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Editorial on the Research Topic:

Engineered Targeted Cancer Immunotherapies

Conventional cancer therapies, including surgery, radiotherapy and chemotherapy showed good
effects in the treatment of patients with early-stage cancers, but they often fail to cure many patients
that develop metastasis in different organs.

To overcome this issue more selective therapies, such as immunotherapy, have been developed in
the last few decades.

The aim of immunotherapy is to enhance the power of immune system to target cancer, leading
to a selective killing of cancer cells and a concomitant preservation of normal tissues.

Unfortunately, cancer cells use several mechanisms to impair the efficacy of immunotherapy,
such as expression of neo-antigens, over-expression of immunosuppressive molecules (IDO, PD-
L1), accumulation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells in the tumor
microenvironment (TME).

To improve immunotherapy efficacy and to overcome the inhibitory activity of the TME on the
immune system, engineered targeted cancer immunotherapies have been developed. These include
bispecific monoclonal antibodies, immunotoxins, fusion proteins, chimeric antigen receptor (CAR)-
T cells, gene therapy and monoclonal antibodies (mAbs) with antibody-dependent cell-mediated
cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) activity.

CAR-T cell technology is based on the isolation of patient’s T lymphocytes, which are then
engineered to express chimeric antigen receptors (CARs). The modified T lymphocytes can
recognize and kill cancer cells in a manner that does not involve the major histocompatibility
complex (MHC). After proliferation in vitro, CAR-T cells are reinfused into the patient (Lin et al.).

CAR-T cells achieved promising results as immunotherapy, especially against hematological
malignancies, where they showed impressive response with high target specificity.

In this regard, in the review from Gambella et al. is reported that CAR-T cells targeting CD19
showed promising results in the treatment of diffuse large B-cell lymphoma (Gambella et al.).

In their original research, Wang et al. observed that Bryostatin, a member of a family of cyclic
polyketides, which interacts with the diacylglycerol biding site of the C-1 regulatory domain of
protein kinase C, activates CAR T-cell antigen-non-specific killing (CTAK), and CAR-T NK-like
killing for Pre-B acute lymphocytic leukemia (ALL) through the modulation of both CD19 and
CD22 expression on leukemia cells. This modulation allows for a greater degree of CAR-mediated
leukemia cell killing. (Wang et al.).
July 2022 | Volume 12 | Article 95317515
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However, in patients with solid tumors, CAR-T cell therapy
did not achieve yet a good objective response and this
phenomenon is due to the ability of TME of solid tumors to
inactivate CAR-T cells.

All existing CAR-T cells available on the market are
autologous (made with same patient-derived T lymphocytes)
to avoid severe alloimmune rejection due to a mismatch of MHC
between the donor and the recipient.

As explained in the review from Lin et al., to improve the
efficacy of CAR-T cells, costimulatory molecules, such as CD28 or
4-1BB, were incorporated into CAR structure to promote CAR-T
cells survival and functionality in vivo (second and third generation
CAR). In addition, CAR-T cells have been further engineered to
secrete cytokines (fourth generation CAR) which allow to CAR-T
to be more viable and to activates other immune cells (Lin et al.).

In their review, Zhang et al. showed the importance to use gene-
edited interleukin CAR-T cells therapy as a novel strategy for the
treatment of malignancies. The most used cytokines used to
construct fourth generation CAR are interleukins including IL-7,
IL-12, IL-15, IL-18, IL-21 and IL-23. These CAR-T cells include co-
expression of single interleukin, two interleukins, interleukin
combined with other cytokines, interleukin receptors, interleukin
subunits, and fusion inverted cytokine receptors (ICR). There are
several Phase I and Phase I/II clinical trials evaluating the safety and
efficacy of gene-edited interleukin-CAR-T (fourth generation CAR),
involving hematological tumors and solid tumors (Zhang et al.).
Another efficient gene editing process to improve efficacy of CAR-T
cells is the CRISPR/Cas9 strategy for the editing of human primary
NK and T Cells as reported by Elmas et al. For example, CRISPR/
Cas9 has been used to knock down TGF-b receptor II (TGFBR2) to
reduce CAR-T cells exhaustion and to enhance CAR-T cells anti-
tumor activity. In addition, CRISPR/cas9 knock down of
granulocyte-macrophage colony-stimulating factor (GM-CSF) was
useful to decrease cytokine release syndrome (CRS) and
neuroinflammation linked to CAR-T cell therapy (Elmas et al.).

Despite these improvements, there are still some safety concerns
on the use of autologous CAR-T cells, including CRS and
neurotoxicity caused by CAR-T cells overactivation. In addition,
autologous CAR-T cells have high cost and intensive manufacturing
process, which slow down their quick availability for the patient.

Lin et al. in their review explained that one strategy to further
improve CAR-T cells safety and efficacy is to employ universal
CAR-T (UCAR-T) cell therapy, which consist of allogeneic
CAR-T cells that are taken from healthy donors. UCAR-T cells
share the same engineering process and mechanisms of action of
autologous CAR-T, but are cheaper than autologous CAR-T,
have a much less intensive manufacturing process, can be
immediately available to cancer patients and showed promising
results in treating T-cells malignancies. To reduce the Graft-
Versus-Host Disease (GvHD) and rejection, UCAR-T cells
underwent to additional gene editing processes, such as knock
out of the TCR, genetic ablation of MHC-I and/or MHC-II and
editing of CD7 to prevent the fratricide in CD7 UCAR-T cells
(Lin et al.).

A more recent and promising approach is the employment of
chimeric antigen receptor-engineered NK (CAR-NK) cells. In their
Frontiers in Oncology | www.frontiersin.org 26
review, Baysal et al. reported that CAR-NK can be obtained either
through lenti-/retroviral transduction of primary adult natural killer
(NK) cells or through the engineered immortalized NK-92 cells.
CAR-NK cells have several advantages over CAR-T cells, including
more robustness, reduction of frequency of cytokine release
syndrome, suppression of GvHD induced by CAR-T cells (Baysal
et al.). In this regard, in recent years, several clinical trials have
investigated the use of CAR-NK cells as therapeutic approach
against hematological malignancies and indicated the possibility
of adopting CAR-NK therapy for patients with high-risk B cell
lymphoma and leukemia. CAR-NK cells can also be equipped with
on-board cytokines, such as IL-15, to enhance both persistence and
cytotoxicity against tumor cells (Gambella et al.).

Beyond T cells and NK cells, also macrophages can be
engineered to improve cancer immunotherapy.

In the review from Ding et al. are reported different methods
to create engineered macrophages for cancer therapy via
nanotechnology and genetic manipulation. Since macrophages
have a great ability to infiltrate tumors, a promising strategy to
deliver anti-cancer drugs in the TME is to load macrophages
with nanoparticles (NPs). NPs can deliver a variety of anticancer
agents, such as chemotherapeutic drugs, targeted drugs,
messenger RNA, small interfering RNA, and the CRISPR/Cas9
genetic editing system, and many studies have demonstrated that
NP-loaded macrophages (NPL-Ms) can deliver the anti-cancer
drug in a more efficient manner to tumor cells, leading to a
strong antitumor effect. In addition, the review from Ding et al.
showed also that macrophages engineered to express CARs can
efficiently migrate to tumor sites and to kill tumor cells
through phagocytosis. After reaching TME, these engineered
macrophages can significantly subvert TME immunosuppressive
activity and, in turn, enhance T cell-mediated anticancer
immune responses (Ding et al.).

Another strategy to improve immunotherapy is to engineer
mAbs targeting tumor antigens.

Important targets of anti-cancer mAbs are pathways mediated
by the epidermal growth factor receptor (EGFR), CD20, vascular
endothelial growth factor (VEGF), and the programmed cell death
protein-1 (PD-1)/programmed cell death protein-1 ligand (PD-L1).

Although the immunotherapy with mAbs has increased
survival of cancer patients, the lack of tumor antigens,
uncontrolled activation of oncogenes, increased activity of
regulatory T cells and MDSCs in the TME can lead to the
resistance to immune checkpoints inhibitors (ICIs)-based
therapy and to its subsequent failure.

To overcome this issue, mAbs were engineered to have
different mechanisms of action. In this regard, mAbs able to
mediate ADCC may contribute to improve the clinical response
of cancer patients treated with ICIs.

Examples of clinically approved mAbs that can mediate ADCC
include trastuzumab, rituximab, cetuximab, avelumab.

Baysal et al. reported that one interesting strategy to
potentiate the ADCC activity mediated by mAbs is the
employment of adoptive NK cells to restore NK cell
functionality of cancer patients that is often impaired by
immunosuppressive activity of TME. Authors suggested that a
July 2022 | Volume 12 | Article 953175
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promising approach, in evaluation in different clinical trials, is
the combination between cetuximab, which targets the epidermal
growth factor receptor (EGFR) expressed in breast, lung,
colorectal, head and neck cancers, and adoptive transfer of
autologous or allogenic expanded NK cells (Baysal et al.).

The employment of allogenic expanded NK cells has the
advantage of being a good alternative to autologous NK cells due
to the limited number of patient-derived NK cells. Other benefits of
allogenic NK cells include the possibility to obtain NK cells from
healthy donors and the ability to produce high quantity of
engineered NK cell lines with a greater antitumor activity.

Baysal et al. also reported that the anti-tumor activity of
allogenic NK cells in combination with cetuximab can be
enhanced by stimulation of NK cells with cytokines such as IL-
2, IL-12, IL-15, IL-21. Stimulation of NK cells with these
cytokines leads to enhancement of the antitumor effects of NK
cells against various tumor types and significantly increases
cytokine and chemokine secretions which, in turn, stimulate
the infiltration of CD8+ T cells into the tumor. Several clinical
trials showed promising clinical responses and a tolerable safety
profile using cetuximab in combination with NK stimulated with
these cytokines in different cancer types (Baysal et al.).

In their original research article, Klewinghaus et al. suggested
that another efficient strategy to kill EGFR+ cells could be the
employment of cattle-derived ultralong CDR-H3 common light
chain bispecific antibodies targeting EGFR on tumor cells as well
as natural cytotoxicity receptor NKp30 on NK cells. These
engineered bispecific antibodies elicited potent NK cell killing
of EGFR-overexpressing tumor cells as well as robust release of
proinflammatory cytokine interferon-g (IFN- g) in vitro. Since
IFN-g can inhibit suppressive immune cell subsets and redirect
NK, NKT and T cell trafficking into tumors, the stimulation of
NK cells to release IFN-g by these types of bispecific antibodies
might be a promising strategy to improve antibody-based
immunotherapy in clinic (Klewinghaus et al.).

Chasov et al. reported promising new humoral and cell-based
immunotherapies for targeting p53 mutant cancers.

Authors showed that the peptide neoantigens from a
proteolytically processed mutant p53 protein are presented by
APCs to B and T cells to activate the immune response. To this
end, an interesting approach is based on bispecific TCRm antibodies
that bind to both TCR and the peptide on MHC (pMHC)
presenting the mutant p53 antigen. The scope of this approach is
to enhance the presentation to T cells of mutant p53 peptides to
stimulate T cells to destroy cancer cells bearing mutant p53 without
affecting the normal cells with wild type p53 (Chasov et al.).

Kooti et al. reported studies showing that oncolytic viruses
(OVs) can represent a valid alternative to CARs and engineered
mAbs to kill cancer cells.

Oncolytic viruses (OVs) include a group of viruses that
selectively recognize and kill malignant cells, without affecting the
surrounding health cells. OVs can kill cancer cells through several
mechanisms, including direct cytotoxicity, induction of immune-
mediated cytotoxicity and disruption of tumor vasculature.

In addition, OVs can favor recruitment of immune cells, such as
cytotoxic T lymphocytes, dendritic cells, NK cells and phagocytic cells
Frontiers in Oncology | www.frontiersin.org 37
in the TME to induce immune cell death of cancer cells. To improve
their efficacy OVs are often engineered to express immune-stimulatory
(IL-2, IL-4, IL-12 and GM-CSF) and pro-apoptotic (tumor necrosis
factor alpha, p53 and TRAIL) genes (Kooti et al.).

The treatment of hepatocellular carcinoma (HCC), one of the
most commonmalignancies globally, andmultiple myeloma (MM),
is benefiting from some of engineered cancer immunotherapies
mentioned above. In the review from Miao et al. is reported how
ICIs (anti PD-1/PD-L1 and cytotoxic T-lymphocyte antigen-4
(CTLA-4) mAbs, alone or in combination), tumor vaccines,
engineered NK cells, CAR-T cells are widely used in clinic and in
clinical trials for the treatment of HCC (Miao et al.).

Similarly, the review from Guo et al. showed that, for
thetreatment of MM, the most promising engineered cancer
immunotherapies evaluated in clinical trials are antibody-drug
conjugates (ADCs), second-generation CAR-T cells and CAR-
NK cells (Guo et al.).

The big challenge now is to evaluate the combination of
engineered targeted cancer immunotherapies with conventional
treatment methods to evaluate if this strategy can produce
synergistic effects and a better efficacy for the treatment of blood
and solid tumors.
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In recent years, chimeric antigen receptor T cells (CAR-T cells) have been faced with the
problems of weak proliferation and poor persistence in the treatment of some
malignancies. Researchers have been trying to perfect the function of CAR-T by
genetically modifying its structure. In addition to the participation of T cell receptor
(TCR) and costimulatory signals, immune cytokines also exert a decisive role in the
activation and proliferation of T cells. Therefore, genetic engineering strategies were used
to generate cytokines to enhance tumor killing function of CAR-T cells. When CAR-T cells
are in contact with target tumor tissue, the proliferation ability and persistence of T cells
can be improved by structurally or inductively releasing immunoregulatory molecules to
the tumor region. There are a large number of CAR-T cells studies on gene-edited
cytokines, and the most common cytokines involved are interleukins (IL-7, IL-12, IL-15,
IL-18, IL-21, IL-23). Methods for the construction of gene-edited interleukin CAR-T cells
include co-expression of single interleukin, two interleukin, interleukin combined with other
cytokines, interleukin receptors, interleukin subunits, and fusion inverted cytokine
receptors (ICR). Preclinical and clinical trials have yielded positive results, and many
more are under way. By reading a large number of literatures, we summarized the
functional characteristics of some members of the interleukin family related to tumor
immunotherapy, and described the research status of gene-edited interleukin CAR-T cells
in the treatment of malignant tumors. The objective is to explore the optimized strategy of
gene edited interleukin-CAR-T cell function.

Keywords: CAR-T cells, interleukin, gene-edited, immunotherapy, TME, malignant tumor
INTRODUCTION

CAR-T cells technology has achieved gratifying results in the clinical treatment of hematologic
malignancies (1, 2). However, it has hit a bottleneck in treating solid tumors (3–6). Studies have
shown that the inhibitory tumor microenvironment (TME) of solid tumors can inactivate CAR-T
cells (7). The full activation and amplification of normal T cells require not only T cell receptor
signals and costimulatory signals, but also the synergistic action of immune cytokines. Current
theories suggest that the immunosuppressive TME of solid tumors is mainly characterized by the
suppression of immune cell function, So it weakens CAR-T cells tumor immunity (8, 9).
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To overcome this challenge, multiple strategies have been applied
to optimize CAR-T cells technology. Immune cytokines are the
basis of T cells’ immune function, and they have been
demonstrated that they can significantly improve the antitumor
activity of CAR T cells (10). Therefore, the researchers created a
fourth generation of CAR-T cells by gene modifying the structure
of CAR-T cells using immune cytokines (11, 12).

Interleukin is a type of cytokine produced by multiple
immune cells and used by these immune cells. Some members
of the interleukin family exert multifarious roles in the anti-
tumor process as growth factors of T cells. At present, many
gene-edited interleukin CAR-T cells have achieved positive
efficacy in the treatment of malignant tumors in preclinical
studies, and related clinical studies are ongoing. With the
structural optimization of gene-edited interleukin CAR-T cells,
its efficacy in overcoming the immunosuppressive TME is also
increasing. Here, we shown the correlation between the above
families of interleukin and tumor immunotherapy, and
summarize the research progress of their application for CAR-
T cells technology. Finally, the optimization of gene-edited
interleukin-CAR T cells in anti-tumor therapy was discussed.
MEMBERS OF THE INTERLEUKIN FAMILY
AND TUMOR IMMUNITY

Last decade, with the development of tumor immunotherapy, the
function of interleukin in tumor immunotherapy has attracted
more and more attention from researchers. A large number of
Frontiers in Immunology | www.frontiersin.org 29
tumor immunotherapy techniques began to use interleukin to
improve the immune response of tumor. Table 1 shows part of
the interleukin family and their functions related to
tumor immunotherapy.
Correlation Between IL-1 Family Members
and Tumor Immunity
The IL-1 family mainly includes IL-1, IL-18, IL-33, and IL-36.
They initiate a powerful inflammatory and immune response by
binding to specific receptors in the IL-1 receptor family. These
immunomodulatory molecules are generated by immune cells
and regulate the function of these immune cells. Therefore, they
are closely related to tumor immunity.

IL-1 is a pro-inflammatory cytokine,which includes two subtypes
of IL-1a and IL-1b, and regulates adaptive immune responsemainly
through bindingwith its receptor (IL-1R) in the body. IL-1a acts as a
local alarm in the event of cell damage, while IL-1b release can also
occur in the circulation and is strictly controlled. IL-1b is primarily
derived from myeloid cells and is upregulated and associated with
disease progression in many different types of cancer, such as colon
and lung malignancies. Cancer cells also drive tumor-associated
inflammatory macrophages to produce IL-1b, which inhibits
tumor immune response through IL-1b-mediated accumulation of
myeloid derived suppressor cells (MDSCs). Therefore, current
clinical studies have focused on the role of antagonistic IL-1 b
activity in anti-tumor (13). These results indicate that IL-1b acts on
adaptive immunity and may indirectly modulate T cell immune
response to tumor.
TABLE 1 | Summary of cytokines related to tumor immunotherapy in the interleukin family.

Interleukins Tumor immune-related functions Receptors The associated immune
cells

Associated activation
pathway

IL-1 family
IL-1 Proinflammatory, regulating adaptive immune response IL-1R DCs, T cells NF-kB (13)
IL-18 T cell are activated by enhancing endogenous TCR IL-18Ra/IL-

18Rb
CD8 +T cells, NK cells NF-kB (14)

IL-33 Bidirectional regulation of tumor immune response ST2 Th cells, NK cells, Treg cells NF-kB,MAP (15)
IL-36 Promote DCs maturation and indirectly promote T cell proliferation IL-36R DCs,T cells NF-kB,MAP (16)
IL-2 family
IL-2 Regulate the proliferation and apoptosis of activated T cells IL-2Ra/IL-2Rb T cells, NK cells, monocyte

macrophages, B cells
STAT5 (17–19)

IL-4 Regulates the function of Th1 and Th2 cells IL-4R Th cells, STAT6 (20)
IL-7 Promote T cell proliferation and maintain cell homeostasis IL-7Ra Naive and memory T cells STAT5 (21, 22)
IL-9 Promote the proliferation and activation of T cells IL-9R CD8+ T cells, NK T cells STAT1, STAT3, STAT5 (23)
IL-15 Promote T cell proliferation and maintain cell homeostasis IL-15Ra/IL-

2Rb
CD8 +T cells,NK cells STAT5 (24)

IL-21 Modulate effector function of CD8+ T cells and polarization of CD4+ T Th
cells

IL-21R CD8+ T cells, CD4+ T cells,
NK T cells

STAT3 (25, 26)

IL-6/12 family
IL-6 Regulates immune response and inflammation IL-6R T cells STAT3 (27)
IL-12 Enhance the IFN-g secretion function of Th17 cells and cytotoxic effect of

NK cells and T cells, stimulate T cell differentiation
IL-12Rb1/IL-
12Rb2

NK cells, NK T cells, CD8+T
cells

STAT4 (28)

IL-23 Promotes memory T cell proliferation IL-23R T cells STAT3 (29)
IL-27 Affects antigen presentation and regulates the differentiation and activation

of Th cells
gp130/WSX-1 Treg cells STAT1, STAT3 (30)

IL-35 Promotes immunosuppression by inhibiting the differentiation of Th1 and
Th17 cells

IL-12Rb2/
gp130/WSX-1

Treg cells STAT1, STAT3, STAT5 (30)
July 2021 |
 Volume 12 | Article 718686

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Gene-Edited Interleukin CAR-T Cells Therapy
IL-18 is also an important pro-inflammatory and
immunomodulatory cytokine (31), which activates T cell
proliferation and IFN-g secretion by enhancing endogenous
TCR. It can also promote more effective tumor killing by
enhancing the expression of Fas ligands in immune cells (32).
Besides, studies have demonstrated that IL-18 improves T cell
function without causing severe dose-limiting toxicity (33, 34).
Therefore, IL-18 is a promising candidate cytokine for gene-
edited CAR-T cells.

As an inflammatory factor, IL-33 plays multiple roles in
tumor immunity. In 2015, a study found that IL-33 was
identified as a ligand for oncogenic inhibitory receptor 2 (ST2)
(35). IL-33 plays an immunomodulatory role by interacting with
ST2. IL-33 can act on multitudinous immune cells, such as Th1,
Th2, NK and regulatory T cells (Tregs) (15). Therefore, IL-33 has
a bidirectional regulatory function of different cancer immune
cells. Three subtypes of IL-36, known as IL-36a, IL-36b, and IL-
36g, have different functions. IL-36 has been shown to promote
upregulation of CD80 and CD86, markers of DCs activation, and
promote DCs maturation (36). The immunoregulatory function
of IL-36a is to directly promote the proliferation of CD4+T cells
(37). IL-36b promotes T cell proliferation by promoting the
production of IL-12 and IL-18 by DCs (38). The function of IL-
36g is to induce CD4+T cells to secrete IFN-g, IL-4 and IL-17
(39).Therefore, IL-36 also exerts a bidirectional regulatory role in
the process of tumor immunity, and has both activation and
inhibition effects.

Correlation Between IL-2 Family Members
and Tumor Immunity
The IL-2 family is part of the receptor gc family, which belongs to
type I cytokines, and they contain many interleukins. Its
members mainly include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-
21,and all of them play immunomodulatory functions through
the JAK-STAT pathway (40, 41). And these cytokines exert vital
functions in the regulation of immune cells.

IL-2 is a T cells growth factor that enhances the cytolytic
activity of NK cells (17). It promotes Tregs differentiation, which
regulates the adaptive immune response (18). At present, IL-2 is
the main cytokine used to culture T cells for immunotherapy.
Nevertheless, T cells cultured by IL-2 showed phenotypic
heterogeneity and were mainly composed of effector memory
cells that had full functional effects but were sensitive to death.
IL-4 is mainly involved in the function regulation of Th2 cells, so
it is known as Th2 cytokine. It can promote tumor progression by
down-regulating Th1 signaling and directly inactivating CD8+T
cells (42). Shuku-ei Ito et al. investigated the effect of neutralizing
IL-4 on tumor immunity (20), the results suggested that an IL-4
antibody can enhance anti-tumor immunity. Therefore, IL-4 can be
used as a target for tumor immunotherapy due to its role in the
tumor microenvironment.

IL-7 is the most important tumor immune-related cytokine in
the gc family, and its function is mainly to regulate naive T cells
and memory T cells homeostasis (21, 22). Studies have
confirmed that IL-7-induced signal transduction defect is the
main reason for affecting T cell development in severe combined
Frontiers in Immunology | www.frontiersin.org 310
immunodeficiency disorder (SCID) patients (43) and in patients
with SCID caused by JAK3 mutation (44, 45). IL-7 is an
indispensable cytokine for T cell growth, therefore, IL-7 has
also become a popular cytokine in gene-edited CAR-T cells
research. IL-9 is also an important tumor immune-related
cytokine, mainly produced by Th9 cells (46, 47). IL-9 derived
from Th9 cells can improve the tumor killing function of CD8+
T cells and NK T cells by promoting secretion of IFN-g (48, 49).
Therefore, Th9 cells have been shown to have an antitumor effect
in most solid tumors (50). However, it has been shown to be
tumorigenic in most hematologic tumors (51).

As an immunoregulatory cytokine, IL-15 is an important
homeostasis cytokine of CD8+T cells and NK cells. The main
function of IL-15 is to promote the growth of memory CD8+T
cells (52, 53). Therefore, L-15 has been used in several studies to
optimize the structure of CAR-T cells. However, IL-15 must
form the IL-15/IL-15Ra complex in order to exert its tumor
immune function. IL-15/IL-15Ra complex has poor stability and
can bind to IL-15Rbg to decrease tumor immune efficacy (54).
Therefore, the stability of IL-15/IL-15Ra complex is essential for
IL-15 to perform tumor immune function. The researchers used
several strategies to improve the stability of IL-15 function. One
strategy is to extend the persistence of the IL-15/IL-15Ra
complex by fusion with the IgG Fc domain, resulting in more
persistent induction of CD8+T cells and NK cells (55). Another
strategy is to enhance the capability of IL-15 through a fusion
protein that is conjugated to human IL-15 through the ligosome
in the terminal cytokine binding domain of human IL-15RaNH2

and has similar biological activity to that described above (54).
IL-21 is a multifunctional cytokine, exerts a vital role in

regulating the function of CD8+ T cells (25). IL-21 can
improve the activity of CD8+ T cells, making it potentially
valuable in cancer immunotherapy (56). Besides, a recent study
on pancreatic cancer found that IL-21 also has an anti-tumor
effect by enhancing NK cell function (57). IL-21 has also been
used in studies of CAR-T for its ability to positively regulate
tumor-associated immune cells.

Correlation Between IL-6/12 Family
Members and Tumor Immunity
The family members include typical members IL-6, IL-12, IL-23,
IL-27, and IL-35. Cytokines in the IL-12 family influence the
outcome of cancer, infection, and inflammatory disease. Most of
the members are produced by DCs, macrophages, endothelial
cells, T lymphocytes, and tumor cells (58),which conduct
downstream signal transduction through JAK protein and
STAT. They regulate tumor immunity in both direct and
indirect ways.

IL-6 is a pleiotropic cytokine,affects T cell activation,
amplification, survival, and polarization (59). Studies have
shown that during the inflammatory process, IL-6 signaling
has been found to promote the expression of T cell attractor
chemokines (60). IL-6 can also regulate the surface expression of
Fas receptor through up-regulating anti-apoptotic factors by
STAT3, thereby inhibiting T cell apoptosis (61, 62). IL-6 has
been also demonstrated to participate in the accumulation of
July 2021 | Volume 12 | Article 718686
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MDSCs in tumors (29). In addition, IL-6 exerts vital roles in the
acute immune response. When stimulated by local
inflammation, IL-6 can promotes the production of acute
phase proteins by acting on the liver (63). IL-6 is an important
factor affecting liver cells, hematopoietic progenitor cells,
cardiovascular, endocrine and nervous system homeostasis
(64). Therefore, a large number of CAR T clinical trials have
shown that high serum IL-6 levels are associated with cytokine
release syndrome (CRS), and IL-6 is a monitoring indicator in
the clinical diagnosis and treatment of CRS (65).

As an inflammatory cytokine, IL-12 is mainly generated by
DCs cells and macrophages. Studies have demonstrated that IL-
12 can improve the activation of Th1 and Th17 cells (66) and
enhance the cytolysis ability of CD8+T cells (67). Therefore, IL-
12 is expected to be successful in adoptive immunotherapy of
tumors due to its positive regulation of tumor immune
properties. IL-23 is constituted of IL-23ap19 and IL-12bp40
(29), and facilitates the proliferation of memory T cells, especially
Th17 cells expressing the its receptor (IL-23R) (68–70). IL-23
activates the tumor immune response to inhibit tumor progress,
which has given rise to the application of IL-23 in the treatment
of tumors by gene-edited CAR-T.

IL-27 is an effective immunomodulatory cytokine, which
mainly has anti-inflammatory and inhibitory properties in
immunomodulatory regulation, especially in inhibiting Th2
and Th17 differentiation. However, recent studies comparing
these results have also demonstrated that IL-27 promotes the
growth and survival of Tregs (30). Myeloid and epithelial cells
treated with IL-27 also showed enhanced antigen presentation by
upregulating MHCI and MHCII as well as costimulatory
molecules (71). Therefore, IL-27 is also a major regulator of
TME. IL-35 is an effective regulatory cytokine, mainly secreted
by Tregs. IL-35 can convert T cell into the regulatory cell
population that produces IL-35, which is called the induction
of Tregs-IL-35 (69, 72). IL-35 inhibited function of Th1 and
Th17 cells by promoting the expansion of Tregs (72, 73).
Frontiers in Immunology | www.frontiersin.org 411
Therefore, IL-35 is an immunosuppressive cytokine and exerts
important roles in promoting tumor progression.
CORRELATION STUDY OF GENE-EDITED
INTERLEUKIN CAR-T CELLS IN THE
TREATMENT OF MALIGNANT TUMORS

The researchers genetically engineered these cytokines to
modulate CAR-T activity to better kill tumor cells. At present,
a great number of preclinical studies have confirmed that gene-
edited co-expression of cytokines such as IL 7, IL 12, IL 15, IL 18,
IL21, and IL 23 can enhance the antitumor activity of CAR-T
(Table 2). Simultaneously, clinical trials of gene-edited
interleukin-CAR-T for malignancies are under way at several
medical centers around the world (Table 3), involving
hematological tumors and solid tumors, to evaluate its effective
dose and safety.

IL-7
IL-7 has been widely used in tumor immunotherapy to enhance
the anti-tumor immune response of T cells (91, 92). Studies have
shown that IL7 not only promotes CD8+ T cell proliferation and
reduces T cell apoptosis and depletion by enhancing Bcl-2
expression, but also increases the phenotype of poorly
differentiated CAR-T cells, thus improving the persistence and
viability of CAR-T cells (75, 93). There were also clinical trials
(NCT00586391, NCT00709033) that amplified CAR-T cells with
IL-7 and IL15 in vitro, and then confirmed these findings by
phenotypic analysis of CAR-T cells (94).Cong He et al. (75)
constructed gene-edited IL-7 CAR-T cells targeting NKG2D, and
found that co-expressing IL-7 enhanced the proliferation and
persistence of NKG2D-CAR-T cells in vitro and in vivo. In order
to further optimize the construction of CAR-T cells, researchers
have used IL-7 in combination with other cytokines to modify
TABLE 2 | Summary of preclinical studies on the use of CAR-T cells co-expressing cytokines in the treatment of malignant tumors.

Tumor Targeted antigen Gene-edited cytokines Reference

Lung cancer, pancreatic ductal adenocarcinoma hCD20, Mesothelin IL-7 and CCL19 Keishi Adachi et al. (74)
prostatic cancer NKG2D IL-7 Cong He et al. (75)
hepatic carcinoma GPC3 IL-7 and PH20 Xingcheng Xiong et al. (76)
breast carcinoma AXL C7R Zhenhui Zhao et al. (77)
Colorectal cancer, pancreatic cancer, stomach cancer CEA IL‐12 Xiaowei Chi et al. (78)
lymphoma CD19 IL-12 Gray Kueberuwa et al. (79)
hepatic carcinoma glypican-3 (GPC3) IL-12 Ying Liu et al. (80)
ovarian cancer Muc-16 IL-12 Oladapo O.Yeku et al. (81)
leukemia CD19 IL-15 Lenka V. Hurton et al. (82)
Cerebral endothelioma VEGFR-2 IL-15 Evripidis Lanitis et al. (83)
melanoma CD19 IL-18 Biliang Hu et al. (84)
hepatic carcinoma GPC3 IL-21 Yi Wang et al. (85)
chronic lymphocytic leukemia CD19 IL-21 Štach M et al. (86)
hepatic carcinoma GPC3 IL-15 and IL-21 Batra S. A et al. (87)
neuroblastoma GD2 IL-23 Xingcong Ma et al. (88)
prostatic cancer PSMA IL-23 Dawei Wang et al. (89)
hepatic carcinoma GPC3 4/21 ICR Yi Wang et al. (85)
pancreatic cancer PSCA 4/7 ICR Somala Mohammed et al. (90)
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CAR-T cells, and achieved promising results in preclinical study.
For instance, Keishi Adachi et al. (74) constructed CAR-T cells
that co-expressing IL-7 and CCL19, and found that multiple
cytokines significantly improved tumor infiltration and survival
of CAR-T cells. More robust antitumor activity and durability
than conventional CAR-T has been realized in studies targeting
solid malignant tumors. These related clinical trials are ongoing,
such as targeting CD19 CAR-T trial for lymphoma
(NCT04381741); targeting NECTIN4/FAP CAR-T for advanced
malignant solid tumors (NCT03932565). Similarly,Xingcheng
Xiong et al. (76) constructed CAR-T cells co-expressing IL-7
and hyaluronidase(PH20) in the preclinical study of targeting
GPC3 CAR-T cells for liver cancer, and the results showed that the
co-expression of IL-7 and PH20 may obviously improve the
efficacy of CAR-T cells for solid tumors. Other clinical studies
of co-expressing IL-7 and IL-15 CAR-T cells for lymphoma are
also ongoing (NCT02652910, NCT04186520), aiming to test the
hypothesis that co-expressing IL-7 and IL-15 CAR-T cells
persist for longer after infusion in patients with lymphoma. And
whether the persistence of CAR-T cells improves the anti-
lymphoma efficacy.

Furthermore, IL-7 receptor (C7R) was also used for the
construction of gene-edited CAR-T. A recent study confirmed
the significant antitumor activity of co-expressing C7R CAR-T
cells against neuroblastoma and glioblastoma (95). Two clinical
Frontiers in Immunology | www.frontiersin.org 512
trials (NCT03635632, NCT04099797) of CAR-T co-expressing
C7R targeting GD2 in the treatment of neuroblastoma,
osteosarcoma, and glioma are currently under way, the
purpose of the studies was to find the maximum safe dose of
GD2-C7R CAR-T cells and assess how long they can be detected
in the blood and their effect on tumors.

IL-12
Because IL-12 can effectively mobilize the immune system, it has
become one of the cytokines that mediate anti-tumor activity
(96–98). A series of preclinical studies have demonstrated that
IL-12 has antitumor activity by degrading tumors or prolonging
survival in tumor-bearing animals (99). Giulia Agliardi et al.
(100) conducted a preclinical study on the treatment of
glioblastoma multiforme (GBM) by combining CAR-T cells
with local injection of IL-12. The results showed that CAR-T
therapy combined with local injection of IL-12 resulted in a more
durable antitumor response than CAR-T therapy alone. The
study also demonstrated that IL-12 not only enhanced the
cytotoxicity of CAR-T cells, but also remodeled TME,
promoted the infiltration of pro-inflammatory CD4+ T cells,
and reduced the number of Tregs. However, systemic use of IL-
12 can cause serious and unexpected side effects, which greatly
limits its clinical use (101, 102). In the face of this challenge, the
researchers have been trying to construct gene-edited IL-12
TABLE 3 | Clinical trial summary of gene-edited interleukin CAR-T cells.

Targeted antigen Tumor Gene-edited
cytokines

Patients
(n)

Clinical
stage

Identifying code
(ClinicalTrials.gov)

Sponsor Status

EGFR metastatic colorectal
cancer

IL-12 20 I NCT03542799 Shenzhen Second People’s Hospital,
China

Not yet
recruiting

CD19 Diffuse large B cell
lymphoma

IL7 and
CCL19

24 I NCT04381741 The Second Affiliated Hospital of
Zhejiang University, China

Recruiting

Nectin4/FAP Nectin4 positive late
malignant solid tumor

IL7 and
CCL19, or
IL12

30 I NCT03932565 The Sixth Affiliated Hospital of
Wenzhou Medical University, China

Recruiting

CD19 lymphoma IL-7 and IL
-15

20 I/II NCT02652910 Xinqiao Hospital, Chongqing City,
China

Unknown
status

GD2 neuroblastoma IL -15 18 I NCT03721068 Rineberg Comprehensive Cancer
Center, USA

Recruiting

CD19/CD20 lymphoma IL-7 and IL-
15

32 I/II NCT04186520 Medical College of Wisconsin, USA Recruiting

GD2 Neuroblastoma,
osteosarcoma

C7R 94 I NCT03635632 Baylor College of Medicine, USA Recruiting

GD2 neuroglioma C7R 34 I NCT04099797 Baylor College of Medicine, USA Recruiting
GPC3 Multiple solid tumors (liver

cancer, sarcoma, etc.)
IL -15 24 I NCT04377932 Baylor College of Medicine, USA Not yet

recruiting
GPC3 Multiple solid tumors (liver

cancer, sarcoma, etc.)
IL -15 and IL-
21

24 I NCT04715191 Baylor College of Medicine, USA Not yet
recruiting

CD138, integrin b7,
CS1, CD38 and BCMA

multiple myeloma IL7 and
CCL19

30 I NCT03778346 The Sixth Affiliated Hospital of
Wenzhou Medical University, China

Recruiting

CD19 lymphoma IL -18 30 I NCT04684563 University of Pennsylvania, USA Not yet
recruiting

CD5 T-cell Acute Lymphoblastic
Leukemia
T-cell Non-Hodgkin
Lymphoma

IL15/IL15
sushi

20 I NCT04594135 Peking University Shenzhen Hospital
Shenzhen, Guangdong, China

Recruiting

MUC16 Multiple solid tumors IL-12 18 I NCT02498912 Kettering Cancer Center, USA Active, not
recruiting
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CAR-T cells in an effort to enhance anti-tumor activity while
mitigating its side effects (103, 104). Ying Liu et al. (80) designed
targeting GPC3 CAR-T cells and IL12-GPC3-CAR-T cells. This
study demonstrated that IL12-GPC3-CAR-T cells were more
capable of lysis of GPC3+ tumor cells and secreted more
cytokines than GPC3-CAR-T cells. IL-12-GPC3- CAR-T cells
showed a stronger antitumor effect in tumor-bearing mice due to
increased infiltration and persistence of T cells by IL-12.
Similarly, Gray Kueberuwa et al. (79) used CAR-T cells
expressing murine IL-12 (IL12-CD19-CAR-T cells) to show
eradication of B-cell lymphoma with a long-term survival rate.
They also demonstrated that IL12-CD19-CAR-T cells not only
kill CD19+ tumor cells directly, but also recruit host immune
cells for an anticancer immune response. This finding may
enable gene-edited IL-12 CAR-T cells to be used in the
treatment of malignancy without the need for lymphatic
clearance, so that these cells can be better used for anti-
tumor immunity.

Fengtao You et al. (105) constructed CAR T cells targeting
MUC1 co-expressing IL-12 (MUC1-IL-12-CAR T cells) and
targeted CAR T cells modified with MUC1 (MUC1-CAR T
cells) for use in seminal vesicle carcinoma in Phase I clinical
trials (NCT02587689). MUC1-IL-12-CAR-T cells using MUC1
normal SCFV sequence SM3; MUC1-CAR T cells use the
mutated SM3 scFv sequence. Two CAR T cells were injected
locally into two separate metastatic lesions of the same seminal
vesicle carcinoma patient. The results showed that MUC1-CAR
T cells effectively induced tumor necrosis, while MUC1-IL-12
CAR T cells treated lesions showed no tumor necrosis. Of course,
the purpose of this clinical study was to demonstrate the
importance of SCFV in CAR T cell therapy. But it also
demonstrated the safety of gene-edited IL-12 CAR T cells for
clinical use. Two clinical trials (NCT03542799 and
NCT02498912) are currently evaluating the safety and
feasibility of co-expressing IL-12 CAR-T cells in patients with
solid tumors, as well as evaluating the maximum tolerated dose.

IL-15
The tumor immune function of IL-15 is mainly to maintain
CD8+ memory T cell homeostasis and inhibit activation-induced
cell death (106). Therefore, gene-edited IL-15 CAR-T cells have
been demonstrated to be superior in the treatment of malignant
tumors. Evripidis Lanitis et al. (83) used retroviral vectors to
encode co-expressed mouse interleuk-15 CAR-T cells (IL-15-
CAR-T) targeting tumor blood vessels. Results showed that co-
expression of IL-15 not only enhanced the tumor infiltration and
control of tumor growth, but also enhanced the effect of IL-15 on
tumor growth. Furthermore, TME was optimized (activation of
NK cells and reduction of M2 macrophages). Further studies
showed that the expression of Bcl-2 in CAR-T cells expressing
IL-15 was up-regulated, while the expression of PD-1 was down-
regulated. Analogously, Lenka V. Hurton et al. (82)designed co-
expressing IL-15 CAR-T cells using gene-edited technology,
which demonstrated a strong killing effect against CD19+
leukemia in preclinical experiments. The study analyzed the
phenotype of proliferating T cells and found that the most
persistent T cell phenotype was consistent with that of T
Frontiers in Immunology | www.frontiersin.org 613
memory stem cells. The results demonstrated that IL15
signaling could maintain T memory stem cells persistence.
Which lays a theoretical foundation for the further application
of IL-15 in optimizing CAR-T cells construction.

Gene-edited IL-15 has also shown enhanced antitumor
activity of CAR T cells in clinical trials. Jia Feng et al. (107)
modified CD5-targeted CAR-T cells by means of genetic
engineering to secrete IL-15/IL-15 Sushi(IL-15 protein linked
to the IL-15Ra sushi domain of the IL-15 receptor) Complex. In
a phase I clinical trial (NCT04594135), these CAR-T cells were
tested for safety and efficacy in a patient with refractory
lymphoblastic lymphoma with central nervous system
infiltration. In the trial, symptoms of central nervous system
compression were significantly reduced after 3 weeks of
treatment with IL-15-CD5-CAR-T cells, and soft tissue mass
shadow was significantly reduced after 8 weeks of treatment.
These results suggest that gene-engineered IL-15 CAR-T cells are
an effective treatment for T cell malignancies, especially in
patients with central nervous system involvement. At present,
clinical trials (NCT03721068, NCT04377932) are under way
to treat multiple solid tumors (liver cancer, sarcoma,
fibroblastoma). The goal of these studies is to determine the
maximum safe dose of CAR-T cells and how long they last in the
body. To understand the side effects and evaluate its efficacy in
solid tumors.

IL-18
Previous studies have shown that the structural expression of IL-
18 by CAR-T cells significantly enhances the antitumor activity
of CAR-T cells (84). Biliang Hu et al. (84) constructed CD19-IL-
18 CAR-T cells using transgenic technology to conduct in vivo
anti-tumor studies. CD19-IL-18 CAR-T cells significantly
enhanced the proliferation of CAR-T cells. And effectively
enhance the anti-tumor effect of melanoma mice. The study
confirmed that the proliferation of IL-18-secreting CAR- T cells
in the transplanted model was significantly enhanced, which was
dependent on the IL-18R signaling pathways. This finding
provides a strategy for the use of CAR-T cells in solid tumors.
Since, Yong Huang et al. (14) also found that exogenous IL-18
could improve the anti-tumor function of HER2-specific CAR-T
cells in vitro and in vivo, not only in immunodeficient mice, but
also in immunotolerant mice. In addition, Markus Chmielewski
et al. (108) found that the anti-tumor process of CAR-T cells co-
expressing IL-18 was accompanied by the overall change of
tumor immune microenvironment. Specifically, the number
of M1 macrophages and NK cells increased, while the number
of Tregs, inhibitory DC and M2 macrophages decreased,
indicating that IL-18 has the function of recruiting peripheral
immune cells to participate in anti-tumor combat. University of
Pennsylvania team is currently conducting a clinical trial
(NCT04684563) of co-expressing IL-18 CAR-T cells targeting
CD-19 in the treatment of lymphoma. The primary objective of
this study is to evaluate the maximum safe dose.

IL-21
IL-21 can enhance tumor immune response mediated by T cells.
Li Du et al. (109) found that the addition of IL-21 in the
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preparation of CAR-T cells could improve the T cell transfection
efficiency by reducing the expression of IFN-g in activated T
cells. They also shown that exogenous IL-21 improved the
cytotoxicity of CAR-T cells by enhancing the enrichment and
amplification of poorly differentiated CAR-T cells. This finding
lays a foundation for the application of IL-21 to optimize the
structure of CAR-T cells. ŠTach, M et al. (86) constructed gene-
edited IL-21 CAR-T cells targeting CD19, and studied the effect
of IL-21 on its function. The results showed that IL-21 enhanced
the expansion of CAR-T cells, and prevented the differentiation
of CAR-T cells into late memory phenotype. Besides, gene-edited
IL-21 promoted tumor infiltrating of CD19 CAR-T cells, leading
to tumor growth retarded. Yi Wang et al. (85) constructed 4/21
ICR-CAR-T cells and reversed the efficacy of IL-4 against CAR-T
cells in the environment of hepatocellular carcinoma(HCC)
through the IL-21 pathway. The 4/21 ICR has been shown to
activate the STAT3 pathway, thereby promoting Th17-like
polarization of CAR-T cells in vitro and enhancing the toxicity
of targeted HCC cells. IL-21 is the one that ultimately plays a
direct role in promoting the anti-tumor function of CAR-T cells.
A clinical trial of co-expressing IL-15 and IL-21 targeting GPC3
in multiple solid tumors (NCT04715191) is ongoing at Baylor
College of Medicine. The objective of this study was to determine
the maximum safe dose of CAR-T cells and to determine their
survival time and side effects in vivo. At the same time, the
efficacy was evaluated.

IL-23
Gene-edited IL-23 CAR-T cells have been relatively infrequently
studied, but have yielded significant results. Dawei Wang et al.
(89) designed co-expressing IL-23 targeting prostate specific
membrane antigen(PSMA) CAR-T cells and studied their
Frontiers in Immunology | www.frontiersin.org 714
antitumor functions. This study confirmed that in vitro
proliferation and cytokine secretion of co-expressing IL-23
CAR-T cells were significantly higher than that of
conventional CAR-T cells. Co-expressing IL-23 CAR-T cells
also showed higher tumor clearance and faster weight recovery
in vivo. Furthermore, it has been demonstrated that T cells
upregulate IL-23a p19 subunit but not p40 subunit under TCR
stimulation. Therefore, some researchers constructed CAR-T
cells co-expressing the p40 subunit, and found that T cells
obtained selective proliferative activity through the IL-23
signaling pathway. Compared with conventional CAR-T cells,
P40-CAR-T cells showed superior antitumor activity (88). The
therapeutic efficacy of p40-CAR-T cells in xenotransplantation
of tumor-bearing mice was superior to that of conventional
CAR-T cells.
STRUCTURE DEVELOPMENT AND
OPTIMIZATION OF GENE-EDITED
INTERLEUKIN CAR-T CELLS

At present, the construction of gene-edited interleukin-CAR-T
cell structure is diversified in the process of gradual optimization.
The main construction methods for studying gene-edited
interleukin-associated CAR-T include: co-expression of a single
interleukin, two interleukin, interleukin combined with other
cytokines, interleukin receptor, co-expression of interleukin
subunit, and fusion ICR. The specific construction method is
shown in Figure 1.

To enhance the tumor killing ability of CAR-T, researchers
constructed CAR-T by gene-edited an interleukin that positively
FIGURE 1 | In this figure, different methods of constructing gene-edited interleukin-CAR T cells are shown. (A) Co-expression of a single interleukin. (B) Co-expression
of two interleukins. (C) Co-expression of interleukin combined with other cytokines. (D) Co-expression of interleukin receptor. (E) Co-expression of interleukin subunit.
(F) Co-expression of fusion interleukin ICR.
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regulates T cell function, initially primarily for hematological
tumors, and later for solid tumors. There are many relevant
preclinical and clinical studies, as shown in Tables 2 and 3. For
example, in 2018, Gray Kueberuwa et al. (79) constructed
targeting CD19 IL-12-CAR-T cells in a preclinical study on the
treatment of lymphoma, and the CAR-T cells expressing IL-12 in
the trial not only killed CD19+ tumor cells directly, but also
recruited other immune cells of the host for anti-tumor immune
response. In 2020, Cong He et al. (75) constructed a CAR-T
targeting NKG2D co-expressing IL-7, and in the treatment of
prostate cancer, it was found that IL-7 production enhanced the
expansion of CAR-T cells and inhibited their apoptosis. Later,
researchers attempted to construct bileukin and interleukin
combined with other cytokine CAR-T to enhance its tumor
killing function. Andreas A. Hombach et al. (110) constructed
co-expressing IL-7 and IL12 CAR-T cells, and the constructional
production of IL-7 and IL-12 has been shown to enhance the
expansion and persistence of CAR-T cells in preclinical studies of
colorectal cancer. In 2018, Keishi Adachi team (74) constructed
co-expressing IL-7 and CCL19 CAR-T cells, and demonstrated
excellent tumor-killing activity in multiple solid tumors.
Interestingly, researchers constructed both the co-expressing of
IL-7 (IL-17-CAR) and the co-expressing of CCL19 (CCL19-
CAR) T cells, and found in vivo that these two types of CAR-T
cells were comparable to conventional CAR-T cells in killing
tumors. This study demonstrates the limited ability of gene-
edited individual interleukin CAR-T cells to enhance anti-tumor
function. Furthermore, this suggests the importance of cytokine
collaboration in enhancing CAR-T function. In 2020, Xingcheng
Xiong and his team (76) constructed co-expressing IL-7 and
PH20 CAR-T cells. Because the co-expressing PH20 can
effectively degrade extracellular matrix, and enhance the tumor
infiltration function of CAR-T cells. The study has demonstrated
that co-expressing IL-7 and PH20 CAR-T cells can significantly
improve their antitumor activity in multiple solid tumors.
Therefore, the construction of multiple interleukin and
interleukin combined with other cytokines gene-edited CAR-T
cells is an important direction to conquer solid tumors in
the future.

Side reaction should be considered while CAR-T cells improve
immune function, after all, interleukin hypersaturation activation
as cytokines is harmful to the body. Researchers constructed
CAR-T cells that co-expressing interleukin receptors and applied
the limited interleukin ligand in the tumor microenvironment to
brake their functional release. Zhenhui Zhao et al. (77) constructed
co-expressing IL-7 receptor(C7R) CAR-T cells, which shown good
tumor killing effect in vitro in the preclinical experiment of treating
triple-negative breast cancer. However, in vivo, C7R-CAR-T cells
have not demonstrated any advantage over conventional CAR-T
cells. Which may be influenced by the density of IL-7 ligand in
tumor tissues. Xingcong Ma et al. (88) Constructed co-expressing
IL-23 subunit (p40) CAR-T cells (p40-CAR-T) that in order to
avoid the body damage caused by overactivation of cytokines. The
results showed that p40-CAR-T cells had stronger antitumor
activity compared to conventional CAR-T cells, and more
importantly, showed fewer side effects compared to CAR-T cells
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co-expressing other interleukin in vivo trials. This study tells us that
on the way to improve CAR-T function, we should not blindly
increase the secretion of cytokines, but should achieve accurate co-
expression and reduce meaningless harmful expression.

In the face of tumor inhibition microenvironment, most of
the current studies are aimed at improving tumor killing
functions by increasing the secretion of cytokines that
positively regulate CAR-T function. However, this structural
design ignores the value of immunosuppressive cytokines in
the tumor immune microenvironment. Ann M Leen et al. (111)
constructed CAR-T cells co-expressing the fusion ICR, and IL-4/
IL-7 ICR (4/7 ICR) contained the IL-4 receptor ectodomain and
the IL7 receptor endodomain. The study demonstrated that 4/7
ICR can be used to protect CAR-T cells from IL-4 inhibition. The
4/7 ICR accepts immunosuppressive IL-4 but converts its
downstream signals into immune-stimulating IL-7 receptors.
In contact with IL-4, CAR-T cells can maintain Th1 phenotype
a strong antitumor activity in vivo. Then, Somala Mohammed
et al. (90) generated CAR-T cells targeting prostate stem cell
antigen (PSCA) 4/7 ICR-CAR-T cells, which demonstrated that
4/7 ICR-CAR-T cells grew normally in an IL-4-rich
microenvironment, thereby enhancing their antitumor activity.
Subsequently, Yi Wang et al. (85) reported a novel IL-4/IL-21
ICR (4/21 ICR) that improved the tumor killing efficacy of CAR-
T cells through a mechanism different from that of the 4/7 ICR.
This study demonstrated that 4/21 ICR activates the STAT3
pathway in response to IL-4 stimulation, promoting Th17-like
polarization and tumor-targeted cytotoxicity of CAR-T cells in
vitro. In addition, 4/21 ICR-CAR-T cells also showed strong
antitumor activity against IL-4 positive tumors in vivo.
Therefore, gene-edited ICR CAR-T cells are a promising
clinical practice for the treatment of solid tumors.
POTENTIAL TOXICITY OF GENE-EDITED
INTERLEUKIN CAR-T CELLS

As mentioned above, gene-edited interleukin-CAR-T cell
technology is optimized not only to enhance the function of
CAR-T cells, but also to consider the cytotoxic effects of
interleukin-over release. A phase 1 clinical trial of CD5-IL15/
IL15 sushi CAR-T cells in refractory lymphoblastic lymphoma
(NCT04594135) has been published (107). The patient was
found to be well tolerated by infused CAR-T cells, causing
only grade I CRS toxicity. Levels of ferritin and high-sensitivity
C-reactive protein were briefly elevated. By detecting the
cytokine level of patients in the first month, it was found that
the expression of cytokines remained relatively stable. IL-15
levels also did not rise significantly after the infusion. CD5-
IL15/IL15 sushi CAR-T cells secreted IL15/IL15 sushi complex in
the body, which may lead to excessive IL-15 levels throughout
the body. However, this was not observed in patients. This study
demonstrates that gene-edited IL-15 CAR-T in the treatment of
refractory lymphoblastic lymphoma causes mild CRS and is fully
tolerated by the body. Besides, in the phase I clinical trial
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(NCT02587689) of MUC1-IL-12-CAR T cells constructed by
Fengtao You for the treatment of seminal vesicle carcinoma,
patients only started to experience mild headache, fever, muscle
pain, nasal congestion and abdominal distention discomfort.
From 6 to 12 days after the intratumoral injection, all
discomfort disappeared and the body temperature returned to
normal. Transient CRS was detected after intratumor injection,
with a 10-fold increase in IL-6 and an approximately 60%
increase in TNF-a (105). This study also confirmed that the
side effects produced by MUC1-IL-12-CAR-T cells can be
tolerated by the body. More clinical trials are needed to test
the potential cytotoxicity of gene-edited interleukin-CAR-T cells
before they can be widely used in the clinic.
DISCUSSION

Adoptive immunotherapy based onCAR-T cells has proved to be a
promising strategy for the treatment of hematological malignant
tumor. However, this clinical success has not been fully realized in
solid tumors largely because of the hostile TME of solid tumors.
Tumor immunosuppressive microenvironments limit the
proliferation and persistence of CAR-T cells, and often impair the
anti-tumor efficacy of CAR-T cells. Immunoregulatory cytokines,
whichare critical componentsofTcell activation, proliferation (10).
Interleukin plays different roles in tumor immunity. They regulate
the activation, proliferation and apoptosis of T cells, but also recruit
peripheral immune cells to participate in tumor immunity. In the
absence of these factors, even if the selected target is very good,
CAR-T cells will not produce a complete and lasting killing effect on
the tumor. Therefore, the above cytokines are used as cytokines for
gene modification of CAR structures, and preclinical studies have
also demonstrated that modified CAR-T cells can further enhance
the efficacy of CAR-T cells by secreting cytokines.

In addition, the present study demonstrated that partial
interleukin not only improves the function of CAR-T cells, but
also engages the host peripheral immune cells to participate in the
anti-tumor battle (79, 83, 100). This finding is critical because the
current clinical use of CAR-T cell technology requires that host
lymphatic clearance protocols provide adequate space for CAR-T.
The current preclinical trial demonstrates that gene-edited
interleukin-CAR-T cells can eliminate this step (79). This leads to
the possibility that, on the one hand, the clinical treatment of the
patient alleviates the pain of chemotherapy, and on the other hand,
the anticancer activity of these immune cells can be utilized by
genetically modifying IL secreted by CAR-T.

The CAR-T immunotherapy of genetically modified cytokines
also faces the problem of dose limiting toxicity.When cytokines are
produced in large quantities and corresponding receptors are
reduced in the tumor microenvironment, peripheral tolerance is
increased. Studies have demonstrated that genetically modified T
cells lead to overexpression of the IL-7 receptor, thereby enhancing
the antitumor activity of genetically modified IL-7 CAR-T and
reducing the dose limiting toxicity (112). This may be one of the
reasons why there aremany studies onCAR-T co-expression of IL-
7 at present. In response to this challenge, researchers developed
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CAR-T cells that genetically edited the interleukin-cell receptor and
interleukin-subunit, which can effectively limit the over release of
cytokines and prevent the development of CRS. However, the
treatment of malignancies with gene-edited single interleukin
CAR-T cells may also present problems of immune tolerance or
cytokine inactivation. Therefore, the researchers began to gene-
edited multiple cytokines to construct CAR-T cells, enabling the
cytokines to enhance the synergistic action of CAR-T cells to kill
tumor cells.

Gene-edited ICR CAR-T cells were developed to further
enhance their antitumor activity while overcoming tumor
immunosuppressor factors. The 4/7 ICR and 4/21 ICR CAR-T
cell technologies rely on inhibitory regulatory cytokines to activate
positive regulatory cytokines to perform immune regulatory
functions. It can effectively reverse the inhibitory cytokine signal
to the positive regulatory signal. Thus, CAR-T can better adapt to
the tumor immunosuppressive microenvironment. However, the
activation of ICR is limited by the expression of inhibitory factors in
tumor tissues, and it is difficult to activate ICRonce tumor tissues do
not express targeted inhibitory cytokines. If combined with gene-
edited interleukin and ICR to construct CAR-T cells, it may achieve
the purpose of reversing the inhibitory signal and enhancing the
positive signal. This may be an effective strategy for gene-edited
interleukin-CAR T cells to conquer solid tumors. At present, there
are a few studies in this area, andmorepreclinical studies areneeded
to verify its efficacy.

Currently, studies related to gene-edited interleukin CAR-T
have achieved some results, but there is still a long way to go
before it can be fully used in clinical trials. First, cytokines such as
interleukin not only act on CAR-T cells, but also act on other
immune cells, such as recruiting peripheral immune cells to
participate in tumor immunity. However, it is difficult to achieve
in immunocompromised mice, as part of the current pre-clinical
trials are in vivo studies using immunocompromised mice.
Secondly, the clinical treatment of gene-edited interleukin CAR-T
has the possibility of CRS, because overstimulation of interleukin
release, when tumor tissue receptor density cannot be satisfied, will
inevitably increase the load of peripheral circulation. All the above
need to be verifiedby further clinical studies. At present,most of the
relevant clinical trials are in recruitment, and someof themhavenot
been started yet. It is hoped that the relevant clinical research will
achieve gratifying results.
CONCLUSIONS

In summary, as immune regulatory factors, interleukin family
members exert important functions in the activation and
functional regulation of immune cells. In published preclinical
and clinical studies, gene-edited interleukin CAR-T has been
shown to enhance tumor killing in the treatment of malignancies
with tolerable side effects. With the development of gene-edited
technology and the development of researches on the interleukin
family, gene-edited interleukin CAR-T technology in the
treatment of malignant tumors will be able to achieve
encouraging results.
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Intratumoral IL-12 Delivery Empowers CAR-T Cell Immunotherapy in a
Pre-Clinical Model of Glioblastoma. Nat Commun (2021) 12(1):444. doi:
10.1038/s41467-020-20599-x

101. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, et al.
Effects of Single-Dose Interleukin-12 Exposure on Interleukin-12-Associated
Toxicity and Interferon-Gamma Production. Blood (1997) 90(7):2541–8. doi:
10.1182/blood.V90.7.2541

102. Cohen J. IL-12 Deaths: Explanation and a Puzzle. Science (New York NY)
(1995) 270(5238):908. doi: 10.1126/science.270.5238.908a

103. KoneruM, PurdonTJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 Secreting Tumor-
Targeted Chimeric Antigen Receptor T Cells Eradicate Ovarian Tumors In Vivo.
Oncoimmunology (2015) 4(3):e994446. doi: 10.4161/2162402X.2014.994446

104. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, et al.
Local Delivery of interleukin-12 Using T Cells Targeting VEGF Receptor-2
Eradicates Multiple Vascularized Tumors in Mice. Clin Cancer Res (2012) 18
(6):1672–83. doi: 10.1158/1078-0432.CCR-11-3050

105. You F, Jiang L, Zhang B, Lu Q, Zhou Q, Liao X, et al. Phase 1 Clinical Trial
Demonstrated That MUC1 Positive Metastatic Seminal Vesicle Cancer can
be Effectively Eradicated by Modified Anti-MUC1 Chimeric Antigen
Receptor Transduced T Cells. Sci China Life Sci (2016) 59(4):386–97. doi:
10.1007/s11427-016-5024-7

106. Marks-Konczalik J, Dubois S, Losi JM, Yamada N, Feigenbaum L,
Waldmann TA, et al. Il-2-Induced Activation-Induced Cell Death Is
Inhibited in IL-15 Transgenic Mice. Proc Natl Acad Sci USA (2000) 97
(21):11445–50. doi: 10.1073/pnas.200363097

107. Feng J, Xu H, Cinquina A, Wu Z, Chen Q, Zhang P, et al. Treatment of
Aggressive T Cell Lymphoblastic Lymphoma/Leukemia Using Anti-CD5 Car T
Cells. Stem Cell Rev Rep (2021) 17(2):652–61. doi: 10.1007/s12015-020-10092-9

108. Chmielewski M, Abken H. Car T Cells Releasing Il-18 Convert to T-Bet(high)
Foxo1(Low)EffectorsThatExhibitAugmentedActivityAgainstAdvanced Solid
Tumors. Cell Rep (2017) 21(11):3205–19. doi: 10.1016/j.celrep.2017.11.063

109. Du L, Nai Y, ShenM, Li T, Huang J, Han X, et al. IL-21 Optimizes the CAR-T
Cell Preparation Through Improving Lentivirus Mediated Transfection
Efficiency of T Cells and Enhancing Car-T Cell Cytotoxic Activities. Front
Mol Biosci (2021) 8:675179. doi: 10.3389/fmolb.2021.675179

110. Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-Il12
Engineered Mesenchymal Stem Cells (Mscs) Improve A Car T Cell Attack
July 2021 | Volume 12 | Article 718686

https://doi.org/10.1038/s41389-020-00249-z
https://doi.org/10.1038/s41389-020-00249-z
https://doi.org/10.4049/jimmunol.1203141
https://doi.org/10.1038/nbt.4086
https://doi.org/10.3390/cancers12071969
https://doi.org/10.1111/liv.14771
https://doi.org/10.1155/2020/4795171
https://doi.org/10.1002/cam4.2361
https://doi.org/10.1016/j.omto.2017.12.003
https://doi.org/10.4049/jimmunol.1800033
https://doi.org/10.1038/s41598-017-10940-8
https://doi.org/10.1073/pnas.1610544113
https://doi.org/10.1084/jem.20192203
https://doi.org/10.1016/j.celrep.2017.09.002
https://doi.org/10.3389/fimmu.2019.01691
https://doi.org/10.1016/j.jcyt.2020.08.005
https://doi.org/10.1158/2326-6066.CIR-19-0293
https://doi.org/10.1038/s41587-019-0398-2
https://doi.org/10.1186/s12967-019-02206-w
https://doi.org/10.1016/j.ymthe.2016.10.016
https://doi.org/10.1084/jem.174.6.1511
https://doi.org/10.1038/nri2580
https://doi.org/10.1007/s13238-019-0643-y
https://doi.org/10.1182/blood-2014-01-552174
https://doi.org/10.1158/2159-8290.CD-17-0538
https://doi.org/10.1038/nri1001
https://doi.org/10.1038/cdd.2014.134
https://doi.org/10.1007/978-3-642-80071-9_5
https://doi.org/10.1111/j.1749-6632.1996.tb52677.x
https://doi.org/10.1038/s41467-020-20599-x
https://doi.org/10.1182/blood.V90.7.2541
https://doi.org/10.1126/science.270.5238.908a
https://doi.org/10.4161/2162402X.2014.994446
https://doi.org/10.1158/1078-0432.CCR-11-3050
https://doi.org/10.1007/s11427-016-5024-7
https://doi.org/10.1073/pnas.200363097
https://doi.org/10.1007/s12015-020-10092-9
https://doi.org/10.1016/j.celrep.2017.11.063
https://doi.org/10.3389/fmolb.2021.675179
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Gene-Edited Interleukin CAR-T Cells Therapy
Against Colorectal Cancer Cells. Cells (2020) 9(4):873. doi: 10.3390/
cells9040873

111. Leen AM, Sukumaran S, Watanabe N, Mohammed S, Keirnan J, Yanagisawa
R, et al. Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine
Receptor. Mol Ther (2014) 22(6):1211–20. doi: 10.1038/mt.2014.47

112. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL.
Adjuvant IL-7 or IL-15 Overcomes Immunodominance and Improves
Survival of the CD8+ Memory Cell Pool. J Clin Invest (2005) 115(5):1177–
87. doi: 10.1172/JCI200523134

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Frontiers in Immunology | www.frontiersin.org 1320
Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhang, Miao, Ren, Tang and Li. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
July 2021 | Volume 12 | Article 718686

https://doi.org/10.3390/cells9040873
https://doi.org/10.3390/cells9040873
https://doi.org/10.1038/mt.2014.47
https://doi.org/10.1172/JCI200523134
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Massimo Fantini,

Precision Biologics, Inc., United States

Reviewed by:
Luis De La Cruz-Merino,

Virgen Macarena University Hospital,
Spain

Nick Barlev,
Institute of Cytology (RAS), Russia

*Correspondence:
Emil Bulatov

chembio.kazan@gmail.com

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 10 May 2021
Accepted: 26 July 2021

Published: 13 August 2021

Citation:
Chasov V, Zaripov M,

Mirgayazova R, Khadiullina R,
Zmievskaya E, Ganeeva I, Valiullina A,

Rizvanov A and Bulatov E (2021)
Promising New Tools for Targeting
p53 Mutant Cancers: Humoral and

Cell-Based Immunotherapies.
Front. Immunol. 12:707734.

doi: 10.3389/fimmu.2021.707734

REVIEW
published: 13 August 2021

doi: 10.3389/fimmu.2021.707734
Promising New Tools for Targeting
p53 Mutant Cancers: Humoral and
Cell-Based Immunotherapies
Vitaly Chasov1, Mikhail Zaripov2, Regina Mirgayazova1, Raniya Khadiullina1,
Ekaterina Zmievskaya1, Irina Ganeeva1, Aigul Valiullina1, Albert Rizvanov1

and Emil Bulatov1,3*

1 Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 2 Institute of Theoretical and
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Transcription factor and oncosuppressor protein p53 is considered as one of the most
promising molecular targets that remains a high-hanging fruit in cancer therapy. TP53
gene encoding the p53 protein is known to be the most frequently mutated gene in human
cancers. The loss of transcriptional functions caused by mutations in p53 protein leads to
deactivation of intrinsic tumor suppressive responses associated with wild-type (WT) p53
and acquisition of new pro-oncogenic properties such as enhanced cell proliferation,
metastasis and chemoresistance. Hotspot mutations of p53 are often immunogenic and
elicit intratumoral T cell responses to mutant p53 neoantigens, thus suggesting this
protein as an attractive candidate for targeted anti-cancer immunotherapies. In this review
we discuss the possible use of p53 antigens as molecular targets in immunotherapy,
including the application of T cell receptor mimic (TCRm) monoclonal antibodies (mAbs) as
a novel powerful approach.

Keywords: p53, mutation, neoantigen, T cell, T cell receptor, T cell receptor mimic antibody, immunotherapy,
combined therapy
Abbreviations: ACT, adoptive cell therapy; ADC, antibody drug conjugate; ADCC, antibody-dependent cell-mediated
cytotoxicity; APC, antigen-presenting cell; BiKE, bispecific killer cell engager antibody; BiTE, bispecific T cell engager; BsAb,
bispecific antibody; CAR, chimeric antigen receptor; CRISPR, clustered regularly interspaced short palindromic repeats;
DART, dual affinity retargeting antibody; DBD, DNA binding domain; DC, dendritic cell; ECM, extracellular matrix; ERAP1,
endoplasmic reticulum aminopeptidase 1; HC, heavy chain; HLA, human leukocyte antigen Ig, immunoglobulin; IL-2,
interleukin 2; mAb, monoclonal antibody MDM2, murine double minute 2; MAC, membrane attack antibody; MHC, major
histocompatibility complex; NK, natural killer; NKG2D, natural killer group 2 member D; PBL, peripheral blood lymphocyte;
PBMC, peripheral blood mononuclear cell; REP, rapid expansion phase; scFv, single-chain variable fragment; SV40, simian
virus 40; TAA, tumor-associated antigen; TCR, T cell receptor; TCRm, T cell receptor mimic; TIL, tumor-infiltrating
lymphocyte; TLR, toll-like receptor; TME, tumor microenvironment; TMG, tandem minigene; TriKE, trispecific killer cell
engager antibody; TSA, tumor-specific antigen.
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INTRODUCTION

The tumor suppressor p53 is a protein that performs its cellular
functions through transcriptional regulation of genes involved in
DNA repair, senescence and apoptosis. The p53 protein is widely
known as the “guardian of the genome” that prevents the
propagation of cells harboring genetic aberrations, e.g.
mutations. TP53 gene encoding p53 protein is arguably the
most frequently altered gene in human cancer (1). The loss of
wild-type (WT) p53 functions is the primary outcome of TP53
mutations that deprives cells of intrinsic tumor suppressive
responses, such as senescence and apoptosis. The intracellular
p53 level is tightly regulated by its negative regulator murine
double minute 2 (MDM2) ubiquitin ligase, primarily through
ubiquitination followed by proteasomal degradation. In most
human cancers p53 is deactivated either due to loss-of-function
mutations or because of the overexpression of MDM2.

The p53 protein is known to trigger immune-related cellular
mechanisms and evidence from studying the humoral immune
responses in cancer patients testifies that both WT and mutant p53
neoepitopes are recognized by the immune system (2). Recent data
revealed that p53 hotspot mutations are immunogenic and elicit
intratumoral T cell responses to a range of neoantigens, thus
suggesting this protein as an attractive target for anticancer
immunotherapies (3).

Antibody-based therapy targets tumor-specific and tumor-
associated antigens (TAAs) expressed on the cell surface.
However, the majority of such TAAs are localized within the
cell which makes them not amenable for such therapies.
Intracellular proteins are proteolytically processed by the
proteasome to yield 8 to 11 amino acid-long fragments in the
cytosol. These peptides are bound in the groove of major
histocompatibility complex (MHC) class I molecules, also called
human leukocyte antigen (HLA), and presented on the cell
surface as peptide/HLA complexes, which enables their
recognition by T cell receptors (TCRs) of the T cells. However,
the use of soluble TCR domains as therapeutic agents has been
hindered by their inherent low affinity and instability as
recombinant molecules (4, 5). To this end, T cell receptor
mimic (TCRm) antibodies (Abs) recognizing epitopes similar to
peptide/HLA complexes have been developed (6–8).

In this review, we discuss the role of p53 (both WT and
mutant) in modulation of the immune response during tumor
development and its recruitment as a target antigen in
immunotherapy, including the novel promising approaches
based on TCRm Abs.
RESPONSE OF p53 TO IMMUNE
SIGNALING

The discovery of p53 in 1979 in association with simian virus 40
(SV40) large T antigen uncovered the crucial role of the protein
in viral etiology and immunology of cancer. The joint efforts of
the scientific community revealed p53 as the multifaceted
Frontiers in Immunology | www.frontiersin.org 222
molecular actor and resulted in an avalanche of published
articles with over 12 000 entries in Pubmed (9).

The p53 protein is an essential component of the innate
immune response mediating clearance of damaged cells and
defense against external influence (10). The mechanisms of
p53 activity involve regulation of the immune landscape by
modulating inflammation, senescence and immunity in the
surrounding tumor microenvironment (TME), including
tumor stroma, extracellular matrix (ECM) and associated
immune cells infiltrate (11).

Some immune-associated cellular mechanisms triggered by
p53 become dysfunctional when the protein is mutated, and can
result in enhanced neoangiogenesis and ECM remodeling,
disruption of innate tumor immunity, genotoxic stress
response of the toll-like receptor (TLR) pathway, formation of
pro-tumor macrophage signature and altered cell-mediated
immunity in cancer (12).

Dysfunction of p53 is also associated with the development of
autoimmune diseases and often involves overexpression of the
Foxp3 gene in Treg cells (regulatory subpopulation of T cells).
TCR signaling was reported to induce upregulation of p53 and
downstream transcription activation of Foxp3 which contributed to
p53-mediated Treg cell induction in mice (13).

Cooperation of signals regulating with expression of p53 and
induction of natural killer group 2 member D (NKG2D) ligand
in tumor cells was associated with their predisposition for
immune evasion (14). Additionally, p53 regulates the
expression of NKG2D ligands ULBP1 and ULBP2, either
positively as a transcriptional target or negatively through the
upregulation of miR-34a (11). An important immune checkpoint
molecule attenuating the immune response programmed cell
death ligand 1 (PD-L1 or CD274) was also found to be regulated
by p53. Specifically, p53 modulates the tumor immune response
by regulating the expression of miR34, which directly binds to
the 3′ untranslated region of the PD-L1 encoding gene (15).

The p53 was also shown to regulate toll-like receptor (TLR)
innate immunity genes altering the immune system in response
to the DNA stress in cancer cells (16). The human TLR family
consists of ten members that regulate adaptor proteins, kinases
and effector transcription factors that ultimately induce
expression of pro-inflammatory mediators such as cytokines,
chemokines and interferons. Targeting of TLR3 and TLR9 by
p53 activates their expression and initiates apoptosis (17).

Additionally, p53 regulates endogenous antigen presentation
through transcriptional control of aminopeptidase ERAP1 and
peptide transporter TAP1. Antigen presentation by MHC class I
and class II proteins plays a pivotal role in the adaptive branch of the
immune system. Both MHC classes share the task of presenting
neoantigen peptides on the cell surface for recognition by T cells.
Prior to presentation, peptides are processed from cell’s own
endogenous proteins or from exogenous proteins uptaken into
the endo-lysosomal system (Figure 1). MHCI-associated peptides
are generated by proteasomal proteolysis and their translocation
into the endoplasmic reticulum requires both TAP1 and TAP2. The
p53-driven activation of TAP1 in response to DNA damage
increases the pMHCI levels on tumor cells (18). Whereas ERAP1
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detaches oligopeptides from the proteasome to ensure their correct
length (usually 8-10 amino acids) for MHCI loading
(Figure 2) (19).
ADOPTIVE T CELL-BASED
IMMUNOTHERAPY

Human cancer is often accompanied by genetic mutations,
especially in TP53, with each patient carrying their own set of
mutations resulting in neoantigen-specific T cell responses. This
knowledge can be utilized to develop personalized therapies
depending on the tumor genetic profile (20). One of the main
treatment modalities within cancer immunotherapy is the adoptive
cell therapy (ACT) approach based on autologous or allogeneic
tumor-specific cytotoxic T cells. Within the paradigm of this
therapeutic approach the cell product is infused into cancer
patients with the goal of locating, recognizing and destroying
tumor cells (21). Tumor-infiltrating lymphocytes (TILs) represent
the oldest branch of ACT, the so-called “blind” approach that
includes cultivation, expansion and subsequent transfusion of TILs
without their prior selection. Initially TILs are isolated from
homogenized tumor tissues or sentinel lymph nodes, then
cultured with IL-2 in the presence of tumor lysate as an antigen
Frontiers in Immunology | www.frontiersin.org 323
source and gamma irradiated peripheral blood mononuclear cells
(PBMCs) as feeder cells (22). Finally, following the rapid expansion
phase (REP) TILs suspension could be infused back into the patient
as an autologous cell therapy (23). Adoptive immunotherapy also
involves the use of tumor vaccines made from autologous or
allogeneic antigen-presenting cells (e.g. dendritic cells) containing
private neoepitopes of tumor-associated antigens (24). One of the
most prominent and promising examples of ACT is the chimeric
antigen receptor (CAR) T cell immunotherapy for the treatment of
hematologic B cell malignancies (25, 26).

Neoplastic tumor growth resulting from accumulation of
genomic alterations is controlled by the immune system. The
mutations often result in translation of abnormal proteins that
may be further processed into new immunogenic T cell epitopes
(i.e. neoantigens) and serve as potential targets for the T cell
based therapies. Neoantigens are short peptides presented on the
surface of tumor cells by the pMHC complex. Patient’s own
peripheral T cells or TILs may be used as a cell source for the
antigen-specific expansion or could be transduced with the
artificial TCR specific to the neoantigen of choice. HLA
encoding genes are highly variable between individuals and
were suggested to a primary role in determining the cancer
susceptibility (27). Recent data suggested that the HLA affinity to
neoantigen peptides may differ significantly depending on the
mutation status unrelated to genotype variation and couldn’t be
A B

FIGURE 1 | Antigen presentation by MHCI and MHCII complexes. (A) Presentation of exogenous antigen to CD4+ T cell by MHCII after lysosomal protein
processing. (B) Presentation of endogenous antigen (endogenous mutant protein or exogenous protein, e.g. viral protein) to CD8+ T cell by MHCI.
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directly correlated with the immunogenic properties of those
neoantigens (28). The issue of neoantigen prediction,
identification, and characterization based on genome
sequencing data remains unresolved and requires significant
efforts at technical and bioinformatic levels.
MUTANT p53 AS AN ANTIGEN IN CANCER
IMMUNOTHERAPY

The TP53 gene, encoding the p53 tumor suppressor protein, is the
most commonly mutated gene in human cancer. Involvement of
mutant p53 in malignant inflammation associated with immune
dysfunction and the ability of adaptive immune system to
respond to mutations in p53 makes this protein an appropriate
target for cancer immunotherapy (29). TP53 missense mutations
in pancreatic ductal adenocarcinoma (PDAC) cells were found to
increase the extent of fibrosis and reduce the infiltration of
cytotoxic CD8+ T cells (30). The inhibition of mutant p53
functions may potentially sensitize PDAC tumors to anticancer
treatments, including immunotherapy, therefore reduced
Frontiers in Immunology | www.frontiersin.org 424
infiltration of CD8+ T cells may augment the ability of PDAC
tumors to evade the immune system.

Recent data suggest that mutant p53 peptides serve as suitable
neoantigens for both CD4+ and CD8+ TCRs (3). The authors
employed a high-throughput approach to generate a tandem
minigene (TMG) library containing TP53 mutations that was
used to electroporate immature dendritic cells for subsequent co-
culturing with TILs. This allowed identification of TILs
populations reactive to the mutations frequently occurring at
certain p53 hotspots (31). Peripheral blood lymphocytes (PBLs)
were isolated from lung cancer patients with mutant p53
(R175H, Y220C, R248W) tumors by sorting antigen-
experienced CD4+ and CD8+ T cells. The T cells were then
stimulated with mutant p53 peptides in vitro to validate the
recognition and specificity of the immune response. As a result,
T cells with mutant p53-specific TCRs were confirmed to
recognize naturally processed p53 neoepitopes in vitro. The
same research group demonstrated specific T cell responses to
TP53 “hotspot” mutation neoantigens (Y220C, G245S) in
patients with metastatic ovarian cancer (32).

Two molecular features often distinguish tumors with mutant
p53: overexpression of this otherwise tightly regulated protein
FIGURE 2 | Regulation of immune system functions by p53 protein in tumor cells. The p53 protein is involved in the presentation of endogenous peptides through
regulation of TAP1 and ERAP1. In addition, p53 regulates the expression of NKG2D ligands ULBP1 and ULBP2, as well as inhibition of expression PD-L1 ligand
through miR-34 microRNA precursor family.
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and neo-epitope mutations (33, 34). Processed mutant p53
proteins get exposed on the surface of malignant cells as
pMHC for immunosurveillance by T cells.

According to the recent data the hepatocellular carcinoma
patients carrying TP53 neoantigens were associated with better
prognosis, higher CD8+ lymphocyte infiltration and enhanced
immune cytolytic activity (35). Therefore TP53 neoantigens may
affect survival prognosis by regulating anti-tumor immunity and
may be considered as promising targets for hepatocellular
carcinoma immunotherapy.

The relationship between the tumor mutation burden (TMB),
including TP53 mutations, and clinical relevance was analyzed
using the expression data of 546 head and neck squamous cell
carcinoma (HNSCC) patients from the Cancer Genome Atlas
database (36). The immune-related genes prognostic model was
created indicating that high TMB was associated with worse
prognosis in HNSCC patients. In addition, macrophages, CD8+
and CD4+ T cells appeared to be the most commonly infiltrated
subtypes of immune cells in HNSCC.

The mutant p53-derived peptides have been employed as
targets in various immunotherapy strategies some of which are
currently in clinical trials (Table 1), including anti-cancer
vaccines and soluble recombinant TCRs. For example, ALT-
801, a biologic drug composed of interleukin-2 (IL-2) genetically
fused to a soluble humanized TCR specific to a p53-derived
antigen, is currently in phase II clinical trials in combination with
gemcitabine (bladder cancer) and cisplatin (metastatic
melanoma) (37, 38).
THERAPEUTIC MONOCLONAL
ANTIBODIES

B and T cells are two classes of lymphocytes playing a key role in
the adaptive immune response. Antibodies produced by B cells
are usually specific to cell surface or soluble antigens and are
Frontiers in Immunology | www.frontiersin.org 525
unable to penetrate intracellular environment. TCRs recognize
target neoantigens in the form of a peptide presented on MHCI
or MHCII. The peptides presented on MHCI are normally
proteolytic fragments of endogenously processed proteins
originating from the cells displaying the pMHCI complex,
whereas the peptides on pMHCII usually originate from
extracellular proteins taken up and processed by the pMHC-
displaying cell through a variety of mechanisms (Figure 1) (39).

The specificity and versatility of antibodies has positioned them
as highly valuable tools for biological research and various medical
applications, including diagnostics and therapy (40). Antibodies and
TCRs have high affinities for their pMHC targets in nanomolar and
micromolar ranges, respectively (41). Therapeutic monoclonal
antibody-based therapy is more flexible and versatile than
adoptive T cell-based immunotherapy, since antibodies do not
need to be individually tailor-made for each patient and therefore
are more accessible at a much lower cost. Antibody therapy also
allows easier dosage control and adjusted treatment regimens
depending on the patient’s response. Multiple antibody-based
drugs such as rituximab, bevacizumab, trastuzumab have proven
exceptional utility for cancer therapy (42).

About 50% of all human cancers possess p53 mutations most
of which are missense and localized in the DNA-binding domain
(DBD) of the protein (1). Most of the mutant p53 proteins are
unable to bind DNA and transactivate expression of downstream
genes such as MDM2 which in turn regulates the p53 levels
through the autoregulatory loop, thereby resulting in increased
levels of the mutant p53 protein in tumor cells (43). Elevated p53
levels can trigger an immune response and cause the production
of antibodies (Abs) which appears to be an early event in some
cancers (44).

Antibodies against p53 protein have been detected in
approximately 17% cases of breast cancer in women (45). In
total about 30% of individuals with various cancers were
estimated to have detectable anti-p53 Abs (46). High levels of
anti-p53 Abs have been detected in patients with premalignant
and malignant lesions, and this parameter could be used as a
TABLE 1 | The list of clinical stage therapies targeting p53 mutant cancers.

Target (Diagnosis) Therapy National clinical
trial number

Number of
patients

Transduced cells/vector Phase

p53-derived peptides in the context of HLA-A2
(Metastatic melanoma)

ALT-801 (IL-2 genetically fused to a
humanized soluble TCR), Cisplatin

NCT01029873 25 II

p53-derived peptides in the context of HLA-A2
(Non-muscle invasive bladder cancer)

ALT-801, Gemcitabine NCT01625260 52 II

(Metastatic Breast Cancer Malignant
Melanoma)

DC vaccine NCT00978913 31 DCs transfected with mRNA
encoding Survivin, hTERT and p53

I

(Head and Neck Squamous Cell Carcinoma
Lymphoma)

Recombinant human p53 adenovirus
(Ad-p53) with anti-PD-1/anti-PD-L1

NCT03544723 40 Ad-p53 II

(Metastatic breast cancer with mutated p53) Ad-p53-DC тvaccine, 1-methyl-d-
tryptophan

NCT01042535 44 Ad-p53 transduced DCs II

(Lung Cancer) Ad-p53-DC vaccine, Nivolumab,
Ipilimumab

NCT03406715 14 Ad-p53 transduced DCs II

(Kidney Cancer) (Melanoma) Anti-p53 TCR PBLs, Ad-p53-DC
vaccine, Aldesleukin

NCT00704938 3 Anti-p53 TCR- transduced PBLs
Ad-p53 transduced DCs

II

(Melanoma with p53 overexpression) Anti-p53 TCR NCT00393029 12 Anti-p53 TCR- transduced PBLs II
(Fallopian Tube Carcinoma) (Ovarian
Carcinoma) (Peritoneal Carcinoma)

p53-MVA (modified vaccinia Ankara),
Pembrolizumab

NCT03113487 28 II
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biological marker for early cancer diagnostics (47). Additionally,
detection of anti-p53 Abs in saliva has also been reported
providing an easier and non-invasive prognostics approach (48).

The anti-p53 Abs usually recognize immunodominant
epitopes at both termini of p53, although this is not where the
missense mutations are normally located (49). Most of these Abs
do not recognize the DBD region where missense mutations
often occur and therefore are unable to specifically distinguish
between WT and mutant forms of the protein.
BISPECIFIC ANTIBODIES

Bispecific antibodies (BsAbs) represent a class of monoclonal
Abs capable of simultaneous binding two antigens. A subtype of
BsAbs called bispecific T cell engagers (BiTEs) has been
developed to simultaneously bind tumor-expressed antigens
(e.g. BCMA, CD19) and CD3 on T cells (50). The BiTE-
mediated interaction of tumor cell with cytotoxic T cell
activates proliferation of the latter, thereby increasing the
overall number of effector T cells and strengthening the lysis of
malignant tumor cells. BiTEs were demonstrated to form such
cytolytic synapse with CD8 T cells in a manner independent
from MHCI expression on tumor cells (51).

The BiTE binding domains are represented by two single-
chain variable fragment (scFv) regions of monoclonal antibodies
joined by a flexible peptide linker. One scFv binding domain can
be modified to target the surface antigen of interest, while the
other domain is always specific to CD3 of TCR. Blinatumomab
was the first BiTE approved by the US Food and Drug
Administration to treat acute lymphoblastic leukemia (52).

Multiple varieties of the BiTE approach were also developed
to diversify the landscape of targeted therapies. These include
dual affinity retargeting antibodies (DARTs), as well as bi- and
tri-specific killer cell engager antibodies (BiKEs and TriKEs)
(51). DARTs use a diabody backbone with the addition of a C-
terminal disulfide bridge for improved stabilization. When
compared to their equivalent BiTEs CD19-specific DARTs
yielded a stronger B cell lysis and T cell-activation (53). BiKEs
utilize the innate immune system by harnessing natural killer
(NK) cells via CD16. Similar to BiKEs, TriKEs consist of a
bispecific antibody that recognizes CD16 on NK cells and CD33
on myeloid cancer cells, and in addition they also contain a
modified human IL-15 crosslinker (54).
TCR MIMIC ANTIBODIES AS AN
INNOVATIVE CLASS OF THERAPEUTICS

A novel class of antibodies binding pMHC often referred to as
TCR mimic (TCRm) or TCR-like antibodies represent a highly
promising therapeutic modality against cancers associated with
mutant p53 (55). In contrast to therapeutic Abs that usually bind
soluble or cell surface antigens, the TCRm Abs provide a
complementary strategy by effectively targeting the pMHC
complexes that present the processed target neoantigen
Frontiers in Immunology | www.frontiersin.org 626
peptides. In recent years multiple TCRm Abs have been
developed to target various tumor antigen epitopes in the
context of MHC (56, 57). In addition, TCRm Abs have also
been explored as candidates for delivery of antibody drug
conjugates (ADCs) since pMHC-TCRm Ab complexes can be
effectively internalized (58).
TCR MIMIC ANTIBODIES IN CANCER
IMMUNOTHERAPY

The cell surface abundance of pMHC complexes for efficient
presentation of neoantigens is often a topic of debate (8, 59–61).
In general, mAbs are widely used to treat a wide range of
diseases, whereas TCRm Abs have not yet been approved for
the therapeutic use. This might be a consequence of low-
throughput generation of new candidates and their insufficient
initial quality that requires laborious downstream refinement.

The development and production of high-affinity, antigen-
specific TCRm Abs is highly complex and requires substantial
efforts for setting up the manufacturing processes. Provided
rather limited number of dominant HLA alleles within a
particular ethnic group targeting the p53 (mutant or WT)
associated pMHC ligandome leads to an assumption that this
therapeutic approach could be implemented as a finite set of the
«off-the-shelf» products.

One of the key starting points is selection of the correct
antigens (immunogens) that is exposed on the cell surface as
pMHCI. Therefore, histocompatible cells expressing such
antigens can be used both as immunogens in hybridoma
technologies (murine, rat, rabbit) and as a source of antigens
for screening the antibody producers.

The APCs can be programmed for expression of pMHC using
vector-based approaches (62, 63) or modern CRISPR-based
genome-editing techniques (64, 65). Off- target toxicity issues
may be resolved by testing in humanized animal models or using
cell reprogramming tools to generate different types of tissues for
using them as antigen-bearing surrogates or organoids (66).
Other options include commercial specificity screening
platforms such as developed by Retrogenix Ltd (United
Kingdom) for receptor identification, target deconvolution and
off-target profiling (67).

Approaches based on TCRmAbs can be broadly grouped into
two major categories depending on the antibody isotype: 1)
strategies utilizing classical, soluble antibodies, e.g. for
delivering a cytotoxic payload or Fc-mediated recruitment of
effector cells or other functional molecules; 2) strategies utilizing
redirection of cytotoxic cells (e.g. T or NK cells) or their
cooperation with APCs (Figure 3). The first category TCRm
Abs upon binding to pMHCI initiate assembly of the membrane
attack complex (MAC), antibody-dependent cell-mediated
cytotoxicity (ADCC) or even trigger the apoptosis. The second
category TCRm Abs can be engineered to additionally express
CARs that combine intracellular TCR signaling domains and
extracellular Fv regions of the antibodies to confer target
specificity. CARs are formed by single-chain variable fragments
August 2021 | Volume 12 | Article 707734
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(scFv) capable of redirecting T cells to specifically recognize
target antigens and lyse cancer cells. CARs do not directly
compete with native TCRs, instead they provide supportive co-
stimulation of the cytotoxic signaling cascades. The combination
of CAR-T cell therapy with TCR-like antibodies might
significantly increase the overall therapeutic potential of
this approach.

Alternatively, cytotoxic T cells can be recruited indirectly via
heterodimeric molecules such as bispecific T cell engagers
(BiTEs) that have specificity for pMHC of the target cells and
CD3 of T or NK cells. Recent studies reported encouraging data
on using this type of immunotherapy against p53-mutant
tumors. TCRm Abs specific to pMHC presenting WT and
mutant p53 antigens have demonstrated encouraging anti-
tumor effects both in vitro and in vivo in animal models (55, 68).

An interesting example of the BiTE approach is based on
bispecific TCRm Ab that recognizes cancer cells expressing the
Frontiers in Immunology | www.frontiersin.org 727
p53(R175H) neoantigen (61). One domain of this antibody
recruits TCR and the other binds the pMHC presenting the
mutant p53 antigen. In mouse models of multiple myeloma, the
BiTEs effectively stimulated T cells to destroy cancer cells bearing
mutant p53 without affecting the normal cells with WT p53.
Even when the p53 target was presented on the surface of the
tumor cells at “extremely low” levels the BiTEs were still able to
activate specific T cell-mediated antitumor response. Thus, the
employment of TCRm Abs could be potentially useful to target
cancers with somatic p53 mutations in addition to other
approaches (69).

TCRm Abs were also reported to be designed as bispecific
antibodies in single-chain diabody format that demonstrated
substantial specificity towards cancer cells expressing
neoantigens of the mutant Ras protein (G12V and Q61H/L/R)
in mouse models (70). The authors suggested that many TCRm
Abs grafted into an optimized BiTE format might be capable of
FIGURE 3 | Two strategies employed by TCR mimic antibodies against cancer cells with mutant p53. First strategy: (A) classical soluble antibodies for binding to
pMHC to induce direct apoptosis or targeted destruction of the tumor cell; (B) antibody drug conjugates (ADCs) such as effector molecules, cytokines, toxins or
radioactive substances that are coupled to the antibody and upon binding to pMHC result in tumor cell death. Second strategy: (A) anti-pMHC CAR to redirect T
cells to recognize and lyse tumor cells via the scFv fragment derived from a TCR mimic antibody; (B) bispecific molecules that bridge cytotoxic T or NK cells with
pMHC of the antigen-presenting tumor cell using of the scFv fragment of a TCR mimic antibody; (C) similar to B but employs dimeric bispecific T cell-engaging
tandem scFv antibodies.
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specifically recognizing and destroying cancer cells bearing low
levels of the cognate antigens. This could be a highly attractive
approach even compared to CAR-T cell therapy that typically
requires up to a few thousands of antigen molecules on a single
tumor cell for efficient recognition and cytolysis. Worth noting
that as opposed to the conceptually preceding TCR approach the
TCRm Ab affinity may reach picomolar levels when developed
using animal hybridoma technology.

In addition to the above mentioned, CAR-T cell therapy
requires a complex and time consuming manufacturing process
which significantly limits its broad availability, whereas TCRm
Abs if approved are expected to be much more affordable.
Another complication of CAR-T cell therapy is the
requirement for lymphodepletion prior the infusion (71). As
opposed to CAR-T cell therapy, TCRm Ab was not developed to
be a personalized treatment. Instead, TCRm Ab therapies link
endogenous T cells to tumor-expressed antigens and activate the
cytotoxic potential of a patient’s own T cells to eliminate cancer.
Also, compared to cell-based immunotherapies antibodies
appear much more widely applicable owing to the simplicity of
application, reproducibility of results and scalability for mass
production. Finally, TCRm Abs can be designed to target both
tumor-associated antigens (TAAs) and tumor-specific antigens
(TSAs) which fit well with the character of p53 expression in the
majority of tumors.

In many cases p53 mutations were associated with significant
overexpression of immune checkpoint proteins, such as PD-1,
which suggests these types of tumors might be amenable for
anti–PD-1/PD-L1 immunotherapy in addition to others
approaches (72).
CONCLUSION

The p53 protein is an important part of the innate immune and
anti-tumor responses. Mutations of p53 often result in loss of its
transcriptional activity and therefore inability to regulate anti-tumor
and immunomodulatory responses. The peptide neoantigens from a
proteolytically processedmutant p53 protein are presented by APCs
to B and T cells to activate the immune response. Novel cell-based
and humoral immunotherapies will offer previously unavailable
Frontiers in Immunology | www.frontiersin.org 828
levels of medical precision in targeting specific types of tumors.
Adoptive T cell-based immunotherapies such as TILs, CAR-T or
TCR-T cells may be applied for the treatment of a wide range of
tumors. Genome-wide screenings will assist the identification of
multiple mutant p53 neoantigens amenable for therapeutic
targeting. However, it is important to keep in mind that
transgenic TCRs require careful testing for potentially toxic cross-
reactivity and might need additional modifications to prevent
mispairing with cognate TCRs.

Expanding the target repertoire of therapeutic antibodies to a
broad variety of pMHC complexes will offer opportunities for the
development of new anticancer strategies and improved
treatments. TCR-mimic antibodies can transform the fine
cellular specificity of the T cell recognition machinery into a
flexible immunotherapeutic approach that fits well in the
growing field of personalized medicine. The vast plethora of
potential targets represented by a range of mutant p53
neoantigens within the context of the pMHC complexes
suggests that TCR-mimic antibodies will find an important
place as highly promising immunotherapeutics.
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Hepatocellular carcinoma is one of the most common malignancies globally. It not only
has a hidden onset but also progresses rapidly. Most HCC patients are already in the
advanced stage of cancer when they are diagnosed, and have even lost the opportunity
for surgical treatment. As an inflammation-related tumor, the immunosuppressive
microenvironment of HCC can promote immune tolerance through a variety of
mechanisms. Immunotherapy can activate tumor-specific immune responses, which
brings a new hope for the treatment of HCC. At the present time, main immunotherapy
strategies of HCC include immune checkpoint inhibitors, tumor vaccines, adoptive cell
therapy, and so on. This article reviews the application and research progress of immune
checkpoint inhibitors, tumor vaccines, and adoptive cell therapy in the treatment of HCC.

Keywords: hepatocellular carcinoma, immunotherapy, immune checkpoint inhibitors, tumor vaccines, adoptive
cell therapy
INTRODUCTION

Primary liver cancer is one of the common malignant tumors, and its main pathological type is
hepatocellular carcinoma (HCC). According to the 2018 cancer statistics of the World Health
Organization, the incidence of liver cancer ranks 6th and the mortality rate ranks 4th among the
most common cancers in the world (stomach cancer ranks third with a slight advantage) (1).
The latest cancer statistics in 2020 show that the incidence of liver cancer still ranks sixth among the
most common cancers in the world, but its mortality rate has risen from the fourth to the third
(significantly exceeding the mortality rate of stomach cancer) (2) The traditional treatment mainly
includes surgery, radiotherapy, chemotherapy, radiofrequency ablation (RFA), intervention, and
targeted therapy. Multidisciplinary comprehensive treatment is an effective treatment strategy for
prolonging the survival time of patients with HCC. However, the current 5-year survival rate of
HCC patients after surgery is only about 36.9% (3), and the 5-year recurrence rate is as high as 70%
(4). This is closely related to its tumor microenvironment. HCC is a typical inflammatory-related
tumor. Its microenvironment contains a large number of macrophages, innate immune cells, and
adaptive immune cells, forming a complex immune tolerance microenvironment (5, 6). Besides, the
liver itself is a special immune-tolerant organ that can effectively escape the immune response (7). In
recent years, immunotherapy has gradually become an important treatment for HCC. Tumor
immunotherapy can enhance the immune response of the body, stimulate tumor-specific immunity,
reactivate immune cells, and finally achieve the purpose of anti-tumor. Common tumor
immunotherapy includes immune checkpoint inhibitors, tumor vaccines, and adoptive cell
therapy. This paper reviews the application and research progress of immune checkpoint
August 2021 | Volume 11 | Article 699060131
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inhibitors, tumor vaccines, and adoptive cell therapy in the
treatment of HCC. It aims to provide some references for
clinicians in the treatment of HCC.
IMMUNOSUPPRESSIVE MECHANISMS
AND IMMUNE ESCAPE IN HCC

The liver has a complex immune microenvironment. The liver is
continuously exposed to various antigens passing through the
portal vein, especially those from intestinal tract. Therefore, the
liver microenvironment continues to show immune tolerance,
which is to inhibit inappropriate inflammatory reaction and
prevent autoimmune liver injury (8, 9). The specific immune
system of HCC and tumor cells constitute a special immune
tolerance microenvironment, which can protect tumor cells from
the attack of their own immune system and promote the immune
escape of tumor cells (10). The immunosuppressive mechanism
of HCC is not completely clear at present, which may be related
to the following mechanisms:

a. The occurrence and progression of HCC are usually
accompanied by chronic inflammation (e.g. viral hepatitis B
and C) and chronic disease (e.g. liver cirrhosis). Under the
action of long-term inflammation, many inhibitory cytokines
(e.g. IL-10, IL-35 and TGF-b) are constantly produced, and a
large number of immunosuppressive cells, such as regulatory
T cells (Tregs), M2 macrophages, and myeloid-derived
suppressor cells (MDSCs), are recruited into the liver (11).
Furthermore, some immunosuppressive cells of the liver itself
are activated or normal cells are transformed into
immunosuppressive cells (10). These inhibitory cytokines
and immunosuppressive cel ls together form the
immunosuppressive microenvironment of HCC (11).

b. Immunosuppressive cells in tumor tissue can promote HCC
tolerance (12, 13). Tumor-associated monocytes, for example,
can significantly increase the glycolysis level in the area
around the tumor. Activation of glycolysis induced these
cells to express PD-L1 (through NF-kB signaling pathway)
and decreased the function of cytotoxic T lymphocyte (13).

c. Tumor-associated macrophages (TAMs), as one of the key
components constituting the immunosuppressive
microenvironment of HCC, not only cannot eliminate
tumor cells, instead will promote tumor growth (14, 15).

d. HCC cells can release some cytokines, such as 14-3-3z, which
can destroy the activation, proliferation and anti-tumor
function of tumor-infiltrating T lymphocytes (TILs) (16).
Beyond that, overexpression of 14-3-3z can also
differentiate naive T cells from effector T cells to Tregs (16).

e. The expression of immune checkpoints in HCC tissues is
increased (5, 17, 18). The combination of immune
checkpoints and their respective ligands will inhibit the
activation and proliferation of T cells.

f. Activation or alteration of some genes and signaling pathways
may promote immune escape in HCC (19). For example,
activation of b-Catenin (20) or mutation of CTNNB1 (21)
may promote immune escape in HCC.
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g. Epithelial-to-mesenchymal-transition (EMT) can induce the up-
regulation of PD-L1, PD-L2, CD73 and B7-H3; and reversing
EMT can inhibit the expression of these markers (22).

In response to these mechanisms, some corresponding measures
can be taken to block, inhibit or reverse these mechanisms. For
instance, measures can be taken to neutralize inhibitory cytokines or
prevent their production. Yang et al. (23) found that reducing the
level of IL-35 could reduce the metastasis of HCC and improve
overall survival (OS) of HCC patients. HCC patients with high
expression of PD-1/PD-L1 can be treated with corresponding
immune checkpoint inhibitors (ICIs). Combination therapy based
on PD-1/PD-L1 inhibitors can promote the response of antigen-
specific CD8+ T cells in HCC (24). For TAMs, some special methods
(for example, modulatory miRNA methods and immune checkpoint
blockade) can be used to repolarize TAMs to the anti-HCC
phenotypes (25). For the moment, these coping strategies mostly
stay in theoretical and preclinical studies.With the rapid development
of tumor immunotherapy, it has gradually become one of the
important methods for the treatment of HCC in recent years.
These immunotherapy mainly include ICIs, tumor vaccines and
adoptive cell therapy, especially ICIs are used more frequently.pt?>
POSSIBLE RESISTANCE MECHANISMS
RELATED TO THE IMMUNOTHERAPY
OF HCC

In recent years, unprecedented progress has been made in tumor
immunotherapy. Drugs, therapies and strategies related to tumor
immunotherapy are also emerging one after another. Nevertheless,
the low response rate and the consequent resistance problem have
greatly limited the efficacy of immunotherapy (26). These
mechanisms of immunotherapy resistance can be divided into the
intrinsic mechanisms and the extrinsic mechanisms. The intrinsic
mechanisms include (27, 28): a. The activation of MAPK signaling
pathway leads to the production of VEGF and IL-8 (inhibiting the
recruitment and function of effector T cells) (29); b. Loss of PTEN
expression leads to enhancement of PI3K signaling pathway, which is
negatively correlated with gene expression of IFNg and CD8+ T cell
infiltration (30, 31); c. The continuous activation of WNT/b-catenin
signaling pathway hinders the homing of T cells (32); d. Up-
regulation of PD-L1 expression on the surface of tumor cells
inhibits the anti-tumor effect of effector T cells; e. Decreased
antigen presentation ability (33); f. Decreased T cell function. The
extrinsic mechanisms include (27, 28): a. The inhibition of
immunosuppressive cells in tumor microenvironment; b. There are
other immune checkpoints on the surface of T cells, which will inhibit
the function of T cells; c. The influence of gut microbiome (34).
THE IMMUNOTHERAPY OF HCC

ICIs (Immune Checkpoint Inhibitors)
ICI is one of the most rapidly developing immunotherapy
strategies nowadays. Immune checkpoints are membrane-
August 2021 | Volume 11 | Article 699060
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bound molecules that can be expressed not only on the surface of
many tumor cells but also on the surface of numerous immune
cells (35). These immune checkpoints prevent and inhibit the
activation of these cells through a physiological break (27).
Immune checkpoints and costimulatory molecules are located
on the surface of T cells, but their functions are opposite.
Costimulatory molecules can provide activation signals
(Figure 1A), while immune checkpoints provide inhibitory
signals. When immune checkpoints bind to the ligands on the
surface of tumor cells, the inhibitory signals transmitted from
tumor cells can inhibit the activation and proliferation of T cells.
The anti-tumor mechanism of ICIs is that they can block
immune checkpoints or their ligands, thereby blocking the
transmission of inhibitory signals to T cells (Figure 1B). The
activation and proliferation of T cells with high expression of
programmed cell death 1 (PD-1) are decreased; tumor cells with
high expression of programmed cell death 1 ligand 1 (PD-L1)/
programmed cell death 1 ligand 2 (PD-L2) are more likely to
escape (36). Researchers analyzed 956 HCC samples and found
that about 25% of the samples expressed high levels of PD-1 and
PD-L1 (20). Common immune checkpoints include PD-1/PD-
L1, cytotoxic T-lymphocyte antigen-4 (CTLA-4), T cell
immunoglobulin-3 (TIM3), and Lymphocyte Activation
Gene-3 (LAG3). For now, PD-1/PD-L1 and CTLA-4 are the
most widely used.
Frontiers in Oncology | www.frontiersin.org 333
PD-1/PD-L1 Inhibitors
PD-1 is a type I transmembrane glycoprotein expressed on the
surface of most immune cells. These immune cells mainly
include T cells, NK cells, regulatory cell (Treg), and myeloid-
derived suppressor cell (MDSC) (37, 38). The main function of
PD-1 is to negatively regulate the immune response. PD-L1 is the
ligand of PD-1, which is mainly located on the surface of tumor
cells. When PD-1 on the surface of T cells is combined with PD-
L1 on the surface of tumor cells, tumor cells will transmit
immunosuppressive signals to T cells. These inhibitory signals
will inhibit the function of T cells and lead to T cell failure.
Currently, the common PD-1 inhibitors include Nivolumab and
Pembrolizumab, which are all-human IgG4 monoclonal
antibodies. Common PD-L1 inhibitors include Durvalumab
and Atezolizumab, which are IgG1 monoclonal antibodies.

In 2017, the United States Food and Drug Administration
(FDA) approved Nivolumab for the treatment of HCC (39). In
one clinical trial (40), 262 patients with advanced HCC received
Nivolumab dose escalation and dose extension therapy. These
patients included HCC patients who had previously received
sorafenib or had not received sorafenib. For newly-treated
patients who did not receive sorafenib, the objective response
rate (ORR) after receiving nivolumab monotherapy was 20%~23%,
and the media survival time was as long as 28.6 months; after
receiving nivolumab monotherapy in patients who had received
FIGURE 1 | Costimulatory molecules and Immune checkpoints. (A) After the costimulatory molecules on the surface of T cells bind to their ligands (located on the
surface of the APC), activation signals can be generated, which can promote the activation and proliferation of T cells; the combination of CTLA-4 and B7 produces
an inhibitory signals. (B) After the immune checkpoints on the surface of T cells bind to their ligands (located on the surface of tumor cells), inhibitory signals can be
generated, which can inhibit T cell activation and proliferation. ICIs can block immune checkpoints or their ligands, thereby blocking the transmission of inhibitory
signals to T cells.
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sorafenib, the ORR was 16%~19%, and the median survival time
could reach 15.6 months (40). Another clinical trial showed that
compared with sorafenib, patients receiving nivolumab did not
achieve the expected overall survival (OS), but the OS rate, objective
response rate (ORR), and complete remission (CR) rate were
significantly improved (41).

Pembrolizumab is a humanized IgG4/kappa monoclonal
antibody against IgG4/K, which can directly inhibit the
binding of PD-1 to PD-L1. A phase II clinical trial in 2018
showed that 104 patients with HCC who were intolerant or still
progressing after receiving sorafenib treatment were treated with
Pembrolizumab (42). The results showed that the objective
remission rate was 17%, 1% of the patients achieved complete
remission, 44% of the patients were in stable condition, and 33%
of the patients had disease progression.

For HCC patients, the high expression of PD-L1 is associated
with lower tumor differentiation, a higher level of AFP, more
frequent vascular invasion, and worse prognosis (43). PD-L1
inhibitors include Durvalumab and Atezolizumab. Atezolizumab
has been used in the treatment of non-small cell lung cancer and
triple-negative breast cancer. Presently, these inhibitors are in the
evaluation stage of advanced HCC clinical trials.

CTLA-4 Inhibitors
CTLA-4 is a type of protein receptor located on the surface of T
cells. CTLA-4 and CD28 receptors have two ligands in common:
CD 80 and CD 86. Compared with CD28, CTLA-4 has a higher
affinity with both ligands. CTLA-4-CD80 has the highest affinity,
while CD28-CD86 has the lowest affinity (44, 45). CTLA-4 can
compete with CD 28 for ligand binding, leading to a decrease in
the co-stimulatory effect of CD 28 on T cells, and ultimately
inhibiting T cell function (46). HCC is sensitive to CTLA-4
inhibitors (47). CTLA-4 inhibitors that have been approved by
the FDA include Ipilimumab and Tremelimumab, etc. A phase II
clinical trial showed that 20 patients with diagnosed advanced
HCC were treated with Tremelimumab, ORR was 17%, disease
remission rate (DCR) was 76.4%, and median progress free
survival (PFS) was 6.48 months (48).
Frontiers in Oncology | www.frontiersin.org 434
Combination Therapy of PD-1/PD-L1 Inhibitors and
CTLA-4 Inhibitors
PD-1/PD-L1 and CTLA-4 pathways are different in negatively
regulating immune activity, but their complementary effects are
the same (47, 49). Blocking PD-1 or CTLA-4 can promote cell
activation and proliferation, and alleviate immunosuppression
mediated by Treg cells (50). Some pre-clinical studies of solid
tumors showed that, compared with monotherapy, the
combination of PD-1 inhibitor and CTLA-4 inhibitor could
produce synergistic effects and enhance their anti-tumor
activity (51). The Results of The CheckMate 040 Randomized
Clinical Trial in 2020 showed that the ORR and DCR of
Nivolumab combined with Ipilimumab in the treatment of
advanced HCC were 32% and 27%, respectively (47). This
study proved that the combination of two immunosuppressants
might have a better therapeutic effect and was also safe for HCC
patients. Furthermore, increasing the dose of Ipilimumab might
improve the persistent response and prolonged the survival time
of patients with advanced HCC. The NCT02519348 study (52)
also showed that the combination of tremelimumab and
durvalumab was more effective than single drug [ORR: 22.7%
VS (7.2% and 9.6%)] and had an encouraging safety. ICIs can also
be combined with other treatment strategies, these strategies
include locoregional treatments, antiangiogenetic therapy,
chemotherapy, the mammalian target of rapamycin inhibitor,
etc. (53).

Immune checkpoint inhibitors represented by anti-PD-1/PD-
L1 and anti-CTLA-4 antibodies have shown good results in the
clinical treatment of HCC, providing a new treatment method
for HCC patients (Table 1). Nevertheless, the safety, efficacy, and
prognosis of the combination of 2 ICIs still require extensive
clinical studies to verify.

ICIs Combined With Other Therapies for HCC
Although ICIs have achieved certain clinical efficacy, it is
necessary to adopt some combination strategies to further
improve its efficacy due to the limited response rate of
monotherapy. These strategies include combined molecular
TABLE 1 | Partial research results of ICIs for HCC.

Medicine Time Case Test Phase OS (month) Median PFS (month) ORR (%) DCR (%) Trial Registration

Anti-PD-1
Nivolumab 2017 214 I/II 15.1 4 20 64 NCT01658878 (40)
Nivolumab 2021 49 I/II NO NO 12 55 NCT01658878 (54)
Pembrolizumab 2018 104 II 12.9 4.9 17 62 NCT02702414 (42)
(Pembrolizumab/placebo) 2020 278/135 III 13.9/10.6 3.0/2.8 18.3/4.4 62.2/53.3 NCT02702401 (55)
Camrelizumab 2020 217 II 13.8 2.1 14.7 44.2 NCT02989922 (56)
Anti-PD-L1
Durvalumab 2019 39 I/II 13.2 2.7 10.3 33 NCT01693562 (57)
Anti-CTLA-4
Tremelimumab 2013 20 II 8.2 6.5 17.6 76.4 NCT01008358 (48)
Anti-PD-1/PD-L1 + Anti-CTLA-4
(Nivolumab + Ipilimumab) 2020 148 I/II NO NO 32 27 NCT01658878 (47)
(Durvalumab + Tremelimumab) 2020 332 III NO NO 22.7 NO NCT02519348 (52)
(Ipilimumab + Nivolumab/pembrolizumab) 2021 25 I NO NO 16 40 N.F. (58)
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OS, overall survival; PFS, progression-free survival; ORR, objective remission rate; DCR, disease control rate.
N.F., related information not found.
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targeted drugs, combined chemotherapy, combined
radiotherapy, combined TACE and combined ablation.

ICIs Combined With Molecular Targeted Drugs
Molecular targeted therapy is to block or inhibit the key genes or
signal pathways in the process of tumor occurrence and
development at the molecular level, and finally achieve the
purpose of anti-tumor. Sorafenib, a multiple tyrosine kinase
inhibitor (TKI), is the first molecular targeted drug approved
for the treatment of advanced HCC. TKI mainly achieves the
purpose of anti-tumor by inhibiting the tyrosine kinases of
several growth factor receptors. It has been proven that
sorafenib can only prolong the survival time of HCC patients
by several months. Consequently, it is necessary to develop a
combined therapy to further improve the clinical efficacy.

Lavatinib, a TKI, has become the first-line treatment for
advanced HCC. Finn et al. (59) combined Pembrolizumab
(PD-1 inhibitor) with lenvatinib (a multikinase inhibitor) to
treat unresectable HCC (uHCC). Test results were evaluated with
modified Response Evaluation Criteria In Solid Tumors
(mRECIST). The results showed that ORR was 46%, DCR was
88%, median PFS was 9.3 months, median DOR was 8.6 months,
and median OS was 22 months. In addition, 67% of patients had
treatment-related adverse events (≥Grade 3). The experiment
conclusion: Lenvatinib + Pembrolizumab had a good anti-tumor
activity against uHCC, and its safety was acceptable. The study
by Llovet et al. (60) also showed that Lenvatinib +
Pembrolizumab had an encouraging effect for uHCC patients.

In another phase III clinical trial of ICIs combined with
targeted drugs to treat uHCC, Finn et al. (61) enrolled a total of
501 uHCC patients. The experimental group (336) was treated
with Atezolizumab (PD-L1 inhibitor) + Bevacizumab (anti-
angiogenesis); the control group (165) was treated with
Sorafenib monotherapy. The experimental results (mRECIST)
showed that OS and PFS of the experimental group were
significantly better than those of the control group, and the
incidence of adverse events between the two groups had no
significant difference (98.2% VS 98.7%). Currently, Atezolizumab+
Bevacizumab has become the first-line treatment for patients with
advanced HCC (62). ICIs combined with molecularly targeted
drugs may have a synergistic effect (63, 64) and have promising
prospects in the treatment of advanced HCC. These synergistic
effects include (65): a. Targeted drugs themselves have anti-tumor
effects; b. Targeted drugs can improve DC (dendritic cell) activation
and immune cell infiltration; c. Targeted drugs can block the PD-1/
PD-L1 pathway; d. Combination therapy can affect Wnt/b-catenin
activated mutations.

ICIs Combined With Chemotherapy
Although ICIs are effective in the treatment of many
immunogenic tumors, for those cold tumors, ICIs are
ineffective in most cases (66). Chemotherapy drugs can inhibit
or kill tumor cells, and the destroyed tumor cells can release
tumor-related antigens, which can stimulate the body to produce
an immune response. Besides, chemotherapy can also consume
immunosuppressive cells (such as MDSCs and Tregs) to reduce
or rel ieve the immunosuppress ive effect of tumor
Frontiers in Oncology | www.frontiersin.org 535
microenvironment (TME) (67). In the past, chemotherapy was
considered to have only immunosuppressive effects, but recently,
some new viewpoints suggest that chemotherapy may also have
immunostimulatory effects (66) and participate in the active
regulation of the immune system (which can transform cold
tumors into hot tumors) (68). In a phase II clinical trial
evaluating Camrelizumab+FOLFOX4 in the treatment of
advanced HCC (69), the researchers included 34 patients with
advanced HCC. The experimental results (RECIST) showed that
ORR was 26.5%, DCR was 79.4%, and median PFS was 5.5
months. Meanwhile, this combination therapy is tolerable for
patients with advanced HCC. ICIs + chemotherapy may provide
a promising option for the treatment of patients with
advanced HCC.

ICIs Combined With Radiotherapy (RT)
As one of the most important cancer treatment methods, the
basic principle of RT is to use high-energy particles to induce
DNA damage in tumor cells, which eventually leads to tumor cell
death. In recent years, it has been found that RT can not only kill
tumor cells directly, but also induce immune-related anti-tumor
responses (70). The mechanism mainly includes: a. RT can
induce tumor cell death to release large amounts of tumor-
associated antigens. These antigens can stimulate the body to
produce an immune response; b. RT can up-regulate the
expression of major histocompatibility complex class I (MHC-I)
molecules, allowing CD8+ T cells to recognize and kill tumor cells
(71); c. RT can increase the number of tumor-infiltrating
lymphocytes (TILs) in tumor tissue (70); d. RT can improve the
immunogenicity of tumor cells, and at the same time, it can also
cause immunosuppression. The study of Chew et al. (72) showed
that RT could increase the expression of PD-1 and Tim-3 on the
surface of CD8+ T cells. Apart from that, RT can also increase the
expression of PD-L1 on the surface of tumor cells (73, 74). The role
of ICIs is to block these immune checkpoints. Accordingly, the
combination of ICIs and RT can produce synergistic effects (70, 75).
One preclinical study by Kim et al. (74) showed that compared with
anti-PD-L1 therapy or RT alone, the combination of the two
methods can significantly improve the anti-tumor ability and the
survival rate. Chiang et al. (76) treated 5 uHCC patients with
stereotactic body radiotherapy (SBRT) + Nivolumab. The
experimental results showed that ORR could reach 100%, 2
patients got complete remission (CR), 3 patients got part
remission (PR), and mPFS reached 14.9 months. Additionally,
only 1 patient had ≥3 Grade adverse reactions. For now, there are
few clinical trial data about ICIs combined with RT in the treatment
of HCC. The best combination therapy for HCC still needs to
be explored.

ICIs Combined With Transarterial Chemoembolization
(TACE)
TACE was first proposed and applied in clinic in 1977. TACE
belongs to palliative treatment, and in most cases it cannot
achieve radical cure. Its mechanism of action is to deliver
chemotherapeutic drugs to the hepatic artery to embolize the
artery, causing ischemic necrosis of tumor tissue; in the
meanwhile, chemotherapeutic drugs also play an anti-tumor
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effect. Due to the rich blood supply of the liver, the portal vein
will still supply blood to the tumor tissue after the artery is
embolized. As a result, patients with HCC who undergo TACE
tend to have a high rate of postoperative recurrence (77). In a
phase I clinical trial of ICIs combined with TACE in the
treatment of uHCC (78), a total of 9 uHCC patients received
Nivolumab + drug eluting bead transarterial chemoembolization
(deb-TACE). The results of the study showed that DCR reached
100% (PR was 22%, SD was 78%), and 12-month OS rate was
71%; as an aside, this combination therapy was safe and tolerable.
Another phase I clinical trial evaluating Pembromizumab
combined with TACE in the treatment of advanced HCC also
showed that Pembrolizumab+TACE had tolerable safety with no
synergistic toxicity (OS, PFS, ORR and DCR had not been
released yet) (79). Up to now, although there are few clinical
experimental data of ICIs+TACE in the treatment of HCC, its
future development prospect is promising.

ICIs Combined With Ablation
Tumor ablation is one of the main interventional treatments for
HCC. It mainly includes radiofrequency ablation (RFA), microwave
ablation (MWA) and cryoablation. Both RFA and WMA deliver
large amounts of energy to the tumor site, leading to local heating
and destroying tumor cells through thermal efficiency. Cryoablation
is to freeze tumor tissue at local low temperature, which induces
delayed necrosis of tumor cells after injury.

Ablation can also mediate immune regulation (80). The
mechanism may include: a. Tumor-associated antigens released
after death of tumor cells can activate adaptive immune cells
(81); b. Following RFA or MWA, large quantities of (Heat shock
proteins-70) HSP-70 are released in serum, which may lead to
local inflammation and activation of antigen-presenting cells
(APCs) in tumor area, thus inducing anti-tumor response (82).
c. RFA increases the infiltration of dendritic cells (DCs) in tumor
tissues and significantly enhances the response of CD4+ T cells
and CD8+ T cells (83). d. After receiving RFA locally, the
number of central memory lymphocytes increased remarkably
(84). e. After receiving RFA locally, the expression of inhibitory
cytokines decreased and the level of anti-tumor cytokines
Frontiers in Oncology | www.frontiersin.org 636
increased (81). At the present time, there are few studies about
the effect of MWA and cryoablation on tumor immunity of HCC
patients. The study of Leuchte et al. (85) showed that MWA can
enhance the tumor-specific immune response of HCC patients.
In a I/II clinical trial, a total of 32 patients with advanced HCC
received Tremelimumab + (RFA/chemoablation) (86). The
experimental results showed that 5 (26.3%) of the 19 evaluable
patients achieved PR; median time to tumor progression (TIP)
was 7.4 months; median OS was 12.3 months; 6-month tumor
PFS and 12-month tumor PFS were 57.1% and 33.1%,
respectively; and no dose limiting toxicity occurred in this trial.
As of now, there are few clinical experimental data about ICIs
combined with ablation in the treatment of advanced HCC, and
a large number of clinical experimental data are still needed to
explore the best combination scheme. ICIs and ablation have
different anti-tumor mechanisms, which may produce
synergistic effects in the combined treatment of tumors. In
conclusion, ICIs combined with other therapies is an effective
and potential treatment for HCC (Table 2).

Tumor Vaccines
The principle of tumor vaccines is to introduce tumor antigens
into patients in various forms, so as to overcome the
immunosuppression caused by tumor, enhance the
immunogenicity of tumor cells, activate the immune system of
patients, and eventually achieve the purpose of anti-tumor. For
the moment, tumor vaccines used for HCC treatment and
research mainly include nucleic acid vaccines, peptide vaccines,
oncolytic virus vaccines, and DC vaccines.

Nucleic Acid Vaccines
Nucleic acid vaccine refers to the recombination of a gene (DNA
or RNA) encoding a certain tumor antigen with a vector, and
then injecting it into the patient. After these nucleic acids enter
the host cells, the host cells can express the corresponding
polypeptides or proteins, thus inducing the body to produce an
immune response against these antigens (Figure 2A). DNA
vaccines are easy to manufacture, low cost, and stable.
Unfortunately, DNA cannot be amplified in transfected cells
TABLE 2 | Partial research results of ICIs combined with other therapies to treat HCC .

Medicine Time Case Test Phase OS (month) Median PFS (month) ORR (%) DCR (%) Trial Registration

Anti-PD-L1+ molecular targeted drugs
(Durvalumab + Ramucirumab) 2020 28 Ia/b 18 4.4 11 61 NCT02572687 (87)
(Atezolizumab + Bevacizumab/Sorafenib) 2020 336/165 III NO 6.8/4.3 27.3/11.9 73.6/55.3 NCT03434379 (61)
(Avelumab + axitinib) 2019 22 Ib NO 3.8 31.8 NO NCT03289533 (88)
(Lenvatinib + pembrolizumab) 2020 104 I 22 9.3 46 88 NCT03006926 (59)
(Lenvatinib + pembrolizumab) 2019 67 I NO NO 44.8 82.1 NCT03006926 (60)
Anti-PD-1+ molecular targeted drugs
(Sintilimab+ IBI305, high-dose/low-dose) 2020 21/29 Ib NO NO 33.3/24.1 83.3/N.F. NCT04072679 (89)
Anti-PD-1+ chemotherapy
(Camrelizumab+ FOLFOX4) 2019 34 II NO 5.5 26.5 79.4 NCT03092895 (69)
(Lenvatinib+ FOLFOX4) 2020 24 I NO NO 66.7 79.2 N.F. (90)
Anti-PD-1+ RT(Nivolumab+RT) 2019 5 I NO 14.9 100 100 N.F. (76)
Anti-PD-1+ TACE(Nivolumab+ deb-TACE) 2020 9 I NO NO 100 78 NCT03143270 (78)
August 202
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chemoembolization; RT, radiotherapy.
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like viral vectors. It needs to enter the nucleus to be translated
into the corresponding proteins. Moreover, it is not easily taken
up or expressed by DC cells, therefore, it cannot induce the body
to produce an effective immune response (91). Once the DNA is
integrated into the genome, there may be such a risk, that is,
causing the activation of oncogenes or the inactivation of tumor-
suppressor genes. In contrast, RNA vaccines are safer than DNA
vaccines. RNA can participate in the synthesis of protein only by
entering cytoplasm, but cannot be integrated into the genome.
The potential carcinogenicity is weaker. Nevertheless, the poor
stability and short half-life of RNA vaccine limit its clinical
application to a certain extent. Up until now there are few clinical
trials of nucleic acid vaccines for HCC, and most of them are still
in preclinical research stage.

Peptide Vaccines
Tumor antigen peptides are important components of peptide
vaccines. Tumor antigens must be degraded into short peptides
and form peptide-MHC-TCR complex in antigen-presenting
cells (APCs) to be recognized by T cells and stimulate the
Frontiers in Oncology | www.frontiersin.org 737
corresponding cytotoxic T lymphocyte (CTL) response. The
purpose of peptide vaccines is to deliver a high-dose tumor
antigen peptides to major histocompatibility complex (MHC)
molecules on the surface of APCs, so as to stimulate the specific
immune response of the body to tumor cells (Figure 2B).

There seem AFP peptide vaccine and GPC3 peptide vaccine
which are studied more frequently nowadays. Alpha-fetoprotein
(AFP) is one of the most common serum markers in the
diagnosis of HCC, and its high expression in hepatocellular
carcinoma cells makes it a promising target for vaccine-based
therapy (92). AFP peptide vaccine showed good anti-tumor
activity in the treatment of HCC (93, 94). One clinical research
of glypican-3 (GPC3) peptide vaccine in the treatment of HCC
patients revealed that GPC3 peptide vaccine had good tolerance
and anti-tumor effect, as well as could prolong the overall
survival time of patients (95). Although plenty of tumor
antigens have been found in liver cancer, only the vaccines
targeting AFP, GPC3 and MRP3 show good tolerance and
safety, and the specific T cell response rate of these vaccines
exceeds 70% (96).
FIGURE 2 | The preparation process and anti-tumor mechanism of tumor vaccines. (A) Nucleic acid vaccines. The gene (DNA or RNA) encoding a tumor antigen is
recombined with the vector and injected into the patient. DNA needs to enter the nucleus of the host cells, while RNA only needs to enter the cytoplasm of the host
cells to be translated into the corresponding proteins. These proteins are secreted out of cell, captured by APCs, and finally activate the human immune response to
this tumor antigen. (B) Peptide vaccines. High-dose tumor antigen peptides are delivered to the MHC molecules on APC surface, thus stimulating the specific
immune response of the body to this tumor antigen. (C) Oncolytic viruses(Ovs). OVs can be modified from HSV-1, RV, VV and OAd. OVs can infect tumor cells after
entering the body, and proliferate in large amounts in tumor cells, eventually leading to tumor cell lysis and death. Dead tumor cells release OVs virus and tumor
proteins. The released OVs virus can continue to infect other tumor cells. Tumor proteins can be captured by APCs and eventually activate the host immune
response. (D) DC vaccines. Monocytes are extracted from the blood of patients. These monocytes are induced to become Immature DCs under the stimulation of
IL-4 and GM-CSF. Then under the action of activation stimuli, the tumor antigens are loaded on the Mature DCs. Finally, these DCs loaded with tumor antigens are
injected into the body to cause the body to produce the immune response to tumor cells.
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Oncolytic Viruses(OVs)
Oncolytic viruses are a type of viruses that can effectively infect and
kill cancer cells. When the virus-infected cancer cells rupture and
die, the newly generated virus particles will be released to further
infect the surrounding cancer cells. Ovs can not only directly kill
tumor cells but also stimulate the immune response of the body and
enhance the anti-tumor effect (Figure 2C). Most Ovs are modified
from herpes simplex virus-1 (HSV-1), reovirus (RV), Vaccinia virus
(VV) and oncolytic adenovirus (OAd). OVs can be designed or
screened to selectively amplify and kill cancer cells in cancer cells.
They can play a role in the primary tumors, as well as in the
metastatic tumors (97). A general design principle is to weaken or
delete viral virulence factors, and prevent OVs from replicating in
normal cells by using tumor-specific distortion of signal pathway in
cancer cells, but they can still maintain replication and killing
activity in cancer cells (97). JX-59 (pexastimogene devacirepvec,
Pexa-Vec) is one of the most commonly used oncolytic viruses
(modified from VV) in HCC-related clinical trials. It can be
replicated preferentially in cancer cells. The results of one clinical
trial showed that it had good safety and could improve the overall
survival rate of patients with unresectable HCC (98). Phase I and II
clinical trials of advanced HCC related to JX-594 are ongoing (for
example, NCT 01636284 and NCT 03071094) at the present time.

DC Vaccines
Dendritic cells (DCs) are the most powerful antigen presenting
cells (APCs) so far. They are named because they mature with
many dendritic or pseudopod-like protrusions. DCs have the
function of immune response and immune tolerance, which is of
great significance for maintaining immune balance. There exit
many inhibitory cytokines in the tumor microenvironment.
These inhibitory cytokines can inhibit the normal function of
DCs and promote the escape of tumor cells (99). DC vaccine is
the focus of tumor immunotherapy in recent years. The principle
is to load tumor antigens on DCs, and then inject these DCs
loaded with tumor antigens into the body; these DC cells can
promote the proliferation of cytotoxic T lymphocytes (CTL) in
vivo, and ultimately play the role of anti-tumor (Figure 2D). In
terms of basic research and clinical application, DC vaccines
have shown the application prospects in tumor prevention and
tumor treatment (100, 101).

In the phase I and II clinical studies of the DC vaccines in the
treatment of patients with advanced HCC, the results showed
that the DC vaccines had the tumor-specific immune responses
in patients with advanced HCC (102, 103). In a phase II clinical
trial, 39 patients with advanced HCC received DC vaccine
treatment, of which 25 patients were evaluable with a disease
control rate (DCR) of 28% (102). Moreover, all the subjects had
no grade 3-4 adverse reactions. The results suggest that the DC
vaccine was effective and safe in patients with HCC. Another
study (104) showed that patients with HCC were treated with
transcatheter arterial embolization (TAE) or TAE combined with
DC vaccine, and the results showed that the combined treatment
group could more effectively enhance tumor-specific immune
response. However, there was no difference in tumor recurrence
rates between the two groups, which might be related to the
immunosuppressive microenvironment of HCC and the lack of
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specific HCC target antigens in DC vaccines. This may be related
to the immunosuppressive microenvironment of HCC and the
lack of specific HCC target antigens in current DC vaccines.
About 10% of tumor antigens have immunogenicity, and only a
few are tumor rejection antigens, which can trigger immune
responses and kill tumors. If these tumor rejection antigens can
be fully utilized when constructing DC vaccines, it may further
enhance the anti-tumor effect of DC vaccines.

It is also very important for DC vaccine to choose the
appropriate route of administration. Presently, the main routes
of administration include intravenous, subcutaneous and
intradermal routes. Optimizing the route of administration is
conducive to more effective vaccination. The intradermal route
of DC vaccination shows that the migration level of DCs to the
lymph nodes is very low; the ultrasound-guided intra-lymph
node vaccination of DC vaccines has the risk of injecting the
vaccine into fat rather than a cellular area (105). DCs may not be
able to reach the tumor site effectively. Therefore, DCs need to be
further improved to increase the ability to migrate to the tumor;
or change the way of receiving DC vaccines to increase the
number of DCs in tumors. For example, in situ DC vaccination,
that is, direct intratumoral inoculation of unloaded DCs
produced in vitro. The unloaded DCs can uptake a variety of
TAAs in the tumor, so there is no need to generate TAA vectors
in vivo and select specific targets (106). Furthermore, the
combination of in situ DC vaccine and immunogenic cell
death (ICD) inducer can further improve the antitumor effect
of DCs. Because ICD inducers can not only cause tumor cell
death and release TAAs but also increase the secretion of
damage-associated molecular patterns (DAMPs) that can
activate DCs (107–109).

DC vaccine is a safe and promising anti-tumor therapy (110).
Although DC vaccine as an independent therapeutic agent may
have limitations, combined with other treatments can improve
the effectiveness of treatment. Zhou et al. (111) found that
compared with advanced HCC patients who only received
sorafenib, dendritic cells and cytokine-induced killers (DC-
CIK) combined with sorafenib could increase the tumor
response rate and prolong OS of patients without increasing
the incidence of adverse events.

Adoptive Cell Therapy (ACT)
ACT is an immunotherapy based on the use of autoimmune cells
of cancer patients. The main process is to isolate the
immunocompetent cells in the tumor patient, modify these
immune cells or stimulate them with some cytokines. These
immune cells are amplified and screened in vitro, and then they
are returned to the patient. ATC achieves the purpose of anti-
tumor by enhancing the immune function of patients or
targeting to kill tumor cells. Commonly used ACT includes
natural killer (NK) cells, cytokine-induced killer (CIK) cells
and chimeric antigen receptor (CAR)-T cells, etc.

NK Cells
NK cells are one of the most important immune cells in human
innate immunity, which can produce non-specific immune
responses without being sensitized by antigens. The activation
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state of NK cells is determined by the dynamic balance of the
expression of inhibitory receptors and activated receptors on the
surface of NK cells. NK cells account for 30% ~ 50% of innate
immune cells in the liver (112), which are responsible for
presenting cytotoxic granules, secreting effector cytokines, and
cooperating with apoptotic receptors to induce apoptosis of
target cells.

NK cells in cancer patients are often in a state of functional
failure due to the immunosuppressive effect of the tumor
microenvironment (TME). If the failure state of these NK cells
can be reversed, it is possible to restore their anti-tumor effect.
One animal study (113) showed that Sirtuin2 (SIRT2) could
reactivate the anti-tumor activity of depleted NK cells in
hepatoma mice. SIRT2 could significantly promote the
production of cytokines and cytotoxic mediators by activated
NK cells. Similarly, NK cells overexpressing SIRT2 showed a
stronger antitumor effect on hepatoma cells. Consequently, it is
possible to improve the prognosis of HCC patients by adding NK
cells with anti-tumor activity to reshape the immune system of
the liver.

NK cells come from a wide range of sources, have a broad-
spectrum oncolytic effect, and are not restricted by MHC.
According to the source of NK cells, NK cell adoptive
immunotherapy can be divided into autologous NK cell
immunotherapy and allogeneic NK cell immunotherapy.
Autologous NK adoptive immune cells are obtained by
stimulating the in vitro expansion of CD56Birght NK cells in
peripheral monocytes with cytokines. NK cells in peripheral
blood can proliferate 140 times in a short time by stimulating
with some cytokines (114). Meanwhile, these amplified and
activated NK cells show strong anti-tumor effects in vitro and
in vivo (114). Nonetheless, the clinical efficacy of autologous NK
cells is not significant (115). The high expression of inhibitory
killer cell immunoglobulin-like receptor (KIR) on the surface of
tumor cells can inhibit NK cell functions after binding to NK
cells, which makes tumor cells prone to immune escape.
Allogeneic NK cells that do not match the KIR on the surface
of tumor cells have better clinical efficacy (116). One clinical
study showed that the use of allogeneic NK cells could improve
the immune function of HCC patients in a short period of time
(117). How to further improve the accuracy and persistence of
NK cells in the future is still the focus of research.

Cytokine-Induced Killer (CIK) Cells
CIK cells refers to the heterogeneous cell population mainly
consisting of CD3+CD8+ and CD3+CD56+, which are formed
by co-culturing peripheral blood mononuclear cells with
cytokines (such as IL-1, IL-2 and IFN-g). Its mechanism of
action is to directly kill tumor cells by releasing perforin and
granzyme, or indirectly by releasing a variety of cytokines.
Similarly, it can also induce tumor cell apoptosis by activating
apoptotic genes. CIK cells mainly include NK-like T lymphocytes
(NKT cells) and cytotoxic T lymphocytes. Among them, NKT
cells are the main effector cells that exert anti-tumor effects.

A retrospective study showed that CIK could significantly
improve OS of HCC patients (118). The results of another phase
III clinical trial showed that CIK cell therapy could prolong the
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progression-free survival (PFS) of HCC patients to 44 months
(119). The 5-year follow-up results showed that compared with
the control group, PFS and OS of HCC patients (receiving CIK
treatment group) were significantly prolonged (120). On the
contrary, some researchers believed that CIK therapy might not
significantly improve OS of HCC patients (121). Additionally,
the researchers found that CIK cells could increase the
infiltration of immunosuppressive cells in tumors, thus
inhibiting their anti-tumor activity (122). Although the long-
term curative effect of CIK cell therapy for HCC patients still
needs numerous clinical studies to prove, CIK cell therapy is still
a promising immunotherapy for HCC patients.

T Cell Receptor (TCR)-T Cell Therapy
TCR is a specific receptor on the surface of T cells. It activates T
cells by recognizing and binding antigens presented by MHC,
and ultimately promotes the differentiation and proliferation of
T cells. The principle of TCR-T cell therapy is to introduce TCR
genes that specifically recognize tumor antigens into patients’ T
cells by gene editing technology, so that these T cells can express
corresponding TCR on their surfaces. Then these TCR-T cells
are screened and amplified in vitro, and finally injected into
patients. TCR-T cell therapy can effectively identify and kill
tumor cells by enhancing the specific recognition ability of T cells
to tumor cells and improving the affinity of T lymphocytes to
tumor cells. Compared with CAR-T cells, TCR-T cells can not
only recognize antigens on the surface of tumor cells but also
intracellular antigens. Currently, some phase I and II clinical
trials exploring TCR-T cell treatment of HCC (for example,
NCT01967823, NCT03132792, NCT02719782, etc.) are
in progress.

(Chimeric Antigen Receptor) CAR-T Cell Therapy
In recent years, CAR-T cell therapy has become a research
hotspot in adoptive cell therapy. CAR is mainly composed of
four parts, including, single chain variable fragment (scFv); hinge
region; transmembrane region (TM); intracellular signal domain
(immunoreceptor tyrosine-based activation motif, ITAM). The
principle is to construct CAR genes that recognize tumor
antigens in vitro and combine them with vectors to form
recombinant plasmids. Then transfecting these plasmids into
patient T cells, which makes these T cells express the
corresponding CARs. These CAR-T cells are screened and
expanded in vitro, and finally returned to the patient. They can
target to kill the corresponding tumor cells after entering the
body. Compared with TCR-T cells, CAR-T cells do not require
antigen processing and MHC presentation.

Since it was put forward by CAR in 1989, it has developed
from the first generation to the fifth generation (Figure 3). The
intracellular domain of the first-generation CARs has only one
signal domain (CD3 z). Due to the lack of costimulatory
molecules, the CAR-T cells can recognize the corresponding
tumor cells, but the clinical effect is limited (123). The main
reason for this phenomenon is that the first-generation CAR-T
cells have poor persistence in the body, and the proliferation of
CAR-T cells is low, which eventually leads to CAR-T
cells apoptosis.
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The second-generation CARs add a costimulatory molecule
to the first-generation CARs, such as CD28, 4-1BB (CD137),
OX40 (CD134) or ICOS, etc. These costimulatory factors can
promote the proliferation of CAR-T cells, the secretion of
cytokines, and the secretion of anti-apoptotic proteins, thus
improving the persistence of CAR-T cells and their ability to
kill tumors. Among them, the CAR with CD 28 or 4-1 BB has a
stronger tumor-killing effect (124). Furthermore, compared with
CAR-T cells containing CD28, CAR-T cells containing 4-1BB are
more durable and may be more resistant to exhaustion
(125, 126).

The third-generation CARs contain two costimulatory
molecules, which further enhances the activation, proliferation
and persistence of T cells, and makes CAR-T cells have a stronger
tumor-killing effect. Moreover, the third-generation CARs that
contain both CD 28 and 4-1 BB can provide the strongest anti-
tumor effect (127).

The fourth-generation CARs, also known as “TRUCKs”, are
modified by adding nuclear factor of activated T cells (NFAT) on
the basis of the second or third-generation CARs. For example,
the most common NFAT is the cytokine IL-12. These fourth-
generation CAR-T cells (IL-12) can release IL-12 after being
activated, which can not only promote T cell activation and
regulate immunity, but also recruit other innate immune cells to
attack tumor cells (128–131). In order to reduce the toxicity
associated with CAR-T cells, some fourth-generation CARs have
Frontiers in Oncology | www.frontiersin.org 1040
added suicide genes. When necessary, the suicide gene system
can induce CAR-T cell death or shorten its lifespan (132, 133).

The fifth-generation of CARs, are also called “universal
CARs”. Theoretically, these CARs can target different tumor
antigens. In traditional CAR-T cell therapy, one type of CAR-T
cells can only target one kind of tumor surface antigens. In order
to improve the flexibility and controllability of CARs and expand
the scope of antigen recognition, the fifth-generation CAR
adopts a “third-party” intermediate system to separate the
antigen binding domain of CAR from its T cell signal unit
(131, 134, 135). These CAR-T cells can target different tumor
antigens to fight against tumor heterogeneity, and can also
improve their safety and reduce related toxicity during the
treatment of CAR-T cells (135). The common “Third-party”
intermediate systems are biotin-binding immune receptors
(BBIR) CAR (136) and programmable (SUPRA)CAR (137).

CAR-T cell therapy has made great achievements in the
treatment of hematologic malignancies. It also has great
potential in the treatment of solid tumors. One of the key
factors affecting the curative effect of CAR-T cells is the
selection of tumor surface antigens. CAR-T cells are designed
for one or more tumor antigens, so they can specifically identify
tumor cells expressing these tumor antigens. For CAR-T cells,
the best design scheme should be to use tumor-specific antigens
(TSAs) to design the corresponding CARs, because these CARs
are more targeted and can minimize off-target effects.
FIGURE 3 | The development of CARs. Frist Generation: scFv + TM + CD3z; Second Generation: scFv + TM + one costimulatory molecule + CD3z; Third
Generation: scFv + TM + two costimulatory molecule + CD3z; Fourth Generation: scFv + TM + one/two costimulatory molecule + NFAT + CD3z; Fifth Generation:
scFv+ intermediate system + one/two costimulatory molecule + CD3z.
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Unfortunately, there seem too few TSAs, and most of the
common targets are tumor-associated antigens (TAAs).
Currently, there are some therapeutic targets of CAR-T cells
for HCC research and treatment (some HCC-related CAR-T cell
therapy targets, Table 3). Among them, phosphatidylinositol
proteoglycan 3 (GPC3) is the most widely used. GPC3 is a
membrane protein located on the surface of tumor cells. GPC 3 is
highly expressed in HCC, which makes it an ideal target for HCC
treatment. GPC3-CAR-T cells can effectively kill GPC3+ liver
cancer cells, and their anti-tumor effect is proportional to the
expression level of GPC3 (149). Batra et al. (146) designed
GPC3-CAR-T cells that could co-express IL-15 and IL-21 to
treat HCC. These CAR-T cells had superior expansion and
persistence in vitro and in vivo, and the strongest anti-tumor
activity in vivo. However, some obstacles limit the efficacy of
CAR-T cells in the treatment of HCC. These obstacles include
the lack of specific targets, homing barriers of CAR-T cells,
inhibition of (TME), inhibition of immune checkpoints, etc.
With the breakthrough of these obstacles, HCC patients will
certainly get more benefits from CAR-T cell therapy.
PROSPECT AND SUMMARY

There remain various therapeutic methods for HCC, among
which immunotherapy is playing an increasingly important role.
The immunotherapy of HCC is in a rapid development stage.
ICIs, tumor vaccines and ACT have great prospects and potential
in the treatment of HCC. Combining different immunotherapy
Frontiers in Oncology | www.frontiersin.org 1141
or immunotherapy with conventional treatment methods may
produce synergistic effects (11). Nevertheless, the current clinical
application of immunotherapy is relatively single, and its
curative effect is limited. Consequently, it is necessary to
strengthen the research of combined treatment mode.
Immunotherapy, as an extremely promising therapy, brings
new dawn to HCC patients. In the future, immunotherapy
may become one of the mainstream methods of HCC.
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The Right Partner in Crime:
Unlocking the Potential of the
Anti-EGFR Antibody Cetuximab
via Combination With Natural
Killer Cell Chartering
Immunotherapeutic Strategies
Hasan Baysal1*†, Ines De Pauw1†, Hannah Zaryouh1†, Marc Peeters1,2†, Jan
Baptist Vermorken1,2†, Filip Lardon1†, Jorrit De Waele1†‡ and An Wouters1†‡

1 Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of
Antwerp, Antwerp, Belgium, 2 Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium

Cetuximab has an established role in the treatment of patients with recurrent/metastatic
colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-
term effectiveness of cetuximab has been limited by the development of acquired
resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term
tumor regression, but the overall response rates are much more limited. In addition to
epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells
to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is
an unmet need for the majority of patients that are treated with both monotherapy
cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies
suggests that targeted therapies can have synergistic antitumor effects through
combination with immunotherapy. However, further optimizations, aimed towards
illuminating the multifaceted interplay, are required to avoid toxicity and to achieve
better therapeutic effectiveness. The current review summarizes existing (pre-)clinical
evidence to provide a rationale supporting the use of combined cetuximab and
immunotherapy approaches in patients with different types of cancer.

Keywords: cetuximab, epidermal growth factor receptor (EGFR), natural killer cells (NK cells), combination therapy,
immunotherapy, antibody-mediated cellular cytotoxicity (ADCC)
INTRODUCTION

The field of cancer treatment has significantly advanced, driven primarily through an increased
characterization of the molecular biology, the microenvironment, and the involvement of the
immune system in several critical mechanisms of cancer. These advances have led to the
development and implementation of targeted and immunotherapies. Targeted therapies are
aimed at specifically inhibiting oncogenic signaling pathways that control tumor growth and/or
org September 2021 | Volume 12 | Article 737311146
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angiogenesis, whereas immunotherapies focus on (re)activating
the immune system. Today, both treatment modalities are at the
forefront of personalized medicine in cancer treatment.

Several major signaling pathways such as b-catenin, Wnt,
phosphatidylinositol 3-kinase (PI3K), and Mitogen-activated
protein kinase (MAPK) are recognized for their potentially
oncogenic characteristics (1). Among them, the epidermal
growth factor receptor (EGFR) is likely the most commonly
investigated signaling pathway, renowned for its fundamental
role in the tumorigenesis of many cancer types (2). While EGFR
expression normally is found between 40 000 to 100 000
receptors/cell (depending on the tissue type), overexpression of
EGFR is seen in a majority of cancers, with up to 2 000 000
receptors/cancer cell (3). Thus, downstream signaling of the Ras/
Raf/MAPK, PI3K/AKT, JAK/STAT and PLC/PKC pathways is
intensified (4), leading to enhanced cellular proliferation,
differentiation, survival, migration and motility (5). Inhibition
of EGFR has therefore been a compelling topic of research and
has led to the development of two classes of anti-EGFR agents:
Immunoglobulin G (IgG)-based monoclonal antibodies (mAbs),
which competitively bind the ligand-binding site and small-
molecule tyrosine kinase inhibitors (TKIs), which compete
with adenosine triphosphate (ATP) to bind intracellular EGFR
tyrosine kinase domains.

What makes mAbs highly attractive is the ability of IgG1
mAbs to induce antibody-dependent cell-mediated cytotoxicity
(ADCC) through Fc receptor-bearing immune cells, increasing
tumor immunogenicity and providing a rationale to combine
anti-EGFR mAbs with immunotherapies. Cetuximab and
Abbreviations: ADCC, Antibody-dependent cellular cytotoxicity; ADP,
Adenosine diphosphate; AE, Adverse events; ATP, Adenosine triphosphate;
BRCA, Breast cancer susceptibility protein; CAR, Chimeric antigen receptor;
CRC, Colorectal cancer; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4;
DAMP, Damage-associated molecular patterns; DC, Dendritic cell; DDX41,
Probable ATP-dependent RNA helicase; DMXAA, Dimethylxanthone acetic
acid; EGFR, Epidermal growth factor receptor; EMA, European Medicines
Agency; EpCAM, Epithelial cell adhesion molecule; FAS, First apoptosis signal;
FDA, Food and drug administration; cGAS, Cyclic GMP-AMP synthase; IFI16,
Gamma-interferon-inducible protein Ifi-16; GZMB, Granzyme B; HLA, Human
leukocyte antigen; HNSCC, Head and neck squamous cell cancer; IFNg, Interferon
gamma; IL, Interleukins; IRF, Interferon regulatory factor 3; ITAM,
Immunoreceptor tyrosine-based activation motif; ITIM, Immunoreceptor
tyrosine-based inhibitory motif; KIR, Killer-cell immunoglobulin-like receptors;
LAG-3, Lymphocyte-activation gene 3; LILR, Leukocyte immunoglobulin-like
receptor B; MHC, Major histocompatibility complex; MIC, MHC class I
polypeptide–related sequence A/B; NCR, Natural cytotoxicity receptor; NK,
Natural killer; NSCLC, Non-small cell lung cancer; NT5E, 5’-nucleotidase; OS,
Overall survival; PAMP, pathogen-associated molecular patterns; PARP, Poly
adenosine diphosphate-ribose polymerase; PD-1, Programmed cell death protein;
PFS, Progression free survival; PRR, Pattern recognition receptors; PTEN,
Phosphatase and tensin homolog; STING, Stimulator of interferon genes; TGF,
Transforming growth factor; TIGIT, T cell immunoreceptor with Ig and ITIM
domains; TIME, tumor immune microenvironment; TINK, tumor-infiltrating NK
cells; TKI, Tyrosine kinase inhibitor;TLR, Toll-like receptors; TME, Tumor
microenvironment; TNFR, Tumor necrosis factor-related apoptosis-inducing
ligand receptor; TNFRSF9, Tumor necrosis factor receptor superfamily member
9; TRAIL, TNF-related apoptosis-inducing ligand; ULBP, UL16-binding protein;
VEGF, Vascular endothelial growth factor; XIAP, X-linked inhibitor of apoptosis
protein; YINM, Tyrosine-based signaling motif; ZAP70, Zeta-chain associated
protein kinase.

Frontiers in Immunology | www.frontiersin.org 247
necitumumab are the only approved IgG1 mAbs against EGFR
(Table 1). While cetuximab has been extensively studied in
various tumor types (6, 7), literature regarding necitumumab is
still limited. Interestingly, similar cytotoxicity has been shown
against the DiFi colorectal cancer cell line, due to their affinity for
similar EGFR epitopes (8, 9). On the other hand, panitumumab,
an IgG2 based anti-EGFRmAb, has similar anti-EGFR activity as
cetuximab despite binding different epitopes (10, 11). In
monotherapy , the ASPECCT study conduc ted in
chemotherapy-refractory, wild-type KRAS metastatic colorectal
cancer (mCRC), showed non-inferiority of panitumumab
compared to cetuximab (12). Combined treatment of either
cetuximab or panitumumab with irinotecan in platinum-
refractory mCRC patients similarly suggested non-inferiority
(13). Interestingly, studies directly comparing cetuximab and
panitumumab in HNSCC have not been conducted. However,
while panitumumab failed to improve OS of HNSCC patients in
phase II trials in combination with chemoradiotherapy (14, 15)
cetuximab, showed clear benefit in both locally advanced and
recurrent and metastatic settings and has been granted approval
by regulatory authorities herein (16, 17). Therefore, at least in
HNSCC, panitumumab, despite having an increased EGFR-
affinity, lacks in clinical activity compared to the highly active
potential of cetuximab. A possible reason for this may be
explained by the differences linked to the IgG backbone.

As evidenced by prior research, chemotherapeutic agents have
immunomodulatory effects, causing (in)direct activation of
immune cells due to the release of tumor antigens and certain
“danger” signals (18, 19). Targeted therapies are similarly able to
reshape the tumor immune microenvironment (TIME) and
stimulate the induction of an immune response (20).
Immunosurveillance, i.e. the recognition and elimination of
malignant cells by the immune system (21), is crucial towards
cancer prevention and evasion of immunosurveillance is one of
the cancer hallmarks. As the immune system is a complex network
of humoral and cellular interactions, alterations in many
components of the innate and adaptive immunity lie at hand for
tumor evasion (22). In addition, selective survival of tumor cells
with a decreased immunogenicity contributes to an evasive tumor
growth (23). In this regard, the TIME of several cancers has been
characterized, showing both dysfunctional immune cells and a
suppressive environment as the main reason for an impaired
antitumor immunity (24–27). Based on these principles,
immunotherapy has now become a major focus of research in
oncology and has led to the implementation of immune
checkpoint inhibitors, which have the potential to reawaken
silenced immune responses. Recently, several immune
checkpoint inhibitors have demonstrated durable response rates
and gained Food and Drug Administration (FDA) and European
Medicines Agency (EMA) approval for use in several oncological
indications, including metastatic melanoma, non-small cell lung
carcinoma (NSCLC), renal cell carcinoma, head and neck cancer
(HNSCC) and colorectal cancer (CRC) (28–30). In the context of
EGFR, besides its oncogenic role, EGFR is involved in three main
immune-related processes. These include: (1) repression of
antigen presentat ion via downregulat ion of major
September 2021 | Volume 12 | Article 737311

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baysal et al. Anti-EGFR Stimulated NK Immunotherapy
histocompatibility complex (MHC) class I and II expression (31);
(2) programmed cell death protein (ligand) 1 (PD-1/PD-L1)
p a t hwa y a c t i v a t i o n ( 3 2 ) ; a nd ( 3 ) s e c r e t i o n o f
immunosuppressive cytokines, such as vascular endothelial
growth factor (VEGF), and interleukins (IL) IL-6 and IL-10 (33,
34). Therefore, the use of anti-EGFR therapeutics, such as
cetuximab, is a promising strategy of altering the TIME towards
tumor recognition and potentially killing rather than evasion and
tumor growth.

Although both targeted and immunotherapies are successfully
implemented into clinical practice, they present some limitations.
In general, when immunotherapies are successful, they can achieve
long-term responses in patients. However, response rates with
immunotherapies are typically low. In contrast, targeted therapies
can achieve much higher initial responses but are lacking in long-
term tumor remission, due to the development of resistance.
Therefore, growing evidence suggests that combining targeted
therapies with immunotherapies can achieve much greater
clinical effectiveness for a larger patient population. However,
since tumor types vary greatly in their TIME, the applicability of
these combinations is dependent on the tumor type and severity of
disease (35, 36). For instance, under healthy conditions, all
nucleated cells will express MHC class I “self” antigens as a
measure of host and non-threat recognition. However, tumor
cells often will decrease the expression of MHC-I to evade T-cell
recognition of tumor antigens and also their effector functions
(37). Therefore, the applicabil ity of T cell-focused
immunotherapies is currently complicated by the inability of T
cells to recognize MHC-Ineg tumors as well the requirement of
neoantigens for the induction of adequate responses. These
shortcomings may potentially be circumvented by the innate
counterpart of T cells, the natural killer (NK) cells, as they can
recognize tumor cells independent of their MHC status and
require no presentation of neoantigens. Moreover, NK cell
responses can further shape the TIME towards activation of the
adaptive immunity, and thus are key effectors of antitumor
immunity. In addition, although NK cell infiltration is not equal
in all tumor types, the number of tumor-infiltrating NK cells
(TINK) has been associated with a significantly better outcome in
many tumor types (29, 38–40). Monteverde et al. and others
showed that in addition to the number of NK cells, the level of ex
vivo antibody-dependent cell-mediated cytotoxicity (ADCC)
induction can be used as a predictive biomarker for cetuximab
treatment in the clinic (41–43). Together, this shows a unique
opportunity for NK cell-based immunotherapy together with anti-
Frontiers in Immunology | www.frontiersin.org 348
EGFR targeted therapeutic approaches to re-establish functional
NK cell responses, prime the TIME for the adaptive immunity,
and generate more durable antitumor responses.

In this review, we will briefly describe the fundamentals of NK
cell biology and functionality followed by a comprehensive
review of combination strategies involving EGFR targeted
therapies together with immunotherapeutic modalities that aim
to restore/enhance the antitumor effects of NK cells. We will
focus on cetuximab as an anti-EGFR targeted mAb, as its
immune activity has been studied extensively both in
monotherapy as well as in combination with other molecules.
However, the efficacy of anticancer drugs varies significantly
among different tumor types. Therefore, similar or possibly
improved results could be achieved with other mAb-based
immunotherapies following careful examination and
characterization of the TIME.
NK CELL BIOLOGY AND ANTITUMOR
ACTIVITY

Grouped among the population of lymphocytes, NK cells share
the same progenitor as T and B lymphocytes but differentiate
themselves through an antigen-independent activation (44).
While the effector function of NK cells overlaps with CD8+ T
cells, they do respond to different stimuli and thus complement
each other in settings where the effectiveness of one is lacking.
Therefore, NK cells, as part of the innate immune system, form
the first line of defense against cancer and pathogens (45). In
humans, NK cells make up roughly 10-15% of all immune cells
(46) and are defined as CD3- CD56+ (47). The two major NK
subpopulations are termed CD56bright (high cytokine producers)
and CD56dim (high cytotoxicity) NK cells. About 90% of
circulating and splenic NK cells are CD56dim, while CD56bright

NK cells are mostly present in the secondary lymphoid organs
(48). Notably, CD56bright NK cells make up the largest portion of
tumor-associated NK cells in several tumor types (48, 49).

Rather than depending on prior antigen presentation, NK cell
immunosurveillance is based on a balance between interaction of
activating and inhibitory receptors on their surface (50). In this
regard, ‘the missing self’ principle (51) describes activation of NK
cells through a decreased expression of MHC class I on tumor
cells. However, lack of self-recognition alone does not determine
NK cell activation and therefore the ‘induced self’ hypothesis
describes the requirement of tumor antigens or ligands of
TABLE 1 | Summary of approved EGFR-targeted mAbs.

Drug (Trade name) Company Indication Approval FDA/EMA Isotype Recommended dose Clinical trials*

Cetuximab (Erbitux) Bristol-Myers Squibb HNSCC,CRC 2004 Chimeric IgG1 I.V. 400 mg/m2 initial, 250 mg/m2 weekly NCT00004227
NCT00122460

Panitumumab (Vectibix) Amgen CRC 2006/2007 Human IgG2 I.V. 6 mg/kg biweekly NCT00364013
NCT00115765

Necitumumab Eli Lilly and NSCLC 2015/2016 Human I.V. 800 mg twice in a NCT00981058
(Portrazza) Company IgG1 3-week cycle NCT01769391
September 2021 | Volume 12 |
CRC, colorectal cancer; EGFR, epidermal growth factor receptor; EMA, European Medicines Agency; FDA, Food and Drug Administration; HNSCC, head and neck squamous cell
carcinoma; I.V., intravenously; NSCLC, non-small cell lung cancer. *Clinical trials upon which approval was based.
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activating receptors to be expressed in addition to a reduced self-
recognition to establish NK cell activation (Figure 1A) (52, 53).
A prerequisite for NK cell cytotoxicity is the formation of an
immunological synapse, a tight and complex junction formed
between an NK cell and its target cell (54). Importantly, FcgRs
range in their affinity for human IgGs. The high-affinity FcgRI
are therefore able to bind monomeric IgGs while other FcgRs
have a low-affinity and are only able to interact with multimeric
IgG complexes (55, 56). Following interaction with activating
signals, numerous cellular molecules (including receptors,
signaling molecules and cellular organelles) will induce
cytoskeletal reorganization of NK cells and polarize lytic
granules, filled with pore-forming proteins (perforin) and
serine proteases (granzymes), towards the synaptic site.
Targeted exocytosis of these granules into the synaptic space
induces apoptosis in the target cell (57). NK cell activation may
occur following interaction with death receptors such as first
apoptosis signal (Fas) receptor and tumor necrosis factor (TNF)-
related apoptosis-inducing ligand receptor (TRAIL-R) with their
ligands, FasL and TRAIL, respectively (Figure 1B) (58, 59).
In addition, various groups of inhibitory and activating NK cell
receptors exist as well, as shown in Figure 2A. Inhibitory NK
cell receptors that can recognize MHC-I antigens on tumor
cells include the killer Ig-like receptors (KIR2DL and KIR3DL),
C-type lectins NK cell group 2 (NKG2A/B) subfamily and
leukocyte immunoglobulin-like receptors (LILR) (60, 61). In
addition, immune checkpoint receptors, such as cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), PD-1, and the T cell
Frontiers in Immunology | www.frontiersin.org 449
immunoreceptor with Ig and ITIM domains (TIGIT) are present
on NK cells as well and prevent sustained activation through
inhibitory signaling (62, 63). Interestingly, several of the
activating cell surface receptors on NK cells are derived from
the same receptor families as their inhibitory counterparts. For
example, KIR2DS and KIR3DS belong to the KIR family
receptors, while NKG2C/D belong to the C-type lectin family
(64). Additionally, the family of natural cytotoxicity receptors
(NCR), i.e. NKp46, NKp30, and NKp44, can recognize a broad
spectrum of ligands ranging from viral-, parasite- and bacterial-
derived to cellular ligands (65). Downstream signaling of NK cell
receptors is dependent on the interaction between activating and
inhibiting signaling motifs. Activating receptors associated with
DNAX-activating protein 10 or 12 (DAP-10/-12) process signals
through tyrosine-based signaling motif (YINM) or tyrosine-
based activation motif (ITAM) respectively (66). Meanwhile,
Inhibitory receptors carry the immunoreceptor tyrosine-based
inhibitory motif (ITIM) that overrides DAP-10/-12 signaling and
consequently prevents NK cell activation (Figure 2B) (67).

Besides direct receptor-ligand interaction, NK cells can become
activated by interaction of their Fc receptors (FcgRIIIa/CD16) with
the Fc-domain of immunoglobulin G (IgG) antibodies. To achieve
subsequent tumor cell killing, the antibody Fab-domain must bind
its target on tumor cells to initiate NK cell cytokine and cytotoxic
granule secretion, thus inducing ADCC (Figures 1B and Figure
3A) (68). Interestingly, ADCC dysfunction has been linked to
cancer progression and forms an important mechanism of action
for therapeutic mAbs (68, 69). Among the IgG subtypes that have
A B

C

FIGURE 1 | Mechanisms of antitumor functionality of NK cells. (A) The represented ‘activating’ and ‘inhibitory’ NK cell receptors determine the NK cell activation
through interaction with; (i) stress-induced tumor antigens or ligands for activating receptors acting towards an ‘induced-self’ response or (ii) MHC-I self-antigens
or ligands for inhibitory receptors. (B) Additional tumor killing can be induced through either death receptors (FAS/TRAILR/TNFR), or antibody-dependent cellular
cytotoxicity (Granzyme B/perforin degranulation). (C) Additional immune modulation by NK cells occurs through secretion of cyto-/chemokines that promote DC
maturation and allow crosstalk with T cells, facilitating the induction of an adaptive immune response. Ab, Antibody; DC, Dendritic cell; FasL, Fas ligand; MHC,
Major histocompatibility complex; NK, Natural killer; TCR, T-cell receptor; TNF(R), Tumor necrosis factor (receptor); TRAIL(R), TNF-related apoptosis-inducing
ligand (receptor).
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been identified and used to generate antitumor therapies, IgG1-
based mAbs have the highest potency to bind with CD16 and thus
induce the highest ADCC responses (70). This is evident when
comparing clinical data of cetuximab (IgG1) with panitumumab
(IgG2) indicating that, although both effectively inhibit EGFR
signaling, cetuximab mediates a greater extent of immune-related
activity (10, 71).Preclinicalmodels inCD16deficientmiceobserved
similar antitumor responses between cetuximab andpanitumumab
due to inhibition of EGFR (72, 73). However, CD16 wild-typemice
consistently had enhanced antitumor responses with cetuximab
which were linked to its IgG1 backbone (73, 74).
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Aside from IgG subtypes, other factors related to
interindividual heterogeneity rather than the composition of
the mAb can affect ADCC by NK cells. First, FcyRIIIa gene
polymorphisms are the most well-known factor in this regard.
Individuals possessing the 158V/V allotype induce higher ADCC
responses in various tumor types compared to individuals with
the 158V/F or 158F/F allotypes (42, 75, 76). In vitro,
transduction of the human NK-92 cell line with the 158V/V
allotype (high-affinity NK; haNK) increased natural cytotoxicity,
cetuximab-induced ADCC (77) and cytokine secretion (78).
Second, the presence of immunosuppressive cytokines, such as
A

B

FIGURE 2 | Representation of NK cell receptor-ligand interactions and signaling motifs that enable downstream cell signaling. (A) The most common NK cell
receptor families are illustrated together with their ligands. While some receptors engage multiple ligands, others such as KIR2DL5 and KIR2DS3/S4/S5 have no
known ligands. Interaction of ligands with receptors causes activation of downstream signaling pathways. Depending on the type of receptor, this may cause either
activation of gene transcription or suppression. (B) Downstream signaling is activated through processing of the receptors-ligand interaction through signaling motifs.
Symbols “+” and “-” in the boxes indicate activating and inhibiting signaling. While ITAM and YINM signaling motifs are bound to DAP-10 and -12 adaptor protein
respectively, ITIM and HemITAM are present on the receptors and do not require adaptor proteins. The death receptors Fas and TRAIL-R signal through FADD to
induce induction of apoptosis in tumor cells. Downstream signaling and gene transcription leading to NK cell activation is dependent on the sum of all activating and
inhibiting signals. AICL, Activation-induced C-type lectin; DAP, DNAX-activating protein; DNAM, DNAX accessory molecule; FADD, Fas-associated protein with DD;
Grb2, Growth factor receptor-bound protein 2; HemITAM, Hemi-immunoreceptor tyrosine-based activation motif; HLA, Human leukocyte antigen; HSPG, Heparan
sulfate proteoglycans; ITAM, Immunoreceptor tyrosine-based activation motif; ITIM, Immunoreceptor tyrosine-based inhibitory motif; KACL; Keratinocyte-associated
C-type lectin, KIR, Killer cell immunoglobulin-like receptor; KLRF/G, Killer cell lectin-like receptor F/G; LILRB1, Leukocyte immunoglobulin-like receptor B1 MICA/B,
MHC class I polypeptide–related sequence A/B; NCR; Natural cytotoxicity receptors; NK, Natural killer; NKG2, Natural killer group 2; PVR, Poliovirus receptor; SHP1/
2, Src homology region 2 domain-containing phosphatase-1; Syk, Spleen tyrosine kinase; TRAIL(R), TNF-related apoptosis-inducing ligand (receptor); ULBP, UL16
binding protein; YINM, Tyrosine-based signaling motif; ZAP70, Zeta-chain associated protein kinase.
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transforming growth factor b (TGF-b) or IL-10 or increased
signaling through inhibitory KIR receptors or NKG2A, provides
additional inhibitory signals. This shifts the balance of NK cell
activity towards an inhibitory state, preventing the induction of
ADCC (79–81). Third, while cetuximab resistance mechanisms
limit the effectiveness of anti-EGFR treatments and promote
tumor cell survival, they are unable to prevent granzyme B
(GZMB)-induced apoptosis by healthy NK cells following
cetuximab treatment (82–85). On the other hand, EGFR-
independent resistance mechanisms against immune cell-
mediated cell death have been described (86). For example, the
presence of tumor cells expressing serine protease inhibitor-9 (PI-9),
an irreversible inhibitor of GZMB, correlated with a poorer outcome
in melanoma patients (87, 88). Overexpression of X-linked inhibitor
of apoptosis protein (XIAP), a potent caspase inhibitor, in breast
cancer induced resistance to cetuximab-mediated ADCC in both a
caspase-dependent and -independent manner (via accumulation of
reactive oxygen species) (89). Lastly, activation of autophagy under
hypoxic conditions showed beclin-1-mediated degradation of NK
cell-derived GZMB in vitro, which compromised the ability of NK
cells to eliminate breast cancer cell lines (90). Notwithstanding these
variable factors, the ability for ADCC remains a valuable and
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promising option in the therapeutic armamentarium, favoring
mAbs such as cetuximab.

Next to direct activation, indirect NK cell activation primes NK
cells towards activation by increasing the expression of activating
receptors, reducing the threshold for activation and reducing the
responsiveness to inhibitory signals (91). This can be achieved
through interaction with mature dendritic cells (DC) or cytokines
such as IL-2, IL-12, IL-15, IL-18, IL-21 and type-I interferons (92,
93). However, vice versa, activated NK cells can cross-talk with
DC, promoting their maturation and subsequent CD8+ T cell
priming, resulting in the generation of tumor-specific T cells that
contribute to the antitumor immune reaction (Figure 1C) (94). As
such, in addition to tumor elimination, NK cells also modulate and
shape antitumor immunity, showing their crucial role to achieve
tumor elimination.
STRATEGIES TO ENHANCE CETUXIMAB
DRIVEN IMMUNE ACTIVITY

Initial preclinical models showed that efficacy of cetuximab on
inhibition of the downstream effectors and interfering with
A

B

FIGURE 3 | Schematic overview of possible strategies that may be employed to enhance cetuximab-based anticancer NK cell responses. (A) Cetuximab is a mAb
that interacts with FcgRIIIa/CD16 receptors on NK cells and EGFR on tumor cells to abrogate EGFR signaling and induce granzyme B and perforin release, causing
cell death. (B) NK cell cytotoxicity may be enhanced by additional binding of intracellular EGFR kinase domains that can regulate expression of NK cell receptors.
Genetically engineered NK cells such as haNK or CAR-NK have increased natural cytotoxicity and activating signaling which through adoptive transfer can enhance
ADCC. Immune checkpoint blockers prevent suppression of NK cell functions by reducing inhibitory signaling while immune agonists aim to increase activating
signals. Cytokine stimulation increases NK cell functions and allows an enhanced ADCC response to take place. ADCC; Antibody-dependent cell-mediated
cytotoxicity; CAR, Chimeric antigen receptor; EGFR, Epidermal growth factor receptor; IL-2/12/15/21; Interleukin 2/12/15/21; MICA/B, MHC class I polypeptide–
related sequence A/B; NKG2D, Natural killer group 2D; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1; PRR; Pathogen recognition
receptors; ScFv, Single-chain variable fragment TKI; Tyrosine kinase inhibitor; ULBP, UL16 binding protein.
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tumor cell proliferation could be further enhanced through
combination with conventional therapies, such as radiotherapy
or chemotherapy (16, 95, 96). Later, it became apparent that this
enhancement was in part attributable to an immunological
response through an enhanced tumor infiltration of immune
cells and ADCC (97, 98). However, there is evidence to suggest
that TINK cells reside in an impaired state and only induce
limited activity (99, 100). Furthermore, NK cell immune evasion
by tumor cells has been described to be caused through two main
mechanisms: (1) reduction of activating ligands on tumor cells;
and (2) a dominance of NK cell inhibitory signals, preventing
downstream signaling of activating signals. In addition, additional
immunosuppressive mechanisms from bystander regulatory
immune cells can further stimulate tumor progression (101).
Therefore, in describing NK cell immunosurveillance
enhancements, applicability depends on the composition of the
TIME of different tumor types. Re-establishing NK cell functionality
thus is a topic of great interest, as it could improve the antitumor
immune responses observed in the clinic. In this regard, the research
mainly focuses on two major approaches: (1) increasing signaling
through immunoreceptor tyrosine-based activation motif (ITAM/
YINM)-containing receptors; and (2) decreasing signaling and
cross-linking of inhibitory motif (ITIM)-containing receptors.
Below, we discuss several strategies to potentiate NK cells to
elevate cetuximab efficacy to the next level (Figure 3B).

Dual Inhibition of EGFR Extracellular and
Intracellular Domains
Despite initial promising results observed with anti-EGFR
treatments, the most prominent limiting factor of its clinical
effectiveness is the presence/development of drug resistance.
Research has considerably focused on unraveling mechanisms
behind this resistance and results have shown various ways to
prevent/overcome EGFR-resistance (102–105). Of these,
simultaneous inhibition of extracellular and intracellular domains
of EGFR has been suggested to increase the overall antitumor
effects. In this regard, the combined use of cetuximab and erlotinib/
gefitinib induced synergistic antitumor effects with decreased
proliferation and increased apoptosis in various human cell lines
(106, 107). Phase I/II trials in NSCLC and CRC using combined
treatment of cetuximab with gefitinib or erlotinib reported no
additional toxicities with moderately enhanced antitumor effects
(107–110). Even better results were obtained with second (afatinib)
and third-generation (osimertinib) anti-EGFR TKIs in combination
with cetuximab (111, 112). Additionally, the sequential treatment of
NSCLC patients in a phase I trial using sequential treatment of
afatinib and cetuximab observed improved objective response rates
and progression-free survival (PFS) (111).

Besides an improved antitumor effect, it was also suggested that
combined targeting of extracellular and intracellular domains of
EGFR could improve immunologic responses. While the
immunological effects of mAbs are well described, the
therapeutic effect of EGFR TKIs has been predominantly
attributed to the inhibition of signal transduction. However,
current knowledge suggests that TKIs might indirectly be
involved in antitumor immune responses. For example,
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treatment of NSCLC and CRC cells with the anti-EGFR TKI
gefitinib or erlotinib increased natural cytotoxicity of NK cells
through upregulation of NKG2D ligands ULBP-1/-2 and MHC
class I polypeptide–related sequence (MIC)A/B (113–116), and
downregulation of PD-L1 expression (117). In contrast, another
study reported downregulated MICB and ULBP–2/5/6 expression
following treatment with erlotinib (118). This indirect
immunomodulatory effect suggests that simultaneous inhibition
of extracellular and intracellular EGFR domains could increase
antitumoral effects, due to dual targeting of EGFR, and improve
immunologic responses as well. Indeed, combined treatment with
cetuximab and erlotinib improved NK cell activity in NSCLC cell
lines and an NSCLC mouse model through an improved ADCC
response (119). This is likely caused by an increased expression of
the NKG2D ligands by EGFR-TKI (119), which shifts the balance
towards NK cell activity. Together with cetuximab-induced
ADCC, this shift increases the overall cytotoxic activity of NK
cells. A similar study in ovarian cancer cell lines observed
enhanced antitumor responses and increased sensitivity towards
cetuximab-induced ADCC following treatment with either
erlotinib or gefitinib, even in tumor cells that were either
intrinsically or acquired resistant to either TKI treatment (120).

One key consideration is the potential for overlapping
toxicities of dual EGFR inhibition. However, most trials
observe manageable toxicities, with one trial in particular
reporting a similar percentage of grade 3/4 adverse events
(AEs) when afatinib was combined with cetuximab
simultaneously compared to sequential treatment or either
treatment alone. However, the overall incidence of AEs
was higher in the combination regimen (121). As clinical
doses are based on toxicity and not target inhibition, the
tolerable doses of each agent in the combination may be
suboptimal. However, further clinical investigation is warranted
to compare the observed toxicity profile with the effectiveness of
this combination.

Adoptive Transfer Therapy Using (un)
Modified NK Cells
Adoptive Transfer of Autologous Expanded NK Cells
As NK cells are often impaired in cancer patients, the use of
adoptive NK cellular immunotherapy aims to restore NK cell
functionality through supplementation or complete replacement
of the NK cell populations with functionally active NK cells. As a
result, tumor load, and the immunosuppressive TIME could be
reduced. Earliest attempts of adoptive NK cell transfer failed to
show meaningful clinical responses using ex vivo purified and
unstimulated NK cells (122).

Therefore, combination of an NK cellular product with
cetuximab could enhance the functionality of these NK cells
and achieve overall responses through the induction of ADCC. A
phase I trial in CRC administered ex vivo expanded patient-
derived NK cells following cetuximab treatment (123).
Noteworthy, the majority of expanded NK cells showed high
expression of NKG2D and CD16, and high lymphocyte-
activation gene 3 (LAG-3) and TIGIT expression. Cytotoxic
effects toward the tumor remained elevated up to 4 weeks
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following NK cell administration, indicating a favor towards NK
activation rather than inhibition. Addition of expanded NK cells
following cetuximab treatment displayed an increased cytotoxic
activity against tumor cell lines and reduced overall tumor size of
heavily pretreated cetuximab-resistant patients. Lastly, patients
treated with expanded NK cells following cetuximab showed
enriched levels of circulating interferon gamma (IFNg) and
reduced Treg frequencies, suggesting an induction of a Th1‐
type adaptive immune response (123).

Adoptive Transfer of Allogeneic Expanded NK Cells
With the increased understanding of self-regulation in NK cells,
a possible alternative for the limited number of patient-derived
NK cells has been the use of allogeneic NK cells. This approach
may hold several benefits including the ability to obtain NK cells
from healthy donors which may retain greater antitumor activity
and the development of off-the-shelf application due to easier
and greater availability of NK cells (124). Furthermore, several
models to predict alloreactivity of NK cells (graft-versus-host
disease) have been described (125), the ‘Receptor–ligand
mismatch’ model remains one the most established predictive
models. Briefly, donor NK cells bearing inhibitory KIR for which
the corresponding HLA ligands are missing in the recipient
become uninhibited. The presence of (non-HLA-restricted)
activating signals can then induce alloreactivity (126, 127).

Sources for alloreactive NK cells include (i) acquiring
umbilical cord blood (128),; (ii) partially KIR/HLA matched
peripheral blood (126); or (iii) engineered NK cell lines (129).
Investigations using the former primary NK cells yielded
increased expression of activation markers CD69 and CD16
and strong ADCC responses towards NSCLC and B cell
lymphoma in vitro and in mice (128). Adoptive transfer of the
modified NK-92 cell line (haNK) cells with cetuximab harbored
the capacity to efficiently kill HNSCC tumor cells in a dose-
dependent manner and enhanced ADCC response (130, 131). In
a clinical trial in NSCLC, ex vivo stimulated KIR/HLA matched
healthy donor NK cells were administered together with
cetuximab. This combination led to a significantly improved
PFS and OS compared to cetuximab alone (132). A phase I trial
in gastrointestinal carcinoma used allogeneic IL-2 stimulated NK
cells in combination with cetuximab and obtained beneficial
clinical responses and a tolerable safety profile (133).
Interestingly, while addition of adoptive NK cells increased the
number of circulating lymphocytes (CD8+, CD4+, B and NK
cells), cetuximab alone, albeit to a lesser degree, was also able to
significantly increase lymphocyte levels. This suggests that part
of the increased levels may be related to improvement of cellular
immunity and prevention of apoptosis of T cells. Indeed, levels of
IFNg and pro-inflammatory cytokines were significantly more
present through combination of cetuximab with adoptive NK
cell transfer, indicating an enhanced Th1-response (132). These
first and promising results of cetuximab stimulating adoptive NK
cell therapy in solid tumors are encouraging, since to date clinical
effectiveness of adoptive NK cell therapy is only observed in
hematological malignancies. Therefore, more research on
cetuximab unlocking the potential of adoptive NK cell therapy
for solid tumors is warranted.
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Chimeric Antigen Receptor (CAR)-Engineered
NK Cells
A more recent and promising approach for adoptive NK cell
therapy is the use of chimeric antigen receptor-engineered NK
(CAR-NK) cells. These can be developed either through lenti-/
retroviral transduction of primary adult NK cells or
immortalized NK-92 cells to recognize a specific tumor antigen
(134). CAR-NK cells have several advantages over CAR-T cells.
First, they are more robust as they still maintain their intrinsic
target cell recognition. Therefore, a reduction of the target CAR
is less likely to be an effective tumor escape mechanism (135).
Second, cytokines released by activated NK cells are less
associated with the induction of a cytokine release syndrome
(136, 137). Third, as NK cells do not clonally expand, the
cytokine levels they release is found to be less sufficient to
induce a cytokine release syndrome (138, 139). Fourth, NK
cells are known to suppress graft-versus-host reactions which
are induced by T cells due to strict HLA-matching (135,
136, 138).

While CAR-NK therapy research is developing at a rapid pace,
combination treatments using CAR-NK together with already
established treatments are still limited. Recently, combined
treatment of a CRC mouse model with epithelial cell adhesion
molecule (EpCAM)-CAR-NK-92 and regorafenib (a sorafenib-
related multikinase inhibitor) achieved a synergistic tumor
suppression than either treatment alone (140). The basis for this
investigation was the observation that regorafenib could modulate
the TIME through alteration of Fas and PD-L1 expression in CRC
cell lines (140). Similarly, efficacy of cetuximab in HNSCC is also
linked to its immunostimulatory activities which include
downregulation of PD-L1 expression. Therefore, although not
validated yet, this suggests that cetuximab combined with CAR-
NK cells against a specific tumor antigen could alter the TIME
towards tumor cell killing as a potentially promising treatment
strategy. As a proof of concept, CAR-T cells transduced with
CD32A or CD16 in combination with cetuximab, achieved a
greater cytotoxic response and improved survival of a CRC
mouse model bearing EGFR mutations compared to either
treatment alone (141, 142). Taken together, although definitive
evidence for this regimen is still missing, these early results support
the potential strength of cetuximab-based dual-targeting CAR-NK
therapy as an adoptive therapy.

A last consideration is that adoptive transfer of (un)modified
NK cells in solid tumors is inferior compared to responses
observed in hematological malignancies. The most evident
cause for this discrepancy is the poor migration of infused NK
cells inside the tumor. This may be caused by altered chemokine
receptors following ex vivo activation. For example, CXCR2/3/4
are important chemokine receptors on immune cells that
facilitate migration towards CXCL9/10/12-expressing tumor
cells (143–146). Loss of CXCR2/3 following ex vivo activation
prevented NK cells from migrating towards B16 melanoma
tumors (147). Therefore, more recent expansion protocols such
as the one described by Somanchi et al. (148) consider the
chemokine repertoire in order to achieve efficient expansions
of specific NK cell phenotypes that may provide a better invasion
in the tumor.
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Targeting Negative Immune Checkpoint
Molecules Prevents Immune Escape
Discovery of immune checkpoint blockade has played a pivotal
role towards integration of immunotherapy into clinical cancer
treatment. While initial immune checkpoint inhibitors, such as
anti-CTLA-4 (ipilimumab) and anti-PD-1 (pembrolizumab)
have focused on reversing the suppressed state of cytotoxic T
cells (149), current research is expanding this to other cell types,
including NK cells (Figure 4). This expanded research also
brought with it an increasing number of molecules that are
being investigated as possible immune checkpoints and an
endless possibility for combinations with checkpoint inhibitors
to achieve greater responses.

Programmed Cell Death Protein 1 (PD-1) Pathway
The PD-1/PD-L1 axis has become one of the most studied
pathways in cancer immunotherapy, with promising results
guiding the approval of several inhibitors (150, 151).
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Interestingly, early investigations of PD-1 expression on NK
cells found 25% of healthy individuals to have PD-1+ NK cells
which correlated well with prior human cytomegalovirus
infections (152). This prompted the idea that PD-1 expression
on NK cells is a result of activation rather than exhaustion, which
is the case for T cells following chronic stimulation (153). In
cancer patients, peripheral blood NK cells are often found to be
PD-1 positive (154–156) and intratumoral NK cells often express
high levels of PD-1 (40, 156).

Interestingly, PD-1+ NK cells were found to have
downregulated CD16 expression and induce PD-L1 expression
on tumor cells via IFNg secretion, thus possibly inhibiting ADCC
induction (157). However, inhibition of EGFR-signaling via
cetuximab is known to interrupt INF-g signaling and prevent
PD-L1 upregulation on tumor cells (117). Thus, combining
cetuximab with a PD-1 inhibitor could be viewed as a valuable
strategy to prevent CD16 downregulation and PD-1/PD-L1-axis
mediated silencing of ADCC. A study in HNSCC found an
FIGURE 4 | Targeting immune regulatory molecules improves immune effector function against cancer. NK cell activity is regulated by a balance between immune
activating and inhibiting interactions. Cancer promotes immune checkpoint expression to suppress NK cell activation allowing tumor immune escape and
progression. Antibody-based immunotherapies suppress inhibitory signaling or further activate costimulatory signals to restore and enhance NK cell activity. HLA,
Human leukocyte antigen; KIR, Killer cell immunoglobulin-like receptor; LILRB1, Leukocyte immunoglobulin-like receptor B1; NK, Natural killer; NKG2A, Natural killer
group 2A; PD-1, Programmed cell death protein 1; PD-L1, Programmed cell death ligand 1; TIGIT, T cell immunoreceptor with Ig and ITIM domains.
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increased number of PD-1+ NK cells in patients, which
correlated with a diminished NK cell activity, as observed by a
downregulated expression of CD16, CD107a and GZMB. In
addition, PD-L1 expression correlated with a lack of response
to cetuximab alone. Administration of cetuximab in combination
with the anti-PD-1 mAb nivolumab successfully reversed NK cell
diminishment and enhanced cetuximab-mediated ADCC in
vitro (157). Early results from a phase I trial in HNSCC
patients also reported an increased objective response rate
compared to either treatment alone (158). Currently, several
trials investigating this combination are ongoing, with
preliminary results indicating potentially synergistic effects in
advanced solid tumors (159, 160).

T Cell Immunoreceptor With Ig and ITIM Domains
(TIGIT) Pathway
Recent years have seen a growing interest in the TIGIT
signaling pathway due to its complex immunomodulatory
role. Similar to the B7/CD28/CTLA-4 pathway, the TIGIT
axis consists of a network of inhibitory receptors (TIGIT,
CD96 and CD112R) that compete with the activating
receptor (DNAM-1/CD226) for their shared ligands (CD111/
NECTIN1, CD112/NECTIN2, CD113/NECTIN3, CD155/
PVR) (161, 162). In contrast to DNAM-1, only marginal
TIGIT expression is observed on resting NK and T cells
while stimulation and tumor infiltration showed upregulated
TIGIT expression (161). As a stimulatory receptor, DNAM-1
signaling induces pro-inflammatory cytokine secretion and
enhances cytotoxic activity of NK cells. Meanwhile, TIGIT
induces an anti-inflammatory, non-proliferative and non-
cytotoxic profile in NK cells (163).

Targeting of TIGIT is still in early development but positive
early (pre)clinical investigations have enabled further clinical
investigations. Interestingly, in vitro co-culture and in vivo
transgenic HNSCC mice models were able to restore the
cytotoxic effects of T and NK cells following anti-TIGIT
treatment (164). Initial clinical studies in solid tumors
demonstrated strong antitumor activity as a single agent (163,
165), that could be further improved when combined with anti-
PD1 mAb (NCT03119428, NCT02794571). Furthermore,
disruption of the TIGIT/CD155 interaction can also
beneficially impact the TIME, in particular by incapacitating
myeloid-derived suppressor cells and depleting Tregs. Although
not investigated yet, this observation suggests the possible
combination of anti-TIGIT-mAbs with cetuximab, thereby
reducing the suppressive action of Tregs and targeting specific
tumor antigens.

Alternatively to TIGIT, CD155 (PVR), has been suggested as
a potential target due to its greater affinity towards TIGIT
compared to DNAM-1 and its frequent overexpression in solid
tumors (166, 167). However, clinical trials of CD155 are still
scarce and preclinical investigations of CD155 in combination
with cetuximab are limited as well. However, one study in CRC
cell lines reported an improvement of cetuximab-mediated
ADCC following effective signaling of DNAM-1/CD155.
Blocking this interaction abrogated this effect entirely (168).
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The same effect was observed by blocking NKG2D/MICA/B
signaling. A possible reason for the limited progress in CD155
targeting might be that CD155 inhibition disrupts both TIGIT
and DNAM-1 signaling, therefore potentially robbing NK cells
from activating signals. However, this concern is not completely
warranted, as CD155 under normal circumstances has a greater
affinity towards inhibitory receptors, thus preferentially signaling
via TIGIT even in the presence of DNAM-1 (169). Lastly,
administration of anti-CD155 also showed upregulation of
DNAM-1 on peripheral blood lymphocytes. As CD155 is not
the only ligand capable of binding DNAM-1, this interaction
could potentially shift the balance towards increased antitumor
immunity (170).

Altogether, this suggests that strategies targeting the TIGIT-
axis could reverse immune inhibition through reduced inhibitory
signaling and that combinations with cetuximab could enhance
ADCC, resulting in an enhanced antitumor response (167).

C-Type Lectin NK Cell Group 2 (NKG2)
Subfamily Pathway
Another ITIM-containing signaling pathway expressed on NK
and T cells is the NKG2A-HLA-E interaction. Although
NKG2A is expressed on a low number of peripheral NK
cells, both antigen and cytokine stimulation upregulate its
expression (171, 172). While binding of NKG2A to HLA-E
is known to inhibit NK cell responses, ovarian cancer cell lines
that were treated with the anti-NKG2A mAb monalizumab
showed profound antitumor responses and significantly
improved cetuximab-mediated ADCC (173, 174). Moreover,
monalizumab combined with cetuximab was tested in a phase
II trial with recurrent and metastatic HNSCC patients showing
promising improvements with an easily manageable safety
profile similar to either treatment alone (173). Another trial,
where monalizumab was combined with durvalumab (anti-
PD-1 mAb) in CRC showed encouraging activity as well (175).
Meanwhile, a phase III randomized trial in HNSCC has been
announced for this combination (176). Therefore, an anti-
NKG2A mAb could be a promising checkpoint inhibitor to
enhance antitumor immunity of both T and NK cells.

Killer-Cell Immunoglobulin-Like
Receptor (KIR) Pathway
KIRs play a major role in regulating NK cell activity through
various inhibitory and activating receptors and are most
frequently found on intratumoral CD56dim NK cells (29, 171).
Similar to IFNg, the inhibition of EGFR can increase HLA-C
expression through STAT-1 signaling (26, 177). Thus, this could
potentially limit NK cell responses through an increased
interaction of KIRs with HLA-C. The use of mAbs, such as
lirilumab (IPH2102), targeting KIR2DL-1/-2/-3, can mimic the
mismatch of KIR with HLA-C and prevent inhibitory signaling.
Indeed, various (pre-)clinical reports have described an
improved NK cell cytotoxicity following lirilumab treatment
(178–180). Furthermore, combination of lirilumab with an
anti-CD20 mAb enhanced ADCC against lymphoma cells in
vitro and in vivo (180). Similarly, lirilumab in combination with
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cetuximab induced a significantly higher cytotoxic response
against HNSCC cell lines in co-culture experiments (149).
Hence, despite the lack of extensive literature, investigations
of lirilumab in combination with cetuximab suggest that could
generate clinical benefit and therefore warrant further
investigation. Importantly however, long-term treatment
with lirilumab may also hold some drawbacks. To fully
develop into functionally mature cells, NK cells undergo a
process of ‘education’ whereby their level of exposure and
interaction to ‘self’ antigens with inhibitory receptors will
determine their responsiveness in cases where these antigens
are missing (181). Therefore, it is thought that persistent
inhibition of KIRs could, besides stimulating the activity of
mature NK cells, impede the development of new, functionally
competent NK cells (178). In this regard, future clinical trials
will have to resolve the optimal scheduling of blockade of
inhibitory receptors.

Leukocyte Immunoglobulin-Like Receptor B (LILRB)
Pathway
Similar to KIRs although far less understood, leukocyte
immunoglobulin‐like receptors (LILRs)can regulate immune
activity through ligation with MHC class I molecules.
However, in contrast to the extensive KIR repertoire being
expressed, NK cells predominantly express LILRB1 (182, 183).
Interestingly, LILRB1 expression negatively correlated with
cetuximab-induced ADCC against breast cancer patients (184).
Furthermore, blocking LILRB1 increased both natural
cytotoxicity as well as cetuximab-mediated ADCC, especially
when both NK cells and cancer cells expressed LILRB1.
Interestingly, LILRB1 expression and cetuximab-mediated
ADCC were positively correlated in this context, indicating a
greater inhibition at higher LILRB1 expression levels. However,
LILRB1 research is still limited and factors impacting the
regulation of LILRB1 expression should be the focus of future
research to assess the potential for clinical implementation of
this combination.
Immune Agonists Allow Positive Immune
Checkpoint Therapy
Since NK cells are dependent on a balance between positive and
negative signals, negative signaling from immune checkpoints is
counterbalanced by immune stimulatory molecules that
positively enhance antitumor responses. Early attempts of
developing potent agonist therapies were met with tremendous
clinical toxicities due to selection of CD28, a constitutively
expressed ‘second signal’ receptor on T cells, as a target.
Theralizumab, despite the promising preclinical results,
induced severe cytokine release syndrome with a high
proportion of multiple organ failure in a phase I trial (185).
Therefore, cautioned and rational selection of stimulatory
molecules is essential to prevent non-discriminatory immune
stimulation. Current approaches mostly comprise of selecting
inducible targets following stimulation or maturation, rather
than constitutive expression by immune cells (186).
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Tumor Necrosis Factor Receptor Superfamily
Member 9 (CD137/TNFRSF9)
Of interest for the context of this review is the molecule CD137
(4-1BB), expressed on various immune cells following pro-
inflammatory stimuli (187). Signaling through CD137 delivers
an enhanced tumor-selective cytotoxicity and IFNg secretion
(188). Interestingly, CD137 agonistic mAbs are classified as
either strong or weak agonistic Abs. The difference is that
strong agonistic Abs (Urelumab) can activate 4-1BB without
FcgR-mediated crosslinking, while the weak agonistic Abs
(Utomilumab) require FcgR-mediated crosslinking to activate
4-1BB. However, the effects of both classes can still be
enhanced through separate FcgR-crosslinking (189). In this
regard, although urelumab alone in a breast cancer xenograft
model had no effect on tumor size, combined treatment with
trastuzumab enhanced trastuzumab-mediated killing
significantly (190). Furthermore, urelumab together with
cetuximab greatly improved survival of HNSCC patients and
elevated DC maturation and T cell cross-presentation together
with an increased cytokine secretion (185, 186). Interestingly,
TINK but not peripheral blood NK cells substantially increased
CD137 expression following treatment with cetuximab. Both
urelumab and cetuximab alone also upregulated anti-apoptotic
proteins (Bcl-xL and Bcl-2) in NK cells, suggesting an improved
survival of activated NK cells, that was further increased
following combination treatment (186). These results suggest
that urelumab could indeed be combined with cetuximab to
enhance immune activity. However, the early clinical
observations remain to be investigated in larger cohorts and
various tumor types to develop a stronger support for this notion.

Pattern Recognition Receptors (PRR)
A critical role in pathogen recognition is carried out by toll-like
receptors (TLRs). As part of the innate immunity, TLRs play a
vital role in activating immune responses as well. This is achieved
through recognition of pathogen- or damage-associated
molecular patterns (PAMPs and DAMPs) expressed by
microorganisms or released from damaged or dying cells (191).
While a total of 11 TLRs have been identified, TLR7/8 are of
particular interest in cancer research due to their direct immune
stimulatory effect and simultaneous ablation of Treg function
(192, 193). Therefore, stimulation of TLR7/8 could be an
interesting treatment in tumors that are highly infiltrated with
effector and suppressive immune cells. Stimulation through
TLR7/8 could potentially polarize the TIME towards tumor
killing by producing Th1-polarizing cytokines such as TNF-a,
IFNg and IL-12 (192). In this regard, the use of the TLR8 agonist
motolimod, increased peripheral blood mononuclear cell
cytotoxicity against HNSCC cell lines, together with a higher
production of inflammatory cytokines and chemokines by DCs,
monocytes and NK cells (194). Additionally, ADCC was
enhanced through combination with cetuximab as well (194,
195), showing a possible way to effectively activate innate and
adaptive anticancer immune responses. A phase I trial in
HNSCC reported encouraging antitumor activity without dose
limiting toxicities when motolimod was combined with
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cetuximab. Furthermore, increases in plasma cytokine levels and
in frequency and activation of circulating NK cells were observed
as well (196). Currently, this combination is being further
investigated in a phase II randomized trial (NCT01836029) of
chemotherapy plus cetuximab in combination with motolimod
in patients with recurrent or metastatic HNSCC.

As part of the PRR family, the stimulator of interferon genes
(STING) DNA sensing pathway forms an important part of the
innate immunity, as it recognizes cytoplasmic DNA through
Cyclic GMP-AMP synthase (cGAS), gamma-interferon-
inducible protein 16 (IFI16) and probable ATP-dependent
RNA helicase (DDX41) (197). Therefore, STING also
recognizes tumor-DNA and induces downstream signaling of
NF-kB and interferon regulatory factor 3 (IRF-3). This results in
the induction IFNs and inflammatory cytokines such as TNF-a,
IL-1b and IL-6 (198). However, STING can also induce
mitochondrial apoptosis through Bcl-2-associated X protein
(Bax) induction (199). Therefore, the use of STING agonists to
induce an inflammatory microenvironment and induce direct
tumor apoptosis may be a valuable treatment. However, some
reports suggest that STING may play a dual role in cancer,
potentially promoting tumor growth in tumors with low
antigenicity (200). Therefore, combined treatment of STING
agonists with other treatments may achieve a good clinical
outcome. Interestingly, EGFR was found to affect IRF-3
phosphorylation, suggesting a possibility for cetuximab to be
combined with a STING agonist to enhance IRF-3 signaling and
thereby lead to an enhanced antitumor response (201). Indeed,
STING activation enhanced cetuximab-mediated ADCC of NK
cells against HNSCC cell lines and promoted NK : DC crosstalk,
suggesting an important role of STING in effective antitumor
immunity (202). A phase I trial of the STING agonist
dimethylxanthone acetic acid (DMXAA) (murine STING
agonist) plus carboplatin, paclitaxel and cetuximab only
demonstrated limited activity due to limited binding to human
STING (NCT01031212). However, other clinical trials using
human counterparts of STING agonists have provided clinical
evidence for its therapeutic effectiveness. However, as no phase
III trials have been registered yet, it remains to be seen what the
exact clinical benefit of this combination will be. Regardless, the
accumulated data so far point towards integration of immune-
stimulatory molecules into standardized treatment regimens to
induce clinically exploitable systemic responses.

Cytokine-Based Immune Potentiation
Cytokines form a group of small short-lived polypeptides that are
involved in growth, differentiation and pro- and/or anti-
inflammatory signals depending on the cell type. Although
usually secreted in response to a defined stimulus, cytokines
such as IL-7, required for immune cell homeostasis, can be
constitutively expressed as well (203). Additionally, tumor cells
can also secrete cytokines, mostly towards the establishment of
an immunosuppressive TIME. Exogeneous administration of
immunostimulatory cytokines has long been utilized in several
lines of immunological investigations as a means of re-
establishing the functionality of the immune system.
Frontiers in Immunology | www.frontiersin.org 1257
Interleukin-2 (IL-2)
Characterization of immunosuppressive factors and their
involvement in tumor immune escape mechanisms has
prompted researchers to reverse these impaired cytotoxic
interactions through implementation of immunostimulatory
cytokines. A study in HSNCC patients displayed elevated
plasma levels TGF-b1 and soluble MHC I chain-related
peptide A (sMICA) to diminish NKG2D expression, TNF-a
and IFNg release by NK cells, suppressing their antitumor
responses (204). Interestingly, although NKG2D was
downregulated due to high sMICA/TGF-b1 levels, CD16
expression and cetuximab-induced ADCC remained unaltered
(204). Furthermore, IL-2 stimulation improved ADCC of sMICA
inhibited NK cells resulting in a restored TNF-a and IFNg
secretion (204). Similarly, several other investigations in solid
tumors have reported a significantly enhanced antitumor activity
with tolerable safety profiles and improved ADCC following
combined treatment with IL-2 and cetuximab (133, 205, 206).
However, IL-2 administration in patients also causes expansion
of FoxP3+ Tregs, which highly express the IL-2a receptor (207).
Tumor types with relatively low intratumoral Tregs could
potentially still benefit from this combination, as shown by the
studies above (133, 208, 209). In contrast, tumors such as
HNSCC and melanoma have been characterized as the most
Treg infiltrated tumor types, making the use of IL-2 in
combination with cetuximab less attractive (29, 210).
Therefore, the makeup of the TIME is an important
consideration that must be evaluated on a tumor type basis for
this combination to be of value.

Interleukin-12 (IL-12)
One of the first alternatives to IL-2 was IL-12, a cytokine
produced by DCs and macrophages. IL-12 has anti-bacterial
and anti-angiogenic effects and enhances the immune response
to Ab-coated tumor cells (211). Stimulation of NK cells with IL-
12 leads to secretion of IFNg and TNF-a, as well as increased
levels of chemokines such as MIP-1a, IL-8 and RANTES, further
stimulating the infiltration of CD8+ T cells into the tumor.
Additionally, IL-12 increases IL-2a expression by NK cells,
further enhancing NK cell activity in response to endogenous
IL-2 (212). A phase I/II trial of heavily pretreated HNSCC
patients investigated the combination of IL-12 with cetuximab
and achieved stable disease in 69% of patients, with prolonged
PFS. Additionally, ADCC responses were increased together
with higher levels of IFNg, CXCL10 and TNF-a secretion
(213). IL-12 was also able to suppress Treg function through
downregulation of FoxP3 (207, 214). Thus, in addition to
stimulating NK cells, IL-12 administration may also reverse
immune tolerance and creates a less suppressive TIME,
enhancing antitumor immunity.

Interleukin-15 (IL-15)
IL-15 is a cytokine produced primarily by monocytes and
macrophages and stimulates various NK and T cell functions
(215). Similar to IL-2, stimulation with IL-15 is able to enhance
the antitumor effects of NK cells against various tumor types and
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significantly increases cytokine and chemokine secretions (216,
217). Interestingly, besides upregulation of CD16, NKG2D and
IFNg, levels of NKp30 and NKp46 on NK cells of CRC patients
were restored following IL-15 stimulation (216). However, IL-
15 based therapies face some limitations as well, including a
short serum half-life, narrowing down the therapeutic window,
and the requirement for IL-15 receptor a-chain (IL-15Ra)-
binding prior to activating effector cells, which limits the
therapeutic application (218, 219). More recently, the
genetically modified IL-15 compound ALT-803, consisting of
IL-15 plus the IL-15Ra fused to the Fc portion of IgG1, has
been developed in order to address the limitations of IL-15-
based therapies. As a result, ALT-803 has higher biological
activity and a longer serum half-life compared with free IL-15.
Consistently, ALT-803 was able to enhance the ADCC
response following cetuximab treatment in HNSCC cell lines
to a level similar to or better than IL-15. In mice, while single-
agent treatment partially reduced tumor growth, co-
administration of cetuximab with ALT-803 showed complete
tumor regression and increased secretion of IFNg, RANTES
and IL-8 (218). Early clinical trials with ALT-803 alone have
reported promising efficacy and activity, showing an increased
expansion of NK and CD8+ T cells (220). Interestingly,
combination of ALT-803 with rituximab, another ADCC
inducing mAb, gave similar results as ALT-803 plus
cetuximab, thus supporting the exploration of ALT-803 to
enhance cetuximab therapy (221).

Interleukin-21 (IL-21)
IL-21 belongs to the IL-2 family of cytokines, based on the
shared cytokine receptor g chain (gc). In comparison to IL-2
and IL-15, single-agent treatment with IL-21 was shown to be
the most potent antitumor cytokine with longer lasting
responses and clearing mice from tumors in settings where
both IL-2 and IL-15 only showed limited effect (222).
Additionally, IL-21 stimulation was also shown to increase
levels of IL-2a in addition to IFNg, perforin and GZMB (223).
Interestingly, the combination of IL-21 with cetuximab was
also able to enhance the ability of NK cells to recognize and
eliminate cetuximab-coated tumor cells (223–225). Clinical
trials using IL-21 in combination with cetuximab confirm
preclinical findings, reporting increased cytokine secretion,
enhanced ADCC and achieving stable disease in patients
with different tumor types (225, 226).

Although we have discussed the drawback involved in IL-2
treatment regarding Treg expansion, cytokines also have faced
criticism as a potential immunotherapeutic approach, due to
additional limitations. These include the relatively short serum
half-life, requiring careful exploration of clinical doses that could
otherwise lead to severe toxic responses (227). Furthermore, IL-2
and IL-12 induce vascular leaking due to alterations in vascular
permeability, which is only minimally present with IL-15 and IL-
21 treatment (228, 229). These limitations lie at the basis of the
functional properties of cytokines. However, they have not
stopped researchers from investigating ways to enhance the
effectiveness of cytokines through, for example, genetic
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engineering. The works of Skrombolas et al. and Berraondo
et al. provide a detailed and comprehensive review regarding
these strategies (203, 208). Taken together, the combined use of
cytokines with cetuximab as an ADCC inducing agent has the
ability to restore/enhance cytolytic activity of NK cells. Future
research likely will include genetically cytokine engineering or
consider the use of cytokine cocktails. These could help provide
optimal enhancement of NK cells and prevent the limitations
involved with single cytokine administration.

Combinations With Immunomodulatory
Drugs
Although various novel compounds targeting tumor or immune
antigens are in the developmental pipeline, another class of drugs
that is of interest are the immunomodulatory drugs. These are a
group of small molecules that were initially developed as
treatment for other human diseases than cancer but were
eventually recognized and exploited for their positive effects on
the immune system.

Poly Adenosine Diphosphate (ADP)-Ribose
Polymerase (PARP)
Cancer cells rely on DNA damage repair mechanisms to
maintain their survival, making these repair pathways ideal
targets for cancer treatment, e.g. poly Adenosine diphosphate
(ADP)-ribose polymerase (PARP) (230). PARP enzymes act as
DNA damage sensors when single-strand DNA breaks occur.
Thus, PARP inhibition can severely inhibit cell survival, trigger
cell cycle arrest and apoptosis through accumulation of DNA
damage. Interestingly, PARP inhibition also activates the STING
DNA sensing pathway, subsequently leading to production of
type I IFN and pro-inflammatory cytokines, thus priming an
antitumor immune response (231, 232). Therefore, the
possibility to combine PARP inhibition with immunotherapy
seems highly interesting.

EGFR inhibition with cetuximab diminishes DNA synthesis
and double-strand break repair and therefore can increase tumor
susceptibility to PARP inhibitors (233, 234). Indeed, combining
cetuximab with PARP inhibitors significantly increased ADCC
in both Breast cancer susceptibility protein (BRCA)-WT and
-mutant cell lines (235). Clinically, a phase I study in locally
advanced HNSCC patients demonstrated promising responses
and tolerable toxicities (236), although results were confounded
by continued smoking during treatment of non-responders
(237). Thus, this combination warrants further study in a
phase II setting to further investigate its effectiveness. The
biggest risk involved with PARP inhibition is the potential to
develop secondary myelodysplastic syndrome/acute myeloid
leukemia due to impaired DNA damage repair. This was
limited to patients that additionally received chemotherapy
and had germline DNA repair deficiencies, further inducing
DNA damage (238).

Thalidomide Derivatives
Despite the severe side effects observed with thalidomide in the
1960s, its mechanisms of action have revealed immunomodulatory
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and anti-angiogenic activity. Analogues such as lenalidomide and
pomalidomide aremore potent immunomodulators and have fewer
side effects. Lenalidomide has been approved for treatment of
multiple hematological malignancies, as it is known to activate
cytokine production, regulate T cell co-stimulation and augment
NK cell cytotoxicity (239, 240). Lenalidomide is believed to enhance
NK cell functionality in an indirect manner, mainly related to the
release of IL-2 by other immune cells (240). Lenalidomide also
enhanced ADCC following combination with several IgG1 mAbs,
including cetuximab (168, 241). So far, the suggested mechanisms
report that this enhancement is likely the result of an increased
CD16 expression (168) and partly attributable to an increased
presence of IL-2 and/or IL-12 cytokines secreted by T cells or
other immune cells (242). On the other hand, lenalidomide-
enhanced ADCC was abrogated through blocking of either
DNAM-1/CD155 interactions or NKG2D with its ligands,
indicating that optimal enhancement of ADCC requires
interactions of DNAM-1 and NKG2D (168). Clinical trials
investigating the combination of lenalidomide with cetuximab are
currently in phase I/II and report a well-tolerated treatment with
promising clinical activity in patients with CRC and HNSCC.
Moreover, a dose-dependent increase in NK cytotoxic activity
was demonstrated, with increasing doses of lenalidomide. This
was associated with a significantly increased ADCC activity and an
increased number of CD8+ T cells and circulating NK cells
(243, 244).

Thus, immunomodulating agents such as PARP inhibitors or
lenalidomide combined with EGFR-directed therapies show
promising preclinical and early clinical results but remain to be
investigated in more detail.
CONCLUSION & FUTURE PERSPECTIVES

Although cetuximab is an established therapeutic agent in
HNSCC and CRC, a major roadblock in achieving durable
responses is the onset of therapeutic resistance. In contrast,
immunotherapy can achieve long-lasting disease control, but
only in a small percentage of patients. The TIME plays an
important role in cancer‐specific drug responses. The recent
approval of pembrolizumab as a first-line treatment in HNSCC
has sparked an increased interest in the modulation of immune
responses to further improve survival of HNSCC patients (245).
As increasing evidence points towards immune responses as a
major determinant of mAb efficacy, it becomes increasingly
difficult not to endorse the rationale of combination therapies.
The earliest attempts, for example using IL-2, have indeed
enhanced effector functions at the cost of stimulating
immunosuppressive cells as well. Current approaches minimize
unwanted effects by rational selection of targets such as IL-15.
We previously showed that healthy NK cells may overcome
cetuximab resistance in vitro (68). However, overcoming
clinical resistance to cetuximab may require additional
immunotherapies to harness the full potential of NK cells. In
this review we have discussed several approaches to augment
cetuximab-mediated ADCC against solid tumors.
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The majority of approaches discussed in this review focus on
manipulation of cell surface receptors and cytokines to enhance
NK cell activity. These promising early results warrant further
research, as there is a window for improvement and a
requirement to tailor these strategies to various tumor types.
For example, as HNSCC is marked with the highest infiltration of
NK cells, effective treatment should focus on enhancing NK cell
activity, by reducing inhibitory signaling or increasing activating
signals. In contrast, CRC only shows marginal NK cell
infiltration and thus the primary objective should be to lure
NK cells inside the tumor, either through adoptive transfer or
through increased homing. A better understanding of cancer-
specific immune interactions will undoubtedly yield stronger
scientific and clinical endeavors.

The current era of genomic, transcriptomic and immune
profiling analysis will likely improve the tailoring of single-
agent or combination therapies towards patient populations,
thus entering an era of precision immunotherapy. Key
components towards the success of future trials are
considerations towards incorporating ADCC, intratumoral
persistence and trafficking of NK cells. In this regard, given the
clinical results summarized in this review are mostly still under
phase I/II investigation, we anticipate future studies to confirm
that cetuximab in combination with immune checkpoint
inhibitors synergistically enhances the innate and adaptive
antitumor immune responses. There are currently at least 109
active trials investigating cetuximab in a combination
regimen with various other treatments (clinicaltrials.gov). Of
these, at least 19 trials are investigating combinations with
immunotherapeutic modalities discussed above (Table 2).
The potential of cetuximab-based NK cell immunotherapy
looks promising and we foresee that NK cells wil l
become appreciated as a natural component in the fight
against cancer.

Although we exclusively discussed cetuximab as the primary
ADCC-inducing agent in this review, a large portion of these
applications could be applied to other IgG1 mAbs (Table 3). In
this regard, we believe the NK cell-based discussed approaches
could also be of interest for other cancer indications employing
ADCC-inducing mAbs. Moreover, growing research focuses on
the development of engineered mAbs that display enhanced
ADCC. These modifications involve altering the mAb Fc
portion to increase binding affinity to FcgRIIIa via site-
directed mutagenesis, editing Fc domain glycosylation and/or
removing Fc domain fucosylation. Various Fc-engineered
mAbs have shown improved responses compared to
unmodified counterparts and have gained approval for clinical
use (Table 3).

Implementation of any combination treatment requires a
strong consideration for potential AEs. Biomarkers for EGFR
targeting include EGFR gene amplifications and mutations, but
also downstream sarcoma viral oncogene (Ras), PI3K and PTEN
activities as well (102, 246). As downstream oncogenic signaling
can affect the TIME, it is important to consider immunological
biomarkers as well. Besides PD-L1 expression on tumors,
factors such as PD-L1 on immune cells and co-expression of
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other inhibitory checkpoints may affect the response to PD-1
targeting (247). Furthermore, consideration of tumor immune
infiltration, proportion of immune cell phenotypes and tumor
mutational burden have proven to be a better representation for
the effectiveness of immunotherapies in solid tumors (40,
248–250).

Importantly, despite the overall success of immune
checkpoint inhibitors in various tumor types, meta-analyses
often show severe treatment-related AEs that are associated
with tumor response. In most patients, these AEs are related to
overstimulation of immune reactivity. However, the severity of
AEs is dependent on the used inhibitor. For example, CTLA-4
inhibitors have a higher risk of treatment-related AEs compared
to PD-1/PD-L1 inhibitors (251). A possible solution might be
targeting several biological pathways to induce longer-lasting
responses. Interestingly, while the use of dual checkpoint
inhibition or combination with TKI increased dose-sensitivity
with higher risk of toxicity, mAb combinations, including
cetuximab, that aim to elicit higher ADCC responses could be
given at their recommended phase II doses without greatly
Frontiers in Immunology | www.frontiersin.org 1560
increasing toxicities (252). Nevertheless, future research should
always consider the potential for increased AEs in any
combination strategy and dose-escalation schemes are greatly
useful in that regard.

The next couple of years will undoubtedly bring a more in-
depth understanding of the TIME together with the next
generation of targets for anticancer treatment. This will allow
us to rationally design better combination therapies in order to
achieve the most optimal long-term effectiveness. In this era, we
believe that cetuximab and many other ADCC-capable mAbs
will remain valuable components, as it becomes clear that
mAbs can add great benefit to both conventional and
immunotherapies. As NK cell activation depends on a balance
of stimulatory and inhibitory signals, the combinations that
involve stimulation of NK cells through ADCC, together with
suppression of inhibitory signals or the attraction of NK cells are
of particular interest. As these combinations are currently under
(pre)clinical investigation, the knowledge they provide regarding
valuable biomarkers will soon guide the next generation of
clinical trial measurements and ultimately lead to higher-
TABLE 2 | ADCC-mediating IgG1 therapeutic antibodies.

Antibody
(Trade name)

Company Approval
FDA/EMA*

Indication Target IgG1 type Fc modification Reference

Unmodified Fc Abs
Alemtuzumab
(Campath)

Ilex Pharmaceuticals 2013 MS CD52 Humanized / (1)

Avelumab (Bavencio) Merck KGaA
and Pfizer

2017 MCC, UC, RCC PD-L1 Human / (2)

Cetuximab (Erbitux) Bristol-Myers Squibb 2004 HNSCC, CRC EGFR Chimeric / (3)
Dinutuximab
(Unituxin)

United Therapeutics 2015 NB GD2 Chimeric / (4)

Ipilimumab (Yervoy) Bristol-Myers Squibb 2011 MEL, RCC, CTLA-4 Human / (5)
Necitumumab
(Portrazza)

Eli Lilly and Company 2015/2016 NSCLC EGFR Human / (6)

Ofatumumab
(Arzerra)

Genmab 2009/2010 CLL CD20 Human / (7)

Pertuzumab (Perjeta) Genentech 2012/2013 BCA HER2/neu Humanized / (8)
Rituximab (Rituxan) Genentech 1997/1998 NHL, CLL CD20 Chimeric / (9)
Trastuzumab
(Herceptin)

Genentech 1998/2000 BCA, GC HER2/neu Humanized / (10)

Fc modified Abs
Imgatuzumab Genentech / HNSCC EGFR Humanized Reduced fucosylation (11)
Margetuximab
(Margenza)

MacroGenics 2020/2018 BCA HER2/neu Chimeric Enhanced FcgRIII binding
(F243L; R292P; Y300L;
V305I; P396L)

(12)

Mogamulizumab
(Poteligeo)

Kyowa Hakko Kirin 2018 CTCL CCR4 Humanized Afucosylated (13)

Obinutuzumab
(Gazyva)

Roche 2013/2014 CLL, FL CD20 Humanized Afucosylated (14)

Tafasitamab
(Monjuvi)

MorphoSys 2020 DLBCL CD19 Humanized Enhanced FcgRIII binding
(S239D; I332E)

(15)

Tomuzotuximab
(CetuGEX)

Glycotope / NSCLC, CRC,
HNSCC, GC

EGFR Chimeric Afucosylated (16)
Septemb
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BCA, Breast cancer; CCR4, Chemokine receptor 4; CLL, Chronic lymphocytic leukemia; CRC, Colorectal cancer; CTCL, Cutaneous T-cell lymphoma; CTLA-4, Cytotoxic T-lymphocyte-
associated protein 4; DLBCL, Diffuse large B-cell lymphoma; EGFR, Epidermal growth factor receptor; EMA, European Medicines Agency; FDA, Food and Drug Administration; FL,
Follicular lymphoma; GC, Gastric cancer; GD2, Disialoganglioside; HER, Epidermal growth factor receptor 2; HNSCC, Head and neck squamous cell carcinoma; I.V., Intravenously; MCC,
Merkel cell carcinoma; MEL, Melanoma; MS, Multiple sclerosis; NB, Neuroblastoma; NSCLC, Non-small cell lung cancer; RCC, Renal cell carcinoma; UC, urothelial carcinoma.*Approval
by FDA and EMA within the same year if only a single date is given.
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TABLE 3 | Active clinical trials evaluating cetuximab in combination with NK cell stimulating immunotherapies.

tment Primary endpoint Status

DLT Active, not recruiting
umab
ab

) + gemcitabin e MTD, AE Recruiting
tuximab + gemcitabin e

in-12 + cetuximab DLT, OR Active, not recruiting
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Clinical trial ID Study phase Estimated patients Initial registration Indication Trea

Adoptive NK cell therapy
NCT03319459 I 100 2018 Advanced Solid Tumors FATE-NK100

FATE-NK100 + trastuz
FATE-NK100 + cetuxi

NCT04872634 I/II 24 2021 LA/M NSCLC SNK01 (low/high dose
SNK01 (low/high) + Ce

Cytokines
NCT01468896 I/II 23 2011 R/M HNSCC Recombinant interleuk
NCT02627274 I 134 2015 Solid tumors RO6874281

RO6874281 + Trastuz
RO6874281 + cetuxim

NCT04616196 I/II 78 2020 R/M HNSCC & CRC Dose Escalation of NK
Dose expansion of NK

EGFR-TKI
NCT02716311 II 118 2016 EGFR mutant NSCLC Afatinib

Afatinib + cetuximab
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Tumors BMS-986315 + nivolu
BMS-986315 + cetuxi

NCT04590963 III 600 2020 R/M HNSCC Monalizumab + cetuxi
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PD-1/PD-L1
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NCT03498378 I 24 2018 R/M HNSCC Avelumab + cetuximab
NCT03608046 II 59 2018 mCRC Avelumab + cetuximab
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NCT04561336 II 77 2018 RAS-WT mCRC Avelumab + cetuximab

AE, Adverse events, CR, Complete response, CRT, Chemoradiotherapy, CSCC, Cutaneous squamous cell cancer, DCR, Disease control rate, DLT, Dose li
neck squamous cell carcinoma, LA, Locally advanced, mCRC, Metastatic colorectal carcinoma, MTD, Maximum tolerated dose, OBD, Optimal biological dose
Progression free survival, R/M, Recurrent and metastatic, RT, radiotherapy, SCCAC, Squamous cell anal carcinoma, TTF, Time to treatment failure, WT, W
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quality treatments that will provide the most effective benefit to
the patient.
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Chimeric antigen receptor T (CAR-T) cell therapy achieved extraordinary achievements
results in antitumor treatments, especially against hematological malignancies, where it
leads to remarkable, long-term antineoplastic effects with higher target specificity.
Nevertheless, some limitations persist in autologous CAR-T cell therapy, such as high
costs, long manufacturing periods, and restricted cell sources. The development of a
universal CAR-T (UCAR-T) cell therapy is an attractive breakthrough point that may
overcome most of these drawbacks. Here, we review the progress and challenges in
CAR-T cell therapy, especially focusing on comprehensive comparison in UCAR-T cell
therapy to original CAR-T cell therapy. Furthermore, we summarize the developments and
concerns about the safety and efficiency of UCAR-T cell therapy. Finally, we address other
immune cells, which might be promising candidates as a complement for UCAR-T cells.
Through a detailed overview, we describe the current landscape and explore the prospect
of UCAR-T cell therapy.

Keywords: cellular immunotherapy, chimeric antigen receptor T cell therapy, universal chimeric antigen receptor T
cell therapy, gene editing, CRISPR/Cas9
INTRODUCTION

With the vigorous development of cellular immunotherapy and the blowout of new clinical trials,
various emerging cellular drugs have brought about a qualitative leap in the antineoplastic field.
Chimeric antigen receptor T (CAR-T) therapy is the most rapid-developed and wide-applicated
branch of anticancer cellular immunotherapy. This recent technology rapidly changed the
landscape of hematological malignancies and already accounts for more than half of the cell
therapies currently under development or in the market. As of March 2020, there were 1,483
anticancer cell therapies under research or on the market worldwide, with an increase of 46.7%
compared with 1,011 in 2019. Among these, 858 are CAR-T cell therapies in 2020, a rise of more
than 50% compared to the corresponding quarter last year (1).

In a nutshell, this technology is based on T lymphocytes isolated from the circulation, which are
then engineered to express chimeric antigen receptors (CARs), enabling modified T lymphocytes to
recognize and respond to cancer cells independently of a major histocompatibility complex (MHC)
engagement. After proliferation in vitro, these cells are reinfused into the patient to drive antitumor
immune responses (2). The first generation of CAR used an extracellular antigen-binding domain
(usually the single chain variable fragment of an antibody), a transmembrane domain, and an
intracellular signaling domain of the CD3z chain (Figure 1A), simply driving a transient T-cell
proliferation and limited cytokine secretion (3). Later, costimulatory molecules such as CD28 or
org October 2021 | Volume 12 | Article 744823170
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4-1BB were incorporated into CAR structure to promote CAR-T
cells survival and functionality in vivo, leading to the second
generation CAR (Figure 1B) (4) and then paired as the third
generation of CAR structures (Figure 1C) (5). Recently CAR-T
cells have been further modified to secreted cytokines such as
interleukin (IL)-12, which enhances T-cell viability, recruits and
activates other immune cells to enhance potency or safety
(Figure 1D) (6–8).

The second-generation CAR-T cell is the most effective and
widely used. Five CAR-T cell products, namely, Kymriah
(tisagenlecleucel, tisa-cel), Yescarta (axicabtagene ciloleucel,
Frontiers in Immunology | www.frontiersin.org 271
Axi-Cel), Tecartus (brexucabtagene autoleucel, KTE-X19),
Breyanzi (lisocabtagene maraleucel, liso-cel), and Abecma
(idecabtagene vicleucel, Ide-cel), have been approved by the
Food and Drug Administration (FDA) for clinical treatment in
relapsed or refractory acute B lymphoblastic leukemia, B
lymphoid malignancies, and multiple myeloma, respectively. In
China, Yescarta was the first approved CAR-T cell product
released on the market on June 22, 2021. Relma-Cel, another
anti-CD19 CAR-T cell product, is under premarket review as
well. In the most recent reports, objective remission rates of
Kymriah and Yescarta in the treatment of relapsed or refractory
A B C D E

FIGURE 1 | The structure of conventional CAR and modular CAR: (A) the first generation of CAR consists of an extracellular antigen-binding domain (usually the
single chain variable fragment, scFv), a transmembrane domain, and an intracellular signaling domain of the CD3z chain. Then, a costimulator is added in the (B)
second generation and more in the (C) third generation. (D) The fourth generation of CAR is modified further to secret a cytokine to enhance the function. (E) The
modular CAR is split into two interactive parts, the signaling module on T cells and the switching module to recognize targets.
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B non-Hodgkin’s lymphoma have reached 52% and 82%,
respectively (9, 10).

Nonetheless, some limitations hinder the dissemination and
development of CAR-T cell therapy. First, many factors may lead
to the failure of CAR-T cell therapy, including the intrinsic
factors (such as poor CAR-T cell expansion or short persistence)
and extrinsic factors (tumor cells with target deletions or
mutations and tumor inhibitory microenvironment) (11).
Second, the safety concerns still need to be addressed. CAR-T
cells drive tumor clearance but can also lead to potentially lethal
toxicity, including cytokine release syndrome (CRS) and
neurotoxicity caused by CAR-T cells overactivation, excessive
cytokine release, and “on-target/off-tumor effect” due to low
specificity of antigen expression (12, 13). In addition, the high
cost and the labor-intensive manufacturing process of CAR-T
cells still hamper the popularization of CAR-T cell therapy. A
one-time infusion of Kymriah costs $475,000, and the total cost
for Kymriah or Yescarta treatment is nearly 1 million dollars per
patient (14). Furthermore, the current production cycle takes
about 2 weeks, during which highly proliferative malignancies
continue to progress (15). Moreover, cancer patients frequently
suffer from congenital immunodeficiency or lymphocytopenia
after repeated chemotherapies, resulting in suboptimal T cells
inadequate for CAR-T cell manufacturing. Rarely, but worst of
all, if leukemic blasts contaminate isolated lymphocytes and are
inadvertently loaded with CAR, they can mask the targets and
escape from CAR-T cells. Until now, there was only one reported
case where leukemic B cell was unintentionally modified by
CD19-CAR, conferring resistance to CD19 CAR-T cells and
leading to lethal complications related to progressive leukemia
ultimately (16). All of these pitfalls cast a shadow over the
development of CAR-T cell therapy (17).

Currently, universal CAR-T (UCAR-T) cell therapy is in the
spotlight and expected to break the plight. All existing CAR-T
cell products on the market or under testing are autologous
(made with same patient-derived T lymphocytes) to avoid severe
alloimmune rejection due to a mismatch of MHC between the
donor and the recipient. Alternatively, UCAR-T cells would
Frontiers in Immunology | www.frontiersin.org 372
consist of allogeneic CAR-T cells that are taken from healthy
donors. Despite sharing the same killing mechanism, UCAR-T
cells have distinct manufacturing processes, cost, safety
considerations, and applicability (Table 1) (18). When
customized CAR-T cell therapy can evolve into a universal
therapy, many of the flaws that impede CAR-T cell
dissemination can be readily addressed. Finally, large-scale
production procedures and batch manufacturing could greatly
increase the quality and accessibility of CAR-T cell products.
THE EVOLUTION OF UCAR-T CELL
THERAPY

The concept of allogeneic CAR-T cell therapy has persisted for a
long time. In relapsed patients, successfully treated by allogeneic
hematopoietic stem cell transplantation (allo-HSCT), CAR-T
cells can be produced from the transplant donors or recipients,
but the efficacy and safety of each are still uncertain. In an early
study (NCT01087294), 10 persistent patients with B-cell
lymphoma or leukemia after allo-HCST and standard donor
lymphocyte infusions received transplant donors-derived
allogeneic CAR-T cells without lymphodepletion. Three of
them showed tumor regression, but none of these patients
showed graft versus host disease (GVHD) (19). In another
study with longer follow-up, 8 [6 complete responses (CRs)
and 2 partial response (PRs)] of 20 patients entered remission,
with none developing new-onset acute GVHD and only 2 with
mild chronic GVHD after CAR-T cells refusion (20). In contrast,
a similar study (NCT01864889) reported grade 2–3 GVHD in
two patients 4 weeks after donor-derived CAR-T cells infusions
(21). Recently, a retrospective study compared 14 patients
receiving allogeneic CAR-T cells (3 donor-derived and 11
recipient-derived) after HSCT with 17 patients receiving
autologous CAR-T cells (22). These showed no significant
difference between autologous CAR-T cells and recipient-
derived allogeneic CAR-T cell therapy on CR rate and long-
term survival, but the latter with significantly lower proliferation
TABLE 1 | The comparison of autologous and allogeneic CAR-T cell therapy.

Autologous CAR-T cell therapy Universal CAR-T cell therapy

Consistency
Killing mechanism MHC-independent
Gene editing to avoid fratricide Carried out if needed
Manufacturing process T lymphocytes are isolated and transduced with a specific CAR by viral vector, then refused to the patient after

amplification
Difference
Cell source Patients themselves Healthy donors
Activation of the immune system in patients Hardly Possible
Manufacturing Line Customized Batched
Additional Gene Editing to avoid GVHD and rejection Unnecessary Necessary
Cost High Much lower
Immediate availability No Yes
Application in T-cell malignancies Restricted Promising
Main risks CRS;CRES CRS;CRES;GVHD
Limitations Suboptimal quantity and quality of T cells in patients Lower amplification and shorter persistence in vivo
CAR, chimeric antigen receptor; CRS, cytokine release syndrome; CRES, CAR-T cell-associated encephalopathy syndrome; GVHD, graft versus host disease.
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and decreased cytokine release reaction. In this study, only two
recipient-derived (18.2%) and 1 donor-derived (33.3%)
allogeneic CAR-T cells caused acute GVHD (22).

These inconsistent results of GVHD may be explained by
chronic hyperactivation, accelerated exhaustion, and activation-
induced cell death (AICD), resulting from double stimulation
from T-cell receptor (TCR) and CAR on allogeneic CAR-T cells.
In a donor-derived allogeneic CAR-T cell mouse model, Arnab
Ghosh et al. demonstrated that allogeneic CAR-T cells could be
activated by CAR and TCR, respectively; however, activation of
one receptor could restrain the function of the other. Hence,
GVHD was alleviated when CD19-positive cells activated
allogeneic CAR-T cells (via anti-CD19 CAR) before TCR-
engagement by alloantigen. Therefore, they recommended that
allogeneic CAR-T cells should be transfused only after B
lymphocytes recovering from transplantation (23). A
contradictory report that only CD19-positive leukemia could
drive allogeneic activation of CAR-T cells and mediate acute
GVHD. When activated by tumor cells, allogeneic CAR-T cells
showed more severe rejection to the alloantigen (24). This
discrepancy may be related to the degree of activation of
UCAR-T cells. When the stimulation of CAR by target antigen
is moderate, allogeneic CAR-T cell is activated but not
excessively, driving an effective response to alloantigen. But
when CD19 stimulation is overly strong, CAR-T cells become
exhausted and unresponsive to allogeneic antigens. This suggests
a delicate relationship between CAR and TCR in constant
competition and collaboration. Given the complexity of dual
signal controlled by TCR and CAR, the elimination of GVHD by
Frontiers in Immunology | www.frontiersin.org 473
disrupting TCR has become a strategy adopted by most
allogeneic CAR T-cell researchers.

This strategy of transplant bridging to a recipient or donor-
derived CAR-T cell therapy is stranded in one-to-one
correspondence, far from the envisaged one-to-many
universalization. With the accumulation of experience in
allogeneic CAR-T cells, the production of “off-the-shelf” CAR-
T cells from third-party healthy donors has been put on the
agenda. At the American Society of Hematology (ASH) meeting
in December 2017, Cellectis announced the preliminary results
of two clinical trials of UCART19, and since then, universal
CAR-T cell therapy has officially come into the public sight.
RECENT DEVELOPMENTS IN UCAR-T
CELL THERAPY

Targets of UCAR-T Cell Therapy
There have been more than hundreds of preclinical and clinical
trials of allogeneic CAR-T cell therapy worldwide (18, 25). The
majority of these are applied to hematological malignancies,
where the most popular target is CD19, and other classic
targets, including CD20, CD22, and BCMA. New developing
targets such as CD70, CD7, and CD5 are also included (18, 26).
NKG2DL, GD2, and mesothelin for solid tumors are also
emerging (Table 2) (18, 29, 30).

Allogene Therapeutics was the forerunner in this UCAR-T
field with UCART19. Two multicenter phase I clinical trials
TABLE 2 | Summary of targets involved and strategies to improve the efficiency in UCAR-T cell therapy.

Target UCAR-T product Improving strategies Editing tools Development
phase

Reference/NCT number

CD 19 UCART019 TRAC and B2M KO CRISPR/Cas9 Phase I/II NCT03166878
CTX110 TRAC and B2M KO CRISPR/Cas9 Phase I NCT04035434
/ TRAC, B2M and PD-1 KO CRISPR/Cas9 Preclinical (27)
UCART19/ALLO-501 TRAC KO with or without CD52 KO TALEN Phase I NCT02735083;

NCT02808442;
NCT02746952;

FT819 TRAC KO and iPSC-derived T cells CRISPR/Cas9 Phase I NCT04629729;
BCMA CTX120 TRAC and B2M KO CRISPR/Cas9 Phase I NCT04244656
CD123 UCART123 TRAC KO TALEN Phase I NCT03190278;

NCT03203369
CD22 UCART-22 TRAC and CD52 KO TALEN Phase I NCT04150497
CS1 UCARTCS1A TRAC and CS1 KO TALEN Phase I NCT04142619
CD19/CD20; CD19/
CD22

Universal dual specificity CAR-
T cells

TRAC KO CRISPR/Cas9 Phase I/II NCT03398967

CD5 CT125A TRAC and CD5 KO CRISPR/Cas9 Phase I NCT04767308
CD7 GC027 TRAC and CD7 KO CRISPR/Cas9 Phase I (28)

UCART7 TRAC and CD7 KO CRISPR/Cas9 Preclinical (26)
CD70 CTX130 TRAC and B2M KO CRISPR/Cas9 Phase I NCT04438083;

NCT04502446
Mesothelin / TRAC and PD1 KO CRISPR/Cas9 Phase I NCT03545815
NKG2D CYAD-101 TIM peptide of CD3z Retroviral vector Phase I NCT03692429
NKG2DL CTM-N2D gd T Cells / Phase I NCT04107142
GD2 / EBV-CTLs / Phase I NCT00085930
October 2021 | V
TRAC, T-cell receptor alpha constant chain; B2M, beta-2-microglobulin; PD-1, programmed cell death protein 1; CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/
Cas9; TALEN, transcription activator-like effector nuclease; iPSC, induced pluripotent stem cell; BCMA, B-cell maturation protein; TIM peptide, TIM peptide TRAC-inhibitory molecule
peptide; EBV-CTLs, Epstein–Barr virus-specific cytotoxic T lymphocytes; KO, knockout.
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(NCT02808442 and NCT02746952) aiming to investigate the
safety, feasibility, and antileukemic activity of UCART19 in
children and adults with relapsed or refractory B-cell acute
lymphoblastic leukemia have been conducted. Seven children
and 14 adults were enrolled, of which 14 (14/21, 67%) patients
had a complete response or complete response with incomplete
hematological recovery 28 days after infusion. CRS (19/21, 91%)
was the most common adverse side effect, of which 3 (3/21, 14%)
were grade 3–4. Other adverse events included mild
neurotoxicity (8/21, 38%), grade 4 prolonged cytopenia (6/21,
32%), and grade 1 acute skin GVHD (2/21,10%). Two treatment-
related deaths were reported as a result of neutropenic sepsis and
pulmonary hemorrhage, respectively (31). Two infants
mentioned above acquired molecular remission and bridged to
allogeneic HSCT successfully (32). UCART19 is undoubtedly a
remarkable step forward in the field of UCAR-T cells, and it
offers an opportunity for patients with rapidly progressive
diseases who cannot access autologous CAR-T cell therapy.

In addition to CD19, targets of UCAR-T cell products being
developed by Allogene Therapeutics include CD123
(NCT03190278, NCT03203369), CD22 (NCT04150497),
BCMA (NCT04093596), and CS1 (NCT04142619). Unlike the
smooth progress of CD19, the CD123 program has been full of
twists and turns. In November 2017, after one death in the
clinical trial (NCT04106076), it was announced that UCART123
would continue two phase I clinical trials for acute myeloid
leukemia (NCT03190278) and blastic plasmacytoid dendritic cell
neoplasm (NCT03203369) subject to agreed clinical regimens
with FDA. The detailed results are still unknown.

Most research targeted one specific marker, but UCAR-T cell
allows for a CD19/CD20 and CD19/CD22 (NCT03398967)
multitarget approach. Recently, Yongxian Hu et al. reported
CTA101, a universal CD19/CD22 dual-targeted CAR-T cell
that disrupted T-cell receptor alpha chain (TRAC) and CD52
by clustered regularly interspaced short palindromic repeats/
Cas9 (CRISPR/Cas9). This exhibited a CR rate of 83.3% (5/6)
without dose-limiting toxicity, GVHD, neurotoxicity, or adverse
events related to genome editing (33).

Currently, there are just a few registered UCAR-T cells
clinical trials for solid tumors, such as allogeneic NKG2DL-
targeting CAR-T cells (NCT04107142) for relapsed or refractory
colorectal cancer, breast cancer, and sarcoma. Additionally,
allogeneic disialoganglioside 2 (GD2)-targeting CAR-T cells are
under test for relapsed or refractory neuroblastoma
(NCT01460901) and allogeneic CD70 targeting CAR-T cells
for relapsed or refractory renal cell carcinoma (NCT02830724).
The latter has been suspended. Based on these clinical trials, it is
likely that UCAR-T cell therapy will be first used for
hematological malignancies, while for solid tumors, the UCAR-
T cell study is still in its infancy with broad prospects for
the future.

Gene Editing in UCAR-T Cell Therapy
The CAR-T cell is commonly transduction with viral vectors,
mostly lentiviral vectors, which have an advantageous
transfection efficiency and stable expression. However, random
Frontiers in Immunology | www.frontiersin.org 574
genome integration raises the risk of insertion mutation and
disruption of functional genes (34). Therefore, the development
of UCAR-T depends on the progress of gene-editing technology.
A variety of gene-editing methods have been applied to improve
transduction efficiency, diminish GVHD, and enhance
persistence. Zinc-finger nucleases (ZFN) (35), transcription
activator-like nucleases (TALENs) (36), and CRISPR/Cas9 (25,
33) can all achieve positional editing in the genome and have
been employed in UCAR-T cell therapy. TALENs is most
adopted by Allogene Therapeutics, and CRISPR/Cas9 offers
even greater flexibility, maneuverability, and relative accuracy,
opening the possibility of multiple gene editing (Figure 2).
Currently, it has been employed in several clinical trials,
including UCART019 targeting CD19 (NCT03166878),
CTX130 targeting CD70 (NCT04502446, NCT04438083),
CTX120 targeting BCMA (NCT04244656), and CT125a
targeting CD5 (NCT04767308). For the expression of CAR in
check, CD19-specific CAR is knocked into the TRAC locus of T
cells, by which its expression is enhanced and unified under the
control of the TCR promoter (37, 38). In UCART7 targeting
CD7 for T-cell malignancies, TRAC and CD7 are simultaneously
knocked down, the former for preventing GVHD and the latter
for preventing fratricide of the very effector cells (26).

On the other hand, non-gene editing universal CAR-T
therapy has also achieved initial results. Celyad has conducted
several clinical trials with the CYAD-101, a non-gene editing
natural killer group 2D (NKG2D)-based UCAR-T cell product,
in both solid and hematological tumor types. It tampered with or
eliminated TCR signals and reduced GVHD by expressing a
TRAC-inhibitory molecule (TIM) peptide. The preliminary
results of the phase I trial showed no evidence of CYAD-101
causing GVHD in the treatment of metastatic colorectal cancer.
Using the short hairpin RNA (shRNA) platform of Horizon,
Celyad has developed the next generation non-gene edited
allogeneic CYAD-200 series of CAR-T candidates.

Modularization and Logic Gating
Gene editing transforms T cells from third-party healthy donors
to a stable and universal cell resource, while the development of
CAR structure makes it possible to design a CAR for multiple
targets at the same time, the combination of which enables the
idea of an upgraded UCAR-T (5).

In 2012, Urbanska et al. proposed a modular CAR design
composed of extracellular-modified avidin linked to an
intracellular T-cell signaling domain. These modified T cells
recognized and bound exclusively to cancer cells pretargeted
with specific biotinylated junction molecules, such as
biotinylated antibodies (39). Despite the high immunogenicity
in humans, this idea opened the door to the modularization of
CAR structure (Figure 1E). The CAR is split into two parts: (i)
the signaling module on T cells, consisting of the extracellular
domain that specifically binds to the switching module and the
intracellular domain that transmits the activation signals; (ii) the
switching module, usually a bispecific antibody or small
molecule recognized by the signaling module on T cells and
binding to the targets on cancer cells. This split, universal, and
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programmable (SUPRA) CAR system currently adopts a variety
of recognition modes including neo-epitopes, SpyTag, biotin,
and fluorescein isothiocyanate (FITC) and leucine zippers (40).
Clinical trials of SUPRA CAR have been carried out for CD19/
CD20 (NCT02776813) and CD123 (NCT04230265). Other
targets under development include CD33, prostate stem cell
antigen (PSCA), prostate-specific membrane antigen (PSMA),
GD2, epidermal growth factor receptor (EGFR), cell-surface-
associated mucin 1 (MUC1), and sialyl-Tn (STn) (29). What is
more, the CD123-specific targeting module has been further
deimmunized to mitigate the potential immunogenicity, which
proved its good tolerance and targeting effect in the human
body (41).

This flexible CAR structure changes the original rigid
structure of CAR to improve security and feasibility. As a
bridge between CAR-T cells and tumor cells, the dosage of the
switching module can be titrated because it conforms to general
pharmacokinetics, and its affinity to target antigens can be
regulated by fine-tuning the structure to take control of CAR-
T cell activation. Besides, CAR-T cells are held back by blocking
Frontiers in Immunology | www.frontiersin.org 675
agents, which competitively inhibit switching modules
when necessary.

Recently, a photo-switchable CAR-T cell with dose-
dependent and rapidly terminated cytotoxicity has appeared.
Switching modules carrying dual folate and FITC tethered by an
ortho-nitrobenzyl ester photocleavable linker (folate-O-FITC),
CAR-T cells are turned off under the light of 365 nm, in which
switching modules were snipped and activated again by
resupplementation with the mediator (42). These make it
possible to accurately predict and control the activation of
CAR-T cells and the release of cytokines. When various
switching modules are injected simultaneously, multitarget
CAR-T cell therapy can be easily achieved without altering
cells, which is promising in preventing targets mutation (43, 44).

What is even more exhilarating is the logical control of CAR-
T cells through multiple switching modules. Existing bispecific
CAR T-cell therapy adopts “OR” logic, in which CAR-T cells are
activated if the tumor cells express a single target (Figure 3A).
The modular CAR design can function “AND” and “NOT” gate
to promote selective tumor eradication without on-target,
FIGURE 2 | Multiple gene or non-gene editing on UCAR-T cells. In addition to transducing a CAR into T cells, the TCR can be knocked out or inhibited to prevent
GVHD. Genetic ablation of MHC-I and/or MHC-II diminish immunogenicity. Destruction of CD52 can make cells resistant to alemtuzumab. CD7 is edited to prevent
the fratricide in CD7 UCAR-T cells. In addition, inhibitory checkpoints (e.g., PD-1) can be knocked out to enhance the function of cells.
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off-tumor toxicity (45, 46). For “AND” gating strategies, the
antigen-binding domain and costimulatory domain can be
separated into two CARs targeting different antigens and
cotransduced into T cells (Figure 3B). Aiming at two tumor-
associated antigens, PSMA and PSCA, Christopher Kloss et al.
constructed such an “AND” logic bispecific CAR-T cell, which
destroyed tumors that expressed both PSMA and PSCA but did
not work on tumors expressing either alone (45). Similarly, the
modular CAR system can perform the “NOT” logic to increase
tumor specificity through combinatorial antigens (Figure 3C).
For instance, a SUPRA CAR system targeted cells expressing
Her2 only and spared cells expressing Her2 and Axl both. In this
design, both Her2- and Axl-positive cells are bound to two
switching modules, a-Her2-EE zipFv and a-Axl-SYN2 zipFv,
simultaneously. Then, these two modules recognized and
combined with each other by zipFv, so they failed to activate
CAR-T cells (47). This suggests that when tumor-associated
antigens are also expressed on normal cells, an additional
Frontiers in Immunology | www.frontiersin.org 776
target can be combined as a “safety label” to further
distinguish normal cells from tumor cells.

When modular CAR is adopted in UCAR-T cells, the ultimate
goal of treating different cancers with cells of stable source and
CAR of identical structure makes solid progress.
CHALLENGES IN UCAR-T CELL THERAPY

Safety of UCAR-T Cell Therapy
Allogeneic cells and complex gene editing make people more
cautious about UCAR-T cell therapy. The existing risks in
autologous CAR-T cel l therapy, such as CRS and
neurotoxicity, cannot be ruled out in UCAR-T cell therapy.
However, the GVHD is the first and foremost challenge that
hinders the realization of this therapy. It is logical to knock out
the TCR on cells and then enrich the TCR-negative UCAR-T
FIGURE 3 | The logic gatings in modular CAR. (A) OR logic: the modular CAR-T cell can eliminate different cancer cells with various switching modules, which are
recognized by the same CAR-T cell but target different antigens on cancer cells. (B) AND logic: the antigen-binding domain and costimulator are separated into two
CARs targeting different antigens and cotransduced into T cells. Only when tumor cells express two antigens simultaneously can they be recognized and attacked by
these CAR-T cells. (C) NOT logic: a tumor-associated antigen is expressed on cancer cells and normal cells simultaneously, while another antigen is expressed on
normal cells only. The two modules binding to them are complementary in the site recognized by the signaling module. The extra target works as a safety label to
prevent the “on-target, off-tumor” toxicity of CAR-T cells.
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cells for reinfusion. The improvements in gene editing make this
technically achievable (48). However, gene editing is not
necessarily a complete gospel. Complex genetic manipulation
increases the risk of unexpected gene mutations (49). Safe and
efficient gene manipulation is still being explored. What is more,
higher-dose lymphodepletion chemotherapy in UCAR-T cell
therapy is accompanied by the increased risk of opportunistic
infection. All of these can be fatal for patients.

Efficiency of UCAR-T Cell Therapy
CAR T cells should undergo a process of proliferation and then
persist in vivo. Cytokinetics revealed the comparable early
expansion but shorter persistence in allogeneic CAR T-cells
than autologous CAR-T cells and failure to generate a memory
pool (24). In related clinical trials, the failure of UCAR-T cells to
expand and maintain sufficient levels in patients remains a major
concern. This can be solved by alleviating the host rejection or
reducing the immunogenicity of infused cells (Table 2).

Increasing clinical practice shows that the lymphodepletion
chemotherapy before cell infusion creates a favorable environment
for the expansion of CAR-T cells in vivo. The commonly used
conditioning regimens are fludarabine combined with
cyclophosphamide, but more exhaustive lymphodepletion has
been applied in UCAR-T cell therapy. In the landmark clinical
trial of UCART19 (NCT03939026), T cells were engineered to
knock out genes encoding TCRA and CD52, to disrupt the
structure of TCR and acquire resistance to anti-CD52
monoclonal antibody alemtuzumab, since CD52 is both positive
in T and natural killer (NK) cells, which eliminate the allogeneic
CAR-T cells in recipients. The addition of alemtuzumab can
further suppress the allogeneic immune rejection in hosts and
extend the therapeutic window for the amplification of UCAR-T
cells. It was clear that all patients with CR were pretreated with
fludarabine, cyclophosphamide, and alemtuzumab (14/17, 82.4%),
but none of the four patients without alemtuzumab showed
UCART19 expansion or antileukemic activity. The finding
illustrated the absolute necessity of a powerful and thorough
lymphodepletion for UCAR-T cells amplification (31). Similar
gene-modifying and pretreatments were found in CTA101, a
CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted
CAR-T cells (33).

Except in combination with CD52 knocking out, UCAR-T
cells resistant to traditional chemotherapeutics have also been
designed. Purine and pyrimidine nucleoside analogues, as
common chemotherapeutic agents, such as clofarabine,
fludarabine, and cytarabine, take effect only after being
metabolized by deoxycytidine kinase (dCK). TCR-negative and
chemotherapeutics-resistant UCAR-T cells were obtained by
employing TALEN to block the expression of TRAC and dCK,
which made it possible to lymphodeplete repeatedly whenever
lymphocytes recover without impacting UCAR-T cells
unintentionally. Besides, lymphocytes of the recipient might
restore by breaking off lymphodepletion and remove
overkilling UCAR T-cells to prevent severe toxicity (50).

Like CD52, CD7 is a transmembrane glycoprotein with
expression on T cells and NK cells, and it is also a target of
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great concern in T-cell tumors. In CD7 UCAR-T targeting T-cell
malignancies, TCR and CD7 are also knocked out to avoid
GVHD and fratricide between effector cells, respectively. In
addition to malignant T cells, CD7 UCART can recognize
normal T and NK cells as well, resulting in more lasting
lymphodepletion. Mathew et al. reported that this UCAR-T
cell kept robust antileukemia effect in cell lines and primary T-
cell acute lymphoblastic leukemia (T-ALL) blasts in vitro and in
NSG mice, and no fratricide or GVHD was found (26). Recently,
an open-label and single-arm clinical trial of GC027, a CD7
UCAR-T of TCR and CD7 edited by CRISPR, was published in
two patients with refractory/relapsed T-ALL after potent
lymphodepletion (fludarabine, cyclophosphamide, and
prednisone) and a single infusion of GC027. Both patients
achieved CR with negative minimal residual disease, and one
remained ongoing remission at cutoff (28).

Thoroughly, lymphodepletion is accompanied by serious T-cell
aplasia. Different from B-cell aplasia, which can be compensated
by periodic infusions of intravenous immunoglobulins, the
persistent deficiency of T and NK cells is life threatening.
Ideally, one would suppress immunological rejection but retain
part of the immune protection. One of the characteristics of
alloreactive T and NK cells is the upregulation of 4-1BB on their
surface (51, 52). Feiyan Mo et al. engineered an alloimmune
defense receptor that identified and attacked 4-1BB upregulated
lymphocytes and coexpressed it in allogeneic CAR-T cells. These
therapeutic cells could eliminate alloimmune lymphocytes and
tumor cells simultaneously but leave resting T and NK cells alone.
Later, they found that these CAR-T cells produced sustained
tumor eradication without being rejected in mice (53). Although
it is still in the preclinical stage, this study can drastically shift the
paradigm of prolonging the persistence in UCAR-T cell therapy
and broaden its applicability.

Apart from suppressing the immune system in hosts,
reducing the immunogenicity of UCAR-T cells is another
approach to enhance its persistence. MHC is the major antigen
system driving graft rejection. MHC-I is expressed on the surface
of almost all living cells in human; therefore, inhibiting the
expression of MHC-I can evade the attack of alloreactive T cells
in recipients. CRISPR Therapeutics has been taking such an
approach, including CT110 targeting CD19, CTX120 targeting
BCMA, and CTX130 targeting CD70. Endogenous TCRA and b-
2 microglobulin(B2M) genes are disrupted simultaneously by
applying CRISPR RNA electroporation to manufacture UCAR-T
cells, which are both TCR and MHC-I negative, aiming to evade
rejection and deliver antileukemic effects without GVHD, but the
results of these studies are still unpublished. Another upgrade
study was to generate gene-disrupted allogeneic CAR-T cells
deficient in TCR, MHC-I, and PD-1, which demonstrated
reduced alloreactivity and enhanced antitumor activity in vivo
without causing GVHD (27).

Although UCAR-T cells are exempt from alloreactive T cells
by B2M knocking out, another militant, the NK cells, are
activated in the absence of MHC-I on UCAR-T cells and
evolve into the main force in the elimination of UCAR-T cells.
Several strategies have been tried to inhibit or clear reactive NK
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cells in recipients, but it is not easy to adopt a broad strategy to
suppress all NK cells for the heterogeneity of NK cells.
Upregulation of human leukocyte antigen (HLA)-E on UCAR-
T cells, for example, showed inhibition of a subset of NK cells by
binding to NKG2A/B receptors while stimulating another group
of NK cells by activating the NKG2C (54), but more studies are
needed to achieve the inhibition of activated NK cells.

MHC-II molecule is the subordinate factor to mediate
alloimmune rejection by CD4+T cells, and its expression is
regulated by regulatory factor X ankyrin repeat-containing
protein (RFXANK) and class II MHC transactivator (CIITA)
(55, 56). Allogeneic anti-CD19 CAR T cells with B2M, CIITA,
and TRAC triple knocking out showed better persistence when
cultured with allogenic peripheral blood mononuclear cells
(PBMCs) than TRAC and B2M double knocking-out CAR-T
cells, without altering the function of T cells (57). Similar
engineering in iPSC was conducted to disrupt B2M, CIITA,
and CD155 (encoding an activating ligand of NK cells) and
transduce HLA-E, serving as a source of CAR-T cells. These
hypoimmunogenic CAR-T cells largely escaped rejection by
CD8+T cells, CD4+T cells, and NK cells, maintaining
antitumor cytotoxicity (58).

Multiple gene editing strategies reduce rejection of UCAR-T
cells in vivo. On the other hand, increasing accessibility and
further ablation of immunogenicity in UCAR-T cells allows for
multiple reinjections, making CAR-T cell therapy more like
conventional drugs, in which efficacy and side effects can be
easily controlled by repeated and transient infusions of cells.
ALTERNATIVE UNIVERSAL CELL
THERAPIES

At present, most CAR-T cells are derived from T cells in PBMCs.
However, other types of cells may have unique advantages in the
process of universalizing the cell therapy, as a supplement or
substitutions of UCAR-T cell therapy (59).

Other Subpopulations of T Cells
Certain subsets of T cells with unique superiority in mitigating
GVHD are also promising candidates for producing UCAR-T
cells. Based on the peptide chain structure of TCR, T cells are
divided into abT cells consisting of a and b chains and gdT cells
with g and d chains. Despite in lower frequencies, gdT cells play
an important role in the innate immune response and anti-
infective or antitumor reaction independent of the MHC or
antigen-presenting cells (APCs) (60, 61). In antitumor
immunity, gdT cells recognize and eliminate tumor cells
independent of TCR, which responds to a specific tumor-
associated antigen (TAA) (62, 63). These characteristics endow
gdT cells with inherent advantages in cellular immunotherapy in
solid tumors that lack specific TAAs. Anna Capsomidis et al.
reported that GD2-CAR gdT could amplify in vitro retaining
antigen-presenting function and the GD2-targeting ability (64).
A registered clinical research (NCT04107142) based on
allogeneic NKG2DL-targeting CAR gdT cells against multiple
Frontiers in Immunology | www.frontiersin.org 978
solid tumors, including colorectal cancer, breast cancer, sarcoma,
nasopharyngeal cancer, prostate cancer, and gastric cancer, is
still in phase I.

Invariant natural killer T (iNKT) cells are another cell
subpopulation that share characteristics of NK and T cells, and
they have striking intrinsic antitumor activity for their
endogenous TCR, which restrictedly recognizes foreign lipid
antigens in the context of CD1d (65, 66). It has been reported
that adoptive transferred iNKT cells are able to exert graft versus
leukemia (GVL) but suppress GVHD after HSCT in leukemia
patients (67). Previous studies have shown that iNKT cells
engineered with CAR have equivalent or better cytotoxicity
with a better safety profile than conventional CAR-T cells in
solid tumors (66, 68, 69). A clinical study of allogeneic CAR19-
iNKT cells for hematological malignancy (NCT03774654) is
ongoing (70).

In addition, regulatory T cells expressing chimeric antigen
receptors (CAR-Tregs) have been tried in autoimmune diseases
to induce immune tolerance after organ transplantation (71, 72).

Natural Killer Cells
Compared with CAR-T cell therapy, chimeric antigen receptor
NK (CAR-NK) cells focus on natural killer cells, another
protagonist in the human immune system, which play an
important role in innate and adaptive immunity. Like gdT
cells, NK cells take effect without the aid of MHC and are at
low risk of GVHD. The activity of NK cells is coregulated by
inhibition signals and activation signals. Most of the MHC-I
molecules are inhibitory for NK cells and deregulated on tumor
cells (73). With these superiorities, NK cells are the rising star of
tumor immunotherapy. CAR-NK cells preserve natural killing
functions independent of CAR, such as antibody-dependent cell
cytotoxicity (ADCC) and cytolysis by secreting granzyme and
perforin (74). In addition to PBMC, NK92 cell line, umbilical
blood (UCB), CD34 hematopoietic progenitor cells (HPCs), and
induced pluripotent stem cells (iPSCs) can also substitute or
transform into NK cells. The ongoing clinical trials of CAR-NK
cells are mainly based on NK92 cell lines and PBMC (75).
Despite limitations such as the tumorigenic risk of the NK92
cell line and the short duration of the CAR-NK cells in vivo (73),
CAR NK-cell therapy remains a promising direction as off-the-
shelf cellular immunotherapy.

Hundreds of preclinical and clinical trials of CAR-NK cell
therapy have been launched, with almost evenly splitting
between solid tumors and hematological malignancies. In a
clinical trial (NCT03056339) in CD19-positive lymphoid
tumors, NK cells were transduced to express genes encoding
anti-CD19 CAR, interleukin-15, and inducible caspase 9 as a
safety switch. Of the 11 treated patients, 8 (73%) had a response,
and 7 (64%) had a complete remission. Regarding safety, no cases
of CRS or neurotoxicity were observed, neither any obvious
increase in inflammatory cytokines nor GVHD with this HLA-
mismatched CAR-NK product (nine partial matching at four of
six HLA molecules and two non-HLA matched) (76). This
preliminary study proves the safety advantages of CAR-NK
cells in universal cell therapy.
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Induced Pluripotent Stem Cell
Induced pluripotent stem cell (iPSC) is a hotspot of research with
unlimited capability to self-renew and differentiate into terminal
cells, including T and NK cells with demonstrable antitumor
activity. Besides, piles of homogeneous therapeutic cells from
iPSC can be prefabricated, inspected, and banked across MHC
barriers (77, 78). FT819, an iPSC-derived UCAR-T cell product
expressing anti-CD19 CAR and antibody-engaging CD16 Fc
receptor and TCR knockout, has shown the efficiency of
controlling leukemia progression in vitro and in vivo in a
mouse model, without alloreactivity (79). Maria Themeli et al.
reported that iPSC-derived CAR-modifying T cells that resemble
the phenotype of congenital gdT cells could effectively inhibit
tumor growth in xenotransplantation models (80). Similarly,
iPSC-derived CAR-NK cells demonstrated significant tumor
inhibition and prolonged survival in the ovarian cancer
xenograft model (15, 81). Nevertheless, the immortalization of
iPSC also has both risks and opportunities, as the tumorigenic
potential of undifferentiated iPSC has not been ruled out yet (48).

Macrophage
Extracellular matrix (ECM) is very important for the
development of malignant solid tumors and can act as a
physical obstacle to various anticancer treatments, including
CAR-T cells. Innate immune cells with phagocytosis activity,
such as macrophages, can secrete matrix metalloproteinases
(MMPs) to degrade almost all ECM components and penetrate
tumors (82). Gene engineering with CARs imparted macrophages
a sustained proinflammatory phenotype (M1) and antigen-
specific phagocytosis (83). Recently, in two xenograft mouse
models, CAR macrophages (CAR-M) targeting the solid tumor
antigens mesothelin or HER2 decreased tumor burden and
prolonged overall survival, which preliminarily proved its
feasibility in solid tumors (84).
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CONCLUSIONS AND PROSPECTS

The achievements of CAR-T cell therapy in hematological
malignancies have established cellular immunotherapy as a
new pillar of antitumor therapy, but a series of limitations,
such as high cost, low accessibility, and uncontrolled quality,
have restricted its further dissemination and application. UCAR-
T cell therapy is a comprehensive upgrade based on the original
CAR-T cell therapy, which can remarkably improve accessibility
and applicability. The gallop of gene-editing technologies and
more plentiful cell sources have given it wings to reality. Many
scientific and medical institutions and biotech companies have
made initial successful attempts, although the persistence of
UCAR-T cells is not as good as that of autologous CAR-T cells
so far. In conclusion, the ultimate goal of UCAR-T cell therapy is
to develop a conventional, living drug, just like blood transfusion,
to provide a powerful booster for convenient, effective, and
economical antitumor therapy. Current advances demonstrate
that it is not a distant dream.
AUTHOR CONTRIBUTIONS

HL wrote the manuscript and was the primary author. LZ and
WM made substantial contributions to designing and revising
the article. All authors contributed to the article and approved
the submitted version.
FUNDING

This project was supported by the funding from the National
Natural Science Foundation of China (No. 81900187).
REFERENCES
1. Yu JX, Upadhaya S, Tatake R, Barkalow F, Hubbard-Lucey VM. Cancer Cell

Therapies: The Clinical Trial Landscape. Nat Rev Drug Discov (2020) 19:583–
4. doi: 10.1038/d41573-020-00099-9

2. Labanieh L, Majzner RG, Mackall CL. Programming CAR-T Cells to Kill
Cancer. Nat BioMed Eng (2018) 2:377–91. doi: 10.1038/s41551-018-0235-9

3. Sadelain M, Brentjens R, Rivière I. The Promise and Potential Pitfalls of
Chimeric Antigen Receptors. Curr Opin Immunol (2009) 21:215–23.
doi: 10.1016/j.coi.2009.02.009

4. June CH, Sadelain M. Chimeric Antigen Receptor Therapy. N Engl J Med
(2018) 379:64–73. doi: 10.1056/NEJMra1706169

5. Zhao J, Lin Q, Song Y, Liu D. Universal CARs, Universal T Cells, and
Universal CAR T Cells. J Hematol Oncol (2018) 11:132. doi: 10.1186/s13045-
018-0677-2

6. Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, et al. Recent Advances in CAR-T
Cell Engineering. J Hematol Oncol (2020) 13:86. doi: 10.1186/s13045-020-
00910-5

7. Yu S, Yi M, Qin S, Wu K. Next Generation Chimeric Antigen Receptor T
Cells: Safety Strategies to Overcome Toxicity. Mol Cancer (2019) 18:125.
doi: 10.1186/s12943-019-1057-4

8. Chmielewski M, Abken H. TRUCKs: The Fourth Generation of CARs. Expert
Opin Biol Ther (2015) 15:1145–54. doi: 10.1517/14712598.2015.1046430
9. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, Mcguirk JP, et al.
Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell
Lymphoma. N Engl J Med (2019) 380:45–56. doi: 10.1056/NEJMoa1804980

10. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al.
Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell
Lymphoma. N Engl J Med (2017) 377:2531–44. doi: 10.1056/NEJMoa1707447

11. Singh N, Orlando E, Xu J, Xu J, Binder Z, Collins MA, et al. Mechanisms of
Resistance to CAR T Cell Therapies. Semin Cancer Biol (2020) 65:91–8.
doi: 10.1016/j.semcancer.2019.12.002

12. Brudno JN, Kochenderfer JN. Recent Advances in CAR T-Cell Toxicity:
Mechanisms, Manifestations and Management. Blood Rev (2019) 34:45–55.
doi: 10.1016/j.blre.2018.11.002

13. Drent E, Themeli M, Poels R, De Jong-Korlaar R, Yuan H, De Bruijn J, et al. A
Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-
Chimeric Antigen Receptors by Affinity Optimization. Mol Ther (2017)
25:1946–58. doi: 10.1016/j.ymthe.2017.04.024

14. Lin JK, Lerman BJ, Barnes JI, Boursiquot BC, Tan YJ, Robinson AQL, et al.
Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed
or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol
(2018) 36:3192–202. doi: 10.1200/JCO.2018.79.0642

15. Siegler EL, Zhu Y, Wang P, Yang L. Off-The-Shelf CAR-NK Cells for Cancer
Immunotherapy. Cell Stem Cell (2018) 23:160–1. doi: 10.1016/
j.stem.2018.07.007
October 2021 | Volume 12 | Article 744823

https://doi.org/10.1038/d41573-020-00099-9
https://doi.org/10.1038/s41551-018-0235-9
https://doi.org/10.1016/j.coi.2009.02.009
https://doi.org/10.1056/NEJMra1706169
https://doi.org/10.1186/s13045-018-0677-2
https://doi.org/10.1186/s13045-018-0677-2
https://doi.org/10.1186/s13045-020-00910-5
https://doi.org/10.1186/s13045-020-00910-5
https://doi.org/10.1186/s12943-019-1057-4
https://doi.org/10.1517/14712598.2015.1046430
https://doi.org/10.1056/NEJMoa1804980
https://doi.org/10.1056/NEJMoa1707447
https://doi.org/10.1016/j.semcancer.2019.12.002
https://doi.org/10.1016/j.blre.2018.11.002
https://doi.org/10.1016/j.ymthe.2017.04.024
https://doi.org/10.1200/JCO.2018.79.0642
https://doi.org/10.1016/j.stem.2018.07.007
https://doi.org/10.1016/j.stem.2018.07.007
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lin et al. Advances in UCAR-T Cell Therapy
16. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al.
Induction of Resistance to Chimeric Antigen Receptor T Cell Therapy by
Transduction of a Single Leukemic B Cell. Nat Med (2018) 24:1499–503.
doi: 10.1038/s41591-018-0201-9

17. Ma X, Shou P, Smith C, Chen Y, Du H, Sun C, et al. Interleukin-23
Engineering Improves CAR T Cell Function in Solid Tumors. Nat
Biotechnol (2020) 38:448–59. doi: 10.1038/s41587-019-0398-2

18. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. Off-the-Shelf' Allogeneic
CAR T Cells: Development and Challenges. Nat Rev Drug Discov (2020)
19:185–99. doi: 10.1038/s41573-019-0051-2

19. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford
WG, et al. Donor-Derived CD19-Targeted T Cells Cause Regression of
Malignancy Persisting After Allogeneic Hematopoietic Stem Cell
Transplantation. Blood (2013) 122:4129–39. doi: 10.1182/blood-2013-08-
519413

20. Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al.
Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor
Induce Remissions of B-Cell Malignancies That Progress After Allogeneic
Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-
Host Disease. J Clin Oncol (2016) 34:1112–21. doi: 10.1200/JCO.2015.64.5929

21. Dai H, ZhangW, Li X, Han Q, Guo Y, Zhang Y, et al. Tolerance and Efficacy of
Autologous or Donor-Derived T Cells Expressing CD19 Chimeric Antigen
Receptors in Adult B-ALL With Extramedullary Leukemia. Oncoimmunology
(2015) 4:e1027469. doi: 10.1080/2162402X.2015.1027469

22. Hu Y, Wang J, Wei G, Yu J, Luo Y, Shi J, et al. A Retrospective Comparison of
Allogenic and Autologous Chimeric Antigen Receptor T Cell Therapy Targeting
CD19 in Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia.
Bone Marrow Transplant (2019) 54:1208–17. doi: 10.1038/s41409-018-0403-2

23. Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, et al.
Donor CD19 CAR T Cells Exert Potent Graft-Versus-Lymphoma Activity
With Diminished Graft-Versus-Host Activity. Nat Med (2017) 23:242–9.
doi: 10.1038/nm.4258

24. Jacoby E, Yang Y, Qin H, Chien CD, Kochenderfer JN, Fry TJ. Murine
Allogeneic CD19 CAR T Cells Harbor Potent Antileukemic Activity But Have
the Potential to Mediate Lethal GVHD. Blood (2016) 127:1361–70.
doi: 10.1182/blood-2015-08-664250

25. Morgan MA, Büning H, Sauer M, Schambach A. Use of Cell and Genome
Modification Technologies to Generate Improved “Off-The-Shelf” CAR T and
CAR NK Cells. Front Immunol (2020) 11:1965. doi: 10.3389/fimmu.
2020.01965

26. Cooper ML, Dipersio JF. Chimeric Antigen Receptor T Cells (CAR-T) for the
Treatment of T-Cell Malignancies. Best Pract Res Clin Haematol (2019)
32:101097. doi: 10.1016/j.beha.2019.101097

27. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex Genome Editing to
Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin Cancer Res
(2017) 23:2255–66. doi: 10.1158/1078-0432.CCR-16-1300

28. Li S, Wang X, Yuan Z, Liu L, Luo L, Li Y, et al. Eradication of T-ALL Cells by
CD7-Targeted Universal CAR-T Cells and Initial Test of Ruxolitinib-Based
CRS Management. Clin Cancer Res (2021) 27:1242–6. doi: 10.1158/1078-
0432.CCR-20-1271

29. Feldmann A, Arndt C, Koristka S, Berndt N, Bergmann R, Bachmann MP.
Conventional CARs Versus Modular CARs. Cancer Immunol Immunother
(2019) 68:1713–9. doi: 10.1007/s00262-019-02399-5
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The enhancer of zeste homolog 2 (EZH2) is a methylated modification enzyme of Histone
H3-Lys 27. The high expression of EZH2 in cells is closely related to the progression,
invasion, and metastasis of neoplasm. Therefore, this target is gradually becoming one of
the research hot spots of tumor pathogenesis, and the inhibitors of the EZH2 enzyme are
expected to become new antitumor drugs. This study used a series of virtual screening
technologies to calculate the affinity between the compounds obtained from the ZINC15
database and the target protein EZH2, the stability of the ligand–receptor complex. This
experiment also predicted the toxicity and absorption, distribution, metabolism, and
excretion (ADME) properties of the candidate drugs in order to obtain compounds with
excellent pharmacological properties. Finally, the ligand–receptor complex under in vivo
situation was estimated by molecular dynamics simulation to observe whether the
complex could exist steadily in the body. The experimental results showed that the two
natural compounds ZINC000004217536 and ZINC000003938642 could bind tightly to
EZH2, and the ligand–receptor complex could exist stably in vivo. Moreover, these two
compounds were calculated to be nontoxic. They also had a high degree of intestinal
absorption and high bioavailability. In vitro experiments confirmed that drug
ZINC000003938642 could inhibit the proliferation and migration of osteosarcoma,
which could serve as potential lead compounds. Therefore, the discovery of these two
natural products had broad prospects in the development of EZH2 inhibitors, providing
new clues for the treatment or adjuvant treatment of tumors.
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INTRODUCTION

EZH2, namely, enhancer of zeste homolog 2, is a pivotal member
of epigenetic regulatory factor Polycomb group (PcG) proteins.
PcG proteins can lead to gene suppression through methylation
modification (1), which comprises several essential molecules
like Polycomb repressive complexes (PRCs). PRCs have inherent
histone methyltransferase (HMTase) activity, which can inhibit
gene expression through core histone methylation (2). PRC2 is of
vital importance in PcG proteins, as it plays a role in the
development of cancer (3). PRC2 consists of three subunits:
EZH2, SUZ12, and EED, of which EZH2 and chaperone proteins
are essential to correctly coordinate differentiation and
proliferation of cells (4).

EZH2 has methyltransferase activity and can catalyze the
methylation of histone H3-Lys 27 (H3-K27); it is essential for
PRC-mediated gene suppression (5). Research had reported that
human EZH2 was upregulated in different kinds of tumors like
breast cancer, prostate cancer, and osteosarcoma (OS) (6).
Cyclin-dependent kinase 1 (CDK1) promotes EZH2
ubiquitination by mediating the phosphorylation of Thr-345
and Thr-487 (T345 and T487) sites of EZH2 (7). And the
posttranslational modifications of EZH2 are essential to
improve its protein stability that related to the function of
tumor cells and tumor metastasis, which could further lead to
the accumulation of EZH2 and the occurrence of cancers (8, 9).

In summary, EZH2 is related to different kinds of neoplasms,
which was abnormally expressed and could serve as a therapeutic
target (10–12). Therefore, inhibition of EZH2 protein could
provide new ideas and methods in the treatment of cancers.
GSK126 is a new type of competitive inhibitor targeting EZH2,
which had begun tests in clinical trials (13). GSK126 significantly
reduces the level of H3K27me3 in tumor cells by inhibiting the
methyltransferase activity of EZH2, thereby inhibiting the
growth of tumor cells such as human tongue squamous cell
carcinoma and multiple myeloma cells (14, 15). In addition, the
appropriate concentration of GSK126 could also induce tumor
cell apoptosis through the mitochondrial pathway (16). Research
also reported that EZH2 may promote tumor invasion and
metastasis by downregulating downstream targets such as E-
cadherin and vascular endothelial growth factor (VEGF)-A (17,
18). VEGF-A is an important cytokine that regulates
angiogenesis, which is closely related to tumor metastasis (19).
Research on EZH2 inhibitors has become hot spots in recent
years, which has changed the treatment scheme as well as ideals
dramatically. Nevertheless, novel efficient inhibitors targeting
EZH2 still remained less. Consequently, more inhibitors
regarding EZH2 were needed to discover from a natural
medicine library in order to screen novel natural lead
compounds and provide new clues in the discovery of EZH2
inhibitors. Existing studies had confirmed that EZH2 was highly
expressed in OS patients and could serve as potential biomarker
(11), while research on targeted therapy of OS targeting EZH2
had hardly been reported. Up to now, the research on EZH2
inhibitor GSK126 had made notable progress in different kinds
of cancers, including prostate cancer cells and gastric cancer cells
(20, 21). Consequently, this study chose GSK126 as the reference
Frontiers in Oncology | www.frontiersin.org 283
compound to compare the pharmacological properties of the
candidate compounds in order to discover more potential lead
compounds targeting EZH2. Besides, this study aimed to validate
whether EZH2 could serve as a therapeutic target in the
treatment of OS.

Recently, natural products and natural extracts may be highly
available compounds with proper biological activity that has
potential medicinal value. They are therefore important sources
for discovering, designing, and improving new drug skeletons (22,
23). Extensive investigations have shown that natural products and
their derivatives are currently playing an important role in the
medical industry. It is already determined that the natural
compounds from natural product database have considerable
pharmacological potential (24, 25). The second part of this study
provides a theoretical basis and guidelines for discovering new
inhibitors from natural product repository by screening inhibitory
compounds related to EZH2. Besides, absorption, distribution,
metabolism, and excretion (ADME) and toxicity prediction,
ligand binding research, and molecular dynamics (MD)
simulation were carried out on the selected candidate
compounds, laying the foundation for the improvement of
tumor drugs.
MATERIALS AND METHODS

Discovery Studio Software and
Ligand Library
The LibDock module of Discovery Studio 4.5 software (BIOVIA,
San Diego, CA, USA) is used to screen better energy-optimized
natural products, and the ADMET module can be applied to
ADME analysis and the prediction of carcinogenicity and Ames
mutagenicity. The CDOCKER module can be used to analyze the
binding force between the products and the corresponding target
of the protein and analyze the stability of the complex. This
experiment selects the natural product database in the ZINC
database to screen EZH2 inhibitors. The ZINC15 database is
provided by the Irwin and Shoichet Laboratories in the
Department of Pharmaceutical Chemistry at the University of
California, San Francisco (UCSF), which provides a free virtual
screening database of commercially available compounds.

Structure-Based Virtual Screening
Using LibDock
The LibDock module was widely used in the drug development
process (26). The LibDock module used a grid placed in the
binding site and used polar and non-polar probes to calculate
protein hot spots, then further used hot spots to arrange the
ligands to form favorable interactions. Moreover, the study also
used the Smart Minimiser algorithm and the CHARMm force
field (Cambridge, MA, USA) to minimize the ligands (27). Then,
all ligands’ positions were adjusted and ranked according to the
calculated ligand scores. The 2.5-Å crystal structure of human
EZH2 [Protein Data Bank (PDB) identifier: 5WF7] and the
structure of the inhibitor GSK126 were downloaded
respectively from the PDB and ZINC15 database, and they
were imported into the working environment of LibDock.
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Figure 5 shows the chemical structure of EZH2. The protein was
prepared through several steps, including removing the crystal water
and other surrounding heteroatoms, then adding hydrogen,
protonation, ionization, and energy minimization. Among them,
the energy minimization was realized by the CHARMM force field
and the Smart Minimiser algorithm. In the case that the root mean
square gradient tolerance was 0.1, the minimization performed
2,000 steps. After calculation, the binding site of the prepared
protein was defined through the “Edit binding site” option.
Analyzing the binding site of the ligand (GSK126) to generate the
active binding site for docking the ligand with the receptor. Virtual
screening was performed by docking the ligand exported from the
database with the defined active binding site through the LibDock
module. All compounds were grouped and ranked according to
their LibDock score.

Prediction of Absorption, Distribution,
Metabolism, and Excretion and Toxicity
The ADMETmodule of DS4.5 was used to estimate the adsorption,
distribution, metabolism, and excretion properties of compounds.
And the TOPKAT module of DS4.5 was employed to predict the
carcinogenicity, Ames mutagenicity, and developmental toxicity
potential in rodents. These pharmacological properties are fully
considered when screening suitable EZH2 inhibitors to ensure the
safety of the drug.

Molecule Docking and the Prediction
of Drug Affinity
The CDOCKER module of DS4.5 was used for molecular docking
research. CDOCKER is a tool to calculate high-precision docking
results based on the CHARMM force field. During the docking
process, the structures of the ligands are allowed to bend, while the
structure of the receptor remains rigid. The CHARMM energy and
interaction energy of each posture generated are calculated to
reflect the binding affinity of the ligand and the receptor. Since
crystal water molecules may affect the formation of receptor–
ligand complexes, fixed water molecules are usually removed
during the semi-flexible and rigid docking process, and
hydrogen atoms are added to the protein to ensure the accuracy
of the experiment (28, 29). The crystal structure of EZH2 was
obtained from the protein database, and the three-dimensional
structures of ZINC3938642 and ZINC4217536 were obtained
from the ZINC15 database. In order to verify the reliability of
the results, this experiment also downloaded the reference
compound GSK126 from the ZINC15 database. Similarly, the
GSK126 was docked with EZH2 to calculate the root mean square
deviation (RMSD) of the molecular docking conformation and
compared it with the RMSD of the conformations of the ligand–
receptor complex that are selected in this experiment. The binding
site of EZH2 is defined as an area within a 5-Å radius from the
geometric center of the ligand GSK126. In this experiment, the
selected ligand was allowed to bind to the protein group residues
in the binding site sphere. The identified hit structures were
prepared and docked with the binding site of EZH2. Based on
the numerical values of CDOCKER interaction energy, the
different postures of each ligand–EZH2 receptor complex were
generated and analyzed in detail.
Frontiers in Oncology | www.frontiersin.org 384
Molecular Dynamics Simulation
Among the various postures predicted by the molecular docking
program, the best binding conformation of the EZH2–inhibitor
complex is selected as the object for MD simulation. The ligand–
receptor complex is placed in an orthogonal box and solved with an
explicit periodic boundary solvated water model. At the same time,
to simulate the physiological environment, sodium chloride with an
ionic strength of 0.145 was added to the system. Then, the system is
subjected to the CHARMM force field and is relaxed through
energyminimization (1,000 steps of steepest descent and 1,000 steps
of the conjugated gradient). The reaction system was slowly driven
from the initial temperature of 50K to the target temperature of
300K, the driving time was 2 ns, and the equilibrium simulation was
performed when the time was 1 ns. The time for MD simulation
(production) is 40 ns, and the time step is 2 fs. The simulation
adopts the NPT (normal pressure and normal temperature) system
at a constant temperature close to 300K, and the results were stored
at a frequency of 0.02 ns. The Particle Mesh Ewald algorithm was
used to calculate the long-range static electricity, and the linear
constraint solver algorithm was used to fix all bonds involving
hydrogen. Set the initial complex as the reference object. Use the
Discovery Studio 4.5 analyze trajectory protocol to determine the
structural properties, RMSD, and potential energy of the trajectory
simulated by MD.

Cell Lines and Reagents
Human OS cell lines MG-63 (CL-0157), HOS (CL-0360), and
human normal liver cell line LO2 (CL-0111) were purchased
from Procell Life Science & Technology Co., Ltd. These cell lines
were incubated in high-glucose Dulbecco’s modified Eagle’s
medium (DMEM; Procell, Cat. no. PM150210), containing 10%
fetal bovine serum (FBS; Gemini, USA) and 100 units/ml penicillin
and 100 mg/ml streptomycin under normal cell culture conditions
(37°C and 5% CO2). Drug ZINC000003938642 was provided by
Selleck Chemical Co. (Cat. no. S3668). The drug was dissolved in
ultrapure water based on manufacturer-provided instructions to
obtain the stock solution. Dimethylsulfoxide (DMSO) was not used
to dissolve the drug in this study so that the toxicity effect on cells
was negligible. Then, appropriate culture medium was added into
the stock solution to configure different concentrations of the drug.

Cell Counting Kit-8 Assay
The standard Cell Counting Kit-8 (CCK-8) assay (provided by
ApexBio, USA) was conducted to measure the cellular viability
and proliferation of OS cells (HOS and MG-63) and human liver
cell (LO2). Cell lines were plated into 96-well culture plates with
a density of 3,000 cells/well overnight. Cells were treated with
different doses of drug ZINC000003938642 for 24 h. The
concentration gradients of each treatment were 0, 5, 10, 20, 40,
80, 160, 320, and 540 mmol/L. Cells were cultured for 1.5 h after
addition of 10 ml/well CCK-8, and then the OD value of each well
was measured based on the wavelength of 450 nm according to
the microplate reader (BioTek Instrument, Synergy H1, USA).

Colony Formation Assay
Colony formation assay (CFA) assay was performed to detect the
effects of different doses of drug on proliferation of tumor cells.
October 2021 | Volume 11 | Article 741403
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HOS and MG-63 cells were incubated into six-well plate with the
density of 600 cells/well. After 24 h in culture, we configured cell
culture medium with drug concentration of 100, 250 mmol/L;
DMSO was not used in this study so the influence of DMSO on
cells could be neglected. After 10 days of cultivation, the
developed colonies were rinsed with phosphate buffered saline
(PBS) twice and fixed in 4% paraformaldehyde, then 0.5% crystal
violet solution was used to stain the colonies for half an hour.
Lastly, we counted and described colonies according to
microscopic examination.

In Vitro Scratch Assay
OS cells (HOS and MG-63) were cultured in six-well plate to
assess the effects of drug on the migration of tumor cells. When
the degree of fusion reached 90%, a 1-ml pipette tip was used to
make a consistent cell-free area. Then, PBS was used to rinse
twice to wipe off the cell debris, and serum-free medium was
changed to culture, and different concentrations (0, 25, 50, 100,
250 mmol/L) of drug were used to treat cells and observe the
scratch width at 0, 6, 12, 24 h. After corresponding time, we
captured images of scraped area with phase contrast microscopy
and measured the wounds and scratch width. The migration rate
of OS cells was calculated as:

percentage of wound closure

=
(scratch area of  0H − scratch area of  corresponding  time) 

scratch area of  0H

Western Blotting
OS cell lines (HOS and MG-63) were seeded into T25 culture flask
and treated with different doses of drug ZINC000003938642 for 48
h. Then, proteins were extracted by radioimmunoprecipitation
assay (RIPA), and bicinchoninic acid (BCA) protein assay was
conducted to define protein standard curve and detect the protein
concentration of each sample. Ten percent sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was used to
separate proteins of samples, and then proteins were transferred
to polyvinylidene difluoride (PVDF) membranes. Five percent
nonfat milk dissolved in Tris-buffered saline and tween 20
(TBST) buffer was used to block the membranes for 2 h, after
that, the membranes were incubated with primary antibodies
[EZH2, c-Myc from Abcam and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) from Proteintech] at 4°C overnight. On
the second day, the membranes were washed with Tris-buffered
saline and tween 20 (TBST) three times and then horseradish
peroxidase-conjugated secondary antibody was added to incubate
the membranes for 1 h at room temperature. The membranes were
visualized with enhanced chemiluminescence reagents to detect
corresponding protein signals. Viber Bio Imaging tools were used
to measure the band densities.

Apoptosis Assay
OS cells (HOS and MG-63) in log growth phase were inoculated
into six-well plate and were treated with different concentrations of
the drugs. After culturing for 24 h, cells were extracted through
trypsin (without EDTA) and Annexin-fluorescein isothiocyanate
Frontiers in Oncology | www.frontiersin.org 485
(FITC)/propidium iodide (PI) double staining was performed
according to the manufacturer’s instructions. Lastly, the stained
cells were analyzed by flow cytometry techniques; the apoptosis
rates were examined by ACEA NovoCyte flow cytometry.

Pharmacophore Predictions of the
Ideal Lead Compounds
After initial validation of the antitumor effects of the selected
compounds, this study further analyzed their pharmacophore
characteristics. Pharmacophore predictions of compounds were
performed according to 3D-QSAR pharmacophore generation
module, which generated up to 255 fits per molecule to represent
a small molecule, and only fits with energy values within the
energy threshold of 10 kcal/mol were finally preserved.
RESULTS

EZH2 Expression in Third-Party Database
To figure out the expression situation of EZH2 in OS, this study
analyzed the expression values of EZH2 between normal and OS
patients in Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/) database. In total, threeGSE serieswere analyzed
including GSE14359, GSE33382, and GSE126209. As shown in
Figure 1, results demonstrated that the expression of EZH2 in OS
patients was significantly upregulated compared with that in
normal patients (P < 0.05, Wilcoxon nonparametric test).

Fast Virtual Screening of Potential
Inhibitors of EZH2
The SAL/SET domain of EZH2 protein is regarded as an
important regulatory site for its enzymatic activity. Inhibitors
bind to the SAL/SET domain of EZH2 by inserting into the
ligand pocket of EZH2 and exerts the function of inhibiting the
activity of EZH2: The small molecules binding to this site can
prevent S-adenosyl methionine (SAM) from providing EZH2
with the methyl group needed to methylate H3K27me3, thereby
reducing the enzymatic activity of EZH2. After SAM loses its
methyl group, it is metabolized and hydrolyzed into intermediate
products including S-adenosyl-L-homocysteine (SAH) and
adenosine. S-adenosylmethionine is a methyl donor for one-
carbon unit metabolism in organisms, and by moderately
promoting the metabolic level of SAM, the activity of EZH2
can be inhibited (30). Based on this mechanism, inhibitors of
enzyme activity against EZH2 could be identified. Therefore, this
domain was chosen as the docking site for screening. The crystal
structure of EZH2 was displayed in Figure 2, which contained
the binding site sphere for docking, as well as the Ramachandran
diagram of the protein, to check the rationality of EZH2
structure. Firstly, LibDock module of DS4.5 was performed to
virtually screen small molecules that functioned in binding with
the receptor protein EZH2. Downloading commercially available
natural compounds from the ZINC15 database, a total of 13,537
ligands were generated by virtual screening. At the same time,
the effective selective inhibitor GSK126, which could inhibit the
activity of EZH2, was selected as the reference compound. After
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screening, 669 compounds were found with higher LibDock
scores than GSK126 (LibDock score: 132.143). The top 20
compounds were listed in Table 1.

Absorption, Distribution, Metabolism,
and Excretion Characteristics
and Toxicity Prediction
Byusing the ADME andTOPKATpredictionmodule, we obtained
the candidate 20 kinds of ligands and GSK126’s pharmacological
properties, including penetration of the blood–brain barrier, degree
of human intestinal absorption, water solubility level, inhibitory
effect on cytochromeP450 2D6, hepatotoxicity, and plasma protein
binding properties (Table 2). The water solubility prediction
showed that 18 compounds could be dissolved in water relatively
well. Among them, 10 compounds hadahigh solubility level (scores
>2), which were greater than the reference compound GSK126
(moderate solubility, score: 1). For the degree of human intestinal
absorption, 19 compoundshad agoodabsorption effect, the sameas
GSK126, and ZINC000085826837 had a medium absorption level.
Besides, seven compounds andGSK126 could bebound strongly by
plasmaproteins,while the remaining compoundsdidnot have tight
binding affinity and strong interactions with plasma proteins.
Cytochrome P4502D6 (CYP2D6) was a key enzyme in the
Frontiers in Oncology | www.frontiersin.org 586
process of drug metabolism. Compounds involved in the
screening had no inhibitory effect on CYP2D6. GSK126 was also
predicted to be a non-inhibitor of CYP2D6. For liver toxicity, 12
compounds were predicted to be nontoxic drugs, while the
remaining compounds and GSK126 were toxic to the liver.

Subsequently, this experiment also calculated the safety
properties of the candidate compounds and GSK126 through the
TOPKAT module, including Ames (Ames mutagenicity),
developmental toxicity potential (DTP), and rodent
carcinogenicity [based on the United States National Toxicology
Program (NTP) data set]. Experimental results displayed that those
12 compounds were non-mutagenic in long-term effect. It was
predicted that four compounds were non-carcinogens and three
compounds had no developmental toxicity potential. In addition,
the reference compound GSK126 also predicted with pretty
characteristics on Ames and NTP carcinogenicity, while it was
computedwith probability ofDTP. The detailed information of the
indicators among compounds andGSK126were shown inTable 3.
Based on the above data, ZINC000004217536 and ZINC00000
3938642were neitherCYP2D6 inhibitors nor hepatotoxicity drugs.
Moreover, theywere predicted to be free ofAmesmutagenicity and
rodent carcinogenicity. Consequently, ZINC000004217536 and
ZINC000003938642 were analyzed to be candidate drugs with
A B C

FIGURE 1 | The expression situation of Enhancer of Zeste Homolog 2 (EZH2) between osteosarcoma and normal patients in Gene Expression Omnibus (GEO)
database: (A) GSE14359, (B) GSE33382, (C) GSE126209. Data were represented as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.0001; the same below.
A B C

FIGURE 2 | The molecular structure of Enhancer of Zeste Homolog 2 (EZH2). (A) Initial molecule structure and added active binding sphere, the active binding sphere
was shown as red region. (B) Surface of binding region added. Blue represented positive charge, and red represented negative charge. (C) The Ramachandran diagrams
of EZH2 protein.
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high safety and were selected for further study. The detailed
chemical and crystal structures of these compounds were shown
in Figure 3.

Ligand–EZH2 Binding Analysis
In order to study the binding mechanisms between the ligand
and receptor EZH2, CDOCKER module was conducted to dock
ZINC000004217536, ZINC000003938642, and GSK126 at the
regulatory site of EZH2, and the corresponding CDOCKER
potential energy of these complexes was calculated, as shown
in Table 4. Hydrogen bonds and p–p interactions between EZH2
and these compounds were analyzed (Figures 4, 5). Results
visualized that ZINC000004217536 formed four pairs of
Frontiers in Oncology | www.frontiersin.org 687
hydrogen bonds with EZH2: O27 with TYR855:HN of EZH2,
H68 with TYR855:O of EZH2, and H70 and H79 with VAL853:
O of EZH2. ZINC000003938642 formed eight pairs of hydrogen
bonds with EZH2: H62 with ARG304:NH1 of EZH2, H62 with
LYS852:O of EZH2, O11 with ASN851:ND2 of EZH2, H74 with
ASN880:OD1 of EZH2, H89 with TYR826:OH of EZH2, H90
with SER876:O of EZH2, H91 with ILE879:O of EZH2, and H86
with ARG877:O of EZH2. Two pairs of hydrogen bonds were
formed between the reference compound GSK126 and EZH2:
O12 with ARG304:N of EZH2 and O23 with TYR809:N of
EZH2. Additionally, these three compounds formed two pairs,
one pair each of p–p interactions with EZH2. The detailed
chemical bond interactions were displayed in Table 5.

Molecular Dynamics Simulation
The best binding conformations of each compound–EZH2
complexes (ZINC000004217536-EZH2 and ZINC000003938642-
EZH2) were obtained from precise docking program CDOCKER
and applied for the following experiment. In this study, the
stability of the ligand–EZH2 complex under in vivo
circumstance was predicted by MD simulation module. The
predicted results were shown in Figure 6, including energy
values (Figures 6A, D) and RMSD curve (Figures 6B, E)
diagram of each complex. The orbitals of all complexes reached
equilibrium after 100ps. The complexes’ RMSD and energy values
like total energy, potential energy, and electrostatic energy all got
stabilized over time. Results suggested that hydrogen bonds
formed by the compound and EZH2 and the p-p-related
interactions contributed a great effect on the stability of these
complexes. Furthermore, chemical bonds heatmap after MD also
illustrated that these chemical bonds, which contributed largely to
the stability of complexes, could still exist steadily with the
progression of MD in the body (Figures 6C, F). Based on the
above evaluation indicators, the complexes formed by
TABLE 2 | Adsorption, distribution, metabolism, and excretion (ADME) properties of compounds.

Number Compound Solubility level BBB level CYP2D6 Hepatotoxicity Absorption level

1 ZINC000085545908 3 4 FALSE FALSE 3
2 ZINC000085544839 3 4 FALSE TRUE 3
3 ZINC000004096059 1 4 FALSE TRUE 3
4 ZINC000004099069 3 4 FALSE FALSE 3
5 ZINC000056897657 1 4 FALSE TRUE 3
6 ZINC000004217536 3 4 FALSE FALSE 3
7 ZINC000095620524 4 4 FALSE TRUE 3
8 ZINC000008552069 4 4 FALSE TRUE 3
9 ZINC000004096684 1 4 FALSE FALSE 3
10 ZINC000062238222 3 4 FALSE TRUE 3
11 ZINC000100084136 1 4 FALSE FALSE 3
12 ZINC000150338786 1 4 FALSE TRUE 3
13 ZINC000014951658 3 4 FALSE FALSE 3
14 ZINC000003938642 0 4 FALSE FALSE 3
15 ZINC000004096878 1 4 FALSE TRUE 3
16 ZINC000004099068 3 4 FALSE FALSE 3
17 ZINC000004096653 1 4 FALSE FALSE 3
18 ZINC000085826837 2 4 FALSE FALSE 2
19 ZINC000049784088 4 4 FALSE FALSE 3
20 ZINC000008220033 0 4 FALSE FALSE 3
21 Reference ligand 1 4 FALSE TRUE 3
October 2021 | Volume 1
TABLE 1 | Top 20 ranked compounds with higher Libdock scores than GSK126.

Number Compounds Libdock Score

1 ZINC000085545908 207.393
2 ZINC000085544839 207.175
3 ZINC000004096059 198.67
4 ZINC000004099069 194.59
5 ZINC000008552069 193.20
6 ZINC000056897657 191.551
7 ZINC000004217536 191.439
8 ZINC000095620524 189.085
9 ZINC000004096684 187.339
10 ZINC000062238222 184.582
11 ZINC000100084136 183.874
12 ZINC000150338786 182.677
13 ZINC000014951658 182.425
14 ZINC000003938642 181.651
15 ZINC000004096878 181.45
16 ZINC000004099068 180.745
17 ZINC000004096653 180.432
18 ZINC000085826837 178.464
19 ZINC000049784088 178.376
20 ZINC000008220033 177.227
1 | Article 741403

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Natural Inhibitors Discovery Targeting EZH2
ZINC000004217536 and ZINC000003938642 with EZH2 could
exist stably in the internal environment. Consequently, these two
compounds could interact with EZH2; they also had a regulatory
effect on EZH2 like the reference compound GSK126 did.
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ZINC000003938642 Reduced Proliferation
of Osteosarcoma Cells
To test the antitumor effects of compounds screened in this study,
we purchased one of the two compounds, ZINC000003938642, for
TABLE 3 | Toxicities of compounds.

Number Compounds NTP: Mouse NTP: Rat Ames DTP

Female Male Female Male

1 ZINC000085545908 1 0 0 0 0 1
2 ZINC000085544839 0 0.851 0 0.954 0.001 1
3 ZINC000004096059 0 0 0 1 0 1
4 ZINC000004099069 0 0 0 0 0.002 0.846
5 ZINC000056897657 0 0.982 1 0 1 1
6 ZINC000004217536 0 0 0 0 0 1
7 ZINC000095620524 1 0 1 0.999 0 1
8 ZINC000008552069 0.015 0 0 0.997 1 1
9 ZINC000004096684 0 1 1 0 1 1
10 ZINC000062238222 0 0 0 0.969 0.989 1
11 ZINC000100084136 0 0 0 1 0 0
12 ZINC000150338786 0 1 0 0 1 1
13 ZINC000014951658 1 0 1 0 0 1
14 ZINC000003938642 0 0 0 0 0 0
15 ZINC000004096878 0 1 0 0 1 1
16 ZINC000004099068 0 0 0 0 0.002 0.864
17 ZINC000004096653 0 1 1 0 1 1
18 ZINC000085826837 0.186 1 1 0.998 0 1
19 ZINC000049784088 0.995 0 0 0.008 1 1
20 ZINC000008220033 0 1 1 0 0 0
21 GSK126 1.000 0.003 0.000 0.340 0.009 0.924
October 2021 | V
olume 11 | Article 7
NTP, National Toxicology Program.
A

B

C

FIGURE 3 | The 2D structures of novel compounds selected from virtual screening and the reference compound GSK126 by chemdraw. (A) ZINC000004217536,
(B) ZINC000003938642, and (C) GSK126.
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further in vitro experiments, aiming to evaluate the effects on OS
cells. To assess the proliferation ability of OS cells in the presence of
drug ZINC000003938642, the survival of cells after drug treatment
was calculated by CCK-8, and growing ability of OS cells was
assessed by CFA. The OS cells were treated with different
concentrations of drug for 24 h (0, 5, 10, 20, 40, 80, 160, 320, 540
mmol/L). Results indicated that the cellular viability of both HOS
and MG-63 cells were declined with the increase of drug
concentration (Figures 7A, B). Subsequently, to validate the
toxicity of drug to liver cells, LO2 cell line was conducted and
measured by CCK-8. Results revealed that drug ZINC00000
3938642 did not inhibit the proliferation of human normal liver
cells in a dose-dependent manner and time-dependent manner,
which still had a high cellular viability even when subjected to the
highest dose (Figure 7C).

We then performed CFA to further determine the antitumor
effects of drug in OS cells. As shown in Figure 7D, after 10 days
of cultivation with different drug concentrations (100 and 250
mmol/L), both HOS and MG-63 cells showed fewer and smaller
clonogenicities in Petri dishes with drug group than with the
control group. The numbers of clone formation in drug groups
were significantly lower than those in control groups (P < 0.05)
(Figures 7E, F).
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ZINC000003938642 Inhibited Migration of
Osteosarcoma Cells
To analyze the effects of drug ZINC000003938642 on OS cell
migration, scratch assay was further performed. The width of
scratched areas was measured at 0, 6, 12, and 24 h of scratch, and
the scratch width represented the migration capacity of OS cells
(Figures 8A, D). As shown in Figures 8B, C, results exposed that
with the extension of time and increase of drug concentration,
the migration rate of OS cells to the scratch area decreased
significantly (P < 0.05).

ZINC000003938642 Induced Apoptosis in
Osteosarcoma Cells
Flow cytometry and Annexin-FITC/PI double staining were used
for apoptosis assay to detect the effects of drugs onprogrammed cell
death. The apoptotic rates of HOS and MG-63 cells were detected
after being treated with concentrations of ZINC000003938642 (0,
50, 100, and 250 mM) for 24 h. As shown in Figure 9A, results
illustrated that the apoptotic rates increased with the increase of
drug concentration both in HOS and MG-63 cells. Consequently,
live cells were predominant in the control (0 mM) groups, while
apoptotic cells were predominant in the drug-treated groups
(Figure 9B; P < 0.05).

ZINC000003938642 Reduced the
Expression of EZH2 and Its Downstream
Gene C-Myc
The expression of EZH2 was detected by Western blot analysis.
As shown in Figures 10A, C, the expression level of EZH2 was
inhibited by ZINC000003938642 in both HOS and MG-63 cells,
and its inhibitory effect displayed a dose-dependent manner (P <
0.05; Figures 10B, D). c-Myc was the downstream target gene of
EZH2, and as an oncogene, the expression levels of c-Myc were
also reduced by ZINC000003938642 in both HOS and MG-63
cells (Figures 10A, C), and its inhibitory effects also
demonstrated a dose-dependent manner (Figures 10B, D).

Ligand Pharmacophore Predictions
After initially verifying the antitumor effects of the candidate
compounds, this study further analyzed the pharmacophore
characteristics of these two compounds in order to observe the
potential modification site on compounds. As shown in
Figures 11A, B, computational results illustrated that there were
51 features in ZINC000004217536 and 69 features in
ZINC000003938642, among which, ZINC000004217536
possessed 18 hydrogen bond acceptors, 21 hydrogen bond
donors, five hydrophobic centers, one ionizable positive, and one
ring aromatic. As for ZINC000003938642, it possessed 22 hydrogen
bond acceptors, 38 hydrogen bond donors, two hydrophobic
centers, five ionizable positive, and two ring aromatics.
DISCUSSION

Statistics published in these years show that malignant tumors are
still the main causes of death among residents in many countries
A

B

FIGURE 4 | Schematic drawing of interactions between ligands and
Enhancer of Zeste Homolog 2 (EZH2). The surface of binding area was
added; blue represented positive charge, red represented negative charge;
and ligands were shown in sticks; the structures around the ligand–receptor
junction were shown in thinner sticks. (A) ZINC000004217536–EZH2
complex. (B) ZINC000003938642–EZH2 complex.
TABLE 4 | CDOCKER interaction energy of selected compounds with Enhancer
of Zeste Homolog 2 (EZH2).

Compound CDOCKER potential energy (Kcal/mol)

ZINC000004217536 -58.3934
ZINC000003938642 -52.6615
GSK126 -46.7202
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(31). OS is one of the most common malignant tumors of
mesenchymal tissues, occurring mostly in the metaphysis of long
bones in adolescents; it is a differentiation-defective disease caused
by dysdifferentiation of osteoblasts and/or epigenetic changes (32).
The harm of malignant tumors to humans is not only a threat to the
lives of patients but also the physical pain, mental pressure, and the
economic burden they bring to patients (33). EZH2, an essential
component of the epigenetic regulatory factor PcG and a catalytic
subunit of PRC2, is involved in regulating the methylation of lysine
27 (H3K27) of histone H3 and is highly expressed in a variety of
tumors. It plays an important role in regulating gene transcription
Frontiers in Oncology | www.frontiersin.org 990
and gene silencing and participates in the growth, proliferation, and
metastasis of tumor cells.

In recent years, EZH2 has become a popular target for cancer
therapeutics, and the research of EZH2 inhibitors and their
combined application with other antitumor drugs in clinical
practice has broad prospects (34). However, relatively few
inhibitors of EZH2 had been discovered and analyzed. Existing
research had reported the high expression of EZH2 in OS
patients. Currently, few studies have been conducted on the
efficacy of EZH2 inhibitors in OS. GSK126, which is relatively a
mature EZH2 inhibitor, was applied in this study to analyze the
A B

C

FIGURE 5 | The detailed intermolecular interaction of the predicted binding modes of (A) ZINC000004217536, (B) ZINC000003938642, and (C) GSK126 to
Enhancer of Zeste Homolog 2 (EZH2).
TABLE 5 | Hydrogen Bond Interaction Parameters for Each Compound with EZH2.

Receptor Compound Donor Atom Receptor Atom Distances (Å)

EZH2 ZINC000004217536 B:TYR855:HN ZINC000004217536:O27 2.02
ZINC000004217536:H68 B:TYR855:O 3.10
ZINC000004217536:H70 B:VAL853:O 2.76
ZINC000004217536:H79 B:VAL853:O 2.46

ZINC000003938642 B:ARG304:NH1 ZINC000003938642:O47 3.05
ZINC000003938642:H62 B:LYS852:O 2.27
B:ASN851:ND2 ZINC000003938642:O11 3.39
ZINC000003938642:H74 B:ASN880:OD1 2.19
ZINC000003938642:H89 B:TYR826:OH 2.24
ZINC000003938642:H90 B:SER876:O 2.38
ZINC000003938642:H91 B:ILE879:O 2.05
ZINC000003938642:H86 B:ARG877:O 1.89

GSK126 B:ARG304:N K:A9G8009:O12 3.00
B:TYR809:N K:A9G8009:O23 2.89
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antitumor effect and molecular mechanism on OS, and it was
regarded as the reference compound to compare pharmacologic
properties with novel ligands.

Although GSK126 has certain antitumor functions, it still has
some limitations. Relevant studies have shown that EZH2 can
produce drug resistance through allelic mutations and protein
conformation changes (35, 36). For the purpose of overcoming
Frontiers in Oncology | www.frontiersin.org 1091
the drug resistance of EZH2, it is necessary to develop new
inhibitors. Furthermore, GSK126 had low solubility and rapid
plasma clearance, resulting in low bioavailability, and GSK126
had hepatotoxicity, which leads to unsatisfactory effects of high-
dose GSK126 in the process of inhibiting EZH2.

In this study, we aimed to discover more potential lead
compounds of EZH2. The available natural compound
A

B

D

E

F

C

FIGURE 6 | Results of MD simulation of two these complexes. (A) Energy values of ZINC000004217536-EZH2 complex during the MD process. EZH2, Enhancer of
Zeste Homolog 2; MD, molecular dynamics. (B) Average backbone RMSD of ZINC000004217536–EZH2 complex. RMSD, root mean square deviation. (C) Chemical
bonds heatmap of ZINC000004217536–EZH2 complex in the progression of MD. (D) Energy values of ZINC000003938642–EZH2 complex during the MD process.
(E) Average backbone RMSD of ZINC000003938642–EZH2 complex. (F) Chemical bonds heatmap of ZINC000003938642–EZH2 complex in the progression of MD.
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structures were downloaded from the ZINC15 database for
virtual screening, then ADME, TOPKAT, CDOCKER, and
other modules were applied to perform ADME prediction,
rodent carcinogenicity and Ames mutation prediction, ligand–
receptor binding studies, and MD simulations. The LibDock
scores suggested the degree of energy optimization and
conformational stability between compound and receptor.
Compounds with higher LibDock scores illustrated better
energy optimization and more stable conformation than
compounds with lower scores. Calculation results of the
LibDock module showed that a total of 13,537 compounds
could be stably combined with EZH2 after fast docking
method. Among these ligands, 669 compounds had higher
LibDock scores than the reference compound GSK126
(LibDock score: 132.143), suggesting that the stability and
energy optimization effect of the complex substances formed
Frontiers in Oncology | www.frontiersin.org 1192
by these 669 compounds with EZH2 were more stable than
GSK126–EZH2 complex. Based on ranking of the LibDock
scores, the top 20 compounds with the highest scores were
screened out and tested in next steps.

ADME and toxicity prediction were performed to evaluate the
pharmacological properties of these selected compounds. After
analysis, results elucidated that ZINC000004217536 and
ZINC000003938642 had satisfactory intestinal absorption
capacity, and these two compounds had no obvious inhibitory
effect on CYP2D6, no hepatotoxicity, and low binding affinity
property with plasma protein, which suggested the good
selectivity of these drugs; they could avoid rapid clearance by
plasma so as to behave the best pesticide effect. Furthermore,
compared with other compounds, ZINC000004217536 and
ZINC000003938642 were predicted not to have Ames
mutagenicity and rodent carcinogenicity, and they had less
A B

D

C

E F

FIGURE 7 | (A, B) Cellular viability of osteosarcoma (OS) cell lines (HOS and MG-63) and (C) human liver cell line (LO2) treated with different doses of drug
ZINC000003938642. (D) Clonogenicities in Petri dishes with different doses of drug. (E, F) Numbers of clone formation in HOS and MG-63 cell lines.
*P < 0.05; **P < 0.01; ***P < 0.0001; ns, none significance.
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developmental toxicity potential. Consequently, they were
considered as ideal candidate compounds with pharmacologic
properties and higher security in the body; these characteristics
were enough to be considered as the most potential lead
compounds. Based on the above results, ZINC000004217536 and
ZINC000003938642 were reasonably recognized as high-quality
medicinal materials; these two compounds had broad application
prospects in drug development and design. Although other drugs
on the list had certain negative effects such as developmental toxicity
Frontiers in Oncology | www.frontiersin.org 1293
and Ames mutagenicity, other pharmacological properties were
relatively moderate, so they also had a certain potential in drug
improvement, which could be achieved by adding or deleting
specific functional groups or atoms to reduce their negative
effects. In summary, it was determined that ZINC000004217536
and ZINC000003938642 were the most potential lead compounds,
and more analyses were further performed.

Subsequently, we analyzed chemical bonds and the binding
mechanisms between candidate compounds, GSK126 and
A

B

D

C

FIGURE 8 | (A) Scratch assay of HOS cell line in control and different drug groups at 0, 6, 12, 24 h. (B) Percentage of wound closure of HOS cell line in control and
different drug groups at 0, 6, 12, and 24 h. (C) Scratch assay of MG-63 cell line in control and different drug groups at 0, 6, 12, and 24 h. (D) Percentage of wound
closure of MG-63 cell line in control and different drug groups at 0, 6, 12, and 24 h. *P < 0.05; **P < 0.01; ***P < 0.0001; ns, none significance.
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EZH2. Precise docking method CDOCKER module was
conducted; results showed that the CDOCKER interaction
energy of ZINC000004217536 and ZINC000003938642 was
significantly lower than that of the reference ligand GSK126,
proving that the affinity of these two compounds with EZH2
was higher than GSK126–EZH2 in real situations. After that,
through molecular detection analysis of their chemical
structures among these complexes, results illustrated that
the chemical bond and interaction force of the complex
formed by EZH2 and the two candidate compounds were
stronger, which further explained that they may have a
competitive inhibitory effect on the regulatory site of EZH2
and thus inhibit the activity of EZH2, finally producing
antitumor effects.

Ultimately, MD simulations were performed to predict the
stability of the complexes formed by the candidate compounds
and EZH2 in the internal environment. By calculating the RMSD
and energy values of these ligand–EZH2 complexes, the RMSD
Frontiers in Oncology | www.frontiersin.org 1394
curve and energy curve were drawn. Results showed that the
trajectories of the complexes reached equilibrium after 100ps,
and the RMSD and energy values of these complexes tended to
be stable over time, indicating that the two complexes could exist
stably in the internal environment. Furthermore, chemical bonds
heatmap elucidated that these chemical bonds, which
contributed remarkably to the stability of the complex, could
keep steady with the progression of the MD. Consequently, the
compounds selected in this study bonded tightly to EZH2, and
they were capable of existing stably in the body, thereby exerting
corresponding pharmacological functions. Therefore, they have
great potential in the development of EZH2 inhibitors. It is
noteworthy that the reference compound GSK126 chosen in this
study served as a known effective synthetic EZH2 inhibitor; the
effects of natural compounds were hardly better than GSK126 in
vitro or in vivo. The role GSK126 played in this process was to
provide a primitive crystal complex for us to compare the
binding mode and give us an initial active binding sphere, and
A

B

FIGURE 9 | (A) The distribution in apoptosis with different concentrations in HOS and MG-63 cells. a–d: drug treatment with 0, 50, 100, and 250mM for 24 h in
HOS cells; e–h: drug treatment with 0, 50, 100, and 250 mM for 24 h in MG-63 cells. (B) Apoptotic rates and percentage with different concentrations in HOS and
MG-63 cells. *P < 0.05; **P < 0.01; ***P < 0.0001.
October 2021 | Volume 11 | Article 741403

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Natural Inhibitors Discovery Targeting EZH2
it did not provide any guiding significance for the comparison
between GSK126 and ZINC000003938642 in antitumor aspects.

Currently, existing studies pointed out EZH2 could serve as a
therapeutic target regarding OS (11), while few studies focused on
targeted therapy of OS targeting EZH2. Consequently, this study
preliminarily discussed the effects of newly found compounds
against OS. To prove the pesticide effects of our newly found
Frontiers in Oncology | www.frontiersin.org 1495
compounds against OS and the reliability of the screening
method in this study, we selected one of the candidate
compounds, ZINC000003938642, and performed a series of
in vitro experiments including CCK-8, CFA, scratch assay,
Western blot, and apoptosis assay. In CCK-8 assay, results
pointed that the cellular viability in OS cells had a dose-
dependent decrease when treated with drug ZINC000003938642,
A

B D

C

FIGURE 10 | (A, B) The expression of Enhancer of Zeste Homolog 2 (EZH2) and its downstream gene c-Myc when treated with different doses of drug in HOS
cells. (C, D) The expression of EZH2 and its downstream gene c-Myc when treated with different doses of drug in MG-63 cells. *P < 0.05; **P < 0.01; ***P < 0.0001;
ns, none significance.
A

B

FIGURE 11 | Pharmacophore predictions of (A) ZINC000004217536 and (B) ZINC000003938642 using 3D-QSAR. Green represents hydrogen acceptor, blue
represents hydrophobic center, purple represents hydrogen donor, and orange represents aromatic ring.
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while the drug was relatively well tolerated for human liver cells
LO2. This finding implied that this drug was relatively nontoxic in
term of hepatotoxicity, which was also consistent with our
predictions in structural biology part that ZINC000003938642
was a nontoxic drug. In CFA, the numbers and size of
clonogenicities in drug group were significantly less than those in
control group in both HOS and MG-63 cell lines, which was
consistent with results that the proliferation of OS cells was
reduced by drug in CCK-8 assay and that the effects were dose-
dependent. Scratch assay revealed that the wound area in control
groupdecreasedmore sharply than that indruggroupwith time.As
for apoptosis assay, flow cytometry results visualized that the
percentage of apoptotic cells increased with the drug increasing,
the apoptotic rates of HOS andMG-63 cells treated with high drug
dose groups were significantly higher than those of control (0 mM)
group (P < 0.05). Western blot analysis revealed that EZH2
expression decreased with increasing drug concentrations. Since
c-Myc is the downstream target of EZH2, and as an oncogene (37–
39), the expression level of c-Myc could also reflect the inhibitory
effects of the drug on EZH2. Results displayed that the downstream
oncogene c-Mycwas also inhibited by the drug in a dose-dependent
manner, implying that drug ZINC000003938642 could serve as a
potential EZH2 inhibitor. These experiments suggested the ability
of drug to inhibit the proliferation,migration, andEZH2andc-Myc
expression of OS cells, which indicated that drug ZINC00000
3938642 found in this study was an effective inhibitor regarding
OS, and EZH2 was a therapeutic target against OS.

The screening of ideal lead compounds is a key step in drug
design and development. Regarding the pharmacophore
predictions of ZINC000004217536 and ZINC000003938642,
they possessed a number of pharmacophores, which elucidated
that based on these skeletons of these two compounds, the
modification and refinement of the drug could be conducted to
further make a whole new design. The natural compounds
discovered in this study are of great significance in the
development of EZH2 inhibitors. This study provided evidence
for the targeted treatment of OS regarding EZH2 and may have
the potential to provide better methods for tumor treatment.
Besides, in the field of pharmacology, more research could be
studied like modifying the molecular structure of the drugs to
Frontiers in Oncology | www.frontiersin.org 1596
reduce the toxicity and mutation to continuously improve the
pharmacological effect of the inhibitor.

CONCLUSIONS

This study used a series of virtual screening techniques and
discovered two natural compounds, ZINC000004217536 and
ZINC000003938642, which have the function of inhibiting the
active subunit EZH2 of PRC2. These two compounds bind tightly
to the target protein. Additionally, they have no carcinogenicity and
toxicity, so they canbe regarded as potential EZH2 inhibitors. In vitro
experiments confirmed that drug ZINC000003938642 could inhibit
the proliferation andmigration of OS, which could serve as potential
lead compounds. This study not only provided the pharmacological
properties of candidate drugs but also providedmeaningfulmaterials
for further research of EZH2-targeted inhibitors.
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Three marketed anti-PD-L1 antibodies almost have severe immune-mediated side effects.
The therapeutic effects of anti-PD-L1 chemical inhibitors are not satisfied in the clinical
trials. Here we constructed human-derived protein scaffolds library and screened
scaffolds with a shape complementary to the PD-1 binding domain of PD-L1. The RNA
binding domain of U1 snRNPA was selected as one of potential binders because it had
the most favorable binding energies with PD-L1 and conformed to pre-established
biological criteria for the screening of candidates. The recombinant U1 snRNPA (rU1
snRNPA) in Escherichia coli exhibits anti-cancer activity in melanoma and breast cancer
by reactivating tumor-suppressed T cells in vitro and anti-melanoma activity in vivo.
Considering hydrophobic and electrostatic interactions, three residues were mutated on
the interface of U1 snRNPA and PD-L1 complex, and the ranked variants by PatchDock
and A32D showed an increased active phenotype. The screening of human-derived
protein scaffolds may become the potential development of therapeutic agents.

Keywords: PD-L1, inhibitor, human-derived, scaffold, melanoma, breast cancer
INTRODUCTION

Recently, immune checkpoint inhibitors have developed rapidly and become the most promising
cancer immunotherapy strategy with notable clinical benefits (1). The PD-1/PD-L1 axis is one of the
most typical immune checkpoint axes, and its inhibitors were acknowledged as the fourth major
cancer therapy (2). Emerging evidence shows that the use of antibodies to block the interaction
between PD-L1 and its receptors can strengthen the cytotoxic activity of anti-tumor T cells and
alleviate PD-L1-dependent immunosuppressive effects in vitro (3). Six monoclonal antibodies
(mAbs) have been approved by the Food and Drug Administration (FDA) for use in cancer
immunotherapy, including durvalumab, cemiplimab, nivolumab, pembrolizumab, avelumab, and
atezolizumab (4). However, antibodies have intrinsic disadvantages that limit their application—for
example, high manufacturing costs, low instability, low tissue penetration, and immunogenicity (5).
Therefore, drug discovery studies relating to the PD-1/PD-L1 axis have increasingly focused on low-
molecular-weight inhibitors such as single-chain antibodies, chemical inhibitors, peptides, and
peptidomimetics (6). However, the binding interface of PD-1 and PD-L1 is large and flat and lacks
deep pockets; some chemical inhibitors are prone to off-targeting (7). The current development of
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chemical inhibitors is focused on inducing PD-L1 dimerization
rather than directly blocking, but so far, only publications and
patents of PD-1/PD-L1 chemical inhibitors have been disclosed;
there are no FDA-approved inhibitors for clinical use, and some
chemical inhibitors failed to reactivate T cells and were cytotoxic
(8). Therefore, it is still an important proposition to find the
direction of a novel molecular structure for therapeutic use.
Because immunogenicity is an important issue to develop
therapeutic agents, soluble human-derived protein scaffolds are
an ideal research and development direction.

However, due to the limitations in computational resources
and other aspects, it is still very difficult to predict the
interactions between macromolecules in batches. Molecular
docking is a computer-aided drug design method based on
receptors, starting from ligand–receptor binding, and
theoretically calculating and analyzing the interaction modes
between ligand and receptor (9). Molecular docking in drug
screening mainly focuses on virtual screening and activation
prediction with small molecules as ligands (10), while it is less
used in drug screening with protein ligands (11). PatchDock uses
object recognition and image segmentation techniques similar to
those used in computer vision. The surface of a given molecule
can be divided into multiple small patches according to the shape
by PatchDock. Once the complementary structure is identified, it
can be superimposed using a shape-matching algorithm and
finally ranked by shape complementarity score (12). Protein
scaffolds originally represent a category of affinity proteins that
complement the immunoglobulins and antibody derivatives
(13). Non-immunoglobulin-based protein scaffolds have been
reported as promising alternatives to traditional monoclonal
antibodies in recent years (13). The idea of using protein
scaffolds as PD-L1 inhibitors originally came from the basic
mechanism through which antibodies are produced against
antigens. The amino acids in CDRs act as protein scaffolds
which can produce diverse structures and form the
complementary shape to recognize specific epitopes (14). The
process of ligands or inhibitors binding to target proteins is
similar to the binding of antigen and antibody, so protein
scaffolds, especially human-derived protein scaffolds like the
amino acids in complementarity-determining regions, whose
shape is complementary to the target protein, have a
significant potential to be ideal inhibitors.

In this study, we used rigid molecular docking server
PatchDock to screen PD-L1 inhibitors from a human-derived
protein scaffolds library (Scheme 1). The RNA binding domain
of U1 snRNPA was selected as a protein binder to the PD-1
binding domain of PD-L1. Recombinant full-length U1 snRNPA
in Escherichia coli was proven to inhibit PD-1/PD-L1 interaction
directly. The results were demonstrated by T cell reactivation
assay and anti-cancer efficacy assay in vitro/in vivo. The rU1
snRNPA is considered a lead compound; we further mutated its
residues on the interface of U1 snRNPA and PD-L1 complex,
and the variant A32D showed an active phenotype. Our results
suggested that the application of a human-derived protein
scaffolds library and rigid molecular docking is a highly
efficient and rapid tool for designing novel therapeutic
protein drugs.
Frontiers in Oncology | www.frontiersin.org 299
MATERIALS AND METHODS

Establishment of a Human-Derived
Protein Scaffolds Library
A human-derived protein scaffolds library was established by the
following three steps. First, all human-derived proteins in the
RCSB Protein Data Bank (PDB; https://www.rcsb.org/) (15) were
selected using the category “Organisms: Homo sapiens”. Second,
both membrane proteins and antibodies were excluded using the
annotation “transmembrane proteins” and searching for
the keyword “antibody” in the PDB, respectively (16). Third,
the selected structures were split into single scaffolds using
“END” in the PDB file. Considering the available computing
ability and the huge number of samples, 1,863 scaffolds were
randomly selected and used as a library for screening.

Screening of PD-L1 Binding Scaffolds by
Rigid Molecular Docking
ThePD-1 bindingdomain fromthehumanPD-L1 structure (PDB:
5C3T) and the constructed library were defined as the
corresponding docking analytes. PatchDock was chosen as the
molecular docking program (http://bioinfo3d.cs.tau.ac.il/
PatchDock/) (17). PatchDock is a geometry-based molecular
docking algorithm. The algorithm has three major stages:
molecular shape representation, surface patch matching, and
filtering and scoring. The parameters in PatchDock were all set
to default values. The PatchDock score of PD-L1 and durvalumab,
which has a proven high affinity for PD-L1, was set as a standard
value. Only scaffolds with scores close to or higher than this
standard value were selected in the first round of screening. For
the second-round screening, the top 10 docking models for each
scaffold–PD-L1 docking result according to the PatchDock score
were downloaded, followed by analysis and assessment of their
binding modes and conformations. Scaffolds with similar
paratopes to PD-1/PD-L1 were selected (18). The geometric
shape complementarity scores of these scaffolds were recorded
and ranked. In the third round, the scaffolds were screened further
based on their original location, molecular weight, physiological
function, and experimental practicability in the laboratory. The
RNA-binding domainof theU1 small nuclear ribonucleoproteinA
(PDB: 1U6B)was selected for the next step of the research. The key
residues on the interaction surfaces of PD-L1 and U1 snRNPA
were analyzed using InterProSurf (19).

Inhibitory Effect on PD-1/PD-L1
Detected by SERS
A SERS-based PD-1/PD-L1 inhibitor detection platform was
used to detect the inhibitory effect. When AgNPs@PD-1@4-
ABP andMNs@PD-L1 bind normally, a high SERS characteristic
peak would be produced; if the added substance can inhibit the
binding between them, the characteristic peak would decrease.
Therefore, the inhibitory effect on the PD-1/PD-L1 signaling
pathway can be detected by observing whether the substance
caused a reduction of the SERS characteristic peak. The feasibility
of this method was preliminarily verified through experiments
with existing inhibitors (durvalumab and BMS-202; see the
supplementary materials for details).
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T Cell Reactivation Assays
Levels of IFN-g or TNF-a production were evaluated to determine
whether tumor-suppressed T cells were reactivated.HumanCD4+
T lymphocytes were co-cultured with A375 cells, MDA-MB-231
cells, PD-L1-negativeHEK293Tcells, orHEK293T cellswith hPD-
L1 expression (HEK293T-hPD-L1) in 96-well plates. A density of
10,000 cells per well was plated and adhered for 24 h; then, 20,000
reactivated CD4+ T lymphocytes per well were added to the plates
with different inhibitors, followed by co-culturing at 37°C, 5%CO2

for 48 h. The level of IFN-g or TNF-a production in culture
supernatants was detected by Human IFN-g ELISA kit (BD
Biosciences) and Human TNF-a ELISA kit (BD Biosciences) (for
the expression and purification of rU1 snRNPA, binding ELISA,
and competitive ELISA, in vitro anti-cancer assay, in vivo anti-
melanoma assay, see the supplementary materials for details).
RESULTS

U1 snRNPA Was Screened From Human-
Derived Protein Scaffolds Library by Rigid
Molecular Docking
The whole screening process is illustrated in Figure 1A. A library
containing 1,863 scaffolds of human-derived proteins was
Frontiers in Oncology | www.frontiersin.org 3100
successfully constructed and screened for potential PD-L1
binding ability. The standard value for molecular docking was
16,172, which was the PatchDock score of PD-L1 and
durvalumab. By two-round screening, the top 20 binders
(Supplementary Table S1) were screened to exclude enzymes
and their analogues. Finally, the remaining binders were
screened based on their original location in the cells, molecular
weight, physiological functions, and experimental practicability.
The RNA-binding domain of the U1 small nuclear
ribonucleoprotein A (U1 snRNPA) (PDB: 1U6B) was selected
for the subsequent study.

The key residues of the interaction surfaces between U1
snRNPA and PD-L1 were analyzed by InterProSurf. As shown
in Figure 1B, the a-helix of U1 snRNPA interacted with the loop
of PD-L1. The binding sites were as follows: Ala32, Ile33, Gln36,
Ser71, Phe75, and Pro76 in U1 snRNPA and Asp61, Arg113, and
Tyr123 in PD-L1.

According to the in silico results, recombinant full-length U1
snRNPA was expressed as soluble forms in the Escherichia coli
(E. coli) expression system. As the sequence of the RNA-binding
domain of the U1 snRNPA (PDB: 1U6B) was too short to form
the correct tertiary structure, the whole sequence of U1 snRNPA
was synthesized and expressed for subsequent experiments, as it
had the same binding epitope with PD-L1. After expression, rU1
SCHEME 1 | Schematic illustration of the study. The scheme was created with BioRender.com.
November 2021 | Volume 11 | Article 781046

https://www.biorender.com
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ma et al. Novel PD-L1 Inhibitor rU1 snRNPA
snRNPA was purified successfully by nickel-ion-affinity
chromatography (Supplementary Figures S1A, S2).

rU1 snRNPA Inhibit PD-1/PD-L1
Interaction by Binding PD-L1
Based on the results of SERS, we have preliminarily verified the
inhibition efficacy of rU1 snRNPA on PD-1/PD-L1 interaction in
practice. The schematic illustration of the establishment of the
SERS-based PD-1/PD-L1 inhibitor detection platform is shown
in Scheme S1, and the results are shown in Supplementary
Figure S4. The intensity of the characteristic peak of 4-
amnobiphenyl (4-ABP) had significantly decreased compared
Frontiers in Oncology | www.frontiersin.org 4101
to the control when rU1 snRNPA was added (Figure 2A), which
indicated that rU1 snRNPA inhibited the interaction of AgNPs@
PD-1@4-ABP and MNs@PD-L1. The results of ELISA further
proved that rU1 snRNPA had the ideal binding ability to PD-L1
in competition with PD-1 (Figures 2B, C). The EC50 of rU1
snRNPA was 55.17 nM. The IC50 of rU1 snRNPA was 18.06 nM.
Although the EC50 and IC50 of durvalumab (16.05 and 8.326
nM) were lower than those of rU1 snRNPA, these results still
proved the enormous research potential of rU1 snRNPA as a
primitive PD-L1 binder. SERS was used to analyze the protein–
protein interaction in this study. Combined with the results of
ELISA, it can be experimentally proved that rU1 snRNPA has the
A

B

FIGURE 1 | Schematic drawings of the screening processes and interactions of U1 snRNPA/PD-L1. (A) Flow chart of database construction and screening
processes. (B) Cartoon representations for the identified interface of U1 snRNPA/PD-L1 complex. Cyan, U1 snRNPA (PDB: 1U6B); green, PD-L1. Stick
representations show the key residues.
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ability to inhibit the interaction of PD-1/PD-L1 by binding PD-
L1, which further proved the effectiveness of the screening
method in this study.

rU1 snRNPA Reactivate Tumor-
Suppressed T Cells and Had Anti-cancer
Efficacy In Vitro and In Vivo
PD-1/PD-L1 inhibitors work by reactivating tumor-suppressed
T cells rather than directly killing tumor cells. In this study, the
function of T cell reactivation of rU1 snRNPA was evaluated by
measuring the secretion of cytokines IFN-g and TNF-a in CD4+
T cells. In the T cell–tumor co-cultured assay, A375 cells, MDA-
MB-231 cells, and HEK293T-hPD-L1 cells expressed human
PD-L1, binding to PD-1 on CD4+ T cells to suppress the
function of T cells. The verification of PD-L1 expression on
cells by flow cytometry and high-content imaging of A375 cells is
shown in Figure 3. When rU1 snRNPA was added, the levels of
IFN-g and TNF-a showed a dose-dependent increase similar
with durvalumab (Figure 4A). Although some groups showed
Frontiers in Oncology | www.frontiersin.org 5102
no significant differences at lower concentrations, the levels of
IFN-g and TNF-a were still higher than those of the control
group. At the concentration of 15 mM, both IFN-g and TNF-a
secretion elevated significantly compared to the control group.
PD-L1-negative HEK293T cells treated with rU1 snRNPA were
used to confirm whether the observations were dependent on
blocking the PD-1/PD-L1 interaction. The results showed that
rU1 snRNPA did not significantly increase the IFN-g and TNF-a
secretion of PD-L1-negative HEK293T cells co-cultured with
CD4+ T cells (Supplementary Figure S5A). These results
indicated that rU1 snRNPA had T cell reactivation function by
blocking the PD-1/PD-L1 interaction.

CCK-8 assay was used to evaluate the anti-melanoma and
anti-breast cancer efficacy and killing activity of rU1 snRNPA in
A375 cells, MDA-MB-231 cells, and HEK293T-hPD-L1 cells.
After treatment with rU1 snRNPA or durvalumab mixed with
CD4+ T cells, the cells were killed in a concentration-dependent
manner, and all three concentrations showed a significant
difference compared to the control group. Since 15 mM showed
A

B C

FIGURE 2 | Results of binding ability to PD-L1 and inhibition effect on PD-1/PD-L1 interaction. (A) Comparison of SERS spectra of rU1 snRNPA (1.5 mM) and
control. (a) Representative SERS spectra. lex = 632.8 nm, t = 5 s, and accumulation times = 1. (b) Intensity of the characteristic peak of 4-amnobiphenyl with the
results of three repeated experiments. Data are shown as mean ± SD. ***P < 0.001. (B) Binding curves of rU1 snRNPA and durvalumab. Curve fitting was performed
by using GraphPad Prism 8.0. Error bars denote SD. The experiment was performed in double for each sample group. (C) Inhibition curves of rU1 snRNPA and
durvalumab. Curve fitting was performed by using GraphPad Prism 8.0. Error bars denote SD. The experiment was performed in double for each sample group.
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a little difference to 1.5 mM, the latter was considered as the ideal
concentration for further development (Figure 4B). rU1
snRNPA showed little killing activity in A375 cells, MDA-MB-
231 cells, or HEK293T-hPD-L1 cells without CD4+ T cells or
PD-L1-negative HEK293T cel ls with CD4+ T cel ls
(Supplementary Figure S5B), which proved that rU1 snRNPA
only kills cells with CD4+ T cells and were not toxic to cells. rU1
snRNPA had in vitro anti-cancer efficacy.

Given the promising results of in vitro anti-melanoma efficacy,
a melanoma–human immune system immunodeficiency mouse
model was used to further evaluate the in vivo anti-melanoma
efficacy of rU1 snRNPA. In this mouse model, PBMCs supplied T
cells, which reacted with melanoma A375 cells, and immune
responses were reactivated to inhibit tumor growth. As shown
in Figure 5A, rU1 snRNPA resulted in a similar survival period as
that of durvalumab and both inhibited tumor growth (based on
volume) (Figure 5B). The dose 5 mg/kg was the most effective
concentration of rU1 snRNPA in this study. Plasma concentration
Frontiers in Oncology | www.frontiersin.org 6103
was monitored and measured by ELISA (Figure S6A). The peak
plasma concentrations of rU1 snRNPA occurred at 8 h. The
absorption and distribution time of rU1 snRNPA in vivo were
similar to those of durvalumab, but the excretion time was much
shorter, and it could hardly be detected in blood after 24 h. This
was possibly due to the smaller molecular weight of rU1 snRNPA
compared with durvalumab. The organ weight and H&E staining
results showed that the effects of rU1 snRNPA treatment on
important organs (heart, liver, spleen, lung, and kidney) were
similar with those of durvalumab, with no increase in damage to
the histology of these organs (Supplementary Figures S6B, S7).
Collectively, these results indicated that rU1 snRNPA possessed
ideal in vivo anti-melanoma efficacy.

Key Residues on the Interface of U1
snRNPA/PD-L1 Complex
To further verify that U1 snRNPA worked by binding to PD-L1
and find the key residues for binding, we designed three single-
A

B

FIGURE 3 | (A) Flow cytometry results of the expression of hPD-L1 on cells. (B) High content imaging of A375 cells with different concentrations of rU1 snRNPA or
durvalumab. Blue, nucleus by Hoechst33342; green, rU1 snRNPA or durvalumab conjugated with Alexa Fluor® 488 NHS Ester.
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point variants based on the structure of the U1 snRNPA/PD-L1
complex (Figure 6). According to the hydrophobic and
electrostatic interaction, several potential residues were selected
and mutated by Pymol; then, the complexes of variants and PD-
L1 were scored by PatchDock. Unlike the previous docking in
screening, in this docking, there were certain restrictions on the
binding position, and full-length U1 snRNPA was used, so the
scores were a little different to the scores of screening. Compared
with the scores of wild types, we finally designed the variants of
A32D, I33F, and Q36R. Among them, A32D raised the score;
others lowered the scores in PatchDock (Supplementary
Table S2).

Three variants were expressed and purified in the same way as
the wild types and were used for subsequent experiments
(Supplementary Figure S2). The binding ability to PD-L1 and
the PD-1/PD-L1 inhibition efficacy of the variants were
evaluated by the same methods as those of the wild types. The
results of SERS showed that all variants lowered the
characteristic peaks of 4-ABP compared to the control group,
but the degree of reductions had no significant difference
Frontiers in Oncology | www.frontiersin.org 7104
between the variants, suggesting that SERS may not be suitable
for detecting small changes to the PD-1/PD-L1 interaction
(Figure 7B). The results of ELISA proved that the variants had
changed binding ability or inhibition efficacy, compared to wild
types, corresponding to theoretical predictions (Figure 7A).
Among the variants, the EC50 of A32D (51.36 nM) was lower
than that in the wild types, which implied that it had better
binding ability to PD-L1. The EC50 of others were higher than
those in the wild types, which implied that they had worse
binding ability to PD-L1. In the results of competitive ELISA,
A32D (14.28 nM) had lower IC50, while the others had higher
IC50. As the lower IC50 had better inhibitory effects to PD-1/
PD-L1 interaction, A32D had better inhibition efficacy than the
wild types. Moreover, the results showed that the EC50 and IC50
were not corresponding completely, suggesting that better binding
ability to PD-L1 did not mean better inhibition efficacy to the PD-
1/PD-L1 interaction. This feature should be emphasized in follow-
up research and development. The results mentioned above
verified the key residues of U1 snRNPA for binding to PD-L1
and inhibiting the PD-1/PD-L1 interaction. The study of key
A

B

FIGURE 4 | Effect of rU1 snRNPA on T cell reactivation function and anti-cancer efficacy. (A) Effect of rU1 snRNPA or durvalumab on IFN-g and TNF-a secretion
from CD4+ T cells co-cultured with HEK293T-hPD-L1 cells or A375 cells or MDA-MB-231 cells. (B) Anti-cancer efficacy of rU1 snRNPA or durvalumab mixed with
CD4+ T cells in HEK293T-hPD-L1 cells or A375 cells or MDA-MB-231 cells. Data are shown as mean ± SD.*P < 0.05, **P < 0.01, ***P < 0.001.
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A

B

FIGURE 5 | Anti-melanoma efficacy of rU1 snRNPA in a melanoma–human immune system immunodeficiency mouse model. (A) Survival rates of rU1 snRNPA or
durvalumab. (B) Tumor volume changes measured over time in different groups (n = 10).
FIGURE 6 | Structure details of the variants. Cyan, U1 snRNPA; green, PD-L1. Stick representations in the red box show the mutated residues.
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residues on the interface of the U1 snRNPA/PD-L1 complex was
not only to optimize and design the binder but also was conducive
to analyze the key residues for interaction theoretically.

Increased Efficient Therapeutic
Variant A32D
The effect of the variants on bio-activity was evaluated by T cell
reactivation function and in vitro anti-melanoma efficacy. The
experiment methods of the variants were the same as the wild
types. In the A32D group of T cell, the reactivation assays showed
that the levels of IFN-g and TNF-a were higher than the wild-type
groups, and others were higher than the control group but lower than
the wild-type groups, although some groups did not have significant
statistical differences (Figure 8A). From the results of in vitro anti-
melanoma assay and killing activity assay, the variants still had
Frontiers in Oncology | www.frontiersin.org 9106
efficacy to kill cells which expressed PD-L1 relying on CD4+T cells,
and the efficacy was changed compared to the wild types (Figure 8B).
Generally, in vitro, the A32D group had better anti-melanoma
efficacy than the other groups, and other variants had similar or
lower anti-melanoma efficacy than the wild types. The results of the
variants in PD-L1-negative HEK293T cells co-cultured with CD4+ T
cells or PD-L1-positive cells not co-cultured with CD4+ T cells did
not significantly change the IFN-g and TNF-a secretion
(Supplementary Figure S8A) or killing activity (Supplementary
Figure S8B). These results indicated that the variants of key residues
led to the change of T cell reactivation function and in vitro anti-
melanoma efficacy or killing activity to cells which expressed PD-L1.
However, because only one residue had beenmutated in each variant,
they had not completely lost or most improved their binding ability
to PD-L1, so their bio-activities were just partially changed.
A

B

FIGURE 7 | Results of binding ability changes of variants. (A) Binding curves and inhibition curves of the variants. Charts of EC50 and IC50. Curve fitting was
performed by using GraphPad Prism 8.0. The experiment was performed in double for each sample group. Data are shown as mean ± SD. (B) Comparison of the
SERS spectra of the variants (both 1.5 mM). The characteristic peaks of 4-ABP are marked in gray. lex = 632.8 nm, t = 5 s, and accumulation times = 1. Data are
shown as mean ± SD. ***P < 0.001.
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DISCUSSION

In recent years, except for chemical inhibitors, the development of
non-IgGPD-L1 inhibitors seems toonly focusonPD-1-basedvariants
and peptides (6). So far, there were no other reports about the novel
type of PD-L1 inhibitor fromhuman-derived protein scaffolds library.
The most important advantage of human-derived protein scaffolds is
low or even no immunogenicity. The immunogenicity of therapeutic
proteins is one of the serious problems hindering their development,
especially when they are administered as multiple doses over
prolonged periods (20). There are many factors that can influence
the immunogenicityof therapeutic proteins, such as structural features
(sequence variation and glycosylation), storage conditions
(denaturation or aggregation caused by oxidation), and
contaminants or impurities in the preparation (20). The clinical
application of antibodies is also challenged by immunogenicity. The
immunogenicity of antibody therapeutics can impact the safety and
Frontiers in Oncology | www.frontiersin.org 10107
pharmacokineticproperties,whichcan impact the efficacyof thedrugs
(21). Therefore, understanding, controlling, and engineering around
thepotential immunogenicity isofgreatconcern to thepharmaceutical
industry (20). Although strategies, such as the humanization of
antibodies, have reduced the immunogenicity to a certain extent,
there is no solution that can better solve the problem of
immunogenicity in the development of protein drugs (21). The
human-derived protein scaffolds that we studied provided a new
strategy to solve the problem of immunogenicity. Since the scaffolds
were originally derived from humans, they have almost no
immunogenicity in the human body, avoiding serious side effects in
clinical treatment.

In addition, human-derived protein scaffolds are different from
PD-L1 antibodies, which can avoid many disadvantages of the
antibodies. First, the manufacturing cost of human-derived protein
scaffolds like rU1 snRNPA can be lower than that of antibodies
which had low yield from mammalian expression systems. Second,
A

B

FIGURE 8 | Effect of variants on T cell reactivation function and anti-melanoma efficacy. (A) Effect of variants on IFN-g and TNF-a secretion from CD4+ T cells co-
cultured with HEK293T-hPD-L1 cells or A375 cells. (B) Anti-melanoma efficacy of variants mixed with CD4+ T cells in HEK293T-hPD-L1 cells or A375 cells. Data are
shown as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.
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the molecular weight of rU1 snRNPA is lower than antibodies,
which may lead to better penetration into solid tumors. Compared
with PD-1-based variants or peptides, human-derived protein
scaffolds like rU1 snRNPA have a more ideal half-life with
restriction of molecular weight and are more conducive to
becoming an injectable immune-therapy drug. Ideal half-life also
makes human-derived protein scaffolds like rU1 snRNPA better to
control in terms of appropriate administration dosage to reduce
adverse events. Compared with chemical inhibitors, human-derived
protein scaffolds can better balance the ideal therapeutic effect and
have low cytotoxicity. However, not all human-derived protein
scaffolds can be developed into drugs—for example, enzymes and
their analogues which interact with some small molecule substrates
in the body and play extremely important functions are not suitable
for development as therapeutic agents. In the same way, some
scaffolds, such as interleukins, which act outside the cell cannot be
developed into drugs as well; they are likely to interfere with the
normal functions of the human body and cause a series of side
effects. The U1 snRNPA selected in this study is located in the
nucleus, which acts inside the cell, so it will not interfere with the
normal function of the human body when it acts as a therapeutic
agent outside the cell. In addition to the type of scaffolds, the
molecular weight is also very important. It is necessary to fully
consider the filtration of the glomerulus and the reabsorption of
the renal tubules (22). In the subsequent development of a novel
type of PD-L1 inhibitors from human-derived protein scaffolds
library, these factors need to be paid attention to in order to
obtain more ideal candidate inhibitors.

In anti-cancer assays, whether in melanoma A375 cells or breast
cancer MDA-MB-231 cells or HEK293 cells expressing PD-L1, rU1
snRNPA has almost no anti-cancer activity without tumor-
suppressed T cells. These results indicated that the rU1 snRNPA
does not work by its own certain anti-tumor activity. Combined
with the results of T cell reactivation assays, it can be determined
that rU1 snRNPA exerts anti-tumor activity by reactivating tumor-
suppressed T cells. Anti-cancer drugs also need to be specific and
can target tumor cells but cannot or rarely kill normal cells to avoid
serious side effects. In HEK293 cells without PD-L1 expression, rU1
snRNPA, as an inhibitor of PD-L1, had almost no reactivation of
tumor-suppressed T cells or killing activity, which can preliminarily
prove that rU1 snRNPA had specificity of targeting PD-L1 to exert
anti-cancer activity. In the process of new drug development, many
candidates have obtained ideal results in in vitro assays, but not in in
vivo assays. Compared with antibodies, the human-derived protein
scaffolds that we selected do not have IgG fragments and do not
cause antibody-dependent cell-mediated cytotoxicity, so they
cannot mediate killer cells to directly kill tumor cells (23). In
order to investigate whether rU1 snRNPA can also obtain the
ideal anti-cancer activity in vivo, we designed a melanoma–human
immune system immunodeficiency mouse model to further
evaluate the in vivo anti-melanoma efficacy of rU1 snRNPA. This
mouse model simulated, as much as possible, the anti-tumor
activity which rU1 snRNPA may exert on A375 cells in the
human immune system. Fortunately, rU1 snRNPA had also
achieved ideal results in an in vivo anti-melanoma assay, which
means that rU1 snRNPA has potential for follow-up research.
Frontiers in Oncology | www.frontiersin.org 11108
CONCLUSION

The systematic screening of therapeutic proteins against the drug-
target protein is a substantial challenge to in silico methods. In this
study, the application of a human-derived protein scaffolds library
and rigid molecular docking is a highly efficient and easily available
tool for designing novel therapeutic protein drugs. Two major
biological criteria for the screening of candidates are as follows:
(a) do not interact with proteins in body liquids and cell surface
receptors, such as cytokines, etc., and (b) do not interact with small
molecules related to life activities, such as enzymes. Our work
suggested that the variant A32D of rU1 snRNPA, which we
screened and improved, is a potential PD-L1 inhibitor.
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Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran

The global rate of cancer has increased in recent years, and cancer is still a threat to
human health. Recent developments in cancer treatment have yielded the understanding
that viruses have a high potential in cancer treatment. Using oncolytic viruses (OVs) is a
promising approach in the treatment of malignant tumors. OVs can achieve their targeted
treatment effects through selective cell death and induction of specific antitumor immunity.
Targeting tumors and the mechanism for killing cancer cells are among the critical roles of
OVs. Therefore, evaluating OVs and understanding their precise mechanisms of action
can be beneficial in cancer therapy. This review study aimed to evaluate OVs and the
mechanisms of their effects on cancer cells.

Keywords: oncolytic virus, cancer immunotherapy, cancer vaccine, targeted treatment, immune checkpoint
BACKGROUND

Millions of individuals are affected by cancer annually. Cancer is considered the leading cause of
death and the most important barrier to the increase in life expectancy in the twenty-first century. In
2018, 18.1 million new cancer cases (17.0 million cancer cases excluding non-melanoma skin
cancers) were reported. The mortality due to cancer in 2018 was 9.6 million (9.5 million, excluding
non-melanoma skin cancers) (1). Significant developments in cancer treatment started in 1900. The
achievements of this progress include the development of diagnostic, surgery, chemotherapy,
hormone therapy, gene therapy, and cell therapy methods. Regardless of these advancements,
human is still incapable of combating cancer, as none of the identified treatment methods could be
used in all stages of cancer (2). Many of cancer patients experience a relapse of disease progression
regardless of the primary response to treatment.

Furthermore, complete resection of the tumor is difficult or impossible in many cases (3).
Immunotherapy has evolved as a practical treatment choice against malignant diseases during the
past decades. Studies in oncolytic virotherapy (OVT) developed in the early twentieth century as an
observational science for the cases of spontaneous regression of tumors were reported due to
infection with specific viruses (4).

Oncolytic viruses (OVs) include a group of viruses that selectively affect and kill malignant cells,
leaving the surrounding healthy cells unaffected. OVs have direct cytotoxic effects on cancer cells and
augment host immune reactions and result in the destruction of the remaining tumoral tissue and
establish a sustained immunity (5). Indeed, OVs function in four ways against tumor cells, including
oncolysis, antitumor immunity, transgene expression, and vascular collapse (6). Regarding the fact
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that cancer cells are developed to avoid detection and destruction
by the host immune system and also to resist apoptosis, which are
the critical responses of normal cells in limiting viral infections,
OVs can kill cancer cells through a spectrum of actions ranging
from direct cytotoxicity to induction of immune-mediated
cytotoxicity. OVs can also indirectly destroy cancer cells by
destroying tumor vasculature and mediating antitumor
responses (7). Furthermore, in order to augment the therapeutic
characteristics, modifications in OVs by genetic engineering such
as insertions and deletions in the genome have been employed in
many investigations; thus, additional antitumor molecules can be
delivered to cancer cells and effectively bypass the widespread
resistance of single-target anticancer drugs (8)

It should be noted that the use of OVs in cancer therapy was
limited due to the pathogenicity and toxicity of these viruses in
human cases. Recent advancements in genetic engineering have
optimized the function of OVs through genetic modifications
and therefore have become the issue of interest in OVT (9). Each
virus tends to a specific tissue, and this tendency determines
which host cells are affected by the virus and what type of disease
will be generated. For instance, rabies, hepatitis B, human
immunodeficiency virus (HIV), and influenza viruses affect
neurons, hepatocytes, T lymphocytes, and respiratory tract
epithelium, respectively. Several naturally occurring viruses
have a preferential but not exclusive tendency towards cancer
cells. This issue is more attributed to tumor cell biology
compared to the biology of the virus.

OVs are generally categorized into two groups. One group is
preferentially replicated in cancer cells and is not pathogenic for
normal cells due to the increased sensitivity to the innate immune
system’s antiviral signaling or dependence on the oncogenic
signaling pathways. Autonomous parvovirus, myxoma virus
(MYXV; poxvirus) , Newcastle disease virus (NDV;
paramyxovirus), reovirus, and Seneca valley virus (SVV;
picornavirus) are categorized in this group. The second group of
OVs includes viruses that are either genetically modified for
purposes including vaccine vectors such as mumps virus (MV;
paramyxovirus), poliovirus (PV; picornavirus), and vaccinia virus
(VV; poxvirus), or genetically engineered through mutation/
deletion of genes required for replication in normal cells,
including adenovirus (Ad), Herpes simplex virus (HSV), VV,
and vesicular stomatitis virus (VSV; rhabdovirus) (10).

Furthermore, the mutation in cancer cells, drug adaptation,
resistance, and cell immortality were effective in the initiation
and speed of viral dissemination. Today, researchers are trying to
discover and identify a new generation of OVs to save more
patients’ lives from cancer. Evaluation of OVs and identification
of the exact mechanism of action of these viruses can be helpful
in this way (11). This review study aimed to evaluate OVs and
their mechanism of action against cancer cells.
METHODOLOGY

The key terms in the literature search included oncolytic virus,
cancer, immunotherapy, innate immunity, adaptive immunity,
Frontiers in Oncology | www.frontiersin.org 2111
virotherapy, viral therapy, oncolytic, and virus were searched in
international databases, namely, Web of Science, PubMed, and
Scopus from 2004 to 2021. The inclusion criterion was the
evaluation of viruses using standard in vivo and in vitro
laboratory methods. Exclusion criteria were lack of access to
full text articles and incomplete description or assessment of
diseases other than cancers.
RESULTS

The primary search yielded 1,450 articles. Finally, 47 articles were
included in the review after eliminating irrelevant and duplicate
studies. The characteristics of the 47 included articles are presented
in Table 1, performed from 2004 to 2021. The OV families assessed
in the studies included Ad, MV, PV, NDV, SFV, HSV, VV
Reovirus, and bovine herpesvirus (BHV). The most commonly
assessed virus was adenovirus (Ad) (n = 15), followed by the
herpesvirus (HSV) (n = 12) and measles virus (MV) (n = 7). The
least assessed viruses were BHV, SFV, and Reovirus (n = 1).

According to Table 1, OVs may employ multifunction
against tumor cells; however, the most antitumor actions of
OVs were related to cytolysis activity and inducing antitumor
immunity (n = 26) in which adenovirus (n = 11) and HSV (n = 9)
were the most responsible OVs in their categories, respectively.
However, the last action was associated with vascular collapse.
The collective data in Table 2 exhibited a summary of clinical
trials of OVs implicated in malignancies highlighting the most
considerable focus on engineered VV by TKdel GMCSF exp (JX-
594) on solid tumors supported by Jennerex Biotherapeutics
Company. The majority of studies under clinical trials involve a
transgene virus encoding an immune-stimulatory or proapoptic
gene to boost the oncolytic features of the virus. As Table 2
reveals, granulocyte–macrophage colony-stimulating factor
(GM-CSF) and pro-drug-converting enzymes are the most
popular transgenes, although many OVs encoding novel
therapeutic cargos are in clinical development. Streby et al., in
phase I clinical trial, examined the effects of HSV1716 on
relapsed/refractory solid tumors. Despite the fact that none of
the patients exhibited objective responses, virus replication and
inflammatory reactions were seen in patients (58). In another
clinical trial, Desjardins et al. reported a higher survival rate in
grade IV malignant glioma patients who received recombinant
nonpathogenic polio–rhinovirus chimera (59). In a phase I
clinical trial, Rocio Garcia-Carbonero et al. discovered that
enadenotucirev IV infusion was associated with high local
CD8+ cell infiltration in 80% of tumor samples evaluated,
indicating a possible enadenotucirev-driven immune response
(60). TG4023, a modified vaccinia Ankara viral vector carrying
the FCU1 suicide gene, was used in a phase I trial to convert the
non-cytotoxic prodrug flucytosine (5-FC) into 5-fluorouracil (5-
FU) in the intratumor. Finally, 16 patients with liver tumors were
successfully injected; the MTD was not achieved, and a high
therapeutic index was demonstrated (61). Dispenzieri et al.
examined MV-NIS effects in patients with relapsed, refractory
myeloma and reported satisfactory primary results (62).
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TABLE 1 | The collective studies on OVs.

Virus Cancer Model Effects Mechanism References

Adenovirus Head and neck
squamous cell
carcinoma

Murine Ad-derived IL-12p70 prevents the destruction of
HER2.CAR-expressing T cells at the tumor site.

Enhanced antitumor effects of HER2 CAR
T cells by CAd12_PDL1
Controlling of primary tumor growth and
metastasis.

Shaw et al.,
2017 (12)

Renal cell carcinoma Murine HRE-Ki67-Decorin suppressed tumor growth and
induced decorin expression in the extracellular
matrix (ECM) assembly.

An effective anticancer treatment strategy
may be chimeric HRE-Ki67 promoter-
regulated Ad carrying decorin.

Zhang et al.,
2020 (13)

Lung cancer stem cell
(LCSC)

Murine Tumor necrosis factor (ZD55-TRAIL) increased
cytotoxicity and induced A549 sphere cells
apoptosis through a mitochondrial pathway

Treatment of lung cancer is possible by
targeting LCSCs with armed oncolytic
adenovirus genes.

Yang et al.,
2015 (14)

Leukemia Murine Induction of autophagic cell death
Enhanced cell killing in primary leukemic blasts

Significant autophagic cell death Tong et al.,
2013 (15)

Breast cancer Murine Tumor killing due to Sox2 and oct4 expression and
Hoechst 33342 exclusion
CD44+CD24−/low cells

A positive effect against advanced
orthotopic was that CD44+CD24−/low-
derived tumors were observed.

Eriksson
et al., 2007
(16)

Breast cancer Murine Delta24 can replicate and help the E1-deleted
adenovector replicate in cancer cells

Spontaneous liver metastasis with Delta
24 virus therapy alone was less reduced
than in combination with TRAIL gene
therapy.

Guo et al.,
2006 (17)

Liver cancer stem-like
cells

Murine Significant apoptosis
Inhibition angiogenesis in xenograft tumor tissues
Inhibition of the propagation of cells occurred due
to GD55

GD55 had a higher effect in suppressing
tumor growth than oncolytic adenovirus
ZD55.

Zhang et al.,
2016 (18)

B16F10 Murine Infiltration of effector CD4+ and CD8+ T cells
Increasing secretion of TNF-a and IFN-g

Activation the immune system
Creating a proinflammatory environment

Wei et al.,
2020 (19)

avb6-positive tumor
cell lines of pancreatic
and breast cancer

Murine Cells expressing high levels of avb6 (BxPc,
PANC0403, Suit2) were killed more efficiently by
oncolytic Ad5NULL-A20 than by oncolytic Ad5

Ad5NULL-A20-based virotherapies
efficiently target avb6-integrin-positive
tumors

Davies et al.,
2021 (20)

Advanced metastatic
tumors

Murine Increase in CD8+ T cells
Reduction of IFN-g secretion

Specific immunity against tumor Cerullo et al.,
2010 (21)

Breast cancer Murine Inflammation and neutrophil infiltration due to
oncolytic adenovirus-GM-CSF.

Ad5/3-D24-GMCSF, combined with low-
dose CP showed efficacy and antitumor
activity

Bramante
et al., 2016
(22)

Solid tumors Murine CD8 cytotoxicity viruses efficiently lysed tumors Significantly prolonged survival Gürlevik et al.,
2010 (23)

Metastatic ductal
breast cancer

Murine Each virus featured 5/3 chimerism of a promoter
controlling the expression of E1A and fiber, which
was also deleted in the Rb binding domain for
additional tumor selectivity

These viruses completely eradicated CD44
+ low CD24−/cells in vitro
Significant antitumor activity in CD44+
CD24−/low-derived tumors in vivo

Bauerschmitz
et al., 2008
(24)

Metastatic melanoma In vitro Activation and an increased costimulatory capacity
of monocyte-derived antigen-presenting cells

A valuable immunotherapeutic agent for
melanoma is ORCA-010

González
et al., 2020
(25)

Gastric cancer
MKN45 and MKN7
cells

Murine Cell death in stem cells such as CD133 resident
cancer by stimulating cell-cycle-related proteins

Killing cancer cells Yano et al.,
2013 (26)

Herpesvirus Bearing M3-9-M
tumors

Murine Increasing the incidence of CD4+ and CD8+ T cells
and no correlation with the CD4+CD25+Foxp3+
regulatory T-cell populations in the tumor

An efficient therapy strategy for soft tissue
sarcoma in childhood

Chen et al.,
2017 (27)

Breast cancer Murine Regulation of CD8+ T cell activation markers in the
tumor microenvironment
Inhibition of tumor angiogenesis

Tumor regression
Anticancer immune response

Ghouse et al.,
2020 (28)

Colon carcinoma Murine Decreased inhibitory immune cells
Increased positive immune cells in the spleen.

Generate tumor-specific immunity
Elimination of primary tumors
Developing immune memory to inhibit
tumor recurrence and metastasis.

Zhang et al.,
2020 (29)

Ovarian carcinoma Murine DC maturation and tumor infiltration of INF-g+ CTL The antitumor immune responses are
facilitated

Benencia
et al.
2008 (30)

Tumor Murine T-cell responses against primary or metastatic
tumors

Antitumor immune response
Prevention of tumor growth

Li et al., 2007
(31)

STING low-metastatic
melanoma

Murine Release of DAMP factors
Release of IL-1b and inflammatory cytokines
Induction of host antitumor immunity

Induction of immunogenic cell death (ICD)
Recruitment of viral and tumor-antigen-
specific CD8+ T cells

Bommareddy
et al., 2019
(32)
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TABLE 1 | Continued

Virus Cancer Model Effects Mechanism References

STING expression as a predictive
biomarker of T-Vec
Response

Osteosarcoma cells Murine Antitumor efficacy in vivo
Inducing antitumor immunity

The in vitro cytolytic properties of OVs are
poor prognostic indicators of effective
cancer virotherapy and in vivo antitumor
activity

Sobol et al.,
2011 (33)

HCT8 human colon
cancer cells

Murine Cytotoxicity, viral replication, and Akt1 expression Therapy of TIC-induced tumors with
NV1066 slowed tumor growth and yielded
tumor regression

Warner et al.,
2016 (34)

Glioblastoma-derived
cancer stem-like cells
(GBM-SC)

Murine Infection with HSV G47Delta killed GBM-SCs and
inhibited their self-renewal and the inability of viable
cells to form secondary tumor spheres

Significant anti-tumor effect against
xenografts in mice and effective killing of
CSCs in vitro

Wakimoto
et al., 2009
(35)

Solid tumors Human The induction of adaptive antitumor immune
responses

All patients were seropositive. No local
recurrence was observed in patients and
disease-specific survival was 82.4%

Harrington
et al., 2010
(36)

Breast, head and neck,
and gastrointestinal
cancers, and malignant
melanoma

Human Induction of adaptive anti-tumor immune
responses

Biopsies contained residual tumor was
observed in 19 patients after treatment
that 14 of them showed tumor necrosis
(extensive, or apoptosis)

Hu et al.,
2006 (37)

Metastatic melanoma Human ICP47 deletion increases US11 expression and
enhances virus growth and replication in tumor
cells

Overall survival at 12 and 24 months were
58% and 52%, respectively.

Senzer et al.,
2009 (38)

Measles virus Solid tumor Murine GOS/MV-Edm significantly increases viral
replication in tumor mass

Increased survival in passive antiserum
immunized tumor-bearing mice

Xia et al.,
2019 (39)

Orthotopic glioma
tumor spheres and
primary colon cancer

Murine Overexpression of the CD133 target receptor or
increased kinetics of proliferation through tumor
cells

CD133-targeted measles viruses
selectively removed CD133þ cells from
tumor tissue

Bach et al.,
2013 (40)

Mesothelioma Murine Infiltration of CD68+ cells innate immune cells. Oncolytic MVs is versatile and potent
agents for the treatment of human
mesothelioma.

Li et al., 2010
(41)

Multiple myeloma Murine Induction of adaptive anti-tumor immune
responses

Virus-infected T cells may induce systemic
measles virus therapy in the presence of
ABS antivirus.

Ong et al.,
2007 (42)

Breast cancer In vitro Inducing apoptosis Induction of cell death leads to infection of
breast cancer cells with rMV-BNiP

Lal and Rajala
et al., 2019
(43)

Breast cancer In vitro Increased percentage of apoptotic cells in infected
MCF-7 cells

Significant apoptosis in breast cancer cell
lines.

Abdullah
et al., 2020
(44)

T-cell lymphomas
(CTCLs)

Human An increase in the IFN-g/CD4 and IFN-g/CD8
mRNA ratio and a reduced CD4/CD8 ratio

MV can affect CTCL treatment. Heinzerling
et al., 2005
(45)

Newcastle disease
virus

Lung cancer Murine Caspase-dependent apoptosis associated with
increased caspase-3 processing and ADP-ribose
polymerase cleavage.

A potential strategy for targeting lung
CSCs

Hu et al.,
2015 (46)

B16 melanoma Murine Treatment with systemic CTLA-4 blockade was
due to long-term survival and tumor rejection

Distant tumors are prone to systemic
therapy with immunomodulatory
antibodies using localized therapy with
oncolytic NDV

Zamarin et al.,
2014 (47)

Lung cancer Murine DAMP release
Autophagy induction

Inhibited tumor growth
Trigger ICD

Ye et al.,
2018 (48)

GBM Murine GBM susceptibility to NDV is dependent on the
loss of the type I IFN

Trigger the activation of immune cells
against the tumor and show oncolytic
effect

Garcıá-
Romero et al.,
2020 (49)

Vaccinia virus Melanoma Murine PD-L1 inhibition
Neoantigen presentation

Tumor neoantigen-specific T-cell
responses

Wang et al.,
2020 (50)

Solid tumors Murine Activated the inflammatory immune status Complete tumor regression
long-term tumor-specific immune memory

Nakao et al.,
2020 (51)

Solid cancer Murine Replication was activated by EGFR/Ras pathway
signaling, cellular TK levels, and cancer cell
resistance to IFNs

Selectively cell lysis and stimulation of
antitumoral immunity

Parato et al.,
2012 (52)

(Continued)
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Cohn et al., in phase II clinical trial, evaluated the effects of
oncolytic reovirus (Reolysin®) plus weekly paclitaxel in women
with recurrent or persistent ovarian, tubal, or primary peritoneal
cancer. The results did not show any improvement in the patient
status (63), although Mahalingam et al. showed that
REOLYSIN®, plus carboplatin and paclitaxel, is an effective
treatment in advanced malignant melanoma (64). Packiam
et al. showed that CG0070 (GM-CSF expressing adenovirus)
has a 47% CR rate at 6 months for all patients and 50% for
patients with carcinoma-in situ (65).

Geletneky et al. evaluated H-1 parvovirus (H-1PV) effects in
recurrent glioblastoma patients and reported microglia/
macrophage activation and cytotoxic T-cell infiltration in the
infected tumors, proposing initiation of the immunogenic
response (66).

Andtbacka et al., in a phase III study, evaluated Talimogene
laherparepvec (T-VEC) in stage IIIc and stage IV malignant
melanoma. T-VEC was the first approved OVs against
melanoma in a phase III clinical trial. This virus compared
with GM-CSF showed a higher durable response rate and
overall survival (67). In another newest phase III study,
Talimogene laherparepvec was approved by the Food and
Drug Administration (FDA) in the USA, European Union, and
Australia (68).
DISCUSSION

As a challenge in cancer therapy approaches (1), the exclusive
features of oncolytic viruses have attracted plenty of researchers
in recent years. OVs have the dramatic capability to selectively
infect tumor cells leading to direct or indirect cancer cell death
without harming normal cells (7). This study focused on some
Frontiers in Oncology | www.frontiersin.org 5114
mechanisms employed by OVs against tumor cells, which are
exactly various from virus to virus (Figure 1).

According to most studies, OVs can target cancer cells and
benefit from tumor conditions in favor of replication in infected
cells, eventually leading to oncolysis. Indeed, tumor cells tend to
resist apoptosis and translational suppression, which are both
compatible with the growth of several viruses (7). One of the
main actions of OVs is to take advantage of immune-evading
properties of cancer cells to escape from recognition and
destruction by the immune system. Antiviral processes in
normal cells are associated with the interferon pathway in
which the secretion of type I interferon (IFN) cytokine can
trigger an antiviral response and induce ISGs to block viral
replication (69). This subsequently leads to cell apoptosis, as it is
known that the IFN-I signaling regulates the expression of
proapoptotic genes such as tumor necrosis factor alpha (TNF-
a), FAS ligand, and tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) (70).

Regarding the IFN-I signaling is defective in most tumor cells,
it makes tumor cells susceptible to being infected by some OVs
including NDV, VSV, MYXV, and raccoon pox virus (71–73).
Garcıá-Romero et al. showed that NDV was able to replicate in
glioblastoma (GBM) cancer stem cells (CSCs) due to type I IFN
gene loss occurring in more than 50% of patients. Infection of
GBM with NDV represents oncolytic and immunostimulatory
properties through the production of type I IFN in non-tumor
cells such as tumor infiltrated macrophages and DC or other cells
present at the tumor microenvironment (49). NDV therapy also
declines CSCs self-renewing capacity to improve their
differentiation ability and facilitate cancer therapy (49, 74).
OVs can also benefit from the abnormal expression of the
proto-oncogene RAS which generally occurs in normal cells
but actives in tumor cells (75). OV infection outcomes can be
TABLE 1 | Continued

Virus Cancer Model Effects Mechanism References

M1 virus Melanoma Murine CD8+ T-cell-dependent therapeutic effects
long-term antitumor immune memory
Upregulating the expression of PD-L1

Immunogenic tumor cell death
Restores the ability of dendritic cells to
prime antitumor T cells

Yang Liu
et al., 2020
(11)

Bladder tumor Murine Inhibition of CCDC6 improve viral replication and
then induced endoplasmic reticulum stress to
facilitate M1 virus oncolytic effects.

CCDC6 inhibition resulted in better
antitumor activity

Liu et al.,
2021 (53)

Poxvirus MC-38 colon
adenocarcinoma
tumors

Murine Elicited TILs with lower quantities of exhausted PD-
1hiTim-3+ CD8+ T cells and regulatory T cells

Tumor regression and improved survival Mathilde
et al., 2020
(54)

Poliovirus Breast cancer Murine Primary oncolytic viral receptors are highly
expressed in tumor cells and transmitted among
cells.

Oncolytic PV recombinants may affect
tumor cells by viral receptor CD155

Ochiai et al.,
2004 (55)

Reovirus Solid tumor Murine Induction of Golgi fragmentation and accumulation
of oncogenic Ras in the Golgi body

Initiating apoptotic signaling events
required for virus release and spread.

Garant et al.,
2016 (56)

Adenovirus (Ad),
Semliki Forest virus
(SFV) and Vaccinia
virus (VV)

Osteosarcoma Murine Activates immunogenic apoptosis
Triggering phagocytosis and maturation of DCs
Th1-cytokine release by DCs and antigen-specific
T-cell activation.

Induction of T-cell-mediated antitumor
immune responses.
Increased cell death processes

Jing Ma et al.,
2020 (57)
December 2021 | Volume 11 |
PD-L1, programmed death-ligand 1; Ad, adenovirus; MV, measles virus; GBM, glioblastoma; NDV, Newcastle disease virus; VV, Vaccina virus; Th, T helper; ICD, immunogenic cell death;
EGFR, epidermal growth factor receptor; TK, thymidine kinase; IFN-I, type-I interferon; HSV, herpes simplex viruses; TIL, tumor infiltration lymphocyte; DC, dendritic cells; BHV, bovine
herpesvirus; DAMP, damage-associated molecular pattern; Trail, TNF-related apoptosis-inducing ligand; GD-55, GOLPH2-regulated oncolytic adenovirus; GOS, graphene oxide arms
PV, polio virus; LAPV, Israeli acute paralysis virus; CP, cisplatin; GM-CSF, granulocyte–macrophage colony-stimulating factor.
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affected by up-regulation of RAS in tumoral cells and further
down-regulation of interferon-inducible genes due to activation
of RAS/MEK signaling pathway that reduces viral response in
tumoral cells (76). On the contrary with this attempt, Garant
et al. demonstrated that reovirus could translocate and
accumulate RAS into Golgi apparatus to increase apoptotic
signaling events required for virus release (56). This
Frontiers in Oncology | www.frontiersin.org 6115
highlighted that the outcomes of OVT are exclusively
associated with the characteristics and type of OVs.

High expression of some viral receptors by cancer cells
permits higher viral uptake in cancer cells than in normal
ones. Some receptors such as CAR (77), laminin (78), CD155
(79), and CD46 (80) are overexpressed in various cancer cells
which result in increased uptake of Ad (81), Sindbis virus (82),
TABLE 2 | The summary of clinical trials for oncolytic viruses.

Phase Virus Tumor Interventions Trial code Country Company

Phase
I

JX-594 Refractory solid tumors Intratumoral injection NCT01169584 USA Jennerex
Biotherapeutics

JX-594 Refractory solid tumors Intravenous infusion NCT00625456 Canada Jennerex
Biotherapeutics

HSV-1, TBI-1401 (HF10) Solid tumor with
superficial lesions

Intratumoral administration NCT02428036 Japan Takara Bio Inc.

Recombinant measles virus Ovarian cancer
Primary peritoneal cavity
cancer

Intraperitoneal administration NCT00408590 USA Mayo Clinic

GM-CSF-Adenovirus CGTG-
102

Malignant solid tumor In combination with low dose cyclophosphamide NCT01598129 Finland Targovax Oy

Adenovirus VCN-01 Solid tumor Intravenous administration with or without
gemcitabine

NCT02045602 Spain VCN
Biosciences,
S.L.

REOLYSIN® KRAS mutant metastatic
colorectal Cancer

Intravenous administration with Irinotecan/
Fluorouracil/Leucovorin and Bevacizumab

NCT01274624 USA Oncolytics
Biotech

Adenovirus VCN-01 Pancreatic cancer Intratumoral injections with intravenous
Gemcitabine and Abraxane®

NCT02045589 Spain VCN
Biosciences,
S.L.

JX-594 Hepatic carcinoma Transdermal injection NCT00629759 Korea Jennerex
Biotherapeutics

Attenuated Vaccinia Virus, GL-
ONC1

Solid organ cancers Intravenous administration NCT00794131 United
Kingdom

Genelux
Corporation

Coxsackievirus Type A21 Melanoma Intratumoural injection NCT00438009 Australia Viralytics
REOLYSIN® Pancreatic

adenocarcinoma
Pembrolizumab (KEYTRUDA®) NCT02620423 USA Oncolytics

Biotech
Vaccinia Virus (GL-ONC1) Head and neck

carcinoma
With concurrent Cisplatin and radiotherapy NCT01584284 USA Genelux

Corporation
Phase
II

TBI-1401(HF10) Melanoma In combination with Ipilimumab NCT03153085 Japan Takara Bio Inc.
HF10 Malignant melanoma With Ipilimumab NCT02272855 USA Takara Bio Inc.
OncoVEX^GM-CSF Melanoma Intratumoral injection NCT00289016 United

Kingdom
–

Edmonston strain of Measles
Virus Expressing NIS

Refractory multiple
myeloma

Systemic Administration with cyclophosphamide NCT02192775 USA University of
Arkansas

Reovirus Serotype 3
REOLYSIN®

Non-small cell lung
cancer

Intravenous administration with paclitaxel and
carboplatin

NCT00861627 USA Oncolytics
Biotech

JX-594 Hepatocellular carcinoma Intratumoral injection NCT00554372 USA Jennerex
Biotherapeutics

CG0070 Non-muscle invasive
bladder carcinoma

– NCT02365818 USA CG Oncology,
Inc.

Wild-type Reovirus
REOLYSIN®

Bone and soft tissue
sarcomas

Intravenous injection NCT00503295 USA Oncolytics
Biotech

Phase
I/II

Vaccinia Virus JX-594 Melanoma Intratumoral injection NCT00429312 USA Jennerex
Biotherapeutics

Parvovirus H-1 Glioblastoma multiforme Intratumoral/Intracerebral injection NCT01301430 Germany Oryx GmbH &
Co. KG

HSV1716 Malignant pleural
mesothelioma

Intrapleural injection NCT01721018 United
Kingdom

Virttu Biologics
Limited

Ad-MAGEA3 Metastatic non-small cell
lung cancer

With pembrolizumab NCT02879760 Canada Turnstone
Biologics, Corp.

REOLYSIN® Recurrent malignant
gliomas

Intralesional administration NCT00528684 USA Oncolytics
Biotech

JX 594 Colorectal carcinoma Multiple intravenous with Irinotecan NCT01394939 USA Jennerex
Biotherapeutics

Vaccinia Virus GL-ONC1 Peritoneal Carcinomatosis Intraperitoneal administration NCT01443260 Germany Genelux GmbH
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PV (83), and MV (84) respectively. Interestingly, some viral
proteins are poisonous for neoplastic cells and can directly kill
cells before viral replication. This was evidenced by the E3 death
protein and E4orf4 proteins encoded by Ads and are toxic for
cells that end in cytolysis at the time of virus exposure (3).
However, deletion in specific viral genes can be another
mechanism for the action of the OVs. These genes are
necessary for the longevity of viruses in normal cells but not
essential for viral activity in cancer cells. Thymidine kinase (TK)
is an indispensable enzyme for nucleic acid metabolism encoded
in infection with wild type vaccinia virus and enables the
replicating of the virus in normal cells. Lister strain virus with
TK gene deletion as a type of VV has shown a beneficial
antitumor potency and cancer-selective replication in vivo
since tumoral cells have a high TK content, which enables the
virus to replicate in cancer cells regardless of the deletion in viral
TK gene (85). In parallel with this study, Parato et al. analyzed
the mechanism of cancer-selectivity by an engineered vaccina
virus with TK deletion and epidermal growth factor (EGFR) and
lac-Z transgenes observing the replication in tumor cells was
related to activation of EGFR/RAS signaling, high cellular TK
level and tumor cell resistance to IFN-I (52). These results
displayed noticeably the beneficial implication of OVs with
inherent and engineered mechanistic properties in cancer
therapy approaches.
Frontiers in Oncology | www.frontiersin.org 7116
Oncolytic viruses may interfere with normal physiological
process of tumor cells to induce the secretion of pro-
inflammatory mediators or even lead to the exposure of
tumor-associated antigens (TAA), pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) following apoptosis or oncolysis. These
responses can also result in a change in tumor status from
immune desert to inflamed status and further recruit a
collection of immune cells such as cytotoxic T lymphocytes,
dendritic cells, natural killer cells and phagocytic cells to induce
immune cell death along with antiviral responses (86, 87).

Remarkably, most viruses continue their infection by
expressing genes responsible for escaping the immune system
and disseminating in host cells (88). Mutation in these genes can
probably improve immune induction and thus increase the anti-
tumoral responses regardless these mutations may reduce virus
replication further (10). Thus, oncolytic viruses are often
engineered to express various genes aided in the overall anti-
tumor efficacy of the virus. Transgenes mostly include ranging
from immune-stimulatory (IL-2, IL-4, IL-12 and GM-CSF) to
pro-apoptotic (tumor necrosis factor alpha, p53 and TRAIL
genes inserted into oncolytic viruses (87, 89–94). Interestingly,
bystander effects of OVs through local release of cytokines can
potentially cause immune response against nearby tumor cells
even without direct antigen expression (95).
FIGURE 1 | The main mechanism involved by oncolytic viruses.
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Furthermore, OVs can destroy tumor vasculature and impede
sufficient intratumoral blood reserve, which is essential for
tumor progression and metastasis (96). Breitbach et al.
demonstrated that intravenous injection of JX-594, an
engineered vaccine virus with TK deletion and overexpression
of human granulocyte-monocyte colony-stimulating factor
(hGM-CSF), led to replication of the virus in endothelial cells
of the nearby tumor and disrupted tumor blood flow, which
ultimately ended in intensive tumor necrosis within 5 days.
Consistently, patients with advanced hepatocellular carcinoma,
hypervascular and VEGFhigh tumor type, treated by JX-594 in
phase II clinical trials confirmed the efficiency of the JX-594 OV
in tumor vasculature disruption without toxicity to normal
blood vessels in which inhibition of angiogenesis can passively
result in tumor regression (97). This evidence may open
promising technologies toward cancer therapy in a way tumor
cells are targeted selectively and bypass the side effects of
conventional approaches.

Recently, conditionally replication-competent adenoviruses
(CRCAs) have been introduced as a successful method for
cancer therapy. Sarkar et al. showed that Ad.PEG-E1A-mda-7,
a cancer terminator virus (CTV), selectively replicated in cancer
cells, inhibits their growth and induces apoptosis (98).

Qian et al. showed that ZD55 expressing melanoma
differentiation-associated gene-7/interleukin-24 (ZD55-IL-24)
affects B-lymphoblastic leukemia/lymphoma through
upregulation of RNA-dependent protein kinase R, enhance
phosphorylation of p38 mitogen-activated protein kinase, and
induce of endoplasmic reticulum (ER) stress (99).

Azab et al. showed that Ad.5/3-CTV potently suppressed in
vivo tumor growth in mouse (100).

Bhoopathi showed that Ad.5/3-CTV induces apoptosis
through apoptosis-inducing factor (AIF) translocation into the
nucleus, independent of the caspase-3/caspase-9 pathway (101).

In an interesting study, Bhoopathi et al. introduced a novel
tripartite CTV “theranostic” adenovirus (TCTV) that targets
virus replication, cytokine production, and imaging capabilities
uniquely in cancer cells. This TCTV permits targeted treatment
of tumors while monitoring tumor regression, with the potential
to simultaneously detect metastasis due to the cancer-selective
activity of reporter gene expression (102).

Greco et al. showed that ultrasound (US) contrast agents
guided MB/Ad.mda-7 complexes to DU-145 cells successfully
and eradicated not only targeted DU-145/Bcl-xL-therapy-
resistant tumors but also nontargeted distant tumors (103).

T-VEC, adenovirus, and vaccinia virus are the most popular
OVs in clinical trials. Approving T-VEC by FDA for the first
time could pave the way for other OVs in the clinic. Oncolytic
viruses have a broad therapeutic method; hence, their clinical
Frontiers in Oncology | www.frontiersin.org 8117
development requires a multidisciplinary view. It is necessary to
understand viral generation and viability in infected cells. To
improve clinical trials, important factors such as viral entrance,
replication, dissemination, oncolysis, and immune activation
should be controlled. These factors can vary between tumor
types and OVs. It is also critical to understand the immune
composition of diverse cancers and the immunological
repercussions of viro-immunotherapy.
CONCLUSION AND FUTURE DIRECTION

Cancer is among the most important causes of mortality
worldwide, and many chemotherapies and radiotherapy
approaches do not have a specific effect on cancer cells and are
sometimes accompanied by side effects. Today, a biological war
has evolved against cancer by genetically modifying natural
pathogens to activate them against neoplastic cells. OVT is a
promising therapeutic option in cancer therapy. The
mechanisms of action of OVs differ entirely from the
mechanism of action of chemotherapy, radiotherapy, surgery,
and embolization. They can result in success in the treatment of
cancers that are resistant to other therapeutic modalities. Better
understanding and acquiring comprehensive information
regarding OV therapy and the biology of cancer is an essential
step in assessing and controlling cancer programs.
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Macrophages play critical roles in tumor progression. In the tumor microenvironment,
macrophages display highly diverse phenotypes and may perform antitumorigenic or
protumorigenic functions in a context-dependent manner. Recent studies have shown that
macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a
targeted manner, thereby exerting significant anticancer effects. In addition, macrophages
engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to
tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor
sites, these engineered macrophages can significantly change the otherwise immune-
suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer
immune responses. In this review, we first introduce the multifaceted activities of
macrophages and the principles of nanotechnology in cancer therapy and then elaborate
on macrophage engineering via nanotechnology or genetic approaches and discuss the
effects, mechanisms, and limitations of such engineered macrophages, with a focus on using
live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new
directions in macrophage engineering are reviewed, such as transporting NP drugs
through macrophage cell membranes or extracellular vesicles, reprogramming tumor-
associated macrophages (TAMs) by nanotechnology, and engineering macrophages with
CARs. Finally, we discuss the possibility of combining engineered macrophages and other
treatments to improve outcomes in cancer therapy.

Keywords: macrophages, bioengineering, nanotechnology, cancer immunotherapy, chimeric antigen receptors
INTRODUCTION

Macrophages are a class of immune cells with highly diverse phenotypes and functions. Some
macrophages residing in tissues are known as tissue-resident macrophages (TREMs), such as
Kupffer cells in the liver and pulmonary macrophages in the lungs. TREMs have a long lifespan,
participate in local immune responses, and are essential components to maintain internal
January 2022 | Volume 11 | Article 7869131121

https://www.frontiersin.org/articles/10.3389/fonc.2021.786913/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.786913/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.786913/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhouxiaorong@ntu.edu.cn
mailto:48644390@qq.com
https://doi.org/10.3389/fonc.2021.786913
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.786913
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.786913&domain=pdf&date_stamp=2022-01-06


Ding et al. Engineering Macrophages for Cancer Therapy
homeostasis (1–3). Peripheral monocytes can also be recruited to
inflammatory tissues, where they differentiate into macrophages
(4) . In a typical inflammatory response caused by
microorganisms, pathogen-derived molecules known as
pathogen-associated molecular patterns (PAMPs), such as
lipopolysaccharide (LPS) in bacterial wall, can be detected by
macrophages through a group of receptors called pattern
recognition receptors (PRRs), which triggers the activation of
macrophages (5–7). Activated macrophages can effectively
eliminate pathogens by their potent phagocytic activity (5–7).
They also recruit immune cells from blood and activate T cell
response through antigen processing and presentation, thus
playing a key role in both innate and acquired immunity (8–10).

Tumors are often accompanied by a certain degree of
inflammatory response (11, 12). Macrophages in tumor tissues
are collectively referred to as tumor-associated macrophages
(TAMs). Tumor cells frequently overexpress some cytokines,
such as macrophage colony-stimulating factor 1 (CSF-1) and
monocyte chemoattractant protein-1, (MCP-1), which recruit a
large number of macrophages into tumor sites (13). In addition,
tumor blood vessels have an irregular structure and abnormal
function; they are dilated, leaky, and inefficient at delivering
oxygen, which causes hypoxia in tumor tissues (14). Hypoxia in
turn induces the expression of vascular endothelial growth factor
(VEGF), a key mediator of tumor angiogenesis, but is also a potent
macrophage-recruiting cytokine (15). Therefore, macrophages are
often the most abundant type of tumor-infiltrating immune cells
(16–18). However, the activity of macrophages in tumors is often
suppressed; they cannot kill tumor cells efficiently through
phagocytosis and overexpress immunosuppressive cytokines,
including IL-10 and TGF-b, thereby establishing an unfavorable
tumor immune microenvironment (16–18). TAMs also promote
tumor cell survival and metastasis and induce drug resistance by
secreting growth factors or by direct cell-cell contact with tumor
cells (19, 20). Therefore, in many cases, TAMs are protumorigenic,
and identifying effective methods to modify TAMs to improve
anticancer therapy is of great interest (16–18).

The application of nanotechnology in cancer therapy holds
great promise (21, 22). Nanoparticles (NPs) are synthetic
structures with a nanoscale dimension and can be generally
divided into two categories: organic NPs (i.e., liposomes, polymer
micelles) and inorganic NPs (i.e., gold, silver, iron oxide) (23).
NPs have been used to deliver a variety of anticancer agents, such
as traditional chemotherapeutic drugs (23), targeted drugs (24),
and genetic materials [i.e., messenger RNA (25), small interfering
RNA (26), and the CRISPR/Cas9 genetic editing system (27)].
Due to their distinctive physicochemical properties, NPs can
enhance the delivery of anticancer agents to tumors by both
passive and active mechanisms (21, 28). As mentioned above,
tumor blood vessels have increased permeability, which allows
NPs to pass through the leaky endothelium; meanwhile, due to
defective lymphatic drainage, the extraverted NPs can
accumulate in the tumor interstitium, leading to an increased
local drug concentration, a process known as the enhanced
permeability and retention (EPR) (29). However, in many
cases, the passive mechanism and EPR are not sufficient (29),
Frontiers in Oncology | www.frontiersin.org 2122
and by active targeting strategies, such as ligand-mediated
systems (30), stimulus-responsive systems (31), and biological
system (32), the efficiency of NP targeted delivery can be
improved. For example, most tumors have an increased rate of
glycolysis, leading to an acidic environment due to the
accumulation of lactic acid. Based on this feature, various pH-
responsive systems have been developed (33, 34), which
effectively dissociate NPs and decrease their size in low-pH
areas (inside the tumors), thereby enhancing their ability to
deeply penetrate into tumors (35). Moreover, the NP surface can
be modified by ligand molecules that can recognize specific
receptors on the tumor cell surface, thus increasing the affinity
between tumor cells and NPs, which is critical for effective
internalization of NPs by tumor cells (36, 37).

Among various active strategies, biological NP delivery
systems are attracting considerable interest (32). NPs can be
loaded in cell membranes (CMs), extracellular vesicles (EVs), or
even live cells for targeted delivery. Regarding live-cell NP
carriers, research mainly focuses on immune cells (38),
especially macrophages, as they are superior in their ability to
migrate toward tumors. Many studies have demonstrated that
NP-loaded macrophages (NPL-Ms) can directionally migrate to
tumors and transport the payload to tumor cells, leading to a
pronounced antitumor effect (39, 40). Moreover, after reaching
tumors, these engineered macrophages can exert additional
effects by stimulating anticancer immune responses (24, 41). In
this review, we first introduce the origin, differentiation, and
function of macrophages as well as the application of
nanotechnology in anticancer therapy. Then, we elaborate on
the activities, mechanisms, and limitations of the engineered
macrophages. Finally, we discuss several new strategies in
macrophage engineering and discuss their potential as novel
anticancer therapeutics.
MACROPHAGES FUNDAMENTALLY
IMPACT THE DEVELOPMENT OF CANCER

Macrophages are key players in inflammation and participate in
the crosstalk between inflammation and cancer development
(Figure 1). In a typical inflammatory response, macrophages
can perform three basic functions: 1) pathogen clearance, i.e.,
eliminating pathogens through phagocytosis or secreting anti-
infective substances (5–7); 2) immune activation, i.e., activating
humoral and cellular immune responses by presenting antigens to
T cells and modifying the immunemicroenvironment by releasing
a variety of inflammatory factors (8–10); and 3) tissue repair, i.e.,
releasing factors in the late stage of inflammation that promote
angiogenesis, coordinating the functions of a variety of interstitial
cells, and mediating the repair of local tissue structure (42, 43).
Macrophages can sense environmental stimuli and differentiate
into functionally polarized subgroups (44–46), which is usually
described as M1 orM2 differentiation, terms that were first used to
describe the two functionally opposite statuses of macrophages
that are induced in vitro (47, 48). Lipopolysaccharide (LPS) and
interferon-gamma (IFN-g) can promote the differentiation of
January 2022 | Volume 11 | Article 786913
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macrophages toward M1 polarization, characterized by high
production of nitric oxide (NO), reactive oxygen species (ROS),
and a series of proinflammatory cytokines, such as interleukin
(IL)-1b and IL-12. M1 macrophages activate T helper type 1
(Th1)-type immune responses and have strong phagocytic and
antigen-presenting activities. Hence, they are considered
proinflammatory and tumor suppressive (49, 50). In contrast,
IL-10, transforming growth factor-beta (TGF-b), and some other
immunosuppressive factors, such as IL-4 and IL-13, can induce
M2 macrophage differentiation. M2 macrophages participate in
the Th2-type immune response, inhibit CD8+ T cell activities, and
promote angiogenesis and tissue repair and therefore are believed
to be anti-inflammatory and tumor-promoting factors (51, 52).
However, recent studies have suggested that the extreme M1/M2
differentiation pattern induced in vitro cannot reflect the complex
situation in vivo. For example, macrophages in the tumor
microenvironment often exhibit some characteristics of both M1
andM2macrophages (44, 53, 54). Although the dichotomy ofM1/
M2 macrophages is an oversimplification, it is still a meaningful
way to describe the functionally poised status of macrophages in
certain situations.

There is a close relationship between cancer and inflammation.
Tumor growth is often accompanied by a certain degree of
inflammation, and the underlying mechanisms are complex (11,
12). For example, chronic viral infection induces constant
inflammation and contributes to the development of some types
of cancer (55, 56). In addition, tumor blood vessels are often
distributed abnormally and have a broken structure, and they
Frontiers in Oncology | www.frontiersin.org 3123
cannot meet the oxygen and nutrition requirements of fast-
growing tumor cells, resulting in hypoxia and nutrition
deficiency within some tumor areas. Consequently, some tumor
cells undergo apoptosis or necrosis and release proinflammatory
substances, such as adenosine triphosphate (ATP) and high
mobility group box 1 (HMGB1), inducing persistent low-grade
inflammation and recruiting various immune cells into tumors
(57, 58). Macrophages in tumor tissues are collectively referred to
as tumor-associated macrophages (TAMs) and are often more
numerous than other infiltrated immune cells (16–18). This in
itself suggests that macrophages may have a tumor-promoting
effect. Numerous studies have demonstrated that tumor cells often
express high levels of chemokines, such as GM-CSF, M-CSF, and
CXCL12, recruiting many monocytes from the circulation into
local tumor sites (15). After entering tumors, monocytes
differentiate into mature macrophages, followed by functional
polarization toward M2-type TAMs, which is dictated by factors
from the immunosuppressive tumor microenvironment. TAMs
secrete factors such as CCL22, CXCL1, and PDGF, which bind to
corresponding receptors on tumor cells, thereby promoting tumor
growth and metastasis, as well as resistance to various cancer
treatments (19, 20, 59–61).

In addition, TAMs contribute to the establishment of a deeper
immunosuppressive tumor microenvironment by secreting
soluble factors and cell-cell contact with other immune cells
(54). For example, CCL20 secreted by TAMs recruits regulatory
T cells that inhibit the response of effector T cells (62). Moreover,
TAMs express low levels of major histocompatibility complex
FIGURE 1 | Development, differentiation, and function of macrophages. Under physiological conditions, macrophages are highly versatile and widely present in
almost all tissues and organs. Some macrophages that reside in tissues are called TREMs. TREMs originate mainly from yolk sac macrophage progenitors and fetal
liver macrophages during embryonic development. After birth, TREMs maintain their number partially through self-renewal and sometimes through the recruitment of
monocyte-derived macrophages. Pluripotent hematopoietic stem cells in bone marrow develop into monocytes through multiple stages, including common myeloid
progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), macrophage and dendritic cell precursors (MDPs), and common monocyte progenitors (cMoPs).
In typical inflammation caused by pathogen infection, monocytes are mobilized from the bone marrow into the blood circulation and subsequently recruited into
inflammatory sites, where they differentiate into M1 macrophages and efficiently phagocytose the pathogen. Inflammation also recruits lymphocytes and initiates
antigen-specific immune responses with the help of macrophages and dendritic cells, ultimately resulting in pathogen clearance. At the late stage of inflammation,
macrophages differentiate toward the M2 type and participate in the tissue repair process, leading to the restoration of internal homeostasis. In contrast, monocytes
and TREMs preferentially differentiate toward M2 polarization after they enter the tumor microenvironment, wherein they promote tumor growth and metastasis,
mediate resistance to cancer treatments and inhibit antitumor immune responses.
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(MHC)-II and costimulatory molecules on the cell surface, which
greatly diminishes their ability to stimulate T cells (63). Although
TAMs maintain the ability to phagocytose tumor cells to some
extent, tumor cells often express high levels of CD47 molecules
that bind to signal regulatory protein a (SIRPa) on the surface of
TAMs, sending the “don’t eat me” signal and inhibiting the
phagocytic activity of TAMs (64). Although many studies have
supported the notion that macrophages have tumor-promoting
effects, some evidence suggests that macrophages play important
antitumorigenic roles in some types of cancers, such as colorectal
cancer and early-stage lung cancer (65, 66). More importantly,
the functions of macrophages are highly plastic, and their
anticancer activities can be reactivated by various means,
including macrophage engineering via nanotechnology and
genetic manipulation, which this review will focus on.
NANOTECHNOLOGY IN
CANCER THERAPY

Recently, the application of nanotechnology in cancer therapy
has attracted increasing attention (21, 22). NPs travel through
the bloodstream to tumor sites, enter the interstitial fluid through
the vascular wall via passive diffusion, and finally are taken up by
tumor cells. However, tumor blood vessels have an abnormal
structure, resulting in an uneven distribution of NPs, which often
accumulate at the edge of blood vessels, resulting in limited
anticancer activity of NPs (29, 67). Active targeting strategies,
mainly the use of ligand-mediated systems, stimulus-response
systems, and cell-mediated systems, are currently under intensive
investigation for their potential to solve the above problem by
targeted delivery of NPs to tumor tissues and enhanced tissue
distribution and penetration.

The first category of active strategies is the use of ligand-
mediated systems. In this strategy, ligands or antibody molecules
that recognize biomarkers on tumor cells are present on the shell
of NPs, thereby enhancing the interaction between NPs and tumor
cells and promoting the transport of NPs to tumor tissues.
Targeting biomarkers can be tumor-specific antigens or
overexpressed oncoproteins, such as prostate-specific membrane
antigen (PSMA) for prostate cancer (68, 69), epidermal growth
factor receptor (EGFR) for lung cancer cells (36, 70), and human
epidermal growth factor receptor 2 (HER2) for gastric cancer or
breast cancer cells (37, 71). However, the outcomes of this strategy
to date are often unsatisfactory in vivo due to various reasons, such
as the high heterogeneity of tumor tissues and the fast clearance of
NPs in circulation (72, 73).

The second category is stimulus-response systems. These
systems use specific stimulus signals to promote the directional
delivery of NPs to tumors and to boost the anticancer activities of
NP-carried drugs (31, 74). The signals can be tumor intrinsic,
such as an increased glutamine level (75), a decreased pH value
(76), and hypoxia (77), or tumor extrinsic, such as a light source
(78), a heat source (79), a magnetic field (80), or ultrasound (81).
Among them, light-responsive systems may be the most well-
studied systems because they can be readily controlled in a
Frontiers in Oncology | www.frontiersin.org 4124
spatiotemporal manner, resulting in directional transport,
improved tumor penetration and distribution, and controlled
release of NP-carried drugs. For more information, please refer
to the relevant reviews (82, 83).

The third method involves carrier cells or cell components. As
mentioned earlier, the development of many cancers is
accompanied by a certain degree of inflammation and immune
cell infiltration. Immune cells can sense tumor-derived
chemokines and actively move to tumor sites (84, 85).
Interestingly, although hypoxia prevents the infiltration of T
cells, it stimulates tumor cells to release a large number of
macrophage-recruiting factors, such as CCL2, CSF-1, and
VEGF, resulting in pronounced enrichment of macrophages in
hypoxic tumor regions (15, 86). A series of studies have
demonstrated that macrophages can be exploited as cell
carriers to actively transport NPs into tumor sites (30, 87), and
the following section will introduce the preparation, function,
mechanisms, and limitations of NPL-Ms in cancer therapy.
ENGINEERING MACROPHAGES FOR NP
DELIVERY IN CANCER THERAPY

NP Loading in Macrophages
There are two main sources of macrophages for NP loading. One
source is primary macrophages, such as bone marrow-derived
macrophages, alveolar macrophages, and peritoneal
macrophages. The second source is cell lines, including the
mouse macrophage cell lines RAW264.7 and J774A.1 and the
human peripheral blood monocyte cell line THP-1 (24, 41, 88–
91). NPL-Ms can carry a variety of NPs, including liposomes (92,
93), magnetic NPs (94, 95), polymeric NPs (96, 97), gold (AU)
NPs (98–101), and others (102, 103). Because macrophages
naturally phagocytose NPs (104, 105), NPL-Ms can be
prepared by a simple coincubation method. Li et al. prepared
RAW264.7 macrophages loaded with paclitaxel (PTX)-
containing NPs. Intravenous injection of NPL-Ms significantly
inhibited the growth of a breast cancer model (39). Ibarra et al.
prepared mouse bone marrow-derived monocytes and THP-1
cells loaded with polymer NPs, and they showed that NP loading
had no significant effect on the viability and function of
macrophages, nor did it affect the differentiation of THP-1
cells into macrophages upon stimulation with phorbol 12-
myristate 13-acetate (PMA). Moreover, these cells had a
stronger NP loading ability after LPS stimulation (96).
Electroporation can also be used to prepare NPL-Ms and
might be a superior approach for loading easily degradable
substances such as nucleic acids or enzyme precursors (106, 107).

NPL-Ms can be exploited for cancer therapy with in situ
strategies. Because monocytes/macrophages efficiently
phagocytose apoptotic bodies, Zheng et al. intravenously
injected light-sensitive gold NPs encapsulated by apoptotic
bodies, which were quickly engulfed by macrophages, thus
generating NPL-Ms in vivo. These NPL-Ms effectively migrated
to tumor sites and inhibited tumor growth and metastasis in a
mouse tumor model (108). Circulating monocytes/macrophages
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efficiently phagocytose damaged red blood cells (RBCs) via the
complement-mediated opsonization effect. Based on that, Feng
et al. designed a cell relay strategy that allowed monocytes in
circulation to preferentially take up NPs. They first prepared NPs
coated with artificially damaged RBCs that were used as primary
carriers to deliver NPs to macrophages, generating NPL-Ms
in vivo, which delivered NPs to tumors in a targeted manner,
leading ultimately to enhanced anticancer activity in a rat tumor
model (109).

In some cases, internalized nanomaterials may negatively affect
macrophage function, or the encapsulated drugs in NPs are
prematurely dissociated, which may reduce the efficacy of drug
delivery or cause systemic toxicity (30).A plausible alternative is the
so-called piggybacking method, i.e., binding NPs on cell surface,
which has been tested with various cell types, including
macrophages (38). Through various techniques that can be
largely classified into two categories, noncovalent and covalent,
NPs can be attached on cell surfaces without being internalized by
the macrophage carrier, and transported to tumor sites (110–116).
Table 1 briefly describes the categories, principles, andmechanisms
of major NP delivery methods with live macrophages, and readers
are directed tomore detailed reviews on this subject (112, 123, 134).
Table 1 also includes the methods of loading NPs in macrophage-
derived cell membranes or extracellular vesicles, which will be
discussed in the following section.

NPL-M Tumor Site Migration
In a study by Li et al., RAW264.7 macrophages loaded with
fluorescent NPs were injected intravenously into normal nude
mice, and these NPL-Ms were quickly distributed into the liver
and intestine 1-2 h after injection; however, they were almost
undetectable after 24 h, indicating fast clearance of the NPL-Ms.
In contrast, in nude mice bearing subcutaneous xenograft
tumors, the NPL-Ms infiltrated into tumor tissues shortly after
injection and resided there for more than 48 h. These findings
indicated that NPL-Ms directly migrated toward tumors and had
Frontiers in Oncology | www.frontiersin.org 5125
a relatively long half-life in the tumor microenvironment (39).
Hypoxia often occurs in tumors and drives the migration of
monocytes/macrophages toward tumor sites. This feature
renders macrophages a unique type of cell carrier to deliver
NPs to hypoxic tumor areas. Choi et al. demonstrated that NPL-
Ms carrying gold NPs could migrate toward hypoxic tumor
spheres in vitro (98). An et al. loaded macrophages with anionic
gold nanorods (AuNRs) for hypoxia-triggered photoacoustic
(PA) imaging and photothermal therapy (PTT). The results
indicated that NPL-Ms directionally migrated to hypoxic
tumor sites and provoked significant antitumor effects (135).

Traditional cancer treatments, such as radiotherapy and
chemotherapy, also affect the migration of macrophages to
tumors. Evans et al. prepared NPL-Ms loaded with hypoxia-
activated prodrug NPs and demonstrated that NPL-Ms
accumulated in the hypoxic regions of mouse breast tumors.
Moreover, the accumulation and anticancer activities of NPL-Ms
were more significant when combined with chemotherapy (136).
Miller et al. found that radiotherapy increased the intratumoral
concentration of NPs in a mouse breast cancer model, which is
related to the radiotherapy-induced increase in TAM infiltration.
They found that a large number of TAMs accumulated around
microvessels after radiotherapy, altered vascular permeability,
and elicited dynamic bursts of NP extravasation. Depleting
macrophages greatly diminished the effect of radiotherapy on
the enrichment of NPs in tumor tissues (122). In vivo PET
imaging can be performed using macrophages loaded with NPs
containing (64)Cu. Based on that, Kim et al. demonstrated that
chemotherapy or radiotherapy significantly increased the
number of TAMs, thereby increasing the intratumoral NP
concentration in mouse tumors (137).

Inducing M1 polarization may enhance the tumor homing
activity of macrophages. Peng et al. found that M1 macrophages
loaded with DOX-NPs effectively crossed the blood brain barrier
(BBB) and exerted a strong inhibitory effect on a mouse glioma
model (118). Li et al. prepared macrophages loaded with magnetic
TABLE 1 | NP loading in macrophage-based drug delivery.

Strategies Categories Method Descriptions and Mechanisms REFs

Cell
Encapsulation

In vitro • Coincubation: cells uptake NPs through phagocytosis or other endocytosis mechanisms.
• Electroporation: electroporation generates small pores on cell membrane for NPs to entry into cells.

(39, 40,
117–119)

In vivo • Functionalized NPs, NPs tethered on damaged red blood cell (RBC) membranes, or NPs cloaked in apoptotic bodies
are engulfed by macrophages to form NP-loaded macrophages in vivo.

(108, 109,
120–122)

Surface
Binding

Covalent
coupling

• Modified NPs are coupled to functional groups (i.e., thiol, amine) on cells through various mechanisms, such as
maleimide-thiol conjugation and disulfide bond formation.

• - Complicated procedure, high binding strength, possibly impaired cell integrity

(114, 123,
124)

Noncovalent
binding

• Nonspecific adsorption: NPs are attached to outer cell membranes via hydrophobic or electrostatic binding.
• Ligation-mediated binding: NPs modified with ligands or antibodies bind corresponding molecules on the cell surface.
• - Simple procedure, low binding strength, high cell integrity

(110, 111,
113, 115,

116)
Membrane
Coating

– The procedure may involve the following steps: (95, 125–
128)• Cell culture: such as tumor cells, RBCs, and immune cells;

• Isolating the cell membrane by hypotonic treatment;
• Coating NPs with the cell membrane by various methods, such as coincubation, extrusion, and sonication.
• - NPs can be camouflaged in homogenous membranes from one cell type or heterogeneous fused membranes from

two different cell types.
EV Loading – • Extracellular vesicles (EVs) include exosomes and microvesicles derived from various cell types.

• - The procedure is similar to that of membrane coating but is usually more sophisticated due to the complicated EV
isolation procedure. EV-loaded NPs may have an increased ability to pass biological barriers due to their smaller size.

(129–133)
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NPs. These NPL-Ms exhibited M1 polarization and had
significantly enhanced tumor homing and anticancer activities in
a mouse breast cancer model. In addition, NPL-Ms improved the
tumor immune microenvironment, inhibited local M2
macrophages, and enhanced the antitumor immune response (138).

NPL-M Drug Release
There are relatively few studies on how NPL-Ms release NPs after
reaching tumor tissues. In the piggybacking method (38),
membrane-binding NPs are delivered to tumors with the help
of macrophages in a targeted manner, and the subsequent release
of the drug depends mainly on the design of the NP itself. In
terms of NPL-Ms, regardless of whether they are formed in vitro
or in situ, the mechanism of drug release and how the process is
controlled remain elusive. Li et al. loaded macrophages with
fluorescence-labeled PTX-NPs and then cocultured the
macrophages with tumor cells in vitro. After 4 h, a fluorescent
signal was detected in tumor cells that gradually increased and
peaked at 12 h, during which time the signal in macrophages
gradually decreased, indicating that the NPs were transferred
from macrophages to tumor cells (39). Cells mainly ingest
foreign substances through endocytosis, and ultimately, the
ingested substances are either degraded or released from cells
[please refer to the detailed reviews (139–141)]. Macrophages
mainly engulf NPs through phagocytosis and pinocytosis. NPs
are not rapidly degraded during intracellular trafficking in
macrophages, so the potential adverse effects of the free drug
are diminished. In addition, macrophages slowly release ingested
NPs, which reduces the consumption of NPs before the
macrophages reach tumors. For example, by comparing
macrophages loaded with free PTX or PTX-NPs, Li et al.
found that 26% of PTX-NPs vs. greater than 50% of free PTX
were released before the macrophages reached the tumors (39).

NPL-Ms can transfer NPs or free drugs to tumor cells through
other means. For example, tumor cells can interact with and
exchange information with other cells through the microtubule
network (142, 143). Guo et al. found that M1 macrophages loaded
with DOX (DOX-M1) enteredmouse tumors and exported DOX to
tumor cells through tunneling nanotubes, leading to pronounced
tumor cell killing (144). In another study, LPS was anchored to the
cell membrane of macrophages loaded with DOX. These
macrophages migrated to mouse tumors and rapidly killed tumor
cells by transferring DOX to tumor cells through a microtubule
network. In addition, cell membrane-anchored LPS induced the
differentiation of local TAMs toM1macrophages and promoted the
antitumor immune response (145).

The process of NP release by macrophages is affected by many
factors, including the physicochemical properties of NPs, the
funct iona l s ta tus of macrophages , and the tumor
microenvironment. For example, Oh et al. reported that gold NPs
with a high-aspect ratio exit macrophages more rapidly but tend to
remain in tumor cells longer than those with a low aspect ratio (146).
Ikehara et al. found that a mild temperature increase promoted the
release of NPs by macrophages (147). In addition, macrophages
showed higher drug release efficiency for polymeric or negatively
charged copolymerNPs than for liposomalNPsor positively charged
copolymer NPs (121, 148, 149). Interestingly, Soma et al. found that
Frontiers in Oncology | www.frontiersin.org 6126
IFN-g stimulation significantly promoted the release of NP-DOX by
macrophages (150). During inflammation, activated macrophages
release a large amount of cytokines and bioactive substances;
therefore, activating macrophages may promote the release of NPs.

Limitations and Challenges
The concept of using macrophages as drug carriers is not new and
has been studied for many years. However, it has not been applied
in clinical practice. Table 2 summarizes some recent preclinical
studies using live macrophages for NP drug delivery. In the future,
in-depth studies are needed to achieve a better understanding of
the complex interaction among NPs, macrophages, and tumor
cells. An ideal cell-mediated NP delivery system would have the
following five characteristics: 1) an abundant source of cells into
which NPs can be loaded efficiently; 2) no significant impairment
of cellular function after NP loading; 3) directional migration
toward tumors; 4) efficient release of NPs at tumor sites; and 5)
effective uptake of the released NPs by tumor cells. Natural
evolution has endowed macrophages with powerful phagocytic,
migratory and secretory functions. With the advantages provided
by nanotechnology, macrophages can be developed as prominent
NP drug carriers. However, there are still many limitations and
challenges. First, the sources of autologous macrophages are
limited. It is currently impossible to obtain a large number of
macrophages through in vitro expansion of autologous monocytes
derived from patients, while the use of allogeneic macrophages
carries a risk of rejection or graft-versus-host reaction. Second,
loading NPs into macrophages or anchoring NPs on the surface of
macrophages has complex effects on cell function, which remain
not fully understood. Third, the local immunosuppressive
microenvironment of tumors is closely related to tumor
progression; however, there is currently much that is unknown
regarding how NPL-Ms regulate the tumor immune
microenvironment as well as T cell immune responses. Finally,
although the pathways of NP internalization by tumor cells has
been extensively studied, our knowledge about the cellular uptake
of NPs with various properties by macrophages remains very
limited (30, 153). How NP loading affects the function of
macrophages in terms of phagocytosis, migration, and immune
stimulation must be comprehensively evaluated in future studies.
Moreover, although previous studies have shed some light on the
possible pathways governing the intracellular trafficking of NPs in
macrophages and their release at tumor sites (153, 154), which is
depicted in Figure 2, precise mechanisms remain largely elusive
and await more detailed investigations.
EMERGING CONCEPTS AND NOVEL
STRATEGIES IN MACROPHAGE
ENGINEERING

In recent years, new strategies have emerged in the field of
macrophage engineering. For example, macrophage membranes
and macrophage extracellular vesicles (MEVs) have been
successfully utilized for NP loading; these approaches not only
retain some characteristics of macrophages but also greatly expand
January 2022 | Volume 11 | Article 786913
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the compatibility and loading capacity of NPs (Figure 3). Another
research hotspot involves targeting macrophages with NPs, thereby
enhancing the phagocytic function of macrophages and promoting
the differentiation of macrophages toward the M1 type. In addition,
the success of CAR-T technology has inspired studies of
macrophage engineering with CARs for cancer immunotherapy.

Macrophage Membrane-Coated NPs
(MMC-NPs) and Macrophage Extracellular
Vesicle-Coated NPs (MEVC-NPs)
In preparing MMC-NPs, the structure of the macrophage cell
membrane is disrupted by physical or ultrasonic methods, and
Frontiers in Oncology | www.frontiersin.org 7127
then, the cellular contents are removed. After coincubation with
NPs, the cell membrane spontaneously closes to form MMC-NPs
(155). MMC-NPs have several important advantages. First, the use
of the cell membrane eliminates the potential adverse effects of NP
loading on the function of macrophages. In addition, it does not
cause immune rejection if the autologous cell membrane is used
and thus significantly prolongs the half-life of NPs in circulation.
Moreover, many macrophage membrane proteins are retained on
the surface of MMC-NPs, which may facilitate tumor homing
(156). Xuan et al. prepared a macrophage membrane-coated gold
nanoshell (AuNS). These MMC-NPs accumulated in tumor sites
through the interaction between macrophage membrane
TABLE 2 | Macrophage-mediated NP drug delivery in some cancer studies.

NPs Agents Macrophage Information NP Modification Mechanisms and Features Cancer Models REFs

zSOC
NPs;
NLCs

PTX; DOX • Raw 264.7 cells – • Targeted NP drug delivery Breast cancer, SUB (39)

rGO NPs DOX • Raw 264.7 cells PEG-BPEI (PB)
coating

• Enhanced NP loading by PB
• NIR-triggered DOX release
• Combined PTT and CT effects

Prostate cancer,
SUB

(102)

NGs; PPy
NPs

DOX • Raw 264.7 cells Hyaluronic acid (HA)
coating

• Enhanced NP loading by HA
• NIR-triggered DOX release
• Combined PTT and CT effects

Breast cancer, SUB (119)

AuNSs – • Raw 264.7 cells Surface anionic
charging

• Enhanced NP loading
• PA imaging and PPT effects

Breast cancer, SUB (40)

SNPs DOX • Raw 264.7 cells
• M1 polarization upon NP loading

– • Effective NP uptake, tumor site homing, and
slow drug release

• Drug release in exosomes

Glioblastoma, SUB (151)

LNPs Sorafenib • Raw 264.7 cells
• M1 polarization by LPS treatment

– • Enhanced NP tumor site homing
• Enhanced targeted drug therapy
• Enhanced immune responses

liver cancer, SUB (24)

AuNSs – • Raw 264.7 cells
• LPS-treated or -untreated(M1 or
M0 type macrophages)

– • Enhanced NP loading, tumor site homing, and
PTT effect by M1 macrophage polarization

Head and neck
cancer, SUB,
Xenograft

(117)

PLGA NPs DOX • Bone marrow-derived
macrophage
• M1 polarization by LPS and IFN-g
treatment

– • Effective NP uptake, tumor site homing,
and slow drug release

• Crossing the BBB to brain tumors

Glioblastoma,
orthotopic

(118)

ZnPc NPs Oxaliplatin
prodrug

• Bone marrow-derived
macrophages
• M1 polarization upon NP loading

– • Drug release in low-pH sites
• Combined PDT and CT effects
• Enhanced immune responses

Breast cancer, SUB;
Lung metastasis

(41)

Liposomes DOX • Primary peritoneal macrophages – • Targeted NP drug delivery Lung cancer, SUB,
Xenograft

(93)

PSMA
NPs

Mertansine • Bone marrow-derived Ly6chigh

inflammatory monocytes
Legumain-sensitive
peptide coating

• On-demand drug release by macrophages at l
ung metastasis

Lung metastasis of
breast cancer

(88)

CPNs – • Bone marrow-derived monocytes
• Human monocytes THP-1 cells

– • Crossing the BBB to brain tumors
• PDT effects

Glioblastoma,
orthotopic

(96)

Liposomes – • Human peripheral blood
monocytes
• Human peritoneal macrophages

Oligomannose coating • Effective NP loading
• Accumulation of the NPL-Ms in peritoneal
micrometastatic sites

Gastric cancer
metastatic model

(152)

SWNTs – • Circulating Ly-6Chigh monocytes
• Cell encapsulation in vivo

RGD peptide coating • NP ligand functionalization
• NPL-Ms generation in vivo in a selective
macrophage subtype

Glioblastoma, SUB (120)

PLGA NPs Vincristine • Circulating monocytes
• Cell encapsulation in vivo

Binding on damaged
RBC membranes

• Enhanced NP drug delivery by a cell relay
strategy

Breast cancer, SUB
in Rat

(109)

AuNRs – • Raw 264.7 cells (in vitro
encapsulation)
• Circulating Ly-6Chigh monocytes
(in vivo encapsulation)

CpG coating;
Cloaking in apoptotic
bodies

• Immune stimulation by CpG
• PTT effects

Breast cancer, SUB (108)
January 2022 |
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AuNRs, gold nanorods; AuNS, gold nanoshells; BBB, blood–brain barrier; CPNs, conjugated polymer nanoparticles; CT, chemotherapy effects; DOX, doxorubicin; LNPs, lipid
nanoparticles; NGs, nanogels; NLCs, nanostructured lipid carriers; OMLs, oligomannose-coated liposomes; PA, photoacoustic; PDT, photodynamic therapy; PLGA, polylactic-co-glycolic
acid; PSMA, poly (styrene-co-maleic anhydride); PTT, photothermal therapy; PTX, paclitaxel; rGO, reduced graphene oxide; SNPs, silica-based nanoparticles; SOC, N-Succinyl-N’-octyl
chitosan; SUB, subcutaneous tumor model; SWNTs, single-walled carbon nanotubes; ZnPc, photosensitizer zinc phthalocyanine.
86913

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ding et al. Engineering Macrophages for Cancer Therapy
molecules and adhesionmolecules on the vascular endothelial cells
of tumor tissue, leading to significant antitumor effects in a mouse
breast cancer model. Compared with NPs coated with erythrocyte
membranes, MMC-NPs were more effectively enriched in tumor
tissues. In addition, due to the membrane fusion effects, the uptake
ofMMC-NPs by tumor cells was significantly improved compared
to that of free NPs (127). Zhang et al. prepared MMC-NPs loaded
with pH-sensitive PTX-NPs. Upon reaching the tumor tissue,
these MMC-NPs released PTX-NPs in response to the weakly
acidic environment in the tumor stroma; after internalization by
the tumor cells, the PTX was quickly dissociated from the PTX-
NPs in the highly acidic environment of lysosomes inside the
tumor cells and exerted significant anticancer effects in a mouse
breast cancer model (125).
Frontiers in Oncology | www.frontiersin.org 8128
Extracellular vesicles (EVs) are cell-derived and membrane-
coating particles carrying cell-specific DNA, RNA, and proteins.
They are usually divided into three categories based on their size
and origin: exosomes (30-150 nm), microvesicles (MVs, 50 nm-1
µm), and apoptotic bodies (50 nm-5 µm) (157). EVs can be
efficiently internalized by other cells, mediating the exchange of
biological substances between cells and playing important roles
in tumor progression (158–160). The potential application of
macrophage-derived exosomes and MVs in cancer therapy has
attracted great attention recently because of their excellent
biocompatibility and high NP-loading capacities (161, 162).
Kim et al. found that free PTX coated with M1 macrophage-
derived exosomes (PTX-M1-exos) had strong anticancer effects
in a mouse model of pulmonary tumor metastases (133). They
FIGURE 2 | The principles of macrophage-based NP drug delivery. Live macrophage carriers are mainly from peripheral monocytes, bone marrow-derived
macrophages, or macrophage cell lines. M1-type macrophage differentiation can be induced, and NPs can be functionalized. After administration, the NPL-Ms
migrate to tumors, enhancing drug delivery and anticancer immune responses. The efficiency of this strategy depends on controlled drug release by NPL-Ms and
effective drug uptake by neighboring tumor cells. Through exocytosis, NPs recycled from early phagosomes or matured phagolysosomes or NPs that escape from
phagosomes can be released through the exocytosis mechanism. Tumor cells uptake NPs through various endocytosis pathways, such as the clathrin-mediated,
caveolae-mediated, and clathrin/caveolae-independent pathways. NPs functionalized by surface ligands can be recognized by corresponding receptors on tumor
cells and effectively internalized by endocytosis. Consequently, the internalized NPs are sorted into early endosomes, late endosomes, and eventually endolysosomes
where NPs can be triggered to release free drugs. Free drugs released from NPs in the intracellular space can enter into tumor cells by passive diffusion.
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demonstrated that PTX-M1-exos were more effectively
internalized by tumor cells than NPs-PTX, as indicated by the
nearly complete colocalization of PTX-M1-exos with cancer cells
4 h after intranasal administration (133).

The communication between tumor cells and macrophages
via exosomes is believed to play an important role in tumor
development (163, 164). Interestingly, tumor cells efficiently take
up EVs derived from macrophages (129, 131, 133, 165), although
the underlying mechanism is not very clear. It was reported that
the acidic tumor microenvironment may promote membrane
fusion between exosomes and tumor cells (166). In addition,
macrophage-derived exosomes may carry certain cell membrane
proteins capable of specifically binding to tumor cells, thus
promoting membrane fusion and exosome internalization (167,
168). Moreover, after entering tumor cells, exosomes may alter
intracellular transport pathways to prevent their rapid release
from tumor cells (169), thus allowing more drugs to enter the
cytoplasm and nucleus and exert a more significant therapeutic
effect (132).

In addition to improving drug delivery, macrophage-derived
EVs also regulate antitumor immune responses. For example,
Choo et al. found that exosome-mimetic nanovesicles (M1NVs)
derived from M1 macrophages were enriched in tumor tissue
after intravenous infusion, which induced the differentiation of
TAMs from M2 to M1 macrophages and thus enhanced the
effect of anti-PD-1 immunotherapy in tumor-bearing mice (170).
Wei et al. found that macrophage-derived microparticles could
be preferentially taken up by TAMs in tumor tissues, thereby
exerting immunomodulatory effects in tumor-bearing mice
(171). Cheng et al. reported that after subcutaneous injection,
M1 macrophage-derived exosomes could be taken up by both
macrophages and dendritic cells in lymph nodes, where they
secreted large amounts of Th1-type cytokines and enhanced
Frontiers in Oncology | www.frontiersin.org 9129
antitumor immune responses in a melanoma mouse model
(172). In summary, using macrophage membranes or
macrophage-derived EVs as carriers can improve drug loading
and partially solve the shortage of cell sources. These novel drug
carriers can not only target tumor sites but also activate
antitumor immune responses and therefore hold great promise
in cancer therapy (173–175).

Targeting TAMs via Nanotechnology for
Improved Anticancer Activity
As described earlier, reprogramming TAMs from the M2 to M1
differentiation status may be an effective cancer treatment
strategy (176, 177). To this end, nanotechnology is very useful.
A variety of NP designs were reported to be capable of targeting
TAMs specifically and inducing M1 differentiation, leading to
potent anticancer activities in preclinical models. For example,
given that mannose specifically binds to the CD206 receptor on
the surface of M2 macrophages, Zhao et al. prepared mannose-
encapsulated NPs containing polyinosinic-polycytidylic acid
(poly IC) that are capable of inducing M1 differentiation. NPs
are preferentially taken up by M2 macrophages and induce M1
polarization, thereby leading to pronounced antitumor effects
(178). Qiang et al. prepared M2-targeting NPs (M2NPs) by
coating the NPs with an M2 macrophage-binding peptide and
loaded them with small interfering RNA (siRNA) targeting
colony-stimulating factor-1 receptor (CSF-1R), which plays a
critical role in M2 differentiation. M2NPs effectively targeted
M2-type TAMs and induced M1 differentiation, thereby
inhibiting the growth of tumors in tumor-bearing mice (179).

In addition, multifunctional NPs can be generated for better
treatment outcomes. Zhang et al. constructed NPs containing
mesoporous Prussian blue (MPB) with a surface modified by
low-molecular-weight hyaluronic acid. After tail vein injection,
FIGURE 3 | Application of nanotechnology in the engineering of macrophages. (Top) After infusion, NPL-Ms actively migrate to tumor tissue and release NPs locally,
resulting in enhanced antitumor effects. (Middle) Macrophage membrane-coated NPs (MMC-NPs) have a prolonged half-life in circulation and a strong affinity at the
tumor site for vascular endothelial cells that facilitate their tumor site homing and accumulation. (Bottom) Macrophage-derived extracellular vesicle-coated NPs
(MEVC-NPs) can infiltrate tumor sites, where they are taken up by tumor cells, inducing significant cell death.
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the NPs selectively accumulated in M2 TAMs in tumors, leading
to reprogramming fromM2 to M1 macrophages. In addition, the
NPs generated oxygen through the catalytic decomposition of
endogenous hydrogen peroxide (H2O2) and thus corrected
hypoxia in the tumor microenvironment, acting as in situ O2
generators (180). Han et al . loaded NPs with CpG
oligodeoxynucleotides (CpG-ODN), baicalin, which has
immunomodulatory functions, and the human melanoma
antigen Hgp10025–33. The NPs were further coated with an
RBC membrane carrying galactose that facilitated the targeted
delivery of the NPs to TAM by binding galactose-type lectin
(Mgl) on the TAM cell surface (181). The results demonstrated
that these multifunctional NPs promoted M1 differentiation and
enhanced the antigen-specific immune response, thereby
exerting a significant antitumor effect in melanoma tumor-
bearing mice (181).

CD47 on the tumor cell surface binds to SIRPa on the surface
of macrophages, which activates the Src homology region 2
(SH2) domain phosphatases SHP1 and SHP2 and thereby
transmits a “don’t eat me” signal to macrophages. Ramesh
et al. prepared NPs containing two types of inhibitors: a CSF1-
R inhibitor capable of promoting M1 reprogramming and an
SHP2 inhibitor that blocks CD47-SIRPa signal transduction and
thus enhances phagocytosis. In addition, they coated NPs with
anti-CD206 to improve the efficacy of M2-type TAM targeting.
The results demonstrated that these multifunctional NPs exerted
a significant antitumor effect, mainly through modifying TAMs
in breast cancer and melanoma mouse models (182). In addition,
the CRISPR/Cas9 gene editing system can also be delivered to
macrophages using NPs. Lee et al. used gold NPs to carry the
Cas9 protein and sgRNAs targeting the PTEN gene. These NPs
Frontiers in Oncology | www.frontiersin.org 10130
were mainly phagocytosed by macrophages residing in the liver
and spleen after tail vein injection, leading to a gene-editing
efficiency of greater than 8% in macrophages (183).
Nanotechnology can also be used to transport mRNA or
siRNA to a specific cell population in a targeted manner (184,
185). For example, NPs carrying PTEN mRNA were effectively
delivered to PTENnull cancer cells, and restoration of PTEN
expression induced immunogenic death of cancer cells and thus
induced potent antitumor immune responses in melanoma
tumor-bearing mice (186). In summary, by combining
nanotechnology and a variety of approaches, TAMs can be
modified in a targeted manner, and their anticancer activities
can be promoted.

Equipping Macrophages With CARs via
Genetic Manipulation
The concept of CARs was first tested in T cells, and the
application of CAR-T cells in the treatment of blood cancers
was successful (187, 188). As shown in Figure 4, T cell CARs are
mainly composed of an extracellular domain of a single-chain
variable fragment (Scfv) that specifically recognizes target
molecules, a transmembrane (TM) domain, and an
intracellular domain responsible for signal transduction. This
design confers T cell tumor cell-specific cytotoxicity in an MHC-
independent manner. However, to date, CAR-T therapy has have
a limited effect in solid tumors (187, 189), and researchers have
begun to ask whether CAR-modified macrophages (CAR-Ms)
could be useful in cancer therapy. It is known that the “eat me”
signal molecules on tumor cells, such as lipid phosphatidylserine
(PS), are recognized by corresponding scavenger receptors on
macrophages, resulting in the activation of phagocytosis (190,
FIGURE 4 | Structure and function of CAR-T cells and CAR-Ms. (Left) The structure of first-generation T cell CARs mainly includes an ScFV extracellular domain that
recognizes tumor antigens, a TM domain, and an intracellular domain that contains ITAM and is responsible for signal transduction (usually derived from the
intracellular domain of CD3z). The structure of second-generation T cell CARs includes an additional intracellular signal transduction domain from costimulatory
molecules (CMs), such as CD28 and 4-1BB. The structure of third-generation T cell CARs includes two or more CM domains, which further enhance T cell
activation. The structure of fourth-generation CARs includes a nuclear factor of activated T cells (NFAT)-responsive gene expression cassette, which drives the
expression of an immunoregulatory gene, such as IL-12. Once CAR-T cells are activated, NFAT translocates to the nucleus and activates the expression of IL-12,
thereby promoting anticancer activity. (Right) Currently, the structure of macrophage CARs is based on that of first-generation T cell CARs. The intracellular domain
of CD3z, FcRg or Megf10 is used for signal transduction. In addition, CAR-Ms are preferentially fixed at the M1 differentiation status, with enhanced phagocytic and
antigen presenting activities.
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191). In addition, Fcg receptors (FcgRs) on macrophages mediate
antibody-dependent cellular phagocytosis (ADCP) by binding to
the Fc segment of the IgG antibody (190, 191). The basic
structures of these abovementioned phagocytic receptors all
include an extracellular domain, a TM domain, and an
intracellular domain, similar to those of CAR molecules.
Ligation of the extracellular domains of these receptors induces
phosphorylation of tyrosine in the immunoreceptor tyrosine-
based activation motif (ITAM) of the intracellular domain of
these receptors, leading to cytoskeletal and membrane
remodeling events that promote the ingestion of tumor cells by
macrophages (192).

A series of recent studies have demonstrated that the
antitumor activity of macrophages can be enhanced by
modifying phagocytic receptors with CAR technology (193–
196). Morrissey et al. prepared mouse CAR-Ms by lentiviral
transduction. The extracellular domain of the CAR recognized
CD19, and the TM domain was derived from CD8 (194). They
found that the intracellular domains from either Megf10 or FcRg
molecules were able to mediate the specific phagocytosis of
CD19-expressing Raji B cells by the CAR-Ms. Interestingly,
replacement of the intracellular domain with that of CD3z
(which contained three ITAMs and had high homology with
FcRg) achieved a similar effect (194). Klichinsky et al. prepared
CAR-Ms with human peripheral blood monocytes. The CAR
molecules had an extracellular domain that recognized human
epidermal growth factor receptor 2 (HER2) and an intracellular
signal domain from CD3z (193). The CAR-Ms were able to
specifically recognize and phagocytose HER2+ tumor cells, and a
single-dose infusion of the CAR-Ms significantly inhibited the
growth of HER2+ xenograft tumors. Importantly, after infusion,
the CAR-Ms accumulated in liver and tumor tissues and
survived in vivo for at least 2 months (193). In the preparation
of CAR-Ms, delivering CAR genes into macrophages is
technically challenging. The authors demonstrated that a
replication-incompetent chimeric adenoviral vector (Ad5f435)
not only efficiently transferred the CAR genes into macrophages
but also induced M1 differentiation. Such CAR-Ms activated
CD4+ Th1 cells and, more importantly, CD8+ cytotoxic T cells
through cross-presentation, thereby promoting a strong
antitumor effect (193). Zhang et al. prepared CAR-Ms to target
the extracellular matrix rather than tumor cells, with the aim of
enhancing immune infiltration into solid tumors (195). The TM
and intracellular domains of the CAR molecules were all derived
from CD147, which drives the expression of matrix
metalloproteinases (MMPs) in macrophages. The CAR-Ms
were detected in tumor tissues 24 h after tail vein injection,
and their numbers peaked at 3 d, during which time the collagen
content in the tumor stroma was significantly decreased due to
the increased activity of MMPs. Further analysis revealed that the
anticancer effect of the CAR-Ms in tumor-bearing mice was
associated with increased CD3+ T cell infiltration (195).

CAR-M technology holds great potential for the treatment of
solid tumors. However, at present, this field is still in its infancy,
and there are many challenges. For example, most solid tumors
lack suitable tumor-specific antigens for CAR design.
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In addition, the impact of different TM domains and
intracellular domains on the function of CAR-Ms remains
unclear. In the clinical application of CAR-T cells, cytokine
release syndrome (CRS) and immune effector cell-associated
neurotoxicity syndrome (ICANS) are the two most serious side
effects, both of which may be related to excessive inflammatory
cytokines derived from CAR-T cells (197). A recent study
utilized the intracellular domain of the MERTK kinase to
develop CAR-Ms. These CAR-Ms effectively eliminated SARS-
CoV-2 virus in vitro by enhanced phagocytosis without
upregulation of proinflammatory cytokine expression (198).
Such results indicate that it is possible to optimize the design
of CAR-Ms to reduce their potential side effects. In the context of
cancer therapy, inducing M1 differentiation may be preferred, as
it can improve the phagocytic activity of CAR-Ms; however, such
manipulation may have unpredictable side effects and needs to
be carefully evaluated using preclinical models.
CONCLUSION AND PERSPECTIVE

Macrophages are extremely versatile and possess a variety of
antitumor properties. They can kill tumor cells directly by
phagocytosis or indirectly by activating other immune cells.
However, in the tumor microenvironment, their antitumor
activities are often inhibited (192). With the rapid development
of nanotechnology and transgenic technology, engineering
macrophages has become an important research direction in
cancer therapy (199). Numerous studies have demonstrated that
engineered macrophages can actively migrate to tumor tissues
and kill tumor cells effectively. However, they can also migrate to
normal tissues and organs after infusion. Considering the
relatively long lifespan of these cells, their migration,
distribution, and potential toxicity to normal tissues needs to
be closely monitored in vivo, and novel techniques such as
macrophage imaging might be useful in this regard (193, 200).
It is of great significance to investigate how to better control the
migration of engineered macrophages to reduce their
accumulation in normal tissues. Studies have shown that
chemotherapy, radiotherapy, and immunotherapy (such as
STING agonist treatment) can all stimulate inflammation to a
certain extent, thereby transforming cold tumors into hot tumors
(201–203). Such transformations could improve the directional
migration of engineered macrophages to tumor sites, thus
enhancing their therapeutic effects while reducing potential off-
target or on-target toxicities.

Notably, when NPs or macrophage membrane-coated NPs
are used to deliver genetic materials into macrophages, including
DNA, mRNA, noncoding RNA, and the CRISPR system, the
efficacy of genetic modification seems to be greatly improved (25,
204–206). However, at present, our understanding of the
interactions between these gene carriers and macrophages, in
terms of phagocytosis, transport, and release, is very limited, and
further investigation is needed. In addition, after engineered
macrophages enter tumors, their activities may be antagonized
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by local TAMs that are usually immunosuppressive; therefore,
conducting in-depth studies is important to determine whether
the pre-existing TAMs will significantly impact the function of
engineered macrophages, or vice versa. In this regard, methods
for local TAM depletion can be used in sequential combination
with engineered macrophages (207, 208), i.e., disruption of the
immunosuppressive microenvironment dominated by depleting
TAMs followed by activation of antitumor immune responses by
supplying engineered macrophages.

Reprogramming macrophages from M2 to M1 polarization
can be achieved through various means, such as by using IL-12,
CD40 agonists, or CSF-1R inhibitors (209–211). In addition,
“don’t eat me” molecules, such as CD47 and MHC-I, on tumor
cells inhibit the phagocytic function of macrophages by binding
SIRPa or LILRB1, respectively, on macrophages (64, 212).
Therefore, interference with these “don’t eat me” molecules
may further enhance phagocytosis by engineered macrophages.
These methods could further promote the anticancer activities of
engineered macrophages. Finally, if needed, methods of TAM
depletion in vivo can serve as a safeguard to remove engineered
macrophages that have serious side effects.
Frontiers in Oncology | www.frontiersin.org 12132
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Grabbing the Bull by Both Horns:
Bovine Ultralong CDR-H3 Paratopes
Enable Engineering of ‘Almost
Natural’ Common Light Chain
Bispecific Antibodies Suitable For
Effector Cell Redirection
Daniel Klewinghaus1†, Lukas Pekar1†, Paul Arras1†, Simon Krah1, Bernhard Valldorf2,
Harald Kolmar3 and Stefan Zielonka1*
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A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70
amino acids. Interestingly, this type of immunoglobulin usually pairs with the single
germline VL gene, V30 that is typically very conserved in sequence. In this work, we
have engineered ultralong CDR-H3 common light chain bispecific antibodies targeting
Epidermal Growth Factor Receptor (EGFR) on tumor cells as well as Natural Cytotoxicity
Receptor NKp30 on Natural Killer (NK) cells. Antigen-specific common light chain
antibodies were isolated by yeast surface display by means of pairing CDR-H3
diversities following immunization with a single V30 light chain. After selection, EGFR-
targeting paratopes as well as NKp30-specific binders were combined into common light
chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED)
technology for heavy chain heterodimerization. Biochemical characterization of resulting
bispecifics revealed highly specific binding to the respective antigens as well as
simultaneous binding to both targets. Most importantly, engineered cattle-derived
bispecific common light chain molecules elicited potent NK cell redirection and
consequently tumor cell lysis of EGFR-overexpressing cells as well as robust release of
proinflammatory cytokine interferon-g. Taken together, this data is giving clear evidence
that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for
biotechnological applications.

Keywords: bovine ultralong CDR-H3 antibodies, bispecific antibodies, effector cell redirection, NK cell engagers,
common light chain, antibody engineering, yeast surface display
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INTRODUCTION

The human body is continuously exposed to potentially life-
threatening opponents such as bacteria, viruses or cancerous cells.
In order to assert oneself, antibodies (Abs) play a fundamental role
in host defense by recognizing foreign antigen in an adaptive
fashion. The high specificity for a given antigen in conjunction
with humoral and cellular effector functions mediated by the Fc-
part of IgG isotypes renders this class of Abs as very promising
molecules for therapy (1, 2). This is exemplified by the fact that as of
2021 around 100 therapeutic antibody derivatives have been
granted marketing approval by the FDA (3). However, one
obvious obstacle of monoclonal antibodies for therapeutic
purposes results from their monospecific nature since diseases are
typically multifaceted e.g. with respect to their origin or disease
mediators (4, 5). Consequently, tremendous efforts were made
within the last decades to engineer antibodies for bi- and
multispecificity (6), culminating in the approval of four bispecific
entities until now (7, 8) - including Catumaxomab that has been
withdrawn in 2017 (9). Moreover, a steady incline in investigational
bispecifics that are entering clinical development on a yearly basis
can be observed (9, 10). Most of the molecules that are currently
investigated in clinical trials are so called asymmetric formats (9).
This type of bispecific antibody (bsAb) resembles the IgG-like
architecture of conventional monoclonal antibodies as closely as
possible. Here, each Fab arm targets a different antigen in a
monovalent manner. Consequently, two different heavy chains as
well as two separate light chains need to be expressed and evenmore
importantly, assembled precisely to represent a functional bsAb. To
facilitate heavy chain heterodimerization as well as specific heavy
and light chain pairing, several different technologies have been
developed (11). In this respect, the issue of accurate heavy and light
chain assembly can be obviated by engineering common light chain
bsAbs i.e. bispecifics where both Fabs share the identical light chain
(12–14). Besides, an unprecedented multitude of different bsAb
formats has been engineered (15), including bi- and multispecifics
derived from camelids (16–18) or sharks (19–21).

A fraction of about 10% of the immunoglobulin repertoire
found in cattle produces antibodies with exceptionally long
CDR-H3 regions of up to 70 amino acids (22). Typically, the
vast majority of clones harboring ultralong paratopes adopts a
characteristic structure that can be divided into a stalk region
composed of an ascending as well as a descending b-strand and a
disulfide-rich globular architecture referred to as knob (Figure 1)
(23). Usually, one distinct V gene segment, IGHV1-7 is utilized
for the construction of bovine ultralong CDR-H3 antibodies as
well as one particular germline D segment, IGHD8-2, encoding
for the stalk-knob structure. IGHD8-2 is diversified in a process
involving cytidine deaminase with a strong bias towards the
introduction of cysteine residues causing extraordinary
structural diversity through the formation of different disulfide
bond patterns predominantly in the knob region (22, 24).
Consequently, it is the knob region that plays a pivotal role for
antigen binding, whereas the stalk as well as the VH scaffold
seem to have a stabilizing function (22, 23). Intriguingly,
ultralong CDR-H3 heavy chains typically pair with a single VL
gene, VL30 that generally is relatively sequence conserved (25).
Frontiers in Immunology | www.frontiersin.org 2139
In this respect, several of the published crystal structures of
ultralong CDR-H3 antibodies share a CDR-identical light chain
(24, 26, 27). Hence, these molecules comprise an almost natural
source of common light chain antibodies.

In this work, we have engineered EGFR and NKp30 targeting
cattle-derived bispecific common light chain antibodies that can
be utilized to efficiently redirect NK cells in order to kill EGFR-
overexpressing tumor cells. EGFR is a receptor tyrosine kinase
overexpressed in an array of different tumors (28–30). We have
recently described the generation of a platform process for
isolating ultralong CDR-H3 antibodies targeting EGFR by
combining cattle immunization with yeast surface display (31).
To this end, bovine ultralong CDR-H3 regions were PCR-
amplified and grafted onto a fixed IGHV1-7 scaffold.
Subsequently, this CDR-H3-only diversity was combined with a
single VL30 light chain enabling the facile isolation of EGFR-
specific antibodies. In this work, we have isolatedmultiple NKp30-
specific ultralong CDR-H3 antibodies by exploiting the same
platform process involving the identical VL30 light chain.
NKp30 is an activating NK cell receptor that can be addressed
in a bispecific fashion to efficiently trigger NK-cell mediated target
cell lysis (32–34). Following isolation of NKp30-specific paratopes
by yeast surface display (35, 36), NKp30-addressing clones as well
as EGFR targeting variants both sharing the identical light chain
were combined into common light chain bispecifics by employing
the strand-exchange engineered domain (SEED) technology for
heavy chain heterodimerization (Figure 1) (37). The vast majority
of resulting common light chain bsAbs displayed favorable
biophysical properties as well as simultaneous binding to both
antigens in the nanomolar range. Most importantly, generated
IgG-like bsAbs facilitated significant NK cell-mediated lysis of
EGFR-overexpressing A431 tumor cells as well as a robust release
of proinflammatory cytokine interferon-g (IFN-g). Taken
together, our data demonstrates that cattle-derived bispecific
common light chain ultralong CDR-H3 antibodies can be
readily engineered that seem to be versatile for biomedical
applications such as effector cell redirection.
MATERIAL AND METHODS

Immunization
As previously described, three cattle (Bos taurus) with
approximately one year of age were immunized using
recombinant human NKp30 extracellular domain comprising a
C-terminal hexahistidine tag (ECD; produced in-house) in a
cocktail approach with recombinant C-terminal his-tagged
EGFR ECD (produced in-house) at preclinics GmbH, Germany
(31). Animal care and invasive procedures were in accordance
with local animal welfare protection laws and regulation
(Niedersächsisches Landesamt für Verbraucherschutz und
Lebensmittelsicherheit (LAVES), Dezernat 33 – Tierschutzdienst.
Number: 33.19-42502-05-17A210). Six immunizations were
performed in total over the period of 84 days (d0, d28, d42, d56,
d70, d84). To this end, 200 μg of NKp30 (in a volume of 2 ml) were
mixed with 2 ml Fama adjuvant (GERBU Biotechnik) and injected
subcutaneously at multiple sites. After immunization (day 88) 250ml
January 2022 | Volume 12 | Article 801368
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of blood per specimen was collected followed by RNA extraction
and cDNA synthesis.

Yeast Surface Display Library Generation
The library construction process involving strains, reagents as well
as plasmids has been described in detail elsewhere (31). In brief, S.
cerevisiae strain EBY100 MATa (URA3-52 trp1 leu2D1 his3D200
pep4::HIS3 prb1D1.6R can1 GAL (pIU211:URA3)) was utilized for
the generation of the heavy chain diversity, whereas BJ5464 cells
(MATaURA3-52 trp1 leu2D1his3D200 pep4::HIS3 prb1D1.6R can1
GAL) harboring the light chain plasmid (pLC) encoding for a
specific VLl30 (Supplementary Figure S1) was exploited. Primer
sets for specific ultralong CDR-H3 amplification are given in
Supplementary Table 1. For PCR-based amplification 1 μl of
cDNA pooled from all three specimen was used in a final volume
of 50 μl as well as Q5 High-Fidelity 2x Master Mix (New England
Biolabs; NEB). Conditions were as followed: 98°C for 3 min, 35
cycles of 30 s at 98°C and 50 s at 72°C, followed by 2 min at 72°C.
PCR products were purified by Wizard® SV Gel and PCR Clean-
Frontiers in Immunology | www.frontiersin.org 3140
up System (Promega). Gap repair cloning was employed for
library construction according to Benatuil and co-workers (38).
Therefore, 12 μg CDR-H3 PCR product as well as 3.5 μg NotI and
EcoRI (both New England Biolabs) digested heavy chain
destination plasmid (pHC) were used per electroporation
reaction. The resulting library size was roughly estimated by
dilution plating on SD-Trp agar plates. In order to accomplish
Fab display, EBY100 cells comprising the heavy chain diversity as
well as BJ5464 cells harboring the single light chain were combined
by yeast mating (39, 40).

Selection of NKp30-Targeting Ultralong
CDR-H3 Fabs
Library sorting was facilitated by growing diploid library cells
overnight in SD-Trp-Leu medium at 30°C and 120 rpm agitation.
Subsequently, library cells were transferred to SG-Trp-Leu medium
supplemented with 10% (w/v) polyethylene glycol 8000 at an OD600

of 1.0 and incubated for 2 days at 20°C and 120 rpm. Afterwards,
cells were washed twice with PBS (Sigma Aldrich) and incubated
FIGURE 1 | Overview about the generation of cattle-derived ultralong CDR-H3 common light chain bispecific antibodies. After immunization of cattle and library
generation antigen-specific paratopes are enriched against both targets (shown in red color and yellow color). To this end, ultralong CDR-H3 regions encoding for
stalk/knob architectures are specifically amplified and grafted onto a fixed chimeric Fab scaffold utilizing a single light chain. After selection, common light chain
paratopes are reformatted into an IgG-like bispecific format exploiting a heavy chain heterodimerization technique (e.g. the SEED technology). Schemes generated
using biorender (www.biorender.com). Model constructed with PYMOL v0.99 based on pdb entries 5dk3 and 5ilt. Individual paratopes based on stalk/knob
structures are colored in red and yellow, respectively. Fixed VH region based on IGHV1-7 shown in dark green, utilized VL30 exploited as common light chain shown
in light green. Constant regions of the heavy chains colored in dark grey, CLl shown in light grey. Use of heavy chain heterodimerization technology resulting in two
distinct heavy chains indicated by the use of dark blue and light blue segments.
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withC-terminally hexahistidine tagged recombinant humanNKp30
ECD (produced in-house or Abcam) at a concentration of 1 μM for
30 min on ice. Cells were washed thrice, followed by simultaneous
detection of functional Fab display and antigen binding. To this end,
cells were labeled with light chain specific goat F(ab’)2 anti-human
lambda R-phycoerythrin (R-PE) (SouthernBiotech, diluted 1:20) as
well as Penta-His Alexa Fluor 647 Conjugate antibody (Qiagen,
diluted 1:20) for sorting round one or SureLight® APC Anti-6X His
tag® antibody (abcam, diluted 1:20) for sorting round two.
Eventually, library cells were washed thrice with PBS and selected
by fluorescence-activated cell sorting (FACS) on a BD
FACSAria™ Fusion cell sorter (BD Biosciences). In the first
round of selection, a total number of approx. 5 x 108 cells were
sorted to ensure adequate coverage of the library. For the second
round of library sorting about 5 x 107 cells were exploited.

SEEDbody Expression and Purification
Monovalent SEED antibody derivatives of NKp30-targeting cattle-
derived ultralong CDR-H3 paratopes as well as bispecific common
light chain SEEDbodies were designed in-house, synthesized and
subcloned into pTT5 vector backbone by GeneArt (Thermo Fisher
Scientific). Therefore, NKp30-specific VH regions were placed onto
the AG chain of the SEEDbody encoding for human constant
regions. EGFR-targeting VH domains were grafted onto the GA
chain, also encoding for human constant regions. In both heavy
chains we implemented amino acid mutations L234A, L235A,
P329G to abolish Fc-mediated immune effector functions (41).
The bovine VLl30 region was fused to human CLl. For
monovalent (one-armed) SEEDbody expression of NKp30-
addressing cattle derived entities, respective AG chain plasmids
were co-transfected with the light chain plasmid as well as a
paratope-less GA chain plasmid (i.e. the GA chain starting from
the hinge region) in a 2:1:1 (AG:GA:LC) ratio. For bsAb expression,
AG chain plasmids encoding for NKp30 paratopes were combined
with GA chain plasmids encoding for EGFR-specific cattle-derived
common light chain paratopes as well as with the light chain
plasmid in a 2:1:1 (AG:GA:LC) ratio. In general, 25 ml Expi293™

cells were transfected with the respective expression vector mixtures
according to the manufacturer’s recommendations and protocols
(Thermo Fisher Scientific). Supernatants were collected after five
days and purified using MabSelect chromatography resin (GE
healthcare). Subsequently, buffer was exchanged to PBS pH 6.8
via Pur-A-Lyzer™ Maxi 3500 Dialysis Kit (Sigma Aldrich/Merck
KGaA) for 24 h at 4°C. Optionally, in case of low yields, a
concentration step was executed using Amicon Ultra-4
Centrifugal Filters (MW cutoff 10 kDa, EMD Millipore). Protein
concentrations were determined on the QIAexpert system (Qiagen).
Analytical size exclusion chromatography was exploited to
determine aggregation propensities using a TSKgel SuperSW3000
column (4.6 × 300 mm, Tosoh Bioscience LLC) in an Agilent HPLC
system with a flow rate of 0.35 ml/min.

Biolayer Interferometry
All BLI measurements were performed on the Octet RED96
instrument (ForteBio, Pall Life Science) at 25°C and 1000 rpm,
agitation. To assess binding as well as for kinetic measurements,
cattle derived bsAbs were loaded onto anti-human Fc (AHC)
Frontiers in Immunology | www.frontiersin.org 4141
sensors at a concentration of 5 μg/ml (in PBS) for 3 min followed
by 60 s of sensor rinsing using kinetics buffer (KB; PBS + 0.1% (v/v)
Tween-20 + 1% (w/v) BSA). Subsequently, association to the
respective antigen was measured at varying concentrations (100
nM, 50 nM, 25 nM and 12.5 nM for EGFR and depending on the
bsAb at 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM and 3.125 nM
for NKp30) for 300 s followed by dissociation in KB for 300 s. For
analyzing simultaneous binding on the protein level, bsAbs were
loaded onto AHC sensors at a concentration of 5 μg/ml (in PBS)
for 3 min followed by 60 s of sensor rinsing in KB. Afterwards, a
first association step was performed using 100 nM NKp30
(Abcam) for 200 s followed by a second association in EGFR
at 100 nM for 200 s. To perform competition assays with B7-H6,
bsAbs were loaded onto AHC sensors at a concentration of 5 μg/
ml (in PBS) for 3 min followed by 60 s of sensor rinsing in KB. A
first association was performed using NKp30 at 100 nM for 100 s
followed either by 100 s in KB or 100 s in 1000 nM B7-H6 ECD.
Data was fitted (1:1 binding model) and analyzed using ForteBio
data analysis software 8.0 as well as Savitzky-Golay filtering.

Flow Cytometry
Cellular binding was assessed on a Sartorius iQue3 flow Q1
cytometer and the IntelliCyt ForeCyt software was used for
analysis. For each experiment, 800-1800 cells per well were
measured. To this end, 105 cells/well were seeded and incubated
for 1 h on ice with bsAbs at 100 nM in PBS supplemented with 1%
(w/v) BSA after two initial washing steps with PBS+1 % (w/v) BSA.
Following antibody incubation, two additional washing steps with
PBS+1% (w/v) BSA were performed with subsequent Alexa Fluor®

488 AffiniPure Fab Fragment Goat Anti-Human IgG (Fc specific)
(Jackson ImmunoResearch) detection antibody staining (200 nM)
at 4°C for another 30 min. After two washing steps with PBS+1%
(w/v) BSA, 20 mg/ml propidium iodide (Invitrogen) was used to
label dead cells in a total volume of 100 ml/well. Controls were
included, e.g. anti-HEL IgG, cells without antibody incubation as
well as cells labeled with the detection reagent only. For the
detection of simultaneous binding, A431 cells were seeded and
labeled equivalently with bsAbs. Following bsAb incubation at a
concentration of 100 nM and two washing steps, his tagged NKp30
(ECD, Acro Biosystems) was added at 200 nM for 30min. After two
additional washing steps, cells were incubated with 400 nM of
detection antibody (Penta His Alexa Fluor® 488 Conjugate
(Qiagen)) for 30 min and 20 mg/ml propidium iodide
(Invitrogen). Controls were included, e.g. anti-HEL IgG, cells
without antibody incubation, cells labeled with the detection
reagent only as well as cells treated with a bispecific and detection
antibody, but not with NKp30.

Killing Assay
The killing assay has been described in detail elsewhere (18). In
brief, PBMCs were isolated from blood of healthy donors by
density gradient centrifugation. NK cells were enriched using the
EasySep™ Human NK Cell Isolation Kit (Stemcel l
Technologies). After overnight incubation in complete medium
using low dose recombinant human IL-2 (100 U/ml, R&D
systems), cells were adjusted to 0.625 x 106 vc/ml. EGFR
positive A431 cells or EGFR negative ExpiCHO™ cells were
January 2022 | Volume 12 | Article 801368
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stained with CellTracker™ Deep Red Dye (ThermoFisher).
Target cells were seeded into 384-well clear bottom microtiter
plates (Greiner Bio-One) at 2500 cells/well in 20 μl volume and
incubated for 3 h. Afterwards, NK cells were added at different
E:T ratios (i.e. 1:1, 5:1, 10:1 and 20:1). BsAbs were added at
concentrations as indicated. An EGFR targeting Fc immune
effector silenced antibody derivative was utilized as negative
control. SYTOX™ Green Dead Cell Stain (Invitrogen, 0.03 μM)
was dispensed to the assay followed by plate incubation and
on-line measurement for 24 h in the Incucyte® system. Lysis was
normalized to maximum lysis triggered by therapeutic antibody
cetuximab or to target cells cultivated with 30 μM staurosporine
(Merck Millipore). Overlay signals allowed for analysis of dead
target cells only.

Cytokine Release Assay
The EasySep™ Human NK Cell Isolation Kit (Stemcell
Technologies) was employed to isolate NK cells derived from
PBMCs of healthy human donors. Cell were incubated overnight
in complete medium supplemented with 100 U/ml recombinant
human interleukin-2 (R&D Systems). Subsequently, 2.500 A431
cells were seeded in 384 well plates. After 3 h of incubation, NK
cells were added at an E:T ration of 5:1 followed by the addition of
cattle-derived bsAbs at a final concentration of 50 nM. An EGFR
targeting Fc immune effector silenced antibody derivative was
utilized as negative control. After 24 h incubation supernatants
were collected and analyzed utilizing the human IFN-g HTRF kit
(Cisbio) by following the manufacturer’s instructions. Plates were
measured with PHERAstar FSX (BMG Labtech) and data were
analyzed byMARS software (v.3.32, BMG) enabling a 4-parameter
logistic (4PL 1/y²) model fitting of the standard curve.
RESULTS

Isolation of Chimeric NKp30-Targeting
Ultralong CDR-H3 Fab Fragments
We have previously described the generation of a platform process
for the isolation of ultralong CDR-H3 antibodies by combining
cattle immunization and yeast surface display (31). The same
strategy involving the same library was applied in this study for
the isolation of NKp30-specific antibodies. In brief, as already
described earlier (31) we specifically amplified ultralong CDR-H3
regions from cDNA obtained from the peripheral blood
mononuclear cell (PBMC) repertoire of cattle that were
immunized with recombinant human NKp30 ECD. Subsequently,
a heavy chain library was constructed by grafting the amplified
CDR-H3 diversity onto a fixed bovine IGHV1-7 scaffold fused to
human domain CH1 and AGA2P by gap repair cloning into S.
cerevisiae strain EBY100. The resulting library with approximately 5
x 107 unique clones was then combined by yeast mating with
BJ5464 cells harboring a single light chain plasmid encoding for a
bovine V30 paratope fused to a human CLl region (39, 40).
Afterwards, the resulting diploid yeast cell Fab library was
screened by fluorescence activated cell sorting (FACS) to isolate
ultralong CDR-H3 common light chain paratopes specific to
Frontiers in Immunology | www.frontiersin.org 5142
NKp30. To this end, a two-dimensional labeling strategy was
applied to simultaneously select for full-length Fab display in
addition to NKp30 binding (Figure 2A). Using an antigen
concentration of 1 μM for selection, we were able to enrich for a
NKp30-targeting population within two rounds of FACS.
Sequencing of 192 clones of the sorting output revealed the
isolation of 17 unique CDR-H3 paratopes on the protein level
with a length ranging from 56 to 66 residues and an even number of
four to eight Cys residues within that region (Figure 2B). Since the
isolated paratopes have to be functional in a strictly monovalent
fashion when reformatted into common light chain bsAbs, we
initially produced all 17 cattle-derived Abs in a one-armed SEED
format (Supplementary Figure 2). For this, we exploited the SEED
technology which relies on beta-strand exchanges of IgG and IgA
CH3 constant domains, preferably resulting in heavy chain
heterodimerization (37). The bovine x human chimeric ultralong
CDR-H3 Fab fragments were genetically fused to the AG chain of
the SEED molecule, while for generating monovalent versions the
GA Fc chain was expressed without paratope. For all the molecules
in this study we introduced amino acid exchanges L234A, L235A,
P329G into both heavy chains (41) to abolish Fc-mediated immune
effector functions. After expression and protein A purification we
analyzed binding to recombinant human NKp30 ECD in a biolayer
interferometry (BLI) experiment using an antigen concentration of
100 nM (data not shown). This revealed a total number of 13
NKp30-specific monovalent bovine x human ultralong CDR-H3
antibody derivatives (unfunctional: 63E04, 63C05, 63F02
and 63H12).

Generation, Biophysical, and Biochemical
Characterization of Bispecific Bovine x
Human Chimeric Ultralong CDR-H3
Common Light Chain Antibodies Targeting
NKp30 and EGFR
All 13 remaining NKp30-specific ultralong CDR-H3 paratopes were
subsequently combined with two EGFR-targeting ultralong CDR-
H3 antibodies (60F06 and 60H05) we have previously generated
(Supplementary Figure 3). Notably, both EGFR specific entities
represent unique clonotypes, based on sequence similarity of CDR-
H3, allowing for a more thorough characterization in terms of
biophysical, biochemical as well as functional properties of
generated ultralong common light chain bispecifics. For bsAb
production, all 13 NKp30 targeting paratopes were expressed on
the SEED AG chain, while EGFR-specific clones were genetically
fused to the GA chain of the SEED. In addition to both Fc-effector
silenced heavy chains, the same chimeric light chain based on V30
exploited for antibody discovery was utilized for common light
chain bsAb expression (Figure 1 and Supplementary Figure 1).
Following production and single step purification by protein A, all
26 bispecifics were scrutinized in terms of expression yields as well
as target monomer species by analytical size exclusion
chromatography (SEC), as shown in Table 1. Except for two
molecules, expression yields post protein A purification were in
the double digit milligram per liter scale, which can be considered as
acceptable for transient protein production, especially given the high
complexity of this kind of bsAb. Of note, tranfections were
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performed in a 2:1:1 ratio (i.e. AG plasmid: GA plasmid: light chain
plasmid). By modifying plasmid ratios for transfection, expression
yields might be further optimized. Interestingly, there was a clear
trend for higher yields for all bispecific molecules based on EGFR-
targeting paratope 60H05 in direct comparison to 60F06. This is
highlighting the impact of individual paratopes on protein
production. Aggregation properties were determined by analytical
SEC and unveiled more than 90% target peak for 24 out of 26
common light chain bispecifics (Table 1 and Supplementary
Figures 4, 5). Only 63D06x60H05 with 88.8% target peak and
63H02x60H05 with 88.9% main peak were slightly below this
threshold, indicating rather favorable biophysical properties of the
herein engineered cattle-derived bsAbs.

Subsequently, we determined binding kinetics to both antigens,
EGFR and NKp30, as exemplarily shown for bsAb 63D02x60F06
and 63H02x60F06 in Figures 3A, B (Table 1, Figure 3 and
Supplementary Figures 6, 7). In accordance with affinity
measurements conducted previously (31), all bsAbs incorporating
EGFR-directed paratope 60H05 specifically bound to recombinant
human EGFR ECD in the lower double digit nanomolar range,
whereas bsAbs harboring EGFR-specific ultralong CDR-H3
common light chain paratope 60F06 displayed affinities for EGFR
in the single digit to lower double digit nanomolar range. Affinities
Frontiers in Immunology | www.frontiersin.org 6143
for NKp30 ranged from picomolar to double digit nanomolar
binding demonstrating a wide range of affinities of isolated
NKp30-binding ultralong CDR-H3 common light chain
paratopes. Only minor to moderate differences in kinetics were
observed for identical NKp30 binding sites when reformatted with
the two different EGFR-addressing paratopes. This is giving some
evidence that main binding characteristics remain largely unaffected
when individual common light chain ultralong CDR-H3 paratopes
are incorporated into different bsAbs. Moreover, all cattle-derived
chimeric bsAbs were capable of simultaneously binding to both,
EGFR as well as NKp30 recombinant human ECDs (Figure 3C and
Supplementary Figures 6, 7).

Bispecific Bovine x Human Chimeric
Ultralong CDR-H3 Common Light Chain
Antibodies Targeting NKp30 and EGFR
Elicit Significant NK-Cell Mediated Lysis
of EGFR-Overexpressing Tumor Cells as
Well as Robust Proinflammatory
Cytokine Release
We also set out to scrutinize whether generated cattle-derived
chimeric ultralong common light chain bsAbs could trigger
A

B

FIGURE 2 | Yeast surface display based selection of NKp30 targeting chimeric bovine x human Fab fragments by yeast surface display as well as sequence
analysis after enrichment. (A) Within two sorting rounds a NKp30-binding population was enriched. A two-dimensional sorting strategy was applied to label for
functional Fab assembly as well as for NKp30 binding. To this end, library cells were incubated with recombinant human his-tagged NKp30 at a concentration of 1
µM followed by staining using secondary detection reagents directed against the his-tag as well as against the constant region of the human lambda chain. (B) CDR-
H3 alignment of sequence unique ultralong CDR-H3 paratopes obtained after library sorting. Sequence of IGHJ2-4 is also shown. Amino acids given in 1-letter code
and in different colors. Alignment generated with Geneious Prime® v2021.1.1.
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efficient NK cell redirection, resulting in killing of EGFR-
overexpressing tumor cells. To this end, we ranked all 26
engineered common light chain bispecifics in a killing assay
exploiting EGFR-positive cell line A431 as well as peripheral
blood mononuclear cell (PBMC)-isolated NK cells of three
healthy donors (Figure 4A). All molecules were assessed for their
killing capacities at a concentration of 50 nM. This revealed that
Frontiers in Immunology | www.frontiersin.org 7144
besides one NKp30-targeting paratope that was unfunctional in
combination with both EGFR-directed antigen binding sites
(similar to an EGFR-targeting Fc-silenced negative control), 12
out of 13 NKp30-directed binders triggered tumor cell lysis in
conjunction with both EGFR-paratopes to some extent (Figure 4A).
Amongst those, seven NKp30-directed paratopes (63B08, 63B12,
63D02, 63D05, 63E11, 63F07 and 63H02) were robust in eliciting
A B C

FIGURE 3 | Biochemical characterization of chimeric ultralong CDR-H3 common light chain bispecific antibodies via Biolayer interferometry. Kinetic measurements
against recombinant human EGFR extracellular protein (A) or recombinant human NKp30 ECD (B). Bispecific entities 63D02x60F06 (top) or 63H02x60F06 (bottom)
were loaded onto sensor tips. After sensor rinsing, antigen binding was conducted at different concentrations (100 nM, 50 nM, 25 nM and 12.5 nM for EGFR and 50
nM (25 nM for 63H02), 12.5 nM, 6.25 nM and 3.125 nM for NKp30) for 300 s, followed by a dissociation step in kinetics buffer for 300 s. (C) Simultaneous binding
of 63D02x60F06 (top) or 63H02x60F06 (bottom) bispecifics against NKp30 ECD and EGFR ECD. Bispecifics were loaded to the sensor tips. After sensor rinsing
two consecutive association steps were performed at 100 nM (Nkp30) and 100 nM (EGFR) for 200 s each.
TABLE 1 | Biophysical and biochemical characterization of cattle-derived ultralong CDR-H3 common light chain bispecific antibodies.

Bispecific molecule Yield [mg/L] SEC [%] KD EGFR [M] kon EGFR [1/Ms] koff EGFR [1/s] KD NKp30 [M] kon NKp30 [1/Ms] koff NKp30 [1/s]

63A10x60F06 14,6 97,9 7,4E-09 9,0E+04 6,6E-04 2,0E-08 6,0E+05 1,2E-02
63B08x60F06 11,3 96,3 2,0E-08 6,9E+04 1,4E-03 3,4E-09 1,3E+06 4,3E-03
63B12x60F06 14,5 98,6 1,5E-08 7,1E+04 1,1E-03 2,0E-09 1,4E+06 2,7E-03
63C01x60F06 14,9 96,9 1,4E-08 7,3E+04 1,0E-03 8,5E-08 8,3E+05 7,0E-02
63D02x60F06 14,7 98,5 1,4E-08 6,0E+04 8,4E-04 4,7E-09 1,5E+06 7,1E-03
63D05x60F06 19,2 96,8 6,5E-09 7,9E+04 5,1E-04 9,5E-10 1,9E+06 1,9E-03
63D06x60F06 7,9 94,4 1,0E-08 8,3E+04 8,3E-03 1,1E-08 3,6E+05 4,1E-03
63D10x60F06 9,2 97,8 1,7E-08 7,0E+04 1,2E-03 8,9E-08 4,8E+05 4,2E-02
63E11x60F06 46,1 97,3 1,3E-08 7,9E+04 1,0E-03 1,4E-09 1,9E+05 2,7E-04
63E12x60F06 26,4 100 1,0E-08 7,0E+04 7,3E-04 9,6E-08 6,7E+05 6,5E-02
63F07x60F06 40,0 99,6 9,0E-09 7,1E+04 6,3E-04 8,2E-10 1,3E+06 1,1E-03
63F12x60F06 29,0 99,2 1,0E-08 7,8E+04 7,9E-04 2,3E-08 8,0E+05 1,9E-02
63H02x60F06 10,1 94,5 1,1E-08 8,4E+04 9,5E-04 1,2E-09 1,2E+06 1,4E-03
63A10x60H05 27,0 93,8 2,0E-08 9,1E+04 1,9E-03 1,4E-08 3,0E+05 4,1E-03
63B08x60H05 16,2 93,7 2,3E-08 1,4E+05 3,2E-03 5,4E-09 1,1E+06 6,0E-03
63B12x60H05 16,4 94,4 2,2E-08 7,8E+04 1,7E-03 2,4E-09 1,2E+06 2,8E-03
63C01x60H05 34,4 93,8 1,9E-08 1,0E+05 2,0E-03 6,3E-08 8,2E+05 5,2E-02
63D02x60H05 15,3 95,8 1,9E-08 9,0E+04 1,7E-03 1,6E-09 1,6E+06 2,5E-03
63D05x60H05 30,1 93,8 2,1E-08 9,2E+04 1,9E-03 7,8E-10 1,5E+06 1,2E-03
63D06x60H05 15,1 88,8 1,8E-08 9,6E+04 1,7E-03 1,7E-08 2,7E+05 4,6E-03
63D10x60H05 37,7 92,0 1,9E-08 9,2E+04 1,8E-03 4,4E-08 5,5E+05 2,5E-02
63E11x60H05 63,9 91,9 2,0E-08 1,1E+05 2,1E-03 3,1E-09 2,3E+05 6,9E-04
63E12x60H05 47,2 96,2 1,5E-08 9,7E+04 1,4E-03 6,9E-08 9,0E+05 6,2E-02
63F07x60H05 61,6 99,5 2,2E-08 1,2E+05 2,6E-03 1,3E-09 1,3E+06 1,6E-03
63F12x60H05 44,4 98,0 1,1E-08 1,0E+05 1,1E-03 6,1E-08 4,9E+05 3,0E-02
63H02x60H05 19,1 88,9 2,8E-08 6,7E+04 1,9E-03 2,5E-09 1,1E+06 2,7E-03
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killing of A431 cells. B7-H6, the cell bound ligand of NKp30, is
upregulated on tumor cells and absent on most normal cells (42). In
this respect, B7-H6 acts as ‘danger signal’ providing a positive input
for NK cell activation via the NKp30 axis. To characterize epitope
coverage more thoroughly, we investigated whether those seven
NKp30 targeting cattle derived binders address a similar region as
the natural ligand on NKp30 (Supplementary Figure 8). Within
this set of bispecifics, five NKp30 paratopes competed with B7-H6
for binding to NKp30, while two NKp30 directed antigen binding
sites did not show competition (63F07 and 63H02). Interestingly,
when reformatted as bispecific together with EGFR-specific binder
60F06 killing capacities were more pronounced than for 60H05
SEEDbodies, clearly indicating dependencies of cytotoxic synapse
formation on the tumor targeting antigen binding site of the
bispecific molecule.
Frontiers in Immunology | www.frontiersin.org 8145
To get a more profound understanding on NK cell
redirection, we focused on the seven NKp30-targeting cattle-
derived paratopes that mediated robust killing in initial assays
reformatted as bispecific common light chain SEED with 60F06.
As expected, all seven cattle-derived common light chain bsAbs
showed specific binding to EGFR-overexpressing tumor cell line
A431 with similar mean fluorescence intensities (Figure 4B, left).
Additionally, we set out to assess simultaneous binding on the
cellular level. On PBMC-derived NK cells, NKp30 is only
expressed at very low levels with approximately 1000 molecules
per cell (34). Due to this, binding to NKp30 is hardly detectable
via flow cytometry (33). To this end, we exploited an indirect
binding assay to detect simultaneous binding. At first, EGFR-
positive A431 cells were coated with cattle-derived ultralong
CDR-H3 common light chain bsAbs. Subsequently, his-tagged
A

B

FIGURE 4 | Killing capacities of 26 generated cattle derived common light chain bispecifics (A) and cellular binding (B, left) as well as simultaneous binding to A431
and NKp30 ECD (B, right). Fluorescence-microscopy based killing assay using EGFR-positive A431 target cells and PBMC-purified NK effector cells at an E:T ratio
of 5:1 (A) as well as cattle derived bsAbs at a concentration of 50 nM. A monospecific EGFR targeting Fc effector silenced negative control was included (black).
Individual bsAbs based on EGFR targeting paratope 60F06 shown in green and entities based on EGFR-specific binder 60H05 given in red. Data was normalized to
allow comparison of the independent experiments. Graphs show normalized means ± SEM of n = 3 different healthy donors. (B, left) Cellular binding of selected
60F06 based cattle-derived ultralong CDR-H3 common light chain bsAbs to EGFR expressing A431 cells at 100 nM. B7-H6 competing molecules shown in green,
molecules targeting another epitope on NKp30 given in blue. An anti-HEL IgG control was included (grey). Cellular binding properties were detected via a fluorophore
conjugated anti-human Fc antibody (B, right) Simultaneous binding properties of generated bispecifics. A431 cells were incubated with engineered common light
chain bispecifics at 100 nM (green: B7-H6 competitors, blue: B7-H6 non competitors) followed by incubation with his-tagged NKp30 ECD at 200 nM. Simultaneous
binding was detected via a fluorescence-labeled anti-his antibody.
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NKp30 ECD was added and simultaneous binding was monitored
via application of a his-tag specific fluorophore-coupled detection
antibody. This resulted in specific interactions of NKp30 with
A431 cells for all seven bispecific molecules (Figure 4B, right).
Hence, all bispecifics bound simultaneously to cell surface
expressed EGFR and the soluble form of trigger receptor NKp30.

Afterwards, those molecules were assessed more meticulously in
killing assays using PBMC-isolated NK cells of eight healthy donors
in a dose-response curve ranging from 0.005 pM to 500 nM
(Figure 5A and Table 2). All seven common light chain bsAbs
triggered significant lysis of EGFR-overexpressing A431 cells in a
dose-dependent manner with potencies (EC50killing) in the
picomolar range. In this regard, potencies ranged from 219 pM
for 63B08x60F06 to 807 pM for 63H02x60F06 and also efficacies
were similar among this selected set of cattle-derived ultralong
CDR-H3 bispecifics. In this regard, potencies ranged from 219 pM
for 63B08x60F06 to 807 pM for 63H02x60F06 and also efficacies
were similar among this selected set of cattle-derived ultralong
CDR-H3 bispecifics (Figure 5B). Additionally, for none of those
molecules we observed significant NK cell mediated killing of
EGFR-negative CHO cells (Supplementary Figure 9).
Frontiers in Immunology | www.frontiersin.org 9146
Furthermore, cytotoxic capacities of engineered ultralong CDR-
H3 common light chain bsAbs were scrutinized at varying effector
cell (i.e. NK cell) to target cell ratios (Figure 5C). In line with their
natural ability to spontaneously lyse tumor cells (43, 44), basal
killing activities, i.e. killing without bsAb redirection of NK cells
were significantly amplified by increasing E:T ratios. For all assessed
constructs, NK cells efficiently triggered lysis of EGFR-
overexpressing cells even at low ratios. Efficacies in the presence
of bsAbs were substantially higher compared to NK cell mediated
tumor cell lysis alone throughout all different settings. In this
respect, nearly half-maximal lysis was already observed at a 1:1 E:
T ratio under saturating conditions. At a 5:1 E:T ratio maximal
overall lysis was almost achieved and higher ratios only minorly
affected efficacies. Most importantly, the different generated
bispecifics did not behave appreciably different under these
variable conditions. Next, we analyzed redirection capabilities of
the different bsAbs on the individual donor level to get a glimpse on
donor to donor variation (Figure 5D). At an E:T ratio of 5:1, all
seven distinct cattle-derived ultralong CDR-H3 bispecifics behaved
quite similar with only subtle differences in eliciting lysis of EGFR-
overexpressing tumor cells by PBMC-isolated NK cells from
A B

D E

C

FIGURE 5 | Characterization of selected cattle-derived ultralong CDR-H3 common light chain bsAbs in terms of killing capacities and cytokine release. Fluorescence-
microscopy based killing assay using EGFR-positive A431 target cells and PBMC-purified NK effector cells at an E:T ratio of 5:1. Analysis of dose-dependent (A) and
maximum (B) target cell killing. B7H6 competitors shown in green, B7-H6 non competitors given in blue. Data was normalized to allow comparison of the independent
experiments. Graphs show normalized means ± SEM of n = 8 different healthy donors. (C) Maximum killing capacities at different effector to target (E:T) ratios. Cattle
derived common light chain bsAbs were applied at a concentration of 50 nM. Grey: basal killing activities of NK cells i.e. without addition of bsabs. Data was normalized
to allow comparison of the independent experiments. Graphs show normalized means ± SEM of n = 3-4 different healthy donors. (D) Donor specific lysis
capacities at an E:T ratio of 1:1 and 5:1. BsAbs were added at 50 nM (NKCE). Unstim: Basal killing of NK cells in the absence of bsAbs. Data was normalized to
allow comparison of the independent experiments. Graphs show normalized means ± SEM of n = 4 different healthy donors. (E) NK cell-mediated IFN-g using
cytokine HTRF kits for quantification. Purified NK cells were co-cultured with A431 cells for 24 h at an E:T ratio of 5:1 prior to analysis. Graphs show box and
whisker plots as superimposition with dot plots of 7 individual experiments. *** p≤0.001, ** p≤0.01. B7-H6 competing molecules shown in green, molecules
targeting another epitope on NKp30 given in blue.
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individual healthy donors. Moreover, variations in donor to donor
responses were barely neglectable. Intriguingly, when lowering the
E:T ratio to 1:1, differences were quite more profound. While again
the different bsAbs behaved overall rather similar, NK cells from
individual donors triggered considerably different maximum killing
levels under saturating conditions of applied antibodies. In this
respect, efficacies varied between approximately 20% lysis to more
than 50% killing. Essentially, all seven generated bispecifics were
able to efficiently trigger lysis of A431 cells by redirecting NK cells
from all individual donors at low E:T ratios.

Finally, we also looked at the targeted release of IFN-g as an in
vitro indicator of a potential targeted inflammation of tumors. To
this end, A431 cells were incubated with NK cells either in the
presence of cattle-derived common light chain bsAbs or in the
presence of an EGFR-targeting Fc-silenced control molecule
(Figure 5E). All ultralong CDR-H3 bispecifics robustly induced
effector-type cytokine production of IFN-g (Table 2). In contrast
to this, only negligible levels were detected for the control molecule
when added to co-cultured A431 andNK cells. Additionally, only a
minor release of IFN-g was detected when the bispecific molecules
were added to EGFR-negative CHO cells that were co-cultured
with PBMC-derived NK cells (Supplementary Figure 10).
DISCUSSION

Bispecific antibodies pave the way for completely novel modes of
action and consequently emerged as promising molecules for
therapeutic intervention (9, 15). To investigate whether cattle-
derived ultralong CDR-H3 paratopes can be efficiently engineered
into bispecific antibody formats, we have generated bovine ultralong
CDR-H3 paratopes directed against NKp30 that share the same
light chain with EGFR-specific ultralong CDR-H3 paratopes we
have previously isolated and characterized (31). Fascinatingly, in
cattle, ultralong CDR-H3 heavy chains typically pair with a single
VL gene, VL30 that is relatively sequence conserved (25). As such,
bovine ultralong antibodies can be almost considered as a natural
source of common light chain paratopes. In general, it has been
shown that this non-classical type of immunoglobulin is
predisposed to address epitopes that might only be inefficiently
targeted by conventional antibodies. Stanfield and colleagues, for
instance, demonstrated that a broadly neutralizing anti-HIV
ultralong CDR-H3 paratope hits an epitope on the gp120 CD4
binding site (25) that is typically recessed for conventional
antibodies (45). Hence, it is tempting to speculate that ultralong
CDR-H3 antibodies might enlarge the ‘druggable’ target space.
Frontiers in Immunology | www.frontiersin.org 10147
For the isolation of ultralong CDR-H3 entities we have
specifically amplified this region from the PBMC-repertoire of
immunized cattle and engrafted it onto a fixed chimeric Fab
heavy chain that was paired with a single VL30 region we have
previously used for the isolation of bovine ultralong EGFR-
specific antibodies (31). By exploiting yeast surface display,
NKp30-specific antibodies were readily obtained within two
rounds of FACS sorting and eventually, after soluble antibody
expression, 13 unique clones showed specific binding to this
target. Subsequently, those were reformatted as bispecific
common light chain antibodies with two different ultralong
CDR-H3 paratopes directed against EGFR by employing the
same light chain that has been used for YSD. Essentially, the vast
majority of the generated 26 molecules showed ‘early signs’ of
favorable biophysical properties as well as simultaneous binding
to both antigens on the protein level, a prerequisite for effector
cell recruitment. When the same NKp30 targeting cattle derived
ultralong CDR-H3 common light chain paratopes were
reformatted into bsAbs harboring different EGFR directed
paratopes, we observed only minor to moderate differences in
affinities. Albeit an impact of the EGFR based ultralong CDR-H3
paratope cannot be entirely excluded, this is indicating that main
binding properties of these antigen binding sites remain mostly
unaffected when produced as asymmetric common light chain
bsAb. Positioning effects resulting in impaired affinities have
been described for multiple different bispecific antibody
platforms (18, 46–49). It will be interesting to investigate
whether such effects can be observed for cattle-derived
ultralong CDR-H3 common light chain binders, when
reformatted into more complex formats.

In a first killing assay, 24 out of 26 bispecific common light chain
derivatives mediated significant NK cell mediated lysis of EGFR-
overexpressing A431 cells with one NKp30-targeting paratope
remaining unfunctional when combined with both EGFR-directed
paratopes. Maximum killing was more pronounced for NKp30-
directed clones when reformatted with EGFR-binder 60F06.
Interestingly, 60F06 seems to target the same subdomain on the
ECD of EGFR as 60H05 but does not compete with it for binding to
EGFR (31). Hence, it targets a different epitope. In general,
differences in killing capacities of the generated molecules are not
unexpected, given the multiple parameters that have a major impact
on cytolytic synapse formation of effector cells (including synapse
distance as well as the epitopes that are targeted on the tumor
associated antigen as well as on the effector trigger molecule) (50).
Most importantly, all seven bsAbs that were scrutinized more
meticulously in terms of killing abilities elicited robust NK cell
TABLE 2 | NK cell mediated target cell dependent cytotoxic properties and IFN-g release triggered by selected cattle derived ultralong CDR-H3 common light chain
bispecific antibodies.

Bispecific molecule EC50 killing [pM] Max killing [%] Mean IFN-g release [pg/mL]

63B08x60F06 219 91.4 229.3
63B12x60F06 225 94.5 245.1
63D02x60F06 325 98.0 214.4
63D05x60F06 540 95.9 231.0
63E11x60F06 273 85.8 232.0
63F07x60F06 598 100 245.6
63H02x60F06 807 102 226.1
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mediated lysis of tumor cells in a targeted fashion with negligible
killing of EGFR-negative cells. Potencies were in the picomolar
range for all the molecules tested. As such, cytotoxic capacities were
similar to those reported for NK cell engagers based on the natural
ligand of NKp30 referred to as B7-H6 or affinity optimized versions
thereof (32–34). Only at a low E:T ratio of 1:1 we observed
differential killing on the single donor level i.e. donor to donor
variations. Notwithstanding, significant killing was observed for all
the donors tested in this particular setting. Furthermore, at higher E:
T ratios all donors behaved quite similar in robustly triggering NK
cell mediated killing of tumor cells. Variations in maximum lysis on
the donor to donor level have been previously reported for NK cell
engagers by Peipp and co-workers (34). For their HER2-specific
bifunctional immunoligand harboring B7-H6, differences in
efficacies were even observed at higher E:T ratios of 10:1. Finally,
all cattle-derived common light chain bispecific compounds
significantly triggered the release of IFN-g in a strictly tumor cell
targeted manner. Considering the multiple pleiotropic effects of
IFN-g such as inhibiting suppressive immune cell subsets (51, 52)
and NK, NKT and T cell trafficking into tumors through the
induction of chemokine production (53), this might be envisioned
to result into a targeted inflammation of tumors when applied
in vivo. In conclusion, our data suggest that cattle-derived ultralong
CDR-H3 paratopes enable the facile generation of common light
chain bispecifics suitable for effector cell redirection.
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Background: Tumor flare reaction (TFR) is a clinical syndrome, which is mainly
associated with painful and swollen lymph nodes or splenomegaly, slight fever, bone
pain, and skin rash during treatment with immune-related drugs, causing difficulty in
distinguishing TFR from disease progression. Brentuximab vedotin (BV) and programmed
death 1 (PD-1) inhibitor are two ideal drugs used for the treatment of classic Hodgkin
lymphoma, but few studies have reported their adverse effects in association with TFR.
The efficacy and safety of monotherapy or combination therapy with these drugs needs to
be further evaluated. It is essential to determine whether treated patients can develop TFR,
thus enabling more accurate diagnosis and treatment.

Case presentation: A 26-year-old female patient, diagnosed with classic Hodgkin
lymphoma, had received 2 + 3 cycles of ABVD chemotherapy (a combination of
adriamycin, bleomycin, vinblastine, and dacarbazine) and 4 cycles of PD-1 inhibitor
(tislelizumab) therapy but exhibited poor efficacy. Subsequently, she was given
combination therapy of BV (100 mg) + tislelizumab (200 mg). However, a slight fever,
painful and swollen axillary lymph nodes, multiple skin rashes with pruritus, joint pain, and
fatigue with poor appetite appeared during the treatment. Ultrasound (US) scans revealed
that multiple lymph nodes were significantly enlarged. After treatment with low-dose
dexamethasone and cetirizine, the symptoms were alleviated. A biopsy of the left axillary
lymph node revealed that lymphoid tissue exhibited proliferative changes, without tumor
cell infiltration. These findings were consistent with the clinical and pathological
manifestations of TFR.

Conclusion: Combination therapy with BV and PD-1 inhibitor was effective in the
treatment of relapsed or refractory classic Hodgkin lymphoma. The results suggest that
the combination therapy may cause TFR, and biopsy and also continuous imaging
observation are important to determine the disease stage. This approach allows
clinicians to decide whether to continue the current treatment plan, and alerts them to
the occurrence of excessive activation of the immune system.

Keywords: brentuximab vedotin, tislelizumab, tumor flare reaction, classic Hodgkin lymphoma, immune related
adverse event
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INTRODUCTION

Brentuximab vedotin (BV) is a biological agent with an immune
function, which is composed of three components, namely,
an anti-CD30 monoclonal antibody(cAC10), a potent
antimicrotubule agent (monomethyl auristatin E, MMAE), and
a dipeptide linker that can be cleaved by proteases in lysosomes
(1, 2). In the human body, after binding to CD30 on the cell
surface, BV is internalized and the linker is cleaved to release
MMAE, exerting its cytotoxic effect. Then, MMAE can inhibit
tubulin aggregation, disrupt the intracellular tubulin skeleton
and arrest the cell cycle (G2/M phase) inducing the apoptosis of
the target cells (3). The induction of apoptosis by the anti-tubulin
action of MMAE, and activation of the innate immune system by
an antitumor immune reaction that induces immunogenic cell
death through endoplasmic reticulum stress are two major
molecular mechanisms of BV (4). BV as monotherapy or in
combination with chemotherapy has been reported to produce
satisfactory outcomes in patients with relapsed or refractory
Hodgkin lymphoma (5–8). Common BV-associated adverse
effects include neutropenia, thrombocytopenia, peripheral
sensory neuropathy, fatigue, rash, fever, constipation, nausea,
poor appetite, and infection (1, 3, 4, 9–12).

Programmed death 1 (PD-1) inhibitor, a human or
humanized IgG4 monoclonal antibody, is an immune
checkpoint inhibitor that has shown promise for the treatment
of relapsed or refractory Hodgkin lymphoma (8, 13). However,
fatigue, poor appetite, rash, pruritus, diarrhea, nausea and
infection are common adverse effects (14). Immune associated
adverse effects have also been reported, namely, hypothyroidism,
pneumonia, hepatitis, colitis and skin rash (15, 16), with tumor
flare reaction (TFR) also recognized as one of complications (17,
18). Tislelizumab is a humanized IgG4 anti-PD-1 monoclonal
antibody and its adverse effects are similar to those elicited by
nivolumab or pembrolizumab (16).

Targeted therapy has been widely used for the treatment of
numerous malignant tumors. CD30 and PD-1 are two ideal
therapeutic targets for classic Hodgkin lymphoma, and a number
of relevant clinical trials have been carried out (1, 2, 7, 8). The
efficacy of combination therapy with the two drugs is still under
evaluation, with reported common adverse effects at present
being fatigue, nausea, rash, pruritus, vomiting, diarrhea, and
infusion-related adverse reactions (4). That a PD-1 inhibitor can
cause TFR has been previously reported (18), but there are few
reports on TFR associated with BV (1, 19). One was reported in a
phase II study of relapsed/refractory systemic anaplastic large-
cell lymphoma with BV that 4 patients experienced painful
enlargement of lymph nodes and erythema after the
administration of BV, without pathological biopsy of the
enlarged lymph nodes (1). Another study described 2 patients
who experienced TFR to BV after Lenalidomide treatment (19).
However, there are no specific reports of TFR caused by BV with
PD-1 inhibitor treatment of hematological malignancies. The
present study reports a case of TFR in a patient who received
combined administration of BV and tislelizumab and explores
the possible mechanism and diagnostic significance of TFR
caused by immune-related adverse effects of drugs.
Frontiers in Immunology | www.frontiersin.org 2151
CASE PRESENTATION

A 26-year-old female patient was admitted to the First Affiliated
Hospital of Zhejiang University School of Medicine (Hangzhou,
China) in October 2019 due to persistent pain of the right side of
the neck and left side of the axilla lymphadenopathy for more
than 10 days. The lymph node on the right side of the neck was
biopsied, and the pathology suggested nodular sclerosis classic
Hodgkin lymphoma (Figure 1A), a subtype of classic Hodgkin
lymphoma. Immunohistochemistry (IHC) results of CD30 (+)
(Figure 1B), CD15 (+), PAX5 (+) (Figure 1C), Bcl-2 (+), MUM-
1 (+), Bcl-6 (partial +), CD21 (FDC+), Ki-67 (+, 60%), PD-1
(small lymphocytes +, 20%), CD3, CD5, CD7, CD20, CD45,
anaplastic lymphoma kinase (ALK), and EMA were all negative.
There was no obvious abnormal lymphocyte group in bone
marrow smears or after bone marrow immunophenotyping. A
bone marrow biopsy revealed that the proliferation of
hematopoietic tissue was active. The chromosomal analysis
showed 46, XX (20). In October 2019, primary positron
emission tomography-computed tomography (PET/CT)
showed that there were multiple enlarged lymph nodes in the
bilateral neck, bilateral inguen, and left axilla, and that the size of
the left axillary lymph node was 3.1 × 2.2 cm (Figure 2). The
patient was diagnosed as having nodular sclerosis classic
Hodgkin lymphoma IIIA, and she subsequently received
ABVD chemotherapy (a combination of doxorubicin,
bleomycin, vinblastine, and dacarbazine) for 2 cycles. In
December 2019, the secondary PET/CT showed that the size of
the left axillary lymph node was significantly smaller and that
glucose metabolism of FDG was reduced (Figure 2). The patient
subsequently received 3 cycles of ABVD chemotherapy. In May
2020, a tertiary PET/CT examination showed that the left axillary
lymph node was larger and that metabolism was increased
(Figure 2), following local recurrence after treatment. A biopsy
of the left axillary lymph node was undertaken, and the
pathology indicated classic Hodgkin lymphoma, nodular
sclerosis type (Figure 1D). The IHC results of testing of CD30
(+) (Figure 1E), CD15 (+), PAX-5 (+ weak) (Figure 1F), Bcl-2
(+), MUM1 (+), CD21 (FDc+), Ki-67 (+80%), Bcl-6, CD3, CD5,
CD7, CD20, CD45, ALK, EMA, and EBER were all negative.
Considering the disease progression of the patient, she received
tislelizumab (200 mg Q3W) for 4 cycles. During that period, the
left axillary lymph node of the patient was reduced in size. Next,
the patient was scheduled to receive auto-SCT. She underwent
the PET/CT in August, and we mobilized and collected
autologous stem cells in September, without continuing
tislelizumab treatment. In August 2020, the quaternary PET/
CT revealed that multiple lymph nodes in the bilateral neck, the
left clavicle and left axilla area were slightly enlarged and
exhibited mildly increased metabolic activity (Figure 2)
suggesting that there was still residual tumor activity after
targeted therapy. Thus, combined therapy of BV (100 mg) +
tislelizumab (200 mg) was administered to the patient in
October, 2020. Before the treatment, the lymph nodes of the
patient were not significantly changed as revealed by US and CT
scans. Overall, the patient did not exhibit disease progression
from August to the time she received combination therapy in
January 2022 | Volume 12 | Article 756583
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October. However, the patient had a slight fever, with the highest
temperature being 37.6 °C after 2 days of this round of treatment,
experienced pain in the axillary lymph nodes and had multiple
skin rashes with pruritus all over the body after 1 week,
Frontiers in Immunology | www.frontiersin.org 3152
accompanied by joint pain, fatigue and poor appetite for about
15 days. Before these reactions, the patient had no history of
autoimmune or hyperimmune reactivity. Testing for the
presence of inflammatory cytokines revealed that interleukin-4
A B C D E

FIGURE 2 | Tumor assessment during treatment by PET. (A) In October 2019, the size of the left axillary lymph node was 3.1 × 2.2 cm, and maximum standard
uptake value (SUVmax) from 18F-FDG is 7.0. (B) In December 2019, the size of the left axillary lymph node was 1.51 × 0.84 cm, SUVmax is 2.0. (C) In May 2020,
the left axillary lymph node was1.69 × 1.69 cm, and SUVmax is 5.9. (D) In August 2020, the left axillary lymph node was 1.5 cm, and SUVmax is 2.1. (E) In January
2021, PET/CT showed the SUVmax is 2.1.
A B C

D E F

G H I

FIGURE 1 | Histopathology and immunohistochemistry of the lymph nodes of this patient. In October 2019, (A) HE staining revealed nodular sclerosis classic Hodgkin
lymphoma (10×), IHC staining showed that lymphoma cells were positive for (B) CD30 (20×), (C) PAX-5 (20×). In May 2020, (D) HE staining revealed nodular sclerosis
classic Hodgkin lymphoma (10×), IHC staining showed that lymphoma cells were positive for (E) CD30 (20×), (F) PAX-5 (20×). In December 2020, (G) HE staining
revealed lymphoid tissue had a proliferative change (10×), IHC staining showed that lymphoma cells were negative for (H) CD30 (20×), and positive for (I) PAX-5 (20×).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhu et al. TFR With BV and Tislelizumab
(IL-4) concentrations decreased from 3.41 to 0.1 pg/ml, IL-2 and
tumor necrosis factor-a (TNF-a) from 1.54 or 4.13 to 0.1 pg/ml,
respectively. Interferon-g (IFN-g) concentrations increased from
2.95 to 15.43 pg/ml, IL-6 from 8.15 to 12.96 pg/ml, and IL-17A
from 51.12 to 176.68 pg/ml (Table 1). The US and CT scans
showed that multiple lymph nodes were notably enlarged all over
the body compared to before treatment (Figure 3). Next, the
patient was given dexamethasone (5 mg i.v. QD) for 4 days
combined with cetirizine (10 mg p.o. QD) for 3 days. The body
rash of the patient subsided and pruritus was alleviated. During
December, 2020, US scans revealed that the sizes of the bilateral
cervical, axillary and inguen lymph nodes were reduced. A
biopsy of the left axillary lymph node showed that lymphoid
tissues exhibited a proliferative change (Figure 1G). The results
of IHC indicated that CD30 (−) (Figure 1H), CD3 (+), CD20 (+),
Ki-67 (around 5%+), CD5 (+), CD10 (germinal center +), Bcl-2
(+), Bcl-6 (germinal center +), MUM1 (scattered W+), PAX-5
(+) (Figure 1I), CD21 (FDC+), VD23 (FDC+), cyclinD1c-Myc,
ALK and EBER were all negative. During the wait for auto-SCT,
the patient received a further 2 cycles of PD-1. In January 2021,
the quinary PET/CT scans showed there was no obvious increase
in glucose metabolism of FDG in the area of the lymph nodes,
after the lesion had shrunk and tumor activity inhibited
(Figure 2). Then the patient underwent auto-SCT. At present,
she has been regularly followed-up and remains disease free for
10 months since transplant without the need for anti-tumor
treatment. The patient never received radiation therapy. The
clinical course of the patient is shown in Figure 4.
DISCUSSION

TFR, the pseudoprogression of hematological malignancies, is a
clinical syndrome caused by drugs with actions on the immune
system, and often occurs in patients who are diagnosed with
chronic lymphocytic leukemia (20), mantle cell lymphoma (21),
Hodgkin lymphoma (22) or Waldenström’s macroglobulinemia
(23, 24). TFR often manifests as painful and enlarged lymph
nodes or splenomegaly in patients following treatment with
immune-related drugs. It may be accompanied with symptoms
of fever, bone pain, skin rash or lymphocytosis (25, 26), which
are mainly mild and self-limiting and often appear during the
initial phase of treatment. The course of the disease generally
evolves over 7–14 days (27). In most cases, a patient with TFR
can be given non-steroidal anti-inflammatory drugs to relieve the
discomfort (25). But if the patient has severe symptoms or a
history of immune checkpoint inhibitor related adverse effects,
corticosteroid should be administered, and therapy stopped if
Frontiers in Immunology | www.frontiersin.org 4153
necessary (21, 25). It may not be suitable to use multiple
immune-related drugs at the same time, for example two
immune checkpoint inhibitors.

In the present study, the patient neither had obvious
discomfort after 4 treatments of intravenous tislelizumab
infusion, nor significantly larger lymph nodes according to the
results of PET/CT scans. After the first administration of BV
combined with tislelizumab, low-grade fever, swollen and painful
lymph nodes, multiple skin rashes with pruritic, joint pain,
fatigue and poor appetite appeared. The symptoms of the
patient improved after treatment with glucocorticoid and
antihistamine therapy, which was consistent with the clinical
manifestations of TFR. US and CT scans showed that the lymph
nodes were significantly enlarged after combination therapy of
BV and tislelizumab, and re-examination showed that multiple
lymph nodes were significantly reduced with no anti-tumor
treatment. These findings were in line with pseudoprogression
determined retrospectively through imaging observations (28).
The medical team considered the reaction to be TFR and decided
to give the patient auto-SCT. As hospital beds were scarce in our
center, the patient continued PD-1 treatment at home during the
waiting time. Before retreatment of PD-1, US scans showed that
there were still a number of swollen lymph nodes in the axilla
and neck regions. In order to determine whether the patient was
progressing or had TFR, we took a lymph node biopsy, which
showed proliferative changes but no tumor cell infiltration was
detected. In retrospect, it was indeed a pity we did not to take a
lymph node biopsy during the onset of TFR.

The specific mechanism of the TFR remains to be elucidated,
but may be related to the excessive activation of the immune
system (25, 29) and the secretion of inflammatory cytokines (30).
In the present study, the significant change of concentration of
IL-17A might indicate the occurrence of inflammation, but other
concentrations were still within the reference range. In addition,
TFR is correlated with the activation and infiltration of NK cells
and T cells in cancer foci and changes in the tumor
microenvironment (26, 29). However, the biopsy of lymph
node did not reveal infiltration of NK or cytotoxic T cells on
the day 20 of treatment in a case that was TFR associated with
lenalidomide in a follicular lymphoma patient (31). The
pathophysiological changes of related lymph nodes or involved
lesions after the occurrence of TFR have not been fully clarified,
while the rapid appearance may indicate that the initial stage of
TFR is mediated by non-antigen-specific effectors, and the later
stage antigen-specific immune effects (29).

TFR is an important component of the antileukemic effect of
lenalidomide. Chanan-Khan et al. pointed out that the intensity
of TFR after the administration of lenalidomide in chronic
TABLE 1 | Changes of inflammatory cytokines.

Date IL-2 (pg/ml) IL-4 (pg/ml) IL-6 (pg/ml) IL-10 (pg/ml) IL-17A (pg/ml) TNF-a (pg/ml) IFN-g (pg/ml)

2020-09-01 (Before TFR) 1.54 3.41 8.15 2.88 51.12 4.13 2.95
2020-10-30 (TFR) 0.1 0.1 12.96 2.74 176.68 0.1 15.43
2020-12-04 (After TFR) 1.77 3.8 4.23 2.82 59.61 4.18 6.69
January
 2022 | Volume 12 |
IL, interleukin; TNF-a, tumor necrosis factor-a; IFN-g, interferon-g.
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lymphocytic leukemia patients was related to the complete
response rate (25). To the best of our clinical knowledge, it is
difficult to distinguish TFR or pseudoprogression from disease
progression by one measurement of tumor size or metabolism
using immediate imaging examinations. Skoura et al. reported a
case of false-positive 18F-FDG PET/CT after rituximab therapy,
the patient was finally diagnosed with TFR. PET/CT examination
of that patient revealed increased metabolic activity of enlarged
lymph nodes after R-CHOP (rituximab plus cyclophosphamide,
doxorubicin, vincristine, and prednisone) treatment and
allogeneic transplantation, whereas biopsy of the lymph node
revealed extensive reactive T cell infiltration, with no signs of
lymphoma cells. Re-examination of PET/CT scans showed no
obvious enlargement or increased metabolic activity of lymph
Frontiers in Immunology | www.frontiersin.org 5154
nodes after 3 months (32). Isolated measurements of the sizes of
lymph nodes by US, CT or other imaging methods to evaluate
changes in the severity of lymphoma are imprecise, and even the
use of single PET/CT for the assessment for the changes of
disease does not provide an accurate diagnosis, leading to
difficulty in distinguishing TFR from disease progression and
whether to terminate the original effective treatment therapy.

BV-related immune complications are not common, but include
progressive multifocal leukoencephalopathy and acute pancreatitis
(33, 34). A case of a Hodgkin lymphoma patient treated with BV,
who developed progressive multifocal leukoencephalopathy,
indicated that BV can reduce the number of CD30+ T cells,
which may be related to immune surveillance, and also inhibition
of the TNF signaling pathway (33). Additionally, Gandhi et al.
FIGURE 4 | Clinical course of the patient. US, ultrasound; LN, lymph node.
A B C

FIGURE 3 | Changes of lymph nodes evaluated by CT. (A) In September 2020. (B) In October 2020. (C) In December 2020.
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demonstrated that low CD30 expression was detected in the
pancreas of a patient and two healthy controls by multispectral
imaging, suggesting that BV targeted to the unexpected low-level
CD30+ pancreas may be the foundation of this adverse effect (34). A
limited number of reports on TFR induced by BV exist, but the
underlying mechanisms are still unclear. In a clinical study of BV
combined with nivolumab for relapsed or refractory Hodgkin
lymphoma patients, BV or nivolumab was administered on day 1
or day 8 in the treatment first cycle (4). For our patient, the two
immune-related targeted drugs were simultaneously used during
the first cycle, which may have triggered the TFR of the patient. In
addition, CD30 is a member of the TNF receptor family and TNF-a
can induce the nuclear factor-kB (NF-kB) pathway and regulate the
local microenvironment to enhance intracellular killing (33).
Therefore, BV-induced TFR may be related to the CD30 and
TNF pathway, but further research is required to verify
unequivocally this hypothesis.

In case of abnormal conditions, such as rapid enlargement of
lymph nodes during the administration of immune-related
therapeutic drugs or targeted therapies, clinicians should be
additional aware of the occurrence of TFR that may be related
to excessive activation of the immune system. In this clinical
research, combination therapy using BV and tislelizumab may
cause TFR. Thus, biopsy and continuous imaging observation are
important to indicate the disease changes, enabling clinicians to
determine the disease stage and real effects of the drugs of a
patient, to facilitate the development of further accurate
diagnostic and treatment schemes.
Frontiers in Immunology | www.frontiersin.org 6155
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Semaphorins are a large class of secreted or membrane-bound molecules. It has been
reported that semaphorins play important roles in regulating several hallmarks of cancer,
including angiogenesis, metastasis, and immune evasion. Semaphorins and their
receptors are widely expressed on tumor cells and immune cells. However, the
biological role of semaphorins in tumor immune microenvironment is intricate. The
dysregulation of semaphorins influences the recruitment and infiltration of immune cells,
leading to abnormal anti-tumor effect. Although the underlying mechanisms of
semaphorins on regulating tumor-infiltrating immune cell activation and functions are
not fully understood, semaphorins can notably be promising immunotherapy targets
for cancer.

Keywords: semaphorins, cancer, immunotherapy, immune cell, therapeutic targets, tumor microenvironment
INTRODUCTION

Relative to traditional cancer treatments, tumor immunotherapy has shifted the paradigm for the
treatment of cancer (1). Particularly, the emergence of immune checkpoint inhibitors (ICIs, such as
CTLA-4 and PD-1/PDL-1 inhibitor) (2) and adoptive cell therapy (chimeric antigen receptor T
cells, CAR-T) (3) represents a turning point for tumor treatment. However, due to the existence of
multiple immunosuppressive mechanisms in the tumor microenvironment (TME), tumor cells can
get rid of the surveillance and immune killing effects of the immune system under various immune
escape pathways.
Abbreviations: APC, antigen presentation cell; AML, acute myeloid leukemia; BTLA, B- and T-cell lymphocyte attenuator;
CTLA-4, cytotoxic T lymphocyte-associated antigen-4; CTL, cytotoxic T lymphocytes; CIML, cytokine-induced memory-like;
DCs, dendritic cells; GBM, glioblastoma; GC, germinal center; HNSCC, head and neck squamous cell carcinoma; HPV, human
papillomavirus; ILT-4, immunoglobulin-like transcript 4; ICANS, immune effector cell-associated neurotoxicity syndrome;
LAG-3, lymphocyte-activation gene 3; MDSCs, myeloid-derived suppressor cells; Nrps, Neuropilins; NK, natural killer cells;
PD-1, programmed cell death-1; PD-L1, programmed cell death-ligand 1; PLGF, placental growth factor; PDPN, podoplanin;
PDX, patient-derived xenograft; PanNET, pancreatic neuroendocrine cancer; SDF1, stromal cell-derived factor 1; TME, tumor
immune microenvironment; TAMs, tumor-associated macrophages; Tregs, regulatory T cells; TILs, tumor-infiltrating
lymphocytes; TIM-3, mucin domain-3 protein; TLS, tertiary lymphatic structure; VEGF, vascular endothelial growth factor.
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Semaphorins, initially characterized as axon guidance factors,
are membrane-bound or secreted proteins that participate in
cell-to-cell communication and functions (4). Semaphorins play
versatile roles in pathophysiological processes, including cancer,
immune diseases, and bone diseases, which can be used as novel
targets for drugs for preventing or treating various diseases (5–7).
There are more than 20 kinds of semaphorins in vertebrates,
which can be divided into class 3–7 categories. Class 3
semaphorins are secreted proteins, whereas the others are
membrane-bound proteins, and membrane-bound Class 4
semaphorins can be shed into soluble forms by proteolytic
cleavage under certain circumstances (6, 8, 9).

Semaphorins contain a common “sema domain”, the domain
for receptors binding. The main receptors of semaphorins are
Neuropilins or Plexins families. The most membrane-bound
semaphorins directly bind to conservative plexins that also
contain a “sema domain”. Plexins can be classified into four
classes, A–D, and transfer signals mediated by small GTPases
(10), whereas soluble class 3 semaphorins transmit signals
requiring neuropilins (Nrps) as co-receptors (11). Nrps are
divided into two isoform subtypes Nrp1 and Nrp2. Nrp1 is
Frontiers in Oncology | www.frontiersin.org 2158
essential for immune response and identified as the co-receptor
of VEGF to mediate angiogenesis (12), and Nrp2 exerts a
significant role in VEGF-C/D/VEGFR-3-mediated tumor
lymphangiogenesis and lymphatic metastasis (13). Moreover,
there are a few semaphorins that require additional receptors
to participate in biological activities. For instance, Sema4A can
bind to TIM2 (14), Sema4B to CLCP1 (15), Sema4D to CD72
(16), and Sema7A to integrin b1 (17) (Figure 1).

Accumulating evidence indicate that semaphorins are
dysregulated and play versatile and multifaceted regulatory
roles in several hallmarks of cancer, including angiogenesis
(18), metastasis (19), tumor immune escape, and tumor-
associated inflammation (20–22). Semaphorins can contribute
to tumor progression by modulating immune responses between
tumor cell and tumor-infiltrating immune cells in TME. The
immunological function of semaphorins is widespread, mainly
due to membrane-bound semaphorins or their receptors widely
distributed on the surface of immune cells and tumor cells. The
so-called immune semaphorins can act as attractants to regulate
the recruitment of macrophages, natural killer cells (NK),
dendritic cells (DCs), and cytotoxic T lymphocytes (CTL) to
FIGURE 1 | The classification and structure of semaphorins and their receptors. The upper part: Class 3 semaphorins are secreted proteins. Class 4 to 6
semaphorins are membrane-bound proteins. Sema7A is the only GPI-linked protein in the semaphorin family. The N-terminus of the semaphorins is Sema domain.
Adjacent to the downstream area of the Sema domain is the plexin-semaphorin-integrin (PSI) domain. Class 3, 4, and 7 semaphorins contain an immunoglobulin-like
domain located downstream to the PSI domain. Class 4 semaphorins have a PDZ binding motif. The lower part: The receptors of semaphorins. The most
membrane-bound semaphorins directly bind to conservative plexins, which are classified into four classes A–D. Plexin A proteins are mainly associated with class 5
and 6 semaphorins, whereas Plexin B proteins are mainly associated with class 4 and 5 semaphorins, and Plexin C proteins are bound with Sema7A. Secreted class
3 semaphorins transmit signals requiring neuropilins (Nrps) as coreceptors. Neuropilins are divided into two subtypes, Nrp1 and Nrp2. There are a few semaphorins
that require additional interactors to participate in biological activities. Sema4A binds to TIM2, Sema4B binds to CLCP1, Sema4D binds to CD72, and Sema7A binds
to integrin b1.
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the TME (23). For instance, Sema3A, Sema4C, and Sema4D have
been found to promote tumor progression by enrichment of
tumor-associated macrophages in TME (24, 26). On the other
hand, Sema3A, as a tumor suppressor, has been reported to
restrict the proliferation of pro-tumoral macrophages and
repress tumor growth (27). The role of Sema4A is also
intricate in tumor immunity. Sema4A expression enhances B-
cell infiltration, which contributes to favorable outcome for head
and neck squamous cell carcinoma (28), and Sema4A expression
on DCs activates CTL and exerts anti-tumor in Lewis lung cancer
(29), whereas Sema4A maintains the stability and function of
Tregs in melanoma (30). Due to the versatile and multifaceted
regulatory roles of semaphorins in tumor-infiltrating immune
cells, semaphorins with their receptors could mediate intricate
cross-talking between tumor cells and the microenvironment.
This review mainly illuminates the regulatory effects and
potential mechanisms of representative semaphorins on
tumor-infiltrating immune cells, as well as the potential
application of semaphorins as therapeutic targets for
tumor immunotherapy.
SEMAPHORINS AND TUMOR
ASSOCIATED MACROPHAGES

Tumor-associated macrophages (TAMs, Mf) are main
infiltrating cell groups in tumor stroma and closely associated
with tumor angiogenesis, invasion, and metastasis. TAMs have
two opposing phenotypes, anti-tumorigenic M1-Mfs and pro-
tumorigenic M2-Mfs. M1-Mfs function as inhibiting tumor
progression by secreting pro-inflammatory cytokines (IFN-a/
b/g and IL-12) and chemokines (CXCL9 and CXCL10), which
can attract CTL and NK cell to restrict tumor growth (31, 32).
M2-Mfs suppress tumor immunity and accelerate tumor
progression by secreting immune suppressive factors, such as
cytokines (TGF-b and IL-10) and chemokines (CCL2, CCL17,
CCL22, and CCL24) (33, 34). TAMs can also secrete pro-
angiogenic factor vascular endothelial growth factor (VEGF),
placental growth factor (PLGF), and Sema4D to promote
angiogenesis, and express podoplanin (PDPN, lymphatic
marker) to promote lymphangiogenesis in paracrine and
autocrine pathways, leading to tumor vascular and lymphatic
metastasis (18, 35). Studies have shown that semaphorins play
significant roles in the migration and polarization of TAMs.
Sema3A
Sema3A, a secreted protein, plays paradoxical roles in TME in
different types of tumors. In breast cancer, Sema3A is a tumor
suppressor, downregulated in tumor and negatively correlated
with tumor stage. In vivo, Sema3A overexpression increases
CD11b+F4/80+ Mfs accumulation but not CD11b+Ly6C+

monocytic cells, and reduces 4T1-3A+ tumor growth in
immune complete BALB/c mice. Sema3A regulates
intratumoral M1-Mfs (CD11b+Ly6G-Ly6ClowMHCIIhigh) and
Frontiers in Oncology | www.frontiersin.org 3159
M2-Mfs (CD11b+Ly6G-Ly6ClowMHCIIlow) differentiation by
binding to its receptor Nrp1, and increases M1-Mfs
proliferation but represses M2-Mfs by enhancing CSF1-
mediated phosphorylation of Akt and MAPK, inducing CD8+

T cells and NK cells to repress tumor growth (27).
However, in Lewis lung cancer, Sema3A binding to Nrp1 and

PlexinA1/PlexinA4 coreceptors promotes tumor growth by
TAM infiltration and pro-tumorigenic function in hypoxic
areas (24). Under the tumor hypoxia environment, Sema3A is
upregulated, attracting TAMs from the vascularized and
perfused area to the hypoxic area by binding to Nrp1/
PlexinA1/PlexinA4/VEGFR1 (24). Interestingly, when the
expression of Nrp1 on TAMs is downregulated, TAMs are
stopped migrating from normoxic regions to hypoxic region by
Sema3A/PlexinA1/PlexinA4-mediated stop signals. The
redistribution of TAMs weakens their angiogenic and
immunosuppressive ability and hinders orthotopic and
spontaneous tumor growth (36, 37). In terms of glioblastoma
(GBM), the expression of Sema3A is significantly higher in
tumor tissues relative to adjacent normal tissues. Sema3A
derived from GBM elicits TAMs (microglial cell) accumulation,
and antibody blockage of Sema3A (anti-Sema3A, F11) exhibits
notable tumor inhibitory effect through downregulating TAMs
recruitment in patient-derived xenograft (PDX) models (38). In
addition, upregulation of Sema3A boosted the phosphorylation of
downstream PI3K and AKT by binding to Nrp1, and enhanced
the enrichment of M2-Mfs to promote resistance to androgen
deprivation therapy in prostate cancer (39). Another study has
demonstrated that blockage of Sema3A/Nrp1 could also enhance
anti-tumor response by increasing M1-Mfs and decreasing M2-
Mfs in colorectal carcinoma (40). These studies indicate that
Sema3A, particularly binding to its receptor Nrp1 on TAMs,
regulates the recruitment and differentiation of TAMs in TME.
Targeting SEMA3A and Nrp1 has proved to be a novel approach
for multiple malignances.
Sema4C
Sema4C, a transmembrane protein, is overexpressed in multiple
types of malignant tumors, including breast cancer, esophageal
cancer, gastric cancer, and rectal cancer (41, 42). In breast cancer,
the functions of Sema4C in macrophage recruitment contribute
to tumor malignant properties. Sema4C with plexin-B2 receptor
promotes macrophage infiltration in TME, and promotes tumor
growth and progression by activating the NF-kB pathway to
induce CSF-1 production in breast cancer (25). Additionally,
Gao Qinglei found that MDA-MB-231 with shSema4C attracted
few macrophages relative to empty vector control cells in in vitro
migration assays (25). Membrane-bound Sema4C could be
cleaved by matrix metalloproteinases to produce soluble
Sema4C. A multicenter retrospective study demonstrated that
soluble Sema4C was a potential biomarker for breast cancer
diagnosis (43). Thus, not only could membrane-bound Sema4C
be a promising target to macrophage for immunotherapy, but
soluble Sema4C could also be a diagnostic biomarker for
breast cancer.
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Sema4D (CD100)
Sema4D, also known as CD100, is a transmembrane molecule of
150 kDa of semaphorins IV subfamily, and upregulated in
multiple tumor tissues, such as lung, colon, and breast cancer
(44–46). Additionally, Sema4D is the first semaphorin member
known to be widely expressed on immune cells (16). CD72,
Plexin-B1, and Plexin-B2 are the receptors of Sema4D. CD72 is
mainly expressed in immune cells and regulates immune
response by combining with Sema4D, whereas Plexin-B1 and
Plexin-B2 are widely expressed on endothelial cells in multiple
tissues and can trigger MET tyrosine kinase signals to promote
angiogenesis by interacting with Sema4D ligand (47, 48).

Zhou Yan-Bing’s research found that Sema4D and CD68
(TAMs marker) expression were significantly higher in gastric
tumor tissues than that in adjacent normal tissues and correlated
with histological differentiation type, TNM stage, and lymphatic
metastasis by clinicopathological features analysis of 290 gastric
patients (26). In vitro, they further found that gastric carcinoma
SGC-7901 cells showed great morphological changes after non-
contact co-culture of M2-Mfs: cubic tumor epithelial cell with
blunt edge and high confluence shifted to narrow interstitial cell-
like shape with long spindle and less confluence. TAMs
enhanced the expression of Sema4D on SGC-7901 cells, and
promoted invasion and metastasis abilities of SGC-7901 cells in
vitro. It indicated that targeting Sema4D might be able to bring
favorable prognosis for gastric patients. However, anti-Sema4D
treatment with a specific antibody (Mab67, Vaccinex) shrank
tumor bulk and improved survival rates in pancreatic
neuroendocrine cancer (RIP1-Tag2) mice in a short period,
but conversely promoted lymph node metastasis consistent
with an increase in TAMs after anti-Sema4D treatment (49).
To further identify the mechanism of TAMs promoting
metastasis, the study of Oriol Casanovas found a significant
increase in stromal cell-derived factor 1 (SDF1, CXCL12, a pro-
invasive molecule) after anti-Sema4D treatment through a
mouse cytokine array. In the presence of anti-Sema4D
antibodies, macrophages secrete SDF1, which leads to stronger
tumor cell migration by binding to CXCR4 receptor.

Sema7A
Sema7A, also known as CD108, the only GPI-linked protein in
the semaphorin family, promotes neutrophil migration under
hypoxia stimulation (50). Sema7A increases a1b1-integrin
macrophages in viral myocarditis (51). Sema7A can recruit
macrophages not only in viral infection, but also in TME.
Elder and Tamburini found that Sema7A might be involved in
macrophage-mediated lymphangiogenesis in breast cancer (52).
Sema7A promotes macrophages podoplanin (PDPN) expression,
migration, and adhesion of the lymphatic epithelial cell, resulting
in breast cancer lymphatic metastasis. PDPN-expressing
macrophages (PoEMs) can activate integrin b1 (Sema7A
receptor) to bind to lymphatic endothelial cells expressing
galectin 8 (GAL8) and cause lymphatic vessel remodeling,
lymphangiogenesis (35). Lymphangiogenesis depends on
PDPN-CLEC-2 (PDPN receptor) interaction and Sema7A-
integrin b1 interaction. Therefore, CD68, Sema7A, and PDPN
Frontiers in Oncology | www.frontiersin.org 4160
are associated with poor prognosis of breast cancer patients with
lymphatic metastasis (52).

TAM infiltration, especially pro-tumorigenic M2-Mfs, are
related with poor prognosis of multiple cancer types. Sema4C,
Sema4D, and Sema7A can be considered as promising
biomarkers of TAM infiltration and can be used as prognostic
indicators of cancer. Moreover, depletion of TAMs by Sema4D
blockage to decrease M2-Mfs recruitment and aggregation, to
eliminate TAMs-associated angiogenesis and metastasis, is a
potential strategy to cancer treatment. However, the strategy of
TAM depletion may lead to a decline in ability of tumor antigen
presentation. Therefore, reprogramming TAM polarization from
M2-Mfs to M1-Mfs by altering Sema3A expression can be
another effective approach to enhance anti-tumor effects.
SEMAPHORINS AND T LYMPHOCYTES

The presence of CAR-T targeting to tumor-infiltrating
lymphocytes (TILs) has greatly improved clinical outcome in
cancer, particularly for hematologic malignancies, but fail to
effectively eliminate cancer cells. Due to insufficient expression of
MHC-I or the presence of immunosuppressive signals, the anti-
tumor effect of CTL is greatly compromised and displays
dysfunctional states (53, 54). PD-1, CTLA-4, T-cell
immunoglobulin, and mucin domain-3 protein (TIM-3),
lymphocyte-activation gene 3 (LAG-3, CD223) (55), B- and T-
cell lymphocyte attenuator (BTLA, CD272) (56), T-cell
immunoglobulin and ITIM domain (TIGIT) (57), and V-
domain Ig suppressor of T-cell activation (VISTA) (58) have
been described as hallmarks of T-cell exhaustion. Semaphorins
and their receptors (particularly Nrp-1) have multiple roles in T-
cell responses. Nevertheless, the potential role of semaphorin/
Nrp-1 in regulating immunosuppressive receptors and CTL
functions is complicated.
Sema3A and Sema3B
Recently, numerous lines of evidence indicate that the Sema3
family with Nrp-1 receptor play vital roles in inhibiting anti-
tumor CD8+ T-cell responses (59). Sema3A and Sema3B,
constitutively distributed on immune cells, binding to Nrp-1,
contribute to immune escape from anti-tumor effects of CD8+

CTL (60).
Nrp-1 and Nrp-2 have been shown to be expressed on DCs,

macrophages, and T-cell subpopulations and mainly exert pro-
tumor effects (61, 62). Nrp-1, a transmembrane protein, is widely
involved in cardiovascular and neuronal development, and can
also regulate cancer immunology (59). Moreover, Nrp-1 is also
co-receptor of VEGF and the Sema3 family (40). Nrp-1 has been
characterized in different immune cellular phenotypes including
macrophages, dendritic cells, and T-cell subsets, especially
expressed on activated T cells and regulatory T-cell
populations, but not on the resting T cells (63–65). Nrp-1+

Tregs are highly expressed in both TME and peripheral blood,
making Nrp-1 a potential immune checkpoint target for
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immunotherapy (66). Those expressing high Nrp-1 CTL subset
also express high PD-1+, with the co-expression of other T-cell
inhibitory receptors like CTLA-4, Tim-3, and LAG-3 in B16F10
melanoma (59). The combination of PD-1 antibody and Nrp-1
antibody is more efficient in repressing tumor growth in vivo. By
contrast, Nrp-2, another isoform, is comparatively less studied in
T cells. The expression pattern of Nrp-2 varied in the CD4/CD8-
defined subsets. Nrp-2 was upregulated in the CD4+CD8+ DP
T cells and downregulated in SP CD4−CD8+ and CD4+CD8−

cells as they gradually became lineage committed (63).
Sema3A secreted from activated DCs and T cells can bind to

Nrp-1 on T cells and inhibit T-cell proliferation. However, Yang
Zhi-Gang has reported that Sema3A was downregulated in acute
leukemia, and exogenous Sema3A could inhibit the Nrp-1
expression on Tregs and promote apoptosis in leukemia cells
(67). Those studies indicated that Sema3/Nrp-1 signaling was a
novel target for tumor immunotherapy (65).
Sema4A
Sema4A, as a new class of immune regulatory molecules, is not
expressed by resting T cells, but can be induced on activated T
cells (14), constitutively expressed on APCs like dendritic cell
and co-stimulates activation of CD4+ T cells. Sema4A has been
found to promote Th1-cell-mediated IFN-g production in mice,
but eliciting Th2-cell-mediated IL-4, IL-5, and IL-13 production
in human by binding with immunoglobulin-like transcript 4
(ILT-4) receptor (68, 69).

Regulatory T cells (Tregs) have effects on limiting
immunopathology, preventing autoimmune diseases, and
maintaining immune homeostasis and also negatively
regulating anti-tumor immunity (70). The deletion of Tregs
can induce the reduction and elimination of tumors, but may
induce uncontrolled autoimmunity and even death. Sema4A
interacting with Nrp1 also promotes Treg cells’ survival,
stability, and function through modulation of the Akt-mTOR
signaling and PTEN-Akt-FoxO axis (30). The deficiency of Nrp-
1 on Tregs fails to limit autoimmunity and induces autoimmune
diseases. Thus, the Nrp-1 receptor on Treg cells is dispensable for
the suppression of autoimmunity and the maintenance of
immune homeostasis. Sema4A–Nrp1 blockade via antibodies
or soluble antagonists is possible to limit tumor growth by
targeting Treg cells without triggering autoimmunity.
Sema4D
CD100 has two forms, soluble CD100 (sCD100) and membrane-
bound CD100 (mCD100). Both mCD100 and sCD100 have vital
roles in immune response. mCD100 is constitutively expressed
on the resting T cells, and can be cleaved into sCD100 by matrix
metalloproteases when T cells are activated (71, 72). The
function of Sema4D on CD8+ CTL is controversial. In HIV
infection, the CTL is in lack of mCD100, leading to anti-virus
capacity being disabled (73), while sCD100 enhances CTL
function of virus clearance in HBV infection (74). Fan Fei-Fei
found that MMP-14, sCD100 level decreased and mCD100
increased in non-small cell lung cancer (NSCLC) compared
Frontiers in Oncology | www.frontiersin.org 5161
with healthy people, whereas recombinant CD100 or sCD100
upregulation by MMP-14 enhanced CTL activity by secreting
IFN-g and TNF-a. Moreover, the effect of sCD100 on CTL could
be blocked by anti-CD72 antibody. Thus, it indicates that
sCD100 shedding depends on the cleavage of MMP-14 and
CD72 interaction and plays an important role in regulating
CTL of NSCLC (75).

Evans has reported that Sema4D displays an immuno
modulatory function. When Sema4D is highly expressed on the
invasive margins of actively growing tumors, it influences the
infiltration and distribution of leukocytes in the TME. Antibody
neutralization of Sema4D disrupts this gradient of expression,
enhances recruitment of activated monocytes and lymphocytes
into the tumor, and shifts the balance of cells and cytokines toward
a proinflammatory and antitumor milieu within the TME. This
change in the tumor architecture was associated with durable
tumor rejection in murine Colon26 and ERBB2(+) mammary
carcinomamodels (46). Recently, a Phase Ib/II study of pepinemab
(anti-Sema4D) in combination with avelumab (anti-PD-L1)
showed that the combination therapy was well tolerated and
exerted antitumor activity in immunotherapy-resistant and PD-
L1-lowNSCLC patients (76). However, the function of Sema4D on
Treg responses in cancer is still unknown. In ankylosing
spondylitis, Sema4D inhibits Treg cell differentiation in the AhR
pathway (77). Sema4D also promotes liver fibrosis in
Schistosomiasis infection via TGF-b1 and IL-13 pathways. Sja-
miR-71a in Sjaponicum egg-derived EVs can increase Treg and
decrease Th1, Th2, and Th17 by directly inhibiting Sema4D (78).

Exhausted T cells not only highly express PD-1 and CTLA-4,
but also highly express semaphorins and their receptors,
especially Nrp-1; thus, tumor cells are compromised to
immune checkpoint inhibitors and turn to self-tolerance.
Moreover, the expression of semaphorins and Nrp-1 is
positively correlated with PD-1 expression level. Therefore,
concomitant blockade of semaphorins, Nrp-1, and PD-1 may
reshape the anti-tumor function of CTL and abrogate
tumor progression.
SEMAPHORINS AND TUMOR-
INFILTRATING B CELL

T cells are not the only immune cells capable of fighting tumor
cells. Tumor-infiltrating B cells (TIL-Bs) are also important for
tumor immunity. Recent studies have found that bulk of B cells
are enriched in tumor tissues including lung cancer, melanoma,
renal cell carcinoma, breast cancer, and head and neck squamous
cell carcinoma (HNSCC) (28, 79, 80), and B cells play a dual role
in the progression of cancer. On the one hand, B cells can
stimulate anti-tumor immunity by antigen presentation B cell
(APC-B cell) and producing IgG (Plasma cell) to mediate
antibody-dependent cytotoxicity; on the other hand, regulatory
B cells (B-regs) inhibit CD8+ T cell activity by secreting IL-10,
PD-L1, and TGF-b, resulting in tumor immunosuppressive
effects and tumor progression. TIL-Bs have prognostic
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significance and promise to be a new target to complement T-
cell-based immunotherapy. The expression of Sema4D on
resting B cells is low, but upregulated upon activation. Sema4D
has been found to promote the survival and activation of B cells
and enhance antibody production (81), but the role of
semaphorins on TIL-B is rarely reported.
SEMA4A

TIL-B mainly comprise naïve B cells, germinal center (GC)
B cells, plasma cells, etc. The team of Jennifer A. Wargo from
the University of Texas MD Anderson Cancer Center found
that B cells and tertiary lymphoid structures play an important
role in tumor immunity (82). In HNSCC patients with
human papillomavirus infection (HPV+) infection, GC TIL-Bs
and tertiary lymphatic structure (TLS) are significantly
increased, both of which correlate with a favorable outcome of
HNSCC. Tullia C. Bruno found that the expression level of
Sema4A was elevated in HPV+ HNSCC by scRNAseq data
analysis (28). Interestingly, Sema4A upregulation was
associated with GC B-cell differentiation and TLS with GC.
Sema4A promote transition from naïve to GC cells, consistent
with the expression of CD38 and BCL-6, a key transcription
factor that regulates GC. It indicates that Sema4A may regulate
the formation of GCs within TLS and B-cell maturity in TME of
HNSCC patients.

The current immunotherapy mainly aims to activate CD8+ T
cells, but the role of humoral immunity against tumor immunity
is still unclear. As a component of the TME, TIL-Bs also play an
important role in tumor progression (79). Sema4A is upregulated
on GC TIL-Bs of HPV+ HNSCC and drives naïve TIL-Bs towards
activated and GC phenotypes, which can be one way to
complement current CD8+ T-cell-based immunotherapies.
SEMAPHORINS AND NATURAL
KILLER CELLS

NK cells are defined as CD3-CD56+ leukocytes and can be
subdivided into functionally distinct subgroups, namely,
CD56brightCD16neg and CD56dimCD16pos (83). The pan-
specific innate immune recognition and rapid killing
mechanism of natural killer cells (NK cells) make them
another sharp sword in anti-tumor therapy apart from T cells.
Decreased NK cell toxicity with KIR and NKG2A upregulation is
associated with increased cancer incidence (84). Cytokine-
induced memory-like (CIML) natural killer cells are
preactivated with interleukin-12 (IL-12), IL-15, and IL-18,
followed by adoptive transfer into patients with active acute
myeloid leukemia (AML) and exhibit enhanced responses
against leukemia target cells weeks later, in the form of
IFN-g production and cytotoxicity, indicating that CIML
NK cells represent potent antitumor effector cells for
Frontiers in Oncology | www.frontiersin.org 6162
leukemia immunotherapies (85, 86). However, the molecular
mechanism of CIML NK cell differentiation and reactivation
remains unknown.
SEMA7A

Adoptive transfer immunotherapy of NK cells in solid tumor
patients is not satisfactory. One of the main challenges is the
transport and infiltration of NK cells to the tumor site. Sema7A
can regulate the migration of immune cells including NKs.
Sema7A is widely expressed in lymphocytes and myeloid cells
including CD56bright NK cells. Stephanie Jost found that Sema7A
is substantially upregulated on CIML NK cells after stimulation
with cytokines (IL-12, IL-15, and IL-18), consistent with the
expression of its ligand integrin-b1 and IFN-g production (87).
Strikingly, Sema7A blockade impairs substantial anti-tumor
response mediated by CIML NK cells. These strongly indicate
that Sema7A is a significant marker of NK cell maturation, and
its ligand integrin-b1 contributes to CIML NK cell differentiation
and activity.

NK cell-based tumor treatment strategies include
strengthening activation of NK cell, blocking inhibitory signals
on NK cell, and adoptive transfer of CAR-NK cell. Given that
Sema7A/integrin-b1 interaction promotes CIML NK cell
differentiation, Sema7A can be a potential biomarker of clinical
outcomes for hematologic malignant patients involving CIML
NK cell therapeutic interventions.
SEMAPHORINS AND DENDRITIC CELL

Dendritic cells are a group of antigen-presenting cells (APCs).
Most of the DCs in the human body are immature, expressing
low levels of costimulatory factors and adhesion receptors. DCs
can control the activation or suppression of T cells through
costimulatory molecules CD80 and CD86 interaction with
CD28 or CTLA4, respectively, in cancer (88, 89). Tumor-
infiltrating DCs have often been viewed as tolerogenic or
immunosuppressive (90, 91). However, the biological function
of semaphorins that regulate mature and migratory phenotype of
DCs is poorly defined.
Sema3E
Sema3E has shown to modulate DC function in chlamydial
infection. Relative to Sema3E wild-type mice, knockdown
Sema3E expression exhibits higher bacterial burden by
increasing Th2 response (IL-10), enhancing expression of PD-
L1 and PD-L2 and reducing Th1/Th17 cytokine production (IL-
12) (92). Another study found that Sema3E knockout exerted
inhibitory effect on DC migration through regulation of CCR7
expression and augmenting PD-L2 expression, compared to
Sema3E wild-type mice (93). These studies have shown that
Sema3E can regulate the migration and function of DCs in
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inflammation. However, the role of Sema3E in DCs has not been
elucidated in the TME.

Sema4A
Sema4A is identified as a biomarker for DC activation status,
especially in the human immune system (69). IL-33, as a
candidate for cytokine therapies, can effectively enhance
Sema4A expression and stimulate anti-tumoral cells including
NK and CD8+ T cells (29, 94), while the mechanism of IL-33 on
anti-tumor effects remains unclear. Sema4A on DC interacting
with its Plexin B2 receptor on CTL can promote INF-g
production, increase the cytotoxicity of CTLs, and repress
tumor growth (29). In vivo syngeneic mouse models, Sema4A
knockdown abolishes the antitumor activity of IL-33. These
results suggest that Sema4A may be an intrinsic antitumor
effector of IL-33 in mice.

Sema7A
DC migration is essential for host defense against tumor
pathogens. The immature DCs have strong abilities to migrate.
The study of Sonja I Buschow identified Sema7A as one of the
most highly upregulated proteins upon DC maturation,
adhesion, and migration in human and mouse by a large-scale
proteome analysis (95). Sema7A-deficent DCs show an increased
adhesion strength and lack the ability of migration in response to
CCL21 by impairing the formation of actin-based protrusions.
Sema7A knockdown impairs the actin cytoskeleton, resulting in
enhancing the adhesion and attenuating migration ability of
DCs (95).

Although Sema7A has a stimulating effect on the maturation
and antigen presentation of DCs, which is beneficial for immune
response, a growing number of studies have shown that Sema7A/
integrin b1 is a promigratory signal and confers poor survival
rate in glioma and breast cancer (96, 97). Therefore, Sema7A
plays an anti-tumor effect in terms of DCs, but promotes tumor
cells migration in the whole TME.
SEMAPHORINS AND MYELOID-DERIVED
SUPPRESSOR CELLS

Myeloid-derived suppressor cells (MDSCs), distinctively
expressing nitric oxide synthase (iNOS) and arginase-1 in the
STAT3-dependent pathway (98), are bone marrow-derived
immature heterogeneous myeloid cells in pathologic conditions
such as chronic inflammation and cancer. MDSCs are progenitor
cells of macrophages and DCs under normal circumstances, but
exert immunosuppressive activity to T-cell function in the
presence of maturation arrest (99). Semaphorin can regulate
the polarization of MDSCs. Conejo-Garcia and Arindam
Bhattacharyya found that semaphorins in exosomes derived
from tumor mesenchymal stem cells promoted myeloid-
derived suppressor cells (M-MDSCs) to differentiate to
immunosuppressive M2-macrophages in breast cancer, but
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which kind of semaphorins was not mentioned in their
research (100).
SEMA4D

MDSCs are major immunosuppressive cells in head and neck
squamous cell carcinomas (HNSCCs), resulting in resistance to
ICBs. However, the specific pathways of MDSC recruitment and
infiltration remain to be investigated. In HNSCC, tumor cell-
derived Sema4D inducing MDSC polarization corresponded
with an inhibition in T-cell activation and an increase in
arginase-1, TGF-b, and IL-10 production (101). Clint T. Allen
found that Sema4D blockage improved responses to ICIs therapy
for HNSCC patients due to repressing Ly6GhiLy6Cint MDSCs
(PMN-MDSCs) infiltration by reducing MAPK-dependent
expression of chemokines (44, 102). Additionally, Sema4D
mAb did not inhibit MOC1-tumor cell growth or tumor
vascularity. These results indicated that anti-Sema4D
antibodies enhance response of combination therapy by
altering immune response not by inhibiting proliferation or
angiogenesis, and highlighted that anti-Sema4D antibodies
might be beneficial for patients with PD-1 inhibitor resistance.
CONCLUSION AND
FUTURE PERSPECTIVES

Although immunotherapy has been considered a breakthrough for
hematologic cancers and solid tumors, the survival duration and life
quality of patients are compromised to tumor immune evasion.
Immune evasion is one of the hallmarks of cancer, which is one of
the main reasons for the poor prognosis of patients. Imbalance
between pro-tumor and anti-tumor immune response leads to
immune escape of tumor cells. The immunosuppressive responses
are generally manifested as an increase in expression in inhibitory
receptors and ligands in APC cells (DCs, macrophages, and B cells),
CTLs, and NK cells; an increase in tumor-infiltrating
immunosuppressive cell types (M2-Mfs, Tregs, B-regs, and
MDSCs); hypoxic and acidic conditions; and an increase in pro-
tumor cytokine and chemokine production. Accumulating evidence
shows that semaphorins are involved in tumor evasion and
progression. Semaphorins are dysregulated in multiple types of
tumors, making them not only tumor prognostic predictors but also
therapeutic targets. However, the function and signal pathways of
semaphorins in the tumor immune environment are intricate and
not yet fully elucidated.

Semaphorins can act as attractants to elicit inflammation cells
such as macrophages, dendritic cells, NK cells, B cells, and T cells
to the TME (Figure 2 and Table 1). For example, soluble
Sema3A has opposite effects on the recruitment of
macrophages in different types of cancer. In terms of the
transmembrane Sema4 family, Sema4C and Sema4D promote
macrophage recruitment and tumor progression. Sema4A
promotes Treg survival and stability and accelerates tumor
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growth. Sema7A is constitutively distributed on resting dendritic
cells, is highly upregulated on mature DCs, and is a negative
regulator of T-cell responses and plays a critical role in T-cell-
mediated inflammation through a1b1-integrin (103, 104). Thus,
those immune semaphorins provide valuable and novel insights
into immunotherapy for cancer.

Combination immunotherapy is an effective way to reshape
TME and improve the therapeutic effect, particularly for
immunotherapy-resistant and PD-L1 negative/low tumors.
Immune semaphorin-based mAb blockade therapy has become
a research hotspot. For instance, the combination of Sema4D
mAb with either CTLA-4 or PD-1 inhibitor abrogates tumor
growth in murine oral cancer-1 mice by inhibiting MDSC
recruitment and enhances CTL infiltration (44). Recently, the
Frontiers in Oncology | www.frontiersin.org 8164
combination of lgG mAb targeting Sema4D (pepinemab) with
PD-L1 inhibitor avelumab has been evaluated as a safe and
tolerated synthetic therapy in phase II clinical trials of
immunotherapy-resistant NSCLC patients (76). Another phase
I trial (NCT03425461) has been registered on ClinicalTrials.gov.
to evaluate the safety and tolerability of combination of anti-
SEMA4D monoclonal antibody (VX15/2503) with nivolumab or
ipilimumab in patients with stage III or IV melanoma who have
progressed on anti-PD1/L1-based checkpoint inhibitors
(Figure 3). Nevertheless, the serious toxic side effects of cancer
immunotherapies mainly include cytokine release syndrome
(CRS) and immune effector cell-associated neurotoxicity
syndrome (ICANS) (105). Advanced nanoparticle or exosome
drug delivery system can transport semaphorin-based drugs to
FIGURE 2 | The intricate roles of immune semaphorins and their receptors in tumor microenvironment. Sema3A and Sema3B contribute to decrease in toxicity of
CTL by binding to Nrp-1. However, Sema3A promotes M1-Mf proliferation but inhibits M2-Mf proliferation. Sema4A promotes Treg activation and survival via Nrp1
receptor, but enhance CTL vitality via Plexin-B2 receptor. Sema4D derived from tumor cell or M2-Mf promote tumor angiogenesis via Plexin–B1/2 receptor on
endothelial cells and inhibit immune response by promoting polarization of MDSCs and inhibiting T-cell function via CD72. Sema4D derived from Mf can secrete
SDF-1 (CXCL12) that mediates tumor metastasis by binding to CXCR4. Sema7A can mediate macrophages and dendritic cell migration in integrin b1 signals, and
mediate tumor lymphatic metastasis through upregulating PDPN expression.
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TABLE 1 | The roles of representative immune semaphorins in tumor microenvironment.

Pathway Functions Marker on immune cell Ref.

SF1-mediated phosphorylation of Akt
nd MAPK

M1-Mfs increase; M2-Mfs decrease M1-Mfs: CD11b+Ly6G-

Ly6ClowMHCIIhigh;
M2-Mfs: CD11b+Ly6G-

Ly6ClowMHCIIlow

(27)

lexinA1/PlexinA4-dependent VEGFR1
ctivation

Drive TAMs toward hypoxic niches Mf: F4/80+ (24)

Elicit TAMs (microglial cell) accumulation Microglial cell: Iba1 (38)
hibit T-cell migration toward CXCL12
radient

Impair CTL functions CTL: Nrp-1+PD-1hi CD8+ (59)

orrelate with BCL6 expression Enhance germinal center TIL-Bs
infiltration

TIL-Bs: CD38+IgD−

BCL6+Sema4A+
(28)

odulate the Akt-mTOR signaling axis Potentiate Treg-cell function and survival Tregs: CD4+CD25+Foxp3+ (30)

duce production of CSF-1 in plexin B2-
ependent manner

Promote macrophage infiltration Mf: F4/80+ (25)

Promote macrophage infiltration Mf: CD68 (26)
odulate the SDF1/CXCR4 signaling axis Anti-Sema4D antibody promotes tumor

migration via TAMs
Mf: F4/80+ (49)

MP-14 mediated CD100 shedding Soluble Sema4D enhance CTL activity CD8+ T cell subsets depend on
CD45RA+/-, CCR7+/-

(75)

educe MAPK-dependent CXCL1
xpression

Induce MDSCs polarization G-MDSCs: Ly6GhighLy6Cint

M-MDSCs: Ly6GlowLy6Chigh
(44)

rive the expression of PDPN Promote macrophage-mediated
lymphangiogenesis

Mf: CD68, F4/80+ (52)
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TME with specific antibody to potentially alleviate adverse effects
(106). In addition to eliminating inhibitory signals in the TME,
improving the immunogenicity of tumor cells to enhance CTL
function is also an important strategy for immunotherapy.
Adoptive transfer immunotherapy of CTL and NK cells and
DC-based vaccines genetically engineered with semaphorins or
their receptors of tumor cells may also be a promising cancer
treatment modality. Thus, more in vitro studies, tumor models,
and clinical trials are urgently needed to verify the effectiveness
of reshaping TME and modulating immune cells by combination
immunotherapy and adoptive transfer immunotherapy of
immune effectors.
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The use of vaccines for cancer therapy is a promising immunotherapeutic strategy that
has been shown to be effective against various cancers. Vaccines directly target tumors
but their efficacy against glioblastoma multiforme (GBM) remains unclear. Immunotyping
that classifies tumor samples is considered to be a biomarker for immunotherapy. This
study aimed to identify potential GBM antigens suitable for vaccine development and
develop a tool to predict the response of GBM patients to vaccination based on the
immunotype. Gene Expression Profiling Interactive Analysis (GEPIA) was applied to
evaluate the expression profile of GBM antigens and their influence on clinical
prognosis, while the cBioPortal program was utilized to integrate and analyze genetic
alterations. The correlation between antigens and antigen processing cells was assessed
using TIMER. RNA-seq data of GBM samples and their corresponding clinical data were
downloaded from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome
Atlas (CGGA) for further clustering analysis. Six overexpressed and mutated tumor
antigens (ARHGAP9, ARHGAP30, CLEC7A, MAN2B1, ARPC1B and PLB1) were highly
correlated with the survival rate of GBM patients and the infiltration of antigen presenting
cells in GBMs. With distinct cellular and molecular characteristics, three immune subtypes
(IS1-IS3) of GBMs were identified and GBMs from IS3 subtype were more likely to benefit
from vaccination. Through graph learning-based dimensional reduction, immune
landscape was depicted and revealed the existence of heterogeneity among individual
GBM patients. Finally, WGCNA can identify potential vaccination biomarkers by clustering
immune related genes. In summary, the six tumor antigens are potential targets for
developing anti-GBMs mRNA vaccine, and the immunotypes can be used for evaluating
vaccination response.
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INTRODUCTION

Gliomas are intrinsic brain tumors arising from glial or precursor
cells. They are classified into grades I to grade IV based on the
degree of undifferentiation, anaplasia, and aggressiveness (1).
Glioblastoma multiforme (GBM, grade IV glioma) accounts for
82% of all malignant gliomas and is characterized histologically
by considerable vascular proliferation, cellularity and mitotic
activity, and necrosis (2). Despite the availability of standard
treatment options for GBM including surgical resection,
radiotherapy and chemotherapy, the median survival time of
GBM patients is only 12–15 months after diagnosis (3, 4). There
has been growing evidence supporting the dynamic interaction
between the central nervous system (CNS) and the systemic
immune system. As a result, several studies have explored the
efficacy of immunotherapy in the treatment of glioblastoma (5).

Currently, immunotherapies for gliomas include chimeric
antigen receptor T cell therapy (CAR-T), immune-checkpoint
inhibitors, oncolytic viral therapies, and vaccines (6). Cancer
vaccines are classified into three major categories based on
content and format, such as cell vaccines (tumor or immune
cells), nucleic acid vaccines (viral vector, RNA or DNA), protein/
peptide vaccines (7). Clinical trials evaluating the efficacy of
immune cells (Dendritic cells e.g.), pulsed with TAAs (tumor-
associated antigens) have revealed promising results. This is
despite the heterogeneity in dose, route, and location of
administration as well as the adjuvant used among different
trials. HSP (Heat Shock Proteins) vaccines are a subclass of
protein vaccines that are composed of HSPs bound to tumor
peptides. Phase I HSP vaccine trial in patients with recurrent
GBM appeared safe and tolerable (8). Several peptide vaccine
trials targeting EGFRvIII showed that these peptide vaccines had
a degree of effect with no significant toxicities encountered (9).
Recently, a peptide vaccine targeting mutant IDH1 in newly
diagnosed glioma has been evaluated in clinical trials and found
to be safe, immunogenic, and efficacious (10). However, these
vaccines still face with many challenges including: potential of
tumor antigens escape, limited repertoire of using defined
antigens, and high variability in the physicochemical properties
(11, 12). Nucleic acid vaccines are a promising alternative that
allow protein and peptide antigen to be expressed with the
correct protein modifications in cells (13, 14).

DNA and mRNA vaccines are types of nucleic acid vaccines.
The mRNA vaccines have several advantages over the DNA
vaccines in safety and efficacy since mRNA does not need to
enter the nucleus and be incorporated into the genome (15).
Recently, there have been several studies evaluating the efficacy
of mRNA vaccines in different types of tumors with varied
outcomes being achieved. In gastrointestinal cancer, mutation-
specific T cell responses were elicited against predicted
neoepitopes and T cell receptors targeting KRASG12D mutation
could be isolated after mRNA vaccines application (16). Two
mRNA vaccines (CV-9103 and CV-9104) based on four
prostate-specific antigens (STEAP, PSCA, PSMA, and PSA),
have showed good tolerability and favorable immune-
activation in phase I/II clinical trials in prostate cancer patients
(17). Another mRNA vaccine targeting Trp2 induced antigen-
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specific T cell response and suppressed melanoma proliferation
in preclinical trials (18). Angelique et al. reported that dendritic
cells (DCs) transfected with CD133 mRNA (cancer stem cell
marker) activated T cells, produced an effective and long-lived
immune response, and suppressed the proliferation of CD133+

glioma stem cells (GSCs) and tumor growth in mice (19).
Although there are very few studies that have evaluated the
efficacy of mRNA vaccines in GBM, vaccination for GBMs TAA
remains a viable concept and current trials are under way for
several other targets.

The purpose of our study was to identify novel antigens
of GBM that can be used as targets for mRNA vaccine
development. In our study, we analyzed fraction alteration and
gene expression data of GBMs and identified six candidate genes
associated with poor prognosis and robust stimulation of the
infiltration of antigen-presenting cells (APC). In addition, due to
tumor complex immune microenvironment (TIME) and tumor
heterogeneity, some tumor patients may be more likely to benefit
from mRNA vaccines (20). We then developed a tool to identify
GBM patients who might be more suitable for vaccination. To
achieve this, we carried out cluster analysis of immune related
genes, and identified three immune subtypes with distinct
clinical, cellular, and molecular characteristics. The results were
validated using an independent cohort. Finally, we used the
immune landscape and immune gene co-expression modules to
analyze the distribution of immune related gene characteristics
in GBMs. The employed screening workflow was depicted in
Supplementary Figure 1.
METHOD AND MATERIAL

Identification of Tumor Associated
Antigens of Glioblastoma Multiforme
(GBM) for Vaccination
Cancer cells harbor unique mutant genes that theoretically create
corresponding unique tumor-specific antigens (21). Besides,
CNV (copy number variation) burden play significant role in
tumors’ recurrence and death, indicating that CNV should be
considered to be an antigen factor (22). With a deeper
understanding of the immune system, the abberant expression
of some gene products by tumor cells can be used to develop a
variety of antigen-specific vaccination strategies and activate
tumor antigen-specific T cells (23). Therefore, we analyzed the
gene expression levels and gene alteration status in GBMs to
identify tumor associated antigens. Gene Expression Profiling
Interactive Analysis is a web-based tool used to process and
deliver gene expression profiles based on the samples from GTEx
(Genotype-Tissue Expression) and TCGA (the Cancer Genome
Atlas) (24). In this study, GEPIA2 (http://gepia2.cancer-pku.cn)
was employed to detect the differentially expressed genes
between normal brain tissue and GBM (|Log2FC|>1, q<0.05)
and explore their prognostic value in GBMs. Then, we applied
the cBioPortal (http://www.cbioportal.org) for exploring,
visualizing, and analyzing the genome alteration status of GBM
antigens with multidimensional cancer genomics data (25).
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Last but not least, effectively uptake, processing, and presentation
of antigens by APCs (antigen-presenting cells) can initiate
antitumor immune responses through the activation of both
CD4+ helper and CD8+ cytotoxic T lymphocytes (26–28). Tumor
Immune Estimation Resource (TIMER, https://cistrome.
shinyapps.io/timer/) can be used for systematically evaluating
the clinical impact of different immune cells (dendritic cell,
macrophage, neutrophil, CD8+ T cell, CD4+ T cell and B cell)
in the tumor microenvironment of different tumor types.
Therefore, we utilized TIMER to explore the relationship
between expression of the identified potent antigens in GBMs
and the degree of antigen-presenting cell (APC) infiltration.
Spearman correlation analysis between APC cells and tumor
purity was calculated using TIMER (29).

Data Preprocessing
From The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/), we downloaded FPKM RNA-seq dataset and
mutect2-processed mutation dataset of 167 GBMs as well as
their corresponding clinicopathological information. In addition,
the RNA-seq data of 369 GBM cases and their corresponding
clinicopathological information were obtained from the
mRNAseq_325 and mRNAseq_693 datasets of the Chinese
Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) and
used as the validation dataset. The gene expression levels of the
GBM samples were transformed using log2 for further analysis.

Identification of Immune Subtypes and
Their Cellular Characteristics
Patient stratification based on tumor immune subtypes can be
used to distinguish patients who are suitable for vaccination
therapy. After preprocessing the expression data of immune-
related genes, we carried out consensus clustering to stratify
GBM samples using the “ConsensusClusterPlus” package in R
(30). Consensus Cumulative Distribution Function (CDF) was
calculated to determine the optimal cluster number. Since the
correlation between immune-related signatures and cancer
markers is useful for tumor prognosis, we assessed the
correlation between immune subtypes and 68 signatures from
Wolf et al. (31). We then evaluated 28 immune cell signatures
and LM22 signatures to assess the abundance of immune cells in
each GBM tumor sample and compare the results among
immune subtypes (32, 33). “ESTIMATE” package was
employed to estimate Tumor purity scores (tumor purity,
stromal score, immune score and estimate score) (34).

Immune Landscape Analysis
Dimension reduction analysis is the commonly used analysis
method to increase the understanding of biological systems in
tumor. It maps high-dimensional space to low-dimensional
space through orthogonal transformation and extracts the
largest amount of data information by preserving the a few
components (35). In the present study, dimension reduction
analysis was conducted using the “monocele” package in R with
Gaussian distribution (36, 37). Subsequently, the immune
landscape was visualized using a functional map cell trajectory
Frontiers in Immunology | www.frontiersin.org 3172
where different immune subtypes were identified by
different colors.

Gene Co-Expression Network
We constructed a scale-free network using the “blockwiseModules”
function of the WGCNA package in R. The soft threshold of
adjacency matrix was set as a continuous value between 0 and 1
so that the constructed network can be closer to the state of the
real biological network (38). The “clusterProfile” package in R is
a universal enrichment tool which integrates statistical analysis
and visualization of functional profiles for genes and gene
clusters (39). Then, the GO and KEGG functional components
in the “clusterprofile” package were employed to analyze the
biological function and pathways of modules associated with
GBM prognosis.

Statistical Analysis
The Wilcox test was used to compare data between the two
groups, while the Kruskal Wallis test was used to compare three
or more groups. Kaplan–Meier curves were used for OS
analysis. The cut-off value was set as the best cut-off value
from the “survminer” package in R. P<0.05 was regarded as
statistically significant.
RESULT

Exploring Potential Tumor Antigens of
Glioblastoma Multiform (GBM)
At the beginning, results of GEPIA2 analysis revealed 7664
differentially expressed genes where 5221 genes were overexpressed
in GBM when compared to normal brain tissue (Figure 1A). Using
the cbioportal analysis algorithm, we identified 7832 amplified
genes as potential tumor antigens of GBM (Figure 1B). In the
fraction genome altered group, ten genes with the highest
alteration frequency included COMMD10, DES, TUBA4A,
HLA-DRA, EGFR-AS1, SEC61G-DT, ELDR, EGFR, SEC61G
and DIS3 (Figures 1C, D). Moreover, a total of 14363 mutated
genes were identified by analyzing their mutation count in GBMs
(Figure 1E). Among them, we displayed ten genes with the
highest mutation frequency in GBM, including ACE2, ADAM10,
ADGRB3, AMER1, ANXA7, ARNT, ASIC2, ATPGV1E1,
BPIFB6 and CASP9 (Figure 1F). Overall, 1101 amplified,
mutated, and overexpressed genes were identified for further
analysis (Figure 1G).

Identification of Tumor Antigens
Associated With GBM Prognosis and
Antigen Presenting Cells
Then, we analyzed the role of 1101 aforementioned genes in the
survival and immune response of GBM patients. Results of
survival analysis showed that the expression of 14 genes could
predict OS (Overall Survival) and PFS (Disease Free Survival) of
GBM patients (Figure 2 and Supplementary Figure 2). More
importantly, the expression levels of six genes (ARHGAP9,
ARHGAP30, CLEC7A, MAN2B1, ARPC1B, and PLB1) were
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positively correlated with the level of abundance of B cells,
macrophages, and dendritic cells (DCs) and were thus
considered suitable targets for vaccine use (Figure 3). In general,
their upregulationwas related to poorerGBMprognosis andmore
APCs infiltration. Hence, these tumor antigens play key roles in
the development and progression of GBM and could be directly
processed and presented by the APCs to T cells or recognized by
the B cells to trigger an immune response.

Immune Subtypes of GBM
Next, we analyzed the immune status of GBM and identified
patients likely to benefit from vaccination by conducting
immunotyping. With expression profiles of 1658 immune
related genes, we constructed consensus clustering of 167
GBMs from TCGA cohort and validated the stratification
Frontiers in Immunology | www.frontiersin.org 4173
using GBM samples from the CGGA cohort. Due to the
relatively small sample size of discovery cohort, we chose k = 3
to group the samples into three immune subtypes (IS)
(Figures 4A–C). The GBM patients in the IS2 group had the
best survival prognosis, followed by GBM patients in the IS1
group; GBM patients in the IS3 group had the worst prognosis
(Figure 4D). We then explore the relationship between the six
pan-cancer immune subtypes (C1-C6) and the three immune
subtypes identified in this study (40). The immune subtypes
identified in this study mainly clustered into C1, C4 and C5 pan-
cancer immune subtypes (Figure 4E). With differential response
to radiotherapy and chemotherapy, four GBM subtypes
(proneural, neural, mesenchymal, and classical) were identified
before (41–43). Among them, GBMs from IS2 were overlapped
by proneural subclass, those from IS3 were covered by
A B

D

E F

G

C

FIGURE 1 | Identification of potential tumor antigens of Glioblastoma multiforme (GBM). (A) Chromosomal distribution of up- and down-regulated genes in GBMs.
Red plot: overexpressed genes; Green plot: under-expressed genes. (B) The chromosomal distribution of the aberrant copy number genes in GBMs. Red plot:
amplified genes; Blue plot: deleted genes. (C) Samples overlapping in altered genome fraction groups. (D) Top ten genes with highest frequency in altered genome
fraction. (E) Samples overlapping in mutation count groups. (F) Top ten genes with highest frequency in mutation count groups. (G) Potential tumor antigens (total
1106) with overexpression, mutation, and amplification in GBM, and significant association with OS, RFS and immune infiltration (total 6 candidates).
February 2022 | Volume 13 | Article 773264
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mesenchymal subclass and GBMs from IS1 were mainly
overlapped by classical subclasses (Figure 4F) The immune
subtypes in the CGGA cohort were associated with prognosis,
which was consistent with the results obtained from the TCGA
cohort (Figure 4G). Findings from our study suggest that our
classification of GBMs might be more detailed than the
classification according to the pan-cancer immune subtypes.
Thus, our classification provides more useful guideline for
development and execution of the GBM immunotherapy strategy.

The Association Between Tumor
Mutational Burden (TMB) and
Immune Subtypes
Tumor mutation burden is significant for the efficacy of vaccines
since the abundance of antigens and neoantigens affects the
immunogenicity of the tumor (44). We assessed the TMB and
Frontiers in Immunology | www.frontiersin.org 5174
mutations data of the GBMs from the TCGA cohort based on the
three subtypes. Ten most frequently mutated immune-related
genes (EGFR, PIK3CA, PIK3R1, PIK3CG, ANK1, PDGFRA,
SEMA3C, TG, TMPRSS6 and L1CAM) was showed with
waterfall plot (Supplementary Figure 3A). We found the
number of mutated genes and the tumor mutational burden was
significant different among three subtypes (Supplementary
Figures 3B, C). These findings indicate that the three immune
subtypes expressed distinct amounts of tumor antigens from
mutated genes and that the IS3 subtype had the least
immunogenicity among these subtypes.

The Association Between TIME and the
Immune Subtypes
The ssGSEA method was used to identify the 28 immune
signatures previously reported in both TCGA and CGGA
A

B D

E F G

C

FIGURE 2 | Identification of tumor antigens associated with GBM prognosis. (A) Differential expression of six candidates in normal brain tissue and GBMs.
*, significant difference. Kaplan-Meier curves showing OS of GBM patients stratified on the basis of (B) ARHGAP9, (C) ARHGAP30, (D) CLEC7A, (E)
ARPC1B, (F) PLB1 and (G) MAN2B1 expression levels. 50% (Median) cutoff was set up for dividing low and high expression groups. Log-rank test was
used for hypothesis testing, and a p-value <0.05 was considered statistically significant.
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cohorts where immune subtypes showed different proportions of
immune cell components (Figures 5A, B). For example, the
scores of mast cells, MDSC, activated dendritic cells and
macrophages were significantly higher in IS3; eosinophils, type
2 T helper cells and activated CD4 T cells were higher in IS2;
while central memory CD4 T cells, plasmacytoid dendritic cells
and NK T cells were more abundant in IS1. Analysis of
CIBERSORT algorithm showed that there were more
immunosuppressive regulatory immune cells (macrophage M2
and gamma delta T cells) but less cytotoxic immune cells
(activated NK cells) in the IS3 subtype compared to the IS1
and IS2 subtypes (Figure 5C). Thus, the IS2 subtype can be
considered to be immunologically “hot”, the IS1 to be in an
Frontiers in Immunology | www.frontiersin.org 6175
intermediate state, and the IS3 subtype to be immunologically
“cold”. A similar trend was seen in the CGGA cohort
(Figure 5D). Besides, the expression of most immune
signatures was higher in the IS3 subtype compared to the IS2
and IS1 subtypes (Figure 5E). Immune checkpoints (ICPs) (e.g.,
PD1 and PDL1) and immunogenic cell death modulators (e.g.,
HGF and IFN) are crucial for modulating the immune responses
of effectors and maintaining the self-tolerance of tumor to
minimize tissue damage (45, 46). PD1 and PDL1 are the most
common ICPs for blockage therapy. The IS2 subtype had the
least expression of PD1 and PDL1 among the three subtypes;
meanwhile, IS3 has highest level of PD1 expression which
suggested they might show good response rates for immune
A

B

D

E

F

C

FIGURE 3 | Identification of tumor antigens associated with antigen-presenting cells (APCs). Correlation between the expression levels of (A) ARHGAP9, (B) ARHGAP30,
(C) CLEC7A, (D) ARPC1B, (E) PLB1 and (F) MAN2B1 and infiltration of APCs (macrophages, dendritic cells, and B cells) in GBM.
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checkpoint blockade (Figures 6A–D). Subsequently, we assessed
the differential expression of and ICD modulators and ICPs
between the three immune subtypes. We found that 34 ICPs had
distinct expression patterns among the three subtypes. There was
significant upregulation of CD28, CD244, CD200R1, CD27,
CD40, CD40LG, CTLA4, CD48, CD86, CD80, CD70,
HAVCR2, ICOS, ICOSLG, IDO1, NRP1, TIGIT, TNFRSF14,
TNFRSF18, TNFRSF8, TNFRSF9, TNFRSF14, TNFSF4, and
TNFSF9 in the IS3 subtype (Figures 6E, F). In addition,
almost all ICDs were differentially expressed among the three
subtypes (Figures 6G, H). Taken together, immunotyping can be
considered a biomarker of immune status in GBMs and can be
used to predict the response of the patients to vaccination.
Frontiers in Immunology | www.frontiersin.org 7176
The Immune Landscape of GBM
We further explored the immune characteristics of GBM by
integrating the immune-related gene expression profiles from
TCGA cohort to construct the immune landscape where the
immune distribution of each GBM were visualized (Figure 7A).
The expression profiles were aggregated and visualized in a two-
dimensional scatter plot with several branches using the DDRTree
algorithm (a manifold learning approach) after dimensionality
reduction. Component 1 was highly correlated with natural killer
cells, activated CD4 T cells and type 17 T helper cells, while
component 2 was positively correlated with central memory CD8
T cells, central memory CD4 T cells, type 1 T helper cells, and
natural killer cells (Figure 7B). Further prognostic analysis of the
A

B

D

E F G

C

FIGURE 4 | Identification of potential immune subtypes of GBM. (A) Cumulative distribution function curve and (B) delta area of immune-related genes in TCGA
cohort. (C) Sample clustering heat map. (D) Kaplan-Meier curves showing OS of GBM immune subtypes in TCGA cohort. (E) Overlap of GBM immune subtypes
with three pan-cancer immune subtypes (NC1 = 2, NC4 = 158, NC5 = 1). (F) Distribution of four gene expression subtypes across IS1-IS3 in TCGA cohort. (G)
Kaplan-Meier curves showing OS of GBM immune subtypes in CGGA cohort. *p < 0.05, **p < 0.01.
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GBMs distributed on the extreme ends of the branches showed
that patients in group 3 had poorer prognosis than those in group
1, indicating that the immune landscape can be used to
discriminate the patients and predict their prognosis
(Figures 7C, D). The GBMs of the IS3 subtypes were further
stratified into three immune subtypes, IS3A, IS3B and IS3C, based
on the distribution of the individual GBM samples in the immune
landscape (Figure 7E). Among them, IS3A had better prognosis
than the other types (Figure 7F). The estimate score and
expression of ICP and ICD were significantly different among
these immune subtypes (Figures 7G–J and Supplementary
Figures 4A, B). Interestingly, more activated B cells, cytotoxic T
cells and NK cells were located in IS3A than that of IS3B and IS3C,
indicating the GBMs of IS3A showed more inflamed
microenvironment (Supplementary Figure 4C). These findings
Frontiers in Immunology | www.frontiersin.org 8177
suggest that the immune landscape is an important complement
to immunotyping.

WGCNA Analysis of Immune Related
Genes in GBM
Weighted gene co-expression network analysis (WGCNA) was
employed to conduct co-expression analysis of the identified
immune related genes, and the results were visualized using a
dendrogram (Figure 8A). In the scale-free network, the optimal
soft threshold was set at 4 (Figures 8B, C). The colors of the
dendrogram branches indicate different gene clusters (min
module size = 20, deep split = 4 and height = 0.25)
(Figure 8D). In the end, 13 gene modules were clustered
except for the grey module (Figure 8E). The module
eigengenes of IS2 were more abundant in the black, green, red,
A

B D

E

C

FIGURE 5 | Cellular and molecular characteristics of immune subtypes. Differential enrichment scores of 28 immune cell signatures among GBM immune
subtypes in (A) TCGA and (B) CGGA cohorts. Different colors of the text on the right represents the immune cells were more enriched in the corresponding
subtypes. Differential enrichment scores of CIBERSORT 22 immune cell signatures in (C) TCGA and (D) CGGA cohorts. (E) Differential enrichment scores of 56
immune signatures among GBM immune subtypes. *p < 0.05, **p < 0.01, ***p < 0.001. ns, no significance.
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yellow, and purple modules, while the brown, pink and turquoise
modules had more eigengenes of IS3 (Figure 8F). Moreover, this
study revealed that the module eigengenes of the green and
brown modules were significantly associated with the prognosis
of GBMs (Figures 9A–C). Interestingly, the modules eigengenes
of brown and green modules were positively correlated with
component 2 and component 1, respectively (Figures 9D, F).
Biological functions analysis of the prognosis-related modules
showed that genes of the brown module were enriched in
macrophage activation, IL-17 signaling pathway and cytokine-
cytokine receptor interaction (Figure 9E). The genes in the green
module were enriched in antigen processing, B cell receptor
signaling pathway and T cell receptor signaling pathway
(Figure 9G). In the end, thirteen genes including PLAUR,
Frontiers in Immunology | www.frontiersin.org 9178
F13A1, THBD, CD300E, HK3, FPR2, SOCS3, NDUFB9,
PSMD6, PSMD10, CACYBP, GEMIN6 and PSMD14 were
identified as hub genes with >80% relevance in the brown and
green modules. These genes were considered to be potential
biomarkers for the mRNA vaccine.
DISCUSSION

Glioblastoma multiforme (GBM) is characterized by high degree
of malignancy and poor prognosis. The standard treatment plan
for GBM includes maximal safe resection, radiotherapy, and
concurrent administration of temozolomide (TMZ) (1).
However, the therapeutic outcomes for these strategies are
A B D

E

F

G H

C

FIGURE 6 | Association between immune subtypes and ICPs and ICD modulators. Differential expression of PD-1 among the GBM immune subtypes in (A)
TCGA and (C) CGGA cohorts. Differential expression of PD-L1 among the GBM immune subtypes in (B) TCGA and (D) CGGA cohorts. Differential expression of
ICP genes among the GBM immune subtypes in (E) TCGA and (F) CGGA cohorts. Differential expression of ICD modulator genes among the GBM immune
subtypes in (G) TCGA and (H) CGGA cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, ******p<0.000001. ns, no significance.
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poor with a median OS of just 12-14 months (47). There is
therefore need for novel and improved therapeutic alternatives
for GBM. Cancer vaccines and other immunotherapies (CAR-T,
ICP blockage and so on) are promising alternative strategies for
the treatment of GBMs, although they are influenced by immune
escape or immunosuppression of the microenvironment (48).
Tumor associated antigens are antigens preferentially expressed
in cancer cells which arise due to somatic mutations or growth-
related factors (49). These antigens are good candidates for
cancer vaccine development. The detection and analysis of
Frontiers in Immunology | www.frontiersin.org 10179
these antigens can quickly lead to the identification of suitable
human mRNA vaccine targets. Recently, analysis of potential
tumor ant igen in pancreat ic adenocarc inoma and
cholangiocarcinoma provided novel insights for mRNA vaccine
development of these tumors (50, 51). However, there have been
no comprehensive analysis of potential GBM antigens that can
be used for the development of an anti-GBM vaccine.

In this study, we identified six tumor antigens (ARHGAP9,
ARHGAP30, CLEC7A, MAN2B1, ARPC1B and PLB1) that had
mutations, amplification and were overexpressed in GBMs, as
A B

D

E

F G

I

H

J

C

FIGURE 7 | Immune landscape of GBM. (A) Immune landscape of GBMs where each point represents a patient, and the immune subtypes are color-coded.
The horizontal axis represents the first principal component, and the vertical axis represents the second principal component. (B) Heat map of two principal
components with 28 immune cell signatures. Immune landscape of samples from (C) two extreme locations and (D) their prognostic status. (E) Immune
landscape of the subsets of GBM immune subtypes. (F) Different subsets in IS3 associated with different prognoses. Immune assessment of different subsets in
IS3, represented by (G) immune score, (H) stromal score, (I) estimate score and (J) tumor purity. *p < 0.05, **p < 0.01, ***p < 0.001.
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promising candidates for mRNA vaccine. ARHGAP30 (Rho
GTPase activating protein 30) and ARHGAP9 (Rho GTPase
activating protein 9) are proteins containing a Rho-GTPase
activating (Rho-GAP) domain. These proteins are critical in
the modulation of several tumorigenic pathways (p38/MAPK,
FOX, Wnt/b-caterin pathways) and are significantly associated
with the prognosis of breast tumor, bladder carcinoma and other
cancers (52–56). CELC7A is a pattern recognition receptor that
detects glucan-like structures to trigger the phagocytic activity of
macrophages (57). CELC7A (C-type lectin domain family 7,
member A) ligates galectin-9 in the tumor microenvironment of
pancreatic ductal adenocarcinoma, resulting in the suppression
of T cell immunogenicity and reprogramming of tolerogenic
macrophages (58). ARPC1B is a constituent of the actin-related
protein 2/3 (ARP2/3) complex which binds and activates Aurora
A to regulate centrosome integrity (59). Since ARPC1B is
required for actin reorganization and lamellipodia formation,
ARPC1B mutations induce dysfunction of cytotoxic T cells (60).
There are several reports indicating that mutant ARPC1B plays a
significant role in immunodeficiency diseases (61–63). It was
Frontiers in Immunology | www.frontiersin.org 11180
reported mutations of rs117512489 in PLB1 (phospholipase B1)
was associated with the prognosis of the patients with non-small
cell lung cancer (64). Results of next generation sequencing
validated the role of PLB1 as a biomarker for lung cancers (65,
66). In the present study, the expression of these six antigens was
positively associated with the abundance of antigen presenting
cells (APCs), suggesting that they might have potential as vaccine
targets and stimulate APC activation (67, 68). However, there is
need for further research to determine their mechanisms of
action against tumors.

In our study, we analyzed the characteristics of GBMs based
on the pan-cancer immune categories and found that a majority
of the GBMs had characteristics corresponding to the C4
(Lymphocytes Depleted) category. A few GBMs had
characteristics corresponding to the C1 (Wound Healing) and
C5 (Immunologically Quiet) categories. In fact, only a small
population of tumor patients responds to the vaccine treatment,
although there is a lack of tools to select patients likely to benefit
from the treatment and evaluate immune response. Therefore,
we clustered GBMs based on the expression of integrated
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FIGURE 8 | Identification of immune gene co-expression modules of GBM. (A) Sample clustering. (B) Scale-free fit index for various soft-thresholding powers (b).
(C) Mean connectivity for various soft-thresholding powers (D) Dendrogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM).
(E) Gene numbers in each module. (F) Differential distribution of feature vectors of each module in GBM subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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immune related gene profiles, so as to provide a guideline for the
application of anti-GBM mRNA vaccine. The GBM samples
were clustered into three immune subtypes with different clinical
prognosis and immune profiles. GBMs in the IS3 subtype had the
poorest survival compared to the IS1 and IS2 subtypes, indicating
that immunotyping is a potential prognostic biomarker for
GBMs. More importantly, there may be distinct mechanisms
involved in the modulation of the tumor immune environment
among the three GBM subtypes, suggesting that different
therapeutic strategies are required for each subtype. GBMs
with IS1 and IS2 represent the lack of regulatory immune cells
and immunosuppressive antigen-presenting cells, resulting in T
cell activation and survival advantage. Therefore, the use of
immunotherapy in these patients can induce a stronger
Frontiers in Immunology | www.frontiersin.org 12181
immune response. On the contrary, the immune-cold subtype
( IS3) had a h igh ly complex and thorn ie r tumor
microenvironment. Generally, macrophages are recruited into
the tumor in response to inflammation-mediated chemokines,
where they engulf tumor cells and present antigens to adaptive
immune cells (69). GBM cells can utilize paracrine metabolites
or surface signals to polarizes these macrophages toward the
anti-inflammatory M2 phenotype (70). These tamed M2
macrophages expressed immune checkpoint molecules to
suppress adaptive immune anti-tumor response, that supports
the survival of cancer stem cells (71). The high expression of ICP
(PD-1, PD-L1, LAG-3, etc.), in the GBM samples of the IS3
subtype was an indication that there was severe suppression of
lymphocyte activation but exhaustion of existing T cells (72–74).
A
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FIGURE 9 | Identification of immune hub genes of GBM. (A) Forest maps of single factor survival analysis of 14 modules of GBM. (B) Differential prognosis in brown
module with high and low mean. (C) Differential prognosis in green module with high and low mean. (D) Correlation between brown module feature vector and second
principal component in immune landscape. (E) Circular barplot showing GO term (BP: biology process; CC: cellular component; MF: molecular function) and KEGG term
(pathway) in the brown module. The barplot size and color intensity represent the gene count and enrichment level respectively. (F) Correlation between green module
feature vector and first principal component in immune landscape. (G) Circular barplot showing GO term (BP, biology process; CC, cellular component; MF, molecular
function) and KEGG term (pathway) in the green module. The barplot size and color intensity represent the gene count and enrichment level respectively. *p < 0.05.
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Furthermore, several immunosuppressive factors such as TGF-b
and IL-10 released by GBM cells, Tregs, microglia, macrophages,
also lead to local immunosuppression (75, 76). These results
indicated that GBMs of the IS3 subtype were more likely to
benefit from vaccination in combination with immune
checkpoint blockage. In addition, the use of CAR T-cell
therapy deserves to be explored.

Gliomas have poor clinical outcomes, due to the high degree
of intratumoral heterogeneity (ITH) and low efficacy of
immunomodulator (IM) therapy compared with other tumor
types (77). Several studies indicated that the ITH of GBM
contributes to the development of chemoradiotherapy
resistance and different subpopulations of GBM respond
differently to treatment, resulting in the generation of
treatment-refractory recurrent tumors (78, 79). The machine
learning-based analysis led to dimensionality reduction of the
expression profile of GBMs, revealing the intra-cluster
heterogeneity in GBMs. From this analysis, GBMs in the IS3
subtype were further subdivided into three subtypes. Among the
three subtypes, IS3A showed significantly better survival than
the other two subtypes. Estimate score analysis of the GBMs in
the IS3 subtype reflected various immune factors while
therapeutic estimation and application of combination therapy
on these patients was required. It has been reported that combined
immunotherapy involving the use of anti-CTLA-4 monoclonal
antibody and vaccine can modulate the tumor microenvironment
and enhance anti-tumor immune response compared to the vaccine
or monoclonal antibody alone in triple negative breast cancer (80).
Integrating clustering and immune landscape can provide more
detailed immune profile of GBM and assist clinicians in designing
accurate immunotherapy strategies.

Despite the previous reports on vaccine showed potential of
GBM vaccination treatment, there is great limit of current
peptide vaccines’ efficacy. For example, IDH mutation
frequencies were less than 10% of primary GBM which
influence the efficacy of IDH targeting vaccine in primary
GBMs (81). As for EGFRvIII targeting vaccine, it was proven
for safety but no benefit to overall survival because of
immunoediting under immunologic pressure (82). With more
flexibility, mRNA vaccine is equipped with several advantages:
not require prior knowledge, not restricted by the patient’s HLA
type (14). Recently, several clinical trials on mRNA vaccine
therapy are ongoing (NCT02649582, NCT02808364 and
NCT02709616). Interestingly, the results of a preclinical trial
by Duane A showed that TMZ enhances vaccine-driven immune
responses and significantly reduces GBM growth in a murine
model, which suggested that vaccines therapy can act
synergistically with chemotherapy in furthering a therapeutic
effect (83). GBM patients who underwent vaccine therapy
targeting CMV pp65 exhibited unexpectedly prolonged
progression free survival (PFS) and overall survival (OS) (84).
Notably, GBMs hampers immunotherapy with low infiltration of
lymphocytes but high fractions of macrophages and there is need
for further research on the anti-GBM mRNA vaccine and
combined protocol (85). Our study comprehensively analyzed
the potential antigens and the conditions for the application of
Frontiers in Immunology | www.frontiersin.org 13182
the mRNA vaccine in GBMs. The results from this study provide
a theoretical foundation for mRNA vaccine development and
combined immunotherapy for GBMs.
CONCLUSION

ARHGAP9, ARHGAP30, CLEC7A, MAN2B1, ARPC1B and
PLB1 were identified as potential GBM antigens for mRNA
vaccine development. GBM patients in the IS3 subtype are
more likely to benefit from vaccination.
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Supplementary Figure 1 | Procedures for the analysis of antigen detection and
GBM immune subtypes identification.
Supplementary Figure 2 | Association between the expression of tumor
antigens with GBM RFS. Kaplan-Meier curves showing PFS of GBM patients
stratified on the basis of (A) ARHGAP9, (B) ARHGAP30, (C) CLEC7A, (D)
ARPC1B, (E) PLB1 and (F) MAN2B1 expression level. p-value <0.05 was
considered statistically significant.
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Supplementary Figure 3 | Association between immune subtypes and TMB and
mutation. (A) Ten highly mutated genes in GBM immune subtypes. (B) mutation
number and (C) TMB in GBM IS1-IS3. *p < 0.05.

Supplementary Figure 4 | Association between immune subtypes and immune
molecules and immune cells signatures. Differential expression of (A) ICP genes and
(B) ICD genes among the GBM immune subtypes. (C) Differential enrichment
scores of 28 immune cell signatures in the above subsets. *p < 0.05, **p < 0.01,
***p < 0.001.
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The advent of CAR-T cell therapy has changed the face of clinical care for relapsed and
refractory pre-B-acute lymphocytic leukemia (B-ALL) and lymphoma. Although curative
responses are reported, long-term cures remain below 50%. Different CAR T-cell
leukemia targets appear to have different mechanisms of CAR-T escape. For CD22,
therapeutic evasion is linked to down-modulation of the number CD22 proteins expressed
on the extracellular aspect of the leukemia cell plasma membrane. Recently,
pharmacologic agents known to induce cellular differentiation or epigenetic modification
of leukemia have been shown to impact CD22 and CD19 expression levels on B-ALL, and
thereby increase sensitivity to CAR-T mediated cytolysis. We explored the impact of
epigenetic modifiers and differentiation agents on leukemia cell lines of B cell origin, as well
as normal B cells. We confirmed the activity of bryostatin to increase CD22 expression on
model cell lines. However, bryostatin does not change CD22 levels on normal B cells.
Furthermore, bryostatin inhibited CAR-T mediated cytolysis of the Raji Burkitt lymphoma
cell line. Bryostatin increased the cytolysis by CD22 CAR-T for B-ALL cell lines by at least
three mechanisms: 1) the previously reported increase in CD22 target cell numbers on the
cell surface, 2) the induction of NK ligands, and 3) the induction of ligands that sensitize
leukemia cells to activated T cell antigen-non-specific killing. The opposite effect was seen
for Burkitt lymphoma, which arises from a more mature B cell lineage. These findings
should caution investigators against a universal application of agents shown to increase
killing of leukemia target cells by CAR-T in a specific disease class, and highlights that
activation of non-CAR-mediated killing by activated T cells may play a significant role in the
control of disease. We have termed the killing of leukemia targets, by a set of cell-surface
receptors that does not overlap with NK-like killing “CTAK,” CAR-T Cell antigen-non-
specific killing.

Keywords: CAR-T cell, CD22, adoptive immunotherapy, antigen density, innate immunity, T cell, cellular
cytotoxicity, acute lymphocytic leukemia (B-ALL)
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INTRODUCTION

Adoptive immunotherapy with chimeric antigen receptor
(CAR)-mediated T cells has opened a new chapter in the
treatment of relapsed and refractory pre-B cell acute
lymphocytic leukemia (B-ALL) in pediatric patients as well as
for leukemia and lymphomas of B cell lineage in adults (1).
Targets include B-cell restricted antigens expressed early in
lineage commitment such as CD19 and CD22, later in
development such as CD20, and also in more terminal stages
of B cell differentiation such as BCMA (2–8). To overcome
antigen loss variation, CAR-T targeting multiple antigens have
been proposed, including CD19/CD20 and CD19/CD22 Tandem
CARs and HIV-Specific DuoCARs which express three binding
moie t i e s (9–11) . Unl ike the escape f rom CAR-T
immunosurveillance by CD19-CAR, which seems to be
primarily due to splice variations and thereby the loss of the
CAR-binding epitope, CD22-CAR-T evasion is different (12).
Leukemic escape from CD22-targeting CAR-T has been
demonstrated clinically to be associated with a down-
regulation of the number of CD22 molecules expressed on the
cell surface (2). In 2019, Ramakrishna et al., demonstrated that
inclusion of bryostatin augmented anti-CD22 CAR activity in
murine model systems by increasing CD22 antigen expression
on the ALL cell lines NALM6 and KOPN8, two model leukemia
cell lines, as well as a patient derived xenograft, building on
earlier work in chronic lymphocytic leukemia (CLL) (13, 14).

The expression of cell surface glycoproteins, such as CD22,
can be regulated at the level of increased mRNA and protein
expression, changes in membrane residence, or alterations in
recycling of membrane proteins from endocytic vesicles. The use
of epigenetic modifiers or differentiation agents has the ability to
regulate each of these processes. Until recently, endocytic
recycling was regarded as a largely passive process, and that
resident proteins were sorted either for degradation or followed
bulk membrane flow back to the surface (15). The endocytic
process is now known to feature fast recycling through the early
endosome, slow recycling through the endocytic recycling
compartment, and in some cases retrograde transport to the
Golgi apparatus. Degradation is also a carefully regulated sorting
process carried out in the endolysosome, which then later fuses
to form a mature lysosome (15). In an detailed study, epidermal
growth factor receptor (EFGR) was found to internalize the
endosome-associated transcriptional regulatory factor RNF11
which translocates to the nucleus where it regulates
endoplasmic reticulum export machinery to promote the
movement of newly synthesize EGFR through the Golgi to the
cell surface (16). The full control of CD22 membrane residence is
still under investigation and will likely change depending upon
the differentiation state of the B cell.

We show that exposing leukemia cell lines to anti-CD22
CAR-T also changes CD22 surface expression. CAR-T directly
and rapidly modulates CD22 surface expression. Surprisingly,
the exposure to CD22 CAR-T also modulated CD19, indicating
a generalized mechanism of cell surface membrane regulation
that can be used to escape CAR-mediated immune surveillance.
Thus, rapid modulation is part and parcel of the CAR-T
Frontiers in Immunology | www.frontiersin.org 2187
interaction process with transformed B cells, that can
potent ia l ly be modulated by epigenet ic modifiers .
Unexpectedly, we also discovered that bryostatin induces
changes in immortalized B cell lines that are dependent on
the differentiation state (disease origin) of the transformed cell.
For pre-B-ALL model cell lines, not only was the number of
CD22 molecules on the surface upregulated, two other types of
innate immune targeting molecules or activities were induced.
The first activity induced can be classified as sensitization to
NK-killing, which can be blocked by the presence of the K562
cell lines. Here, we also describe a non-classical innate
immune receptor activity that operates similarly to NK-like
killing for activated human T cells, but is not blocked by K562.
We refrained from the terminology “LAK cell” as this is
reserved for a specific type of immune cell driven by high
levels of cytokine alone (17). We refer to this second set of
receptors as “activated T cell antigen-non-specific” cell ligands,
that engage in “CAR T-cell antigen non-specific killing”
(CTAK). This activity is induced by the unique properties of
CAR-T manufacturing, and is recognized upon bryostatin
treatment of ALL. In direct opposition to the effect on ALL
lines, we found that bryostatin profoundly inhibits killing of the
Raji Burkitt lymphoma cell line, indicating an essential
dependence on B cell differentiation for sensitization to CAR-
T cell mediated killing.
MATERIALS AND METHODS

Cell Lines and Culture Media
Three CD22 positive leukemia cell lines were used in this study:
Raji, NALM6 and REH. The K562 cell line was used as a negative
control. For Luciferase-based cytotoxicity assays, Raji-Luc,
NALM6-Luc, REH-Luc and K562-Luc were used as target cells.
B-LCL cell lines were used for anti-CD22 CART cells rapid
expansion protocol (REP). Raji, NALM6, REH, K562, LCL, Raji-
Luc and K562-Luc were provided by Dr. Michael Jensen, Seattle
Children’s Research Institute. NALM6-Luc and REH-Luc were
produced by transducing NALM6 or REH cells with a
Luciferase-expressing lentiviral vector (LV), then positive
clones were selected and expanded. STR fingerprinting was
conducted to verify the identity of cell lines, and each cell line
was validated to be Mycoplasma free by qPCR. Cell lines were
cultured in RPMI 1640 supplemented with 2 mM l-glutamine, 10
mM HEPES (Invitrogen), and 10% heat-inactivated FBS (VWR).
Human PBMCs from healthy donors were obtained from
Bloodworks Northwest and isolated with SepMate™ PBMC
Isolation Tubes and Lymphoprep (Stemcell Technologies).
CART and un-transduced control (UTD) cells were cultured in
TexMACS™ medium (Miltenyi Biotec) with recombinant IL-2
(premium grade, Miltenyi Biotec). B cells were cultured in B cell
culture media (BCM), including RPMI-1640, 10% FCS, 55 mM
2-ME, 1% Pen Strep, 10 mM HEPES, 1 mM Sodium Pyruvate
and 1% MEM NEAA, supplemented with recombinant human
IL-2 (50 ng/ml, Miltenyi Biotec), IL-4 (10 ng/ml, PeproTech), IL-
21 (10 ng/ml, Miltenyi Biotec), and BAFF (10 ng/ml,
PeproTech). NK92 were culture in RPMI medium with 10%
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heat-inactivated FBS (VWR), 1% NEAA, 1% Sodium Pyruvate,
200U/mL IL-2, 2 mM L-glutamine and 25 mM HEPES.

Primary B Cell Culture and Expansion
Primary B cell expansion was carried out as per Su, K.Y., et al.,
with the following modifications (18). Six-well plates were pre-
seeded overnight with the MS5-based stromal cell line, CD40L-
low (MS40Llow), kindly provided by Dr. Garnett Kelsoe, Duke
University, Durham, NC (19) in BCM. B cells were isolated from
3 individual donors using immunomagnetic bead separation (B
cell isolation kit, Miltenyi Biotec), cultured in coated six-well
plates, 1x103 per well, in BCM for 8 d, and expanded B cells
subsequently harvested and cryopreserved in 90% FBS/10%
DMSO until use.

CAR-T Production
CD22 chimeric antigen receptor (CAR) used in this study
consists of a single chain fragment variable (ScFv) sequence
derived from m971, CD8a hinge and transmembrane domain, 4-
1BB(CD137) and CD3- z chain signaling domains, as previously
described (20). CD22 CAR-encoding lentiviral vector (LV) was
produced by transient transfection of the HEK293T/17SF cell
line. 2× 108 HEK293T/17SF cells were seeded into 1L flask (Cole
Palmer #EW-06019-30) with 200mL FreeStyle293 expression
medium (Gibco). The following day, HEK293T/17SF cells were
transfected by PEIpro (Polyplus) with plasmids encoding CD22
CAR, gag-pol, rev and VSV-G envelope protein, and sodium
butyrate (MiiliporeSigma) was added at 24 h. After 2 days,
supernatant was collected and filtered by 0.45uM filter, LV was
concentrated by centrifugation at 10,000 xg for 4hr. Pelleted LV
was resuspended in serum-free RPMI medium and stored at
-80°C. PBMC were activated with TransAct activation reagent in
TexMACS medium (Miltenyi Biotec) supplemented with 40 IU/
mL IL-2 at density of 1 x106 cells/ml. Activated T cells were
transduced with CD22-CAR LV in the presence of 8 µg/mL
protamine sulfate on Day 2 in TexMACS medium supplemented
with 40 IU/mL IL-2, and volume increased day 3 with IL-2
containing media. On day 4, cultures were harvested and re-
seeded in TexMACS with 200 IU/ml IL-2 and expanded until
harvest on day 10–13.

Rapid Expansion Protocol (REP)
Based on protocols established to expand T cell clones, CAR-T or
untransduced control T cells (UTD) were co-incubated with
irradiated B-LCL (8000 rads) at a 1:7 ratio in complete RPMI
supplemented with IL-2 (50 U/ml), IL-7 (5 ng/ml), and IL-15
(0.5 ng/ml). Cells were passaged every 2-3 days and harvested
after 10-13 days of expansion (21) (Riddell S and Greenberg P,
US Patent 5,827,642). The REP maintains the original phenotype
of expanded CAR-T and T cells clones, and CAR-T and UTD
remain CD56 negative (Supplementary Figure S7N).

Biochemical Reagents, Antibodies and
Recombinant Proteins
5-azacytidine, Vorinostat, Panobinostat, All-Trans Retinoic Acid
(ATRA) and Bryostatin 1 (Sigma) were used to treat Raji,
NALM6 and REH cell lines for 48 hours, or 24 hours in the
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case of Bryostatin. Viability, CD19 and CD22 expression levels
were assayed at the end of treatment.

Flow cytometry was performed on a Fortessa (BD
Biosciences) and data analyzed with FlowJo software (BD
Biosciences). Expression levels of CD19 and CD22 on leukemia
lines were measured using Quanti-Brite PE beads (BD
Bioscience) and PE-labeled anti-CD19 (BioLegend, clone
HIB19) and anti-CD22 (BD Bioscience, clone HIB22)
antibodies. To determine antigen copy number per tumor cell,
cellular MFI was compared with a linear plot of bead MFI versus
the number of PE molecules per bead. All staining was
performed in 100 µl FACS buffer (PBS + 2% BSA). T cells
were phenotyped with: anti-CD3 (BioLegend, clone HIT3a, PB),
CD4 (BioLegend, clone SK3, FITC), CD8 (BD Biosciences, clone
RPAT8, BUV395), biotinylated CD22 protein (Sino Biological,
for CAR detection) and SA-PE (BioLegend). NK92, un-
transduced PBMCs and CD22 CAR-transduced PBMCs were
phenotyped with: anti-NKG2D (Biolegend, clone 1D11, APC),
DNAM-1 (Biolegend, clone 11A8, APC), NKp30 (Biolegend,
clone P30-15, PE), Nkp44 (BD Biosciences, clonep44.8.1, PE),
NKp46 (Biolegend, clone 9E2, PE), TRAIL (Biolegend, clone
RIK-2, PE), FasL (BD Biosciences, clone NOK-1, APC),
KIR2DL1/DS1 (Beckman Coulter, catalog A09778, PE),
KIR3DL1/DS1 (Beckman Coulter, catalog A60795, PE),
NKG2A (Biolegend, clone S19004C, PE), ICAM1 (Biolegend,
clone HA58, PE), ICAM2 (Biolegend, clone CBR-IC2/2, PE),
LFA-1 (Biolegend, clone m24, APC), CD56 (BD Biosciences,
clone R19-760, PE).

CAR-T and Leukemia Cell Co-Culture
and Separation
Anti-CD22 CART cells and leukemia targets (Raji, NALM6 and
REH)were cultured at an effector to target ratio (E:T) of 4:1, 2:1, 1:1
or 0.5:1 for 24hourswith orwithout bryostatin, atwhich timeCD19
and CD22 expression levels were quantified. To assess surviving
leukemia target cells, co-cultures from the 1:1 ratio were harvested
at 24 hours, cell populations separated by CD3-positive
immunomagnetic bead selection (Stemcell Technologies),
depletion verified by flow cytometry and CD3 negative cells
(leukemia) cultured over time to assess antigen expression.

Cut and Tag Analysis
Fresh cells (2x105 to 5x105 per treatment) were harvested and
washed twice in 1.5 mL wash buffer (20mM HEPES pH 7.5;
150mM NaCl; 0.5mM Spermidine (Sigma S2501); 1× Protease
inhibitor cocktail, Roche), and Cut&Tag libraries generated,
following the protocol “Bench top CUT&Tag V.2” (22).

Cut and tag DNA libraries were sequenced on a HiSeq
instrument (Novogene, Sacramento, CA), paired-end 150, with
read depth of 17M per sample. The quality of sequencing data
was checked by FastQC (23). FastQC: A Quality Control Tool for
High Throughput Sequence Data). Sequencing adaptors
identified and trimmed by TrimGalore [Trim Galore (RRID :
SCR_011847)]. Sequencing reads were aligned to the UCSC
Hg38 using the Bowtie2 package (24). Alignment results were
normalized by the RPKM (Reads Per Kilobase of transcript, per
Million mapped reads) method and methylation heatmaps
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around gene regions were plotted by DeepTools2 (25). Peak
calling analysis was done by SEACR (26). Normalized bigwig
results were visualized in UCSC genome browser. Differential
peak analysis was done by DESeq2 (27) and peaks were
annotated by GSCA (Ji Z and Ji H (2014), GSCA: Gene Set
Context Analysis. R package version 1.4.0.).

Cytolysis and Inhibition Assays
5 x 103 target cells (Raji-Luc, NALM6-Luc, REH-Luc or K562-
Luc) were co-cultured with UTD control or anti-CD22 CAR-T
cells at various effector to target ratios (16:1, 8:1, 4:1, and 2:1) in
96-well plates and incubated overnight at 37°C, 5% CO2 in 100 mL
of complete RPMImediumwithout cytokines. Twenty-four hours
later, 100 mL of SteadyGlo reagent (Promega) was added to each
well and incubated for 10 minutes at room temperature followed
by quantification of luminescence using an Enspire plate reader
(Perkin Elmer). The luminescence was captured as counts per
second (CPS) for each experimental well containing the indicated
E:T ratio (sample CPS), target cells alone (target CPS) and tween-
20 treated target cells (negative CPS). Percent specific lysis
presenting luciferase reduction was calculated as: (1- (sample
CPS-negative CPS)/(target CPS-negative CPS)) x 100%.

For ligand-based cytolysis blocking assays, 5 x 103 target cells
(NALM6-Luc or REH-Luc) were plated in a 96-well plates in 50uL
complete RPMI medium. Recombinant protein (DNAM-1-his,
Acro Biosystems, DN1H52H6; NKG2D-his, Acro Biosystems,
NKDH5245; NKp30, Acro Biosystems, NC3H5228) or anti-
ICAM1 antibody (Biolegend, 322721) was added to target cells at
10ug/mL and incubated at 37°C for 30min. 5 x 104 effector cells
(NK92,UTDorCD22CART)were added to target cells and treated
with 1nM Bryostatin at 37°C overnight.

Reverse Transcription Droplet Digital
PCR (RT-ddPCR)
Cells from each condition were collected and RNA was isolated
by RNeasy mini kit (Qiagen, Catalog#74104). RNA quality was
checked by high sensitivity RNA ScreenTape assay (Agilent,
4200). RNA quantity was determined by Qubit RNA RS kit
(Thermo Fisher). RNA samples were mixed with one step RT-
ddPCR advanced kit for probes (Bio-Rad), together with ddPCR
GEX primer/probe for CD19 or CD22 (Bio-Rad) in a 96 well
plate to generate RT-PCR reaction mix. Reaction droplets were
generated by QX200 AutoDG droplet generator, PCR reaction
was performed by C1000 Touch Cycler (Bio-Rad). RT-PCR
droplets were read by QX200 droplet digital PCR system and
data was analyzed using Quantasoft (Bio-Rad).

Western Blot
One and a half million cells from each treatment were washed
twice in cold PBS, lysed in 100 ul cold RIPA buffer (Bio-Rad)
containing protease inhibitor cocktail (Roche). The lysate was
incubated for 1 hour on ice, pelleted at 15000 RPM at 4°C for
20 min, and supernatants collected and mixed with 200 µl
Laemmli Sample Buffer (Bio-Rad), then boiled for 3 min at
100°C. Protein concentrations were determined by Nanodrop
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and 20µg of each sample resolved by PAGE and proteins
transferred to 0.45 mm nitrocellulose transfer membrane (Bio-
Rad) and probed with primary antibodies against CD19 or CD22
with b-actin (Odyssey Li-Cor, Lincoln NE) overnight at 4°C, and
secondary IRDye 800CW antibody at room temperature for 1
hour. Bands were visualized and quantified on an Odyssey
imaging system with Image Studio lite software (LI-COR).
Relative band intensity of CD19 and CD22 was calculated and
normalized to b actin.
Statistical Analyses
Plots show average of three replicate wells, standard deviation,
and p-value as calculated by nonparametric t test, unless
otherwise noted. All plots and analyses were analyzed using
Prism software (v. 9.2.0, GraphPad Software, LLC) and are
representative of three experiments, unless otherwise noted.
RESULTS

Impact of Differentiation Agents on CD22
and CD19 Surface Expression
The modulation of CD22 expression levels on the surface of
leukemia cells is of great interest to the immunotherapy field. To
explore mechanisms to increase CD22 expression we tested
whether differentiation agents or epigenetic modifiers that are
well-studied in human clinical trials are able to impact the
expression of CD22 on the surface of model cell lines as well
as normal B cells. The B cell leukemia lines tested were the
Burkitt lymphoma cell line Raji, and the B cell acute lymphocytic
leukemia (ALL) cell lines NALM6 and REH. Panobonistat was
tested for impact on cell viability and target antigen expression
from 0.5 to 100 nM, at 48 hours. No impact on viability was seen
up to 5 nM (Figure 1). No increase in CD22 expression was seen
in this concentration range (Summarized in Supplementary
Table 1). Vorinistat (SAHA) was also tested at 48 hours, at
concentrations ranging from 0.1 to 20 uM. Impact on viability
was seen at 1 or 5 uM, and at or below these ranges no increase in
CD22 expression was seen. ATRA was tested between 0.1 and
100 uM at 48 hours, and no impact on cell viability was seen at 10
uM or below. Notably, ATRA increased CD22 expression on Raji
cells, while NALM6 and REH levels remained constant. 5-
Azacytidine was also tested at 48 hours at concentrations
between 0.1 and 100 uM. No impact on viability was seen at 5
uM or below. While a slight rise in CD22 expression was seen at
0.1 mM 5-Azacytidine, this difference did not reach statistical
significance. Because of the rapidity of effects seen with
bryostatin, experiments were carried out for 24 hours.
Bryostatin has no impact on cell viability from 1 nM up to 200
nM, and increased CD22 expression in each cell lines tested,
although the change in REH was not statistically significant.
Assays were also carried out in a similar manner to assess the
impact of each agent on the number of surface CD19 molecules
expressed per cell. CD19 was far less amenable to modulation by
epigenetic or differentiation agents. Only with bryostatin, and
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only in the NALM6 cell line, were statistically significant
increases noted.

To explore the impact of bryostatin on CD22 and CD19
expression on normal B cells, B lymphocytes were purified by
negative selection (untouched) and cultured on a CD40L-
expressing feeder cell line, with or without the supporting
cytokines, IL-2, IL-4, IL-21 and BAFF, as reported by Su et al.,
for seven days (18). Expanded B cells were cultured in the
presence of 1 nM bryostatin for 24 hours and the number of
CD19 and CD22 molecules per cell analyzed. Expression of
CD22 and CD19 on the expanded normal B cell population
was not affected by bryostatin, Figure 1. This implies that the
response of Raji more closely resembles normal B cells, in
keeping with the more developmentally mature status of
Burkitt lymphoma in comparison to pre-B-ALL. We further
explored the mechanism by which bryostatin impacted the level
of CD22 antigen expression by quantifying the RNA and protein.
Frontiers in Immunology | www.frontiersin.org 5190
Up-Regulation of CD22 by Bryostatin
Includes Minor Increases in
Transcriptional Activation

Bryostatin had the broadest effect (with respect to degree of increase
in CD22 and consistency across cell lines) on CD22 surface
expression. We therefore sought to establish if this effect was due
to a concomitant increase in total CD22 protein, as well as
measuring the amount of CD22 mRNA. Although bryostatin
appeared to increase the amount of total protein for both CD22
and CD19, these differences were not statistically significant when
assessed by Western blot, Figure 2. Likewise, when the amount of
mRNA encoding these surface markers was quantified, no
significant differences were seen, except for CD22 expression in Raji.

In addition to the known modulation of protein kinases (PKC
delta and epsilon) and c-Jun, we sought to determine if bryostatin
induces changes in the epigenome of treated cells (28).
FIGURE 1 | Viability and Surface Expression of CD19 and CD22 in treated B-cell leukemia cell lines and normal B cells. Left panel: Epigenetic modifiers/
differentiation agents (Bryostatin, 5-Azacytidine, ATRA, Panobinostat or Vorinostat) were added at increasing concentrations (x-axis, as indicated) to the culture
media of B cell lines (Raji-green circle, NALM6-magenta square, REH-blue triangle) for 48 hours (or 24 h for bryostatin). Following drug exposure, cell viability was
calculated and plotted (column 1). Each agent adversely affected viability as concentration increased, except for bryostatin. Surface expression of CD19 (column 2)
and CD22 (column 3) in leukemia cell lines was qualified by flow cytometry using Quanti-Brite PE beads. Average of triplicate wells is shown, values differing from
untreated controls are indicated, * indicates p<0.05. Right panel: Expanded peripheral blood B cells from three donors, cultured on CD40L expressing feeder cells in
media supplemented with (squares) or without (circles) B cell growth factors (IL-2, IL-4, IL-21, BAFF, see Materials and Methods), were tested for changes in cell
surface expression induced by bryostatin. The number of CD19 and CD22 molecules differed between donors to a degree, but was not significantly impacted by
bryostatin, paired t-test p>0.05, grand median, solid bar, shown for reference.
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This would extend the known effects of this agent to include
modulation of global gene expression programs, and perhaps
identify specific alterations. Cut&Tag analysis (Cleavage Under
Targets and Tagmentation), developed by the Henikoff lab at the
Fred Hutch, goes beyond ATACseq, in that specific epigenetic
modifications of histones, as determined by specific antibody
cleavage sites, are measured and characterized (22, 29).
Increased H3K4me3 and H3K4me2 signal (trimethylation or
demethylation of lysine 4 on the histone H3, associated with
activation of transcription from nearby promoters) or the
opposing H3K27me2 (dimethyl state of lysine 27 of histone
H3, associated with inactivation of transcription) marks can be
readily visualized by mapping resultant amplified segments.
Global alignment of transcriptional start sites identified by Cut
and Tag demonstrates that our analysis compares numerous
bryostatin-induced changes in gene expression, and that
bryostatin treatment in and of itself did not profoundly change
the net transcriptional activity of the treated leukemia cell lines
(Supplementary Figure 1). For CD22, small, but statistically
significant, increases in reads for H3Kme2 in Raji cells, and for
H3Kme3 for all three lines (Raji, NALM6, REH) were seen with
bryostatin treatment (Supplementary Figure 2). The only
significant change for CD19 was seen in Raji cells, and only for
H3Kme3 (Supplementary Figure 3). Although there are slight
increases in mRNA and total protein expression, and bryostatin
Frontiers in Immunology | www.frontiersin.org 6191
does have measurable epigenetic effects, these are unlikely to
account for the rapid increase in target antigen expression
induced by bryostatin over 24 hours.

Coculture of Leukemia Cells With CD22
CAR-T Decreases On-Target and
Off-Target Antigen Expression
The observation that relapsed disease is associated with a lower
expression of CD22 antigen on the leukemia cell surface led us to
explore the temporal interactions between CAR-T cells and
leukemia cell line targets in the presence of bryostatin. Using a
range of effector (CD22 CAR-T) to target (leukemia line) ratios
(E:T) we found that the co-incubation of CAR-T with leukemia
cell lines induces a profound decrease in the number of cell
surface antigens expressed on the cell surface (Figure 3). The
assay was carried out by culturing leukemia cells for 24 hours in
the presence of 1 nM bryostatin for 24 hours, followed by the
overnight addition of CD22-specific CAR-T for another 24 hour
period, again in the presence of bryostatin. At the concentration
used, bryostatin does not impact CAR-T activity (not shown). As
expected, CD22 CAR-T induced profound and rapid down-
regulation of CD22 antigen expression on the leukemia cell
surface. Surprisingly, this effect was also seen when the levels
of CD19 were analyzed on the leukemia cell surface, Figure 3.
Thus, CD22 CAR-T cells rapidly down-modulate not only CD22
but also CD19. The effects were seen with or without bryostatin
addition. However, including bryostatin did have an effect on the
net amount of antigen down-modulation, in that moderately
higher levels of antigen expression were noted for both targets
during CAR-T co-culture. Thus, in a short-term assay, bryostatin
impacts target antigen expression. Overall, co-incubation with
CAR-T decreases CD22 and CD19 surface antigen expression on
leukemia cells surviving CD22 CAR-T co-culture. Antigen
expression was somewhat higher in Raji and NALM 6, and
somewhat lower in REH treated with bryostatin. This informs us
that inclusion of brysotatin, most clearly for NALM6, keeps
target antigen expression at a higher level even while undergoing
CAR-induced antigen down-modulation, and thus may aid in
immune elimination.

Down-Regulation Occurs Rapidly,
and Reverses Rapidly
To determine if CAR-T-mediated CD22 on-target and off-target
antigen modulation was a lasting effect, CAR-T and leukemia
cells were separated following overnight co-culture using anti-
CD3 immunomagnetic beads, and leukemia cells cultured alone
in fresh media. Following removal of CD22-specific CAR-T cells,
cultured leukemia cell lines demonstrated differential re-
expression of CAR target antigens, Figure 4. Raji cells co-
cultured with CD22-CAR-T took more than 3 days to fully
recover CD19 expression from CD22 CAR-T exposure, yet this
recovery was complete. As expected bryostatin markedly
upregulated CD22 on Raji cells, this increased level persisted to
day 3, and returned to original levels by day 7. While CD22 CAR-
T reduced CD22 levels for at least 3 days, this effect was markedly
reversed by bryostatin. Thus, with Raji targets, bryostatin has a
A B

D
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C

FIGURE 2 | Total RNA and protein levels of CD19 and CD22 in bryostatin
treated leukemia cell lines. Western blot analysis of (A) CD19 and (B) CD22
protein expression in Raji, NALM6 and REH cell lines with (+B) or without
bryostatin treatment. (C) CD19 and (D) CD22 band intensity from three
independent experiments was quantified and normalized to b-actin. For each
line, treated and non-treated groups were compared. There was no
significant difference (ns) between groups of at the protein level. RNA levels
for (E) CD19 and (F) CD22 were quantified by ddRT-PCR. CD19 and CD22
copies per ng RNA were calculated and analyzed. Significant differences
between treated and untreated groups were seen for CD22 in Raji cells
(p < 0.05). *p < 0.05. ns, not significant.
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FIGURE 3 | Surface expression of CD19 and CD22 upon co-culture with anti-CD22 CAR-T. Using Quanti-Brite analysis, the number of CD19 and CD22 molecules
(y-axis) on the surface of Raji, NALM6, and REH cell lines was quantified, following co-culture with CD22 CAR-T, at the indicated effector to target ratios, x-axis. The
leftmost pair of columns quantifies surface expression on untreated cell lines. Significant differences from control are shown *p < 0.05. The x-axis lists the cell line
tested, exposure to bryostatin (B, magenta bars) or CD22 CAR-T alone (green).
FIGURE 4 | Surface expression of CD19 and CD22 following bryostatin wash-out and CAR-T removal. After overnight culture with anti-CD22 CAR-T, the number of
cell surface proteins was quantified using Quanti-Brite analysis, average of triplicate wells and standard deviations are shown. 0 hr, x-axis, is after the overnight
culture, and each time point represents cell surface proteins on the surface of untreated Raji, NALM6, or REH (Leukemia cell, green bars), treated with bryostatin
alone (Leukemia + Bryostatin, magenta bars), treated with CAR-T alone (Leukemia+CART, blue bars), or treated with both CAR-T and bryostatin (Leukemia+CART
+Bryostatin, red bars), at the time points listed, x-axis. Significant differences from leukemia alone are shown *p < 0.05.
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decidedly beneficial impact on the upregulation of CD22.
NALM6 showed a similar preservation of both CD19 and
CD22 upregulation following CD22 CAR-T co-culture in the
presence of bryostatin. At the E:T ratio evaluated, no large down-
regulation of CD22 expression was seen due to CD22 CAR
pressure. This requires the higher E:T presented in Figure 5. The
REH cell line displayed an unexpected result. Immediately
following separation from CAR-T and at 24 hours, bryostatin
alone and bryostatin and CD22 CAR-T had increased CD19 and
CD22 expression. Either bryostatin treatment alone or CD22
CAR-T treatment had no long-term effect, as by day 7 expression
levels returned to those of untreated REH. However, treatment
or REH with bryostatin and CD22 CAR-T cells resulted in
prolonged upregulation of both CD19 and CD22 expression.
This result will be explored in future studies, and implies an
interesting additive effect.

Trogocytosis Is Unlikely to Play a Major
Role in Antigen Down-Regulation
One well-described mechanism for altering or sharing cell
surface antigen expression is trogocytosis, defined as
transposition of cell membrane or cell membrane proteins
between cells during cell-cell interactions (30). We tested if
CAR-T cells were able to acquire either on-target or off-target
cell surface antigen upon co-culture with leukemia cells,
Figure 5. When CAR-T cells specific for CD22 were analyzed
for either CD22 or CD19 acquisition following co-culture with
leukemia target cells, CD19 appeared to transfer more readily to
Frontiers in Immunology | www.frontiersin.org 8193
the CAR-T cell surface than CD22. This likely reflects the relative
increased abundance of CD19 on the membrane of the leukemia
cell. Clearly, trogocytosis is not limited to the CAR target antigen,
as both CD19 and CD22 were transferred to the T cell surface.
Moreover, this supports the original definition of trogocytosis,
the transposition of a membrane patch, as opposed to single
protein transfer. Importantly, this effect was not uniform across
the leukemia cell targets. While Raji cells appeared to readily
transfer membrane (and thereby CD19 and CD22 expression on
CAR-T), this effect was quite limited in NALM6 and REH cells
and unlikely to drive the loss of target antigen expression at the
cell surface we measured.

CD22 CAR-T and NK-92 Activity
Against Leukemia Depends on the
Leukemia Cell Type and the Effects
of Bryostatin Treatment
Our motivation for studying the down-modulation of target
antigens was to explore the effect of epigenetic modifiers on
these changes, and to determine their overall effect on leukemia
cell cytolysis. When cytolytic assays were caried out following
pre-treatment of leukemia target cells with bryostatin, we found
differential effects according to the cell line analyzed,
Figures 6A–D. Without bryostatin, we found that increasing
E:T ratios resulted in increased cytolysis for all cell lines, with the
exception of K562, an antigen negative leukemia included as a
control for NK cell-like activity. For the ALL lines NALM6 and
REH, the killing of leukemia targets mediated by CD22 CAR-T
FIGURE 5 | Transfer of CD19 and CD22 to CD22 CAR-T following overnight culture with leukemia cell lines. The number of CD19 and CD22 molecules acquired by
anti-CD22 CAR-T (trogocytosis) was quantified using Quanti-Brite analysis, as per Figure 3, however in this case the T cells were analyzed. Average antigen
expression and standard deviation are shown. Background signal is shown as a gray bar for each subgroup (CART). The x-axis lists the anti-CD22 CAR-T to
leukemia cell ratio (E:T) used for each condition and indicates if the leukemia line had been treated with bryostatin (B, magenta bars).
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was greatly enhanced by bryostatin. However, we also saw an
increase in the killing of these ALL lines mediated by
untransduced/activated (UTD) T cells induced by bryostatin.
Thus, treatment of leukemia targets (as indicated by +B in
Figure 6) with bryostatin had a profound effect on cell-cell
killing mediated by activated T cells in general, implying that
non-CAR-T specific killing mechanisms were invoked. To the
contrary, Raji cells showed the opposite effect. Although
bryostatin does indeed increase the target antigen number on
the cell surface (Figure 1), bryostatin treatment results in a
marked inhibition of cellular cytotoxicity. A classic cellular
immunology technique to block non-antigen dependent
(usually NK-associated) killing is called “cold-target inhibition”
(31–33). In this technique, used to differentiate between
receptor-mediated ADCC, NK cell activity, and “natural”
cytolysis by other immune cell subtypes, a 30:1 excess of
unlabeled (in this case luciferase non-expressing) K562 cells
are added into the cellular cytolysis assay, Figures 6E–H. Cold
target inhibition had no effect in the Raji cytolysis assay. This
indicates that CD22 CAR-T activity against Raji is strictly driven
by the CAR, and not other target antigens initiating susceptibility
to UTD-mediated killing. For the REH cell line, bryostatin
treated cells upregulated ligands that were recognized by
activated T cells, i.e. strong UTD-mediated killing was induced.
When unlabeled K562 were added to the killing assay for cold-
target inhibition, non-specific killing by non-CAR expressing
activated T cells (UTD) was blocked, Figure 6G. This indicates
that induction of a set of classical NK ligands on REH was
responsible for the UTD-mediated killing. The same effect was
Frontiers in Immunology | www.frontiersin.org 9194
seen when CD22 CAR-T and NALM6 were co-incubated,
Figure 6F, although bryostatin appeared to have a more
pronounced effect. Thus, bryostatin treatment induces B-ALL
sensitivity to both CAR-T specific and non-specific killing
mechanisms. The ability to block these effects with an excess of
unlabeled K562 cells demonstrates that activation of T cells to
produce CAR-T induces an NK-like activity. However, the
ligands to detect this activity requires the ALL to first be
activated by bryostatin. This could thus be classified as a
bryostatin-induced off-target/on-tumor activity. We have
termed this “CAR T-cell antigen-non-specific killing” or
CTAK, to differentiate it from NK- or LAK-mediated killing. It
requires both the induction of new targets on the leukemia and
the ligands expressed on highly activated T cell populations, such
as those induced by CAR-T production.

To further explore the activity of NK cells against bryostatin-
treated B cell leukemia cell lines, we tested the NK92 cell line in
direct cytolysis assays, Figure 7. Use of NK-92 cells avoids
donor-to-donor variability and NK culture condition concerns.
NK92 are currently being tested natively or modified with CARs
in clinical trials, and may represent a complimentary treatment
option to CAR-T (34, 35). Our data demonstrate that the Raji cell
line is effectively lysed by NK92, and that this lysis is not
impacted by the presence of K562 cold-target inhibition,
Figure 7E. As the control experiment with K562 demonstrates
(Figures 7D, H), cold-target inhibition completely abrogates
cytolysis of the self-same target. The results with the pre-B ALL
cell lines were unexpected, in that there was no lysis of ALL by
NK-92 without bryostatin treatment. Moreover, once NK-92
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FIGURE 6 | Anti-CD22 CAR-T mediated cellular cytotoxicity (CTL) of bryostatin-treated leukemia. (A–D) Average lysis from triplicate wells for four cell lines (Raji,
NALM6, REH, and K562) by anti-CD22 CART (CD22 CART, open circle) or un-transduced T cells from the same donor (UTD, open triangle), treated with bryostatin
(+B, closed shape) or untreated (open shape), a the E:T ratios listed on the x-axis. (E–H) Assay tested in parallel including cold-target inhibition (addition of K562 at a
30:1 E:T ratio). Representative results for T cells from 3 donors are shown, each data point showing the average and standard deviation from three replicate wells.
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ligands were induced, these target antigens were not blocked by
K562-based cold target inhibition. These results indicate that
bryostatin induces two classes of targets for the innate immune
system. Some are analogous to classic NK-targets (K562-like).
Other leukemia expressed targets -while being recognized by
NK-92- are not blocked by K562 cold-target inhibition, as
illustrated in Figure 8. Our flow cytometric analysis of NK-92
is in agreement with previous studies, demonstrating strong
CD56, as well as NKG2D, KIR2DL3, NKp30, NKp44, NKp46,
and Fas staining; and low staining for NKG2C, KIR2DL1, FasL,
DNAM, and KIR3DL1 (Supplementary Table 2 and
Supplementary Figure S7). Published analysis by others of
potential NK targets expressed on K562 demonstrated very
high expression for ICAM1, ICAM2, NKp30, HLA-F, MIC-A,
ULBP2, ULBP3, CD48, CD80, CD112 (PVRL2/NECTIN2),
CD155 (PVR) (36), thus providing multiple candidates whose
expression, either singly or in combination, may be responsible
for cold-target inhibition.
EBV Latency Reactivation in Not the Major
Driver of CD22 CAR-T Resistance to
Cytolysis in Bryostatin-Treated Raji Cells
Raji is an EBV-positive Burkitt lymphoma cell line. Principal
Component Analysis (PCA) of bulk RNAseq data demonstrated
that Raji clusters closer to normal B cells in comparison to either
REH or NALM6, reflecting its well-established more differentiated
B cell status as a Burkitt lymphoma (not shown). We tested the
impact of inhibiting EBV replication or activation by culturing
Raji cells in ganciclovir for two weeks. Previous work
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demonstrated the requirement for this extended time of
treatment to insure complete viral quiescence for B-LCLs (37).
CD22 CAR-T lysed Raji cells efficiently while control UTD did
not, Figure 9. Furthermore, treatment with bryostatin renders Raji
cells resistant to CD22 CAR-T-mediated cytolysis. The addition of
ganciclovir reversed bryostatin-mediated resistance to a small
degree, and some restoration of killing by CD22 CAR-T was
demonstrated. Thus, bryostatin-mediated modulation of latent
EBV gene expression may in some part explain the induced
resistance to CAR-T mediated killing. We examined epigenetic
alterations in EBV latency-associated genes to see if these were
altered by the addition of bryostatin. No changes in histone
methylation were seen for the Epstein-Barr virus associated
latency antigens EBNA1, EBNA2/EBNA-LP, LMP1 or LMP2,
although a slight decrease in mRNA expression was noted for
the latency membrane proteins (Supplementary Figures 4, 5).
Changes in canonical markers of EBV reactivation, Zta and Rta, or
for LF1,2 or 3 were not seen (Supplementary Figure 6).
Interestingly, when we examined the regulation of EBNA3
promoter regions by methylation we did not find any changes
for EBNA 3A, 3B, or 3C, but did increased marks for H3K4me3
(indicating increased transcriptional activity) for BLLF1,
Figure 10. Unlike the EBNA proteins which serves as
transcriptional regulators, BLLF1 encodes the major viral surface
glycoprotein gp350. The gp350 receptor is CR2/CD21. CD21 is
expressed on both T and NK cells, and interacts in concert with
other receptors to mediate either cellular activation or viral
infection (38, 39). Thus, in searching for a potential explanation
as to why bryostatin induces Raji resistance to CD22 CAR-T, we
found small changes in latent EBV viral genome regulation, and a
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FIGURE 7 | NK92-mediated cellular cytotoxicity of bryostatin-treated leukemia. (A–D) Average lysis from triplicate wells for four cell lines (Raji, NALM6, REH, K562)
mediated by NK92 cells using untreated (open square) or bryostatin-treated (closed square) targets at the E:T ratios listed on the x-axis. (E–H) Assay tested in
parallel including cold-target inhibition. Representative results, average of triplicate wells and standard deviation, from 3 independent experiments are shown.
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minor but detectable reversal of the bryostatin effect by
ganciclovir. Taken together this indicates that while the latent
EBV genome in Raji does play a role in immuno-evasion, and
bryostatin partially reverses this effect, the majority of bryostatin-
mediated immune-evasion is attributable to factors inherent in the
Burkitt lymphoma genome itself.
Increased Expression of Both Adhesion
Molecules and NK Ligands Contributes to
CAR T-Cell Antigen-Non-Specific Killing
(CTAK), and CAR-T NK-Like Killing
To assess the contribution of known NK ligands on bryostatin-
induced cytolysis of leukemia targets, we used both antibody and
soluble protein-based inhibition assays. When NALM6 cells with
or without bryostatin treatment were used as CD22 CAR-T or
UTD targets, we again saw significant induction of UTD-
mediated leukemia cell cytolysis induced by bryostatin
treatment, Figures 11A–D. The addition of soluble DNAM-1
did not have an effect. NKG2D and ICAM did have some effect
on bryostatin-induced killing by CD22 CAR-T. UTD was most
affected by NKp30 and ICAM-1 blocking. Likewise, NKG2D and
ICAM1 blocking impacts killing of bryostatin-treated REH by
Frontiers in Immunology | www.frontiersin.org 11196
CD22 CAR-T and UTD, Figures 11F, H. NKp30 effects were
limited to UTD for REH, just as for NALM6, Figure 11G. REH
differed to a degree in that DNAM1-blocking now was shown to
have an effect, and to a greater degree for UTD upon bryostatin
treatment, Figure 11E.

Because Raji cells are universally sensitive to NK92 mediated
killing, we restricted our analysis of NK92-mediated killing to the
pre-B ALL lines. NALM6 killing was not impacted to a great
degree by any of the 4 blocking agents tested. Although NKG2D
blocking gave a statistically significant effect, the overall effect
was small, Figure 12B. ICAM1-blocking did inhibit REH killing
in the presence of bryostatin. NKG2D blockade had an effect on
non-treated REH, but this difference was lost when bryostatin
was added, as the overall killing was increased, Figure 12F.
Taken together, we can assert that the decrease of ICAM1-
mediated cell adhesion impacted bryostatin-induced killing by
all three effectors tested, but impacted NK92-mediated killing
less. NKG2D blockade impacted T cell mediated killing (both
CAR-T and UTD), while NKp30 had activity in UTD but not
CAR-T cell-mediated killing. Our findings indicate that well-
characterized mediators of NK-like killing did have an effect in our
system. However, the killing mechanisms are complex, and likely
additive as no single blocking agents inhibited all killing activity.
FIGURE 8 | Bryostatin treatment reveals multiple pathways that CAR-T cells use to eliminate leukemia. In the center of the diagram, pre-B ALL cells are illustrated,
displaying the CAR-T target antigen, CD22, innate immune receptor ligands induced by bryostatin that are recognized by activated T cells (Bryostatin-induced NK
ligands) and ligands recognized by T cells that have been: a) sensitized by CAR-T production, b) bryostatin-induced, and c) not blocked by cold-target inhibition
(CTAK, CAR-T cell non-antigen-specific killing). Also shown are a non-overlapping set of alternative innate immune receptor ligands that are recognized by NK92
upon bryostatin-treatment (right-most effector cell). Cold-target inhibition does not affect NK92 or CD22-specific CAR-T killing. Cold-target does decrease killing
evidenced by activated T cells (UTD), but incompletely for CTAK-mediated killing. Green arrows indicate successful cytolysis and blunt red arrow indicates killing
impacted by K562-mediated cold target inhibition (classic NK killing).
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We can also conclude that the multifactorial nature of innate
immune cell-mediated cytotoxicity is activated in a novel way by
the addition of bryostatin, as demonstrated herein.
Frontiers in Immunology | www.frontiersin.org 12197
Potential Bryostatin Epigenetic
Changes Impacting Leukemia
Cell Target Expression
We also carried out a comprehensive read analysis of Cut&Tag
data, comparing bryostatin-treated and untreated REH, NALM6
and Raji cells (Supplementary Figure S8). Raji changes were the
most dynamic, and NALM6 showed very few significant changes
(The file comprising Supplementary Table 4 contains the
complete data set). We also specifically inspected the ligands
for innate immune receptors that were expressed or induced in
effector cells as detected by flow cytometry, Supplementary
Table 3A. Among those ligands, HLA-ABC which would
interact with iKIRs, changed the most, Supplementary
Table 3B. We did very little to explore the Fas system in
functional assays due in part due to the unchanging expression
of FasL on effector cells, and low expression of Fas on NALM6
and REH. Although expressed on Raji cells, bryostatin did not
alter Fas expression.

Promoter regions for ligands known to be important in NK
cell activity were also compared by Cut&Tag analysis. Activating
ligands (MICA, MICB, ULBP1, ULBP2, ULBP3, Nectin-2
(CD112), PVR (CD155); and inhibitory ligands (HLA-E,
Nectin-1/CD111), showed no large alterations. NKp30 and
NKp80 ligands (B7H6, BAG6, and CLEC2B) also were
unchanged. Fas, TRAILR1 (DR4) and TRAILR2 (DR5) were
also unchanged. Analysis of the SLAM family (FLAMF1,
SLAMF3/LY9, SLAMF4/CD244, SLAMF4/CD84. SLAMF6,
SLAMF7, SLAMF4LG/CD48) also showed no bryostatin effects.
Analysis of KIR ligands HLA-A,-B, and -C showed no changes.
FIGURE 9 | Impact of EBV lytic cycle inhibition on CD22 CAR-T mediated
killing of bryostatin-treated Raji leukemia cells. Raji cells were cultured for 2
weeks in the presence or absence of 15 uM ganciclovir (+Ganciclovir in
legend), and for the final day of culture bryostatin was added where indicated
(+Bryo in legend). Treated cells were then used as targets in CTL assays
using anti-CD22 CAR-T (CART) or untransduced T cells (UTD) as effector
cells. Average cytolysis of 3 replicate wells is plotted for each condition.
Results are representative of three independent experiments.
FIGURE 10 | Epigenetic modulation of the EBV genome in Raji leukemia cells mediated by bryostatin. Sequenced reads for transcriptional activators of EBV
latency, left panel) EBNA-2 and EBNA-LP, and right panel) EBNA-3A,-3B,-3C and BLLF1; were analyzed by Cut&Tag analysis and mapped on the EBV genome
for the presence of epigenetic modification of H3K4me2, H3K4me2, and H3K27me3 (y-axis). No reads were detected for the IgG control. Reads are presented
as parallel samples for bryostatin-treated (+bryostatin) or untreated Raji. Shown below the immunoprecipitated Cut&Tag reads are total mRNA reads (in gray)
displayed over the relevant portion of the EBV viral genome, shown at the bottom portion of the plot. Changes demonstrated for H4K4me3 reads for BLLF1 are
indicated by the red square.
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FIGURE 11 | Blocking of innate immunoreceptor ligands during CAR-T mediated cytolysis. The NALM6 pre-B ALL cell line was exposed to anti-CD22 CAR-T or
control UTD cells at an E:T ratio of 10:1, y-axis. Results are grouped in each panel by cytolysis seen with untreated target (gray, control), bryostatin treatment (black),
or treated with blocking agent (pink) or blocking agent and bryostatin (purple), using (A) recombinant DNAM-1, (B) NKG2D, (C) NKp30, or (D) anti-ICAM1 antibody,
for 30 minutes prior to addition of effector cells. Average of 3 replicate wells are shown, with statistical difference between groups plotted, ns p > 0.05, *p < 0.05,
**p < 0.01, ***p < 0.001. (E–H) REH leukemia cells were similarly analyzed.
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HLA-G also was not changed, showing only H3K27me3
(inhibitory mark) reads present. Thus, we documented the
presence and activity of well described innate immune receptors
active in our system. Any single change in expression, as detected
by flow cytometry, or attempts in direct protein blockade in
Frontiers in Immunology | www.frontiersin.org 14199
functional assays reveal that these signals are integrated from
multiple inputs. Further work remains to explain the specific
signals operative in any one effector cell or cell line. The effects
of bryostatin are layered on to the biology of CD19 and CD22 as
expressed by B-ALL cell lines. The upregulation of these molecules
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FIGURE 12 | Blocking of innate immunoreceptor ligands during NK92-mediated cytolysis. The NALM6 pre-B ALL cell line, with or without bryostatin-treatment, was
cultured with NK92 cells at an E:T ratio of 10:1. Treatment groups are arranged according to the blocking agent tested: (A) DNAM-1, (B) NKG2D, (C) NKp30, or (D)
anti-ICAM1 antibody as in Figure 11. Average of 3 replicate wells are shown, with statistical difference between groups plotted, ns p > 0.05, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. (E–H) REH leukemia cells were similarly analyzed.
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does sensitize ALL to cytolysis, but one must include in the
analysis of CAR-T activity the strong induction of NK-like and
CTAK killing activity, above and beyond CD22 antigen
upregulation. Furthermore, bryostatin cannot be assumed to be
universally applicable to B cell malignancies as Raji cells are
rendered insensitive to cytolysis upon treatment.
DISCUSSION

B cell activation is a carefully regulated event. In addition to
antigen- or developmentally-initiated positive signals, regulatory
or inhibitory signals, like those mediated by CD22, are required
to prevent hyperactivation (40). In keeping with the diversity of
activity of the Siglec (sialic acid binding Ig-type lectin) family of
receptors, CD22 has both negative regulatory activity, mediated
through intracellular ITIM motifs that recruit SHP-1 and Grb2,
as well as endocytic activity for ligands bearing specific
glycoform structures, notably alpha2,6-linked sialic acid
(41, 42). Recent studies with the B cell line DT40 have
demonstrated that CD22 internalizes into early endosomes via
clathrin-mediated endocytosis following B cell receptor (BCR)
stimulation (43). Upon internalization, CD22 can either be
marked for degradation by the E3 ubiquitin ligase cullin 3, or
circulate back to the cell surface membrane, revealing a complex
network amenable to multiple regulatory inputs. Thus, a number
of clinically-relevant epigenetic modifiers or differentiation
agents were explored, with bryostatin showing the broadest
impact across the 3 lines tested on CD22 surface expression.

The average site density of CD22 on clinical pediatric ALL
samples is 3,470 with a broad range (349-19,653) that is dependent
in part on disease subtype (44). In an effort to overcome the evasion
of B-ALL from CAR-T therapy, Ramakrishna et al., demonstrated
that bryostatin is able to upregulate CD22, and to improve
outcomes in a NSG animal model system (13). Laboratory and
clinical studies have revealed that very little CD22 is shed, and
although a possibility in our system, the evasion of immune effector
cells by increased antigen target shedding is unlikely (45). The
internalization of CD19 and CD22 was carefully described in studies
evaluating anti-CD22 and anti-CD19 immunotoxins. In these
studies, CD19 was expressed at 3-4 fold higher with respect to
site density, but was far less effective as an anti-leukemic target for
antibody-linked toxins due to its lower rate of internalization (46).
Thus, there is documented differential internalization rate, even
though the number of CD19 on the surface of B cell lines always
exceeds that of CD22 (46). Immunofluoresence studies revealed that
antibody-mediated ligation drives these receptors into the same
intracellular compartment. This indicates both a differential
mechanism with regard to ligation-dependent internalization, and
some commonality as the initial endosomal compartment is the
same. A global coregulation of CD19 and CD22 is also suggested by
the lower levels of CD22 on ALL relapse post CAR-19 therapy (47).
We explored the activity of a number of epigenetic modifiers and
differentiation agents, Figure 1, to determine if other clinically
relevant agents modulate CD22 target number on the cell surface,
apart from overt cytotoxic activity.
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Although panobinostat and vorinostat may stabilize antigen
expression, only bryostatin appeared to consistently upregulate
target antigen expression, and thus we continued our studies by
focusing on bryostatin. Bryostatins are a family of cyclic
polyketides, with most research focused on bryostatin 1 (48).
The activity of bryostatin 1 is attributed to its interaction with the
diacylglycerol biding site of the C-1 regulatory domain of protein
kinase C. Upregulation of CD22 was noted alongside an increase
in cell size and membrane projections in bryostatin-treated CLL
(chronic lymphocytic leukemia) cells. Importantly, the effects of
bryostatin on PKCbII change from activating to inhibitory
with increased dosage or time in culture (14). At the lower
concentration of 1 ng/mL, bryostatin induces CLL differentiation
activating both PKCbII and Erk (49). Thus, it has a dual
concentration-dependent effect. To examine the epigenetic
effects of bryostatin we employed Cut&Tag analysis of two
histone modifications associated with promoting transcription,
H3K4me2 and H4K4me3, and one modification associated with
repressing transcription, H3K27me3. CD19 and CD22 were not
overtly altered, Supplementary Figures S2, S3, in keeping with
the relatively unaltered overall transcript and protein levels,
Figure 2. Responsiveness to bryostatin was clearly an attribute
of transformed B cells, as normal B cell surface expression of
both CD22 and CD19 was unaltered by bryostatin, Figure 1. The
modulation of both CD19 and CD22 may be key attributes of
successful CAR-T therapy, and will be explored in future studies.
The ability of a CAR-T cells to release from a specific target and
engage in serial killing would be inhibited if surface expression of
the target molecule remained unchanged.

In addition to bryostatin treatment, we sought to determine
the effect of CAR-T cells on cell surface CD22 expression. Much
to our surprise, anti-CD22 CAR-T down-regulated both CD22
and the off-target antigen CD19, Figure 3. Increasing E:T ratios
resulted in a greater decrease in CD22 and CD19 surface
expression. This data suggests that the addition of bryostatin
may keep target antigen surface expression higher and allow for a
greater degree of CAR-mediated leukemia cell killing. This raises
a key question, are we are selecting for a low antigen-expressing
leukemia sub-clones, or observing antigen recycling and
internalization at the cellular level? When the CAR-T +
bryostatin challenged leukemia cells were isolated and re-
cultured separately, interesting long-term changes were
observed, that resolved in a week for 2 of the 3 lines, Figure 4,
indicating that clonal selection was not the operative mechanism
for detecting an antigen low population. For the Raji cell line, on-
target CD22 expression decreased due to the addition of CAR-T.
This effect lasted throughout 72 hours of post CAR-T co-culture,
but normalized by day 7. For CD19 modulation in Raji, CD22
CAR-T induced CD19 down-modulation irrespective of
bryostatin treatment. Effects on NALM6 CD19 and CD22
surface expression were not as dramatic, and returned to
original levels by day 7. CD22 down-modulation by CAR-T
was essentially reversed by bryostatin within 24 hours, indicating
a long-term dominant effect that resolved within a week. The results
seen with REH were unexpected in that there was a strong rebound
effect for cultures treated with anti-CD22 CAR-T and bryostatin.
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While CAR-T only and bryostatin-only cultures normalized
CD22 expression levels by day 7, the combined treatment
invoked a more permanent change in that even on day 7, CD22
and CD19 surface expression levels remained high. The genetic or
epigenetic basis for this change will be explored in future studies.
Our data illustrates that bryostatin has a profound effect on target
antigen expression, even days after it is removed from the
culture media.

Another potential mechanism for the loss of antigen
expression on the target cell is trogocytosis mediated by the
CAR-T cell. Antigen acquisition by CAR-T cells was detectable,
and mirrored the relative antigen expression on each leukemia
target cell, Figure 5. Importantly, this was an antigen non-
specific process. The level of trogocytosis was also partially
reflective of the degree of leukemia cell killing. Less transfer
was seen was seen with higher E:T ratios. This may be due either
to the greater number of T cells that can receive membrane
associated surface antigens (signal dilution), or that cells being
actively lysed do not “donate” membrane and membrane-
associated proteins.

Investigating the cytolysis of bryostatin-treated leukemia cell
lines gave unanticipated findings, Figure 6. Untreated Raji cells
were readily killed by CD22 CAR-T. However, when bryostatin
was added, killing was completely abrogated. Untransduced T
cells (UTD) are activated T cells treated exactly like anti-CD22
CAR-T, with the exception that no LV vector transduction takes
place. Both REH and NALM6 were efficiently killed by CAR-T,
while UTD showed a very low killing activity, as expected.
However, when bryostatin was added, UTD now mediated
strong REH and NALM6 killing. This may indicate that the
increased killing of REH and NALM6 is not due to the increased
number of CD22 molecules on the leukemia cell surface, but due
to bryostatin-induced innate immune ligands that make the cells
susceptible to CAR-T and UTD antigen non-specific killing.
Neither CAR-T nor UTD lysed K562 cells, indicating that the
increased B cell leukemia killing was not mediated by standard
NK cell interactions. Cold-target inhibition demonstrated that
the bryostatin-induced killing of ALL lines could be blocked by
the innate immune ligands expressed by K562, while preserving
CAR-T mediated killing.

To specifically explore leukemia cell line sensitivity to NK cell
killing, we used the NK92 cell line, Figure 7. Unlike CAR-T or
UTD, NK92 had strong cytolytic activity against K562 cells. And,
as expected this was abrogated with K562-mediated cold target
inhibition. Raji cells were very sensitive to NK92 killing, with or
without bryostatin addition, and this killing was completely
unaffected by cold-target inhibition. NALM6 and REH were
not killed by NK92 unless they were first treated with bryostatin.
This killing also was not abrogated by K562-mediated cold target
inhibition. These results indicate that CAR-T cells mediate
killing through a number of mechanisms that include the CAR
itself, NK-like killing that can be blocked by K562-mediated cold
target inhibition, and killing induced by ligands induced by
bryostatin. This led us to propose a new model for CAR-T
mediated killing of bryostatin-treated cells, Figure 8. We now
use the term CTAK (CAR-T activated killing) to refer to off-
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target cytotoxicity against B-ALL cell lines mediated by CAR-T
cells. Moreover, CTAK activity is optimized by bryostatin
treatment of target ALL cell lines.

The striking evasion of bryostatin-treated Raji cells to CAR-T
cell-mediated cytotoxicity, but not NK92, led us to hypothesize
that activation of EBV latency may be responsible for immune
evasion. While the EBV genome present in Raji cells is not
replication competent, and thus gangiclovir effects may not be
directly EBV-related, the latent EBV genome present in Raji cells
remains a focus of study on the immune evasion mechanisms
utilized by EBV (50, 51). Preliminary RNASeq studies of
bryostatin-treated Raji highlighted EBV reactivation pathways
(not shown). When we treated Raji with ganciclovir, some
sensitivity to CAR-T-mediated cytolysis was recovered,
Figure 9. This did not correlate with epigenetic changes in
control regions for EBNA-1 or EBNA-2/LP expression, nor
were changes seen in the promoter regions associated with
EBV reactivation from latency, Zta, Rta, and LF1,2,3
(Supplementary Figure S6). Upon examining other EBV
latency promoters we noticed a marked increase in reads for
BLLF1. BLLF1 encodes the major viral envelope glycoprotein
gp350. Although gp350 does interact with B cell surface proteins,
notably CR2/CD21, we did not explore this finding further in
this report. Due to the minor role EBV latency gene expression
plays in bryostatin-treated Raji immune evasion, and the
examination of only one EBV-positive line, we cannot make a
causal link to immunoevasion and EBV. An alternate hypothesis
would be the effect bryostatin has on a2,6 sialic acid-bearing
targets, which if increased would impact CD22 expression.

In our final set of studies we explored the contribution of
ligands known to be involved in innate immune recognition of
cancer targets. For NALM6, ICAM-1 blockade diminished CAR-
T mediated cytolysis, Figure 11D. There was a decrease when
NKG2D was blocked as well, but this difference did not reach
statistical significance. DNAM1 blockade did very little in any of
our assays, in opposition to previous reports showing DNAM-1
activation of NK cells via interaction with CD112 (Nectin-2) and
CD155 (PVR) on myeloid leukemias (52). The REH cell line
showed decreased CAR-T and UTD cytolysis when either
ICAM-1 or NKG2D were blocked, Figure 11F, H. NK92 cell-
mediated killing of NALM6 and REH was impacted by NKG2D
or ICAM1 blockade, Figure 12. The only evidence of NKp30
activity in our assays was the partial blockade of UTD-mediated
killing of bryostatin-treated REH or NALM6, Figures 11C, G.
Due to the low expression of the NKp30 ligands B7H6 and BAG6
on leukemia target cell lines, we hesitate to ascribe this activity as
being a key point of differentiation between the killing activities
we described, but it indicates that transduction with a CAR may
give rise to a different innate immune effector activity than that
seen in UTD. In sum, the receptors tested as a single agents had a
moderate effect. This implies that the killing activities observed
are the result of additive signals that are integrated by the effector
cell type being tested.

Bryostatin profoundly modulates cell surface antigen
expression of targeted leukemia cells. For NK92-mediated
killing, bryostatin induced a set of ligands on the B-ALL cell
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lines REH and NALM6 that allowed them to be recognized and
eliminated. Moreover, these signals were not those normally
associated with NK cell activity, as cold target inhibition had no
effect, Figure 13. For the more developmentally mature B cell
line, Raji Burkitt lymphoma, bryostatin had no effect. However,
Raji cells are universally sensitive to NK92. Effects on T cell-
mediated killing of Raji were very different from NALM6 and
REH. T cell killing of Raji was completely abrogated by
bryostatin. This surprising result indicates that bryostatin
cannot be assumed to be universally beneficial in CD22 CAR-
T mediated killing. This also indicates that the increased killing
cannot be solely attributed to an increase in the number of CD22
molecules on the cell surface. A portion of the bryostatin-
amplified susceptibility to cytolysis is blocked by cold-target
inhibition, indicating that canonical NK receptor interactions
play a role for ALL. We have termed the non-canonical activity
that could not be blocked by cold-target inhibition CTAK (CAR-
T cell antigen non-specific killing) in order to differentiate it
from NK cell and LAK cell-mediated killing.

Analysis of cell surface antigen dynamics revealed that
trogocytosis occurs to some degree, but is unlikely to be a major
source of antigenic modulation seen during CAR-T cell mediated
killing. The dual activity of CAR-T and bryostatin induced
changes in surface antigen expression for days, even when these
agents were removed, Figure 4. Notably, the REH cell line
maintained changes in both CD22 and CD19 antigen expression
levels for 7 days when co-cultured with both CAR-T and
Frontiers in Immunology | www.frontiersin.org 17202
bryostatin. Epigenetic analysis at 24 hours revealed changes in
EBV antigen expression control regions in Raji cells, and
alterations for other proteins as well, but not in the control
regions of CD19 and CD22 (Supplementary Table 2). The
complex dynamics of surface antigen expression in leukemia
cells will be the focus of future studies. A recent analysis of
CD22 CAR-T treated patients revealed that in addition to T cell
exhaustion and a lack of stimulation due to antigen down-
modulation, significant splice variations in CD22 have also been
noted that may account for escape from immunotherapeutic
control (53).

We have demonstrated that bryostatin induces innate
immune receptor ligands on ALL that increase CAR-T cell
killing, which can be blocked only in part by cold-target
inhibition with K562. We have also demonstrated that Raji
cells are rendered resistant to T cell mediated, but not NK92-
mediated killing, by bryostatin. Furthermore, NK92 targets are
induced on B-ALL when treated with bryostatin, and these also
are not influenced by cold-target inhibition. We have described
the mechanisms behind these effects only in part. Anti-ICAM1
antibody seems to partially block these effects for both T and NK
effector cell types, and other innate immune receptors clearly
play a role as well. We propose that for clinical studies where
CAR-T cells are combined with bryostatin, that the leukemia cell
type targeted should first be documented to have increased
biological sensitivity to cytolysis. A simple increase in CD22
target cell number is not sufficient. Secondly, the addition of NK
FIGURE 13 | Bryostatin modulation of CAR-T and NK92-based leukemia cell line cytolysis. Bryostatin treatment of pre-B ALL (yellow to striped yellow) and Burkitt
(brown to striped brown) cell lines alters sensitivity to effector cell cytolysis. CAR-T cytolysis (left half, green cell) is amplified by bryostatin treatment (+ to ++) for B-
ALL, and blocked for Burkitt’s (+ to -). Progressing to the lower portion of the figure illustrates the effect of K562 cell mediated cold-target inhibition (+K562 CT inhib).
CAR-T mediated killing of Burkitt’s is unaffected, while some of the bryostatin facilitated killing of B-ALL is lost (orange circle). For NK cytolysis (orange cell, right half),
the induction of a new set of innate immune ligands that now allow for killing of B-ALL is illustrated (- to +). Burkitt’s remains unaffected, and universally sensitive. The
induced ligands on B-ALL are unaffected by cold-target inhibition and remain sensitive to NK cytolysis.
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cells to CAR-T cell therapeutic approaches may overcome escape
mechanisms that more mature leukemia subtypes display, and
should be considered on their own or in combination
with bryostatin.
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Supplementary Figure 1 | (S1) Heatmap of histone enrichment anchored at TSS
(Transcription Start Sites). Raji, NALM6, and REH cell lines were treated with
bryostatin for 24 hours (Bryo), and then analyzed by Cut&Tag, or left untreated, Ctrl.
Total reads were normalized by RPKM, aligned for transcriptional start sites, and
signals for H3K4me2, K3K4me3, and H3K27me3 compared to untreated cells
cultured in parallel. Both read length from the transcriptional start site (bottom
scale), and frequency (vertical scale) are indicated.

Supplementary Figures 2 and 3 | (S2 and S3). Cut&Tag analysis of CD22 and
CD19 transcriptional control regions. Cut&Tag reads mapped to genome regions
Frontiers in Immunology | www.frontiersin.org 18203
encoding S2) CD22 and S3) CD19, are displayed for Raji, NALM6, and REH cell
lines as listed on the y-axis. Next to each cell line the three immunoprecipitating
antibody specificities are listed along with the IgG control antibody (H3K4me2,
H3K4me3, H3K27me3, IgG). For each condition, two read tracks are presented for
cell lines that have been treated (+Bryostatin) or untreated control samples. Thus,
changes due to bryostatin treatment appear directly below the untreated cell line
sample. Below each data set the corresponding genome map is illustrated. To the
right of each panel, average of normalized total reads within the gene region from 3
experiments are presented for H3K4me2 and K3K4me3. For CD22: Raji showed
increased H3K4me2 and H3K4me3 (p<0.001), REH (p<0.001) and NALM6
(p<0.05) showed increased H3K4me3 reads. n.s., not significant. For CD19 only
H3K4me3 (p<0.05) was increased by bryostatin treatement.

Supplementary Figures 4 and 5 | (S4 and S5). Modulation of the EBV genome in
Raji leukemia cells mediated by bryostatin. S4) Sequence reads for two of the major
transcriptional activators of EBV latency, EBNA-1 and EBNA-2/LP analyzed by
Cut&Tag analysis and mapped on the EBV genome for the presence of epigenetic
modificationofH3K4me2,H3K4me2,andH3K27me3 (y-axis).No readsweredetected
for the IgG control. Reads are presented as parallel samples for bryostatin-treated
(+bryostatin) or untreated Raji. Shown below the immunoprecipitated Cut&Tag reads
are total mRNA reads (in gray) displayed over the relevant portion of the EBV viral
genome, shown at the bottom portion of the plot. S5) Analysis of the viral genome
encoding two of the latency antigens that mediate B cell activation, C) LMP1/2 and D)
LMP2A/B, demonstrated no overt changes in Cut&Tag signal, and a decrease in total
mRNA reads for LMP-1 and LMP-2.

Supplementary Figure 6 | (S6) Cut&Tag analysis of EBV latency reactivation
promoters in Raji. Cut&Tag Profiles for (A) Zta/Rta, (B) BLLF1, and (C) LF1,2,3 are
presented for reads amplified from H3K4me3, H3K4me3, K3K27me3
immunoprecipitations, as in S2. Reads are presented in parallel with or without
(+bryostatin) bryostatin treatment. Red square indicates difference in H3K4me3
reads for BLLF1.

Supplementary Figure 7 | (S7) Flow cytometry for innate immune ligands:
effector cell and leukemia cell line characterization. (A–N) the three immune effector
lines (NK92, UTD, and CD22 CAR-T) were characterized for expression of NKG2D,
DNAM-1, NKp30, NKp44, NKp46, TRAIL, FasL, KIR2DL1/DS1, KIR3DL1/DS3,
NKG2A, ICAM1, ICAM2, LFA1, and CD56. All antibodies used are listed in
Methods. (O-BB) Four leukemia lines (NALM6, REH, Raji, K562) were analyzed for
expression of MIC-A/B, ULBP1, ULBBP-2/5/6, ULBP3, Nectin-2, B7H6, BAG6,
DR4, DR5, Fas, HLA-A,B,C, HLA-E, ICAM1, ICAM2. In all flow panels isotype
control (gray), untreated cells (blue), and bryostatin-treated cells (red, 1 nM
overnight) are compared.

Supplementary Figure 8 | (S8) Volcano plot of differentially enriched peak by
Cut&Tag analysis. Enriched peak reads were normalized by read depth and
compared between samples (control versus bryostatin treatment) by DESeq2.
Shown is H3K4me2 (top row) and H3K4me3 signal (bottom row) for REH (A, D)
NALM6 (B, E), and Raji (C, F). Green color indicates gene expression differential of
>4-fold change and p<0.001 in H3K4me2, gene expression differential of >4-fold
change and p<0.005 in H3K4me3. Gene identities can be found in ST2.

Supplementary Table 1 | (ST1) Epigenetic modifiers and differentiation agents
modulate CD19 and CD22 expression at non-cytotoxic concentrations. Three cell
lines (Raji, NALM-6, REH) were tested across a broad range of concentration to
ensure a noncytotoxic concentration of epigenetic modifiers and differentiation
agents were tested for the ability to increase the expression of the number of CD22
and CD19 molecules per cell, Figure 1. Agents that changed the expression of
each target antigen are indicated by the greatest percent increase of the number of
CD22 or CD19 molecules per cell are listed.

Supplementary Table 2 | (ST2) Expression of innate immune receptors on
effector cells. MFI signal, (summarized from Supplementary Figure 7) for NK92,
untransduced T cells (UTD T) and CD22 CAR-T cells, for expression of surface
innate immune effector molecules. NK92 expression patterns are consistent with
primary NK cells, while UTD and CAR-T cells lack CD56, NKp30, and NKp44
expression. Bryostatin has negligible effects on NK-92, and some induced (ind)
expression of TRAIL and ICAM-1 on UTD and CAR-T cells.
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Supplementary Table 3 | A, 3B Summary of gene expression by MFI, based on
flow cytometry profiles, S3. Table 3A) Effector cells (NK92, UTD, CD22 CAR-T) with
or without bryostatin treatment (+Bryo) were analyzed for expression of Activating
Ligands (orange blocks, column 1): MFI for NKG2D, DNAM1, NKp30, NKp44,
NKp46, TRAIL, FasL; and for Inhibitory Ligands (blue blocks, column 1) KIR2DL1/
DS1, KIR3DL1/DS1, NKG2A; and for adhesion receptors (gray blocks, column 1)
ICAM1, ICAM2, LFA1, CD56 are shown. Table 3B) NK ligands (column 3)
interacting with Activating Receptors (column 2, orange blocks), Inhibitory
Receptors (column 2, blue blocks), and adhesion receptor (gray block, column 1)
are listed according to expression on leukemia cell line targets (NALM6, REH, Raji,
K562) that have been untreated or treated (+bryo) with bryostatin. MFI for MIC-A/B,
ULBP1, ULBP-2/5/6, ULNP3, NECTIN2, B7H6, BAG6, DR4, DR5, Fas, HLA-A,B,
C, HLA-E, ICAM1, and ICAM2 are shown. MFI was calculated by (geometric mean
of ligand fluorescence – geometric mean of isotype fluorescence).

Supplementary Table 4 | (ST4) Total reads and reads exceeding threshold.
Table (ST2_CutNTag_differential) describes methylation patterns (me2 and me3) of
histone 3 (H3) modifications at lysine 4 (K4). The first of each pair of tabs reports all
Frontiers in Immunology | www.frontiersin.org 19204
signal from Cut&Tag analysis and the second tab lists differential expression
between bryostatin-treated and control (non-treated) leukemia cells. The global tab
contains the peak ID (column A), chromosome (column B), start and end sequence
number (C,D), annotation (E), distance to transcription start site (TSS) (F), gene
name (G), gene description and type (H,I). Signal for the cell lines, in triplicate,
analyzed without bryostatin (J-L) with bryostatin (M-O), normalized signal by
DESeq2 without bryostatin (P-R), normalized signal by DESeq2 with bryostatin (S-
U); column V is not utilized, but gives signal intensity mean across all samples,
column W, log2 fold-change (without bryostatin versus with bryostatin, and thus
negative in value); column X, standard error of log2 fold-change; column Y,
standard error of the log2 fold-change, Wald statistic; column Z, Wald test p-value;
column AA, Benjamini-Hochberg adjusted p-value. All stats were calculated within
the DSeq2 package. Thus, ST2 contains the following tabs: K4me2NALM6
K4me3NALM6_|FC|>4_P<0.001_green (fold change greater than 4, indicated p
value) K4me3NALM6 K4me3NALM6_|FC|>4_P<0.005_green K4me2REH
K4me2REH_|FC|>4_P<0.001_green K4me3REH K4me3REH_|FC|
>4_P<0.005_green K4me2Raji K4me2Raji_|FC|>4_P<0.001_green K4me3Raji
K4me3Raji_|FC|>4_P<0.005_green.
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Background: Accumulating evidence indicates that circular RNAs have major roles in the
progression of human cancers. Nevertheless, the molecular mechanism and effects of
circFAM126A in oral squamous cell carcinoma (OSCC) remain unclear.

Methods: Quantitative real-time PCR (qRT-PCR) was used to detect expression levels of
circFAM126A in OSCC tumor tissues and cell lines; the effects of circFAM126A small
hairpin RNA (shRNA) on the proliferation, migration, and invasion of OSCC cells were
detected by MTT, colony formation, and transwell assays; xenograft mouse models were
used to determine the effects of circFAM126A shRNA on the growth of OSCC tumors
in vivo; the expression of miR-186 and RAB41 in OSCC tissues and cells was examined
by qRT-PCR; the targeting relationship between circFAM126A and miR-186 was verified
by dual-luciferase reporter and RNA pull-down assays; and the relationship between miR-
186 and RAB41 was explored.

Results: The expression of circFAM126A was significantly upregulated in OSCC tissues
and cells. The transcription factor SP1 transcriptionally activated circFAM126A. However,
knockdown of circFAM126A markedly suppressed the proliferation, migration, and
invasion of OSCC cells in vitro and inhibited tumor growth and distant metastasis
in vivo. Moreover, circFAM126A increased the expression of RAB41 and promoted its
mRNA stability via binding to miR-186 and RNA-binding protein FUS. Overexpression of
RAB41 antagonized the effects of circFAM126A knockdown and induced an aggressive
phenotype of OSCC cells.

Conclusion: SP1 transcriptionally activated circFAM126A modulated the growth, epithelial-
mesenchymal transition (EMT) of OSCC cells via targeting the miR-186/FUS/RAB41 axis,
suggesting that circFAM126A is a potential biomarker for the treatment of OSCC.

Keywords: oral squamous cell carcinoma, circFAM126A, miR-186, RAB41, proliferation, epithelial-
mesenchymal transition
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most common oral
malignant tumor worldwide (1). Although strategies for the
diagnosis and treatment of OSCC have improved significantly
in recent years, the 5-year overall survival rate for patients with
advanced OSCC remains poor (2, 3). Therefore, further
exploration of the pathogenesis of OSCC and identification of
novel therapeutic targets, as well as potential diagnostic and
prognostic biomarkers, may provide new opportunities for early
diagnosis and treatment of OSCC.

Accumulating evidence has unveiled the roles of circular
RNAs (circRNAs; a type of non-coding RNA) in cancers
including bladder cancer (4), colorectal cancer (5), and cervical
cancer (6). Abnormally expressed circRNAs can be used as
diagnostic markers and targets for therapeutic intervention for
various malignant tumors (7, 8). In OSCC, circRNAs can
function as tumor suppressors or oncogenes (9). For example,
hsa-circ-0008035, hsa-circ-0000670, and hsa-circ-0003159 have
been found to be associated with OSCC tumorigenesis (10–12).
However, the roles of circ_0001682 (circFAM126A), which is
located on chromosome 7 with a spliced length of 181 base pairs,
have not been elucidated.

Functionally, circRNAs function as competing endogenous
RNAs (ceRNAs) and sponge microRNAs (miRNAs) to regulate
gene expression and numerous biological processes, including
proliferation, apoptosis, migration, and invasion of cancer cells
(13–15). miRNAs pair with mRNA bases of target genes to
induce silencing complex RISC, which further degrades the
mRNA or inhibits its translation. The circRNA/miRNA/
mRNA axis has been verified to be a regulator of multiple
tumor-related pathways and to modulate tumorigenesis. For
example, aberrant expressed circAKT1 induces malignant
behaviors of cervical cancer cells via regulating the miR-942-
5p/AKT1 axis (6); the circ-0067934/miR1324/FZD5 axis
promotes the progression of hepatocellular carcinoma (16);
and has-circ-0000670 promotes the proliferation, migration,
and invasion of OSCC via regulating miR384/SIX4 axis (11).

Epithelial-mesenchymal transition (EMT) is considered as a
classical theory for tumor metastasis (17). The processes of EMT
is accompanied by the loss of epithelial function and acquisition
of mesenchymal characteristics, which loses cell adhesion and
enhances migration and invasion ability (18). Presently,
increasing evidence has revealed the potentials of circRNAs in
the EMT processes (19). For instance, circ_0008305 suppresses
the EMT and metastasis of non-small cell lung cancer via miR-
429/miR-200b-3p/TIF1g axis (20). circPRRC2A-induced
upregulation of TRPM3 promotes the EMT, angiogenesis and
metastasis of renal cell carcinoma (21). circIGHG enhances the
EMT of OSCC via regulating miR-142-5p/IGF2BP3 axis (22).
However, the study on the roles of circRNAs in OSCC is
still limited.

In this research, we investigated the roles of circFAM126A in
OSCC tissues and cell lines using circRNA microarrays,
bioinformatics, and functional studies. We found that
circFAM126A could function as an oncogene in OSCC, and
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that its knockdown suppressed the proliferation and EMT of
OSCC cells via regulation of the miR-186/RAB41 axis.
MATERIALS AND METHODS

Tissue Samples and Cell Lines
A total of 30 OSCC patients who underwent surgeries at the
Affiliated Stomatological Hospital of Nanchang University were
involved in this research. Adjacent normal tissues were taken
5 cm away from the edge of the tumor. The diagnosis of OSCC
was confirmed by histological examination. Patients with OSCC
who had received prior treatment for their tumor or had a
history of other solid tumors were excluded. This study was
approved by the Human Research Ethics Committee of the
Affiliated Stomatological Hospital of Nanchang University.
Informed consent was obtained from all patients.

OSCC cell lines CAL27, SCC25, SCC15, TSCCA, UM1 and
UM2, normal human oral epithelial cells (NHOK), and HEK-293
T cells were obtained from the Institute of Biochemistry and Cell
Biology of the Chinese Academy of Sciences (Shanghai, China).
All cell lines were cultured in 90% RPMI-1640 medium (Gibco,
USA) with 10% fetal bovine serum (FBS) and 1% penicillin–
streptomycin solution (Invitrogen) at 37°C in a moist
atmosphere with 5% CO2.

Microarray Analysis
The microarray data set GSE131182 analysis was performed with
Limma R Human CBC circRNA under the following the
standard: |logFC|> 2 and P<0.05. The number of differentially
expressed circRNAs was 417, among which 383 circRNAs were
upregulated and 34 downregulated.

RNase R Treatment
To prove that circFAM126A is a circRNA, total RNA from
CAL27 and UM1 was treated with RNase R (Sigma) at 37°C for
15 min and then purified with phenol-chloroform (Sigma). The
expression of circular or linear FAM126A was determined by
quantitative real-time polymerase chain reaction (qRT-PCR).

Actinomycin D
The circFAM126A plasmids were transiently transfected into
OSCC cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA,
USA). After 24 h, actinomycin D (5µg/mL) was added to the
culture medium, followed by incubation for 0 h, 4 h, or 8 h, 16 h,
and 24 h. mRNA stability was analyzed by PCR.

qRT-PCR
TRIzol™ reagent (Invitrogen, CA, USA) was used to extract total
RNA according to the manufacturer’s instructions. To ensure the
purity of circRNAs, RNase R (Geneseed, Guangzhou, China) was
used to digested the RNAs for 20 min. The RNA concentration
was measured using a Nanodrop 2000 (Thermo, USA), and qRT-
PCR was performed on a 7500 Fast Real-Time PCR System
(Applied Biosystems, Thermo Fisher Scientific) using a SYBR
Premix Ex Taq II kit (Takara Bio, Beijing, China) to examine the
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relative expression of circRNAs. GAPDH was used to normalize
circRNA expression levels.

First, total RNA was reverse transcribed into cDNAs by
TaqMan Reverse-transcription. The cDNAs were synthesized
using a PrimeScript RT reagent kit (Takara, Tokyo, Japan)
transcriptase, random 6mers, RNase inhibitor, Oligo dT
primer, dNTP mixture, and reaction buffer. The cycle
conditions were 95°C for 30 s (initial denaturation), followed
by 95°C for 5 s and 60°C for 34 s, for 40 cycles. We used the
2−DDCt method to analyze the data (23).

Cell Transfection
The circRNA small hairpin RNA (shRNA), miR-186 mimics and
inhibitor, and specific negative control were synthesized and
purchased from GenePharm (Shanghai, China). The
circFAM126A vectors were constructed with amplified DNA
fragments, including the sequence of exons 15 and 16 of the
PTK2a gene with flanking introns containing complementary
Alu elements (GeneChem, Shanghai, China). Cells were
transfected using Lipofectamine 3000 (Invitrogen, CA, USA)
for 48 h.

Cell Viability (MTT) Assay
Logarithmic-phase cells were digested with trypsin, collected,
and used to prepare a cell suspension after centrifugation. A
mixture of the cell suspension containing 100 ml cells was added
to each well of a 96-well-plate. The cells were cultured in an
incubator at 37°C with 5% CO2. Cells were supplemented with 10
ml MTT solution (5 mg/ml, 0.5% MTT) and further cultured for
4 h. Then, 150 ml dimethyl sulfoxide was added to each well,
followed by shaking at low speed for 10 min to fully dissolve the
crystals. The absorbance values of each well were measured using
a microplate reader at an optical density of 490 nm.

Colony Formation Assay
After 48 h transfection, cells were digested with trypsin. A cell
suspension was prepared in complete medium. Then cells were
washed with phosphate-buffered saline. Trypsin was added and
the cells were centrifuged. The cells were seeded into six-well
plates (500–1000 cells/well), shaken gently, and cultured for 14
days. Then, 1000 ml impurity-free crystal violet dye was added to
the cells. Cells were visualized under a microscope.

Transwell Cell Migration and
Invasion Assays
Transwell assays were used to determine the invasion and
migration ability of the OSCC cells. After transfection for 48 h,
cell culture transwell inserts (8-mm pore size; Falcon; BD
Biosciences) were placed in 48-well plates in the upper
chamber with or without precoated Matrigel (BD Biosciences,
San Jose, CA, USA). The membrane was hydrated with FBS 2 h
prior. Cells in the lower chamber were cultured with RPMI-1640
(600 µl) containing 10% FBS. After 24 h, the migrated or invaded
cells were fixed with 100% methanol and cultured with crystal
violet. The numbers of migrated and invaded cells were counted
under a microscope.
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RNA Probe Pull-Down Assay
Biotinylated probes binding to the junction region of
circFAM126A or miR-186 were designed by GenePharm. The
oligonucleotide probe was used as a negative control.
Approximately 1×107 cells were lysed in lysis buffer and
incubated with 3 mg biotinylated probe for 2 h. Cell lysates
were incubated with streptavidin magnetic beads (Life
Technologies, Gaithersburg, MD, USA) for 4 h to pull down
the biotin-conjugated RNA complex. Cells were washed with
lysis buffer five times. Subsequently, the bound miRNA in the
pull-down complex was extracted using TRIzol reagent and
analyzed by qRT-PCR.
Wound Healing Assay
Cells were seeded into 6-well plates. Then cells, cells at 80%
confluence, were scratched using 20 ml pipette tip. Afterwards,
cells were cultured with DMEM medium for 0 h and 24 h and
captured using an inverted microscope.

Dual-Luciferase Reporter Assay
Target analyses of circFAM126A and miR-186 (https://starbase.
sysu.edu.cn/index.php), and of miR-186 and RAB41 (http://
www.targetscan.org/vert_72/), were performed on the
biological prediction, respectively. The sequences of the
circFAM126A and RAB1 3′ untranslated regions (UTRs)
containing the miR-186 binding sites were cloned into
luciferase reporter vectors (Promega, Madison, WI, USA) to
form the wild-type vectors wt-circFAM126A and wt-RAB41.
The mutant luciferase reporter vector constructs mut-
circFAM126A 3’UTR and mut-RAB41 were created by
mutating the binding sites of miR-186. For the dual-luciferase
reporter assay, HEK-293 T cells were co-transfected with these
vectors and an miR-186 mimic or negative control. After 48 h,
luciferase activity was measured by using a dual-luciferase
reporter assay system (Promega).

Chromatin Immunoprecipitation
(ChIP) Assay
ChIP assay was performed using a ChIP Kit (Millipore, USA).
Briefly, cells were fixed in 1% formaldehyde. Afterwards,
crosslinked chromatin was ultra-sonicated, and immunopreciated
with anti-SP1 or control anti-IgG bound-protein G beads. The
enrichments of DNA fragments were determined using qRT-PCR.

Mouse Xenograft Tumor Models
Mouse xenograft tumor models were established for in vivo
assays. OSCC cells transfected with circFAM126A shRNA were
subcutaneously injected into nude mice. The volumes of
xenograft tumors were measured every week for 6 weeks. At
the end of week 6, mice were sacrificed, and weights of tumors
were measured. Immunohistochemical staining was performed
to determine the expression of Ki67. This animal study was
approved by the Animal Care Board of the Affiliated
Stomatological Hospital of Nanchang University.
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Statistical Analysis
Each experiment was conducted three times. Statistical analysis
was performed with SPSS v.22.0 (IBM, SPSS, Chicago, IL, USA).
Data were presented as mean ± standard deviation. Comparisons
between two groups were performed using student’s t-test.
Differences among multiple groups were evaluated with one-
way analysis of variance. A P-value less than 0.05 was considered
to indicate statistical significance.
RESULTS

circFAM126A Is Overexpressed in OSCC
Tissues and Cells
Figures 1A, B showed the differentially expressed circRNAs in
OSCC patients (S) and healthy control (N), among which 383
circRNAs were upregulated and 34 downregulated. The expression
of circFAM126A was more remarkable. We further determined the
expression of circFAM126A in OSCC tissues and cells using qRT-
PCR. As shown in Figure 1C, the expression of circFAM126A was
significantly higher in OSCC tissues compared with healthy control
(P<0.01). Moreover, high expression of circFAM126A was
significantly associated with gender, tumor stage, and lymph node
metastasis, but not with age (Table 1); additionally, high level of
circFAM126Awas associated with poor overall survival (Figure 1D,
P<0.05). The expression of circFAM126A was significantly
increased in OSCC cells, such as CAL27, SCC15, SCC25, TSCCA,
UM1 and UM2 (Figure 1E, P<0.01, P<0.001), which was more
remarkable in CAL27 and UM1 cells. Therefore, CAL27 and UM1
cells were used in the following experiments. To further verify the
circRNA characteristics of circFAM126A, RNAse and PCR assays
were performed. As shown in Figures 1F, G, circFAM126A was
stable and could resist RNase R digestion in CAL27 and UM1 cells
(P<0.05, P<0.01). Moreover, circFAM126A could be amplified in
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cDNA, but not gDNA (Figure 1H). Furthermore, fluorescence
imaging showed that circFAM126A was located in the nucleus as
well as in the cytoplasm (Figure 1I).

SP1 Transcriptionally Activates
circFAM126A in OSCC
SP1 is a crucial transcription factor and functions as an oncogene in
OSCC. As shown in Figure 2A, the expression of SP1 was
significantly higher in patients OSCC tissues compared with
healthy control (P<0.01). The expression of SP1 in OSCC samples
was positively correlated with circFAM126A (Figure 2B, P<0.01).
Moreover, knockdown of SP1 significantly decreased expression
levels of circFAM126A (Figure 2C, P<0.01). To further verify the
interaction between SP1 and circFAM126A, serial truncations
of the circFAM126A promoter were inserted into the pGL3
vector in HEK-293 T cells. The luciferase activity was significantly
increased when the 1419–1477 and 1778–2000 truncations were
used (Figures 2D, E, P<0.01). Furthermore, knockdown of
SP1 significantly suppressed luciferase activity in the 1419–1477
group (Figure 2F, P<0.01). The ChIP further verified that SP1
bound to the promoter of circFAM126A (Figure 2G, P<0.01).

Knockdown of circFAM126A Inhibits the
Proliferation and EMT of OSCC Cells
In Vitro
Next, to further explore the roles of circFAM126A in OSCC, we
treated CAL27 and UM1 cells with circFAM126A shRNA. This
knockdown of circFAM126A effectively reduced the expression
levels of circFAM126A, with a particularly marked effect in the
sh-circFAM126A 2# group (Figure 3A, P<0.01). Therefore, sh-
circFAM126A 2# was used in the following experiment.
Knockdown of circFAM126A also significantly inhibited the
viability and proliferation of OSCC cells (Figures 3B, C, P<0.01),
and markedly inhibited the migration and invasion of CAL27
and UM1 cells in vitro (Figures 3D–G, P<0.01). Moreover,
A B D E F
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FIGURE 1 | circFAM126A is upregulated in OSCC. (A, B) Microarray analysis the differentially expressed circRNAs in OSCC. (C) Expression of circFAM126A in
clinical samples. (D) The overall survival of OSCC patients. (E) Expression of circFAM126A in OSCC cells. (F) Relative RNA levels and RNA stability in CAL27
detected by qRT-PCR. (G) Relative RNA levels and RNA stability in UM1 detected by qRT-PCR. (H) Primers amplified in cDNA or gDNA determined by qRT-PCR.
(I) Locations of circFAM126A detected by fluorescence assay. S: OSCC patients; N: normal group. *P<0.05, **P<0.01, ***P<0.001.
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circFAM126A knockdown significantly suppressed the protein
expression of Snail, Vimentin, and N-cadherin, but increased
E-cadherin (Figures 3H, I, P<0.01).

Knockdown of circFAM126A Inhibits
Growth of OSCC Tumor In Vivo
Xenograft mouse models were established to determine the effects of
circFAM126A shRNA on the growth of OSCC tumors in vivo.
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As shown in Figures 4A–D, knockdown of circFAM126A
significantly decreased tumor size, weight, and volume, and liver
metastasis; circFAM126A knockdown markedly decreased
expression levels of circFAM126A and Ki67 (Figures 4E–G).

miR-186 Is a Direct Target of circFAM126A
miR-186 was predicted to have binding sites for circFAM126A
(Figure 5A). To confirm the targeting relationship between
circFAM126A and miR-186, we performed luciferase activity
reporter and RNA pull-down assays. As shown in Figure 5B
(P<0.01), miR-186 mimics markedly decreased luciferase activity in
wt-circFAM126A-transfected cells but had no significant effects on
mut-circFAM126A-transfected cells. Furthermore, a circFAM126A
probeandbiotinmiR-186-probewereused toperformtheRNApull-
down assay. The results showed that themiR-186 probe could enrich
circFAM126A (Figure 5C, P<0.01). Moreover, the expression of
miR-186 in OSCC cells was significantly increased by knockdown
of circFAM126A but significantly decreased by overexpression of
circFAM126A(Figure5D).As shown inFigure5E, the expressionof
miR-186 was significantly decreased in OSCC tissues in comparison
with adjacent normal tissues (P<0.01).

RAB41 Is a Target of miR-186
miRNAs regulate biological progresses via binding to their
targets. Online database TargetScan 7.2 was used to predict the
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FIGURE 2 | SP1 transcriptionally activates circFAM126A in OSCC. (A) mRNA expression of SP1 in OSCC patients measured using qRT-PCR. (B) Correlation
analysis of expression levels of SP1 and circFAM126A in OSCC patients. (C) Expression of circFAM126A detected by qRT-PCR. (D) Serial truncations of
circFAM126A promoter inserted into pGL3 vector. (E, F) Interaction between SP1 and circFAM126A verified by luciferase assay. (G) Interaction between SP1 and
circFAM126A verified by ChIP assay. **P<0.01.
TABLE 1 | Clinical features of OSCC patients.

Parameters Total circFAM126A Expression P value

High Low

Tissues <0.01
OSCC 30 21 9
Health 30 7 23

Age 0.0157
≥60 31 19 12
<60 29 15 14

Gender 0.0363
Male 33 23 10
Female 27 11 16

Stage 0.6452
I-II 6 2 4
III-IV 24 21 3

Lymph node metastasis <0.01
30 22 8
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targets of miR-186. Figure 6A showed the binding sites
between miR-186 and RAB41 (Figure 6A). The luciferase
assay showed that miR-186 mimics markedly decreased
luciferase activity in wt-RAB41-transfected cells, whereas
they had no significant effects on mut-RAB41-transfected
cells (Figure 6B, P<0.01). The RNA pull-down assay further
verified the interaction between miR-186 and RAB41
(Figure 6C, P<0.01). Overexpression of miR-186 significantly
decreased the expression of RAB41 at both the mRNA and
protein levels, whereas RAB41 expression was significantly
upregulated by miR-186 inhibitors (Figures 6D, E, P<0.01).
As shown in Figure 6F, the expression of RAB41 was
significantly increased in OSCC tissues compared with
adjacent normal tissues (P<0.01). The expression of RAB41
was positively correlated with circFAM126A expression and
Frontiers in Oncology | www.frontiersin.org 6211
negatively correlated with miR-186 expression (Figures 6G,
H, P<0.01).

circFAM126A Interacts With FUS to
Promote mRNA Stability of RAB41
circRNAs regulate gene expression via binding to miRNAs or
RNA-binding proteins (RBPs). RNA pull-down and mass
spectrometry analyses showed that circFAM126A could bind to
FUS (Figure 7A, P<0.01). The RIP assay further verified the
interaction between FUS and circFAM126A and RAB41
(Figure 7B, P<0.001). The expression of FUS was significantly
increased after transfection with FUS, indicating that cells had
been successfully transfected (Figure 7C, P<0.01, P<0.001).
Moreover, overexpression of FUS significantly increased its
mRNA stability (Figure 7D, P<0.05, P<0.01), and circFAM126A
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FIGURE 3 | circFAM126A shRNA inhibits proliferation, migration, and invasion of OSCC cells. (A) Expression of circFAM126A in OSCC cells detected by qRT-PCR.
(B) Viability of CAL27 and UM1 cells determined by MTT assay. (C) Proliferation of OSCC cells detected by colony formation assay. (D, E) Migration detected using
wound healing assay. (F, G) Migration and invasion of OSCC analyzed by transwell assay. (H, I) Protein expression determined using western blot. **P<0.01.
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modulated the interaction between FUS and RAB41 (Figure 7E,
P<0.01). The decrease in mRNA stability induced by
circFAM126A knockdown was reversed by overexpression of
FUS (Figure 7F, P<0.01).

circFAM126A Regulates the Proliferation
and EMT of OSCC Cells via Targeting the
miR-186/RAB41 Axis
As shown in Figure 8A, RAB41 overexpression plasmids
significantly increased the expression of RAB41 compared
with sh-circFAM126A (P<0.01). Moreover, compared with
circFAM126A knockdown, overexpression of RAB41 significantly
promoted the proliferation (Figures 8B, C, P<0.01), migration
Frontiers in Oncology | www.frontiersin.org 7212
(Figures 8D, E, P<0.01), and invasion (Figure 8F, P<0.01) of
OSCC cells in vitro. Additionally, upregulated RAB41 antagonized
the effects of circFAM126A knockdown on the protein expression
of Snail, Vimentin, E-cadherin, and N-cadherin (Figures 8G,
H, P<0.01).
DISCUSSION

Dysregulated circRNAs play a crucial role in the development
of OSCC. circRNAs may function as anti-tumor genes or
oncogenes in OSCC. In this study, we found that circFAM126A
was upregulated in OSCC. Moreover, SP1-induced upregulation
A B D
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C

FIGURE 4 | circFAM126A shRNA inhibits the growth of OSCC tumor in vivo. (A) Xenograft analysis of tumor growth in vivo. circFAM126A knockdown suppressed
OSCC tumor growth. (B, C) Tumor weight and volume after transfection with circFAM126 knockdown. (D) The suppression of liver metastasis induced circFAM126
knockdown. (E) Expression of circFAM126 in vivo detected using qRT-PCR. (F, G) Expression of Ki67 in OSCC determined by immunohistochemistry. *P<0.05,
**P<0.01.
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FIGURE 5 | circFAM126A acts as a sponge of miR-186 in OSCC cells. (A) The binding sites predicted by Starbase3.0. (B) The binding sites verified by dual-
luciferase reporter assay. (C) The expression of miR-186 detected using qRT-PCR. (D) The interaction between circFAM126A and miR-186 determined by RNA pull-
down assay. (E) Expression of miR-186 in clinical samples determined by qRT-PCR. **P<0.01.
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of circFAM126A promoted the proliferation and EMT of
OSCC cells by regulating the miR-186/FUS/RAB41 axis
in vitro. However, knockdown of circFAM126A suppressed
the aggressiveness and metastasis of OSCC in vitro and
in vivo. This is the first study to investigate the mechanism,
expression, regulation, and clinical implications of circFAM126A
in OSCC.

circRNAs are a type of non-coding RNA. Owing to their
stability, diversity, high expression, and high sequence
conservation, and other biological characteristics, circRNAs
have potential as diagnostic markers and therapeutic targets in
tumorigenesis and progression. Many studies have reported
abnormal expression of circRNAs in different types of tumors.
For example, Zhang et al. (24) found evidence that circ-100876 is
downregulated in colorectal cancer tissues, and that low
expression of circ-100876 predicts poor prognosis and
increases the risk of relapse of colorectal cancer patients. Yu
et al. (25) found that the expression of circRNA SMARCA5 is
Frontiers in Oncology | www.frontiersin.org 8213
significantly downregulated in liver cancer tissues and is
associated with early tumor stage and poor prognosis of liver
cancer patients. Moreover, circRNAs play vital roles in many
physiological and pathological processes, including cell cycle
progression, autophagy, proliferation, invasion, metastasis, and
carcinogenesis (26, 27). In the present study, circFAM126A was
found to be upregulated in OSCC. Moreover, knockdown of
circFAM126A markedly inhibited OSCC cell proliferation and
EMT of OSCC cells, manifested by the upregulation of epithelial
marker (E-cadherin) and downregulation of mesenchymal
markers (N-cadherin and Vimentin) (17–21). Additionally,
circFAM126A knockdown inhibited tumor growth and
metastasis of OSCC in vivo. Therefore, the above data suggest
that circFAM126A may have an oncogenic role in the
progression of OSCC.

Previous reports demonstrate that transcription factors
participate in the progression of cancer (28–30). Dysregulated
transcription factors promote tumorigenesis via transcriptionally
A
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FIGURE 6 | RAB41 is a target of miR-186 in OSCC cells. (A) The binding sites predicted by TargetScan7.2. (B) The binding sites verified by dual-luciferase reporter
assay. (C) The interaction between RAB41 and miR-186 determined by RNA pull-down assay. (D) mRNA expression of RAB41 in OSCC cells detected using qRT-
PCR. (E) Protein expression of RAB41 in OSCC cells measured using western blot. (F) Expression of RAB41 in OSCC clinical samples determined by qRT-PCR.
(G) Correlation analysis of RAB41 and circFAM126A in clinical samples. (H) Correlation analysis of RAB41 and miR-186 in clinical samples. **P<0.01, ##P<0.01.
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regulating non-coding RNAs, such as long coding RNAs and
circRNAs (29). We further investigate the upstream of
circFAM126A. SP1 functions as an oncogene in various cancer,
including OSCC (31–33). In this study, SP1 was overexpressed in
OSCC tissues and cells. Moreover, SP1 transcriptionally
upregulated circFAM126A, which further contributed the
tumor growth and metastasis of OSCC.

Accumulating evidence demonstrates that miRNAs have
essential roles in the regulation of tumor progression (34–36),
and circRNAs might exert their functions through targeting
miRNAs. miR-186 has been suggested to function as a tumor
suppressor in the progression of OSCC (37). In this study, miR-
186 was predicted and proved to be a target of circFAM126A. In
addition, circFAM126A interacted with miR-186 to regulate the
proliferation and EMT of OSCC cells. Therefore, circFAM126A
may exert its carcinogenic function via targeting miR-186.

circRNAs, which lack the ability to encode proteins, function
as ceRNAs to regulate gene expression via binding to miRNAs or
Frontiers in Oncology | www.frontiersin.org 9214
RBPs (38). The circRNA/(miRNA/RBP)/mRNA axis may
intensively participate in the progression of cancers including
OSCC (39, 40). In this study, circFAM126A modulated the
expression of RAB41 via sponging miR-186 and promoted its
mRNA stability via interacting with RNA binding protein FUS.
RNA pull-down assay and mass spectrometry analysis showed
that circFAM126A could bind to FUS to increase the mRNA
stability of RAB41. circFAM126A increased the expression of
RAB41 via sponging miR-186. These results further elucidated
the underlying mechanism, in which circFAM126A increased the
mRNA expression of RAB41. RAB41 is a member of RAB family,
which frequently acts as oncogenes in various cancer (41). RAB41
plays an essential role in membrane trafficking, high expression of
which is associated with poor clinical results of lung
adenocarcinoma (42). However, the roles of RAB41 in OSCC
have not been fully elucidated. In this study, RAB41 was found to
be overexpressed in OSCC. The expression of circFAM126A was
positively correlated with RAB41. Overexpression of RAB41
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FIGURE 7 | circFAM126A binds to FUS to promote the mRNA stability of RAB41. (A) The potential proteins interacting with circFAM126A detected using RNA
pull-down. (B) Interaction between FUS and circFAM126A or RAB41 confirmed by RIP assay. (C) mRNA expression of FUS and RAB41 detected by qRT-PCR.
(D) mRNA stability of RAB41 determined using qRT-PCR. (E) Interaction between FUS and circFAM126A or RAB41 verified by RIP assay. (F) mRNA stability of
RAB41 determined using qRT-PCR. *P<0.05, **P<0.01 and ***P<0.001.
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alleviated the effects of circFAM126A knockdown and promoted
an aggressive phenotype of OSCC cells. Taken together, these
results suggest that circFAM126A regulates the growth and
metastasis of OSCC cells via modulation of the miR-186/FUS/
RAB41 axis.

CONCLUSION

Taken together, circFAM126A played vital roles in the
progression of OSCC. SP1-mediated upregulation of
circFAM126A promoted the growth and metastasis of OSCC
cells via the miR-186/FUS/RAB41 axis. These results could
indicate a new target for the treatment of OSCC.
Frontiers in Oncology | www.frontiersin.org 10215
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FIGURE 8 | Overexpression of RAB41 reverses the anti-tumor effects of sh-circFAM126A. (A) Expression of RAB41 in OSCC cells detected using qRT-
PCR. (B, C) Viability and proliferation ability of OSCC cells detected by MTT and colony formation assay. (D). Migration determined using wound healing
assay. (E, F) Migration and invasion ability of OSCC cells measured using transwell assay. (G, H) Protein expressed determined using western blot.
*P < 0.05, **P < 0.01.
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Surgical resection, chemotherapy and radiotherapy were, for many years, the only
available cancer treatments. Recently, the use of immune checkpoint inhibitors and
adoptive cell therapies has emerged as promising alternative. These cancer
immunotherapies are aimed to support or harness the patient’s immune system to
recognize and destroy cancer cells. Preclinical and clinical studies, based on the use of
T cells and more recently NK cells genetically modified with chimeric antigen receptors
retargeting the adoptive cell therapy towards tumor cells, have already shown remarkable
results. In this review, we outline the latest highlights and progress in immunotherapies for
the treatment of Diffuse Large B-cell Lymphoma (DLBCL) patients, focusing on CD19-
targeted immunotherapies. We also discuss current clinical trials and opportunities of
using immunotherapies to treat DLBCL patients.

Keywords: monoclonal antibodies, antibody-drug conjugates, bispecific T cell engagers, genetic modification,
engineered T cells, CAR-T cells, CAR-NK cells
INTRODUCTION

The 2016 World Health Organization Classification of Tumors defines Diffuse Large B-Cell
Lymphoma (DLBCL) as a disease originating from mature B-cells, for a large proportion of
which there are no clear and accepted classification criteria. Despite the DLBCL heterogeneity, the
neoplastic cells typically express pan-B-cell markers CD19, CD20, CD22, CD79a, PAX5 (1), paving
the way for the introduction of targeted therapies. Among these, the use of the anti-CD20
monoclonal antibody rituximab represented the cornerstone. Rituximab is a chimeric
monoclonal antibody, whose murine variable regions bind to CD20 on B-cells, while the human
constant regions mediate effector mechanisms (2, 3), such as complement-dependent cytotoxicity
(CDC) and antibody-dependent cellular cytotoxicity (ADCC). Large randomized trials comparing
standard chemotherapy alone to the addition of rituximab showed a clear survival advantage for the
combined immunochemotherapy approach (4–6), leading to the association of chemotherapy to
rituximab as the current standard of care for DLBCL patients (7). Despite the successful history of
anti-CD20 immunotherapy in DLBCL, approximately 40-50% of patients ultimately do not respond
to frontline treatment (8). Several mechanisms of resistance have been hypothesized, including
CD20 loss, expression of CD20 variants lacking the determinants recognized by rituximab, and
polymorphisms of FcgRIIIA negatively affecting effector cell functions (3), making the identification
org February 2022 | Volume 13 | Article 8374571218
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of alternative targets for immunotherapy a definitive need.
Among pan-B-cell markers, CD19 is an attractive target due to
both its broad presence through B-cell ontogeny and its
functional role. CD19 is a 95 kDa, type I transmembrane
glycoprotein whose expression starts early in B-cell maturation,
concurrently with immunoglobulin gene D-J regions rearrangement
in Pro-B cells, and ends with terminally differentiated plasma cells
(9). The almost ubiquitous expression among B-cell lymphopoiesis
of CD19 underlines its fundamental role in B-lineage functionality
and commitment (9). In a murine model of B cell lymphoma,
Chung and coworkers demonstrated a correlation between CD19
mRNA levels and the oncogene MYC expression, suggesting a role
of CD19 in lymphomagenesis and arguing that CD19 ligation
through targeted agents could represent a strategy to disrupt
MYC signaling and interfere with oncogenesis (10). At present,
four classes of drugs have been designed to target CD19:
unconjugated monoclonal antibodies (mAb), antibody-drug
conjugates (ADC) and molecules that specifically recruit T-cells,
including bispecific T cell engagers (BiTE) and chimeric-antigen
receptors (CAR).
MONOCLONAL ANTIBODIES

Inebilizumab (MEDI-551) is a humanized, a-fucosylated anti-CD19
antibody developed from the murine HB12b mAb through a two-
step process: 1) HB12b humanization and Fab rearrangement,
respectively to reduce immunogenicity and optimize CD19-affinity
and 2) fucose removal to increase affinity for human CD16/
FcgRIIIA, optimizing antibody-dependent cell cytotoxicity (ADCC)
performed by Natural Killer (NK) cells and macrophages (11).
Interestingly, subsequent observations underlined the role of F/V
158 FcgRIIIA polymorphisms in NK cell-mediated killing: in an in-
vitro assay, heterozygosity for the high-affinity FcgRIIIA (namely,
158V allotype) was sufficient for efficient B-cell leukemia cells killing,
while homozygosity for the weak-binding allotype FcgRIIIA (i.e.
158F allotype) was associated with the absence of activity (12).
Despite a phase 1 trial showing both a good safety profile and some
evidence of activity of single-agent inebilizumab treatment for B-cell
malignancies, including DLBCL (NCT01957579), subsequent
combination studies failed their endpoints, included a phase 1b/2
trial performed using inebilizumab in combination with an anti-PD1
mAb (NCT02271945).

Tafasitamab (MOR208) is an engineered antibody characterized
by two amino acid substitutions, S239D/I332E enhancing FcgR and
C1q binding and, therefore, effector cells recruitment (ADCC) and
complement cascade activation (CDC) (13). In contrast to a-
fucosylated antibodies, the S239D/I332E modification increases
the affinity to all activating FcgR receptors (i.e. FcgRI, FcgRIIA,
and FcgRIIIA) (14) irrespective of the FcgRIIIA-V/F allotype (15). A
phase 2a trial with the single-agent tafasitamab showed promising
activity in 35 patients affected by DLBCL (NCT01685008).
Refractoriness to rituximab or FcgRIII-158F allotype did not
impact tafasitamab treatment efficacy (16). Several combination
trials, mainly with lenalidomide or bendamustine, are testing
Frontiers in Immunology | www.frontiersin.org 2219
tafasitamab both in the relapsed and refractory (R/R) patients and
first-line setting. The phase 2 L-MIND trial evaluatedMOR208 plus
lenalidomide for R/R DLBCL (NCT02399085), focusing on the
synergic NK cell-mediated-ADCC observed when MOR208 is
combined to lenalidomide (17), a potent NK cell activator (18). In
this trial, 60% of the patients achieved a response and the median
progression-free survival was 12.1 months (19). Moreover, an
updated analysis showed activity even in high-risk categories (i.e.
previously refractory) and beyond the second line (20). Based on L-
MIND results, the tafasitamab-lenalidomide combination achieved
the FDA approval for the R/R DLBCL. Currently, the phase 3
randomized, frontMIND trial (NCT04824092) aims to test
tafasitamab plus lenalidomide in combination with the first-line
chemotherapy regimen R-CHOP.
ANTIBODY-DRUG CONJUGATES

Denintuzumab mafodotin (SGN-CD19A) is a humanized anti-
CD19 monoclonal antibody conjugated with monomethyl
auristatin F (MMAF), a synthetic analogue of the natural
antimitotic agent dolastatin 10. As a tubulin-binding molecule,
dolastatin exerts its cytotoxic effect through the inhibition of
microtubule assembly and tubulin-dependent GTP hydrolysis,
leading to cell cycle arrest and apoptosis (21). MMAF differs
from another auristatin derivative, monomethyl auristatin E
(MMAE), for a C-terminal modification which is aimed to limit
membrane permeability and reduce bystander and off-target
toxicity (22). A phase 1 study (NCT01786135) demonstrated the
safety of SGN-CD19A in the clinical setting of R/R B-cell NHL,
with 30% of evaluable patients achieving a complete response
(23). Two subsequent studies with denintuzumab mafodotin in
combination with chemotherapy were interrupted with no
further development (NCT02592876; NCT02855359).

Loncastuximab tesirine (ADCT-402): upon ligation, CD19 is
rapidly internalized, making it an ideal target for immune-
conjugates, which carry highly cytotoxic molecules directly
within the cell. ADCT-402 is composed of the humanized anti-
CD19 antibody RB4v1.2 linked with tesirine (SG3249), a drug-
linker which delivers, through lysosomal degradation, the
pyrrolobenzodiazepine (PBD) dimer warhead SG3199. SG3199
forms a covalent bond with the minor groove of DNA (24)
through a minimal distortion of the DNA helix, hence slowing
DNA repair and promoting intracellular persistence (25).
Moreover, once released by damaged CD19+ cells within the
medium, its high permeability allows bystander cytotoxicity,
even among CD19– cells (26). Interestingly, loncastuximab
might not preclude a subsequent CD19-targeted therapy: a
small series of 14 patients who failed loncastuximab conserved
CD19 expression and responded to anti-CD19 CAR-T cells (27).
A phase 1 study (NCT02669017) in patients affected by R/R B-
cell NHLs has shown a good safety profile and encouraging
activity (28), confirmed by the phase-2 LOTIS-2 trial
(NCT03589469), where single-agent loncastuximab achieved
an overall response rate (ORR) of 48%, half of which in
February 2022 | Volume 13 | Article 837457
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complete remission (CR) (29). Loncastuximab is being tested
even in combination with targeted molecules such as ibrutinib,
venetoclax or durvalumab (NCT03684694; NCT05053659;
NCT03685344) in the R/R setting, as well as a first-line agent,
together with chemotherapy (NCT04974996).
BISPECIFIC T CELL ENGAGERS

Blinatumomab (MT103): Bispecific T cell engagers (BiTE)
represent the attempt to engage T cells in a polyclonal fashion,
thus overcoming limits of clonal-specific response. Blinatumomab
is a bispecific antibody composed of four variable domains,
oriented to form two single-chain antibodies (scFvs),
respectively directed against CD19 and CD3 (30). A short
amino acidic linker keeps the two scFvs together and allows
sufficient flexibility for the crosslink (31). Pre-clinical data with
blinatumomab highlighted that T cells, once recruited, are much
more potent effectors than NK cells and monocytes/macrophages;
moreover, both CD8+ and CD4+ T cells can exert cytotoxic
functions, independently of CD28 co-ligation or IL-2 exposition/
exposure (31). The phase 2 study in R/R DLBCL (NCT01741792)
showed remarkable activity and suggested a refinement in its
administration to avoid neurotoxicity (32), a complication already
emerged during phase 1 (NCT00274742). The phase 2/3 trial
(NCT02910063) evaluated blinatumomab as a second-salvage
strategy through a dose-escalating approach, to avoid toxicities.
Despite efficacy (ORR: 36%) in a highly unfavorable cohort, only
46% of patients completed the first cycle, mainly due to
concomitant disease progression (33); the dose-escalating
approach might have hampered efficacy in patients with a
rapidly progressive disease. As a consolidation strategy after the
rituximab-chemotherapy-based first-line, blinatumomab was
remarkably able to convert positive minimal residual disease
(MRD) to negativity (NCT03023878) (33).

TNB-486 CD19/CD3: cytokine releasing syndrome (CRS) and
neurotoxicity can represent life-threatening complications of
CAR-T cells and BiTE therapies, limiting their use especially in
frail patients. TNB-486 is a fully human, CD19/CD3 bi-specific
antibody specifically designed to reduce the cytokine release
from activated CD3+ cells upon engagement. The molecule is
constituted of a high-affinity anti-CD19 heavy chain and a low-
affinity anti-CD3 light chain, the latter with low-activating
potential. In vitro models have demonstrated that the cytokine
secretion (i.e., IL-2, IFN-g, IL-6, IL-10, and TNF) by CD3+ cells is
minimal even at saturating doses for tumor lysis (34, 35). A phase
1 study (NCT04594642) is currently testing TNB-486 for R/R B-
cell non-Hodgkin lymphoma in patients who have received 2 or
more prior lines of therapy.
CAR-CD19 ENGINEERED T CELLS

Chimeric Antigen Receptor – T Cells
Several aspects impact CAR-T cells biology, generating
differences in expansion, persistence, and toxicity. Current
Frontiers in Immunology | www.frontiersin.org 3220
evidence about relevant biological variables will be analyzed,
together with a final update on the commercially approved
products for DLBCL.

Chimeric Construct
The extremities of an anti-CD19 CAR construct, in extenso the
extracellular scFv CD19 binding-region FMC63 and the
intracellular CD3z signaling tail, are “fixed components” in the
majority of products. Differences involve the hinge and the
costimulatory domain (CD) which, respectively, optimize
antigen-reach and prevent early exhaustion upon antigen-
ligation. The combination of CD8a-derived hinge &
transmembrane (TM) region with the 41BB CD (8-8-41BB
CAR, adopted for tisagenlecleucel) is common. Alternatives are
a full CD28 sequence (28-28-28 CAR, adopted for axicabtagene)
or a combination of IgG4, CD28, and 41BB (IgG4-28-41BB,
adopted for lisocabtagene). The incorporation of CD28 drives to
a pronounced expansion, a favorable effector:target ratio and a
faster tumoricidal activity, counterbalanced by a prolonged
persistence for 41BB (36). In this view, CAR-T dynamics
might be driven by downstream metabolic pathways: CD28
signaling leads to anaerobic glycolysis, typical of effector T-
cells, 41BB to mitochondrial fatty-acid oxidation, and central-
memory differentiation (37). A higher pro-inflammatory
cytokines release might increase complications in CD28-based
products (38). Interestingly, a clinical trial testing a 28-28-41BB
product showed rates of inflammatory and neurological
complications superimposable to 28-28-28 CAR-Ts, suggesting
that the hinge-TM region, rather than the costimulatory domain,
might be involved in mediating CAR-T-associated toxicity (38).

Manufacturing Process
It is composed of mononuclear cells apheresis and manipulation
into the final product. Despite apheresis cryopreservation allows
major flexibility, concerns may rise about post-thaw viability.
Panch et al. confirmed a reduction of viable T-cells 2 days after
thawing; nevertheless, in the presence of a sufficient apheresis,
anti-CD19 CAR-T generation was not hampered (39). With
regards to the final product, measures can be taken to control the
CAR-T subsets composition and ratios. Sommermeyer et al.
demonstrated that naïve (TN) CD4 and central memory
(TCM) CD8 CAR-T cells have, separately, high anti-CD19
activity. Thus, hypothesizing a synergism, with CD4 producing
IL-2 that activate and expand CD8 cells, they demonstrated that
a fixed 1:1 CAR-T ratio of CD62L+/CD45RO− CD4 TN and
CD62L+/CD45RO+ CD8 TCM has the strongest activity against
CD19 tumors (40).

Lymphodepletion
The lymphodepleting therapy consists in a course of
chemotherapy, administered shortly before the CAR-T
infusion to create a favorable immunological environment.
Indeed, lymphodepletion increases chemotactic factors
(MCP-1) and homeostatic cytokines (IL-2, IL-7 and IL-15),
promotes eradication of regulatory T-cells and myeloid-derived
suppressor cells, and the induction of costimulatory molecules. A
combination of fludarabine and cyclophosphamide is the most
February 2022 | Volume 13 | Article 837457
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employed regimen, relying on early trials where the addition of
fludarabine to cyclophosphamide improved CAR-T expansion
and persistence (41–43). Moreover Hirayama et al. demonstrated
an association between higher doses of cyclophosphamide and a
favorable cytokine profile (defined as day 0 MCP-1 and peak IL-7
concentrations) (44).

Commercially Available Anti-CD19
CAR-T Products
Tisagenlecleucel (CTL019)
Tisagenlecleucel represents the first-in-class, autologous anti-
CD19 CAR-T against DLBCL. Its approval followed the results
of the phase 2 trial JULIET (NCT02445248) in R/R DLBCL. The
manufacturing process consists in the lentiviral transduction of
unselected T-cells, cryopreserved after collection (45). The
JULIET trial tested tisagenlecleucel in 93 patients affected by
R/R DLBCL, ineligible for or progressed after hematopoietic
stem-cell transplantation. Half of the infused patients achieved a
response, 40% of which as a complete remission. Promisingly,
65% of treatment-sensitive patients conserve a response (46). A
trial update (47) and real-life experiences (48) support original
data. Several trials involve tisagenlecleucel, included primary
CNS lymphoma (NCT04134117) and pediatric R/R B-cell non-
Hodgkin lymphoma (NCT03610724). The randomized, phase 3
BELINDA trial (NCT03570892) failed its aim to test
tisagenlecleucel earlier as a second-line strategy (49). A phase 3
trial (NCT04094311) is investigating out-of-specification
tisagenlecleucel for commercial release.

Axicabtagene Ciloleucel (KTEX19)
Axicabtagene manufacturing relies on the manipulation of a
fresh apheresis and a gamma-retroviral transduction (50).
KTEX19 was approved following the phase 1/2 study ZUMA-1
(NCT02348216), which exhibited remarkable results in a cohort
of heavily pre-treated patients: 82% achieved a response, 54% a
complete remission. Interestingly, responses were not negatively
impacted by high-risk variables such as high IPI score, bulky
disease and refractoriness to the previous line. A recent update
showed that one-third of patients still in response at 24 months
no longer had circulating CAR-T cells, suggesting that responses
are not dependent on CAR-T persistence over time. Two
multicenter trials are testing axicabtagene for high-risk DLBCL
in an earlier setting: the ZUMA-7 (NCT03391466) as a second
line, and the ZUMA-12 (NCT03761056) as a frontline treatment,
respectively. Recent data from the ZUMA-7 demonstrated
axicabtagene superiority in terms of overall response and risk
of progression/death, in a comparison with a standard second
line treatment comprehensive of high-dose chemotherapy
followed by autologous transplant (51).

Lisocabtagene Maraleucel (JCAR017)
JCAR017 is a fixed 1:1 ratio of CD4 and CD8 cells (40). The
manufacturing process, through which CD4 and CD8 T cells are
separately activated and transduced through a lentiviral vector,
leads to an enrichment in less differentiated, predominantly
memory T-cells (52). The phase 1 TRANSCEND trial
Frontiers in Immunology | www.frontiersin.org 4221
(NCT02631044) demonstrated high clinical activity (Response
Rate 73%, Complete Remission 53%) with a low incidence of
moderate/severe CRS and neurological events. The trial allowed
the recruitment of secondary CNS lymphoma: in this subgroup,
lisocabtagene achieved a 50% remission rate without fatal
neurological events (53). A pooled analysis from 3 clinical
trials (NCT02631044; NCT03744676; NCT03483103) in the
outpatient setting provided encouraging data, with 46% of
patients not requiring hospitalization after infusion (54). The
TRANSFORM trial, aimed to compare lisocabtagene with high-
dose chemotherapy followed by autologous stem-cell
transplantation in a second-line setting, demonstrated a
significant improvement in the probability of remission and a
prolongation in event-free survival, in patients with early relapse
or refractory disease (NCT03575351). Despite the need for a
longer follow-up, an improvement in overall survival seems to
emerge (55).
TOWARDS CAR-NK CELLS

In order to overcome the hurdle of manufacturing timelines and
the poor fitness of autologous T cells, two factors that can affect
the CAR-T therapy efficacy, ongoing clinical trials
(NCT03666000, NCT03939026 and NCT04416984) are testing
allogeneic CAR-T products. In particular, treatment with
PBCAR0191, an anti-CD19 CAR-T product in which
endogenous TCR is disrupted by gene editing to prevent
GvHD, together with an intensified lymphodepletion, has
shown clinical benefit in the majority of NHL patients, yielding
high rates of overall and complete response with promising
activity in both CD19 CAR naïve subjects and those who
progressed following auto-CD19 CAR therapy (56, 57). Other
ongoing studies are testing ALLO-501/ALLO-501A, alternative
allogeneic anti-CD19 CAR-T products modified by gene editing
to disrupt the T-cell receptor alpha constant gene and the CD52
gene, respectively to reduce the risk of GvHD and allow the use
of anti-CD52 mAb to delay host T cell reconstitution and graft
rejection, have provided encouraging results (58, 59).

However, CAR-NK cells represent a more appealing
alternative strategy to reduce the disadvantages related to the
production and use of anti-CD19 CAR-T cells.

CAR-NK cells can be prepared in advance to be rapidly
available on demand and, most likely, less capable of inducing
CRS and neurotoxicity. Notably, CAR-NK cells can kill tumor
cells even in a CAR-independent manner by their native
receptors (including NCRs, NKG2D, DNAM-1, and activating
KIRs), counteracting tumor escape mechanism due to lack of
CAR-targeted antigen. Clinical-grade CAR-NK cells can be
manufactured on a large scale starting from multiple sources,
including NK92 cell line, peripheral blood mononuclear cells
(PBMCs), umbilical cord blood (UCB), and induced pluripotent
stem cells (iPSCs) (60–65).

The use of NK92 cell line can be advantageous for its
unlimited ability to expand in vitro, even after repeated freeze/
thaw cycles, but disadvantageous for their lack of some relevant
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NK receptors (including CD16), its potential tumorigenicity risk,
and its low in vivo proliferation due to the irradiation needed
before the infusion in the patient (66).

Differently, PBMC-derived NK cells may represent a good
source for CAR-NK cell production (63, 67). Indeed, upon CAR-
transduction NK cells maintain the expression of the main native
activating receptors (NCRs, NKG2D, DNAM-1, CD16), can be
administered without irradiation and, in a large fraction, exhibit
a mature phenotype with high cytotoxicity. Moreover, each
CAR-NK product obtained from a single donor can be used
for the treatment of more patients in HLA-mismatched
conditions. Finally, the limited lifespan of CAR-NK cells in the
circulation and the reduced risk for GvHD allow repeated CAR-
NK cells administrations (68).

Similarly, CAR-NK cells can also be produced from UCB NK
cells, but, the limited amount of NK cells derived from a single
UCB unit and the lower anti-tumor cytotoxicity of UCB-NK
cells, mainly related to their less mature phenotype, represent
obstacles (69, 70).

Finally, iPSCs have recently become an attractive source of
CAR-NK cells for their unlimited proliferative capacity (71, 72).
Indeed, CAR-engineered iPSCs can be induced to differentiate in
vitro into hematopoietic progenitor cells and then into CAR-NK
cells (72). Notably, from a limited number of iPSCs it is possible
to obtain a large number of CAR-modified NK cells, even
characterized by a homogeneous phenotype (73). However,
even in this case, iPSCs-derived NK cells are usually expressing
an immature phenotype (i.e. low KIRs/CD16 and high
NKG2A expression).

In recent years, there has been a rapid increase in clinical
trials using CAR-NK cells and investigating their possible
application as therapeutic approach against hematological
malignancies, including DLBCL (Table 1). Phase 1 and 2 of
the pioneering clinical trial NCT03056339 enrolling 11 patients
with R/R CD19+ malignancies, of which 2 DLBCL patients,
showed promising results (74) and indicated the feasibility of
adopting CAR-NK therapy for patients with high-risk B cell
lymphoma and leukemia. Indeed, no patient infused with anti-
CD19 CAR-NK cells, manufactured by transducing UCB derived
NK cells (64), had shown neurotoxicity events, CRS, and GvHD.
Moreover, 8 out of 11 patients (73%) had a clinical response, and
7 out of 11 (63%) achieved a CR. The maximum tolerated dose
was not reached even with the higher infusion of CAR-NK cells
(107 CAR-NK cells per kilogram of body weight) and CAR-NK
cells were detectable at low level for up to 1 year after infusion.
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Others active clinical trials (NCT04245722, NCT04555811,
NCT04887012) are registered to investigate the use of CAR-NK
targeting CD19 derived from manufacturing iPSCs, however
detailed results are not yet available. First evidences on the use
of an anti-CD19 iPSCs-derived CAR-NK product (FT596 by Fate
Therapeutics) in preclinical studies and clinical trials
(NCT04245722, NCT04555811) suggest safety and well
tolerability of the product (75, 76). FT596 is a CAR-NK
product derived from iPSCs engineered to express a non-
cleavable CD16 and IL-15 receptor fusion to promote
additional functional activation (71). Its safety in advanced
lymphoma treatment is under investigation both as
monotherapy and as combined therapy with obinutuzumab or
rituximab. A case of a heavily pre-treated DLBCL patient was
enrolled in the first dose cohort of the study (lower infusion of
CAR-NK cells - 30x107cells) (77). A partial response has been
observed upon infusion of one dose of FT596 that got better after
a second infusion as proved by further decrease of tumor size and
metabolism. The positive response to treatment wasn’t
compromised by dose related toxicities and severe adverse
effects, events of any grade of CRS, immune effector cell-
associated neurotoxicity syndrome (ICANS), or GvHD (77)
(https://ir.fatetherapeutics.com/news-releases/news-release-
details/fate-therapeutics-reports-fourth-quarter-2020-
financial-results).

Only a few months ago, the first clinical trial targeting CD19+

R/R B cell malignancies using CAR-NK cells obtained by
engineering peripheral blood NK cells from healthy donors has
been approved (NCT05020678). The purpose of this phase 1
study is to identify the optimal treatment dose with NKX019
product of Nkarta Therapeutics (https://ash.confex.com/ash/
2021/webprogram/Paper146602.html). NKX019 expresses a
CD19-targeted CAR, OX40 costimulatory domain, CD3z
signaling moiety, and a membrane-bound form of IL-15
(mbIL-15) (78). Equipping CAR-NK cells with on-board
cytokines, such as IL-15, lays the foundations for new
therapeutic options aimed at improving clinical efficacy by
enhancing both persistence and cytotoxicity against tumor
cells (79).
DISCUSSION

The optimization of mAbs production and cell therapies
development have shown remarkable results and changed the
TABLE 1 | Anti-CD19 CAR-NK mediated active clinical trials including DLBCL patients.

Identifier NK cell origin Construct Location First Posted Status

NCT03056339 CB-NK cells CAR.CD19-CD28-zeta-2A-iCasp9-IL15 USA 2017 Active, not recruiting
NCT04245722 iPSC (FT596) CAR.19-NKG2D-2B4-CD3z-IL15RFhnCD16 USA 2020 Recruiting
NCT04555811 iPSC (FT596) CAR.19-NKG2D-2B4-CD3z-IL15RFhnCD16 USA 2020 Recruiting
NCT04887012 iPSC

(CAR-NK019)
Full construct undeclared
(CAR.CD19, IL15 and modified CD16)

China 2021 Recruiting

NCT04796675 CB-NK cells Full construct undeclared
(CAR.CD19 and IL15)

China 2021 Recruiting

NCT05020678 PB-NK cells (NKX019) CAR.CD19-OX40-CD3z-mIL-15 USA/Australia 2021 Recruiting
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clinical history of many tumor patients, even affected by DLBCL
(Figure 1). The identification of stably expressed tumor-
associated antigens to be targeted by immunotherapies and the
improvement of the CAR structure are relevant issues to be
explored in the next future. In this regard, simultaneous dual
antigen targeting by tandem CARs could represent a way to
overcome antigen loss by tumor cells and the subsequent,
antigen escape-mediated relapse. The first clinical trial
(NCT03097770) designed to evaluate the effect of an
autologous, bispecific anti-CD19/anti-CD20 CAR-T in R/R B-
cell lymphoma has shown its safety and ability to induce a
durable antitumor response, possibly due to a superior immune-
synapsis stability and the mitigation of antigen-negative escape
by tumor cells (80).

Contemporarily with the improvement of anti-tumor efficacy,
there is an urgent need to reduce the risk of significant,
potentially life-threatening consequences of CRS and ICANS,
which currently affect available CAR-T therapies. In this context,
it has been demonstrated that activated monocytes and
macrophages are the major source of IL-1 and IL-6 production
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during CRS and play a key role in the amplification of the
inflammatory response (81). Currently, there is an effort to
elaborate strategies aimed to target pro-inflammatory cytokines
and their pathways contemporarily with CAR-T infusion with a
prophylactic or pre-emptive purpose (NCT04432506,
NCT04359784, NCT04148430) (82).

Furthermore, the choice of the adoptive immune cells to be
modified with CAR is a critical field of investigation. In this
context, NK cells represent an attractive source for genetically
modified cellular immunotherapies (69, 83, 84). Unlike T cells,
allogeneic NK cell infusions have reduced risks for GvHD and
can be used to produce “off-the-shelf” products eliminating the
need for a personalized product that is necessary for T cell-based
therapies. Moreover, therapeutic approaches combining cell
therapies with drugs, such as immune checkpoint inhibitors or
ADCC triggering immunotherapies, could be exploited in order
to target multiple tumor-associated antigens (85, 86) and further
improve clinical outcomes.

In conclusion, we have many tools at our disposal, and others
will certainly be developed in the coming years, that we can
FIGURE 1 | Milestones achieved over the years regarding the evolution of immunotherapeutic strategies for the treatment of DLBCL patients. From allogenic bone
marrow transplantation to the use of monoclonal antibodies, Bi-specific T-cell engagers (BiTEs) and T or NK cells engineered with chimeric antigen receptors (CARs).
This figure has been created using BioRender.
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combine to further improve the clinical outcomes of patients
affected by aggressive and still lethal cancers.
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With the gradual improvement of treatment regimens, the survival time of multiple
myeloma (MM) patients has been significantly prolonged. Even so, MM is still a
nightmare with an inferior prognosis. B-cell maturation antigen (BCMA) is highly
expressed on the surface of malignant myeloma cells. For the past few years,
significant progress has been made in various BCMA-targeted immunotherapies for
treating patients with RRMM, including anti-BCMA mAbs, antibody-drug conjugates,
bispecific T-cell engagers, and BCMA-targeted adoptive cell therapy like chimeric antigen
receptor (CAR)-T cell. The 63rd annual meeting of the American Society of Hematology
updated some information about the application of BCMA in MM. This review summarizes
part of the related points presented at this conference.

Keywords: B-cell maturation antigen, CAR-T cell therapy, antibody-drug conjugates, bispecific T-cell engagers,
immunotherapy, multiple myeloma
1 INTRODUCTION

In recent years, the strategies for treating multiple myeloma (MM) have advanced across the board
(1). In the second half of the previous century, Melphalan chemotherapy combined with steroids use
such as prednisone or dexamethasone was the basic therapeutic regimen for treating MM (2). Later,
with the widespread application of proteasome inhibitor (PI) and immunomodulatory drug (IMiD),
the prognosis of MM patients has been dramatically improved. From the finding of targeted
monoclonal antibodies (mAbs), which have a favorable curative effect in MM (3, 4), the treatment
for MM has shifted to focus on multiple immunotherapies, and their most salient point was
undoubtedly targeted immunotherapy. B-cell maturation antigen (BCMA/CD269), which belongs
to TNF receptor superfamily member 17 (5), is highly selectively expressed on the surface of MM
cells, as the ideal target of majority targeted agents studied currently for the patients with MM (6),
such as anti-BCMA mAbs, antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs),
and BCMA-targeted adoptive cell therapy like chimeric antigen receptor (CAR)-T cell (Figure 1).
The data relating to the efficacy and safety of these targeted immunotherapy products have gotten
more comprehensive based on a great number of preclinical and clinical trials. The 63rd annual
conference of the American Society of Hematology (ASH) showed us the latest progress of multiple
anti-BCMA immunotherapies. This review aims to summarize some of the main points in this
meeting about the application of BCMA in MM, with a special focus on clinical achievements.
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2 PROGRESS OF THE MECHANISM
RELATED TO BCMA

Under physiological conditions, BCMA is mainly expressed on
plasmablasts (7) and terminally differentiated plasma cells (PCs)
(8). In the pathological case, BCMA is expressed nearly on all
MM tumor cell lines (80%–100%) (9), and the quantity of BCMA
on the surface of malignant PCs is much higher than regular PCs
(10). The ligands of BCMA include BAFF and a proliferation-
inducing ligand (APRIL), which is a homolog of BAFF (11).
APRIL has a higher affinity for BCMA than BAFF (12), and both
of them can activate the downstream signals of BCMA like
nuclear factor kappa-B (NF-kB) (13), rat sarcoma/mitogen-
activated protein kinase (RAS/MAPK), and phosphoinositide-
3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) (14), thus
Frontiers in Immunology | www.frontiersin.org 2228
promoting the expression of antiapoptotic proteins (e.g., Mcl-
1, BCL-2, BCL-XL) and the activation of specific signaling
pathways or factors (e.g., cell adhesion molecules, angiogenesis
factors, immunosuppressive molecules) about cells’ proliferation
(14). One of these factors is c-Jun N-terminal kinase (JNK) (7),
which can work together with NF-kB, JAK/STAT, and other
related signaling molecules to synergistically promote tumor cell
survival in the tumor microenvironment (TEM) (15). A study
reported in ASH2021 (16) found that the expression of SETD2
can activate the BCMA-JNK pathway, thus facilitating the
proliferation and maintenance of myeloma cells. Bridging this
gap is the regulation of H3K36 trimethylation (H3K36me3) by
SETD2, which provides us with a new perspective to explain the
upstream activation of BCMA and the stimulation of its
downstream signal pathways through epigenetic mechanisms.
FIGURE 1 | BCMA-targeted immunotherapies. (1) Antibody-drug conjugate (ADC). After identifying BCMA on the cell surface, ADC internalizes into myeloma cells.
Through the degradation by lysosomes or endosomes, the payloads are released, resulting in cytotoxicity. (2) Chimeric antigen receptor (CAR) T cell. The second-
generation CAR commonly used today is mainly composed of an extracellular recognition domain (the most commonly used is scFv), a spacer, a transmembrane
part, and intracellular structures (costimulatory domain such as CD28 or 4-1BB and an activating domain CD3-zeta). The recognition domain binds to BCMA on the
myeloma cell surface as signal 1. The costimulatory domain (CD28 or 4-1BB) is then “aroused” to send signal 2, which is beneficial to CAR-T-cell activation and to
prevent their disability. Finally, signals 1 and 2 are transmitted to the CD3-zeta domain to induce CAR-T-cells’ final activation. (3) Bispecific T-cell engager (BiTE).
BiTEs can target BCMA on MM tumor cells and CD3e domain of TCR on T cells simultaneously. After causing the binding of T cells to myeloma cells, the cytotoxic
T cells can be activated and secrete cytotoxic factors, thus producing the cytolethal effect.
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It is worth mentioning that an increasing number of studies have
confirmed the critical role of epigenetics in MM. For instance,
the overexpression of histone methyltransferase MMSET can
stimulate H3K36me2, which has been identified as one of the
pathogenic mechanisms of t(4;14)+ MM (17). The membrane-
bound BCMA can break off from the cell membrane by the shear
function of g-secretase and turn into a soluble BCMA (sBCMA)
(18), which is closely related to the development of MM and the
prognosis of patients (19, 20). The formation of sBCMA reduces
the distribution of BCMA on tumor cells’ surface, thus relieving
the effect conducted by BCMA activation. However, this
mechanism may lower the efficacy of BCMA-targeted
immunotherapies as well, resulting in MM cells’ immune
escape. With the gradual deepening of our awareness about the
underlying mechanism related to BCMA, the modification to
multiple existing anti-BCMA immunotherapies is also
accelerating its pace.
3 PROGRESS OF BCMA-TARGETED
IMMUNOTHERAPIES

3.1 BCMA-Targeted mAbs
The finding of BCMA-targeted mAbs can be regarded as an
essential milestone in the field of targeted immunotherapy for
MM. The first two approved mAbs agents target CD38 antigen
(daratumumab) (3) and signaling lymphocytic activation
molecule family member 7 (SLAMF7) (elotuzumab) (4),
respectively. Although their effectiveness has been proved,
there are still a large number of patients who relapse after
receiving more than 3 prior lines of therapy (LOT), the mAbs,
and further progress to relapsed or refractory multiple myeloma
(RRMM) (21). At present, along with myriad novel
immunotherapy agents being developed, researchers are also
looking for more mAbs that can work better. SEA-BCMA, a
novel humanized nonfucosylated IgG1 mAb, targets BCMA,
which is expressed on the malignant PCs. The working
mechanisms of SEA-BCMA may include blocking of BCMA
activation with its downstream proliferative signaling pathways,
regulating antibody-dependent cellular phagocytosis effect, and
reinforcing the antibody-dependent cellular cytotoxicity.
ASH2021 updated some findings regarding this agent (22, 23).

The preliminary results of its phase I clinical trial
(SGNBCMA-001; NCT03582033) (23) are reported in this
meeting. Part A of SGNBCMA-001 conducted a dose-
escalation trial (from 100 to 1,600 mg, Q2W) of SEA-BCMA
monotherapy for RRMM patients without any prior treatments.
At the 800-mg Q2W regimen, 1 of 7 patients reported a grade 3
infusion-related reaction (IRR), which was the single dose-
limiting toxicity (DLT) observed during dose escalation. At the
maximum dose (1,600 mg Q2W, n = 22), the objective response
rate (ORR) was 14% (n = 3). One patient got very good partial
responses (VGPR), and two got partial responses (PR). The
adverse events (AEs) were fatigue (32%), pyrexia (23%), IRR
(23%), hypertension (23%) unrelated to hematological incidents,
and anemia (14%) related to hematologic incidents from high to
low. The other parts of this trial designed to verify whether using
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SEA-BCMA in higher doses (part B, Q1W induction dosing of
SEA-BCMA for 8 weeks is followed by Q2W maintenance
dosing) or combining it with dexamethasone (DEX) (part C)
can produce better therapeutic results for the patients who have
received ≥3 prior LOT for MM and were triple-class refractory.
Surprisingly, DLTs did not occur in these two parts. Two of eight
(2 PR) and two of twelve (1 VGPR, 1 PR) patients reported a
certain OR in parts B and C, respectively. The pharmacokinetics
(PK) analysis showed that the half-life of SEA-BCMA was
approximately 10 days, and either ascending dose (from Q2W
to Q1W) or combining DEX had no significant effect on
its metabolism.

Moreover, Taft et al. reported the binding and saturation
pharmacodynamics (PD) of SEA-BCMA in patients enrolled in
part A of SGNBCMA-001. They suggested that the sBCMA in
plasma may affect tumor cell clearance because of the formation
of sBCMA : SEA-BCMA complex. Interestingly, an amplification
dose of 1,600 mg seems to overcome this negative effect and
support malignant plasma cell drug exposure. Nevertheless, the
dose dependence of SEA-BCMA needs a more comprehensive
evaluation. These latest results proved the safety of SEA-BCMA
and the possibility to combine it with other medicines for
patients with MM. Further studies will carry out in the
subsequent part D, and it is expected to be used into clinical
application as a promising anti-BCMA agent.

3.2 Bispecific Antibodies
Bispecific antibodies (BsAbs), which have affinities for two
different epitopes on tumor cells and specific immune cells like
T cells, as a bridge, induce the formation of immunological
synapses between T cells and tumor cells, which can make
granular enzymes and perforin released by T cells produce
lethal effect to the targeted tumor cells (24). Up to now,
BCMA, CD38, and SLAMF7 have been selected as the targets
to prepare BsAbs for the treatment of MM (25). BiTE, a special
BsAb, can physically bind BCMA and CD3e on T-cell receptors
(TCR) for redirecting T cells to myeloma cells to exert its
cytotoxicity (25). Also, many new targets have been identified,
like G-protein coupled receptor C family 5D (GPRC5D) (26),
which are also expressed highly on the surface of PCs (27).
ASH2021 provided us with the latest data from the early-stage
clinical trials of multiple novel BsAbs for treating MM, which
could certify the efficacy and safety of these new agents (Table 1).

Some information about Table 1 should be added: firstly, the
target CD16a of RO7297089 is expressed on the innate immune
cells such as monocyte subsets, macrophages, and natural killer
(NK) cells. Among the five dose cohorts in this study, ten
patients had stable disease as their best response at dose levels
of 60 mg (1/3 patients), 180 mg (2/5 patients), 360 mg (3/4
patients), and 1,080 mg (4/6 patients). Its PK parameter was
nonlinear (a more than dose proportional increase) as the doses
of RO7297089 increased from 60 to 1,080 mg, and then
approached linear at doses higher than 1,080 mg. The
disposition of this agent was mediated by its target. Secondly,
the phase I study of teclistamab has obtained its recommended
phase II dose (RP2D), which was applied in the phase II study.
The data on the effectiveness of this drug in Table 1 showed how
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the 40 patients who participated in phase I (median follow-up:
6.1 months) performed in phase II (median follow-up: 8.2
months), which was consistent with previously presented data
(65% ORR and 58% VGPR rate) in phase I study. Thirdly, the
median follow-up duration of the patients enrolled in
REGN5458 clinical trial was 2.4 months. Although median
DOR was not reached in this trial, the probability of DOR ≥8
months was 92.1%. Fourthly, the RP2D of Tnb-383B was 60 mg
Q3W. The median follow-up time of the ≥40mg dose-escalation
Frontiers in Immunology | www.frontiersin.org 4230
cohorts and the ≥40mg combined dose-escalation and dose-
expansion cohorts were 6.1 and 3.1 months, respectively.
Fifthly, elranatamab is a humanized bispecific molecule. Its
subcutaneous (SC) cohorts from MagnetisMM-1 contained five
parts: dose escalation (part 1), monotherapy with priming (part
1.1), lenalidomide (LEN) combination (part 1C), pomalidomide
(POM) combination (part 1D), and monotherapy expansion
with priming (part 2A). In part 1, the efficacious dose range
was 215–1,000 mg/kg. ASH2021 updated the ORR and sCR/CR
TABLE 1 | Updated clinical data for BsAbs.

RO7297089-
GO4158

(NCT04434469)

Teclistamab (JNJ-64007957)-
MajesTEC-1 (NCT04557098)

REGN5458-
(NCT03761108)

Tnb-383B-
(NCT03933735)

Elranatamab (PF-06863135)–MagnetisMM-1
(NCT03269136)

Phase 1 1/2 1/2 1 1
Structure BCMA×CD16a

(BsAbs)
BCMA×CD3 (BsAbs) BCMA×CD3

(BsAbs)
BCMA×CD3
(BsAbs)

BCMA×CD3 (BiTEs molecule)

Schedule Dose escalation:
60, 180, 360,
1,080, 1,850 mg

1,500 µg/kg/w followed by step-
up doses of 60 and 300 µg/kg

Dose escalation:
full doses
ranging from 3
to 400 mg

Dose escalation/
expansion: 0.025–
120 mg

Part 1: 80, 130, 215, 360, 600, and 1,000 mg/kg/
w (SC)
Part 1.1/2A (RP2D): single priming dose (600 mg/
kg or equivalent fixed dose of 44 mg), then the
full dose (1,000 mg/kg or equivalent fixed dose of
76 mg) Q1W or Q2W followed (SC)
Part 1C/1D: single priming dose (32 mg), then the
full dose (44 mg) Q1W followed one week later in
combination with either LEN (25 mg) or POM (4
mg) on days 1 to 21 of a 28-day cycle (SC)

Patients (n) 21 159 (phase 1: n = 40; phase 2:
n = 119)

68 103 (dose
escalation: n = 73;
dose expansion:
n = 30)

58 (part 1.1: n = 50; part 1C: n = 4; part 1D:
n = 4)

Efficacy
ORR (%) NA 65 (phase 1 pts) 73.3 (96 and

200 mg dose
levels)

79 (19/24) (≥40 mg dose-
escalation cohort); 64 (28/44)
(≥40 mg dose-escalation and
dose-expansion cohorts)

70 (14/20) (part 1, at the efficacious dose
range 215–1,000 mg/kg)

≥CR rate (%) NA 40 (phase 1 pts) 19.1 (13/68)
(across all
dose levels)

29 (7/24) (≥40 mg dose-
escalation cohort); 16 (7/44)
(≥40 mg dose-escalation and
dose-expansion cohorts)

30 (6/20) (part 1, at the efficacious dose range
215–1,000 mg/kg)

≥VGPR rate (%) NA 60 (phase 1 pts) 36.8 (25/68)
(across all
dose levels)

63 (15/24) (≥40 mg dose-
escalation cohort); 43 (19/44)
(≥40 mg dose-escalation and
dose-expansion cohorts)

35% (7/20) (part 1, at the efficacious dose
range 215–1,000 mg/kg)

Safety
Nonhematologic
TRAEs

IRR (48%); back pain
(24%); ALT rise
(19%)

CRS (67%); injection site
erythema (23%); fatigue
(22%); ICNS (4 pts)

CRS (38.2%);
fatigue
(20.6%)

77% (Gr ≥3:32%, serious
AEs:22%): CRS (52%);
neutropenia (17%); fatigue
(14%)

Hematologic
TRAEs

Anemia (52%);
thrombocytopenia
(19%)

Neutropenia (53%); anemia
(41%); thrombocytopenia
(33%)

Neutropenia
(16.2%)

TEAEs 97.1% (≥Gr3:
76.5%):
fatigue
(42.6%); CRS
(38.2%);
nausea
(32.4%)

8%: infections (28%);
pneumonia (5%)

CRS (83%); lymphopenia (64%); neutropenia
(64%); anemia (55%); injection site reaction
(53%); thrombocytopenia (52%)

Reference (28) (29) (30) (31) (32)
BCMA, B-cell maturation antigen; BsAbs, bispecific antibodies; BiTEs, bispecific T-cell engagers; w, week; LEN, lenalidomide; POM, pomalidomide; ORR, overall response rate; NA, not
applicable; CR, complete response; VGPR, very good partial response; DOR, duration of response; TRAEs, treatment-related AEs; IRR, infusion-related reaction; CRS, cytokine release
syndrome; pts, patients; Gr, grade; AEs, adverse events; ICANS, immune effector cell-associated neurotoxicity syndrome; TEAEs, treatment-emergent AEs; DLT, dose-limiting toxicity;
SC, subcutaneous.
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rate under these doses, and the confirmed ORR at the RP2D was
83% (5/6) in this part. One last thing worth mentioning is that,
although the patients enrolled in the REGN5458 clinical trial
were penta-refractory after 5 or so prior LOT, the rest of the
patients enrolled in the other trials relapsed after ≥3 prior LOT
including a proteasome inhibitor, an immunomodulatory drug,
and a CD38-targeted therapy.

3.3 Novel BCMA-Targeted
Tri-Specific Agents
Frankly speaking, today’s researchers are no longer satisfied with
the dual-target immunotherapies for treating the patients with
RRMM. The current studies have reached a level of developing
triple or multiple specificity agents, which may have better efficacy.
ASH2021 reported that HPN217, a half-life extended (median
serum half-life: 74 h) (33) tri-specific T-cell activation construct
(TriTAC) synchronously targeting BCMA, serum albumin to
prolong the half-life period, and CD3e to active and redirect T
cells, could exert their cytotoxic effect to myeloma cells (34). The
preclinical translational studies showed that HPN217 could
eliminate 71% of tumor cells at a 0.45-T cell/MM cell ratio. The
density of BCMA and the sBCMA in circulation affected the
tumor killing effect of HPN217. Consistent with this result, GSI
(e.g., LY-3039478), which increased the expression of BCMA on
the surface of myeloma cells, could enhance the efficacy of this
agent. Moreover, the negative effect of DEX on the HPN217-
redirected T cells may be restricted (34). The phase I clinical trial is
ongoing, whose preliminary results showed us that the maximum
safe dose of HPN217 was 2,150 µg/week and its treatment-
emergent AEs were transient and controllable (33). Another
BCMA-targeted tri-specific agent who was undergoing
preclinical evaluation has been reported in this meeting as well
(35). CDR101, targeting CD3, BCMA, and PD-L1, could guide T
cells to BCMA-expressed tumor cells and play a role in combating
immunosuppression caused by the interaction of PD-L1 and PD-1
at the immune synapse site, which may reduce the possibility of
“on-target off-tumor” effects. Compared with BCMA × CD3
bispecifics, CDR101 resulted in at least 10-fold increased T-cell-
mediated tumor cells lysis and it performed better than the
combination of the PD-L1 inhibitors and BCMA × CD3
bispecifics. Based on these findings, it is suggested that novel tri-
specific immunotherapy agents argue for a high clinical potential
and promising translation into the clinic.

3.4 Antibody-Drug Conjugates
Antibody-drug conjugates (ADCs), which connected mAbs with
bioactive drugs through chemical linkers (36), can accurately
identify tumor cells and exert high-efficiency cytotoxic effects on
malignant cells without damaging healthy tissues (37).
Belantamab mafodotin (GSK2857916), which is a microtubule-
disrupt agent (38), consists of humanized BCMA-targeted IgG1
and monomethyl auristatin-F (MMAF). Blenrep was approved
by the U.S. Food and Drug Administration (FDA) in 2020 for
treating patients with RRMM. As the first licensed BCMA-
targeted immunotherapy for marketing (39), belantamab has
been tested in multiple clinical trials (38–40), which could
Frontiers in Immunology | www.frontiersin.org 5231
confirm its safety and efficacy. The first-in-human DREAMM-
1 study showed that the belantamab monotherapy (3.4 mg/kg,
Q3W) induced deep (overall response: 60%, 21/35) and durable
(median DOR: 14.3 months) responses (38). The results of
DREAMM-2 (NCT03525678), a multicentric phase II clinical
study of this ADC, have confirmed that the recommended
regimen for its future studies was 2.5 mg/kg, Q3W instead of
3.4 mg/kg, Q3W, which was the RP2D after the phase I trial.
Under this dose, the ORR was 31% (30/97) with manageable
safety profile (41). Even so, belantamab also has a certain extent
of boundedness. DREAMM-2 demonstrated that the toxicity of
this agent was mainly reflected in thrombocytopenia and lesions
about the cornea, which presented as microcyst-like epithelial
changes or superficial punctate keratopathy (41). Moreover,
adverse ocular signs like dry eye and diminution of best-
corrected visual acuity (BCVA) have occurred during the
administration of belantamab as well (41). Given that changing
its administration regimens may reduce the incidence of corneal
events without compromising the therapeutic effect, a new phase
II, 5-arm, open-label and multicentric clinical trial DREAMM-14
is preparing to determine if there are better dosage choices than
2.5 mg/kg Q3W. This study will initiate in the springtime of 2022
(42). To relieve stress in the real world, a study in ASH2021
analyzed if those relatively simple clinical indicators or
convenient judgment methods such as questionnaires, could
replace the professional eye examinations for determining
whether to change the in-use medication regiments (43). The
conclusion of this study was unequivocally positive, and once
these strategies are applied in clinical practice, the burden of
either patients or physicians will greatly reduce. DREAMM-1
and DREAMM-2 have studied the efficacy of belantamab
monotherapy. ASH2021 updated the results of belantamab/
DEX and belantamab/DEX + POM for the patients with triple-
class refractory disease. After the combination of belantamab
(2.5 mg/kg Q3W) with DEX (20–40 mg Q1W, median 3 cycles),
the ORR was 46%, the CR rate was 14%, and 18% of all patients
achieved ≥VGPR with 7.4 months median follow-up duration.
Median progression-free survival (PFS) was 4.9 months, with 7.4
months’ median overall survival (OS). The incidence of AEs were
anemia (83%), keratopathy (82%; Gr3/4: 56%), thrombocytopenia
(70%), neutropenia (30%), and elevated liver function tests (53%)
from high to low (44). On the other hand, after the combined
application of belantamab (1.92, 2.5, or 3.4 mg/kg, Q4W, designed
by 3 + 3 dose escalation strategy), POM (an IMiD) (4 mg day 21/28
days), and DEX (40/20mg weekly), the ORRwas 88.9% (48/54) and
the sCR, ≥VGPR, and PR rates were 24.1% (13/54), 68.5% (37/54),
and 20.4% (11/54), respectively. The median PFS was 24.2 months
based on a median of 8.6 months follow-up. Keratopathy (96.9%)
also was the most common AEs, and 56.7% of such patients have
reached Gr 3/4 (45). These two studies demonstrated that POM and
DEX may have positive impacts on the efficacy of belantamab.
However, keratopathy remains a challenge in the treatment process.
In addition to belantamab mafodotin, several other BCMA-targeted
ADCs, such as AMG 224, MEDI2228, and HDP-101, are
also undergoing multiple preclinical or clinical studies in
different phases.
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3.5 BCMA-Targeted CAR-T-Cell Therapy
Compared with the mAbs, BsAbs, and ADCs mentioned above,
the therapeutic effect for BCMA-targeted CAR-T-cell therapy
presented in the 63rd ASH seems to be more optimistic.
Moreover, the preliminary results of many other related
studies, such as the engineering improvement strategies to
existing CAR-T-cell products or the effects induced by multiple
factors inside and outside the body, were reported in this
meeting. The relevant data about the safety and efficacy of
those products, including ciltacabtagene autoleucel (cilta-cel)
(46–48), CT053 (49, 50), CT103A (51), C-CAR088 (52),
PHE885 (53), CART-ddBCMA (54), and bb21217 (55), are
presented in Table 2, and the relevant supplementary
explanations will be carried out later in this paper.

3.5.1 Ciltacabtagene Autoleucel
Cilta-cel, one of the BCMA-targeted CAR-T-cell products with
two anti-BCMA single-domain antibodies to present avidity, a
CD3-z signaling domain, and a 4-1BB costimulatory domain
(56), has gotten favorable responses in its phase Ib/II open-label
study CARTITUDE-1 from 97 patients with MM who had
relapsed after more than three prior LOTs, such as PI, IMiD,
or MoABs (56). According to the past report, after 5–7 days of
single cilta-cel infusion (0.75 × 106 cells/kg) and median 12.4
months of follow-up, the ORR was 97%, with 67% of patients
achieving sCR. Twelve months PFS rate and OS rate were 77%
and 89%, respectively. There were two reports (46, 57) in
ASH2021 presented the subsequent results of these patients
and the performance of the subgroups in CARTITUDE-1.
After 18 months median follow-up, the resulting ORR was
97.9%, which was well-matched to all the subgroups. 80.4% of
all subjects got sCR, and 94.8% achieved VGPR or better. The
median DOR was 21.8 months. The rate of 18 months’ PFS and
OS was 66.0% and 80.9%, respectively. These data also were
consistent with most of the subcohorts. As for minimal residual
disease (MRD), 91.8% of those who had been tested (n = 61)
reported MRD negative at the 10−5 threshold. Across all the
subgroups, the data were 80% to 100%. In terms of the safety, the
mainly hematologic AEs graded 3 or 4 were neutropenia (94.8%),
anemia (68.0%), leukopenia (60.8%), thrombocytopenia (59.8%),
and lymphopenia (49.5%), without cytopenia-related fatalities.
94.8% of all the patients occurred CRS, and 98.9% of them
obtained remission within 14 days. No neurotoxicity case related
to CAR-T cells happened since the last report. The efficacy and
safety of cilta-cel can be proved by the results from this phase Ib/
II study, and the comparison between cilta-cel and other kinds of
therapeutic methods for MM can extend its advantages to real-
world clinical practice (RWCP). LocoMMotion (58), which can
be seen as an external control cohort of CARTITUDE-1, is the
first prospective study for cilta-cel’s applicability in the real world
(59). In LocoMMotion, 246 patients with RRMM who relapsed
after more than triple class exposure to IMiDs, PIs, and MoABs
were enrolled, they then received more than ninety other
treatment regimens besides CAR-T-cell therapy. Based on the
comparative analysis of many aspects between LocoMMotion
and CARTITUDE-1, the prognosis of the patients treated with
other therapeutic strategies was worse. Cilta-cel had a better
Frontiers in Immunology | www.frontiersin.org 6232
outcome reflected by many indicators including ORR, CR, PFS,
and OS.

CARTITUDE-2, a phase II multicohort clinical trial for cilta-
cel, is currently ongoing. Two reports in ASH2021 provided us
with the updates of cohort A (47) and cohort B (48) in
CARTITUDE-2, respectively. In cohort A, 20 patients who
were refractory after more than three prior LOTs especially
lenalidomide were treated with cilta-cel (0.75 × 106 cells/kg,
5–7 days). The ORR was 95%; 85% of patients performed better
than complete response (CR), and 95% of them were superior to
VGPR. Median DOR has not been reached, but the 6-month PFS
rate was 90%. In total, 13 patients were evaluated for MDR, and
92.3% of them got MRD negative based on the 10−5 criterion.
The common hematologic AEs were neutropenia (95%),
thrombocytopenia (80%), anemia (75%), lymphopenia (65%),
and leukopenia (55%). Although the incidence rate of CRS was
95%, 90% of these cases were cured within 7 days. This, together
with the neurotoxicity that happened in only 20% of all patients,
demonstrated the manageable safety profile of cilta-cel. In cohort
B, the cilta-cel infusion (0.75 × 106 cells/kg, 5–7 days) performed
in 18 patients who relapsed within 12 months after receiving
autologous stem cell transplantation or other anti-MM therapies.
After an average of 4.7 months’ follow-up, the ORR reached
100%. In total, 31.2% of them achieved better than CR, and 75%
were superior to VGPR. All the evaluated patients (n = 9)
performed MRD negative. With 4 days median time of
duration (ranged 1–7), CRS (grades 1–4) occurred in 83.3% of
patients, and ICANS (grade 1) occurred in only one patient. For
cilta-cel, the latest results of CARTITUDE-1 and CARTITUDE-2
jointly highlight its potential as a promising method for heavily
pretreated patients with RRMM. Further studies including
CARTITUDE-4 (NCT04181827) have been carried out. However,
this agent has not been approved yet for marketing.

3.5.2 Idecabtagene Vicleucel (ide-cel, bb2121)
Based on the positive results from the pivotal single-arm, open-
label phase II clinical trial called KarMMa (60), Abecma (ide-
cel), one of the BCMA-targeted CAR-T-cell products, which is
used to treat the patients with RRMM after four or more prior
LOTs including IMiD, PI, and MoABs (61), has been approved
for listing by FDA as the first one around the world. ASH2021
updated the study results of health-related quality of life
(HRQoL) in KarMMa (62). The results which have been
reported previously have shown the significant clinical benefits
of ide-cel on HRQoL during a 9-month follow-up (63), and the
updated performance of the patients enrolled in this trial also
proved that after 24 months follow-up, notable HRQoL
improvements in multiple predefined domains were achieved.
In those predefined prime HRQoL domains, 40%–70% of all 128
patients had clinically meaningful advances reflected by many
indicators, such as QLQ-C30 fatigue, pain, physical functioning,
and global health status/QoL scores at the later time points. In
addition, 30%–40% of these patients got improvements in
cognitive function, disease symptoms, and side effects, with
40%–60% of them remaining stable in these domains. Among
those predefined secondary HRQoL domains, the improvement
in role functioning, emotional functioning, social functioning,
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TABLE 2 | BCMA-targeted CAR-T cells in clinical trials.

Name
(manufacturer)

Clinical trial
information

Inclusion/exclusion criteria Pt
characteristics

Dosage Major
response

Most common AE

Ciltacabtagene
autoleucel
(Janssen, Xi'an,
China)

Phase 1b/2
(NCT03548207)
(46)

RRMM who received or were refractory to
≥3 prior lines, including PI, IMiD, CD38
mAb

97 pts; median
age 61; median
prior lines 6

Single cilta-cel infusion
(target dose 0.75 × 106

CAR+ viable T cells/kg;
range 0.5–1.0 × 106) 5–7
days after
lymphodepletion (300 mg/
m2 cyclophosphamide, 30
mg/m2

fludarabine daily
for 3 days)

ORR
97.9%;
sCR
80.4%;
VGPR
14.4%;
PR 3.1%;
NR 2.1%

G3-4 neutropenia (94.8%),
anemia (68.0%), leukopenia
(60.8%), thrombocytopenia
(59.8%), lymphopenia
(49.5%); CRS (94.8%);
neurotoxicity (0%)

Phase 2
(NCT04133636)
(47, 48)

Cohort
A (47)

RRMM who received or were
refractory to ≥3 prior lines,
including PI, IMiD, CD38 mAb,
lenalidomide relapse; hx of
BCMA-directed therapy were
excluded

20 pts; median
age 60; median
prior lines 2

Single cilta-cel infusion
(target dose 0.75 × 106

CAR+ viable T cells/kg) 5–
7 days after
lymphodepletion (300 mg/
m2 cyclophosphamide, 30
mg/m2

fludarabine daily
for 3 days)

ORR
95%; CR
85%;
VGPR
10%

G3-4 neutropenia (95%),
thrombocytopenia (35%),
anemia (45%), lymphopenia
(60%), leukopenia (55%);
CRS (95%), G3-4 CRS
(10%); G1-2 neurotoxicity
(20%)

Cohort
B (48)

RRMM who received or were
refractory to 1 prior line,
including PI, IMiD, had disease
progression either ≤12 months
after ASCT or ≤12 months after
start of antimyeloma therapy
except ASCT, were tx-naïve to
CAR-T or anti-BCMA therapies

18 pts; median
age 57

Single cilta-cel infusion
(target dose 0.75 × 106

CAR+ viable T cells/kg) 5–
7 days after
lymphodepletion (300 mg/
m2 cyclophosphamide, 30
mg/m2

fludarabine daily
for 3 days)

ORR
100%;
CR
31.2%;
VGPR
43.8%;
PR 25%

Neutropenia (88.9%),
thrombocytopenia (61.1%),
anemia (50.0%), leukopenia
(27.8%), and lymphopenia
(22.2%); G1-4 CRS
(83.3%); G1 neurotoxicity
(5.6%)

CT053
(CARsgen,
Shanghai,
China)

Phase 1
(NCT03975907)
(NCT03380039,
NCT03716856,
NCT03302403)
(49, 50)

RRMM who received or were refractory to
≥2 prior lines, including PI, IMiD, CD38
mAb

38 pts 0.5 (n = 1), 1.0 (n = 4),
1.5 (n = 32), 1.8 (n = 1) ×
108 CAR+ viable T-cell
infusion after
lymphodepletion

ORR
92.1%;
CR
78.9%;
VGPR
7.9%; PR
5.3%; NR
7.9%

G1-2 CRS (73.7%); G3
neurotoxicity (0%); DLT
(0%)

CT103A (Sana,
Seattle, USA)
(IASO, Nanjing,
China)

Phase 1/2
(NCT05066646)
(51)

RRMM who received or were refractory to
≥3 prior lines, including PI, IMiD, CD38
mAb

71 pts; median
age 58; median
prior lines 4

1.0 × 106 CAR+ viable T
cells/kg single infusion 1 d
after lymphodepletion
(300 mg/m2

cyclophosphamide, 30
mg/m2

fludarabine daily
for 3 days)

ORR
94.4%;
CR
50.7%;
VGPR
26.8%;
PR
16.9%

CRS (93%), G3 CRS
(2.8%); G2 neurotoxicity
(1.4%)

C-CAR088
(CBMG,
Delaware, USA)

Phase 1
(NCT04295018,
NCT04322292,
NCT03815383,
NCT03751293)
(52)

RRMM who received or were refractory to
≥2 prior lines, including PI, IMiD, CD38
mAb

31 pts; median
age 61; median
prior lines 4

1.0, 3.0, 4.5~6.0 × 106

CAR+ viable T cells/kg
infusion after
lymphodepletion (300 mg/
m2 cyclophosphamide, 30
mg/m2

fludarabine daily
for 3 days)

ORR
96.4%;
CR
57.2%;
VGPR
32.1%;
PR 7.1%

CRS (93.5%), G1 CRS
(58.1%), G2 CRS (25.8%),
G3 CRS (9.7%);
neurotoxicity (3.2%)

PHE885
(Novartis, Basel,
Switzerland)

Phase 1
(NCT04318327)
(53)

RRMM who received or were refractory to
≥2 prior lines, including PI, IMiD, CD38
mAb

6 pts; median
prior lines 5

5.0, 14.3 × 106 CAR+

viable T cells/kg infusion
after lymphodepletion

ORR
100%;
CR 17%;
VGPR
33%; PR
50%

≥G3 anemia (100%),
neutropenia (100%),
thrombocytopenia (67%),
leukopenia (33%), ALT and
AST increase (33%),
decreased blood fibrinogen
(33%); CRS (33%); G3 CRS
(100%); G2 neurotoxicity
(33.3%)

CART-ddBCMA
(Arcellx,
Maryland, USA)

Phase 1
(NCT04155749)
(54)

RRMM who received or were refractory to
≥3 prior lines, including PI, IMiD, CD38
mAb

16 pts; median
age 66; median
prior lines 5

100, 300 × 106 ( ± 20%)
CAR+ viable T cells/kg
infusion after
lymphodepletion (300 mg/
m2 cyclophosphamide, 30

ORR
100%;
sCR
43.8%;
CR

CRS (100%); ≥G3 CRS
(6%); G3 neurotoxicity
(13%)

(Continued)
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dyspnea, insomnia, constipation, diarrhea (QLQ-C30), future
perspectives (QLQ-MY20), health utility index scores (EQ-5D-
5L), and VAS scores (EQ-5D) had clinical significance. It is
worth mentioning that there was also a study in ASH2021 (64),
which was a qualitative analysis of the interviews with patients in
KarMMa after 6–24 months ide-cel treatment, provided us a
novel insight to evaluate the posttreatment life quality by
analyzing the attitude of patients. Undoubtedly, 73% of all
interviewed subjects (n = 33) had positive attitude towards ide-
cel infusion.

Moreover, ASH2021 also touched on some of other studies
derived from KarMMa. Because of the difference in overall OS
and median PFS (34.2, 24.8 months and 8.8, 8.6 months,
respectively) between the results of KarMMa and an earlier
phase I study of ide-cel named CRB-401 (65), further research
was conducted on the patients enrolled in KarMMa who relapsed
after ide-cel treatment. A report (66) showed us the difference
between those who received subsequent antimyeloma therapy
(sAMT) (n = 68) and the anti-BCMA therapy (n = 11) after ide-
cel infusion: the median PFS and OS of the patients with sAMT
were 6.1 and 24.8 months, respectively. The duration of overall
sAMT was 215 days, and the second disease progression (PFS2)
was 13.6 months (inclusive of time on ide-cel therapy). The
median PFS and OS of the patients who were applied anti-BCMA
therapy was 12.1 and 31.0 months, and the median duration of
the first sAMT was 48 days with 15.5 months’ PFS2, which was
more favorable. Therefore, patients who relapsed after the first
ide-cel infusion may benefit from the follow-up anti-BCMA
therapy, while the emergence of this phenomenon requires
conditions referred to a past study (67). There was also a
report (68) about the infectious complications after ide-cel
treatment in patients with RRMM from CRB-401 and
KarMMa. The overall incidence of infection matched the
previous data of CD19 CAR-T-cell therapy. Generally, bacterial
infections were the most common, and only one patient
developed fungal infection despite none of the patients
receiving antifungal prophylaxis. This study provided us with
some other explicit information on specific infectious
complications of the particular crowd, and it was pregnant to
the clinical application of ide-cel.
Frontiers in Immunology | www.frontiersin.org 8234
3.5.3 Updated Information of Other Existing BCMA-
Targeted CAR-T Products
In addition to cilta-cel and ide-cel, a variety of other BCMA-
targeted CAR-T-cell products were mentioned at this ASH
meeting. The relevant data are presented in Table 2, and there
are some points that should be added: firstly, CT053, an all-
human CAR-T-cell product, has shown promising efficacy and
safety in its phase I clinical trial (LUMMICAR STUDY 1 and
CG) (49, 50). Two things interesting were that, the ORR of
CT053 to treat the RRMM patients relapsed after three or more
LOT with the extramedullary disease (EMD) being 91.7%, the
CR rate being 58.3%, and the median PFS being 9.3 months,
better than the results of those past treatment strategies such as
combination therapy with permadomide and dexamethasone
(ORR: 30%; CR rate: 15.3%) (69) and carfilzomib-based
combination therapy (ORR: 27%, CR rate: 0%, median PFS: 5
months) (70). For the patients with high-risk cytogenetic
abnormalities [del(17p), t(4;14), t(14;16)/1q21], the ORR and
CR rate of CT053 were 84.2% and 73.3%, respectively, with the
15.6 months median PFS, better than the results of ishatuximab,
permadomide, and dexamethasone combination (ORR: 50%, CR
rate: 0%, median PFS: 7.5 m) (71), carfilzomib monotherapy
(ORR: 25.8%, CR rate: 0%, median PFS: 3.5 m) (72), and even the
infusion of bb2121 (ORR: 73%, CR rate: 33%, median PFS: 8.2 m)
(60). Secondly, the relationship between the dosage and curative
effect of C-CAR088 has been studied (52). Among the selected doses
of 1.0, 3.0, and 4.5~6.0 × 106 CAR+ T cells/kg, the cohorts whose
dosage ≥3.0 × 106 CAR-T cells/kg had deeper and more durable
responses, which needed further research. Thirdly, PHE885 is a
novel fully human CAR-T-cell product modified with T-Charge™.
This platform can reduce the in vitro culture time of CAR-T cells to
about 24-h, thus taking only less than 2 days to acquire the final
products, which totally depends on the in vivo proliferation after
infusing CAR-T cells (53). The application of this new platform also
can retain the naïve-like and stem cell memory T cells
(Tnaïve+Tscm) (CD45RO−/CCR7+), which are beneficial to the
persistence of CAR-T cells. By contrast, the CAR-T cells
(TM_PHE885), having the same single-chain variable fragments
(scFvs) of PHE885, which were prepared by the conventional
methods, just keeps central-memory T cells (CD45RO+/CCR7+)
TABLE 2 | Continued

Name
(manufacturer)

Clinical trial
information

Inclusion/exclusion criteria Pt
characteristics

Dosage Major
response

Most common AE

mg/m2
fludarabine daily

for 3 days)
12.5%;
VGPR
18.7%;
PR 25%

bb21217
(bluebird bio,
Massachusetts,
USA)

Phase 1
(NCT03274219)
(55)

RRMM who received or were refractory to
≥3 prior lines, including PI, IMiD, CD38
mAb

72 pts 150, 300, 450 × 106

CAR+ viable T cells/kg
infusion after
lymphodepletion (300 mg/
m2 cyclophosphamide, 30
mg/m2

fludarabine daily
for 3 days)

ORR
69%; CR
28%;
VGPR
30%; PR
11%

CRS (75%); G1-2 CRS
(70.8%)
G3 CRS (1.4%);
neurotoxicity (15%)
Ma
rch 2022 |
Pt, patient; AE, adverse event; ORR, overall response rate; sCR, strict complete response; VGPR, very good partial response; PR, partial response; NR, no response; G, grade; CRS,
cytokine release syndrome; hx, history; CR, complete response; mo, month; ASCT, autologous stem cell transplantation; tx, treatment; DLT, dose-limiting toxicity.
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(73). Strong cell amplification was observed in all patients by qPCR
technique (the maximum amplification of T cells in circulation was
283,000 copies/mg, the median maximum amplification time was
21.1 days) and flow cytometry (the maximum amplification of T
cells in circulation was 69.3%, the median maximum amplification
time was 16.4 days). PHE885 can be detected in the peripheral
blood of each patient during follow-up (1–6 months). Fourthly,
CART-ddBCMA is a special CAR-T-cell product with a synthetic
BCMA binding domain. Differing from the classical scFvs with a 4-
1BB costimulatory domain and a CD3z activation domain, it is a
smaller stable protein containing only 73 amino acids, thus reducing
the threats of immunogenicity (54). Finally, a multicenter phase I
trial of bb21217 named CRB-402 (NCT03274219) is underway. The
preliminary results of its preclinical study have been reported before,
and the subsequent results presented in ASH2021 showed that
adding PI3K inhibitor (BB007) during the in vitro culture stage to
amplify memory-like T cells (CD62L+ and CD27+) (74, 75) could
advance the persistence of CAR-T cells literally. This positive effect
was reflected on a better DOR of bb21217 compared with bb2121
(65), which shared the same CAR structure with it (55). Moreover,
after infusing bb21217, CAR-T cells could be detected in 30/37
(81%) patients and 9/15 (60%) patients at 6th and 12th months.
Analysis of the peripheral blood samples showed that less
differentiated, more proliferative CAR-T cells at peak expansion
are associated with the prolonged response period (median DOR of
higher CD62L+ CD27+ CD8+ CAR-T cells vs. lower: 27.2 vs. 9.4
months) (Figure 2).

3.5.4 Allogeneic BCMA-Targeted
CAR-T-Cell Products
Patients with relapsed or refractory hematological malignancies
who are suitable to be treated by CAR-T-cell therapy usually
have a high tumor load and many deficiencies in their T-cell
population (76). These limitations increase the difficulty of
obtaining sufficient qualified T cells as the materials for CAR-T
cells’ manufacture after apheresis (76). Up to now, allogeneic
CAR-T-cell therapy has shown a certain extent efficacy for the
patients who have appropriate donors (77, 78). However,
allogeneic materials bring the risk of graft-versus-host disease
(GvHD) undoubtedly (79). The most effective measure at present
is using gene-editing technology such as zinc-finger nucleases
(ZFN), transcription activator-like effector nuclease (TALEN)
technology, and the CRISPR/Cas9 system to knockout T-cell
receptors (TCR) at the DNA level to reduce the risk of GvHD
(80). Moreover, many novel strategies such as RNA silencing
(80) and membrane protein intracellular retention technology
have been used to knockdown TCR at mRNA or other levels.
ASH2021 updated two novel allogeneic BCMA-targeted CAR-T-
cell products: ALLO-715 (81) and CYAD-211 (82). ALLO-715
used Collectis TALEN technology to disrupt the TCR alpha
constant (TRAC) and CD52 gene, which required multiple
operating steps and longer culture time to increase the
exhaustion of T cells. By comparison, CYAD-211 converted to
use short hairpin RNA (shRNA) to knockdown TCR expression
at mRNA level, which could reduce the preparation duration.
The shRNA in CYAD-211 was coexpressed with its CAR, so it
required only one step to achieve the genetic modification.
Frontiers in Immunology | www.frontiersin.org 9235
The phase I trials of these two, named UNIVERSAL and
IMMUNICY-1 respectively, have already begun, and the
former provided more details to us. A report in ASH2020
about UNIVERSAL suggested that a higher dose level of
ALLO-715 could improve clinical efficacy. After the 320/480 ×
106 CAR-T-cell infusion and 7.4 months median follow-up, the
ORR (n = 26) was 61.5%, and the rate of VGPR was 38.5%. The
incidence rate of CRS was 52.4%, and just one of them was rated
level 3. Among ten patients who have been tested, eight obtained
negative results of MRD, proving the efficacy of ALLO-715 to
some extent. Regrettably, information about GvHD did not
present here (81). As for IMMUNICY-1, none of the nine
enrolled participants showed GvHD after CYAD-211
inputting. However, the grafts only lasted 3 to 4 weeks in vivo,
which can be interpreted as the rejection of patients’ healing
immune system. Moreover, the effectiveness of CYAD-211 needs
further assessment. There is also a clinical study showing that
allogeneic CAR-T cells from the same donor were used as one of
the preprocessed methods for subsequent allogeneic
hematopoietic stem cell transplantation (Allo-HSCT) (83). The
results showed that this strategy was effective in treating patients
with MM who had relapsed after multiple LOTs. The
conclusions of these studies, along with part of previous
findings (84–87), demonstrated the prospect of allogeneic
BCMA-targeted CAR-T-cell therapy and its clinical availability
as an adjuvant treatment in combination with other traditional
or neoteric therapeutic methods such as allo-HSCT. Rather than
stop here, we need more in-depth studies in this area. We think
allogeneic CAR-T-cell therapy can be seen as a “stepping stone”,
and the development and improvement of universal CAR-T cell
will become mainstream one day.

3.5.5 Bispecific BCMA-Targeted CAR-T Cell
Although BCMA-targeted CAR-T-cell therapy has shown a
favorable efficacy, the disease recurrence after this agents’
treatment remains a critical concern (88). One of the reasons
of palindromia is the tumor cells’ immune escape, which is
induced by the adaptive decrease of BCMA expression after long-
term treatment, the amplification of a small number of BCMA-
negative minimal residual lesions surviving from the lethal effect
of CAR-T cells, or other mechanisms (89, 90). To solve this
question, an increasing number of studies on dual-targeting or
combined-targeting CAR-T cells have been carried out (91, 92).
ASH2021 updated two novel bispecific BCMA-targeted CAR-T-
cell products: the first targets two tumor-associated antigens
(TAAs) (BCMA and CD24) (93), and another one constructs a
synthetical CAR targeting the pan-TAAs, containing MHC class
I polypeptide‐related sequence A/B (MICA/MICB), as the
companion target of the classic target BCMA (94). Previous
studies showed us that tumor-initiating cells’ (TICs) survival and
amplification after CAR-T-cell therapy could seed relapse by
acquiring the resistance. Part of these cells were the
CD24+BCMA− subgroups (95). As expected, these BCMA-
CD24-targeted CAR-T cells, which target and kill TICs
effectively, can be activated by exposing to the CD24+

microenvironment. When CD24+ MM cells (ARP-1 CD24OE
or OCI CD24OE cells) were co-cultured with these CAR-T cells
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in vitro with the 5:1 proportion of the CAR-T cells and the MM
cells, the clearance rates of ARP-1 CD24OE and OCI CD24OE
cell lines were 99% and 89%, respectively. Unlike the CAR
mentioned above targeting two well-defined epitopes, another
bispecific CAR targets BCMA and a pan-TAAS simultaneously.
The conserved a3 domain of MICA/MICB is the target of the
CAR, which could drive antitumor immunoreaction and prevent
MICA/MICB shedding at the same time (96). These studies
elucidated that both BCMA and the additional antigens could
activate those bispecific CAR-T cells targeting them, making
these artificial immune cells degranulated to exert their
cytotoxicity. Bispecific BCMA-targeted CAR-T-cell therapy is a
promising strategy to expand the splash radius of CAR-T cells,
which is expected to reduce the resurgence of MM after CAR-T-
cell therapy.

3.5.6 The Novel Ameliorative Methods for BCMA-
Targeted CAR-T Cell
BCMA-targeted CAR-T-cell therapy also has some other
deficiencies (6, 97), which call for reasonable solutions
(Figure 3). ASH2021 updated several novel engineering
improvements to address part of these limitations.

3.5.6.1 CAR-T Cells’ Poor Persistence
CAR-T cells’ poor endurance is a major cause of disease
recurrence after treatment (98). By testing peripheral blood
and bone marrow samples from the patients treated with
BCMA-targeted CAR-T cells, a study in ASH2021 (99) found
that increased BCL-XL expression may enhance CAR-T cells’
resistance to the similar effect like activation induced cells death
(AICD), and prolong these cells’ persistence through responding
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to CD28 costimulatory signals. Based on this discovery, the
researchers designed a second-generation lentiviral CAR
(BCMA-BCL2L1-CAR)-armored BCL-XL. In the edited gene
of this CAR, classical anti-BCMA scFV-41BBz CAR and
BCL2L1 cDNA were linked by a self-cleaving 2A sequence.
This kind of modified BCMA-targeted CAR-T cell has a higher
BCL2L1 expression, and in MM cell lines (MM1S, OCMY5, and
H929) expressing the ligands of FAS death receptor (FASLG),
BCMA-BCL2L1-CAR-T cells observably outperformed
unarmored BCMA-CAR-T cells in terms of viability and
cytolysis activity. Moreover, BCMA-BCL2L1-CAR-T cells with
less cells exhaustion showed greater ability to kill the tumor cells
under chronic antigenic stimulation, which could cause AICD
more easily.

For extending the duration of BCMA-targeted CAR-T cells, a
nonvirus transposon system called PiggyBac (PB) has already
been put into use. Two novel CAR-T-cell products targeting
BCMA manufactured by PB were reported in this meeting. They
were named P-BCMA-101 (autologous) and P-BCMA-ALLO1
(allogeneic), respectively (100). This study proved that PB does
not only sped up the preparing process of CAR-T cells but also
could preserve more desirable stem cell memory T cells (Tscm),
whose proportion were closely related to the persistence of
BCMA-targeted CAR-T cells (101, 102). Results of the phase I/
2 clinical trial for P-BCMA-101 named PRIME (NCT03288493)
certified the safety of this agent.

3.5.6.2 CAR-T Cells’ Immunogenicity
The nonhuman sequences in scFvs of anti-BCMA CAR have
immunogenicity, which can trigger the host versus graft (HvG)
response (76). A study reported in ASH2021 constructed a new
FIGURE 2 | The comparison of different anti-BCMA agents. These results come from phase II clinical trial KarMMa of Idecabtagene Vicleucel (n = 128, 13.3 months
median follow-up), phase I clinical trial CRB-402 of bb21217 (n = 72, 9 months median follow-up), phase Ib/II clinical trial CARTITUDE-1 of cilta-cel (n = 97, 18
months median follow-up), cohort A in phase II clinical trial CARTITUDE-2 of cilta-cel (n = 20, 9.7 months median follow-up), cohort B in phase II clinical trial
CARTITUDE-2 of cilta-cel (n = 18, 4.7 months median follow-up), phase I/II clinical trial LUMMICAR STUDY 1 of CT053 (n = 14, 13.6 months median follow-up),
phase I/II clinical trial of CT103A (n = 71, 147 days median follow-up), phase I clinical trial of C-CAR088 (n = 31, 8 months median follow-up), phase I clinical trial of
PHE885 (n = 6, 1 month follow-up), phase I clinical trial of CART-ddBCMA (n = 16, 155 days median follow-up), phase I clinical trial SGNBCMA-001 of SEA-BCMA
(n = 20, 12 weeks median follow-up), phase II clinical trial MajesTEC-1 of teclistamab (n = 40, 8.2 months median follow-up), phase I clinical trial of REGN5458
(n = 68, 2.4 months median follow-up), the dose-escalation cohorts in phase I clinical trial of TNB-383B (n = 24, 6.1 months median follow-up), and the patients
treated across the efficacious dose range (215–1,000 mg/kg) in part 1 of phase I clinical trial MagnetisMM-1 of elranatamab (n = 20, 22 days median follow-up).
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FIGURE 3 | Limitations of BCMA-targeted CAR-T-cell therapy. This image summarizes the deficiencies of BCMA-targeted CAR-T-cell therapy. Also, part of
improvements to address these limitations is presented. (a) Toxicities. Nonhuman single-chain variable fragments (scFv) in classical CAR construction increases the
heterogeneity of CAR-T cell, inducing attack by the immune system of patients. Using humanized materials to prepare CAR or simplifying the CAR construction can
reduce the heterogeneity. Finding new targets with higher specificity can reduce the “on-target off-tumor” effect. Fourth-generation and next-generation CAR-T
(TRUCK T) cells, fitted with transgenic “payloads” which can express specific secretory molecules or membrane receptors, create a more favorable
microenvironment for their function. BiTE-armored and chemokine receptor-armored CAR-T cells can target tumor cells more precisely. The adverse events (AEs)
after CAR-T-cell therapy include cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANs), hemophagocytic
lymphohistiocytosis (HLH), macrophage activation syndrome (MAS), or more. The most common of them is CRS. Clearance of excess cytokines (CKs) is the key to
addressing these toxicities. (b) Resistance. Resistance to CAR-T-cell therapy induces the disease recurrence, including BCMA+ and BCMA− relapse. Multiple factors,
both internal and external of the tumor, may cause malignant downregulation of BCMA, making it insufficient to be recognized by CAR-T cells. Bispecific CAR-T-cell
therapies, including “OR gate” tandem CAR-T cells, dual-targeted CAR-T cells, and sequential regimens, have been used to address BCMA− relapse and the off-
target effect. As for the BCMA+ relapse, it can be caused by multiple factors from CAR-T cells, myeloma cells, even TME. A severe problem of existing CAR-T cells is
their poor persistence. There are many reasons for this issue, such as the CAR-T-cells’ exhaustion or the clearance to these artificial immune cells, which are similar
to physiological activation-induced cell death (AICD). The hinge domain of CAR has a similar structure to the Fc domain in Ig. This characteristic induces the Fc-FcgR
interactions between CAR-T cells and other immune cells, killing CAR-T cells. Studies have done to improve CAR’s structure by modifying the spacer, such as
extending the hinge domain or finding a novel hinge with a lower affinity for FcgR so that to avoid immune system cleanup to activated CAR-T cells. In addition, some
inhibitors in TME, the expression of specific inhibitory genes, or the increase of terminal CD45RA+ cells all cause the AICD-like effects, thus reducing the persistence
of CAR-T cells. T cells stemness is closely associated with the efficacy and exhaustion of CAR-T cells. TRUCK T cells produce specific secretory molecules such as
some CKs, which could increase the stemness of cells (e.g., IL-15), TCR intrinsic agonists (e.g., 4-1BB), or checkpoint inhibitors (e.g., PD-1 inhibitors). As a result,
the persistence of these next-generation CAR-T cells has been dramatically improved. (c) Preparation process. The complicated preparation process of CAR-T cells is
time-consuming, and the quality of T cells as the materials sometimes is not up to par. Developing new nonlentivirus transposons such as PiggyBac transposons or culturing
platforms can improve manufacturing efficiency. Using allogeneic T cells as the materials can improve the quality of T cells but induce graft-versus-host disease (GvHD).
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anti-BCMA CAR (FHVH33-CD8BBZ) that replaced the normal
scFv with a smaller fully human BCMA-targeted heavy-chain
variable domain (FHVH33) (103). Because of the lack of light
chain, artificial linker, and two linker-associated junctions in
scFv, FHVH33 may have lower immunogenicity. After infusing
this novel CAR-T cell (FHVH33-T), the ORR was 92% (23/25)
and 68% of all patients (17/25) got better than VGPR. Up to the
date, the DOR was 50 weeks at the highest two-dose levels (4/6 ×
106 CAR+ T cells/kg), and the overall median PFS was 78 weeks.
Assessing the blood CAR+ cells confirmed that the median peak
blood CAR+ cell level was 126.5 cells/µl, and the median time
postinfusion of peak blood CAR+ cell levels was 10.5 days. These
results suggest that the immunogenicity of CAR-T cells can be
reduced to some extent by fully humanizing and reducing the
molecular size of CAR, thereby reducing the likelihood of HvG
effect and prolonging CAR-T-cell retention in vivo.

3.5.6.3 Availability of Autologous T Cells
Various anterior treatments to the patients with RRMM disable
T cells and develop adverse phenotypes, such as exhaustion
and senescence (104, 105). These, together with the
immunosuppressive characteristic of TME (98), reduce the
availability of the heavily pretreated patients’ T cells to be the
materials for CAR-T cells’ preparation. To solve this question, a
study explored whether T cell materials with better quality derived
from a similar preconditioning approach of autologous
hematopoietic stem cell transplantation (HSCT) could be used
to prepare CAR-T cells (106). The basic process is collecting
CD34+ progenitor cells from peripheral blood of patients and
mobilizing them by the granulocyte-colony stimulating factor (G-
CSF) in earlier stages of MM treatment, then reserving them for
the preparation of BCMA-targeted CAR-T cells. The results
showed that pretreatment by G-CSF did not have significant
negative effects on T cells. It is a pity that there is no mention in
this report of CAR-T cells being produced in this way.

3.5.7 Effects of Other Factors on BCMA-Targeted
CAR-T-Cell Therapy
3.5.7.1 Corticosteroids
The side-effects of CAR-T cell therapy, such as CRS, ICANS,
macrophage activation syndrome (MAS), and hemophagocytic
lymphohistiocytosis (HLH), need to be controlled by
tocilizumab, corticosteroids, and, or anakinra (107–109).
However, steroids not only suppress the excessive inflammatory
response but also inhibit T cells’ activity andmay reduce the efficacy
of CAR-T-cell therapy (110). Previous studies have analyzed the
effects of steroids on CAR-T-cell therapy in some other hematologic
malignancies with impure results (80). A study (111) in ASH2021
compared the therapeutic effects of BCMA-targeted CAR-T cells
combined with or without steroids in patients with RRMM. After
using steroids 4 days medially, the results showed that there were no
significant differences in ORR (95.8% vs. 84.2%), PFS (13.1 vs. 13.2
months), OS (not reached vs. 26.4 months), and time-to-next
treatment (TTNT) (10.5 vs. 7.0) between the “experimental
group” that received steroids and the “control group.” Moreover,
these indicators were not affected by steroids obviously at different
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doses (0, ≤60, and >60 mg). It is worth mentioning that more than 5
days use of steroids may affect PFS and TTNT to some extent
(TTNT/PFS after 0, 1–5, and ≥5 days steroids: 22.8, 24.6, and 12.5
months/13.2, 21.4, and 10.6 months). Although this study seems to
prove that cortisol use does not affect CAR-T- cell therapy in
general, it did not follow the principles of controlled trials strictly, so
the conclusions are open for debate.

3.5.7.2 NKTR-255
In addition to radically improving the structure of CAR-T cells,
many other attempts have been made to address their poor
persistence (112). NKTR-255, a recombinant human IL-15
(rhIL-15) receptor agonist, can activate the IL-15 pathway and
promote the proliferation of memory CD8+ T cells and Tscm
subsets in tumor-specific T-cell colonies (101, 102). Recently, a
phase I study about the influence of NKTR-255 is ongoing, and
ASH2021 provided us with the preliminary results (113). The T/
CAR-T cell counts and Ki67 expression of six enrolled patients
treated with CAR-T/CAR-NK before were evaluated to assess T
cells’ viability before and after the NKTR-255 administration.
After treating by NKTR-255, the peak number of CD3+ CAR-T
cells in peripheral blood of three patients increased by 70%
compared with the baseline, and the ratio of CD4+:CD8+ CAR-T
cells had changed in one patient with a ~2-fold increase in CD8+

compared with CD4+ CAR-T cells. Following one dose of
NKTR-255, all patients had an average of ~1.6-fold increase in
total CD8+ T cells and an average 9-fold increase in the
percentage of Ki67+CD8+ T cells, standing up for the role of
NKTR-255 in saving the prostrated CAR-T cells. This study
demonstrated the feasibility of combining drugs to prolong
CAR-T-cell persistence.

3.5.7.3 Gamma Secretase Inhibitor
As mentioned above, the formation of sBCMA through gamma
secretase reduces the expression of BCMA on MM cells, making
them escape from BCMA-targeted CAR-T cells’ lethal effect
(114, 115). Those sBCMA in circulation may also interfere the
therapeutic process of CAR-T cells for patients with RRMM
(116). Gamma secretase inhibitors (GSI) can increase BCMA
density on the surface of tumor cells and decrease the level of
sBCMA, reinforcing the efficacy of the therapies targeting BCMA
in murine models with MM (117). Based on these findings, a
phase I human trial of GSI (JSMD194) in combination with
BCMA-targeted CAR-T-cell therapy has done and was reported in
ASH2021 (118). This trial enrolled 18 patients who had received a
median of 10 prior LOTs. After three oral doses (25 mg)
administered 48 h apart over 5 days of JSMD194 monotherapy,
the median number of the receptors on each tumor cell increased
from 610 to 9,563, which was 12 times as large as before. These
patients were treated with different-dose BCMA-targeted CAR-T
cells subsequently. The resulting ORR was 89%, with 44% of all
patients achieving CR (including 27% with sCR) and 77% getting
better than VGPR. The median PFS reached 11 months with a
median of 20 months follow-up. These data illustrated that the
combination of GSI and BCMA-targeted CAR-T-cell therapy were
safe and tolerable with an improved antitumor effect, even at very
low doses of CAR-T cells.
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3.5.7.4 Extrinsic and Intrinsic Factors of Tumor
Using BCMA-targeted CAR-T cells to treat RRMM patients with
huge differences between individuals can lead the divergent
outcomes. Both intrinsic and extrinsic factors of the tumor, such
as the expression of tumor genomics or the immunosuppressive
elements presented in TME (119, 120), may contribute to the vast
gap between these therapeutic results (88). There were two studies
in ASH2021 exploring the relationship between these factors and
the therapeutic effects of BCMA-targeted CAR-T cell therapy. The
first study (121) used mass cytometry (CyTOF) to longitudinally
analyze the immunophenotype of peripheral blood mononuclear
cells (PBMC, CD45+CD66b−) from the patients treated with ide-cel
and found that the phenotypic changes of PBMCs along with the
CAR-T cells’ expansion: CD14+ monocytes declined (40% to 13%)
while CAR−CD8+ T cells, which differentiated towards a CD8+

effector-memory phenotype (EM, CCR7−CD45RA−), expanded
(32% to 43%) from weeks 0 to 4 after the infusion of CAR-T
cells. However, the BM samples from the patients who relapsed after
CAR-T-cell therapy showed a reversal trend: CD14+ monocytes
remained invariable or slightly elevated, but CAR-CD8+ T cells
decreased instead. This study also analyzed the BM mononuclear
cells (BMMC) from patients with ide-cel therapy by unbiased
mRNA profiling using single-cell RNA-seq (scRNA-seq). The
outcome revealed that patients who relapsed had an altered gene
expression, suggesting that the intrinsic tumor factors had an
impact on CAR-T-cell therapy. For example, upregulation of gene
expression like proinflammatory chemokines (CCL3, CCL4),
antiapoptotic genes (MCL-1, FOSB, JUND), and NF-kB signaling
genes (NFKBIA) could promote relapse, which may be one of the
mechanisms for the resistance to CAR-T therapy. Interestingly,
another study (122), which also used scRNA-seq to compare the
BM and PBMC samples from the patients who relapsed within 1
year [early relapse (PD)] or more than 1 year [durable response
(DR)] after BCMA-targeted CAR-T cells’ infusion, showed that the
DR patients had more BCMA-high CD138+ cells compared with
the PD patients. Moreover, there were two unique clusters in DR
patients’ CD138+ cells while only one in PD patients. The top
marker genes in these three clusters were associated with the
pathway of IL-15 signal, BCR signal, and the primary
immunodeficiency signal. It should be added that the patients
achieving more than VGPR after CAR-T-cell therapy had a
higher proportion of CD8+ T cells compared with poor
responders (<VGPR) (37% vs. 11%), a lower proportion of
CD14+ monocytes (30% vs. 61%) and NK cells (2% vs. 6%) in
PB (121).

3.5.7.5 CAR Density
Up to now, the underlying mechanisms of CAR-T cells’
dysfunction are not well understood. A part of the studies has
proved that the density of CAR can affect the availability and
antitumor effectiveness of CAR-T cells. A recent study (123) in
ASH2021 performed genomic and functional analyses on the
BCMA-targeted second-generation CAR-T cells which have 4-
1BB costimulatory domains with different CAR densities
(CARHigh and CARLow). The genomic analysis showed entirely
different profiles between CARHigh-T cells and CARLow-T cells in
both CD4+ and CD8+T-cell subsets, with 3,500-fold difference in
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gene expression. These genes were related to T-cell activation,
and the tonic signaling in CARHigh-T cells associated with T-cell
proliferation or exhaustion. The functional analysis showed that
before encountering the antigens, CARHigh-T cells presented
intensive tonic signaling, which led to higher activation and
more differentiation. After identifying their targets, CARHigh-T
cells released an increased number of cytokines, indicating that
they would exert more potent cytotoxic effects. Moreover, in
these CARHigh-T cells, the factors about cell proliferation and
exhaustion (PD1+/LAG3+/TIGIT+) were increased as well, and
these cells presented a higher percentage of terminally
differentiated T cells (CCR7-/CD45RA+). The regulons
associated with NR4A1 transcription factor that promotes T-
cell exhaustion (124) also have been activated in CARHigh-T cells.
By contrast, the analysis of CARLow-T cells demonstrated that
they had better persistence, in which more CCR7+/CD45RA+/
CXCR3+ Tscm were retained. That is to say, increasing CAR
density could enhance CAR-T cells’ activation, differentiation,
and cytotoxicity but reduce their long-term efficacy. Therefore,
the CAR density may play a crucial role in CAR-T cells’
persistence. It is expected to promote the effectiveness of CAR-
T-cell therapy by rationally using the engineered T cells with
different CAR densities.

3.6 Prospects for CAR-NK Cell
Therapy in MM
Since NK cell activation does not need the prior antigen
stimulation and strict HLA matching, CAR-NK cell therapy
has shown its unique competitiveness under this era of rapid
development of cellular immunotherapy (125). Compared with
CAR-T-cell therapy, it seems to have better safety. Because NK
cell cytotoxicity is mediated by releasing perforin and
granulocytase rather than cytokines such as IL-1, IL-2, IL-6,
TNF-a, IL-8, IL-10, and IL-15 released by CAR-T cells, or
expressing the apoptosis-inducing ligands including Fas Ligand
(FasL) and (TNF)-related apoptosis-inducing ligand (TRAIL),
they rarely cause CRS and neurotoxicity (125). In addition, CAR-
NK cells are more suitable to be the “off-the-shelf” therapy than
CAR-T cells. According to the available studies, allogeneic CAR-
NK cells almost never induce GvHD, and the source of NK cells
is more extensive, they can be differentiated from peripheral
blood (PB) cells, umbilical cord blood (UCB) cells, embryonic
stem cells (ESCs), induced pluripotent stem cells (iPSCs), and
specific NK cell lines such as NK92 cells (126). For MM, a variety
of CAR-NK cells have been studied in preclinical or clinical
trials. They target different targets, including BCMA, CD138, and
CS1 (CD319/SLAMF7) (125). Up to now, clinical trials have
been conducted on two anti-BCMA CAR-NK cells derived from
umbilical/cord blood (CB) (NCT05008536) and NK92 cell line
(NCT03940833), but they have not published the relevant data
yet. Current studies are focused on optimizing existing BCMA-
targeted CAR-NK cells and developing universal CAR-NK cell
therapy derived from iPSCs. Existing CAR-NK cell products
have been genetically modified by gene editing (127), mRNA
electroporation (128) and other techniques, which significantly
increased their targeting specificity and tumor killing
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effectiveness. A study in ASH2021 (129) creatively combined
three antitumor modalities, including CAR, TCR, and CD16 Fc
receptor, which is naturally expressed on NK cells. By
engineering them into iPSC-derived T cells, they demonstrated
the synergistic effect of this tri-modal CAR-iT cell in overcoming
tumor cell escape and their heterogeneity. In the future, if we
want to promote the clinical application of CAR-NK cells, it is
necessary to properly solve or evade their existing limitations
such as short life, low toxicity, and the off-target effect.
4 DISCUSSION

Although multiple kinds of BCMA-targeted immunotherapies,
including ADCs, BsAbs, and adoptive cell therapies have
presented gratifying results of their primeval clinical trials,
there are still many hurdles that need to be overcome before
they go into real-world service to benefit more suffering patients
with RRMM. According to the reports in ASH2021, BCMA-
targeted CAR-T-cell therapy seems to show better efficacy than
other agents. However, we cannot simply judge the merits of
these products. The unique characteristics of these agents not
only grant them irreplaceable advantages but also give them
inevitable limitations. For instance, anti-BCMA CAR-T-cell
therapy with better performance requires more complex
preparation conditions and more expensive treatment costs,
which are difficult for ordinary families to afford (130). For
BsAbs, because of the relatively short half-life period (131), they
need to extend the infusion time or improve the medication
frequency to maintain its efficacy (132), which also increases the
costs of treatment. BiTE depends on the quality of T cells, thus it
is mainly used for front-line treatment (133, 134). As for those
off-the-shelf ADCs which are cheaper and more convenient, they
also have to be administered more frequently because they take
effect by internalizing them into the tumor cells and releasing
payloads, which are easy to be cleared by the intracellular active
substances (135). Luckily, for these agents, the ameliorations for
deficiencies are thought in more detail as well. Take the CAR-T
products for example, concerning the long-term consumption in
preparation of the costly CAR-T cells, multiple new techniques
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such as Piggy Bac and Sleeping Beauty transposition system have
been put into study. Of course, these deficiencies are just a drop
in the bucket. Therefore, with continuing the existing studies, we
also need to study the underlying mechanisms that influence the
curative effect to optimize BCMA-targeted immunotherapies.
We have to say that the development of various immunotherapy
methods in recent years has changed the treatment landscape of
MM to some extent. In the face of so many biological drugs,
formulating appropriate medication regimens will be a challenge
for clinicians (136). Existing anti-BCMA agents are primarily
used to treat those adults with RRMM who have received more
than 4 LOTs, but the studies about their front-line application
are limited. In fact, the patients who have received three or more
LOTs have worse physical conditions, therefore, moving the
treatment window forward moderately may be the direction of
future clinical studies. Although the prognosis of MM patients
has improved greatly, the refractory phenotypes such as EMD
are still difficult to overcome. To solve these problems, laboratory
research and enriching our clinical experience should continue
simultaneously. We believe that with the further research,
RRMM patients will eventually go through their winter.
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GLOSSARY
MM multiple myeloma
PI proteasome inhibitor
IMiD immunomodulatory drug
mAbs monoclonal antibodies
BCMA B-cell maturation antigen
ADCs antibody-drug conjugates
BITEs bispecific T-cell engagers
CAR-T cell chimeric antigen receptor-T cell
ASH American Society of Hematology
PCs plasma cells
APRIL a proliferation-inducing ligand
NF-kB nuclear factor kappa-B
RAS/MAPK rat sarcoma/mitogen-activated protein

kinase
PI3K-PKB phosphoinositide-3-kinase–protein

kinase B
JNK c-Jun N-terminal kinase
TEM: tumor microenvironment H3K36me3
H3K36 trimethylation sBCMA
soluble BCMA SLAMF7
signaling lymphocytic activation
molecule family member 7

LOT

prior lines of therapy RRMM: relapsed or refractory multiple
myeloma

PD pharmacodynamics
IRR infusion-related reaction
DLT dose-limiting toxicity
VGPR very good partial responses
ORR objective response rate
AEs adverse events
DEX dexamethasone
PK pharmacokinetics
BM bone marrow
BsAbs bispecific antibodies
BiTEs bispecific T-cell engagers
TCR T-cell receptors
GPRC5D G-protein coupled receptor C family

5D
pts patients
LEN lenalidomide
POM pomalidomide
NA not applicable
DOR duration of response
TRAEs treatment-related AEs
CRS cytokine release syndrome
Gr grade
ICANS immune effector cell-associated

neurotoxicity syndrome
TEAEs treatment-emergent AEs
NK natural killer
TriTAC tri-specific T-cell activation constructs

(Continued)
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Continued

MTD maximum tolerated dose
RP2D recommended phase two dose
MMAF monomethyl auristatin-F
FDA Food and Drug Administration
MoABs anti-CD38 antibody
BCVA best-corrected visual acuity
OS overall survival
sCR stringent complete response
cilta-cel ciltacabtagene autoleucel
MRD minimal residual disease
RWCP real-world clinical practice
CR complete response
ide-cel idecabtagene vicleucel
HRQoL health-related quality of life
sAMT subsequent antimyeloma therapy
scFvs single-chain variable fragments
GvHD graft-versus-host disease
TRAC TCR alpha constant
shRNA short hairpin RNA
Allo-HSCT allogeneic hematopoietic stem cell

transplantation
TAA tumor-associated antigens
MGUS monoclonal gammopathy of

undetermined significance
TICs tumor-initiating cells
AICD activation-induced cells death
FASLG FAS death receptor ligand
G-CSF granulocyte-colony-stimulating factor
PB PiggyBac
MAS macrophage activation syndrome
HLH hemophagocytic lymphohistiocytosis
rhIL-15 recombinant human IL-15
GSI gamma secretase inhibitors
PBMA peripheral blood mononuclear cells
BMMC BM mononuclear cells
scRNA-seq single-cell RNA-seq
CKs cytokines
AICD activation-induced cell death
PFS progression-free survival
HvG host versus graft
TALEN transcription activator-like effector

nuclease
MICA/MICB MHC class I polypeptide‐related

sequence A/B
FasL Fas ligand
TRAIL (TNF)-related apoptosis-inducing

ligand
PB peripheral blood
UCB umbilical cord blood
ESCs embryonic stem cells
iPSCs induced pluripotent stem cells
CB cord blood
EMD extramedullary disease
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Generation of Tumor-Specific
Cytotoxic T Cells From Blood via
In Vitro Expansion Using Autologous
Dendritic Cells Pulsed With
Neoantigen-Coupled Microbeads
Adela Kiessling1, Keerthana Ramanathan1, Ola B. Nilsson2,3, Luigi Notari 2,3,
Stefanie Renken1, Rolf Kiessling1,4†, Hans Grönlund2,3† and Stina L. Wickström1,2,3,4*

1 Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, 2 Department of Clinical Neuroscience,
Karolinska Institutet, Stockholm, Sweden, 3 NEOGAP Therapeutics AB, Stockholm, Sweden, 4 Theme Cancer, Patient Area
Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden

For the past decade, adoptive cell therapy including tumor-infiltrating lymphocytes,
genetically modified cytotoxic lymphocytes expressing a chimeric antigen receptor, or a
novel T-cell receptor has revolutionized the treatment of many cancers. Progress within
exome sequencing and neoantigen prediction technologies provides opportunities for
further development of personalized immunotherapies. In this study, we present a novel
strategy to deliver in silico predicted neoantigens to autologous dendritic cells (DCs) using
paramagnetic beads (EpiTCer beads). DCs pulsed with EpiTCer beads are superior in
enriching for healthy donor and patient blood-derived tumor-specific CD8+ T cells
compared to DC loaded with whole-tumor lysate or 9mer neoantigen peptides. A
dose-dependent effect was observed, with higher EpiTCer bead per DC being
favorable. We concluded that CD8+ T cells enriched by DC loaded with EpiTCer beads
are tumor specific with limited tumor cross-reactivity and low recognition of autologous
non-activated monocytes or CD8+ T cells. Furthermore, tumor specificity and recognition
were improved and preserved after additional expansion using our Good Manufacturing
Process (GMP)-compatible rapid expansion protocol. Phenotypic analysis of patient-
derived EpiTCer DC expanded CD8+ T cells revealed efficient maturation, with high
frequencies of central memory and effector memory T cells, similar to those observed in
autologous expanded tumor-infiltrating lymphocytes. These results indicate that DC
pulsed with EpiTCer beads enrich for a T-cell population with high capacity of tumor
recognition and elimination, which are features needed for a T-cell product to be used for
personalized adoptive cell therapy.

Keywords: neoantigen, tumor-specific antigens, autologous tumor recognition, dendritic cell-mediated activation,
personalized cancer immunotherapy
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INTRODUCTION

Immunotherapy, including immune-checkpoint inhibitors (ICI)
and adoptive cell therapy (ACT), is one of the most prominent
and fastest developing fields within cancer treatment. ACT
encompasses transfer of tumor-infiltrating lymphocytes (TILs),
T cells genetically altered with a TCR or a chimeric antigen
receptor (CAR), and NK cells or dendritic cell (DC) vaccines.
The usage of genetically modified CAR T cells has been proven
very effective against CD19+ hematological cancers while TIL
therapies have been proven beneficial in the treatment of several
solid tumors (1–4). Unfortunately, the population that benefits
from these specific therapies is relatively limited; thus, novel
alternative approaches to cancer immunotherapy are needed.
One option is to target tumor antigens specifically. However,
early studies targeting tumor-associated antigens (TAAs), self-
antigens that are overexpressed or have an altered expression
pattern, using TAA-directed TCR-transduced T cells or TAA-
loaded DC vaccine, reported limited clinical responses or
induction of autoimmune toxicity, including cross-reactivity-
induced death (5–7). Central and peripheral tolerance against
the chosen TAA or loss of antigen presentation on the tumor cell
surface likely account for the low clinical efficacy (6).

Personalized immunotherapy using tumor-specific antigens
(TSA) has the potential to be an ideal therapy, which maximizes
efficacy while minimizing toxicity. Somatic mutations occurring in
tumor cells can lead to the generation of novel TSA, which
potentially can be recognized as non-self, referred to as
neoantigens, which may be presented as tumor-specific peptides
by major histocompatibility complex (MHC) molecules on the
tumor cell surface. These peptides can be recognized by the
immune system without induction of tolerance or risk of “off-
target” effects on healthy tissues. Neoantigens are therefore
promising targets for ACT and/or DC vaccine-based therapies
(8). Numerous clinical trials based on neoantigens have been
conducted or are ongoing, including DC loaded with neoantigens
or delivered as peptides or mRNA (9).

Neoantigens are identified using next-generation sequencing
(NGS), e.g., whole-exome sequencing (WES). Tumor-specific
mutations are identified by comparing tumor biopsies to healthy
tissues (in general, peripheral blood mononuclear cells) followed
by different predictions tools to select for expressed mutations
generating a neoantigen, which can efficiently be presented on
MHC class I. To date, neoantigen predictions have mainly been
focusing on antigens binding to frequent/common MHC class
I/HLA class I alleles (10, 11). Computerized MHC-binding
neoantigen predictions are in general focusing on MHC-binding
affinity, endogenous expression (RNA) and processing, and/or in
combination with mass spectrometry (MS). Combining several
parameters increases the likelihood to predict neoantigens that are
presented on MHC class I on the tumor cell surface. However, to
verify if the predicted mutant peptides are true neoantigens,
functional T-cell screens are needed.

We have previously shown that it is possible to predict
clinically relevant neoantigens from two melanoma patients
using free online tools for in silico neoantigen prediction (12).
Frontiers in Oncology | www.frontiersin.org 2247
Neoantigens were identified by screening for TIL reactivity
against custom made 9–10mer peptides. In addition, a DC
vaccine-based stimulation method, loading the autologous DC
vaccine with mutant 9mer peptides, was established to stimulate
tumor-specific CD8+ T cells from the patient’s blood. Custom-
ordered dextramers, specific for each neoantigen, in combination
with CD107a expression (a marker for degranulation), were used
to detect neoantigen-specific T cells recognizing the autologous
tumor cells. In addition, mass spectrometry was used to verify
neoantigen expression on the autologous tumor cell surface.

Others have shown that the usage of longer peptide
sequences, ~25mers, to capture all possible “processing
variants” of the neoantigen, can be favorable (13–15). Loading
these longer peptides or combining several 25mers into (tandem)
minigenes onto autologous antigen-presenting cells (APCs) has
been shown to trigger efficient autologous T-cell responses
measured by cytokine production or activation markers such
as 4-1BB or PD1 (13, 16, 17).

Furthermore, longer peptide sequences have also been shown
to be favorable when designing therapeutic neoantigen-based
vaccines. The longer sequences promote antigen uptake and
processing by APC and thereby help to facilitate a stronger T-
cell response (18, 19). Due to tumor heterogeneity, targeting one
neoantigen can result in outgrowth of tumor cells expressing
other neoantigen(s), indicating the importance of targeting
multiple neoantigens to lower the risk of immune escape and
ensure elimination of all tumor cells (20, 21). In addition,
Aurisicchio et al. have shown the importance of targeting
multiple neoantigens with a predicted high binding affinity,
<50 nM, to induce a poly-specific and poly-functional T-cell
response in mice after minigene vaccinations (22). One
alternative to neoantigen-based vaccines are DC vaccines
loaded with whole tumor lysate (TL), which has been proven
effective for certain cancer types (23). Although tumor lysate
will contain peptides from all proteins in the cells and
therefore “dilute” the neoantigen peptides and their ability to
induce an immune response, the usage of tumor lysate
circumvents the work with neoantigen prediction and peptide/
minigene production.

In the present study, we have investigated several ways to load
DC with tumor antigens to enrich for blood-derived tumor-
specific CD8+ T cells. To this end, different approaches of tumor
antigen administration were compared including whole tumor
lysate, neoantigen 9mer peptides, or via longer neoantigen
peptide sequences coupled to paramagnetic beads (EpiTCer)
(24). EpiTCer beads are a novel way of delivering in silico
predicted and recombinantly expressed neoantigen peptides.
EpiTCer beads are paramagnetic beads covalently coupled to a
neoantigen protein (NAG), consisting of six 21mer neoantigen
peptides linked sequentially to each other. DC were generated
according to our established Good Manufacturing Process
(GMP) protocol. We have previously used DC generated from
this protocol, in the form of DC vaccinations, in combination
with TIL in patients with metastatic melanoma (NCT01946373).

We observed that DCs loaded with EpiTCer beads were
superior in activating blood-derived autologous CD8+ tumor-
March 2022 | Volume 12 | Article 866763
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specific T cells compared to DC pulsed with other sources of
tumor antigen. Tumor recognition was MHC class I antigen
dependent. In addition, patient-derived CD8+ T cells enriched
using DC pulsed with EpiTCer beads were tumor specific with
limited recognition of healthy cells. Phenotypic analysis of DC-
expanded CD8+ T cells revealed efficient maturation of the CD8
+ T cells with high frequencies of central memory and effector
memory T cells, similar to those observed in TIL. We believe that
EpiTCer beads represent an efficient method to pulse
neoantigens onto DC, which can either be used to enrich for
tumor-specific CD8+ T cells from peripheral lymphocytes in
ACT or as a DC vaccine.
MATERIALS AND METHODS

Cells
Patient-derived melanoma cell line, ANRU tumor cells, were
generated as previously published (12) and cultured in Roswell
Park Memorial Institute (RPMI) with 10%–20% fetal bovine
serum (FBS) (Life Technologies, Waltham, USA) supplemented
with penicillin (100 U/ml) and streptomycin (100 µg/ml) (Life
Technologies). ANRU CD8+ T cells and monocytes were
acquired through leukapheresis fractions 2 and 5, respectively
(2018/2254-32). Peripheral blood samples (anonymized blood
donations from healthy adult donors) were purchased from
Karolinska University Hospital Blood Bank. Peripheral blood
mononuclear cells (PBMCs) were isolated from healthy donor
buffy coats using density centrifugation with Ficoll® Paque Plus
(GE Healthcare). The healthy donor PBMCs were screened and
selected on HLA-A2+ donors. Healthy-donor-derived CD8+ T
cells and CD14+ monocytes were isolated from PBMCs
using positive CD8+ T cells isolation kit or CD14+

microbeads, respectively (Miltenyi Biotec, Bergisch Gladbach,
Germany), following the manufacturer’s instructions.

Neoantigen Predictions
For the identification of tumor-specific variants used to design
neoantigen proteins, one melanoma patient, acronym ANRU,
tumor tissue, and healthy control cells were used. Exome
sequencing and prediction and identification and verification
of the neoantigens ETV6 and NUP210 were performed as
previously described (12). For the newly predicted neoantigens,
Frontiers in Oncology | www.frontiersin.org 3248
the bioinformatics system PIOR (Personalised Immuno-
Oncology Ranking, Stockholm, Sweden), developed by
NEOGAP Therapeutics AB, was used. PIOR identifies and
ranks tumor-specific variants; exome fastq files were processed
with fastqc (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) to generate quality control parameters. The
files were then mapped using bwa (http://bio-bwa.sourceforge.
net/). Resulting mapped reads were sorted and deduplicated
using samtools (http://www.htslib.org/). Resulting alignments
were processed by an ensemble of multiple aligners (Vardict-
Java, VarScan, FreeBayes, and Samtools mpileup). The resulting
variant calls were combined, and high confidence somatic
variant candidates were extracted from the list and then
annotated using VEP (https://www.ensembl.org/info/docs/
tools/vep/index.html) to establish possible variant effects.
Finally, the resulting variants were ranked and presented to the
user for visual inspection and selection. Tools used for the
bioinformatics analysis are summarized in Supplementary
Table S2. The mutations found and used as neoantigen
sequences loaded on the beads were all single-nucleotide
variants (SNVs).

Neoantigen Design
Novel neoantigen proteins (NAGs) were designed as
recombinant construct genes. Top-ranked tumor-specific
variants identified by PIOR were assembled with the previously
validated neoantigens from ETV6 and NUP210, forming ANRU
NAG #1 and #2, respectively (see Figure 1). Corresponding wild-
type (WT) constructs were also generated, replacing the mutated
codons with the corresponding WT ones (see Supplementary
Figure S1). The nucleotide sequences were optimized for
expression in E. coli; flanking BsaI sites were added to the
optimized DNA sequences and directionally cloned into a
modified pET28 vector (Merck-Millipore) as previously
described (25). When expressed in the modified pET28 vector,
the NAG is flanked by a polylysine coupling tail containing K
residues flanked by GGS linkers and a W residue at the N-
terminus and an eight-histidine purification tag at the
C-terminus.

Neoantigen Production
The cloned constructs were transformed into BL21-AI
Escherichia coli (Thermo Fisher Scientific, Waltham, USA),
A

B

FIGURE 1 | EpiTCer bead constructs. Neoantigen proteins containing six 21mer polypeptides interconnected via GGS linkers and covalently coupled to a
paramagnetic bead, EpiTCer beads®. (A) Displays construct 1 (#1) containing indicated neoepitopes. (B) Displays construct 2 (#2) containing indicated neoepitopes.
For additional gene, mutation, and sequence information, see Materials and Methods and Supplementary Figure S1 and Supplementary Tables S1, S2.
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and the NAGs were expressed and purified as described (26),
using a modified elution buffer with a pH of 2.0. The eluted and
equilibrated NAGs were analyzed for purity by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) as
described, and their concentration was measured using a
nanophotometer (Implen, Munich, Germany).

EpiTCer Beads
The NAGs were covalently coupled to 1 µm paramagnetic
polystyrene beads [Sera-Mag™ Carboxylate-Modified Magnetic
Beads (SpeedBeads, Marlborough, MA, USA), Cytiva], utilizing
covalent coupling of primary amines in the neoantigens to the
carboxylic groups present on the beads, after EDC/NHS
activation, as described (26). Still reactive, non-coupled
carboxylic groups were deactivated using a 50-mM Bicine
buffer. For endotoxin removal and normalization purposes, the
coupled beads were conditioned by four washes with sterile
filtered 2M NaOH, followed by four washes with endotoxin-
free sterile Dulbecco’s phosphate-buffered saline (DPBS) pH 7.4
containing 0.1% Poloxamer 188 (a surfactant that decreases
potential beads aggregation). For quality control, NAG load
was evaluated by staining coupled beads with Ni-NTA Atto
488 compound, which targets the C-terminal 8His tag on the
neoantigens (Sigma-Aldrich). NAG load in the beads was
evaluated using flow cytometry (Guava EasyCyte-Luminex
Corporation, Saint Louis, USA) and the InCyte analysis
software. The number of molecules per bead was calculated to
range between 2 and 6 million, based on protein quantification
by means of bicinchoninic acid (BCA) assay, flow cytometric
determination of bead concentrations, and predicted molecular
weight of the purified NAG.

Generation of Neoantigen-Specific CD8+ T
Cell From the Blood
Patient- or healthy donor-derived CD14+ monocytes were
matured into DC vaccines as previously described (2, 27).
Shortly, CD14+ monocytes were cultured in Cellgro®

(Cellgenix, Freiburg, Germany) supplemented with IL-4 (20
ng/ml) and granulocyte-macrophage colony-stimulating factor
(GM-CSF) (100 ng/ml) (Cellgenix or Peprotech) for 48 h into
immature DC (imDC). imDC were harvested and loaded with
indicated antigen/neoantigen source (tumor lysates healthy
donor, 30 ng/ml; ANRU, 30 mg/ml and beads at indicated
bead/DC ratio) and further matured into mature DC by 18 h
culture in Cellgro supplemented with IL-4 (20 ng/ml), GM-SCF
(100 ng/ml), interferon-gamma (IFNg) (1,000 IU/ml, Imukin®,
Boehringer Ingelheim, Ingelheim, Germany), R848 (2.5 mg/ml,
InVivogen, San Diego, US), Poly I:C (20 mg/ml, InVivogen, San
Diego, US), and lipopolysaccharide (LPS) (10 ng/ml, InVivogen,
San Diego, US). DCs loaded with neoantigen 9mer ETV6, and
NUP210, and mature DCs were pulsed with 10 mg/ml (JPT
peptides) for 30 min at 37°C and washed before use in co-culture
with CD8+ T cells. The DCs were co-cultured with autologous
CD8+ T cells in a 1:5 ratio for 10–14 days in CellGro®

supplemented with 2% human AB serum (Karolinska
University Hospital Blood Bank) and 20 IU/ml IL-2
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(Proleukine, Novartis, Basil, Switzerland). All expansions were
performed in 96-well U-bottom plates (Cornigen, Corning, New
York, USA) if nothing else is stated.

Tumor Lysates
Tumor lysates were generated using our GMP protocol (2, 27).

Flow Cytometry and Functional Assays
All antibodies and FACS reagents were used according to the
manufacture’s recommendation, if not otherwise stated. All
antibodies were titrated for optimal signal-to-noise ratio.
Samples were fixed with 2% paraformaldehyde (PFA) (Thermo
Scientific) for 15 min before acquisition on a NovoCyte (ACEA
Biosciences, San Diego, USA). Compensation was performed
using AbC™ Total Antibody Compensation Bead Kit and ArC™

Amine Reactive Compensation Bead Kit (both Invitrogen).
FlowJo Software (TreeStar) was used for analysis. All staining
protocols included a dead cell marker (LIVE/DEAD®

fixable
Aqua Dead cell stain (Invitrogen).

T cells were analyzed for anti-CD8 (clone SK1, APC-Cy7),
anti-CD3 (clone UCHT1, PE-Cy7), anti-CD45RA-AF488 (clone
CI100) (all from BioLegend, San Diego, USA), anti-CCR7-AF647
(clone 3D12, BD), and HLA-A2 (clone BB7.2, PE, BioLegend).

Degranulation/CD107a. Shortly, all long-term co-cultures
were harvested and counted, and CD8+ T cells were re-
stimulated using ANRU tumor cells, ratio of 1:5, or indicated
9mer peptide (ETV6 or NUP210) 10 mg/ml (JTP peptides).
Detection of activated tumor-specific T cells was performed by
staining with CD107a (clone H4A3, FITC, BioLegend) antibody,
which was added to stimulated T-cell cultures at experiment
setup (12, 28). GolgiPlugTM and GolgiStopTM (BD Bioscience)
were added after 2 h co-culture, and cells were harvested after an
additional 4 h co-culture, harvested and stained for neoantigen
specificity (neoantigen specific dextramers, see above) and/or cell
surface markers (see above). In experiments where intracellular
staining was performed, cells were stained for dead cells, then
CD3 and CD8, before fixation and permeabilization using
CytoPerm/CytoFixTM (BD Biosciences) and intracellular
staining for IFN-g (clone 4S.B3, PE, BioLegend). When
indicated, MHC class I interactions were blocked on ANRU
tumor cells for 30 min at 37°C with 20 µg/ml anti-HLA-ABC
antibody (clone W6/32, BioLegend) before addition of CD8+
T cells.
RESULTS

Neoantigen Delivery Using
EpiTCer® Beads
EpiTCer beads consist of paramagnetic beads in 1 mm size range,
onto which neoantigen proteins are covalently coupled. Each
construct, comprising six neoantigen polypeptides (21mer),
spaced with a three amino acid flexible GGS linker, were
coupled to the paramagnetic beads. Previous studies have
shown that particles of this size facilitate phagocytosis and
efficient antigen processing and presentation by the engulfing
March 2022 | Volume 12 | Article 86676
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antigen-presenting cell (24, 29–31). In the present study, two
different versions of EpiTCer beads have been used, harboring on
their surface two different constructs (construct 1 and construct
2), containing in silico-predicted T-cell neoantigens derived from
whole exome sequencing from one HLA-A0201 melanoma
patient, acronym ANRU (Figures 1A, B; Supplementary
Table S1). The ETV6 and NUP210 neoantigens were
previously discovered and validated as 9mers (Figure 1) (12).

Efficient Stimulation of Blood-Derived CD8+
T Cells Using EpiTCer Beads® Pulsed DC
To validate the concept of administrating neoantigens to DC
through EpiTCer beads, the capability of EpiTCer-loaded DC
to stimulate autologous tumor-specific CD8+ T cells from
blood was investigated. To this end, HLA-A2+ healthy
donor-derived CD14+ monocytes and CD8+ T cells were
isolated, and monocytic DC were generated according to our
GMP protocol (27). ANRU-derived EpiTCer beads were pulsed
onto the immature DC during the second maturation step.
ANRU-derived tumor lysate (TL) loaded DC were used as
control. For EpiTCer beads, several bead/DC ratios were
used. To analyze the efficacy of the tumor antigen-loaded DC
to stimulate T cells, long-term co-cultures using autologous DC
and blood derived CD8+ T cells was performed. Enriched
Frontiers in Oncology | www.frontiersin.org 5250
tumor-specific CD8+ T cells were harvested and re-
stimulated with the same melanoma tumor cell line (ANRU)
from which the neoantigens and the tumor lysate were derived.
Tumor recognition was measured by degranulation (CD107a
expression) and cytokine product ion (IFNg) using
flow cytometry.

We observed that the DC loaded with EpiTCer beads were
more potent in enriching and stimulating tumor-specific CD8+
T cells compared to tumor lysate loaded DC, for each of the 1:1–
10:1 bead/DC ratios used (Figure 2A). A higher EpiTCer bead:
DC ratio of 40:1 could further increase tumor recognition and
induce an efficient CD8+-mediated antitumoral response for
three additional healthy donors (Figures 2B–D).

Furthermore, 24-h re-stimulation of the EpiTCer activated
CD8+ T cells with ANRU tumor cells resulting in a more efficient
tumor recognition than the 6-h re-stimulation, at all tested bead/
DC ratios, as measured by degranulation (CD107a) and IFNg
production. In contrast, CD8+ T cells stimulated with DC loaded
with tumor lysate, only a marginal difference between 24 vs. 6 h
ANRU tumor re-stimulation was noted (Figure 2).

Thus, we conclude that DCs loaded with EpiTCer beads,
carrying several in silico predicted neoantigens, are more efficient
in enriching for and activating tumor-specific CD8+ T cells from
the blood, compared to tumor-lysate-loaded DC.
A B

DC

FIGURE 2 | Efficient stimulation of blood-derived CD8+ T cells using EpiTCer® bead pulsed DC. HLA-A2+ healthy donor (HD) blood-derived CD14+ monocytes and
CD8+ T cells were isolated; monocytes matured into imDC were loaded with indicated source of ANRU derived tumor antigens and further matured into DC. Long
term co-cultures with DC and CD8+ T cells were performed and T cells harvested and re-stimulated with ANRU tumor cells. Tumor recognition was measured by
CD107a expression and IFNg production using flow cytometry. (A–D) HD CD8+ T cells were co-cultured with DC pulsed ANRU tumor lysate (TL) or EpiTCer beads
#1 at indicated bead/DC ratio. Tumor specificity was measured by re-stimulation with ANRU tumor cells and measured by CD107a expression (B) or CD107a
expression and IFNg production (A, C, D), using flow cytometry. Each donor represents one independent experiment.
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Efficient Neoantigen Delivery Through
Autologous DC Loaded With
EpiTCer® Beads
Next, we investigated which method of tumor antigen loading
confers the best capacity of DC to stimulate autologous tumor-
specific CD8+ T cells. Healthy-donor-derived DCs were loaded
either with several ratios of EpiTCer beads, with tumor lysate or
as negative control DC without antigen source (MOCK). As a
comparison, DCs pulsed with two validated ANRU neoantigen
9mer peptides, ETV6 and NUP210 (12), which were also
included in the EpiTCer constructs, were used. After 14 days
of stimulating CD8+ T cells with antigen-loaded DC, tumor
reactivity was analyzed by re-stimulation of CD8+ T cells with
ANRU tumor cells or with the ETV6/NUP210 9mer neoantigen
peptides (only for T cell that had been co-cultured with DC
pulsed with the corresponding 9mer peptide). Tumor reactivity
was measured by CD107a expression using flow cytometry.

In both healthy donors, an EpiTCer bead/DC ratio dose-
dependent increase in the frequency of CD107+ tumor
reactive CD8+ T cells was observed (Figures 3A, B). In
addition, the highest EpiTCer bead/DC ratio (40:1)
generated and triggered an increased frequency of tumor-
specific CD8+ T cells when compared to DC loaded with
either neoantigen 9mer peptides or tumor lysate. However,
DC loaded with either neoantigen 9mer peptides, ETV6 or
Frontiers in Oncology | www.frontiersin.org 6251
NUP210, or tumor lysate induced increased frequencies of
tumor reactive CD8+ T cells when compared to the unloaded
DC, MOCK (Figures 3A, B). Notably, re-stimulation with
ANRU tumor cells triggered a stronger T-cell activation than
re-stimulation with the neoantigen 9mer peptide, ETV6, in
CD8+ T cells previously enriched by DC loaded with the same
peptide (Figures 3A, B). This indicates that loading of
neoantigen peptides on MHC class I on CD8+ T cells can
trigger activation alone but not as strong as when combined
with other potential tumor antigens providing co-stimulatory
signals expressed on the tumor cells.

Next, we assessed if loading the DC with pooled ETV6 and
NUP210 peptides could increase the enrichment for tumor-
specific T cells to a similar extent as the one observed with
EpiTCer-beads-loaded DC. Notably, there was no additive effect
on tumor recognition when stimulating CD8+ T cells with DC
loaded with ETV6 combined with NUP210 (Figures 3C, D). In
both healthy donors, EpiTCer-loaded DC induced an increased
frequency of CD8+ tumor-specific T cells compared to ETV6
and NUP210 peptides delivered separately or in pools.
Comparable results were observed in a third donor, showing
no additional effect by pooling ETV6 and NUP210
(Supplementary Figure S2A). These results indicate that there
is a dominant neoantigen peptide/epitope, “masking” the
response towards additional neoantigens. Furthermore, the
A B

D EC

FIGURE 3 | Efficient neoantigen delivery through autologous DC loaded with EpiTCer® beads. HLA-A2+ healthy donor (HD) blood-derived CD14+ monocytes and CD8
+ T cells were isolated; monocytes matured into imDC were loaded with indicated source of ANRU derived tumor antigens and further matured into DC. Long-term co-
cultures with DC and CD8+ T cells were performed; T cells was harvested and re-stimulated with ANRU tumor cells or 9mer neoantigen peptides. T-cell activation was
measured by CD107a expression using flow cytometry. (A, B) HD CD8+ T cells were co-cultured with DC pulsed ANRU tumor lysate (TL), indicated 9mer neoantigen
peptide or EpiTCer beads #2 at indicated bead/DC ratio. Tumor specificity or T-cell activation was assessed by re-stimulation with ANRU tumor cells or indicated 9mer
neoantigen peptide, respectively. (C–E) HD CD8+ T cells were co-cultured with DC pulsed with indicated 9mer neoantigen peptide (separately or combined/pooled) or
EpiTCer beads #2 at indicated bead/DC ratio. Tumor specificity was assessed by re-stimulation with ANRU tumor cells with (E) or without (C, D) the presence of MHC
class I blockade (W6/32). Values in panels (D, E) without W6/32 (−) were obtained within the same experiment. Each donor represents one independent experiment.
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dominant neoantigen peptide differs between the healthy donors
(HD) investigated, with ETV6 or NUP210 being the dominant
epitope in HD 7 and 8 (Figures 3C, D) or HD 10
(Supplementary Figure S1A), respectively.

To assess MHC class I antigen-dependent tumor cell
recognition, CD8+ T cells stimulated with DC pulsed with
EpiTCer beads, ETV6 or NUP210 9mer peptides separately or
pooled, were re-stimulated with ANRU tumor cells with
and without MHC class I blocking antibody (W6/32).
All CD8+ T-cell-mediated tumor recognition was MHC class
I-antigen dependent, with the strongest influence of MHC
class I antigen-dependent presentation observed in the DC
pulsed with EpiTCer beads stimulated CD8+ T-cell
population (Figure 3E).

Efficient Expansion of Patient Blood-
Derived Tumor-Specific CD8+ T Cells
Using DC Loaded With EpiTCer Beads®
To investigate the clinical relevance of DC loaded with EpiTCer
beads, autologous ANRU DC, blood-derived CD8+ T cells, and
ANRU tumor cell line were used. ANRU imDC were loaded with
tumor lysate, ETV6 or NUP210 9mer peptides, or several ratios
of EpiTCer beads. Non-coated EpiTCer beads (empty, E) and
Frontiers in Oncology | www.frontiersin.org 7252
EpiTCer beads coated with the corresponding wild-type (WT)
sequences were used as controls. Longtime co-cultures of DC-
CD8+ T cells were performed, followed by re-stimulation with
autologous ANRU tumor cells. Tumor recognition was measured
by degranulation (CD107a expression) and IFNg production
analyzed by flow cytometry.

In three independent experiments, DC loaded with EpiTCer
beads induced the highest frequency of CD107a+ autologous
tumor-specific CD8+ T cells (Figures 4A, C and Supplementary
Figure S2B). In addition, all EpiTCer bead/DC ratios induced a
higher frequency of CD107a+ CD8+ T cells compared to more
traditional ways to pulse DC with antigens, such as custom made
9mer neoantigen peptides, ETV6 and NUP210, or whole tumor
lysate. Furthermore, CD8+ T cells stimulated with EpiTCer
beads pulsed DC also displayed the most efficient cytokine
production upon ANRU re-stimulation, although the
difference to DC loaded with tumor lysate was less than for
CD107a (Figure 4B). When comparing tumor recognition
between all conditions, CD8+ T cells enriched by EpiTCer
pulsed DC had a significantly increased frequency of tumor-
specific T cells (Figure 4C). Notably, all DC conditions,
including the control EpiTCer beads and non-coated and wild-
type beads, were better at enriching for tumor-specific CD8+ T
A B
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C

FIGURE 4 | Efficient expansion of patient blood-derived tumor-specific CD8+ T cells using DC loaded with EpiTCer beads®. ANRU blood-derived CD14+ monocytes and
CD8+ T cells were isolated; monocytes matured into imDC were loaded with indicated source of ANRU derived tumor antigens and further matured into DC. Long-term co-
cultures with DC and CD8+ T cells was performed; T cells were harvested and re-stimulated with ANRU tumor cells or ANRU non-activated monocytes. Tumor recognition
or healthy cell reactivity was measured by CD107a expression or IFNg production using flow cytometry. (A, B) ANRU CD8+ T cells were co-cultured with DC pulsed ANRU
tumor lysate (TL), indicating 9mer neoantigen peptide, non-coated EpiTCer beads (empty, E), EpiTCer beads carrying the corresponding wild-type sequence (WT), or EpiTCer
beads #2. EpiTCer beads were used at indicated bead/DC ratio. Tumor specificity was assessed by re-stimulation with ANRU tumor cells. (C) ANRU CD8+ T-cell tumor
recognition, presenting values from Figures 4A and 5A and Supplementary Figure S2B. (D, E) ANRU CD8+ T cells were co-cultured as described in panels (A, B), and
T-cell activation was measured by re-stimulation with ANRU tumor cells or non-activated ANRU monocytes. Values in panels (A, D) and (B, D) for ANRU tumor reactivity
were obtained within the same experiment. (C) Statistical analysis one-way ANOVA, Tukey’s multiple comparison test. Definition of significance: ***p < 0.001, **p < 0.01.
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cells compared to unloaded DC (MOCK). This was the case
independently of measuring degranulation or cytokine
production (Figures 4A, B). This indicates that loading of DC
with EpiTcer beads, independently of antigen coupled, was able
to stimulate DC to become more efficient in activating blood-
derived CD8+ T cells, although this activation was not MHC
class I antigen dependent (data not shown).

Most of predicted neoantigens have a single amino acid
mutation, while the rest of the sequence remains identical to the
wild type. One can argue that the risk of expanding self-reactive T-
cell populations may be higher when using longer neoantigen
sequences, allowing alternative processing, compared to using pre-
determined 9mer peptides. In addition, the EpiTCer beads are
coupled to six 21mer long neoantigens interconnected with GGS
linkers. Although the linker is designed to not to be similar to any
sequence expressed in humans, they could potentially, due to
alternative processing of the sequence by the DC, be at risk of
stimulating self-reactive T cells. Therefore, the self-reactivity of the
T-cell product was investigated by re-stimulating the autologous
DC-activated CD8+ T-cell populations with autologous
monocytes or CD8+ T cells as target cells.

None of the DC loaded with tumor lysate, EpiTCer beads or
EpiTCer WT bead, stimulated CD8+ T cell populations
displayed an efficient recognition of the autologous monocytes,
measured by degranulation or IFNg production (Figures 4D, E).
In addition, there was no recognition by the DC-stimulated CD8
+ T cells when exposed to autologous non-stimulated CD8+ T
cells (data not shown). This shows that DCs loaded with either
tumor lysate or any of the EpiTCer bead concentrations do not
react to the healthy cells investigated, indicating that the
established stimulation method to enhance tumor-specific CD8
+ T cells from the blood could potentially be used for adoptive
cell therapy. However, further examination of its safety is needed.
Comparable results were observed using healthy-donor-derived
DC and CD8+ T cells (Supplementary Figure S2C).

EpiTCer-Loaded Autologous DCs Enrich
for Tumor-Specific CD8+ T Cells Do Not
Show Tumor Cross-Reactivity
To assess tumor specificity of DC-stimulated ANRU CD8+ T cell
products, autologous ANRU DCs were loaded with tumor lysate,
neoantigen 9mer peptides (ETV6 or NUP210) or EpiTCer beads.
The DC-stimulated CD8+ T cells were (1) challenged with either
autologous ANRU tumor cells or an allogenic melanoma cell line
KADA, both HLA-A2+, or (2) further expanded using a GMP-
compatible rapid expansion (REP) protocol (2). When directly
re-stimulated with either the autologous ANRU or allogenic
KADA tumor cells, the CD8+ T cell expanded with EpiTCer-
beads-loaded DC displayed a very high tumor selectivity
compared to all other stimulation conditions (Figure 5A).
Notably, CD8+ T cells stimulated with DC MOCK or tumor
lysate had an increased reactivity against the allogenic tumor cell
line compared to the autologous cell line (Figure 5A). When re-
stimulating the different REP-expanded CD8+ T cell populations
with ANRU or KADA tumor cells, a preserved tumor selectivity
was observed (Figure 5B). When comparing ANRU recognition
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with or without rapid expansion, we observed an increased
tumor reactivity after REP (Figure 5C). These results indicate
that tumor selectivity is preserved and enhanced during
unspecific stimulation using anti-CD3 and radiated feeder cells.

EpiTCer Pulsed DCs Efficiently Induce
Functional Maturation of Blood-Derived
CD8+ T Cells
Phenotypic analysis of the long-term DC-stimulated autologous
ANRU blood-derived CD8+ T cells was performed to analyze
their expression of various maturation and memory markers.
Non-DC stimulated ANRU CD8+ T cells and ANRU TIL,
expanded using our clinical trial protocol, were used as
controls. DC pulsed with EpiTCer beads or tumor lysate
efficiently induced maturation of CD8+ T cells into central and
effector memory T cells, with a phenotype similar to the one
observed for the CD8+ T cells derived from the TIL. CD8+ T
cells stimulated with DC loaded with empty EpiTCer beads or
EpiTCer beads coated with wild-type sequences displayed a less
mature phenotype (Figure 6A).

To further investigate the possibility of using DC loaded with
EpiTCer beads for expansion of tumor-specific T cells as a cell
product for adoptive cell therapy, large-scale expansion
was explored.

Healthy donor-derived CD8+ T cell and EpiTCer-loaded DC
were used to compare the tumor specificity/reactivity when CD8+ T
cells were expanded in small or large scale, using plates or cell
culture flasks, respectively. A similar expansion of tumor-specific T
cells was observed independently of expansion setup, with a trend of
an increased tumor recognition if CD8+ T cells were expanded in
large scale using cell culture flasks (Figure 6B). Furthermore,
blocking MHC class I-mediated recognition using monoclonal
antibodies revealed that tumor recognition was antigen dependent
for both cell products.
DISCUSSION

In this study, we have demonstrated that EpiTCer beads are an
efficient method of loading in silico predicted and recombinantly
expressed 21mer neoantigens onto autologous DC to enrich for
and stimulate tumor-specific CD8+ T cells from peripheral
lymphocytes. We observed that autologous DC pulsed with
EpiTCer beads were more efficient/significantly better in
stimulating both healthy-donor- and patient-derived tumor-
specific CD8+ T cells from the blood compared to tumor
antigens delivered via neoantigen 9mer peptides or tumor
lysate (Figures 1 and 4A). Tumor specificity was assessed by
recognition of the autologous ANRU tumor cell line, from which
the neoantigens and the tumor lysate were predicted or
generated, respectively. Furthermore, tumor recognition by
healthy-donor-derived CD8+ T cells expanded by DC pulsed
with tumor antigens, especially when delivered via EpiTCer
beads, was reduced upon MHC class I blocking (Figures 3E
and 6C).
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FIGURE 5 | EpiTCer-loaded autologous DC enrich for highly tumor-specific CD8+ T cells with limited tumor cross-reactivity. ANRU blood-derived CD14+
monocytes and CD8+ T cells were isolated; monocytes matured into imDC were loaded with indicated source of ANRU-derived tumor antigens and further matured
into DC. Long-term co-cultures with DC and CD8+ T cells were performed: T cells harvested and (A) re-stimulated with indicated tumor cell line (B) further expanded
via rapid expansion (REP). Tumor recognition was measured by CD107a expression. (A) ANRU CD8+ T cells were co-cultured with DC-pulsed ANRU tumor lysate
(TL), indicating 9mer neoantigen peptide or EpiTCer beads #2 at indicated bead/DC ratio. Tumor specificity was assessed by re-stimulation with autologous ANRU
tumor cells or allogenic KADA (HLA-A2+ melanoma cell line). (B) DC-enriched ANRU CD8+ T cells were further expanded using a REP protocol, harvested and re-
stimulated with autologous ANRU tumor cells or allogenic KADA tumor cells. Panel (C) shows the CD8+ mediated ANRU tumor recognition observed before (−) and
after REP (REP); same values as in panels (A, B) are displayed.
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Numerous methods have previously been used to verify and
enrich for tumor and/or neoantigen-specific T cells. In addition,
several methods of analyzing, detecting, and defining recognition
of tumor and/or neoantigen-specific T cells have been employed.
This includes neoantigen-specific tetramers (32, 33) or selection
based on activation/antigen-experienced markers, such as PD1+
or 4-1BB+ (13, 17, 34–36). In addition, peripheral lymphocytes
recognizing oncogenes, p53 and KRAS, derived neoantigens have
been investigated (15, 37, 38). Furthermore, healthy-donor-
derived peripheral lymphocytes have been investigated as a
source of neoantigens-specific T cells to be used for therapy
(39, 40).

We and others have previously shown that it is possible to
predict and identify neoantigens that can be used to generate
autologous tumor and neoantigen-specific T cells from patient-
derived tumor TIL and/or peripheral lymphocytes (12, 17, 32,
34–36). Several other studies have shown that it is possible to
Frontiers in Oncology | www.frontiersin.org 10255
identify neoantigens to generate neoantigen-specific T cells
within TIL or peripheral lymphocytes populations (13, 15, 33,
37–40). In these studies, neoantigen specificity was assessed by
measuring the T cells capability to recognize or become
activated upon re-stimulation with the corresponding
neoantigen-loaded DC, with neoantigen pulsed/transduced
tumor cells or with an allogeneic tumor cell line containing
the specific mutation. We have previously shown that
recognition of neoantigen-derived peptides does not
necessarily mean efficient recognition of autologous tumor
cells (12), displaying the importance of assessing recognition
of the autologous tumor cells. In the Tumor Neoantigen
Selection Alliance (TESLA) consortium, it was found that
only 6% of the neoantigen peptides, top ranked by each
participants algorithm, were able to bind to the patient’s HLA
alleles and form a multimeric complex. To our knowledge, no
efforts were done to analyze if the T cells recognizing these
A

B

FIGURE 6 | EpiTCer-pulsed DC efficiently induces functional maturation of blood-derived CD8+ T cells. ANRU (A) or healthy donor (B) blood-derived CD14+
monocytes and CD8+ T cells were isolated, and imDC were loaded with indicated source of ANRU-derived tumor antigens and matured into DC. Long-term co-
culture with DC and CD8+ T cells was performed. T cells were harvested and (A) phenotypic analysis was performed or (B) ANRU tumor reactivity was measured.
(A) Long-term co-culture with ANRU CD8+ T cells and ANRU DC tumor lysate (TL), non-coated EpiTCer beads (empty, E), EpiTCer wide-type beads (WT) or
EpiTCer beads at 40:1 bead/DC ratio was performed. CD8+ T cells were harvested, and phenotypic analysis of maturation status was performed using flow
cytometry. Cells were gated on lymphocytes/single cells/live cells/CD3+CD8+ cells, and maturation was investigated via CCR7 and CD45RA. For gating strategy,
see Supplementary Figure 3. (B) HD CD8+ T cells were long-term co-cultured with DC loaded with ANRU tumor lysate. Co-culture was performed in plate (96w
plates) or in cell culture flasks; CD8+ T cells were harvested and re-stimulated with ANRU tumor cells with and without MHC class I blocking (W6/32). HD, each
donor represents one independent experiment.
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peptides were also able to kill the autologous tumors from
which they were derived (41, 42).

We observed a relatively high tumor reactivity by the CD8+ T
cells enriched by non-coated and wild-type EpiTCer beads
(Figure 4). This could be explained by the size, ~1 mm, of the
EpiTCer beads themselves, which was chosen based on previous
studies displaying increased capacity to stimulate antigen
processing and presentation (24, 29–31). Non-coated EpiTCer
and wild-type beads generated very similar levels of tumor-
reactive T cells, indicating that the wild-type sequence or the
linker regions did not further enhance the stimulatory capacity.

Furthermore, peripheral tumor-specific ANRU CD8+ T cells
enriched using autologous DC loaded with EpiTCer beads,
ANRU tumor lysate, or EpiTCer wild-type beads, displayed
limited recognition of autologous healthy tissue/cells,
monocytes, and unstimulated CD8+ T cells. These results
indicate that alternative processing of either the neoantigen
sequences or the linker regions does not produce peptides that
stimulate autoreactive T cells. The implications from these
findings are however limited, and to further exclude the risk of
autoreactivity of the T cells, a more extensive screening of a panel
of normal tissues will have to be performed. Unfortunately, there
were too few CD8+ T cells enriched via non-coated EpiTCer-
pulsed DC to analyze healthy tissue cross-reactivity.

In line with previously published reports (13, 32), an efficient
distinction between autologous, ANRU, and allogeneic KADA
tumor cells was observed in all DC-enriched conditions
(Figure 5). Furthermore, the tumor specificity was maintained
during rapid expansion, with an increased autologous tumor
recognition (Figures 5B, C).

It has previously been demonstrated that naive CD8+ T cells
within peripheral lymphocyte populations can have reduced
effector functions, low proliferation, and low TCR avidity, and
are unlikely to engage in TCR–antigen interactions when
compared to memory T cells, TCM and TEM (43, 44). Central
memory T cells (TCM) have been shown to possess a greater
capacity to persist in vivo, while effector memory T cells (TEM)
have immediate effector functions although with lower
proliferative capability (45, 46). We observed that DC loaded
with EpiTCer beads were more efficiently matured CD8+
peripheral lymphocytes into central and effector memory T
cells, when compared to DC loaded with non-coated EpiTCer
or wild-type beads (Figure 6A). These results are consistent with
the tumor recognition analysis and with the evidence that
EpiTCer-loaded beads are efficient in expanding a T-cell
population with high capacity of tumor recognition and
elimination, as measured by CD107a expression.

The data presented in this study strongly support the
potential of using EpiTCer-beads-loaded DC as a method for
enriching for patient-derived tumor-specific T cells from
peripheral blood and/or as a DC vaccination approach.
Neoantigen-loaded therapeutic DC vaccines have been shown
to enrich for pre-existing neoantigen-specific T cells in vivo in
patients with cutaneous melanoma or advanced lung cancer (9,
47). It has also been shown that peptide/mRNA-based
Frontiers in Oncology | www.frontiersin.org 11256
neoantigen vaccines can stimulate neoantigen-specific T-cell
populations in vivo, leading to improved clinical outcome in
melanoma patients (48, 49). However, there are also clinical
trials showing a limited or no beneficial effect of neoantigen-
based vaccines as monotherapy or in combination with
checkpoint inhibitors (50–54). These reports indicate that
cancer/neoantigen vaccines cannot completely eradicate the
disease (55). Most likely, cancer vaccines will have to be
combined with approaches targeting the immune suppressive
microenvironment to eliminate MDSC and T regs and other
suppressive mechanisms, thereby allowing the effector functions
of tumor-specific CD8+ T cells. It is likely that DC, when
optimally activated with methods such as loading them with
beads, may be able to activate both tumor-specific T cells and
non-specific immune mechanisms.

These questions have been addressed in mouse models with
conflicting results. Salvatori et al. investigated different
therapeutic combinations of checkpoint inhibitors (ICI), a-
CTLA4 or a-PD1, and neoantigen-based cancer vaccines (56).
They found that the combination of a-CTLA4 and a neoantigen
vaccine had a large impact on tumor growth, while monotherapy
using a-CTLA4 had no effect on tumor growth using a CT26
tumor model. In addition, the combination of a-CTLA4 and a
neoantigen vaccine significantly reduced MC38 tumor growth,
while the addition of a-PD1 had no effect on tumor growth.
However, Li et al. investigated neoantigen-specific T cells in
combination with a-CTLA4 or a-PD1 in Lewis lung carcinoma
and observed an expansion of neoantigen-specific CD8+ TIL
after ICI therapy but no effect on tumor regression (57). When
combining a neoantigen vaccine with a-CTLA4 and a-PD1
therapies, a specific expansion of neoantigen-specific CD8+
TIL was detected but no effect on tumor growth. These results
indicated the complexity of designing an efficient treatment
protocol and how it should be evaluated. The presented study
is built on neoantigens predicted from patient material. We have
investigated the option of performing in vivo elimination assays
based on inoculation of immune compromised NSG mice. These
experiments were done with ANRU tumor cells to assess tumor
elimination/regression after injection of autologous CD8+ T cells
stimulated with DC loaded with the different antigen sources.
Unfortunately, ANRU tumor was found to grow poorly in NSG
mice, and in vivo elimination assays could not therefore
be performed.

To date, the neoantigen prediction methods have mainly been
focusing on MHC class I-binding peptides, and therefore, CD8+
T-cell responses and the usage of neoantigen-specific T cells for
ACT has been skewed towards investigating the effect mediated
by CD8+ T cells. However, longer, 15-30mer, neoantigen
peptides incorporating a 9–11mer CD8+ T-cell neoantigen
peptide can also serve as a neoantigen presented on MHC class
II for CD4+ T cells. This has been demonstrated in clinical trials
exploring neoantigen vaccination where a clear CD4+ T-cell
dominated response has been observed (38, 49). In line with
other studies targeting neoantigens to produce a T-cell product
for ACT, we focused on the CD8+ T-cell mediated antitumoral
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response. However, Arbelaez et al. showed that vaccination
utilizing nanoparticle-delivered neoantigen peptides stimulated
both a CD4+ and CD8+ T-cell-mediated response with a CD8+
T-cell-dependent antitumoral response (58). In contrast,
vaccination with naked peptides only triggered a CD4+ T-cell
response without any antitumoral effect (59). These results
encourage further investigations asking if EpiTCer-bead-
delivered neoantigens can trigger a stronger antitumoral effect
if a combined CD4+ and CD8+ T cell response is initiated.
Furthermore, Wei et al. have shown that formation of a
neoantigen cancer vaccine consisting of polymerized synthetic
peptides through a reversible polycondensation reaction resulted
in an improved antigen delivery to lymph nodes (LN) and
facilitated efficient activation of antigen-presenting cells
compared to a naked peptide vaccine (58). The advanced
formula for rapid release of neoantigen peptides in response to
intracellular reduction activity upon internalization facilitated
the delivery of peptide antigens and enabled cross-presentation
by APC, triggering an increased CD8+ T-cell-mediated response
and CD8+ T-cell maturation. In the present study, six different
21mer neoantigen polypeptides, each comprising 6 neoepitopes,
were coupled separately to paramagnetic beads. The covalent
linking of the designed neoantigen constructs offers several
benefits. Directional coupling via the polylysine domain is a
feature for direct conjugation, and the eight-histidine tag is used
for purification and coupling quantification. In addition, the
EpiTCer bead size induces activation and natural antigen
presentation when phagocytosed by APC. Yet, the coupling
method is not hampered by inaccurate disulfide bonds. Taken
together, the covalent linking allows efficient coupling of the
diverse repertoires of personalized neoantigens. In accordance
with Wei et al., an efficient CD8+ T-cell maturation and
antitumoral response was observed when delivering neoantigen
peptides via EpiTCer beads.

To our knowledge, we have shown here for the first time an
efficient enrichment of tumor-specific CD8+ peripheral
lymphocytes using DC loaded with personalized neoantigens
delivered via paramagnetic beads. We suggest that a novel
therapy using in vitro expanded tumor-specific peripheral
blood-derived T cells using EpiTCer-pulsed DC combined with
a DC vaccine could be a possible option for patients
with inoperable tumors and could be considered for patients
with tumor types that do not allow efficient TIL production.
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Antitumor activity of immune cells such as T cells and NK cells has made them auspicious
therapeutic regimens for adaptive cancer immunotherapy. Enhancing their cytotoxic
effects against malignancies and overcoming their suppression in tumor
microenvironment (TME) may improve their efficacy to treat cancers. Clustered,
regularly interspaced short palindromic repeats (CRISPR) genome editing has become
one of the most popular tools to enhance immune cell antitumor activity. In this review we
highlight applications and practicability of CRISPR/Cas9 gene editing and engineering
strategies for cancer immunotherapy. In addition, we have reviewed several approaches
to study CRISPR off-target effects.

Keywords: NK cells, CRISPR, T cell, immunotherapy, off-target analysis, CRISPR screening, CAR-T cells, CAR-
NK cell
INTRODUCTION

In recent years, adoptive T cell and NK cell therapies and immune checkpoint blockades have been
successfully used in the clinic to improve immunotherapy for cancer. Immunotherapies with T and NK
cells aim to overcome tumor-mediated immunosuppression and augment immunity against cancer (1–
3). Adoptive T cell cancer immunotherapies comprehend tumor-infiltrating lymphocytes (TILs),
transgenic T cell receptor (TCR)- T cell and chimeric antigen receptors (CAR)-T cell therapies (1). NK
cell immunotherapies with cytokine stimulation, antibodies, and gene CAR-NK cells have been studied
to overcome immunosuppression in cancers (2, 4). Although advancement in immunotherapy has
been significant and durable, most cancer patients fail to respond to immunotherapy due to resistant
tumor nature. Thus, we urgently need to find novel immunotherapies for cancer patients.

CRISPR/Cas9 gene-editing technology application has been widely studied and used in cancer
immunotherapy research (5, 6). CRISPR method offers precise and powerful gene-editing efficiency
in cancer and immunotherapy research. It has been used to identify essential genes as immune
checkpoint targets, generate CAR-T and CAR-NK cells, construct TCR, understand signaling
pathways, and screen for new druggable targets in immunotherapy (1, 7–10).
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In this review, we describe the fundamentals of CRISPR gene
editing in primary human T cells and NK cells. In addition, we
highlight the applications of CRISPR/Cas9 technology in engineered
T cells and NK cells and how it improves the immune cell function
against cancers. Furthermore, several approaches to study off-target
effects of CRISPR has been discussed.

CRISPR GENE EDITING

CRISPR are classes of repeated DNA sequences that act in
coordination with CRISPR-associated (Cas) genes to devote
bacterial and archaeal immunity against foreign raider phages and
plasmid DNA (11). This system has been tested in several human
cells including primary immune cells such as T-cells and NK cells.
CRISPR consists of three elements: tracer-RNA, crispr-RNA
(complementary to the target gene) and the Cas nuclease protein
(12). Recognition of the target gene by guideRNA (Tracer-RNA +
crispr-RNA) bound to Cas protein results in double stranded break
(DSB) (5, 13, 14). DSBs can be repaired by one of the two highly
conserved competing repair mechanisms, named as nonhomologous
end-joining (NHEJ) or homology-directed repair (HDR) pathways
(15). NHEJ results in insertion/deletion (indel) of nucleotides at the
Cas9 targeting site and causes a frame shift in coding region and
introduces gene knock-out (15). On the other hand, HDR is essential
for insertion of a transgene such as a DNA template encoding a CAR
into the Cas9 targeting site through homology repairs when
homologous arms for the flanking region of Cas9 targeting site are
provided in the DNA template (5). The best approach to deliver
CRISPR elements and the DNA template depends on the target
tissue or cell, packaging capacity, immunotoxicity, tropism, and
integration site (5). Viral delivery has been widely used for human
cells. Some of them are non-integrative, like the adeno-associated
viruses (AAV) and adenoviruses (AdV), while some are integrative,
such as Retroviridae family (MLV; murine leukemia virus or HIV;
human immunodeficiency virus) (16, 17). Stable expression of the
CRISPR in human primary cells is challenging due to the activation
of anti-viral activity of the cells especially in NK cells and expressing
a big protein like Cas9 results in low efficiency (18, 19). Therefore,
delivery of pre-transcribed gRNA and pre-translated Cas9 as Cas9/
Ribonucleoprotein (Cas9/RNP) has been favorable in immune cells
(20, 21). Generation CAR expressing immune cells by site-directed
gene insertion has been shown to be successful in both NK and T-
cells. In this approach the DNA encoding a CAR is delivered as an
HDR template by AAV vectors following electroporation of Cas9/
RNP (22, 23). Providing optimal homology arms for Cas9-targeting
site in the HDR template would be challenging as AAV has a small
packaging capacity (less than 5 kb) (24). We have shown that a
minimum of 300bp homology arms is required for high efficiency of
the transgene integration into the Cas9 targeting site (23).
INTRODUCTION TO T CELLS AND THEIR
ROLE IN CANCER IMMUNOTHERAPY

T cells are one of the most prominent components of the adaptive
immune response. They can be distinguished from other
Frontiers in Oncology | www.frontiersin.org 2261
lymphocytes by possessing TCR on their cell surface. T cells are
developed in the thymus, and they recognize the antigen peptides
presented by major histocompatibility complexes (MHC) class I
and class II. T cells have two major CD8+ and CD4+ subtypes.
CD8+ T cell refers to killer T cells, and CD4+ T cell refers to helper
T cells. CD8+ killer T cells are involved in directly eradicating the
virally infected cells as well as cancer cells. Even though T cells
incredibly work and eliminate the most frustrating cancers, cancer
remains one of the most devastating diseases globally and the
leading cause of death. Conventional treatment options such as
chemotherapy, radiotherapy and surgery have not been very
effective in treating cancers. Recently, cell-based therapies,
checkpoint blockades, cancer vaccines, oncolytic viruses and
other forms of immunotherapies have shown promising clinical
outcomes. T cell-based therapies are among the most efficient
immunotherapies for cancer patients due to their eminent clinical
efficacy (25). These new immunotherapies rely on the ability of T
cells to eradicate tumors (26, 27). To enhance their antitumor
activity and specificity, great interest in CAR- T cells has been
evolved and have been used to treat hematologic malignancies and
solid tumors. In autologous CAR-T cell-based therapies, the
patient’s own T cells are genetically engineered to express a
single-chain CAR which includes an antibody extracellular
binding domain that recognizes a tumor cell surface antigen.
Tumor antigen is recognized by extracellular domain of the
CAR. Signaling activation is achieved by both costimulatory
molecule such as CD27, CD28, 41BB and CD3zeta which
contains ITAM motives (28). Thus, the engineered CAR-T cells
can bind to tumor antigens and lyse the tumor cells independently
from MHC, whereas normal T cells require TCR binding to an
MHC class peptide antigen for their activation (19). Although
CAR-T cell immunotherapies have been shown to be the most
promising FDA approved cell based treatments, several challenges
remain to be tackled (29). There has been some severe adverse
events associated with CAR T cell toxicities (30–37). For example,
most of the clinical trials use autologous T cells isolated from
patients’ blood. This results in cell manufacturing failures from the
early phase of the trial, due to low T cell quality and lymphocyte
counts in some of the heavily treated patients (38). Manufacturing
of autologous CAR T cell is a time-consuming process, therefore
delaying the treatment in patients (33, 34). Additionally, when
apheresis product is used for CAR-T cell production, sometimes
failure in the process causes unsuccessful CAR-T cell
manufacturing and poor response to treatment (30, 39–41). To
overcome the problems related to autologous CAR-T cells,
allogeneic CAR-T cell therapies has become alternative to
autologous CAR-T cells (42–44). However, allogeneic CAR-T
cell recognize and attack the recipient’s tissues causing graft-
versus-host disease (GvHD) therefore limiting their use in the
clinic (45–48). In addition to that, in both autologous and
allogeneic CAR-T cells, side effects such as cytokine release
syndrome (CRS) and neurologic toxicity in patients remains a
challenge to overcome (34–37, 49–55). Efforts in gene-editing
technologies such as CRISPR gene editing aid as a potential tool
for overcoming the barriers in CAR-T immunotherapies
(Figure 1) (27, 38, 56–62).
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EXAMPLES OF CRISPR EDITED T CELLS

Genome editing technologies facilitate remarkable, highly
efficient, and specifically targeted genomic modifications.
CRISPR/Cas9 technology has been the most practical and
efficient gene-editing method among other strategies for
editing the T cells (63–66). Producing off-the-shelf universal
CAR- T cells, overcoming T cell exhaustion, and suppressive
TME become significant obstacles which CRISPR can be a
suitable tool to tackle those issues (Figure 1) (44, 63). Several
groups have reported successful gene editing of T-cells using
Cas9/RNP (66, 67). Electroporation of Cas9/RNP to edit T-cells
has been very efficient and been successfully used in the clinic to
treat cancers (68). To solve the limitations of antigen-specific and
HLA-matched T cells and generate universal allogeneic CAR-T
cells, genetically engineered TCR complexes were developed for
immune therapy. Targeted gene editing in T cells has major
advantages over lentiviral transduction platforms. For example,
lentiviral transduction of TCR leads to variable transgene copy
numbers and untargeted transgene integration and therefore
initiates variable TCR expression and functionality. Oppositely,
TCR editing with CRISPR/Cas9 allows high-efficient gene
targeting and avoids random integration (63, 64). CRISPR/
Cas9 strategy has also been used to target PD-1, CTLA-4,
LAG-3, and TIM-3 inhibitory molecules to overcome tumor
mediated immune suppression and enhance CAR-T cell function
(22, 69, 70). It also has been shown that diacylglycerol kinase
(DGK) CRISPR-Cas9 KO improves the anti-tumor activity of
CAR-T cells (71). TGF-b receptor II (TGFBR2) KO with
CRISPR/Cas9 was also shown to reduce CAR-T exhaustion
and increase the anti-tumor activity of CAR-T cells (72).
Inhibition of CD7 and TRAC using CRISPR/Cas9 enhances
CAR-T cell-killing activity and prevents fratricide against T-
ALL. Sterner et al. (73) showed that CRISPR/cas9 KO of
Frontiers in Oncology | www.frontiersin.org 3262
granulocyte-macrophage colony-stimulating factor (GM-CSF)
decreased the side effects like cytokine release syndrome and
neuroinflammation of CAR-T cell therapies and also improved
the CAR-T cell anti-tumor activity in-vivo (73). CRISPR/Cas9
gene not only used for KO, it has been also utilized for gene
insertion of exogenous DNAs. Site directed gene knock-in (KI)
has improved CAR-T cell antitumor efficiency (74, 75). Several
approaches have been developed to deliver the DNA template
encoding CARs. Schumann et al. introduced a HDR template
into the CXCR4 gene locus by electroporation of a plasmid DNA
and Cas9/RNP, and demonstrated successful site directed KI
(75). Moreover, insertion of CD19 specific CAR expressing DNA
into the TRAC locus has been achieved with the CRISPR/Cas9
method and improved CAR-T cell efficiency. To generate these
cells, T cells were electroporated with Cas9 mRNA and gRNA.
Next, the HDR template encoding CD19 CAR was delivered to
the cells via AAV6 transduction (60). In the T cell engineering
era, insertions or deletions of short sequences with CRISPR/Cas9
technology have been very effective, precise, and routinely used.
However, it has also been possible to KI longer sequences using
ssDNA inserts called the Easi-CRISPR method with high
efficiency (74). Cas9 is the most used endonuclease protein in
CRISPR systems, but other Cas proteins such as Cas12 or Cpf1 is
also used to generated CAR-T cells when combined with AAV
gene delivery (22). To generate CAR-T cells with simultaneous
KO of checkpoints and knock-in of double CARs, a method
called KIKO has been developed. This method uses AAV-Cpf1 to
generate KO and double knock-in KIKO-CAR-T cells (22, 76).
INTRODUCTION TO NK CELLS

Natural Killer Cells (NK cells) are type of innate lymphocytes
mediates anti-viral and anti-tumor activity. NK cells develop in
FIGURE 1 | CRISPR gene editing in T-cells. Several gene KO and KI have been tested in T-cells, here we summarized the targeted genes. T cell checkpoint inhibitory
receptor KO such as TIM3, CTLA-4 and PD-1 KO resulted in higher antitumor activity of T-cells. CAR-T cell signaling modulation via inhibition of immunosuppressive
TGF-b signaling showed significant improvement of CAR-T cells. Integration of CAR-T in TRAC locus may solve the mentioned problems with allogeneic CAR-T therapies.
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the bone marrow (BM) and secondary lymphoid tissues such as,
tonsils, spleen and lymph nodes (LNs) and they represent 5-20% of
circulating lymphocytes in humans (77, 78). NK cells are
distinguished from the other immune cells by possessing CD3-

and CD56+ phenotype. Human NK cell subsets express also CD16
molecule, which is involved in antibody dependent cellular
cytotoxicity (ADCC). NK cells are effector cytotoxic cells, they
recognize and destroy their target without prior sensitization.
Unlike T cells, they do not need MHC class presentation to enact
their cytotoxic properties. Unlike T cells, NK cells recognize and kill
tumor in anHLA-independent manner which result in being known
as a great candidate for allogeneic anti-tumor cell-based therapies, as
they do not cause acute GvHD (79–81). NK cells use KIR receptor
and ligand mismatch to recognize cancer cells from self-cells,
therefore mediating enhanced engraftment, anti-tumor response,
and safe clinical outcomes (79, 81–85). NK cell killing of target cells
accomplished with a balance of activating and inhibitory signals
engaged around the cell. NK cell activating receptors includes, killer
cell’s immunoglobulin-like receptors (KIRs), KIR2DS2, KIR2DS5
KIR3DS1, CD94/NKG2C, NKG2D, NKp30 NKp40, NKp44 and
NKp46 recognize ligands present on target cells. NK cells have the
ability of recognize non-self by NKp80, SLAM, CD18, CD2 and
TLR3/9 receptors. Some of the NK cell inhibitory ligands are PD-1,
TIGIT, TIM-3 and LAG-3. Inhibitory KIR ligands, KIR2DL1, 2DL2,
and 2DL3 interact with highly polymorphic human leukocyte
antigen (HLA). There are three HLA groups, group 1, 2 and
HLA-Bw4, which usually bind inhibitory KIR and have long
extracellular immunoglobulin structure. It has been shown that
patients who receive NK cell immunotherapy containing haplo-
mismatchedNK cells they have anti-leukemic effects without the risk
of GVHD. In hematopoietic stem cell transplant (HSCT) patients,
infusions of haplo-mismatched KIR and HLA NK cells has shown
benefits of survival and lower relapse rates. If the infused NK cells are
identical, they only show benefit if the KIR receptors are activating
(86, 87). NK cells can be isolated from peripheral blood, umbilical
cord, and induced pluripotent stem cells (iPSCs) (88–91). Once
isolated from their primary source, feeder cells, such membrane-
bound IL-21 K562s, used to expand NK cells ex-vivo (92). They can
be cultured anywhere from 14-21 days in most protocols and can
proliferate remarkably over hundreds of folds (92). Cytokines such as
IL-2, IL-12, IL-15, IL-18, and IL-21 are also added inNK cell cultures
to enhance NK cell proliferation and activation (86, 87). NK cells
have several mechanisms to eradicate their targets. One of the main
mechanisms is perforin and granzyme induced apoptosis.
Granzymes which are serine/proteases, packaged along with
perforin and when they release by NK cells, they initiate target
apoptosis via caspase-3 pathway. In addition to that, NK cells via Fas
ligand and tumor necrosis factor (TNF)-related apoptosis-inducing
ligand (TRAIL) pathways can destroy their targets (93–95).
EXAMPLES OF CRISPR
EDITED NK CELLS

CRISPR editing of NK cells has been challenging, however we
and others have shown that using electroporation of Cas9/RNP
Frontiers in Oncology | www.frontiersin.org 4263
can solve the issue of low viral transduction efficiency of NK cells
(18, 23, 96–103). Gene editing in NK cells in a short period since
its invention has been used for serval applications such as to
improve their metabolic function, knocking-out checkpoint
molecules, improving antibody therapies and generation of
CAR-NK (96). One great example of gene engineered NK cells
is CD38 knock-out NK cells. NK cells highly express CD38 on
their surface. Patients treated with daratumumab (Dara,
hereafter), a monoclonal antibody targeting CD38 on multiple
myeloma, showed a decrease in NK cells number. This is a result
of NK-NK recognition through CD16 biding to Dara coated
CD38+ NK cells, referred to as “fratricide.” Beyond the role of
the structural marker, CD38 is well described to be associated
with a large diversity of physiological and pathological
conditions. Our group and others successfully developed NK
cells lacking CD38 by introducing the CRISPR/Cas9 as Cas9/
RNP via electroporation (96, 101). In particular, CD38 is an
NAD-degradation enzyme in mammalian tissues (104–110). Our
data demonstrated that CD38KO NK cells have more prominent
metabolic profile, increased killing mediated by ADCC against
CD38+ multiple myeloma cell lines and patient derived samples
and are protected from fratricide mediated by daratumumab
(96, 101).

Another important target to improve the NK cell’s function is
CISH encoded by CIS gene. CISH has a critical impact on NK
cells, and its activation is known to disable JAK-STAT
downstream signaling pathways including a decline in NK cell
ability to kill malignant cells (111, 112). Different groups have
shown that CISH is overexpressed in the presence of IL-2 and IL-
15 (113–115). IL15 was previously described as an important
factor potentiating NK cells cytokine production and cytotoxicity
activity (116–118). Felices et al. have demonstrated that
prolonged administration of IL15 can unleash NK cells
exhaustion via metabolic failure (119). Delconte et al. showed
that CISH was quickly activated after IL15 stimulation in a
mouse model, supporting that using gene-editing in NK cells
to delete CISH seems to be advantageous (120). Using CRISPR/
Cas9 on human iPSC to generate iPSC-CISH knockout NK cells
displayed prolonged persistence in vivo and enhanced antitumor
activity for acute myeloid leukemia (121, 122). NK cell
checkpoint blockade has been used as a promising therapy for
liquid and solid tumors. Other candidate for gene editing in NK
cells is NKG2A which is an immune checkpoint in CD8+ ab T
cells, natural killer T cells (NKT) and CD56hi NK cells. Upon
activation of immune cells, NKG2A leads to decreased effector
function (123, 124). Data from the literature have shown that
NKG2A drives NK cells to fatigue when highly expressed, and it
can be predictive of poor prognosis in liver cancer patients (125).
Thus, the blockage of the NKG2A receptor enhances NK cell’s
effector function for immunotherapy (126–128). Similarly,
Berrien-Elliot et al., have shown that gene-editing using
CRISPR/CAS9 to delete NKG2A from human NK cells was
able to increase NK cell ability to control HLA-E+ K562 leukemia
when compared to control NK cells demonstrating a substantial
inhibitory function for NKG2A (129). Additionally, NKG2AKO

NK cells did not affect their persistence in NSG mouse model
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(129), however, the role of NKG2A in NK cells licensing may
cause development of unlicensed NK cells with lower cytotoxic
activity (130). It is very well established that the PD1/PD-L1 axis
has an inhibitory function that can impair many T cells’
functions. This fact has been validated in preclinical models
where the inhibition of this signaling cascade is used for cancer
treatment (131). Indeed, high expression of PD1 ligand I or II in
cancer cell lines impairs cytotoxic function on CD8+ T cells. On
the other hand, the absence of a functional PD1 was responsible
for tumors rejection in the murine model (132, 133). The
blockage of the PD1/PD-L1 axis with monoclonal antibodies
repair these effects and unleash T cells to effectively kill tumor
cells (132–134). Recently it has been shown that in different
malignancies, human NK cells also express PD-1 (135–139). Like
T cells, blockade of the PD1/PD-L1 axis was able to activate NK
response (140). However, such strategies present limitations,
especially regarding off-target toxicity (102). Pomeroy et al.
could generate PD1KO NK cells by electroporating mRNA
Cas9 and gRNA (102). They demonstrated that PD1KO NK
cells showed notably enhanced cytotoxicity and cytokine
secretion in vitro and in vivo, decreasing tumor burden that
culminated with survival (102). Another promising target for
gene editing to boost cancer immunotherapy is the Suppressor
of cytokine signaling 3 (SOCS3). The protein SOCS3 is one
among eight members of the Suppressor of cytokine signaling
family (SOCS1–7 and CIS). Those proteins downregulate
cytokine signaling via the JAK/STAT signaling cascade.
Murine NK cells upregulated SOCS3 expression after IL-15
stimulation (120). SOCS3 impair inflammation by inhibiting
pro-inflammatory signaling pathways, including IL-12 inducing
IL-12Rb2 subunit blockage via the SH2 domain and its
signaling pathway mediated by STAT4 (122). The absence of
SOCS3 does not impact NK cells function upon IL15 stimulation
in murine models. In humans NK cells, our group successfully
generated SOCS3KO NK cells using Cas9/RNP and showed
higher cell proliferation and enhanced NK cells anti-tumor
activity (100). Suggesting SOCS3KO NK cells could be an
excellent target for gene-editing to boost cancer immunotherapy.
Another novel target is ADAM17, this gene has well described
as a membrane-associated protease responsible for cleaving a
large variety of membrane molecules, including CD16 (102,
141–144). Blocking ADAM17 activity leads to improvement in
cytokine production of human NK cells due to maintaining
their CD16 on the cell surface and activating higher ADCC
when combined with antibodies (145). Pomeroy et al. have
demonstrated that CRISPR-edited ADAM17KO NK cells are
prevented against CD16 shedding compared to WT NK cells
(102). Additionally, those data are similar to ADAM17
inhibitors where treated groups presented enhanced killing
through ADCC. Similarly, Yamamoto et al. showed that
ADAM17 gene-edited iPSCs derived NK cells have enhanced
ADCC (102, 141, 144–146).

To improve immune cell recognition and killing towards
tumor cells, immune cells, including T cells and NK cells are
engineered to express chimeric antigen receptors (CARs) (147–
149). In one of the first clinical trials using iPSC CD19-CAR NK
Frontiers in Oncology | www.frontiersin.org 5264
cells, the patients treated with the CAR-expressing NK cells
showed some improvements in their clinical outcomes (150).
Generation of CAR-NK cells have been challenging due to the
low efficient viral transduction including CAR-NK cells used in
the trial mentioned above. Our group recently showed that we
could efficiently combine Cas9/RNP approach with self-
complementary (sc) Adeno-associated virus (AAV) or single-
stranded gene delivery for generating highly efficient human
primary CAR-NK cells (98). Using this approach, we developed
CD33 CAR-NK cells (98). These CAR-NK were efficiently able to
kill AML cells and showed improvement on their activation
markers (98). Similar data were obtained when CD33-CARNK
cells co-culture with patient samples (97, 98). Recently, Daher
et al. showed that CRISPR edited CIS-KO NK cells expressing
CAR-IL-15 construct could boost CAR-NK cell function in vitro
and xenograft models by increasing aerobic glycolysis (121). This
double enhancement of CAR-IL-15/CIS-KO signaling is
significantly beneficial in the TME (151). Overall, gene editing
of NK cells has been challenging but the recent successes in using
CRISRP by electroporating Cas9/RNP helped to improve the
outcome of the NK cells therapy (Figure 2) (18, 101, 103, 152,
153). There has been some evidence showing that Polymer-
stabilized Cas9 nanoparticles and modified repair templates can
increase genome editing efficiency. These modified nanoparticles
improved knock-out and knock-in efficiency of the CRISPR gene
editing in several primary cells such as NK and T cells (16).
Clinical Trials Using CRISPR Edited NK
Cells and T Cells
Advancements in immunotherapy and gene therapy opened a new
era for clinical trials to treat some hematological malignancies and
solid tumors. Along with other platforms, CRISPR/Cas9
technology was adapted and brought up to the clinic to correct
some mutations and boost immune responses. CRISPR/Cas9, as a
precise gene-editing tool with minimal cytotoxicity and off-target
effects, has become a promising approach to treat complex and
refractory diseases. However, due to some limitations, including
transduction efficiency, off-target mutations, ethical questions, and
the deficiency in scientific risk assessment, CRISPR/Cas9 gene-
editing clinical trials have not been prevalent, especially for T and
NK cells. However, CRISPR has opened its way to the clinic. One
of the first in human phase 1 clinical trial of using CRISPR
engineered T cell have been used for patients with refractory
cancers in the U.S. (clinicaltrials.gov; trial NCT03399448) (68). In
this trial, endogenous TCR and immune checkpoint molecule PD-
1 were targeted in T cells with CRISPR/Cas9 to improve
immunotherapy in several refractory cancers. Two patients with
advanced refractory myeloma and one with metastatic sarcoma
were treated with these CRISPR-edited cells (68). The results of
this trial demonstrated the safety of infusing CRISPR-edited ex-
vivo expanded CAR-T cells in patients (151). Examples of some
clinical trials with the CRISPR/Cas9 method in T cells are
presented in Table 1. However, there are no registered
CRISPR/Cas9 transduced CAR-NK cell clinical trials in the
United States.
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OFF-TARGET ANALYSIS OF CRISPR
EDITED IMMUNE CELLS

Recently by the promises of Cas9 endonuclease, researchers can
target multiple genes in immune cells, including T cells and
Natural killer (NK), to improve cancer immunotherapy. For
these applications that lead to clinical cancer immunotherapy,
the induced mutations by CRISPR-Cas9 should be highly precise
and specific for the targeted loci with high on-target efficiency
and low or no off-target activity. However, rare off-target events
are inescapable during the manipulation of the gene of interest.
This phenomenon requires scrutiny identification, especially in
clinical applications to cure cancers and avoid adverse effects
during cancer immunotherapy such as introduction of an
oncogene. By developing next-generation sequencing (NGS) a
Frontiers in Oncology | www.frontiersin.org 6265
survey of new functional and non-functional variations during
gene manipulation became possible (154, 155). NGS has been
broadly applied by researchers and employed in clinical trials due
to its development in data acquisition with speedy and high-
quality recognition (156, 157). Analyzing these NGS-generated
data is even more critical to optimize and manage the workflow
to fill the gap between massive data and scientific exploration. To
date, several methods have been invented to analyze NGS data
and off-target effects of CRISPR mediated mutations, such as
GUIDE-seq, SITE-Seq, CHANGE-seq, Cas-OFFinder and
Churchill (158–162). Some of them like GUIDE-seq, SITE-Seq
and CHANGE-seq are based on the PCR amplification of pre-
selected potential sites, which predicted by CRISPR/Cas9 design
tools, and sequencing the PCR amplicons utilizing Sanger or
NGS technologies (158–160, 163). For instance, Schumann et al.,
TABLE 1 | Examples of clinical trials with CRISPR/Cas9 gene edited T cells (151).

National Clinical Trial Number Cancer CRISPR target gene T cell source Technique Country

NCT04037566 Relapsed or refractory ALL and B-cell
lymphoma

HPK1 Autologous T cells Rnp Electroporation China

NCT03399448 Multiple myeloma, melanoma, synovial
sarcoma, myxoid/round cell liposarcoma

TCRa, TCRb and PD-1 Autologous T cells Rnp Electroporation USA

NCT03545815 Solid tumors Endogenous TCR and
PD-1

T cells (unknown
source)

N/A China

NCT04244656 Refractory multiple myeloma B2M gene and TCR Allogeneic T cells N/A USA and
Australia

NCT03747965 Solid tumors PD-1 T cells (unknown
source)

N/A China

NCT04035434 B-cell malignancies B2M gene and TCR Allogeneic T cells N/A USA and
Australia

NCT03166878 B-cell leukemia and lymphoma B2M gene and TCR Allogeneic T cells Rnp Electroporation China
NCT03044743 EBV related diseases PD-1 EBV CTL from

autologous source
N/A China
April
 2022 | Volume 12 | Arti
N/A stands for non-applicable.
FIGURE 2 | CRISPR gene editing in NK cells. Several gene KO in NK cells have been done to improve NK cell function; here, we show some of the NK cell gene
modifications. CD38 and SOCS/CISH KO can improve metabolism in NK cells. Inhibitory checkpoint receptor KO such as NKG2A and PD-1 KO. ADAM17 KO
enhance CD16 mediated ADCC. Anti-CD19 CAR NK cells increase IL-15 production and enhance NK cell anti-tumor activity.
cle 834002
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used a 2-step PCR method and sequenced with the amplicons
with Illumina HiSeq, and identified indel mutations and their
spatiality distribution in the target region in primary human T
cells (75). In another study the efficiency and indel rates in the
created CAR-T cells, using CRISPR-Cas9-mediated multiplex
gene editing, was quantified by both surveyor assay and tracking
of indels by decomposition (TIDE) analysis (58). Stadtmauer
et al. utilized iGUIDE, a modified method of GUIDE-seq, for the
Cas9-mediated cleavage specificity analysis in the engineered T
cells to cure refractory cancer and found no clinical toxicities (68,
158, 164). Although these methods are simple and available to
most molecular biology laboratories, they are not always precise
as they are based on the predictions of potential off-target sites by
CRISPR/Cas9 design tools in the genome of interest and
therefore result in studying limited loci. As a matter of fact,
DSBs happened beyond the predicted sites and may be ignored
and caused detrimental side effects during the process of clinical
cancer immunotherapy (163). This major disadvantage of off-
target mutations identification by PCR based methods have been
resolved by whole genome sequencing (WGS) which is unbiased
and has been used to screen for off-target mutations induced by
CRISPR/Cas9 in different cells including human inducible
pluripotent stem cells, primary T cells, CAR-T cells (163, 165–
167). Using this method, researchers can recognize both small
indels and SNPs as well as major deletions, inversions,
duplications and, rearrangements (163, 166). The only
restriction of whole genome sequencing is missing the most
low-frequent off-targets that happens to a small number of
clones (163, 168). Cas-OFFinder algorithm have been invented
in order to search for potential off-target sites in any sequenced
genome regions (161). In a clinical trial, the safety and feasibility
of CRISPR–Cas9 PD-1-edited T cells were confirmed after
analyzing all the potential off-targets using Cas-OFFinder
Frontiers in Oncology | www.frontiersin.org 7266
method in the treatment of lung cancer (169). More recently,
as an ultra-fast, definite, highly scalable, and balanced
parallelization strategy for discovering human genetic variation
in clinical and population-scale genomics, Churchill has been
applied for the analysis of next-generation sequencing data (162).
We reported the high efficacy of Churchill analysis in verifying
off-target events after deletion of CD38 in NK cells via Cas9/RNP
and showed low off-target effects of Cas9/RNP (96). It has
successfully revealed all the existing mutations and categorized
them as missense and non-frameshift and moderate or high
impact (96). Overall, WGS can provide more precise landscape
of the off-target effects in CRISPR-edited cells. Here, we
summarize and compare the current methods in off-target
effects analyses of CRIPR edited immune cells (Table 2).
CRISPR SCREENING IN PRIMARY
IMMUNE CELLS

Genome wide CRISPR screen has been used in several cancer
cells to discover novel targets for cancer immunotherapy.
CRISPR screening approach has not been extensively used in
human primary immune cells due to several technical challenges.
However, some studies have shown successful screening
approaches in human primary T cells and Cas9-expressing
transgenic mice in recent years (19, 170–172).. In general, to
perform a CRISPR screen we need to introduce Cas9 and gRNA
pool library into the cells (173). These molecules usually
delivered to the target cells via lentiviral transduction.
However, expressing large proteins such as cas9 using LV
vectors in immune cells such as NK cells and T-cells has been
challenging and results in low transduction efficiency. Shifrut
TABLE 2 | Current methods in off-target analyses of CRISPR edited immune cells.

Off target analysis
method

Definition Pros Cons

Cas-OFFinder (161) It is an algorithm that searches for possible
off-target sites that can be found in an
already sequenced genome.

- It is not limited by the number of
mismatches and the PAM sequence.

- It allows alterations in PAM sequences
which are differentiable with Cas9.

- a rapid and highly assorted off-target
searching tool available at http://
www.rgenome.net/cas-offinder

- it relies on a computational method, which may
result in ignoring some potential off-targets
sites.

- it is biased due to the assumption that off-target
sequences are affiliated with the on-target site
which may cause missing off-target sites in
any loci throughout the genome.

SITE-Seq (selective
enrichment and
identification of tagged
genomic DNA ends by
sequencing) (159)

It is a biochemical method, using Cas9 and
single-guide RNAs (sgRNAs), to recognize all
the Cas9-mediated cut site sequences inside
the genomic DNA.

- It allows retrieval of off-target sites
with different cleavage sensitivity
by utilizing a vast range of sgRNP
concentrations from very low to
high.

- Provides guidance for precise and
plenary inspection of possible off-
target sites in cells by gaging the
incidence of mutations and their
functional cellular effects.

- Production of sequencing libraries
which are highly enriched for

- DNA-repair machinery does not have a role in
the process as it is performed on high
molecular weight DNA.

(Continued)
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et al; tested a hybrid approaching which the Cas9 was introduced
to the gRNA library expressing cells via electroporation (19).
They developed Single guide RNA (sgRNA) lentiviral infection
with Cas9 protein electroporation (SLICE) and resulted in
Frontiers in Oncology | www.frontiersin.org 8267
discovery of novel genes important in activation and expansion
of CD8 T-cells (19). A similar approach was used by other groups
to perform CRISPR screening in CAR-T cells (174). To date,
there is no publication on CRISPR-screening on NK cells. Our
TABLE 2 | Continued

Off target analysis
method

Definition Pros Cons

sgRNP cut sites, providing unique
profiling with minimal read depth.

GUIDE-seq (genome-wide,
unbiased identification
of DSBs enabled by
sequencing) (158)

It is a PCR-based method that relies on the
enteral of double-stranded
oligodeoxynucleotides into the DSB caused
by RNA-guided nucleases (RGN) without
contributing to off-target site.

- Enables to turn out universal
specificity perspective for different
RGNs

- Identifies the hotspots in DNA
breakpoints that can take part
together with RGN-induced DSBs
in higher-level genomic alterations
such as translocations.

- Its performance on living cells
enables
capturing of DSBs that occur over
a more extended period, thereby
making it a more delicate and
plenary assay.

-Relies on an integration of donor sequences,
which usually happens in a low frequency.

- mispriming may occur due to the annealing of
PCR primers to DNA sequences apart from
the ODN, resulting in PCR products that are
not differentiable from products formed by
primers binding to the ODN.

iGUIDE (improvement of
the GUIDE-seq method)
(164)

GUIDE-seq method allows mis priming
artifacts to be recognizable from credible
ODN integration sites by using a larger ODN
(46 nt versus 34 nt).

- by using larger ODN, PCR primer
binding sites can be back off from
the junction of the ODN in the final
PCR product and can cause mis
priming events.

-It is tough to scale due to individual transfections
for each target or cell source.

ChIP-seq (chromatin
immunoprecipitation
sequencing) (158)

It identifies the off-target binding sites by
using catalytically dead Cas9 (dCas9)-gRNAs
complex.

- Important for the identification of the
genome-wide binding sites with
dCas9 fusion proteins.

-It rarely indicates the off-target sites of cleavage
caused by active Cas9 nuclease.

-not effective for recognition of genome-wide, off-
target cleavage sites for catalytically active
RGNs.

-cost and availability
CHANGE-seq
(circularization for high-
throughput analysis of
nuclease genome-wide
effects by sequencing)
(160)

It is a high-throughput procedure for
determining the genome-wide operations of
CRISPR-Cas9 nucleases based on Tn5
mediated gDNA tagmentation in vitro.

- A simplified, susceptible, and scalable
approach.

- It can elucidate the genome-wide
perspective of genome editing activity
exquisitely sensitive.

- elaborated to efficiently procreate
circularized genomic DNA libraries for
elucidating the genome-wide activity
of genome editors by leveraging a
new Tn5 tag mentation-based
workflow.

-it relies on the Tn5 tagmentation of donor
sequences.

- Similar to SITE-Seq, the DNA repair machinery is
ignored.

Churchill (162) In clinical and population-scale genomics
provides fast, decisive, scalable, and
balanced parallelization tactic for the
detection of human genetic mutation.

- It uses a robust comparison based
on
whole genome sequencing data
comparing wildtype and CRISPR
edited cells.

- The procedure is highly scalable,
authorizing full resolution of the 1000
Genomes raw sequence dataset
utilizing cloud resources in a week.

- It eliminates the bottlenecks of the
computational sequence analysis
impasse via the avail of cloud
computing resources.

- It matches with the amplitude of
genomic data.

- Limited access to the platform and the algorithm
is not publicly available yet.
April 2022 | Volume 12 | Article 834002

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Elmas et al. CRISPR Modified NK and T Cells
group is investigating some new approaches to overcome issues
related to lentiviral transduction of NK cells.
CONCLUSION

CRISPR gene editing technology has shown to be a very versatile
tool for improving anti-tumor activity of NK cells and T-cells. We
reviewed here some of the CRISPR edited cells used for cancer
immunotherapy. We also reviewed ways to determine the off-target
effects of CRISPR and emphasized that Cas9/RNP approach results
in low off-target effects. We also mentioned how important
information can be discovered by CRISPR screening approach
Frontiers in Oncology | www.frontiersin.org 9268
and there are a lot to do the efficiently optimize this method to
be used in NK cells and T cells. Overall, CRISPR gene editing shows
promising clinical outcome and have potentials to be used more
broad Clinical applications such as cancer immunotherapy using
NK cells and T cells.
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Genome-Wide and High-Density CRISPR-Cas9 Screens Identify Point
Mutations in PARP1 Causing PARP Inhibitor Resistance. Nat Commun
(2018) 9:1849. doi: 10.1038/s41467-018-03917-2

10. Wei L, Lee D, Law CT, Zhang MS, Shen J, Chin DW, et al. Genome-Wide
CRISPR/Cas9 Library Screening Identified PHGDH as a Critical Driver for
Sorafenib Resistance in HCC. Nat Commun (2019) 10:4681. doi: 10.1038/
s41467-019-12606-7

11. Wiedenheft B, Sternberg SH, Doudna JA. RNA-Guided Genetic Silencing
Systems in Bacteria and Archaea. Nature (2012) 482:331–8. doi: 10.1038/
nature10886

12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A
Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial
Immunity. Science (2012) 337:816–21. doi: 10.1126/science.1225829

13. Clemmensen OJ, Moll M, Arpi M, de Fine Olivarius N, Nielsen JB.
[Bacteriological Autopsy. The Value of Postmortem Heart Blood Culture].
Ugeskr Laeger (1988) 150:101–3.

14. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-Programmed
Genome Editing in Human Cells. Elife (2013) 2:e00471. doi: 10.7554/
eLife.00471
15. Kass EM, Jasin M. Collaboration and Competition Between DNA Double-
Strand Break Repair Pathways. FEBS Lett (2010) 584:3703–8. doi: 10.1016/
j.febslet.2010.07.057

16. Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, et al.
Polymer-Stabilized Cas9 Nanoparticles and Modified Repair Templates
Increase Genome Editing Efficiency. Nat Biotechnol (2020) 38:44–9. doi:
10.1038/s41587-019-0325-6

17. Verhoeyen E. Advances in Foamy Virus Vector Technology and Disease
Correction Could Speed the Path to Clinical Application. Mol Ther (2012)
20:1105–7. doi: 10.1038/mt.2012.97

18. Naeimi Kararoudi M, Tullius BP, Chakravarti N, Pomeroy EJ, Moriarity BS,
Beland K, et al. Genetic and Epigenetic Modification of Human Primary NK
Cells for Enhanced Antitumor Activity. Semin Hematol (2020) 57:201–12.
doi: 10.1053/j.seminhematol.2020.11.006

19. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. Genome-Wide
CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune
Function. Cell (2018) 175:1958–71.e15. doi: 10.1016/j.cell.2018.10.024

20. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced Homology-Directed
Human Genome Engineering by Controlled Timing of CRISPR/Cas9
Delivery. Elife (2014) 3:e04766. doi: 10.7554/eLife.04766.010

21. Naeimi Kararoudi M, Dolatshad H, Trikha P, Hussain SA, Elmas E, Foltz JA,
et al. Generation of Knock-Out Primary and Expanded Human NK Cells
Using Cas9 Ribonucleoproteins. J Vis Exp (2018). doi: 10.3791/58237

22. Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y, et al. One-Step
Generation of Modular CAR-T Cells With AAV-Cpf1. Nat Methods
(2019) 16:247–54. doi: 10.1038/s41592-019-0329-7

23. Kararoudi MN, Likhite S, Elmas E, Yamamoto K, Schwartz M, Sorathia K,
et al. CRISPR-Targeted CAR Gene Insertion Using Cas9/RNP and AAV6
Enhances Anti-AML Activity of Primary NK Cells. bioRxiv (2021).
2021.03.17.435886. doi: 10.1101/2021.03.17.435886

24. Dong JY, Fan PD, Frizzell RA. Quantitative Analysis of the Packaging
Capacity of Recombinant Adeno-Associated Virus. Hum Gene Ther (1996)
7:2101–12. doi: 10.1089/hum.1996.7.17-2101

25. Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, et al. Genetical Engineering for
NK and T Cell Immunotherapy With CRISPR/Cas9 Technology:
Implications and Challenges. Cell Immunol (2021) 369:104436. doi:
10.1016/j.cellimm.2021.104436

26. Taniuchi I. CD4 Helper and CD8 Cytotoxic T Cell Differentiation. Annu Rev
Immunol (2018) 36:579–601. doi: 10.1146/annurev-immunol-042617-
053411

27. Guedan S, Ruella M, June CH. Emerging Cellular Therapies for Cancer.
Annu Rev Immunol (2019) 37:145–71. doi: 10.1146/annurev-immunol-
042718-041407

28. Terry RL, Meyran D, Fleuren EDG, Mayoh C, Zhu J, Omer N, et al. Chimeric
Antigen Receptor T Cell Therapy and the Immunosuppressive Tumor
Microenvironment in Pediatric Sarcoma. Cancers (2021) 13:4704. doi:
10.3390/cancers13184704

29. Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M,
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Programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) is widely used to
predict the clinical responses to immune checkpoint inhibitors (ICIs). However, PD-L1
IHC suffers from the complexity of multiple testing platforms and different cutoff values
caused by the current one drug-one diagnostic test co-development approach for ICIs.
We aimed to test whether PD-L1 (CD274) mRNA expression levels measured using
quantitative reverse transcription-polymerase chain reaction (qRT-PCR) can represent
PD-L1 IHC and predict responses to ICI. The FDA-approved PD-L1 IHC results with 22C3
pharmDx (gastric cancer) and SP142 (urothelial carcinoma) were compared with CD274
mRNA expression levels via qRT-PCR using the same formalin-fixed, paraffin-embedded
tissue blocks from 59 gastric cancer and 41 urothelial carcinoma samples. CD274mRNA
expression was identified using three independent sets of primers and TaqMan® probes
targeting exon 1–2, exon 3–4, and exon 5–6. CD274 mRNA levels in spanning exon 1–2,
exon 3–4, and exon 5–6 junctions of CD274 correlated well with PD-L1 expression
(r2=0.81, 0.65, and 0.59, respectively). The area under the curve of exon 1–2 was the
highest (0.783), followed by exon 3–4 (0.701), and exon 5–6 (0.671) of the CD274 gene
against the PD-L1 combined positive score cutoff of 10. When CD274 mRNA expression
was matched for response to immunotherapy, the overall response rate was higher in
patients with high CD274mRNA levels with a cutoff of 0.0722 (gastric cancer) and 0.0480
(urothelial carcinoma) than in those with low CD274mRNA expression (P < 0.001 and P =
0.018, respectively). These results show that CD274 mRNA levels predicted ICI
responses in patients with gastric or urothelial carcinomas and could be used as
alternatives for PD-L1 IHC.
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INTRODUCTION

In 2017, the Food and Drug Administration (FDA) granted
accelerated approval to pembrolizumab for patients with
recurrent locally advanced or metastatic, gastric or
gastroesophageal junction adenocarcinoma whose tumors
express programmed death-ligand 1 (PD-L1) as determined by
an FDA-approved test based on the clinical results of KEYNOTE
059 (NCT02335411) (1). In advanced gastric or gastroesophageal
junction adenocarcinoma, PD-L1 expression is assessed using
the FDA-approved PD-L1 IHC 22C3 pharmDx assay and a
combined positive score (CPS) (2). In 2016, FDA gave
accelerated approval to atezolizumab injection (Tecentriq) for
the treatment of patients with locally advanced or metastatic
urothelial carcinoma who have disease progression during or
following platinum-containing chemotherapy or have disease
progression within 12 months of neoadjuvant or adjuvant
treatment with platinum-containing chemotherapy. FDA
approved Ventana PD-L1 (SP142) assay to measure PD-L1
expression in urothelial carcinoma. With FDA approvals, PD-
L1 immunohistochemistry (IHC) is popular for predicting
therapeutic responses to immune checkpoint blockade (ICB)
(3). While this method measures PD-L1 protein levels, antibody
clones, staining platforms, and interpretations differ. For
instance, whereas that in metastatic non-small cell lung cancer
(NSCLC) samples relies on tumor proportion scores (TPS)
instead of CPS (4). The Ventana SP142 assay is used to
analyze urothelial carcinoma (UC) and to count immune cells
(IC) within the tumor microenvironment (5). This variability in
scoring methods has contributed to confounding results across
clinical trials and in clinical practice, leading to uncertainty
regarding the universal value of PD-L1 protein levels as a
biomarker across tumor types (6, 7). Furthermore, the use of
formalin-fixed, paraffin-embedded (FFPE) archival tumor tissues
prepared, fixed, and stored in non-standardized ways might not
generate predictable and intended results for adequate PD-L1
antigen retrieval. This could potentially increase the
heterogeneity of IHC intensity, extent, and topography of
staining (3). All these factors complicate the reliability of PD-
L1 levels assessed by IHC to predict clinical responses to ICB (8).

Assays of FFPE tissues based on RNA are currently employed
clinically to classify or predict recurrence risk in patients affected
by various types of tumors (9, 10). Gene expression assays based
on RNA include microarray, real-time quantitative reverse
transcription polymerase chain reaction (qRT-PCR), and RNA
sequencing (11–13). The qRT-PCR assays are popular for
quantifying genes due to a large dynamic range, high
sensitivity, high specificity, little to no post-amplification
processing, and increased sample throughput (14, 15). The use
of specific primers targeting stably expressed genes provides high
specificity and sensitivity, allowing for the simultaneous
measurement of several targets, including genes, for sample
quality control purposes. Gene expression profiling by qRT-
PCR has minimal input requirements and could be far more
cost-effective than IHC. Furthermore, close concordance
between qRT-PCR and IHC has validated qRT-PCR analyses,
Frontiers in Oncology | www.frontiersin.org 2274
even for challenging FFPE tumor samples (16). Therefore, gene-
specific reverse transcription might considerably increase the
success rate of molecular classifier validation in FFPE
sample cohorts.

The present study aimed to develop a more rapid qRT-PCR
assay to measure CD274 mRNA expression that closely
correlates with PD-L1 IHC and save archival tumor tissues for
other IHC assays in the same patient. Therefore, we designed
three qRT-PCR primers and compared their results with those of
PD-L1 IHC, then clinically validated the results in patients with
GC and UC treated with ICIs.
MATERIALS AND METHODS

Patients and Data Collection
We collected retrospective data from 100 patients with advanced
GC (n = 59) or UC (n = 41) that were treated with palliative
chemotherapy (n = 100) and anti-programmed death 1 (PD-1)/
PD-ligand (L)-1 immunotherapy (n = 49) at Samsung Medical
Center between December 2016 and January 2020. The median
age was 61.0 (33–81) years and 30 (61.2%) patients were male.
All the patients present with GC were stage IIB–IV disease at
diagnosis and have experienced local recurrence or metastasis at
treatment for ICI. For UC patients, they were all locally advanced
stage II–IIIb disease stages (Supplementary Table S1).
Responses of the 49 patients treated with immunotherapy were
assessed every 6–12 weeks according to the Immune Response
Evaluation Criteria in Solid Tumors (iRECIST) (17). Data from
patients with at least 6 weeks of follow up were included. The
primary clinical endpoint was the objective response rate (ORR),
defined as a complete (CR) or partial (PR) response. Patients
with progressive (PD) or stable (SD) disease were classified as
non-responders. Clinicopathological data were retrospectively
extracted from electronic medical records. This study proceeded
in accordance with the Institutional Review Board guidelines
(IRB No. 2018-09-041-001) for data analysis and investigational
treatment, and written informed consent from the patients was
also obtained to analyze their innominate data.

RNA Extraction and qRT-PCR
Total RNA was isolated from FFPE tumor tissues using the
ReliaPrep™ FFPE Total RNAMiniprep System (Promega Corp.,
Madison, WI, USA), and a amplified using a high-capacity
cDNA reverse transcription kit (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) as described by the manufacturer. Target
genes were analyzed using a gene expression assay with forward
and reverse primers and an Applied Biosystems FAM-labeled
MGB TaqManTM probe (Thermo Fisher Scientific Inc.) as we
previously described (18). We found that the PD-L1 IHC results
correlated with those of NanoString nCounter assays (19), we
used CD274 TaqMan probes spanning exon 1–2 (assay ID;
Hs01125296_m1), 3–4 (assay ID; Hs00204257_m1), and 5–6
(assay ID; Hs01125301_m1) boundaries for qRT-PCR
(Supplementary Figure S1). These sequences were amplified
by PCR in triplicate under the following conditions using
April 2022 | Volume 12 | Article 856444
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QuantStudio 6 (Thermo Fisher Scientific Inc.): 2 min at 50°C and
10 min at 94°C, followed by 40 cycles of 95°C for 15 s and 60°C for
60 s. Threshold cycle (Ct) values for each sequence were calculated
for each and averaged, and normalized to the mean of the reference
gene GUSB2 (assay ID: Hs99999908_m1), which was stably
expressed (18). The mRNA expression of each gene was
measured using the 2^-DCt (DCt = DCttarget gene−DCtGUSB2) method.

Immunohistochemical Detection of PD-L1
Gastric FFPE tissue blocks were cut into 4-mm sections and
stained using an Autostainer Link 48 system and Dako PD-L1
IHC 22C3 pharmDx kits (both from Agilent Technologies Inc.,
Santa Clara, CA, USA) (2). A rabbit anti-human PD-L1
monoclonal antibody (clone SP142; Ventana Medical Systems,
Tucson, AZ, USA) was used as described for UC samples (20).
The CPS of PD-L1 expression was calculated as the number of
PD-L1-stained GC tumors and ICs divided by the total number
of viable tumor cells, multiplied by 100. The concordance rate
between qRT-PCR and IHC was evaluated using CPS cut-offs of
1 and 10 for GC. Infiltrative ICs covering ≥ 5 of a UC tumor area
were defined as PD-L1-positive. For positive control, we used
positive cell lines provided by PD-L1 IHC 22C3 pharmDx and
tonsil tissues. For negative control, we used MCF-7 cell lines
provided by PD-L1 IHC 22C3 pharmDx. Benign human tonsil is
tissue control as it contains both positive and negative staining
epithelial and immune cells and can serve as both a positive and
negative tissue control for VENTANA PD-L1 (SP142) Assay
staining (21).

Statistical Analyses
We used CPS ≥1 and ≥ 10 for GC, and IC ≥5 for UC to compare
IHC with qRT-PCR. To calculate the sensitivity, specificity,
positive (PPV) and negative (NPV) predictive values, and
accuracy, a positive IHC result was considered as CPS ≥1 or
≥ 10 for GC, and IC ≥ 5 for urothelial carcinoma. Predicted
responses based on tumor type, IHC results, and qRT-PCR
results were evaluated using logistic regression.

The ORR (CR/PR) and disease control rate (DCR; CR/PR/
SD) were compared with the CD274 mRNA qRT-PCR results
using two-tailed unpaired Student t-tests. The diagnostic values
of panels were assessed by calculating the area under the receiver
operating characteristics (ROC) curve (AUC). Kaplan–Meier
estimates of progression-free (PFS) and disease-specific
survival (DSS) were compared using log-rank tests. All graphs
were generated using GraphPad Prism v. 9.0 (GraphPad
Software Inc., San Diego, CA, USA). Statistical significance was
set at P < 0.05. All data were statistically analyzed using SPSS
software version 27.0 (IBM Corp., Armonk, NY, USA).
RESULTS

Comparison of IHC and qRT-PCR Results
The 22C3 pharmDx assay identified PD-L1 positivity with CPS ≥
1 and ≥ 10 in 32 (54.2%) and 13 (22 %) of 59 GC samples,
Frontiers in Oncology | www.frontiersin.org 3275
respectively. The mean PD-L1 CPS in GC was 9.24 (0–95). The
Ventana SP142 assay identified PD-L1 positivity with IC ≥ 5 in
12 (29.3%) of 41 UCs. The mean PD-L1 IC in urothelial
carcinomas was 10.46 (0–95) (Figure 1).

The mean RQ (range) of relative CD274 mRNA expression
spanning exons 1–2, 3–4, and 5–6 were 0.1004 (0–2.4897),
0.2371 (0–7.5214), and 0.0928 (0–3.7064), respectively. These
values closely correlated (Spearman correlations: r2 = 0.92 for
exons 1–2 and 3–4; r2 = 0.89 for exons 1–2 and 5–6, and r2 = 0.99
for exons 3–4 and 5–6; Figure 2A). The PD-L1 scores in 100
evaluated samples closely correlated with CD274 mRNA
expression spanning exons 1–2 (r2 = 0.81), 3–4 (r2=0.65), and
5–6 (r2 = 0.59; Figure 2A). In GC, The PD-L1 CPS score with
22C3 pharmDx significantly correlated with the exon 1–2 (r2 =
0.81), 3–4 (r2 = 0.67), and 5–6 (r2 = 0.62) junctions of CD274
(Figure 2B). The Ventana SP142 PD-L1 IC score was
significantly associated in UC with exon 1–2 (r2 = 0.93), exon
3–4 (r2 = 0.82), and exon 5–6 (r2 = 0.76) junctions of
CD274 (Figure 2C).

The RQ cutoffs of CD274mRNA expression in exon 1–2, 3–4,
and 5–6 junctions were evaluated as the AUC based on PD-L1
CPS cut-offs of 1 and 10 for GC and PD-L1 IC cut-offs of 5 for
UC (Supplementary Table S2 and Supplementary Figure S2).
At a CPS cutoff of 10, the highest AUC in GC was 0.783, obtained
from CD274 mRNA expression at the exon 1–2 junction with a
cut-off of 0.0722 (P < 0.0001). The highest AUC of UC based on
PD-L1 IC cut-offs of IC 5 was 0.781, obtained from CD274
mRNA expression in the exon 1–2 junction with a cut-off of
0.0480 (P < 0.0001).

IHC and qRT-PCR Results Predicted
Responses to Anti-PD-1/PD-L1 Inhibitor
Between May 2018 and October 2020, 49 patients were treated
with anti PD-1/PD-L1 agents, and treatment responses to
treatment with pembrolizumab (n = 16), nivolumab (n = 16),
atezolizumab (n = 13), and durvalumab (n = 4) were evaluated
during > 6 weeks of followup (Supplementary Table S1). The
median number PD-1/PD-L1 cycles was 8.9 (range, 1–37) as of
May 20, 2021, and the patients were followed up for a median of
11.3 months. Table 1 summarizes the clinicopathological
characteristics of the patients treated with anti-PD-1/PD-L1.

Anti-PD-1/PD-L1 responders (CR/PR, n = 16) and non-
responders (PD/SD, n = 33) were identified using the iRECIST
category of ORR. The expression of PD-L1 (P = 0.010) and high
CD274 mRNA expression (P < 0.001) were significantly
associated with the response to immunotherapy. The ROC
curve for the predictive performance of PD-L1 IHC and
mRNA expression of CD274 at exon 1–2 was discriminatory.
The AUC and 95% confidence intervals (CIs) were 0.76 (0.61–
0.91) for PD-L1 and 0.75 (0.59–0.91) for mRNA expression of
CD274 exon 1–2. These findings were similar using the iRECIST
category of DCR (CR/PR/SD, n = 30 and PD, n = 19).
Furthermore, PD-L1 expression (P = 0.015) and high CD274
mRNA expression (P = 0.038) predicted responses to
immunotherapy with AUCs of 0.70 (0.55–0.86) and
0.68 (0.53–0.83), respectively. In GC, the expression of PD-L1
April 2022 | Volume 12 | Article 856444
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(P = 0.002) and high CD274 mRNA expression (P=0.041) were
significantly associated with the response to immunotherapy. In
UC, the expression of PD-L1 (P = 0.147) and high CD274 mRNA
expression (P=0.008) did not reach statistical significance in
predicting response to immunotherapy (Figure 3A). The ROC
curve for the predictive performance of PD-L1 IHC and mRNA
expression of CD274 at exon 1–2 was discriminatory. In GC, the
AUC and 95% confidence intervals (CIs) were 0.80 (0.63–0.97)
for PD-L1 and 0.69 (0.47–0.92) for mRNA expression of CD274
exon 1–2. In UC, the AUC and 95% Cis were 0.68 (0.36–0.99) for
PD-L1 and 0.87 (0.67–1.00) for mRNA expression of CD274
exon 1–2 (Figure 3B). These findings were similar using the
iRECIST category of DCR (CR/PR/SD, n = 15 and PD, n = 18) in
GC. PD-L1 expression (P = 0.008) and high CD274 mRNA
Frontiers in Oncology | www.frontiersin.org 4276
expression (P = 0.017) predicted responses to immunotherapy
with AUCs of 0.73 (0.56–0.90) and 0.71 (0.53–0.90), respectively,
in GC. In UC, anti-PD-1/PD-L1 responders (n = 15) and non-
responders (n = 1) were identified using the iRECIST category of
DCR. PD-L1 expression (P = 0.375) and high CD274 mRNA
expression (P = 0.250) predicted responses to immunotherapy
with AUCs of 0.67 (0.43–0.91) and 0.90 (0.71–1.00), respectively
(Figures 3C, D).

Correlations Between Survival and
PD-L1 Immunohistochemical and
qRT-PCR Results
The PFS was closely associated with PD-L1 expression (P =
0.018) and high CD274mRNA expression spanning the exon 1–2
FIGURE 1 | Representative PD-L1 immunohistochemical staining in GC and SP142 in UC. Combined positive scores of 95 (A), 25 (B) and 0 (C) in GCs with 22C3
pharmDx. Immune cell scores of 40 (D), 20 (E) and 0 (F) in UCs with Ventana PD-L1 (SP142) assay. Magnification in all images, 20×. GC, gastric cancer; UC,
urothelial carcinoma.
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A

B

C

FIGURE 2 | Correlations between PD-L1 scores and CD274 mRNA expression. (A) Correlations between (A) PD-L1 scores and CD274 exons 1–2, 3–4, and 5–6 in
all GC and UC. (B) PD-L1 combined positive score and CD274 mRNA expression in GC. (C) PD-L1 immune scores and CD274 mRNA expression in UC. GC, gastric
cancer; PD-L1, programmed death-ligand 1; UC, urothelial carcinoma.
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junction (P = 0.010) in GC (Figure 4A). The association was also
similar between DSS and PD-L1 expression (P = 0.047).
However, DSS was not significantly associated with mRNA
expression (P = 0.134); Figure 4B). The expression of PD-L1
was significantly associated with PFS (P = 0.016) and DSS (P =
0.009) in UC, whereas the CD274mRNA expression at exon 1–2
junction did not significantly correlate with PFS and DSS
(Supplementary Figure S3).

Clinical Value of PD-L1 IHC and qRT-PCR
The clinical value of PD-L1 assessment with IHC and qRT-PCR
was compared using the standard parameters of sensitivity,
specificity, PPV, NPV, and accuracy (Table 2). We used two
cut-offs for GC samples (CPS ≥ 1% and 10%; RQ ≥ 0.0276 and ≥
0.0772) to ensure the optimal performance to predict responses
for immunotherapy. The CPS ≥ 1% for PD-L1 was the most
sensitive (90%), and qRT-PCR with a RQ cutoff of 0.0722 was the
most specific (100%) in GC. The sensitivity was highest in GC
samples with CPS ≥ 1 (90%) although the PPV was very low
(50%). The sensitivity (66.7%) and specificity (90%) of detecting
UC were higher with qRT-PCR and the AUC values higher than
those in PD-L1 IHC.
DISCUSSION

The expression of PD-L1 is one of the most studied biomarkers to
predict the responses to ICI and one of the most controversial
Frontiers in Oncology | www.frontiersin.org 6278
biomarkers to be introduced into clinical practice (3). Despite
evidence showing that technological and histological variability
limit clinical its utility (2, 22), four IHC-based tests have been
approved for guiding treatment decisions regarding patients with
multiple tumor types. Thewide rangeofFDA-approved assayswith
differential sensitivity and scoring systems (23) and the lack of
harmonization among them(24)have led to confusion inpathology
laboratories (25). In GC, pembrolizumab exhibited favorable
efficacy in PD-L1-positive patients (KEYNOTE-059) (26). Owing
to the results, pembrolizumabwas approved for PD-L1-positiveGC
patients insecond-or later-line treatmentby theFDA.However, the
predictive value ofPD-L1 expression inGCwas challenged byother
clinical trials (27–29). In UC, five PD-1/PD-L1 inhibitors are
approved for treatment of locally advanced or metastatic UC.
Due to restrictions by the FDA, first-line treatment with
Atezolizumab and Pembrolizumab in platinum-ineligible patients
requires PD-L1 IHC. In the second-line setting, all drugs are
approved without PD-L1 IHC testing (30). PD-L1 IHC tests used
in clinical trials of UC immunotherapy include the 28-8 pharmDx
(Nivolumab), the 22C3 pharmDx (Pembrolizumab), Ventana
SP142 (Atezolizumab), and the Ventana PD-L1 SP263 assays
(Durvalumab). Here, we measured PD-L1 mRNA expression
using qRT-PCR and compared the results with FDA-approved
PD-L1 IHC assays for GC and UCs. We found that CD274 mRNA
expression spanning exon 1–2 closely correlated with PD-L1 IHC
and predicted responses to ICIs.

Although PD-L1 IHC measured by IHC is a predictive
biomarker of responses to ICIs (22), whether an alternative
TABLE 1 | Clinicopathological characteristics of patients treated with anti-programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) therapy.

Anti-PD-1/PD-L1 patients, No
(%)

Overall response rate (CR/PR),
(%)

P-
value

Disease control rate (CR/PR/SD),
(%)

P-
value

Overall 49 16 (32.7%) 30 (61.2%)
Age 0.261 0.043
<65 30 (61.2%) 8 (26.7%) 15 (50%)
≥ 65 19 (38.8%) 8 (42.1%) 15 (78.9%)

Sex 0.045 0.001
Male 30 (61.2%) 13 (43.3%) 24 (80%)
Female 19 (38.8%) 3 (15.8%) 6 (31.6%)

Treatment line of
immunotherapy

0.929 0.003

1 20 (40.8%) 7 (35%) 18 (90%)
2 12 (24.5%) 4 (33.3%) 5 (41.7%)
≥3 17 (34.7%) 5 (29.4%) 7 (41.2%)

Immunotherapy
regimen

0.196 0.002

Pembrolizumab containing 16 (32.7%) 8 (50%) 12 (75%)
Nivolumab containing 16 (32.7%) 5 (31.3%) 5 (31.3%)
Atezolizumab containing 13 (26.5%) 3 (23.1%) 12 (92.3%)
Durvalumab containing 4 (8.1%) 0 (0%) 1 (25%)

Gastric cancer 33 10 (30.3%) 15 (45.5%)
PD-L1 CPS cutoff 1 18 9 (50%) 0.007 12 (66.7%) 0.007
qRT-PCR cutoff 0.0276 15 6 (40%) 0.269 10 (66.7%) 0.025
PD-L1 CPS cutoff 10 8 5 (62.5%) 0.023 5 (62.5%) 0.266
qRT-PCR cutoff 0.0722 5 5 (100%) <0.001 5 (100%) 0.008

Urothelial carcinoma 16 6 (37.5%) 15 (93.8%)
PD-L1 IC cutoff 5 6 3 (50%) 0.424 5 (83.3%) 0.182
qRT-PCR cutoff 0.0480 5 4 (80%) 0.018 5 (100%) 0.486
April 2022 | Volume 12 | Article
qRT-PCR, quantitative reverse transcription-polymerase chain reaction; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; CPS, combined
positive score; Bold, a statistically significant correlation with a p-value less than 0.05.
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methodology could validate PD-L1 utility as a predictive
biomarker has remained unclear (3). Much effort has been
directed towards evaluating whether RNA-based PD-L1 assays
could replace PD-L1 IHC as a biomarker to predict responses to
ICI (Table 3) (3, 31–33, 35–38). Unlike IHC, qRT-PCR or RNA
sequencing quantifies the number of mRNA transcripts
expressed in an entire tumor without subjective scoring
methods or cell type discrimination (3). Recently, various
omics-based approaches have been undertaken to identify both
tumor intrinsic and extrinsic factors which can serve as
predictive biomarkers to ICB (39). Wu et al. reported that
high-throughput gene expression data would further help
prioritize important biomarkers and potential therapeutic
targets for combination treatments with anti-PD-1 therapy for
a given cancer type (39). Chen et al. also found that gene
Frontiers in Oncology | www.frontiersin.org 7279
expression profiles between responder and non-responder are
not significantly different for pre-treatment samples, but much
more significantly for on-treatment samples (40). Our results
also confirmed that CD274mRNA expression measured by qRT-
PCR closely correlated with PD-L1 IHC measured using FDA-
approved assays. Kowanetz et al. also showed that CD274mRNA
expression had predictive value for responses to atezolizumab in
UC (41). Although our patient cohort was small, we found that
high CD274 mRNA expression determined by qRT-PCR
predicted the responses of all 49 patients to immunotherapy
with an AUC of 0.75, which was similar to that of PD-L1 IHC
(0.76). Objective qRT-PCR assays are operator independent, and
can resolve major disadvantages associated with PD-L1 IHC
such as assay variance between vendors, subjective assessment by
pathologists, and operator-dependent variations in results (42).
A

B

C

D

FIGURE 3 | Results of qRT-PCR predicted responses to anti- PD-1 checkpoint blockade in GC and UC. (A) PD-L1 and CD274 mRNA expression per iRECIST
ORR categories of responders (CR/PR) and non-responders (PD/SD). (B) Predictive performance of PD-L1 and CD274 mRNA expression determined from ROC
curves in terms of ORR categories. (C) PD-L1 and CD274 mRNA expression levels per iRECIST DCR category of responders (CR/PR/SD) and non-responders with
SD. (D) Predictive performance of PD-L1 and CD274 mRNA expression determined from ROC curves in terms of DCR category. CR, complete response; GC,
gastric cancer; iRECIST, immune Response Evaluation Criteria in Solid Tumors; ORR, objective response rate; PD, progressive disease; PD-L1, programmed cell
death ligand 1; PR, partial response; ROC, receiver operating characteristics; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; SD, stable
disease; UC, urothelial carcinoma.
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Therefore, evaluating CD274mRNA expression by qRT-PCR has
potential as a diagnostic test with easy standardization and a
rapid turnaround time.

One limitation of this study is that it is a single-institutional
retrospective investigation of a relatively small sample of patients
treated with immunotherapy. We plan to validate our results in a
prospective study. Another limitation is that we analyzed
patients with GC and UC treated with various individual and
Frontiers in Oncology | www.frontiersin.org 8280
combined immunotherapeutic agents in the same cohort.
Although gastric and urothelial carcinomas are quite different
in their nature, however, in predicting responses for immunotherapy
using PD-L1 IHC, CPS is used in interpretation and both cancers
were approved relatively early for immunotherapy. Therefore, we
decided to study both gastric and urothelial carcinomas. Future
studies could address this issue by evaluating patients with GC and
UC who receive uniform treatment.
A

B

FIGURE 4 | Survival outcomes and qRT-PCR results of GC treated with anti-PD-1/PD-L1. Kaplan–Meier curves of (A) PFS and (B) DSS of patients with GC treated
with anti-PD-1/PD-L1 according to PD-L1 CPS cut-off 10 and CD274 mRNA expression determined by qRT-PCR with cut-off 0.0722. PFS, progression-free survival;
DSS, disease-specific survival.
TABLE 2 | Comparison of clinical applicability between IHC PD-L1 and qRT-PCR results.

Prediction Method Sensitivity Specificity PPV NPV AUC (95% CI)

Gastric cancer IHC ≥ 1% 90.0% 60.9% 50.0% 93.3% 0.75 (0.58-0.93)
Gastric cancer RQ ≥ 0.0276 60.0% 60.9% 40.0% 77.8% 0.60 (0.39-0.82)
Gastric cancer IHC ≥ 10% 50.0% 87.0% 62.5% 80.0% 0.69 (0.47-0.90)
Gastric cancer RQ ≥ 0.0772 50.0% 100.0% 100.0% 82.1% 0.75 (0.54-0.96)
Urothelial carcinoma IHC ≥ 5% 50.0% 70.0% 50.0% 70.0% 0.60 (0.30-0.90)
Urothelial carcinoma RQ ≥ 0.0480 66.7% 90.0% 80.0% 81.8% 0.78 (0.52-1.00)
A
pril 2022 | Volume 12
AUC, area under ROC curve; IHC, immunohistochemistry; ROC, receiver operating characteristics; RQ, relative quantification; qRT-PCR, quantitative real-time polymerase chain reaction.
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In conclusion, CD274 mRNA expression measured by qRT-
PCR closely correlated with PD-L1 IHC measured using FDA-
approved assays and predicted the responses of patients with GC
or UC to ICBs.
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