HLA-G is a non-classical HLA class I molecule with immunomodulatory properties. It was initially described at the maternal-fetal interface, and it was later found that this molecule was constitutively expressed on certain immuneprivileged tissues, such as cornea, endothelial and erythroid precursors, and thymus. The immunosuppressive effect of HLA-G is exerted through the interaction with its cognate receptors, expressed on immunocompetent cells, like ILT2, expressed on NK, B, T cells and APCs; ILT4, on APCs; KIR, found on the surface of NK cells; and finally, the co-receptor CD8. Because of these immunomodulatory functions, HLA-G has been involved in several processes, amongst which organ transplantation, viral infections, cancer progression, and autoimmunity. HLA-G neo-expression on tumors has been recently described in several types of malignancies. In fact, tumor progression is tightly linked to the presence of the molecule, as it exerts its tolerogenic function, inhibiting the cells of the immune system and favoring tumor escape. Several polymorphisms in the 3’UTR region condition changes in HLA-G expression (14bp and +3142C/G, among others), which have been associated with both the development and outcome of patients with different tumor types. Also, in recent years, several studies have shown that HLA-G plays an important role in the control of autoimmune diseases. The ability of HLA-G to limit the progression of these diseases has been confirmed and, in fact, levels of the molecule and several of its polymorphisms have been associated with increased susceptibility to the development of autoimmune diseases, as well as increased disease severity. Thus, modulating HLA-G expression in target tissues of oncology patients or patients with autoimmune diseases may be potential therapeutic approaches to treat these pathological conditions.
Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions and clinical relevance have been extensively investigated in malignancies, and early clinical trials with “anti-HLA-G strategy” are being launched for advance solid cancer immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune suppression, promote tumor growth and disease progression. Though clinical benefits could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G, lack of isoform-specific antibodies and validated assay protocols, which could dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer immunotherapy may be fluctuated or even premature unless major challenges are addressed.
Frontiers in Immunology
Antibody-mediated rejection after solid organ transplantation