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Editorial on the Research Topic
Artificial intelligence in digital pathology image analysis

In the 21st century, cancer is the top cause of death in hospitals and the key limitation of
life expectancy in most countries (Luo et al.). The analysis of medical images including
histopathological slides, radiological images such as magnetic resonance imaging (MRI) and
CT, and ultrasound images, etc. is an essential tool in cancer research, disease diagnosis and
treatment. Moreover, the availability of faster networks and cheaper storage solutions make
these images easier to manage and share, leading to the emergence of digital pathology
images, for example, whole slide imaging (WSI). However, extracting important information
from these images for clinical use requires a big effort from pathologist and is also error-
prone due to inexperience and fatigue. Recently, Artificial intelligence (AI) such as deep
learning (DL) shows clear potential to mine image features from medical images, better
quantitative model disease appearance and hence possibly improve prediction of disease
aggressiveness and patient outcome. The application of AI not only reduces the burden on
pathologists but also saves high costs and time, thus attracting great attention.

In this editorial, we presented an account of how AI has greatly facilitated digital
pathology image analysis as well as other medical image analysis. This editorial is based on
11 research articles, 1 regular review and a methods article, shedding light on the power of AI
to analyze medical images including but not limited to magnetic resonance imaging (MRI),
CT images, and digital pathology images, primarily WSI.

Five research articles use machine learning to construct prediction models based on
pathological and radiological images. Wang D. et al. developed an automated machine-
learning framework for predicting IDH1 mutation status in glioma. In their framework, a
random forest algorithm is applied to select relevant features in regions of interest (ROIs)
extracted from high-resolution pathology slides and multi-sequence MRI scans. The model
integrating histopathological and radiological information can predict glioma IDH genotype
with greater accuracy and reliability (Wang D. et al.). Zhao F. et al. used random forest
combined with hyperparameter tuning for feature selection and radiomics prediction
modeling to distinguish invasive adenocarcinoma (IAC) and minimal invasive
adenocarcinoma (MIA) presenting as ground-glass nodules (GGNs). The result of ROC
curve showed that their model effectively distinguished IAC from MIA presenting as GGNs
and represented a non-invasive, low-cost, rapid, and reproducible preoperative prediction
method for clinical application (Zhao F. et al.). In Wang X. et al.’s study, Mann–Whitney U
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test and least absolute shrinkage and selection operator (LASSO)
were applied for feature preselection and radiomic signature
construction based on CT. SVM-linear models were trained by
incorporating the radiomic signature with clinical characteristics.
Importantly, they chose the optimal model to build a nomogram
which could be useful to preoperatively predict histologic grade in
pancreatic neuroendocrine tumors (Wang X. et al.). Hu et al. also
utilized LASSO to select radiomics signatures. The Logistic
algorithm and a combinatorial modeling approach were used to
establish unimodal radiomics models and multimodal radiomics
models respectively based on tumors and peritumors extracted from
enhanced MRI images. The radiomics signatures of the dual regions
for tumor and peritumor were fund to be of significance to predicty
microvascular invasion risk grades in hepatocellular carcinoma
preoperatively (Hu et al.). Furthermore, through multivariate
logistic regression analysis and statistical analysis, Luo et al.
found that shear wave elastography (SWE) examination, a newly
emerging elastography technique which can display tissue stiffness
in a quantified form to obtain the biological information of the
primary lesion, can be used as a routine auxiliary method of
conventional ultrasonic examination for axillary node metastasis
and the elastic modulus values of SWE had no significant correlation
with the molecular types of breast cancer (Luo et al.).

Several research articles focus on the application of deep-learning in
image analysis for detection, feature extraction, and tissue classification.
Based on whole slide imaging, Tao et al. used deep learning (DL)
including AlexNet, VGG-16, Inception V3, DenseNet-121, ResNet-50,
and MnasNet to classify bone tumors histopathologically in terms of
aggressiveness. The results showed that DL can effectively classify bone
tumors similar to senior pathologists, which is promising and would
help expedite the future application of DL-assisted histopathological
diagnosis for bone tumors (Tao et al.). The most of traditional DL
models were also applied in Guo et al.’s study for automatically
detecting circulating tumor cell (CTC) which is a critical biomarker
for cancer diagnosis and prognosis based on immunofluorescence in
situ hybridization (imFISH) images. Additionally, they used transfer
learning to improve the prediction performance and save computing
resources. Both DL and transfer learning detected CTCs with high
sensitivity (Guo et al.). Xu Y. et al. evaluated DL model for predicting
tumor invasiveness of ground-glass nodules (GGNs) through analyzing
time series CT images (baseline CT and 3-month follow-upCT images).
They also evaluated the effect of different ROIs on prediction. The DL
model integrating full ROIs that contain both tumor and peritumor
regions from serial CT images showed improved predictive
performance, which could benefit the clinical management of GGNs
(Xu Y. et al.). Moreover, Berberine was found to Suppress stemness and
tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A
methylation in Zhao Z. et al.’s study by experiment (Zhao Z. et al.).

Notably, four articles proposed novel DL models to better
analyze medical images based on existing algorithm. Luan et al.
proposed a neural network (S-Net) which obtained more semantic
information with the introduction of an attention mechanism and
long jump connection, thus effectively improving the effect of liver
tumors’ automated segmentation from CT images (Luan et al.). Xu
F. et al. built a DL core-needle biopsy (DL-CNB) model on the
attention-based multiple instance-learning frameworks to predict
axillary lymph nodemetastasis in early breast cancer utilizing the DL
features, which were extracted from the cancer areas of WSIs of

breast CNB specimens annotated by two pathologists. And the
interpretation of DL-CNB model showed that the top signatures
most predictive of ALNmetastasis were characterized by the nucleus
features (Xu F. et al.). Based on the Residual Network (ResNet)
model, Liu et al. proposed a deep learning method, DeepHE. On
images of tissue, DeepHE can efficiently identify and analyze
characteristics of tumor cells to predict the Tumor mutational
burden (TMB) avoiding whole-exome sequencing which is a
standard but costly and inefficient method to measure TMB (Liu
et al.). Yang et al. proposed a novel deep learning framework to
predict the benign and malignant thyroid nodules accurately. They
first trained a ResNet18 model by an ultrasound image dataset.
Gradient-weighted Class Activation Mapping (Grad-CAM) was
then proposed to highlight sensitive regions, extracting the
sensitive regions and analyzing their shape features. Shape
features of the sensitive regions were helpful in diagnosis to a
great extent (Yang et al.).

Finally, the review article summarized process and key steps of
current pathological image processing including image
preprocessing, image segmentation, feature extraction and model
construction, to help researchers choose more suitable medical
image processing methods and predict cancer-related biomarkers
more accurately (Xie et al.).

In conclusion, the articles in this Research Topic show how AI is
applied to analyze medical images including digital pathology
images. For fully utilizing data from various pathological and
radiological images to gain insights into disease, the applications
of AI are becoming more relevant every day.
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Purpose: Accurate segmentation of liver and liver tumors is critical for radiotherapy. Liver
tumor segmentation, however, remains a difficult and relevant problem in the field of
medical image processing because of the various factors like complex and variable
location, size, and shape of liver tumors, low contrast between tumors and normal tissues,
and blurred or difficult-to-define lesion boundaries. In this paper, we proposed a neural
network (S-Net) that can incorporate attention mechanisms to end-to-end segmentation
of liver tumors from CT images.

Methods: First, this study adopted a classical coding-decoding structure to realize end-
to-end segmentation. Next, we introduced an attention mechanism between the
contraction path and the expansion path so that the network could encode a longer
range of semantic information in the local features and find the corresponding relationship
between different channels. Then, we introduced long-hop connections between the
layers of the contraction path and the expansion path, so that the semantic information
extracted in both paths could be fused. Finally, the application of closed operation was
used to dissipate the narrow interruptions and long, thin divide. This eliminated small
cavities and produced a noise reduction effect.

Results: In this paper, we used the MICCAI 2017 liver tumor segmentation (LiTS) challenge
dataset, 3DIRCADb dataset and doctors’ manual contours of Hubei Cancer Hospital
dataset to test the network architecture. We calculated the Dice Global (DG) score, Dice per
Case (DC) score, volumetric overlap error (VOE), average symmetric surface distance
(ASSD), and root mean square error (RMSE) to evaluate the accuracy of the architecture for
liver tumor segmentation. The segmentation DG for tumor was found to be 0.7555, DCwas
0.613, VOE was 0.413, ASSDwas 1.186 and RMSE was 1.804. For a small tumor, DGwas
0.3246 and DC was 0.3082. For a large tumor, DG was 0.7819 and DC was 0.7632.

Conclusion: S-Net obtained more semantic information with the introduction of an
attention mechanism and long jump connection. Experimental results showed that this
method effectively improved the effect of tumor recognition in CT images and could be
applied to assist doctors in clinical treatment.

Keywords: liver tumor, automatic segmentation, attention mechanism, CT images, deep learning
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Luan et al. Adaptive Attention Convolutional Neural Network
INTRODUCTION

Currently, liver cancer is the fifth most common malignancy and
the second-leading cause of cancer-related death worldwide (1,
2). An accurate contour of the location, volume, and shape of
liver tumors can help radiotherapists develop precise treatment
plans. At the present time, there are several barriers to automated
segmentation of liver tumors. Lesion tissue is often uniformly
gray in color, which hinders automatic segmentation. Some
lesions do not have clear boundaries, which limits the
performance of edge segmentation methods. The specificity of
lesions exists in different samples of tumors, which vary in
location, size, shape, and volume. This presents further
challenges to the process of segmentation. On account of these
variables, automatic segmentation of tumors from the liver is a
difficult task.

To solve these problems, researchers have proposed different
segmentation methods, including the regional growth method,
deformation model method, intensity threshold method, and the
watershed algorithm. Each of these methods has individual
strengths and limitations (1–9). When compared with
traditional segmentation methods, fully convolutional neural
networks (FCNs) have shown powerful efficacy in segmenting
liver tumors. Many researchers have introduced deep learning
into the liver tumor segmentation problem and found
positive results.

Since U-Net was proposed by Ronneberge (10) in 2015, it has
become the most common convolutional neural network
architecture in medical image segmentation. Because of this
finding, more U-Net derived networks were developed like the
H-DenseUnet proposed by Li et al. (11) This combines U-Net
with DenseNet (12) to explore the intra- and inter-slice features.
U-Net++ proposed by Zhou (13) uses full-scale hopping
connectivity and deep supervision to fuse high-level semantic
information with low-level semantic information from feature
maps at different scales and to learn hierarchical representations
from multiscale aggregated feature maps. The coding-decoding
network, proposed by Ginneken et al. (14), improved the
accuracy of liver tumor sketching followed by shape-based
post-processing to refine liver tumor margins. Roth proposed a
two-stage coarse-to-fine 3D FCN. Roth HR et al. (15) proposed a
two-dimensional (2D) FCN that fused three orthogonal planes to
generate voxel predictions by averaging the probabilities of the
three different planes.

Along with the development of different architectures of
convolutional neural networks, some special modules have
been proposed like the integrated attention gate (attention U-
Net) by Oktay et al. (16) This network suppresses the task-
irrelevant part and enhances the learning of the task-relevant
part. This greatly improved the performance of semantic
segmentation. Fu et al. (17) proposed DANet, a dual-attention
mechanism that used network fusing channel attention and
location attention to infer attention concentrated regions from
two specific and mutually independent dimensions. This
improved the segmentation accuracy of the model. Woo et al.
(18) proposed a network called Convolutional Block Attention
Frontiers in Oncology | www.frontiersin.org 28
Module (CBAM) fusing spatial attention mechanism and
channel attention mechanism. The overall architecture of the
attention mechanism (19–21) is light and easy to integrate into
neural networks and engage in model training end-to-end.

Although the existing algorithms have made significant
achievements in liver tumor segmentation, some networks still
have large and cumbersome structures. Other networks do not
effectively fuse the spatial feature information captured in the
down-sampling phase with the up-sampling phase. This leads to
disregarding the spatial architecture of the network. To address
these problems, this study proposes a small, lightweight, end-to-
end, convolutional neural network of S-Net with the fusion of
spatial features and attention mechanisms. The contributions of
this paper include the following:

1. Proposing a pre-processing means of pixel point-to-point
flipping to improve the accuracy.

2. Using small convolutional kernels and multiple batch
processing to extract smaller semantic information.

3. Using a long-hop connection between the encoder and
decoder to fuse spatial features and high-level semantic
features.

4. Introducing attention mechanisms in neural networks to
encode a longer range of semantic information in local
features and to find correspondences between different
channels.

Throughout this paper, researchers used the LITS dataset, as
shown in Figure 1. Figure 1A shows the original image sample
with the liver region in the red dashed line, and Figure 1B shows
the processed liver image sample with the tumor region in the
shaded part in the red dashed line. The white image in Figure 1C
is the tumor label of the original sample.

This paper is structured as follows: Section I introduces the work
on liver tumor segmentation, Section II describes the research
methods of this paper, Section III gives the experimental results,
and Section IV presents the conclusion and summary.
MATERIALS AND METHODS

Algorithm Flow
The main process of the algorithm in this study included three
stages: pre-processing, tumor segmentation, and post-
processing Figure 2.

In the pre-processing stage, we discussed basic processing
means, such as image scaling deformation, grayscale floating,
pixel normalization to eliminate overfitting, pixel flipping to
change the image grayscale value, and point-to-point to flip the
pixel grayscale. Image scaling deformation includes the rotation,
mirroring, translation, and affine transformation of each layer of
the CT image with its corresponding contour outline. Image
grayscale float multiplies the grayscale values of all pixel points
on the image by a random number between 0.8 and 1.2, and then
superimposes a random number between -0.2 and 0.2. The pixel
point-to-point flip first divides each pixel point of the foreground
August 2021 | Volume 11 | Article 680807
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image by 255 to obtain a new pixel point and then subtracts the
new pixel point by the value 1. This value is multiplied by 255 to
achieve the function of the grayscale flip. The image after the
point-to-point flip is shown in Figure 3.

In 2D sections of some samples, the overlap of Hounsfield
unit (HU) values between the liver and tumor leads to poor
training and makes the network model misleading, especially
during the learning process. As a result of this, we used the
critical threshold method throughout this study to remove the
sample cuts with low contrast to increase the learning ability of
the network. Figure 4 shows the two cuts with strong and low
contrast, as well as the HU diagram. In the post-processing stage,
we performed noise reduction through the closed operation.

S-Net Network Architecture
This study proposed a novel convolutional neural network of
S-Net based on 2D U-Net, as displayed in Figure 5. The
Frontiers in Oncology | www.frontiersin.org 39
architecture introduced an attention mechanism based on
U-Net while using a typical encoding and decoding structure.
In this structure, the left path is the contraction path (encoder)
from top to bottom and the right path is the expansion path
(decoder) from bottom to top. Because the target area of some
samples was small, it was difficult to extract the semantic
information in them. Therefore, we used small convolutional
kernels and multiple batch processing for training. To extract
deeper semantic information, the number of convolutional
kernel channels of the contraction path was gradually
increased. The feature map size gradually decreased in the
down-sampling phase by reason of the pooling layer. In the
up-sampling stage, the pooling layer was changed to an up-
sampling layer because of the expansion path. This helped to
recover the resolution of the original image. In addition, the
number of convolutional kernel channels was gradually reduced
to achieve end-to-end segmentation. At the intersection of
A B C

FIGURE 1 | CT image sample with liver and liver tumors. (A) Images in LITS dataset. (B) Liver image. (C) Tumor label.
FIGURE 2 | The 2017 LiTS public dataset with a total sample of 131 patients. In this study, we adaptively partitioned the entire sample into 100 training samples, 10
validation samples, and 21 test samples. The training samples are pre-processed, and the test samples are used to evaluate the segmentation effect of the network model.
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contraction and expansion paths, we introduced a spatial
attention mechanism and a channel attention mechanism to
enable the network to encode longer-range semantic information
in local features and to find correspondences between different
Frontiers in Oncology | www.frontiersin.org 410
channels. We introduced the long-hop connection between the
layers of the contraction path and the expansion path so that the
semantic information extracted in the contraction path was fused
with the semantic information extracted in the expansion path.
FIGURE 3 | After pixel point-to-point flipping, the liver turns gray, the tumor turns white, and the area outside the liver is black.
FIGURE 4 | The left panel is a high-contrast section and the right panel is a low-contrast section. Blue is the liver HU value and green is the tumor HU value.
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The Convolutional Attention Module is a simple and effective
attention module for feed-forward convolutional neural
networks. The overall architecture is shown in Figure 6. The
attention module inferred attentional regions along two specific
and mutually independent dimensions, multiplied the channel
attention mechanism with the spatial attention mechanism, and
Frontiers in Oncology | www.frontiersin.org 511
adaptively optimized the local features. Because the attention
mechanism architecture was small and lightweight, it could be
seamlessly integrated into any network architecture and could be
trained end-to-end along with neural networks.

We used the channel attention module illustrated in Figure 7
to find the dependencies between different channels and to
FIGURE 5 | S-Net network architecture diagram.
FIGURE 6 | Overall architecture of the attention mechanism.
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enhance the dependent features. It focused mainly on the region
of interest of the input image and compressed the spatial
dimension of the input feature map. The module used the
average pooling layer Fc

avg and the maximum pooling layer
Fc
max to extract semantic information between channels. The

shared network consisted of multiple layers of perceptrons. The
workflow of the module is described as follows:

Maximum Pooling and Average Pooling Feature Maps: We
used the maximum pooling layer to select the maximum value of
the image region as the pooled value of the region. This
eliminated nonextreme values and reduced the complexity of
the upper-layer calculation. In addition, this layer could achieve
translation invariance. The average pooling layer calculated the
average value of the image region as the pooled value of the
region. This could fade the combination of the relative positions
between different features. Passing the pooled output through
multiple layers of perceptrons: The multilayer perceptron played
the role of a dimensional transformer. It converted high-
dimensional information into low-dimensional information
while preserving useful information. After a SoftMax function:
Frontiers in Oncology | www.frontiersin.org 612
The attentional mechanism was nonequivalent to the input of
the overall sample. The channel attention module analyzed the
weight of all input channels of a certain feature map and
automatically selected the channels that need to be
emphasized. The model set higher weights where necessary
and smaller weights for those channels that were not
emphasized. We used the SoftMax function to generate the
probability of the importance of each channel.

The spatial attention module shown in Figure 8 allowed the
network to encode a longer range of semantic information in
local features. Unlike the channel attention module, spatial
attention focuses on the “where” as the most informative piece
of information and complements channel attention. We applied
the average pooling and maximum pooling operations along the
channel axes and concatenated the operations to produce valid
feature descriptors. With these descriptors, the channel
information was merged to produce two feature maps: Fc

avg ,
FS
max . The workflow of the spatial attention module is described

as follows. maximum pooling and average pooling were done
along the channel level to compress the image of N channels of
FIGURE 7 | Structure diagram of channel attention module.
FIGURE 8 | Architecture diagram of spatial attention module.
August 2021 | Volume 11 | Article 680807

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luan et al. Adaptive Attention Convolutional Neural Network
HxW into a single channel of HxW. The 1x1 convolution layer
was a linear combination of each pixel on different channels that
retained the original planar structure of the feature map. It only
changed the number of channels, thus achieving both up and
down dimensional functions. The final attention map was
normalized by the SoftMax function.
RESULTS

Evaluation Index and Experimental Result
To demonstrate the effectiveness of the algorithm, we conducted
experiments on the LITS dataset, in which all image data was
collected from academic and clinical institutions worldwide,
including the data of 131 liver cancer patients. The number of
layers per CT scan varied between 42 and 1026 for each sample,
whereas the pixel size of each CT layer was 512 × 512 pixels. The
number of liver tumors in each sample ranged from 0 to 75 and
the size of tumors ranged from 38mm3 to 349 mm3.

To evaluate the effectiveness of S-Net, researchers calculated
the overlap measure according to the evaluation of LITS dataset,
including Dice Global (DG) score, Dice per Case (DC) score,
volumetric overlap error (VOE), average symmetric surface
distance (ASSD), and root mean square error (RMSE). The Dice
Global (DG) score is applied across all cases if they combine in a
single volume, while the Dice per Case (DC) score refers to an
average Dice score per volume. The mask labels provided by the
LiTS dataset, 3DIRCADb dataset and doctors’manual contours of
Hubei Cancer Hospital dataset are defined as the gold standard.
The Dice score can be formulated as:

Dice(A,B) =
2 A ∩ Bj j
Aj j + Bj j

In this formula, A represents predicted results while B
represents true annotations. The loss function, Loss, was
calculated using the formula:

Loss = 1 − Dice(A,B)

The DC, DG, VOE, ASSD and RMSE for this study were
found to be 0.613, 0.755, 0.413, 1.186, 1.703, respectively. These
values of this paper’s network architecture and three different
Frontiers in Oncology | www.frontiersin.org 713
network architectures (U-Net, DenseNet, and ResNet) were
measured separately using the LiTS dataset as shown in
Table 1. The models in the experiments all used 2D
convolutional neural networks. When compared with the
U-Net network, the DC value is improved by 0.099, the DG
value was improved by 0.112, the VOE value is declined by 0.12,
the RMSE is declined by 0.574. When compared with the three
networks, these values were also found to show significant
improvement. These values of different networks were also
improved after applying the post-processing method.

Experimental Details and
Parameter Settings
In this study, we adaptively partitioned all samples into 100
training samples, 10 validation samples, and tested our trained
model from the LITS dataset on 3DIRCADb dataset and Hubei
Cancer Hospital dataset. The 3DIRCADb datasets are composed
of 20 CT scans, where 15 cases have hepatic tumors in the liver.
The Hubei Cancer Hospital datasets included 20 enhanced CT
scans of hepatic carcinoma with contrast from radiology
department of Hubei Cancer Hospital. The auto-delineation
results of this study used by Hubei Cancer Hospital dataset are
shown in Figure 11. The training samples were pre-processed
and the test samples were used to evaluate the segmentation
effect of the network architecture.

We built the network architecture using Keras, with an
NVIDIA Tesla P100 graphics card, and trained the network
using a momentum gradient optimizer. We found initial learning
rate to be 0.01, When the loss rate of the verification set did not
decrease in three cycles, the learning rate was automatically
reduced. A total of 200 cycles were trained. The set of weights
with the highest Dice coefficients on the validation set was
saved as the set of weights used for the testing phase. The
activation function was a linear correction unit (RELU). The
Dice and Loss values for training and validation are shown
in Figure 9.

Auto-Delineation Results
Figure 10 shows the 2D visualizations of the auto-segmented
contours for selected two CT scans from LiTS dataset. Green
lines represent predicted results by S-Net model, while the red
ones are gold standard. As can be seen from the figures, the auto-
TABLE 1 | Liver tumor segmentation results by S-Net, and U-Net, DenseNet and ResNet.

Model Dice per case (DC) Dice global (DG) volumetric overlap
error (VOE)

average symmetric
surface distance (ASSD)

root mean square
error (RMSE)

U-Net (10) 0.514 0.643 0.533 1.763 2.378
U-Net and post-processing 0.525 0.651 0.527 1.759 2.372
DenseNet (22) 0.504 0.612 0.557 1.862 2.765
DenseNet and post-processing 0.513 0.623 0.546 1.831 2.755
ResNet (23) 0.503 0.631 0.431 1.279 2.076
ResNet and post-processing 0.512 0.642 0.427 1.254 2.059
S-Net 0.613 0.755 0.413 1.186 1.804
S-Net and post-processing 0.647 0.761 0.409 1.177 1.801
August 2021 | Volume
Compared with U-Net, DenseNet and ResNet, the S-Net proposed in this paper has a higher DC value and DG value, lower VOE value, RVD value, ASSD value and RMSE value. The
meaning of the bold values are best results.
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segmentations were close to the gold standard delineations,
especially for the large liver lesions. The small and multiple
lesions, marked by the blue arrows in figures, the overlapped
regions slightly reduced. Therefore, the S-Net model could well
segment the liver and liver tumors, but as for small and multiple
tumors, it still needs more attention to enhance.
DISCUSSION

In this study, researchers proposed a novel convolutional neural
network called S-Net to auto-segmentate liver tumors. The
Frontiers in Oncology | www.frontiersin.org 814
evaluation metric DC, DG, VOE, ASSD and RMSE were found
to be 0.613, 0.755, 0.413, 1.186 and 1.804 respectively. The novel
network S-Net was able to outperform other networks like
U-Net, DenseNet, and ResNet. In addition, we proposed a pre-
processing method of pixel point-to-point flipping, which
improved the contrast of the HU values of CT sections, made
the network learn useful information more easily. Unlike existing
FCN network architectures, this architecture had the following
two features:

1. Ability to add spatial attention mechanism and channel
attention mechanism between encoder and decoder. The
FIGURE 9 | Dice and Loss values for training and verification.
FIGURE 10 | Green contour shows the predicted results by S-Net models, while red shows the gold standard. The small and multiple lesions, marked by the blue arrows.
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spatial attention mechanism allowed the network to encode a
longer range of semantic information in local features,
whereas the channel attention mechanism found
correspondences between different channels. In practice,
the attention mechanism allowed the network to fully focus
on the learning area, which greatly improved the accuracy of
segmentation.

2. Long-hop connections increased the fusion rate of spatial
feature information in the network, which could aid in the
transfer of different spatial feature information from layer to
layer.

On the basis of the 2017 LITS dataset, which tested the
learning ability of the network, we concluded that the S-Net
used in this study improved DC and DC values when compared
with the U-Net network. DG and DC values were improved by
0.112 in and 0.117 in, respectively. When compared with cutting-
edge algorithms like the cascaded FCN architecture proposed
by Bellver et al. (24), these values improved by 0.015 and 0.023,
Frontiers in Oncology | www.frontiersin.org 915
respectively. When compared with the convolutional neural
network incorporating spatial feature information proposed
by Liu et al. (21), the DC value was improved by 0.021. The
proposed network has a higher Dice value compared with Kaluva
(25) and Pandey (26) et al., who added a residual structure to the
conventional U-shaped structure to segment the tumor. The
main reason for the improvement of segmentation accuracy
is that this architecture adopted a canonical code-decode
structure. It also integrated an attention mechanism based on
the original U-Net network and used small, convoluted kernels
to extract small amounts of semantic information. This
architecture used a modular approach to gradually increase the
number of convoluted kernel channels that extract deeper
semantic information, thus improving the accuracy of
segmentation. These results are shown in Table 2.

We mainly selected the results based on 2D model (14, 25–27,
29), except for some 3D model results by Li and Liu (11, 28). The
proposed S-Net with the fusion of spatial features and attention
mechanisms, outperformed than other 2D models. Indeed, the
TABLE 2 | Liver tumor segmentation results compared with other methods on the LiTS test dataset.

Model Dice per case (DC) Dice global (DG) volumetric overlap
error (VOE)

average symmetric
surface distance (ASSD)

root mean square
error (RMSE)

Chlebus et al. (14) 0.580 — — — —

Song et al. (27) 0.569 0.751 0.437 1.702 —

Kaluva et al. (25) 0.492 0.625 0.411 1.441
Pandey et al. (26) 0.587 — — — —

Bi et al. (26) 0.500 — — — —

T Liu al (28). 0.592 0.764 0.416 1.585 —

Li et al. (11) 0.722 0.824 0.497 0.529 1.111
Our S-Net 0.613 0.755 0.413 1.186 1.804
August 2021 | Volume
The DC, DG, Precision of other methods are obtained from the LITS leaderboard. The S-Net achieves much better performance in the precision score of liver tumors. The bold digitals
denote the best results.
FIGURE 11 | The auto-delineation results of this study used by Hubei Cancer Hospital dataset. Green contour shows automatic results, while red shows the gold standard.
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LiTS Leaderboard currently shows many higher DC and DG
scores than those in the manuscript, especially the highest DC
and DG by user ‘liver_seg’ were 0.7990 and 0.8500 respectively.
Although some of the results are very high, there are still some
reasons why we do not choose to repeat them. Firstly, it remains
difficult to give recommendations about the exact network
design, since the number and order of CNN layers and other
hyperparameters were rough ideas instead of strict, proven
guidelines. Secondly, the use of 3D architectures outperformed
than the 2D ones, but in clinical practice they were not widely
implemented due to memory constraints. Thirdly, more
standard contour datasets will improve the segmentation
accuracy, because state-of-art methods highly benefit from
larger training datasets.

To demonstrate the applicability of our method in clinical
practice, in this study we tested our trained model from the LiTS
datasets on the new 3DIRCADb and Hubei Cancer Hospital
datasets as shown in Table 3. The auto-delineation results of this
study used by Hubei Cancer Hospital dataset are shown in
Figure 11. And it achieved the slightly decreased results on
tumor segmentation, with 0.578 on DC, 0.706 on DG, 0.576
on VOE and 1.673 on ASSD in 3DIRCADb dataset, with 0.527
on DC, 0.654 on DG, 0.594 on VOE and 1.862 on ASSD in Hubei
Cancer Hospital dataset. The auto-segmentation results of
3DIRCADb dataset and Hubei Cancer Hospital dataset
indicated the robustness of S-Net. Although the evaluation
metric slightly decreased, it can effectively improve the effect of
tumor recognition in CT images and could be applied to assist
doctors in clinical treatment. If more datasets from different
clinical centers are added for training, it is believed that the
accuracy could be further increased.

A threshold of 0.2 was used to distinguish large tumors from
small ones. We calculated tumor size by aggregating the tumor
voxels in each real CT image. We did this to further understand
the performance metrics of the network and to analyze the
accuracy of the S-Net architecture in identifying the tumor size
of different patients. The voxel values of the 21 CT tumors in the
test set are shown in Figure 12. We found the tumor sizes in this
data set to be widely variable. To facilitate experimental
development, the data set was partitioned into a large tumor
group and a small tumor group. This was determined by the
Frontiers in Oncology | www.frontiersin.org 1016
orange line. We have used Baseline values to shows the
effectiveness of our network in small and large tumors,
Baseline is the 2D U-Net Table 4. The DC value and DG value
of the two sample groups were tested separately. These results are
shown in Table 4. From Table 4, It can be clearly observed that
the large tumor achieves 0.0469 (Dice per case) accuracy
improvements while the score for the small-tumor group is
slightly advanced, with 0.0353 (Dice per case). From the
comparison, we claim that the main reasons for the improve in
Dice value is by adopting adaptive attention convolutional neural
network, which can notice different dimension of semantic
information. As a result, the accuracy of segment large tumor
will be improved considerably. But semantic information
of small tumors are more difficult to extract, so segmentation
for small tumors have limited improvement. This is because
many small lesions only occupying a few voxels, and it’s difficult
to distinguish the surrounding pixels in the lesion border. In
addition, the difference in the HU value of liver and tumor may
affect the segmentation accuracy.
FIGURE 12 | The number of tumor voxels per patient in the test dataset. The
orange line was used to distinguish between a large tumor group and a small
tumor group.
TABLE 3 | Tested our trained model from the LITS dataset on 3D-IRCADb dataset and Hubei Cancer Hospital dataset.

Dataset Dice per case (DC) Dice global (DG) volumetric overlap error (VOE) average symmetric surface (ASSD)

3D-IRCADb 0.578 0.706 0.576 1.673
Hubei Cancer Hospital 0.527 0.654 0.594 1.862
Augu
TABLE 4 | The effectiveness of our network to small and large tumors segmentations.

Small tumors large tumors

Dice per case Dice global Dice per case Dice global

Baseline 0.2613 0.2917 0.7279 0.7548
S-Net 0.3082 0.3246 0.7632 0.7819
st 2021 | Volume 11 | A
As can be seen from the table. The segmentation accuracy of large tumors are better than that of small tumors. Baseline is the 2D U-Net with trained model.
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To tackle with the small and multiple liver tumor
segmentation problem, several methods were proposed. Li
et al. used perceptual generative adversarial networks (GANs)
to generate super-resolved representation for small object by
revealing the intrinsic structural correlations between small and
large objects (30). Kamnitsas et al. proposed a multi-scale 3D
CNN with fully connected CRF for small brain lesion
segmentation (31). Some post-processing methods utilize a
custom criteria of removing lesions as noise if they have large
variation between adjacent slices, because the size of lesions
usually increase/decrease gradually with image slices up-and-
down (32). A new loss function combined with Dice score and
focal loss was better for segmenting small-volume structures
such as optic nerves and chiasm (33). In summary, GANs, multi-
scale representation, new loss function and custom post-
processing methods may be the potential solution to overcome
this challenging problem (34). This should be explored further in
future studies.
CONCLUSION

In this study, an automatic CT image segmentation method
based on S-Net network architecture used to automatically
segment liver tumors from CT images was proposed. This
study focused on the attention mechanism and the fusion of
semantic information at different spatial dimensions. In this
research, experiments based on the LITS dataset demonstrated
that the methods discussed in this paper could improve the
effect of automatic tumor segmentation in CT images. A
drawback is that this algorithm was not effective in segmenting
small tumors and multiple tumors. Future research will focus on
the problem of case segmentation of small tumors and multiple
tumors along with application of deep learning to clinical
adjuvant therapy.
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Introduction: Tumors are continuously evolving biological systems which can be
monitored by medical imaging. Previous studies only focus on single timepoint images,
whether the performance could be further improved by using serial noncontrast CT
imaging obtained during nodule follow-up management remains unclear. In this study, we
evaluated DL model for predicting tumor invasiveness of GGNs through analyzing time
series CT images

Methods: A total of 168 pathologically confirmed GGN cases (48 noninvasive lesions and
120 invasive lesions) were retrospectively collected and randomly assigned to the
development dataset (n = 123) and independent testing dataset (n = 45). All patients
underwent consecutive noncontrast CT examinations, and the baseline CT and 3-month
follow-up CT images were collected. The gross region of interest (ROI) patches containing
only tumor region and the full ROI patches including both tumor and peritumor regions
were cropped from CT images. A baseline model was built on the image features and
demographic features. Four DL models were proposed: two single-DL model using gross
ROI (model 1) or full ROI patches (model 3) from baseline CT images, and two serial-DL
models using gross ROI (model 2) or full ROI patches (model 4) from consecutive CT
images (baseline scan and 3-month follow-up scan). In addition, a combined model
integrating serial full ROI patches and clinical information was also constructed. The
performance of these predictive models was assessed with respect to discrimination and
clinical usefulness.

Results: The area under the curve (AUC) of the baseline model, models 1, 2, 3, and 4
were 0.562 [(95% confidence interval (C)], 0.406~0.710), 0.693 (95% CI, 0.538–0.822),
0.787 (95% CI, 0.639–0.895), 0.727 (95% CI, 0.573–0.849), and 0.811 (95% CI, 0.667–
0.912) in the independent testing dataset, respectively. The results indicated that the
peritumor region had potential to contribute to tumor invasiveness prediction, and the
model performance was further improved by integrating imaging scans at multiple
timepoints. Furthermore, the combined model showed best discrimination ability,
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with AUC, sensitivity, specificity, and accuracy achieving 0.831 (95% CI, 0.690–0.926),
86.7%, 73.3%, and 82.2%, respectively.

Conclusion: The DL model integrating full ROIs from serial CT images shows improved
predictive performance in differentiating noninvasive from invasive GGNs than the model
using only baseline CT images, which could benefit the clinical management of GGNs.
Keywords: ground-glass nodules (GGNs), deep learning - artificial neural network (DL-ANN), computed
tomography, follow-up, convolutional neural network
INTRODUCTION

Lung cancer is one of the most fatal cancers worldwide, and
pulmonary nodules may represent early lung cancers. The
National Lung Screening Trial and Dutch-Belgian Randomized
Lung Cancer Screening Trial demonstrated that early lung
cancer screening programs using low-dose computed
tomography (CT) of the chest should be implemented globally
(1). With the increasing use of CT screening for lung nodules—
in particular, the extensive application of high-resolution CT
(HRCT)—ground-glass nodules (GGNs) are observed
increasingly often. As HRCT scans of the chest are gradually
emerging as part of a routine physical examination, reasonable
and necessary management of screening-detected and
incidentally detected indeterminate pulmonary nodules
is warranted.

Persistent lung GGNs may represent noninvasive or
invasive adenocarcinoma. The prognosis of noninvasive
lesions (atypical adenomatous hyperplasia (AAH) and
adenocarcinoma in situ (AIS)) is quite different from that
of invasive lesions (minimally invasive adenocarcinoma
(MIA) and invasive adenocarcinoma (IAC)). Moreover,
different pathological subtypes of GGNs vary with respect
to the surgical approaches and clinical nodule management
strategies required. In general, conservative nodule management
is appropriate for noninvasive GGNs, whereas invasive
GGNs are suitable for surgical resection. The overall survival
rate after surgery for noninvasive GGN patients can be close
to 100%, and there is a promising 5-year survival rate of
80%–95% in the case of invasive GGNs. However, they are
characterized by very slow growth, so regular follow-up
management and a wait-and-see policy are advocated by
many experts (2). The Fleischner Society Guidelines for
management of incidental subsolid nodules was published
in 2017 and recommended follow-up intervals ranging from
3 months to several years (3). Guidelines for GGN management
mainly include qualitative characteristics and patient history
(e.g., smoking history and cancer history). Follow-up has a
crucial role in clinical decision-making and assessment of
surgical indication, and is increasingly recommended by
thoracic and pulmonary guidance.

Most previous CT-based quantitative studies have used single
screening images to estimate the invasiveness of GGNs on the
basis of size, density, and mass volume (4, 5). However, there are
known limitations to this approach owing to inter- and
intraobserver variability in morphological features of GGNs.
220
Nevertheless, in short-term follow-up, it is difficult to evaluate
the invasion characteristics of GGNs based on morphological
characteristics such as volume-doubling time and mass volume
(6). In recent years, artificial intelligence has achieved great
progress in the automatic quantitative image characterization
of medical images; in particular, deep learning (DL) algorithms
have proved to be versatile and efficient (1, 7). The clinical
application of AI is currently extensive. The image-based AI can
be used to distinguish the tissues of a COVID-19 patient and
assessed the severity of their infection. Additionally, DL
model can exhibit superior performance to that of general
physicians and general orthopedic surgeons on shoulder
radiographs in fracture datasets (8, 9). Owing to its favorable
performance, DL has been widely used for the early detection,
molecular subtype diagnosis, and prognosis prediction of
GGNs. Several previous studies have reported the application
of DL in predicting tumor invasiveness of GGNs. However,
those studies only focused on the development of CT imaging
biomarkers from a single timepoint, none of them had used
serial CT images including the follow-up scans (10, 11). Since
the evolution of tumor invasiveness is a dynamic biological
progression with stem cell and vascular contributions, CT
scan at a single time point might not capture the tumor
phenotype completely (12–15). Incorporation of serial
CT images from routine follow-up exanimations could be
beneficial to track the phenotypic changes of GGNs and
achieve more accurate diagnosis. There are few reports on
using medical images from multiple time points for diagnosis
(13, 16, 17). To the best of our knowledge, only two studies
have investigated the use of serial CT images with DL
algorithms for diagnosis of nodule malignancy or prognostic
prediction in lung cancer patients (13, 18). Therefore, it is
unclear whether the performance of DL models for predicting
tumor invasiveness of GGNs could be further improved by
using serial CT imaging.

In the current study, we aimed to analyze the characteristics
of lesions based on combined baseline scans and follow-up scan
images via artificial intelligence. We used DL methods—
specifically, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs)—to predict early-stage lung
adenocarcinoma presenting as GGNs by incorporating baseline
and 3-month follow-up CT images. Our results have potential
implications for the use of DL-based analysis of routine follow-
up CT scans in patients with GGNs, as DL can be applied to
predict tumor invasiveness noninvasively and is beneficial in
precision medicine as well as clinical therapy.
September 2021 | Volume 11 | Article 725599

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Artificial Intelligence, Follow-Up, Ground-Glass Nodules
METHODS

Study Population
This study was approved by the institutional ethics committee of
our hospital, and the informed consent requirement was waived.
Data for 1724 patients who underwent CT examinations and were
diagnosed as having GGNs between December 2015 and January
2020 were retrospectively retrieved from the picture archiving and
communication system (PACS). The exclusion criteria were as
follows: (1) the patient did not undergo biopsy or surgery in our
hospital, and tumor invasiveness status was not available (n =
1089); (2) lack of consecutive series of CT scans (n = 297); (3)
incomplete reconstructed thin-slice images (≤ 1.5 mm) or low
image quality (n = 30); (4) patient had received any previous
treatment before CT scan (n = 128); and (5) pleural or mediastinal
adhesion was present and GGNs were difficult to label on CT
images (n = 12). Finally, a total of 168 patients with 168 GGNs [13
atypical adenomatous hyperplasia (AAH), 107 minimally invasive
adenocarcinoma (MIA), 35 adenocarcinoma in situ (AIS), and 13
invasive adenocarcinoma (IAC)] were enrolled, and two
consecutive CT scans within about 3 months (82–109 days,
median 93 days) for each patient were used in this study. The
Frontiers in Oncology | www.frontiersin.org 321
invasiveness of GGNs was later confirmed through pathological
analysis. AAH and AIS were classified as noninvasive lesions, and
MIA and IAC were classified as invasive lesions. The study
workflow is depicted in Figure 1.

CT Image Acquisition
All patients underwent CT scanning at our hospital with the 750
HD CT (Discovery, GE Healthcare, North Richland Hills, TX,
USA) scanner or the 256 multidetector row scanner (Brilliance
iCT, Philips Healthcare, Cleveland, OH, USA). Scan parameters
were as follows: 0.625-mm slice thickness and 1.25-mm slice
spacing; 120 kV voltage; automatic tube-current modulation
with a mean tube current of 100 mA; 5 mm collimator, and a
512 × 512 matrix. All the thin-slice CT images were reviewed by
a thoracic radiologist with more than 10 years of experience in
chest CT for image qualitative evaluation.

Annotation and Pretreatment of
Tumor Regions
The GGNs in CT images were manually labeled by a radiologist
with 5 years of experiences in chest imaging using the ITK-SNAP
software (version 3.8.0, http://www.itksnap.org). The GGNs were
FIGURE 1 | Patient enrollment and study design.
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segmented at the lung window set (Window Width 1500 Hu,
Window Level -450 Hu) by carefully drawing a region of interest
(ROI) that traced the edge of the GGN on all axial images until
the entire GGN was covered. The annotation results were further
checked by another senior radiologist with 10 years of
experience. When the boundary of the GGN was uncertain, an
expert radiologist with more than 20 years of experience in lung
cancer diagnosis was consulted for the final decision. All
radiologists were blinded to the pathological results.

Before the development of the DL models, a resampling
approach was used for data pretreatment. The CT images were
rescaled to a uniform size with 1-mm isotropic voxel spacing,
then each manually labeled ROI was transformed and defined as
follows. (i) A 64 × 64 × 64-pixel three-dimensional (3D) patch
containing the nodule region which was cropped from each CT
image, and the size was determined based on the largest ROI. (ii)
The pathologically identified label of tumor invasiveness. As
previous studies have indicated that the peritumoral region
provides valuable insight for determining the prognosis of lung
cancer (19, 20), both the gross ROI patch and the full ROI patch
containing perinodular regions were automatically generated, as
the nonlesion area of the 3D patch was left padding zero or
reserving perinodular imaging (Figure 2).

Development of the Baseline Model
A baseline model was constructed by using the image and
demographic features including tumor size, location, age,
gender, cancer history, and smoking history. The logistic
regression (LR) analysis was used as the classifier. The baseline
model was built in the development dataset and validated in the
independent testing dataset.

Construction of the DL Models
Fifteen noninvasive lesions and 30 invasive lesions were firstly
randomly selected to serve as the independent testing dataset,
Frontiers in Oncology | www.frontiersin.org 422
and the remaining samples (33 noninvasive and 90 invasive)
were used as the development dataset. Owing to the limited
amount of training data, data augmentation techniques
including flipping (perpendicular to the x- and y-axis), random
shifting (15% towards the eight vertexes of the 3D patch),
random rotation (90°, 180°, and 270° perpendicular to the z-
axis), mirroring, and random brightness contrast (80%, 90%,
110%, and 120%) were used in the development of the neural
networks. After data augmentation, the sample size increased to
19 times that of the original, yielding a total of 2,337 samples in
the development dataset.

We employed a modified 3D ResNeXt34 as the backbone
network of the DL models, as the 3 × 3 2D convolution filters
were replaced by 3 × 3 × 3 3D convolution filters (21). Transfer
learning approach was applied to improve the robustness and
generalization of the DL models (22). To pretrain the modified
3D ResNeXt34 network in this study, a total of 178 pulmonary
nodules were manually labeled on the TCGA-LUAD, CPTAC-
LUAD, TCGA-LUSC, and CPTAC-LSCC datasets which were
downloaded from The Cancer Imaging Archive (TCIA)
database. For the prediction of tumor invasiveness based on
single or serial CT images, two kinds of DL models were
designed: the single-DL model using only the baseline CT
images as inputs and the serial-DL model using two
consecutive series (baseline and follow-up) CT images as
inputs. For the single-DL model, the 3D ResNeXt34-based
CNN with a fully connected layer was used to extract high-
dimensional features from the imaging data, followed by a soft-
max output layer to predict the probability of tumor
invasiveness. The neural architecture for the serial-DL model
included ResNeXt34-based CNN merged with a RNN
(Figure 3A). In brief, two weight-sharing 3D ResNeXt34
networks were used for feature extraction from two
consecutive series CT images, and the outputs of each CNN
model were fed into the RNN with a long short-term
FIGURE 2 | Examples of the automatedly generated gross ROI patch and full ROI patch.
September 2021 | Volume 11 | Article 725599

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Artificial Intelligence, Follow-Up, Ground-Glass Nodules
memory (LSTM) architecture as time-varying inputs
(Figure 3B). Therefore, four DL models were designed in our
study: a single-DL model using gross ROI patches as inputs
(model 1), a serial-DL model using gross ROI patches as
inputs (model 2), a single-DL model using full ROI patches
as inputs (model 3), and a serial-DL model using full ROI
patches as inputs (model 4).

The proposed single-DL models were trained based on the
binary cross-entropy loss function; the weights of hidden layers
were randomly initialized by Xavier, and the initial learning rate
was set to 0.0001. Adam was used as the optimizer in the training
stage owing to its fast convergence and weight-dependent
learning rate, and the beta 1 and beta 2 parameters were 0.9
and 0.99, respectively. In addition, a weighted oversampling
technique was used to train the model; only resampled
minibatches with a noninvasive/invasive ratio of 1:1 was
selected for training. The minibatch size was 24, and the
dropout rate was set to 0.5; other parameters were set to their
default values. As for the serial-DL models, there were three cells
in the LSTM unit with the dropout rate set to 0.8, and each cell
contained 512 features. The training was stopped when the loss
of function was stable (23). Since deep learning models based on
small sample size could be subject to obvious overfitting after a
certain number of epochs, the early stopping method was used to
halt parameter iteration for the model. The number of modeling
epochs was set between 60 and 100 in this study. The changes in
model efficiency (AUC) and cross-entropy loss function index
corresponding to each epoch in the training process of the DL
models were shown in Figure 4.

The code of these DL models was open sourced at https://
github.com/TangWen920812/3d-resnext-lstm.
Frontiers in Oncology | www.frontiersin.org 523
Supervised training was performed on a computer with a
Core i7-6700 K central processing unit (Intel, Santa Clara, CA,
USA), 32 GB memory, and a GeForce GTX 1080 graphics
processing unit (NVIDIA, Santa Clara, CA, USA). Python 3.6.8
(https://www.python.org) and the Mxnet 1.5.0 (https://mxnet.
incubator.apache.org) framework for neural networks were used
to construct the DL models. The development and independent
of the DL models were performed with InferScholar platform
version 3.3 (InferVision, China).

Development of the Combined Model
To integrate both serial CT images and clinical information, a
combined model was constructed by incorporating the following
candidate variables: age, gender, GGN size, GGN location, cancer
history, smoking history, and the invasiveness probability
calculated by the serial-DL model. The combined model was
developed in the development dataset by using linear support
vector machine (linear SVM) classifier, and the prediction value
was calculated using following formula:

Prediction value = −0:4061 ∗ gender  male = 1,  female = −1ð Þ
−0:0316 ∗ age + 0:5521 ∗GGN size + 0:6422 ∗RUL location  yes = 1,  no = 0ð Þ

− 0:5790∗RML location   yes = 1,  no = 0ð Þ − 1:9971 ∗ RLL location  yes = 1,  no = 0ð Þ
+1:1625 ∗ LUL location  yes = 1,  no = 0ð Þ+0:7715 ∗ LLL location  yes = 1,  no = 0ð Þ

+1:0314 ∗ cancer history  yes = 1,  no = 0ð Þ+0:4313 ∗ smoking history  yes = 1,  n = 0ð Þ
+39:818∗invasiveness probability−14:6215 ðLUL left upper lobe; LLL, left lower lobe;
 RUL,  right upper lobe; RML, right middle lobe ;  RLL, right lower lobe)

In addition, the decision curve analysis (DCA) was applied to
assess the clinical usefulness of the combined model as well as the
deep learning models on the independent testing dataset.
A

B

FIGURE 3 | Conceptual architecture of the single-DL model using only baseline CT images (A) and the serial-DL model integrating serial CT images at multiple
timepoints (B).
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Statistical Analysis
In order to evaluate the performance of the DL models for the
discrimination of noninvasive from invasive lesions, a receiver
operating characteristic (ROC) curve was plotted for the
calculation of sensitivity and specificity, and the area under the
curve (AUC) was determined. The sensitivity, specificity, and
accuracy were calculated under optimal threshold according to
the maximum Youden index (24). Delong’s test was used to
compare the differences between two or more AUCs of
different models. The association between categorical variables
was assessed by Chi-square test or Fisher’s exact test, and the
Mann–Whitney U test was performed to evaluate the differences
among variables with a continuous distribution. The DCA curve
was plotted using the “rmda” package. All analyses were
performed using Prism 5 for Windows (version 5.01), and a
two-sided p-value <0.05 was considered statistically significant.
RESULTS

Patient Characteristics
The clinicopathologic characteristics of the enrolled patients in
the independent and datasets are summarized in Table 1. There
Frontiers in Oncology | www.frontiersin.org 624
were no significant differences in gender, age, cancer history, or
smoking history between patients with noninvasive nodules and
those with invasive nodules in either the development or the
independent testing dataset (all p > 0.05). The prevalence of
GGN showed a greater tendency to occur in the upper lobe in the
noninvasive group compared with the invasive group (70.8%
[34/48] in the noninvasive group vs. 47.5% [57/120] in the
invasive group, p = 0.03). The average GGN in the invasive
group was larger than that of the noninvasive group across all
patients (p = 0.02); however, the differences were not significant
in the development dataset (p = 0.08) or the independent testing
dataset (p = 0.10).

Performance of Different
Predictive Models in the
Independent Testing Dataset
In the independent testing dataset, the baseline model
showed limited discrimination capability with the AUC,
accuracy, sensitivity, and specificity achieving 0.562 (95%
CI, 0.406–0.710), 64.4%, 67.7%, and 60.0%, respectively.
The result indicated that an effective diagnosis of tumor
invasion in GGNs was not possible when only using the
clinical variables.
A B

C D

FIGURE 4 | The model efficiency (AUC) and cross-entropy loss function corresponding to each epoch of the model 1 (A), model 2 (B), model 3 (C), and model 4
(D) during training process. The model efficiency corresponding to each epoch gradually increased while the model loss function decreased and eventually stabilized.
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The accuracy of DL models was 66.6% (model 1), 71.1%
(model 2), 75.6% (model 3), and 84.4% (model 4) in the
independent testing dataset. The AUCs of models 1 and 2
(using gross ROI patches as inputs) were 0.693 (95% CI,
0.538–0.822) and 0.787 (95% CI, 0.639–0.895), respectively
(Figures 5A, B), whereas that of models 3 and 4 (using full
ROI patches as inputs) were 0.727 (95% CI, 0.573–0.849) and
0.811 (95% CI, 0.667–0.912), respectively (Figures 5C, D). The
serial-DL models and the combined model outperformed the
baseline model with significant differences (Delong’s test, p =
0.046, 0.022, and 0.024 for model 2, model 4, and combined
model, respectively). The full ROI patch-based DL models
showed an increased performance tendency than the gross ROI
patch-based models; however, the differences were not
statistically significant (model 3 vs. model 1, p = 0.753, model
4 vs. model 2, p = 0.796). In addition, the AUC of serial CT
image-based DL models was also higher than that of single CT
image-based DL models (model 2 vs.model 1, p = 0.187, model 4
vs. model 3, p = 0.383). The accuracy of the serial-DL model
using full ROI was significantly higher than that of the single-DL
model using gross ROI (model 4 vs. model 1, 84.4% vs. 66.6%,
Chi-square test p = 0.049), indicating that the spatial pattern of
perinodular regions and incorporation of serial CT images could
facilitate the prediction of tumor invasiveness in patients
with GGNs.

Evaluation of the Combined Model
The combined model showed the best performance with AUC,
sensitivity, specificity, and accuracy achieving 0.831 (95% CI,
0.690–0.926), 86.7%, 73.3%, and 82.2%, in the independent
testing dataset, respectively (Figure 6A). The details of
the predictive performance of the baseline model, the DL
models, and the combined model are summarized in Table 2.
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DCA was used to evaluate the clinical usefulness of the
different predictive models. The results showed that the
combined model had a slightly higher overall net benefit
compared with the DL models across the majority of
probability threshold (Figure 6B).
DISCUSSION

In this study, we developed novel DL models to detect the
invasiveness of GGNs based on consecutive CT thin-scanned
images (baseline and 3-month follow-up scans). We found that
the peritumoral region could contribute to invasiveness
prediction. Notably, integrating consecutive serial CT images
further improved the performance of DL models for predicting
tumor invasiveness of GGNs. In addition, the combination of
clinical variables and risk probability calculated by DL model
showed favorable capability in distinguishing noninvasive GGNs
from invasive GGNs.

Previous studies have reported that the size of GGNs is a
critical risk factor for potential invasiveness (3–5, 21). Lee et al.
found that the optimal cutoff size for preinvasive lesions was less
than 10 mm (sensitivity, 53.33%; specificity, 100%) in a pure
GGN cohort; this could be used as a selection criterion to identify
patients suitable for sublobar resection (25). In addition, Kim
showed that 8 mm was the optimal cutoff value for
discrimination of noninvasive GGNs from invasive GGNs (26).
In short, these results combined with those of previous studies
indicate that the clinical feature of size is indeed highly correlated
with the invasiveness of GGNs (27). Notably, we also observed
significant differences in size between the preinvasive cohort and
the invasive cohort in the all-patient dataset (p < 0.05). However,
there were no such significant differences in either the
TABLE 1 | The clinicopathologic characteristics of enrolled patients.

All patients Development dataset Independent dataset

Noninvasive Invasive p-Value Noninvasive Invasive p-Value Noninvasive Invasive p-Value

Gender 0.67 0.19 0.27
Male 14 39 7 30 7 9
Female 34 81 26 60 8 21

Age (years) 0.16 0.11 0.83
Mean 46.8 49.8 45.7 49.7 49.1 50.0
SD 10.4 13.0 11.3 12.4 8.0 14.8

GGN size (mm) 0.02 0.08 0.10
Mean 7.6 9.1 7.8 9.0 7.3 9.3
SD 2.3 3.9 2.4 3.8 1.9 4.3

GGN location 0.06 0.05 0.53
LUL 18 30 11 23 7 7
LLL 3 19 2 13 1 6
RUL 16 27 13 20 3 7
RML 2 17 0 13 2 4
RLL 9 27 7 21 2 6

Cancer history 0.44 0.52 0.71
Yes 4 15 3 12 1 3
No 44 105 30 78 14 27

Smoking history 0.69 0.80 0.36
Yes 13 29 7 21 6 8
No 35 91 26 69 9 22
Sep
tember 2021 | Volu
me 11 | Article
GGN, ground-glass nodules; LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe.
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independent testing dataset or the development dataset, although
the average GGN size of the invasive group was larger than that
of the noninvasive group in all patients.

The largest lung cancer screening trial in Europe showed that
malignant tumors were localized predominantly in the periphery
of lungs and the right upper lobe (27). Interestingly, in our study,
the GGNs in the noninvasive group showed a greater tendency to
occur in the upper lobe compared with the invasive group
(noninvasive group 34/48 vs. invasive group 57/120). This bias
is probably introduced in our study because of the difference
between tumor malignancy and tumor invasiveness.

However, previous studies had certain limitations. First, most
studies only considered whether clinical characteristics such as
smoking vs. nonsmoking or tumor history (yes vs. no) were
related to GGN growth. Few studies have evaluated the weights
of CT images and clinical information for predicting GGN
invasiveness with specific numerical formulas, which could be
better verified and recognized by radiologists. Second, the most
Frontiers in Oncology | www.frontiersin.org 826
of reported DL algorithms were applied to lung nodule
classification as benign or malignant, and they focus on a
single scan for the model input.

Most of the previous studies only considered the relation
between the quantitative radiographic characteristic and
pathologic classification that are limited at the single time-
point (19, 21, 28). In our study, we applied different DL
algorithms to predict the invasiveness of GGNs. The single-DL
models and serial-DL models that are based on whether they
used single or serial CT images were proposed, and their
performance was compared. This is a different approach from
the current method of predicting malignant nodules based on a
single CT scan (26, 28). We combined baseline and 3-month
follow-up continuous CT scan images to obtain the original
features and changed features that maximized the risk of tumor
invasion. Recently, numerous studies and guidelines have
advocated that early follow-up of patients with GGN should
replace unnecessary surgical resection (3, 5, 19). However, subtle
A B

C D

E

FIGURE 5 | ROC analysis of the predictive models in the independent testing dataset. (A) The baseline model. (B–E) The DL models.
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changes between the short-term follow-up images and the
baseline CT images are often invisible to mostly radiologists,
hence the need to evaluate invasiveness using DL algorithms.
Previous studies have shown that an increase of 2 mm or more in
diameter indicates that a GGN is growing; this change is often
related to the malignant characteristics of the nodule (26, 29). Qi
et al. showed that compared with the 2D diameter, a 20%
increase in volume can reflect the growth of GGNs with
greater sensitivity and accuracy (30). In addition, the
development of solid proportions is considered strong evidence
for clinical management of part-solid nodules (31). Recently,
increasing numbers of studies have shown that high-throughput
extraction of details that are not obvious or visible to the human
eye, using radiomics and artificial intelligence, has great
advantages and promising applications (11, 12, 32–34).
Therefore, considering the results of the above studies, it may
be reasonable to infer that the DL model incorporating both
follow-up and baseline CT scans could better predict the
invasiveness of nodules, enabling GGNs to be managed more
rationally and avoiding unnecessary surgical resection.

Several studies have reported that radiomics and DL
algorithms could be used to detect the invasiveness of GGNs.
However, most of these studies just focused on the nodules
Frontiers in Oncology | www.frontiersin.org 927
themselves, few had investigated the contribution of the
microgrowth environment to the prediction of tumor
invasiveness. Wu suggested that there were differences between
ICA andMIA/AIS in the radiomic features of cluster prominence
and the gray level run-length matrix in the surrounding area of
the tumor (35). Wang and Beig et al. found that clinical
interpretation of peritumoral radiomics features could be used
to differentiate adenocarcinoma from granuloma, predict the
characteristics of lymph node metastasis, and evaluate recurrence
rates after surgery (36, 37). Those reports indicated that the
peritumor regions of GGNs could be used for diagnosis
of invasiveness.

In our study, the proposed DL algorithms could be
categorized into two groups (gross ROI-DL and full ROI-DL)
depending on the size of the extracted GGN ROI range. The full
ROI patch containing both the nodules and perinodular regions
provided information on the nodules themselves as well as their
microgrowth environment. As expected, the full ROI group
(models 3 and 4) achieved higher AUC values for predicting
tumor invasiveness than the gross ROI group (models 1 and 2).
These findings suggested that the spatial pattern of perinodular
regions could also have a role in tumor invasiveness prediction.
In addition, the results were similar to those of previous
A B

FIGURE 6 | Performance evaluation of the combined model. (A) ROC analysis. (B) Decision curve analysis for the predictive models; the combined model had
higher net benefit compared with the other models across majority range of threshold probabilities.
TABLE 2 | Performance comparison of the predictive models in the independent dataset.

Models AUC (95% CI) p-Value Cut-off threshold Accuracy Sensitivity Specificity

Baseline 0.562 (0.406~0.710) Reference 0.5396 64.4% (29/45) 66.7% (20/30) 60.0% (9/15)
Model 1 0.693 (0.538~0.822) 0.314 0.5239 66.7% (30/45) 70.0% (21/30) 60.0% (9/15)
Model 2 0.787 (0.639~0.895) 0.046 0.5248 71.1% (32/45) 66.7% (20/30) 80.0% (12/15)
Model 3 0.727 (0.573~0.849) 0.197 0.4918 75.6% (34/45) 76.7% (23/30) 73.3% (11/15)
Model 4 0.811 (0.667~0.912) 0.022 0.4685 84.4% (38/45) 93.3% (28/30) 66.7% (10/15)
Combined 0.831 (0.690~0.926) 0.024 0.6570 82.2% (37/45) 86.7% (26/30) 73.3% (11/15)
Septem
ber 2021 | Volume 11 |
AUC, area under the curve.
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radiomics studies, in which combining texture features extracted
from both intranodular and perinodular regions led to better
performance compared with the single intranodular-based
approach (35, 37). Unfortunately, there are currently no
relevant authoritative studies or guidance on the specific size of
the perinodular region (38). Furthermore, the combined model
that integrated the serial CT images and clinical information
involved calculations using a specific formula for prediction.
DCA demonstrated that the combined model had a moderate
increase in overall net benefit compared with the DL models
(models 1–4).

To our knowledge, this is the first study combining the serial
CT imaging to corroborate the quantitative predictive
relationship between clinical-radiological characteristics and
invasiveness. Most previous studies focused on the time-to-
growth characteristics of tumors or the effectiveness of
computer-aided diagnosis. Yoshihisa reported that smoking
history and initial lesion diameter were strongly related to
GGN growth (18). Matsuguma et al. analyzed the growth of
174 subsolid GGNs during the follow-up period and found that
history of lung cancer was a significant predictive factor in GGN
growth (39). In recent years, various DL models have been
widely used to evaluate and detect changes in GGNs and have
shown excellent performance compared with radiologists (40,
41). Zhao et al. reported a DL system based on 3D CNNs, and
multitask learning, which achieved better classification
performance than senior and junior doctors in pathological
labeling of GGNs (41). Moreover, Ding et al. applied two models
for distinguishing degree of nodule invasiveness, the lung DL
model and dense model; both modes showed high performance
in terms of AUC (0.88 and 0.86, respectively), especially the
lung DL model (42).

Our study also had several limitations. First, it was a
retrospective single-center study and the number of GGNs
used for model development was limited; a prospective
Frontiers in Oncology | www.frontiersin.org 1028
multicenter study with a larger sample size will be required in
the future. Second, the ROIs were mainly manually segmented.
Automatic detection and segmentation of GGNs will be
considered in our future research. Third, whether
incorporating more time-point serial CT images (e.g., 6-month
follow-up and 12-month follow-up) could further benefit DL
models in predicting tumor invasiveness still needs investigation.

In conclusion, integration of consecutive serial CT images
improves the predictive efficacy of DL models in differentiating
noninvasive GGNs from invasive GGNs, and the performance
could be further improved by incorporating clinical information.
The proposed DL models in this study show favorable
performance and might have the potential to assist clinicians
in tailoring precise therapy.
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Qualitative Histopathological
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Tumors Using Deep Learning:
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Yuzhang Tao1, Xiao Huang1, Yiwen Tan2,3, Hongwei Wang1, Weiqian Jiang1, Yu Chen1,
Chenglong Wang4, Jing Luo2, Zhi Liu5, Kangrong Gao5, Wu Yang1, Minkang Guo1,
Boyu Tang1, Aiguo Zhou1, Mengli Yao6, Tingmei Chen6, Youde Cao2,
Chengsi Luo7* and Jian Zhang1*

1 Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 2 Department
of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China, 3 Department of Pathology, The
Second Affiliated Hospital of Chongqing Medical University, Chongqing, China, 4 Department of Pathology, Chongqing
Hospital of Traditional Chinese Medicine, Chongqing, China, 5 Research and Development Department, Chongqing Defang
Information Technology Co., Ltd, Chongqing, China, 6 Key Laboratory of Clinical Laboratory Diagnostics (Ministry of
Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China, 7 School of Life Science and
Technology, University of Electronic Science and Technology of China, Chengdu, China

Background: Histopathological diagnosis of bone tumors is challenging for pathologists.
We aim to classify bone tumors histopathologically in terms of aggressiveness using deep
learning (DL) and compare performance with pathologists.

Methods: A total of 427 pathological slides of bone tumors were produced and scanned
as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and
cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models
were trained and validated in patch level, performance was evaluated on testing dataset
for binary classification (benign vs. non-benign) and ternary classification (benign vs.
intermediate vs. malignant) in patch-level and slide-level prediction. The performance of
four pathologists with different experiences was compared to the best-performing
models. The gradient-weighted class activation mapping was used to visualize patch’s
important area.

Results: VGG-16 and Inception V3 performed better than other models in patch-level
binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had
area under curve of 0.962 and 0.971 for binary classification and Cohen’s kappa score
(CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of
0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior
pathologists showed lower CKS than the best model (each p < 0.05). Visualization
showed that the DL model depended on pathological features to make predictions.

Conclusion: DL can effectively classify bone tumors histopathologically in terms of
aggressiveness with performance similar to senior pathologists. Our results are
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promising and would help expedite the future application of DL-assisted histopathological
diagnosis for bone tumors.
Keywords: primary bone tumors, deep learning, histopathological classification, convolutional neural network
(CNN), diagnosis
1 INTRODUCTION

Primary bone tumors are a variety of neoplasms formed from the
bone tissue (1). Although the incidence is relatively low, primary
bones and joints’ malignancy is ranked the third and fourth
leading cause of death for males and females under 20 years of
age in the United States (2). The biological behavior of bone
tumors varies greatly among different classes (3). However, their
clinical management is mainly determined by the extent of the
tumor’s aggressiveness, which is usually graded as benign,
intermediate, and malignant (4). While the bone tumor’s
clinical characteristics and radiological information may help
physicians reach an initial diagnosis, histopathological
assessment of biopsy tissue remains decisive in determining
the bone tumor’s biological nature and confirming its
aggressiveness (5). Therefore, an accurate and reliable
histopathological differentiation is imperative to ensure a
satisfactory patient outcome.

Unlike tumors of epithelial origin that are more prevalent,
pathologists’ experience in diagnosing bone tumors usually lacks
due to the relatively low incidence and various histological
morphology. Additionally, some bone tumors of different kinds
may share similar histologic morphology because of
mesenchymal origin, thus introducing confounding factors in
classification. Moreover, the pathologist’s prediction of bone
tumor’s histopathological classification, which is prone to
subjectivity, could not be adequately quantified for the moment.

Considering the drawbacks of traditional histopathological
analysis mentioned above, diagnostic approaches based on
artificial intelligence gradually come into existence, along with
the accelerated development of computational power and deep
learning (DL) (6). The convolutional neural network (CNN), a
network composed of deep layers, can be trained to extract
specific features from an image dataset to output a quantitative
probability and build a classifier (7). In addition, the emergence
of whole slide imaging (WSI) enables slides digitalized as macro
data without information loss (8), which is suitable for neural
networks to process and learn. Utilizing WSI over the last few
years, the CNN has been verified efficient in the histopathological
classification of numerous tumors of epithelial origin, such as
breast cancer (9), lung cancer (10), gastric cancer (11), prostate
cancer (12), and nasopharyngeal cancer (13). In comparison to
tumors of epithelial origin, bone tumors are mostly of
mesenchymal origin, showing remarkably different and diverse
microscopic morphology. However, there lacks relevant evidence
regarding the performance of DL-based histopathological
classification for bone tumors so far.

Accurate DL-assisted differentiation of primary bone tumors
microscopically and qualitatively as benign, intermediate, and
malignant would not only compensate for the limited experience
231
and biased interpretation of physicians, but also provide a
quantitative approach to assess the biological nature of bone
tumors, potentially leading to a better treatment decision. In this
study, we evaluate the feasibility of using DL in qualitative
histopathological differentiation of primary bone tumors and
compare the performance of the best model with pathologists of
different levels of experience.
2 MATERIALS AND METHODS

2.1 Specimen Information
According to the 1964 Helsinki declaration and its later
amendments, this study was approved by the ethics committee
of the First Affiliated Hospital of Chongqing Medical University
(No. 2020-287). After ensuring that informed consents were
obtained from relevant patients, all specimens of primary bone
tumor resected in the hospital between July 2014 and October
2020 were retrieved from the Department of Pathology,
Chongqing Medical University. Based on the histopathological,
clinical, and radiological information, the collected samples’
diagnoses were confirmed by at least one senior pathologist in
accordance with the 2013 World Health Organization (WHO)
classification (4). A total of 458 specimens were finally
determined and classified into three groups, in which 206 were
benign, 96 were intermediate, 156 were malignant.

2.2 Data Preparation
2.2.1 Section and Staining
The collected paraffin-embedded specimens were sectioned and
stained under a standardized protocol, producing one
corresponding hematoxylin and eosin (H&E) slide for each
specimen. All slides were de-identified and only labeled with
diagnosis. The quality control of all slides was done by a senior
pathologist, and 31 slides (8 benign, 10 intermediate, and 13
malignant cases) were excluded from the study. The remaining
427 slides were finally chosen for scanning. Supplementary
Table S1 shows the detailed number of cases with definitive
diagnoses in each group. The average age of the included cases
was 38.06 years (from 7 to 89 years), while males and females
accounted for 53.62% and 46.37%, respectively.

2.2.2 WSI Scanning and Storage
The selected slides were scanned using a digital slide scanner
(Chongqing Defang Information Technology Co., Ltd,
Chongqing, China) to produce ultra-high-resolution whole
slide images at the default 40× objective magnification
(Figures 1A–C), which then were stored as svs format. The
average memory size of all WSIs was 5.76 GB, and the width and
height of WSIs were at least 149,520 and 150,420 pixels.
October 2021 | Volume 11 | Article 735739
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2.2.3 Annotation
WSIs were analyzed by pathologists using Qupath (14) (version
0.2.3, Queens University). Areas constituted of tumor-related
cells and structures were considered as viable tumor areas, while
other non-specific normal connective tissues and white space
were regarded as non-tumor areas. Two junior pathologists
examined all WSIs under 1× to 40× objective magnification
before determining and annotating viable tumor areas as regions
of interest (ROIs) using Qupath built-in annotation tools
(Figure 1D). WSIs were subsequently rechecked by another
senior pathologist to ensure the accuracy of annotation.

2.2.4 Dataset Allocation
All WSIs under each group were randomly split into training,
validation, and testing datasets in a proportion of 70:15:15. Slide
dataset information for each group is shown in Supplementary
Table S2.

2.2.5 Image Patch Extraction
WSIs are images with more than hundreds of millions of pixels
(8), which are too huge to be used as input in training DLmodels.
Moreover, the discriminative information of histopathology is
Frontiers in Oncology | www.frontiersin.org 332
usually retained at the cellular level (15). Therefore, ROIs of
WSIs are usually cropped into plenty of image patches with fixed
dimensions (typically from 32 × 32 to 10,000 × 10,000 pixels,
where 256 × 256 is the most widely used) as input, making the
training possible and efficient (16). As a result, we used the
Qupath script editor to continuously crop the annotated viable
tumor areas into square image patches of 256 × 256 pixels
without overlapping (Figure 1E). In this study, we used a
down-sampling factor of four when cropping the ROIs because
the image patch of 256 × 256 pixels generated from the original
40× scanning magnification was insufficient to include a
satisfactory tumor area. Image patches with background
constituting more than 50% of their areas were abandoned.
The cropped patches share the same group label as the slides
from which they were generated. A total of 716,838 patches were
finally generated, and detailed information of image patches for
each group is shown in Supplementary Table S3.

2.3 Network Training and Performance
Evaluation
Several widely tested convolutional neural network architectures,
including AlexNet (17), VGG-16 (18), Inception V3 (19),
A B C

D

E

H

I J K

F

G

FIGURE 1 | The workflow for deep learning training. (A) The pathological slide prepared from bone tumor specimens. (B) Whole slide imaging (WSI) scanning.
(C) Whole slide images with ultra-high resolution. (D) Tumor areas annotated by pathologists as regions of interest (ROIs). (E) Regions of interest were exported as
numerous square image patches of the same size. (F) Three-channel RGB image patches of 256 × 256 pixels were used as training input. (G) Data augmentation and
image preprocessing before training. (H) Image patches in the training dataset were fed into the convolutional neural network for training. (I) Models were trained for the
patch-level binary and ternary classification. (J) Predictions of all patches from one slide were averaged to obtain (K) the slide-level binary and ternary prediction.
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DenseNet-121 (20), ResNet-50 (21), and MnasNet (22) were
chosen for training the patch-level classification. All image
patches extracted were saved in 8-bit JPEG format (Figure 1F).
We performed the data augmentation and preprocessing by
random rotation, random horizontal flip, and normalization of
the original image (Figure 1G). The angle of random rotation
ranged from −45° to 45°. The probability of images being flipped
was 0.5. Pixel values of three-channel images were normalized by
scaling their values into the range from zero to one, then
subtracting [0.485, 0.456, 0.406] and dividing by [0.229, 0.224,
0.225] channel-wise. Random resized cropping was used such
that a crop of random size (0.08 to 1.0) of the original size and a
random aspect ratio (of 3/4 to 4/3) of the original aspect ratio was
made, finally resizing the image to a given size (224 × 224 or 299 ×
299, according to the model’s pre-trained dataset, shown in
Supplementary Figures S1–S6) as training input.

All models were pre-trained on the ImageNet dataset to
initialize kernel weights. Stochastic gradient descent (SGD)
with a categorical cross-entropy loss was implemented to
update the model’s weights, accompanied by a cyclic learning
rate (23) (cLR) oscillating between 10-4 and 10-6 every quarter
epoch. The batch size of 64 was set for training. Models were
trained on patch level (Figures 1H, I) for binary classification
(benign vs. non-benign) and a ternary classification (benign vs.
intermediate vs. malignant). The architecture and specific hyper-
parameters of each model are shown in Supplementary Figures
S1–S6.

The model’s generalizability for each epoch during training
was evaluated with validation dataset using loss and accuracy for
binary classification or using loss, accuracy, and the Cohen’s
kappa score (CKS) for ternary classification. All models were
trained for 30 epochs, and parameters of the epoch with the
highest validation accuracy (binary task) or CKS (ternary task)
were used to predict the classification of the testing dataset. We
compared the patch-level diagnostic metrics on the testing
dataset between different models and determined the best
architecture, which was then used to predict the slide-
level classification.

The model’s predictions of all image patches generated from
one slide WSI were averaged to produce a slide-level prediction
(Figures 1J, K). Then, the true label of the slide was used to
assess the model’s slide-level classification performance on the
testing dataset.

Metrics of performance for binary classification included
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), F1-score, the receiver
operating characteristic (ROC) curve, and the area under the
curve (AUC), whereas accuracy, the Cohen’s kappa score,
precision, recall, and F1-score were used to evaluate the
model’s ternary classification performance.

2.4 Experiment Setup
Our DL experiments were performed on a server with 4×
NVIDIA GeForce RTX 2080 Ti graphics processing units (11
GB of memory for each). We developed the relevant DL
algorithms with Python 3.6 and PyTorch 1.7.1 on an
Ubuntu platform.
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2.5 Evaluation of Pathologist’s
Performance
All slides in the testing dataset were read by one senior pathologist
(pathologist #1, with more than 25 years of experience), two
attending pathologists (pathologist #2 and #3, with more than 10
years of experience), and one resident pathologist (pathologist #4,
with less than 5 years of experience) without knowing any slide’s
information beforehand. Then, they labeled each slide as benign,
intermediate, or malignant according to their own interpretations.
Their predictions of all slides were recorded and compared with the
slides’ corresponding ground-truth labels to calculate the
pathologist’s diagnostic performance. Metrics used in the model’s
slide-level performance evaluation were analyzed for pathologists
and finally compared between model and human.

2.6 Model Visualization and Case Review
Gradient-weighted class activation mapping (Grad-CAM) is an
approach that uses the gradients flowing into the last
convolutional layer to create a map localizing and highlighting
the important regions relevant to model prediction in an image
(24). Therefore, we used Grad-CAM to visualize the important
regions associated with discriminative histopathological features
that the DL model relies on, thus revealing the underlying
mechanism of the model’s prediction. In the slide-level
classification, we identified the slide cases that the model, or
pathologist, or both wrongly classified. Then, the senior
pathologist was asked to determine the potential causes of such
misclassifications by reviewing the representative image patches
of the corresponding slide, along with the model visualization.

2.7 Statistical Analysis
Data used in this study were analyzed with SPSS software (version
26.0; IBM, Chicago, IL) and SAS 9.4 (SAS Institute, Cary, NC, USA).
The metrics of performance for slide-level binary classification
between models and pathologists were compared using
McNemar’s test. The 95% confidence intervals (CIs) of AUCs
were calculated and compared between groups using the Delong
methods (25), and the 95% CIs of the Cohen’s kappa scores were
acquired by the bootstrap method (26) with 10,000 replications and
compared between the model and the pathologist using the
permutation test with 10,000 iterations. The AUC in different
ranges represented the following predictive performance: poor
(0.5 ≤ AUC < 0.7), fair (0.7 ≤ AUC < 0.8), good (0.8 ≤ AUC <
0.9), and excellent (0.9 ≤ AUC). We characterize the Cohen’s kappa
score of 0–0.20, 0.21–0.41, 0.41–0.60, 0.61–0.80, and 0.81–1 as
slight, fair, moderate, substantial, excellent agreement with the
ground truth label, respectively. A p-value of less than 0.05 was
considered statistically significant.
3 RESULT

3.1 Patch-Level Performance of Models
3.1.1 Binary Classification
All generated patches from the training dataset were fed into six
pre-trained CNN models to build a binary classifier (benign vs.
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non-benign). The learning curves for 30 epochs of all models are
shown in Figure 2. The validation loss of most models reached
the lowest level in the first 15 epochs before rising slowly
afterwards, indicating that the models gained the high level of
generalizability in the initial training process.

After determining models’ best-performing parameters using
validation accuracy, we assessed the performance of models’ patch-
level binary classification on the testing dataset. Figure 3 depicts the
ROC curves for each model, where the VGG-16 showed the best
predictive value with an AUC of 0.940 (95% CI, 0.939–0.941), while
the AlexNet had the smallest AUC of 0.902 (95% CI, 0.939–0.941)
among six models. For other diagnostic metrics, the VGG-16 also
had the highest accuracy (85.96%), sensitivity (83.66%), NPV
(77.78%), and F1-score (87.91%) compared with other network
architectures, whereas the Inception V3 showed the greatest
specificity (91.34%) and PPV (93.56%). The detailed information
of performance metrics for patch-level binary classification is
demonstrated in Table 1. Therefore, we chose the VGG-16 and
the Inception V3 for slide-level binary prediction.

3.1.2 Ternary Classification
Similar to the training for binary classification, six models were
fed with patches that were labeled as benign, or intermediate, or
Frontiers in Oncology | www.frontiersin.org 534
malignant to train a ternary classifier. However, we utilized the
CKS, rather than accuracy, to decide the best parameters in the
training process because of the relative imbalance of the patch
number between each class in ternary classification. Figure 4
illustrates the learning curves for 30 epochs of each model. As the
epoch increased, the validation loss of VGG-16 and Inception V3
was fairly stable at a low level compared with the other four
models, showing less chance of overfitting for these two models.

For the model’s performance in patch-level ternary classification
on testing dataset, the VGG-16 triumphed over others on accuracy
(74.78%), CKS (0.601, 95% CI 0.597–0.605), weighted average recall
(0.75), and weighted average F1-score (0.75), while sharing the
highest weighted average precision (0.79) with the Inception V3.
Table 2 summarizes the performance metrics of six models, and the
detailed classification report for each class is shown in
Supplementary Table S4. As a result, the VGG-16 and the
Inception V3 were finally selected for slide-level ternary prediction.

3.2 Slide-Level Performance of Models
and Pathologists
3.2.1 Binary Classification
The predictive probabilities of all patches generated from one
slide were averaged to obtain the model’s slide-level prediction.
FIGURE 2 | Learning curves for patch-level binary classification of six models showing the loss and accuracy in training and validation. Train, training; Val, validation;
acc, accuracy.
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For the differentiation of benign from non-benign bone tumors
on the testing dataset, the VGG-16 and the Inception V3 both
showed excellent predictive capability on slide-level with the
AUC of 0.962 (95% CI, 0.882–0.994) and 0.971 (95% CI, 0.897–
0.997), respectively. In addition, there was no statistically
significant difference between the AUCs of both models (p =
0.304). The ROC curves for slide-level binary classification of
models are demonstrated in Figure 5, along with the results of
pathologists’ assessments. Table 3 summarizes the detailed
performance metrics for models and pathologists. Among
models and pathologists, the VGG-16 had the highest accuracy
(90.77%) and F1-score (90.91%), and the Inception V3 showed
the greatest specificity (100.00%) and PPV (100.00%). Senior
pathologist #1 had the best accuracy (84.62%) among
pathologists, while owning better sensitivity (91.43%) and NPV
(88.46%) compared with models. However, the heterogeneity of
predictive performance among pathologists was significant that
their sensitivities and specificity ranged from 57.14% and 76.67%
to 91.43% and 93.33%, respectively. The p-values for comparison
Frontiers in Oncology | www.frontiersin.org 635
of accuracy, sensitivity, and specificity between VGG-16 and
pathologists are shown in Table 3.

3.2.2 Ternary Classification
Slide-level ternary classification performances of models and
pathologists are outlined in Table 4. The Inception V3 had the
greatest value in each metric. Both the VGG-16 and the
Inception V3 showed substantial predictive value with the CKS
of 0.731 (95% CI, 0.573–0.860) and 0.802 (95% CI 0.662–0.920),
whereas pathologists of all levels had the CKSs of less than 0.7.
However, after pairwise comparison of CKS, we found that there
were no significant differences between the VGG-16 and the
Inception V3 (p = 0.182), the VGG-16 and pathologist #1 (p =
0.689), and the Inception V3 and pathologist #1 (p = 0.288). The
CKSs of pathologists #2–4 were significantly lower than
the Inception V3 (see Table 4 for the detailed p-values).
The detailed classification report for each class is shown in
Supplementary Table S5.

3.3 Model Visualization
We located the slides that were correctly classified by both
models (VGG-16 and Inception V3) and the senior pathologist
#1 in binary and ternary classification, then chose the
representative patches of selected slides for Grad-CAM
visualization. The model VGG-16 was used for visualization
because it showed the best binary and ternary patch-level
predictive performances.

Figure 6 illustrates the heatmaps of Grad-CAM results for
binary classification. For most benign cases, the model identified
the widespread stromal area without cells (Figure 6A) or stromal
areas with scattered benign cells (Figure 6C) as essential regions
for benign prediction. In some particular cases of benign tumors
that share highly similar “dense-cell” microscopic morphology
with non-benign tumors, the model effectively differentiated the
confusing area as the benign region (Figure 6B). Visualization
for non-benign patches showed that the different arrangements
of atypical cells were deemed by the model as discriminative
features for non-benign prediction (Figures 6D–F).

Visualization of representative patches for ternary
classification is shown in Figure 7. The mechanism for benign
prediction of ternary classification (Figures 7A–D) was similar
to that of binary classification. Intriguingly, the model could
accurately identify the specific structures, such as giant cells
(Figures 7E–G) and chondroblasts (Figure 7H), as important
regions for intermediate classification. Furthermore, the highly
TABLE 1 | Performance of patch-level binary classification on testing dataset.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score (%) AUC (95% CI)

AlexNet 81.13 78.77 84.83 89.05 71.85 83.59 0.902 (0.900, 0.904)
VGG-16 85.96 83.66 89.58 92.63 77.78 87.91 0.940 (0.939, 0.941)
Inception V3 84.62 80.32 91.34 93.56 74.78 86.44 0.930 (0.929, 0.932)
DenseNet-121 83.02 81.02 86.16 90.16 74.35 85.34 0.922 (0.920, 0.923)
ResNet-50 84.73 83.58 86.54 90.67 77.09 86.98 0.930 (0.929, 0.932)
MnasNet 83.32 80.68 87.46 90.97 74.31 85.52 0.918 (0.916, 0.919)
O
ctober 2021 | Volume
Metric with the greatest value among different models is bolded. PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
FIGURE 3 | Receiver operating characteristic curves in the patch-level binary
classification of each model.
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dense organization of atypical cells (Figures 7I, J) and the
combination of stroma and scattered malignant cells
(Figures 7K, L) were regarded by the model as morphological
features for malignant prediction.

3.4 Case Review
We examined the slides that pathologist #1 correctly predicted,
whereas both models wrongly classified. Interestingly, all six
malignant slides that were classified as benign by models
belonged to chondrosarcoma. After visualizing some of the
patches for these six slides, we found that the model could
favorably recognize atypical cells for chondrosarcoma in the
patch level (Figures 8B, C). However, there were numerous
patches of the normal interterritorial matrix (Figures 8A, D),
which were unintentionally cropped by pathologists as ROI, for
one chondrosarcoma slide. This kind of patch-level annotation
noise was remarkable in chondrosarcoma, causing the number of
noise patches to overcome that of the true malignant patches in
Frontiers in Oncology | www.frontiersin.org 736
the averaging process of slide-level prediction. In addition, both
models classified one malignant slide as intermediate, and this
slide turned out to be a malignant giant cell tumor (GCT). The
mechanism of such erroneous slide-level prediction was also
associated with the annotation noise (similar to that of
chondrosarcoma), although the patch-level discriminative
features were successfully identified by the model (Figure 8F).
This malignant GCT was mainly composed of the normal GCT
area that was characteristic of giant cells (Figure 8E), whereas
malignant cells only constituted a small part of the
annotated ROI.

Figure 9 depicts the representative patches of slides that
pathologist #1 incorrectly classified but both models correctly
predicted. For the benign bone tumor that has seemingly
malignant microscopic structures, the model could effectively
differentiate the associated patches as benign classification
(Figure 9A). In addition, the model also showed favorable
performance in identifying specific features of the intermediate
TABLE 2 | Performance of patch-level ternary classification on testing dataset.

Accuracy (%) Cohen’s kappa score (95% CI) WA precision WA recall WAF1-score

AlexNet 68.62 0.505 (0.501, 0.509) 0.73 0.69 0.69
VGG-16 74.78 0.601 (0.597, 0.605) 0.79 0.75 0.75
Inception V3 74.17 0.591 (0.587, 0.595) 0.79 0.74 0.74
DenseNet-121 72.48 0.570 (0.566, 0.574) 0.78 0.72 0.73
ResNet-50 70.02 0.527 (0.523, 0.531) 0.74 0.70 0.70
MnasNet 73.39 0.575 (0.571, 0.579) 0.76 0.73 0.73
Octobe
r 2021 | Volume 11 |
Metric with the greatest value among different models is bolded. CI, confidence interval; WA, weighted average.
FIGURE 4 | Learning curves for patch-level ternary classification of six models showing the loss, accuracy, and the Cohen’s kappa score in training and validation.
Train, training; Val, validation; acc, accuracy; CKS, the Cohen’s kappa score.
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slides that the pathologist was unsure of diagnosing solely based
on the microscopic assessment (Figures 9B–D). Furthermore,
for patches of malignant slides that share similar cell
arrangements with intermediate cases, the model could easily
and correctly distinguish the corresponding area with high
predictive probability (Figures 9E, F).
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4 DISCUSSION

In this preliminary study, we found that several widely proved
DL models trained with limited pathological slides could
effectively classify bone tumors histopathologically in terms of
aggressiveness. The VGG-16 and Inception V3, which defeated
other models in patch-level performance, showed comparable
diagnostic abilities with the senior pathologist and triumphed
over attending and resident pathologists in slide-level predictive
performance. Moreover, we discovered that the DL model could
extract specific visual features of each classification and relied on
them to make favorable predictions.

In the conventional clinical setting, a patient who is suspected
of bone tumor usually undergoes clinical and radiological
examinations for an initial assessment. However, many cases
are challenging for physicians to give definitive or qualitative
diagnoses solely based on patient history or plain radiographs.
Therefore, a tissue biopsy is needed under such circumstances to
determine the tumor’s biological nature, thus directing more
appropriate treatment (5). The qualitative classification for bone
tumor after biopsy is usually divided into benign, intermediate,
and malignant tumor according to the aggressiveness evaluated
under microscopy. Intermediate and malignant cases can be
grouped as non-benign tumors because they normally require
subsequent interventions. Patients diagnosed with benign bone
tumors are generally requested for regular follow-up after one-
stage resection during biopsy surgery. In comparison, secondary
surgery that includes extensive resection and structural fixation is
commonly required for intermediate bone tumors owing to the
moderate recurrence rate and the local aggressiveness. For
malignant bone tumors, extensive resection with implant support
TABLE 3 | Performance of slide-level binary classification on testing dataset.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score (%) AUC (95% CI)

VGG-16 90.77 85.71 96.67 96.77 85.29 90.91 0.962 (0.882, 0.994)
Inception V3 87.69 77.14 100.00 100.00 78.95 87.10 0.971 (0.897, 0.997)
Pathologist #1 84.62a1 91.43b1 76.67c1 82.05 88.46 86.49 –

Pathologist #2 83.08a2 74.29b2 93.33c2 92.86 75.68 82.54 –

Pathologist #3 75.38a3 62.86b3 90.00c3 88.00 67.50 73.33 –

Pathologist #4 73.85a4 57.14b4 93.33c4 90.91 65.12 70.18 –
O
ctober 2021 | Volume
Metric with the greatest value among different groups is bolded. a1-4,b1-4,c1-4indicate the p-values compared with the VGG-16 in accuracy, sensitivity, and specificity, respectively. a1, p =
0.317; a2, p = 0.096; a3, p = 0.012; a4, p = 0.008; b1, p = 0.480; b2, p = 0.103; b3, p = 0.021; b4, p = 0.008; c1, p = 0.034; c2, p = 0.564; c3, p = 0.317; c4, p = 0.564. PPV, positive
predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
TABLE 4 | Performance of slide-level ternary classification on testing dataset.

Accuracy (%) Cohen’s kappa score (95% CI) WA precision WA recall WAF1-score

VGG-16 83.10 0.732 (0.574, 0.867) 0.83 0.83 0.82
Inception V3 87.70 0.803 (0.664, 0.922) 0.90 0.88 0.87
Pathologist #1 80.00 0.686 (0.526, 0.829) a1,b1 0.81 0.80 0.80
Pathologist #2 72.31 0.543 (0.376, 0.703) a2,b2 0.70 0.72 0.70
Pathologist #3 69.23 0.490 (0.307, 0.664) a3,b4 0.70 0.69 0.68
Pathologist #4 70.77 0.507 (0.335, 0.679) a4,b4 0.74 0.71 0.69
11 |
Metric with the greatest value among different groups is bolded. a1-4indicates the p-value compared with the VGG-16 and b1-4indicates the p-value compared with the Inception V3. a1, p =
0.689; a2, p = 0.060; a3, p = 0.036; a4, p = 0.048; b1, p = 0.288; b2, p = 0.004; b3, p = 0.002; b4, p = 0.003. CI, confidence interval; WA, weighted average.
FIGURE 5 | Receiver operating characteristic curves in the slide-level binary
classification of VGG-16 and Inception V3, along with results of pathologists’
assessments.
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is combined with chemotherapy or radiotherapy for cases without
metastasis, whereas palliative therapy is needed for metastatic cases
(1). Given that it is difficult for general pathologists to accurately
classify bone tumors histopathologically because of the low
incidence and tumor heterogeneity, the expected goal of the
current study was to build a DL-based classifier that reaches the
diagnostic level of pathologists from the academic medical center.

The focus of AI-related research for bone tumor diagnosis is
mainly on the radiographic analysis for the moment (27, 28). Bao
et al. (29) have incorporated various features from radiographic
observations and demographic information to build a naïve
Bayesian-based model for ranking and classifying a wide range
of bone tumor diagnoses. Yu et al. (30) have established a DL
algorithm to classify bone tumors in terms of aggressiveness on
plain radiographs, finding the model has the ROC curve AUC of
0.877 for binary classification (benign vs. non-benign) and the
CKS of 0.560 for ternary classification on testing dataset.
However, the radiological information is relatively limited for
AI models to train and learn because only several radiographic
images can be obtained from one patient diagnosed with the
bone tumor. The bone tumor’s morphological information
presented on the radiograph can be inconsistent due to the
variabilities of radiation intensity, patient position, and film
magnification. Therefore, DL models may not grasp sufficient
discriminative features only from limited radiographs from one
patient, whereas a much more sample size per class is needed to
control the overfitting for a DL model with more than hundreds
of thousands of parameters (31). In contrast, the current study
rontiers in ncology | www.frontiersin.org 38
used WSI to scan almost all cell-level image data from the
pathological slide, which was then exported as hundreds of
thousands of image patches for training the DL model. Six
selected models showed satisfactory learning curves, but
models’ performances in differentiating the bone tumor’s
pathological data are different from that in distinguishing the
ImageNet dataset, where the VGG-16 and Inception V3 showed
better results in our dataset. The best models trained with more
than 400,000 histopathological image patches in this study also
showed relatively higher patient-level (slide-level) predictive
capabilities in binary and ternary classification for bone tumors
compared with that of models trained with limited radiological
data (30), reaching the diagnostic level of senior pathologists
while outperforming attending and junior pathologists.

The tumor area annotated by pathologists instead of the
whole tissue area on the pathological slide was used as ROI for
patch extraction in this study because of the following three
reasons. First, the histopathological component of bone tumors
is usually mixed with various normal connective tissues (bone,
cartilage, vascular tissue, fibrous tissue, and muscular tissue),
which would introduce a lot of noise data for DL models if the
normal area is used as training input. Second, the atypical tumor
areas that exclude normal connective tissue areas are relatively
easy for general pathologists to identify. Third, given the huge
morphological heterogeneity (various origins, such as osteogenic,
chondrogenic, and fibrous) among bone tumors from each
qualitative class and the moderate slide sample size of this
study, it is impractical to automate the ROI selection process
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FIGURE 6 | Gradient-weighted class activation mapping (Grad-CAM) in binary classification for representative patches of slides correctly classified by both models
and pathologist #1. The specific classification is shown under the original patch, and the predictive probability for CAM of each class is shown below the
corresponding Grad-CAM heatmap. (A–C) show the representative patches of benign bone tumors, whereas (D–F) show the representative patches of non-benign
bone tumors. CAM, class activation mapping; ABC, aneurysmal bone cyst.
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using algorithms for the moment. Some slides with suboptimal
stain quality were excluded before WSI scanning in this study,
making the pipeline workflow not clinically applicable enough.
An updated algorithm including stain normalization and
defective slide detection should be integrated into the model in
the future.

The patch-level Grad-CAM visualization showed that the DL
model could overcome the interference of histomorphological
heterogeneity among the same class, well-differentiating bone
tumors in terms of aggressiveness according to the diagnostic
feature. We speculate that the under-differentiated and non-
specific abstract features in non-benign bone tumors could be
effectively extracted and learned by the DL model to make the
correct patch-level binary prediction. However, for malignant
bone tumors with atypical cell components accounting for a
small proportion of the whole slide, the DL model gave wrong
Frontiers in Oncology | www.frontiersin.org 1039
slide-level predictions because noise patches (patches of benign
structure) unintentionally produced in the ROI selection process
was used for slide-level probability calculation. Such label noise is
inevitable when the pathologist annotates an ROI area, and many
weakly supervised approaches have been attempted to address
this issue and reduce annotation workload (10, 32). Therefore,
given the histopathological diversity for bone tumors of the same
qualitative classification, future studies with more sample sizes
that have numerous cases of different origins in each class are
needed to build an annotation-free DL classifier with
high performance.

Most of the current DL-based histopathological diagnosis
system has been built as the assistant role for human pathologists
(11, 33) because of the related ethical issues of entirely relying on
DL models (8). It is usually devastating for pathologists to miss
the diagnosis of a non-benign bone tumor in adolescents that
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FIGURE 7 | Grad-CAM in ternary classification for representative patches of slides correctly classified by both models and pathologist #1. The specific classification is
shown under the original patch, and the predictive probability for CAM of each class is shown below the corresponding Grad-CAM heatmap. (A–D), (E–H), and (I–L)
show the representative patches of benign, intermediate, and malignant bone tumors, respectively.
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FIGURE 8 | Representative patches of slides wrongly classified by models and the associated Grad-CAM results. The ground truth label of the original patch is
displayed on the upper left in white, and the predictive classification of the model is presented on the upper right in red (false prediction) or green (correct prediction).
The specific classification is shown under the original patch, and the predictive probability for CAM of each class is shown below the corresponding Grad-CAM
heatmap. (A–F) show the representative patches of chondrosarcoma and malignant giant cell tumor, respectively. B, benign; I, intermediate; M, malignant; CAM,
class activation mapping; GCT, giant cell tumor.
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FIGURE 9 | Representative patches of slides wrongly classified by pathologist #1 and the associated Grad-CAM results. The ground truth label of the original patch
is displayed on the upper left in white, and the predictive classification of pathologist #1 is presented on the upper right in red (false prediction). The specific
classification is shown under the original patch, and the predictive probability for CAM of each class is shown below the corresponding Grad-CAM heatmap.
(A–F) show the representative patches of benign, intermediate, and malignant bone tumors, respectively. B, benign; I, intermediate; M, malignant; CAM, class
activation mapping; ABC, aneurysmal bone cyst; GCT, giant cell tumor.
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could have been properly managed. Therefore, a screening tool
with high sensitivity would assist inexperienced pathologists in
general hospitals to confidently exclude non-benign bone tumors
and refer suspected aggressive cases to specialized hospitals for
further treatment. The best-performing DL model in this study
showed a comparable sensitivity and a higher specificity
compared with the senior pathologist in slide-level prediction,
indicating the promising value of DL in screening non-benign
bone tumors in the future. Besides histopathological features,
pathologists typically use radiological and demographic findings
as references to reach the final clinical diagnosis of the bone
tumor. However, when given the pathological information alone,
the evaluation results among pathologists seemed not consistent
in this study, which shows that the human’s classification of bone
tumors may be unreliable solely based on the histopathological
assessment. Later DL-related research should focus on
combining clinical, radiological, and histopathological data of
bone tumors, along with cutting-edge approaches like the
ensemble model (34), to raise the sensitivity to near 100%
while maintaining the high specificity of the model.

To our knowledge, this is the first study that verifies the
feasibility of using the DL-based model to classify bone tumors
histopathologically in terms of aggressiveness. In contrast,
previous related works only concentrated on the histologic
analysis of specific diagnoses of bone tumors and had small
numbers of WSI slides (35–37). Considering the low prevalence
of bone tumors and the relative difficulty to obtain biopsy tissues
compared with radiographs, the sample size of more than 700,000
patches generated from 427 slides was fairly adequate to train a DL
model. With the help of the Grad-CAM, we found that the model
could easily differentiate some cases that were confusing for
pathologists. The visualization also helped us partly interpret the
DL underlying mechanism of classifying bone tumors, which was
deemed a black box that was hard to explain before. These results
would provide a theoretical basis for the future application of DL-
assisted histopathological diagnosis for bone tumors.

There exist several limitations in our study. First, this is a
single-center study with a moderate number of pathological
slides. The variety in the process of slide preparation and WSI
scanning from different institutions may have an impact on the
image quality of training input. Therefore, the model’s
generalizability might be partially limited by the training
dataset of this study, and a multi-center research should assist
in achieving a more robust result in the future. Second, the label
noise (wrongly labeled patches) generated from manually
annotated ROIs would introduce information bias to some
degree for DL training, although such bias could be mostly
compensated in the averaging process of the slide-level
prediction. Third, due to the retrospective nature of the data
acquisition, the number of slides in each classification was not
well balanced, thus bringing in selection bias for training and
evaluation of the model. However, we used the average metric
weighted by each class to minimize this kind of bias. Moreover,
the subjectivity of pathologists in determining tumor areas would
also result in selection bias, and future studies are needed to
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address this problem with weakly supervised or unsupervised DL
models. Fourth, there were few specific cases with the rare
incidence in each qualitative classification (for example, fibrous
histiocytoma and fibrosarcoma). The DL model may not be
trained well to extract and learn morphological features specific
to these rare cases based on the limited number of representative
patches. Future studies should include more data about rare cases
to make the model more generalizable. Fifth, there exist some
non-neoplastic lesions mimicking bone tumors radiographically
or histopathologically, such as osteomyelitis and osteonecrosis.
Our DL models were only trained on the neoplastic lesions,
leading to inapplicability to differentiate such non-neoplastic
lesions, although these kinds of tumor mimics are relatively easy
for pathologists to distinguish from neoplastic lesions based on
the laboratory test and the histological absence of neoplastic cells.
Finally, histopathological results of bone tumors are more often
combined with clinical and radiological features of patients for
pathologists to predict the clinical classification, whereas we only
focused on the histopathological side in this study. In order to
make the model’s underlying prediction mechanism closer to the
human being, later research should consider integrating multiple
levels of data to train a comprehensive DL model.

In summary, the present study shows that the DL model can
effectively classify primary bone tumors histopathologically in
terms of aggressiveness, reaching the predictive performance
similar to the senior pathologist while higher than attending
and resident pathologists. These results are promising and
would help expedite the future application of DL-assisted
histopathological diagnosis for primary bone tumors.
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Objectives: To develop and validate a deep learning (DL)-based primary tumor biopsy
signature for predicting axillary lymph node (ALN) metastasis preoperatively in early breast
cancer (EBC) patients with clinically negative ALN.

Methods: A total of 1,058 EBC patients with pathologically confirmed ALN status were
enrolled from May 2010 to August 2020. A DL core-needle biopsy (DL-CNB) model was
built on the attention-based multiple instance-learning (AMIL) framework to predict ALN
status utilizing the DL features, which were extracted from the cancer areas of digitized
whole-slide images (WSIs) of breast CNB specimens annotated by two pathologists.
Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves, and areas
under the ROC curve (AUCs) were analyzed to evaluate our model.

Results: The best-performing DL-CNB model with VGG16_BN as the feature extractor
achieved an AUC of 0.816 (95% confidence interval (CI): 0.758, 0.865) in predicting
positive ALN metastasis in the independent test cohort. Furthermore, our model
incorporating the clinical data, which was called DL-CNB+C, yielded the best accuracy
of 0.831 (95%CI: 0.775, 0.878), especially for patients younger than 50 years (AUC:
0.918, 95%CI: 0.825, 0.971). The interpretation of DL-CNB model showed that the top
signatures most predictive of ALN metastasis were characterized by the nucleus features
including density (p = 0.015), circumference (p = 0.009), circularity (p = 0.010), and
orientation (p = 0.012).

Conclusion: Our study provides a novel DL-based biomarker on primary tumor CNB
slides to predict the metastatic status of ALN preoperatively for patients with EBC.

Keywords: deep learning, axillary lymph node metastasis, breast cancer, core-needle biopsy, whole-slide images
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INTRODUCTION

Breast cancer (BC) has become the greatest threat to women’s
health worldwide (1). Clinically, identification of axillary lymph
node (ALN) metastasis is important for evaluating the prognosis
and guiding the treatment for BC patients (2). Sentinel lymph
node biopsy (SLNB) has gradually replaced ALN dissection
(ALND) to identify ALN status, especially for early BC (EBC)
patients with clinically negative lymph nodes. Although SLNB
had the advantage of less invasiveness than ALND, SLNB still
caused some complications such as lymphedema, axillary
seroma, paraesthesia, and impaired shoulder function (3, 4).
Moreover, SLNB has been considered a controversial procedure,
owing to the availability of radionuclide tracers and the surgeon’s
experience (5, 6). In fact, SLNB can be avoided if there are some
reliable methods of preoperative prediction of ALN status for
EBC patients.

Several studies intended to predict the ALN status by
clinicopathological data and genetic testing score (7, 8).
However, due to the relatively poor predictive values and high
genetic testing costs, these methods are often limited. Recently,
deep learning (DL) can perform high-throughput feature
extraction on medical images and analyze the correlation
between primary tumor features and ALN metastasis
information. In a previous study, deep features extracted from
conventional ultrasound and shear wave elastography (SWE)
were used to predict ALN metastasis, presenting an area under
the curve (AUC) of 0.796 in the test set (9). Nevertheless, SWE
has not been integrated into routine clinical breast examinations
in many hospitals. Another recent study demonstrated that the
DL model based on diffusion-weighted imaging–magnetic
resonance imaging (DWI-MRI) database of 172 patients
achieved an AUC of 0.852 for preoperative prediction of ALN
metastasis (10), but the small sample size enrolled could not
be representative.

Currently, DL has enabled rapid advances in computational
pathology (11, 12). For example, DL methods have been applied
to segment and classify glomeruli with different staining and
various pathologic changes, thus achieving the automatic
analysis of renal biopsies (13, 14); meanwhile, DL-based
automatic colonoscopy tissue segmentation and classification
have shown promise for colorectal cancer detection (15, 16);
besides, the analysis of gastric carcinoma and precancerous
status can also benefit from DL schemes (17, 18). More
recently, for the ALN metastasis detection, it is reported that
DL algorithms on digital lymph node pathology images achieved
better diagnostic efficiency of ALN metastasis than pathologists
(19, 20). In particular, the assistance of algorithm significantly
increases the sensitivity of detection for ALN micro-metastases
(21). In addition to diagnosis, several previous studies indicated
that deep features based on whole-slide images (WSIs) of
postoperative tumor samples potentially improved the
prediction performance of lymph node metastasis in a variety
of cancers (20, 22). So far, there is no relevant research on
preoperatively predicting ALN metastasis based on WSIs of
primary BC samples. In this study, we investigated a clinical
data set of EBC patients treated by preoperative core-needle
Frontiers in Oncology | www.frontiersin.org 245
biopsy (CNB) to determine whether DL models based on
primary tumor biopsy slides could help to refine the prediction
of ALN metastasis.
PATIENTS AND METHODS

Patients
On approval by the Institutional Ethical Committees of Beijing
Chaoyang Hospital affiliated to Capital Medical University, we
retrospectively analyzed data from EBC patients with clinically
negative ALN from May 2010 to August 2020. Written consent
was obtained from all patients and their families.

The detailed inclusion criteria were as follows: 1) patients
with CNB pathologically confirmed primary invasive BC; 2)
patients who underwent breast surgery with SLNB or ALND;
3) baseline clinicopathological data including age, tumor size,
tumor type, ER/PR/HER-2 status, and the number of ALN
metastasis were comprehensive; 4) complete concordance of
molecular status was found between CNB and excision
specimens; 5) no history of preoperative radiotherapy and
chemotherapy; and 6) adequate volume of biopsy materials
with three or more cores for each patient.

The exclusion criteria included the following: 1) patients with
physically positive or imaging-positive ALN; 2) missing
postoperative pathology information; 3) missing wax blocks
and hematoxylin and eosin (H&E) slices; and 4) low-quality
H&E slices or WSIs. The patient recruitment workflow is shown
in Figure 1.

Deep Learning Model Development
To avoid the inter-observer heterogeneity, all available tumor
regions in each CNB slide were examined and annotated by two
independent and experienced pathologists blinded to all patient-
related information. A WSI was classified into positive (N(+)) or
negative (N0) using the proposed DL CNB (DL-CNB) model.
Our DL-CNB model was constructed with the attention-based
multiple-instance learning (MIL) approach (23). In MIL, each
training sample was called a bag, which consisted of multiple
instances (24–26) (each instance corresponds to an image patch
of size 256 × 256 pixels). Different from the general fully
supervised problem where each sample had a label, only the
label of bags was available in MIL, and the goal of MIL was to
predict the bag label by considering all included instances
comprehensively. The whole algorithm pipeline comprised the
following five steps:

(1) Training data preparation (Figure 2A). For each rawWSI,
amounts of non-overlapping square patches were first cropped
from the selected tumor regions. Then each WSI could be
represented as a bag with N randomly selected patches. To
increase the training samples, M bags were built for each WSI.
All M bags were labeled as positive if the slide is an ALN
metastasis case, and vice versa. Note that we could add the
clinical information of the slide to all the M constructed bags to
involve more useful information for predicting, and in this
situation, the developed model was called DL-CNB+C.
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(2) Feature extraction (left part of Figure 2B). N feature
vectors were extracted for the N image instances in each bag by
using a convolutional neural network (CNN) model. The
performances of AlexNet (27), VGG16 (28) with batch norm
(VGG16_BN), ResNet50 (29), DenseNet121 (30), and Inception-
v3 (31) were compared to find the best feature extractor. At this
stage, the clinical data were also preprocessed for feature
extraction. Concretely, the numerical properties in clinical data
were standardizing by removing the mean and scaling to unit
variance, thus eliminating the effect of data range and scale;
furthermore, considering that there was no natural ordinal
relationship between different values of the category attributes,
the categorical properties in clinical data were encoded as the
one-hot vectors, which could express different values equally.

(3)MIL (right part ofFigure2B). The extractedN feature vectors
of image instances were first processed by the max-pooling (32–34)
and reshaping and then were passed to a two-layer fully connected
(FC) layer.TheNweight factors for the instances in thebagwere thus
obtained and then were further multiplied to the original feature
vectors (23) to adaptively adjust the effect of instance features.
Finally, the weighted image feature vectors and the clinical features
were fused by concatenation; due to the large difference of
dimensions between image features and clinical features, the
clinical features were copied 10 times for expansion. Then, the
fused features were fed into the classifier, and the outputs and the
ground truth labels were used to calculate the cross-entropy loss.

(4) Model training and testing. We randomly divided the
WSIs into training cohort and independent test cohort with the
ratio of 4:1 and randomly selected 25% of the training cohort as
the validation cohort. We used Adam optimizer with learning
rate 1e−4 to update the model parameters and weight decay 1e−3
for regularization. In the training phase, we used the cosine
annealing warm restarts strategy to adjust the learning rate (35).
Frontiers in Oncology | www.frontiersin.org 346
In the testing phase, the ALN status is predicted by aggregating
the model outputs of all bags from the same slide (Figure 2C).

The DL models are available at: https://github.com/bupt-ai-
cz/BALNMP.

Visualization of Salient Regions From
Deep Learning Core-Needle Biopsy Model
We visualized the important regions that were more associated
with metastatic status. After the processing of attention-based
MIL pooling, the weights of different patches can be obtained,
and the corresponding feature maps were then weighted together
in the following FC layers to conduct ALN status prediction.
With the attention weights, we created a heat map to visualize the
important salient regions in each WSI.

Interpretability of Deep Learning
Core-Needle Biopsy Model With
Nucleus Features
Interpretability of DL-CNB model with nucleus features was
performed to study the contribution of different nucleus
morphological characteristics in the prediction of lymph node
metastasis (36, 37). Multiple specially designed nucleus features
were firstly extracted for each WSI, and these features together
formed a training bag. With the constructed feature bags, the
proposed DL-CNB model was re-trained. The weights of different
features (instances) can be obtained based on the attention-based
MIL pooling, and thus the contribution of different features was
yielded. The specific process is described in Figure 3.

Statistical Analysis
The logistic regression was used to predict ALN status by clinical
data only model. The clinical difference of N0 and N(+) was
compared by using the Mann–Whitney U test and chi-square
FIGURE 1 | Patient recruitment workflow.
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A B DC

FIGURE 3 | Overview on interpretability methods of deep learning core-needle biopsy (DL-CNB) model based on nucleus morphometric features. (A) The selected
tumor regions of each whole-slide image (WSI) was cropped into patches. (B) For each patch, we processed nucleus segmentation (a weakly supervised
segmentation framework was applied to obtain the nucleus), defined multiple nucleus morphometric features (such as major axis, minor axis, area, orientation,
circumference, density, circularity, and rectangularity, which are denoted as f1, f2, f3, …, fn), and extracted n feature parameters correspondingly. (C) All n kinds of
feature parameters from a WSI were quantized into n distribution histograms and saved to n feature matrices (m1, m2, m3, …, mn). (D) The matrices from a WSI
were considered as instances of a bag and served as the input of DL-CNB model; the re-trained DL-CNB model could generate scores of features (instances) in the
bag, which represented the weight of each feature in pathological diagnosis.
A

B

C

FIGURE 2 | The overall pipeline of the deep learning core-needle biopsy incorporating the clinical data (DL-CNB+C) model to predict axillary lymph node (ALN)
status between N0 and N(+). (A) Multiple training bags were built based on clinical data and the cropped patches from the selected tumor regions of each core-
needle biopsy (CNB) whole-slide image (WSI). (B) DL-CNB+C model training process included two phases of feature extraction and multiple-instance learning (MIL),
and finally the weighted features fused with clinical features were used to predict classification probabilities and calculate the cross-entropy loss. (C) The predicted
probabilities of each bag from a raw CNB WSI were merged to guide the final ALN status classification between N0 and N(+).
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test. The AUCs of different methods were compared by using
Delong et al. (38). The other measurements like accuracy (ACC),
sensitivity (SENS), specificity (SPEC), positive predictive value
(PPV), and negative predictive value (NPV) were also used to
estimate the model performance. All the statistics were two-
sided, and a p-value less than 0.05 was considered statistically
significant. All statistical analyses were performed by MedCalc
software (V 19.6.1; 2020 MedCalc Software bvba, Mariakerke,
Belgium), Python 3.7, and SPSS 24.0 (IBM, Armonk, NY, USA).
RESULTS

Clinical Characteristics
A total of 1,058 patients with EBC were enrolled for analysis.
Among them, 957 (90.5%) patients had invasive ductal
carcinomas, and 101 (9.5%) patients had invasive lobular
carcinomas. There were 840 patients in the training cohort and
218 patients in the independent test cohort after all WSIs were
randomly divided by using N0 as the negative reference standard
and others as the positive. The average patient age was 57.6 years
(range, 26–90 years) for the training and validation sets and 56.7
years (range, 22–87 years) for the test set. The mean ultrasound
tumor size was 2.23 cm (range, 0.5–4.5 cm). A total of 556
patients (52.6%) had T1 tumors, while 502 patients (47.4%) had
T2 tumors. According to the results of SLNB or ALND, positive
lymph nodes were found in 403 patients. Among them, 210
patients (52.1%) had one or two positive lymph nodes (N+(1 −
2)), and 193 patients (47.9%) had three or more positive lymph
nodes (N+(≥3)). As shown in Table 1, there was no significant
difference between the detailed characteristics of the training and
independent test cohorts (all p > 0.05).
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Convolutional Neural Network
Model Selection
The detailed results are summarized in Supplementary Table 1.
Based on the overall analysis, VGG16_BN model pre-trained on
ImageNet (39) provided the best performance in the validation
cohort and the independent test cohort (AUC: 0.808, 0.816),
compared with AlexNet (AUC: 0.764, 0.780), ResNet50 (AUC:
0.644, 0.607), DenseNet121 (AUC: 0.714, 0.739), and Inception-v3
(AUC: 0.753, 0.762). Furthermore, considering other metrics,
VGG16_BN achieved the best ACC, SPEC, and PPV in the
independent test cohort. VGG16_BN consisted of (convolution
layer, batch normalization layer, and Rectified Linear Unit (ReLU))
as the basic blockwhereReLUplayed a role of activation function to
provide the non-linear capability; and max-pooling layers were
insertedbetweenbasicblocks fordown-sampling; besides, therewas
an adaptive average pooling layer at the end of VGG16_BN for
obtaining features with a fixed size. The details of VGG16_BN are
described in Supplementary Table 2.

Predictive Value of Deep Learning Core-
Needle Biopsy Incorporating the Clinical
Data Model Between N0 and N(+)
In the trainingcohort,DL-CNB+CachievedanAUCof0.878,while
DL-CNB and classification by clinical data only model achieved
AUCsof 0.901 and0.661, respectively.And in the validation cohort,
theDL-CNB+Cmodel achievedanAUCof0.823,whichwashigher
than an AUC of 0.808 obtained by DL-CNB only and an AUC of
0.709 obtained by classification by clinical data.

In the independent test cohort, the DL-CNB+C model still
achieved the highest AUC of 0.831, which was better than the
AUC of DL-CNB only (AUC: 0.816, p = 0.453) and classification
October 2021 | Volume 11 | Article 759007
TABLE 1 | Patient and tumor characteristics.

Characteristics All patients Training Test p

Number 1,058 840 (80%) 218 (20%)
Age, mean ± SD, years 57.58 ± 12.523 57.80 ± 12.481 56.72 ± 12.674 0.344
Tumor size, mean ± SD, cm 2.234 ± 0.8623 2.228 ± 0.8516 2.256 ± 0.9040 0.898
Number of LNM, mean ± SD 1.20 ± 2.081 1.20 ± 2.095 1.20 ± 2.033 0.847
Tumor type 0.812

Invasive ductal carcinoma 957 760 (90.5%) 197 (90.4%)
Invasive lobular carcinoma 101 80 (9.5%) 21 (9.6%)

T stage 0.327
T1 556 435 (51.8%) 121 (55.5%)
T2 502 405 (48.2%) 97 (44.5%)

ER 0.333
Positive 831 665 (79.2%) 166 (76.1%)
Negative 227 175 (20.8%) 52 (23.9%)

PR 0.312
Positive 790 633 (75.4%) 157 (72.0%)
Negative 268 207 (24.6%) 61 (28.0%)

HER-2 0.613
Positive 277 217 (25.8%) 60 (27.5%)
Negative 781 623 (74.2%) 158 (72.5%)

LNM 0.880
Yes 403 521 (62.0%) 134 (61.5%)
No 655 319 (38.0%) 84 (38.5%)
Qualitative variables are in n (%), and quantitative variables are in mean ± SD, when appropriate.
SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2; LNM, lymph node metastasis.
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by clinical data only (AUC: 0.613, p < 0.0001). The ACC, SENS,
and NPV of DL-CNB+C were also better than those of other
methods. The detailed statistical results are summarized in
Table 2, and its corresponding receiver operating characteristics
(ROCs) are shown in Figure 4.

We further divided N(+) into low metastatic potential (N+

(1 − 2)) and high metastatic potential (N+(≥3)) according to the
number of ALN metastasis. Adopting N0 as the negative
reference standard, the combined model showed better
discriminating ability between N0 and N+(1 − 2) (AUC: 0.878)
and between N0 and N+(≥3) (AUC: 0.838).

The detailed statistical results are summarized in
Supplementary Tables 3, 4, and the corresponding ROCs are
shown in Supplementary Figures 1, 2.
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Predictive Value of Deep Learning Core-
Needle Biopsy Incorporating the Clinical
Data Model Among N0, N+(1 − 2),
and N+(≥3)

The overall AUC of multi-classification in the independent test
cohort based on DL-CNB+C model was 0.791; there existed the
highest precision and recall of 0.747 and 0.947, respectively, in
N0; there existed the precision and recall of 0.556 and 0.400 in N+

(1 − 2); and there existed the precision and recall of 0.375 and
0.162 in N+(≥3). The confusion matrix under the classification
threshold of 0.5 is shown in Figure 5. According to the results, the
model performed well in differentiating the N0 group while
showing poor diagnostic efficacy in the other two groups.
FIGURE 4 | Comparison of receiver operating characteristic (ROC) curves between different models for predicting disease-free axilla (N0) and heavy metastatic
burden of axillary disease (N(+)). Numbers in parentheses are areas under the receiver operating characteristic curve (AUCs).
TABLE 2 | The performance in prediction of ALN status (N0 vs. N(+)).

Methods AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

Clinical data only T 0.661 [0.622, 0.698] 64.13 [60.24, 67.88] 64.58 [58.17, 70.63] 63.85 [58.86, 68.62] 52.36 [48.32, 56.38] 74.55 [70.85, 77.92]
V 0.709 [0.643, 0.770] 67.62 [60.84, 73.90] 65.82 [54.29, 76.13] 68.70 [60.02, 76.52] 55.91 [48.46, 63.11] 76.92 [70.62, 82.22]
I−T 0.613a,b [0.545, 0.678] 61.93 [55.12, 68.40] 50.00 [38.89, 61.11] 69.40 [60.86, 77.07] 50.60 [42.34, 58.83] 68.89 [63.49, 73.82]

DL-CNB model T 0.901 [0.875, 0.923] 80.32 [76.99, 83.35] 94.17 [90.41, 96.77] 71.79 [67.05, 76.21] 67.26 [63.61, 70.71] 95.24 [92.30, 97.09]
V 0.808 [0.748, 0.859] 72.86 [66.31, 78.75] 77.22 [66.40, 85.90] 70.23 [61.62, 77.90] 61.00 [53.95, 67.62] 83.64 [77.04, 88.62]
I−T 0.816c [0.758, 0.865] 74.77 [68.46, 80.39] 80.95 [70.92, 88.70] 70.90 [62.43, 78.42] 63.55 [56.76, 69.84] 85.59 [79.04, 90.34]

DL-CNB+C model T 0.878 [0.622, 0.698] 76.51 [73.00, 79.77] 93.33 [89.40, 96.14] 66.15 [61.22, 70.84] 62.92 [59.53, 66.19] 94.16 [90.90, 96.30]
V 0.823 [0.765, 0.872] 75.71 [69.34, 81.35] 74.68 [63.64, 83.80] 76.34 [68.12, 83.32] 65.56 [57.69, 72.65] 83.33 [77.19, 88.08]
I−T 0.831 [0.775, 0.878] 75.69 [69.44, 81.23] 89.29 [80.63, 94.98] 67.16 [58.53, 75.03] 63.03 [56.96, 68.71] 90.91 [84.21, 94.94]
October 2021 | Volume
95% confidence intervals are included in brackets.
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value; T,
training cohort (n = 630); V, validation cohort (n = 210); I–T, independent test cohort (n = 218); ALN, axillary lymph node; DL-CNB+C, deep learning core-needle biopsy incorporating
the clinical data.
aIndicates p < 0.0001, Delong et al. in comparison with DL-CNB model in independent test cohort.
bIndicates p < 0.0001, Delong et al. in comparison with DL-CNB+C model in independent test cohort.
cIndicates p = 0.4532, Delong et al. in comparison with DL-CNB+C model in independent test cohort.
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Subgroup Analysis of Deep Learning Core-
Needle Biopsy Incorporating the Clinical
Data Model
Furthermore, we analyzed the measurement results of the
different subgroups in the independent test cohort of
predicting ALN status between N0 and N(+) by the DL-
CNB+C model. The detailed statistical results are summarized
in Supplementary Table 5. In the independent test cohort,
compared with an AUC of 0.794 (95%CI: 0.720, 0.855) in the
subgroup of age >50, there existed better performance in the
subgroup of age ≤50 with an AUC of 0.918 (95%CI: 0.825, 0.971,
p = 0.015). There were no significant differences regarding other
subgroups of ER(+) vs. ER(−) (p = 0.125), PR(+) vs. PR(−) (p =
0.659), HER-2(+) vs. HER-2(−) (p = 0.524), and T1 vs. T2 stage
(p = 0.743) between N0 and N(+).

Interpretability of Deep Learning Core-
Needle Biopsy Model
To investigate the interpretability of the DL-CNB, we conducted
two studies for digging the correlation factors of ALN status
prediction. In the first study, we adopted the attention-based
MIL pooling to find the important regions that contributing to
the prediction. The heat map in Figure 6A highlights the red
patches as the important regions. Although the obtained
important areas can provide some clues to the diagnosis of
DL-CNB model, it is not clear that the model makes decisions
based on what features of the tumor area.

In the second study, we specially designed and extracted
multiple nucleus features for each WSI. The weights of different
features were then obtained based on the same attention-based
MIL pooling in our DL-CNB. The weights highlighted the nucleus
features that were most relevant to the ALN status prediction of
Frontiers in Oncology | www.frontiersin.org 750
each WSI. We found that the WSI of N(+) group had higher
nuclear density (p = 0.015) and orientation (p = 0.012) but lower
circumference (p = 0.009), circularity (p = 0.010), and area (p =
0.024) compared with N0 group (Figures 6B, C). There were no
significant differences in other nucleus features including major
axis (p = 0.083), minor axis (p = 0.065), and rectangularity (p =
0.149) between N0 and N(+).
DISCUSSION

In most previous studies, DL signatures of ALN metastases were
based on medical images such as ultrasound, CT, and MRI (10,
40, 41). However, since many patients had undergone CNB at the
time of imaging examination, and the reactive changes such as
needle path in the tumor would result in the predictive
inaccuracy of imaging information. This study focused on
preoperative CNB WSI, which also played an important role in
BC management and has been increasingly performed in clinical
practice. Preoperative CNB can provide not only the
histopathological diagnosis of BC but also the molecular status
including ER/PR/HER-2 status, which is associated with ALN
metastasis (42). Otherwise, the morphological features of tumor
cells can be visualized on CNB WSI. Therefore, primary tumor
biopsy WSI as a complementary imaging tool has the potential
for ALNmetastasis prediction. To the best of our knowledge, this
is the first study to apply the DL-based histopathological features
extracted from primary tumorWSIs for ALN prediction analysis.

Here, the best-performing DL-CNB model yielded
satisfactory predictions with an AUC of 0.816, a SENS of
81.0%, and a SPEC of 70.9% on the test set, which had
superior predictive capability as compared with clinical data
FIGURE 5 | The confusion matrix of predicting axillary lymph node (ALN) status between disease-free axilla (N0), low metastatic burden of axillary disease
(N+(1 − 2)), and heavy metastatic burden of axillary disease (N+(≥3)).
October 2021 | Volume 11 | Article 759007
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alone. Furthermore, unlike other combined models incorporating
clinical data (7, 9), the DL-CNB+C model slightly improved the
ACC to 0.831, which showed that our results were mainly derived
from the contribution of DL-CNB model. In addition, during the
subgroup analysis stratifiedbypatient’s age, ourDL-CNB+Cmodel
achieved an AUC of 0.918 for patients younger than 50 years,
indicating that age was the critical factor in predicting ALN status.
Regarding the number of ALN metastasis, the DL-CNB+C model
showedbetterdiscriminating ability betweenN0andN+(1− 2), and
between N0 and N+(≥3). However, the unfavorable discriminating
ability was found between N+(1 − 2) and N+(≥3). This was
consistent with the study of Zheng et al. (9), who also reported
poor efficacy between N+(1 − 2) and N+(≥3), utilizing the DL
radiomics model. In the future, further exploration of ALN staging
prediction is needed.

Indeed, computer-assisted histopathological analysis can
provide a more practical and objective output (43). For
Frontiers in Oncology | www.frontiersin.org 851
example, different molecular subtypes (44) and Oncotype DX
risk score (45) occurring in BC could be directly predicted from
the H&E slides. On the one hand, our DL model can provide
significant information for risk stratification and axillary staging,
thereby avoiding axillary surgery and reducing the complication
and hospitalization costs. On the other hand, our results also
highlight the development of algorithms based on artificial
intelligence, which will reduce the labor intensity of
pathologists. Similar approaches may be used to the pathology
of other organs.

In our study, we are first to quantitatively assess the role of
nuclear disorder in predicting ALN metastasis in BC. Our
finding is consistent with several recent studies that
demonstrate the powerful predictive effect of nuclear disorder
on patient survival (46, 47). Interestingly, the top predictive
signatures that distinguished N0 from N(+) were characterized
by the nucleus features including density, circumference,
A B

C

FIGURE 6 | The interpretability of the deep learning core-needle biopsy (DL-CNB) model of two patients. (A, B) The heat maps and nuclear segmentation from
core-needle biopsy (CNB) whole-slide images (WSIs) of the N0 and the N(+) separately, and the red regions show greater contribution to the final classification.
(C) The statistical analysis of three nuclear characteristics most relevant to diagnosis of all patients.
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circularity, and orientation. We found that the WSI of N(+) had
higher nuclear density and polarity but lower circularity, which
was understandable since in the tumors with ALN metastasis,
tumor cells became poorly differentiated as a result of rapid cell
growth, encouraging the nuclei in these structures to form highly
clustered and consistently metastatic patterns. Our results
showed that nuanced patterns of nucleus density and
orientation of tumor cells are important determinants of
ALN metastasis.

There are some limitations in our study. First, the selection of
regions of interest within each CNB slide required pathologist
guidance. Future studies will explore more advanced methods for
automatic segmentation of tumor regions. Second, this is a
retrospective study, and prospective validation of our model in
a large multicenter cohort of EBC patients is necessary to assess
the clinical applicability of the biomarker. Third, recent evidence
indicated that a set of features related to tumor-infiltrating
lymphocytes (TILs) was found to be associated with positive
LNs in bladder cancer (22). However, due to few TILs on breast
CNB slides, we only selected sufficient tumor cells for the
identification of salient regions rather than whole slides.
Finally, we only chose H&E stained images of CNB samples.
The clinical utility of immunochemical stained images remains
to be established as an interesting attempt.
CONCLUSION

In brief, we demonstrated that a novel DL-based biomarker on
primary tumor CNB slides predicted ALN metastasis
preoperatively for EBC patients with clinically negative ALN,
especially for younger patients. Our methods could help to avoid
unnecessary axillary surgery based on the widely collected H&E-
stained histopathology slides, thereby contributing to precision
oncology treatment.
Frontiers in Oncology | www.frontiersin.org 952
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Automated Machine-Learning
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Mutation Status in Glioma
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Diffuse gliomas are the most common malignant primary brain tumors. Identification of
isocitrate dehydrogenase 1 (IDH1) mutations aids the diagnostic classification of these
tumors and the prediction of their clinical outcomes.While histology continues to play a key
role in frozen section diagnosis, as a diagnostic reference and as a method for monitoring
disease progression, recent research has demonstrated the ability of multi-parametric
magnetic resonance imaging (MRI) sequences for predicting IDH genotypes. In this paper,
we aim to improve the prediction accuracy of IDH1 genotypes by integrating multi-modal
imaging information from digitized histopathological data derived from routine histological
slide scans and the MRI sequences including T1-contrast (T1) and Fluid-attenuated
inversion recovery imaging (T2-FLAIR). In this research, we have established an
automated framework to process, analyze and integrate the histopathological and
radiological information from high-resolution pathology slides and multi-sequence MRI
scans. Our machine-learning framework comprehensively computed multi-level
information including molecular level, cellular level, and texture level information to
reflect predictive IDH genotypes. Firstly, an automated pre-processing was developed
to select the regions of interest (ROIs) from pathology slides. Secondly, to interactively fuse
the multimodal complementary information, comprehensive feature information was
extracted from the pathology ROIs and segmented tumor regions (enhanced tumor,
edema and non-enhanced tumor) from MRI sequences. Thirdly, a Random Forest (RF)-
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based algorithm was employed to identify and quantitatively characterize histopathological
and radiological imaging origins, respectively. Finally, we integrated multi-modal imaging
features with a machine-learning algorithm and tested the performance of the framework
for IDH1 genotyping, we also provided visual and statistical explanation to support the
understanding on prediction outcomes. The training and testing experiments on 217
pathologically verified IDH1 genotyped glioma cases frommulti-resource validated that our
fully automated machine-learning model predicted IDH1 genotypes with greater accuracy
and reliability than models that were based on radiological imaging data only. The accuracy
of IDH1 genotype prediction was 0.90 compared to 0.82 for radiomic result. Thus, the
integration of multi-parametric imaging features for automated analysis of cross-modal
biomedical data improved the prediction accuracy of glioma IDH1 genotypes.

Keywords: digital histological slides, isocitrate dehydrogenase 1mutations, machine-learning, magnetic resonance
imaging, multimodal integration, imaging information analysis

INTRODUCTION

The current WHO classification of CNS tumors not only
considers histopathological phenotypes but also molecular
genetic parameters, e.g., DNA methylome profiling (Louis et
al., 2021; Lopes 2017; Chang et al., 2018; Lee et al., 2019).
IDH mutations in glioma have been found to be associated
with better outcomes and are therefore of great relevance in
the clinical assessment of glioma patients (Louis et al., 2016b).
Recently, some attempts have been made to use radiological
images for the pre-surgical prediction of IDH1 genotypes
(Gillies et al., 2015; Kesler et al., 2019; Lee et al., 2019;
Tatekawa et al., 2021).

Pathological and radiological imaging results are increasingly
available in digitized format (Nance et al., 2013; Farahani and
Pantanowitz 2015; Griffin and Treanor 2017). It has become
apparent that fully utilizing the data of digital radiology and
pathology images through machine-learning can facilitate the
identification of biomarkers that reflect information on the basic
biology and physiology of various malignancies (Deo 2015; Gillies
et al., 2016). Although tumor diagnoses increasingly consider
molecular genetics markers, histology continues to play a key role
in frozen section diagnosis, as a diagnostic reference and as a
method for monitoring disease progression. In addition,
compared to the indirect visualization of disease phenotypes
by means of imaging, histology provides direct information at
high resolution (Kinjo et al., 2008; Missbach-Guentner et al.,
2018; Vågberg et al., 2018; Rathore et al., 2020). Competing with
the computer-aid image technique used in radiology and
pathology, clinical practice demands professional knowledge
and long-term training to obtain useful information from the
image with the naked eye for diagnosis and evaluation (Harezlak
and Kasprowski 2018).

Computerized image analysis can reduce subjective inter-
observer bias that is known to limit all human observation
including in histopathology (Emblem et al., 2014; Zhang et al.,
2016; Choi et al., 2019). Machine-learning algorithms are already
widely used in glioma research, and most are based on the
analysis of features extracted from MRIs (Ellingson et al.,

2011; Zacharaki et al., 2012; Emblem et al., 2014; Macyszyn
et al., 2015). Zhou et al. (2017) have recently demonstrated
the ability to predict IDH genotypes in cases of primary grade
II and III glioma using clinical and pathological variables and
textual features extracted from regions of interest (ROI) in four
sequences of MRI, including T1W, T2W, T1CE and T2-FLAIR,
achieving an accuracy of 0.86. Compared to the results obtained
by Zhou and colleagues, Eichinger et al. (2017) were able to
increase the accuracy of IDH genotyping to 92% by designing an
algorithm based on feature extraction of local binary pattern,
which represent texture features extracted from multimodal MRI
data. In addition to traditional machine-learning techniques, the
method employed by Xing et al. (2017) classifies IDH mutations
and IDH wild type (IDH-wt) using conventional machine-
learning algorithms in order to extract deep features from four
sequences of MRI (T1W, T2W, T1CE, T2-FLAIR). Zhang et al.
(2016) aimed to distinguish the presence of an IDHmutation and
IDH-wt in primary grade III and IV gliomas by means of
additional features (intensity, texture and shape features)
extracted from multimodality MRIs (T1, T1CE, T2, T2-FLAIR
and DWI), achieving an accuracy of 0.883 using the Random
Forest algorithm.

Recently, the improvements in deep learning is capable to
overcome the previous challenges by learning high-dimensional
representations of imaging data. Novel, fully automated
postprocessing analyses of standard and advanced MR images
are clearly rapidly approaching. These fully automated analyses
are especially appealing because they provide unbiased
evaluations independent of operator, training or experience.
Fully automated postprocessing with deep learning analyses of
standard and advanced MR images have achieved high accuracy
even at 92.8% accuracy, 93.1% specificity, and 92.6% sensitivity
(Choi et al., 2019). Although they can be very powerful for the
prediction of IDH for glioma, deep CNNmodels are vulnerable to
overfitting to their given training dataset and inherent difficult for
interpretation which is the most crucial for decision support
system. Comprehensive understanding of the mechanism of deep
and machine-learning is necessary, however, to best develop and
then apply these algorithms to clinical practice we need to avoid
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their potential pitfalls. It is unlikely to replace tissue sampling for
now; therefore, the continued improvement in model
performance and consistency across diverse imaging modality
brings us closer to the precise molecular diagnosis (Gutman and
Young 2021).

In this study, we introduce an improved approach to IDH
prediction, which integrates radiological and histopathological
data analyses in a single combined framework. Radiological data
analysis in this context refers to the extraction and analysis of
high-throughput features from tomographic images (MR images)
whereas histopathological data analysis refers to the features
extraction and analysis from whole slide images. We
envision that this model could set a pathway for the non-
invasive evaluation of IDH mutation in gliomas and may
provide a quantitative result analysis for the researchers.
Compared with deep learning-based method, we aim to
provide doctors with an intuitive, interpretable, and cost-
effective mechanism through machine-learning based
method to support the decision on IDH status prediction.

MATERIALS AND METHODS

Patient Enrolment
The imaging data of 217 subjects that had been diagnosed with
glioma were collected from two different sources. 126 cases were
from Shandong Provincial Hospital that is affiliated with
Shandong University, comprising 41 histological grade III
cases and 85 histological grade IV cases. The remaining 91
cases were retrieved from The Cancer Imaging Archive
(TCIA), comprising 25 histological grade III cases and 66
histological grade IV cases (Table 1). The criteria for image
acquisition in this study are as follows: I) available histology,
age at diagnosis, sex, and IDH status; II) MR imaging data,
including post-contrast T1-weighted images (T1CE), and T2-
FLAIR, and III) histopathological images.

Dataset
Histopathological Images
Shandong provincial hospital’s cohort: cases were diagnosed
according to WHO criteria (Louis et al., 2021). Paraffin-
embedded tissue samples were cut into 3 μm thick slides and
stained with H&E stain for all patients in this cohort. All H&E
stained images were scanned on a Leica SCN400 slide scanner
(Leica Biosystems, Nussloch, Germany) with multi-resolution
varying from 20× to 40× for analysis.

Genomic DNA was isolated from formalin-fixed paraffin-
embedded glioma tissues. DNA was extracted using the
QIAamp DNA Micro kit (Qiagen GmbH, Hilden, Germany)
as previously described (Perizzolo et al., 2012).

Expression of IDH-R132H mutant was firstly analyzed by
IHC as previously described (Reyes-Botero et al., 2014). For
IDH R132H–negative tumors, multiple-gene Sanger
sequencing was performed to identify alternative IDH
mutations (Sanson et al., 2009). IDH status was defined
according to the absence of IDH-R132H immunopositivity
and/or mutations in IDH1 and IDH2 genes identified by
sequencing.

The Cancer Genome Atlas (TCGA) cohort: Digital pathology
slides of diagnosed diffuse gliomas were downloaded from TCGA
Data Portal (http://cancergenome.nih.gov.) including
information on IDH status, and the corresponding MRI
images were acquired from the Cancer Imaging Archive
(TCIA) Data Portal (https://www.cancerimagingarchive.net).

Multimodal MR Images
All patients were imaged in the supine position with a 3.0-T MRI
machine (Magnetom, Skyra; Siemens Healthcare, Erlangen,
Germany) using a transmit/receive quadrature 20-channel head-
and-neck coil. The imaging protocol was the same for all patients.

T1-contrast: TR, 1820 ms; TE, 13 ms; slice number, 19; FOV,
230 mm; slice thickness, 5 mm; distance factor, 30%; FA, 150 deg;
inversion time (TI), 825 ms; voxel size, 0.4 × 0.4 × 5.0 mm;
accelerate factor, 2; bandwidth, 260 Hz/Px; echo spacing, 13 ms.

Fluid-attenuated inversion recovery imaging (T2-FLAIR): TR,
8,000 ms, TE: 81 ms, slice number: 19, FOV, 220 mm; slice
thickness, 5 mm; distance factor, 30%; FA, 150 deg; inversion
time (TI), 2,370 ms; voxel size, 0.7 mm × 0.7 mm × 5.0 mm;
accelerate factor, 2; bandwidth, 289 Hz/Px; echo spacing, 9.02 ms.

All MRI sequences of each patient from our own datasets and
from TCIA have the same imaging scale, position, slice anatomy
and slice thickness.

COMPUTER ANALYSIS

An automated framework was designed to predict IDH genotype,
consisting of the following steps, which were carried out in
sequence: I) automated image pre-processing to select the
regions of interest (ROIs), II) feature extraction, III) feature
selection, and IV) automated IDH genotype prediction and
results interpretation (Figure 1).

TABLE 1 | Patient characterizes.

Shandong Provincial Hospital TCGAa

Grade III (n; %) 41 25
IDH-mutated in Grade III (n; % column) 20, 48.9% 17, 68%
Grade IV (n; %) 85 66
IDH-mutated in Grade IV (n; % column) 20; 23.5% 12, 18.2%
Age (years; mean; range) 49; [5, 79] 53; [18, 81]
Sex (n male; % column) 55; 43.7% 55; 60.4%

aTCGA, The Cancer Genome Atlas.
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FIGURE 1 | Machine-learning framework for automated prediction of IDH glioblastoma genotypes. Histopathology and multimodal MR images are used as input
(left column). Representative regions of interest (ROIs) are extracted (middle column) followed by histopathological and radiomics feature selection (right column).
Subsequently, a Random Forest model-based Recursive Feature Elimination (RF-RFE)-algorithm is applied to select relevant while reducing redundant features.
Following 10-fold cross-validation, the automated machine-learning model for glioma IDH genotype prediction is established. Abbreviations: GCLM, Grey Level
Co-occurrence Matrix features; GLRLM, Grey Level Length Matrix features; GLSZM, Grey Level Size Zone Matrix features; NGTDM, Neighboring Gray Tone Difference
Matrix features; GLDM, Grey level Dependence Matrix features, mass of features, which may have redundant information, then selected and processed to improve the
predictive power of the machine-learning model.
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Automatic Extraction of Region of Interest
Our computational algorithm used for the analysis of histological
images approaches the region of interest at two different levels.
First, one tile with the highest cell density (5,120 * 5,120) (Sertel
et al., 2009; Mobadersany et al., 2018) is extracted employing the
watershed nuclei detection algorithm (Al-Kofahi et al., 2010;
Kumar et al., 2017; Wang et al., 2018). Then, based on Hue,
Saturation, and Value of Brightness (HSV channel), five tiles
representing the whole image (Al-Kofahi et al., 2010; Kumar et al.,
2017) at 40X resolution are identified. Third, based on the HSV
channel, five tiles representing the entire image at 4X resolution
are identified.

For the analysis of radiological images, we have segmented
edema and non-enhanced tumors from T2-FLAIR image. In
addition, T1CE images were used for enhancing tumor volume
segmentation. The lesions were separated into three parts,
enhancing tumor, tumor necrosis and peritumoral edema. The
process of tumor segmentation was performed manually using
the ITK-SNAP software (version 3.6.0; www.itksnap.org). First,
all MRI sequences were retrieved from the Picture Archiving and
Communication System (PACS). Then we applied N4 bias field
correction to remove the presence of low frequency intensity non-
uniformity. Inter-modality co-registration with different 2DMRI
sequences was achieved by means of ITK-SNAP. Using this
method, ROIs of enhancing tumor were delineated on post-
contrast T1WI images by a semi-automatic method, in which
only the enhancing area was selected. Tumor necrosis was defined
as the non-enhancing area within enhancing area on post-
contrast T1WI. ROIs of peritumoral edema were delineated on
T2-FLAIR, which was defined as the high-signal region beyond
the enhancing area. The process was performed by a consultant
neuro-radiologist. Finally, the ROIs were registered on each slice
of each 2D MRI sequence.

Feature Extraction
In this step, we extracted quantitative features from
histopathology images and MRIs. In case of the histopathology
images, we extracted two types, visual features and sub-visual
features, at two different resolutions. The visual features
quantitatively describe the morphology of nuclei such as the
mean area occupied and the pattern of staining. Sub-visual
features are derived from a high-throughput intensity and
texture matrix, which reflects the intensity distribution at the
single pixel level.

In the case of MRIs, we obtained shape features from the
volume of interest (VOI) reflecting tumor area and volume.
Subsequently, we extracted first-order, second-order and high
order features from the ROIs. The shape-based features describe
the three-dimensional (3D) properties of the tumor, such as
tumor volume, sphericity, and 3D diameter. First-order
statistical features reflect the distribution of voxel intensities
within the tumor area, including energy and entropy. Second-
order statistical features were obtained from the relationships
between adjacent voxels (Balagurunathan et al., 2014) to
describe the second-order joint probability function of the
tumor region as a gray-level co-occurrence matrix (GLCM)
and Gray-level run-length matrix (GLRLM), respectively, which

reflect intra-tumoral heterogeneity. High-order features were
calculated with the help of different filters such as the wavelet
transform.

Feature Selection
Although a large number of image features can be used to
construct a model that fully reflects the characteristics of
gliomas, removing redundant information can improve the
efficacy of the model for glioma genotyping (Guyon and
Elisseeff 2003). In order to reduce the amount of redundant
information inherent to quantitative features, we built a
Random Forest algorithm enhanced by a recursive feature
elimination (RF-RFE) procedure in order to identify the
relevant and important characteristics before
implementation in a classification model all (Saeys et al.,
2007). As shown in Figure 1, the feature with the lowest
importance for classification calculated by the algorithm
will be eliminated.

Modeling and Validation
We are proposing a binary classification model to differentiate
patients with an IDH mutation from wild type high-grade
gliomas (HGGs) based on clinical features (age and sex),
digital histopathological image features and MRI Radiomics
features.

The Random Forest algorithm employed in this study is widely
used in medical imaging analysis. The corresponding model is
able to accommodate a very large set of features. All machine-
learning methods were implemented with the Statistics and
Machine-Learning package on Python 3.6.

As discussed by Guyon and Elisseeff (2003), although a large
number of image features can be used to construct a model to
better reflects the characteristics of gliomas, the model may face
over-fitting problems, and therefore redundant information
needs to be carefully removed to improve the efficacy of the
model for genotyping gliomas. In order to ensure the stability and
efficiency of the selected features, the 10-Fold cross-validation is
nested with the RF training model to select a valuable feature set.
The random forest algorithm enhanced by the recursive feature
elimination (RF-RFE) process is used to identify relevant and
important features before all implementations in the classification
model (Saeys et al., 2007).

RESULTS

Feature Extraction and Selection
We extracted a total of 22 morphological features, which were
identified in the glioma cases studied (SupplementaryMaterial I.
Extraction of histopathologic features), including nuclear shape
and staining intensity (Figure 1). In addition, we extracted
171 sub-visual features (Wang et al., 2018) from the high
resolution digital histopathology images, including intensity
features and GLCM features.

As for results of IDH status prediction for HGGs, the
histopathological features extracted from histopathology
images, which reached an accuracy of 0.81 ± 0.03 with 10-fold
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cross validation. Regarding multimodal MRIs (Supplementary
Material II. Radiomics Features Extraction), 1,132 features were
extracted from the individual patients’ different MR image
sequences, including 234 first order features, 14 shape-based
features, 286 grey level co-occurrence matrix features, 208 grey
level run length matrix features, 208 grey level size zone matrix
features, and 182 grey level dependence matrix features
(Figure 1). The area under the curve (AUC) for features
extracted from different histopathological grade of tumors was
0.90 ± 0.09.

Comparison of Performances When Using
Different Modalities and Feature Types
In order to assess the differential relevance of the modalities
tested (T1CE, FLAIR and digital pathology images) in the
prediction of IDH genotype, a Random Forest machine-
learning model with 10-fold cross-validation was
established. In general, scans of histopathological images
yielded more accurate results in the IDH genotype
prediction than other image types (Figure 2C). Considering
quantitative features obtained from the different modalities,
our morphologically defined visual features also showed high

accuracy and stability (Figure 2B). With the multiparameter
imaging features minded from different modalities images, our
quantitative and objective analysis platform achieved high
diagnostic accuracy (0.90 ± 0.05). On the other hand, the
mined multiparametric features were achieved different
accuracy in corresponding image modality, including 0.86
(±0.03) in the Digital Histopathological Images, 0.73
(±0.06) in T1CE (edema and non-enhanced tumor), 0.72
(±0.04) in T1CE (enhanced tumor), 0.68 (±0.05) in T2-
FLAIR (edema and non-enhanced tumor) and 0.78 (±0.04)
in T2-FLAIR (enhanced tumor).

For IDH genotype prediction, optimal features were selected
from the different modalities of medical images, including seven
features from the digital histopathological images, four features
form the T1CE images and five from the T2-FLAIR images. As
shown in Figure 2B, GLRLM, Shape-based and GLCM features
had the greatest power in predicting glioma IDH status. Age,
counts of nuclei and first-order features were the most important
factors that contributed to this result. Top-performers within
different groups of image features contributed to IDH status
prediction as summarized in Table 2.

The accuracy of IDH status prediction was as high as 0.88 ±
0.03 when multi-parametric features were extracted from

FIGURE 2 |Random forest classifier scores for IDH genotype prediction. (A) Prediction results based onClinical data (age and gender); (B) Prediction results based
on different feature types; (C) Prediction results based on different image modalities; (D) Receiver Operating Characteristic (ROC) for IDH genotype prediction across
multi-parametric medical images.
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different histopathological and radiomics images through our
implementation of the Random Forest algorithm. Table 3 shows
the features that play important roles in our classification model.

Quantitative Isocitrate Dehydrogenase
Status Prediction and Results Interpretation
LIME (Local Interpretable Model-agnostic Explanations) is a tool
for facilitating local model interpretability. The technique
perturbs the input data to understand how the predictions are
affected. Figures 3, 4 illustrate two representative cases from
visual analysis and the machine-learning model. The first case is
an IDH-wt patient (Figure 3), who is 43 years old (age at
diagnosis), female with a histopathological grade IV glioma.
The second one is a patient with an IDH mutation (Figure 4),

who is 22 years old (age at diagnosis), male with histopathological
grade III glioma.

Machine-learning models taking into account the extracted
features’ different contributions, then quantitatively predict the
results by combining these different features according to their
corresponding contributions. During model training, the LIME
model can generate weighted coefficients to illustrate the
contributions made by different features. The predictive
ability of LIME algorithm made the most important
contribution to achieve a higher weight value. Positive
weights reflect the increase in the corresponding features
may make a positive contribution to the IDH status
prediction. In contrast, negative weights would have negative
predictive power. As shown in Figures 3, 4, the feature
contribution for IDH genotyping for two representative cases
have been listed, which are derived from the LIME model to
obtain the linear combination of feature values and weights.

DISCUSSION AND CONCLUSION

Discussion
Determination of IDH status has become a standard for glioma
diagnosis as it helps to guide clinical decision-making. In this
study, we have developed a Random Forest algorithm-based

TABLE 2 | TOP-performing features in IDH status prediction by means of univariate analysis.

Types Mask Feature name Feature description Accuracy

Clinical N/A Age Age at diagnose 0.74
Intensity T1C-edema Uniformity Formula 0.69

Fu � ∑
Ng

i�1 p(i)2
Where p(i) refers to the features calculated form Ng discrete pixel levels
Measuring the sum of the square of image VOI pixel value

Shape FLAIR-
edema

Flatness Formula 0.67

Fflatness � λleast
λmajor

Where λmajor and λleast refer to the length of the maximum and minimum principal component axes,
respectively
Measuring the relationship between the largest and smallest principal components in the VOI shape

Texture T1C-tumor Wavelet-
LLL_glrlm_LRLGLE

Formula 0.72

FL � ∑
Ng
i�1 ∑

Nr
j�1

P(i,j|θ)j2
i2

Nr(θ)
WhereNg refers to the gray level distribution within the VOI,Nr refers to the maximal length within the
VOI, P(i, j|θ) refers to the run length matrix for an arbitrary direction θ, Nr(θ) is the number of runs in
the image along θ

This feature quantitative describes the joint distribution of long-run lengths with lower gray level
values after a wavelet filter

Wavelet T1C-tumor wavelet-HHH-glcm-MP Formula 0.69
FMP � max(p(i, j))
Where p(i, j) is the normalized co-occurrence matrix
Quantify the occurrences of the most predominant pair of neighboring intensity values through a
Gray Level Co-occurrence Matrix after an image filter by a high-frequency wavelet.

LoG FLAIR-
tumor

Log-glszm- SALGLE Formula 0.65

FSALGLE � ∑
Ng
i�1 ∑

Ns
j�1

P(i,j)
i2 j2

Nz

Where Ng refers to the distribution values within the VOI, Ns refers to the zone sizes quantity within
the VOI., Nz refers to refers to the zones quantity within the VOI, and P(i, j) is the size zone matrix
Quantify the proportion in the mask of VOI by quantify the Gray Level Size Zone joint distribution of
smaller size zones with lower gray level values after the LoG filter

Morphology Tile Cell counts Quantitative describes the cell intensity in the ROI. 0.78

MP, Maximum Probability; SALGLE, Small Area Low Gray Level Emphasis; LRLGLE, Long Run Low Gray Level Emphasis; HHH, high, high and high frequency.

TABLE 3 | Prediction of IDH genotype based on high grade gliomas.

Image modalities Accuracy

Digital Histopathological Images 0.86 (± 0.03)
T1CE (edema and non-enhanced tumor) 0.73 (± 0.06)
T1CE (enhanced tumor) 0.72 (± 0.04)
T2-FLAIR (edema and non-enhanced tumor) 0.68 (± 0.05)
T2-FLAIR (enhanced tumor) 0.78 (± 0.04)
Multi-modal Image Data 0.90 (± 0.05)

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 7186977

Wang et al. Automated IDH1 Prediction With Machine-Learning

61

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


genotype classifier that allows the prediction of IDH mutation
status in glioma patients from pre-surgical MRI scans (Zhang
et al., 2016) with improved accuracy. The Random Forest
algorithm-based genotype classifier aims to employ the
machine-learning algorithm to do the IDH genotype and a
stable and efficient prediction result of IDH genotype. In this
situation, the Random Forest machine-learning model with
10-fold cross-validation was implement into this experiment.
To be more specific, we apply the RF algorithm into the
experiment due to the following advantages: I) in specific
experiments, training can be highly parallelized and run
efficiently on large data sets; II) since the partition features
of decision tree nodes can be selected randomly, which leads to
the input samples with high-dimensional features can be
processed without dimensionality reduction; III) the
algorithm is able to calculate the importance of each
feature to the prediction result and IV) due to the adoption
of random sampling and random feature selection, the model
has small variance at the training location and strong
induction ability. We adopt the RF into the experiment,
due to the advantages the model have which match the
height of our datasets.

In order to improve the accuracy of IDH phenotype prediction,
visual and sub-visual features extracted from digital
histopathological images and quantitative radiomics feature
extracted from different multimodality MRIs were implemented

into our Random-Forest-Recursive Feature Elimination (RF-RFE)
feature selection model to identify optimal criteria for further
analysis. In this task, the “visual features” refer to not only the
basic features including the color and appearance of nuclear staining,
but also non-basic features including different directions. On the
other hand, the “sub-visual features” allude to the computerized
high-throughput first-order and second-order features, which
includes intensity and texture information. In this experiment,
features were extracted from different conduits of the H&E
images, which aims to improve the prediction accuracy of the
IDH phenotype.

Our novel integrated approach, which combined multi-
parametric biomedical imaging features, was found to be a
more accurate predictor of IDH genotype than either
radiomics or histopathological feature recognition alone.
Multi-parametric biomedical imaging characterizes tumor
properties at different biological levels, it meets the need to
understand correlations between image features, genomics, and
clinical outcomes.

Specifically, the IDH predictive performance of
histopathological images was found to be superior to T2-
FLAIR and T1CE (0.86 vs. 0.71, 0.75). Among the leading
histomorphometrical features, the mean cell area and the
mean cell axis were most significant. These top identified
features mirror the fact that gliomas with an IDH mutation
have a more coherent nuclear architecture, i.e., they are

FIGURE 3 | IDH status prediction result explanation of a representative case with the LIME algorithm for the RF model (IDH-Wild type case).
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morphologically less atypical than IDH wild type, which is
associated with a higher risk of recurrence.

Our IDH genotype prediction achieved high accuracy for
mainly two reasons: First, we integrated MRIs, digital
histopathological images and clinical information for IDH
prediction. Second, we used the selected features to
significantly reduce the number of parameters in the model
to avoid overfitting while making our model more robust. To the
best of our knowledge, this is the first study to integrate MRI and
digital pathology images in a computerized model for predicting
IDH genotype. It is worth noting that T1CE and T2-FLAIR
images conferred a higher predictive value than other MR
sequences.

Conclusion
In conclusion, our work is a step towards a more effective use
of radiomic and histopathological data. It should be
particularly helpful for retrospective studies on gliomas
where imaging results are available but also to point of care
that do not have timely access to a molecular genetics
laboratory. To sum up, our results i) demonstrate that
machine-learning is capable of indirectly identifying genetic
information within structural MR images and
histopathological datasets, ii) suggest a complementary
method for the IDH genotyping of gliomas suitable for
patient screening, and iii) demonstrate the potential for

algorithmic tools to support clinical decision-making. Taken
together, it is expected that the integration of multimodal
biomedical data analysis will become more popular in
oncology research and practice as technology evolves, with
significant potential for the future clinical management of
brain tumor patients.
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Many diseases are accompanied by changes in certain biochemical indicators called
biomarkers in cells or tissues. A variety of biomarkers, including proteins, nucleic acids,
antibodies, and peptides, have been identified. Tumor biomarkers have been widely used
in cancer risk assessment, early screening, diagnosis, prognosis, treatment, and
progression monitoring. For example, the number of circulating tumor cell (CTC) is a
prognostic indicator of breast cancer overall survival, and tumor mutation burden (TMB)
can be used to predict the efficacy of immune checkpoint inhibitors. Currently, clinical
methods such as polymerase chain reaction (PCR) and next generation sequencing (NGS)
are mainly adopted to evaluate these biomarkers, which are time-consuming and
expansive. Pathological image analysis is an essential tool in medical research, disease
diagnosis and treatment, functioning by extracting important physiological and
pathological information or knowledge from medical images. Recently, deep learning-
based analysis on pathological images and morphology to predict tumor biomarkers has
attracted great attention from both medical image and machine learning communities, as
this combination not only reduces the burden on pathologists but also saves high costs
and time. Therefore, it is necessary to summarize the current process of processing
pathological images and key steps and methods used in each process, including: (1) pre-
processing of pathological images, (2) image segmentation, (3) feature extraction, and
(4) feature model construction. This will help people choose better and more appropriate
medical image processing methods when predicting tumor biomarkers.

Keywords: histopathological image analysis, cancer biomarker, deep learning, color normalization,
feature extraction
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INTRODUCTION

Biomarkers are critical in cancer diagnosis, treatment, and
prognosis. They can be used for patient’s evaluation in a
variety of clinical settings, such as risk assessment, early
diagnosis, drug effect evaluation, and prognosis prediction (1–
3). With the development of immunology, molecular biology and
genomics, studies of cancer biomarkers have attracted a lot of
attention in recent years (4). Currently, biomarker identification
usually employs technologies such as PCR, NGS and gene
expression arrays (5). However, the data generated by these
technologies need to be analyzed and interpreted manually. In
addition, this kind of test usually costs a lot of money. For
example, the test of tumor mutation burden (TMB) usually costs
more than one thousand dollars. Thus, it will be of great value to
develop a more intelligent and economical method in tumor
biomarker identification (6).

Pathological image analysis is used to solve problems related to
medical images which were applied in biomedical research and
diagnosis. Its main objective is to extract clinically relevant
physiological and pathological information or knowledge from
images, and its main research direction is image segmentation,
classification, and retrieval (7). With the rapid development and
popularization of medical imaging technology, the amount of
medical image data is growing rapidly. It will provide important
and beneficial support for nursing and medical research to extract
useful knowledge and information automatically from massive
medical image data for clinical diagnosis and treatment (8).
Recently, researchers have paid much attention to the analysis
and study of tumor patients through pathological images and
morphology (9). Mobadersany (10) proposed that the
morphological characteristics of tumor tissue images could
reflect the genetic and molecular characteristics and predict the
degree of tumor deterioration, and the deep learning method
could be used to integrate the morphological characteristics of
tumor tissue images and genomics to predict the survival rate of
glioma patients. Xu (11) proposed a method based on deep tissue
network to automatically distinguish 10 tissue components in the
colorectal full-scan tissue image. Yu (12) for the first time
constructed the recurrence risk prediction model of LUAD and
LUSC by automatically extractingmorphological features from the
full-scan histopathological images of lung cancer to provide
prognostic information for patients. Vaidya (13) proposed to
combine radiology and pathology to predict the risk of early
lung cancer recurrence, with an accuracy rate of 70%. Wu (14)
and others constructed a deep convolutional neural network
framework to evaluate the risk of lung cancer recurrence and
metastasis from histopathology images, with the area under the
receiver operating characteristic (ROC) curve (AUC) in the test
dataset of 0.79. Jain and Massoud explored a machine learning
algorithm named Image2TMB to predict TMB from lung
adenocarcinoma histopathological images. Its average precision
was 0.89 and achieved predictive level of a panel of ~100 genes.
Microsatellite instability (MSI) was another immunotherapy
biomarker (15) which requires additional immunohistochemical
or genetic analyses in clinical practice (16). Kather et al. developed
a deep residual learning method that can predict MSI status
Frontiers in Oncology | www.frontiersin.org 267
directly from hematoxylin and eosin (H&E) stained histology
slides (17). These findings suggest that inferring genomic features
from histopathological images is possible and analyzing
histopathological images is important for studying cancer
treatments, mutated gene expression status, cancer prognosis
and risk of recurrence.

However, full-scan histopathological images are highly
complex, with large image size and about 2 GB of storage space
after compression. It is a big challenge for hardware and image
analysis algorithm to use computer to process image directly in
this kind of high resolution and large size image. At the same time,
the histopathological structure types in the images are disordered,
and the histological morphology is very different, so it is difficult to
describe with fixed features. All these factors bring great difficulty
to the processing of full scan histopathological images. Based on
the above problems, this paper summarizes the whole process and
key steps of current pathological image processing, including
image preprocessing, image segmentation, feature extraction and
model construction, to help researchers choose more suitable
medical image processing methods and predict biomarkers more
accurately. We summarized the overall flow of pathological image
processing in Figure 1.
IMAGE PREPROCESSING

The biggest obstacle to histopathological image analysis is the
difference in image morphology due to high heterogeneity of the
disease itself. At the same time, improper tissue treatment or
staining during the slice preparation will result in morphological
changes of cells and tissues, making it difficult to identify its
original structure. In addition, the background noise and the lack
of contrast caused by the different light source conditions were
also important factors. Proper preprocessing method can correct
images by eliminating irrelevant information, and filter out
interference and noise, which can improve the detectability of
target information and simplify the calculation to the
maximum extent.

Common preprocessing methods such as using spatial
filtering techniques to enhance the main structure in the
image, image enhancement can improve the contrast between
the region of interest and the background, and color
normalization can reduce the effect of staining batches (18,
19). Among these, color normalization is the most commonly
used image preprocessing methods for evaluating cancer-related
biomarkers based on histopathological images.

Color Normalization
In response to the problem of color change, Reinhard (20) and
others proposed a method of color normalization, that is, in the
lab color space, the mean and standard deviation of each
channel in the image are compared with the target by a set of
linear transformations. Then, match the mean and standard
deviation. However, if multiple patches are used, the
assumption of a unimodal distribution of pixels in each
channel of the lab color space is not valid. Therefore, this may
cause the background area to be mapped as a colored area and
November 2021 | Volume 11 | Article 763527
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the foreground to be incorrectly mapped. As shown in Table 1
below, some methods of color normalization were summarized.
IMAGE SEGMENTATION

Medical image segmentation is a complex and critical step in the
field of medical image processing and analysis. The purpose of
this process is to segment certain parts of the medical image with
specific meaning, extract relevant features, and then provide
reliable information for clinical diagnosis and pathological
research. The two most common types of medical image
segmentation are tissue segmentation and cell segmentation.
Frontiers in Oncology | www.frontiersin.org 368
Tissue Segmentation
Pathologists have identified that degree of structural
differentiation of the tissue is one of the earliest prognostic
factors for breast cancer patients. Cancer destroys the ability of
the nucleus to communicate with each other and causes it to
organize itself into structures such as tubules, thereby making the
tubules lack of indicators of advanced malignant tumors.
Tubules are usually round or oval in structure and consist of a
lumen surrounded by a layer of epithelial cells. The main
challenge of tubule segmentation is that it has a similar
appearance to other structures, such as the tearing of adipose
tissue formed during tissue preparation, and the outer layer of
well-arranged epithelial cell with nuclei missing.
TABLE 1 | A summary of color normalization methods.

Authors Methods Characteristics References

Magee A method based on supervised pixel
classification

Estimate the color of the coloring. (21)

Macenko A method based on singular value
decomposition (SVD)

Direct estimation matrix. (22)

Niethammer An improved method based on singular
value decomposition (SVD)

By expanding (22), a priori estimation of staining matrix is used to improve the stability of
each staining.

(23)

Khan Nonlinear mapping based on source image
to target image

An improvement is proposed on the method of (21), using the representation method of
color deconvolution.

(18)

Vahadane A technique of dye separation and color
normalization (SPCN)

It does a good job of maintaining the quality of biological structure and the number of
stains.

(24)

Ramakrishnan The improved SPCN In the SPCN technology, some improvements are proposed for the occasional errors in
estimating color bases, which lead to artifacts.

(25)
November 2021 | Volume 11 | A
FIGURE 1 | The flow chart for predicting cancer-related biomarkers based on digital pathological images. Firstly, H&E stained histology slides of patients were
obtained and whole slide images (WSIs) was obtained after scanning. Secondly, tumor regions were annotated by pathologists or through CNN model. Then, the
regions were segmented to patches and color-normalized. Thirdly, feature extraction and model training were carried out according to biomarker labels. Finally,
biomarker prediction was implemented in test dataset.
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For glandular segmentation, most of the early attempts used
hand-made features for segmentation. Wu (26) identified the
initial seed region based on large cavity regions and extended the
seed to the surrounding epithelial nuclear chain. Farjam (27)
proposed using a variance filter to compute cluster texture
features for segmentation. However, robust segmentation
requires more domain knowledge, and calculating texture
features only using the variance filter may not provide
sufficient information for the local structure of the
organization. Naik (28) used a Bayesian classifier to detect the
lumen region, and then used the kernel-based level set to stop
the curve and refine it. Although this method has been reported
to work well in benign cases, it may fail in malignant cases with
fairly complex glands. Nguyen (29) used color space analysis to
group the nucleus, cytoplasm, and lumen, and increased the
lumen area to achieve segmentation under constraints. Gunduz-
Demir (30) represented each tissue component as a disc and
connected nearby discs with an edge to construct a graph. They
performed area growth on a cavity disc bounded by a line
connected to the nuclear disc. Nosrati, Hamarneh (31) and
Cohen (32) first divided the tissue area into different
components, and then used a constrained level set algorithm to
segment the glands. Sirinukunwattana (33) identified epithelial
superpixels and used the epithelial region as the vertex of a
polygon, which approximated the boundary of a gland. Most of
the methods discussed above first distinguish tissue regions and
then use region growth or level sets to segment glandular regions.
Recently, a slightly different approach that first used background
information to identify potential epithelial regions, and then
used multi-resolution cell localization descriptors to identify
connected epithelial cells to segment glands was proposed by
Li (34).

Cell Segmentation
The morphology of cells in histopathological images provides
important information for the diagnosis and prognosis of cancer.
Researchers at home and abroad have tried a variety of
algorithms to solve the problem of cell segmentation in H&E
images (34–36). The algorithms generally divided into two
categories, one is to detect single cells accurately and the other
is to segment cells. The algorithms in Table 2 is commonly used
to detect the appropriate seed point or contour of the nucleus.

The other type detects the candidate area of the cell and then
divides it into individual nuclei. The first step in morphological
analysis of a cell is the segmentation of individual nuclei, which is
Frontiers in Oncology | www.frontiersin.org 469
usually performed manually in current clinical practice.
However, due to the large volume of histopathological images
and complex cell structures, manual examination is a time-
consuming and labor-intensive task. It is necessary to study
computerized methods to reduce the workload of pathologists
and improve the analysis efficiency (45). Nuclear segmentation
tasks still have some major challenges. First, different types of
organs or cells are highly heterogeneous in appearance.
Therefore, the method based on prior knowledge of geometric
features cannot be directly applied to different images. Second,
some other structures, such as the cytoplasm and cell matrix,
may have similar characteristics to the nucleus, making it difficult
to distinguish the nucleus from the background. Third, the cells
are often stacked together. In order to find the exact location and
boundary of each nucleus, it is usually necessary to perform the
next step to separate the clustered or overlapped nuclei.

In view of the importance of nuclear distribution and
morphology, the task of using computer algorithms for
accurate nuclear segmentation provides a logical starting point
for computer-aided tissue image analysis. The precise
segmentation of the nucleus can not only perform deeper level
feature extraction and classification in the nucleus, but also serve
as a relatively simple distribution of basal cells and acellular cells.
Many techniques have been applied to the task of nuclear
segmentation, but in some cases they have only achieved
partial success. For example, the intensity threshold method
usually fails due to image noise and nucleus clustering. Label-
based watershed segmentation requires accurate parameter
selection, while the computational cost of active contours and
deformable models is too high (24, 42, 46–50). Machine
learning-based kernel segmentation methods are generally
better at meeting these challenges because they can learn to
recognize changes in nuclear morphology and staining patterns.
More precisely, convolutional neural networks (CNNs) have
recently demonstrated their latest performance in kernel
segmentation (51, 52). Ciregan (53) applied deep CNN to the
automatic detection of mitotic cells in breast cancer histological
images. Using the original intensity of the test image, CNN
provides a probability map where each pixel value is the
probability of the mitotic cell centroid. Then using the disk to
check the probability map for smoothing, and non-maximum
suppression to get the final centroid detection. Xing (54) and
others respectively learned three different CNN models
corresponding to pathological images of brain tumors,
pancreatic neuroendocrine tumors, and breast cancer, and
TABLE 2 | A summary of methods on segmentation after detection of individual cells.

Methods Characteristics References

Based on different voting rules Simple and suitable for segmentation of most images (11, 37–39)
Based on Laplace operator and gaussian filter Accurately detect the edge of the cell (40)
Based on H-minima transformation Effectively restrain oversegmentation and reduce undersegmentation (41)
Based on Morphologic manipulation Could output an image by acting a structure element on the input image (42, 43)
Based on back propagation with MRF Good at dealing with the problems of image local volume and artifacts (34)
Based on the active contour model Could convert pixels to a distance field (43)
Based on the level set A numerical method based on the theory of geometric active contour model (37, 44)
November 2021 | Volume 11 | A
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applied them to automatic nuclear detection. Liu and Yang (55)
did not use simple non-maximum suppression to refine the
detection, but converted the detection problems of pancreatic
neuroendocrine and lung cancer cell nuclear into optimization
problems. Xing (47), Sirinukunwattana (51) and Song (55) have
proposed some advanced techniques in nuclear detection and
segmentation, which estimate the probability of nuclear and
non-nuclear regions (both types) based on the learned nuclear
phenomena graphs and rely on complex post-processing
methods to obtain the final core shape and the separation
between contacting nuclei. Song et al. used a graph
partitioning method (55) and Xing et al. used a kernel
mapping distance transformation, followed by H-minima
thresholding and region growth (47). Although different
methods have been developed for the problem of overlapping
and clustering nuclei in many literatures, and have achieved
varying degrees of success, this problem has not been completely
solved, as there is a large amount of overlap contact specimens
of nuclei.

In addition, a special type of nucleus, mitosis, has attracted
much attention in the field of image analysis. Mainly because the
mitotic index is used to evaluate the cell proliferation rate of
cancer cells, it could predict the prognosis of invasive breast
cancer well, but its evaluation process is extremely time-
consuming (56). On the H&E image, mitosis has specific
morphological features: dense nuclear staining, enlarged nuclei,
less clear nuclear membrane, and burr-like edges. Researchers
such as Belien (57) proposed image processing technology for
semi-automatic segmentation of mitotic images in the 1990s.
Due to the limitations of the image quality and machine learning
algorithms at the time, the algorithm proposed by Belien et al.
(57) required fourgen staining to display chromosomes, and the
false positive rate is 19-42%. With the digitization of pathological
images, two H&E tissue datasets of breast cancer have been
published internationally, and pathological experts have
annotated mitotic images in the images, which has greatly
promoted the development of algorithms in mitotic image
segmentation. Then, the International Conference on Pattern
Recognition (ICPR) (58) held a competition for mitotic detection
in breast cancer tissue images in 2012, providing different types
of images, allowing participants to analyze classic images of H&E
stained sections, and use 10 bands multispectral microscope
images, which may be more discriminatory for detecting
mitosis. Deep learning maximizing CNN significantly
outperforms other manual feature-based methods and paves
the way for future use of CNNs (53).

The biggest challenge for mitosis detection is that apoptosis,
necrosis or squeezed nuclei and lymphocyte nuclei have similar
morphology to mitosis, which is difficult for even experienced
pathologists to identify. In addition, pathologists need to observe
suspicious split images on multiple focal planes, while currently
digital images are single focal plane imaging. Although some
scanners can acquire multifocal plane images, their storage
capacity is large and cannot be widely used. We expect that in
the future, as storage costs decrease and new image compression
technologies emerge, this limitation will be eliminated (59).
Therefore, the automatic segmentation of mitotic images in
Frontiers in Oncology | www.frontiersin.org 570
H&E images at this stage is more challenging than general
nuclear segmentation and is far from being applicable to
pathological work.
MODEL CONSTRUCTION

After the ideal segmentation results were obtained from the
tissue segmentation and nuclear segmentation modules, the
morphological features of histopathological images were
extracted, and the correlation between the morphological
features and biomarkers of the full-scan histopathological
images was found and the feature model was established.

Beck et al. constructed a computer pathologist system to
extract 6,642 dimensional features from H&E histopathological
images of breast cancer (60). Some of the features are based on
the existing knowledge system, such as the formation degree of
counting glandular tube after automatic segmentation (61) and
automatic grading (62), but most of the features go beyond the
existing descriptive semantics of pathology. Computer-aided
diagnosis is also based on the prognosis of characteristic
models, modeling based on object characteristics, and then
estimating the prognosis of model parameters. Tutac (63)
proposed a semi-automatic grading system based on
knowledge model for the first time, which automatically
detected and measured the three components of histological
grading, namely nucleus, adenotuine and mitosis, through
semantic retrieval. The consistency of the scoring results of
this model was higher than that of manual evaluation. Dalle
(64) further improved the above work based on multi-resolution
method and Gaussian model function, realized automatic
histological classification, and the automatic classification
results were highly consistent with the manual evaluation results.

Pathology is morphology-based, but the classification and
assessment of disease is not limited to morphology, and requires
reference to immunological, molecular, and clinical
characteristics of patients. Based on the genome, Wang (65)
mined prognostic features in H&E histopathological images of
triple negative breast cancer (TNBC), and selected 48 pairs of
significantly correlated image features and gene clusters through
the TNBC genome map and H&E images of 44 cases, among
which 4 pairs were significantly correlated with prognosis.
Basavanhally (66) showed that H&E morphological
characteristics and IHC molecular characteristics can replace
expensive Oncotype DX risk assessment for the invasiveness of
ER negative breast cancer. Yuan (67) proposed a mathematical
statistical model to evaluate the proportion of lymphocytes in
TNBC tumors, and the results showed that lymphocytes were
related to the survival of TNBC, and the image-based evaluation
results were similar to the results of gene expression spectrum
detection. According to the prognostic model theory of
Steyerberg (61), we can further utilize the results of image
characteristics and molecular characteristics, and construct a
prediction model by integrating complementary prognostic
factors, which can be used to comprehensively and accurately
predict the prognosis of breast cancer. Currently, integrating
information from different dimensions to construct multimodal
November 2021 | Volume 11 | Article 763527
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fusion models for predicting cancer biomarkers or prognosis of
patients have been studied in several laboratories. The main
process of building multimodal fusion models is shown in
Figure 2. Making full use of multidimensional information for
fusion modeling is of great help to improve the prediction
accuracy, which will also be a direction of the development of
digital pathology. Chen et al. used CNNs and GCNs to extract
morphological features from digital histology images and SNNs
to extract genomic signatures (68). Then they employed the
Kronecker Product and a gating-based attention mechanism to
fuse these deep features and further validated the approach on
glioma and clear cell renal cell carcinoma (CCRCC) data from
TCGA. Mobadersany et al. presented a novel method to predict
outcomes of patients from histopathological images and proved
that the accuracy was comparable to the traditional manual
histological grading. To further improve performance, they
combined histopathological images and genomic data to
develop a comprehensive model called GSCNN. And its
performance was significantly better than that of SCNN model
and WHO paradigm based on genomic subtype and histological
grading (69).
LIMITATIONS AND FUTURE WORK

Cancer histology contains rich phenotypic information
and can reflect underlying molecular mechanisms and
disease progression. A large number of studies have shown
that deep learning of digital pathological images of tumor
tissue samples can be used for cancer diagnosis, classification,
drug efficacy evaluation and prognosis prediction. This
method has the advantage of fast and low cost. In this work,
we summarized the overall process and key steps of processing
full-scan section images to help people choose better and
Frontiers in Oncology | www.frontiersin.org 671
more appropriate medical image processing methods when
predicting tumor biomarkers.

However, the application of artificial intelligence (AI)
technology in precision medicine has some limitations
currently. Firstly, the diagnosis process of deep learning model
is fuzzy and the interpretability is limited, and the lack of
interpretability is unacceptable to the Medical Association (70–
72). So this problem is an important obstacle to its verification
and application in clinical practice. Heat map analysis provides
an in-depth understanding of the histological patterns related to
the prediction target, which is helpful for the interpretation of the
deep learning model. Chen et al. had used this method to locate
and interpret features in the study of multimodal fusion for
predicting survival outcome of cancer patients (68). It can also be
used as a practical tool to lead pathologists to discover the tissue
regions related to biomarkers. For example, the presence of
edema in glioma was not previously considered as an adverse
marker by pathologists, but was detected as a recognition feature
in the model of predicting cancer prognosis (69). Associated with
this finding, the degree of edema may be correlated to the growth
rate of cancer in previous study (73). Cao et al. verified the
reliability of the deep learning model in two independent cohorts
when predicting MSI with pathological images, and explained
the interpretability of the model by exploring the correlation
between pathological features and multi-omics signatures. This is
also a method to promote clinicians to accept the application of
AI in digital pathological images (74). It can be predicted that
improving the interpretability of the model or establishing
interpretable machine learning methods will be an important
topic to be explored in the future.

Secondly, a substantive problem limiting its clinical
application is the frequent workflow switching due to the
limited integration of computer-aided pathological diagnosis in
the current pathological workflow (70–72). Currently, the
FIGURE 2 | Main process of constructing a compound framework by combining pathological images with genomic data or clinical information. Convolutional neural
networks are commonly used to extract image features, and then genomic features or clinical information are integrated into the full connection layer. Support vector
machine (a), logistic regression (b), convolutional neural network (c) or random forest (d) can be used to establish the final multimodal fusion model.
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research on diagnosis and subtyping of cancer through digital
pathological images is relatively mature. Some latest studies on
predicting cancer prognosis, treatment response and disease
progress monitoring through pathological images have been
reported. Kather et al. developed a deep learning model that
can directly predict microsatellite instability from H&E
histological images of stomach and colorectal cancer and the
AUC values ranged from 0.69 to 0.84 in independent validation
datasets (17). Cao et al. explored an EPLA model with AUC of
0.8504 (95% CI: 0.7591-0.9323) in the external validation set
(74). However, more histological images of patients are needed to
optimize the model and improve accuracy. If a complete
pathological diagnosis and prediction process through
extensive analysis of various data can be established and
verified clinically, it will contribute to the application of AI in
precision medicine (71, 75).

Thirdly, it is difficult to unify the staining and imaging process of
tissue section in different laboratories, which leads to a large number
of variables in pathological images and further makes it difficult to
establish models with high stability and good generalization
performance. Just as molecular diagnosis relies on qualified
samples and sequencing data, digital image analysis also requires
strict control of sample quality, clear quality requirements for input
files, and adequate training for pathologists. These requirements of
digital pathological image analysis will also drive to improve the
volume and accuracy of histomorphological evaluation. On the
Frontiers in Oncology | www.frontiersin.org 772
other hand, in order to promote clinical transformation, a roadmap
and regulatory framework for the routine use of AI in pathology
have been published (76).

Other literatures also list possible practical problems: slow
implementation time of computer-aided pathology, insufficient
clinical validation of computer-aided pathology, and limited
impact on health economics (9, 71). The ability to overcome
these limitations will determine the future of digital pathology.
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As a major reason for tumor metastasis, circulating tumor cell (CTC) is one of the critical
biomarkers for cancer diagnosis and prognosis. On the one hand, CTC count is closely
related to the prognosis of tumor patients; on the other hand, as a simple blood test with
the advantages of safety, low cost and repeatability, CTC test has an important reference
value in determining clinical results and studying the mechanism of drug resistance.
However, the determination of CTC usually requires a big effort from pathologist and is
also error-prone due to inexperience and fatigue. In this study, we developed a novel
convolutional neural network (CNN) method to automatically detect CTCs in patients’
peripheral blood based on immunofluorescence in situ hybridization (imFISH) images. We
collected the peripheral blood of 776 patients from Chifeng Municipal Hospital in China,
and then used Cyttel to delete leukocytes and enrich CTCs. CTCs were identified by
imFISH with CD45+, DAPI+ immunofluorescence staining and chromosome 8
centromeric probe (CEP8+). The sensitivity and specificity based on traditional CNN
prediction were 95.3% and 91.7% respectively, and the sensitivity and specificity based
on transfer learning were 97.2% and 94.0% respectively. The traditional CNN model and
transfer learning method introduced in this paper can detect CTCs with high
sensitivity, which has a certain clinical reference value for judging prognosis and
diagnosing metastasis.

Keywords: circulating tumor cells, detection, count, convolutional neural network, transfer learning
INTRODUCTION

Circulating tumor cells (CTC) are all kinds of tumor cells in peripheral blood (1). Most of the CTCs
undergo apoptosis or phagocytosis after entering the peripheral blood, while a minority of CTCs
develop into metastasis and undergo for a period of dormancy, and lead to metastatic tumor (2, 3).
Cancer recurrence andmetastasis are the main causes of death in cancer patients (4, 5). A large number
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of experiments on esophageal squamous cell carcinoma (6), breast
cancer (7, 8), prostate cancer (9) and lung cancer (10) have proved
that CTCs were closely related to the prognosis of patients with
advanced cancer. As a simple blood test, CTCs detection has the
advantages of high safety, low cost and repeatability, which is
available at any time to evaluate the prognosis and recurrence risk
of patients (11, 12). Many experiments used liquid biopsy to
monitor the CTCs response in patients with malignant tumors to
evaluate the therapeutic response (13–15). Many studies have
shown that CTCs count is closely related to prognosis, which has
an important reference value for determining clinical results and
recurrence risk (16–18). The fluid biopsy can predict disease
progression in real time to assess tumor heterogeneity, and it was
possible to detect single CTCs or cell clusters (13, 19–21). Immune
enrichment with multiparameter flow cytometric is the gold
standard of CTCs detection (22), but this method was limited
due to the lack of tumor-specific markers, in this case, multi-label
immunofluorescence staining was essential. Epithelial cell adhesion
molecule (EpCAM) was often used to detect cancer cells in the
blood because it mediates contact with homotype cells in epithelial
tissue (23–25). The methods of CD45+, DNA fluorescence in situ
hybridization (FISH) of the centromere of chromosome 8 probe
(CEP8+)/chromosome 17 centromere duplication (CEP17+) have
been widely used to identify CTCs (26, 27).

In recent years, rapid and automatic identification of CTCs is
becoming more and more important, and the research on the
automatic identification process of CTCs was also accelerating
(28, 29), such as cell search system to obtain digital images (30),
rare event imaging system (REIS) (31), microfluidic platform
composed of multi-functional microfluidic chip and unique
image processing algorithm (32). However, due to the
heterogeneity of CTCs, these classification methods were often
subjective. Therefore, under certain conditions, test results vary
from examiner to examiner. The development of artificial
intelligence (AI) has accelerated scientists’ research on machine
learning. Machine learning has been widely used in medical
research because of its advantages of objectivity, rapidity, and
overcoming noise (33–35), especially in medical images (36, 37).
As the classical algorithms of machine learning, deep learning
and convolutional neural network (CNN) have made
outstanding contributions in promoting medical research (38–
40). Anthimopoulos et al. proposed the first problem specific
deep CNN for classification of interstitial lung diseases (ILD), the
results showed that (classification performance~85.5%) CNN
has potential in analyzing ILD (41). Poplin et al. used the
Inception-v3 neural network structure to predict potential
cardiovascular risk factors in retinal fundus images (42). Le
et al. constructed a deep neural network to classify Rab protein
molecules through two-dimensional CNN, which provided a
valuable reference for biological modeling using deep neural
network (43). At present, CNN has been widely used to promote
biomedical image analysis and successfully applied in cancer
diagnosis and tissue identification (44, 45). Compared with the
traditional machine learning methods, CNN-based automatic
image processing method has the advantage of eliminating the
bias caused by personal subjectivity (46). Negative enrichment
Frontiers in Oncology | www.frontiersin.org 276
combined with immuno fluorescence in situ hybridization
(imFISH) to detect CTCs has been proven to be feasible and
clinically valuable (47, 48).

In this study, we applied deep learning to identify CTCs to
reduce the subjective error. ImFISH was used to detect patients’
CTCs, each image contains positive CTCs nucleus and negative
control to segment the images of circulating tumor cells. CNN
deep learning network was used to identify circulating tumor
cells and count CTCs.
MATERIALS AND METHODS

A Framework for Identifying CTCs
The complete process of identifying CTCs based on CNN was
shown in Figure 1. Specifically, the peripheral blood of 776
cancer patients in Chifeng Municipal Hospital was collected
firstly. Then the blood samples were processed by the Cyttel
method. Based on the principle of immunology and with the help
of magnetic particle technology, CTCs were enriched by
gradually removing the components of plasma, red blood cells
and white blood cells, and CTCs were processed by imFISH (26).
Finally, after preprocessing the images, stratified sampling was
used to divide the data, 80% of the images were used for training,
and a deep learning algorithm based on CNN was used to train
the model. The remaining 20% were used as separate test set. The
prediction performance of the model was evaluated with the
results of a 5-fold cross validation (CV).

Samples Preparation
We conducted a retrospective study using plasma samples from the
Chifeng Municipal Hospital. A total of 776 patients were enrolled
from 2017 to 2019. Cancer types include lung cancer, liver cancer,
gastrointestinal cancer, breast cancer, carcinoma of thyroid, NPC
and others. After puncture for each patient, discarding the first 2ml
blood sample to avoid skin epithelial cell pollution, then routinely
collect 4ml peripheral venous blood, these samples were placed in a
blood collection vessel containing acid citrate dextrose (ACD),
gently inverted and mixed for 8 times before stored at room
temperature, and CTCs were enriched within 24 hours after
collection. The study was approved by the Ethics Committee of
Chifeng Municipal Hospital.

Enrichment of CTCs
The detection method selected in this study was Cyttel (49). The
collected blood was taken out and put into a centrifuge tube for
centrifugation experiment. After centrifugation at 776 g for 5
minutes, the supernatant was discarded to retain the precipitation,
washed the precipitate with CS1 buffer (Cyttel Biosciences Co., Ltd.,
Beijing, China), and then the red blood cells were fully dissolved
with CS2 buffer. Added anti-CD45+ monoclonal antibody binding
beads and the mixture was shaken evenly for 20 minutes to fully
bind with leukocytes. Another 3 ml of separation medium was
added to the centrifuge tube and centrifuged at a gradient of 300 g
for 5 minutes. Then the upper rare cell layer was then centrifuged at
a gradient of 776 g for 5 minutes, resuspended with CS1 buffer, and
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the test tube was placed on a magnetic scaffold for 2 minutes.
ImFISH identification was performed within 24 hours after coating,
fixing, and drying.

imFISH Identification of CTCs
The samples were fixed with a fixative, dehydrated and dried at
room temperature. The slide was coated with 10ml CEP8+

antibody, sealed and hybridized at 37°C for 1.5 h. After
hybridization, removed the cover slide and eluted the probe for
15 min. The slides were washed twice in 2×SSC. Then, the
prepared CD45+ fluorescent antibody was added to the sample
area, and the slides were placed in a humid box and incubated in
an oven at 33°C for 1 hour. After incubation, fluorescent
antibody against CD45+ was absorbed and 10 ml DAPI+ was
added to the specimen area. Then, CTCs were observed and
counted under a fluorescence microscope.

Detection Standard of CTCs
Each cell was divided into three different color channels: blue,
orange and red. Among them, the nucleus was shown blue in
DAPI+ (Figure 2A), and the centromere was shown in orange by
CEP8+ (Figure 2B), and the white blood cells were stained by
CD45+ immunofluorescence (Figure 2C). The interpretation
criteria of CTCs count are: (1) eliminate the aggregation,
superposition and interference of nuclei or impurities,
Frontiers in Oncology | www.frontiersin.org 377
(2) positive for DAPI+, (3) negative for CD45+, (4) CEP8+

signal points >2. That is, cells are regarded as CTCs if they are
CD45-/DAPI+/CEP8≥3 (50, 51).

Image Preprocessing
The Python package openCV was used to handle CTCs images
(52), including color and shape conversions. To be specific, the
DAPI+ channel was first transformed into gray scale, and then the
Gaussian filter was used to denoise. After extracting the gradient of
the image, the regions with a high horizontal gradient and low
vertical gradient were left, and the Gaussian filter was used to
denoise. Then, the blurred image was binarization, that is, each
pixel was replaced by the average value of the surrounding pixels
in order to smooth and replace those regions with obvious
intensity changes. Due to the lack of details in the contour of
the obtained image, it may interfere with the subsequent contour
detection, so it is necessary to be expanded and perform four
morphological corrosion and expansion respectively. After the
contour of the nuclear region was found, the minimum matrix
coordinates of the contour were obtained, and the coordinates
were mapped to the CEP8+ channel and segmented.

Computational Identification of CTC
With the development of artificial intelligence, deep learning has
been widely used in medical image processing. CNN is one of the
FIGURE 1 | The protocol of whole process.
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representative algorithms of deep learning, which allows higher-
level feature extraction and higher-level data prediction. After
images were preprocessed, stratified sampling was used to divide
the data, the model was trained by 5-fold CV, and the down
sampling method was used for the training set to ensure the
balance of positive samples and negative samples. CTCs in a single
nucleus were identified through CNN. CNN includes input layer,
hidden layer and output layer, the hidden layer includes layer1,
layer2 and layer3, and each layer also includes convolution layer,
excitation layer and pooling layer. After the images were fed into
the input layer, it first enters the first intermediate hidden layer
with convolution layer is composed of 32 5x5 convolution cores,
and then fed to the pool layer through the ReLU excitation layer
for dimensionality reduction. After dimensionality reduction, data
was output from the first hidden layer to complete the feature
extraction process. Then, all features are extracted through layer2
and layer3 hidden layers in turn. Finally, it enters the output layer
and outputs the result of whether it is CTC or not. The CNN in
this study involved VGG16, VGG19 (53), ResNet18, ResNet50
(54) and AlexNet (55).

These pre-training models have consumed huge time resources
and computing resources when developing neural networks
Frontiers in Oncology | www.frontiersin.org 478
usually. In recent years, transfer learning has become a new
learning framework to solve this problem (56, 57). CNN model
is pre-trained using a large number of images, and the trained
model is distributed by its inventors for adoption. Transfer
learning relies on the pre-trained CNN model to realize the
knowledge transfer of different but related tasks, that is, using
the existing knowledge learned from the completed tasks to help
complete the new tasks. If the knowledge transfer is successful, it
will greatly improve the learning efficiency by avoiding expensive
data labeling. Transfer learning is defined as follows: a given
domain D consists of feature space X and edge probability
distribution P(X), a label space y and a prediction function f
consist a task T. DS and DT represent the source domain and the
target domain, respectively, may have different feature spaces or
different edge probability distributions, that is, XS ≠ XT or PS(X) ≠
PT(X), in addition, task TS and TT are subject to different label
spaces (58).

Statistical Analysis
Receiver operating characteristic (ROC) analysis was used to
evaluate the performance of the model to identify CTC, and the
area under the curve (AUC) at the 0.5 cut-off point was used to
FIGURE 2 | The imFISH result and CTC count results. (A–C) The channels (DAPI, CEP8+, CD45+) of each image by imFISH. (D) The cell was regarded as CTC
because the number of centromeres was 3 (>2). (E, F) The cell was regarded as non-CTC because the number of centromeres was 2.
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measure the prediction accuracy. At the same time, the confusion
matrix was used to observe the specificity and sensitivity. All of
the analyses were performed using python version 3.6.9 and
“sklearn” package version 0.23.2
RESULTS

Patient Characteristics
From Jan. 2017 to Jun. 2019, a total of 776 patients from Chifeng
Municipal Hospital were included in this study. All the sample
types were peripheral blood, and their ages ranged from 11 to 90
years old, with an average age of 65 years. Among the known
cancer types, lung cancer was the most common (20.7%),
followed by breast cancer and gastrointestinal cancer, and
thyroid cancer was the least with only 2 cases. The clinical
characteristic data of the enrolled patients were shown
in Table 1.

Thousands of CTC and Non-CTC Images
Were Segmented by openCV
The imFISH was performed on the samples from 776 patients. In
order to avoid the influence of human factors, Python package
OpenCV was used to process cell images. After the nuclear region
Frontiers in Oncology | www.frontiersin.org 579
contour was found in the blue channel (DAPI+), the minimum
matrix coordinates of the contour were obtained, mapped to the
orange channel (CEP8+) and segmented, and the number of
centromeres was observed. If there were more than 2
centromeres, the cell was considered CTC (Figure 2D).
Otherwise it was non-CTC (Figures 2E, F). Finally, we
obtained 14166 images, including 694 CTC images and 13472
non-CTC images. The details of data were shown in Table 2, in
original train set, the number of CTC and non-CTC were 555
and 10777, respectively, ensuring balanced positive and negative
samples, we performed down sampling method, at last, the
number of CTC and non-CTC after down sampling were
555, respectively.

The Computational Method Performed
Well in Identifying CTC
The CNN method was used to identify the segmented cell
images. The whole process was shown in Figure 3. Firstly, the
hierarchical sampling method was adopted for all images, 80%
of the data were used for training and 20% of the data were
used for testing. The CNN-based methods were used to train
the model, including VGG16, VGG19, ResNet18, ResNet50,
and AlexNet. Specifically, the traditional CNN model and
transfer learning model were respectively trained on the
training set based on 5-fold CV. The transfer learning
model relied on the pre-trained CNN model to realize the
task of CTC recognition. The trained traditional CNN model
and the transfer learning model were used to test sets and
output the final results. The results of 5-fold CV based on the
trainset were shown in Figure 4A, the best performance was
based on ResNet18 with AUC was about 0.98, in which 90.26%
of non-CTCs were successfully identified, 9.74%were
incorrectly identified as CTCs, while only 5.41% of CTCs
are misclassified (Figure 4B), the sensitivity and specificity
were 95.3% and 91.7% respectively. After training the model,
we used ResNet18 with the best performance on the test data
set, its ROC curve was shown in Figure 4C with AUC was
0.988, and the confusion matrix also shown that ResNet18
performed well (Figure 4D). In addition, in order to improve
the prediction performance and save computing resources,
transfer learning was also used to train the model. The results
of 5-fold CV based on transfer learning in train data set was
shown in Figure 5A, the results of confusion matrix showed
that the sensitivity and specificity of transfer learning were
97.2% and 94.0% respectively (Figure 5B). After training the
TABLE 1 | Summary of the general clinical information of patients.

Characteristics No. (%) of Participants

Age
0-39 30 (3.9)
40-69 313 (40.3)
>70 103 (13.3)
Unknown 330 (42.5)

Gender
Male 248 (42.0)
Female 199 (25.6)
Unknown 329 (42.4)

CTC number 9.9(0-318)
Cancer type
Lung cancer 161 (20.7)
Liver cancer 18 (2.3)
Gastrointestinal cancer 107 (13.8)
Breast cancer 91 (11.7)
Carcinoma of thyroid 2 (0.3)
NPC 30 (3.9)
Other 367 (47.3)
TABLE 2 | The number of images.

Original Down sampling

Train set Test set Total Train set Test set

No. of CTC 555 139 694 555 139
No. of Non-CTC 10777 2695 13472 555 2695
Total 11332 2834 14166 1110 2834
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model with transfer learning, we used VGG16 with the best
performance on the test data set, its AUC was 0.988
(Figure 5C), and the sensitivity and specificity were 98.6%
and 96.5% respectively (Figure 5D).

The experimental results showed that the deep learning
method based on CNN can accurately identify CTC and
provide a powerful reference for the prognosis of patients. In
addition, we also summarized some samples that were
discriminated incorrectly, such as samples that were originally
non-CTC but were predicted to be CTC (Figure 6A), and
samples that predicted CTC to be non-CTC (Figure 6B). The
reason for the misjudgment first considers the artificial or
instrumental noise in the process of negative enrichment
techniques. Secondly, the exposure during the photographing
process after imFISH processing resulted in us not getting the
original film data. The third is that the centromere was not
completely located in the nucleus due to the platform.
Frontiers in Oncology | www.frontiersin.org 680
DISCUSSION

More and more evidence showed that CTCs are closely related to
the prognosis of patients with advanced cancer. It has an
important reference value for determining the clinical results
and recurrence risk. In recent years, blood testing has been
widely used to monitor the CTC response of patients with
malignant tumors and evaluate the prognosis and recurrence
risk of patients since its high safety and low cost. It reduces errors
caused by manually setting interpretation standards and save
time and labor costs. The importance of CTC rapid automatic
recognition is increasing, and the research of the automatic
recognition process of CTCs is also accelerating. Deep learning
has been proved to be suitable for detecting CTC due to its high
sensitivity and specificity in CTC counting. In addition, image
interpretation using machine learning can capture important
image features.
FIGURE 3 | Process for identifying CTC. On the training set, the traditional CNN model and transfer learning model were respectively trained based on 5-fold CV.
The transfer learning model relied on the pre-trained CNN model to realize the task of CTC recognition. The trained traditional CNN model and the transfer learning
model were used to test sets and output the final results.
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In this study, we developed a CTCs recognition method based
on deep learning. After collecting the blood samples from
Chifeng Municipal Hospital, we conducted CTCs enrichment
and imFISH experiments on the samples, and screened the
fluorescent images according to the image quality. A total of
14166 images were used for downstream analysis, including 694
CTC images and 13472 non-CTC images. 80% of the images
were used for training models and 20% for test. In order to
reduce the error caused by manual intervention, we used
machines instead of manual screening. Firstly, images were
segmented by using the Python package openCV, and the
coordinate information of the nucleus was obtained after
image preprocessing. Then, we used CNN models such as
VGG16, VGG19, ResNet18, ResNet50 and AlexNet to identify
CTCs. The results of 5-fold CV showed that their AUC reached
0.98, and the sensitivity and specificity were 95.3% and 91.7%,
respectively. In order to overcome the shortcomings of
consuming a lot of time and computing resources when
Frontiers in Oncology | www.frontiersin.org 781
developing neural networks, transfer learning was used to train
the model. Finally, the AUC was improved to 0.99, and the
recognition sensitivity and specificity also reached to 97.2% and
94.0% based on transfer learning.

The method of transfer learning was proposed, which can
carry out image interpretation, capture important image features,
reduce the errors caused by subjective factors in manual
interpretation, and save computing time and computing
resources. In the process of 5-fold CV, the down-sampling
method was used to overcome the serious imbalance between
positive samples and negative samples, and the 5-fold CV results
of transfer learning shown higher sensitivity and specificity.
Nevertheless, this study still has some limitations. The CTC
images contained in the enrollment data do not cover the whole
film, but focus on a CTC positive area under the microscope. Due
to quality issues, some images in the enrollment data are
abandoned. How to expand the image scope is the focus of
attention in the future.
A B

C D

FIGURE 4 | The results of CTCs identify based on traditional CNN. (A) ROC curve of 5-fold CV in train data set. (B) Confusion matrix of 5-fold CV in train data set.
(C) ROC curve in test data set. (D) Confusion matrix in test data set.
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A B
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FIGURE 5 | The results of CTCs identify based on transfer learning. (A) ROC curve of 5-fold CV in train data set. (B) Confusion matrix of 5-fold CV in train data set.
(C) ROC curve in test data set. (D) Confusion matrix in test data set.
A

B

FIGURE 6 | Some misjudged images. (A) Non-CTC images, but they were identified as CTCs. (B) CTC images, but they were identified as non-CTCs.
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Objective: To explore the diagnostic value of shear wave elastography examination
(SWE) on axillary node metastasis (ANM) in breast cancer, this study aimed to evaluate the
correlation between the SWE features and different molecular types of breast cancer, and
to check the elastic modulus differences among the molecular types.

Methods: Breast cancer patients from November 2020 to December 2021 were
subjected to both conventional ultrasonic examination (CUE) and SWE before
ultrasound-guided percutaneous biopsy or axillary lymph node dissection (ALND). We
used the pathological results as the gold standard to draw the receiver operating
characteristic (ROC) curve.

Results: SWE outperforms CUE, but their conjunctive use is the best option. No
significant correlation was found between the elastic modulus values and the molecular
types of breast cancer.

Conclusion: SWE can be used as an routine auxiliary method of CUE for ANM.

Keywords: shear wave elastography, breast cancer, metastasis, molecular classification, diagnosis
INTRODUCTION

In the 21st century, cancer is the top cause of death in hospitals and the key limitation of life
expectancy in most countries, whatever level their economics and social civilization (1, 2). The
Global Cancer Statistics Report published by the United States Cancer Research Institute shows that
breast cancer surpassed lung cancer in 2020, becoming the most common type of cancer among
female patients and the main cause of death for female patients in 185 countries (3). According to
statistics, 19.3 million people were diagnosis with cancer and nearly 10 million deaths worldwide in
2020 were because of cancer (4). Around 2.3 million new-onset cases are of female breast cancer
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accounting for 11.7%, and breast cancer causes 0.69 million
deaths which account for 6.9% of all global cancer deaths (5). In
fact, 1 in every 18 women will develop breast cancer globally, and
the clinical manifestations and prognosis of patients are different
(6). Age, molecular subtype, and axillary lymph node status are
considered to be independent factors affecting the prognosis of
patients suffering from breast cancer (7). In addition, tumor-
related factors such as pathological type, grade, and stage can also
explain the higher mortality of breast cancer to a certain
extent (8).

With the development of molecular biology, it has been
recognized that breast cancer has large biological diversity and
high heterogeneity, which result in different morphological
subtypes, recurrence rate, targeted therapy strategies, and
survival risks (9–11). Therefore, if the patients with breast
cancer can be accurately classified, it should help to select
individualized precision treatment and effectively predict the
prognosis (12–14). According to immunohistochemical indexes
such as estrogen receptor (ER), progesterone receptor (PR),
proliferating cell nuclear antigen (Ki-67), and human
epidermal growth factor receptor-2 (HER-2), clinicians
determine the molecular subtype of breast cancer, namely
luminal A, luminal B, Her-2-positive, and triple-negative breast
cancer (TNBC) (15–18), where HER2-positive includes HR-
negative and HR-positive (15, 19–23). The status of axillary
lymph nodes is also an important factor influencing the
prognosis of patients. According to reports, 70-80% of early
non-metastatic breast cancer patients can be cured. Patients with
advanced breast cancer and distant organ metastasis are
considered to be incurable by existing therapies. The prognosis
of patients with advanced breast cancer is poor, and the 5-year
survival rate is only 20% (24). In addition, the axillary lymph
node (ALN) is deemed as the first site to be metastasized by
breast cancer through the lymphatic vessels (25).

Shear wave elastography examination (SWE) is a newly
emerging elastography technique, which can display tissue
stiffness in a quantified form to obtain the biological
information of the primary lesion (26–30). At present, many
studies have verified the diagnostic value of SWE for benign and
malignant lesions in breasts (31–34). The technique has been
widely employed to check the thyroid, pancreas, kidney, prostate,
liver, and other organs while few studies about axillary node
metastasis (ANM) and its application for the molecular
classification of breast cancer were reported (35–39). Here, we
applied SWE to assess the axillary node status of patients with
breast cancer with a goal to explore its feasibility in the diagnosis
of ANM, and to check the relationship of the SWE elastic
modulus and the molecular types of breast cancer.
MATERIALS AND METHODS

Research Objects
After the pathological verification for breast cancer, 114 patients
who had never received any treatment were recruited in the
Second Affiliated Hospital of Shandong First Medical University
Frontiers in Oncology | www.frontiersin.org 286
from November 2020 to December 2021 (40). The mean age is
52.52 ± 9.03 (range, 31-75 years old), and the mean long
diameter of the lymph node is 1.60 ± 0.70 (range, 0.5 ± 4.8
cm). All of the patients underwent conventional ultrasonic
examination (CUE) before ultrasound-guided percutaneous
biopsy on the axillary lode or axillary lymph node dissection
(ALND). Some key indexes were scored (see Table 1) . This
program was approved by the Medical Ethics Committee of the
Second Affiliated Hospital of Shandong First Medical University.

Shear Wave Elastography Examination
The Toshiba Apio500 ultrasonic diagnostic machine equipped
with high-frequency linear array probe PLY-805AT (2.0-12.0
MHZ) called shear wave was used for SWE. Based on the
operations of Skerl et al., the parameters of SWE were set
when ROI = 2 mm (41). Both of the transverse and the
longitudinal sections of each breast mass and suspicious lymph
node were measured three times to obtain average values.

Image Analysis
Two physicians who have more than 5 years of experience in
breast and axillary lymph node diagnosis analyzed the image
results. A score was evaluated based on the aspect ratio and the
short axis diameter of the lymph node (42). Plus, the maximum
value (Emax), average value (Emean), and minimum value
(Emin) of Young’s modulus were assessed by SWE, and a
static image was kept (43, 44). Afterwards, univariate analysis
was performed using ALN metastasis as a dependent variable
and the CUE scores. The obtained indexes with statistical
significance were extracted for multivariate logistic regression
analysis with the Emean of SWE as independent variables. In the
predictive model, ANMs were confirmed as benign or malignant
lesions. Then, the predictive results were compared with the
below pathological results to draw the gold standard receiver
operating characteristic (ROC) curves and get the area under the
curve (AUC) values.

The patients who underwent surgical treatment were
classified into four groups according to their molecular
classification results to check whether the elastic modulus
values of SWE were statistically different between the groups,
and explore its relationship with the classification strategy.

Pathological Examination
Ultrasound-guided axillary nodal puncture was accomplished in
62 patients and breast mass resection was done in 86 patients.
Tissue biopsy including postoperative pathological section and
immunohistochemical examination was implemented (45, 46).
TABLE 1 | Criteria and evaluation of CUE in the diagnosis of lymph node status.

Index 1 point 2 point

Aspect ratio >2 <2
Short axis diameter <7 mm >7 mm
Lymphatic hilus Yes No
Cortical thickness <3 mm >3 mm
Blood flow type Gate type Peripheral type or mixed type
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Statistical Analysis
SPSS 25.0 software was used to process the above data. The
measured data were expressed as mean ± standard deviation, and
the count data were expressed as rate (%). The chi-square test
was used to compare the two-category data between the two
groups, and the KAPPA test was used to compare the consistency
of the diagnosis results of CUE, SWE, and their conjunctive
usage with the pathological results. Multivariate logistic
regression analysis was used to construct a prediction model of
CUE combined with SWE to obtain the prediction probability.
RESULTS

Pathological Results
A total of 114 women with breast cancer were enrolled in this
study, who were then divided into two groups: the ANM group
with 58 cases and the non-metastasis group with 56 cases. The
mean age, medical course, and ALN size in the former group
were 49.59 ± 8.54 years, 11.0 ± 25.22 months, and 2.16 ± 2.63 cm.
In the latter group, the same data were 51.48 ± 9.50 years, 5.70 ±
14.27 months, and 1.36 ± 0.51 cm.

Comparison of the Two Groups With/
Without ANM
As Table 2 shows, on one hand, the CUE comparison displayed
significant differences in lymph nodal size, aspect ratio, and short
axis diameter. However, the hilum structures, cortex thicknesses,
and blood-flow types did not show any difference. On the other
hand, the SWE comparison also showed significant differences in
the Emax, Emean, and Emin values.

Comparison of the Consistency
Between the Diagnosis Results
of the Three Medical Means and
the Pathological Outcomes
In the CUE assessment for ANM, as Table 3 shows, compared with
the pathological results, the accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value calculated from the
Frontiers in Oncology | www.frontiersin.org 387
exclusive usage of CUE in the diagnosis of malignant lymph nodes
were 65.8%, 72.4%, 58.9%, 64.6%, and 67.3%, respectively. As a
result, the whole consistency with the pathological results was 0.314.

In the SWE assessment for ANM, according to the literature,
Emean>18.7 was set as the metastatic threshold of the lymph
nodes. When the average stiffness of the lymph node was greater
than 18.7 Kpa, we believed that the lymph node was more likely
to be malignant. On the contrary, the lymph node was more
likely to be benign. Compared with the pathological results, the
sensitivity, specificity, and positive and negative predictive value
of SWE for malignancy were 70.7%, 76.7%, 75.9%, and 71.6%,
respectively, which resulted in a diagnostic accuracy of 73.6%,
and the consistency with the pathological result was 0.474.

In the conjunctive use of CUE and SWE to assess ANM,
whether metastasis exists was used as the dependent variable and
the indicators observed by CUE were used as independent
variables, and univariate analysis was performed. It was found
that the aspect ratio and short axis diameter of lymph nodes
observed by CUE were statistically significant with ANM. Then,
taking the average elastic modulus of SWE, the aspect ratio of the
lymph node, and the short axis diameter of the lymph node as the
independent variables into the multivariate logistic regression, a
predictive model was constructed. The results show that Emean
and both the aspect ratio of the lymph node and the short axis
diameter of the lymph node can be entered into the equation.

Based on the above results, three ROC curves were drawn and
the corresponding AUC values were calculated (see
Figure 1).The results showed that conjunctive use (AUC, 0.88)
had the best predictive ability compared to exclusive use of CUE
(AUC, 0.657) or SWE (AUC, 0.737).
The Best Cut-Off Value of SWE for the
Diagnosis of ANM
Although many studies have shown that quantitative SWE can
help diagnose breast diseases, the cut-off values used were
different. In order to evaluate the optimal SWE parameters to
quantify ANM, ROC curves for Emax, Emean, and Emin were
also drawn. We suggest that when Emean=23.2 is used as the cut-
off value, SWE is the best (see Figure 2).
TABLE 2 | Comparison of CUE and SWE elastic modulus between the two groups with/without ANM.

No lymph node metastases Lymph node metastases T/X2 p value

Lymph node size 1.36 ± 0.51 2.16 ± 2.63 -2.218 0.029
Aspect ratio >2 41 (73.2%) 13 (22.4%)
<2 15 (26.8%) 45 (77.6%) 29.49 0
Short axis diameter <7 44 19 24.18 0
>7 12 39
Lymphatic hilus 26 26 0.029 0.864
No lymphatic hilus 30 32
Gate type 28 21 2.21 0.137
Not gate type 28 37
Cortical thickness <3 11 13 0.13 0.717
>3 45 45
Emax 24.68 ± 18.91 77.68 ± 48.06 -7.693 0
Emean 17.34 ± 14.13 58.33 ± 42.31 -6.887 0
Emin 13.35 ± 10.39 39.77 ± 36.79 -5.255 0
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The SWE Elastic Modulus Value and
Analysis of Variance Results of Different
Molecular Types of Breast Cancer
According to the expression of ER, PR, HER-2, and Ki-67, 86
people who underwent surgery were divided into six groups (19,
47). Variance analysis on the elastic modulus values for each
group was performed. We found that all of the comparisons of
Emax, Emean, and Emin between the molecular types did not
have statistical significance (see Table 4).
DISCUSSION

Worldwide, the incidence and mortality of breast cancer always
takes the top cancer spot in female patients (3). Several reports show
that the incidence of breast cancer has been increasing year by year
in the past 5 years (48, 49), and the choice of treatment strategy is
determined by the state of ALNs, which decide the final bill of the
patients (50). Therefore, it is substantially important to correctly
assess the status of ALNs in breast cancer patients before surgery.

Although CUE has high sensitivity in the diagnosis of breast
cancer, some previous studies have found that the accuracy,
sensitivity, and specificity of ultrasound in diagnosing ALN
metastasis is not so high (51–53). The concept of SWE was
first proposed by Sarvazyan et al. in 1998 (54). Its principle is to
use acoustic radiation force pulses (ARFI) to apply pressure to
the tissues to induce mechanical vibrations in the tissues. In the
process, by collecting the shear echo signal reflected by the tissue
Frontiers in Oncology | www.frontiersin.org 488
vibration, the propagation speed in the tissue can by calculated
and automatically converted into the elastic modulus value
through the conversion system. Consequently, the hardness
information of the tissue can be quantified (55). Nowadays, a
large number of studies have shown that the advantages of SWE
in the application of breast, thyroid, prostate, liver, and other
organs, but no research has reported the assessment of ALN
metastasis. Besides, there is no standard for the cut-off value of
SWE in the diagnosis of metastatic lymph nodes.

In this study, the Emax, Emean, and Emin of the lymph node
metastasis group were all higher than those of the lymph node
non-metastasis group, and the difference was statistically
significant (p<0.05). The average elasticity of benign and
malignant lymph nodes was 17.34 Kpa and 58.33 Kpa,
respectively. The average value we obtained was higher than
some previous studies, which may be longer than the course of
some breast cancer patients in our study. The tumor cells
synthesize a large number of collagen fibers and lymphocytes in
the tumor microenvironment during the process of metastasis.
Infiltration changes increased the stiffness of the lymph nodes in
this part of the patients, leading to a corresponding increase in the
average stiffness of the lymph node metastasis group. In this study,
Emean=18.7 kpa was selected as the critical value of metastatic
lymph nodes. A preliminary exploration was carried out on shear
wave elastography to assess lymph node metastasis. A total of 114
lymph nodes were examined by shear wave elastography, and 41
cases of metastatic lymph nodes were correctly diagnosed, which
were benign. There were 43 cases of lymph nodes and 30 cases of
FIGURE 1 | Three ROC curves for the sensitivity and specificity of CUE,
SWE, and their conjunctive use in ANM diagnosis.
TABLE 3 | Comparison of diagnostic efficacy of CUE, SWE, and their conjunctive use in ANM.

Sensitivity Specificity Positive predictive value Negative predictive value Accuracy Kappa

CUE 72.40% 58.90% 64.60% 67.30% 65.80% 0.314
SWE 70.70% 76.70% 75.90% 71.60% 73.60% 0.474
CUE+SWE 79.30% 82.10% 82.10% 79.30% 80.70% 0.616
March 2022 |
 Volume 12 | Article
FIGURE 2 | Three ROC curves for the sensitivity and specificity of the
Emean, Emax, and Emin in the application of ANM diagnosis.
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misdiagnosis. Its specificity (76.7%) and accuracy (73.6%) were
higher than those of conventional ultrasound, but its sensitivity
(70.7%) was lower, so it could not be used as a substitute for
conventional ultrasound. The reasons for the misdiagnosis
included: 1) It may be because the volume of some lymph nodes
is relatively small or the location is relatively deep. Affected by the
anatomical structure of the axilla, the shear wave cannot spread
well, resulting in a low measured elastic modulus value. 2) There
may be liquefaction and necrosis in some malignant lymph nodes,
and there are relatively few elastic and collagen fibers in them, so
the measured elastic modulus value is not high.

Additionally, as we believe that the average stiffness of metastatic
lymph nodes has the highest specificity, the conjunctive use of
Emean and CUE can form complementary advantages, obtaining
more objective information to determine which lymph nodes are
suitable for biopsy. However, up to now, the optimal cut-off value of
each parameter of SWE has not yet reached agreement. It may be
affected by many factors, such as pre-compression, the machine
model and the depth of the lesion, and the progression of the
patient’s disease (56, 57). Therefore, studies with a larger sample size
involving multiple units should be considered. Plus, we tried to
employ SWE to predict the molecular type of breast cancer with the
elastic modulus values (58, 59). Unfortunately, no significant
difference was found between the six different groups. This is in
line with the conclusion drawn by previously published papers (60,
61). As a result, we do not recommend the implementation of the
molecular classification of breast cancer via SWE at this stage.
However, with the increase of clinical experience, doctors have
gradually realized the value of SWE in the diagnosis of breast cancer
axillary lymph node metastasis (62–65).
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30. Berg WA, Cosgrove DO, Doré CJ, Schäfer FKW, Svensson WE, Hooley RJ,
et al. Shear-Wave Elastography Improves the Specifi City of Breast US- The
BE1 Multinational Study of 939 Masses. Radiology (2012) 262(2):435–49.
doi: 10.1148/radiol.11110640/-/DC1

31. Nightingale K, McAleavey S, Trahey G. Shear-Wave Generation Using
Acoustic Radiation Force- In Vivo and Ex Vivo Results. Ultrasound Med
Biol (2003) 29(12):1715–23. doi: 10.1016/S0301-5629(03)01080-9

32. Chang JM, Moon WK, Cho N, Yi A, Koo HR, Han W, et al. Clinical
Application of Shear Wave Elastography (SWE) in the Diagnosis of Benign
and Malignant Breast Diseases. Breast Cancer Res Treat (2011) 129(1):89–97.
doi: 10.1007/s10549-011-1627-7

33. Herman J, Sedlackova Z, Furst T, Vachutka J, Salzman R, Vomacka J, et al.
The Role of Ultrasound and Shear-Wave Elastography in Evaluation of
Cervical Lymph Nodes. BioMed Res Int (2019) 2019:4318251. doi: 10.1155/
2019/4318251

34. Gemici AA, Ozal ST, Hocaoglu E, Inci E. Relationship Between Shear Wave
Elastography Findings and Histologic Prognostic Factors of Invasive Breast
Cancer. Ultrasound Q (2020) 36(1):79–83. doi: 10.1097/RUQ.0000000000000471

35. Tozaki M, Fukuma E. Pattern Classification of ShearWave Elastography
Images for Differential Diagnosis Between Benign and Malignant Solid
Breast Masses. Acta Radiol (2011) 52(10):1069–75. doi: 10.1258/
ar.2011.110276

36. Azizi G, Faust K, Mayo ML, Farrell J, Malchoff C. Diagnosis of Thyroid
Nodule With New Ultrasound Imaging Modalities. VideoEndocrinology
(2019) 7(1). doi: 10.1089/ve.2020.0173

37. Cirocchi R, Amabile MI, De Luca A, Frusone F, Tripodi D, Gentile P, et al.
New Classifications of Axillary Lymph Nodes and Their Anatomical-Clinical
Correlations in Breast Surgery. World J Surg Oncol (2021) 19(1):93.
doi: 10.1186/s12957-021-02209-2

38. Liu M, Wang CB, Xie F, Peng Y, Wang SChinese Society of Breast, S. Clinical
Practice Guidelines for Diagnosis and Treatment of Invasive Breast Cancer:
Chinese Society of Breast Surgery (CSBrS) Practice Guidelines 2021. Chin
Med J (Engl) (2021) 134(9):1009–13. doi: 10.1097/CM9.0000000000001498

39. Wen R, Dong J, Wang Y, Wang L. Combination of Color Doppler
Ultrasound and CT for Diagnosing Breast Cancer. Am J Transl Res (2021)
13(9):10771–6.

40. Wang R, Zhu Y, Liu X, Liao X, He J, Niu L. The Clinicopathological Features
and Survival Outcomes of Patients With Different Metastatic Sites in Stage IV
Breast Cancer. BMC Cancer (2019) 19(1):1091. doi: 10.1186/s12885-019-
6311-z

41. Skerl K, Vinnicombe S, Giannotti E, Thomson K, Evans A. Influence of
Region of Interest Size and Ultrasound Lesion Size on the Performance of 2D
Shear Wave Elastography (SWE) in Solid Breast Masses. Clin Radiol (2015) 70
(12):1421–7. doi: 10.1016/j.crad.2015.08.010

42. Zhou J, Zhang B, Dong Y, Yu L, Gao T, Wang Z. Value on the Diagnosis of
Axillary Lymph Node Metastasis in Breast Cancer by Color Doppler
Ultrasound Combined With Computed Tomography. J BUON (2020) 25
(4):1784–91.

43. Wang J, Ben Z, Gao S, Lyu S, Wei X. The Role of Ultrasound Elastography and
Virtual Touch Tissue Imaging in the Personalized Prediction of Lymph Node
Metastasis of Breast Cancer. Gland Surg (2021) 10(4):1460–9. doi: 10.21037/
gs-21-199

44. Zhang Q, Agyekum EA, Zhu L, Yan L, Zhang L, Wang X, et al. Clinical Value
of Three Combined Ultrasonography Modalities in Predicting the Risk of
Metastasis to Axillary Lymph Nodes in Breast Invasive Ductal Carcinoma.
Front Oncol (2021) 11:715097. doi: 10.3389/fonc.2021.715097

45. Wen X, Yu X, Tian Y, Liu Z, Cheng W, Li H, et al. Quantitative Shear Wave
Elastography in Primary Invasive Breast Cancers, Based on Collagen-S100A4
March 2022 | Volume 12 | Article 846568

https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.bpobgyn.2019.11.006
https://doi.org/10.1016/j.bpobgyn.2019.11.006
https://doi.org/10.1016/s0140-6736(20)32381-3
https://doi.org/10.1002/ijc.31950
https://doi.org/10.1080/15384047.2018.1456599
https://doi.org/10.1001/jama.2018.19323
https://doi.org/10.1097/PAP.0000000000000232
https://doi.org/10.1158/0008-5472.CAN-16-2717
https://doi.org/10.1158/0008-5472.CAN-16-2717
https://doi.org/10.1093/annonc/mdx308
https://doi.org/10.1093/annonc/mdx308
https://doi.org/10.1016/s0140-6736(16)32454-0
https://doi.org/10.1158/2159-8290.CD-18-1177
https://doi.org/10.1016/j.pbiomolbio.2019.11.007
https://doi.org/10.3892/ijo.2020.5135
https://doi.org/10.3892/ijo.2020.5135
https://doi.org/10.1016/j.pathol.2016.10.012
https://doi.org/10.1016/j.pathol.2016.10.012
https://doi.org/10.1200/JCO.2018
https://doi.org/10.1016/j.intimp.2020.106535
https://doi.org/10.1016/j.intimp.2020.106535
https://doi.org/10.1007/s00292-020-00878-6
https://doi.org/10.1038/s41572-019-0111-2
https://doi.org/10.1038/s41572-019-0111-2
https://doi.org/10.1016/j.jogoh.2017.10.008
https://doi.org/10.1007/978-1-4615-1943-0_23
https://doi.org/10.1109/TUFFC.2004.1295425
https://doi.org/10.1148/radiol.10090385
https://doi.org/10.1186/bcr2787
https://doi.org/10.1148/radiol.11110640/-/DC1
https://doi.org/10.1016/S0301-5629(03)01080-9
https://doi.org/10.1007/s10549-011-1627-7
https://doi.org/10.1155/2019/4318251
https://doi.org/10.1155/2019/4318251
https://doi.org/10.1097/RUQ.0000000000000471
https://doi.org/10.1258/ar.2011.110276
https://doi.org/10.1258/ar.2011.110276
https://doi.org/10.1089/ve.2020.0173
https://doi.org/10.1186/s12957-021-02209-2
https://doi.org/10.1097/CM9.0000000000001498
https://doi.org/10.1186/s12885-019-6311-z
https://doi.org/10.1186/s12885-019-6311-z
https://doi.org/10.1016/j.crad.2015.08.010
https://doi.org/10.21037/gs-21-199
https://doi.org/10.21037/gs-21-199
https://doi.org/10.3389/fonc.2021.715097
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. SWE Application on Breast Cancer
Pathology, Indicates Axillary Lymph Node Metastasis. Quant Imaging Med
Surg (2020) 10(3):624–33. doi: 10.21037/qims.2020.02.18

46. Leng X, Japaer R, Zhang H, Yeerlan M, Ma F, Ding J. Relationship of Shear
Wave Elastography Anisotropy With Tumor Stem Cells and Epithelial-
Mesenchymal Transition in Breast Cancer. BMC Med Imaging (2021) 21
(1):171. doi: 10.1186/s12880-021-00707-z

47. Yang H, Wang R, Zeng F, Zhao J, Peng S, Ma Y, et al. Impact of Molecular
Subtypes on Metastatic Behavior and Overall Survival in Patients With
Metastatic Breast Cancer: A Single-Center Study Combined With a Large
Cohort Study Based on the Surveillance, Epidemiology and End Results
Database. Oncol Lett (2020) 20(4):87. doi: 10.3892/ol.2020.11948

48. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al.
Annual Report to the Nation on the Status of Cancer, Part I: National Cancer
Statistics. Cancer (2018) 124(13):2785–800. doi: 10.1002/cncr.31551

49. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistic. CA Cancer J Clin
(2021) 71(1):7–33. doi: 10.3322/caac.21654

50. Magnoni F, Galimberti V, Corso G, Intra M, Sacchini V, Veronesi P. Axillary
Surgery in Breast Cancer: An Updated Historical Perspective. Semin Oncol
(2020) 47(6):341–52. doi: 10.1053/j.seminoncol.2020.09.001

51. Zhao Q, Sun JW, Zhou H, Du LY, Wang XL, Tao L, et al. Pre-Operative
Conventional Ultrasound and Sonoelastography Evaluation for Predicting
Axillary Lymph Node Metastasis in Patients With Malignant Breast Lesions.
Ultrasound Med Biol (2018) 44(12):2587–95. doi: 10.1016/j.ultrasmedbio.
2018.07.017

52. Hotton J, Salleron J, Henrot P, Buhler J, Leufflen L, Rauch P, et al. Pre-
Operative Axillary Ultrasound With Fine-Needle Aspiration Cytology
Performance and Predictive Factors of False Negatives in Axillary Lymph
Node Involvement in Early Breast Cancer. Breast Cancer Res Treat (2020) 183
(3):639–47. doi: 10.1007/s10549-020-05830-z

53. Du LW, Liu HL, Gong HY, Ling LJ, Wang S, Li CY, et al. Adding Contrast-
Enhanced Ultrasound Markers to Conventional Axillary Ultrasound
Improves Specificity for Predicting Axillary Lymph Node Metastasis in
Patients With Breast Cancer. Br J Radiol (2021) 94(1118):20200874.
doi: 10.1259/bjr.20200874

54. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear
Wave Elasticity Imaging- a New Ultrasonic Technology of Medical
Diagnostics. Ultrasound Med Biol (1998) 24(9):1419–35. doi: 10.1016/
S0301-5629(98)00110-0

55. Song EJ, Sohn YM, Seo M. Diagnostic Performances of Shear-Wave
Elastography and B-Mode Ultrasound to Differentiate Benign and
Malignant Breast Lesions: The Emphasis on the Cutoff Value of Qualitative
and Quantitative Parameters. Clin Imaging (2018) 50:302–7. doi: 10.1016/
j.clinimag.2018.05.007

56. Han P, Yang H, Liu M, Cheng L, Wang S, Tong F, et al. Lymph Node
Predictive Model With in Vitro Ultrasound Features for Breast Cancer Lymph
Node Metastasis. Ultrasound Med Biol (2020) 46(6):1395–402. doi: 10.1016/
j.ultrasmedbio.2020.01.030

57. Hosonaga M, Saya H, Arima Y. Molecular and Cellular Mechanisms
Underlying Brain Metastasis of Breast Cancer. Cancer Metastasis Rev
(2020) 39(3):711–20. doi: 10.1007/s10555-020-09881-y
Frontiers in Oncology | www.frontiersin.org 791
58. Wei X, Wang M, Wang X, Zheng X, Li Y, Pan Y, et al. Prediction of Cervical
Lymph Node Metastases in Papillary Thyroid Microcarcinoma by
Sonographic Features of the Primary Site. Cancer Biol Med (2019) 16
(3):587–94. doi: 10.20892/j.issn.2095-3941.2018.0310

59. Yang C, Dong J, Liu Z, Guo Q, Nie Y, Huang D, et al. Prediction of Metastasis
in the Axillary Lymph Nodes of Patients With Breast Cancer: A Radiomics
Method Based on Contrast-Enhanced Computed Tomography. Front Oncol
(2021) 11:726240. doi: 10.3389/fonc.2021.726240

60. Au FW, Ghai S, Lu FI, Moshonov H, Crystal P. Quantitative Shear Wave
Elastography: Correlation With Prognostic Histologic Features and
Immunohistochemical Biomarkers of Breast Cancer. Acad Radiol (2015) 22
(3):269–77. doi: 10.1016/j.acra.2014.10.007

61. Suvannarerg V, Chitchumnong P, Apiwat W, Lertdamrongdej L, Tretipwanit
N, Pisarnturakit P, et al. Diagnostic Performance of Qualitative and
Quantitative Shear Wave Elastography in Differentiating Malignant From
Benign Breast Masses, and Association With the Histological Prognostic
Factors. Quant Imaging Med Surg (2019) 9(3):386–98. doi: 10.21037/
qims.2019.03.04

62. Glechner A, Wockel A, Gartlehner G, Thaler K, Strobelberger M, Griebler U,
et al. Sentinel Lymph Node Dissection Only Versus Complete Axillary Lymph
Node Dissection in Early Invasive Breast Cancer: A Systematic Review and
Meta-Analysis. Eur J Cancer (2013) 49(4):812–25. doi: 10.1016/
j.ejca.2012.09.010

63. Wockel A, Albert US, Janni W, Scharl A, Kreienberg R, Stuber T. The
Screening, Diagnosis, Treatment, and Follow-Up of Breast Cancer. Dtsch
Arztebl Int (2018) 115(18):316–23. doi: 10.3238/arztebl.2018.0316

64. Cocco S, Leone A, Piezzo M, Caputo R, Di Lauro V, Di Rella F, et al. Targeting
Autophagy in Breast Cancer. Int J Mol Sci (2020) 21(21). doi: 10.3390/
ijms21217836

65. Miricescu D, Totan A, Stanescu S, Badoiu SC, Stefani C, Greabu M. PI3K/
AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular
Landscape to Clinical Aspects. Int J Mol Sci (2020) 22(1). doi: 10.3390/
ijms22010173

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Luo, Lu, Zhang, Li, Zhou and Ran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2022 | Volume 12 | Article 846568

https://doi.org/10.21037/qims.2020.02.18
https://doi.org/10.1186/s12880-021-00707-z
https://doi.org/10.3892/ol.2020.11948
https://doi.org/10.1002/cncr.31551
https://doi.org/10.3322/caac.21654
https://doi.org/10.1053/j.seminoncol.2020.09.001
https://doi.org/10.1016/j.ultrasmedbio.2018.07.017
https://doi.org/10.1016/j.ultrasmedbio.2018.07.017
https://doi.org/10.1007/s10549-020-05830-z
https://doi.org/10.1259/bjr.20200874
https://doi.org/10.1016/S0301-5629(98)00110-0
https://doi.org/10.1016/S0301-5629(98)00110-0
https://doi.org/10.1016/j.clinimag.2018.05.007
https://doi.org/10.1016/j.clinimag.2018.05.007
https://doi.org/10.1016/j.ultrasmedbio.2020.01.030
https://doi.org/10.1016/j.ultrasmedbio.2020.01.030
https://doi.org/10.1007/s10555-020-09881-y
https://doi.org/10.20892/j.issn.2095-3941.2018.0310
https://doi.org/10.3389/fonc.2021.726240
https://doi.org/10.1016/j.acra.2014.10.007
https://doi.org/10.21037/qims.2019.03.04
https://doi.org/10.21037/qims.2019.03.04
https://doi.org/10.1016/j.ejca.2012.09.010
https://doi.org/10.1016/j.ejca.2012.09.010
https://doi.org/10.3238/arztebl.2018.0316
https://doi.org/10.3390/ijms21217836
https://doi.org/10.3390/ijms21217836
https://doi.org/10.3390/ijms22010173
https://doi.org/10.3390/ijms22010173
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Li Xiao,

University of Science and Technology
of China, China

Reviewed by:
Shi-Ting Feng,

The First Affiliated Hospital of
Sun Yat-sen University, China

Xuntao Yin,
Guangzhou Medical University, China

*Correspondence:
Xiaofei Hu

harryzonetmmu@163.com
Jian Wang

wangjian@aifmri.com

†These authors have contributed
equally to this work and shared first

authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 12 January 2022
Accepted: 23 February 2022
Published: 22 March 2022

Citation:
Hu F, Zhang YH, Li M, Liu C,

Zhang HD, Li XM, Liu SY,
Hu XF and Wang J (2022)
Preoperative Prediction of

Microvascular Invasion Risk
Grades in Hepatocellular Carcinoma

Based on Tumor and Peritumor
Dual-Region Radiomics Signatures.

Front. Oncol. 12:853336.
doi: 10.3389/fonc.2022.853336

ORIGINAL RESEARCH
published: 22 March 2022

doi: 10.3389/fonc.2022.853336
Preoperative Prediction of
Microvascular Invasion Risk Grades
in Hepatocellular Carcinoma Based
on Tumor and Peritumor Dual-Region
Radiomics Signatures
Fang Hu1,2†, Yuhan Zhang1†, Man Li3, Chen Liu1, Handan Zhang1, Xiaoming Li1,
Sanyuan Liu3, Xiaofei Hu1* and Jian Wang1*

1 Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing,
China, 2 Department of Radiology, Tongliang District People's Hospital, Chongqing, China, 3 Department of Research and
Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China

Objective: To predict preoperative microvascular invasion (MVI) risk grade by analyzing
the radiomics signatures of tumors and peritumors on enhanced magnetic resonance
imaging (MRI) images of hepatocellular carcinoma (HCC).

Methods: A total of 501 HCC patients (training cohort n = 402, testing cohort n = 99) who
underwent preoperative Gd-EOB-DTPA-enhanced MRI and curative liver resection within
a month were studied retrospectively. Radiomics signatures were selected using the least
absolute shrinkage and selection operator (Lasso) algorithm. Unimodal radiomics models
based on tumors and peritumors (10mm or 20mm) were established using the Logistic
algorithm, using plain T1WI, arterial phase (AP), portal venous phase (PVP), and
hepatobiliary phase (HBP) images. Multimodal radiomics models based on different
regions of interest (ROIs) were established using a combinatorial modeling approach.
Moreover, we merged radiomics signatures and clinico-radiological features to build
unimodal and multimodal clinical radiomics models.

Results: In the testing cohort, the AUC of the dual-region (tumor & peritumor 20 mm)
radiomics model and single-region (tumor) radiomics model were 0.741 vs 0.694, 0.733
vs 0.725, 0.667 vs 0.710, and 0.559 vs 0.677, respectively, according to AP, PVP, T1WI,
and HBP images. The AUC of the final clinical radiomics model based on tumor and
peritumoral 20mm incorporating radiomics features in AP&PVP&T1WI images for
predicting MVI classification in the training and testing cohorts were 0.962 and
0.852, respectively.

Conclusion: The radiomics signatures of the dual regions for tumor and peritumor on AP
and PVP images are of significance to predict MVI.

Keywords: hepatocellular carcinoma, microvascular invasion, radiomics, MRI, peritumor
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1 INTRODUCTION

Hepatocellular carcinoma (HCC) has a high recurrence rate,
with a five-year recurrence rate of 70% and 35% after liver
resection and liver transplantation, respectively (1). Several
findings suggest that microvascular invasion (MVI) is essential
in the prognosis of HCC patients (2–4). Microvascular invasion
is the formation of nested clusters of cancer cells in the lumen of
endothelium-covered vessels on a microscopic scale (5), and it
can only be detected using pathological diagnostics. In recent
years, MVI has attracted increasing attention from clinicians,
and the more severe the degree of microvascular invasion, the
earlier the recurrence and the shorter the overall survival time of
patients (6, 7). Zhao et al. (8) identified significant differences in
the prognosis of HCC patients with different MVI risk grades.
Furthermore, the cumulative five-year postoperative survival and
tumor-free survival rates in the high-risk MVI group were only
25.4% and 15.8%, respectively, significantly worse than the low-
risk MVI and no-MVI groups. Predicting preoperative MVI risk
grading could help clinicians in providing personalized
treatments to patients with high-risk HCC. Furthermore,
several studies have illustrated that among HCC patients
presenting with MVI, the anatomical liver resection group has
a higher recurrence-free survival rate than the non-anatomical
liver resection group (9, 10). This clearly demonstrates the
importance of preoperative MVI prediction for improved
prognosis of HCC patients.

Several scholars have attempted to predict MVI using
hematologic indicators, such as serum alpha-fetoprotein (AFP)
(11) or imaging features such as peritumoral hypointensity in the
hepatobiliary phase (12, 13), arterial peritumoral enhancement
(14), and nonsmooth tumor margins (12, 14) to find a reliable
and non-invasive method for preoperative diagnosis of MVI.
Although the results showed a correlation between AFP or these
imaging features and MVI, the criteria for determining the AFP
threshold value have not been identified. These imaging features
lacked objectivity and were greatly influenced by the knowledge
base, diagnostic experience, and work status of radiologists.

In recent years, with the advent of radiomics technology,
some scholars have been extracting signatures from CT or MRI
images that are difficult to perceive with human eyes, and
building models to preoperatively predict negative or positive
hepatocellular carcinoma MVI using automatic algorithms.
Their findings demonstrate that radiomics signatures on
radiological images are promising for preoperative prediction
of MVI (15–28). Furthermore, attempts have been made to
predict MVI preoperatively using tumor and peritumor
radiomics signatures. Microvascular invasion is mostly
common in small portal vein branches inside paracancerous
liver tissue (29). However, whether peritumor signatures are
valuable in predicting MVI is controversial.

Feng et al. (15) used Gd-EOB -DTPA-enhanced MRI
radiomics signatures to predict MVI and found that peritumor
signatures are important in MVI prediction. They also realized
that the dual-region (tumor and peritumor; 10 mm) radiomics
model was superior to the tumor radiomics model. In contrast,
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Xu et al. (24) found that the dual-region (tumor and peritumor; 5
mm) radiomics model did not highlight any advantages in
predicting MVI compared to the tumor-based radiomics
model. This discrepancy may be due to inconsistent imaging
methods and peritumor extent. Therefore, to explore the impact
of dual-region radiomics signatures of the tumor and peritumor
on MVI prediction, this study aimed to develop enhanced MRI
radiomics models with different ROIs (including tumor, tumor &
peritumor 10 mm, and tumor & peritumor 20 mm) for
preoperative prediction of MVI risk grades.
2 METHODS

2.1 Patient Data Collection and Follow-Up
2.1.1 Inclusion and Exclusion Criteria
We retrospectively analyzed a total of 501 HCC patients who met
the inclusive criteria from June 2017 to July 2020. All patients
were randomly divided two cohorts (4:1): a training cohort
(n = 402) and a testing cohort (n = 99). The inclusion criteria
included: (i) Gd-EOB-DTPA-enhanced MRI within one month
before surgery; (ii) pathologically confirmed HCC; and (iii)
curative surgical resection or liver transplantation. The
exclusion criteria included: (i) history of recurrent HCC or
HCC combined with other primary tumors; (ii) poor image
quality; (iii) MRI showed large vessel cancer thrombus; and (iv)
history of preoperative anti-cancer treatment. This study was
approved by the ethical review committee of the First Affiliated
Hospital of the Army Medical University. Patients were
exempted from providing informed consent.

2.1.2 Image Acquisition
Pre-scan preparation required the patients to fast and abstain
from food and drinks for over six hours. Breathing training,
which involved breath-holding in a calm state, was provided. A
3.0T MRI (magnetom trio, siemens healthcare, erlangen,
Germany), 12-channel phased-array body coil, and high-
pressure injector were used for image acquisition. The
positioning image, in-phase and opposed-phase T1-weighted
imaging (T1WI), and dynamic three-dimensional volumetric
interpolated breath-hold examination (3D-VIBE) flat scan were
obtained before MRI enhancement. Post-contrast dynamic 3D-
VIBE was performed at the arterial phase (30 s), portal venous
phase (70 s), transitional phase(3 min) and hepatobiliary phase
(15min) after a rapid bolus injection of contrast agent
(Primovist; Bayer Schering Pharma, Berlin, Germany) with a
rate of 1 mL/s, followed by a 20 mL saline flush. T2-weighted
images were obtained with a technique of half-Fourier
acquisition single-shot fast spin-echo sequence. Diffusion-
weighted imaging (DWI) adopts a breathing- triggered
technique at b values of 0, 50, 400, and 800 s/mm2, and the
apparent diffusion coefficient (ADC) was calculated using a
single exponential function with b values of 0 and 800 s/mm2.
Susceptibility weighted imaging (SWI) adopts high-resolution,
3D gradient echo and 3D fully flow-compensated sequence
for scanning.
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2.1.3 Clinical and Imaging Data
Information including gender, age, cirrhosis, hepatitis B surface
antigen (HBS Ag), platelet count (PLT), serum albumin (ALB),
alanine transarninase (ALT), aspertate aminotransferase (AST),
alkaline phosphatase (ALP), serum total bilirubin (TBIL), serum
a-fetoprotein (AFP), activated partial thromboplastin time
(APTT), prothrombin time (PT), international normalized
ratio (INR) and other relevant details were collected from the
electronic medical record system and laboratory tests. Patients
were evaluated and classified according to MRI manifestations
and laboratory tests using liver function grading criteria
(Child-Pugh).

AllMRI image featureswere analyzed jointly by two radiologists
with three and four years of diagnostic abdominal imaging
experience, respectively. Then the results were reviewed by two
senior doctors and cross-reviewed. If there is any dispute, the final
decisionwill bemade after discussion by two doctors. If there is any
dispute, the final decision will be made after discussion by two
doctors. During the image analysis, the four aforementioned
radiologists did not refer to clinical laboratory tests, other
imaging tests, or postoperative pathological diagnoses. The
assessment of imaging features included the number of tumors,
the maximum length of the tumor, satellite noduels, tumor
morphology, tumor envelope integrity, intra-tumor hemorrhage,
intra-tumor fat, arterial peritumor enhancement, and hepatobiliary
peritumor hypointensty. The maximum length of the tumor is
measured in the coronal, sagittal, or axial plane. The capsule is
defined as the portal venous phase or delayed phase, with annular
high enhancement around the lesion (30). The state of the capsule is
divided into two types: intact, incomplete or absent. Satellite
noduels mainly refers to the small tumor focus with a diameter ≤
2cmwithin the rangeof themain tumor≤ 2cm (5). The shape of the
tumor was evaluated as round or irregular. Intratumoral
hemorrhage defined as low signal intensity in SWI phase,
intratumoral fat defined as high signal intensity in the in- phase
and low signal intensity in the opposed-phase. Peritumoral
enhancement in arterial phase defined as obvious crescent or
patchy enhancement in arterial phase, but consistent with hepatic
parenchymaenhancement inportal venousphase (31). Peritumoral
hypointensity in the hepatobiliary phase is defined as patchy
abnormal signal shadow around hepatobiliary tumor, and the
signal intensity is lower than that of normal liver parenchyma (32).

2.1.4 Evaluation of Pathological MVI
Two pathologists assessed the MVI status of all HCC cases by
examining the hematoxylin-eosin (HE) stained sections under a
microscope. The Guidelines for the Standardized Pathological
Diagnosis of Primary Liver Cancer (2015 edition) were used to
gradeMVI risk. The three risk levels of MVI includedM0: noMVI
detected; M1 (low-risk group): 0<the number of MVI ≤ 5 and
MVI occurred in the proximal paracancerous liver(<1cm); M2
(high-risk group): the number of MVI > 5 MVI or MVI occurred
in the distal paracancerous liver tissue area (> 1cm) (29).

2.1.5 Follow-Up Visits
The endpoint of this study, which was December 31, 2020, was
considered the date of recurrence. The time from the first
Frontiers in Oncology | www.frontiersin.org 394
postoperative day to tumor recurrence or termination for
follow-up observation was referred to as recurrence-free
survival (RFS). Postoperative recurrence was mainly detected
using CT, MRI, ultrasonography and other imaging
examinations, combining with laboratory examinations, such
as serum AFP at the same time. The time of recurrence was
recorded after the diagnosis of recurrence.

2.2 Enhanced MRI Radiomics Analysis
Radiomics analyses were performed at uAl-Research-Portal
(Shanghai United Imaging Intelligence Co., Ltd), a clinical
research platform written in the Python programming
language (version 3.7.3, https://www.python.org). The widely
used software package Py Radiomics (https://pyradiomics.
readthedocs.io/en/latest/html) is embedded in this platform.
Enhanced MRI radiomics analysis included annotation of
tumor lesions and peritumor extension, extraction and
selection of radiomics signatures, and model building (Figure 1).

2.2.1 Labeling of Tumor Lesions and
Peritumor Extension
Two physicians with three and four years of diagnostic
abdominal MRI experience, respectively, selected plain T1WI,
arterial phase (AP), portal venous phase (PVP), and
hepatobiliary phase (HBP) sequences to label tumor lesions on
a 3D slicer. The annotation results of all tumor lesions were
validated by two radiologists with nine years of experience in
diagnostic abdominal imaging. The annotation of 304 MRI
liver data was completed for T1WI, resulting in a preliminary
version of the automated liver segmentation model for
T1WI. The T1WI liver segmentation was also extended to AP,
PVP, and HBP images using the alignment and fine-tuning.
Furthermore, the original tumor lesions were extended by 10
mm and 20 mm, respectively, in the uAl-Research-Portal
(Shanghai United Imaging Intelligent Medical Technology Co.,
Ltd.). The extension beyond the boundary of the liver was
adjusted by combining the results of the liver segmentation
model (Figure 2).

2.2.2 Extraction and Selection of Radiomics
Signatures
The images were imported into uAl-Research-Portal (Shanghai
United Imaging Intelligent Medical Technology Co., Ltd.) and
preprocessed by resampling all voxels of images to 1 × 1 × 1 mm3

using the 3D nearest neighbor interpolation method. Then, 2,600
radiomics signatures were extracted within the lesion annotation
range, respectively from T1WI of different ROI (tumor edge,
tumor and peritumor 10 mm, and tumor and peritumor 20 mm),
AP, PVP, and HBP modalities. In the training cohort, signatures
were selected using the least absolute shrinkage and selection
operator (Lasso) algorithm. The results of multiple ROI
signatures selection with the same modality were merged to
eliminate the possible influence of distinct radiomics types of
signatures after signatures selection. We selected 85, 185, 178,
and 62 radiomics signatures as the most critical for MVI risk
grading on T1WI, AP, PVP, and HBP, respectively.
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FIGURE 1 | Workflow of radiomics analysis. The radiomics workflow started with labeling of tumor lesions and peritumor extension in MR images. After that,
radiomic features including firstorder, shape, gray-level co-occurrence matrix (GLCM), gray-Level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM),
gray level difference method (GLDM) and neighborhood gray-tone difference matrix (NGTDM) were extracted within the tumor and peritumor dual-region. Next, least
absolute shrinkage and selection operator (LASSO) were used for the radiomic feature selection. Finally, unimodal radiomics models and multimodal radiomics
models based on different regions of interest (ROIs) in the tumor and peritumor was developed.
A B C

D E F

FIGURE 2 | Labeling of tumor lesions and peritumor extension. First, radiologists manually draw the volume(VOI) of the tumor (A, B). On the bases of VOI entire of
the tumor, a region with 10-mm and 20-mm distance to tumor surface were automatically reconstructed (C). 3-dimensional view of the VOI entire, VOI (tumor &
peritumor 10 mm) and VOI (tumor & peritumor 20 mm) respectively were showed in Picture (D–F).
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2.3 Model Building
2.3.1 Building Unimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
Box-Cox transformation was performed on radiomics signatures
after selecting T1WI, AP, PVP, and HBP modal features.
According to above phases, Logistic algorithm was used to
build unimodal radiomics models based on tumor, tumor and
peritumor 10 mm, and tumor and peritumor 20 mm [T1WI (0\
10\20), AP (0\10\20), PVP (0\10\20), HBP (0\10\20)] in the
training cohort. In addition, their ability to predict MVI was
tested in the testing cohort.

2.3.2 Building Multimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
Tumor-based unimodal radiomics models were combined to
create an unexpanded multimodal peritumor radiomics model.
The prediction probabilities of each modality corresponding to
the MVI category were summed to determine the final prediction
sequence. The best tumor-based radiomics model for ROI was
selected based on the AUC. The combination modeling method
described above was then used to create multimodal radiomics
models with different ROIs for tumor and peritumor (10 mm
and 20 mm) accordingly.

2.3.3 Building Clinical Radiomic Model
The radiomic model with the best predictive performance for
MVI risk grading was selected based on the AUC. We combined
the essential clinical and radiological features selected using the
Lasso algorithm with the corresponding unimodal radiomics
signatures in the best radiomics model to build a unimodal
clinical radiomics model. We also established a multimodal
clinical radiomics model using the above-combined
modeling approach.

2.4 Statistical Analysis
Statistical analysis was performed using R software. The rank
sum test, one-way ANOVA, and chi-square test were used to
analyze statistical differences between clinical indicators and
radiological signals in M0, M1, and M2 groups. The ROC
curves of different models were plotted, while AUC values
were calculated using PyCharm software. Survival curves were
plotted using Kaplan-Meier and tested using the two-sided log-
rank test. A two-tailed p value less than 0.05 was considered
statistically significant.
3 RESULTS

3.1 Clinical and Imaging Features
of Patients
A total of 501 patients met the inclusive and exclusive criteria,
with 252 (50.3%) patients were pathologically diagnosed as MVI
negative and 249 (49.70%) patients were pathologically identified
as MVI positive: 207 (41.32%) in group M1 and 42 (8.38%) in
group M2. The three groups were statistically different in INR,
AFP, Child-Pugh, number of nodes, shape, arterial peritumoral
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enhancement, peritumoral hypointensity in the hepatobiliary
phase, tumor diameter, intratumoral hemorrhage, satellite foci,
and envelope (p < 0.05), but not in the remaining clinical
and radiological indices (Table 1). The differences of
clinicoradiological characteristics in between training and
testing datasets are listed in Table 2. A total of 24 clinical and
radiological signatures were selected using the Lasso algorithm.
Fifteen essential clinical and radiological features, including
serum AFP level, Child-Pugh, cirrhosis, age, PT, PLT, shape,
peritumoral hypointensity in the hepatobiliary phase, intratumoral
hemorrhage, satellite foci, diameter, number of nodes, arterial
peritumoral enhancement, envelope, and tumor diameter, were
finally selected (Figure 3).

3.2 Building Models for Predicting MVI
Risk Grading
3.2.1 Developing Unimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
The prediction results of unimodal radiomics models based on
different ROIs in the tumor and peritumor are shown in Table 3.
According to T1WI and HBP images, the radiomics model with
ROI based on tumor [T1WI (0), HBP (0)] had the best prediction
results. The AUC and ACC in the testing cohort were 0.710 and
0.677 and 0.566 and 0.535, respectively. However, the radiomics
model with ROI based on tumor and peritumor 20mm on AP
and PVP images [AP (20),PVP (20)] performed better in
predicting MVI risk grades in the testing cohort in the
unimodal radiomics models using different ROIs, with AUC of
0.741 and 0.733 and ACC of 0.556 and 0.586, respectively.

3.2.2 Building Multimodal Radiomics Models Based
on Different ROIs in the Tumor and Peritumor
The prediction results of multimodal radiomics models using
different ROIs of the tumor and peritumor are presented in
Table 4. The fusion radiomics model [T1WI (0) & PVP (0) &
AP (0)] performed the best in the ROI-based multimodal
radiomics model with AUC and ACC values of 0.758 and
0.616, respectively, in the testing cohort. In the corresponding
dual-region radiomics model created by combined modeling, the
ROI’s tumor and peritumor (20 mm) based on multimodal
radiomics model [T1WI (20) & PVP (20) & AP (20)]
performed better in predicting MVI risk grading with AUC
and ACC values of 0.778 and 0.636, respectively, in the
testing cohort.

3.2.3 Comparison of Clinical Radiomics Models and
Optimal Radiomics Models
The clinical radiomics model [T1WI (20) & AP (20) & PVP (20)]
was more effective than the corresponding multimodal radiomics
predictive model in the testing cohort (AUCs: 0.852 vs 0.778;
ACCs: 0.747 vs. 0.636) (Figure 4).

3.3 Survival Analysis
As of December 31, 2020, 501 patients had completed tumor
recurrence-free follow-up. The overall recurrence rate was
24.35% (122/501). The median RFS was 38 months for patients
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Radiomics Signatures Predict Microvascular Invasion
in the M0 group, 29 months in the M1 group, and nine months
in the M2 group (log-rank test, p < 0.001). Similar results were
observed in the prediction model: median RFS was 37 months for
patients in M0, 27 months in M1, and eight months in M2 (log-
rank test, p < 0.001) (Figure 5).
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4 DISCUSSION

In this study, we analyzed the radiomics signatures of enhanced
MRI for tumor and peritumor to determine the impact of dual-
region radiomics signatures of tumor and peritumor on different
TABLE 1 | Comparisons of clinicoradiological characteristics in different microvascular invasion grades.

Variable M 0n =252 M1n =207 M2n =42 P-value

Age (years) 52.81 ± 10.56 50.99 ± 11.22 51.12 ± 11.37 0.183
Gender 0.344
male 210 (83.33%) 180 (86.96%) 38 (90.48%)
female 42 (16.67%) 27 (13.04%) 4 (9.52%)
PLT, 10^9/L 150.25 ± 74.36 157.60 ± 71.89 158.79 ± 91.23 0.528
ALT, IU/L 62.15 ± 90.40 63.92 ± 97.84 80.62 ± 110.65 0.507
AST, IU/L 56.57 ± 77.51 63.22 ± 92.43 65.45 ± 47.28 0.625
ALB, g/L 41.80 ± 5.04 41.97 ± 5.02 41.69 ± 8.20 0.922
TBIL, mmol 18.39 ± 20.98 18.08 ± 9.57 18.33 ± 6.67 0.979
ALP, IU/L 113.45 ± 96.19 109.72 ± 67.12 123.58 ± 86.38 0.615
APTT, sec 25.91 ± 19.23 28.09 ± 2.82 28.37 ± 7.00 0.202
PT, sec 13.81 ± 12.57 11.91 ± 5.17 12.15 ± 1.18 0.092
INR 1.01 ± 0.11 1.00 ± 0.08 1.05 ± 0.11 0.02
AFP 0.005
0, normal 112 (45.90%) 70 (34.48%) 10 (23.81%)
1, abnormal 132 (54.10%) 133 (65.52%) 32 (76.19%)
Hbs Ag 0.315
0, Hbs Ag(-) 38 (15.14%) 21 (10.34%) 5 (12.20%)
1, Hbs Ag(+) 213 (84.86%) 182 (89.66%) 36 (87.80%)
Child-Pugh 0.045
0, A 248 (98.41%) 203 (98.54%) 39 (92.86%)
1, B 4 (1.59%) 3 (1.46%) 3 (7.14%)
Cirrhosis 0.977
0, no 68 (26.98%) 56 (27.32%) 12 (28.57%)
1, yes 184 (73.02%) 149 (72.68%) 30 (71.43%)
No. of nodes 0.021
0, 1 242 (96.03%) 190 (91.79%) 36 (85.71%)
1, ≥ 2 10 (3.97%) 17 (8.21%) 6 (14.29%)
Shape <0.001
0, circle 151 (59.92%) 52 (25.12%) 5 (11.90%)
1, irregular 101 (40.08%) 155 (74.88%) 37 (88.10%)
Arterial peritumoral
enhancement

<0.001

0, absent 211 (83.73%) 136 (65.70%) 23 (54.76%)
1, present 41 (16.27%) 71 (34.30%) 19 (45.24%)
Peritumoral hypotensity
on HBP

<0.001

0, absent 219 (86.90%) 145 (70.05%) 16 (38.10%)
1, present 33 (13.10%) 62 (29.95%) 26 (61.90%)
The maximum length <0.001
0, ≤5cm 200 (79.37%) 125 (60.39%) 16 (38.10%)
1, >5cm 52 (20.63%) 82 (39.61%) 26 (61.90%)
Intratumoral hemorrhage <0.001
0, absent 181 (71.83%) 113 (54.59%) 12 (28.57%)
1, present 71 (28.17%) 94 (45.41%) 30 (71.43%)
Intratumoral fat 0.204
0, absent 214 (84.92%) 180 (86.96%) 32 (76.19%)
1, present 38 (15.08%) 27 (13.04%) 10 (23.81%) 　

Satellite nodules <0.001
0, absent 241 (96.02%) 186 (89.86%) 34 (80.95%)
1, present 10 (3.98%) 21 (10.14%) 8 (19.05%)
Capsule <0.001
0, absence or incomplete 71 (28.17%) 136 (65.70%) 31 (73.81%)
1, complete 181 (71.83%) 71 (34.30%) 11 (26.19%)
March 2022 | Volume 12 | Article
Unless otherwise noted, data are shown as number of patients, with the percentage in parentheses. MVI, microvascular invasion.M 0= no MVI; M1=≤ 5 MVI, and occurred in the adjacent
liver tissue area (≤ 1 cm); M2= > 5 MVI, or MVI occurred in the distant paracancerous liver tissue area (> 1cm).
PLT, platelet count; ALT, alanine transarninase; AST, aspertate aminotransferase; ALB, serum albumin; TBIL, serum total bilirubin; ALP, Alkaline phosphatase; APTT, activated partial
thromboplastin time; PT, prothrombin time; INR, international normalized ratio; AFP, serum a-fetoprotein; Hbs Ag, hepatitis B surface antigen; HBP, hepatobiliary phase.
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TABLE 2 | The differences of clinicoradiological characteristics in between training and testing datasets.

Group taining testing P-value

N 402 99
Age (years) 51.66 ± 10.89 52.93 ± 11.03 0.301
PLT, 10^9/L 156.62 ± 77.43 143.45 ± 62.58 0.117
ALT, IU/L 59.16 ± 87.60 85.86 ± 119.67 0.012
AST, IU/L 55.04 ± 73.86 80.45 ± 107.22 0.006
ALB, g/L 41.96 ± 5.11 41.48 ± 6.26 0.422
TBIL, mmol 17.42 ± 8.33 21.64 ± 32.26 0.020
ALP, IU/L 112.84 ± 91.99 112.46 ± 41.64 0.969
APTT, sec 27.61 ± 14.69 24.60 ± 10.11 0.054
PT, sec 13.17 ± 10.65 11.75 ± 1.17 0.186
INR 1.00 ± 0.09 1.04 ± 0.14 <0.001
Gender 0.146
0, male 348 (86.57%) 80 (80.81%)
1, female 54 (13.43%) 19 (19.19%)
AFP 0.761
0, normal 153 (38.93%) 39 (40.62%)
1, abnormal 240 (61.07%) 57 (59.38%)
Hbs Ag 0.912
0, Hbs Ag(-) 51 (12.85%) 13 (13.27%)
1, Hbs Ag(+) 346 (87.15%) 85 (86.73%)
Child-Pugh 0.414
0, A 394 (98.25%) 96 (96.97%)
1, B 7 (1.75%) 3 (3.03%)
Cirrhosis 0.611
0, no 107 (26.75%) 29 (29.29%)
1,yes 293 (73.25%) 70 (70.71%)
No. of nodes 0.254
0, 1 373 (92.79%) 95 (95.96%)
1, ≥ 2 29 (7.21%) 4 (4.04%)
The maximum length 0.739
0,≤5cm 275 (68.41%) 66 (66.67%)
1, >5cm 127 (31.59%) 33 (33.33%)
Shape 0.179
0, circle 161 (40.05%) 47 (47.47%)
1, irregular 241 (59.95%) 52 (52.53%)
Satellite nodules 0.048
0, absent 365 (91.02%) 96 (96.97%)
1, present 36 (8.98%) 3 (3.03%)
Capsule 0.496
0, absence or incomplete 194 (48.26%) 44 (44.44%)
1, complete 208 (51.74%) 55 (55.56%)
Intratumoral hemorrhage 0.137
0, absent 252 (62.69%) 54 (54.55%)
1, present 150 (37.31%) 45 (45.45%)
Intratumoral fat 0.796
0, absent 341 (84.83%) 85 (85.86%)
1, present 61 (15.17%) 14 (14.14%)
Arterial peritumoral enhancement 0.294
0, absent 301 (74.88%) 69 (69.70%)
1, present 101 (25.12%) 30 (30.30%)
Peritumoral hypotensity on HBP 0.034
0, absent 313 (77.86%) 67 (67.68%)
1, present 89 (22.14%) 32 (32.32%)
MVI grade 0.993
0 202 (50.25%) 50 (50.51%)
1 166 (41.29%) 41 (41.41%)
2 34 (8.46%) 8 (8.08%)
Frontiers in Oncology | www.frontiersin.org
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MVI, microvascular invasion; M0: no MVI detected; M1 (low-risk group): 0<the number of MVI ≤ 5 and MVI occurred in the proximal paracancerous liver; M2 (high-risk group): the number
of MVI > 5 MVI or MVI occurred in the distal paracancerous liver tissue area (> 1 cm). PLT, platelet count; ALT, alanine transarninase; AST, aspertate aminotransferase; ALB, serum
albumin; TBIL, serum total bilirubin; ALP, alkaline phosphatase; APTT, activated partial thromboplastin time; PT, prothrombin time; INR, international normalized ratio; AFP, serum
afetoprotein; Hbs Ag, hepatitis B surface antigen; HBP, hepatobiliary phase
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phases ofpredictingMVI risk grading.Wealso explored the efficacy
of a combined model for clinical factors, imaging features, and
radiomics signatures in predicting MVI risk grading. Our results
indicated that the impact of dual-region radiomics signatures for
Frontiers in Oncology | www.frontiersin.org 899
tumor and peritumor on predicting MVI risk grades varied at
different phases. The established clinical multimodal radiomics
model predicted MVI grades with 83.3% and 74.7% accuracy, in
the training and testing cohorts, respectively.
TABLE 4 | Multimodal radiomics models based on different ROIs.

Modality ROI Training group Testing group

AUC ACC AUC ACC

T1WI+AP+PVP Tumor 0.939 0.806 0.758 0.616
Tumor & Margin (10) 0.947 0.818 0.743 0.606
Tumor & Margin (20) 0.953 0.838 0.778 0.636
March 2
022 | Volume 12 | Article 8
FIGURE 3 | Selection of clinicoradiological characteristics. Fifteen necessary clinicoradiological features were finally selected by using least absolute shrinkage and
selection operator (LASSO), including serum AFP level, Child-Pugh, cirrhosis, age et al.
TABLE 3 | Unimodal radiomics models based on different ROIs.

Modality ROI Training group Testing group

AUC ACC AUC ACC

T1WI Tumor 0.796 0.644 0.710 0.566
Tumor & Margin (10) 0.803 0.632 0.604 0.535
Tumor & Margin (20) 0.780 0.617 0.667 0.566

AP Tumor 0.893 0.726 0.694 0.505
Tumor & Margin (10) 0.909 0.776 0.718 0.596
Tumor & Margin (20) 0.927 0.808 0.741 0.556

PVP Tumor 0.907 0.741 0.725 0.545
Tumor & Margin (10) 0.911 0.766 0.726 0.586
Tumor & Margin (20) 0.921 0.769 0.733 0.586

HBP Tumor 0.795 0.657 0.677 0.535
Tumor & Margin (10) 0.781 0.639 0.636 0.505
Tumor & Margin (20) 0.777 0.617 0.559 0.424
53336
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The radiomics model that used tumor and peritumor (10 mm
or 20 mm) was superior to the radiomics model that was based
only on the tumor in predicting MVI risk grades on arterial and
portal images. Nebbia et al. (20) found the similar results. The
dual-region radiomics signatures of the tumor and peritumor in
the late arterial and portal phases were more beneficial in
predicting MVI than single-region radiomics signatures. The
occurrence of MVI is a complex biological process involving
many factors. According to the related studies of Zhou (33)
and Wan (34), the activation of epithelial-mesenchymal
transformation (EMT) transcription may be an important
pathogenic mechanism of MVI in HCC. When EMT
transcription is activated, intercellular adhesion proteins such
Frontiers in Oncology | www.frontiersin.org 9100
as E-Cadherin are down-regulated and EMT markers such as N-
Cadherin and vimentin are increased, which may induce HCC
dedifferentiation and increase tumor invasiveness, which leads to
the occurrence of MVI (35). MVI is commonly found in the
portal vein branches of the liver tissue adjacent to the tumor (29),
which is related to the fact that portal vein is the main outflow
vessel of liver cancer. When the tumor embolus invades the tiny
portal vein, it will cause small branch occlusion and reduce the
blood flow of the portal vein around the tumor, giving rise to
compensatory peri-tumor hyperperfusion (30, 36). Peritumoral
hemodynamic changes can lead to different imaging findings,
such as abnormal peritumoral enhancement in arterial phase and
low signal intensity in hepatobiliary phase, which are risk factors
A B

FIGURE 5 | Recurrence-free survival (RFS) between histologic MVI and predicted MVI.RFS (A, B) curves were scaled by histologic MVI status and final model-
predicted MVI risk grades with Kaplan Meier analysis.
A B

FIGURE 4 | Comparison of receiver operating characteristic (ROC) curves for the prediction of microvascular invasion. ROC curves of the radiomics signature
predictive model and the clinical signature predictive model, which combines the fusion radiomics signature and clinicoradiological factors in the training (A) and
testing (B) datasets.
March 2022 | Volume 12 | Article 853336
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for MVI. These shows that the peritumoral area of HCC plays an
important role in the diagnosis of MVI. This may explain why
the combination of tumor and peritumoral radiomics features on
AP or PVP images are more conducive to the prediction of MVI
risk grade. Feng et al. illustrated that the ROI based on
hepatobiliary-phase radiomics model (tumor and peritumor;
10 mm) outperformed the radiomics model based only on the
tumor in predicting negative or positive MVI in HCC (15).
However, in this study, the ability of the dual-region radiomics
model (ROI based on the tumor and the peritumor; 10 mm and
20 mm) to predict MVI risk grades was not better than that of the
single region radiomics model based on tumor only. This is
because the rate of Gd-EOB-DTPA uptake by hepatocytes is
correlated with liver function. Thus, patients with impaired liver
function should be reasonably delayed in hepatobiliary-phase
scans (37).

This study also found that fusing multimodal radiomics
signatures improved the ability of the radiomics model to
predict MVI risk grades. Ma et al. (19) made similar
conclusions using a multimodal radiomics model, which
combined radiomics signatures from enhanced CT arterial,
portal venous, and delayed phases. The multimodal radiomics
model exhibited better performance than the corresponding
unimodal radiomics model in predicting the presence or
absence of MVI. This indicated that the inclusion of radiomics
signatures from different modalities could improve MVI
predictors for various aspects of the tumor. However, the
predictive efficiency of the model did not always improve with
the incorporation of more radiomics signatures of different
modalities. Therefore, this study demonstrated that the
number of modalities for radiomics analysis and the diagnostic
performance of models are not positively correlated. According
to Zhang et al., the AUC values for their radiomics model, which
incorporated AP, PVP, and DP in the training and validation
cohorts, were 0.784 and 0.82, respectively. However, the
radiomics model fusing six sequences of T1WI, T2WI, DWI,
AP, PVP, and DP had AUC values of 0.778 and 0.803 in the
training and validation cohorts, respectively (26). Merging
radiomics signatures for numerous models may exclude
radiomics signatures that respond to different traits of the
tumor and are meaningful for MVI prediction due to low
correlation in the signature screening. Therefore, the
performance of the model decreased. Accordingly, further
research into the optimal modalities combination for imaging
radiomics analysis in MVI prediction is recommended.

The importance of combining different aspects such as
laboratory tests, imaging features, and radiomics signatures in
predicting MVI was proven in this study. The model that
incorporated clinical and radiological signatures such as serum
AFP level, cirrhosis, PT, shape, hepatobiliary-phase peritumor
hypointensty, and intra-tumoral hemorrhage had higher AUC
values than the radiomics model, which corroborates the results
of Xu’s research. Xu et al. combined AST, AFP, tumor margins,
growth pattern, envelope, peritumor enhancement, and
radiomics score to create a nomogram with AUC values of
0.909 and 0.889 in the training and validation cohorts,
Frontiers in Oncology | www.frontiersin.org 10101
respectively. In contrast, the radiomics model had AUC values
of 0.841 and 0.819 in the training and validation cohorts,
respectively (24). Yang et al. also found similar results (25).
This suggests that combining the three aspects can improve the
ability of models to predict MVI.

The final prediction model established in this study could
provide effective prognostic stratification for HCC patients.
Tanaka et al. found significant differences in the prognosis of
HCC patients with different degrees of MVI progression (38).
Therefore, preoperative prediction of MVI grades could more
accurately assess the severity of MVI and prognosis of HCC
patients than the prediction of presence or absence of MVI,
providing clinicians with more beneficial information. In this
study, the recurrence-free survival time predicted by the clinical
multimodal radiomics model was significantly different among
patients with different MVI gradings (p < 0.001). Moreover, HCC
patients in the M2 group had a significantly shorter recurrence-
free survival time than those in the M1 and M0 groups. This
finding suggested that our model could assist clinicians in
assessing the prognosis of HCC patients preoperatively and
providing more personalized treatments.
5 LIMITATIONS

Although, our clinical radiomics model can be used as a
preoperative predictor of MVI risk grading, it has the
following limitations. First, all of the MRI images were
generated by the same machine at the same hospital. Although
this may reduce certain confounding effects, external validation,
which could have generated more data from multiple centers,
was missing. Future research should include multi-center data to
perform independent external validation to confirm the
predictive validity of the model. Second, a lack of consistency
in the clarity of tumor boundaries on different simultaneous
images may have resulted in less accurate tumor ROI
segmentation. Therefore, the MRI scanning technique should
be updated to obtain clearer tumor contours and establish an
automatic segmentation model for HCC to reduce the
segmentation discrepancy of ROI. Lastly, the unbalanced data
volume between M0, M1, and M2 groups may have affected the
predictive performance of the model. Thus, a more considerable
amount of data is required to balance differences between the
various groups.
6 CONCLUSION

In summary, the radiomics signatures of the dual regions for tumor
and peritumor on different phases have diverse effects on the
prediction of MVI risk grades. The radiomics signatures of the
dual regions for tumor and peritumor on AP and PVP images are of
merit to predict MVI. Our final preoperative prediction model can
assist clinicians in the preoperative diagnosis of HCC for MVI risk
grading and prognostic assessment.
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Backgroud: Tumor grade is the determinant of the biological aggressiveness of
pancreatic neuroendocrine tumors (PNETs) and the best current tool to help establish
individualized therapeutic strategies. A noninvasive way to accurately predict the histology
grade of PNETs preoperatively is urgently needed and extremely limited.

Methods: The models training and the construction of the radiomic signature were
carried out separately in three-phase (plain, arterial, and venous) CT. Mann–WhitneyU test
and least absolute shrinkage and selection operator (LASSO) were applied for feature
preselection and radiomic signature construction. SVM-linear models were trained by
incorporating the radiomic signature with clinical characteristics. An optimal model was
then chosen to build a nomogram.

Results: A total of 139 PNETs (including 83 in the training set and 56 in the independent
validation set) were included in the present study. We build a model based on an eight-
feature radiomic signature (group 1) to stratify PNET patients into grades 1 and 2/3 groups
with an AUC of 0.911 (95% confidence intervals (CI), 0.908–0.914) and 0.837 (95% CI,
0.827–0.847) in the training and validation cohorts, respectively. The nomogram combining
the radiomic signature of plain-phase CT with T stage and dilated main pancreatic duct
(MPD)/bile duct (BD) (group 2) showed the best performance (training set: AUC = 0.919,
95% CI = 0.916–0.922; validation set: AUC = 0.875, 95% CI = 0.867–0.883).

Conclusions: Our developed nomogram that integrates radiomic signature with clinical
characteristics could be useful in predicting grades 1 and 2/3 PNETs preoperatively with
powerful capability.

Keywords: pancreas, pancreatic neuroendocrine tumor, tumor grade, radiomics, CT
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INTRODUCTION

Pancreatic neuroendocrine tumor (PNET) is a relatively rare
pancreatic disorder thought to arise in hormone secretory cells of
the islets of Langerhans (1) and ever known as islet cell tumor
(2). It consists of about 3%–5% of all the pancreatic neoplasm but
predominates human neuroendocrine tumors (3). Additionally,
the incidence and prevalence of PNETs are steadily increasing in
recent decades (4, 5).

PNETs are characterized by tumor heterogeneity (6), and of
which the clinical behavior are relatively indolent but vary
dramatically (7). Tumor grade is the crucial determinant of the
biological aggressiveness of PNETs. Additionally, it is suggested
to be associated with lymph node involvement (7), tumor
recurrence (8), and overall prognosis (9). According to the
2010 World Health Organization (WHO) classification criteria
(10), tumor grade is defined numerically by the proliferative
indicator Ki-67, in which low-grade (grade 1 (G1)) tumors have a
Ki-67 index from 0% to 2%, intermediate-grade (G2) tumors
have a Ki-67 index from 3% to 20%, and high-grade (G3) tumors
have a Ki-67 index greater than 20%. Surgery is thought to be the
cornerstone of treatment of PNETs in each stage and the only
potential way to cure local PNETs (5, 11). However, different
surgical strategies could be applied for PNETs of grades 1 and 2/
3. The last but not the least, for advanced PNETs, there are also
other treatment options, e.g., somatostatin analog (SSA), targeted
therapy, or chemotherapy, based on tumor grades. In short, the
WHO tumor grading is the best current tool to predict prognosis,
guide therapy selection, and aid surgical decision-making by
stratification of PNETs.

Of note, tumor grade is always obtained according to
postoperative pathology specimen. Although the preoperative
endoscopic ultrasound (EUS)-guided fine-needle aspiration
cytology (FNA) is proved to be efficient in diagnosing PNETs,
the accuracy in differentiating tumor grade remains challenging,
possibly due to limited tissue availability or missing the most
mitotically active areas (hot pot) of the tumor. The research of
Heidsma et al. showed that tumor grade differentiation could be
accurately determined by FNA in only 20%–50% of patients
(6, 12). Additionally, EUS-guided fine-needle biopsy (FNB) with
thicker tissue biopsy needle was reported to have better
performance in tumor grade differentiation, as more tumor
tissues could be obtained (13). However, both of them were
invasive procedures which largely depended on the operators’
experience (13). Therefore, the effective method of preoperatively
predicting the pathologic grade of PNETs is still imperatively
needed to help establish individualized therapeutic strategies and
aid surgical decision-making.

Several previous studies tried to identify the tumor grade of
PNETs by computed tomography (CT), magnetic resonance
imaging (MRI), and PET/CT (14–17). Although they provided a
noninvasive way to preoperatively predict the aggressiveness of
PNETs, the accuracywas limited, as the prediction of the frequently
occurring heterogeneous tumor was mainly established based on
visual observation rather than quantitative information. Recently,
“radiomics” brings a new hope for this problem. It is a method that
automatically extract a large number of quantitative features from
Frontiers in Oncology | www.frontiersin.org 2105
medical images using data-characterization algorithms, and
subsequently identify the most significant radiomic signatures
through machine learning methods (18, 19). Therefore, we can
realize cancer detection, prediction of clinical outcome,
and treatment evaluation as reported previously (20, 21).
Additionally, radiomics was reported to be successfully
applied in differentiating pathologic grading in patients with
clear cell renal cell carcinoma (22), colorectal adenocarcinoma
(23), etc. Nevertheless, to the best of our knowledge, a
noninvasive optimal combined model to incorporate imaging
features with clinical characteristics (such as tumor size and
tumor margin status) to predict the pathologic grade of PNETs
is extremely limited.

Thus, this work attempted to establish a multimodal artificial
intelligence (AI) model that integrates a radiomic signature
based on plain CT images with clinical features for
noninvasive and preoperative prediction of the pathologic
grades of PNETs.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the ethics committee of
Sichuan University, and the signed informed consent was
waived. From July 2008 to June 2018, patients with
histologically confirmed PNETs who underwent surgical
resection in our institution were retrospectively reviewed. The
patients with a PNET that was too small to display clearly on CT,
several patients with cystic PNET, and patients without
preoperative CT scan were excluded at the present study. The
final diagnosis of PNETs was made by specialized pathologists,
including the diagnosis of the tumor grade basing on Ki-67
immunohistochemical staining data. Clinical data were obtained
from the electronic medical records or external medical reports,
including demographic characteristics and classification. Finally,
139 patients with complete data available were identified for
analysis in the present study. Of these, 83 patients were taken
randomly as the training set, and the other 56 patients were used
for the independent validation set (also called test set, not the set
in a crossvalidation approach). The training dataset and
validation dataset had an even distribution in patient
characteristics (Table 1). No significant difference was found
in PNET pathologic grade and clinical characteristics (age,
maximum diameter, and clinical stage of the tumor, etc.)
between the training dataset and validation dataset.

CT Image Acquisition
All patients underwent an abdominal contrast-enhanced CT scan
preoperatively. Contrast-enhanced CT scan was performed on
three CT scanners including a 16-slice CT (Toshiba Medical
Systems, Japan), a 64-, and a 256-slice CT (Philips Healthcare,
Netherlands). CT scans used the same CT scanning parameters:
tube voltage of 120 kVp, tube current of 125 to 300 mAs, pitch of
0.6 to 1.25 mm, slice thickness of 3 to 5 mm, and reconstruction
interval of 3 to 5 mm.
March 2022 | Volume 12 | Article 843376
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Radiomic Analysis
We performed a radiomic analysis on preoperative CT images to
evauate the pathologic grades of PNETs. Figure 1 illustrates the
work flow of the radiomic analysis.

Step 1: Tumor regions were delineated and segmented into
regions of interest (ROIs) from which texture features were
extracted. We evaluated the CT images in plain, arterial, and
portal venous phases, respectively.

Step 2: We used 10 texture analysis methods to extract features.
The Supplementary Material described the methods in
detail. A total of 1,133 features were extracted from a ROI
(24–26).

Steps 3–4: Preselection was performed on the 1,133 features using
the Mann–Whitney U test (p-value ≤ 0.25). We then combined
the methods of least absolute shrinkage and selection operator
(LASSO) and stepwise logistical regression to perform feature
selection. Feature preselection and feature selection were both
performed on the training set. A radiomic signature can be built
based on the final selected features.

Step 5: We combined the radiomic signature and four clinical
data to train SVM-linear models. Features were divided into
three groups: radiomic signature (group 1), radiomic
signature combining T stage and dilated main pancreatic
duct (MPD)/bile duct (BD) (group 2), and radiomic signature
combining T stage, dilated MPD/BD, clinical TNM stage, and
tumor margin (group 3). The models training and the
construction of the radiomic signature were carried out
separately in three phases (plain, arterial, and venous).
Thus, a total of 9 prediction tasks were performed.
Frontiers in Oncology | www.frontiersin.org 3106
Step 6: The independent validation dataset (n = 56) was tested on
the 9 trained models. We chose an optimal model to construct
a nomogram, and then used the nomogram to predict the
pathologic grades of these 56 patients. A calibration curve and
a goodness of fit to the ideal model are calculated to evaluate
the nomogram.
TABLE 1 | Comparison of patient and lesion features between grades 1 and 2/3 groups in training and validation sets.

Features Training set (n = 83) p-value Validation set (n = 56) p-value

Grade 2/3 (n = 55, %) Grade 1 (n = 28, %) Grade 2/3 (n = 37, %) Grade 1 (n = 19, %)

Age(range, years)a 49.7 (20–77) 49.2 (24–70) 0.883 52 (22–77) 53.2 (16–75) 0.799
Gender 0.141
Women 27 (49.1) 9 (32.1) 10 (27) 5 (26.3) 0.955
Men 28 (50.9) 19 (67.9) 27 (73) 14 (73.7)
Tumor size (range, mm)a 40.7 (12–150) 28.4 (10–80) 0.028 47.7 (12–180) 22.2 (12–42) <0.001
T stage (T3–T4) 28 (50.9) 5 (17.9) 0.004 23 (62.2) Nil <0.001
Clinical TNM stage (IIB and above) 31 (56.4) 5 (17.9) 0.001 25 (67.6) 1 (5.3) <0.001
Dilated MPD/BDb 19 (34.5) 3 (10.7) 0.02 14 (37.8) Nil 0.006
Tumor margin 0.013 0.034
Well defined 30 (54.5) 23 (82.1) 24 (64.9) 18 (94.7)
Poorly defined 25 (45.5) 5 (17.9) 13 (35.1) 1 (5.3)
Tumor location 0.502 0.096
Head and neck 29 (52.7) 14 (50) 20 (54.1) 6 (31.6)
Body and tail 26 (47.3) 13 (46.4) 14 (37.8) 13 (68.4)
Multiple Nil 1 (3.6) 3 (8.1) Nil
Pathology 0.175 0.080
Functional 12 (21.8) 10 (35.7) 9 (24.3) 9 (47.4)
Nonfunctional 43 (78.2) 18 (64.3) 28 (75.7) 10 (52.6)
Insulinoma 0.047 0.006
Yes 5 (9.1) 8 (28.6) 4 (10.8) 9 (47.4)
No 50 (90.9) 20 (71.4) 33 (89.2) 10 (52.6)
March 2022 | Volume 12 | Article
aThe values indicated are expressed as median (range).
bDilated MPD/BD, dialated main pancreatic duct (MPD) or bile duct (BD). The clinical TNM stage and T stage of the tumor was determined preoperatively according to the American Joint
Committee on Cancer TNM Staging System Manual, 7th edition.
The bold values in this table are p-value less than 0.05, which means the features between grade 1 and 2/3 groups are significantly different.
FIGURE 1 | Work flow of radiomic analysis.
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RESULTS

The detailed distribution of clinical characteristics in the G1
group (grade 1) and G2/3 group (grade 2/3) is summarized in
Table 1. The tumor size of PNET in grade 2/3 group was
significantly larger than that in grade 1 group (p = 0.028). T
stage (T3–T4), clinical TNM stage (IIB and above), Dilated
MPD/BD, and poorly defined tumor margin were more
frequently detected in patients with grade 2/3 PNETs than
those with grade 1 (p = 0.004, p = 0.001, p = 0.02, and
p = 0.013, respectively). The consistent results occurred both in
the training and validation datasets.

As illustrated in Figure 1, this study aims to build a
radiomic> signature and evaluate the ability of the signature to
predict PNET grades. Table 2 shows the features used to build
the radiomic signature, that is, the result of feature selection
on the training set. We also evaluated the performance of
combining the radiomic signature and 4 clinical variables to
predict PNET grades. The clinical variables are x9 to x12
in Table 2.

The linear combination of x1 to x8 in Table 2 expresses the
radiomic signature y. The linear combination is shown in
Equations (1) and (2).

y = x!=s
� �

∗ b
!

+ b

x! =
x1 − m1

s1
,
x2 − m2

s2
,⋯,

xm − mm

sm

� �

where y is the score of group 1 (or 2 or 3) for grade 1, −y is the
corresponding score for grade 2/3, x! is an observation
comprising the m predictors, s is the kernel scale, b is the bias
term, and the vector b contains the coefficients that define an
orthogonal vector to the hyperplane,, and mi and si are the
corresponding weighted mean and weighted standard deviation
for the ith predictor (used for standardization). When predicting
the result, we inputted [−y, y] into the function softmax to obtain
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the probabilities that the observer belongs to the positive class
(grade 2/3) and the negative class (grade 1).

Next, we trained prediction models based on the radiomic
signature and the clinical variables to approximately calculate the
value of each unknown variable in Equations (1) and (2). We
then validated the performance of these models on the
independent validation set. The training results and the
validation results are shown in Table 3. Of note, compared
with A (arterial) phase and V (venous) phase, P (plain) phase
obtained the best prediction performance for each group in the
validation set. What is more, for each phase, we calculated the
receiver operating characteristics curves (ROCs) and compared
the ROCs of validation using the DeLong’s test method. Figure 2
illustrates the ROC results. It demonstrates that the models based
on the radiomic signature combined with clinical data (models
based on groups 2 and 3) obtain better prediction results than the
models based on the radiomic signature alone (models based on
group 1). Additionally, although the indicator values based on
group 3 show the highest performance, the model based on the
radiomic signature combined with 4 clinical data in group 3
showed no significantly better prediction results in plain phase,
compared with that combined with 2 clinical data in group 2
(p < 0.629). As can be seen from Table 3, the experiments based
on plain phase obtained the best prediction performance than
other phases. Thus, we also calculated the indicator values of
accuracy, sensitivity, and specificity in the experiments of plain
phase. Table 4 and Supplementary Figure S2 show the
prediction results (on the validation set) as the threshold varied.

Above all, the model based on the radiomic signature of plain
phase combined with 2 clinical data (T stage and Dilated MPD/
BD) in group 2 obtained the best prediction performance.
Although the prediction results of the model based on the
radiomic signature combined with 4 clinical data in group 3
seemed a little better, there was no significant differences
between the groups 3 and 2 models (p < 0.629). Consider the
balance between the convenience and predictive power of the
model, we established a novel nomogram to preoperatively
TABLE 2 | Radiomic signature and clinical data.

No. Analysis method Subband Feature name

x1 Fistogram Variance
x2 Wavelet-COM H1 Maximal correlation coefficient
x3 Wavelet-RLM D1 Short-run low gray-level emphasis
x4 Wavelet-COM D2 Sum of squares
x5 Contourlet-histogram L2-1 1% percentile
x6 Contourlet-COM L2-2 Cluster shade
x7 Contourlet-histogram L2-3 99% percentile
x8 Contourlet-histogram L1-2 90% percentile
x9 T stage
x10 Dilated MPD/BD
x11 Clinical TNM stage
x12 Tumor margin
March 2
The radiomic signature are composed of x1 to x8. The clinical data in group 2 are composed of x9 and x10. The clinical data in group 3 are composed of x9 to x12. The number following A, H,
V, or D represents the decomposition level. The clinical TNM and T stages of the tumor were determined preoperatively according to the American Joint Committee on Cancer TNM
Staging System Manual, 7th edition.
COM, cooccurrence matrix; RLM, run-length matrix; A (in the wavelet transform), approximate; H (in the wavelet transform), horizontal; V (in the wavelet transform), vertical; D (in the wavelet
transform), diagonal; Li–j, jth component in the ith decomposition in the contourlet transform; Dilated MPD/BD, dilated main pancreatic duct (MPD) or bile duct (BD).
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predict histologic grade in PNETs based on the radiomic
signature of plain phase combined with 2 clinical data (T stage
and Dilated MPD/BD) in group 2 (Figure 3).

Figure 3 shows that the nomogram achieves a goodness of fit
of 0.868 to the ideal model. Correspondingly, the score for the
radiomic signature based on plain phase is
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y = x1−217:2809
6�167:0185 � 1:943 + x2−0:9677

6�0:0548 � 3:1606 + x3−0:0956
6�0:0264 �

−2:4079ð Þ + x4−546:9485
6�143:0338 � 2:7323+

x5−1:0120
6�0:1098 � 1:0809 + x6−6:4072�104

6�3:2953�104 � −37455ð Þ + x7−117:4458
6�17:8108 �

−1:9601ð Þ + x8−38:2048
6�17:6032 � 2:7947 − 0:6808
A B

D E F

C

FIGURE 2 | Comparison of receiver operating characteristic (ROC) curves for prediction of the histologic grade. The positive class is grade 2/3; the negative class is
grade 1. Subfigure (A–C) illustrate the training ROCs. Subfigures (D–F) illustrate the validation ROCs. In validations, we performed DeLong’s tests to compare two
ROC curves. In (D), the DeLong’s tests show that the p-value between the ROC curve of group 3 and the ROC curve of group 1 is less than 0.066, the p-value
between the ROC curve of group 3 and the ROC curve of group 2 is less than 0.629, and the p-value between the ROC curve of group 2 and the ROC curve of
group 1 is less than 0.030. In subfigure (E), the DeLong’s tests show that the p-value between the ROC curve of group 3 and the ROC curve of group 1 is less than
0.003, the p-value between the ROC curve of group 3 and the ROC curve of group 2 is less than 0.037, and the p-value between the ROC curve of group 2 and
the ROC curve of group 1 is less than 0.013. In (F), the DeLong’s tests show that the p-value between the ROC curve of group 3 and the ROC curve of group 1 is
less than 0.001, the p-value between the ROC curve of group 3 and the ROC curve of group 2 is less than 0.059, and the p-value between the ROC curve of group
2 and the ROC curve of group 1 is less than 0.003.
TABLE 3 | Results of training and validation: plain (P), arterial (A), and venous (V); unless otherwise specified, the contents of parentheses are 95% confidence intervals.

Features Training set (n = 83) Validation set (n = 56)

Group 1
P 0.911 (0.908–0.914) 0.837 (0.827–0.847)
A 0.913 (0.909–0.917) 0.710 (0.695–0.725)
V 0.874 (0.869–0.879) 0.625 (0.609–0.641)
Group 2
P 0.919 (0.916–0.922) 0.875 (0.867–0.883)
A 0.895 (0.892–0.898) 0.783 (0.770–0.796)
V 0.900 (0.894–0.906) 0.742 (0.729–0.755)
Group 3
P 0.895 (0.891–0.899) 0.879 (0.869–0.889)
A 0.892 (0.889–0.895) 0.828 (0.817–0.839)
V 0.902 (0.898–0.906) 0.797 (0.784–0.810)
March 2022 | Volu
group 1: radiomic signature; group 2: radiomic signature combining T stage and Dilated MPD/BD; group 3: radiomic signature combining T stage, Dilated MPD/BD, clinical TNM stage,
and tumor margin. In the training, we used the fivefold crossvalidation technique to calculate the average AUC, then randomly performed 50 fivefold crossvalidations to calculate the
average AUC and the 95% confidence intervals. In the independent validation, the bootstrap method based on sampling with replacement was used to calculate the average AUC and
the 95% confidence intervals (based on 100 bootstraps). The sampling with replacement randomly sampled one sample at a time and drawn 56 times. The clinical TNM and T stages of the
tumor were determined preoperatively according to the American Joint Committee on Cancer TNM Staging System Manual, 7th edition. Dilated MPD/BD, dilated main pancreatic duct
(MPD) or bile duct (BD).
The bold values in this table showed the best performance in each group.
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The score for the radiomic signature and clinical data in
group 2 based on plain-phase is

y = x1−217:2809
11:5�167:0185 � 3:1548 + x2−0:9677

11:5�0:0548 � 3:4514 + x3−0:0956
11:5�0:0264 �

−3:5448ð Þ + x4−546:9485
11:5�143:0338 � 3:6584+

x5−1:0120
11:5�0:1098 � 1:55 + x6−6:4072�104

11:5�3:2953�104 � −5:6929ð Þ + x7−117:4458
11:5�17:8108 �

−2:5886ð Þ + x8−38:2048
11:5�17:6032 � 4:335+

x10−2:3133
11:5�0:9097 � −2:6004ð Þ + x11−0:2590

11:5�0:4373 � −1:4059ð Þ − 0:5775

The score for the radiomic signature and clinical data in
group 3 based on plain phase is

y = x1217:2809
7�167:0185 � 1:463 + x2−0:9677

7�0:0548 � 1:2912 + x3−0:0956
7�0:0264 �

−1:5801ð Þ + x4−546:9485
7�143:0338 � 1:1559+

x5−1:0120
7�0:1098 � 1:1345 + x6−6:4072�104

7�3:2953�104 � −2:3502ð Þ + x7−117:4458
7�17:8108 �

−0:7985ð Þ + x8−38:2048
7�17:6032 � 2:084+

x9−2:4535
7�0:9269 � −1:3666ð Þ + x10−2:3133

7�0:9097 � −1:2045ð Þ + x11−0:2590
7�0:4373 �

−0:5704ð Þ + x12−0:3554
7�0:4784 � −1:1731ð Þ − 0:595
DISCUSSION

PNETsare relatively rareneoplasms, the incidenceofwhich is about
4–5 individuals per 100,000 annually (27). Nevertheless, PNETs
have been increasingly detected and diagnosed in recent decades
andcurrently represent the secondmost commonpancreatic tumor
followed by pancreatic adenocarcinoma (28). Most of PNETs carry
MEN1,ATRX, orDAXXgenemutations,while approximately 15%
activate mammalian target of rapamycin (mTOR) signaling (29,
30). PNETs are heterogenous neoplasms, of which the prognosis
varies widely. The current most important prognostic stratification
factor is WHO tumor grade classification, which might optimize
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tailored therapeutic strategies. So far, tumor grade is obtained by
postoperative pathology. The preoperative fine-needle aspiration
(FNA) is invasive, and the accuracy in differentiating tumor grade
remains challenging. In the present study, we establish a combined
nomogram that integrates a radiomic signature based on plain CT
images with clinical features for noninvasive and preoperative
prediction of pathologic grades of PNETs with high accuracy.

Firstly, we build a model based on an eight-feature radiomic
signature to stratifyPNETpatients intoG1andG2/3groupswith an
AUC of 0.911 (95% CI, 0.908–0.914) and 0.837 (95% CI, 0.827–
0.847) in the training and validation cohorts, respectively.
Moreover, we identified some objective clinical features
(including T stage and dilated main pancreatic duct/bile duct
status) related to tumor grade. Interestingly, the predictive
performance was further improved by combining the radiomic
signature with the clinical features mentioned above as a combined
nomogram, achieving an AUC of 0.919 (95% CI, 0.916–0.922) and
0.875 (95% CI, 0.867–0.883) in the training and validation
cohorts, respectively.

Recent developments in radiomics attract much interests in
tumor detection, subtype classification, therapeutic response
assessment, prediction of clinical outcome and tumor
monitoring, etc. Most of them were attempt to stratify the
biological behavior and optimize tailored therapeutic strategies
for these heterogenous tumors such as PNETs. Traditional
radiographic assessment [including CT (15) and MRI (17)]
which commonly relies on visual evaluation, was previously
reported to predict the biological aggressiveness of PNETs.
Moreover, (18)F-FDG-PET/CT and (68)Ga-DOTANOC-PET/
CT were reported to be useful in predicting tumor grade (14).
However, the results vary a lot and the accuracy remains
challenging, as the prediction was mainly established based on
visual observation rather than quantitative information.

Radiomics and artificial intelligence (AI) automatically
extract high-throughput quantitative image data. Just as
limited studies reported previously, it could be more useful for
differentiating pathologic grading in patients with PNETs than
routine CT image features alone (31, 32). Whereas, combining
TABLE 4 | Validation results based on plain phase as the threshold varied: accuracy (ACC, %), sensitivity (SEN, %), and specificity (SPE, %).

Features Threshold

0.5 0.55 0.6 0.65 0.7 0.75 0.8

Group 1
ACC 75.0 75.0 76.8 78.6 78.6 80.4 76.8
SEN 83.8 83.8 83.8 81.1 78.4 78.4 73.0
SPE 57.9 57.9 63.2 73.7 78.9 84.2 84.2
Group 2
ACC 75.0 78.6 82.1 83.9 80.4 80.4 82.1
SEN 83.8 83.8 83.8 83.8 78.4 78.4 75.7
SPE 57.9 68.4 78.9 84.2 84.2 84.2 94.7
Group 3
ACC 78.6 76.8 80.4 85.7 85.7 83.9 80.4
SEN 86.5 83.8 83.8 83.8 83.8 81.1 73.0
SPE 63.2 63.2 73.7 89.5 89.5 89.5 94.7
March 2022 | V
olume 12 | Article 84
group 1: radiomic signature; group 2: radiomic signature combining T stage and Dilated MPD/BD; group 3: radiomic signature combining T stage, Dilated MPD/BD, clinical TNM stage,
and tumor margin. The clinical TNM and T stages of the tumor were determined preoperatively according to the American Joint Committee on Cancer TNM Staging System Manual, 7th
edition. Dilated MPD/BD, dilated main pancreatic duct (MPD) or bile duct (BD).
The bold values in this table showed the best performance in each group.
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feature engineering and machine learning is a widely used
scheme in radiomics-aided diagnosis (32). Deep learning
features are highly versatile, their ability to solve specific
problems is relatively weak (33). In contrast, building an
interpretable AI model based on feature engineering is
relatively easy. The output of the model is expected to be
understood by physicians in clinical applications. Nomograms
based on linear models intuitively illustrate what drives the
recognition in machine learning. We build a nomogram based
on the group 2 model in plain phase, as shown in Figure 3.
Wan’s research (34) investigated the performance of the
combination of conventional handcrafted and learning-based
features in disease recognition. For a specific research question,
they emphasised that developing specific feature selection and
model optimization approaches was necessary to achieve high
accuracy and robustness. Consistent with this, the present paper
proposed our optimized approaches according to the PNET
grading issue (as illustrated in Figure 1).
Frontiers in Oncology | www.frontiersin.org 7110
As depicted in Table 1, our data showed that tumor size in
grade 2/3 group was significantly larger than that in grade 1
group (p = 0.028). Dilated MPD/BD and poorly defined tumor
margin were more frequently detected in patients with grade 2/3
PNETs than those with grade 1 (p = 0.02 and p = 0.013,
respectively). Consistent results occurred in both training and
validation sets in the present study. Moreover, research by Kim
and colleague (15) identified the three indentical tumor CT
features above as predictors of higher tumor grade of PNETs.
Of note, the assessment of these features was relatively objective
and the data can be automatically acquired in bulk. On the
contrary, the data of tumor T stage, TNM stage, and diagnosis of
insulinoma were obtained partly by doctors’ experience,
although these features were suggested to be significantly
different between grade 2/3 PNETs and grade 1 group in our
study (Table 1). Therefore, to improve the predictive
performance, we establish a combined nomogram model that
integrates radiomic signature with the former three relatively
A

B

FIGURE 3 | Nomogram and its calibration curve based on group 2 for predicting grade 2/3. (A) Nomogram for group 2. (B) Calibration curve, where the diagonal
dotted line is a perfect estimation by an ideal model. The predicted (estimated) probabilities of the validation set were sorted and divided into four groups based on
quartiles to calculate the observed true probabilities. We calculated the goodness of fit to evaluate how well the solid line fits the dotted line. The goodness of fit is
0.8683, which indicates that the two lines fit well.
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objective clinical features (including tumor size, tumormargin, and
dilated main pancreatic duct/bile duct) (Table 2). To our
knowledge, our present comprehensive nomogram is the first
study that integrates radiomic signature based on plain CT
images with objective clinical features for noninvasive and
preoperative prediction of pathologic grades for each PNET
patients with high accuracy (both in training and independent
validation set). Wenjie Liang and colleagues (35) reported a
nomogram combining radiomic signature based on contrast-
enhanced CT and clinical stage. Plain CT has lower cost and
more convenience than contrast-enhanced CT. Also, accurate
preoperative TNM staging of the tumor is difficult, as the
preoperative assessment of “N” and “M” status remains
challenging. Interestingly, Zhang’s research (36) depicted
impressive results based on enhanced CT radiomic features with
3D modeling.

As is known to us, a quite different therapeutic strategy could be
applied for PNETs of grades 1 and 2/3. For clinical practice, the
present combinednomogrammay facilitate personalized treatment
decisions for each patient with this heterogeneous tumor. It is
noninvasive and could identifyPNETsof grades 1 and2/3withhigh
accuracy preoperatively. According to ENET guidelines in terms of
PNET, NF-PNETs of less than 2 cm with grade 1 were optimized
candidates for a “wait and see” policy. Moreover, parenchyma-
sparing procedure such as enucleation could be an alternative for
PNET with grade 1, while radical resection with formal
lymphadenectomy was recommended for PNET with grade 2/3.
In addition, the therapeutic strategies for the advanced PNETs of
graded 1 and 2/3 varied dramatically (palliative surgery,
somatostatin analog, targeted therapy, or chemotherapy). Our
present combined model may facilitate tailored surgical decisions.
Additionally, given the spatial and temporal heterogeneity of the
specific tumor, the noninvasive model can be used repeatedly for
tumormonitoring (especially for the patient initially recommended
to wait and see) and to dynamically optimize therapeutic regimen
for patients with advanced PNETs.

A major limitation of the present study was the relatively
insufficient sample size. In addition, given that the G3 group was
small (approximately 10% of PNETs in our series and as previously
reported), our present nomogrammodel was established to stratify
PNET patients into G1 and G2/3 groups. To better optimize
personalized therapeutic strategies, a nomogram to separate G2
and G3 groups is further needed to be established based on lager
samples.We are trying to collect more cases frommulticenters and
explore more appropriate methods to conduct further studies.
Thirdly, we used single-layer CT image in this study, while 3D
modeling may more comprehensively reflect the overall
characteristics of the tumor, it is worth exploring whether it can
obtain a more powerful predictive capability. On the other hand,
manual tumor segmentation for 3Dmodelingwas time consuming,
and it was not applied for small tumorswithout thin-sliceCT scans.
CONCLUSIONS

The developed combined nomogram that integrates radiomic
signature based on plain CT images with clinical features
Frontiers in Oncology | www.frontiersin.org 8111
(including T stage and dilated main pancreatic duct/bile duct
status) can effectively predict the pathologic grades of PNETs
preoperatively with powerful predictive capability. The
noninvasive predictive model could assist clinicians to
optimize tailored therapeutic strategies and facilitate surgical
decision-making for each patient with PNETs in practice. It
intuitively illustrates what drives the recognition in the
prediction, which is potentially valuable in actual clinical
applications and precision medicine in the future.
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Predictive Efficacy of a Radiomics
Random Forest Model for Identifying
Pathological Subtypes of Lung
Adenocarcinoma Presenting as
Ground-Glass Nodules
Fen-hua Zhao1†, Hong-jie Fan2†, Kang-fei Shan1, Long Zhou2, Zhen-zhu Pang2,
Chun-long Fu1, Ze-bin Yang1, Mei-kang Wu1, Ji-hong Sun2, Xiao-ming Yang3*
and Zhao-hui Huang1*

1 Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China, 2 Department of
Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 3 Image-Guided Bio-Molecular
Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States

Purpose : To establish and verify the ability of a radiomics prediction model to distinguish
invasive adenocarcinoma (IAC) and minimal invasive adenocarcinoma (MIA) presenting as
ground-glass nodules (GGNs).

Methods: We retrospectively analyzed 118 lung GGN images and clinical data from 106
patients in our hospital from March 2016 to April 2019. All pathological classifications of
lung GGN were confirmed as IAC or MIA by two pathologists. R language software
(version 3.5.1) was used for the statistical analysis of the general clinical data. ITK-SNAP
(version 3.6) and A.K. software (Analysis Kit, American GE Company) were used to
manually outline the regions of interest of lung GGNs and collect three-dimensional
radiomics features. Patients were randomly divided into training and verification groups
(ratio, 7:3). Random forest combined with hyperparameter tuning was used for feature
selection and prediction modeling. The receiver operating characteristic curve and the
area under the curve (AUC) were used to evaluate model prediction efficacy. The
calibration curve was used to evaluate the calibration effect.

Results: There was no significant difference between IAC and MIA in terms of age, gender,
smoking history, tumor history, and lung GGN location in both the training and verification
groups (P>0.05). For each lung GGN, the collected data included 396 three-dimensional
radiomics features in six categories. Based on the training cohort, nine optimal radiomics
features in three categories were finally screened out, and a prediction model was
established. We found that the training group had a high diagnostic efficacy [accuracy,
sensitivity, specificity, and AUC of the training group were 0.89 (95%CI, 0.73 - 0.99), 0.98
(95%CI, 0.78 - 1.00), 0.81 (95%CI, 0.59 - 1.00), and 0.97 (95%CI, 0.92-1.00), respectively;
those of the validation group were 0.80 (95%CI, 0.58 - 0.93), 0.82 (95%CI, 0.55 - 1.00),
0.78 (95%CI, 0.57 - 1.00), and 0.92 (95%CI, 0.83 - 1.00), respectively]. The model
calibration curve showed good consistency between the predicted and actual probabilities.
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Conclusions: The radiomics prediction model established by combining random forest
with hyperparameter tuning effectively distinguished IAC from MIA presenting as GGNs
and represents a noninvasive, low-cost, rapid, and reproducible preoperative prediction
method for clinical application.
Keywords: lung tumor, ground-glass nodules, radiomics, random forest, diagnosis
1 INTRODUCTION

Ground-glass nodule (GGN) refers to a nodular shadow with
slightly increased density on high-resolution computed
tomography (HRCT), in which the vascular and bronchial
bundles are not covered (1, 2). With the popularization of
HRCT and the extensive application of low-dose screening for
lung cancer, the detection rate of lung GGN has been constantly
increasing (3). Lung GGN is a characteristic but non-specific
imaging manifestation. Theoretically, with any decrease in air
content in the lung tissue, increase in cell density, and
proliferation of columnar cells in the alveolar wall leading to a
decrease in gas filling in the terminal saccules and alveoli,
ground-glass opacities can appear before alveoli collapse
completely. Research has shown that persistent lung GGNs are
mostly attributed to precancerous lesions or early-stage lung
adenocarcinoma (4). The 2011 International Association for the
Study of Lung Cancer/American Thoracic Society/European
Respiratory Society International Multidisciplinary Lung
Adenocarcinoma Classification (5) and WHO (2021)
Classification of Lung Tumors Pathology (6) divided lung
adenocarcinoma into three categories: pre-invasive lesions,
minimally invasive adenocarcinoma (MIA), and invasive
adenocarcinoma (IAC), among which pre-invasive lesions
include atypical adenomatous hyperplasia (AAH) and
adenocarcinoma in situ (AIS). AAH, AIS, MIA, and IAC are a
dynamic process of continuous progression involving multiple
genes, and AAH and AIS can gradually develop into MIA and
IAC (7). According to the literature, when a lung GGN was
completely removed and the margin was negative, the 5-year
disease-free survival of AIS and MIA was 100% or close to 100%
(8), the 10-year disease-specific survival (DSS) was 100% or
97.3%, and the 10-year DSS of IAC was 74.8% or 80.2%. Thus,
the prognosis of IAC was significantly worse than that of MIA
and AIS (9). The difference in prognosis determines the
difference in clinical diagnosis and treatment schemes.
Although it is still controversial, most researchers believe that
scheduled follow-up or sublobar resection (wedge resection or
segmental resection) is suitable for pre-invasive lesions and MIA,
which can preserve more lung tissue as well as reduce the
mortality and morbidity related to surgery, while lobectomy
should be performed for IAC (10, 11). Therefore, accurate
preoperative differentiation between IAC and MIA+ pre-
invasive lesions, especially IAC and MIA, will assist in
determining the appropriate surgical methods and the
judgment of prognosis (12).

Radiomics is a newly emerging field and was first proposed by
Dutch scholars Lambin et al. It refers to extracting a large volume
2115
of data that are hard to observe with the naked human eye from
medical images such as B-mode ultrasonography, CT, magnetic
resonance imaging, and positron emission tomography;
radiomics uses a data characterization algorithm to transform
the medical image data into minable feature space data with high
resolution (13). Quantifying the heterogeneity of tumors using
radiomics analysis software can help to obtain more information.
Moreover, radiomics is not affected by the inherent limitations of
the professional level or subjective analysis and traditional image
interpretation; it can help us to effectively carry out pathological
classification, treatment plan formulation, and treatment
outcome and prognosis evaluation, among other tasks. It is
widely known that heterogeneity is a recognized malignant
feature of tumors, which is related to their adverse biological
behavior. The heterogeneity of tumors is related to various gene
subtypes, growth expression, and neovascularization and tumor
microenvironment factors, which lead to local differences in the
proliferation, metabolic activity, apoptosis, and blood supply
among different tumors (14). At present, radiomics has been
gradually applied in differentiating benign from malignant
pulmonary nodules (15), evaluating treatment outcomes of
lung cancer (16), and predicting the recurrence and metastasis
of lung cancer (17), among other tasks. There are few studies on
predict ing the pathological subtypes of GGN lung
adenocarcinoma, and most of them were used to differentiate
MIA/IAC from pre-invasive lesions (AAH/AIS). Weng et al. (18)
attempted to differentiate IAC from MIA by combining
morphology with omics; however, no research has been
reported on differentiation between IAC and MIA by pure
omics labeling models. In this study, random forest (19)
combined with hyperparameter tuning was used to establish
and verify the ability of a radiomics prediction model to
distinguish IAC and MIA presenting as lung GGN and to
evaluate the consistency between the probability predicted by
the model and the actual probability.
2 MATERIALS AND METHODS

2.1 Research Subjects
The study design was approved by the appropriate ethics review
board, and the requirement for obtaining informed patient
consent was waived owing to the retrospective nature of
the study.

In this study, we retrospectively analyzed data from patients
treated in our hospital from March 2016 to April 2019. The
inclusion criteria were as follows (6, 20, 21): (i) GGN on pre-
operation chest HRCT scans; (ii) the images were scanned using
May 2022 | Volume 12 | Article 872503
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the same scanning protocol on the same CT machine; (iii)
presence of lesions on at least five sections on HRCT axial
images; (iv) all lesions were confirmed as lung IAC or MIA by
pathology after surgical resection of specimens or percutaneous
biopsy: because the pathological classification of lung
adenocarcinoma would have been influenced by the subjective
experience of the pathologists, the pathological classification was
confirmed by two pathologists who had worked for 10 years after
reaching a consensus according to the new 2015 classification
criteria for lung adenocarcinoma; and (v) treatment-naive cases
before HRCT. Cases that did not meet the diagnostic
requirements where only a routine CT scan was performed or
the respiratory motion artifact was too severe were excluded.

2.2 Examination Methods
A Brilliance 64-slice CT (Philips Medical Systems, Netherlands)
machine was used for scanning. All patients received strict
breathing training before scanning, adopted the head-first
supine position, and adopted an end-inspiratory hold during
scanning. The scanning scope covered all areas from the apices to
the bottom of the lungs. Exposure conditions: 120 kV, 150 mA,
collimation 0.625 mm × 64, pitch 0.64, scanning and
reconstruction matrix both at 1024 × 1024, reconstruction slice
thickness and interval both at 0.67 mm. Scanning image
observation: mediastinal window (window position: 30–50 Hu;
window width: 250–350 Hu); pulmonary window (window
position: −450 to −600 Hu; window width: 1500–2000 Hu).
The conventional CT scan images could not accurately identify
lung GGNs; therefore, this study did not use them.

2.3 Image Analysis
First, all Digital Imaging and Communications in Medicine
images of lung GGNs were imported into the A.K. (Analysis
Kit) software developed by GE (USA) for pre-processing. Then,
ITK-SNAP software (Version 3.6) was used to manually outline
the regions of interest (ROIs) layer by layer along the inner edges
of lung GGNs based on pixel points, and then they were fused
and saved into three-dimensional (3D) images (Figure 1). All
lung GGN images were outlined by a resident who had worked
for 5 years and a deputy chief physician who had worked for 15
years. The intraclass correlation coefficient (ICC) was used for
consistency analysis, and an ICC >0.8 indicated good consistency
(22). The sketchers were blinded to the pathological results of the
lung GGNs.

To acquire radiomics feature, the original images of lung
GGNs after pre-processing and the corresponding ROI 3D
images were imported into A.K. software in batches, and six
types of radiomics features were quantitatively calculated:
histogram, form factor, texture, gray level co-occurrence
matrix (GLCM), run-length matrix (RLM), and gray level zone
size matrix (GLSZM).

2.4 Statistical Methods
2.4.1 Statistical Analysis of the Clinical Data
Using R language software (Version 3.5.1), descriptive statistical
analysis was carried out between the training and verification
groups. The chi-square test was used for qualitative variables,
Frontiers in Oncology | www.frontiersin.org 3116
and the t-test or rank sum test was used for continuous variables,
with P<0.05 indicating that the difference was statistically
significant. In addition, the Bootstrap method is used to
estimate the confidence interval.

2.4.2 Screening of Radiomics Features and
Construction of a Random Forest Prediction Model
In this study, random forest combined with hyperparameter
tuning was used for prediction modeling. As a leader of ensemble
learning methods, random forest trains decision tree models with
partial data and partial features and then fuses these tree models,
and finally, uses voting to solve classification problems. Random
forest can directly deal with high-dimensional data, and there is
no need for feature screening before modeling. Random forest
hyperparameter tuning includes model framework parameters
and decision tree parameters. For model framework parameters,
the number of weak learners is mainly tuned, i.e., the number of
decision trees, and the range set in this study was 50–500.
Decision tree parameters tuning includes tree depth (3–10
layers) and the number of leaf nodes (10–50). Using random
grid search and 10-fold cross-validation, the results of
hyperparameter tuning in each iteration were evaluated by
accuracy. Finally, we found the best random forest
hyperparameters. Based on the training data, we found the
following optimal hyperparameters in this study: the number
of decision trees was 184, the tree depth was 5, and the number of
leaf nodes was 20. The best random forest model was also utilized
in the training data to assess the importance of features and
feature selection.

Using this set of hyperparameter settings, prediction analysis
of the training group and verification group based on the random
forest algorithm was carried out again, and the receiver operating
characteristic (ROC) curve was used to evaluate the prediction
efficacy of the model. The calibration curve was used to evaluate
the consistency between the probability predicted by the model
and the actual probability.
3 RESULTS

3.1 Comparison of the General Clinical
Data of Patients in the Training and
Verification Group
A total of 118 lung GGNs [36 pure GGNs (pGGNs) and 82
mixed GGNs (mGGNs)] in 106 patients were included in this
study, including 27 men (25.5%) and 79 women (74.5%) whose
ages ranged from 28 to 76 years, with an average age of 55.61 ±
11.50 years. The surgical and pathological analysis confirmed 61
IAC lesions in 56 patients and 57 MIA lesions in 53 patients; 42
lesions were located in the left lung (18 in the upper left lobe and
24 in the lower left lobe), and 76 in the right lung (10 in the upper
right lobe, 42 in the middle right lobe, and 24 in the lower right
lobe) (Figure 2). Thirteen patients had a history of smoking, and
eight had a history of a malignant tumor, all of which were lung
cancer, two of them also had a history of thyroid cancer. Ninety-
six patients had single lung GGNs, whereas 10 had multiple,
May 2022 | Volume 12 | Article 872503
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among which two patients had three lung GGNs resected at the
same time. Postoperative pathology results showed three IAC
lesions in one patient and two IAC lesions and one MIA lesion in
the other patient. All patients underwent video-assisted
thoracoscopic surgery, 56 patients underwent lobectomy, 40
patients underwent sublobar resection (segmental resection or
wedge resection), and 10 patients underwent lobectomy and
sublobar resection. No lymph node or distant metastasis was
found in any patient after the operation. The random function of
R language software (Version 3.5.1) was used to divide the 118
lung GGNs into the training group and verification group at a
ratio of 7:3. There were 83 lesions (including 43 IAC lesions and
40 MIA lesions) in the training group and 35 lesions (including
18 IAC lesions and 17 MIA lesions) in the verification group.
There was no significant difference between IAC and MIA in
terms of age, gender, smoking history, tumor history, and lung
GGN location in both groups (P>0.05) (Table 1).

3.2 Acquisition and Screening of
Radiomics Features
A total of 396 valid radiomics features in six categories were
collected by A.K. software for each lung GGN (Table 2): 42
histogram, 9 form factor, 144 texture, 11 GLCM, 180 RLM, and
10 GLSZM features. The ICC was used for consistency analysis,
and the characteristic features with an ICC <0.8 were eliminated.
Based on the data of the training group, random forest combined
with hyperparameter tuning was used to tune parameters and
Frontiers in Oncology | www.frontiersin.org 4117
evaluate the importance of the radiomics features (19). Then we
extract the top-n features for training and evaluation, and the
experiment reveals that the top-9 features yields the best
outcome. Finally, nine optimal radiomics features were
screened out. The names, categories, importance, and ICC of
each radiomics features were shown in Table 3 and Figure 3, and
the difference between IAC and MIA in each feature was
statistically significant (P<0.05) (Table 4). A total of nine
features were classified into three main categories: RLM, gray
level co-occurrence matrix, and histogram features. Among
them, the seven RLM features included three short run low
grey level emphasis features, one long run low grey level
emphasis feature, one run length nonuniformity feature, one
grey level nonuniformity feature, and one low grey level run
emphasis feature. There was one gray level co-occurrence matrix
feature and one histogram feature, which were GLCM energy
and frequency size, respectively. Figure 4 shows the distribution
of the values of the radiomics features of all the IAC and MIA
patients mentioned above in the training and test datasets.

3.3 Prediction Efficacy of the Radiomics
Random Forest Model
Based on the data of the training group, random forest combined
with hyperparameter tuning results were used for prediction
modeling, and prediction analysis of the training group and
verification group based on the random forest algorithm was
carried out again with this set of hyperparameter settings; the
FIGURE 1 | Acquisition process for the radiomics features. (A) Digital Imaging and Communications in Medicine image of the transverse section of the ground-glass
nodule was pre-processed by A.K. software and then imported into ITK-SNAP software. (B) ROI was manually outlined layer by layer along the inner edge of the
lesion based on pixel points. (C) ROI was outlined. (D) It was fused and saved as an ROI three-dimensional image and imported into A.K. software together with the
pre-processed original image (A) in batches to quantitatively calculate the radiomics features. ROI, Region of interest.
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ROC curve was used to evaluate the prediction efficacy of the
model (Figure 5). The accuracy for the training group was 0.89
(95%CI, 0.73 - 0.99), sensitivity was 0.98 (95%CI 0.78 - 1.00),
specificity was 0.81 (95%CI, 0.59 - 1.00), and area under the
Frontiers in Oncology | www.frontiersin.org 5118
curve (AUC) was 0.97(95%CI, 0.92-1.00); the accuracy for the
verification group was 0.80 (95%CI, 0.58 - 0.93), sensitivity was
0.82 (95%CI, 0.55 - 1.00), specificity was 0.78 (95%CI, 0.57 -
1.00), and AUC was 0.92 (95%CI, 0.83 - 1.00). The calibration
TABLE 1 | Comparison of the general clinical data of patients in the training and verification groups (N = 118).

Clinical data Training group Verification group

IAC MIA P1 IAC MIA P

Number of cases (cases) 42 38 16 15
Number of lesions (number) 43 40 18 17
Age (years) 56.21 ± 11.15 54.23 ± 9.98 0.3978 56.94 ± 12.80 54.71 ± 11.62 0.5938
Gender (male/female) (12/30) (9/29) 0.6198 (5/11) (4/11) 0.2504
Smoking history (cases) 4 5 0.1109 2 2 0.6406
Tumor history (cases) 3 2 0.2476 1 2 0.0629
GGN location (left/right) (16/27) (12/28) 0.4876 (9/9) (5/12) 0.2140
May 20
22 | Volume 12 | Article
P<0.05 indicates statistically significant difference.
GGN, ground-glass nodule; IAC, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma.
FIGURE 2 | CT Findings of representative IAC and MIA nodules. (A) M/55y, pGGN of the right upper lobe with a long diameter of 1.2 cm, pathological diagnosis
showed that the lesion was IAC. (B) M/32y, mGGN of the right upper lobe with a long diameter of 1.5 cm, pathological diagnosis showed that the lesion was IAC.
(C) F/62y, pGGN with a long diameter of 1.2 cm in the right middle lobe, pathological diagnosis showed that the lesion was MIA. (D) F/55y, pGGN with a long
diameter of 1.0 cm in the right lower lobe, pathological diagnosis showed that the lesion was MIA. CT, computed tomography; pGGN, pure ground-glass nodule;
mGGN, mixed ground-glass nodules; IAC, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma.
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curve of the prediction model (Figure 6) showed good
agreement between the predic ted probabi l i ty and
actual probability.
4 DISCUSSION

4.1 Epidemiology
Lung cancer is the leading cause of cancer-related death
worldwide (23) and at present, it has the fastest growing
prevalence and mortality among human malignancies (24) and
the trend is rising. Adenocarcinoma is the most common
pathological type of lung cancer, accounting for approximately
50% of cases of lung cancer. The proportion of males is higher
than that of females, and smoking is the most important risk
factor (25). In this study, the proportion of female patients was
much higher than that of male patients (79/27), and the
proportion of smokers (13/106) was relatively low, which is
inconsistent with previous reports. It might be related to the case
selection in this study, and at the same time, it is necessary to
consider that the incidence in females has been increasing year
after year due to indoor air pollution and second-hand smoke
exposure, among other factors. There were no significant
differences in age, gender, smoking history, tumor history, or
GGN location between IAC and MIA patients, which is
consistent with the literature (26). The National Lung
Screening Trial in the United States showed that CT low-dose
screening was helpful in reducing the mortality of lung cancer
Frontiers in Oncology | www.frontiersin.org 6119
(27). In recent years, the detection rate of GGN lung
adenocarcinoma has been increasing, and early diagnosis and
accurate pathological classification have become the keys to
treatment. However, due to the overlapping of traditional
imaging manifestations among pathological subtypes, it is still
difficult to accurately classify them, especially distinguishing
between IAC and MIA, which are both invasive lesions.
Therefore, a systematic and objective differential diagnosis
method must be urgently developed.

4.2 Correlation Between Radiomics
Features and Pathological Subtypes of
GGN Lung Adenocarcinoma
Through univariate analysis, in the verification group, there was
no significant difference in tumor history between IAC and MIA
(P=0.0629). However, due to the small sample size, the results
presented here should be carefully considered. Notably, since a
purely radiomics prediction model was employed in this study,
biological differences in tumor history have limited potential
impact on model efficacy. When using combined clinical-
radiomic prediction models, propensity score matching should
be used to control for confounding variables in the presence of
statistically significant biological differences in tumor history to
improve data comparability. Using radiomics, numerous
imaging features can be extracted via software analysis of
lesion heterogeneity, which is objective, does not cost much
and facilitates the prediction of clinical outcomes (13). In this
study, nine optimal radiomics features were screened out by
combining random forest with hyperparameter tuning, which
were classified into three categories: RLM, gray level co-
occurrence matrix, and histogram features. Except for one
histogram feature that belongs to the low-order texture, the
other eight features belong to the high-order texture which
shows the distribution of pixel points. This also reveals that
high-order texture can better reflect the spatial heterogeneity
changes of lung GGNs.

The histogram is a function of the image gray level (28) which
describes and compares the distributions of pathological or
biological indicators quantitatively. Histogram features are
related to the attributes of a single pixel, and the distribution
of voxel intensity in CT images is described by common and
basic indices; thus, the calculation results of voxel values are
more accurate. It has been reported that the histogram pattern
based on CT pixels can assist in distinguishing AAH from
bronchioloalveolar carcinoma (29, 30). Although frequency
size was the only histogram feature selected in this study, it
ranked fourth in importance (Figure 3), which reflects its value
in terms of the differential diagnosis of IAC and MIA. The
GLCM is a two-dimensional gray histogram that examines a pair
of pixels separated by a fixed spatial relationship, which reflects
the change speed and amplitude of pixel gray levels at different
intervals and in different directions in the image. It is the basis for
analyzing the arrangement rules and local patterns of images,
including 11 indices such as energy, entropy, inertia, and
correlation (31), which reflect the internal characteristics and
spatial heterogeneity of tumors. Energy is a set of feature values
that indicates the complexity of image texture. A large energy
TABLE 3 | Names, categories, importance, and ICC of the selected radiomics
features.

Radiomics features Importance ICC

Run-length matrix features
Short run low grey level emphasis_angle135_offset1 1.06635 0.988
Run length nonuniformity_AllDirection_offset1 1.06588 0.997
Long run low grey level emphasis_AllDirection_offset4 1.06569 0.993
Grey level nonuniformity_AllDirection_offset1 1.06564 0.984
Short run low grey level emphasis_AllDirection_offset4 1.06563 0.995
Low grey level run emphasis_angle90_offset1 1.06560 0.982
Short run low grey level emphasis_angle135_offset7 1.06554 0.965
Gray level co-occurrence matrix features
GLCM energy_AllDirection_offset1_SD 1.06594 0.999
Histogram features
Frequency size 1.06570 0.996
GLCM, gray level co-occurrence matrix; SD, square deviation; ICC, intraclass correlation
coefficient.
TABLE 2 | Types and numbers of valid radiomics features.

Type of valid radiomics features n

Histogram features 42
Form factor features 9
Texture features 144
Gray level co-occurrence matrix features 11
Run-length matrix features 180
Gray level zone size matrix features 10
May 2022 | Volume 12 | Article 872503
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value indicates that the image has very good uniformity or very
similar pixels, and vice versa. Heterogeneity of malignant tumors
is caused by tissue structure changes resulting from uneven
distribution of cell density, hemorrhage, necrosis, and mucoid
degeneration, among other factors (32). Pathologically, IAC is
more heterogeneous than MIA, and the complexity of image
texture is also higher, though it is not easy to detect using the
naked eye. The energy value of IAC in this study was significantly
less than that of MIA (Table 4), which objectively reflected the
difference in image texture between them. The RLM features
Frontiers in Oncology | www.frontiersin.org 7120
mainly reflect the roughness and directionality of the image.
Directional texture will have a longer run length at a certain
angle, in which the value of short run emphasis is larger on
rougher images, and that of long run emphasis is larger on
smoother images. The run length is related to the gray level
distribution of the image, and the heterogeneity of the tumor
often reflects the gray level changes of the image; thus, the RLM
is very sensitive to the texture changes of lung GGNs. Among the
nine optimal radiomics features that were finally selected, seven
were RLM features, and short run emphasis ranked first in
TABLE 4 | Comparative analysis of selected radiomics features between IAC and MIA.

Radiomics Features Pathological type Value P

Short run low grey level emphasis_angle135_offset1 IAC 4.24×10-4 ± 4.31×10-4 0.0000
MIA 1.55×10-3 ± 1.13×10-3

Run length nonuniformity_AllDirection_offset1 IAC 1705.55 ± 1686.94 0.0013
MIA 320.71 ± 380.09

Long run low grey level emphasis_AllDirection_offset4 IAC 5.81×10-3 ± 6.97×10-3 0.0005
MIA 2.39×10-2 ± 1.80×10-2

Grey level nonuniformity_AllDirection_offset1 IAC 19.56 ± 24.42 0.0000
MIA 4.72 ± 5.61

Short run low grey level emphasis_AllDirection_offset4 IAC 4.20×10-4 ± 4.27×10-4 0.0000
MIA 1.54×10-3 ± 1.12×10-3

Low grey level run emphasis_angle90_offset1 IAC 1.50×10-3 ± 1.76×10-3 0.0000
MIA 6.05×10-3 ± 4.51×10-3

Short run low grey level emphasis_angle135_offset7 IAC 4.20×10-4 ± 4.26×10-4 0.0000
MIA 1.53×10-3 ± 1.12×10-3

GLCM energy_AllDirection_offset1_SD IAC 1.21×10-8 ± 4.18×10-8 0.0000
MIA 5.93×10-7 ± 2.13×10-6

Frequency size IAC 1821.46 ± 1838.75 0.0000
MIA 340.68 ± 417.84
May 2022 | Volume 12 | Article
P<0.05 indicates statistically significant difference.
IAC, invasive adenocarcinoma; MIA, minimally invasive adenocarcinoma; GLCM, gray level co-occurrence matrix; SD, square deviation.
FIGURE 3 | Names, importance, and sorting of radiomics features.
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importance (Figure 3). This shows that the RLM is most valuable
for distinguishing IAC from MIA.

Form factor features are of great value in the differential
diagnosis of pathological subtypes of GGN lung adenocarcinoma.
Chae et al. (33) showed that mass (volume*density) was
significantly different between pre-invasive lesions (AAH/AIS)
and invasive lesions (MIA/IAC) presenting as mGGNs. However,
none of the form factor features in this study were selected as an
optimal feature, which might be related to the similarity and
overlapping of morphological features between IAC and MIA,
which is why it is more difficult to differentiate them.
Frontiers in Oncology | www.frontiersin.org 8121
4.3 Value and Superiority of the Radiomics
Random Forest Model
Quantitative features such as the geometry, wavelet, and texture
in the internal space of tumors were collected in a high-
throughput way using radiomics software. The characteristic
variables were screened out by computer artificial intelligence
technology, and a quantitative prediction model was constructed,
which made it a brand-new imaging diagnosis decision-making
and analysis tool. Its application scope covers the qualitative
analysis, clinical staging and grading, treatment outcome
evaluation, and prognosis prediction of tumors (34).
FIGURE 5 | Receiver operating characteristic curve analysis of the radiomics random forest prediction model in differentiating lung ground-glass nodule-type invasive
adenocarcinoma and minimal invasive adenocarcinoma in the training group (blue line) and the verification group (red line). The areas under the curve of the training
and verification groups were 0.97(95%CI, 0.92-1.00) and 0.92 (95%CI, 0.83 - 1.00), respectively. CI, confidence intervals.
FIGURE 4 | Heat map of radiomics features. Each row represents a feature, and each column represents a lung ground-glass nodule. The figure shows the
difference between invasive adenocarcinoma and minimal invasive adenocarcinoma in each feature and indicates the classification ability of the features.
May 2022 | Volume 12 | Article 872503
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At present, studies using radiomics prediction models to
distinguish pathological subtypes of lung adenocarcinoma mainly
focus on MIA/IAC and AAH/AIS or IAC and AIS/MIA, and have
achieved promising results. For example, the predictive model
between IVA and AIS/MIA based on pGGNs established by Xu
et al. (35), the AUC value of the combined model was 0.848 (95%
CI, 0.750-0.946); the combined clinical model ofWu et al. (36) - The
AUC values of the radiological model were 0.917 and 0.876 in the
training and validation groups, respectively. It is worth noting that
in 2021, the “WHO Classification of Thoracic Tumors (5th
Edition)” has excluded AIS from the category of lung
malignancies and classified it as a glandular precursor lesion
together with AAH. Although both MIA and IAC require
surgical treatment, MIA is suitable for sublobar resection (wedge
resection or segmentectomy) with a 5-year disease-free survival rate
of approximately 100% after complete resection, and IAC is suitable
for standard lobectomy and extensive lobectomy. With lymph node
dissection, the 5-year disease-free survival rate was 74.6%.
Therefore, accurate preoperative identification of IAC and MIA
will help guide the selection of surgical methods and the judgment
of prognosis. Currently, studies to differentiate MIA from IAC are
very rare. A previous study (18) constructed a combined prediction
model integrating lesion shape and radiological features to
distinguish MIA from IAC, with an AUC of 0.888. In this study,
by using the same equipment, using the same scanning protocol and
the same reconstruction scheme to acquire images, and using AK
software for image preprocessing to ensure image consistency, we
finally obtained AUC superior to the above studies values.

Fan et al. (37) established an individualized prediction model
based on the patient’s age, spicule sign, pleural indentation sign,
and radiomic labels, and established a clinical model based on the
patient’s age, spicule sign, and pleural indentation sign to
distinguish GGN lung adenocarcinoma from invasive lesions
(AAH/AIS). The results showed that the AUC increased from
0.743 in the clinical model to 0.934 in the individualized prediction
model, indicating the importance of radiomic labeling. She et al.
(38) included 402 patients with lung GGNs and extracted 60
Frontiers in Oncology | www.frontiersin.org 9122
radiomics features, among which five features were the most
critical diagnostic factors. The results showed that the AUCs of
the radiomics prediction model in the training group and
verification group were 0.95 and 0.89, respectively, indicating
that radiomics had advantages in differentiating IAC from MIA/
AIS. Weng et al. (18) included 119 pulmonary mGGN patients to
differentiate IAC from MIA and extracted 396 radiomics features,
among which four were optimal distinguishing features for
establishing a radiomics model. The results showed that the
AUCs of the radiomics feature model for the training and
verification groups were 0.854 and 0.813, respectively. Then, a
CT feature model was established using lesion morphology and
the diameter of the solid components; the AUC was 0.755. Finally,
the lesion morphology and radiomics features were combined, and
the AUCwas 0.888. In this study, A.K. software was used to collect
the radiomics features; the optimal radiomics features were
screened out by random forest combined with hyperparameter
tuning and a predictionmodel was established. The results showed
that the AUCs of the training and verification groups were 0.97
(95%CI, 0.92 - 1.00) and 0.92 (95%CI, 0.83 - 1.00), respectively,
indicating that the prediction model could differentiate IAC and
MIA presenting as lung GGN non-invasively. This study
established a pure radiomics labeling model, and the
differentiation objects were IAC and MIA with more similar
pathological features. The prediction efficacy was similar to that
of individualized prediction models, which might be related to the
fact that this study collected cases scanned with the same CT
machine and the same scanning protocol, and pre-processed all
images before outlining ROIs, which reduced the influences of
equipment and scanning parameters on the results to some extent.

Chae et al. (33) used an artificial neural network to establish a
radiomics prediction model to distinguish pre-invasive lesions
(AAH/AIS) from invasive lesions (MIA/IAC) of mGGN lung
adenocarcinoma and achieved good results (AUC=0.981).
Although an artificial neural network can solve dichotomy
problems well, its generalization ability in specific models is
limited due to potential over-fitting and a complex structure.
FIGURE 6 | Calibration curve of the radiomics random forest prediction mode.
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Random forest is an algorithm that integrates multiple decision
trees through the idea of ensemble learning, and it essentially
belongs to the ensemble learning method in machine learning. It
can handle both continuous data and discrete data and can also
handle missing data and sort the importance of variables. The
results of random forest models have higher accuracy and
generalization performance; thus, they are often used to predict
the risk of diseases and susceptibility of patients (39).

4.4 Limitations
This study had some limitations. First, owing to the retrospective
nature of the study, there is potential bias; thus prospective studies
are required to confirm our results. Second, the manual sketching
of ROIs made it difficult to eliminate bronchi and blood vessels in
the nodules; thus, the accuracy of some features might be affected.
Third, the boundary between some nodules and normal lung
tissue was unclear, and boundary leakage might occur during
image segmentation. Moreover, similar to some previous studies
(22, 35, 36, 40), this study divides the lesions are divided into train
and test sets – this leads to the possibility of overfitting as two
lesions from the same patient may end up in different subsets.
Finally, the sample size was too small, and the prediction accuracy
of the model might be unstable to some extent. Therefore, future
studies with larger sample sizes are warranted.
5 CONCLUSION

The radiomics prediction model established by combining
random forest with hyperparameter tuning could effectively
Frontiers in Oncology | www.frontiersin.org 10123
differentiate IAC and MIA presenting as lung GGN and
could provide a noninvasive , low-cost , rapid, and
reproducible preoperative prediction method that is
clinically applicable.
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Colorectal cancer (CRC) is one of the most prevalent malignancies, and immunotherapy
can be applied to CRC patients of all ages, while its efficacy is uncertain. Tumor mutational
burden (TMB) is important for predicting the effect of immunotherapy. Currently, whole-
exome sequencing (WES) is a standard method to measure TMB, but it is costly and
inefficient. Therefore, it is urgent to explore a method to assess TMB without WES to
improve immunotherapy outcomes. In this study, we propose a deep learning method,
DeepHE, based on the Residual Network (ResNet) model. On images of tissue, DeepHE
can efficiently identify and analyze characteristics of tumor cells in CRC to predict the
TMB. In our study, we used ×40 magnification images and grouped them by patients
followed by thresholding at the 10th and 20th quantiles, which significantly improves the
performance. Also, our model is superior compared with multiple models. In summary,
deep learning methods can explore the association between histopathological images
and genetic mutations, which will contribute to the precise treatment of CRC patients.

Keywords: immunotherapy, colorectal cancer, deep learning, tumor mutational burden, ResNet
INTRODUCTION

Colorectal cancer (CRC), including colon cancer and rectal cancer, is one of the top 3 malignant
tumors in the world for morbidity and mortality (1–3). According to statistics from the American
Cancer Society, the estimated death toll in 2021 even reached 149,500 (4). In China, 25% of patients
experience metastasis during diagnosis or treatment, and the 5-year survival rate of patients is less
than 5% (5). The treatment of CRC is mostly based on surgery and chemotherapy. However,
because tumor cells grow rapidly and are prone to metastasis, surgery and chemotherapy can only
temporarily relieve the disease but cannot completely cure it. Immunotherapy kills tumors by
activating the host immune system that is anti-deteriorating and durable; this has become the focus
of the cancer treatment field in the new era.

In tumor immunotherapy, programmed death receptor programmed cell death-1/programmed
cell death-ligand 1 (PD-1/PD-L1) inhibitors and cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) inhibitors are the main immune checkpoint inhibitors (ICIs) (6, 7). Several clinical
studies have proven that compared with platinum-based chemotherapy and surgery,
immunotherapy can improve the overall survival rate of patients in most cancers (8–14).
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However, not all patients respond well in the clinical treatment
with ICIs. Several studies have found that the efficacy of ICIs is
closely related to the level of PD-L1 (15). So mastering the
immune microenvironmental response of patients is a critical
requirement. Previously, PD-L1 expression was the main marker
for predicting the effect of immunotherapy. Several solid tumor
studies have shown the effectiveness of PD-L1 expression
detection, such as melanoma, CRC, and non-small cell lung
cancer (NSCLC) (16, 17). However, as immunotherapy research
continues to progress, the insufficient detection of PD-L1
expression has shown that it is no longer the only criterion to
predict the efficacy of ICIs (18). In this regard, tumor mutational
burden (TMB) appears as a marker of ICI efficacy identification
and plays an irreplaceable role in optimizing targeted regimens
and developing well-tolerated drugs for physicians.

The definition of TMB is the number of mutations per
megabase in the coding region of the tumor exome. With an
increase of the TMB, the degree of acquired somatic mutations
will increase and more tumor-specific neoantigens will be
released. A portion of the antigen is presented on the human
leukocyte antigen (HLA) molecules on the surface of the cancer
cells, thus triggering the recognition and processing of the tumor
cells by the immune system. The reflection of TMB on PD-L1
levels affects the formulation of ICI regimens for patients in the
clinic, which has aroused great interest in the determination of
the TMB in tumors by researchers in various fields. According to
current research, there is almost no correlation between TMB
and PD-L1 expression in many cancers and their subtypes,
including NSCLC, CRC, melanoma, and pancreatic cancer,
which indicates that the TMB can serve as an independent
prognostic marker (19, 20). Cao et al. (21) compiled the
survival indicators of 103,078 patients with different cancers
and included 45 immune-related studies; they finally found that
TMB-H (high tumor mutational burden) patients achieved
better survival after receiving immunotherapy. In 2020, the
Food and Drug Administration (FDA) for first time approved
TMB to be used as a diagnostic marker for pan-cancer
immunotherapy when unresectability or metastasis occurs (22).
In general, TMB-H has predictive and prognostic potential for
the immunotherapy of solid tumors.

Although many studies have proven that the TMB performs
well as a marker in ICI treatment, it is still hard to accurately
measure and define the threshold of TMB-H (23). At present,
whole-exome sequencing (WES) is the main method of TMB
quantification that quantifies the TMB directly and
comprehensively. WES data sets are often used in tumors to
show the correlation between ICI reaction and TMB status (24,
25). Although this method can measure the TMB with high
standards, it has some stringent requirements. For example, it
not only requires fresh and high-quality samples but also is
expensive and has a long working time (26). Therefore, low-cost
targeted sequencing panel detection is often used as an
alternative measurement to WES; it infers full mutation
burden from a narrower sequencing space, leading to the
development of an integrated MSK-IMPACT assay by Zehir
et al. The assay can evenly cover clinically relevant genes and
Frontiers in Oncology | www.frontiersin.org 2126
fusions of target genes, so the TMB content can be accurately
estimated (27). However, targeted sequencing has some fatal
drawbacks. Buchhalter et al. (28) evaluated the Illumina TSO500
panel and found that the 1.5–3-Mbp panel is more suitable for
TMB estimation, and lower ranges will bring errors in TMB
estimation, while targeted sequencing cannot detect small
sequencing ranges and only targets tumor cells with repeated
mutations. Deep learning has shown an ultrahigh level in
processing complex and large amounts of information in
histopathological images. Deep convolutional neural networks
(CNN) have yielded many shocking research results in image
feature recognition of cancer histopathology (29, 30). Moreover,
Mika et al. developed the Image2TMB method with deep
learning to measure the TMB in lung adenocarcinoma
pathological tissue images at three scales (×5, ×10, and ×20
magnification) (31). Finally, the performance of the ×20 scale is
the best with an area under the curve (AUC) of 0.81, showing
that high-resolution scale images are more conducive to the
prediction of markers. Therefore, there is indeed a correlation
between the tumor somatic mutations and gene mutations, and
deep learning can evaluate this correlation well. To further
understand the capability of deep learning for tumor cell
somatic recognition in histopathological images and to explore
efficient strategies for TMB measurement, this paper builds a
deep learning model, DeepHE. This can automatically analyze
the TMB in pathological images and predict the probability of
their potential TMB from CRC whole slices [whole-section
images (WSIs)] in The Cancer Genome Atlas (TCGA). We
downloaded the entire formalin-fixed paraffin-embedded
(FFPE) tissue data of CRC at ×40 resolution and grouped them
by patients. To train a more efficient model, a higher resolution
compared to that of previous studies is chosen. Also, the
classification by patients avoids errors caused by the same
pathological tissue images from one patient. The images of 509
patients remained after DeepHE sorted and filtered data by
patients, then we segmented the WSI slice and performed
color normalization. To improve its feature recognition ability
and speed up the convergence, this research introduced a
residual network model derived from CNN technology and
then trained the model of ResNet50 by 2-fold cross-validation.
The performance of the five models including ResNet18,
ResNet34, VGG16, AlexNet, and ResNet50 showed superiority.
This study provides an important way for patients to benefit
from ICI treatment and explores the relationship between the
TMB and the tumor immune microenvironment.
RESULTS

The Workflow of DeepHE
Figure 1 shows the workflow of DeepHE. The ×40 scale images
contain more details, and our model still performs well in
predicting the TMB on CRC in a short time. From 611
patients, a total of 509 patients were left by professional
pathologists, of which 12 patients were removed because they
lacked TMB information or the tumor area could not be
May 2022 | Volume 12 | Article 906888
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annotated. The clinical information of the remaining 509 CRC
patients was also obtained and collated from TCGA (Table 1).
Then 1,586,826 qualified slices were derived from the images of
these patients, which are approximately 3,117 slices in each
group. After that, each group was randomly divided into two
groups as the training set and validation set, resulting in two sets
of 793,413 H&E slices for model training and testing.

DeepHE Achieves Relatively Good
Performance in the Tumor Mutational
Burden Prediction
According to the standard of dividing the TMB level in a
previous related work, this study uses the thresholds of 10 and
20 (32). Then, the research divided the data into TMB-H (TMB
high) and TMB-L (TMB low), satisfying H:L (10) = 83:426 (with
a threshold of 10) and H:L (20) = 73:426 (with a threshold of 20),
after which the model was trained and tested on the FFPE
dataset. When the data set used a TMB threshold of 10, the
ratio of the number of patients between TMB-H and TMB-L
is 83:426.

The performances of DeepHE in predicting TMB at different
thresholds were shown in Figure 2. ResNet50 with more hidden
layers in the residual network is selected to capture a more
detailed feature information. The results also showed that the
AUC of ResNet50 reached 0.729 under 2-fold cross-validation.
Then, when the threshold is 20, H:L (20) = 73:436, the AUC of
ResNet50 is 0.774. During the whole trial, 30 epochs were
maintained, which was the best value obtained after many
attempts. At the beginning of the experiment, the epoch was
set to 50. However, as the epoch was set greater than 30, the
training ACC result has stabilized at around 0.9679, which
means that a larger value will only take more time.

DeepHE Achieves Higher Areas Under the
Curve Than Those of Existing Methods in
the Tumor Mutational Burden Prediction
To verify the superiority of the model performance, we tested four
models that have contributed greatly to the current image
recognition field based on the same process, namely, ResNet18,
Frontiers in Oncology | www.frontiersin.org 3127
ResNet34, VGG16, and AlexNet. The comparisons between their
results and our model are shown in Figure 3. We used a sliding
window to visualize the probability value on each small slice,
classified and counted the TMB level on the slice contained in each
complete WSI. When the ratio of the number of slices containing
TMB-H in a patient to the number of all his eligible slices is greater
than 50%, the patient was identified as TMB-H and vice versa for
TMB-L. It is worth noting that the eligibility here refers to slices
owned by the patient that were not screened out and participated
in the training. Figure 3A shows the ROC curves of the TMB
divided by 10 into all methods, and Figure 3B shows the case
where 20 is the threshold. After training of ResNet18, the AUC is
0.720; at H:L (20), the AUC is 0.736. It can be found that the
results of ResNet18 are very close to that of ResNet50, but there are
still some gaps. We suspect that as the number of layers increased,
the results would get closer to our model or even surpass it. As a
result, we experimented with ResNet34. When the threshold is 10,
the AUC value of the ROC curve is 0.716, and when H:L (20) =
73:426, the AUC is 0.715. Next, we tested VGG16 and AlexNet.
When AlexNet was split at 20, the AUC only reached 0.685, so it
was not tested with a threshold of 10. In the study, VGG16 made
the TMB at H:L (10) = 83:426, the AUC value of the ROC curve
was 0.677, H:L (20) = 73:426, and the AUC value was 0.701. The
reason is that compared with AlexNet, VGG16 has more
convolutional layers and smaller pooling kernels, which can
extract more detailed information, but the model requires more
parameters to participate, which will occupy more or a large
memory space (33). Taken together, the results are that ResNet50
performs well, while AlexNet performs the least well. For ResNet,
VGG, and AlexNet models, AlexNet has the least number of
convolutional layers, which may be one of the reasons for its
worst effect.

At the same threshold, the performances of all models are
comparable. We perform statistics on performance metrics of
all models used in the study in Tables 2, 3, namely, accuracy
(ACC), precision, recall, and F1 score. After statistics
highlighting the optimal value in red, it was found that
DeepHE based on ResNet50 has always maintained a
relatively high performance.
A

B D

C

FIGURE 1 | The workflow of this study. (A) Download the CRC image data of ×40 resolution from TCGA. (B) Categorize the data by patients and remove the
unqualified images. (C) Mark the tumor area and segment it, and then perform noise removal and color normalization processing. (D) Model training and testing.
May 2022 | Volume 12 | Article 906888
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DISCUSSION

TMB has emerged as a biomarker responsive to the efficacy of
immunotherapy and has been approved by the FDA. In 2018,
Gandara et al. (34) for first time demonstrated that the TMB can
stably predict the effect of immunotherapy. In this study, the
content of the TMB was determined on pathological images of
CRC. For the selection of the threshold, the researchers found
Frontiers in Oncology | www.frontiersin.org 4128
that in patients with NSCLC, when the TMB ≥10 mut/Mb was
used as the cutoff point, it was found that patients with high TMB
content were more responsive to immunotherapy. ICI treatment
prolonged the progression-free survival rate of these patients and
far exceeded the effect of platinum-based doublet chemotherapy
(35). Therefore, the ResNet50-based DeepHE had a threshold of
10 and 20, respectively. When the threshold was 10, the area
under the ROC curve reached 0.729. At the same time, when the
A B

FIGURE 2 | Results of the TMB prediction model. (A) ROC plot of the ResNet50 model with a TMB cutoff of 10 under 2-fold cross-validation. (B) ROC plot of the
ResNet50 model with a TMB cutoff of 20 under 2-fold cross-validation.
TABLE 1 | Clinical Information for TCGA Colorectal Cancer Patients.

Clinical variable Category Number of patients

Tumor stage Stage I 88
Stage II 178
Stage III 147
Stage IV 75
Unknown 21

Prior malignancy Yes 55
No 451
Unknown 2

AJCC pathologic T T1 15
T2 91
T3 341
T4 58
Unknown 4

AJCC pathologic N N0 282
N1 130
N2 91
Nx 2
Unknown 4

AJCC pathologic M M0 366
M1 74
Mx 58
Unknown 10

Gender Women1 246
Men0 260
Unknown 3

Vital status Alive 395
Dead 111
Unknown 3

Age at index ≥66 272
<66 237

New tumor event after initial treatment Yes 91
No 332
Unknown 86
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threshold was 20, the AUC of ResNet50 was 0.774. Ciardiello
et al. (36) studied colon cancer with mismatch repair deficiency
(dMMR), and high microsatellite instability (MSI-H) concluded
that immunotherapy has a certain clinical therapeutic effect. The
TMB has been reported as an important marker for concomitant
CRC immunotherapy, which fully justifies our trial design.
Furthermore, the addition of residual blocks further improves
the performance of the model. Therefore, our research is bound
to have an important impact on improving the survival rate of
cancer patients. The detection of TMB mainly relies on WES
technology, which is expensive, requires a lot of time (about 60
days), will delay the treatment time of cancer patients, and is
likely to make the best treatment time missed. In contrast, the
DeepHEmethod does not require a large amount of biopsy tissue
sample, a lot of manpower, material resources, and time. It only
needs to run the trained model on the pathological images
of patients.

In recent years, machine learning methods have been widely
used in biomedical research like drug repositioning (37, 38) and
single-cell analysis (39). Among all of these fields, deep learning
showed advantages over many previous related technologies (40,
41). For example, in lung cancer research, deep learning methods
can be used to identify biomarker genes on pathological images
(42, 43). The success of Residual Networks in the ImageNet
Large Scale Visual Recognition Competition in 2015 brought the
ResNet model into the limelight. When ResNet18 predicted MSI
Frontiers in Oncology | www.frontiersin.org 5129
on H&E tissue section images of gastric adenocarcinoma (STAD)
and CRC, it not only had a shorter training time but also
achieved an AUC of 0.84 (44). Moreover, it has been reported
that ResNet50 has demonstrated exciting performance results in
breast cancer and skin cancer classification (45, 46). ResNet18
includes convolution layers and fully connected layers.
Compared with ResNet50, ResNet18 lacks the reduction of the
corresponding dimension and the function given by the batch
norm (BN) layer, which may be the reason why the performance
of ResNet18 in predicting the TMB is slightly lower than that of
ResNet50 (47). ResNet34, VGG16, and AlexNet can be regarded
as the classic models in the deep CNN. After AlexNet was
proposed in 2012, it has triggered a boom in its application
and plays an important role in the research of medical images.
Notably, the structure of VGG16 is very simple. However, the
number of VGG network channels is too large, and its structure
determines that it requires more parameters and brings more
memory usage (48). In addition, the VGG16 network structure is
too densely connected, resulting in a long training time, these
factors may lead to the relatively poor effect of VGG16 in this
study. Currently, the research of deep learning on medical
images is quite mature, and most of its achievements have also
been recognized and practically applied in clinical practice.

In our research, we used deep learning to identify and analyze
CRC histopathological images and achieved the purpose of
predicting the TMB. However, the content of the TMB in
TABLE 2 | Comparison of the performance of different models (TMB cutoff = 10).

Model ACC Precision Recall F1-score

ResNet18 0.820 0.640 0.562 0.575
ResNet34 0.815 0.607 0.548 0.552
ResNet50 0.830 0.681 0.587 0.605
VGG16 0.830 0.681 0.587 0.605
May 2022 | Volume 12 | Artic
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B

FIGURE 3 | ROC curves of the comparison models. (A) ROC plots for different models with a TMB cutoff of 10 under 2-fold cross-validation. (B) ROC plots for
different models with a TMB cutoff of 20 under 2-fold cross-validation.
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tumors was seldom estimated using deep learning previously.
The reason may be the difference between gene level and
phenotype level. DeepHE divides the complete WSI into 512 ×
512 H&E slices and predicts the TMB probability. Our results,
shown in Figure 2, illustrate the promise of exploring
associations between cancer genotypes and phenotypes.

To save the detection time of the TMB, researchers have also
explored single-panel sequencing methods and more clinically
practical panel-based methods. However, many factors like the
protein-coding regions of the panel, the association of selected
genes with tumors, and the number of genes will affect the ACC
of the results (49). DeepHE extracts the potential features of
TMB on the pathological images of tumors through deep
learning, which does not depend on the selection of genes.
Therefore, these shortcomings of the gene panel do not exist
for the DeepHE method.

Although DeepHE showed good performance, it was still
controversial in many aspects. Firstly, our samples have been
delineated and annotated by professional pathologists, and the
pathological images have been segmented and screened. The
addition of professional pathologists makes this study more
professional in medicine and more promising for clinical use.
These steps are not required by some TMB detection methods,
but those methods still achieved good results. Second, our data all
came from FFPE images in TCGA, and no independent
validation set was established. Moreover, much complex
information and noise in these images cannot be completely
analyzed and removed that could affect the ACC and
persuasiveness of DeepHE.
MATERIALS AND METHODS

Data Sources
TCGA (https://www.cancer.gov/tcga) is a joint cancer multi-
omics analysis database co-founded by the National Cancer
Institute and the National Human Genome Research Institute
in 2006. From TCGA database, we have collected all available
FFPE images of CRC patients; this type of images is often used
for clinical diagnostic analysis and is stored simply. This manner
does not affect the pathology contained in FFPE tissue, thus
guaranteeing the ACC of our model (50). The data resolution
was chosen as ×40 and submitted to professional pathologists in
SVS format. The TMB distribution of patients is known and
published in TCGA, and 20 or 10 were used as the cut points to
categorize patients. Patients whose TMB content is higher than
the threshold were marked as 1 and recorded as TMB-H, while
Frontiers in Oncology | www.frontiersin.org 6130
those lower than the threshold are marked as 0 and recorded as
TMB-L.

Data Processing
In this study, CRC images were downloaded from TCGA and
were classified by patients. There are 611 sets of image data in
total. According to the diagnosis of pathologists, 6 groups of data
have unclear tumor areas in the images, and 96 patients were
excluded because the TMB information is missing. WSIs of 509
CRC patients were used for model training in this study. There
are thousands of pixels in a WSI, which often contains too much
complex information and is not conducive to the analysis of the
features on these images by DeepHE. The DeepHE model
divided the patient’s WSI scan into H&E slices of 512 × 512
pixels. These slices were used for subsequent training, as shown
in Figure 1C.

Noise information, blurred areas, and blank areas in H&E
slices have a non-negligible impact on model training, such as
false-positive results and capture feature deviations; then, that
information must be paid attention to. As an open-source
computer vision library for image processing, OpenCV has
powerful and reliable image processing capabilities to reduce
the research cost and time of researchers (51). Based on
OpenCV, this research regarded H&E slices as pixel matrices
and performs segmentation, signature detection, and noise
removal for specified targets. After reading the slice data,
OpenCV was used to calculate the ratio of the number of
blank area pixels in the slice to the slice area, and 70% was
used as the threshold to screen samples suitable for predicting
target genes. Denote K0 as the real value of the pixel in the image,
and the noise pixel as L, then K = K0 + L. OpenCV collected
many pixels in the image and calculated the average value to
make the value of L tend to 0, then used the average values to
represent the new pixel values that achieve smooth filtering and
noise elimination. In addition, OpenCV also shows the functions
of image edge expansion (filling), highlighting important parts of
the image and adjusting brightness to improve image quality, as
shown in Figure 4.

In H&E slices of CRC, some images inevitably contain more
microvessels, inflammatory cells, microfibrils in the background,
and are wrinkled and blurry. Once these images were identified,
they were abandoned. After a series of program operations and
careful screening, a total of 1,586,826 CRC H&E slices remained.
The high quality of these slices ensures the ACC and reliability of
the results of the TMB prediction model.

Hematoxylin and eosin staining are commonly used staining
methods in FFPE sectioning technology. Hematoxylin can
differentiate cell structures into various colors, while eosin
TABLE 3 | Comparison of performance of different models (TMB cutoff = 20).

Model ACC Precision Recall F1-score

ResNet18 0.835 0.622 0.564 0.575
ResNet34 0.845 0.649 0.548 0.555
ResNet50 0.850 0.677 0.567 0.582
VGG16 0.845 0.620 0.530 0.530
AlexNet 0.840 0.643 0.563 0.575
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stains the cytoplasm and intercellular substance. There are often
differences in the color of each structure. And there are many
reasons for color differences, including temperature, solution
dose, tissue or cell type, changes in cell cycle, and histopathology
(52). Therefore, in the study, H&E slices often show different
colors on the same structure, which increases the difficulty of
DeepHE in capturing the target information during the training
process. To address this issue, we incorporated a color
normalization method into the development of the DeepHE
model. The color normalization employs an unsupervised deep
convolutional Gaussian mixture model (DCGMM) to identify
color information in H&E tissue slice images and converts them
into a reference image, as shown in Figure 5. The color
normalization method only transforms the chromaticity of
Frontiers in Oncology | www.frontiersin.org 7131
H&E images; the spatial structure and pathological
information on it do not change. This method does not require
labels and premise assumptions; it also has the capability of
automatic learning (53).

The Gaussian mixture model (GMM) can be regarded as a
linear group sum of multiple Gaussian functions. Using GMM,
the number of clusters n can be specified, and the random
variable data are fn. The training of GMM is to cluster points
according to the distance between two different pixels to
maximize the expectation:

b(n) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fn − qnð ÞTo

−1

n
fn − qnð Þ

s
(4:1)
FIGURE 4 | OpenCV process.
FIGURE 5 | Color normalization. I. Original slice images. II. Color-normalized slice images. III. Reference images.
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where qn represents the mean, and the process is very similar to
the k-means algorithm.
When the normal distribution is ∂, the n-nt data are ∂ (fnjqn, gn),
and GMM satisfies:

a nð Þ = o
N

n=1
ln ∂ fnjqn, gnð Þ (4:2)

where gn is the covariance matrixo
N

n=1
ln is the weight of ∂ (fnjqn, gn)

which satisfies the condition o
N

n=1
Wn = 1 (54).

The DCGMMmodel is a probability distribution model based
on GMM. The model is generated by linear superposition of an
N-dimensional GMM. When ln is the prior condition of fn and
the data are n, it satisfies:

P(n) =
ln ∂ fnjqn, gnð Þ

o
N

i=1
lj ∂ fnjqn, gnð Þ

(4:3)

When fn is the submodel data, all submodels can finally form a
DCGMM model whose (natural) log-likelihood function is:

lnP xkj ln, qn, gnð Þð Þ = o
K

k=1

ln P xð Þ (4:4)

At this time, the selection and change of the parameter (ln, qn,
gn) have a decisive effect on the effect of the DCGMM model.

Deep Learning Algorithms
ResNet50 is one of the methods in ResNet. It contains two basic
blocks, Conv Block and Identity Block. Usually, Bottlenecks is
included in the four blocks, and the number of channels is
reduced by a 1 × 1 convolutional layer to half, followed by 3 × 3
and a 1 × 1 convolution to achieve dimensionality reduction and
pooling of these images, reducing the amount of subsequent
computation and outputs to the next block. Identity Block does
not change the dimension of the data itself; it performs the
mapping of the data itself. As a result, the network can be
extended to a deeper level, which will make the model feature
extraction better and improve the model’s classification ACC of
image features. The nature of the residual block skip link reduces
the training time, which is shown in Figure 6. After the data are
output, they can linearly reach the input layer of the following
block through the skip link, so that the network only needs to
learn the differential information between the input layer and the
output layer. Compared with traditional CNN, the introduction
of ResNet reduces the loss of information and optimizes the
model generalization ability and training speed (55).

In this study, ResNet50 is mainly used to form the neural
network part of the DeepHE model, and Conv is used as the
convolution layer. After the image data x is input, it will first enter
the convolution layer with 32n×n kernels and perform feature
extraction by weight. Conv Block will change the network
dimensions, so they cannot be directly connected in series. Then,
the BN layer is added to normalize the Conv results, smooth the
landscape of the entire loss function, and improve the feature
extraction accuracy and generalization ability of the network (56).
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We choose ReLU as the activation function, which can be regarded
as an identity mapping model for forwarding calculation. This
makes the network sparse and at the same time acts as a
regularization to realize the repeated comparison of extracted
information and feature confirmation.
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A thyroid nodule, which is defined as abnormal growth of thyroid cells, indicates excessive
iodine intake, thyroid degeneration, inflammation, and other diseases. Although thyroid
nodules are always non-malignant, the malignancy likelihood of a thyroid nodule grows
steadily every year. In order to reduce the burden on doctors and avoid unnecessary fine
needle aspiration (FNA) and surgical resection, various studies have been done to
diagnose thyroid nodules through deep-learning-based image recognition analysis. In
this study, to predict the benign and malignant thyroid nodules accurately, a novel deep
learning framework is proposed. Five hundred eight ultrasound images were collected
from the Third Hospital of Hebei Medical University in China for model training and
validation. First, a ResNet18 model, pretrained on ImageNet, was trained by an ultrasound
image dataset, and a random sampling of training dataset was applied 10 times to avoid
accidental errors. The results show that our model has a good performance, the average
area under curve (AUC) of 10 times is 0.997, the average accuracy is 0.984, the average
recall is 0.978, the average precision is 0.939, and the average F1 score is 0.957. Second,
Gradient-weighted Class Activation Mapping (Grad-CAM) was proposed to highlight
sensitive regions in an ultrasound image during the learning process. Grad-CAM is able to
extract the sensitive regions and analyze their shape features. Based on the results, there
are obvious differences between benign and malignant thyroid nodules; therefore, shape
features of the sensitive regions are helpful in diagnosis to a great extent. Overall, the
proposed model demonstrated the feasibility of employing deep learning and ultrasound
images to estimate benign and malignant thyroid nodules.

Keywords: thyroid nodule, ultrasound images, deep learning, convolutional neural network, Grad-CAM,
feature extraction
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INTRODUCTION

Thyroid nodules can be divided into benign and malignant
nodules. According to research, the incidence of thyroid cancer
has increased by 2.4 times in the past 30 years, which is one of the
fastest-growing malignant tumors (1–4).

There are two ways to diagnose thyroid nodules, fine
needle aspiration (FNA) and ultrasound. FNA is the gold
standard for thyroid nodule detection, but it is traumatic to
the human body (5). Acharya et al. indicated that 70% of the
diagnoses with FNA were benign; about 4% (1% to 10%) were
malignant or suspected malignant (6). Therefore, FNA is not
suitable for all thyroid nodules. Ultrasound is a non-invasive
and radiation-free method, which has low cost and short time
and can even show a few millimeters of lesions, so it has been
widely used (7, 8). However, the diagnosis of ultrasound
depends on the experience and judgment of doctors to a
great extent, which may lead to misdiagnosis (9). The
computer-aided diagnosis (CAD) system could help doctors
diagnose thyroid nodules objectively (10–14). Park et al.
confirmed that CAD and radiology were general ly
comparable; CAD is feasible to assist doctors in diagnosis
(15). Chang et al. extracted six features and calculated the
F-score of these feature sets and screened out the main texture
features through support vector machines (SVMs) for
subsequent classification (16). Lyra et al. adopted the
gray-level co-occurrence matrix (GLCM) to characterize
texture features of thyroid nodules (17). Keramidas et al.
tried to classify thyroid nodules by local binary patterns
(LBPs) (18). Acharya et al. segmented thyroid nodule
images manually, extracted four texture features from
images, including fractal dimension (FD), LBP, Fourier
spectrum descriptor (FS), and Laws’ texture energy (LTE),
and then used these feature vectors to predict thyroid nodules
using SVM, decision tree (DT), Sugeno fuzzy, gaussian
mixture model (GMM), K-nearest neighbor (KNN), radial
basis probabilistic neural network (RBPNN), and naive bayes
classifier (NBC) (19). Ma et al. tried to classify thyroid nodules
by five different machine learning methods, namely, deep
neural network (DNN), SVM, central clustering methods,
KNN, and logistic regression; the accuracy was 0.87 (20).

These methods need to extract and even fuse many features
manually to achieve high results. While deep learning can deal
with massive data and learn deeper and more abstract features
automatically, it also avoids complex manual feature extraction
(21–23). Guan et al. employed the Inception v3 model to classify
thyroid nodules (24). Chi et al. proposed a deep learning
framework to extract features from ultrasound images. The
proposed model achieved 96.34% accuracy, 86% sensitivity,
and 99% specificity on their own database (25). Peng et al.
developed a ThyNet model to classify thyroid nodules from
multiple hospitals; the area under the receiver operating
characteristic curve (AUROC) reached 0.922, and the AUROC
of the radiologist’s diagnosis improved from 0.837 to 0.875 with
the aid of ThyNet, and from 0.862 to 0.873 in the clinical test.
The frequency of FNA is reduced in the simulated scenario, while
Frontiers in Oncology | www.frontiersin.org 2136
the missed diagnosis of malignant tumors was reduced from
18.9% to 17% as well (26). Avola et al. proposed a knowledge-
driven classification framework; the proposed framework finally
achieved an AUC value of 98.79% (27). Ye et al. applied a
residual network pretrained by transfer learning to classify
thyroid nodules; the highest accuracy reached 93.75% (28). Ma
et al. tried to classify thyroid nodules by two pretrained
convolutional neural networks (CNNs); the feature maps
obtained by the two CNNs were fused (29). Sun et al.
transferred the CNN model learned from ImageNet as a
pretrained feature extractor to a new dataset of ultrasound
images. The proposed method combined traditional low-level
features extracted from the histogram of oriented gradient
(HOG) and LBP with high-level deep features extracted from
CNN models to form a hybrid feature space. The experimental
accuracy was 93.10% (30). Furthermore, Chen et al. used a deep
learning ultrasound text classifier for predicting thyroid nodules.
The method achieved 93% and 95% accuracy on real medical
datasets and standard datasets, respectively (31).

In this paper, 508 ultrasound images were collected from the
Third Hospital of Hebei Medical University in China, which are
the same as that by Ma et al. (20). The main work is as follows.
First, the ResNet18 model, combined with transfer learning,
was employed to classify benign and malignant thyroid nodules
(32). Second, a heatmap was used to visualize the model’s
attention on thyroid nodule images. Next, the highlighted
regions expressed by heatmaps were extracted and analyzed
from original images. Finally, we found that the characteristics
of thyroid nodules with different properties were quite different
(P < 0.05 means the difference is statistically significant.). In
summary, our method is effective in the classification of thyroid
nodule images.
MATERIAL AND METHOD

Ultrasound Image Data
In this paper, we used the ultrasound images of thyroid nodules
provided by the Third Hospital of Hebei Medical University in
China. Images of thyroid nodules had been checked by an
experienced doctor; artifacts and blurred images were excluded.
The pathologist determined the benign and malignant nodules
according to the pathological diagnosis. Finally, we collected 508
ultrasound images, of which 415 were benign nodules and 93 were
malignant nodules. Each ultrasound image corresponded to a
patient. Among them, 70% of the dataset served as the training set
and 30% as the test set. There was no overlap between the training
and testing sets. Table 1 shows the distribution of benign and
malignant nodules in the training and testing groups.

The complete process of predicting benign and malignant
thyroid nodules is shown in Figure 1, which can be divided into
three components. The Resnet18 model was employed to
diagnose whether the nodule is benign or malignant; the
heatmap shows the highlighted regions of the model, which
were then extracted and analyzed.
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A Model for Predicting Thyroid Nodules
With Ultrasound Images
The convolution neural network performs well in image
classification. The CNN has an input layer, hidden layers, and
an output layer. With the image always as input, the hidden
layers are used to extract features in the image. ResNet is a
classical convolutional neural network, which was proposed by
He et al. (32); it was the champion at the 2015 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). The structure of
the ResNet18 network is shown in Figure 2. A 7*7 convolution
and a 3*3 max pooling operation were employed successively.
Then it was followed by four layers, with each layer containing
two basic blocks, and each basic block containing two
convolutions, a batch normalization, an activation function,
and a shortcut connection. Then it was modified to two
classes. Among them, the role of batch normalization is to
speed up the training and convergence of the network,
preventing the gradient from vanishing, exploding, and
overfitting at the same time. The activation function adds non-
linear factors to improve the expressive ability of the neural
network. The shortcut connection directly bypasses the input
information to the output; this ensures the integrity of
information transmission. The constructure of layers is
depicted in Figure 2; the dotted line indicates that the number
of channels has changed, and the solid line indicates that the
number of channels has not changed.

Although ResNet18 predicts well in natural images, the
results cannot be guaranteed to be optimal due to the huge
difference between ultrasonic images and natural images. In
addition, it is very complicated to train the neural network
Frontiers in Oncology | www.frontiersin.org 3137
from scratch, which needs a lot of computing and memory
resources. Transfer learning extracts basic information from the
source dataset and applies it to the target domain by fine-tuning
parameters. It can use fewer computing resources and shorter
time to train the model to obtain better results.

Cross entropy (CE) is a commonly used loss function. We can
obtain results that are consistent with expectations by using cross
entropy as the loss function and minimizing the target loss
function as the goal. Unfortunately, our dataset is unbalanced.
If CE is used as the objective function, different categories will be
given equal weights when calculating, which may greatly
interfere with the learning process of model parameters. Many
negative samples constitute a large part of the loss, thus
controlling the direction of gradient updates, making the final
trained model more inclined to classify samples into this type.
Therefore, in order to avoid the hidden dangers that may be
caused by dataset imbalance, focal loss was employed (33). Focal
loss was proposed by Lin et al. in 2017; it was applied to solve the
problem of data imbalance and difficult samples. Focal loss is
derived from the CE loss function; CE is defined as:

CE p, yð Þ =
−log pð Þ,  
−log 1 − pð Þ,  

    
if   y = 1

otherwise

(
(1)

where y represents the labels of negative and positive samples,
corresponding to 0 or 1 in binary classification, and p ∈ [0,1]
represents the estimated probability of the class labeled y = 1.

pt =
p,  

1 − p,
  

if   y = 1

otherwise

(
(2)

At this point, CE becomes:

CE p, yð Þ = −log ptð Þ (3)

Lin et al. added a modulating factor on the basis of CE: (1
−pt)

g; a is the adjustment factor. Finally, focal loss can be written
TABLE 1 | The distribution of thyroid nodules in the training and testing groups.

Dataset Benign Malignant Total

Train 291 66 357
Test 124 27 151
Total 415 93 508
FIGURE 1 | The workflow for thyroid module classification with ResNet18. Layer 1~layer 4 show the process of image analysis by ResNet18. With the increase of
layers, the features extracted by the model became more abstract. AUC and other evaluation indicators were used to evaluate the effect of model classification. In
addition, a heatmap was employed to visualize the prediction results, by which we extracted and analyzed the highlighted areas.
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as:

FL ptð Þ = −at 1 − ptð Þg log ptð Þ (4)

In summary, our framework consists of the following steps.

1. Assign a label for each thyroid nodule image.

2. Resize input images to 224*224, then transform them by flip,
rotate, and so on to generate a more complex and diverse
dataset, then normalize images to improve the accuracy and
generality.

3. Pretrain the ResNet18 model on ImageNet to learn general
image feature parameters from natural images.

4. Fine-tune the pretrained model, and adjust the 1000
classification on ImageNet to 2 in our dataset.

5. Adjust the parameters about the network, set the learning rate
to 0.0001, and employ the Adam optimizer and focal loss
function to optimize the network.

6. Perform pooling and fully connect the layers, then output the
prediction results.

Visualizing the Highlighted Regions
by Heatmap
CNN’s performance is excellent, but it sacrifices intuition and
interpretability, and it is hard to interpret the prediction results
of the model. Class activation mapping (CAM) is a modern
technique for model interpretation (34). However, the
disadvantage is that CAM depends on the global average
pooling layer; if not, we need to change and retrain the model.
Therefore, the use of CAM is not convenient. Grad-CAM
alleviates this problem (35). It does not need to modify the
structure of the existing model, which makes it applicable for any
CNN-based architecture. Grad-CAM shows the contribution
distribution of the model output by heatmap, and the
contribution is shown by colors; the red color in the heatmap
represents a large contribution to the output, which is the main
basis for judgment, while blue represents a small contribution. As
shown in formula (5), let y be the probability of class and ∂k be
the feature map of the last convolutional layer of the network.
Frontiers in Oncology | www.frontiersin.org 4138
Compute the gradient of y with respect to ∂k and take a global
average pooling of all pixels (i and j are width and height,
respectively) to obtain a weight ∂k, which represents the
importance of feature map k to discriminate the thyroid
nodule category.

∂k   =
1
Z
 oij

∂ y

∂Ak
ij

(5)

Next, weighted combinations were performed to sum the
feature maps. Then, a ReLU function was followed, because we
only focus on the areas that have a positive impact on the class
judgment, as described in formula (6). Grad-CAM shows the
areas of positive impact clearly by the heatmap.

LGrad−CAM   = ReLU Sk ∂k A
k

� �
(6)

Extracting and Analyzing the Highlighted
Regions in Heatmaps
After visualizing the area of interest of the model by Grad-CAM,
the highlighted regions based on the heatmap were extracted.
First of all, according to the corresponding relationship between
HSV and RGB colors, the image was converted from RGB to
HSV color space. Then, the red areas in the heatmap were
captured; we extracted the boundaries of the red area and
overlapped them with the original image. Then the extracted
areas were analyzed.

In general, image feature extraction includes shape, texture,
and color feature extraction. These features depict images from
different aspects. Shape features are mostly used to describe
shapes of objects in images (36–38). Combined with the
extracted areas of thyroid nodules, the form parameter, area
convexity, and perimeter convexity were adopted to describe the
shape. These features might not be the most perfect
representation of the properties of the target regions but may
be the most appropriate description of the shape of the regions.

The form parameter refers to the ratio of the area to the
square of perimeter in one region, which indicates the
complexity of the edge. The formula of the form parameter is
FIGURE 2 | The specific structure of the ResNet18 model. The input is the image of thyroid nodules with the same size. After the convolution layers and pooling
layers, the image features are extracted automatically. The output layer is the result of classification: benign or malignant nodule.
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as follows:

F   =  
4 ∗ pi ∗ S

P2 (7)

where S represents the area of the region and P represents the
perimeter of the region. A smaller value for the form parameter
indicates a more complex edge of the region.

The area convexity is the ratio of the area to the convex hull
area. The convex hull refers to the smallest convex polygon
containing the specified area; that is to say, all points in the target
region are on or inside the surrounding convex hull area. The
formula for area convexity is as follows.

S   =  
S
Sch

(8)

Sch represents the convex hull area. The area convexity is
smaller than or equal to 1; the smaller the value is, the more
complex the edge of the region is.

Similarly, the perimeter convexity refers to the ratio of the
perimeter to the convex hull perimeter of the region.

P   =  
P
Pch

(9)

where Pch represents the perimeter of the convex hull, and the
perimeter convexity is equal to or larger than 1. The larger the
value, the more complex the edge of the region.

Evaluation Criteria
Our model was evaluated by ROC curve, accuracy, recall,
precision, and F1 score (39, 40), which are defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)
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F1   score =
2   ∗   Precision   ∗  Recall

Precision + Recall
(13)

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.
RESULTS

Our Model Performs Better Than Existing
Methods
Our dataset was randomly divided into 10 times, and we
calculated the average of the 10 times to avoid the chance of
the results caused by one division. Compared with AlexNet,
Inception_v3, and VGG16, the performance of our model was
best, the AUC was 0.997, and as shown in Figure 3A, the average
accuracy, recall, precision, and F1 score were 0.984, 0.978, 0.997,
and 0.957, respectively; our model performed well in the above
indicators. The results are shown in Figure 3B.

Visualizing With Grad-CAM
As we mentioned in the “Visualizing the highlighted regions by
heatmap” section, the model achieved unprecedented accuracy
in image classification, but the interpretability was poor.
Visualization is helpful to understand and debug the model.
Grad-CAM was used to validate model predictions on images; it
adopted the final convolutional layer gradients to generate the
positioning heatmaps when predicting. Figure 4A shows original
images, where (a1)~(a3) are benign nodules and (a4)~(a6) are
malignant nodule images. Figure 4B) shows the corresponding
heatmaps by Grad-CAM. The highlighted regions in the
heatmaps are shown in red, and the weak regions are shown in
blue. The red and blue marks represent the regions of strong and
weak emphases, respectively.

Region Extraction and Analysis
OpenCV was used to perform region extraction on the red
highlight in the heatmap. The extracted results are shown in
Figure 5; samples in (a) are the extraction result of benign
thyroid nodules, and those in (b) are malignant. We found that
BA

FIGURE 3 | Evaluations of model results. (A) The receiver operating characteristic (ROC) curves and the area under the curve (AUC) of our model and other
comparative models. (B) The performance of our model and other comparative models on accuracy, recall, precision, and F1 score.
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the outline boundary of benign nodules was relatively regular,
while the outline boundary of malignant nodules was relatively
irregular. To verify whether almost all thyroid nodules fit this
phenomenon, the shape features of thyroid nodules were
calculated according to the above formulas. As a result, the
form parameter, area convexity, and perimeter convexity were
statistically different for benign and malignant nodules (their p-
values were 1.68e-27, 7.01e-32, and 8.1e-33, respectively. P < 0.05
means the difference is statistically significant). As shown in
Figure 6, violin plots were employed to describe the distribution
of values of benign and malignant thyroid nodules with the
abovementioned features.
Frontiers in Oncology | www.frontiersin.org 6140
DISCUSSION

The prevalence of thyroid nodules is increasing year by year, and
people’s awareness of health management is also gradually
improving. As a result, the burden of ultrasound doctors in
hospitals and physical examination institutions is increasing. If
an AI-assisted diagnosis system can be used to assist doctors to
distinguish ultrasound image data, the pressure of doctors will be
relieved and work efficiency will be improved. Moreover, the
interpretation of ultrasound images largely depends on the
clinical experience of radiologists. It was reported that
the sensitivity of radiologists varied from 40.3% to 100%, and
B4

A
A1 A2 A3

A4 A5 A6

B1 B2 B3

B5 B6

B

FIGURE 4 | Grad-CAM visualizes highlighted regions. (A) (a1)~(a6) are original images, (a1)~(a3) are benign nodules, (a4)~(a6) are malignant nodules. (B) (b1)~(b6)
are heatmaps drawn by Grad-CAM, corresponding to Figure 4 (a1)~(a6).
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the specificity from 50% to 100% (41–44). Computer-aided
diagnosis can provide more objective and more accurate
results, which is very helpful to doctors with less experience.
Grani et al. showed that many thyroid nodules removed by
surgery were not malignant, which increased the economic
burden and physical pain for patients (45), whereas the AI-
assisted diagnosis system based on deep learning algorithms
could lower the false positive rate and then help to reduce
unnecessary FNAB and surgery.

In this paper, the ResNet18 framework was applied to train
the model and Grad-CAM was proposed to highlight sensitive
regions in the ultrasound images. Finally, the 10-time average
AUC of our proposed method was 0.997, and the average
Frontiers in Oncology | www.frontiersin.org 7141
accuracy was 0.984, which is higher than the accuracy of 0.89
designed by Ma et al. (20). Moreover, the shape features of the
sensitive regions rather than other features are more helpful in
the discrimination of benign and malignant tumors. From the
perspective of methodology, the performance of neural network-
based methods is generally higher than the traditional feature-
based methods. CNNs can learn efficient and useful features
automatically, avoiding the time-consuming and laborious task
of obtaining features manually.

Although the proposed method achieved a supportive result,
it still had some limitations. Firstly, the number of images for
training and testing is insufficient and multicenter data are not
available. In the future work, we will collect more data to validate
B

A

FIGURE 5 | Extract highlighted regions in heatmaps. These heatmaps correspond to Figure 4A) or (B). Samples in (A) are the extraction result of benign thyroid
nodules, which correspond to Figure 4 (A1–A3) or (B1–B3). Samples in (B) are the extraction result of malignant thyroid nodules, which correspond to Figure 4 (a4)
~(a6) or (b4)~(b6).
B CA

FIGURE 6 | Violin plots of image feature distribution with benign and malignant nodules. (A) Form parameter. (B) Area convexity. (C) Perimeter convexity.
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the model performance. Secondly, a more detailed classification
of thyroid nodules may be tried using a variety of algorithms as
benign thyroid nodules can be divided into benign follicular
nodules and follicular adenomas, etc., clinically, and malignant
thyroid nodules can be divided into papillary, follicular, etc.,
medullary carcinomas. Finally, yet importantly, the results were
obtained based on static ultrasound images and we should
consider how to better assist doctors in making decisions in a
real clinical environment.

It is believed that deep learning in diagnosing thyroid nodules
has a bright future. Deep learning algorithms have been widely
concerned and applied in various fields. They can map
unstructured information to structured forms and learn
relevant information automatically. The automatic and
intelligent method not only improves the efficiency of
diagnosis but also ensures the reliability, which may
significantly affect early diagnosis and subsequent treatment.
CONCLUSION

In this paper, we have explored the problem of thyroid nodule
classification. ResNet18 was deployed with 508 thyroid nodule
ultrasound images. Due to insufficient datasets, transfer learning
was adopted. At the same time, considering the imbalance of the
dataset, focal loss was employed to adjust the weight of data.
Finally, the AUC was 0.997, which means that we can predict
almost all thyroid nodules correctly. Moreover, in order to visualize
the model’s attention in thyroid nodule images and help
understand the model’s predictions more easily, Grad-CAM was
used to identify sensitive regions in the learning process of
ultrasound images, which were an important reference of image
prediction. The regions concerned by the model were segmented
Frontiers in Oncology | www.frontiersin.org 8142
and analyzed. Finally, in the region of interest, there are differences
between benign and malignant nodules. The results of this study
show that our model could diagnose well benign and malignant
thyroid nodules in ultrasound images. Besides, our localization
information could be regarded as a second opinion for clinical
decision-making. The proposed method could assist doctors in
making better decisions, reducing the time for human
participation, and improving the efficiency of diagnosis.
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