from previous studies and
relate the latter to the samples’ health condition, respectively.

Keywords: tissue polarimetry, Mueller matrices, physical realizability, symmetric decomposition, depolarization
spaces, Ex vivo colon samples, classification, machine learning
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1 INTRODUCTION

Ellipsometry and polarimetry have established their duly and
justified realm for material characterization [1–6]. Yet, in the
purview of biomedical optics, tissue polarimetry strives toward a
novel domain for non-invasive, supplementary assistance in
histopathology [7–13]. Unlike skin cancer, whose origins could
be detected at an earlier stage of development due to its presence
predominantly in the areas of the human body available for direct
visual inspection, colon cancer is localized and diagnosed out of
straight sight of notice often at a later stage of development [14].
Such an inevitable obstacle could be overcome by adopting
various multimodal optical techniques for providing adequate
support to clinicians [15–19]. It was shown earlier that tissue
polarimetry techniques could be effectively combined to
juxtapose polarization and depolarization parameters from
different health conditions after scanning, embrace the
Poincaré sphere visualization for qualitative differentiation,
and construct various depolarization spaces [20–28]. Ample
diagnostic information related to the morphology of the tissue
specimens under study is encoded in their Mueller matrices [26,
29–32]. Nevertheless, the intertwined relation between the
samples’ polarization and depolarization properties and their
matrix elements is accessible only after the application of
pertinent decomposition algorithms [33–38]. For instance,
Cloude’s physical realizability is able to filter out experimental
errors and/or data noise [39, 40], while logarithmic [37, 41, 42],
Lu–Chipman [35, 43–45], or symmetric [36, 46] decompositions
were found capable of extracting the embedded diagnostic
information for the samples under study. With the increasing
size and amount of the experimental data, apt post-processing
algorithms are required, alongside the inclusion of statistical
analyses and implementation of the artificial intelligence (AI)
framework. The latter could be utilized to mimic human-like
intellect when handling large and complex datasets, images, etc.
Being part of AI, the vastly expanding field of machine learning
(ML) covers a wide spectrum of applications for solving multiple
scientific problems [47–53] as well as for cancer classification
[54–62]. Since conventional programming processes an input
data by means of particular syntax and semantics to produce a
desired output, such a method is prone to multiple errors
repetition. To overcome this issue, ML uses both the input
and output data to train an algorithm for an a priori defined
purpose. Depending on the purpose desired, ML algorithms can
be grouped into three distinct classes [63, 64], namely, supervised,
unsupervised, and reinforcement. The scope of the current study
is focused on an application with both supervised and
unsupervised ML algorithms for colon cancer assessment. In
this study, the data used were obtained from tissue polarimetric
experiments with various formalin-fixed, human ex vivo colon
samples, containing healthy and malignant zones. For all
specimens and health conditions a spatial x-y scan was
conducted, where for each of the measured locations a Mueller
matrix (MM) was obtained. Every MM was filtered for data noise
and measurements errors before applying a decomposition
algorithm and depolarization metrics calculus. Afterward, a
selection of a subset from all polarimetric quantities was carried

out, in order to form tissue polarimetric model with predictors,
which non-redundantly summarizes all polarization and
depolarization properties of both colon’s healthy and cancerous
tissue zones. In order to avoid multicollinearity and overfitting, the
main model was split into two submodels, and consequently, all
unsupervised and supervised ML algorithms were applied for both
submodels independently. Finally, the performance of each ML
algorithm with each of the submodels was evaluated by means of
computing the corresponding confusion matrix, areas under the
curves (AUC), and loss and relative risk calculations related to
misclassifications.

2 THEORY

When dealing with light propagation in a turbid medium, it is
feasible to adopt the Stokes–Mueller calculus and operate with
real and measurable quantities. Hence, the full Stokes vector S �
(S0,S1,S2,S3)

T is able to provide description for all polarization
states even if time dependence S(t) is on avail. Knowledge of both
the total degree of light polarization ρ ∈ [0, 1] and light intensity I
facilitate the adoption of more explicit definitive convention [33,
39]as follows:

S � I 1, p( )T, p � ρu,

u � cos 2θ( )cos 2ϵ( ), sin 2θ( )cos 2ϵ( ), sin 2ϵ( )[ ]T, (1)

where p and u are the polarization and Poincaré vectors,
respectively. The latter translates the conversion from
Cartesian to spherical coordinate system, thus making possible
to visualize and utilize the Poincaré sphere representation with
the available polarimetric data, where θ ∈ [ − π/2, π/2] and ϵ ∈ [ −
π/4, π/4] are the azimuth and the angle of ellipticity, respectively.
The individual polarization fingerprint of a turbid medium under
study is encoded in its Mueller matrix (M) from which one could
read all polarization and depolarization properties related to both
the surface and structural sample properties/characteristics.
Every output Stokes vector (So) is linearly dependent on the
input one (Si) and also on M, obeying the relation So = Mij·Si. A
minimum of four input and four output polarization co-
variations are required to obtain a full Mueller matrix by
solving a system of four linear equations for each i [65]:

SoQ/−Q � Mi1 ±Mi1∕ 2

SoU∕ V � Mi1 +Mi3∕ 4,
(2)

where Q/-Q denote horizontal/vertical and U/V denote +45°/
right circular polarization states, while i,j � ∈ [1, 4]. Physically
realizable, depolarizing M must be represented as weighted
averages of non-depolarizing M. By this way each Mueller
matrix is to preserve the value of ρ parameter for totally
polarized input light beam. Imprecise calibration, data noise,
and experimental errors may lead to the violation of the Cloude’s
condition for physical realizability [34, 66], and a filtration
procedure is required. In such a case, one needs to solve the
eigenvalue-eigenvector problem for the Hermitian covariance
matrix H [33]:

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8147872

Ivanov et al. Polarization-Based Histopathology with Machine Learning

85

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


H � 1
4
∑
4

i,j�1
Mij σi ⊗ σj( ), (3)

where σi are the four Pauli spin matrices and the symbol ⊗
denotes the Kronecker product. If all eigenvalues (λi) of H are
positive, then the corresponding M is in compliance to the
Cloude’s condition. On the contrary, if the aforementioned
condition is not met, then all negative λi are assigned to zero,
and the filtered covariance (Hf) and Mueller Mf matrices are
obtained likewise [33]:

Hf � VΛV−1, mf
ij � tr σi ⊗ σj( )Hf

ij[ ]. (4)

Here, the matrix V is constructed from the eigenvectors of H,
while Λ � diag (λi) and contains only positive eigenvalues, while
small mf

ij indicates an element of the filtered Mueller matrix. If
one is interested only in the polarimetric properties, by setting tr
(Hf) � 1 or simply normalizing the eigenvalues sum to unit, both
processes of transmissivity and reflectivity can be disregarded.
Next, additional depolarization information can be extracted
from Hf, which will be correspondingly related to the
depolarization properties of the underlying medium and Mf,
respectively. Three depolarization indicators could be plainly
derived from λi (H

f), whereas the following set of equations is
valid when tr (Hf) � 1 and λ1 ≥ λ2 ≥ λ3 ≥ λ4 [33]:

P1 � λ1 − λ2, P2 � λ1 + λ2 − 2λ3, P3 � λ1 + λ2 + λ3 − 3λ4.

(5)

The overall depolarization ability PΔ and polarization purity PI
could be summarized explicitly as [33]:

PΔ �
�����������������
1
3

2P2
1 +

2
3
P2
2 +

1
3
P2
3( )

√

, PI �
��������������
1
3

P2
1 + P2

2 + P2
3( )

√

. (6)

From Eq. 5 and Eq. 6, two limiting cases could be identified:
pure non-depolarizing media, when Pi � PΔ � PI � 1, and pure
depolarizing media, when Pi � PΔ � PI � 0. In some cases it may
become useful to form and visualize three-dimensional
depolarization space(s) as natural Σλi and indices of
polarimetric purity ΣIPP, in order to evaluate the (de)
polarization properties of an arbitrary Mueller matrix, instead
of using the scalar quantities in Eq. 6. Yet, even more information
is encoded inHf via the Cloude’s entropy S, which is related to the
spatial heterogeneity of a given sample of interest [33]:

S � −∑
4

i�1
λi log4 λi( ). (7)

Unlike Pi, PΔ, and PI, S � 1 would lead to an assumption of
heterogeneous inner structure, responsible for a complete
randomization of the input light polarization state(s). On the
contrary, S � 0 would presume homogeneous inner structure,
indicative for a complete preservation of ρ for fully
polarized light.

Currently, the concepts for physical modeling and physical
interpretation of a measured Mueller matrix are of growing
importance for both theoreticians and experimentalists.
However, such tasks are out of the triviality scope, especially

for highly anisotropic and heterogeneous structures such as bio-
tissues. Once Mf is obtained, on a straightforward manner, it
could be useful and even computationally efficient for large
number of measurements to acquire another two polarimetric
quantities such as the net diattenuation D and net polarizance
P [39]:

D � 1
m11

������
∑
j

m2
1j

√
, P � 1

m11

������
∑
i

m2
i1

√
,

i, j � 2, 3, 4, 0≤D, P≤ 1.

(8)

From a phenomenological point of view, eachMf can undergo
certain decomposition algorithm(s), in order to extract particular
polarimetric characteristics. The interpretation of depolarizing
systems and samples has been extensively studied either with
Lu–Chipman [35, 43] or logarithmic decompositions [37, 41].
The former may exhibit forward and reverse forms, thus yielding
two asymmetric depolarizers containing either polarizance or
diattenuation. On the other hand, the latter assumes a
transversally homogeneous and longitudinally inhomogeneous
anisotropic medium with continuous distribution of all optical
features throughout the sample volume. Such a condition might
not be met due to macroscopic variations of the refractive index
and, additionally, the high anisotropic structure of bio-tissues.
Furthermore, a variety of samples require implementation of
angular-resolved measurements and also assumption for pure
depolarizer with non-polarizance and diattenuation. Hence, an
arbitrary Mf can be decomposed into the so called symmetric
factorization in such a way so that the canonical depolarizer is
placed between pairs of diattenuators and retarders [36, 46]:

Mf � MD2MR2MΔM
T
R1
MD1. (9)

For better clarity, it is convenient to adopt a partitioned form
for all product matrices in Eq. 9, that is, their general form reads
as follows:

MD � 1 �D
T

�D mD

[ ], MR� 1 �0
T

�0 mR

[ ], MΔ�diag 1, d1, d2, d3( ),
(10)

where the 3 × 3 sub-matrices mD and mR are constructed from
the diattenuation vector �D and the retardance value φ,
respectively. All di are termed as the principal depolarization
factors and could be utilized to form another three-dimensional
depolarization space—the canonical one ΣΔ. By this way,
additional polarimetric information can be extracted from Mf

after finding each product matrices from Eq. 9 (from here on, the
Mf entering the symmetric decomposition will be used
interchangeably with Mf). To achieve this, first, one needs to
find the diattenuation matrices by solving the
eigenvector–eigenvalue problem of [36]:

MT
f GMfG( )ξ1 � β2ξ1, MfGM

T
f G( )ξ2 � β2ξ2, (11)

whereG � diag (1,-1,-1,-1) is the Minkowski metric tensor and β2

is a common eigenvalue. When the eigenvectors ξ1,2 � (1, �D1,2)T
are found, then the diattenuation vectors can be used to obtain
mDi and MDi:
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mD �
������
1 −D2

√
I + 1 −

������
1 −D2

√
( )D̂D̂

T
, (12)

where I is 3 × 3 identity matrix and D̂ is the unit vector along �D.
Once the diattenuation matrices are determined, one can put and
calculate:

M−1
D2
MfM−1

D1
� MR2MΔM

T
R1

� M′ � β �0
T

�0 m′
⎡⎣ ⎤⎦. (13)

SinceM′ andMΔ contain no diattenuation and polarizance, by
virtue of SVD the 3 × 3 sub-matrixm′ can be reckoned, which will
be sufficient to construct the retarder matrices MR1,2 and the
canonical depolarizer matrixMΔ, thus completing the symmetric
decomposition algorithm. After this step, it becomes possible to
calculate the retardance and the net depolarization values from
the following:

φ � cos−1
tr mR( ) − 1

2
[ ],

Δ � 1 − d1| | + d2| | + d3| |
3

, 0≤Δ≤ 1.
(14)

3 MATERIALS AND METHODS

3.1 Ex vivo Colon Samples
A cooperation framework for optical examination of cancerous
tissues (approval #286/2012 of the local Ethical Committee)
between the Institute of Electronics—Bulgarian Academy of
Sciences and the Surgical Department of University Hospital
“Tsaritsa Yoanna—ISUL,” Sofia was initially formed. As a result,
multiple tissue samples for optical measurements were provided,
initially diagnosed by the physicians. The tissue samples included
in this study were excised during standard surgical procedure for
tumor removal. Part of the excised tumors underwent standard
pathology evaluation and the other part of the tumors with the
adjacent healthy tissue sections were transported to the optical
laboratory. No additional contrast agents were used. The samples’
safe-keeping was done via modified Kreb’s solution under
isothermal conditions. First, at the Biophotonics Laboratory,
Institute of Electronics, their fluorescence spectra were
evaluated with different modalities [67–69]. Although the
fluorescence measurements and inelastic scattering are not the
subject of this study, we planned to apply the ML approach to the
obtained fluorescence spectra for future studies. Afterward, a
fixation in 10% formaline solution of the tissue samples was done.
For this study in elastic scattering mode, in total five samples were
selected for polarimetric measurements in the optoelectronics
laboratory, Oulu University. The investigated samples include
colon and gastric adenocarcinoma, G2: moderately differentiated
(intermediate grade) and G3: poorly differentiated (high grade).
The thickness range for both healthy and tumor tissue zones is of
several millimeters and, therefore, the polarimetric
measurements were performed in reflection geometry with
angular configuration of the experimental setup shown in side
view for better clarity in Figure 1.

3.2 Polarimetric Set-Up
For the current study, the angles of incidence and detection were
fixed at 55° and 30°, respectively. Schematically, the optical system
is shown in Figure 1, where the presented optical configuration
allowed us to measure a full Mueller matrix of an arbitrary sample
with Stokes polarimeter by performing only four sequential
measurements.

For each of the input polarization states (H,V,P,R), a
continuous modulation was performed with commercially
available polarimetric device (Thorlabs Ltd., United States),
utilizing a rotating quarter-wave plate and a fixed linear
polarizer. The polarimetric device has been initially calibrated
by the manufacturer, while the whole optical system was tested in
reflection geometry to measure a mirror Mueller matrix, whose
theoretical form is diag (1,1,1,1). As a results, for each matrix
element a RMSE value of 0.02 was calculated (i.e., see [26]). Tube
systems were used to protect all measurements of undesired stray
light, while for reproducibility, a motorized x-y translation stage
was employed. All samples and their corresponding healthy and
cancerous zones were scanned two-dimensionally with each of
the abovementioned input polarization states. The whole region
of interest was selected to be 1 mm2, while the step size in both x-y
directions—0.2 mm, respectively. The combination of a
supercontinuum fiber laser—SC (Leukos Ltd., France) and an
acousto-optic tunable filter—AOTF (Leukos Ltd., France) was
used to produce a probing wavelength of 635 nm (FWHM 8 nm)
and output power—2 mW. The beam was collimated with the
help of two sequentially placed irises. To rotate the azimuth of the
linearly polarized laser beam, a half-wave plate was used. For
acquisition of input circularly polarized light, an electrically-
driven liquid crystal variable quarter-wave plate was employed.
Objective lenses (10×), lens L2, 100 μm pinhole, and lens L3 were
adopted to collect the scattered light and factor out any out-of-
focus photons. Finally, the 90–10 beam splitter and the CMOS
camera provided more precise focus adjustments. All Mueller
matrix elements were obtained following the approach presented
in [26]. In total, 330 healthy and 340 tumorMueller matrices were
measured and filtered with Cloude’s physical realizability
method. Afterward, the filtered matrices were decomposed
using the symmetric decomposition and the depolarization
metric calculus, as described in Section 2.

4 RESULTS AND DISCUSSION

4.1 Polarimetry
As can be seen from Figure 2, upon inclusion of all experimental
data from various colon samples with tumors at different stages of
development, a superimposing for the majority of the data points
from both health conditions could be observed. Hence, the inter-
patient variability restricts us to evaluate two separate clusters
corresponding to the measurements of healthy and cancerous
zones of colon specimens or to find specific trends within either
Poincaré sphere or the three depolarization spaces. As a result,
supplementary techniques and algorithms for data processing
must be included all of which will be addressed in the following
subsections.
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FIGURE 1 | Schematic representation of the experimental setup. Reprinted with permission from [26]© The Optical Society (Optica Publishing Group).

FIGURE 2 | Visualization of polarimetric data at all spatial locations for both colon tissue zones measurements ◦—healthy and ◇—tumor via: (A) Poincaré sphere
for probing (or incident) circular polarization, (B) natural, (C) IPP, and (D) canonical depolarization spaces.
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4.2 Data Post-processing
After inspection of the initial data processing sequence from Eq. 1
through Eq. 14, it became possible to extract 20 polarimetric
quantities that describe unambiguously the polarimetric response
of the tissue samples and are to be used as predictors, namely,
λ1,2,3,4, P1,2,3, PΔ, PI, S, D, P, D1,2, d1,2,3, Δ, and φ1,2. Initially, the
mean values and their standard deviations were calculated, where
for both health conditions the second statistical moment of the
mean for φ2 was found to be approximately three times higher
than the second statistical moment of the mean for φ1, thus
considering φ2 as an unreliable predictor and, consequently, it
was omitted. Second, the Shapiro–Wilk normality test [70, 71]
was computed on a significance level α � 0.05, where test’s results
indicated non-Gaussian distribution for all polarimetric
quantities. Thus, further on non-parametric statistical tests
and machine learning algorithms (MLAs), which do not
require data from normal distribution were used. Next, for
each of the polarimetric parameters pairs grouped as healthy
vs tumor, the Mann–Whitney test [70, 72] was computed for the
same α, in order to find out whether the polarimetric pairs were
drawn from different or similar distributions. Only for λ1,2, P1, D,
P, and D1,2, the test indicated that these parameters were drawn
from different distributions (all tests were considered as
statistically significant if the computed p-value < α).
Afterward, the dataset was reorganized with each column j
being a polarimetric quantity, where the measurements from
both health conditions were concatenated by rows. Then a factor/
categorical variable was added to indicate the health condition as
either 0–healthy or 1–tumor. Finally, with the exception of the
categorical variable, all other quantities were normalized with the
following functionF n � (x(j) − xmin(j)) · (xmax(j) − xmin(j))−1,
in order to restrict them as dimensionless variables that vary within
the closed interval [0,1]. Additional feature selection is necessary, in
order to avoid the use of highly correlated predictors and
multicollinearity, respectively. For instance, Δ, S, PΔ, and PI were
removed from themainmodel since they are derived from di, λi, and
Pi, and according to the Mann–Whitney test, their data for both
health conditions are drawn from the same distribution.Moreover, a
priori high correlation is also expected for λi and Pi after inspection of
Eq. 5, therefore two submodels were formed: one omitting all
Pi—shortly denoted as—“eigenvalue model” and one omitting all
λi referred as—“IPP model.” The remaining predictors: D, P, D1,2,
d1,2,3, and φ1 were included in both submodels.

4.3 Machine Learning
4.3.1 Unsupervised Machine Learning and Principal
Component Analysis (PCA)
For n number of predictors, there are n(n-1)/2 scatter plots to
summarize and graphically represent the available data. For large
number of n, such approach would be computationally and
analytically ineffective as most of the plots may be redundant,
for instance 55 plots to be analyzed for each of the submodels.
Therefore, we started the ML approach with the principal
component analysis. For each of the submodels PCA was
applied to summarize the available data, as shown in Figure 3,
where from Figure 3A it was calculated that 7 principal
components (PCs) retain more than 95% of the total variance

for the eigenvalue model and 6 PCs—for the IPP model. By this
way, PCA can be combined with classification MLAs, in order to
use the non-redundant features only from both submodels, and
any other collinear or highly correlated features could be avoided
(i.e., all collinear features will result in a single PCA component).
To project the experimental data onto the principal component
space, one can compute the principal component scores (PCS).
As a result, there is no correlation between all PCS of both
submodels, as shown in Figures 3B,C, whereas 95% of the total
variance is sustained. Such an approach would facilitate in
increasing the final classification accuracy.

4.3.2 Supervised Machine Learning
First, the datasets for both submodels without the PCs were
randomly split to obtain two data subsets for training and testing
as follows: 570 samples (85% of the total data) for training and
100 samples (15% of the total data) for testing. To evaluate the
best predictors for tumor detection (see Figure 4), logistic
regression (LR) was trained independently with both
submodels but without using their PCS. By this way, it was
found out that the inclusion of λ1 is deteriorating for the
model performance, and this parameter was consequently
removed from the analysis. In Figure 4 the top and bottom
axes include 1D distribution of the predictors’ normalized data,
for both health conditions (0–Healthy, 1–Tumor), respectively. It
could be well observed that d1, R1, and λ2 show excellent detection
performance for malignant formations, where the uncertainty
intervals (in grey) remain close to the probability values (all blue
lines). Although the probabilities for P, D2, and P1 parameters are
lower and have higher uncertainties compared to the former
triplet of polarimetric parameters, each one of the latter triplet
could also be identified with sufficient probability values.
Typically, malignant tumor formations cause morphological
alterations in tissues and alter the collagen extracellular matrix
as well as the cellular organelles by modifying their sizes and
shapes. This leads to changes in tissue heterogeneity, followed by
reduced number of scattering events as R1 may indicate. Also,
Rayleigh–Mie transition of light scattering regime occurs that in
turn affects light (de) polarization [10, 11, 46]. Whereas the
depolarization parameter d1 can be considered as a weight
coefficient for the Stokes component S1, higher polarimetric
purity would indicate less depolarizing media. Such a
conclusion is consistent with previously reported results for
colon tumor tissues [26, 45]. Additionally, both polarizance
and diattenuation (especially D2 from the symmetric
decomposition) were also found with higher values for the
tumor tissue zones of colon in [26]. By this way, this
polarimetric doublet may be considered as noteworthy tumor
markers for the angular-resolved measurements with wide angle
acceptance or any angles of incidence and detection different
from normal.

Next, solely for the classification purpose LR, random forest
(RF), and support vector machines (SVM) algorithms were again
trained with the corresponding PCS data subsets for both
submodels, split again randomly with the same proportions.
All MLAs models underwent initial tuning to pick up the best
possible hyperparameters. In the case of RF, a randomly selected
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fraction of k � N1/2 from all predictors was drawn without
replications to create an ensemble of decision trees. For both
submodels, having three predictors per split was found to be the
most optimal choice. By setting the number of trees to 30, we
reached the same classification accuracy as with 500 trees, while
the training time was reduced by an order of magnitude. Without
replications, there are 35 possible predictor combinations (3
randomly selected PCs and their scores from total 7) for the
eigenvalue model and 20 possible predictor combinations (3

randomly selected PCs and their scores from 6) for the IPP model,
calculated from Ck

N � N!·(k!(N-k)!)−1. For all decision trees in the
ensemble (including replications), the possible number of predictor
combinations for training is 4,960 for both submodels, calculated from
Kk

N �(N + k-1)!·(k!(N-1)!)−1. By this way, RF algorithm could be
considered as more reliable MLA for tumor classification, even if the
dataset size is small and/or there is a presence of correlated predictors.
The out-of-bag (OOB) error was found ≈5% for the eigenvalue model
and ≈11% for the IPP model. In the case of SVM algorithm, after

FIGURE 3 | (A) PCA for N number of components, explaining the corresponding percentage of variance σ2 for both submodels. Correlation matrices for (B) 7 PCs
and their scores—eigenvalue model and (C) 6 PCs and their scores—IPP model.

FIGURE 4 | Probability for tumor detection, calculated from LR: (A) d1, (B) R1, (C) λ2, (D) P, (E) D2, and (F) D2. For subfigures A, B, D, and E the results are
comparable for both submodels, while subfigures C and F were computed from the eigenvalue and the IPP model, respectively (φ1 ≡ R1 and λ1 ≡ l1).
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cross-validation a polynomial kernel of third degree was found to
provide the best classification accuracy with both submodels.
Additional regularization C [63, 64] was necessary to add a penalty
for each misclassified data point. Usually, small values of C result in
smaller margin, low bias, and high variance in the model and vice
versa for large C values [63, 64]. After the cross-validation cycle, the
optimal values of C were found to be 1 for both submodels.

After the application of the aforementioned MLAs for
classification, various other metrics were used to evaluate the
classifiers’ performances. For instance, their accuracy, sensitivity,
specificity, relative risk of misclassification (Rr), receiver operating
characteristic (ROC) curve, and the corresponding area under curve
(AUC). While the sensitivity represents the portion of the correctly
predicted true positive (TP) values (or in this study—the tumor
class), the specificity is related to the amount of the correctly
predicted true negative (TN) values (analogously—the healthy
class). For the ideal classifier, the accuracy (sum of all true
predicted classes normalized to the sum of all true and all false
predicted classes), sensitivity, and specificity should be 100%.
However, due to the presence of wrongly predicted class values
such as false positive (FP—healthy tissue but detected as tumor class)
and false negative (FN—tumor tissue but detected as healthy class),
the models’ detection performance deteriorate. In this regard, the
relative risk of misclassifications can be calculated as follows:

Rr � FP

FP + TN
· TP

TP + FN
[ ]

−1
. (15)

Ideally, lesser misclassified values will lead to closer proximity
of the ROC curve to a stepwise profile. As there is no perfect
model, losses introduced from wrongly predicted class values will
always be a considerable factor, which can be simply calculated as
1-AUC. The results from all classification MLAs are presented in
Figure 5 and in Table 1.

From the graphical representation of the figures above and the
values in Table 1, it becomes possible to outline both submodels
performances for tumor tissue classification. To sum up, all MLAs
trained with the corresponding PCS provide reliable accuracy and

AUC values close to 1. The eignevalue submodel seems to perform
better than the IPPmodel with lower OOB error and higher diagnostic
quantities. Whereas the LR algorithm is better suited to evaluate the
predictor’s probability for tumor detection and has higher specificity
values than SVM, the latter MLA has higher sensitivity values than LR
and is better suited to predict the healthy class. On the other hand, the
RF algorithm yielded the best results for classification with negligible
losses and misclassification risk. However, a parallel should be drawn
between RF and SVM. The former can be computed with only two
hyperparameters—the number of variables/predictors per each
random split and the number of trees. On the other hand, the
latter is dependent and highly sensitive to the kernel choice and
degree, regularization parameter(s), and choices for support vectors
and margins all of which influence the variance-bias trade-off.
Additionally, the posterior probabilities for both classes were found
to differ at most for RF, whereas for SVM, the difference between these
values was very small, thus reducing the reliability of SVM for
classification for the current study.

5 CONCLUSION

In this study, multiple formalin-fixed, ex vivo, human colon
samples, containing healthy and malignant formations, were

FIGURE 5 | ROC curves for (A) eigenvalue model (trained with 7 PCs and their scores) and (B) IPP model (trained with 6 PCs and their scores).

TABLE 1 | Supplementary table associated with all classification MLAs
performances, where all numerical values are in %. All MLAs were trained with
7 PCs and their scores for the eigenvaluemodel and 6 PCs and their scores for the
IPP model.

Accuracy Sensitivity Specificity AUC Loss Ri

LR—(λi) 87 85 91 93 7 11
LR—(Pi) 84 80 89 87 13 14
RF—(λi) 97 100 93 99 1 7
RF—(Pi) 95 93 98 98 2 3
SVM—(λi) 88 92 83 90 10 18
SVM—(Pi) 77 93 59 92 8 45
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measured with custom-built polarimetric setup in reflection
geometry. Analogously to [25, 26, 46], where a single, human
colon specimen and tumor grade were considered for binary
classification of all measured sites, in the current study the same
experimental approach was extended for multiple colon samples
and tumor grades, respectively. All experimental Mueller
matrices were filtered for data noise and/or experimental
errors using Cloude’s physical realizability method. Both
symmetric decomposition and the depolarization metric
calculus were used in order to extract the (de)polarization
fingerprint of the samples under examination. By this way,
the symmetric decomposition could be regarded as very well
suited decomposition algorithm for angular-resolved
measurements by providing a pure, canonical depolarizer
Mueller matrix and matrices for the corresponding
counterparts of D1 − D2 and R1 − R2. Also, the polarimetric
purity calculus enriched the polarimetric dataset and provided
more predictors to be used for ML. Due to the inter-patient
variability and the different tumor stages, a superimposing
between the dataset points was observed. With the help of
statistical analysis, the most prominent polarimetric
quantities were selected for inclusion in two tissue
polarimetric models. Additionally, normalization and feature
selection were performed in order to deal with dimensionless
quantities and to avoid highly correlated predictors. Due to the
small dataset size, random split of dataset with proportions 50:
25:25 [%] for training:validating:testing was not feasible.
Instead, a random split as 85:15 [%] for training:testing was
used, thus providing more training data to feed the MLAs.
Trained by this way, LR provided the predictors’ probability for
tumor detection, where d1, R1, λ2, P, D2, and P1 were found most
prominent diagnostic markers. Additionally, the data of these
polarimetric quantities for both health conditions, with the
exception of d1 and R1, were found to be drawn from
different distributions, according to the Mann–Whitney test
on a significance level α � 0.05. The combination of training
parameters was optimized after computing PCA and training all
classification MLAs with the PCs and their scores describing
95% of the total variance. By this way, any collinear and/or the
redundant features were eliminated from both polarimetric
models, hence reducing the computational time for training.
Similar approaches and methods have been applied with success
very recently to other kinds of biological samples [73].
Additional hyperparameters’ optimizations and cross
validation were carried out to improve the classification
accuracy. To conclude, the classification with the eigenvalue
model is more accurate than the classification with the IPP
model, whereas RF provided the best results for that purpose.
For a single sample and colon cancer grade tissue polarimetry
could be utilized as a supplementary diagnostic to support the
golden standard histology analysis by a pathologist as previously
reported in the studies mentioned in references [25, 26, 46].
However, when more samples are used with different grades of
colon cancer, the experimental data may suffer from the inter-
patient variability issue and as presented in Section 4.1,
Figure 2 to produce superimposing results. In combination,
both unsupervised and supervised MLAs may provide an

adequate solution to overcome this obstacle. The results from
the current study were also found to be consistent to the
previously reported results in the studies mentioned in
references [25, 26, 46]. The scope of the current pilot study
involved small number of samples and measurements;
therefore, only a qualitative approach was adopted for the
two-class classification problems: either healthy or tumor.
With more samples and measurements at avail, the methods
proposed in the current study could be extended for multi-class
classification, that is, the prediction of the tumor grade. This will
require a transition to handle and process larger data frames, use
additional boosting algorithms [63, 64] to increase the
classification accuracy, and delve into reinforcement and
deep learning, as well as to adopt parallel computing to
reduce the computational time. By this way artificial
intelligence has a great potential to come into force in
supporting both physicists and physicians for classification
and differentiation between healthy versus tumor colon
tissues or for cancer diagnostics in general.
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Characterization of Nanoscale
Subsurface Damage of 4H-SiC
Wafers: From Grinding to CMP
Huihui Li 1,2, Changcai Cui1,2*, Jing Lu1,2, Zhongwei Hu1,2, Wuqing Lin1,2,3, Subiao Bian1,2 and
Xipeng Xu1,2

1National & Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products,
Huaqiao University, Xiamen, China, 2Institute of Manufacturing Engineering, Huaqiao University, Xiamen, China, 3Fujian Norstel
Material Technologies Co., Ltd., Quanzhou, China

Subsurface damage of 4H-silicon carbide (SiC) wafers, which is detrimental to the
performance and lifetime of SiC-based photoelectric devices, is easily induced during
surface machining process due to their particular mechanical and physical properties. A
nondestructive and effective characterization technique is essential for high quality
products in the wafer manufacturing process. A method based on the Mueller Matrix
Spectroscopic Ellipsometry (MMSE) is proposed to detect the nanoscale subsurface
damage of 4H-SiC wafers induced by grinding and polishing. The Mueller matrix elements
which are sensitive to the damage information have been identified through both simulation
and experiment. The damage layer and its roughness are considered in optical modeling at
different processing stages. The results show that both the surface texture and the
damage layer contribute to the Mueller matrix values. The fitting thickness of the damage
layer is consistent with the value from transmission electron microscope (TEM); the
refractive index of the damage layer matches the surface elements analysis result from
X-ray photoelectron spectroscopy (XPS). The results suggest that the MMSE-based
method could offer a promising nondestructive method to detect global wafer
subsurface damage and its evolution during grinding and polishing, which eventually
could benefit process optimization in the whole wafer manufacturing process.

Keywords: Mueller matrix spectroscopic ellipsometry, subsurface damage, silicon carbide (SiC), nondestructive
characterization, grinding, chemical mechanical polishing (CMP)

1 INTRODUCTION

4H-silicon carbide (SiC) is considered as one of the most promising third-generation semiconductor
materials with applications in many cutting-edge fields, such as semiconductor electronics, optics,
and graphene growth [1, 2]. The state-of-the-art SiC device structures are currently grown on the 4H-
SiC off-axis cut wafers, which can stop the propagation of threading defects in epilayers [3].
Comparing to C-face, Si-face is more useful for epitaxial film growth [4]. Conductive SiC (n-type
doped) substrates are used for homoepitaxial device structures such as Schottky diodes [2] and
MOSFETS [5]. The premise of those applications is the availability of affordable, high quality, large
diameter SiC substrates. However, SiC is a typical difficult-to-machine material due to its high
hardness and strong chemical inertness. The subsurface damage (SSD) is easily caused during
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substrate processing [6], which will impair the mechanical,
electronic, and optical properties of materials [7]. For this
reason, the characterization of subsurface damage is conducive
to advanced applications.

The processing flow of SiC substrate mainly includes rough
grinding, fine grinding, and chemical mechanical polishing
(CMP) [7, 8]. Usually, rough grinding will leave large surface
texture and a mass of subsurface damage. Although those
damages can be gradually removed by subsequent fine
grinding and CMP, it is time-consuming. Therefore,
monitoring the depth of damage will provide a useful index
for the quality control of SiC wafer production chain and the
processing technology optimization, especially for wafers with
large diameters, which is a trend with the development of material
growth. A nondestructive and precise method for measuring the
thickness of the SSD layer is indispensable.

Several destructive and nondestructive methods have been
used to detect the SSD [9–11]. The destructive methods, for
example, cross-sectional microscopy, taper polishing, chemical
etching, magnetorheological finishing (MRF) polishing, the
inductivity coupled plasma method [12], and TEM microscopy
can measure different damage depths from slicing to CMP. These
destructive methods are time-consuming and reduce production
efficiency and increase cost. The nondestructive methods include
micro-Raman spectroscopy, optical coherent tomography,
photoluminescence, and laser scattering method. However,
their detection accuracy or efficiency is limited, or
inappropriate for accurately measuring the thickness of the
very thin damage layer.

As a nondestructive strategy, the Mueller Matrix
Spectroscopic Ellipsometry (MMSE) is commonly used to
measure the thickness and refractive index of thin films and
crystal with excellent accuracy [13, 14]. Previously reported
refractive ellipsometric characterizations in SiC wafers have
been done [17] but were limited in single-sided polished wafer
without backside reflection [15] or treated the damage layer as an
SiO2 film [16]. Our group [17] took double-sided polished n-type
6H-SiC wafer with backside reflection and the damage layer into
account based on partial-wave coherence theory. However,
effectively assessing the damage layer in the rough stage of
grinding or polishing was excluded. Meanwhile, the fitting
process was complex and time-consuming. Yao et al. [18]
proposed a quasi-Brewster angle technology to quickly
evaluate the polishing quality covering rough- and fine-
polishing stages using a variable angle ellipsometer, but the
thickness of the damage layer was not obtainable. Therefore,
quantitative and accurate measurement of the damage layer is
essential in different processing stages (rough grinding, fine
grinding, and CMP). There are three key issues that need to
be addressed. First, the optical constants of SiC must be known
well [19]. Second, the sensitivity of the Mueller matrix to the
damage layer and surface texture needs to be investigated. Third,
the ability of MMSE to characterize the damage layer during the
process of rough grinding, fine grinding, and CMP needs to be
verified.

In this paper, the damage layers induced by rough grinding,
fine grinding, and CMP 4H-SiC off-axis cut wafers are

characterized by MMSE. The subsurface quality in the wafer
processing is visualized. The paper is arranged as follows: In
Section 1, the background is introduced. In Section 2, the
samples and experimental instruments are presented. In
Section 3.1, a method to extract optical constants of uniaxial
4H-SiC crystal is given. In Section 3.2, optical stack models are
established according to the damage characteristics. In Section
3.3, the Mueller matrix sensitivity for the damage layer is
simulated and verified by experiment. In addition, Mueller
matrix sensitivity for the direction of surface texture is
investigated. In Section 4, the accurate optical constants of
4H-SiC crystal are illustrated. The thicknesses and refractive
indices of damage layers are analyzed and compared with
those given by TEM and XPS.

2 SAMPLES AND EXPERIMENTAL
INSTRUMENTS

4H-SiC single crystal wafers (n-type doped, off-axis cut toward
<1120>, 4 inch) after double-sided rough grinding, double-sided
fine grinding, and double-sided CMP were selected for research.
The Mueller matrix of wafers was measured in transmission and
reflection modes with a dual-rotation compensator Muller matrix
ellipsometer (DRMME, Wuhan Eoptics Technology Co., China)
[20, 21]. Measurements were done in the spectral range of 250 nm
(4.96 eV) to 1400 nm (0.89 eV). The short axis diameter of the
incident beam spot is 3 mm.

The Si-face surface morphology of 4H-SiC wafers was
measured by Atomic Force Microscope (AFM) (Alpha300 RA,
WITec, Germany) and 3D optical surface profiler (Newview
7300, ZYGO, United States). The surface roughness of rough
grinding, fine grinding, and CMP 4H-SiC wafers were obtained
by 3D optical surface profiler, and they were 13.26 nm, 0.78 nm,
and 0.32 nm, respectively.

The measurements of optical Absorbance (A), Transmittance
(T), and specular Reflectance (R) were done with a UV-Vis-NIR
spectrophotometer (Perkin Elmer, lambda-1050). Absorbance
spectra were used to obtain the bandgap of 4H-SiC.
Transmittance and reflectance spectra were used to calculate
the ordinary extinction coefficient of wafers.

The XPS analysis has been performed using the spectrometer
(Thermo Fisher Scientific, K-alpha+) with AlK α X-ray radiation
(hv = 1,486.68 eV) to detect the composition on the Si-face of 4H-
SiC wafers. All XPS binding energies were calibrated to the C 1s
peak at 284.8 eV. The wafers were first cleaned by liquid cleaner
and deionized water, and then dried off by air spray gun for
measurements. All the above measurements were performed at
room temperature.

3 ELLIPSOMETRIC CHARACTERIZATION
THEORY

3.1 Optical Constants of 4H-SiC
Complex optical constants (~n � n + i · k) of n-type doped 4H-SiC
substrate are the basis for establishing the optical stack model.
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Nitrogen impurity introduces weak absorption below the
bandgap of 4H-SiC crystal, where anisotropy absorption is
observed [22]. Thus, the 4H-SiC uniaxial crystal has two linear
horizontal anisotropy, namely linear birefringence (Δn � ne − no)
and linear dichroism (Δk � ke − ko) [13].

The optical anisotropy of uniaxial 4H-SiC wafer is obtained by
analyzing the transmission Mueller matrix (MM), as shown in
Figure 1A. The 4 × 4 Mueller matrix (M) can be inverted to
obtain physical parameters (L) in an optical system by using the
differential matrix decomposition (Eq. 1) [23]. As the considered
uniaxial SiC crystal, only two polarization properties were non-
vanishing, namely, LB, which describes the phase retardation
between x and y polarizations and related toM43 element (M34 =
-M43), and LD, which describes the diattenuation between x and
y polarizations and related to M12 element (M12 = M21).

L � In(M) (1)
Based on the measured complex retardance (δ’ � LB + iLD), a

closed-form expression for determination of the linear
birefringence and linear dichroism of uniaxial crystal was
derived in our previous work (Eq. 2) [14].

Δ � 2δno − nosin2θ1(no + 2δ) + (no + δ)sinθ1
����������������������
n2osin

2θ1 − 2δnosinθ1cos2θ1
√

(no + 2δ)sin2θ1 − 2δ

(2)
δ is the redefined complex retardance,

δ � λ

2πd
δ′ (3)

In general, the equation gives the algebraic relation between
complex optical anisotropy (Δ � Δn + iΔk) and measured
complex retardance (δ’). θ1 is the off-axis cut angle, no is the
refractive index for the polarization component perpendicular to
the incidence plane, and d is the thickness of the wafer.

Moreover, the ordinary extinction coefficient ko(λ) of 4H-SiC
crystal is calculated from R and T spectra by using the following
equation:

ko(λ) � α(λ)
4π

λ (4)

α(λ) � −1
d
ln⎡
⎢⎢⎢⎢⎢⎢⎣

��������������
(1 − R)4 + 4T2R2

√
− (1 − R)2

2TR2

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

where d is the thickness of the wafer along the direction of light
propagation. The thickness of the CMP wafer is obtained by
digital micrometer with a value of 356.51 ± 0.44 μm. The
extraordinary extinction coefficient (ke) is calculated by the
known ordinary extinction coefficient (ko) and linear
dichroism (ke − ko). In addition, the extraordinary refractive
index (ne) is calculated by using the ordinary refractive index
no from [24].

Theoretically, each dielectric tensor is rotated from its
standard setting to the measurement coordinate system to
obtain the objective results. The laboratory coordinate system
is defined in Figure 1, and an orthogonal transformation is
given by:

ε � A(α, β, γ)⎛⎜⎝
ε11 0 0
0 ε11 0
0 0 ε33

⎞⎟⎠AT(α, β, γ) (6)

whereA (α, β, γ) is Euler transformationmatrix. α has no effect on
the uniaxial crystal, β is the angle between the z-axis and the optic
axis of the crystal, corresponding to the off-axis cut angle; γ is the
angle between the y axis and the projection of the optic axis in x-y
plane, and the value is 90° when the optical axis is parallel to the
incident plane. ε11 and ε33 are dielectric functions for light
polarized perpendicular and parallel to the optic axis, respectively.

It is hard to ensure the optic axis is completely parallel to the
incident plane in the DRMME experiment. Therefore, it is
necessary to evaluate the error of the Mueller matrix caused
by Euler angles. The formula is defined by:

Error(i) � ∑
4

m,n�1
∑
1400

λ�380
[MMmn,λ(i) −MMmn,λ(i + δi)]2 (7)

FIGURE 1 | (A) The transmission Mueller matrix measurement of off-axis cut uniaxial 4H-SiC wafer. The linear birefringence and linear dichroism can be analyzed.
(B) The reflective Mueller matrix measurement of processed 4H-SiC wafer with the damage layer. The refractive index and thickness of the damage layer and the surface
structure anisotropy of the rough grinding wafers can be analyzed.
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where i represents the Euler angle β or γ. In MMmn,λ, the
subscript λ indicates wavelength point, m and n are the
indices of the Mueller matrix (MM) elements. When δγ is set
as 1°, the Error(γ) is 0.93 mainly reflected in the off-diagonal
MM elements, and the effect on M12/M21 and M34/M43 can be
ignored. However, the Error(β) is 2.05 when δβ is 0.1°. It means
the off-axis cut angle greatly affects the calculation error. In this
study, the β = 3.95° is measured by X-ray crystal orientation
instrument with accuracy better than 0.001° for CMP wafer.
Therefore, even if there is a shift of γ, the measurement is
considered reliable.

3.2 Optical Stack Model
In MMSE reflection measurement, an appropriate optical stack
model is acquired to obtain the accurate parameters of thin layers.
The refractive index, thickness of the damage layer and surface
structure anisotropy of the wafers can be analyzed, as shown in
Figure 1B.

According to the processing mechanism of brittle materials
[25], the surface and subsurface damage of SiC wafers
corresponding to rough grinding, fine grinding, and CMP are
different. Figure 2 shows the AFM images that visible scratches
and pits damage left on the rough grinding wafer (Figure 2A),
scratches left on the fine grinding wafer (Figure 2B), and those
are absent from the CMP wafer (Figure 2C).

Besides that, invisible subsurface damage (SSD) is formed
above the pure substrate [26], as shown in Figure 3. The SSD

caused by grinding most contains cracks, phase transformation,
an amorphous layer, residual stress, and other types of damage.
After CMP, the SSD mostly only contains an amorphous layer.
We simplified the model because the SSD on the backside of the
wafer is basically the same as that on the surface.

From Figure 3A, rough surface, amorphous layer, nonideality
boundary (between the damaged zone and pure substrate), and
roughed backside are characteristics of the rough grinding wafer
surface from top to bottom. These peculiarities are considered for
ellipsometric analysis using roughness layer, damage layer,
interface layer, and semi-infinite SiC substrate. For fine
grinding wafers (Figure 3B), there are surface scratches and
nonideality damage layer, which are modeled as three layers:
roughness layer/damage layer/SiC substrate. CMP wafer with the
sub-nanometer roughness is regarded as a specular surface judged
by Rayleigh criterion [27]. Therefore, the roughness is omitted
and the CMP wafer (Figure 3C) is modeled as two layers: damage
layer/SiC substrate.

For each optical stack model, the optical constants of 4H-SiC
are set as known from the calculation in Section 4.1. The interface
layer is modeled by the Bruggeman Effective Medium
Approximation (B-EMA), which consists of 50% pure
substrate and 50% damage layer. The Cauchy dispersion
relation is used to model the damage layer given by:

n2damage(λ) � A + B

λ2
(8)

FIGURE 2 | The AFM images of (A) rough grinding, (B) fine grinding, and (C) CMP 4H-SiC wafers.

FIGURE 3 | Schematic diagrams of (A) rough grinding, (B) fine grinding, and (C) CMP surface/subsurface cross-section of 4H-SiC wafers.
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where A and B are fitting Cauchy parameters and λ is the
wavelength in micrometers. The roughness layer is modeled
by a B-EMA layer formed by 50% bulk material and 50% air.

3.3 The Sensitivity of the Mueller Matrix
Different from the traditional thin film analysis, the sensitivity of
ultra-thin damage layer needs to be considered in optical
modeling for fine grinding and CMP samples with backside
reflection. Besides that, the effect of surface texture caused by
rough grinding on the Mueller matrix needs to be considered.

First, to figure out the role of surface (Si-face), back (C-face)
damage layer, and the backside reflection in the Mueller matrix,
the following simulation is executed in Figure 4A. Using partial
coherence wave [28] and fully coherence wave theory, four
models are used to explore the response of the Mueller matrix
elements to the ultra-thin layer on the Si-face and the C-face of
the 4H-SiC substrate. A known SiO2 layer is used as the material
of ultra-thin film. Model 1, 350 μm 4H-SiC thick layer with
backside reflection. Model 2, 2 nm SiO2 layer on Si-face of
4H-SiC thick layer with backside reflection. Model 3, 2 and
5 nm SiO2 layers on Si-face and C-face of the 4H-SiC thick
layer with backside reflection. Model 4, 2 nm SiO2 layers on the
Si-face of the 4H-SiC semi-infinite substrate without backside
reflection. The angle of incidence is 65° and the Euler angle β is 4°,
γ is 45°.

From the simulation results, the diagonal element M34 has the
highest sensitivity to small changes of the ultra-thin layer
compared to other elements. The difference between Model 1
and Model 2 indicates that M34 is only sensitive to the thin layer.
The difference between Model 2 and Model 3 indicates that the
thin layer on the C-face of the substrate has almost no effect on
the values of the Muller matrix. The difference between Model 2
and Model 4 indicates that the fluctuation of MM spectra is
related to the backside reflection of substrate. Moreover, the

“position balance” of M34 spectra of substrate with backside
reflection is the same with that of substrate without backside
reflection. Therefore, we can omit the backside reflection when
only considering the fitting result of the M34 element.

Furthermore, the backside of the CMP wafer is roughed for
experimental comparison.We simplify the optical model to fit the
thickness of the damage layer by applying the fully coherence
theory to CMP SiC wafer with and without backside reflection.
Figure 4B shows the measured and fitted M34 element of
backside polished and roughed wafer. The oscillation in the
experimental data of polished ones comes from the backside
reflection. Fitting the polished sample using the fully coherence
theory is equivalent to using a semi-infinite substrate model and
ignoring the effect of the backside reflection. The thickness results
of damage layers obtained by fitting the MM data from the same
point before and after roughening are 2.4 ± 0.2 nm and 2.5 ±
0.2 nm, respectively. In addition, we obtained the same fitting
M34 curve at the same point before and after roughening
(Figure 4B). The fitting results further confirm that the
backside reflection of the substrate can be ignored when only
the thickness of the damage layer is fitted.

Next, to appropriately describe the influence of the surface
texture of rough grinding 4H-SiC wafers on the MM spectra, the
MM elements are plotted in polar coordinates with wavelength
and rotation angle as radial and angular coordinate, respectively.
The reflectionMM data is measured at 17 Euler rotation angles (γ
from 0° to 360° in steps of 22.5°) with the incident angle of θ � 65°.

For demonstration, one point of rough grinding wafer is
selected. Figure 5A shows the surface morphology measured
by a 3D optical surface profiler and its initial texture direction is
parallel to the plane of incidence. Figure 5B shows the schematic
diagram of reflection ellipsometry measurement. The measured
4 × 4 Mueller matrix is shown in the Supplementary Material.
Theoretically, the anisotropy of the sample is reflected in the non-

FIGURE 4 | The simulation of theMueller matrix. (A)Model 1, 350 μm4H-SiC thick layer with backside reflection. Model 2, 2 nmSiO2 layer on the Si-face of the 4H-
SiC thick layer with backside reflection. Model 3, 2 and 5 nm SiO2 layers on the Si-face and the C-face of the 4H-SiC thick layer with backside reflection. Model 4, 2 nm
SiO2 layers on the Si-face of the 4H-SiC semi-infinite substrate without backside reflection. The angle of incidence is 65° and the Euler angle γ is 45°, β is 4°. (B)Measured
and fitted M34 elements of the backside polished and roughed wafer by using the same semi-infinite substrate model.
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diagonal elements of the Muller matrix. The difference is that for
a rough grinding wafer with surface texture, the 2 × 2 diagonal
elements of theMuller matrix at the bottom right corner also have
directionality. Specifically, two off-diagonal matrix block
elements have the following relationship: M13 = −M31, M23
= −M32, M14 = M41, M24 = M42. Moreover, M13 and M23 are
symmetrical about the line formed by 90° and 270° or the line
formed by 0° and 180°. TheM14 andM24 elements have the same
relationship. For diagonal elements wemainly focus onM34/M43
(M34 = −M43). Therefore, we only show the nonzero off-
diagonal elements M13, M14 and diagonal element M34 in
Figures 5C–E, which can reflect the surface structure
anisotropy of rough grinding 4H-SiC wafer.

The measurement data indicate that the off-diagonal elements
depend on rotation angles and the Mueller matrix has a high
sensitivity to structure anisotropy. It can be observed that the off-
diagonal elements are zero at 0°, 90°, 180°, and 270° rotation
angles. The maximum and minimum values of M13 and M14
spectra are located at 135°, 315° and 45°, 225° rotation angles,
respectively. Therefore, off-diagonal Mueller matrix elements can
be set as an indicator to judge the direction of the surface rough
texture [29]. The result of diagonal element M34 shows that the
maximum and minimum values are located at rotation angles of
90° and 0°, respectively. It indicates that when the texture
direction of roughness is perpendicular to the incident plane,
there are more prominent responses from the Mueller matrix. In

this view, the roughness does not appear as an intrinsic
characteristic of the surface, which depends on the wavelength
and on the direction of propagation of the incident wave.

4 RESULTS AND ANALYSIS

4.1 Transmission Spectra Analysis
The bandgap of 4H-SiC calculated by Tauc-plot is about 3.3 eV,
as shown in Figure 6A. Figure 6B shows the R and T spectra of
4H-SiC CMP wafer in wavelength range from 220 to 2000 nm.
Ordinary extinction coefficient (ko) is first calculated using
Equation 5, as shown in Figure 6F. Then, combined with
Mueller matrix differential calculus, the linear birefringence
(ne − no) and dichroism (ke − ko) of 4H-SiC are extracted as
shown in Figures 6C,D. At last, the refractive index (no and ne)
and extinction coefficients (ko and ke) of 4H-SiC are completely
solved as shown in Figures 6E,F.

4.2 Reflection Mueller Matrix Analysis
Figures 7A–C show the schematic diagrams of multilayer optical
models corresponding to the cross-section characteristics of 4H-
SiC wafers after three machining stages. From the simulation
results in Section 3.3, the fully coherence wave theory can be used
on wafers with and without back reflection, and the value of M34
element can be used as an indicator of the damage layer.

FIGURE 5 | (A) The surface morphology of the rough grinding wafer and its initial texture direction parallel to the plane of incidence where the direction of rotation
angle is anticlockwise. (B) The schematic diagram of reflection ellipsometry measurement. (C–E) are the experimental MMSE data of individual M13, M14, and M34
elements from 0 to 360° rotation angles in 65° incident angle, respectively. MM intensities are plotted in polar coordinates with wavelength and rotation angle as radial and
angular coordinate.
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Therefore, only the fitted M34 elements are compared with the
experimental data of three processed wafers, as shown in Figures
7D–F. The smooth curve of measured M34 in Figure 7D
indicates backside reflection is absent from the rough grinding
wafer. The fluctuating curves of measured M34 in Figures 7E,F
are affected by backside reflection, and their amplitude is related

to the absorption of samples. The fluctuations decrease in three
higher extinction coefficient ranges, corresponding to
430–480 nm (ke), 520–650 nm (ke), and 1100 nm–1400 nm (ko
and ke) (Figure 6F).

The thicknesses of the roughness layer of rough grinding and
fine grinding wafers are initialed by 3D optical surface profiler

FIGURE 6 | Transmission measurement of CMP 4H-SiC wafer with off-axis cut angle. (A) Absorption spectra and Tauc-plot, the bandgap 3.3 eV is calculated. (B)
Reflectance and transmittance spectra. (C) Birefringence. (D) Dichroism. (E) Refractive indices (no and ne) and (F) extinction coefficients (ko and ke) of 4H-SiC crystal.

FIGURE 7 | (A–C) are the schematic diagrams of optical stack models. (D–F) are fitting results of M34. (G–I) are the typical TEM images of rough grinding, fine
grinding, and CMP 4H-SiC wafers.
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results, while no roughness layer is set for the CMP wafer. Based
on the prior knowledge [17], the Cauchy parameters of the
damage layer are initialed as follows: A is 2, B is 0.05 μm2,
and the initial thicknesses of damage layers are set to 50 nm, 4
and 2 nm for rough grinding, fine grinding, and CMP wafers
according to their processing techniques, respectively.

By fitting the MMSE data, the damage layer thicknesses of
rough grinding, fine grinding, and CMP wafers are obtained as
53.7 ± 0.9 nm, 4.6 ± 0.6 nm, and 2.4 ± 0.2 nm, respectively.
Besides that, the interface layer under the damage layer of the
rough grinding wafer is obtained as 49.2 ± 0.6 nm, which reflects
the nonideality of the damage-substrate boundary, residual stress,
and other damage types. To verify the reflection Muller matrix
analysis method, TEM experiments are carried out. The damage
layers are 47.8, 4.35 nm (average of 3.6 and 5.1 nm), and 2.6 nm
thick for rough grinding, fine grinding, and CMP 4H-SiC wafers,
as shown in Figures 7G–I. They have a close agreement with
those values obtained byMMSE. Because of the inhomogeneity of
the surface, the results of different positions on wafers show some
difference, especially for the rough grinding wafer. Three

positions of each sample are measured by TEM for
comparison. Their average thickness value and standard
deviation of damage layers are 47.7 ± 8.9 nm, 4.5 ± 0.7 nm,
and 2.6 ± 0.1 nm, respectively. It can be seen that the rough
surface shows larger damage inhomogeneity than the other two.

The rough grinding also left an interface inhomogeneity
(about 48.7 nm thick in one position) under the damage layer,
as shown in Figure 7G. The average thickness is about 53.7 ±
7.5 nm of three positions, which is also close to that result of
MMSE. In this view, although these damages are very
inhomogeneously distributed in different areas, the interface
layer analyzed by MMSE can reflect them to a certain extent.
The experiment shows that MMSE can analyze the damage
layers of grinding and polishing wafers in a
nondestructive way.

Moreover, the refractive indices of the damage layers after
three machining stages are compared with that of 4H-SiC
crystal, as shown in Figure 8. The refractive indices of all
damage layers are smaller than those of the SiC crystal, which
means the destruction of the silicon carbide structure and the
introduction of other atoms, such as oxygen. The higher
refractive index of the rough grinding wafer than those of
the fine grinding and CMP wafers can be explained by
incomplete amorphization of the damaged zone
(Figure 7). The higher refractive index of the CMP wafer
than that of the fine grinding wafer can be explained by
different atomic ratios of elements in XPS analysis
(Section 4.3).

In general, with further processing, the thickness of the
damage layer gradually decreases and the quality of the wafer
after CMP has been significantly improved. It should be noted
that the thickness of the damage layer determined from the
MMSE analysis represents an averaged value across the probed
area with 3 mm diameter.

FIGURE 8 | The refractive index of the damage layer of three processed
wafers compared with that of 4H-SiC crystal.

TABLE 1 | The atomic ratio of Si, C, and O elements at the surface of rough
grinding, fine grinding, and CMP 4H-SiC wafer.

Element Rough grinding (%) Fine grinding (%) CMP (%)

Si 32.14 35.16 36.68
C 48.13 44.30 51.25
O 19.73 20.54 12.07

FIGURE 9 | Si 2p XPS spectra of (A) rough grinding, (B) fine grinding, and (C) CMP 4H-SiC wafers.
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4.3 XPS Analysis of Processed Surfaces
The Si-face surface of three processed SiC wafers is shown by XPS
full spectra, which mainly is composed of silicon (Si), carbon (C),
and oxygen (O). The atomic ratios of Si, C, and O elements on the
surface of rough grinding, fine grinding, and CMP 4H-SiC wafer are
listed inTable 1. It can be clearly seen that the content of the C atom
in the CMP wafer is greater than that of grinding wafers, while the
content of the O atom is less than that of grinding wafers. This is
maybe the reason why the refractive index of the damage layer of the
CMP wafer is greater than that of the fine grinding wafer.

By using Avantage software, the Shirley model is selected as the
background type andGauss–Lorentzmixture function is used to fit
each XPS spectra. Figure 9 illustrates the fitting spectra of the
narrow Si 2p band of SiCwafers. Figures 9A,B show there are three
main peaks due to the Si-C peak, and two silicon oxycarbides on
the surface of rough grinding and fine grinding wafers. Figure 9C
illustrates only the Si-C peak and one silicon oxycarbide
component on the surface of the CMP wafer.

XPS results indicate that silicon oxycarbide is formed on the
processed Si-face surface instead of SiO2. It reveals that the
refractive index of the damage layer is between that of SiC
and SiO2, which is consistent with the result of ellipsometric
analysis (Figure 8). The results of rough grinding and fine
grinding wafer show different processing parameters and
under the same process produce similar surface compositions.
It should be noted that the measurement depth of XPS is less than
10 nm. Therefore, it is difficult for XPS analysis to reflect the
entire damage depth of the rough grinding wafer.

5 CONCLUSION

In this study, a nondestructive detection method based on
Mueller matrix spectroscopic ellipsometry is proposed to
evaluate the subsurface damage of 4H-SiC wafers in rough
grinding, fine grinding, and CMP stages. The elements of the
Muller matrix are sensitive indictors of the damage layer and the
surface texture. Especially, the change of M34 is significantly
induced by the damage layer. When the surface texture direction
is perpendicular to the incident plane, the Mueller matrix can
obtain maximum response from the damage and interface.
According to simulation and experiment, the optical model
even can be simplified to ignore the backside reflection.

There is a great agreement between SE experimental and fitting
data of the processed SiC wafers. The fitting thickness and
refractive index of the damage layer are verified by TEM and
XPS. This provides a possible method to achieve rapid quality

assessment of SiC wafer in the entire production line. It is critically
important for the processing optimization of large-size SiC wafers
and the improvement of subsequent epitaxial quality. As a
conclusion, this study provides a guide to the engineering
applications of ellipsometry in the damage layer evaluation. The
influence of incident angle and the light reflection characteristics at
different wavelengths can be studied in the future.
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Mueller matrix polarimetry is exploited to find a potential polarization feature sensitive to
subwavelength pore size variation in porous alumina samples. After careful analysis using
standard machine learning methods, it is observed that existing Mueller matrix
decomposition methods and parameters are insufficient to distinguish areas with
different pore sizes. Thus, a new angular-based Mueller matrix polarimetry parameter
capable of linearly separating areas with varying pore sizes is proposed. Such an angular-
based parameter is novel because it is based on angular parameters, it utilizes multi-angle
measurements, and it extracts physical information independent of existing decomposition
methods or parameters. Hopefully this work should inspire future research on the angular
parameters in Mueller matrix polarimetry and their relationships to microstructure
information.

Keywords: Mueller matrix polarimetry, polarization, stokes vector, angular parameter, Mueller matrix imaging

INTRODUCTION

Mueller matrix (MM) microscopy is a promising tool for scientific research and clinical application
because it reveals the intrinsic optical property of objects [2–4]. When light interacts with samples,
the polarization state of light may change due to scattering, absorption, refraction, and other optical
phenomena; such changes in the polarization state before and after light interaction can be
comprehensively described using the Mueller matrix. Scholars have exploited Mueller matrix
polarimetry to analyze various materials and biological samples because the Mueller matrix
encodes rich microstructure information [5–8]. Existing studies prove that Mueller matrix
polarimetry can differentiate cancerous tissues [6, 7], liver fibrosis [9], selected species of algae
[10], and aerosol particles [11].

The Mueller matrix encodes microstructure information, but it would still be obscure to us if the
information is unextractable. Specifically, Mueller matrix polarimetry can be exploited to classify
different materials, but it is often challenging to find an analytical form of such discriminating
parameters. Scholars commonly start by analyzing the Mueller matrix parameters such as the
Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT), which
are interpretable physical parameters in extremely simplified models [4, 12, 13]. This approach can
be effective but not sufficient because in almost all cases, the samples are too complex to be
differentiated using these simple parameters. An alternative way of extracting discriminating
parameters from the Mueller matrix is using the PBP-PFP approach. Polarization basis
parameters (PBPs) refer to the MMPD and MMT parameters, which are interpretable but
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oversimplified. PBPs are then linearly combined to create
polarization feature parameters (PFPs), which are much more
microstructure-specific. This approach is proven useful in
pathological samples [4–6]. To differentiate more complex
samples, nonlinear models in machine learning could be
utilized, but such models are often uninterpretable, and the
results are not generalizable.

Machine learning is a powerful tool for extracting
microstructure information from polarimetric data. Given the
sample data, machine learning algorithms build a model to make
classification predictions or clustering decisions. Studies have
shown that by utilizing machine learning, Mueller polarimetry
can classify ex vivo colon cancer, hematoxylin and eosin (H&E)-
stained and unstained breast cancer, H&E-stained cervical
cancer, and skin cancer [5, 6, 31, 32]. Using deeper models
and convolution layers that specialize on processing imagery
data, the models trained using polarimetric data are capable of
transforming between polarimetric imaging and brightfield
imaging, synthesizing polarization-sensitive optical coherence
tomography images from OCT images and classifying objects
in degraded environments [33–35]. In this study, the machine
learning algorithm, linear discriminant analysis, is applied to
classify regions with different pore sizes using rotation-invariant
parameters [29].

One of the limitations with the current microstructure feature
parameter extraction methods is that they are mainly based on
the rotation-invariant parameters. The orientation of the sample
should not affect its microstructure information, so consequently,
the microstructure feature parameters should not vary as the
sample rotates. Therefore, it may seem logical to use rotation-
invariant parameters as the basis parameters since their
combination will also be rotation-invariant. However,
polarization is sensitive to anisotropy, and such information is
often contained in azimuthal parameters rather than in rotation-
invariant parameters. To fully utilize Mueller matrix optics, the
use of angular parameters is essential.

In this work, the idea of angular parameter-based
microstructure feature parameters is explored and
experimented. Using the porous anodic alumina (PAA)
Mueller matrix polarimetry measurement data from the
published work of Chuhui Wang [1], it is discovered that
while the rotation-invariant parameters could not differentiate
the pore size, the proposed parameter can not only differentiate
areas with different pore sizes but also do so with a simple explicit
analytical form. Through this study, we emphasized the
importance of angular parameters in Mueller matrix
polarimetry, demonstrated their potential for differentiating
different microstructures, and hopefully inspired future
research in this area.

MATERIALS AND METHODS

Porous Anodic Alumina Fabrication
Porous anodic alumina (PAA) is a nanomaterial with a
controllable porous aspect ratio and radius [14–17]. An
electrochemically anodized alumina sheet under specific

conditions will form an ordered porous alumina film on top
of the thin barrier layer alumina (BLA)-covered aluminum
substrate [19–24]. Its uniform pore sizes and dense
distribution of pores makes PAA an idea membrane. Studies
have shown that PAA can also be used as a photonic crystal [18].

Using the secondary anodization method, a PAA sample with
two different pore diameters was fabricated and studied. The
setup is shown in Figure 1. The fabricated sample is imaged
under a scanning electron microscope, and Figure 2 shows the
top and side view of the PAA sample. For the detailed fabrication
process, please refer to [1].

Mueller Matrix Polarimetry
The dual-rotating retarder Mueller matrix measurement method
is used in this study [1, 26]. An LED light source with a center
wavelength of 633 nm is used. The system is calibrated using air
as the standard sample, with a maximum error of 2%. Detailed
information regarding the Mueller matrix imaging system can be
found in [1].

The Mueller matrix images of the samples are measured at two
angles: normal incidence and 32° tilting angle. At normal incidence,
the pores are colinear with the light ray, so the interaction between
the pores and light is relatively weak. At a tilting angle, the
interaction starts becoming obvious. By comparing the Mueller
matrices from two distinct tilting angles, it is possible to isolate the
optical effect due to the pores. The tilting angle of 32° is selected for
experimental convenience.

Analysis of Angular Parameters
The fabricated PAA sample is measured twice. With a random
sample orientation, the PAA sample is first measured at normal
incidence and then measured again at 32° tilting angle. At 0°

tilting angle, the MMT parameter αr is measured using the
following formula:

α(0)
r � 1

2
tan−1( −M(0)

24 /M
(0)
34 ).

The superscript (0) indicates that the values from the 0-degree
incidence angle measurement are used for calculation. For a pure
phase retarder, the MMT parameter αr is the anisotropic azimuth
angle of the retarder [1, 4]. Because this parameter is measured at
0 tilting degree, it should not be sensitive to porous information
since the pores and the light ray are colinear. Moreover, at 32°

tilting angle, the MMT parameter δ is calculated using the
following formula:

δ(32) � cos−1M(32)
44 .

The superscript (32) indicates that the values from the 32-
degree incidence angle measurement are used for the calculation.
For a pure phase retarder, the MMT parameter δ is the phase of
linear retardance [1, 4]. This parameter is sensitive to both the
retardance due to the material and the pores. It is assumed that

α(0)
r ∝ δ(32),

which is experimentally observed to be valid. All the naturally
formed blocks and their corresponding α(0)r and δ(32) values are
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measured and recorded. One can then try determining the slope
and y-intercept of the scatter plot using the least square linear
regression algorithm, by essentially fitting a line to the observed
data [28]. It is observed that the y-intercept of the lines encodes
pore size information.

RESULTS

Figure 3 shows themeasuredMueller matrix of the PAA sample. A
clear vertical line separates the regions with different pore sizes. It is
noted that the M12, M13, M21, and M31 elements are nearly zero,
indicating the PAA exhibits a strong birefringence property.
Natural formation of blocks is observed, and each block has its
distinct azimuthal orientation, as indicated by theMMT parameter

α(0)r . As the tilting angle increases, the birefringence signal becomes
stronger as well, as reflected in the decrease of the M44 element
after inclination. It is noted that the image is distorted when the
sample is tilted, so to register the data measured from different
incidence angles, we have used control point methods to estimate
the geometric transformation matrix.

Now, to proceed with the analysis, we have manually selected
several blocks from two regions with different pore sizes. Figure 4
shows all the blocks that we have chosen.

The PBP-PFP approach is first tested for reference. The
rotation-invariant parameters from MMT are used as basis
features, in order to linearly combine into a polarization feature
parameter that can differentiate the blocks from the two regions
with different pore sizes. Linear discriminant analysis is an
algorithm that finds the hyperplane that separates different

FIGURE 1 | Diagram of the secondary anodization method [1]. Reprinted with permission from [1] © The Optical Society.

FIGURE 2 | SEM images of the PAA sample, from the top view (A) and the side view (B). The hexagonal pore structure is clearly observed [1]. Reprinted with
permission from [1] © The Optical Society.
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groups of data, given the group labels [29]. In this study, it is used to
find the optimal linear combination of polarization parameters that
discriminate the sets. An 8-fold cross validation method is used to
determine the generalizability of the obtained PFP. The data points
are partitioned into eight subgroups, and the model is evaluated
eight times, each time selecting a subgroup as the testing set and the
rest as the training set [30]. Using the 0-degree tilting data, the
mean accuracy is 58.8%; with the 32-degree tilting data, the mean
accuracy is 92.5%; the mean accuracy using data from both tilting
angles is 80.4%. Such results imply that the interaction between the
pores and photons is much stronger when the sample is tilted, and

the rotation-invariant parameters cannot differentiate areas with
different pore sizes.

An alternative approach based on angular parameters is
proposed. Assuming a linear relationship between α(0)r and
δ(32) with no phase delay, the two variables are plotted against
each other, where α(0)r is on the x-axis and δ(32) is on the y-axis.
We can clearly observe a linear relationship between them, as
shown in Figure 5A. The points from regions with differing
pore sizes clearly lie on two distinct lines, and they are easily
differentiable. Due to the observed phenomenon, it is
speculated that the y-intercept might correlate with the
pore size.

However, the zero-phase-delay assumption is unlikely to be
true most of the time, depending on sample orientation. In other
words, a perfect straight line is unlikely to be observed. So instead
of representing the relationship between two periodic variables in
the Euclidian fashion, the proper way of representing the linear
relationship between α(0)r and δ(32) is by using the polar
coordinate. In Figure 5B, the scatter points are determined by
using 2α(0)r as the angle and δ(32) as the radius. Two non-
overlapping spirals are observed, each representing data from
a different pore size.

DISCUSSION

To summarize, a pore size discriminative parameter is proposed
based on the Mueller matrix angular parameter with multi-angle
measurement. The parameter proposed in this study is important
for three main reasons: first, it contains subwavelength pore size
information; second, it extracts microstructure information
outside of the existing MM parameters’ span; and finally, it
proves that multi-angle measurement is necessary for decoding
pore size information. All these points will be further addressed in
the following paragraphs.

FIGURE 3 | Experimentally measured Mueller matrix of the PAA sample with normal incidence (A) and 32° tilting angle (B). The black dotted line separates the
regions with different pore sizes.

FIGURE 4 | Locations of the manually selected block. The blocks from
the two regions with different (query) are marked with different markers: one
with blue dots and the other with red squares.
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First, the proposed parameter can differentiate PAA regions
with different sizes of nanoscale pores. The pore diameter in PAA
ranges from 50 to 420 nm [21], depending on the modulating
condition. Successfully discriminating regions with varying
interpore diameters proves that Mueller matrix polarimetry is
capable of resolving the nanostructure beyond the optical
resolution limit.

Second, the proposed parameter expands outside the span of
known rotation-invariant polarization parameters. Using MMT
parameters as basis features, the performance of the linear model
is unsatisfactory for the task of discriminating regions with

different pore sizes, as shown in the last section. On the other
hand, the proposed parameter can fully separate points from
different pore size regions with a linear function. It implies that
the polarimetric angular parameter encodes microstructure
information that is not contained in rotation-invariant
parameters.

Finally, the pore size information can only be extracted through
multi-angle measurement. Clearly, the MMT parameters cannot
fully describe pore size information through single-angle
measurement since the best accuracy achieved was 92.5%. Even
the newly proposed parameter needsmeasurement from two distinct

FIGURE 5 | Scatter plot of α(0)r and δ(32) , drawn in Euclidean (A) and polar (B) coordinates. For (B), the angle of the scatter plot is 2α(0)r and the radius is δ(32).

FIGURE 6 | Scatter plot of α(0)r and δ(32) at a different orientation angle. (A) shows the original scatter plot without unwrapping, (B) shows the scatter plot after
unwrapping, essentially shifting the points on the left of the dotted line by one period, and (C) shows the same plot in polar coordinates, where the angle of the scatter plot
is 2α(0)r and the radius is δ(32).
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incline angles. Therefore, it is possible that multi-anglemeasurement
is compulsory for pore diameter extraction.

For context, there are two fields of polarimetry for the analysis
of periodic nanomaterial: ellipsometry and Mueller matrix
imaging. In the field of ellipsometry, experimental data are
matched with theoretical simulation to obtain the physical
parameters of the observed samples, such as porosity and pore
size [27]. This is the idealistic approach for nanomaterial analysis
since it has unrealistic assumptions for the sample, such as perfect
uniformity. While on the other hand, in the field of Mueller
matrix polarimetry, the decomposition/parametric approach is
taken, and a non-idealistic sample is assumed. In this context, this
study attempts to bridge the two fields, using the parametric
approach to decode microstructural information, and attempted
to obtain a feature parameter for pore size discrimination without
making any unrealistic assumptions for the sample.

It is worth noticing that the linear relationship between α(0)r
and δ(32) is essentially a form of invariance. In other words, no
matter how the PAA sample is rotated, the resulting point will
always stay on the line (with proper unwrapping). Invariance
indicates conserved quantities, and conserved quantities usually
have physical meanings. In the case of the proposed parameter, it
is reasonable to hypothesize that the parameter correlates with
the porous structure of the sample. In the photonic crystal
language, the proposed parameter could encode information in
the momentum space. For further studies, a detailed relationship
between the proposed parameter and the pore size should be
studied, to see if any correlation exists.

Despite the microstructure information it contains, the use of
angular parameters for feature parameters has its limitations. The
largest problem with angular parameters is unwrapping. As the
sample rotates, the α(0)r parameter changes as well, but it is
constrained in its range. The sample orientation displayed in
the result section was carefully selected to avoid the unwrapping
problem, while in fact, if the sample is rotated at a different angle,
the linear relationship between α(0)r and δ(32) is a lot less obvious,
as shown in 6a. However, if we shift the points on the left of the
green-dashed line by one period, the linear relationship between
the two variables is restored, as seen in Figure 6B. This
demonstrates the essence of the unwrapping problem; the fact
that one can freely add or subtract any integer amount of period

from the angular parameters makes it difficult to determine the
real angular value. Here, it is assumed that the true value of α(0)r is
the one that restores the linear relationship. The unwrapping
problem could be somewhat avoided if we use the polar
coordinate, as shown in Figure 6C. Now, instead of lines we
can observe spirals, and it solves the unwrapping problem since
the angle is now represented in two-dimension instead of one.
However, it poses new challenges on the quantification of feature
parameters in polar coordinates.

In total, the angular parameter encodes nanoscale structural
information regarding the PAA pore diameter. It is proven
experimentally that α(0)r and δ(32) parameters can linearly
discriminate PAA regions with different pore sizes. It can
potentially become a method to quantify photonic crystal’s
microstructure information to reduce the undesired scattering
effect. To mass produce, photonic crystals need a high-
throughput monitoring method with subwavelength resolution,
which Mueller matrix polarimetry is capable of. The use of
angular parameters as basis features can be challenging due to
the unwrapping problem, but it contains information that
rotation-invariant parameters do not. This study provides a
new perspective in the analysis of angular parameters, but to
further study them, the unwrapping problem must be solved by
either unwrapping or devising distribution-based rotation-
invariant parameters in future studies.
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Imaging in scattering media has been a challenging and important subject in optical
science. In scattering media, the image quality is often severely degraded by the scattering
and absorption effects owing to the small particles and the resulting nonuniform
distribution of the intensity or polarization properties. This study reviews the recent
development in polarimetric imaging techniques that address these challenges.
Specifically, based on the polarization properties of the backscattering light,
polarimetric methods can estimate the intensity level of the backscattering and the
transmittance of the media. They can also separate the target signal from the
undesired ones to achieve high-quality imaging. In addition, the different designs of the
polarimetric imaging systems offer additional metrics, for example, the degree/angle of
polarization, to recover images with high fidelity. We first introduce the physical
degradation models in scattering media. Secondly, we apply the models in different
polarimetric imaging systems, such as polarization difference, Stokes vector, Mueller
matrix, and deep learning-based systems. Lastly, we provide a model selection guideline
and future research directions in polarimetric imaging.

Keywords: polarization, polarimetric imaging, scattering media, imaging recovery, physical imaging

1 INTRODUCTION

Optical imaging through scattering media, including turbid water [1, 2], haze [3, 4], fog [5], and
biological tissue [6–8], enjoys a wide range of applications in areas such as underwater rescue [9],
automatic driving [10], underwater archaeology [11], and biomedical imaging [12]. Therefore, the
realization of clear visions in scattering media is of great interest and significance. However, the
visibility and identifiability of the target scene are usually compromised as the radiance observed
from a scene is scattered and absorbed by aerosols and particles existing in the environment [13]. The
optical performance is thus limited in many practical applications [14]. In other words, the image
quality captured by a camera deteriorates significantly, resulting in low image contrast [15], distorted
color [16], and poor visibility [17].

Various dehazing or de-scattering techniques that have been developed to restore the image
quality can be classified into two categories, non-physical and physical model-based methods, as
shown in Figure 1. The non-physical methods, based on the image enhancement method, aim to
highlight the target of interest and improve the contrast. The simplest non-physical method is the
histogram equalization (HE) method, which enhances the overall image contrast by increasing the
dynamic range of the gray value. Depending on the difference in the computing region of an image,
HE can be divided into global HE (GHE) and local HE (LHE). The advantage of GHE lies in its higher
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efficiency and lower computation requirement, which is
particularly suitable for enhancing excessively dark or bright
images. This method does not fit images with high local
brightness values, which often cause the “halo” effect. Such an
issue can be addressed by applying the LHEmethod, for example,
contrast limited adaptive histogram equalization (CLAHE) [18].
However, the “blocking effect” accompanied by increased
computation complexity [19] cannot be avoided. Besides, HE
methods may amplify noises during dehazing. Retinex-based
algorithms [20, 21] are models based on the color perception
of human eyes, with the main concept of obtaining an object’s
reflection property to model the color invariance. Thus, the
Retinex-based algorithms have been widely applied in the field
of image enhancement to remove haze and scattered light. In
addition, this method helps increase an image’s contrast and
brightness and regulate the dynamic range of its gray level.
Nevertheless, the Retinex-based algorithms do not preserve
edges well, which may lead to the halo phenomena in sharp
boundary regions [21, 22]. Finally, with regard to the dehazing
technique, the frequency domain filtering (FDF) method proves
to be another popular solution for image enhancement. More
details can be found in the previous works [23–25].

The physical model-based dehazing and de-scattering
methods are based on the knowledge related to the scene’s
physical features. To successfully restore an image, one of the
key factors is to acquire an accurate depth of the scene [26], that
is, the physical distance between the camera and target scene.
However, the depth map is always unattainable for practical
applications [27]. Therefore, a fundamental challenge in
optical de-scattering techniques is to accurately estimate the
depth map, that is, the transmission of scattering media [28].
Various methods have been proposed to overcome the challenge.
For example, Fattal et al. [27] proposed a method that inferred the
medium transmission map by estimating the albedo of the scene.
However, such a method assumes that the transmission and
surface shading are locally uncorrected and thus may fail
when handling dense haze. Hautiere et al. [29] estimated the
depth by determining the relationship between the road visibility
and the contrast in the foggy image. Based on the analysis of the
side geographical information obtained via an onboard optical
sensor system, a 3D geographical model was established to
remove the fog. Upon observing the property of haze-free

outdoor images, He et al. [3] proposed the dark channel prior
(DCP), based on the premise that “dark pixels” had a very low
intensity in at least one-color channel except in the sky region.
His method included three steps: air-light/scattered light
estimation, transmission map estimation and refinement, and
the final image reconstruction. Thanks to its effectiveness in
dehazing, DCP has been adopted by most of the recent
physical model-based techniques.

Almost all methods above are implemented based on the input
of a single image, where certain assumptions or prior knowledge
are necessary. The other physical model-based methods are based
on multiple images corresponding to the same scene, that is, the
images obtained under different visibility [30], images obtained
with visible and near-infrared cameras [31], and images acquired
with different polarization angles [15, 32, 33]. While images
under different visibilities render the estimation of the depth
map and scene structures to significantly enhance the image
contrast, it remains challenging to handle real-time scenes [34].
Thanks to the excellent “long-distance transmission capacity” of
the near-infrared light, the visible and near-infrared fusion
methods improve the image quality by combining the rich
color information of the visible image and the high visibility
of the near-infrared image. However, the major obstacle is to
acquire the visible and near-infrared images simultaneously,
where expensive equipment and accurate optical alignment are
both required. As opposed to the above methods, polarimetric
imaging [35–37] is more effective because the scattered light is
partially polarized [35] and the polarization information of the
object and the turbid medium is different. Therefore, in principle,
obtaining the polarization information of the scene and then
processing them can effectively suppress the scattered light and
extract the light coming from the object light [15, 32, 38]. A series
of studies have shown that polarization-based imaging is a
physical, low-cost, and applicable way to enhance the image
quality, especially in highly scattering environments [2, 39, 40].

The typical polarimetric imaging systems include the
polarization difference (PD) imaging [1, 41, 42], Stokes-based
polarimetric (SP) imaging [43], and Mueller matrix (MM)
imaging [44, 45]. The PD imaging is based on two
orthometric polarized sub-images to estimate the
transmittance by analyzing the degree of linear polarization.
The SP imaging, especially the full-SP imaging, leverages the
robustness of the polarization angle [38] or the “memory effect”
of circular polarization to achieve the backscatter removal [39, 46,
47]. The MM imaging benefits from its complete polarization
characterization. These three basic models are built upon
different optical systems that offer flexible options subject to
different application requirements. Besides, the polarization-
based methods can be further improved by integrating with
computer-vision-based and learning-based methods [2, 15, 48].
In other words, by introducing the polarization information into
the traditional vision or learning-based method, greater
application possibilities can be explored due to enhanced
performance in image quality [2, 49–52].

This study first introduces the basic principles of the common
polarimetric imaging models in scattering media and provides a
comprehensive and up-to-date review for both traditional and

FIGURE 1 | Classification of dehazing/de-scattering methods.
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advanced works. We explore topics that include the progress in
model optimization and parameter estimation and the analysis of
different methods from the perspectives of their limitations and
potential solutions, with application-based recommendations for
readers in optics and engineering communities. Section 2
introduces the imaging model through the scattering media
and the related optical imaging systems. Section 3
demonstrates the polarimetric methods for imaging through
turbid media based on different imaging systems. Section 4
provides a conclusion and an overlook for future development.

2 IMAGINGMODEL IN SCATTERINGMEDIA

2.1 Physical Imaging Model in Scattering
Media
The particles existing in the scattering media, such as in the
atmosphere during hazy or foggy weather and under turbid water
or sea, generally absorb and scatter light, resulting in the decay of
image contrast, saturation attenuation, and color-shifting in the
detected images [39, 46]. Therefore, image dehazing or de-
scattering plays an important role in various practical
applications, such as traffic surveillance systems, security
systems, object recognition, medical imaging, and remote
sensing. Studies related to the image degradation mechanism,
imaging systems, and recovery algorithms are receiving much
attention.

Koschmieder et al. [53] proposed the first atmospheric
scattering model, which was further modified by Narasiman
and Nayar [54, 55]. Based on their model, the image signal
received by the camera is composed of two components: 1)
direct transmission D(x, y), which represents the effect of
scattering of light and the eventual decay of light before it
reaches the camera, and 2) backscattered light A(x, y), which
denotes the undesired backscattered lights from the particles in
the object line of sight (LOS) [1, 32]:

I(x, y) � D(x, y) + A(x, y). (1)
As the light from the target progresses towards the camera, its

energy is lost due to scattering and absorption. The fraction that
does reach the camera is the direct transmission given by

D(x, y) � Lobject(x, y)e
−βz(x,y), (2)

where z(x, y) is the distance between the object and the camera
and depends on the pixel coordinates x and y; β is the attenuation
coefficient; and Lobject(x, y) is the object radiance not scattered
and absorbed along the LOS [1, 35]. The attenuation coefficient is
given by β, and the term e−βz(x,y) is also called the transmittance
of light t (x, y).

A(x, y) denotes the undesired lights received by the camera
mainly due to scattering by particles. It does not originate from
the object on the LOS but varies with the horizontal distance by

A(x, y) � A∞(x, y)[1 − t(x, y)], (3)
where A∞ refers to the intensity value of backscattered light from
infinity in the turbid medium. In most works, it is assumed to be a

global constant independent of the location (x, y). Figure 2A
shows the image formation and visual illumination components
through the scattering medium. According to Eq. 2 and Eq. 3, we
can observe that Lobject(x, y) and, thus, the recovered image
could be obtained as far as the transmittance and backscattering
are estimated accurately and the attenuation of the object light is
compensated. Combining Eq. 1 and Eq. 2, one can recover
Lobject(x, y) as follows:

Lobject(x, y) � I(x, y) − A(x, y)
1 − A(x, y)/A∞

. (4)

The currently reported polarimetric imaging-based dehazing
methods are based on the above physical model and the scattered
light’s polarization property. The published results in various
works show the high information restoration capacity and
computational efficiency [56]. For the recovered image in Eq.
4, many quantitative criteria are used to characterize the quality
of results, including the visibility range or distance [56, 57],
Michelson contrast (MC) [43], peak-to-correlation energy
(PCE) [58], mean gradient [51], measure of enhancement
(EME) [2, 17, 48], blind-reference-less image spatial quality
evaluator (BRISQUE) [2], natural image quality evaluator
(NIQE) [17], entropy [2], and peak signal-to-noise ratio
(PSNR) [19, 27, 54]. Among the above criteria, PCE and
PSNR describe the similarity between the restoration and clear
image, EME and entropy describe the image contrast, and
BRISQUE and NIQE quantify the distortion indicator of quality.

The superiority of the polarimetric methods also embodies the
robustness of polarization parameters in various complex
scattering conditions. Many works study the propagating
light’s physical characteristics and polarization properties in
scattering media [59–61]. For example, with the aid of the
Monte Carlo simulations, Xu et al. [62] demonstrated that the
intensity of the polarized light after being transmitted underwater
sharply decreases as the transmission distance increases, but the
degree of polarization (DoP) of the transmitted lights remains
above 0.75. It means that compared with the traditional imaging
encoded with intensity information (in which the intensity will be
significantly lost), the polarization encoding by DoP has
overpowering advantages. Besides, Shen et al. [61]
demonstrated that the depolarization behavior of light is
sensitive to the mixing ratio or the distribution state of
particles. Tao et al. [60] also found that the polarization
properties provide additional information for the imaging, and
the contrast of the polarization image can be significantly
enhanced compared to the simplex intensity image in the
turbid media. Moreover, the circular polarization images offer
better contrast and higher visibility than linear ones under the
same circumstance. All these reported results make the
polarimetric methods and polarization control more promising
for imaging in scattering media.

To date, whether it is on the basis of two images [15, 32], three
or four images [38, 46], and nine or 16 images [44, 45], various
polarization recovery methods have been developed bymodifying
the basic model in Eq. 1. These methods are related to different
polarization information, such as the PD, Stokes vector, DoP,
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angle of polarization (AoP), and MM. The following section
introduces the related imaging systems and configurations.

2.2 Polarimetric Imaging Systems
Based on different polarization information, various polarimetric
imaging systems have been developed. Early works in
polarimetric imaging applications mainly focused on cases
with linearly polarized light. This cross-polarization imagery,
also called the PD imagery, was commonly used to enhance
image contrast and minimize the blurring light in media with
relatively low concentrations. The main element of this system is
shown in Figure 2B1. In the setup, a light source, such as a light-
emitting diode or a laser, is expanded with a beam expander. The
light is polarized with a linear polarizer and hits on the target
scene. A camera is positioned normal to the target scene to avoid
most of the glare created by the interface. Finally, a rotating
analyzer, always a linear polarizer, is placed in front of the camera
to filter the back-reflected polarized light. By this configuration,
two images (I‖, I⊥) with orthogonal polarization states are
acquired, from which one can calculate the degree of linear
polarization (DoLP) as

P � I‖ − I⊥
I‖ + I⊥

. (5)

Stokes parameters have played a prominent part in the optical
literature on polarized light [63, 64]. As early as 1947,
Chandrasekhar [65] used the Stokes vector to formulate the
radiative transfer equations for scattering partially polarized
light. Furthermore, the Stokes parameters give a complete
description of any polarization state of light:

S � [S0, S1, S2, S3]T, (6)
where the first three parameters are linear components of the
Stokes, while the last one is the circular component [49, 63]. From
this formalism, other parameters can be deduced, such as the DoP
(P), the DoLP (Pl), the degree of circular polarization (DoCP),
that is, Pc, and the AoP (α). They are defined as follows:

P �
����������
S21 + S22 + S23

√

S0
, Pl �

������
S21 + S22

√

S0
, Pc � S3

S0
, and α � 1

2
tan−1[

S2
S1
].

(7)
A more detailed description of Stokes vector can be found in

the books about polarized light [63].
Unlike the PD imagery for linear polarized light, the Stokes

vector contains the ellipticity of the beam. Hence, the complete
imaging system for the Stokes vector requires an extension of the
instrumentation. Optical retarders or wave plates (WP) are
usually introduced into the system to generate or measure
elliptical or circular states. Four intensity measurements are
needed to calculate the complete Stokes vector parameters.
Figure 2B2 shows a typical Stokes vector imagery, consisting
of two sections: the polarization state generation (PSG) and the
polarization analysis (PSA). In PSG, a WP and a linear polarizer
are used to generate polarized illumination with an arbitrary state.
The reflected intensity from the target scene is measured by
adjusting the WP and/or polarizer’s states in PSA. Based on these
captured intensities, one can estimate the Stokes vector of the
reflected light. In practice, the measurement of S0, S1, and S2 is
conducted by removing the WP in PSA. Only the last term, S3,
requires this element to measure an elliptical/circular state.

FIGURE 2 | (A) Image formation and visual example of illumination components through the turbid media (reprinted from Springer Nature: Scientific Reports [2],
copyright 2018). (B) Different polarimetric imaging systems: (B1) PD imager, (B2) Stokes/Mueller imager, and (B3) DoFP camera-based imager.
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Moreover, with the development of nano-structures fabrication, a
snapshot imaging solution has recently gained much attention
using a division of focal plane (DoFP) polarization camera [66,
67]. It can simultaneously capture four polarization angles from
each video frame without image mismatch [68]. Besides, by
adding a rotated WP, one can measure the full Stokes with
only two shots [69]. The polarization camera makes real-time
polarimetric imaging a reality and its applications possible.

The MM, proposed by Hans Mueller in the early 1940s [63,
70], is another common parameter in addition to the Stokes
vector in polarization imaging technology. The Stokes vector is a
parameter describing the characteristics of the incident and the
outgoing light when interacting with the materials, while the
Mueller matrix is a “bridge” between the light and the material
and describes the modulation of the incident light by the material
[71, 72]. The Stokes vector’s description of a light beam requires
four parameters. The modulation relationship between the
incident and outgoing light can be fully described using a 4 ×
4 matrix [73]. This matrix is called the MM.When a beam of light
is incident on objects, the polarization properties of the reflected
or transmitted light generally change [74, 75]. Assuming that the
Stokes vector of the incident light is S, the Stokes vector of the
outgoing light after interaction with the medium is S’, and the
MM can express their relationship as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0
′

S1
′

S2
′

S3
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0
S1
S2
S3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

That is,

S′ � M · S. (9)
In practice, the MM can be obtained using some possible PSG

and PSA combinations in Figure 2B2. A straightforward
implementation includes setting the light source at three linear
states and the right circular state. Finally, 16 intensity
measurements are needed to calculate the full 4 × 4 MM. By
removing the WPs in PSG and PSA, the configuration becomes
the same as that of the Stokes imager (Figure 2B2). Then, by
respectively rotating the directions of the two polarizers three
times and obtaining a total of nine intensities, one can calculate a
linear or incomplete MM with a size of 3 × 3.

In addition, according to the light sources’ properties or the
selected optical elements, the configurations can be categorized
into different types as follows:

(1) Depending on the existence of light sources, it can be
categorized into “active illumination type” (with additional
source) and “passive illumination type” (with nature light).

(2) Depending on PSG’s composition, it can be categorized into
“unpolarized illumination type” and “polarized illumination
type.” In particular, the “polarized illumination type” can be
further divided into “linearly polarized illumination” and
“circularly polarized illumination.”

(3) To match the type of illumination, the PSA will contain a
polarizer with “linearly polarized illumination” or a polarizer

together with a retarder if it is “circularly polarized
illumination.”

Choosing the configuration types depends not only on the
polarization parameters being used but also on the environment
in reality. For example, in the atmospheric environment, “passive
illumination type” with sunlight is recommended, while in
underwater, undersea, or low-light surroundings, the
“polarized active illumination type” is preferred. In addition,
for different target scenes, one needs to switch between linear
and circular polarized illuminations. In the following section, we
introduce well-established polarimetric methods in accordance
with the above-mentioned configurations for imaging in
scattering media.

3 MODELS OF POLARIMETRIC IMAGING IN
SCATTERING MEDIA

3.1 Polarization Difference Imaging
3.1.1 Basic Model and Configuration
Inspired by the polarization-sensitive vision of some animals,
PD imaging systems are proposed and developed to improve the
visibility of objects in scattering media. This model is served as a
common-mode rejection amplifier that can reduce the effects of
background scattering and amplify the signal from targets
where the PD magnitude is distinct from the background
[41, 76]. Based on the images captured for the same scene at
two orthogonal linear polarization states (I‖(x, y) and
I⊥(x, y)), the traditional PD system, proposed by Tyo et al.
in 1995 [76], generates the PD and polarization-sum (PS)
images as

IPD � I‖(x, y) − I⊥(x, y), IPS � I‖(x, y) + I⊥(x, y) , (10)
where the PS image is equivalent to a polarization blind image
obtained by a conventional imaging system. The PD image
clearly depends on the choice of polarization axes, whereas the
PS image does not. Such a relationship with the choice of axes
can be used to minimize the effects of a partially polarized
background in a PD image [42]. Notably, the scattered light is
partially polarized and has the orthogonal and the same
polarization components to the incident light at the same
time. The performance of the PD method depends on the
ratio of different components, which may be determined by
the properties of scattering media, the incident polarization, the
incident and observed angles, and so on.

Unlike Tyo’s PD model, which is based on the theory of
common-mode rejection, Schechner et al. [32, 35] proposed a
novel de-scattering method based on the atmospheric scattering
model in Eq. 1, as shown in Figure 3. Similarly, this method
captures two orthogonal polarized images composed of two
unknown components (the scene radiance in the absence of
haze and air-light). Because the air-light is usually partially
polarized, these two images can be described by

Ii(x, y) � D(x, y)
2

+ Ai(x, y), i ∈ [ ‖,⊥ ] . (11)
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This model considers the natural polarization effects in
imaging through the haze and builds the relationship of
atmospheric properties, polarization properties, and imaging
formalism. It does not require modeling the scattering
particles’ size or the precise scattering mechanisms. In general,
such methods based on Schechner’s model need to estimate two
critical global parameters: air-light at infinity A∞ and DoP p.
Then, the air-light and the transmittance can be calculated by

Â(x, y) � I‖(x, y) − I⊥(x, y)
p

, t̂(x, y) � 1 − Â(x, y)
A∞

, (12)

respectively. Here, A∞ and p rely on the choice of background or
sky region Ω and are usually calculated by

p � I‖Ω − I⊥Ω
A

, A∞ � I‖Ω + I⊥Ω . (13)

Finally, all these parameters are involved in the polarimetric
model to obtain the recovered image as

L(x, y) � I(x, y) − A(x, y)
1 − A(x, y)/A∞

� I‖(x, y) + I⊥(x, y) − A(x, y)
1 − A(x, y)/A∞

.

(14)
The PD-basedmethods share the same configuration shown in

Figure 2B1. The polarizer in front of the camera or other
intensity detectors is a must to capture two orthogonal
polarized images. In contrast, the polarizer behind the light
illumination source is optional and depends on the actual
scene, active or passive illumination.

3.1.2 Representative Methods
As the first attempt, Tyo et al. [41, 76] designed a special sample,
an aluminum target containing two abraded patches with
orthogonal directions, to verify the effectiveness of PD
imaging systems. This sample is placed in a tank with inside
dimensions of 30 × 30 × 15 cm3. This tank is filled with water and
milk to simulate the scattering environments. PS and PD images
after being transformed for optimal display are shown in

FIGURE 3 | Polarization-based atmospheric scattering model (reprint from OSA: Applied Optics [32], copyright 2003).

FIGURE 4 | The comparison results by (A) Tyo’s imaging method (reprint from OSA: Applied Optics [41], copyright 1996) and (B) Guan’s methods (reprint from
OSA: Optics Express [42], copyright 2013). (C1) Imaging recovery example in air-environment (reprint from OSA: Applied Optics [32], copyright 2003), (C2) and (C3)
underwater based on Schechner’s model (reprint from IEEE: Transactions on Pattern Analysis and Machine Intelligence [35], copyright 2008).
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Figure 4A. We can see that the abraded patches are clearly visible
in the transformed PD image but practically invisible in the
transformed PS image. The key factor contributing to the
enhanced visibility of the two patches in the PD image is the
common-mode rejection feature intrinsic to PD. Based on a series
of validation, Tyo et al. [76] found that the PD imaging model is
quite sensitive to intrinsically small signals and possesses valuable
qualities of being passive, simple, and potentially fast.

This method does not employ polarized illumination, which
makes it constantly suffer from a reduced signal-to-noise ratio
(SNR) because light reflected from the target and diffusive light
backscattered from the turbid medium are superposed. Guan
et al. [42] developed the traditional model and added a linear
polarizer behind the light source to generate a polarized
illumination. By measuring the co-polarization (parallel to the
incident light’s polarization state) and cross-polarization
(perpendicular to the incident light’s polarization state)
images, they obtain an improved PD image, expressed as
IPDI � I‖ − I⊥. Figure 4B presents the comparison between PS
and PD images. The result shows that the proposed method
significantly suppresses the background noise, and the image
contrast is improved approximately 1.7 times [42].

However, the biggest challenge of the common-mode
rejection-based method is that it cannot process scenes with
complex conditions and objects because it does not consider
the degradation mechanism in the scattering media. To solve this
problem, Schechner et al. [32, 35, 77, 78] combined both
polarized optics and the typical atmospheric scattering model
and showed how the polarization tool boosts the vision clarity in
scattering media. An example in the air environment is shown in

Figure 4C1. The dehazed image has much better contrast and
color, especially in the distant regions of the scene noted as the
green forest and the red roofs [32]. Unlike such applications in
the air environment, which rely on natural sun illumination,
active illumination is necessary for underwater applications. In
2004, Schechner et al. [57] developed their original model for the
de-scattering in turbid water by introducing a polarized
illumination, as shown in Figure 4C2. The corresponding
results are shown in Figure 4C3. From the results, we may
observe that the objects (i.e., the iron box) are well restored in
both contrast and color. However, we must point out that their
model is based on three assumptions:

(1) Only the backscattering light/air-light is polarized, while the
objects are unpolarized.

(2) The total attenuation for objects at infinity also equals
inhomogeneous haze; that is, t∞ � 0.

(3) The multiple scattering (which affects the angular scattering
distribution) is dominated by single scattering.

The first assumption does not apply to all practical cases
because the object radiance could also contribute to polarization.
When the depolarization degree of target objects is low, the light
scattered or reflected by objects could contribute considerably to
polarization. As a result, the previous methods may cause
significant estimation errors. Huang et al. [59] found that the
estimation produces negative values of t (as shown in Figures
5A–D) at the pixels corresponding to the low-depolarizing
material if one assumes that the light emanated from objects
in the scene is unpolarized. To solve this problem, they modified

FIGURE 5 | (A) Raw image. The deduced (B) transmittance and the recovered (C) radiance of the objects when the light emanating from objects in the scene is
unpolarized. The retrieved (D) transmittance and (E) radiance of the objects by Huang’s method (reprint from OSA: Optics Express [59], copyright 2016). (F) The fitting
spatial distribution of A∞ and p. (G) Raw intensity image of the scene. (H) Recovered image by Hu’s and (I) Schechner’s methods [32] (reprint from IEEE: Photonics
Journal [79], copyright 2018).
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the traditional model by estimating the PD image of the target
signal with feasible region fitting. Figure 5E shows that the
recovered results reveal the details, which are not visible in the
intensity images, regardless of the area corresponding to the
objects having a high depolarization degree (plastic cube) or a
low depolarization degree (metal coin).

To overcome the limitation caused by the second assumption
and improve the recovery performance in complex conditions,
such as that in the non-uniform optical field, Hu et al. [79]
proposed a method of retrieving the radiance of the object based
on estimating the spatial distributions of the DoP and the
intensity of backscatter light by extrapolation fitting. For
example, the progress of fitting spatial distribution is shown in
Figure 5F, and the corresponding results are also shown for
comparison. It shows that this method reveals the details of the
scene (in orange and blue rectangles) that decay significantly in
the intensity image, and it has better quality than the image
recovered by Schechner’s method because, under the non-

uniform optical field, the DoP of backscatter A∞, represented
by p, on the right side of the background region is considerably
higher than that on the left side. Suppose we recover the image
with Schechner’s method, which considered the backscatter and
its DoP to be constants; the transmittance can be considerably
overestimated because of the improper estimations of A∞ and p.
In that case, it will lead to incomplete haze removal, thus a less
clear recovered image [79].

The third assumption makes the traditional methods perform
poorly in the case of dense haze [2, 39]. To overcome this issue, Li
et al. [2] proposed to combine the polarization-based model and
the computational processing method, such as histogram
stretching (HS). Their main idea is to reduce the density of
haze computationally. Specifically, this method stretches the
histograms of the orthogonal polarization images while
maintaining the polarization relation in between. Based on the
processed orthogonal polarization images, the recovered image
with higher quality can be obtained by the traditional

FIGURE 6 | (A) (A1)Ground truth and (A2) the raw intensity image under water. Comparison of recovered scenes by using (A3) Li’s [2] (labeled as “Our”) and (A4)
Schechner’s [32] methods (reprinted from Springer Nature: Scientific Reports [2], copyright 2018). Comparison of the recovered images when the raw image is (B1):
using (B2) DCP, (B3) DCP with transmission map by soft matting, and (B4) Brosseau’s method (reprint from OSA: Optics Express [80], copyright 2019). (C)Measured
absorption and scattering coefficients of pure seawater (reprint from OSA: Optics Letters [82], copyright 2018). (D1) and (E1) Directly captured images in 41 NTU
and 70 NTU turbid water; (D2) and (E2) results from traditional polarization imaging method; (D3) and (E3) finally detected images by the Liu’s method (reprint fromOSA:
Optics Letters [82], copyright 2018).

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8152968

Li et al. Polarimetric Imaging Through Scattering Media

119

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


polarimetric recovery method. Figure 6A presents an example in
the dense turbid medium. The results show that the method
significantly removes the scattered light and restores more details
than Schechner’s method. This method opens a door and verifies
the feasibility and effectiveness of combining computer vision
and polarimetric methods for image recovery in scattering media.
Although the HS method and Schechner’s polarimetric recovery
method involved in this work are both old methods, the core idea
of this combination has many perspectives. For example,
Brosseau et al. [80] combined the low-pass polarization filter
and DCP method and demonstrated the ability to significantly
improve visibility and reduce runtime by a factor of about 50 for a
4K image. Figure 6B shows the natural imaging experiments
at sea.

It is worth noting that the wavelength of the active
illumination also affects the imaging performance because the
scattered light caused by both water and particles is wavelength-
dependent. Smith and Baker [81] measured the absorption
coefficients and scattering coefficients of pure seawater on the
wavelength ranging from 200 to 800 nm and validated the
dependence of scattering on wavelength. Liu et al. [82] plotted
the measured absorption and scattering coefficients of pure
seawater in the visible-light range, as shown in Figure 6C.
Results show that scattering decreases with wavelength
increase. Based on this wavelength-dependent fact, they
proposed a wavelength-selection-based polarization imaging
method to image through highly turbid water with red light
illumination. This method makes a good balance between range
and vision and can turn targets from “undetectable” into
“detectable,” as shown in Figures 6D,E.

In fact, as one of the earliest polarimetric imaging techniques,
the PD-based methods have received a great deal of attention for
image dehazing/de-scattering in scattering media. This makes
them enjoy fast development in terms of scientific research and
engineering applications. However, the PD-based methods only
contain two polarized images, which means that the freedom
degree of information is limited to two. A complete polarization
characterization of the scattered light and objects is helpful in
further enhancing the recovery performance. Naturally, possible
solutions include capturing more images and obtaining
polarization parameters with high information freedom
degrees, such as Stokes vector and MM [64, 83].

3.2 Stokes-Based Polarimetric Imaging
3.2.1 Basic Model and Configuration
As the information dimension (number of polarization sub-images)
in Stokes vector configurations is higher (i.e., three for linear Stokes
and four for complete Stokes) than two in the PD imaging system, the
Stokes vector is more suited for characterizing polarization properties
of scattered light. In contrast, as the two important parameters (AoP
andDoP), which are highly relevant to the scattered lights’ properties
[66, 84], can be directly deduced from the Stokes parameters,
introducing Stokes analysis into the scattering removal is promising.

According to the fundamental model in Eq. 1, we know that
the estimation of transmittance t(x, y) depends on the scattering
section A(x, y), where the polarization property can be
characterized by the Stokes vector SA(x, y). Here, SA0 is the

captured intensity corresponding to A(x, y). In this way, Eq.
1 can be rewritten as

S(x, y) � SD(x, y) + SA(x, y), (15)

where SD(x, y) denotes the Stokes vector related to the direct
transmission D(x, y). If the target objects are assumed
unpolarized, SD(x, y) equals [D(x, y), 0, 0, 0]T; conversely,
SD(x, y) � [D(x, y), SD1 (x, y), SD1 (x, y), SD1 (x, y)]T, and the
last three polarization parameters cannot be ignored. Based on
the intensity measurements in different polarization states, we
can estimate SA. Accordingly, we can obtain the A∞ and t(x, y).
In other words, the Stokes-based methods remove the veiling
light by building the model between Stokes vectors (or the related
polarization parameters) and (A∞, t(x, y)); that is,

(A∞, t(x, y)) � f(P, Pl, Pc, α), (16)
where the parameters in Eq. 16 (i.e., P, Pl, Pc, and α) are defined
in Eq. 7. The basic configuration of the Stokes-based methods can
refer to that in Figure 2B2, and the specific choice depends on the
used algorithm and realistic environments. According to the
number of the used Stokes parameters, the methods can be
classified as the linear-Stokes (LS) and the circular-Stokes (CS)
based methods. In particular, for the LS-based methods, the PSA
contains a fixed linear polarizer to generate polarized illumination,
while the PSG contains a rotating linear polarizer. By adjusting the
polarizer in PSG at least three times, we can obtain polarization
sub-images. Based on these images, we can obtain a 1 × 3 linear
Stokes vector. In contrast, in the CS-based methods, both PSG and
PSA contain a linear polarizer and a retarder (e.g., QWP or liquid
crystal variable retarders). By adjusting PSG’s states at least four
times and obtaining the related intensity images, we can get a 1 × 4
complete Stokes vector. The difference between the two systems is
whether the circular component of the Stokes vector (i.e., S3) is
considered.

However, the CS-based methods do not depend on the
scattering angle and can survive more multi-scattering events
than linearly polarized light [47, 85, 86]. Figures 7A,B present the
DoP as a function of optical depth in water with different
diameter particles, from which we can observe that the CP
light maintains better polarization characteristics than linear
polarization (LP) [47]. This property, the so-called circular
polarization (CP) memory effect, can be explained by the Mie
scattering phase functions of LP and CP. The phase function in
the circular case possesses a marked forward lobule that permits
the photons to propagate around the beam axis with a higher
probability than in the linear case [87, 88]. Figure 1B presents the
effects of size on the DoP. Results show that when the size
parameter is large, the DOP for CP is greater than that for LP
[85]. The characteristics in Figure 7B attest to the superiority of
CS-based methods in dense turbid water or underwater
environments with large-sized particles. Besides, Sara et al.
[89] quantitively demonstrated the superiority of circularly
polarized light in foggy environments. The experiments are
carried out at CEREMA’s 30 m fog chamber under controlled
fog density conditions. Figure 7C compares the ratio of CO
channels (probe the prevalence of the input polarized light
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through the fog) with respect to the intensity signal as a function
of the radius of the intensity profile of the source image for
circular (solid lines) and linear (dashed lines) polarizations at
three visibilities. The results imply that circular polarization has a
larger signal-to-noise ratio in transmission at deeper layers,
whereas the signal from the linearly polarized light carries
some noise due to its higher depolarization ratio when
propagating in scattering media.

3.2.2 Representative Methods
To enhance the contrast, the two orthogonal polarized images in
the traditional PD imaging model must be strictly selected to
make the projections of the veiling light onto the two
orthogonal axis directions equal [41]. However, this selection
is time-consuming and inconvenient by rotating the polarizer
mechanically, which is unsuitable for rapid imaging applications.
Tian et al. optimized the traditional PD model to deal with this

FIGURE 7 | DoP as a function of optical depth in water with different diameter particles; (A) 2 μm particle; (B) the size parameter (ka) varies (reprint from Elsevier:
Applied Sciences [47], copyright 2021). (C) Comparison of the ratio of Co channel with respect to the intensity signal as a function of the radius of the intensity profile of
the source image for circular (solid lines) and linear (dashed lines) polarizations at three visibilities: 12, 18, and 24 m (reprint from OSA: Optics Letters [89], copyright
2022).

FIGURE 8 | (A) Raw intensity. (B) Imaging results by M-PDI. (C) Intensity profiles by raw intensity, traditional PI, and M-PDI. (D) Contrast distributions of the object
obtained by raw intensity, traditional PI, and M-PDI versus optical thickness (reprint from Elsevier: Optics and Laser Technology [90], copyright 2018). (E) Comparison of
traditional and interpolation method-based PDI systems. (F) Images corresponding to target in (F1) clear water and (F2) turbid conditions. (F3) Stokes vector elements
for the direct measurement (D), separated scatter (B), and target (T). (F4) Generation of numerical plots for the direct measurement and separated target (reprint
from IOP: Journal of Physics D: Applied Physics [91], copyright 2018).
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limitation. They proposed a modified PD imaging method
(M-PDI) based on the Stokes vector analysis of the veiling
light [90]. The output image after removing the veiling light is
expressed by

IM−PDI � S1sin2α − S2cos2α, (17)
where α is the polarization orientation angle of the veiling light.
The optimal value of α corresponds to the highest image
contrast. A linear Stokes vector is calculated by capturing
three images in polarizer’s directions of 0, 45, and 90° and
searching the optimal α. The significant advantage of this
method is that the recovery performance can be updated
automatically by the computation program when obtaining
the Stokes parameters, which makes the implementation of
PD imaging ideal for rapid imaging. Figures 8A–D show the
recovery results of this method. The result shows the
background noise is significantly suppressed, and the
contrast of the target “Z” is significantly improved.

In 2018, Guan et al. [91] modified the above method and
proposed another M-PDI method via the Stokes vector-based
interpolationmethod. Figure 8E compares the traditional and the
modified polarization filtering methods in PD imaging. The
principle of this method is shown in Figure 8F [91]. From the
image results, the object’s contrast is significantly enhanced, and
the background noise is significantly decreased. More details of
this method and the comparison with the traditional PD method
can be found in [91].

Although the M-PDI method has partially addressed certain
inherent drawbacks of the traditional model based on Stokes
analysis, the determination of crucial parameters, based on the
computational searching, makes the model performance unstable
and sensitive to noise [38]. To overcome this issue, Liang et al.
[38] further explored the relationship between the Stokes vector
and veiling light and estimated the backscattering/air-light using
the AoP analysis. Based on the three captured images on different
polarizer directions (i.e., 0, 45, and 90°), the Stokes vector is
calculated by the expressions in [38]

S0 � I(0) + I(90)
S1 � I(0) − I(90)
S2 � 2I(45) − S0

, (18)

where I(i) denotes the captured image when the direction of the
polarizer is set to i degree. Then, we can calculate the intensity
level of air-light as

Ap � 2I(0)
cos2θ

− S0, (19)

where θ � 1/2actan(S2/S1) denotes the AoP of air-light. Then,
the output with a clear vision can be obtained by the typical
physical model in Eq. 14. In this method, the noise in the sky area
can be eliminated without any imaging-processing algorithm,
which makes this method much more convenient and reliable in
practical applications. Based on the technique, Liang et al.
developed a series of algorithms to further enhance the
recovery performance. For example, in 2015, they optimized
the estimation of critical parameters (e.g., AoP and the

intensity level of the air-light) to accommodate dense haze
and achieved a 74% enhancement in the range of visibility
(ROV) [43]. In 2016, as the infrared radiance has a better
capacity for traveling through the haze, they modified the
model by merging visible and infrared images. The ROV was
thus improved by 100% [43]. In 2021, they introduced low-pass
filtering into the AoP-based polarimetric imaging model and
overcame the drawback of “noise sensitivity” in estimating the
AoP value. The final imaging performance of these methods is
shown in Figure 9. We can observe from the results that the faint
information in hazy images is well preserved, and the contrast of
the recovered image is increased significantly [92].

Such works based on AoP analysis accelerate the
development of polarimetric imaging in specific scattering
media. However, all these methods are based on the linear
Stokes vector, which only includes three parameters and merely
reflects the interaction of target objects with the linearly
polarized light without considering the response to circularly
polarized light. In particular, in some special scattering media
requiring active illumination, the circularly polarized light tends
to maintain its original polarization property better than the
linearly polarized light, namely, the “circular polarization
memory” effect [93, 94]. Therefore, using circularly polarized
light can improve the recovery performance in dense turbid
media more than linearly polarized light. Therefore, Hu et al.
[46] proposed a new polarimetric image recovery method in
dense turbid media with the illumination light featuring circular
polarization. In this method, the active illumination is
modulated by a polarizer and an additional retarder to
generate circularly polarized light. The estimated Stokes
vector is decomposed into linear polarization, circular
polarization, and un-polarization parts as follows:

S � Sl−polarized + Sc−polarized + Sunpolarized, (20)
where the subscripts of l and c indicate the linearly and
circularly polarized light, respectively. According to this
decomposition, the linear and circular components of the
veiling light are removed by solving the DoLP and DoCP of
the backscattering. Figure 10A shows the difference between
these two degrees of polarization, while the circular one is
always missed in most methods. This is the first polarimetric
imaging system and algorithm considering circularly polarized
lighting. The recovered result and its comparison with the
linear one are as shown in Figure 10B and further evidenced
by experimental results for the scenes with different
polarization properties, for example, a rough wooden board
with patterns and words on its surface and the non-flat
plastic toy.

With the improvement in the theoretical model, the trend of
Stokes-based polarimetric imaging in scattering media continues
to optimize the estimation of key parameters and render more
accurate values, such as the polarization information of object
and scattering signals. For example, Jin et al. [52] proposed a
scattering removal method from the perspective of global
estimation of polarization information to realize polarimetric
calculation of global pixels for automatically estimating the
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DoP. This global pixel calculation is accomplished by utilizing the
gradient prior information of the total intensity image.
Figure 10C shows the flowchart of this method, and
(Figure 10D) shows the comparison results of three classical
recovery methods and this method in different turbidity [32, 41,
82]. Apparently, as opposed to methods with the assumption of
constant DoP of target light, this method can retrieve the DoP of
the target light of each pixel in the image. As a result, it has a

better performance of recovering the scene’s details even though
the water is turbid [52].

In short, the Stokes-based methods outperform the PD-based
methods because the Stokes vector renders more useful
polarization information, such as DoP and AoP, which are
closely related to the backscattering/veiling light caused by the
existing particles. Improving the information dimension and
estimating key parameters are two effective ways to boost

FIGURE 9 | Recovery performance for Liang’s methods in Refs. (A) Ref1 (reprint from Chinese Laser Press: Photonics Research [38], copyright 2014). (B) Ref2
(reprint from OSA: Optics Express [43], copyright 2015). (C) Ref3 (reprint from OSA: Optics Express [40], copyright 2021). (D) Ref4 (reprint from OSA: Applied Optics
[56], copyright 2016).

FIGURE 10 | (A) Intensity image of the scene, DoLP, and DoCP. (B) Recovery comparison for methods in [46] and [32] (reprint from OSA: Optics Express [46],
copyright 2018). (C) Flowchart of underwater polarization reconstruction utilizing polarimetric calculation method of the global pixel. (D) Comparison results of three
classical restoration methods (PD: polarization difference [41], ML: Schechner’s method [35], VLC: Vanderlugt correlator) and this method in different turbidity (reprint
from IEEE: Photonics Journal [52], copyright 2021).
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imaging performance. However, we must remember that, unlike
MM, the Stokes vector is not a complete polarization
characterization [63, 95]. Therefore, the trial based on the MM
has become the preferred approach to improve the information
dimension, an exciting solution to enhance imaging performance
in scattering media further.

3.3 MM-Based Polarimetric Imaging in
Scattering Medium
3.3.1 Basic Model and Configuration
Unlike the Stokes vector, which is usually used to characterize
the polarization properties of the light beam, the MM contains
all the polarization information of the target materials.
Therefore, the MM is always applied to distinguish different
materials [8, 96–98] and 3D physical imaging [99–101].
According to the basic model in Section 2, the received
signal or images can be classified into the target and
scattered signals. The Stokes-based methods build the
relationship between the Stokes vector and the scattered
light. However, they fail to distinguish objects with different
polarization properties. These methods are unsuitable for
objects whose reflected light has a similar Stokes vector with
the backscattering light.

With the information provided by MM, the operational space
for polarization image processing is greatly improved, making it
possible to distinguish objects in a high degree of freedom for the
polarization information [102]. In addition, the MM-based
configuration opens the door to modulate the incident
illumination with a significant polarization space. In other
words, the MM-based scattering suppression imaging
technology modulates the illumination and analysis parts
simultaneously. The basic configuration of MM-based methods
is as shown in Figure 2B2, and one can remove the WPs in
accordance with the type of MM (incomplete or complete) that is
desired.

3.3.2 Representative Methods
The MM-based polarimetric suppression method for the imaging
in scattering media is mainly based on modulating the
polarization state of the active illumination. The earliest
attempts focused on imaging linear MM and required nine
intensity images [44, 45, 103]. In the related configurations,
the WPs in PSG and PSA in Figure 2B2 are removed, and the
polarizers in PSG and PSA are rotated to three different positions
to capture nine images, respectively.

In 2019, Guan et al. [44] found that the illumination
polarization angle and the MM difference between the

FIGURE 11 | (A) Principal diagram of polarization difference method based on MM. (B) Comparison results of scattering suppression by different methods and
different scattering medium concentration, where Wang’s method is labeled by “Best (Our)” (reprint from Elsevier: Optics Communications [103], copyright 2021). (C)
MM image of the scene in turbid water. (D) Variation of DoP with the azimuth and the ellipticity of PSG. (E) Underwater image restoration results and the histograms in
different turbidities of water (reprint from IEEE: Photonics Journal [45], copyright 2021).
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medium and the object could affect the SNR of recovered results
obtained by the rotation orthogonal polarization imaging
method. They designed a linear MM-based polarimetric
method to precisely control the illumination polarization angle
and achieve a rapid imaging process. In 2021, Wang et al. [45]
plotted backscattered light and target reflected light in the point
cloud diagram in Figure 11A by establishing a differential
imaging model. According to Figure 11A, on the premise that
the angle between the polarizer’s direction and the backscattering
light’s polarization direction is 45°, the backscattering light can be
removed by the PD method to achieve scattering suppression. By
analyzing the principle of polarization difference, the output
result under ideal conditions is given by

Iout(x, y) � (IPB‖(x, y) − IPB⊥(x, y)) + (IPT‖(x, y) − IPT⊥(x, y))

� ∣∣∣∣IPT(x, y)
∣∣∣∣ · sin(2θ),

(21)
where IPB‖(x, y), IPB⊥(x, y), IPT‖(x, y), and IPT⊥(x, y)
represent the horizontal and vertical projection of the
polarized part of the backscattering and target light,
respectively. It can be seen from the above formula that the
output result of the differential image will be affected by the
polarization angle between the target and backscattered light.
Therefore, by modulating the incident light and changing θ, the
performance of the traditional PD method can be improved.
Figure 11B presents the comparison results of this method with
the traditional PD method and other classical methods. We see
that the modulation of incident light has a significant influence on
polarization differential scattering suppression.

In other work, the authors disregard the traditional PD
method and instead directly process the image according to
the MM45. By modulating the polarization state of the
incident active illumination light, the DoP of the backscattered
light is directly maximized, thus achieving the best suppression of
the backscattered light. Based on the configuration in Figure 2B2,
one can obtain any specific polarized incident light by adjusting
the PSG. The Stokes vector of the incident light Sin can be
expressed by its DoP value P, azimuth α, and ellipticity ε as
follows:

Sin � Sin0 [ 1 PST ]
T � Sin0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
P cos 2 α cos 2 ε
P sin 2 α cos 2 ε

P sin 2 ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (22)

where Sin0 denotes the intensity of the illustration light and S �
[ Sin1 , Sin2 , Sin3 ] is the normalized Stokes vector. When the DoP
of backscattered light Pback is higher, more backscattered light can
be blocked by the PSA. Therefore, to suppress the backscattered
light optimally, one must maximize the DoP of the backscattered
light by choosing an optimal set of azimuths and ellipticities
(αopt, εopt). This optimization problem can be expressed by

(αopt, εopt) � arg
(αopt,εopt)

max{Pback(M, α, ε)}
, (23)

where

Pback(M, α, ε) � 1

∑3
j�0M0jsinj (α, ε)

⎧⎨
⎩∑

3

i�1∑
3

j�0[Mijs
in
j (α, ε)]

2⎫⎬
⎭

1
2

.

(24)
Figure 11C presents theMM image of the target scene, and the

corresponding optimal set of azimuths and ellipticities can be
found by a global search shown in Figure 11D. The imaging
results and the comparison with the traditional PD method are
shown in Figure 11E. The results demonstrate that this method is
stable and can be implemented with any digital image processing
to achieve a more scattering suppression performance.

In 2022, Liu et al. [104] developed an MM-based de-scattering
method and introduced the depolarization (Dep) index into the
de-scattering algorithm. Dep is derived from the MM and is
defined by

DepM(x, y) �
������������������
tr(MTM) −m2

00(x, y)
√

���������
3m2

00(x, y)
√ . (25)

By studying the backscattering distribution in different NTU
turbidities, it is found that the background intensity correlates
linearly with Dep in a remarkable way, as shown in Figures
12A–B. Therefore, Dep is used to characterize scattering media.
By quantifying the light attenuation with the transmittance map,
a clear vision of targets can be recovered using the information of
scattering media. An example of recovery performance is shown
in Figures 12C1,C2. The results demonstrate that the image
contrast is significantly improved after recovery. In particular, the
paper stripe and metal ruler are both clearly visible. From the
zoomed-in view in Figures 12C3,C4, the ruler in the intensity
image blurs, especially the tick mark and edges. In contrast, the
edges of the ruler are visible after recovery, even with
distinguishable tick marks.

The MM-based methods have many advantages. For example,
they provide more helpful information by increasing the degree of
freedom for polarization and making a clear differentiation
among objects with similar intensity appearance but different
polarization properties. However, it should be noted that a very
scarce amount of works, less than five to the best of our
knowledge, has placed the focus on MM-based de-scattering.
Indeed, making full use of the MM decomposition and other
MM-related parameters is promising and needs more attention.

3.4 Learning-Based Polarimetric Imaging
As discussed in Section 2, one of the dehazing methods is based
on a physical model where prior knowledge is applied to extract
physical parameters related to the scattering media and then
recover the targeted signal. In this case, the estimation accuracy of
these key parameters determines the final performance.
Therefore, almost every developed method strives to optimize
the accuracy of parameter estimation to make it as close as
possible to the physical values in the scene. However, the
optimizations come at the cost of increased computation
complexity and reduced universality. In contrast, the methods
not directly based on a physical model aim to improve the image
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quality by enhancing the image contrast and the difference
between different image structures. This kind of method
handles different scenarios indiscriminately but can perform
poorly, especially with complex conditions.

The deep learning- (DL-) based method is data-driven and
thus capable of extracting the hidden relationship and physical
properties between/in the raw and target data. This makes it a
promising choice for de-scattering. In some ways, the
traditional “end-to-end” network corresponds to methods
that are not based on the physical model, while the “physical
embodiment” network is based on physical models. The
following section introduces learning-based polarimetric
imaging in scattering media from the basic concepts to well-
established applications.

3.4.1 Basic Concepts of the DL and Neural Network
In 1943, psychologist Warren McCulloch and mathematical
logician Walter Pitts proposed the concept of the artificial
neural network and the mathematical model of the artificial
neuron, thus prompting the era of artificial neural network
research [105]. They abstracted the entire working process of
neurons into the model shown in Figure 13A. In the model, input
data xi are given to the network processed with weights and bias
parameters. Then, a nonlinear activation function φ(p) is

applied to obtain the final output Y. The whole process is
called forward propagation. The weights wi and bias b are
the parameters to be learned, which can be seen as the
memory of the neural network. The final output is the
prediction result obtained by the network according to the
input data, which may be different from the ground truth.
Therefore, it is necessary to calculate the deviation between
the predicted result and the ground truth, or the network loss,
to update network parameters. The process of updating weights is
usually via some variant of a gradient descent algorithm. The
training process of the network repeats the forward propagation
and backpropagation process until the loss is minimal so that
when we put in input data, we obtain an output nearly the same as
the ground truth [106].

To boost the network performance and suitability for various
tasks, different advanced network structures have been
developed, such as LeNet [107], AlexNet [108], GoogleNet
[109], ResNet [110], and DenseNet [111]. In the field of
computer vision, learning-based solutions have become the
hottest topic. Particularly, various learning-based works focus
on improving imaging quality in scattering media. For example,
Chen et al. [112] proposed an “end-to-end” dehazing network. In
their review, a generative adversarial network (GAN) is used to
realize end-to-end image dehazing. The work focuses on solving

FIGURE 12 | (A) Four measured intensity images at different values of NTU. (B1–B4) Fitting results of backscattering intensity as a function of Dep values. (C1)
Intensity image; (C2) recovered image with the proposed de-scattering method; (C3) and (C4) the zoomed-in view of the region of interest in (C1) and (C2)marked out
with red rectangle (reprint from Chinese Laser Press: Chinese Optics Letters [104], copyright 2022).
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the problem of grid artifacts and has greatly improved the
indexes of peak signal-to-noise ratio (PSNR) and Structural
Similarity Index Measure (SSIM). In 2019, Pan [113] proposed a
physics-based feature dehazing network for image dehazing
network. In contrast to most existing end-to-end trainable
network-based dehazing methods, they explicitly considered
the physical model of the hazing process in the network design
and removed haze in a deep feature space. However, all these de-
scattering methods are based on a single intensity image. In
recent years, DL has been successfully applied to polarimetric
imaging [49, 66, 114]. Such works develop mainly from two
parts: polarization acquisition and polarization processing. The
related applications include denoising, dehazing, image fusion,
targets detection and classification, and super-resolution (a brief
classification is shown in Figure 13B). In the following, we focus
on the learning-based de-scattering works.

3.4.2 Representative Methods
The currently popular neural network ResNet was first
proposed by He et al. [110] in 2015 and is widely used in
many scenarios of DL. This structure can solve the problem of
gradient disappearance when the network is deep. Huang et al.
[111] proposed DenseNet in 2017, which can alleviate gradient
disappearance, strengthen feature propagation, encourage
feature reuse, and significantly reduce the number of
parameters through the dense connections between layers.
Based on these two networks, Hu et al. [50] first proposed a

polarimetric dense network (PDN) and applied it to
underwater polarization image restoration. The network
structure of PDN is shown in Figure 13C1. This network
includes three main components (shallow feature extraction,
residual dense block, and dense feature fusion) to deeply
extract shallow features of polarization information from
three polarization images and then fuse them. The loss
function used is defined as

l(Θ) � 1
2N

∑
N

i�1
∣∣∣∣∣
∣∣∣∣∣I

pred
i (x, y;Θ) − Igti (x, y)

2
F

∣∣∣∣∣
∣∣∣∣∣, (26)

where Ipredi (x, y) and Igti (x, y) refer to predicted and ground
truth images, respectively, with their polarization information.
Because the polarization is considered, the recovered image in
Figure 13C2 has more detailed features than the intensity
image used alone. Besides, there are more artifacts in the
recovered result by “intensity-Net” than “Polarimetric-Net.”
These results demonstrate that embedding polarization
information and constraints into the network helps improve
performance.

In 2021, Zhang et al. [115] studied how to optimize the
network structure and loss function to improve the suitable
model performance. They found that, by adding polarized
information along with the light intensity information to the
model at the very front of the model structure, a better-
recovered image can be obtained. The model structure
proposed can be used for image recovery in turbid water or

FIGURE 13 | (A) Schematic diagram of neural network structure. (B) Classification of polarimetric imaging via DL. (C1) The architecture of polarimetric dense
network (PDN) and (C2) recovered image (reprint from Elsevier: Optics and Lasers in Engineering [50], copyright 2020).
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other scattering environments. It should be noted that both the
above methods are “end-to-end” and depend on paired training
data. Although the application of neural networks has
significantly improved image de-scattering performance
compared with traditional methods, its disadvantages are
also easily recognizable. DL networks, especially end-to-end
networks, have poor interpretability as the neural networks are
more like a black box. It is difficult to explain and understand
the inner operation process. To solve this problem, Ren et al.
[116] integrated the polarimetric imaging model with the DL-
based method and proposed a lightweight network structure,
which can restore underwater images with different turbidity.
This method makes the image restoration through neural
networks more in line with the physical principle and
achieves good results.

To complete the physical meaning in the network and reduce
the degree of freedom of the model, Zhou et al. [117] proposed a
generalized physical formation model of hazy images and a
robust polarization-based dehazing pipeline without the
assumptions in traditional polarimetric methods. The designed
network includes sub-networks to estimate different parameters,
as shown in Figure 14A. The network divides the whole image
de-scattering process into two steps. At the end of each step,
semantic and contextual information is used to refine the output
of the corresponding sub-network. This method provides a new
perspective for the fusion of physical models and neural
networks. However, the generalization ability on the real
dataset is still limited for utilizing computer-synthesized
datasets. In order to get rid of the paired data’s dependence
and make the learning-based methods applicable in practice, the
unsupervised model-based and untrained model-based solutions
are proposed. For example, Yang et al. [118] designed an end-to-

end unsupervised generative network to remove the
backscattering light, as shown in Figure 14B1. This method
produces an adversarial loss with the discriminative network
to improve the performance. In addition to using GAN to
remove the backscattering light, they also modified the
underwater imaging model based on several physical priors.
The DoP of backscatter is the same as that of background
light. This new model can be applied in a variety of non-
uniform optical fields. Figure 14B2 shows its recovered results
by different methods. Besides, they also verified that this
unsupervised solution could adapt to the non-uniform optical
field with different incident angles. In 2021, Zhu et al. [119]
proposed a non-GAN unsupervised method by combining the
polarization physics model and DL technology. Figure 14C1
presents the network’s architecture. Rather than using
atmospheric scattering model directly, they input the
polarimetric hazy images into U-Net to obtain the
corresponding de-scattered images, added haze to the output
of the network through the model proposed by Liang et al. [43],
and finally calculated the loss between the generated hazy images
and corresponding captured images. Figure 14C2 presents a
visual comparison among different de-scattering methods.
From the results, we may observe that the background area
with the homogeneous scattering effects is removed using this
method, but the object information is preserved. In short, the
unsupervised image de-scattering through U-Net does not need
paired datasets or even haze-free images.

All the above works can be considered strong evidence that
learning-based, especially the physics-embedded learning-
based method, can resolve the limitations of traditional
methods and provide an irreplaceable solution for imaging
tasks in scattering media. It should be noted that the reported

FIGURE 14 | (A) Schematic diagram of neural network structure proposed by Zhou et al. (reprint from MIT Press: Advances in Neural Information Processing
Systems [117], copyright 2021). (B1) The architecture of the GAN-based polarization network and (B2) the recovered images (reprint from OSA: Applied Optics [118],
copyright 2021). (C1) The architecture of untrained network in [119] and (C2) visual comparison among different de-scattering methods: our method, i.e., Zhu’s method
[119], IFM, MIP [120], HE [121], RGHS [122], DCP [3], GC [123], and RoWS [124] (reprint from OSA: Optics Express [119], copyright 2021).
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DL models and research largely depend on a particular
dataset, and it is hard to guarantee similar performance
from other datasets. This is where this method falls short if
compared with other common traditional models.
Nevertheless, we firmly believe that DL techniques hold a
crucial place in this field.

3.5 Polarimetric Imaging Through
Scattering Tissues
In the above sections, we have reviewed the polarimetric imaging
through such scattering media as fog, haze, and turbid water.
Meanwhile, biological tissues as another important scattering
media and the related polarimetric imaging techniques have
gained great attention in the biomedical field. To be more
specific, the biological tissues contain fiber-like macromolecules
(e.g., the collagen fibers in the skin and tendons, muscle fibers, and
myofibrils in skeletal muscles), which exhibit a certain degree of
structural anisotropy and anisotropy in dielectric response. These
properties manifest themselves via birefringence [125, 126], which
can be observed using polarization measurement or polarimetric
imaging [127]. For example, many works have shown that the
depolarization, retardance, and diattenuation induced by the
birefringent tissues can be considered indicators to assess
macromolecules’ microstructure, thus being conducive to
diagnosis and the study of pathological alterations [128, 129].
However, the scattering (especially the multiple scattering) in
thick tissues often results in the depolarization of light, which
makes detection of the remaining information-carrying

polarization signals challenging. Therefore, various polarimetry
or polarimetric imaging techniques have been developed to
maximize measurement sensitivity to assist in analyzing useful
tissue information [97, 127, 130, 131].

In fact, the polarimetric imaging through the biological tissues
often shares the same basic polarization configurations as
mentioned in Section 2: polarization difference, Stokes vector,
and Mueller matrix polarimeters. However, the focus and
methods of the related research are significantly different from
those in Section 3. Here, the main focus is to study the properties
of scattering media, namely, the tissues themselves. For example,
the emphasis will be placed on modeling the polarized light
transport and the depolarization of multiply scattered light in
tissues by both Monte Carlo simulation and the real experiments
[132–135] or the study of the mechanism of depolarization and
its dependence on the different tissue or media parameters (e.g.,
the density, size, distribution, shape, and refractive index) [131,
136–140]. On the contrary, for the reviewed physical degradation
mode-based polarimetric recovery methods in Section 3, the
properties of scattering media do not directly impact the recovery
performance. This is because these techniques aim to remove the
scattered light (i.e., A(x, y) in Eq. 1) and recover the direct
transmission (i.e., D(x, y) in Eq. 1). The critical step is to
calculate media transmittance (i.e., t(x, y)) and the intensity
level of scattered light (i.e., A∞) by estimating polarization
properties (i.e., DoP and AoP). In short, the recovery
performance mainly relies on the accuracy of the estimation
polarization properties. More details can be found in the related
works in Refs. [130, 141].

TABLE 1 | Summary of polarimetric de-scattering methods.

Method Principle Captures num. Pros & cons Ref

PDI • Common-mode rejection amplifier 2 Pros 1,15,16
• Physical degradation model •Easy to operate 32,33,35

• Low computational complexity 38,40,41
• Low system complexity 47,50,78
Cons 79,82
•Poor performance under complex conditions
•Prior knowledge-dependent
• Inability to distinguish objects of different polarization properties

Stokes-based • Stokes polarimetry 3 or 4 Pros 34,38-40
• Physical degradation model •Adjustable incident illumination 43,46,47

• Low computational complexity 56,92
Cons
•Higher system complexity
•Ability to partially distinguish objects of different polarization properties

MM-based Mueller polarimetry 9 or 16 Pros 44,45
•Adjustable incident illumination 103,104
•Ability to fully distinguish objects of different polarization properties
Cons
•More captured images required
•Highest system complexity
• Fails in real-time applications

DL-based DL techniques and polarization model ≥2 Pros 50
•Excellent performance 116-119
• Fast processing speed (after finishing the training)
Cons
•Data-dependent
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4 CONCLUSION AND OUTLOOKS

In this review, we have presented an overview of the polarimetric
imaging methods through scattering media from the perspectives
of the basic model, imaging system, and representative works.
Table 1 provides a brief summary and comparison across these
methods.

Thanks to the property of polarized light propagated in
scattering media, polarimetric methods outperform
traditional intensity-based methods, particularly under
complex conditions such as high-density turbid media,
non-ideal illumination environments, and scenes with
multi-material objects. We have demonstrated that the
increase in polarization information dimension can
constantly improve the imaging performance and the
polarimetric methods. However, the complexity in both the

imaging systems and computations is inevitably increased. It
is worth noting that to achieve the balance between
performance and complexity, advanced optical equipment
and innovation in imaging systems must come into play. In
addition, the demand for practical applications will
certainly drive the development of polarimetric imaging
methods. As such, we propose several topics of interest for
future studies:

4.1 Multispectral-Polarization Systems and
Fusion Algorithms
The combination of multi-spectral and polarization is often
applied in the field of remote sensing [142, 143]. They found
that more complex and accurate indices and models can be
developed to reveal more information when the polarization

FIGURE 15 | (A) Images by LWI-DoFP camera (reprint from Elsevier: ISPRS Journal of Photogrammetry and Remote Sensing [146], copyright 2021). (B)
Polarimetric imaging in the field of self-driving [153]. Different systems of polarimetric underwater imaging were developed for realistic applications. (C) Schechner’s
imaging system (reprint from IEEE: Transactions on Pattern Analysis and Machine Intelligence [35], copyright 2008). (D) FOREEEA’s waterproof system (reprint from
OSA: Optics Express [80], copyright 2019). (E) Full Stokes real-time dehazing system (reprint fromOSA: Applied Optics [34], copyright 2017). (F)DoFP polarization
camera (reprint from OSA: Optics Express [49], copyright 2020).
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information is supplemented [144, 145]. Therefore,
combining multi-spectral and polarization into an
integrated imaging system and fusing multi-parameters are
two possible directions to enhance the image quality in
complex scattering media.

As mentioned in Section 3, the long-wave light is more
robust for transmitting through the haze than visible light.
Another powerful example is using a long-wave infrared
DoFP polarization in road detection, as shown in
Figure 15A [146]. The fusion of short and long
wavelengths effectively increases the visual range at the
cost of decreased resolution. Therefore, an optimal tradeoff
is helpful for this solution [147, 148]. Besides, in the realistic
underwater scene, seawater appears in different colors
because the scattering and absorption depend on both the
wavelength and the physical properties of the particles. It
seems that a tunable wavelength source will make the imaging
system have a wide range of application scenarios. On the
contrary, the existing polarimetric methods mainly focus on
recovering information only related to the intensity, that is,
“to see it.” However, the most significant advantage of
polarization is that it can see what human eyes cannot (in
the intensity condition), such as information related to DoP
[149], AoP [150], or the index of polarization pure (IPP) [151,
152]. These parameters help distinguish different materials
and different optical responses. For example, the DoP and
AoP have been successfully applied in self-driving. They can
provide additional information in complicated meteorological
environments (fog and rain), as shown in Figure 15B [153].

Fusing multiple polarization parameters and intensity into a
frame, further increasing the information dimension, may open a
new door for the imaging in scattering media and take a
transform from “could be seen” to “see far” and from “see
clearly” to “see more.”

4.2 Real-Time, Real-Scenario, and Robust
(3R) Solution for Polarimetric Imaging
Most reported polarimetric imaging methods for scattering
media have been demonstrated under laboratory conditions.
Although some were implemented in real-life scenarios, the
imaging process was static, and the analysis was completed
afterward. To achieve real-time, real-scenario, and robust (3R)
solutions for polarimetric methods, advanced algorithms for
optical information processing need to be developed and an
improved collaborative imaging system is also required.

Schechner et al. first developed an underwater polarimetric
imaging system, as shown in Figure 15C. This system is designed
based on their basic PD imaging model and performs better in
real-life scenarios by combining necessary post-processes [35]. In
2019, Khadidja et al. used the waterproof imaging system
designed by FORSSEA Robotics Company, as shown in
Figure 15D, to carry out the experiments under more realistic
conditions [80]. Compared with the preceding imaging system,

their setup is improved and can be integrated into underwater
detectors, such as the underwater robot and autonomous
underwater vehicles. However, these two systems are based on
linear polarized light, and there are only two images with
orthogonal polarization states. Zhang et al. designed an
aperture-division polarimetric camera, as shown in
Figure 15E, to capture four polarization images in the
atmosphere via methods based on the full Stokes vector. It
successfully achieves real-time image haze removal with an
output rate of 25 fps [34]. However, the dehazing performance
can be significantly affected by the registration accuracy. With the
development of the DoFP polarization camera, as shown in
Figure 15F, real-time processing is made possible without
registration error. Our team has integrated this DoFP camera
with a watertight device and an adjustable polarized illumination
to create the underwater polarimetric imaging system (UPIS).
The corresponding configuration is shown in Figure 2B3 to
perform de-scattering (in air and undersea) tasks in real-life
scenarios. Using custom dehazing algorithms, the visual range
is increased by about 8.5 times, and the processing speed reaches
15–25 fps for images with a resolution of approximately 1000 ×
1000 [154]. In other words, this custom-made system has fulfilled
the “3R-criterion” to a much greater extent. However, compared
with traditional solutions with a single image and advanced
computer-vision-based algorithms, there remains room for
further improvement in the 3R-polarimetric imaging system.

A possible approach going forward is to further exploit
integrated polarimetric imaging systems based on the DoFP
polarization camera and automatic rotating devices in PSG
and PSA [155–159]. As such, the polarization modulations in
both illumination and detector can be controlled simultaneously
to handle multifunctional applications.

In the review, we have covered some, if not all, of the established
works in the fields of polarimetric imaging in scatteringmedia, and
we are keen to seemore studies in the area as further understanding
in polarimetric imaging will undoubtedly benefit both the
academic and industrial communities in a significant way.
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Multi-Angle Polarization Index System
for Pollen Type Bioaerosol
Recognition
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Biomedical Engineering, Tsinghua University, Beijing, China, 3Center for Precision Medicine and Healthcare, Tsinghua-Berkeley
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In this work, we propose a high-throughput online identification method of bioaerosols
based on multi-angle polarization index system (MAPIS). In the study, four categories and
10 subclasses of aerosol samples from biological and non-biological sources are detected
under three incident polarization mode. Then their measured MAPIS shows that
bioaerosols like pollen can be easily distinguished from other types of aerosols. Not
only that, experimental results also indicate the feasibility of fine identification between
different kinds of bioaerosols based on MAPIS in P and R modes. To further extract simple
and optimized polarization characterization parameters suitable for bioaerosols, we
analyze the multidimensional data of MAPIS by PCA then validate the aerosol
recognition accuracy using the first two principal components by multiple groups of
randomly mixed aerosol datasets. The comparison with PCA components based on only
scattering intensity demonstrate that MAPIS can be not only applied in the specific
identification of bioaerosols but also suitable for the distinction between different kinds
of bioaerosols.

Keywords: polarization scattering, bioaerosol, stokes vector, PCA, pollen

1 INTRODUCTION

Bioaerosols are highly associated with a wide range of health effects with major public health impact
[1]. It is important to develop some monitoring system that could offer the capability of real-time
monitoring of biological aerosols [2]. Pollen is a major fraction of bioaerosols and is receiving
increasing attention due to its high allergenic potential and the associated impacts on personal life
quality and economy [3]. Pollens have various effects on human health and the environment. Plant
pollens are similarly IgE binding allergens that may cause allergic reactions [4]. Airborne pollens are
often considered major agents of allergy-related diseases [5] such as asthma, rhinitis, and atopic
eczema [6, 7]. The allergenicity of some pollen is further enhanced by particulate pollution in the
atmosphere [8]. Due to the effects of climate change on biota, the negative effects of airborne pollen
on humans are increasing [9–11]. The number of people suffering from allergies due to pollen
inhalation is increasing every year [12]. Also, for environment, pollen can also act as an
environmental pollutant by acting as a nucleus for cloud droplets and ice crystals, affecting the
solar radiation reaching earth and the optical properties of clouds, thereby reducing visibility [13].

In the area of public health and allergies, the monitoring and predicting of pollens is challenging,
partly due to the lack of standardized and widely applicable offline laboratory analysis or online
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continuous monitoring methods [14]. Traditional pollen
monitoring employs fluorescence microscopy, such as
extractive staining fluorescence microscopy [15] and direct
staining fluorescence microscopy [16]. Moreover, various
imaging techniques have been used for pollen detection, such
as scanning electron microscopy (SEM) [17], transmission
electron microscopy (TEM) [18], x-ray imaging [19], etc.
These techniques allow for single particle analysis but provide
data at a relatively low time resolution due to time-consuming
preparation steps or complicated setups [20–23].

Also, some other methods have been developed based on light
scattering, ultraviolet laser-induced fluorescence, and holography
combined with deep learning [24]. Wu developed a label-free
bioaerosol sensor based on holographic microscopy and deep-
learning, which is designed to get rid of transferring to laboratory
and manual inspection [25]. Mitsumoto proposed a novel flow
particle analyzer based on the design of flow cytometer [26]. The
device classifies pollen species by simultaneously detecting both
scattered light and the characteristic fluorescence excited by
ultraviolet light in the flow cell. Kawashima developed a device
whichmeasures the sideward and forward scattering intensities of
laser light from each particle to quantify a specific pollen type
(Japanese cedar) in Japan [27].

Currently, there are very few related literatures on the
polarization characteristics of pollens in ambient air, and the
corresponding polarization measurement is only limited to the
depolarization rate of pollens [28]. The optical properties of
pollen particles can be described by the depolarization rate
obtained in the lidar detection [22, 29]. Here non-spherical
pollens can produce a strong depolarization rate, which can be
distinguished from the background backscattering of other
aerosols [22]. In addition, according to the depolarization rate
[30–33], many studies have shown the potential to distinguish
different kinds of pollens in the atmosphere. There is research
work on the Muller matrix of ragweed pollen in the visible
spectral range [28], which provides a feasible way to identify
pollens by using precise polarimetric fingerprints.

Our previous studies have shown that multi-angle polarization
index system (MAPIS) could be used for characterizing non-
biologically derived aerosols such as dust [34], soot [35] or
irregular particle samples [36]. In this study, focusing on
bioaerosols, we detect the multi-angle polarization scattering
signals of individual biological aerosols and then show their
characteristic MAPIS different from other abiotic aerosol
particles under different incident polarization states. The
measured data of various types of aerosol samples are given
and compared in this paper, including two dust type samples, two
water-soluble type samples, two carbonaceous aerosol samples,
and several kinds of bioaerosols (including three kinds of pollens
and pearl powder). Each sub-category is measured
independently. By principal component analysis (PCA), an
unsupervised learning method, we extract some specific
indicators based on MAPIS. The results show that, even
without the assistance of fluorescence, only by MAPIS, we can
accurately distinguish bioaerosols such as pollens from non-
biologically derived particles and can also subdivide the
subclasses of pollens. The technology used in this study has

the advantages of non-invasive, online real-time and high-
throughput analysis. These preliminary studies confirm the
potential of MAPIS applied in a fine identification and
characterization of bioaerosols.

2 EXPERIMENTS AND SAMPLES

2.1 Experimental Setup
Figure 1 shows the schematic diagram of our experimental
setup, which has been presented in [37]. The light source is a
solid laser (532 nm, 100 mW, MSL-III-532, Changchun New
Industries Optoelectronics Technology Co., Ltd.). The incident
light can be modulated into three polarization states
(horizontal linear, 45° linear and right-handed circular
polarization) by PSG (polarization state generator). We
define these three measurement modes as H mode, P mode,
and R mode. The polarized light is then focused at the center of
the air flow by a cylindrical lens. The width and height of the
laser spot is 1 and 0.04 mm. In the actual measurement, in order
to judge whether any suspended particle is passing through the
detection area, we use the intensity at 10° scattering angle as the
trigger basis of polarization signal acquisition. When the
forward 10° scattering signal exceeds the preset
discrimination threshold, the scattered signals at four angles
(30°, 60°, 85°, 115°) are then synchronously recorded. For each
angle, a spatial filter module composed of a lens and an aperture
at fixed location is used to eliminate the influence of stray light.
Also, there is an optical trap at the end of laser beam to
eliminate the forward stray light.

A four-quadrant polarization state analyzer (0°, 90°, 45°, 135°

linear polarizer) is applied at each angle. We also test every four-
quadrant polarization module using polarimeter to ensure the
orientation deviation of polarizers no more than 2°. The scattered
light is spatially divided into four parts and transmitted
respectively to four SiPMT detectors via an optical fiber
bundle. The light intensity is converted and recorded by data
acquisition device (FCFR-USB2068, Fcctec Technology, China)
at a sampling rate of 1 MHz. The Stokes parameter elements S0,
S1, and S2 could be easily calculated as described in Eq. 1.
Currently we only use linear polarizing films due to the
restrictions of the manufacture process, so this study does not
involve the circular polarization items. Even so, S1 and S2 of
Stokes vector at multi-angles already shows ability to characterize
bioaerosols such as pollen.

S �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0
S1
S2
S3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I0 + I90
I0 − I90
I45 − I135
IR − IL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

An optimally designed sheath nozzle is used to make sure
particles passing through the center of detection area one by one.
Sample flow carries sample particles passing through the laser
beam within the protection of sheath flow. The effectiveness of
the instrument is verified by experiments of standard PSL
particles, which has been mentioned in our previous work
[38]. The agreement between the measured results and Mie
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theoretical calculation results based on a single scattering
assumption can further confirm that the multiple scattering is
hardly involved in our measurements. The velocity of air flow is
controlled by two-flow controller and a gas pump. A particle flies
through the detection area within 50 μs and we sample one point
of signal every 1 µs. Thus, our current instrument can obtain
signals of up to around 20,000 particles in about 1 s.

2.2 Sample Preparation
We choose four types of typical aerosol samples with different
properties: dust, water-soluble salts, carbon, and biologically
derived particles. Arizona dust and fly ash are measured as
representation of dust. Sodium sulfate and sodium chloride are
measured as representation of water-soluble salts. Disordered
mesoporous carbon and hollow carbon spheres are measured as
representation of carbon aerosols. Chamomile pollen, rose pollen,
Osmanthus pollen, and pearl powder are measured as
representation of biologically derived aerosols. Each subclass
above is measured independently. The Stokes vector elements
S0, S1, and S2 are measured at four angles for each measurement
mode. Pollen is a common and easily accessible class of biological
aerosols. It should be noted that these pollen samples were
provided by the drug supplier (Yiqi Herbs), and the pollen
went through the grinding process which caused their size to
be smaller, but its composition unchanged. According to Ref.
[39–42], the untreated pollen size will be larger than 10 um. For
example, the diameter of Chamomile Pollen is around 16.6 um
[39]. As for pearl powder, it is a mixture of protein (β-chitin,
silk-like proteins, and acidic glycoproteins) and calcium
carbonate [43, 44], which can also belong to biomass source
in composition.

Before measurements, aerosol particles from dust type, carbon
type and biological type are screened through a 500-mesh sieve to
ensure a relatively uniform particle size and then generated and
diffused into uniformly dispersed suspended particles by the TSI-
3400A aerosol generator. Salt aerosols of water-soluble type are
atomized by a Met One 255 atomizer and then pass through a
drying tube. All the detailed morphology information of samples
can be found in Table 1. The particle size after screening in our
experiments is less than 10 microns and was monitored
synchronously by an optical particle sizer. In our experiments,
we used optical particle sizer (OPS-3330, TSI) for particle size
measurement. The measurement process and the accuracy of the
OPS can be referenced in [45].

3 RESULTS

3.1 Differentiation Between Bioaerosols and
Non-Biological Particles
The Stokes parameters S1 and S2 at four angles in each
measurement mode for different types of aerosol samples are
shown in Figure 2. In Figure 2, non-biological samples are
represented by dots of different colors, while pollen samples
are represented by green series cross-symbols. For each sub-
category sample, we randomly select 10,000 measured data points
to display for convenience. Apparently, compared with the
differences within sub-categories of non-biological particles,
the difference between non-biological origin samples and
bioaerosol samples are significantly larger intuitively in terms
of multi-angle polarization index system (MAPIS) regardless of
the measurement mode.

FIGURE 1 | (A) Overview of structure of measuring instrument; (B) schematic diagram of experiment setup. PSG, polarization state generator (composed of a
polarizing prism with a quarter wave plate for R mode and a half wave plate for H and P mode); C, cylindrical lens; L, spatial filter module (composed of a lens and an
aperture); P1-P4, scattered light polarization signal channel at four angles (30°, 60°, 85°, 115°); I, scattered light intensity signal channel at 10°; PSA, polarization state
analyzer; FP, film polarizer; PC, personal computer.
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PCA is defined as an orthogonal linear transformation that
transforms the data to a new coordinate system such that the
greatest variance by some scalar projection of the data comes to
lie on the first coordinate (called the first principal component),
the second greatest variance on the second coordinate, and so on
[46]. The first principal component can be considered as a
projection direction that can best explain the data difference.
Then, the ability of the second and third principal components to
explain the data difference decreases in turn. Therefore, when we
distinguish between biological and non-biological aerosols, the
first principal component from the measured data of all kinds of
aerosols provides a possible optimal expression for the distinction
between these two categories. Similarly, when we further want to
accurately identify different subclasses under the category of
biological aerosols, the first principal component from the
measured data of only various bioaerosols can used as a
classification parameter to identify which kind of biological
aerosol is detected.

Here we define X as a measured multidimensional data matrix,
and w as a weight coefficient matrix of each principal component.
Then the weight coefficient vector of the first principal
component, w1, can be obtained by optimizing Rayleigh quote.

w1 � argmax{
wTXTXw
wTw

} (2)

To further extract some specific indicator to distinguish
between bioaerosols and abiotic particles, we employ the PCA
(Principal Component Analysis) method to analyze the measured
MAPIS. The PCA results under different measurement modes are
shown in Figures 3A–C. PCA is an unsupervised learning
method, which means that the input data of PCA does not
contain the type information of each particle point. Based on
the data distribution along the horizontal axis direction of
Figures 3A–C, the first principal component extracted by
PCA, that is, the direction that shows the overall maximum
variance of data, can perfectly separate pollen samples and non-
biological samples. Next, the intra-class differences of pollen
samples and non-biological samples are roughly along the

vertical axis direction of Figures 3A–C, implying that the
second principal component probably is suitable for the
subdivision of different bioaerosols. The PCA coefficients and
interpretation coefficients of the first two principal components
for different measurement modes are shown in Table 2.
Regardless of the measurement mode, the contribution by the
extracted first principal component is significantly greater than
the contribution of the second principal component.

As a reference, we also use S0 at four scattering angles in three
measurement modes as input for PCA operation. The results are
shown in Figures 3D–F, which is similar with the sideward and
forward scattering intensities measured in [27]. The PCA results
using only multi-angle scattering intensity are quite similar under
different incident polarization modes. There is not much
difference in the relative positions of different samples, and
the difference is likely due to the rotation of the coordinate
system. So, the intensity of scattered light from multiple angles
alone is not enough to distinguish bioaerosols and non-biological
origin particles. However, with the help of MAPIS based on linear
polarization vector analysis of the detected light, the high
discrimination and specific recognition of bioaerosols can be
easily realized. By PCA, we can further extract the first principal
components as a good indicator specifically for bioaerosols like
pollen.

Concretely, for MAPIS under H mode, we can set the position
where the first principal component is equal to −0.5 as the
discrimination line, and then determine that the measured
data whose value range is on the left of this line comes from
biological particles. Similarly, for P mode, the discrimination line
can be set at the position of the first principal component equal to
0.4, and for R mode, the line can be set at the position of the first
principal component equal to 0.25.

The above discrimination basis can be evaluated on 15
measured datasets which is randomly generated. Each dataset
contains measuredMAPIS data of bioaerosols and non-biological
particles mixed with a certain proportion, and the predicted
proportions using the above judgment and the comparison
with the preset proportion can be shown in Figure 4. We
preset five particle number contents of biological aerosols in

TABLE 1 | Morphology of samples.

Major type Sub class Morphology Diameter Refractive index

Dust Arizona Dust Irregular, diverse shapes from spheres to polygon symmetries
[47–49]

1.75 um 1.56–0.026i ((1.56 ~1.65)–i
(0.002 ~0.03) [56])

Fly Ash Irregular shapes with flaky precipitates or approximately spherical
shapes [50, 51]

1.55 um 1.60–0.018i ((1.48 ~1.57)–i (0
~0.01) [57])

Water Soluble Salts Sodium Sulfate Monoclinic, orthorhombic or hexagonal crystal system 0.85 um 1.47–0.002i (1.48–0.001i [58])
Sodium Chloride Face-centered cubic 0.57 um 1.50–0.01i (1.54–0.001i [59])

Carbon Disordered Mesoporous
Carbon

Mesoporous material with a disordered structure [52] 0.79 um 1.71–0.212i

Hollow Carbon Spheres Hollowed spheres [53, 54] 0.71 um 1.65–0.324i
Biologically Derived
Particles

Chamomile Pollen Prolate-spheroidal, radial symmetry, echinate [39] 1.48 um 1.350–0.012i
Rose Pollen Prolate or sub-prolate spheroidal, 3 germ furrows, prominent

grooves on the exine surface [40]
1.69 um 1.410–0.020i

Osmanthus Pollen Approximately spherical, 3 germ furrows, mesh pattern on the exine
surface, slightly wrinkled [41, 55]

1.51 um 1.490–0.022i

Pearl Powder Irregular polygonal plate-like structure [42, 44] 2.01 um 1.690–0.046i
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the mixed dataset, and then randomly extract data three times for
each specified proportion to establish total 15 verification
datasets.

For all the 15 datasets, Figure 4 indicates minor deviations less
than 1% between the predicted and true proportion, which
further confirms the feasibility of our method to specifically
distinguish between bioaerosols and non-biological particles.
By an auxiliary observation using a particle size analyzer, there
is little difference in the particle size distribution interval of the
measured samples. SEM photos of bioaerosols reveal more
complex and regular microstructures compared to non-
biological particles. So, the polarization optical difference
between non-biological particles and bioaerosols may be due
to the microstructures combined with the complex refractive

index factor. The relevant detailed microphysical interpretation
needs to be further studied.

3.2 Fine Subclass Recognition of
Bioaerosols
Next, the measured MAPIS of the sub-categories of bioaerosols
are shown in Figure 5. Compared with Figure 2, various Stokes
elements at different angles and for different incident polarization
states have different recognition abilities. Specifically, the
polarization indexes in H mode show a weaker discrimination
than those in P mode and R mode. Both the forward (30° and 60°)
polarized scattering signals in P mode and the backward (85° and
115°) polarized scattering signals in R mode seem to be suitable

FIGURE 2 | Pollen and non-biological samples under the multi-angle polarization index system (MAPIS), 10,000 samples for each type.
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FIGURE 3 | Pollen and non-biological samples on PCA first and second principal component. (A) MAPIS under H mode; (B) MAPIS under P mode; (C) MAPIS
under R mode. (D) S0 at four angles under H mode; (E) S0 at four angles under P mode; (F) S0 at four angles under R mode.

TABLE 2 | Principal component coefficients and interpretation coefficients under different mode for pollen and non-biological samples MAPIS data.

Mode PCa 30°

S1

30°

S2

60°

S1

60°

S2

85°

S1

85°

S2

115°

S1

115°

S2

ICb

(%)

H Mode PC1 0.728 0.037 0.267 0.073 0.549 0.004 0.268 0.132 97
PC2 0.638 0.063 −0.404 0.093 −0.571 −0.230 −0.115 −0.151 1

P Mode PC1 0.612 −0.337 0.306 −0.306 0.377 −0.330 0.362 −0.206 81
PC2 0.306 0.383 0.187 0.347 0.465 0.402 0.209 0.424 15

R Mode PC1 0.678 0.408 0.136 0.082 0.370 0.267 −0.118 0.353 87
PC2 0.249 −0.386 0.371 −0.192 0.543 −0.377 0.256 −0.329 9

aPC, principal component.
bIC, interpretation coefficients.

FIGURE 4 | True and predicted proportion of pollen using PC1 fromMAPIS. (A)Measurement conducted in H mode; (B)Measurement conducted in P mode; (C)
Measurement conducted in R mode.
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for the classification and identification of different kinds of
biological aerosols.

Similarly, PCA is used to analyze the measured Stokes element
S1 and S2 at four angles in each incident polarization mode and
extract the optimized polarization characterization expression. The
PCA coefficients and interpretation coefficients of the first two
principal components in different measurement modes are shown
in Table 3, and the measured data distribution of different
biological particles using the first two principal components is
shown in Figures 6A–C. It can be seen that four bioaerosols are

almost inseparable in H mode but can be clearly distinguished by
the principal components in P and R mode. The class separation
distances among biological samples using MAPIS in R mode show
better discrimination of biological aerosol species than using data
in P mode, which implies that particles of biological origin are
more sensitive to circularly polarized incident light.

Also, we extract principal components from the scattering
intensity S0 at four angles in three measurement modes for
comparison, which is shown in Figures 6D–F. Similar with
the case in Figures 3D–F, the PCA results using only multi-

FIGURE 5 | Biological samples under the multi-angle polarization index system (MAPIS).

TABLE 3 | Principal component coefficients and interpretation coefficients under different mode for biological samples MAPIS data

Mode PCa 30°

S1

30°

S2

60°

S1

60°

S2

85°

S1

85°

S2

115°

S1

115°

S2

ICb

(%)

H Mode PC1 0.526 −0.409 0.049 −0.177 0.572 0.127 0.034 −0.420 25
PC2 −0.345 0.532 −0.281 −0.307 0.286 −0.154 0.289 −0.484 18

P Mode PC1 0.019 0.185 0.004 0.007 −0.112 0.969 0.009 0.112 64
PC2 0.682 0.103 0.454 −0.090 0.487 0.022 0.265 −0.025 24

R Mode PC1 −0.038 0.237 −0.172 0.385 −0.567 −0.063 −0.228 0.621 60
PC2 −0.134 −0.199 0.662 −0.553 −0.360 −0.019 −0.147 0.210 24

aPC, principal component.
bIC, interpretation coefficients.
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angle scattering intensity cannot distinguish different kinds of
bioaerosols. There is not much difference in the relative positions
of the measured data.

Then, we used a verification method similar to that in Section
3.1; we constructed five measured datasets of four biological aerosols
mixed with different ratios. Based on the statistical distribution on
the first principal component for each incident polarization mode,
we can predict the proportion of different kinds of bioaerosols and
compare them with the preset ratios. The number of aerosol class
measured is k; xn is the probability density curve of the nth aerosol
sample on the first principal component. y is the measured
probability density curve on the first principal component for a
mixture of these k kinds of aerosols, where y and xn are vectors. If αn
is the estimated proportion of the nth aerosol class, we multiply and
sum the probability density curve for polarization parameters of
different kinds of bioaerosols by their proportions, then by fitting the
probability density curve based on the estimated mixing ratio of

different aerosol class with the real y based on randomly sampled
measured datasets. By least square method in Eq. 1, the optimal
solution of proportions could be found out, as shown in Figure 7.

arg min

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
y −∑

k

n�1
(anpxn)||2 (3)

By observing the classification results based on the
measured biological aerosol datasets with five different
mixture ratios, using MAPIS measured in P and R mode,
the identification error of the first principal component is less
than 3% for all the datasets. Compared with other abiotic
types, the differences of polarization parameters among
various bioaerosols are not so big. However, with the help
of PCA, different measured Stokes indexes can be combined to
form an optimized parameter with a sufficient discrimination
suitable for bioaerosol classification.

FIGURE 6 | Biological samples on PCA first and second principal component. (A)MAPIS under H mode; (B)MAPIS under P mode; (C)MAPIS under R mode. (D)
S0 at four angles under H mode; (E) S0 at four angles under P mode; (F) S0 at four angles under R mode.

FIGURE 7 | True and predicted proportion of biological samples using MAPIS. (A)Measurement conducted in H mode; (B) Measurement conducted in P mode;
(C) Measurement conducted in R mode.
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4 CONCLUSION

In this paper, we investigate the characterization ability of the
multi-angle polarization index system (MAPIS) for bioaerosols
(especially pollen). Stokes vectors S1 and S2 of 10 kinds of aerosol
samples are measured at four scattering angles under three
incident polarization states. The types of samples can be
divided into four major categories, namely, dust, water-soluble
salts, carbon, and bioaerosols. Among them, the first three types
belong to non-biological particles, and each of them contains two
subclass samples. There are four kinds of bioaerosols, mainly
pollens.

Experiment results show that, regardless of the polarization
state of the incident light, non-biological particles and bioaerosols
can be clearly differentiated based on the measured MAPIS.
Moreover, when the incident light is 45° linear polarized or
circular polarized, we can also subdivide the kind of
bioaerosols according to the data distribution of MAPIS. By
comparison with the measured data of multi-angle scattering
intensity, the scattering signals without polarization analysis are
not sufficient to determine whether the particulate matter is of
biological origin or distinguish the sub-categories of bioaerosols.
To simplify the multidimensional characterization parameters of
MAPIS, the first two principal components extracted by a PCA
analysis of all 10 kinds of sample data can be used as specific
indicators of bioaerosols. Also, another PCA analysis of four
kinds of biological sample data can confirm the feasibility of its
first principal component to predict the particle proportion of
mixed bioaerosol samples.

To fully obtain and understand the polarization scattering
response frommore types of biological aerosols, we still have a lot
of follow-up work to promote. The limitations of biological
aerosol samples in this paper will affect the universality of
specific indicators of polarization characterization and related
errors. However, the research of this paper still shows the
potentials of the synchronous polarization analysis at multi
scattering angles. Taking pollen as an example, the
microphysical differences between real biological aerosols and
abiotic aerosols are difficult to be simply attributed to size or
composition factors. Based on the measured MAPIS and the
information extraction by machine learning, the accurate

discrimination and fine classification of biological aerosols like
pollen are feasible in on-line high-throughput measurements.
The above studies demonstrate the characterization ability of the
multi-angle polarization index system (MAPIS) for in situ fast
identification of bioaerosols from other non-biological particles.
Also, we can subdivide different biological particles based on
measured MAPIS of various aerosol samples. PCA analysis can
help us extract one or two optimized polarization indexes
based on the combination of multiple Stokes vector
elements, according to different characterization needs for
bioaerosols. Using the first principal component respectively
from ten kinds of sample data and four kinds of biological
sample data, the specific recognition error of biological type
aerosols is no more than 1%, and the discrimination error of
different bioaerosols is less than 3%. Our preliminary study
lays a solid foundation to further apply polarization
technology and method to analyze more important aerosols
such as bacteria and virus particles.
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Polarization Reconstruction Algorithm
of Target Based on the Analysis of
Noise in Complex Underwater
Environment
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How to effectively eliminate interference such as scattering, absorption, and attenuation is
a hot topic of underwater photoelectric detection at present. Around the hot issues, this
paper carries out studying the method of polarization-imaging recovery in a dynamic
complex underwater environment from the theory of underwater radiation transfer, and
numerical simulation of imaging interference characteristics to the simulation of underwater
environment experiment. First, by conducting the analysis and simulation of scattering
characteristics of underwater suspension particles and bubble by using the theory of
radiation transfer, and taking advantage of quantitative description on changing tendency
of radiation intensity and polarization properties of light waves in turbid water under the
condition of scattering interference. Second, by constructing an underwater target
polarization reconstruction model on the basis of the Mueller matrix analysis, and
taking target polarization characteristic into reconstruction model on the basis of
classical Schechner’s model, automatically estimating polarization information of target
by the method of covariance. Finally, by building a polarization imaging system in the
simulated complex underwater environment that contains bubble and suspended
particles, obtaining reconstructed results with different underwater environments and
different materials of target. According to experiment results, and compared with other
traditional methods, using the proposedmethod in this paper can get higher resolution and
higher contrast of target in the reconstructed result.

Keywords: underwater transmission rate, polarization filtering, target polarization information, image
reconstruction, imaging waveband

INTRODUCTION

Underwater optical imaging plays a very important application value and scientific research
significance in the field of marine engineering, including marine biological monitoring,
ecosystem assessment, marine rescue, navigation, etc. Compared with atmospheric optical
imaging, due to water environment being relatively complex, all kinds of suspension medium in
water to light scattering effect will seriously affect the imaging quality, the forward scattering noise
can reduce imaging resolution, and the backward scattering noise leads to decrease of imaging
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contrast [1] The research of underwater imaging technology will
focus on taking efforts to reduce influence of optical transmission
energy absorption and attenuation on underwater
communications and target detection, and prevent the strong
scattering effect produced by water. Because target features
characterized by polarization information are less affected by
water attenuation in the process of underwater transmission, and
the polarization characteristics of underwater targets and the
surrounding environment have differences, obtaining two
orthogonal intensity images in same scenario and using
polarization difference imaging method can enhance contrast
and resolution of image and weaken the influence of scattering
light on target imaging [2]. At present, polarization imaging
technology has been widely used in underwater target imaging
[2–4] and biomedical imaging [5]. Schechner [6] has proposed a
polarization difference reconstruction method where the
algorithm has several advantages such as a simple
reconstruction model and low computational complexity,
providing important reference value on exploration of
underwater polarization-imaging. Tali Treibitz [7] has used
formulas to take the separation of target information and
background information, then polarization information of the
target is added into the reconstructionmodel, he then takes a brief
analysis on the forward scattering effect of water body, and the
reconstructed results are ideal. Huang [8] has considered target
and background light polarization information at the same time
in the process of model derivation, and taken correction on three
parameters in the model step by step in order to get optimal
parameters and achieve the best results of image restoration. Feng
[9] has put forward a kind of polarization reconstruction
algorithm that estimates degree of polarization (DOP) of
global backward scattering light, according to Schechner’s
model and definition of DOP, the DOP of reflected light of
target have been considered in the model, and have realized clear
imaging of underwater target with high DOP. Liu [10] has
achieved good results through underwater experiments by
using large aperture imaging system for obtaining light-field
information with a wide angle and accurately estimating the
parameter values that reflect characteristics of a global scene
through integration of scene depth information. Tian [11] has
combined synthetic aperture imaging with polarimetric imaging
and proposed a method for retrieving the radiation of an object
based on the degree of polarization and intensity of backward
scattering at the multi-view image. AMER [12] has used a
polarimetric imaging optical system to reduce the effect of
diffusion on the image acquisition and has received a great
deal of attention for image dehazing based on an optimized
version of the dark channel prior (DCP) method.

Through theoretical analysis and formula derivation, this
paper has used expressions to represent reflected light
information of target and scattering light information of
background respectively, estimated intensity of scattering light
and the transmission coefficient, optimized expression of
underwater transmission rate, and used a step by step
searching method for optimal estimation of polarization
information to underwater target, achieved the purpose that
the suppressing effect of scattering light on imaging and

improved the quality of images. In part 2, this paper takes the
mathematical deduction and numerical analysis on backward
scattering noise and forward scattering noise and in part 3,
describes the basic theory of underwater imaging and the
establishment process of a reconstruction model that considers
polarization information of underwater target on the analysis of
Mueller matrix, and estimates reconstruction parameters. Part 4,
builds experiment platform of target polarization-imaging in a
complex underwater environment. Part 5, explores the feasibility
and validity of the proposed method in this paper by using
actively imaging experiments with linear polarized light, which
provides theoretical verification for future practical methods of
application.

QUANTITATIVE ANALYSIS OF
SCATTERING NOISE AFFECTING TARGET
IMAGING IN UNDERWATER
ENVIRONMENT

Scattering Noise in Underwater
Environment and Classification
In a real environment, water is a very complex mixed medium,
which contains water molecules, suspended particles,
microorganisms, and its physical properties are related to
geography, climate and environment. The inhomogeneity of
water lets light waves be affected by absorption and scattering
in the transmission, and the attenuation has serious influence on
the transmission distance and signal-to-noise ratio. In order to
simplify the research situation, the media in the water body can be
divided into two kinds of situations: suspended medium and
rising air bubble, as shown in Figure 1. Water scattering is the
phenomenon of taking migration of motion path of photons due
to particle collision, and the scattering effect can make the
decrease of strength of the signal at the receiving end, and can
cause intersymbol interference. The suspended medium in the
water and bubble are often the important factor in the production
of scattering phenomenon. These two kinds of influence factors of
scattering will be shown in the detailed analysis below.

The Quantitative Simulation Analysis on
Scattering Noise Caused by Suspension
Medium
In the process of target imaging using active light in an
underwater environment, assuming that there exists a small
scattering volume element dv in imaging system field, the
distance to target of light source and imaging system are l and
l’ respectively, and the distance of light source and imaging
system is r, and l> > r, l ≈ l’, and output power of light
source is set to P0. In order to quantitatively evaluate the
noise of an underwater environment, this article will use the
method of distance-gate to take mathematical derivation and
simulation analysis on backward scattering noise and forward
scattering noise respectively, in an underwater environment. In
the procession map of underwater target imaging in a backward
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scattering environment as shown in Figure 2, Φ represents
emission angles of light source, and Ψ represents receiving
angle of imaging receiver. Assuming that light shows uniform
distribution in emission angle Φ, irradiance E(l) of scattering
volume element dv[13] is expressed as:

E(l) � δl
π(l tanΦ)2P0 (2 − 1)

with δl � e−kl represents photon loss of one-way transmission in
water, k is overall attenuation coefficient, l represents
transmission distance of photon.

The radiation intensity of the incident light source at site of
scattering volume element dv and direction of divergence angleΘ
can be expressed as:

dI � E(l)β(Θ)dv � δlβ(Θ)
π(l tanΦ)2P0dv (2 − 2)

The volume scattering function is expressed as β(Θ), setting
approximation Θ � π under condition of backward scattering.
Definition of efficiency of imaging optical system is Toe, objective
aperture of imaging system is D, solid angle surrounded by
objective with scattering volume element is πD2/4l2. Under
the condition of no gating, surrounded space of original
location to transmission distance l that incident light transmits
in water are represented as integral areaV1, thus setting backward
scattering power obtained by imaging system is [14]

Pb � Toe ∫ πD2

4l2 δldI � Toe∫
l

0
πδ2l D

2β(π)
4l2 P0fbdv, with fb represents

backward scattering interception factor, when field Ψ of
imaging system is greater than divergence angle Φ of incident
light beam, setting fb � 1. Under the condition of gating,
surrounded space from transmission distance l to transmission
distance l + uT of incident light are represented as integral area
V2. When gating time T is very small, and integral area V2 is a
small cylinder contained inside beam divergence angle,
expression of Pb can be changed into follow formula [14]:

Pb � Toe ∫

l+uT

l

πδ2l D
2β(π)

4l2
P0fbdv ≈

πToeδ
2
l D

2β(π)
4l2

uTfbP0

(2 − 3)
Setting Pr as power of reflected light to target received by

underwater imaging system [13], and is expressed as
Pr � ρmToeδ

2
l Ho(Φ,Ψ , AP)D2P0/4l2, with ρm represents

reflectivity of underwater target, Ho(Φ,Ψ , Ap) is expressed as
intercept factor of receiving power of imaging system that is
codetermined by viewing angle Ψ , divergence angle Φ and
projection area Ap of underwater target with imaging system,
and is simplified asHo. In order to qualitatively study influence of
backward scattering on underwater target imaging, effect
coefficient of backward scattering of underwater imaging is
defined as power ratio ηb � Pr/Pb. Effect coefficient of
backward scattering can be defined as follows:

ηb �
ρm

πuTβ(π)fb
Ho (2 − 4)

The mathematical analysis and simulation calculation on
power of backward scattering Pb and effect coefficient of
backward scattering ηb can analyze the scope of influence of
noise to backward scattering on target imaging in an underwater
environment [13]. Taking related parameters of model in process
of simulation according to actual situations, underwater
transmission distance of light are separately set for l = 1.0 m,
l = 1.5 m, l = 2.0 m, l = 3.0 m and setting P0 = 1 MW as
initial incident power. Depending on Equations (2-3) and
Equation (2-4) can obtain the change trend about power of
backward scattering and effect coefficient of backward scattering

FIGURE 1 |Coexistence of suspendedmedium and rising air bubbles in underwater environment. (A) The complex water in real environment (B)Bubble distributes
everywhere in simulated underwater environment.

FIGURE 2 | The schematic diagram of backward scattering to
underwater particles.
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along with different attenuation coefficient. Results are shown in
Figure 3A,B.

In Figure 3A, we can see that power Pb of backward scattering
noise is affected by propagation distance and attenuation
coefficient. In the meantime, performance tendency of power
Pb of backward scattering are increasing at original time and
gradually decreasing with different values of attenuation
coefficient K. When propagation distance of incident light in
the underwater environment is relatively short, and l is less than
2 m, water quality effects on target imaging from backward

scattering noise has always appeared. Under the condition of
same attenuation coefficient and same quality of water
environment, with the increase of propagation distance,
backward scattering is appears to rapidly decline and slowly
reducing afterward. Figure 3B shows that effect coefficient ηb
of backward scattering gradually decreases with increase of K,
and illustrates that the influence of noise to backward scattering
on quality of target image gradually increases with the increase of
attenuation coefficient. When water is too cloudy, noise of
underwater backward scattering will cover up reflected target

FIGURE 3 | The relationship between backward scattering and attenuation coefficient. (A) The relationship between power of forward scattering light and
attenuation coefficient. (B) The relationship between effect coefficient of forward scarttering and attenuation coefficient.
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light, and we cannot identify target by underwater imaging
equipment. Because of reflected light of underwater target
occurring phenomenon of forward scattering with particles in
the process of transmission, forward scattering light is produced
which can make internal details of the target become blurred.
Forward scattering light belongs to background stray light
affecting target imaging that appear in synchronous
transmission with incident light. The existing time lag between
reflected target light and backward scattering light in the process
of underwater transmission, and the effect of using imaging
technology of gate-distance to filter backward scattering light
is obvious, but the inhibitory effect of forward scattering light is
not obvious. In the following paper, we will use the theoretical
derivation process for analyzing effects of noise to forward
scattering on the process of underwater target imaging.
Simulating the process of forward scattering as shown in
Figure 4, l is defined as relative distance of light emitter and
underwater target, dv represents a small scattering volume
element that has a certain distance l’ with underwater imaging
system.

Defining expression of reflected intensity from underwater
target as [11]:

I(l) � ρmE(l)Ap

π
� ρmδl

π
P0ff (2 − 5)

with E(l) represents irradiance that has distance l with light
emitter, Ap represents projection area of underwater target, ρm
represents reflectivity to underwater target. ff represents
interception factor of forward scattering that associated with
projection area Ap and divergence angle Φ. Irradiance

expression of reflected target light that has distance l’ with
underwater imaging system is defined as:

E(l’) � δl−l’ I(l)
(l−l’)2 � ρmδlδl−l’ff

π(l−l’)2 P0, with δl−l’ � e−k(l−l’) represents

energy loss as a result of original reflected light from target
surface taking transmission to scattering volume element.
Defining expression of radiation intensity that reflected target
light sited at location of scattering volume element dv and

direction of θ is: dI � β(θ)E(l’)dv � ρmδlδl−l’ffβ(θ)
π(l−l’)2 P0dv. For

transmission process of forward scattering, we can take
approximation θ � 0. Similar to derivation process of received
power of backward scattering, power of forward scattering

received imaging system can be expressed as [15]:

Pf � Toe ∫ πD2

4l’2 δl’dI � Toe ∫
D2ρmδlδl−l’ δl’ffβ(0)

4l’2(l−l’)2 P0dv, with δl’ �
e−k(l’−h) represents energy loss as a result of reflected target
light that sited at scattering volume element taking
transmission to underwater imaging system, with h � l − l’,
and δlδl−l’δl’ � δ2l . Defining integral area to power of forward
scattering Pf is volume of vertebral body surrounded by object
lens of imaging system and underwater target, and can be
expressed as dv � π[(l − l’)D/2l]2dl’, that is:

Pf ≈ Toe∫

l

0

πδ2l D
2ρmP0ffβ(0)

4l’2(l − l’)2 [(l − l’)
D

2l
]
2

dl’

� πToeδ
2
l D

4ρmffβ(0)
16l3

P0 (2 − 6)

Similar to definition of effect coefficient of backward scattering
in field of underwater imaging, similarly defining power ratio
ηf � Pr/Pf as effect coefficient of forward scattering in field of
underwater imaging. Pr represents reflected power of underwater
target received by imaging system [15], and is expressed as:
Pr � ρmToeδ

2
l HoD2P0/4l2. The available expression of effect

coefficient of forward scattering ηf in field of underwater
imaging is expressed as:

ηf � 4l
πD2ffβ(0)Ho (2 − 7)

Taking mathematical simulation and calculation analysis on
power of forward scattering Pf and effect coefficient of forward
scattering ηf can qualitatively obtain the influence degree of
forward scattering on underwater target imaging. The
simulation results are shown in Figure 5, the change trend of
power Pf of forward scattering along with change of attenuation
coefficient K has some similarities to the results of backward
scattering, power of forward scattering are influenced by light
propagation distance and attenuation coefficient of water at the
same time. Under the condition of the same propagation distance,
effect coefficient of forward scattering ηf appear to decrease with
the increase of attenuation coefficient K. Under the condition of
same attenuation coefficient ηf, with increase of propagation
distance, effect coefficient of forward scattering also increases
gradually. The simulation results illustrate that the more turbid
of water quality, the shorter of transmission distance, the more
influence of noise to forward scattering on imaging quality of
underwater target. It can be found in Figure 3A and Figure 5A that
power of backward scattering has been larger than the power of
forward scattering in the field of longitudinal axis at the conditions
of same propagation distance and same attenuation coefficient, and
it shows that influence degree of backward scattering is greater than
forward scattering in turbid underwater target imaging.

Effects of Existence of Bubble on the Target
Imaging
Light transmits from a dense medium to a hydrophobic medium of
bubbles in water. The incident light in the bubble that runs along the

FIGURE 4 | The schematic diagram of forward scattering to underwater
particles.
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diameter of the bubble remains the same, and the rest of the light
completely deviates from the original path and does not reach the
detector. As the surface area of the bubble increases, increasinglymore
light is refracted, the light that reaches the probe decreases, and the
light intensity detected decreases. Because diffraction ismore complex,
this paper simplifies light transmission formation in the bubble
geometrical optics. Fresnel law indicates that the reflectivity and
transmissivity are connected with the polarization and incident
angle of incident light and the refractive index of the medium.
Any polarization of light can be decomposed into a pair of
mutually perpendicular components, a vibrating direction
perpendicular to the plane of incidence, expressed as S, and
another vibrating direction parallel to the plane of incidence,
expressed as P. According to [17] the Fresnel formula, we can

obtain the reflection coefficient and the refraction coefficient
expression of the polarized component expressed by P . Similarly,
we can obtain the reflection coefficient and refraction coefficient
expression of the polarized component expressed by S. The
theoretical calculation shows that the light intensity on the bubble
interface decreases continuously with increasing transmission time,
and for the fourth reflection and refraction cycle, the intensity of
refracted light of bubble tends to zero [16]. The value ofDOP increases
with increasing transmission frequency, and at the interface in the
fourth transmission cycle, DOP of refraction and reflection light is the
largest, being converted to almost completely polarized light [17].

Regarding the influence of distance between bubble group and
imaging system on acquisition of underwater image, the related
schematic diagram is shown in Figure 6A. Setting same

FIGURE 5 | The relationship between forward scattering and attenuation coefficient. (A) The relationship between power of forward scattering light and attenuation
coefficient. (B) The relationship between effect coefficient of forward scarttering and attenuation coefficient.
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integration time when distance is long, bubble are alike to suspended
particles and cover target information. When distance is shorter,
bubbles are equivalent to a layer of lens and the amount of light does
not decline, but increase [16]. Form and expression of bubble in image
are different when the camera is set in different integration time.
When integration time is small, bubbles are alike to a white dot in an
image, the intensity value has no relation to intensity of background
and is only relatedwith its bubble brightness.When integration time is
bigger, bubbles are alike to a blocking strip, and affect brightness of the
target area, and its intensity and intensity of the background has a
certain linear relationship [16], the related schematic diagram is shown
in Figure 6B.

The relative difference of the polarization information of the
target and background region will be different with the change of
incident angle of light source under the condition of bubbles. Under
the condition of the same bubble thickness, target polarization
information of different material are different. When the
thickness of the bubble is higher, intensity and polarization
imaging techniques are difficult to identify the underwater target,
as can be seen in Figure 6B. According to the scattering theory, the
suspending medium and bubble will produce certain polarization
characteristics in the process of light transmission, it also does some
bedding for the subsequent content of target polarization imaging.

ESTABLISHMENT OF POLARIZATION
RECONSTRUCTION MODEL OF
UNDERWATER TARGET AND PARAMETER
ESTIMATION

As shown in Figure 7, from the microscopic perspective in
underwater target imaging, incident light takes transmission

into the surface of the target, and energy redistribution and
reflection occurs on the surface of the target, then reflected
light of the target enters into CCD detector of the imaging
system with attenuation, because reflected light of this road
carrying information of target and are different with other
locations of stray light and polarization information, therefore
we can make use of the method of polarization imaging to
suppress stray light, highlight information of target, so as to
realize clear imaging of target under complex underwater
environment.

Underwater Polarization Imaging
Measurement Theory

The polarization expression of incident light is S � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, when

the incident light has passed through one medium
(Mueller matrix is M), the Stokes vector S of incident light
will be changed to S’[1, 12]:S’ � M · S5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I’

Q’

U’

V’

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3 − 1)

The Mueller matrix can fully describe the relationship of the
change of polarization with wavelength, scattering angle, scattering
particle size, shape and concentration and other parameters in the
single scattering. The diagram of underwater target polarization
detection is shown in Figure 8A, where Pol1 represents the
polarization generator, Si represents Stokes vector i.

FIGURE 6 | Exploration of influence of bubble group on underwater target acquisition. (A) Influence of distance between bubble group and imaging system on
underwater target acquisition (B) Influence of different density of bubble on target imaging.
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The linear combination of three kinds of light and
construction of underwater light transmission model are
shown in as:

Itotal � T + F + B (3 − 2)
with Itotal represents original intensity images collected by
imaging system, T represents target intensity that arriving to
imaging system after attenuation, F represents the forward
scattering intensity, B represents the backward scattering
intensity. Figure 8 shows a diagram of target imaging under
condition of complex underwater environment containing
suspended particles and bubbles through active imaging with
polarized light. Assumes that the incident light of Stokes vector as
follows:

S0 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I0
Q0

U0

V0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3 − 3)

When incident light has passed through the partial device
Polar1, the Mueller matrix is defined as Mpolar1, then the Stokes
vector S0 of the incident light will be changed to S1:

S1 � Mpolar1S0 (3 − 4)

The process of transmission of incident light to the target, the
Mueller matrix of water is defined as Mw1, the Stokes vector of
incident light will be changed to S2:

S2 � Mw1S1 (3 − 5)
Supposing the Mueller matrix of the target is Mtarget, and the

Stokes vector of the incident light will become S3:

S3 � MtargetS2 (3 − 6)
In the process of reflection and transmission of light source

from the target surface to the CCD imaging system, setting the
Mueller matrix of water isMw2, the Stokes vector of incident light
will become into S4:

S4 � Mw2S3 (3 − 7)
Arrived at the CCD imaging system, the definition of Mueller

matrix of partial detector Polar2 in CCD imaging system is
Mpolar2, finally the Stokes vector of incident light will be
changed into S5:

S5 � Mpolar2S4 (3 − 8)
According to Figure 8, the underwater target polarization

imaging using the Mueller matrix to take concrete analysis on the

FIGURE 7 | The flow chart of light propagation in underwater environment.

FIGURE 8 | The schematic diagram of underwater polarization imaging. (A) Underwater polarization imaging. (B) Complex water containing solid particles and
bubbles.
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light transmission process steps are as follows: Step 1) setting the
incident light is natural light, and setting its polarization is
S0 � (S00, 0, 0, 0)T; Step 2) the Mueller matrix expressions of
the analyzer are as follows [18]:

Mpolar1 � 1
2
×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cos(2ϕ) sin(2ϕ) 0
cos(2ϕ) cos2(2ϕ) cos(2ϕ) sin(2ϕ) 0
sin(2ϕ) cos(2ϕ) sin(2ϕ) sin2(2ϕ) 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3 − 9)
Step 3) the aquatic environment shows different physical

properties with the change of attenuation coefficient, the
Mueller matrix expression of water is as follows:

Mw � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11(θ) M12(θ) M13(θ) M14(θ)
M21(θ) M22(θ) M23(θ) M24(θ)
M31(θ) M32(θ) M33(θ) M34(θ)
M41(θ) M42(θ) M43(θ) M44(θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3 − 10)

When medium is uniform distribution in water and only the
Rayleigh scattering occurs, in order to simplify the analysis
process, the Mueller matrix expression will be changed to [1]:

Mw � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 M12(θ) 0 0
M12(θ) 1 0 0

0 0 M33(θ) 0
0 0 0 M33(θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3 − 11)

with M11 � M22 � 1, M12(θ) � M21(θ) � −1+cos2(θ)
1+cos2(θ) ,

M33(θ) � M44(θ) � 2 cos(θ)
1+cos2(θ). When the backward scattering

angle θ � 180°, Mueller matrix expressions of water scattering
medium is simplified to:

Mw1 � Mw2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3 − 12)

Due to suspension medium in water belongs to the dynamic
change, different concentration of suspension medium will show
different polarization characteristics, and also can have different
Mueller matrix, and its expression is more complicated. It can
make use of the Monte Carlo method to simulate its polarization
characteristics under the condition of different medium
concentration of water (different attenuation coefficient). In
order to analyze the relationship of underwater radiation
transmission characteristics of polarized light with wavelength
of incident light and thickness of scattering medium, this paper
uses Monte Carlo method to simulate the change trend of
intensity and DOP of backward scattering, and related
parameter settings in simulation process are as follows:
wavelength of incident light are set to 450, 550, 650 nm,
respectively. Radius of suspended particle in water is 2
microns, medium layer are same kind of suspended particles,
refraction coefficient of particle is set to 1.15, weight threshold is
0. When incident light is horizontal linear polarized light, taking
calculation on average value of intensity and DOP of received
photon, thus the corresponding mean curve of scattering
intensity and DOP with change of thickness to scattering

medium are shown in Figure 9, the longitudinal axis
represents average value of intensity and DOP to all photons
received by receiving surface, and the horizontal axis represents
thickness coefficient of scattering medium.

Due to scattering phenomenon of suspended particles in
water, polarized light will become partly polarized light,
appearing as the phenomenon of depolarization, with
increasing of medium thickness (transmission distance), and
incident light taking transmission among particles, the
probability of photons absorbed and the number of scattering
are constantly improving, leading to variation of original
polarization state to polarized light, and becoming another
kind of state of polarized light, with the degree of
depolarization shows monotone decreasing. When medium
thickness is greater, the medium layer is equivalent to a
reflection plane [19], so scattering intensity shows a rapid
increasing trend firstly, and then decreasing slowly. As for
incident light source with different wavelengths appearing at

FIGURE 9 | The change trend of intensity and DOP of backward
scattering light in underwater environment. (A) The changes trend of intensity
of backward scattering. (B) The change trend of Dop of backward scattering.
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different attenuation degrees when transmitting in water,
intensity and polarization information of backward scattering
also shows different values with the change of transmission
distance. Step 4) is the polarization characteristics of the
target, and its Mueller matrix expression can be defined as
follows:

Mtarget �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mT
11 mT

12 mT
13 mT

14

mT
21 mT

22 mT
23 mT

24

mT
31 mT

32 mT
33 mT

34

mT
41 mT

42 mT
43 mT

44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3 − 13)

The photoelectric field vector of incident light, reflected light,
and refracted light can be decomposed into the component P
parallel to the incident plane and the component S perpendicular
to the incident surface, based on the Fresnel’s law, reflectance and
transmittance of amplitude are rp � tan(θi−θt)

tan(θi+θt), rs � −sin(θi−θt)
sin(θi+θt) and

tp � 2 sin θt cos θi
sin(θi+θt) cos(θi−θt), ts � 2 sin θt cos θi

sin(θi+θt) respectively. Using the type to
deduce the Mueller matrix of target interface reflection as
follows [20]:

Mtarget �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 α + cos2 β cos2 α − cos2 β 0 0
cos2 α − cos2 β cos2 α + cos2 β 0 0

0 0 −2 cos α cos β 0
0 0 0 −2 cos α cos β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3 − 14)
with θi represents the incident angle, θt represents the refraction
angle of incident light, in the interface, ni sin θi � nt sin θt, and
formulas are α � θi − θt, β � θi + θt. Different targets with
different polarization properties, have different Mueller matrix
expression. Step 5) polarization CCD imaging system has
obtained the Stokes vector of target reflection light after
transmission and attenuation in water.

Underwater Polarization Imaging
Reconstruction Method of Removing
Scattering
The directly transmitted light of underwater target T (that is the
transmitted intensity information having passed through
attenuation) is defined as shown in:

T � Lobjecte
−kl (3 − 15)

with Lobject represents intensity information of target, t � e−kl
represents the transmission rate of underwater transmitted light,
k is expressed as the total attenuation coefficient of water
(coefficient is affected by absorption and scattering), l is
expressed as distance between the target and imaging system.
In this paper, k is simplified and defined as constants in the
underwater environment.

After Mueller matrix calculation of target area in turbid
environment, the Stokes vector expression of target is obtained
by CCD imaging system as follows:

Starget � Mw2MtargetMw1Mpolar1S0 (3 − 16)
Supposing internal partial detector of polarization CCD

imaging system is Polar2, when the partial detector Polar1 and

the partial detector Polar2 are parallel, ideally ϕpol1 � ϕpol2 � 90°,
getting parallel light intensity of the target area is I//target
(represented by Tmax). When the partial detector Polar1 and
the partial detector Polar2 are vertical, and in the ideal case,
ϕpol1 � 0° and ϕpol2 � 90°, getting vertical light intensity of the
target area is I⊥target (represented by Tmin).

The backward scattering light B can be defined [4] as follows:

B � ∫
Θ

B(Θ)dΘ � B∞(1 − t) (3 − 17)

with B(Θ) represents volume element function of backward
scattering, Θ is defined as a set of scattering angle to a small
volume element, B∞ � ∫

Θ
B∞(Θ)dΘ represents for infinite

intensity value of underwater background light.
In water environment, using Mueller matrix to calculate the

area of backward scattering light, CCD imaging system can get
the Stokes vector expression of backward scattering light which is:

Sbacksca � Mw2Mw1Mpolar1S0 (3 − 18)
when the partial detector Polar1and the partial detector Polar2
are parallel, ideally ϕpol1 � ϕpol2 � 90°, getting parallel light
intensity of the backward scattering area is I//backsca
(represented by Bmax). When the partial detector Polar1 and
the partial detector Polar2 are vertical, and in the ideal case,
ϕpol1 � 0° and ϕpol2 � 90°, getting vertical light intensity of the
backward scattering area is I⊥backsca (represented by Bmin).

We use the focal plane polarization camera to take data
acquisition, the camera can obtain four intensity images at
different polarization direction at one-time, I0, I45, I90, I135
respectively, and can obtain Stokes vector of target reflection and
backward scattering light after passing through water at the same
time. This paper uses method of curve fitting to obtain the best
image of orthogonal polarization, taking Stokes vector and fitting
out the curve of relationship between I(θ) and θ, using Equation
(3-19) to compute the corresponding figure of maximum
intensity Imax with angle is θmax and figure of minimum
intensity Imin with angle is θmin.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Imax � 1
2
(I + Q cos 2θmax + U sin 2θmax)

Imin � 1
2
(I + Q cos 2θmin + U sin 2θmin)

(3 − 19)

In an underwater environment, because the forward scattering
mechanism are more complicated, the influence extent of
backward scattering is greater than the forward scattering this
article does not take the forward scattering factor into subsequent
process of modeling, and specific content can refer to Section 2.
According to Equation (3-2), the maximum intensity expression
and minimum intensity expression are shown in Equation
(3-20):

{
Imax � Tmax + Bmax

Imin � Tmin + Bmin (3 − 20)

Using Equation (3-20) can get intensity expression of
underwater scene as shown in Equation (3-21):
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I � Imax + Imin (3 − 21)
According to calculation formula of DOP, the DOP of

underwater scene light PI, the DOP of background light PB

and the DOP of reflected light of underwater target PS can be
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

PI � Imax − Imin

I

PB � Bmax − Bmin

B

PT � Tmax − Tmin

T

(3 − 22)

Uniting Equation (3-20) to Equation (3-22) can obtain
expressions on synthesis intensity and differential intensity of
underwater scene light expressed as follows:

{
Imax + Imin � T + B
Imax − Imin � ΔI � PTT + PBB

(3 − 23)

Equation (3-24) can be derived by Equation (3-23):

ΔI � (Lmax
object − Lmin

object)t + (Bmax
∞ − Bmin

∞ )(1 − t)
� PTLobjectt + PBB∞(1 − t)

� PT(I − B∞(1 − t)) + PBB∞(1 − t) (3 − 24)
Using Equation (3-24) can further conclude new rate

transmission expression t is defined as:

t � 1 − ΔI − PTI

B∞(PB − PT) (3 − 25)

Uniting Equation (3-22) to Equation (3-24) can obtain
intensity information of underwater target S and intensity
information of underwater background B:

T � 1
PB − PT

[Imin(1 + PB) − Imax(1 − PB)] (3 − 26)

B � 1
PB − PT

[Imax(1 − PT) − Imin(1 + PT)] (3 − 27)

As you can see, in the polarization reconstruction model of
underwater target of Equation (3-26), we have considered the
reflected radiation of underwater target containing polarization
information. Compared with traditional underwater light
transmission map [4], the new expression of transmission rate
t is not only related to underwater infinite background light
intensity value B∞, but also has relation to underwater scene light
intensity I, DOP of background light PB, DOP of reflected light to
underwater target PS and other relevant parameters, the stand or
fall of calculation results of the underwater transmission rate are
also important factors to affect target recovery. Finally, uniting
Equation (3-24) and Equation (3-26) can get radiation
information expression of target in an underwater environment:

Lobject � [
Imin(1 + PB) − Imax(1 − PB)

PB − PT
]/(1 − ΔI − PTI

B∞(PB − PT))
(3 − 28)

with the effective intensity information of reflected target light is
defined as Lobject (the intensity information that has passed
through underwater transmission).

The degree of polarization of backward scattering light is
automatically estimated for the non-target region, as shown in
the following equation:

PB �
∑
ΩT

B//(x, y)/N − ∑
ΩT

B⊥(x, y)/N

∑
ΩT

B//(x, y)/N + ∑
ΩT

B⊥(x, y)/N
(3 − 29)

with ΩT representing local region of background in image.
According to the principle of the dark channel prior, scattering
light of background region can use the maximum value of the dark
channel in scattering image (not the maximum light intensity of
the original image, but the maximum light intensity in dark
channel) to estimate. As the experiment data acquisition is
grayscale image, the principle of the bright color method to
estimate infinite intensity value in underwater background is
used [21], and its expression is defined as:

Lbright � max
z∈Ω

(L(z)) (3 − 30)

with L(z) represents input image L, Ω represents center block of
one point in image. Using Equation (3-31) can automatically
estimate image block of optimal neighborhood Ω.

Ω � α’ × normalize( − 1/ ln(1 − B’/Lbright)) + C (3 − 31)
with B’ represents intensity values of background light, α’

represents scale parameter, C represents minimum window
size, normalize is normalization function. Bringing best
neighborhood image block Ω to Equation (3-30), and can
finally obtain optimally infinite intensity estimation of
underwater background light B∞, and B∞ � Lbright.

As can be seen from the above estimation process of
polarization parameter, estimation of underwater target
polarization information PT is irrelevant with polarization
information of underwater backward scattering light PB. As can
be seen from Equation (3-26) and Equation (3-27), intensity
information of underwater target T and intensity information of
backward scattering light B can be expressed as function of DOP to
target at same time, thus, when correlation between T and B is
minimum, the corresponding DOP value of target PT is requested.
In order to show this correlation, the covariance of T and B is used
tomeasure the size of independence of these two parameters. Using
mathematical expression to express PT is as follows:

PT(x, y) � argmin
PS(x,y)∈[0,1]

∣∣∣∣Cov(B(x, y), T(x, y))
∣∣∣∣ (3 − 32)

The covariance can be expressed as:

Cov(B(x, y), T(x, y))
xobj∈Ω

�

Cov
xobj∈Ω

(PB(x, y)I(x, y) − ΔI(x, y)
PB(x, y) − PT(x, y) ,

ΔI(x, y) − PT(x, y)I(x, y)
PB(x, y) − PT(x, y) )

(3 − 33)
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Covariance is function expression of DOP to target PS,
and PS(x, y) ∈ [0, 1], therefore, proposing an iterative
method to obtain the optimal solution of DOP to the
target. Within the interval of [0,1], getting about 200
points and the step length being 0.05, obtaining absolute
value of covariance by iterative calculation, getting array
constituted by absolute value of covariance with
corresponding DOP of different targets, we can obtain
optimal solutions of corresponding DOP value to target
when taking the minimum value of array.

The structure of underwater polarization imaging
reconstruction algorithm is shown in Figure 10.

COMPLEX UNDERWATER ENVIRONMENT
POLARIZATION IMAGING EXPERIMENT
ANDQUANTITATIVEANALYSISOFRESULT

Setting up Polarization Imaging
Experiments in Dynamic Complex
Underwater Environment
In order to verify the validity of the polarization reconstruction
method, we have carried out polarization imaging experiments of
an underwater target. A transparent glass tank was used in the

underwater imaging experiment, according to the principle of
actively optical underwater transmission in Section 2 and
requirements in actual scene, using an LED lamp with high
power that has been installed one polaroid in front of
experiment for lighting target, it is shown in Figure 8A.
Emission light first passed through line-polaroid and is
transformed into polarized light and arrives to targets, then
reflected light from the target surface enters into the imaging
system, where the imaging system will collect polarization images
that are taken into the terminal equipment for eventual data
processing. Relevant data show that the average concentration of
suspended medium is 0.8–2.5 mg/L in seawater, and milk can
simulate the scattering characteristics of seawater [22]. The
relative refractive index of tap-water at room temperature is
1.333, volume attenuation coefficient is about 0.15 m−1. Real
underwater experiment scene is shown in Figure 11A and
Figure 11B. A LUCID focal plane polarization camera was
used in the experiment, as shown in Figure 11C. The
polarization filter is added to the front location of pixel in this
camera, each 2*2 pixel array have four different directions of
polarization filter (0°, 45°, 90° and 135°), and the camera takes
output intensity and polarization information of each image pixel
[23]. Specific parameters of the LUCID polarization camera are
referred to in Table 1. According to the experiment scene, camera
exposure time is set in 5,000 microseconds and kept unchanged.
The calculation formula of Stokes vector are shown in Equation
(4-1):

⎧⎪⎨
⎪⎩

I � I0 + I90
Q � I0 + I90
U � I45 + I135

(4 − 1)

In the experiment, using the process of dropping milk into a
transparent glass tank containing water, step by step, for
quantitatively controlling the quality of water in order to
simulate suspended particles in water, and installing bubble
generator in the front of target to simulate real environment of
underwater exploration, the experiment scene of complex
underwater environment is shown in Figure 11. In the
experiment, bubble density is defined as bubble 1, bubble 2
and bubble 3, respectively, with different numbers of bubble
generators: one bubble generator represents bubble 1, two
bubble generators represent bubble 2, three bubble
generators represent bubble 3, and suspended medium
density are defined as density 1, density 2 and density 3,
respectively, with different concentrations of milk Adding
1 ml of milk represents density 1, adding 2 ml of milk
represents density 2, adding 3 ml of milk represents density
3. Target area contains a small-sized gun.

The Result of Experiment and Analysis of
Processed Images
Experimental data collection are divided into three kinds of
circumstances. The first kind of circumstance is to explore
image recovery results under the condition of different bubble
density, without adding milk into the water. The second is to

FIGURE 10 | The structure diagram of proposed method.
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FIGURE 11 | Diagram of dynamic turbid underwater complex environment and experimental scene. (A) Intensity map with bubble (B) Intensity map with bubble
and suspended medium (C) LUCID camera.

TABLE 1 | Specific parameters of LUCID polarization camera.

Camera Indicators Parameters

Sensor Sony IMX250MZR CMOS (mono), adds four different orientation polarization filter (0°, 45°, 90° and 135°)
Target Surface Size 11.1 mm (Type 2/3")
Resolution 2448 * 2048 pix
Size of Pixel 3.45 µm (H) * 3.45 µm (V)
Frame Rate 24 FPS
Data Format Mono8/10/12/16
ADC 12 bit
Gain Range 0–48 dB analog and digital
Exposure Time Range 30 μs to 10 s

FIGURE 12 | Effects of different density of bubble on target polarization imaging. (A) The synthetic original intensity images. (B) The degree of polarization. (C)
Reconstruction result proposed in this paper.
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explore image recovery results under the condition of different
concentrations of suspended medium, without adding bubble
into the water. The third is to explore image recovery results
under the condition of the coexistence of suspended medium
with bubble (bubble density belongs to high density, named
bubble 3, and concentration of suspended medium is
different).

1) Exploring the influence of different bubble density on target
imaging

In this experimental scenario, a small-sized gun is placed in a
dynamic underwater complex environment. Collecting original
images in all-pass channel under four different polarization
directions by polarization-imaging system, synthetic original

FIGURE 13 | Figure processing under the condition of different density of medium without bubble. (A) The synthetic original intensity images. (B) Reconstruction
result proposed in this paper.

FIGURE 14 | Figure processing under the condition of different density of medium with bubble density is bubble 3. (A) The synthetic original intensity images. (B)
Reconstruction result proposed in this paper.
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intensity images under the condition of different bubble density
are shown respectively, in Figure 12A. It can be seen that the
existence of bubble has affected the common optical imaging of
target to a certain extent, intensity value decreases with the
increase of bubble density. The degree of polarization under the
condition of different bubble density are shown, respectively, in
Figure 12B. After calculation, with the increase of bubble
density and the degree of polarization of target region and
background region gradually decrease, but compared with
ordinary optical imaging, the polarization imaging has
obvious advantages such as suppressing noise interference on
imaging. Figure 12C are reconstructed images proposed by this
paper, and compared with original intensity figures,
reconstructed images overall have better quality and better
vision.

2) Exploring the influence of different media concentration on
target imaging

The second case is shown in Figure 13. The proposed method
in this paper has proved that clear imaging method of underwater
target can effectively suppress backward scattering that reduces
contrast of image, and the proposed method still has a certain
effectiveness when concentration of suspended medium is high.

3) Coexistence of bubble and suspending medium

The third case will explore the influence of different media
concentration on target imaging in condition of bubble
concentration is bubble 3, as shown in Figure 14. The proposed
method in this paper has also proved that clear imaging method of
underwater target can effectively suppress backward scattering and
noise that reducing clearity of image, the proposed method have a
certain effectiveness under the condition of a dynamic complex
underwater environment.

According to results in Figure 12, Figure 13 and Figure 14,
it can be concluded that the reconstruction method proposed in

FIGURE 15 | The processing results of other material target under the condition of bubble concentration is bubble 3 andmedium concentration is density 1. (A) The
synthetic original intensity images. (B) Schechner’s method. (C) Tali’s method. (D) Reconstruction result proposed in this paper.
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this paper can get clear recovery results of underwater target
when waveband is all-pass [24]. In order to prove the
applicability of the algorithm, we took polarization imaging
experiments of four target groups made of different material
under the conditions of all-pass waveband in complex
underwater environment. Figure 15A shows synthetic
original intensity images, Figure 15B shows the processed
results of Schechner’s method, Figure 15C shows the
processed results of Tali’s method, Figure 15D shows the
processed results of proposed method in this paper. It also
can be seen that the proposed method can restrain effects of
underwater particle scattering and bubbles on the imaging of
the target, and the recovery images have greatly been improved
in resolution and texture detail, and processed detail edge is
better.

Comparative Analysis of Classic Methods
Existing underwater polarization recovery method generally
has the following challenges: 1) Obtaining orthogonal
polarization images by using method of artificially spinning
polarization analyzer or ways of directly taking operation on
camera device that have not been calibrated, the selection of
the best and worst polarization direction will affect recovery
result are good or bad. 2) When constructing a polarization
reconstruction model of an underwater target by directly
borrowing formula of atmospheric scattering model, there
will be a certain treatment effect, but the underwater
environment and the atmospheric environment have some
differences, such as types of media and the degree of light
attenuation, so there is a need for further optimization of the
polarization reconstruction model. 3) The manual way to
estimate parameters and processed time of algorithm is
long, so these proposed methods are difficult to meet the
demand of practical applications on underwater target
imaging. It is found in experimental process that
Schechner’s method [6] and Tali’s method [7] use artificial
selection of background region to estimate parameters and
substitute constant value to calibrate polarization
reconstruction parameters, these method increases the
complexity of the recovery algorithm, and can’t solve
disadvantages of recovery effect are not well that only
estimating parameters in one background area. Using the
way of actively calculating polarization parameters to get
reconstructed parameters and using the way of bright color
principle to automatically estimate optimal intensity values of
underwater infinite background, can reasonably solve the
above problems in this article. When using the maximum
and minimum intensity algorithm to calculate the intensity
the polaroid does not need to be manually turned. The target
polarization information in the model was taken into account
and the covariance method to automatically estimate the
parameters of underwater target polarization information
was used. Compared to the original intensity image and
recovery results of other methods, processed results by
using the proposed method can enhance the definition of
results, and targets can be well distinguished.

CONCLUSION

This paper has carried out imaging studies of targets in an
underwater environment from theoretical derivation,
numerical simulation of environmental noise, underwater
polarization-imaging experiments, and restored processing of
images. Taking theoretical derivation and simulation on noise
analysis of backward scattering field and forward scattering field
in underwater environment, it is concluded that power of
backward scattering light and forward scattering light show a
change trend of firstly increasing and then decreasing with
increasing of attenuation coefficient, effect coefficient of
backward scattering and forward scattering decreases with
increasing of attenuation coefficient, power of backward
scattering light is greater than power of forward scattering
light, the degree of influence of backward scattering is greater
than forward scattering in underwater imaging. Polarization
information of the target has been considered in the
polarization imaging model of underwater target, and the way
of estimating the underwater transmission rate has improved,
obtaining good recovery effect through adaptive estimation
method of optimal polarization information parameters.
Designing polarization imaging experiments of underwater
targets with different concentrations of suspension medium
and bubble and different materials under complex
environment. The coexistence of the suspension medium and
bubble in the complex water at the same time, and combine
Section 2 to the scattering noise analysis, explores the result of the
underwater target polarization imaging and recovery under
different materials and water environment. According to
experiments of underwater polarization-imaging and contrast
results of processed images, we can see that targets restored by
the proposed method have high resolution, and verify the validity
of proposed method. Finding the best observation condition in a
complex underwater environment for clear target imaging will be
our research priorities in the future.
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