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Editorial on the Research Topic

Clinical Application of Artificial Intelligence in Emergency and Critical Care Medicine,

Volume II

We are excited to witness the successful publication of the second volume of the topic issue entitled
Clinical Application of Artificial Intelligence in Emergency and Critical Care Medicine. Artificial
intelligence (AI) continues to be a hot spot in emergency and critical care medicine, which provides
numerous tools and algorithms to learn from data (1, 2). There are three major categories of
machine learning (ML) algorithms including supervised learning (3), unsupervised learning, and
reinforcement learning (4). These three main categories of ML methods can be utilized to solve
clinical questions that cannot be well captured by human intuition.

Supervised learning is defined by its use of labeled datasets to train algorithms to classify data
or predict outcomes accurately. As input data is fed into the model, it adjusts its weights until the
model has been fitted appropriately, which occurs as part of the cross-validation process (5). The
labels in the critical care setting include mortality, the occurrence of postoperative acute kidney
injury, delirium, and the development of CRBSI (6–8). In this topic issue, several studies utilized
a supervised ML algorithm to predict interested clinical outcomes. Cheng et al. developed a deep
learning algorithm (ResNet50-V2) for the detection of abdominal free fluid in Morison’s pouch
during focused assessment with sonography in trauma.While the model is not externally validated,
such seminal attempts will trigger further explorations on the use of radiomics in a critical care
setting. Li et al. developed anML algorithm using eXtreme Gradient Boosting (XGBoost) to predict
acute renal failure after acute aortic syndrome surgery. The authors further demonstrated that the
XGBoost algorithm was superior to the conventional logistic regression models.

Unlike specialty areas where patients are usually homogenous and thus can benefit from
evidence-based medicine (EBM). Under the paradigm of EBM, a group of homogenous
population are studied as a whole, and the effects drawn from the population are assumed
to be equal in each individual subject (9). In other words, the individual effects are equal to
the population mean. In such an ideal situation, a large well-conducted randomized controlled
trial can provide the most effective treatment options for the target population. However, the
individual effects deviate from the population mean with increasing heterogeneity of the study
population. This is what happens in the critical care setting. Although critically ill patients are
usually presenting similar clinical manifestations which we group as syndromes such as sepsis
and acute respiratory distress syndrome (ARDS), these syndromes usually display significant
heterogeneity in their clinical presentations and responses to treatment (10, 11). By a post-hoc
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analysis of a large ARDS trial, Xing et al. identified four
phenotypes of ARDS, and the “hyperinflammatory Anasarca”
phenotype was found to benefit from a conservative fluid
management strategy. The strength of the study was the utility
of a randomized trial. The randomization procedure ensured
the exchangeability of the study population between treated
and untreated groups. Latent class analysis was performed on
an ARDS population, which identified three subphenotypes.
A subtype characterized by worse renal function and higher
central venous pressure (CVP) was found to be beneficial
from diuretic use. Collectively, these studies demonstrated
the successful application of the ML algorithm to identify
subtypes of a heterogeneous population. Interestingly, these
subtypes show both prognostic and predictive enrichment for
clinical interventions.

The above-mentioned ML algorithms can only be helpful in
risk stratification. We know a patient is at risk of death, but do
not know how to take action to minimize the risks. In this regard,
the third important algorithm called reinforcement learning
comes to solve this clinical question (12, 13). Reinforcement
learning is a type of machine learning technique where a
computer agent learns to perform a task through repeated
trial and error interactions with a dynamic environment. This
learning approach enables the agent to make a series of decisions

that maximize a reward metric for the task without human
intervention and without being explicitly programmed to achieve

the task. Fluid treatment is an important measure to improve
the survival outcome of sepsis. However, the major challenge
in fluid treatment is that it requires sequential decision rules to
be made by considering the changing status of the subject, as
well as its response to previous fluid challenges. Thus, there is
no one-size-fits-all model for fluid therapy for sepsis patients.
In this regard, Su et al. developed a reinforcement learning
algorithm to optimize fluid treatment strategy. They further
demonstrated that patients who received the fluid volume close
to the estimated volume had the lowest mortality rate. However,
since the algorithm is not tested in prospective studies, its clinical
utility is still limited.

In conclusion, the topic issues on Clinical Application of
Artificial Intelligence in Emergency and Critical Care Medicine
witnessed tremendous success in the previous two volumes,
suggesting continuous interest in this topic in critical care society.
Volume III of the topic issue is still open for submission.With the
developments in AI technology, it will change the practice pattern
of emergency and critical care in the future.

AUTHOR CONTRIBUTIONS

ZZ conceived the idea and drafted the manuscript. NL, RK,
and QM critically reviewed the paper and interpretation of the
work. LS provided insightful comments for the work. All authors
contributed to the article and approved the submitted version.

REFERENCES

1. Lal A, Pinevich Y, Gajic O, Herasevich V, Pickering B. Artificial intelligence

and computer simulation models in critical illness. World J Crit Care Med.

(2020) 9:13–9. doi: 10.5492/wjccm.v9.i2.13

2. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman

G. Artificial intelligence in anesthesiology: current techniques,

clinical applications, and limitations. Anesthesiology. (2020)

132:379–94. doi: 10.1097/ALN.0000000000002960

3. Zhang Z, Chen L, Xu P, Hong Y. Predictive analytics with ensemble modeling

in laparoscopic surgery: a technical note. Laparosc Endosc Rob Surgery. (2022)

5:25–34. doi: 10.1016/j.lers.2021.12.003

4. Zhang Z, Navarese EP, Zheng B, Meng Q, Liu N, Ge H, et al. Analytics with

artificial intelligence to advance the treatment of acute respiratory distress

syndrome. J Evid Based Med. (2020) 13:301–12. doi: 10.1111/jebm.12418

5. Rashidi HH, Tran NK, Betts EV, Howell LP, Green R. Artificial intelligence

and machine learning in pathology: the present landscape of supervised

methods. Acad Pathol. (2019) 6:2374289519873088. doi: 10.1177/2374289519

873088

6. Giannini HM, Ginestra JC, Chivers C, Draugelis M, Hanish A, Schweickert

WD, et al. A machine learning algorithm to predict severe sepsis

and septic shock: development, implementation, and impact on clinical

practice. Crit Care Med. (2019) 47:1485–92. doi: 10.1097/CCM.0000000000

003891

7. Garnica O, Gómez D, Ramos V, Hidalgo JI, Ruiz-Giardín JM. Diagnosing

hospital bacteraemia in the framework of predictive, preventive and

personalised medicine using electronic health records and machine learning

classifiers. EPMA J. (2021) 12:1–17. doi: 10.1007/s13167-021-00252-3

8. Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume

responsiveness in patients with oliguric acute kidney injury in critical care.

Crit Care. (2019) 23:112. doi: 10.1186/s13054-019-2411-z

9. Vincent J-L, Singer M, Einav S, Moreno R, Wendon J, Teboul J-L, et al.

Equilibrating SSC guidelines with individualized care. Crit Care. (2021)

25:397. doi: 10.1186/s13054-021-03813-0

10. Vignon P, Evrard B, Asfar P, Busana M, Calfee CS, Coppola S, et al. Fluid

administration and monitoring in ARDS: which management? Intensive Care

Med. (2020) 46:2252–64. doi: 10.1007/s00134-020-06310-0

11. Bhavani SV, Wolfe KS, Hrusch CL, Greenberg JA, Krishack PA, Lin

J, et al. Temperature trajectory subphenotypes correlate with immune

responses in patients with sepsis. Crit Care Med. (2020) 48:1645–

53. doi: 10.1097/CCM.0000000000004610

12. Lu M, Shahn Z, Sow D, Doshi-Velez F, Lehman L-WH. Is deep reinforcement

learning ready for practical applications in healthcare? A sensitivity analysis of

duel-DDQN for hemodynamic management in sepsis patients. AMIA Annu

Symp Proc. (2020) 2020:773–82. doi: 10.48550/arXiv.2005.04301

13. Peng X, Ding Y, Wihl D, Gottesman O, Komorowski M, Lehman L-WH,

et al. Improving sepsis treatment strategies by combining deep and kernel-

based reinforcement learning. AMIA Annu Symp Proc. (2018) 2018:887–

96. doi: 10.48550/arXiv.1901.04670

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhang, Kashyap, Liu, Su and Meng. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 2 May 2022 | Volume 9 | Article 9101636

https://doi.org/10.3389/fmed.2021.727910
https://doi.org/10.3389/fmed.2022.766447
https://doi.org/10.5492/wjccm.v9.i2.13
https://doi.org/10.1097/ALN.0000000000002960
https://doi.org/10.1016/j.lers.2021.12.003
https://doi.org/10.1111/jebm.12418
https://doi.org/10.1177/2374289519873088
https://doi.org/10.1097/CCM.0000000000003891
https://doi.org/10.1007/s13167-021-00252-3
https://doi.org/10.1186/s13054-019-2411-z
https://doi.org/10.1186/s13054-021-03813-0
https://doi.org/10.1007/s00134-020-06310-0
https://doi.org/10.1097/CCM.0000000000004610
https://doi.org/10.48550/arXiv.2005.04301
https://doi.org/10.48550/arXiv.1901.04670
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


ORIGINAL RESEARCH
published: 25 August 2021

doi: 10.3389/fmed.2021.727910

Frontiers in Medicine | www.frontiersin.org 1 August 2021 | Volume 8 | Article 727910

Edited by:

Qinghe Meng,

Upstate Medical University,

United States

Reviewed by:

Abele Donati,

Marche Polytechnic University, Italy

Zhongheng Zhang,

Sir Run Run Shaw Hospital, China

*Correspondence:

Shi Zhang

394873967@qq.com

Specialty section:

This article was submitted to

Intensive Care Medicine and

Anesthesiology,

a section of the journal

Frontiers in Medicine

Received: 20 June 2021

Accepted: 30 July 2021

Published: 25 August 2021

Citation:

Xing C-y, Gong W-b, Yang Y-N, Qi X-j

and Zhang S (2021) ARDS Patients

Exhibiting a “Hyperinflammatory

Anasarca” Phenotype Could Benefit

From a Conservative Fluid

Management Strategy.

Front. Med. 8:727910.

doi: 10.3389/fmed.2021.727910

ARDS Patients Exhibiting a
“Hyperinflammatory Anasarca”
Phenotype Could Benefit From a
Conservative Fluid Management
Strategy

Chun-yan Xing 1,2, Wen-bin Gong 1,2, Yan-Na Yang 1,2, Xin-jie Qi 1,2 and Shi Zhang 1,2*

1Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong

University, Jinan, China, 2Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong

First Medical University, Jinan, China

Object: The fluid management strategy in ARDS is not very clear. A secondary analysis of

RCT data was conducted to identify patients with ARDS benefitting from a conservative

strategy of fluid management.

Methods: The data of this study were downloaded from the ARDS network series

of randomized controlled trials (Conservative Strategy vs. Liberal Strategy in 2006).

Based on the clinical feature of patients, within the first 24 h after admission, clustering

was performed using the k-means clustering algorithm to identify the phenotypes of

ARDS. Survival was analyzed using the Kaplan-Meier survival analysis to assess the

effect of the two fluid management strategies on the 90-day cumulative mortality.

Categorical/dichotomic variables were analyzed by the chi-square test. Continuous

variables were expressed as the mean and standard deviation and evaluated through

a one-way ANOVA. A P-value < 0.05 was defined as the statistically significant

cut-off value.

Results: A total of 1,000 ARDS patients were enrolled in this unsupervised clustering

research study, of which 503 patients were treated with a conservative fluid-management

strategy, and 497 patients were treated with a liberal fluid-management strategy. The

first 7-day cumulative fluid balance in patients with the conservative strategy and liberal

strategy were −136 ± 491ml and 6,992 ± 502ml, respectively (P < 0.001). Four

phenotypes were found, and the conservative fluid-management strategy significantly

improved the 90-day cumulative mortality compared with the liberal fluid-management

strategy (HR = 0.532, P = 0.024) in patients classified as “hyperinflammatory
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“hyperinflammatory anasarca” phenotype. In addition, patients with other phenotypes

given the different fluid management strategies did not show significant differences in

clinical outcomes.

Conclusion: Patients exhibiting a “hyperinflammatory anasarca” phenotype could

benefit from a conservative fluid management strategy.

Keywords: ARDS, conservative fluid management, liberal fluid management, phenotype, hyperinflammatory

anasarca

BACKGROUND

Acute respiratory distress syndrome (ARDS) refers to acute
inflammatory injury of the lung, disruption of the alveolar–
capillary barrier and the formation of non-cardiogenic, protein-
rich pulmonary oedema (1–4). A conservative fluid management
strategy could improve the anasarca and oxygenation index
(PaO2/FiO2). In addition, initiating treatment to reduce
pulmonary oedema as early as possible could decrease the risk
of superinfection (5, 6).

Although lung failure alone can be lethal, death in patients
with acute lung injury is usually due to the failure of the non-
pulmonary organs. Conservative fluid management strategies
may lead to lower intravascular volume and perfusion (7, 8).
Wiedemann et al. performed a randomized controlled trial
(RCT) to compare conservative and liberal fluid-management
strategies in ARDS (9). The results indicated that although
the conservative strategy of fluid management improved lung
function and shortened the duration of mechanical ventilation, a
conservative strategy could not improve the mortality of ARDS.
This suggested that not all ARDS patients need dehydration
therapy for the improvement of lung function, and the sufficient
effective circulating blood volume could also be took into account
in parts of ARDS patient. Therefore, the fluid management
strategy for ARDS is not very clear.

Artificial intelligence (AI) has found its way into clinical
studies in the era of big data. Meanwhile, as increasing number
of ARDS clinical trials data is open to public, secondary analysis
on these combined datasets provide a powerful way of finding
solution to clinical questions with a new perspective (10, 11).
When combined with machine learning informatics and clinical
trials data, the result will be the development of a precision
form of personalized treatment applied to ARDS, which could
be a promising way to explore the precise fluid management for
specific ARDS population (12).

Based on this clinical problem, the hypothesis for
identification of the specific ARDS patients who could benefit
from conservative fluid management would be tested through a
secondary analysis on RCT data from Wiedemann et al. using a
machine learning algorithm (unsupervised clustering).

METHODS

The data of this study were downloaded from the ARDS network
series of randomized controlled trials (Conservative Strategy vs.
Liberal Strategy in 2006) (9). A total of 1,000 ARDS patients
participated in this study.

Screening Features for Unsupervised
Clustering
Clinical features of ARDS patients were obtained before the
start of treatment with a conservative strategy or liberal strategy
within the first 24 h after admission. If missing data for a
certain feature or sample is more than 5% then we will leave
that feature. The other missing data (<5%) were estimated
by multiple imputations through the R package, following the
process described by Zhang with minor modifications (13). The
mice R package conducted three main steps: (1) imputation, (2)
analysis, and (3) pooling for missing data. The imputation step
identified the characteristic of missing data; then the analysis step
provided the predictive mean matching of missing data through
modular approach; finally, the pooling step filled up the missing
data based on 1,000 imputations iterations (13–15).

To screen suitable clinical features for clustering analysis,
we attempted to train several classifiers from scratch. The clear
separations and significant statistical results (P < 0.05) were
utilized as the criterion for the identification of suitable clinical
features for the best classification model.

Statistical Methods
Clustering was performed using the k-means clustering
algorithm implemented in R (k-means package). The best
classifications were selected based on clear separations of the
consensus heatmaps.

Survival was analyzed using the Kaplan-Meier survival
analysis to assess the effect of the two fluidmanagement strategies
on the 90-day cumulative mortality. Categorical/dichotomic
variables were analyzed by the chi-square test. Continuous
variables were expressed as the mean and standard deviation and
evaluated through a one-way ANOVA.

A P-value < 0.05 was defined as the statistically significant
cut-off value.

Software
All the analyses in this study were conducted using R 4.0.3.

RESULTS

Patients
A total of 1,000 ARDS patients were enrolled in this unsupervised
clustering research study, of which 503 patients were treated
with a conservative fluid-management strategy, and 497 patients
were treated with a liberal strategy fluid-management strategy.
The first 7-day cumulative fluid balance in patients with the
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FIGURE 1 | Consensus matrix heatmaps of consensus k-means clustering. Consensus matrix heatmaps of different subgroup numbers (k = 2, 3, 4, 5, 6, 7). When k

= 3, the model exhibited the clearest separation of the consensus matrix heatmap.

conservative strategy and liberal strategy were −136 ± 491ml
and 6,992± 502ml, respectively (P < 0.001).

Characteristics for Unsupervised
Clustering
After multiclustering, the Acute Physiology and Chronic Health
Evaluation III (APACHE III) score, PaO2, central venous
pressure (CVP), predicted body weight (PBW), white blood cell
count (WBC), platelet count, and the presence or absence of
shock and anasarca were finally enrolled in further unsupervised
clustering analysis.

Clinical Outcomes of Phenotypes
The patients were classified as 2 phenotypes to 7 phenotypes
through unsupervised clustering analysis, shown in
(Figures 1A–F). As the 4-class model showed the clearest
separation of the matrix heatmap (Figure 1), 4 phenotypes
were utilized in the current study. The numbers of patients
in Phenotypes I, II, III and IV were 319, 169, 492 and 11,
respectively.

Phenotype II was identified as the specific population that
benefited from the conservative fluid-management strategy
because the conservative fluid-management strategy significantly

improved the 90-day cumulative mortality compared with the
liberal fluid-management strategy (HR = 0.532, P = 0.024),
as shown in Figure 2. Regarding secondary outcomes, the
conservative fluid management strategy markedly decreased the
90-day mortality compared with the liberal fluid management
strategy (25.3 vs. 41.1%, P= 0.030). In addition, the conservative
fluid management strategy was superior to the liberal fluid
management strategy in avoiding superinfection (10.10 vs.
14.40%, P = 0.037) and returned to assisted breathing (4.60 vs.
16.20%, P = 0.030), as shown in Table 1.

Patients with other phenotypes given the different fluid
management strategies did not show a significant difference in
clinical outcomes, as shown in Figure 2 and Table 1.

Features of the Phenotypes
For better insight into the characteristics of the phenotypes,
features among different phenotypes were compared and
evaluated. Phenotype IV was not selected as the main
observational cohort due to the small sample size.

Patients classified as phenotype II exhibited a higher WBC
(20487.51 ± 7223.86/mm3) and had a higher incidence of
anasarca (8.3%) and incidence of shock (26.6%) at baseline, as
shown in Tables 2, 3. Therefore, phenotype II was defined as the
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FIGURE 2 | Kaplan–Meier survival curves of 90-day cumulative mortality for patients receiving conservative strategy and liberal strategy among those with the four

phenotypes. (A) The survival curves of 90-day cumulative mortality of patients classified as phenotype I. The Kaplan–Meier survival analysis indicated that compared

with the liberal strategy, conservative fluid management could not improve the 90-day mortality in patients classified as phenotype I (HR = 1.035, P = 0.843). (B) The

survival curves of 90-day cumulative mortality of patients classified as phenotype II. The Kaplan–Meier survival analysis indicated that compared with the liberal

strategy, conservative fluid management significantly improved 90-day mortality in patients classified as phenotype II (HR = 0.532, P = 0.024). (C) The survival curves

of 90-day cumulative mortality of patients classified as phenotype III. The Kaplan–Meier survival analysis indicated that compared with the liberal strategy, conservative

fluid management could not improve the 90-day mortality in patients classified as phenotype III (HR = 0.858, P = 0.316). (D) The survival curves of 90-day cumulative

mortality of patients classified as phenotype IV. The Kaplan–Meier survival analysis indicated that compared with the liberal strategy, conservative fluid management

could not improve the 90-day mortality in patients classified as phenotype IV (HR = 0.484, P = 0.345). HR, hazard ratio.

“hyperinflammatory anasarca” phenotype. Other characteristics
of phenotypes are illuminated in Tables 2, 3.

DISCUSSION

The fluid management strategy for ARDS is not very clear.
The current secondary analysis of RCTs identified 4 ARDS
phenotypes, and a conservative fluid management strategy
significantly improved the 90-day mortality of patients
classified as phenotype II compared with a liberal fluid
management strategy. In addition, a conservative fluid-
management strategy was superior to a liberal fluid-management
strategy in avoiding superinfection and returned to assisted
breathing. Phenotype II was defined as a “hyperinflammatory
anasarca” phenotype due to the higher WBC count with
the higher incidence of anasarca and incidence of shock
at baseline.

The current study first found that patients exhibiting a
“hyperinflammatory anasarca” phenotype could benefit from a
conservative fluid management strategy. This specific population
showed a higher WBC (20487.51 ± 7223.86/mm3) with a higher

incidence of anasarca (8.3%) and incidence of shock (26.6%) at
baseline. Distributive shock and oedema due to ARDS-induced
systemic inflammatory host responses on cardiovascular systems
were marked signs in these patients (16–19). Previous studies
uncovered that oedema was an independent risk factor for
superinfection. and the anasarca could increase the number of
days of mechanical ventilation (2, 20, 21). Our analysis further
demonstrated that relieving oedema through a conservative fluid
management strategy could effectively avoid superinfection and
return to assisted breathing in patients with phenotype II, which
could be the main reason to explain why the conservative fluid
management strategy improved the mortality of these ARDS
populations. Meanwhile, in order to maintain mean arterial
pressure ≥ 65 mmHg and sufficient cardiac output to achieve
adequate tissue perfusion for important organs, vasopressors
are critical and should be used early for patients classified as
phenotype II. This strategy is also suggested by Surviving Sepsis
Campaign guidelines for septic shock (22, 23).

Individual and detailed situations should be considered to
select a suitable fluidmanagement strategy in patients classified as
having other phenotypes. As there were no significant differences
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TABLE 1 | Secondary outcomes in phenotype 2.

Outcomes Conservative strategy (n = 90) Liberal strategy (n = 79) P

28 day mortality (%) 16.50% 23.30% 0.268

60 day mortality (%) 20.30% 32.50% 0.197

90 day mortality (%) 25.30% 41.10% 0.030

Unassisted breathing (%) 17.70% 24.40% 0.290

Super infection (%) 10.10% 14.40% 0.037

Returned to assisted breathing (%) 4.60% 16.20% 0.030

Hospital free days to 90 (day) 51.75 ± 43.50 48.12 ± 34.97 0.503

ICU free days to day 90 (day) 62.69 ± 31.91 57.73 ± 34.22 0.097

Ventilator free days to day 90 61.40 ± 35.24 63.27 ± 32.75 0.310

TABLE 2 | Dichotomous characteristics in different phenotypes.

Id Phenotype 1 (n = 319) Phenotype 2 (n = 169) Phenotype 3 (n = 492) Phenotype 4 (n = 11) P

Male sex 52.3% 56.8% 53.9% 63.6% 0.674

Shock 6.6% 8.3% 2.8% 9.1% 0.011

Surgery 4.1% 3.0% 6.1% 0.0% 0.294

Ethanol 9.1% 11.2% 13.4% 18.2% 0.302

ARDS risk factor

Pneumonia 45.5% 48.5% 48.2% 63.4% 0.187

Sepsis 22.3% 18.9% 25.8% 9.1% 0.385

Trauma 8.5% 7.7% 6.7% 9.1% 0.874

Multiple transfusion 0.9% 0 1.0% 9.1% 0.223

Aspiration 15.7% 15.4% 14.6% 9.1% 0.483

Others 6.6% 9.5% 5.5% 0 0.304

Anamnesis

AIDS 6.0% 4.7% 9.1% 9.1% 0.200

Leukemia 1.9% 0.6% 3.5% 9.1% 0.085

Lymphoma 0.6% 0.6% 2.0% 0.0% 0.282

Solid tumor 2.2% 0.0% 1.8% 0.0% 0.289

Immune suppression 4.7% 9.5% 10.6% 9.1% 0.037

Anasarca 16.0% 26.6% 17.7% 18.2% 0.027

Heart failure 4.7% 4.7% 2.8% 9.1% 0.343

Hypertension 32.9% 34.3% 28.5% 18.2% 0.224

Myocardial infarction 6.9% 5.9% 4.9% 0.0% 0.510

Dementia 2.2% 3.6% 2.2% 0.0% 0.713

Stroke 4.1% 3.6% 5.1% 0% 0.732

Hepatic failure 0.9% 0.5% 1.0% 0.0% 0.953

Cirrhosis 2.2% 2.4% 4.5% 0.0% 0.270

Peptic ulcer 5.6% 4.7% 3.0% 9.1% 0.238

Diabetes 18.8% 18.9% 17.5% 0.0% 0.409

in clinical outcomes between conservative and liberal fluid
management strategies, the detailed therapies should depend on
patients’ individual morbid conditions. If shock-induced tissue
hypoperfusion is a crucial clinical problem in certain patients,
a conservative fluid management strategy should be cautiously
used in these patients. However, if ARDS-induced shock is
reversed, a conservative fluid-management strategy could be
considered for the improvement of respiratory failure (24–26).

There are some limitations in this study: prospective
validation is required before definitive conclusions regarding
therapy can be drawn. Meanwhile, the study is also
limited by the fact that the beneficial effect was not
externally validated. In addition, specific populations who
could benefit from liberal fluid management strategies or
other therapeutic methods could not be identified in the
current study.
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TABLE 3 | Continuous variables in different phenotypes.

Id Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 P

Age (year) 48.57 ± 16.15 53.86 ± 15.96 50.50 ± 15.88 47.82 ± 16.88 0.391

Height (cm) 169.14 ± 11.53 169.46 ± 10.57 170.19 ± 10.23 175.56 ± 5.54 0.059

Weight 83.32 ± 24.57 81.96 ± 23.07 81.91 ± 22.53 89.92 ± 18.89 0.588

Temperature (◦C) 37.4 ± 0.9 37.4 ± 0.9 37.6 ± 1.1 37.6 ± 1.4 0.136

Systolic BP (mmHg) 113.19 ± 20.88 113.47 ± 19.86 114.09 ± 23.10 119.82 ± 19.21 0.751

Diastolic BP (mmHg) 59.58 ± 12.13 59.31 ± 12.78 59.30 ± 13.15 62.64 ± 12.43 0.847

Mean arterial pressure (mmHg) 77.17 ± 14.04 77.22 ± 13.79 77.04 ± 14.49 81.92 ± 13.50 0.737

Heart rate (bpm) 102.05 ± 20.42 100.02 ± 20.10 103.17 ± 21.83 98.09 ± 19.71 0.349

Respiratory rate (breaths/min) 34.31 ± 9.43 34.66 ± 9.03 35.14 ± 10.67 35.55 ± 17.15 0.712

CVP (mm H2O) 11.79 ± 4.61 11.89 ± 4.56 12.19 ± 4.90 11.55 ± 4.78 0.661

Urine output/24 h (ml) 1978.81 ± 1348.99 2150.12 ± 2063.27 2155.51 ± 1633.35 1908.27 ± 1212.69 0.448

Glasgow coma 10.59 ± 4.58 10.71 ± 4.50 10.91 ± 4.40 9.82 ± 4.24 0.689

PaO2 (mmHg) 92.40 ± 44.30 94.54 ± 43.55 96.04 ± 44.76 119.91 ± 74.04 0.191

PaO2/FiO2 125.93 ± 61.51 133.80 ± 66.92 133.84 ± 61.26 164.30 ± 77.28 0.091

Bicarbonate (mEq/L) 21.68 ± 5.43 21.67 ± 5.88 20.89 ± 5.61 21.00 ± 5.27 0.178

HCT (%) 32.74 ± 7.27 32.6 ± 6.69 32.29 ± 6.76 30.82 ± 4.51 0.677

Glucose (mg/dL) 142.92 ± 88.07 149.83 ± 79.36 135.78 ± 58.75 113.36 ± 20.87 0.080

Potassium (mEq/L) 3.98 ± 0.65 4.06 ± 0.66 3.98 ± 0.64 4.46 ± 0.60 0.045

Sodium (mEq/L) 138.74 ± 5.17 139.31 ± 6.86 138.88 ± 5.16 138.27 ± 3.74 0.717

WBC (/mm3 ) 17313.76 ± 10409.86 20487.51 ± 7223.86 8402.11 ± 9878.86 66836.36 ± 31126.13 <0.001

HGB (g/dL) 10.66 ± 2.04 10.63 ± 1.93 10.18 ± 1.81 10.05 ± 0.90 0.001

Platelets (1,000/mm3) 226.44 ± 123.08 244.66 ± 147.44 158.12 ± 106.95 135.36 ± 54.93 <0.001

Albumin (g/dL) 2.24 ± 0.66 2.16 ± 0.63 2.19 ± 0.62 2.50 ± 0.73 0.250

Bilirubin (mg/dL) 1.56 ± 2.86 1.48 ± 1.78 1.78 ± 4.21 3.76 ± 7.39 0.162

BUN (mg/dL) 22.74 ± 16.81 20.09 ± 23.37 25.25 ± 19.08 21.18 ± 10.85 0.025

Chloride (mEq/L) 107.43 ± 6.81 106.70 ± 8.32 108.15 ± 6.37 108.18 ± 5.74 0.100

Creatinine (mg/dL) 1.16 ± 0.77 1.28 ± 0.81 1.33 ± 0.92 1.14 ± 0.40 0.039

Total protein 5.11 ± 1.04 5.05 ± 0.99 4.95 ± 1.04 5.28 ± 0.94 0.136

APACHE III 95.72 ± 32.75 92.07 ± 27.18 93.99 ± 30.98 87.27 ± 25.56 0.551

WBC, white blood cell count; HCT, red blood cell specific volume; HGB, hemoglobin concentration; BUN, blood urea nitrogen. Bold values mean P value less than 0.05.

CONCLUSIONS

Patients exhibiting a “hyperinflammatory anasarca” phenotype
could benefit from conservative fluid management strategies.
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Background: Diuretics have been widely used in critically ill patients while it remains

uncertain whether they can reduce mortality in patients with acute respiratory distress

syndrome (ARDS). This study aimed to investigate the associations between diuretics

and 28-day mortality in patients with ARDS.

Methods: This is a secondary analysis of the ARDS Network Fluid and Catheter

Treatment Trial (FACTT) of National Heart, Lung, and Blood Institute. Those patients

who did not receive renal replacement therapy within the first 48 h after enrollment in the

FACTT were included in the analysis. A marginal structural Cox model (MSCM) was used

to investigate the associations between diuretics and 28-day mortality after correction

of both the baseline and time-varying variables. The latent class analysis (LCA) and

subgroup analysis were performed to identify the kind of patients that could be benefited

from diuretics.

Results: A total of 932 patients were enrolled, i.e., 558 patients in the diuretics group

and 374 patients in the no diuretics group within the first 48 h. The 28-day mortality

was lower in the diuretics group (15.1 vs. 28.1%, p < 0.001). In MSCM, diuretics use

was related to the improved 28-day mortality (HR 0.78; 95% CI 0.62–0.99; p = 0.04).

LCA identified three subtypes, and diuretics were associated with reduced mortality in

subtype 3, which was characterized by worse renal function and higher central venous

pressure (CVP). A subgroup analysis indicated survival advantage among the female

patients, sepsis induced ARDS, and those with the ratio of partial pressure of oxygen

to the fractional concentration of inspired oxygen (PaO2/FiO2) ≤ 150 mmHg, and mean

arterial pressure (MAP) ≥ 65 mmHg.

Conclusion: Loop diuretics were associated with the reduced 28-day mortality in the

patients with ARDS, after controlling for time-varying confounders. Randomized trials are

required to verify the association.

Keywords: acute respiratory distress syndrome, diuretics, mortality, marginal structural cox model, subtype
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INTRODUCTION

Acute respiratory distress syndrome (ARDS) that results from
various insults is associated with a high hospital mortality rate
of 40% (1). The hallmark alteration in ARDS is increased
endothelial and epithelial permeability, leading to the increased
extravascular lung water (EVLW) (2), which is associated
with lung injury and mortality (3). Diuretics are frequently
administered to critically ill patients to alleviate pulmonary
edema and may reduce lung injury (4).

Several studies have involved diuretics as part of therapeutic
intervention for ARDS, but whether they could reduce mortality
has not been conclusively determined. Diuretics have been
associated with reduced positive fluid balance, improved lung
function, and shorter mechanical ventilation duration, but
no significant improvement in the mortality rate has been
demonstrated (5, 6). One retrospective study suggested that the
use of diuretics for 48–72 h after meeting the ARDS criteria may
reduce mortality (7). In that study, the influence of diuretics
use beyond the specified 24 h was not analyzed, and nor were
therapeutic changes related to diuretics, rendering the result
less explicable.

There are several theoretical reasons for the controversial
results reported to date. ARDS is of extreme heterogeneity,
and patients with diverse phenotypes respond differently to
the selected treatment (8–10). In addition, the use of diuretics
is a time-dependent variable that is affected by factors,
such as oxygenation and mean arterial pressure, but these
confounders were seldom corrected in studies, leading to bias.
In a previous study, after adjusting for the baseline variables
only, diuretics were associated with lower 28-day mortality
in critically ill patients. When time-varying confounders were
corrected via marginal structural Cox modeling (MSCM),
however, there was no significant association (11). The study
highlighted the necessity to consider time-dependent variables
when investigating the effect of diuretics on patient outcomes.

Diuretics are widely used in critically ill patients, despite
controversy with respect to whether they reduce mortality. The
present study aimed to investigate the effects of loop diuretics
on 28-day mortality in the patients with ARDS, and used a
marginal structural model to adjust time-varying covariates. We
hypothesized that diuretics would improve 28-day mortality in
patients with ARDS. A latent class analysis (LCA) was used
to derive phenotypes, and subgroup analysis was conducted to
determine the phenotypes that may benefit from diuretics.

METHODS

Study Design and Population
The study was a secondary analysis of the ARDS Network Fluid
and Catheter Treatment Trial (FACTT) of the National Heart,

Abbreviations: HR, hazard ratio; CI, confidence of interval; APACHE III, acute

physiology and chronic health evaluation III; SOFA, sequential organ failure

assessment; CVP, central venous pressure; MAP, mean arterial pressure; PEEP,

positive end expiration pressure; Pplat, plateau pressure; LOS, length of stay; ICU,

intensive care unit; VFDs, ventilation free days; MSCM, marginal structural cox

model; LCA, latent class analysis.

Lung, and Blood Institute. The details of the trial have been
published previously (5, 12). In the original study, the patients
with ARDS who received mechanical ventilation were included.
The patients with ARDS for more than 48 h, chronic diseases
that impair survival and weaning were excluded from the study.
We further excluded patients receiving renal replacement therapy
routinely or within the first 48 h after enrollment, to whom
diuretics were not likely to be prescribed.

Fluid management strategies were conducted for 7 days
from randomization, or until weaning, whichever occurred first.
Furosemide or other diuretics were administered to the patients
with elevated central venous pressure (CVP) or pulmonary
arterial wedge pressure when hemodynamics was stable. Patients
were divided into two groups according to whether they received
diuretics within the first 48 h. The primary outcome was the 28-
day mortality. All data were obtained and approved by Biologic
Specimen andData Repository Information Coordinating Center
(BioLINCC, https://biolincc.nhlbi.nih.gov). The present study
was approved by the Research Ethics Commission of Zhongda
Hospital, School of Medicine, Southeast University (Nanjing,
China). The Strengthening the Reporting of Observational
Studies in the Epidemiology (STROBE) recommendations were
followed in this study.

Data Collection
The data extracted included demographic data, laboratory tests,
Acute Physiology and Chronic Health Evaluation III score
(APACHE III), and prescriptions of vasopressor and diuretics.
Sequential Organ Failure Assessment (SOFA) score, Charlson
Comorbidity Index (13), and Murray lung injury score (14)
were calculated. The number of missing or censoring values is
presented in Supplementary Table 1. Variables with a missing
ratio of more than 25% were not included in the final analysis.
Outliers were censored and missing values were replaced by
multiple imputations.

Statistical Analysis
The continuous variables were presented as mean (SD) or
median [interquartile ranges (IQR) and were compared with
Student’s t-test or the Mann–Whitney test. Categorical variables
were compared via the chi-square test or Fisher’s exact test.
Standardized mean differences (SMDs) and p-values were
calculated to evaluate the differences between the two groups.

Latent class analysis was employed to derive phenotypes.
Variables were selected based on the previous research and
potential association with outcomes (9, 15), such as demographic
parameters (gender, age, and BMI), comorbidities (diabetes,
hypertension, and heart failure), disease severity (APACHE
III), vital signs (heart rate, temperature, and respiratory rate),
hemodynamic parameters (MAP, CVP, vasopressor use, and
fluid balance), respiratory variables (tidal volume and plateau
pressure), hematology (platelet and hemoglobin), and the renal
function indicator creatinine. Mplus (version 8.3) software was
used to fit models with latent classes. The optimal number of
classes was determined by a combination of Bayesian information
criterion (BIC), entropy, and the Vuong-Lo-Mendell-Rubin
(VLMR) test (16).
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TABLE 1 | Demographic and clinical characteristics of patients in two groups.

No diuretics Diuretics P SMD

N 374 558

Age, years 50.20 (17.20) 49.58 (15.09) 0.561 0.038

Female (n, %) 172 (46.0) 261 (46.8) 0.866 0.016

Body mass index 28.93 (7.51) 28.77 (6.54) 0.801 0.023

APACHE III 97.81 (30.41) 88.20 (28.90) <0.001 0.324

SOFA 8.57 (2.92) 7.35 (2.38) <0.001 0.455

Primary lung injury (n, %) <0.001 0.354

Sepsis 109 (29.1) 97 (17.4)

Trauma 28 (7.5) 45 (8.1)

Aspiration 52 (13.9) 94 (16.8)

Pneumonia 171 (45.7) 267 (47.8)

Other 14 (3.7) 55 (9.9)

Comorbidity (n, %)

Immune suppression 27 (7.2) 44 (7.9) 0.803 0.025

Diabetes 62 (16.6) 93 (16.7) 1.000 0.002

Hypertension 82 (21.9) 139 (24.9) 0.331 0.071

Prior myocardial infarction 11 (2.9) 23 (4.1) 0.445 0.064

Congestive heart failure 10 (2.7) 17 (3.0) 0.894 0.022

Chronic pulmonary disease 32 (8.6) 29 (5.2) 0.058 0.133

Charlson Comorbidity Index 0.00 (0.00, 2.00) 0.00 (0.00, 2.00) 0.077 0.167

Heart rate, bpm 97.65 (19.95) 97.11 (19.41) 0.686 0.027

Respiratory rate, bpm 28.52 (7.17) 27.39 (7.51) 0.023 0.154

CVP, mmHg 11.53 (4.81) 11.71 (5.05) 0.601 0.036

MAP, mmHg 74.89 (13.39) 80.32 (13.54) < 0.001 0.404

Vasopressors (n, %) 172 (46.0) 100 (17.9) < 0.001 0.631

Fluid balance, ml 2,810.77 (3,261.29) 819.08 (2,802.81) <0.001 0.655

Hemoglobin, g/dl 9.77 (1.65) 10.00 (1.62) 0.037 0.140

Platelets, × 1012/L 179.63 (121.63) 200.17 (120.25) 0.013 0.170

Creatinine, mg/dl 1.35 (0.99) 1.25 (1.01) 0.151 0.098

PaO2/FiO2, mmHg 145.56 (72.57) 149.14 (60.19) 0.441 0.054

Clinical outcomes

28-day mortality (n, %) 105 (28.1) 84 (15.1) < 0.001 0.321

VFDs by day 28, day 19.00 (14.00, 23.00) 21.00 (17.25, 24.00) < 0.001 0.315

RRT by day 90 (n, %) 18 (7.8) 27 (11.6) 0.215 0.130

RRT days by day 90, day 15.00 (9.00, 32.00) 13.50 (9.00, 28.50) 0.692 0.086

Data are presented as mean (SD), median (interquartile range [IQR]), or number (proportion). APACHE III, acute physiology and chronic health evaluation III; SOFA, sequential organ

failure assessment; CVP, central venous pressure; MAP, mean arterial pressure; PaO2/FiO2, ratio of partial pressure of oxygen to the fractional concentration of inspired oxygen; VFDs,

ventilation free days; RRT, renal replacement therapy; SMD, standardized mean difference.

Daily fluid balance, MAP, need for vasopressors, and
the ratio of partial pressure of oxygen to the fractional
concentration of inspired oxygen (PaO2/FiO2), which
would influence the decision of diuretics treatment and
potentially correlate with the outcomes, were defined as
time-dependent variables. The marginal structural model uses
inverse probability of treatment-weighting (IPTW) estimator
to create a pseudo-population, enabling the correction of
time-fixed baselines and time-varying confounders (17, 18).
MSCM was used to evaluate the effect of diuretics on 28-
day mortality. Several specified subgroup analyses were
performed. In this study, we used RStudio (version 1.3.1073,
RStudio Inc., MA, USA) software to perform the statistical

analyses. The variable p < 0.05 was deemed to indicate the
statistical significance.

RESULTS

Demographic and Clinical Characteristics
A total of 932 patients were included in the analysis, of which 558
(59.9%) received diuretics within the first 48 h since enrollment.
The demographic and clinical characteristics of patients in the
two groups are shown in Table 1. In general, patients in the
diuretics group had less severe disease, higher mean arterial
pressure, and a lower proportion of vasoactive agents use than
those in the non-diuretics group. All-cause 28-day mortality was
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FIGURE 1 | Marginal structural Cox model hazard ratio (HR) values for 28-day mortality in diuretics and no diuretics group according to the subgroups.

significantly lower in the diuretics group [84 (15.1%) vs. 105
(28.1%), p < 0.001], and a survival advantage was still evident
at day 90. The detailed comparisons between the two groups are
presented in Supplementary Table 2.

Association Between Diuretics Use and
28-Day Mortality
Time-fixed variables, such as age, APACHE III, Charlson
Comorbidity Index, and the time-varying confounders (as
mentioned above) were adjusted via marginal structural model.
The weight distribution of IPTW applied to adjust for the
confounding factors is shown in Supplementary Figure 1.
Ultimately, the MSCM analysis revealed that compared with
no diuretics therapy, loop diuretics use was associated with

improved 28-day mortality in the patients with ARDS (HR 0.78;
95% CI 0.62–0.99; p= 0.04) in the overall population (Figure 1).

The fit statistics of the LCA models generated are shown
in Table 2. Three main phenotypes were identified, designated
as subtypes 1–3. Subtype 1 included 89 (9.5%) patients that
mainly suffered from pneumonia, and exhibited relatively
normal renal function and the lowest CVP. Subtype 2
included 635 (68.1%) patients who were characterized by
near normal serum creatinine and relatively lower CVP.
Subtype 3 included 208 (22.3%) patients characterized by
worse renal function, higher CVP, and higher proportions of
complications, such as diabetes, hypertension, and chronic heart
failure. Comparisons among the subtypes 1–3 are shown in
Table 3, Supplementary Table 3, and Supplementary Figure 2.
MSCM indicated that subtype three patients could be benefited
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TABLE 2 | Fit statistics for latent class analysis models.

BIC Entropy P-values Number of patients

in each phenotype

1 2 3 4

1 51,833 932

2 51,009 0.746 0.10 604 328

3 50,069 0.988 0.0001 89 635 208

4 49,635 0.902 0.03 89 213 424 206

BIC, Bayesian information criterion.

from diuretics (HR 0.64; 95% CI 0.44–0.92; p = 0.02),
whereas there were no significant associations between diuretics
and 28-day mortality in subtype 1 or subtype 2 patients
(Figure 2).

In the subgroup analysis, diuretics use was correlated with the
reduced 28-day mortality in patients with initial MAP equal or
more than 65 mmHg, and patients with PaO2/FiO2 equal or less
than 150 mmHg, and no interaction was detected. Besides, the
association seemed to be stronger in female patients with ARDS
and sepsis-induced ARDS, and the interaction was significant.
Other results of the subgroup analyses are shown in Figure 1 and
Supplementary Table 4.

DISCUSSION

In the present study, early loop diuretics were associated
with reduced 28-day mortality in patients with ARDS after
adjustment for both time-fixed and time-varying confounders.
LCA identified three phenotypes and patients in subtype 3 who
were characterized by worse renal function and higher CVP,
may benefit from diuretics. Additional subgroup analyses of
the patients with ARDS indicated that associations between
diuretics and reduced 28-day mortality were more marked in
female patients, sepsis-induced ARDS, and patients with lower
PaO2/FiO2 (≤150 mmHg), higher MAP (≥65 mmHg).

Fluid therapy is the fundamental treatment for ARDS, but
volume overload is quite common and is associated with an
increased risk of death (19). Diuretics are frequently prescribed
to the critically ill patients to facilitate liquid removal and have
become a pharmacologic adjuvant therapy in patients with ARDS
(20). Studies indicate that compared with a liberal fluid strategy
or standard care, conservative fluid management achieved by
restricting fluid intake and the use of diuretics or hemofiltration
is associated with improved oxygenation, increased ventilation-
free days, and lower mortality (21–24). It has been proposed
that correction of fluid retention may rely on diuretics or renal
replacement therapy after the hemodynamic status is stabilized
(25). Notably, early diuretics use was independently associated
with lower mortality, which had been reported in a less rigorous
study that used logistics regression based on the time-fixed
baseline variables (7). The effects of diuretics on 28-mortality
identified via the use of MSCM to adjust for time-dependent
confounders further support their use in patients with ARDS.

There are evident distinctions in the etiology, physiology, and
biology of patients with ARDS, leading to different responses to
the same therapy (10). Three subtypes were identified by LCA in
the present study, and MSCM indicated that diuretics correlated
with reduced 28-day mortality in subtype 3, in which patients
were characterized by elevated serum creatinine, higher CVP,
and more complications, such as diabetes mellitus, hypertension,
and heart disease. In a previous study, in patients with ARDS
especially with concomitant acute kidney injury, positive fluid
balance was associated with higher mortality (26). When used
appropriately, however, frusemide may prevent and even resolve
acute kidney injury as well as improving survival (27, 28). In
another study, diuretics were significantly associated with lower
mortality in the positive fluid balance subgroup but there was
no significant association in the negative fluid balance subgroup
(29). Moreover, diuretics have been recommended in patients
with hypertension and heart failure to promote water and sodium
excretion and reduce volume load (30, 31). The effects of diuretics
on mortality might be attributed to the improvement of renal
function and reduction of fluid retention.

Fluid resuscitation is highly recommended in sepsis
management (32) but persistent positive fluid balance is an
independent risk factor for death (33). Actually, in patients
with ARDS complicated by septic shock, achieving both early
goal-directed cardiovascular resuscitation and late conservative
fluid therapy was reportedly associated with reduced mortality
(34). A conservative fluid strategy has been recommended for
sepsis-induced ARDS in which there is no evidence of tissue
hypoperfusion (32). The associations between diuretics and
reduced mortality in patients with sepsis-induced ARDS and
those with higher MAP are consistent with the current clinical
practice. Additionally, the current study indicates that diuretics
may be beneficial in patients with PaO2/FiO2 ≤ 150 mmHg,
possibly due to the reduction in EVLW. As EVLW estimates the
fluid in pulmonary interstitial and alveolar spaces and is strongly
associated with the deterioration of PaO2/FiO2, more severe
lung injury, and higher mortality (3, 35), decrease in EVLW
may be associated with improved survival (36). We postulated
that diuretics may have substantially alleviated pulmonary
edema in the worse oxygenation subgroup and contributed to
better survival.

There are various pathophysiological mechanisms by which
loop diuretics may improve the outcomes in patients with
ARDS. Diuretics could reduce hydrostatic pressure in the
event of alveolar–capillary barrier damage by limiting fluid
overload, and may increase colloid osmotic pressure, resulting
in reduced pulmonary edema (2, 37). Furthermore, previous
studies have suggested that hyper-inflammatory or hypo-
inflammatory patients respond differently to randomly assigned
fluid management (9). The implementation of liberal or
conservative fluid strategy may depend on the inflammatory
state, whereas diuretics modify fluid balance and may thus affect
the prognosis of certain subtypes.

The present study is the first to explore the effect of loop
diuretics use on 28-day mortality in patients with ARDS, using
MSCM to account for both time-fixed and time-dependent
confounders. The phenotypes derived based on variables

Frontiers in Medicine | www.frontiersin.org 5 September 2021 | Volume 8 | Article 74067518

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Diuretics, ARDS

TABLE 3 | Comparisons of the baseline and clinical characteristics between the subtypes.

Subtype 1 Subtype 2 Subtype 3 P

N 89 635 208

Age, years 46.56 (13.22) 48.34 (16.39) 55.79 (14.23) <0.001

Female (n, %) 33 (37.1) 291 (45.8) 109 (52.4) 0.045

Body mass index 24.23 (6.39) 29.19 (6.91) 30.61 (8.18) <0.001

APACHE III 110.60 (30.04) 86.76 (28.34) 99.31 (29.53) <0.001

Primary lung injury (n, %) <0.001

Sepsis 11 (12.4) 136 (21.4) 59 (28.4)

Trauma 1 (1.1) 68 (10.7) 4 (1.9)

Aspiration 8 (9.0) 107 (16.9) 31 (14.9)

Pneumonia 65 (73.0) 272 (42.8) 101 (48.6)

Other 4 (4.5) 52 (8.2) 13 (6.2)

Comorbidity (n, %)

Immune suppression 14 (15.7) 30 (4.7) 27 (13.0) <0.001

Diabetes 12 (13.5) 0 (0.0) 143 (68.8) <0.001

Hypertension 11 (12.4) 108 (17.0) 102 (49.0) <0.001

Myocardial infarction 1 (1.1) 12 (1.9) 21 (10.1) <0.001

Congestive heart failure 1 (1.1) 9 (1.4) 17 (8.2) <0.001

Chronic pulmonary disease 5 (5.6) 34 (5.4) 22 (10.6) 0.028

Charlson Comorbidity Index 6.00 (6.00, 6.00) 0.00 (0.00, 0.00) 2.00 (2.00, 3.00) <0.001

Heart rate, bpm 99.79 (19.65) 98.13 (19.29) 93.85 (20.27) 0.011

Respiratory rate, bpm 30.20 (8.30) 27.45 (7.21) 28.03 (7.38) 0.005

CVP, mmHg 10.24 (5.91) 11.64 (4.81) 12.22 (4.85) 0.008

MAP, mmHg 74.24 (11.37) 78.95 (13.80) 77.45 (14.16) 0.008

Vasopressors (n, %) 0.27 (0.45) 0.27 (0.45) 0.36 (0.48) 0.071

Fluid balance, ml 2094.21 (2833.58) 1412.33 (3181.05) 2002.85 (3120.95) 0.021

Hemoglobin, g/dl 9.29 (1.55) 10.14 (1.66) 9.49 (1.44) <0.001

Platelets, × 1012/L 185.94 (100.06) 192.06 (121.98) 194.40 (127.19) 0.862

Creatinine, mg/dl 1.16 (0.73) 1.21 (0.99) 1.56 (1.08) <0.001

PaO2/FiO2, mmHg 144.68 (73.49) 147.50 (62.00) 149.69 (70.95) 0.836

Clinical outcomes

28-day mortality (n, %) 37 (41.6) 92 (14.5) 60 (28.8) < 0.001

VFDs by day 28, day 21.00 (15.25, 24.00) 21.00 (16.00,24.00) 20.00 (16.00, 24.00) 0.922

RRT by day 90 (n, %) 5 (5.7) 34 (5.4) 24 (11.5) 0.008

RRT days, day 31.00 (15.00, 34.00) 16.00 (8.75, 30.00) 12.00 (9.00, 29.50) 0.391

Data are presented as mean (SD), median (IQR), or number (proportion).

FIGURE 2 | Marginal structural Cox model HR values for 28-day mortality in diuretics and no diuretics group, according to the subtypes derived by LCA.
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accessible from medical history and routine laboratory tests
may inspire clinicians to implement more precise treatment.
Notably, the study had several limitations. First, inflammatory
biomarkers were not included in LCA due to limited access to
data. Patients were divided into three categories with differences
in comorbidities, CVP, and renal function, in accordance with the
clinical practice. Another limitation was that we used a dataset
over 15 years ago, while this still represents one of the largest
randomized clinical trials investigating the effects of fluid strategy
on ARDS outcomes and constitutes important evidence-based
research of relevance to the guidelines and clinical practice. Last,
the retrospective secondary analysis lacked the power to explain
the causality. Additional well-designed randomized controlled
clinical trials are required.

CONCLUSION

Loop diuretics use was associated with reduced 28-day mortality
in the patients with ARDS, after correction for the time-
dependent variables. This association was even significant in
patients with worse renal function and higher CVP, and in
women, patients with sepsis-induced ARDS, and those with
lower PaO2/FiO2 and higher MAP. The randomized controlled
trials are required to validate these results.
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Background: The use of focused assessment with sonography in trauma (FAST) enables

clinicians to rapidly screen for injury at the bedsides of patients. Pre-hospital FAST

improves diagnostic accuracy and streamlines patient care, leading to dispositions to

appropriate treatment centers. In this study, we determine the accuracy of artificial

intelligence model-assisted free-fluid detection in FAST examinations, and subsequently

establish an automated feedback system, which can help inexperienced sonographers

improve their interpretation ability and image acquisition skills.

Methods: This is a single-center study of patients admitted to the emergency room

from January 2020 to March 2021. We collected 324 patient records for the training

model, 36 patient records for validation, and another 36 patient records for testing. We

balanced positive and negative Morison’s pouch free-fluid detection groups in a 1:1 ratio.

The deep learning (DL) model Residual Networks 50-Version 2 (ResNet50-V2) was used

for training and validation.

Results: The accuracy, sensitivity, and specificity of the model performance for ascites

prediction were 0.961, 0.976, and 0.947, respectively, in the validation set and 0.967,

0.985, and 0.913, respectively, in the test set. Regarding feedback prediction, the model

correctly classified qualified and non-qualified images with an accuracy of 0.941 in both

the validation and test sets.

Conclusions: The DL algorithm in ResNet50-V2 is able to detect free fluid in

Morison’s pouch with high accuracy. The automated feedback and instruction system

could help inexperienced sonographers improve their interpretation ability and image

acquisition skills.

Keywords: deep learning, FAST, Morison pouch, ascites, trauma, hemoperitoneum
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INTRODUCTION

Traumatic injury remains the leading cause of death among
individuals younger than 45 years of age (1), with over 210,000
deaths per year in the last 5 years in the United States (2).
A substantial proportion of such patients suffered from blunt
abdominal trauma (3). Computed tomography had been the gold
standard for diagnosing intra-abdominal or thoracic injuries.
However, time delays and transportation out of the emergency
department (ED) hinders the evaluation of hemodynamically
unstable patients. The use of focused assessment with sonography
in trauma (FAST) enabled clinicians to rapidly screen for injury
at the bedsides of patients. Recent studies have shown that FAST
plays a key role in trauma detection, changing the subsequent
management of an appreciable number of patients. In addition,
pre-hospital FAST improves diagnostic accuracy and streamlines
patient care, leading to dispositions to appropriate treatment
centers. It was previously demonstrated that after performing
pre-hospital FAST, pre-hospital therapy and management can
be altered for 30% of the patients, and patient disposition can
occur in 22% of the cases being admitted to the ED (4–6). A
major limitation of ultrasound is that it is operator-dependent,
with training, experience, and inter-operator variability playing
an important role (7).

Artificial intelligence (AI), a subfield of computer science,
helps create systems that perform tasks in medicine, medically
oriented human biology, and healthcare improvements. Machine
learning (ML), a subfield of AI, outperforms traditional
approaches to various diseases and clinical conditions, including
diagnosis, quality of patient care, and prognosis of a disease
(8–14). Compared with traditional approaches, ML procedures
may have the ability to interact with non-linear and high-
order effects in variable parameters. Owing to the nature of
operator-dependent imaging modality in ultrasound, developing
deep learning (DL) models that assess image quality and
provide feedback to sonographers was considered to provide
ultrasound with more intelligence. AI-assisted ultrasound is
expected to minimize operator-dependent imaging modality,
altering medical therapy and patient disposition in critical care
units and pre-hospital care.

Owing to the amorphous nature of intra-abdominal free
fluid, AI-assisted ascites detection remains a challenge. Our
study aims to determine the accuracy of AI model-assisted
free-fluid detection during FAST examination and subsequently
establish an automated feedback system, which can help
inexperienced sonographers improve their interpretation ability
and image acquisition skills. Moreover, AI model-assisted real-
time ultrasound could enhance the diagnostic performance of
FAST when used by paramedics or during an emergency.

MATERIALS AND METHODS

Study Setting and Variables
This is a single-center study of patients admitted to the ED at
Kaohsiung Chang Gung Memorial Hospital, Taiwan. Abdominal
ultrasound clips were taken for a variety of clinical conditions
and saved in the emergency ultrasound image archive in an

MPEG-4 format. These clips were taken by 10 certified attending
emergency physicians using a time-motion ultrasound machine
with a 5–2 MHz curved mechanical sector transducer. The
study was approved by the IRB committee of the hospital (IRB
number: 202001766B0C601)

For the training set, all patients aged >18 years who
underwent abdominal ultrasounds in the ED from January
2020 to October 2020 were included. Because of the study’s
retrospective nature in this study period, informed consent
from the subjects was not required. Ultrasound examinations
were retrospectively reviewed and retrieved from the image
database in the ED during the study period. We only retrieved
examinations performed on the right upper abdominal quadrant
for Morison’s pouch scanning. Morison’s pouch is the space
that separates the liver from the right kidney, considered the
lowest intra-abdominal area for detecting free fluid in the
supine position.

For the validation and test sets, patients aged >18 years who
underwent FAST study in the ED from November 2020 to March
2021 were included. Informed consent was obtained from all
subjects involved during this study period prior to beginning the
abdominal ultrasound examinations.

To compare the ascites interpretation between emergency
medicine (EM) residents and model performance, 10 registered
EM residents were recruited for the trial from hospital personnel.
Each EM resident had received at least a 1-year training course
in the ED. The result for the EM residents’ ultrasound finding
interpretation of the test set was compared to that of the DL
model in terms of accuracy, sensitivity, and specificity.

Data Pre-processing and Labeling
All collected ultrasound videos were first converted to still images
at a rate of 10 frames per second with an initial size of 800 × 600
pixels. Subsequently, each image was reviewed by 4 ultrasound
instructors in the hospital to determine whether it was positive
or negative for free-fluid detection.

A feedback labeling for the standard Morison’s pouch view
was subsequently added during the image review process to
implement the assisting system that enabled the operator to
distinguish whether the current image was qualified to detect the
Morison’s pouch fluid. The qualified view was defined as the area
between the liver and kidney, caudal edge of the liver, or right
paracolic gutter area. The image was classified as a non-qualified
view if less than one-third of the right kidney was observable.

After the review process, each image was classified into one
of four classes: positive/qualified view, positive/non-qualified
view, negative/qualified view, and negative/non-qualified view.
All images were labeled by four qualified ultrasound instructors
who were certified attending emergency physicians in Taiwan,
and at least 3 out of 4 instructors had to agree on the classification
of each image.

Deep Learning Training Process
To avoid overfitting the model, all labeled images were
cropped to a size of 400 × 400 pixels to remove unnecessary
information such as the background grid and knobology settings
information. Other image augmentation techniques, namely,
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random rotation, random zoom, and horizontal flip, were applied
to the training set.

In this study, we used the DL model Residual Networks 50-
Version 2 (ResNet50-V2) for training and validation (15). With
limited clinical data, we obtained model weights of ResNet50-
V2 from the ImageNet database (16) as a pre-trained model
and performed transfer learning through a fine-tuning process
during training. During transfer learning, we froze the model
weights in convolution layers 1 to 3 and updated the weights
in convolution layers 4 and 5 and in the fully connected neural
network on the top during training. All the aforementioned
deep neural networks were developed using Python 3.8 and
TensorFlow version 2.4.1.

Statistical Analysis
We balanced positive and negative free-fluid detection groups
with a 1:1 ratio during model training, validation, and testing
to prevent deviations due to imbalanced data. We collected 162
patient records with positive free-fluid detection and randomly
extracted 162 patient records with negative findings from the
image database for the training model. We also collected 18
patient records each from the positive and negative groups
for validation and another 18 patient records each for testing.
Each patient record contained 15–35 second long ultrasound
videos. During the DL training process, we tried to optimize
the model to achieve the best performance in the validation
set. The final performance was evaluated in the test set as an
external validation.

The performance of the model for fluid detection was assessed
in terms of accuracy, sensitivity, and specificity. The performance
of the feedback was evaluated based on accuracy. In addition,
from a clinical perspective, sensitivity is consideredmore relevant
than specificity because it shows how accurately the intra-
abdominal free fluid was identified; thus, the level of sensitivity
was prioritized over specificity during training and validation.

For a real-time ultrasound assisting system, predicting a class
for every input image might be difficult. Alternatively, generating

a prediction every 10 frames is more feasible in clinical practice.
Consequently, we also considered another evaluation strategy
for model performance on ascites prediction in both validation
and test sets, which employed a majority-voting scheme for
consecutive images in a 1-s window, where the majority of the
image class predictions were taken in that specific time frame.

In this study, continuous variables were presented as mean
± standard deviation. Dichotomous data were presented as
numbers (percentages). Categorical variables were analyzed using
the chi-square test, and continuous variables were analyzed
using the independent sample t-test. All statistical analyses were
performed using SPSS 26.

RESULTS

The demographic characteristics of the patients included in the
study are listed in Table 1. There was no significant difference in
age, sex, body mass index, and underlying diseases between the
training set, validation set, and test set. For training, validation,
and testing, 10,794, 6,118, and 5,456 images were, respectively,
included. In the validation set, there were 3,121 negative and
2,997 positive ascites images. Among them, 3,750 images were
labeled as qualified images. In the 2,997 positive ascites images,
there were 1,488 frames with mild ascites, 774 with moderate
ascites, and 735 with massive ascites. In the test set, there were
2,780 positive and 2,676 negative ascites images. Among them,
3,337 images were labeled as qualified images. In the 2,676
positive ascites images, there were 1,332 frames with mild ascites,
682 with moderate ascites, and 662 with massive ascites. Figure 1
depicts a flowchart of the dataset construction process.

To prevent the model from overfitting during training, we
added a batch normalization layer and a dropout layer on top of
the last fully connected neural layer of the final developed model.
We used the Adam algorithm as an optimizer with an initial
learning rate of 2 × 10−6 and adjusted the class weight to favor
prediction over positive ascites for clinical priority purposes. The
model was trained for 100 epochs, and the best model weights

TABLE 1 | Demographic data of patients.

Training set Validation set Test set P value

(n = 324) (n = 36) (n = 36)

Demographic characteristics

Age, years, mean ± SD 59.7 ± 17.2 61.1 ± 15.9 60.5 ± 19.2 0.889

Sex, male, n (%) 174 (53.7) 19 (52.8) 20 (55.6) 0.981

BH, mean ± SD 162.2 ± 8.8 161.8 ± 9.8 163.4 ± 8.5 0.731

BW, mean ± SD 60.9 ± 13.1 62.6 ± 14.2 62.3 ± 12.0 0.661

BMI (kg/m2 ), mean ± SD 23.3 ± 4.4 23.6 ± 4.3 23.4 ± 4.1 0.968

Underlying disease

Heart failure, n (%) 19 (5.9) 3 (8.3) 2 (5.6) 0.779

Chronic kidney disease, n (%) 57 (17.6) 6 (16.7) 5 (13.9) 0.906

Liver cirrhosis, n (%) 40 (12.3) 5 (13.9) 6 (16.7) 0.840

Malignancy, n (%) 54 (16.7) 4 (11.1) 8 (13.9) 0.699

BH, body height; BW, body weight; BMI, body mass index.
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FIGURE 1 | Flowchart of dataset construction.

during training were saved and evaluated in the validation and
test datasets.

The confusion matrix for the four class prediction results
in the validation and test sets are shown in Figure 2. The
accuracy, sensitivity, and specificity of the model performance
for ascites prediction were 0.961, 0.976, and 0.947, respectively,
in the validation set and 0.967, 0.985, and 0.913, respectively,
in the test set (Table 2). For ascites prediction in the EM
resident group, the accuracy, sensitivity, and specificity were
0.966, 0.989, and 0.943, respectively (Table 3). The result for
human interpretation was not significantly different compared
with the DL model (p = 0.570). Regarding feedback prediction,

the model correctly classified qualified and non-qualified
images with an accuracy of 0.941 in both the validation and
test sets (Table 2).

By using the aforementioned majority-voting scheme for
evaluation, the model was able to identify every ascites clip
in both the validation and test sets, while it misclassified only
two negative ascites frames: one into the positive class in the
validation set and one into the positive class in the test set. The
results of all the prediction performances are provided in Table 2.
The accuracy, sensitivity, and specificity of the resident physician
vs. model performance were, respectively, 0.986 vs. 0.998, 1 vs. 1,
and 0.972 vs. 0.996 (p= 0.001).
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FIGURE 2 | Confusion matrix for the four class prediction results. (A) Validation set (B) Test set.

TABLE 2 | Model performance for ascites and image location feedback prediction.

Validation set Test set

By frame (n = 6,118) (n = 5,456)

Ascites prediction

Accuracy 0.961 0.967

Sensitivity 0.976 0.985

PPV 0.947 0.949

Specificity 0.947 0.913

Feedback prediction

Accuracy 0.941 0.941

By 1-s majority voting (n = 309) (n = 500)

Ascites prediction

Accuracy 0.997 0.998

PPV 0.993 0.996

Sensitivity 1 1

Specificity 0.994 0.996

PPV, Positive predictive value.

DISCUSSION

In our study, we detected abdominal free fluid and predicted
the location of the Morison pouch using only a single
frame of the ultrasound image. ResNet50-V2 was able to
detect the abdominal free fluid of the Morison pouch with
accuracy, sensitivity, and specificity values of 96.1, 97.6, and
94.7%, respectively, in the validation set and 96.7, 98.5, and
91.3%, respectively, in the test set. The result of ResNet50-V2
performance was non-inferior to the EM resident interpretation.
By using the majority-voting scheme for consecutive images
in a 1-s window, the DL model was able to reach 100%

sensitivity, and the specificity was significantly better than the EM
resident interpretation. Previous studies demonstrated that FAST
examinations with human interpretation for intra-peritoneal
free-fluid detection have a sensitivity ranging from 61.3 to 100%
and specificity ranging from 94 to 100% for blunt abdominal
trauma (17–20). The sensitivity of the ultrasound examination
(28–100%) was considered insufficient for it to be used alone
in determining operative intervention for penetrating torso
trauma (21–23). Although initially developed for the evaluation
of trauma patients, FAST examination can also be used in non-
trauma patients to narrow down differential diagnoses, change
patient disposition, expedite consultation, avoid unnecessary
procedures, and alter imaging needs (24). However, studies of
sensitivity and specificity are limited owing to the large variety
of etiologies in non-trauma patients.

Applications of DL in medical ultrasound analysis include
anatomical applications, diagnosis tasks (classification,
segmentation, detection), and clinical tasks (computer-aided
diagnosis, biometric measurements, image-guided interventions)
(8). DL models have been used to detect different anatomical
structures of human organs in medical analyses, including the
brain (9), heart (10), thyroid (11), breast (12), liver (13), and
prostate (14). Recognized as one of the most popular deep
architectures, the convolution neural network (CNN) has been
applied to various tasks, such as image classification, object
detection, and target segmentation (9, 25). Our study shows
that a computer program developed incorporating ResNet50-V2
could aid in the detection of free fluids in FAST examination,
with the results obtained on par with the interpretations of a
medical doctor.

In various ultrasound protocols, performance plateaus occur
at different points for image interpretation and quality (26).
In addition, physicians acquire the ability to interpret FAST
images quicker than they acquire the technical skills required
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TABLE 3 | Comparison of resident doctor and model performance for ascites interpretation.

Resident physician (n=10) ResNet50-V2 model P value

By frame (n = 5,456)

Accuracy 0.966 0.967 0.570

Sensitivity 0.989 0.985

Specificity 0.943 0.913

By 1-s majority voting (n = 500)

Accuracy 0.986 0.998 0.033*

Sensitivity 1 1

Specificity 0.972 0.996

*p < 0.05.

to perform the examination (27). Focusing on the acquisition
of images for FAST examination, Jang et al. (27) found that
the ultrasound technique continued to improve even after 75
examinations. Blehar et al. demonstrated that the learning curve
in image quality for FAST examination improved even after
200 examinations (26). In our model, the accuracy of locating
Morison’s pouch reached 94.05 and 91.35% in the validation and
test sets, respectively. The automated feedback and instruction
system is believed to assist inexperienced sonographers improve
their interpretation ability and image acquisition skills.

Free-fluid detection by ultrasound could be used in both
trauma and non-trauma patients and could have a broad impact
on patient care across a wide range of medical settings (28). In
addition, AI model-assisted real-time ultrasound could enhance
the diagnostic performance of FAST when used by paramedics
or during an emergency. Using FAST examination in the pre-
hospital stage can significantly improve the outcomes of blunt
abdominal trauma (5). However, to obtain the benefits of
AI model-assisted FAST in-patient care, additional large-scale
studies should assess the performance of free-fluid detection for
different trauma and non-trauma etiologies.

The limitations in our study are discussed below. First, we
trained using only perihepatic views in our study. In certain
conditions, a single Morison’s pouch view was employed because
the right upper quadrant was considered the primary area
where free fluid is initially seen and the most sensitive for
free-fluid assessment (29, 30). However, a multiple-view FAST
examination was recommended to increase sensitivity (31).
Second, we tested our model with a single-frame ultrasound
image and 1-s majority voting, which may have led to variable
sensitivity and specificity. The purpose of free-fluid detection
should be for identification using serial video clips. Third,
the development of automated feedback and instructions by
AI model-assisted free-fluid detection remains a challenge. For
the classification of qualified or non-qualified view, the binary
classifications in our study potentially caused a loss of continuous
information. The feasibility of a real-time AI model-assisted
system should be tested in future studies, including ultrasound
acquisition software, real-time feedback speed, and indication
for proper probe location. Finally, the performance of free-
fluid detection for different etiologies should also be considered.

Future studies should also include a separate assessment of the
test performance for different free fluid etiologies, such as blunt
trauma, penetrating trauma, and various non-trauma etiologies.

AI model-assisted real-time ultrasound could enhance the
diagnostic performance of FAST when used by paramedics or
during an emergency. The DL algorithmwith ResNet50-V2, used
in our study, was able to detect free fluid in Morison’s pouch
with accuracies reaching 94.05 and 91.35% in the validation and
test sets, respectively. By using the majority-voting scheme for
consecutive images in a 1-s window, the DL model was able to
reach 100% sensitivity, and the specificity was significantly better
than the EM resident interpretation. In the future, AI-assisted
ultrasound will minimize operator-dependent imaging modality
and alter medical therapy and disposition in critical care units
and prehospital care.
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Background: There is wide heterogeneity in sepsis in causative pathogens, host

response, organ dysfunction, and outcomes. Clinical and biologic phenotypes of sepsis

are proposed, but the role of pathogen data on sepsis classification is unknown.

Methods: We conducted a secondary analysis of the Recombinant Human Activated

Protein C (rhAPC) Worldwide Evaluation in Severe Sepsis (PROWESS) Study. We used

latent class analysis (LCA) to identify sepsis phenotypes using, (i) only clinical variables

(“host model”) and, (ii) combining clinical with microbiology variables (e.g., site of

infection, culture-derived pathogen type, and anti-microbial resistance characteristics,

“host-pathogen model”). We describe clinical characteristics, serum biomarkers, and

outcomes of host and host-pathogen models. We tested the treatment effects of rhAPC

by phenotype using Kaplan-Meier curves.

Results: Among 1,690 subjects with severe sepsis, latent class modeling derived

a 4-class host model and a 4-class host-pathogen model. In the host model, alpha

type (N = 327, 19%) was younger and had less shock; beta type (N=518, 31%) was

older with more comorbidities; gamma type (N = 532, 32%) had more pulmonary

dysfunction; delta type (N = 313, 19%) had more liver, renal and hematologic

dysfunction and shock. After the addition of microbiologic variables, 772 (46%)

patients changed phenotype membership, and the median probability of phenotype

membership increased from 0.95 to 0.97 (P < 0.01). When microbiology data were

added, the contribution of individual variables to phenotypes showed greater change

for beta and gamma types. In beta type, the proportion of abdominal infections

(from 20 to 40%) increased, while gamma type patients had an increased rate

of lung infections (from 50 to 78%) with worsening pulmonary function. Markers

of coagulation such as d-dimer and plasminogen activator inhibitor (PAI)-1 were

greater in the beta type and lower in the gamma type. The 28 day mortality was

significantly different for individual phenotypes in host and host-pathogen models (both

P<0.01). The treatment effect of rhAPC obviously changed in gamma type when

microbiology data were added (P-values of log rank test changed from 0.047 to 0.780).

29

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.775511
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.775511&domain=pdf&date_stamp=2021-11-05
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhaohuiying109@sina.com
https://doi.org/10.3389/fmed.2021.775511
https://www.frontiersin.org/articles/10.3389/fmed.2021.775511/full


Zhao et al. Revising Sepsis Phenotypes Using Microbiology

Conclusions: Sepsis host phenotype assignment was significantly modified when

microbiology data were added to clinical variables, increasing cluster cohesiveness

and homogeneity.

Keywords: phenotype, latent class analysis, host, pathogen, sepsis

INTRODUCTION

There are more than 49 million worldwide cases of sepsis
annually (1). Despite prompt recognition and treatment, sepsis
remains a leading cause of mortality (2, 3). Many trials of
candidate sepsis treatments failed to find beneficial effects, in
part due to the wide heterogeneity in causative pathogens, host
response, and patterns of organ dysfunction. A more precise
treatment strategy is needed to move beyond a “one-size-fits-all”
bundle (4–7).

Recent work proposed clinical and biologic phenotypes of
sepsis that may identify groups for targeted treatment and
enrichment strategies in clinical trials (8–17). These studies focus
mainly on clinical data in the electronic health record (EHR),
protein biomarkers, or molecular data. They do not typically
incorporate microbiology or pathogen data as these features are
(i) difficult to measure and adjudicate, and (ii) not available at
the point-of-care. Despite the inclusion of causative pathogen
in leading conceptual models of sepsis (18), its role in sepsis
classification using machine learning is unknown.

To address this challenge, we performed a secondary analysis
of the Recombinant Human Activated Protein C (rhAPC)
Worldwide Evaluation in Severe Sepsis (PROWESS) Study, a
large multicenter randomized clinical trial of sepsis patients
unique for its detailed microbiology data (19). We aim to
determine the effect of adding microbiology data to clinical
sepsis phenotypes.

METHODS

The project was approved by the University of Pittsburgh
institutional review board and conducted under data use
agreements (PRO15110441 and PRO17120315). The original
study was approved by the institutional review board at each
site, and written informed consent was obtained. The informed
consent specified that the data collected will be used for
further scientific studies in addition to the original clinical
trial (19).

Data and Study Population
We conducted a secondary analysis of the PROWESS study,
which enrolled 1,690 patients with severe sepsis at 164 centers
in 11 countries from July 1998 to June 2000. Severe sepsis was
defined as a known or suspected infection, 3 or more signs of
systemic inflammation, and the sepsis-induced dysfunction of at
least one organ or system. Patients were enrolled within 24 h after
they met the criteria of severe sepsis. Patients were randomly
assigned 1:1 to receive drotrecogin alfa or placebo at each center
within 24 h of meeting inclusion criteria (19).

Clinical and Microbiology Variables for

Phenotyping
We selected 24 clinical variables prior to randomization and 3
microbiological variables for analysis. We used clinical variables
previously mapped to sepsis phenotypes (15). They included
demographic variables (e.g., age, sex, Elixhauser comorbidities),
vital signs [e.g., heart rate, respiratory rate, Glasgow coma
scale (GCS) score, systolic blood pressure (SBP), temperature,
and oxygen saturation (SaO2)], markers of inflammation [e.g.,
white blood cell count (WBC), premature neutrophil count
(“bands”)], markers of organ dysfunction or injury [e.g., alanine
aminotransferase (ALT), aspartate aminotransferase (AST), total
bilirubin, blood urea nitrogen (BUN), creatinine, partial pressure
of oxygen (PaO2), platelets, and prothrombin time]and serum
glucose, sodium, hemoglobin, chloride, and albumin.

The microbiological variables in PROWESS included the
site of infection (e.g., bloodstream, central nervous system,
genitourinary, abdominal, lung, and others), type of pathogen
identified from a positive culture (e.g., mixed, fungus, gram
negative, gram positive, and organism negative), and drug
resistance (one or more drug resistance vs. no drug resistance).

Biomarkers, Clinical Outcomes, and

Treatment Effects
After phenotypes were assigned, we studied 14 serum biomarkers
measured at baseline prior to randomization. They included
inflammatory biomarkers [e.g., interleukin (IL)-1b, IL-6, IL-
8, IL-10, and tumor necrosis factor (TNF)] and coagulation
biomarkers [e.g., antithrombin, d-dimer, factor V, plasminogen
activator inhibitor (PAI)-1, plasminogen activity, protein C
activity, protein S activity, prothrombin fragment 1–2, and
thrombin-antithrombin (TAT) complex].

The primary outcome was 28 day mortality. Secondary
outcomes were 90 day mortality and 180 day mortality.

Statistical Methods
To derive phenotypes, we first explored candidate variable
distributions, missingness (Supplementary Table 1), and
correlation. We applied log transformations to non-normal data.
We handled missing data by using multiple imputations by
chained equations (MICE) (20). We included all covariates in
the imputation procedure, and modeled variables using logistic,
linear, multinomial, or ordinal regression, as appropriate.
We evaluated distributions of clustering variables before and
after imputation (Supplementary Table 2), and correlation of
variables using rank order statistics (Supplementary Figure 1).

We used latent class analysis (LCA) to derive host (24 clinical
variables) and host-pathogen (24 clinical plus 3 microbiological
variables) phenotypes (21). We determined the optimal number
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TABLE 1 | Characteristics of the host model phenotypes.

Characteristic All patients α-type β-type γ-type δ-type P-value*

No. of patients (%) 1,690 327 (19.4%) 518 (30.7%) 532 (31.5%) 313 (18.5%)

Age, median [IQR], years 64 [49–74] 44 [34–55] 71 [63–77] 65 [52–74] 59 [46–73] <0.01

Gender, no. (%) 0.25

Male 964 (57%) 174 (53%) 310 (60%) 307 (58%) 173 (55%)

Female 726 (43%) 153 (47%) 208 (40%) 225 (42%) 140 (45%)

Elixhauser Comorbidities,

median [IQR]

1 [0–2] 0 [0–1] 2 [1–3] 1 [0–2] 1 [0–2] <0.01

Inflammation

Premature neutrophil count

(bands), median [IQR], %

1.1 [0.5–2.6] 0.8 [0.3–1.4] 1.1 [0.6–2.2] 1.3 [0.5–3.5] 1.2 [0.4–2.7] <0.01

Temperature, median [IQR], ◦C 38.6 [37.6–39.3] 39.0 [38.5–39.5] 38.1 [35.9–38.9] 38.7 [37.7–39.4] 38.6 [37.0–39.6] <0.01

White blood cell count, median

[IQR], ×109/L

14 [9–20] 14 [9–18] 15 [10–21] 13 [7–21] 15 [8–22] <0.01

Pulmonary

Oxygen saturation, median [IQR],

%

95 [90–97] 94 [88–97] 96 [92–98] 94 [90–96] 95 [89–98] <0.01

Partial pressure of oxygen,

arterial, median [IQR], mmHg

76 [62–101] 71 [55–92] 84 [65–125] 71 [62–82] 90 [63–132] <0.01

Respiratory rate, median [IQR],

breaths/min

31 [23–40] 32 [24–40] 28 [19–35] 32 [24–40] 32 [24–40] <0.01

Cardiovascular or Hemodynamic

Heart rate, median [IQR],

beats/min

130 [115–147] 133 [120–148] 122 [105–140] 136 [123–150] 133 [115–150] <0.01

Systolic blood pressure, median

[IQR], mmHg

80 [70–95] 90 [80–110] 85 [69–103] 78 [68–86] 77 [65–92] <0.01

Renal

Blood urea nitrogen, median

[IQR], mg/dL

10 [6–15] 5 [4–7] 11 [7–16] 11 [8–16] 14 [10–20] <0.01

Creatinine, median [IQR], mg/dL 1.5 [1.0–2.3] 0.9 [0.7–1.1] 1.4 [1.0–2.1] 1.8 [1.3–2.5] 2.3 [1.6–3.4] <0.01

Hepatic

Alanine transaminase, median

[IQR], U/L

28 [16–55] 26 [15–43] 20 [13–31] 27.5 [17–50] 130 [50–395] <0.01

Aspartate transaminase, median

[IQR], U/L

43 [24–93] 37 [22–68] 28 [20–43] 47 [28–85] 246 [102–616] <0.01

Bilirubin, median [IQR], mg/dL 0.7 [0.4–1.3] 0.7 [0.4–1.3] 0.5 [0.3–0.9] 0.8 [0.5–1.5] 1.0 [0.6–2.2] <0.01

Hematologic

Hemoglobin, median [IQR], g/dL 11 [9–12] 11 [10–12] 10 [9–12] 11 [9–12] 11 [10–12] 0.02

Platelets, median [IQR], ×109/L 168 [105–240] 193 [140–256] 205 [147–290] 135 [90–199] 129 [71–200] <0.01

Prothrombin time, median [IQR],

secs

19 [17–22] 17 [16–19] 18 [16–20] 20 [18–24] 22 [18–30] <0.01

Other

Albumin, median [IQR], g/dL 2.0 [1.6–2.4] 2.2 [1.7–2.6] 2.0 [1.6–2.5] 1.9 [1.5−2.3] 2.0 [1.5–2.5] <0.01

Chloride, median [IQR], mEq/L 106 [101–111] 105 [102–110] 106 [100–111] 107 [103–112] 105 [100–111] <0.01

Glasgow Coma Scale score,

median [IQR]

14 [11–15] 15 [12–15] 14 [9–15] 15 [12–15] 14 [10–15] <0.01

Glucose, median [IQR], mg/dL 146 [115–196] 133 [112–162] 163 [124–227] 144 [112–198.5] 144 [108–196] <0.01

Sodium, median [IQR], mEp/L 139 [135–143] 139 [135–142] 139 [135–143] 139 [136–142] 139 [135–144] 0.34

Outcomes

28 day mortality, no. (%) 469 (28%) 29 (9%) 157 (30%) 152 (29%) 131 (42%) <0.01

90 day mortality, no. (%) 593 (35%) 43 (13%) 210 (41%) 188 (35%) 152 (49%) <0.01

180 day mortality, no. (%) 638 (38%) 51 (16%) 233 (45%) 198 (37%) 156 (50%) <0.01

*Kruskal-Wallis used for continuous and or chi-square for categorical comparisons, across four phenotypes. IQR, interquartile range.
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FIGURE 1 | Visualization of phenotype assignments and comparison of clinical variables that contribute to phenotypes. (A) Visualization of phenotype assignments in

host, (B) host-pathogen model using t-distributed stochastic neighbor embedding (t-SNE) plot. Green, purple, red, and blue dots represent α-type, β-type, γ-type and

δ-type, respectively. Phenotype members have a similar frequency and distribution across models. (C) Differences in standardized mean value of each variable ranked

from maximum positive to negative separation (x-axis). Dark lines correspond to host model. Light lines correspond to same comparisons but from host-pathogen

model. Plot compares β-type (purple) to α-type (green). Variables ranked on the left x-axis are greater in β-type than α-type (e.g., age, BUN, and comorbidity) while

those on the right x-axis are lower in β-type than α-type (e.g., temperature, heart rate). (D) Comparison between γ-type (red) and α-type (green). (E) Comparison

between δ-type (blue) and α-type (green).

FIGURE 2 | Alluvial plot showing the change of membership from host model to host-pathogen model. (A) The change of membership from α-type of host model

(green, left column, N = 327) to host-pathogen model (right column), (B) from β-type of host model (purple, left column, N = 518) to host-pathogen model (right

column), (C) from γ-type of host model (red, left column, N = 532) to host-pathogen model (right column), (D) from δ-type of host model (blue, left column, N = 313)

to host-pathogen model (right column).
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of phenotypes using the minimum Bayesian information criteria
(BIC), class size, median probabilities of group membership,
entropy, and clinical features of groups. For each patient, we used
LCA to produce a posterior probability describing the likelihood
of the patient belonging to the phenotype, with posterior
probability ranges from 0 to 1. Patients were assigned to the
phenotype for which they had the highest posterior probability.
We estimated models ranging from two to seven phenotypes
(Supplementary Table 3). We determined the optimal number
of clusters using a combination of criteria, (i) a smaller BIC, (ii)
a higher Entropy, (iii) adequate sample size within cluster, (iv)
higher median posterior probabilities of group membership, and
(v) clinical characteristics of the clusters. We illustrated the host
and host-pathogen models in 2 ways: (i) t-distributed stochastic
neighbor embedding (t-SNE) plots (which show the frequency
and distribution of phenotype members) and (ii) alluvial plots
(which show the change of membership between host and host-
pathogenmodels by phenotypes).We compared the contribution
of continuous variables to phenotypes in both host and host-
pathogen models using the differences in standardized mean
value of each variable.

To quantify the change in phenotypes after addition of
microbiology, we measured the mean (SD) probabilities of
membership for the assigned group(s). We also compared the
proportion of patients in each group using chi square tests.
We tested for differences in 28, 90 and 180 day mortality
between phenotypes using chi square andKaplan-Meier curves to
illustrate differences in 28 day mortality. We tested the treatment

effects for rhAPC by phenotype using Kaplan-Meier curves of 28
day mortality. We conducted 2 sensitivity analyses, (i) excluding
variables with high missingness (missing >50%: hemoglobin and
premature neutrophil count [bands]) and (ii) using a 5-class
model as the optimal fit for the LCA. Analyses were performed
with Stata 15.1 (StataCorp, College Station, Texas), and R 3.4.1
(depmixS4 package for LCA; Rtsne package for making t-SNE
plots; alluvial package for making alluvial plots, Version: 0.1-2.
BojanowskiM and Edwards R; 2016. https://github.com/mbojan/
alluvial) with a significance threshold of <0.05 in 2-sided tests.

RESULTS

Patients
Among 1,690 subjects, the median age was 64 [IQR: 49–
74] years old, 964 (57%) patients were male, and median
Elixhauser comorbidity index was 1 [IQR: 0–2] (Table 1,
Supplementary Table 4). The primary infection site was lung
(54%), compared to abdominal (19%) or genitourinary (11%)
infections. A mixed pathogen infection (35%) was the most
common, compared to gram positive (22%) or gram negative
bacteria alone (16%).

Host Model
Using 24 clinical variables in the latent class analysis (host
model), we determined that a 4-class model was the optimal fit
[applied labels alpha (α), beta (β), gamma (γ), and delta (δ) types].
Entropy in all models was 0.75 or greater, and the BIC decreased

TABLE 2 | Example characteristics of β-type and γ-type in host and host-pathogen models.

Variable Host β-type Host-pathogen β-type Host γ-type Host-pathogen γ-type

No. of patients (%) 518 (31%) 519 (31%) 532 (32%) 374 (22%)

Clinical variable

Age, median [IQR] 71 [63–77] 69 [58–77] 65 [52–74] 70 [61–77]

Elixhauser comorbidity, median [IQR] 2 [1–3] 1 [1–2] 1 [0–2] 2 [1–3]

Heart rate, beats/min, median [IQR] 122 [105–140] 126 [110–144] 136 [123–150] 127 [112–145]

SBP, mmHg, median [IQR] 85 [69–103] 80 [70–92] 78 [68–86] 83 [69–103]

Bilirubin, mg/dL, median [IQR] 0.5 [0.3–0.9] 0.6 [0.4–1.1] 0.8 [0.5–1.5] 0.6 [0.3–0.9]

Glucose, mg/dL, median [IQR] 163 [124–227] 147 [117–198] 144 [112–199] 166 [127–227]

Oxygen saturation, %, median [IQR] 96 [92–98] 97 [94–98] 94 [90–96] 92 [85–95]

PaO2, mmHg, median [IQR] 84 [65–125] 92 [73–138] 71 [62–82] 64 [53–77]

Platelets, ×109/L, median [IQR] 205 [147–290] 175 [116–252] 135 [90–199] 205 [157–281]

Prothrombin time, s, median [IQR] 18 [16–20] 19 [17–23] 20 [18–24] 17 [15–19]

WBC Count, ×109/L, median [IQR] 15 [10–21] 13 [8–19] 13 [7–21] 16 [12–21]

Microbiological variable

Source

Bloodstream, no. (%) 17 (3.3%) 16 (3.1%) 27 (5.1%) 2 (0.5%)

Abdominal, no. (%) 102 (20%) 208 (40%) 120 (23%) 8 (2.1%)

Lung, no. (%) 293 (57%) 183 (35%) 268 (50%) 291 (78%)

Type

Mixed, no. (%) 188 (36%) 230 (44%) 183 (34%) 96 (26%)

Gram positive, no. (%) 87 (17%) 87 (17%) 130 (24%) 67 (18%)

Organism negative, no. (%) 128 (25%) 90 (17%) 109 (21%) 129 (35%)

Drug resistance, no. (%) 133 (32%) 198 (38%) 116 (28%) 64 (17%)

IQR, interquartile range; PaO2, partial pressure of oxygen; SBP, systolic blood pressure; WBC, white blood cell.
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FIGURE 3 | Comparison of median values of biomarkers between host and host-pathogen models across phenotypes. (A) Serum IL-6, (B) serum TNF-α, (C) serum

protein C activity, (D) serum protein S activity, (E) serum D-dimer, and (F) serum plasminogen activator inhibitor-1 (PAI-1). Gray lines represent host model, and black

lines represent host-pathogen model. Green, purple, red, and blue dots represent α-type, β-type, γ-type and δ-type, respectively.

as class number increased from 2 to 4. The median probability
of group membership was high (>95%, Supplementary Table 3,
Supplementary Figure 2). Phenotypes ranged in size from 19 to
32% of the cohort, and differed broadly in clinical characteristics
(Table 1, Figure 1). Consistent with prior data (15), patients
with the α-type (19%) were younger and had less shock,
β-type (31%) were older and had greater comorbidity, γ-
type (32%) had more pulmonary dysfunction, and δ-type
(19%) had more liver, renal, and hematologic dysfunction
and shock.

Host Pathogen Model
When 3 microbiological variables were included in the latent
class analysis (host-pathogen model), a 4-class model again
demonstrated optimal fit (also applied labels α, β, γ, and δ

types) (Supplementary Table 3, Supplementary Figure 2). We
visualized patients using t-SNE plots (Figures 1A,B) and found
that the proportion of phenotype members was similar in host
and host-pathogen models. However, 772 of 1,690 (46%) patients
changed phenotypes, particularly the β (45%) and γ-types
(80%) (Figure 2, Supplementary Table 5). The host-pathogen
phenotypes had higher median membership probabilities than
host phenotypes alone (host: 0.95 vs. host-pathogen: 0.97, P <

0.01, Supplementary Table 5). Among patients who rearranged
phenotypes in the host-pathogen model, the initial host model

membership probability was lower than patients who did not
change (median 0.90 vs. 0.98, p < 0.01, Supplementary Table 6).

The contribution of individual variables to phenotypes are
ranked before and after including microbiology data. These plots
show little change for δ- and α-types, but greater inconsistency
for the β- and γ-type variables (Figures 1D–F). For example,
among β-type patients, the proportion of abdominal infections
(from 20 to 40%) and mixed-type infections (from 36 to 44%)
increased, while the proportion of lung infections decreased
from 57 to 35%; γ-type patients had an increased rate of
lung infections (from 50 to 78%) with worsening pulmonary
function (PaO2 decreased from 71 to 64 mmHg) (Tables 1, 2,
Supplementary Tables 4, 7, 8).

Correlation With Baseline Biomarkers and

28-Day Mortality
Comparing host and host-pathogen models, 13 of 14
biomarkers were significantly different across phenotypes
when adding microbiology data (excluding only IL-1b,
Supplementary Tables 9, 10). For example, in the β-type,
the median level of PAI-1 increased from 25 to 35 AU/mL, and
d-dimer increased from 3.2 to 4.2µg/mL; while PAI-1 (from 41
to 24 AU/mL) and d-dimer (from 4.7 to 3.0µg/mL) decreased
in the γ-type (Figure 3). The cumulative 28 day mortality
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FIGURE 4 | 28 day mortality by phenotypes using Kaplan-Meier curves. (A) Cumulative survival at 28 days by phenotypes using Kaplan-Meier curves in host model,

and (B) host-pathogen model. Green, purple, red, and blue lines represent α-type, β-type, γ-type and δ-type, respectively.

probability was significantly different for individual phenotypes
in host and host-pathogen models (both log-rank P < 0.01),
but was similar between models. In both models, 90 day and
180 day mortality were also significantly different for individual
phenotypes (all chi-square P < 0.01), but were similar between
models (Figure 4; Table 1, Supplemental Tables 4, 7).

Treatment Effect for rhAPC by Phenotype

After Including Microbiology Variables
In host model, rhAPC significantly decreased the cumulative 28
day mortality probability in gamma type (P = 0.047 by log rank
test), while when microbiology variables were added, the 28 day
mortality was similar between rhAPC and placebo group (P =

0.780 by log rank test) (Figure 5).

Sensitivity Analysis
To understand the robustness of these results, we derived
phenotypes excluding variables with high missingness and
found that a 4-class model remained optimal for both host and
host-pathogen models (Supplementary Figure 3). In addition,
these models had similar frequency and characteristics to
phenotypes as the primary analysis (Supplementary Table 11,
Supplementary Figure 3). For example, 713 (42%) patients
were rearranged when microbiological variables were
added, with highest rates of change in the β and γ-type
(Supplementary Figure 4). We also explored a 5-class model
and found that microbiological variables also rearranged 632
(37%) of patients, increased the probability of membership, and
changed variable characteristics in clinically meaningful way
(Supplementary Tables 12, 13, Supplementary Figure 5).

DISCUSSION

In this proof-of-concept analysis, the addition of microbiological
variables to host sepsis phenotypes led to meaningful
rearrangement of patients, particularly the beta and gamma
types. These changes did not modify short or long-term
outcomes, but changed the treatment effect for rhAPC in gamma
type. This work suggests that pathogen data may have an
under-recognized role in sepsis phenotype classification using
machine learning methods.

For decades, sepsis has been characterized by the offending
pathogen, such as Neisseria meningitis or pneumococcal
pneumonia. However, these labels alone do not capture the
combined complexity of the host response, tolerance, or
damage in sepsis (22). Recent work using machine learning to
subtype sepsis did not include pathogen data due to practical
measurement challenges during emergency care (8–11, 15,
23). Preliminary work in the PROWESS-SHOCK trial began
to use microbiology together with clinical data to propose
subphenotypes of septic shock (17). We extend this work by
investigating the question, how much does microbiology add
beyond that of clinical data alone? This is a key knowledge gap
that will guide the embedding of sepsis phenotypes into trials and
clinical practice.

We found that the addition of microbiological variables to
host phenotypes led to meaningful rearrangement of sepsis
patients. A large proportion, particularly of the gamma type, were
assigned to a different phenotype. The host pathogen model also
appeared to statistically increase in probability of assignment.
These changes were not, however, accompanied by changes
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FIGURE 5 | Comparison of the treatments effects for Recombinant Human Activated Protein C by phenotype. (A) The comparison of cumulative survival at 28 days

using Kaplan-Meier curves between rhAPC group and placebo group in α-type of both host and host-pathogen model, (B) β-type, (C) γ-type, and (D) δ-type. Dark

lines correspond to rhAPC group and light lines correspond to placebo group. Green, purple, red, and blue dots represent α-type, β-type, γ-type and δ-type,

respectively.

in patient outcomes by phenotype. We also found that the
addition of pathogen data could obviously change the treatment
effect for rhAPC in gamma phenotype. It further elaborated the
importance of pathogen data to sepsis phenotyping. As a proof of
concept analysis, many important steps follow, (i) to reproduce
in larger, generalizable cohort; (ii) determine if other treatment
effects, perhaps time to antimicrobials or source control, are
modified by pathogen informed subtypes.

A challenge to the incorporation of microbiological data into
sepsis phenotypes is that these parameters are not routinely
available during emergency care or at the time of typical
enrollment in clinical trials. Several rapid approaches are under
study to identify infection type (e.g., bacterial, viral), or drug
resistance. These include multiplex real-time polymerase chain
reaction (PCR) systems, next-generation sequencing (NGS) (24–
26), and those probing the pathogen specific host response
(27, 28). These approaches have complex workflow, a need for
rigorous quality control, and a yet-to-be-determined optimal
“clinical moment” in bedside care.

This study has several limitations. First, we performed a proof
of concept in a single trial with small sample, and generalizability
requires further study. Second, the microbiology data were
derived from the culture results of the database of PROWESS
which could not accurately and completely distinguish the
colonization, positive cultured infection, and negative cultured
infection. In addition, due to the low incidence, we did

not identify multidrug-resistant (MDR) and extensively drug-
resistant (XDR) bacteria in the drug resistance variables, these
two variables have greater clinical application value. Third, most
pathogens were bacteria, with low rates of viral and fungal
infection. Additional data is needed to parse through the role
of specific viral pathogens to phenotypes. Fourth, missing data
were common. Although we used multiple imputation, bias
may be introduced for those variables with high missingness.
To address this limitation, we excluded variables with high
missingness (>50%) in sensitivity analyses and found similar
results. Fifth, we compared mortality and treatment effects of
rhAPC between host and host-pathogen models using Kaplan-
Meier curves which may lead to non-rigorous results. Further
need to verify these effects using stratified proportional hazards
model in larger sample study. Sixth, the choice of optimal number
of clusters is semi-subjective and different statistical approaches
are available to determine cluster number. Informed by prior
work in SENECA (15), we focused on 4 class models. However,
we explored a 5-class model in sensitivity analyses and found
similar trends to those observed in the primary analysis.

CONCLUSION

Sepsis host phenotype assignment was significantly modified
when microbiology data were added to clinical variables,
increasing cluster cohesiveness and homogeneity. The clinical
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significance of these changes and importance for treatment
effects in clinical trials remains uncertain.
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We propose a novel method that uses associative classification and odds ratios to predict

in-hospital mortality in emergency and critical care. Manual mortality risk scores have

previously been used to assess the care needed for each patient and their need for

palliative measures. Automated approaches allow providers to get a quick and objective

estimation based on electronic health records. We use association rule mining to find

relevant patterns in the dataset. The odds ratio is used instead of classical association

rule mining metrics as a quality measure to analyze association instead of frequency. The

resulting measures are used to estimate the in-hospital mortality risk. We compare two

prediction models: one minimal model with socio-demographic factors that are available

at the time of admission and can be provided by the patients themselves, namely gender,

ethnicity, type of insurance, language, andmarital status, and a full model that additionally

includes clinical information like diagnoses, medication, and procedures. The method

was tested and validated on MIMIC-IV, a publicly available clinical dataset. The minimal

prediction model achieved an area under the receiver operating characteristic curve value

of 0.69, while the full prediction model achieved a value of 0.98. The models serve

different purposes. The minimal model can be used as a first risk assessment based on

patient-reported information. The full model expands on this and provides an updated

risk assessment each time a new variable occurs in the clinical case. In addition, the rules

in the models allow us to analyze the dataset based on data-backed rules. We provide

several examples of interesting rules, including rules that hint at errors in the underlying

data, rules that correspond to existing epidemiological research, and rules that were

previously unknown and can serve as starting points for future studies.

Keywords: in-hospital mortality, critical care, odds ratio, associative classification, machine learning,

artificial intelligence
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1. INTRODUCTION

The term in-hospital mortality defines the death of a patient
during their stay at the hospital. Especially in emergency and
critical care, many patients die in the hospital. While not all of
these deaths can be prevented, early knowledge of a patient’s in-
hospital mortality risk can be used to assess the patient’s status
and necessary adjustments to this patient’s care, reducing missed
care and decreasing mortality rates (1). Apart from individual
changes like the start of palliative care, organizational changes
like a different allocation of nurse time or other resources can
be informed by such risk scores. In-hospital mortality rates have
also been used in the assessment of hospital care quality, as is the
case in the United Kingdom (2).

In-hospital mortality risks are commonly determined
manually (3). Manual scoring systems are built upon expert
knowledge and have gone through significant development
time. Another approach is Machine Learning (ML), which uses
data and statistical methods to build a predictive model (4).
Several methods for ML-based methods have been developed
in recent years (5–7). While these approaches offer data-based
evidence that is independent of expert knowledge, they face
two challenges.

First, they often lack interpretability. As critical care is a life-
and-death situation, providers need to be able to understand
why a patient’s status is assessed the way it is. Interpretability in
Machine Learning is a broad field. Two distinctions to be made
are local vs. global interpretability, i.e., whether the interpretation
concerns one observation or the whole population, and model-
specific vs. model-agnostic interpretability, i.e., whether the
interpretation comes from within a specific model or is built
on top of an existing model (8). We consider global model-
specific interpretability. This offers two decisive advantages. First,
global interpretability allows us to not only make predictions
based on data, but also to explore the complex and heterogeneous
data underlying our prediction model. Second, model-specific
interpretability allows us to explain the reasoning behind our
model and its inner workings to providers. Interpretability in in-
hospital mortality risk estimation has previously been discussed
(6, 9) and a trade-off between a predictionmodel’s interpretability
and predictive performance has been identified. Among the
commonly used algorithms, Decision Trees (10) often offer high
predictive performance while being highly interpretable (6).

The second challenge arises from the high number of possible
variables in in-hospital mortality risk estimation. As critical
care is complex, many variables can potentially play a role in
estimating a patient’s in-hospital mortality risk. This renders
many common ML algorithms challenging to use and increases
models’ complexity, further hindering interpretability. Manual
methods use expert knowledge from years of scientific research
to identify which variables to include. Variables that were
previously not considered but are readily available could play
a role in in-hospital mortality risk estimation because they are
highly correlated.

Association rulemining (ARM) is often used to detect patterns
in high-dimensional data (11). This data miningmethod analyzes
a given dataset for rules of the form “A ⇒ B,” where A

and B are sets of items, which in our case describe variable-
value pairs. Such a rule denotes that in an observation in the
dataset in which the items in A occur, the items in B will also
likely occur. This algorithm produces a set of rules that fulfill
pre-configured quality constraints. In the neighboring field of
associative classification (AC), this class of algorithms is used to
mine rules that help in the classification task at hand (12). AC
algorithms first mine rules in which the right-hand side is the
outcome of interest and then build a classifier based on these
rules, e.g., by using the best rule that applies to an observation
or by aggregating all applying rules (12). This leads to predictive
models that are easy to interpret and offer a human-readable,
model-specific, and global interpretation. Additionally, the rules
in the model can be used to analyze the dataset itself due to their
statistical nature. This helps detect interesting patterns in the data
that correspond to correlations between clinical variables and the
outcome of interest.

AC methods have previously been used in various fields of
healthcare, including the prediction of outcomes and adverse
events (13–16), the prediction of diseases and wellness (17–20),
as well as biochemistry and genetics (21–25). AC methods have
also been used in the field of in-hospital mortality risk estimation
using the results of 12 lab tests (26). This shows the feasibility of
AC methods in in-hospital mortality risk estimation.

We aim to improve automated, ML-based in-hospital
mortality risk estimation methods by including heterogeneous
variables as well as more variables in general. ARMmethods, and
thus also AC models, can incorporate large numbers of variables
of different types, which is why we analyze the feasibility of AC
models for in-hospital mortality risk estimation. We propose to
use AC models to estimate the risk for in-hospital mortality risk
estimation in critical and intensive care. The goal of the present
study is 1) to analyze whether this approach is feasible and 2)
which kind of rules are found to by such methods and which
variables play a role in the prediction. This expands our previous
work (27) in major ways. First, we present two models to analyze
the temporal evolution of the prediction. Second, we expand our
analysis of the resulting rules. Third, we compare our models to
Decision Tree models. Lastly, we add more experiments to gain
more insight into the model size.

2. MATERIALS AND METHODS

The method presented in this section was developed in the
programming language C#. The overall concept of the proposed
method, as well as a comparison to Decision Trees, can be seen
in Figure 1. Based on a publicly available clinical dataset, we
first mine association rules from the data. The resulting rules
are then combined into a prediction model that can be applied
to previously unseen cases. Finally, we test and validate the
proposed method using experiments.

2.1. Dataset
We used data from the MIMIC-IV project, version 0.4 (28).
MIMIC-IV is a collection of around 525,000 emergency
department and intensive care unit cases, collected between
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FIGURE 1 | The overall concept of the method in comparison to decision trees.

TABLE 1 | A list of all variables from MIMIC-IV that were used in this study.

Variable type Minimal model? Description # variables

Diagnosis Diagnoses (coded as ICD) 86,751

Ethnicity X White, Asian, Black/African American etc. 8

Gender X Binary: male/female 2

Insurance type X Medicare, Medicaid, or Other 3

Language X Binary: English/other 2

Marital status X Single, married, divorced, widowed, or missing 5

Prescription Drugs described to a patient 10,259

Procedure Procedures (coded as ICD) 82,763

Service Clinical services: neonatal, psychological etc. 21

Ward Clinical wards: intensive care unit, surgery etc. 43

Overall 5 of 10 179,857

The table includes the name of the variable type, whether it is part of the minimal model, a description, as well as the number of variables. ICD International Classification of Diseases.

2008 and 2019 at the Beth Israel Deaconess Medical Center
in Boston, Massachusetts, United States of America. Recorded
variables include diagnoses, procedures, drug prescriptions,
socio-demographic factors like gender, insurance type, and
marital status, and organizational information like diagnosis-
related groups (DRGs), wards, and services.

Table 1 lists all types of variables used in this study. We
included all categorical information that can be assumed to be
available inmost clinical contexts. This excludes rapidly changing
information like vital parameters as well as textual notes. Not all
of this information is available at the beginning of a clinical case.
Some information, like diagnoses, is recorded later in the case.
We thus divided the variable types into two classes. In the first
class, only variables that are available at the beginning of the cases
are considered. These will be used to build a minimal model to
estimate the in-hospital mortality risk right at the beginning of

the case. The second class contains all variable types and is used
to build a full model based on all available information.

All cases have been transformed into a set of items to enable
ARM. This was done by adding all variables that occurred during
a case to the case’s itemset. We did not exclude any case in order
to get a general in-hospital mortality risk estimation model.

This results in 179,857 clinical variables and 524,520 cases, in
9,369 (1.79%) of which the patient died during their stay in the
hospital. This in-hospital mortality rate is comparable to similar
populations like England (2).

2.2. Rule Mining
Due to the presence of rare diseases or smaller patient subgroups,
infrequent rules can be of interest in healthcare. This is why we
do not use the classical ARMmetrics like support and confidence
(11) that focus on frequency, but instead epidemiological metrics
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TABLE 2 | A fictional contingency table to show how the OR is calculated.

Died Survived

Items in A occurred a = 100 b = 200

Items in A did not occur c = 300 d = 400

that are widely used to measure associations between clinical
variables and outcomes. We use the odds ratio (OR) as the
primary metric to measure this association. Odds ratios have
previously been used in ARM in healthcare (13). Starting from
a contingency table like the one in Table 2, the OR can be
calculated as

OR =
ad

bc
=

100 · 400

200 · 300
=

4

6
= 0.6̄, (1)

indicating that there is a negative association between the items
inA and in-hospital mortality. The setA can contain one or more
items of one or more different types. This flexibility makes ARM
techniques easy to use with large, heterogeneous data. ORs range
from 0 to +∞. An OR of 1.0 denotes no classification, while an
OR ≤ 1.0 denotes a positive or negative association, respectively.
The higher (in the case OR > 1.0) or lower (OR < 1.0), the
stronger the association.

The mining process consists of two steps. In the first step, a
contingency table like the one in Table 2 is constructed for each
variable by counting the cases with and without the variable as
well as with and without in-hospital mortality. From this table,
the odds ratio is calculated according to Equation (1). Note that
this also includes ORs lower than 1.0, which denotes a negative
association. ORs of 0 or ∞ are discarded. This corresponds to
one of the cell entries a, b, c and d being 0.

In the second step, the model size is reduced by applying
a filter to the rules constructed in the first step. As an OR of
1.0 denotes no association, we use a statistical hypothesis test to
ensure that the calculated OR differs significantly from 1.0. The
normal approximation of the log odds ratio (29) is used. The null
hypothesis is “OR = 1.0,” and the test returns a two-sided p-
value. Only ORs with a p-value below a configurable value pmax

are kept. As this method results inmany tests on the same dataset,
Bonferroni correction (30) can be used. This procedure divides
pmax by the number of tests to be executed and uses this quotient
as the threshold value instead of pmax. All rules of the form
“variable ⇒ in-hospital mortality,” together with their OR, that
are left after this filtering step then form the prediction model.

2.3. Prediction
Given a new observation, the prediction model can be used to
estimate the corresponding patient’s in-hospital mortality risk
using the model’s rules. First, all the rules that apply to the model
are determined. The remaining rules do not play a role in this
observation’s prediction. The ORs of these applying rules are
then aggregated by calculating their average value. A decision
boundary δ is used to decide which average OR leads to the
prediction of high in-hospital mortality risk. If ORp is the average

OR of all rules that apply to observation p, then the prediction
model’s decision function f (p) is

f (p) =

{

high in-hospital mortality risk, if ORp ≥ δ,

low in-hospital mortality risk, if ORp < δ.
(2)

2.4. Experiments
The following hyperparameters were used. The p-value threshold
pmax decides which rules are kept in the filtering step.We used the
thresholds 10−n for n in {0, 1, . . . , 10} as well as the commonly
used value 0.05. All of these thresholds were used with and
without Bonferroni correction. Additionally, a value of 0 was
used to only keep ORs with a p-value of exactly 0. This was
possible due to the high number of observations. As computers
use finite representations of floating-point numbers, this should
be understood to be exactly zero after internal rounding. This
resulted in 13 · 2 = 26 experiments. Each experiment was
repeated ten times. Each time, the dataset was randomly split
into 90% training set and 10% test set. The primary metric of
interest was the area under the receiver operating characteristic
curve (AUC) (31). The AUC values were calculated using the
Accord Framework, version 3.8.0 (32). All metrics have been
calculated both on the training and the test set to analyze possible
overfitting. The experiments were executed for both the full
model and the minimal model.

3. RESULTS

The AUC values achieved by the proposed method can be seen
in Figure 2. For the full model, the mean AUC values on the test
set range from 0.977 to 0.980, which shows that the filtering step
has a minor impact on the predictive performance. With a range
of 0.687 to 0.690, this is also true for the minimal model. In both
cases, the difference to the training set is low, indicating that the
method does not suffer from overfitting. The largest deviation in
mean AUC values was 0.001 for the full model, pmax = 1 and no
Bonferroni correction.

Figure 3 shows the number of rules in both models. In the
minimal model, the number of rules is almost constant. This can
be explained by the small number of variables, as only 20 variables
are considered. In the full model, on the other hand, almost
180,000 variables can be included in the model. The number of
rules grows exponentially, with Bonferroni correction slowing
the growth down considerably. Still, the number of rules reaches
into the thousands. As such a large number of rules is hard to
handle, a strict p-value filter is advisable if interpretability is of
interest. As the performance stays almost the same with lower
pmax values, but the number of rules is considerably lower, we
can deduce that the statistical significance test is an effective filter
that greatly reduces the size of the prediction model without
compromising the predictive performance. Still, around 1,220
rules remain even for the full model with pmax = 0. As can be
seen in Figure 4, this is due to the complexity of the problem.
In-hospital mortality can be caused and influenced by many
factors. Per observation, however, only around 22 to 36 rules
apply when using the full model, depending on pmax and the use
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FIGURE 2 | The AUC values of the full model (top) and the minimal model (bottom). Error bars show one standard deviation, the color indicates whether the test or

the training set was used. The left panel is without, the right panel with Bonferroni correction. The x-axis shows different p-values used in the filtering step. The

leftmost dot denotes the p-value zero. The full model clearly outperforms the minimal model. Both models are very stable with respect to both the p-value threshold

and Bonferroni correction.

of Bonferroni correction. On average, around 4 to 5 rules apply
when using minimal model.

In the remainder of this study, we further analyze small
prediction models, as they are easier to manage and interpret
and have a comparable predictive performance. For both the full
model and the minimal model, the lowest threshold pmax = 0
was used. In this case, Bonferroni correctionmakes no difference.

This results in a full model with 1,217 rules and an AUC
of 0.98 and a minimal model with 13 rules and an AUC
of 0.69.

The full model clearly outperforms the minimal model. This
is to be expected, as the minimal model only contains very
limited data. The variable types ethnicity, gender, insurance type,
language, and marital status contain no information that could
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FIGURE 3 | The number of rules the full model (left) and the minimal model (right). Error bars (which are very small) show one standard deviation, the color indicates

whether Bonferroni correction was used. The x-axis shows different p-values used in the filtering step. The leftmost dot denotes the p-value zero. The number of rules

increases exponentially in the full model, while this effect is much smaller in the minimal model. The minimal model has fewer rules than the full model.

help determine the cause of the clinical stay or the patient’s health
status. However, it is noteworthy that the minimal model still
achieves an AUC of 0.69 with this limited information. As all
this information is readily available and patient-reported, the
model can be used as a first assessment before any provider
encounter. The corresponding receiver operating characteristic
(ROC) curve can be seen in Figure 5. To choose a decision
boundary, we searched for the highest Youden index (33), which
is equivalent to optimizing the sum of sensitivity and specificity.
The corresponding minimal model uses a decision boundary of
1.015, which results in an accuracy of 63%, a sensitivity of 66%,
and a specificity of 63%. Other decision boundaries are possible,
depending on the context in which they are used. Varying the
decision boundary will affect both sensitivity and specificity of
the model.

This additional information in the full model improves the
predictive performance considerably. With an AUC of 0.98, the
model can almost perfectly predict the in-hospital mortality risk.
The corresponding ROC curve can be seen in Figure 6. With an
optimal decision boundary of 5.306, this results in an accuracy of
93%, a sensitivity of 95%, and a specificity of 93%.

All analyses were done in the R programming language (34),
using the tidyverse packages (35). The rules of both models can
be found in the Supplementary Materials.

3.1. Analysis of Rules
Apart from their predictive qualities, the rules in the models
also allow us to analyze the algorithm’s reasoning. The 13 rules
in the minimal model span all five included variable types.
These rules indicate that male patients die more often than
female patients (ORs 1.25 vs. 0.80), that English speakers are
more likely to survive than others (0.73 vs. 1.36), and that
Medicare patients are more likely to die than Medicaid and other
patients (2.40 vs. 0.57 vs. 0.50). The ethnicities ‘Hispanic/Latino’
and ‘Black/African American’ are negatively associated with in-
hospital mortality (0.47 and 0.58), while ‘unknown’ and ‘unable
to obtain’ have higher ORs (4.59 and 2.25). The marital status
‘widowed’ is positively associated with in-hospital mortality
(2.05), while being single is negatively associated with in-hospital
mortality (0.50).

From the five variable types in theminimal model, the same 13
rules are in the full model. The remaining 1,204 rules span over
the five other variable types with 602 diagnosis, 445 prescription,
131 procedure, nine service, and 17 ward rules.

Only five diagnosis rules are negative associations, namely
three diagnoses on single liveborn infants (0.08-0.16), encounters
for immunizations (0.06), and unspecified chest pain (0.11).
The remaining 597 rules can be categorized into various
groups of rules that describe variants of the same pattern.
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FIGURE 4 | The number of rules that apply to an average case in the full model (left) and the minimal model (right). Error bars (which are very small) show one

standard deviation, the color indicates whether Bonferroni correction was used. The x-axis shows different p-values used in the filtering step. The leftmost dot denotes

the p-value zero. Only a small fraction of all rules apply to an individual case, making it easy to interpret the model and its decisions.

FIGURE 5 | The receiver operating characteristic of the minimal model.

Examples include alcohol abuse and its consequences (2.34–
11.69), anemia (1.67–4.56), various forms of hemorrhage
(3.32–582.13), neoplasms (3.50–13.66), pneumonia (6.27–18.49),

FIGURE 6 | The receiver operating characteristic of the full model.

pressure ulcers (5.29–17.96), sepsis and septicemia (4.15–33.18),
and diabetes (1.56–13.20). Some doubling occurs due to two
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TABLE 3 | A list of rules that apply to a fictional patient.

Variable type Description OR Minimal model?

Ethnicity Black/African American 0.58 X

Gender Female 0.80 X

Insurance type Medicaid 0.57 X

Language English 0.73 X

Marital status Single 0.50 X

Diagnosis Acidosis 10.96

Diagnosis Anuria and oliguria 17.27

Prescription Sodium Bicarbonate 11.54

Prescription Furosemide 5.00

This is also how the applying rules could be shown to providers.

versions of the International Classification of Diseases being used
in the dataset.

This also concerns the 131 procedure rules. Here, examples
of groups of rules are catheterizations (2.59–21.11), drainages
(5.53–22.06), ventilation (2.44–26.02), and transfusions (3.66–
13.51). No procedure rule has an OR below 1.0.

Only 17 out of 445 prescription rules are negative. As some
drugs are recorded with slightly different names, different doses
or different mode of administration, some doubling occurs.
One extreme example is sodium chloride with 20 rules. The
rules “0.45% Sodium Chloride” and “0.45 % Sodium Chloride”
(note the space) have ORs of 2.11 and 94.94, respectively. The
difference in ORs can be explained by the unequal distribution
across units. While 18 of the 23 (78%) cases with “0.45 %
Sodium Chloride” in MIMIC-IV were in at least one Intensive
Care Unit, only 3375 of the 15,180 (22%) cases with “0.45%
Sodium Chloride” were in at least one Intensive Care Unit.
This indicates that there are some unexpected inconsistencies in
the data. With almost 180,000 variables, it would be impossible
to check all variables manually for inconsistencies due to
variations in practice. Other prescription rule groups with high
variation include Heparin (2.10–68.58), vaccines (0.01–2.82), and
lidocaine (2.10–15.55).

Three service rules are negative, namely obstetrics (0.01),
newborn (0.17), and orthopedic (0.19). The positive rules
include four medical services (1.64–2.62), trauma (2.39),
and neurologic surgical (2.73).

Finally, five out of 17 ward rules are negative, with three
being at least partially about childbirth (0.02–0.48). The six rules
with the highest ORs (7.55–13.25) are all the intensive care units
in the dataset. Both the service and ward rules reflect different
patient populations with different reasons for the clinical stay.
The in-hospital mortality risk is vastly different between pregnant
women and traffic accident victims that need intensive care,
for example.

Overall, only 37 of 1,217 rules are negative. The five rules with
the lowest ORs are about childbirth (0.00–0.04) and a Hepatitis
B vaccine (0.01), the five highest ORs are medications used in
palliative care (Morphine and Angiotensin II, 856.26 and 332.77),
subdural hemorrhage (582.14), and two rules on brain death
(413.38 and 668.41). These last two rules are unexpected. Brain

death should always co-occur with in-hospital mortality, which
would exclude this OR of∞. Their occurrence hints at an error in
the data. Braindead patients who are organ donors are recorded
as having died, but then another case is opened for them with the
diagnosis of brain death, but it is recorded that they survived this
second case. This leads to more inconsistent data contained in
MIMIC-IV, which can now be seen in the prediction model.

3.2. Interpretability
To study the proposed method’s interpretability, we give a
fictional example of how the prediction model can be used.
Table 3 shows the rules that apply to a fictional patient in the
emergency department. This list of rules is how the prediction
model’s decision could be shown to providers. Apart from the
decision, the rules also explain what the case is about. The items
in the minimal model give us a first assessment. The patient is
female, Black/African American, single, insured under Medicaid,
and speaks English. This results in an average OR of 0.64, which
is below the decision boundary of 1.015. This tells us that, based
on the minimal model, our patient is low-risk.

In the full model, more information becomes available. For
example, suppose that the following information has become
available after 20 min in the emergency department. We now
know that acidosis and anuria or oliguria was diagnosed. The
patient was given Sodium Bicarbonate and Furosemide and is
currently in the emergency department. While this is not much
information due to the short length of stay, it allows us to update
our risk estimation.With an average OR of 5.328, which is greater
than the full model’s decision boundary of 5.306, we conclude
that the patient currently has a high in-hospital mortality risk,
but she is close to the decision boundary. We see that not only
are the models interpretable, but they can also be used to get a
quick overview of the case at hand.

3.3. Comparison to Decision Trees
We compared our models to Decision Trees models, which
are the state of the art in interpretable machine learning for
in-hospital mortality as they show the best trade-off between
performance and interpretability (6).

We trained Decision Tree classifiers using scikit-learn, version
0.24.2 (36), with varying maximal depths. As the dataset is highly
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FIGURE 7 | Various metrics on the Decision Tree models. The left panels are the full model, while the right panels are the minimal model. The color denotes whether

the training or the test set was used to produce these metrics. On the x-axis, various maximal tree depths were analyzed. For the full model, there is major overfitting.

The test set sensitivity quickly drop below the training set sensitivity for higher maximal tree depths. For the minimal model, the sensitivity also drops below the training

set’s sensitivity.

imbalanced, with over 98% of patients surviving, we used the
balanced class weight option to give more weight to the rarer
class. These experiments were executed for both the full and the
minimal model.

The results are visualized in Figure 7. For the minimal model,
the results are very similar to our proposed method. Above a
maximal tree depth of five, the metrics are stable, with only
small deviations in the sensitivities of the training and test set.

Figure 8 shows the number of leaves in the trees, which can
be understood as the number of possible paths in the tree and
thus as the number of rules that can be extracted from such a
tree. The number of leaves in the minimal Decision Tree model
grows quickly to around 433. The growth stops at a maximal tree
depth of around 15, and the model’s size stays relatively stable. A
maximal depth of at least six is needed to achieve a stable model
with low standard deviations and satisfactory metrics, at which
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FIGURE 8 | The number of leaves in the Decision Tree models. The full model

increases exponentially. The minimal model’s size is constant above a depth of

around 15.

point the model already contains around 60 leaves. Our proposed
method’s minimal model only needs 13 rules for comparable
performance. We thus see that while the predictive performance
is similar to our proposed minimal model, the complexity of the
model is higher.

The full Decision Tree model suffers from major overfitting,
as can be seen in the sensitivity values of the test set, which
drop below the training set sensitivity for maximal tree depth
values above five. With the highest sensitivity of 90%, Decision
Trees cannot outperform our proposed method’s full model in
terms of detecting high-risk cases. On the other hand, decision
Trees achieve a slightly higher specificity of 97% and thus
detect low-risk cases more reliably. Note that the choice of a
decision boundary impacts both sensitivity and specificity of the
proposed method, and another decision boundary for the full
model (namely 6.081) leads to almost the same metrics as the full
Decision Treemodel (namely a sensitivity of 90% and a specificity
of 96%). In this way, the higher specificity at the cost of a lower
sensitivity can also be achieved with the full model.

As can be seen in Figure 8, the number of leaves grows
exponentially in the full model, just as the number of rules does.
In comparison to Figure 3, there are more rules in our proposed
method then leaves in the Decision Tree methods. With Decision
Trees, however, the paths are muchmore complex, as their length
can go up to the maximal tree depth. We provide one example
full Decision Tree model with a maximal tree depth of seven in
the Supplementary Materials. At this depth, the Decision Tree
model does not yet suffer from major overfitting, resulting in a
test accuracy of 93%, sensitivity of 90%, and specificity of 94%.
The tree contains 103 leaves and 204 decision nodes.

Following the first chain in the tree, the model decides
that the patient is low-risk due to the variables “5% Dextrose,”
“Morphine Sulfate,” “Encounter for palliative care,” “Insertion
of endotracheal tube,” “Encounter for palliative care,” and
“Vasopressin” being absent in the case. If the diagnosis “Less than
24 completed weeks of gestation” were present, the model would
decide that the patient is high-risk. This means that the variables’
influence is combined into a chain of yes-no choices, and one
change in the decision chain can alter the model’s decision.
This hides each variable’s influence on the decision as it could
occur multiple times in the tree, but each patient only activates
one chain. Our proposed method separates all the variables into
one-to-one rules, making it easier to identify each variable’s
importance individually. The combination of the variables into
one decision takes place during the prediction, where the whole
context of the case is taken into account and we get an overview
of the case.

Another challenge in the interpretation of decision tree
models is the combination of variables in each chain. The variable
“Encounter for palliative care” occurs twice in the same chain
due to two International Classification of Diseases versions being
used. Additionally, the variable “Less than 24 completed weeks of
gestation” does not match the palliative care diagnoses. The tree
structure does not allow us to get an overview of the case at hand
as it also highlights variables that did not occur during the case,
obfuscating what actually happened. Our full model shows which
rules apply to the case and thus give us an explanation of what
happened during the case. Building the decision on top of this
knowledge helps providers understand the model’s decision.

In summary, Decision Tree models do not offer performance
improvements and show limited interpretability compared to our
proposed model. This is due to the fact that more complexity
in the Decision Tree Models is needed to achieve a comparable
predictive performance and because Decision Trees combine
various variables in chains of yes-no-choices. Additionally,
Decision Treemodels introduce order to the variables, as the tree-
like structure divides the dataset sequentially. On the other hand,
our model treats every variable individually, independent of the
other variables, making it easier to analyze each variable’s effect.

4. DISCUSSION

Associative classification based on ORs is a feasible method
for in-hospital mortality risk estimation. Apart from the high
predictive quality of the full model, the proposed method also
allowed us to analyze the dataset based on the rules contained
in the prediction model. The proposed method is not prone to
overfitting and generalizes well.

While the AUCs of the minimal model are much lower, its
predictive qualities are relatively high. Only socio-demographic
information that can be provided by the patient is added, there
is no information on the case at hand. This hints at underlying
structural differences. The information what its effects are on
individual patients can be valuable information for providers.

The fictional patient described above is an example of how
the prediction models can be easily explained to providers. This
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interpretability also helps us understand the clinical data and
discover patterns and inconsistencies in the data. As shown in
the examples of brain death and sodium chloride, inconsistencies
in the data show up as unexpected rules or rules with similar
variables but vastly different ORs.

Other rules can serve as starting points for future studies.
One example are the language rules. The evidence in support of
an effect of primary language on in-hospital mortality is limited
(37, 38). Nevertheless, our rules suggest some underlying effect
exists with ORs of 0.73 for English speakers and 1.36 for others.
Further research is needed to analyze the differences in these
groups and whether this effect is due to documentation practice.

The majority of rules reproduce known associations or
associations that are evident and explainable with expert
knowledge. Examples for the latter include the higher
mortality in intensive care units due to the higher number
of critical cases, the low mortality in childbirth rules, the high
mortality in Medicare patients due to confounding by age,
and various diagnoses that are either indicative of palliative
care (like Morphine or Angiotensin II) or of low-risk cases
like immunizations.

Some of the rules for which previous research exists include
the following. Diabetes insipidus (13.20) has previously been
identified as a potential cause of missed care and increased
mortality (39, 40). Alkalosis (5.39–8.10) is associated with
increased mortality (41). Alcohol dependence (2.34-11.69) can
lead to various health problems of cognitive, cardiovascular, and
gastrointestinal nature, among others (42). Each of these, in turn,
can contribute to increased mortality and emergencies that lead
to increased in-hospital mortality.

4.1. Limitations and Outlook
The present study has major limitations. First, only categorical
data that changes slowly is considered. This excludes other
interesting data like vital parameters and many biomarkers. Due
to the rule-based approach, quantitative data have to be grouped
into bins. Quickly changing data could easily be added to the
method, but this would require analysis on a higher temporal
resolution. Timestamps for all of the variables in the underlying
dataset would help get more information from each case.

A second limitation is the lack of causal explanations. All the
rules in both models are correlations between the variable and
in-hospital mortality. They do not explain why this correlation
exists. Future work is needed to introduce causal inference
mechanisms into the presented approach.

There are several further possibilities for future work.
While the inconsistencies encountered in the dataset do not

harm the proposed method’s predictive performance, it might
be helpful to remove them. However, it requires efforts to fix
potential inconsistencies in thousands of clinical variables. Future
research is needed to assess the consequences of resolving the
inconsistencies as well as the potential for automated solutions
to do so.

Longer rules, i.e., rules with more than one item on the
left-hand side, can be created using ORs. This has not been
analyzed in this study for two reasons. First, the predictive
qualities are very good as-is, so more complex rules are not
expected to bring much improvement. Second, more complex

rules hinder interpretability. In the present form, the rules
separate all variables and make them analyzable in isolation. This
sets the proposed approach apart from Decision Trees, where
many variables are merged into more complex rules, lowering the
method’s interpretability.

The proposed method was tested and validated using in-
hospital mortality as an example. Other variables in MIMIC-IV
could be used as the outcome of interest without changes to the
model. This, of course, results in other sets of rules and different
predictive performance, but the interpretable nature of the model
remains the same.

One open question is the usability of the proposed method
in clinics and hospitals. A usability study could be used to
assess whether the proposed method is helpful to providers in
realistic scenarios and whether it can replace or complement
existing manual scoring methods. This is expected to highlight
potential challenges in and benefits from the implementation of
the proposed method.

5. CONCLUSION

Weproposed a novel associative classificationmethod to estimate
a patient’s in-hospital mortality risk. With a minimal model
that uses patient-reported information that is quickly available
and a full model that uses more information that is available
at a later point in time, providers can objectively track a
patient’s in-hospital mortality risk. Apart from the high predictive
performance, the rule-based nature of the proposed method
allowed us to analyze which among around 180,000 variables play
a role in the estimation of in-hospital mortality risk, resulting in
a model with around 1,200 variables.
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11. Agrawal R, Imieliński T, Swami A. Mining association rules between sets

of items in large databases. In: Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data. SIGMOD ’93. New York,

NY: Association for Computing Machinery (1993). p. 207–16.

12. Thabtah F. A review of associative classification mining. Knowl Eng Rev.

(2007) 03;22:37–65. doi: 10.1017/S0269888907001026

13. Lin WY, Li HY, Du JW, Feng WY, Lo CF, Soo VW. iADRs: towards

online adverse drug reaction analysis. Springerplus. (2012) 1:e72.

doi: 10.1186/2193-1801-1-72

14. El Houby EM. A framework for prediction of response to HCV therapy using

different data mining techniques. Adv Bioinformatics. (2014) 2014:e181056.

doi: 10.1155/2014/181056

15. Uriarte-Arcia AV, López-Yáñez I, Yáñez-Márquez C. One-hot vector hybrid

associative classifier for medical data classification. PLoS ONE. (2014)

9:e95715. doi: 10.1371/journal.pone.0095715

16. Kadkhoda M, Akbarzadeh-T MR, Sabahi F. FLeAC: a human-centered

associative classifier using the validity concept. IEEE Trans Cybern. (2020).

1–12. doi: 10.1109/TCYB.2020.3025479

17. Dua S, Singh H, Thompson HW. Associative classification of

mammograms using weighted rules. Expert Syst Appl. (2009) 36:9250–59.

doi: 10.1016/j.eswa.2008.12.050

18. Rea S, Huff S. Cohort amplification: an associative classification framework

for identification of disease cohorts in the electronic health record.AMIA Ann

Symp Proc. (2010) 2010:862–6.

19. Ujager FS, Mahmood A. A context-aware accurate wellness determination

(CAAWD) model for elderly people using lazy associative classification.

Sensors (Basel). (2019) 19:e1613. doi: 10.3390/s19071613

20. Meena K, Tayal DK, Gupta V, Fatima A. Using classification techniques

for statistical analysis of Anemia. Artif Intell Med. (2019) 94:138–52.

doi: 10.1016/j.artmed.2019.02.005

21. Kianmehr K, Alhajj R. CARSVM: a class association rule-based classification

framework and its application to gene expression data.Artif Intell Med. (2008)

44:7–25. doi: 10.1016/j.artmed.2008.05.002

22. He Y, Hui SC. Exploring ant-based algorithms for gene expression data

analysis.Artif Intell Med. (2009) 47:105–19. doi: 10.1016/j.artmed.2009.03.004

23. Yu P, Wild DJ. Fast rule-based bioactivity prediction using

associative classification mining. J Cheminform. (2012) 4:e29.

doi: 10.1186/1758-2946-4-29

24. Yu P, Wild DJ. Discovering associations in biomedical datasets by

link-based associative classifier (LAC). PLoS ONE. (2012) 7:1–11.

doi: 10.1371/journal.pone.0051018

25. ElHefnawi M, Sherif FF. Accurate classification and hemagglutinin amino

acid signatures for influenza a virus host-origin association and subtyping.

Virology. (2014) 449:328–38. doi: 10.1016/j.virol.2013.11.010

26. Cheng CW, Wang MD. Improving personalized clinical risk prediction

based on causality-based association rules. ACM BCB. (2015) 2015:386–92.

doi: 10.1145/2808719.2808759

27. Haas O, Maier A, Rothgang E. Using associative classification and odds ratios

for in-hospital mortality risk estimation. In:Workshop on Interpretable ML in

Healthcare at International Conference on Machine Learning (ICML). (2021).

28. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV

(version 0.4). PhysioNet. (2020). doi: 10.13026/a3wn-hq05

29. Morris JA, Gardner MJ. Calculating confidence intervals for relative risks

(odds ratios) and standardised ratios and rates. Br Med J (Clin Res Ed). (1988)

296:1313–6. doi: 10.1136/bmj.296.6632.1313

30. Shaffer JP. Multiple hypothesis testing. Annu Rev Psychol. (1995) 46:561–84.

doi: 10.1146/annurev.ps.46.020195.003021

31. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. (2006)

27:861–74. doi: 10.1016/j.patrec.2005.10.010

32. Souza C, Kirillov A, Catalano MD, Contributors AN. The Accord.NET

Framework (2014). Available online at: http://accord-framework.net.

33. Youden WJ. Index for rating diagnostic tests. Cancer. (1950) 3:32–5. doi: 10.

1002/1097-014219503:1<32::AID-CNCR2820030106>3.0.CO;2-3

34. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna (2021). Available online at: https://www.R-project.org/.

35. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R,

et al. Welcome to the tidyverse. J Open Source Softw. (2019) 4:1686.

doi: 10.21105/joss.01686

36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,

et al. Scikit-learn: machine learning in python. J Mach Learn Res. (2011)

12:2825–30.

37. John-Baptiste A, Naglie G, Tomlinson G, Alibhai S, Etchells E, Cheung

A, et al. The effect of english language proficiency on length of

stay and in-hospital mortality. J Gen Intern Med. (2004) 19:221–8.

doi: 10.1111/j.1525-1497.2004.21205.x

38. Cano-Ibáñez N, Zolfaghari Y, Amezcua-Prieto C, Khan K. Physician–patient

language discordance and poor health outcomes: a systematic scoping

review. Front Public Health. (2021) 9:629041. doi: 10.3389/fpubh.2021.

629041

39. Gleeson H, Bonfield A, Hackett E, Crasto W. Concerns about patient safety

in patients with diabetes insipidus admitted as inpatients. Clin Endocrinol.

(2016) 84:950–1. doi: 10.1111/cen.13028

40. Ebrahimi F, Kutz A, Wagner U, Illigens B, Siepmann T, Schuetz P, et al. Excess

mortality among hospitalized patients with hypopituitarism-a population

based matched cohort study. J Clin Endocrinol Metab. (2020) 105:dgaa517.

doi: 10.1210/clinem/dgaa517

Frontiers in Medicine | www.frontiersin.org 12 November 2021 | Volume 8 | Article 78571150

https://www.frontiersin.org/articles/10.3389/fmed.2021.785711/full#supplementary-material
https://doi.org/10.1111/jonm.12965
https://doi.org/10.7861/clinmedicine.16-6-530
https://doi.org/10.1097/MCC.0000000000000135
https://doi.org/10.21037/jeccm.2017.08.03
https://doi.org/10.1111/aas.13527
https://doi.org/10.1002/widm.1379
https://doi.org/10.1016/j.jbi.2020.103410
https://doi.org/10.1017/S0269888907001026
https://doi.org/10.1186/2193-1801-1-72
https://doi.org/10.1155/2014/181056
https://doi.org/10.1371/journal.pone.0095715
https://doi.org/10.1109/TCYB.2020.3025479
https://doi.org/10.1016/j.eswa.2008.12.050
https://doi.org/10.3390/s19071613
https://doi.org/10.1016/j.artmed.2019.02.005
https://doi.org/10.1016/j.artmed.2008.05.002
https://doi.org/10.1016/j.artmed.2009.03.004
https://doi.org/10.1186/1758-2946-4-29
https://doi.org/10.1371/journal.pone.0051018
https://doi.org/10.1016/j.virol.2013.11.010
https://doi.org/10.1145/2808719.2808759
https://doi.org/10.13026/a3wn-hq05
https://doi.org/10.1136/bmj.296.6632.1313
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1016/j.patrec.2005.10.010
http://accord-framework.net
https://doi.org/10.1002/1097-014219503:1<32::AID-CNCR2820030106>3.0.CO;2-3
https://www.R-project.org/
https://doi.org/10.21105/joss.01686
https://doi.org/10.1111/j.1525-1497.2004.21205.x
https://doi.org/10.3389/fpubh.2021.629041
https://doi.org/10.1111/cen.13028
https://doi.org/10.1210/clinem/dgaa517
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Haas et al. Rule-Based Risk Estimation

41. Anderson L, Henrich W. Alkalemia-associated morbidity and mortality

in medical and surgical patients. South Med J. (1987) 80:729–33.

doi: 10.1097/00007611-198706000-00016

42. Schuckit MA. Alcohol-use disorders. Lancet. (2009) 373:492–501.

doi: 10.1016/S0140-6736(09)60009-X

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Haas, Maier and Rothgang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 13 November 2021 | Volume 8 | Article 78571151

https://doi.org/10.1097/00007611-198706000-00016
https://doi.org/10.1016/S0140-6736(09)60009-X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


CLINICAL TRIAL
published: 16 November 2021

doi: 10.3389/fmed.2021.743009

Frontiers in Medicine | www.frontiersin.org 1 November 2021 | Volume 8 | Article 743009

Edited by:

Zhongheng Zhang,

Sir Run Run Shaw Hospital, China

Reviewed by:

Jesus Rico-Feijoo,

Hospital Universitario Río

Hortega, Spain

Massimiliano Sorbello,

Gaspare Rodolico Hospital, Italy

*Correspondence:

Cheng Li

chengli_2017@tongji.edu.cn

Xuan Zhao

594079127@qq.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Intensive Care Medicine and

Anesthesiology,

a section of the journal

Frontiers in Medicine

Received: 17 July 2021

Accepted: 12 October 2021

Published: 16 November 2021

Citation:

Wang S, Hu C, Zhang T, Zhao X and

Li C (2021) Comparison of

Cricothyroid Membrane Puncture

Anesthesia and Topical Anesthesia for

Awake Fiberoptic Intubation: A

Double-Blinded Randomized

Controlled Trial.

Front. Med. 8:743009.

doi: 10.3389/fmed.2021.743009

Comparison of Cricothyroid
Membrane Puncture Anesthesia and
Topical Anesthesia for Awake
Fiberoptic Intubation: A
Double-Blinded Randomized
Controlled Trial

Shaocheng Wang 1,2,3†, Chaoli Hu 3†, Tingting Zhang 3, Xuan Zhao 3* and Cheng Li 2,3,4,5*

1Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China,
2Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji

University, Shanghai, China, 3Department of Anesthesiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji

University, Shanghai, China, 4 Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s
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Background: Awake fiberoptic intubation (AFOI) is commonly used for patients with a

difficult airway. The purpose of this study was to evaluate the efficacy of cricothyroid

membrane puncture anesthesia and topical anesthesia during AFOI.

Methods: A total of 70 patients (the American Society of Anesthesiologists score

I-III) with anticipated difficult airways scheduled for nonemergency surgery with AFOI

were randomly slated to receive cricothyroid membrane puncture anesthesia (n = 35)

or topical anesthesia (n = 35). Each group received dexmedetomidine at a dose of

1.0 µg/kg and sufentanil at a dose of 0.2 µg/kg over 10min for conscious sedation

before intubation. The endoscopy intubation, post-intubation condition, and endoscopy

tolerance as scored by the anesthetists were observed. The satisfaction of the operator

regarding the procedure and the satisfaction of the patient 24 h after the surgery were

also recorded. We recorded the success rate of the first intubation, intubation time, and

hemodynamic changes during the procedure and also the adverse events.

Results: Better intubation scores, operator satisfaction, and satisfaction of the patient

were observed in the cricothyroid membrane puncture anesthesia group than in the

topical anesthesia group (p < 0.05). The intubation time in the cricothyroid membrane

puncture anesthesia group was less than that in the topical anesthesia group (p <

0.05). There were no significant differences in the patient tolerance scores, the success

rate of the first intubation, hemodynamic changes, and adverse events between both

the groups.

Conclusion: Compared with topical anesthesia, cricothyroid membrane puncture

anesthesia provided better intubation conditions and less intubation time with greater

satisfaction of the patient and operator during endoscopic intubation.
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intubation (AFOI), dexmedetomidine (DEX), sufentanil

INTRODUCTION

The incidence of the difficult airway during clinical anesthesia is
as high as 4.5–7.5% (1); this is a significant issue, as failure to
maintain an unobstructed patient airway may lead to hypoxemia,
brain damage, or even death (2). Awake fiberoptic intubation
(AFOI) is an effective technique for the patients with difficult
airways; it is considered the gold standard among intubation
techniques (3, 4). Optimal intubation conditions for AFOI are
as follows: the patient should be comfortable, cooperative, and
have hemodynamic stability; moreover, the anesthesiologist must
be able to maintain the airway of the patient with spontaneous
ventilation (5). To achieve these conditions, adequate conscious
sedation and high-grade local anesthesia are required. Previous
studies have demonstrated that sufentanil and dexmedetomidine
provide effective sedation during AFOI without depressing
respiratory function (6–11).

The two most commonly used local anesthesia techniques
are: cricothyroid membrane puncture anesthesia and topical
anesthesia that can provide reasonable levels of safety and
comfort (12–15). The duration of AFOI should be kept as short
as possible to minimize the patient discomfort. Compared with
the topical anesthesia performed by using the spray-as-you-go
technique (16, 17), cricothyroid membrane puncture anesthesia
seems to be faster and more effective (18–21). To the best of our
knowledge, there is no previous study that has compared topical
anesthesia and cricothyroid membrane puncture anesthesia in
awake fiberoptic nasotracheal intubation. Therefore, this study
was designed to compare the efficacy of the topical anesthesia
and cricothyroid membrane puncture anesthesia in patients with
difficult airway during AFOI.

MATERIALS AND METHODS

This study was approved by the Institutional Review Board
of the Ethics Committee of Shanghai Tenth People’s Hospital
affiliated with the Shanghai Tongji University School of
Medicine (SHSY-IEC-4.0/19-81-01). Written informed consent
was obtained from each patient. It was registered as a clinical
trial (www.chictr.org.cn, Identifier: ChiCTR 1900025820). We
recruited 81 patients who were 18–80 years old and scheduled
for AFOI due to an anticipated difficult airway with an American
Society of Anesthesiologists (ASA) score of I-III. The exclusion
criteria included the heart rate (HR) < 50 beats/min, systolic
blood pressure (SBP) < 90mm Hg, use of an α2-adrenoreceptor
agonist or antagonist within the past 14 days, cirrhosis,
nasal injury, nasal polyps, upper airway obstruction, skull
base fracture, sinusitis, intracranial hypertension, heart failure,
emergency surgery, coagulation disorders, contraindication to
the performance of cricothyroid membrane puncture (thyroid

swelling, local infection, or laryngeal disorder), allergic to related
drugs and materials, cannot cooperate actively, and cannot
objectively describe the symptoms. A total of 11 patients were
excluded, seven patients met the exclusion criteria and four
patients declined to participate. The remaining 70 patients
were assigned (using a computer-generated randomization
schedule) to receive topical anesthesia (Group A) or cricothyroid
membrane puncture anesthesia (Group B). An anesthetist nurse
generated the allocation sequence and assigned the patients
to their groups, while another anesthetist nurse recorded the
experimental and postoperative follow-up data. One anesthetist
prepared the drug infusion, while another anesthetist was in
charge of cricothyroid membrane puncture and intubation,
graded intubation condition, and operator satisfaction. The
patients, anesthetist nurses, and intubating anesthetist were all
blinded to the group allocation.

Once the patient was transferred to the operation room,
intravenous access was established and standard monitoring
parameters (non-invasive blood pressure, pulse oximetry, and
ECG) were recorded every 2min. The patient inhaled oxygen
through a nasal catheter (4 l/min). Topical anesthesia of the nasal
cavity was initiated using 2ml 2% lidocaine; simultaneously,
2ml 1% ephedrine was instilled into the nasal cavity to contract
the nasal vessels. Sufentanil (0.2 µg/kg) and dexmedetomidine
(1 µg/kg) were diluted into 100ml 0.9% saline and the
patient received the drugs intravenously over 10min. When
drug infusion was completed, cricothyroid membrane puncture
was performed by using a 23G needle. After verification of
intratracheal placement by performing air aspiration, 3ml of 2%
lidocaine was injected in Group B, while 3ml of 0.9% saline was
injected in Group A. After injection, the patient was asked to
cough to transport the local anesthetic from the tracheal injection
site to the supraglottic mucosa. After a cricothyroid membrane
puncture, a 30 sec wait was conducted as part of the protocol.
When cricothyroid membrane puncture was accomplished, a
fiberoptic scope (Olympus LF-DP 3.1mm, Olympus, Tokyo,
Japan) was loaded with a 7.0-mm tracheal tube for male patients
or a 6.5-mm tube for female patients. Then, 2ml of 2% lidocaine
for Group A or 2ml of 0.9% saline for Group B was sprayed
directly onto the glottis through the channel of the fiberoptic
scope once the glottic structures were identified. After a 1-min
wait, another 2ml of 2% lidocaine for Group A or 2ml of 0.9%
saline for Group B was sprayed below the vocal cords. After a
further 1-min wait, the tracheal tube was slightly inserted via
the fiberoptic scope tube. During intubation, if the peripheral
oxygen saturation (SpO2) of the patient fell≤ 92%, the procedure
was halted and the patient was asked to take deep breaths.
Another intubation attempt was made when the SpO2 was
recovered to ≥ 95%. Hemodynamic changes (HR, mean arterial
pressure, and pulse oximetry) were analyzed for both the groups
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FIGURE 1 | Flowchart for the study recruitment.

at three time points (baseline, immediately after drug infusion,
and immediately after intubation).

The primary outcomes included intubation times (from the
begging of cricothyroid membrane puncture to the end of nasal
tracheal intubation); intubation scores as assessed according to
the vocal cord movement (1, open; 2, moving; 3, closing; 4,
closed), coughing (1, none; 2, slight; 3, moderate; 4, severe), and
limbmovement (1, none; 2, slight; 3, moderate; 4, severe); patient
tolerance as assessed using a five-point fiberoptic intubation
comfort score (1, no reaction; 2, slight grimacing; 3, heavy
grimacing; 4, verbal objection; 5, defensive movement of head
or hands), and a three-point score assessed immediately after
nasotracheal intubation (1, cooperative; 2, minimal resistance; 3,
severe resistance); and first intubation attempt success rate.

Other parameters during intubation included the satisfaction
of the operator regarding the intubation process (0, completely

dissatisfied; 10, completely satisfied) and the occurrence of
a hypoxic episode (SpO2 < 92%). All the adverse events
were recorded.

STATISTICAL ANALYSIS

We used the GraphPad Prism version 8.0 (GraphPad Software
Inc., San Diego, California, USA) for the statistical analyses.
Continuous variables are described as mean ± SD and were
compared by using the paired t-test. The chi-squared test or
the Fisher’s exact test was used to compare categorical variables
between the groups. Intubation conditions and tolerance score
were analyzed using the independent samples Mann–Whitney
U test. Blood pressure and HR at different time points were
compared by using the two-way repeated measures analysis of
variance. A p < 0.05 was regarded as statistically significant.
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RESULTS

A total of 70 patients (33 males and 37 females) with anticipated
difficult airways were enrolled in this study (Figure 1). The
baseline data of the two groups showed no differences (Table 1).

The Ramsay Sedation Scale (RSS) score after the drug infusion
showed no significant differences between both the groups. All

TABLE 1 | Demographic and clinical characteristics of study participants.

Characteristic Group A

(n = 35)

Group B

(n = 35)

P value

Age (years) 57.6 ± 9.8 56.7 ± 11.9 0.734

Sex (male/female) 16/19 17/18 0.811

Weight (Kg) 66.2 ± 9.8 65.2 ± 10.1 0.657

ASA status (1/2/3) 16/16/3 12/20/3 0.602

Mallampatti grade (2/3/4) 6/19/10 8/20/7 0.841

Mouth opening (cm) 3.6 ± 0.6 3.8 ± 0.7 0.184

RSS score (1/2) 8/27 6/29 0.766

Data are presented as mean ± standard (SD) or number.

ASA, American Society of Anesthesiologists.

TABLE 2 | Airway management characteristics.

Group A

(n = 35)

Group B

(n = 35)

P value

RSS after drug infusion (2/3) 9/26 12/23 0.603

First intubation attempt success rate

(%)

94.286 100 0.151

Intubation time (sec) 244.1 ± 91.5 200.4 ± 28.1 0.003

Intubation scores

Vocal cord movement 1/2/3/4 12/17/4/0 22/12/1/0 0.01

Cough 1/2/3/4 14/18/3/0 27/8/0/0 0.002

Limb movement 1/2/3/4 22/6/7/0 29/5/1/0 0.002

Patient tolerance 1/2/3/4 10/20/5/0 17/17/1/0 0.29

Patients’ comfort score after

intubation 1/2/3/4

24/10/1/0 30/4/1/0 0.267

Operator’s satisfaction (1–10) 7 ± 0.5 8.9 ± 0.9 0.0001

Data are presented as mean ± standard (SD) or number.

RSS, Ramsay sedation score.

the patients were successfully intubated with AFOI. There was no
significant difference between both groups in the first intubation
attempt success rate, but the first intubation attempt failed in two
patients from Group A. The intubation time in Group B (200.4±
28.1) was lower than in Group A (244.1± 91.5) (p= 0.003). The
intubation scores were better in Group B compared withGroupA
with regard to the vocal cord movement, cough, limb movement,
and operator satisfaction (p < 0.05), but there was no significant
difference in the patient tolerance score and comfort score of the
patients after intubation (Table 2).

There was no significant difference in the hemodynamic
change between both the groups at three time points:
baseline, immediately after drug infusion, and immediately after
intubation (Figure 2).

The incidence of adverse events (hypertension, hypotension,
tachycardia, bradycardia, and hypoxia) was not significantly
different between both the groups. Postanesthetic interview
parameters: hoarseness, sore throat, and recall of intubation did
not differ between both the groups, but patient satisfaction in
Group B (9.4 ± 0.8) was better compared with that in Group A
(7.5± 1.3) (p= 0.0007) (Table 3).

DISCUSSION

This study aimed to compare the two techniques of topical
anesthesia that are both deemed effective during AFOI in patients
with anticipated difficult airways. To the best of our knowledge,
our study is the first to compare cricothyroid membrane
puncture anesthesia and topical anesthesia in awake fiberoptic
nasotracheal intubation.

In the existing literature on AFOI, several viewpoints exist.
Some studies mention that cricothyroid membrane puncture
anesthesia is a more effective method than topical anesthesia
using the spray-as-you-go technique (18, 22), while others state
that the spray-as-you-go technique is superior to the cricothyroid
membrane puncture technique (23).

This study showed that both the cricothyroid membrane
puncture anesthesia and topical anesthesia were effective for
AFOI, but the cricothyroid membrane puncture anesthesia
technique required less intubation time and led to better
intubation scores, a higher success rate of first intubation,

FIGURE 2 | Heart rate (HR), mean arterial blood pressure (MAP), and peripheral oxygen saturation (SpO2) before premedication (baseline), immediately after drug

infusion (infusion), and immediately after intubation (intubation). Group A: Topical anesthesia; Group B: Cricothyroid membrane puncture anesthesia. Points are

expressed as mean ± SD.
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TABLE 3 | Postoperative visit data and advent events.

Group A

(n = 35)

Group B

(n = 35)

P value

Hoarseness 1 1 1

Sore throat 1 3 0.614

Recall of intubation 25 30 0.244

Patients’ satisfaction 7.5 ± 1.3 9.4 ± 0.8 0.0007

Hypertension 0 0 1

hypotension 0 0 1

tachycardia 1 1 1

bradycardia 2 3 0.69

hypoxia 0 0 1

Data are presented as mean ± standard (SD) or number.

and a higher satisfaction score for both operator and patients
during AFOI.

We chose the intubation time as the primary outcome of
our study, because it is the clearest criterion to evaluate the
efficiency of AFOI. Along with an adequate analgesia and
sedation, we believe that a rapid AFOI procedure is important for
ensuring safety and comfort of the patient. Our study found that
the cricothyroid membrane puncture anesthesia technique was
significantly faster than the topical anesthesia technique; this is
consistent with the results of a previous study (24). Moreover, to
ensure the double blindness of the experiment, the cricothyroid
membrane puncture anesthesia group also used the spray-as-
you-go technique for comparison with topical anesthesia; this
increased the intubation time by 2min and might have reduced
patient comfort and satisfaction.

The secondary outcomes were the intubation scores during
AFOI. Scoring systems similar to the one we used to evaluate
intubation scores are described in the literature (6, 25, 26), but
the results were different in those studies. Our study showed
that the cricothyroid membrane puncture anesthesia technique
was better than the topical anesthesia technique as it exhibited
better intubation scores, higher success rate of first intubation,
and higher operator satisfaction score. Although cricothyroid
membrane puncture anesthesia was administered subglottically,
it provided a better topical block. Despite the fact that the
patient tolerance and patient comfort scores were better in
the cricothyroid membrane puncture anesthesia group, this
difference did not achieve statistical significance.

We knew from our experience and from the literature (27–
29) that adequate analgesia and sedation are necessary for
AFOI. Therefore, we administered sufentanil (0.2 µg/kg) and
dexmedetomidine (1 µg/kg) over 10min before AFOI to obtain
sufficient analgesia and sedation. On following this procedure, all
the patients had an RSS score > 1 after the drug infusion and
no patient felt obvious pain in any of the AFOI procedures; this
result is consistent with those of the previous studies (30–32).

Hemodynamic stability is a measure of stress response during
AFOI. We did not find any significant difference between the
two groups regarding this factor. This finding is consistent with
the results of the previous studies, wherein AFOI performed by

experienced operators had no influence on the hemodynamic
stability of the patient (33, 34).

Dexmedetomidine has been reported to decrease
noradrenaline release and centrally mediated sympathetic tone
(35). However, it may cause side effects including hypotension,
bradycardia, and hypoxia (36). In our study, five patients
developed bradycardia after drug infusion that can be treated
easily with atropine and two patients developed tachycardia after
intubation. There was no significant difference between the two
groups regarding the adverse effects of dexmedetomidine.

Postoperative visit data showed the majority of the patients
had no hoarseness or soreness of the throat. The cricothyroid
membrane puncture anesthesia group exhibited higher patient
satisfaction and less recall of intubation than the topical
anesthesia group. Therefore, we conclude that cricothyroid
membrane puncture anesthesia technique, if performed by
experienced anesthesiologists, provide a high level of comfort to
the patient.

This study had some limitations. There were only 70 patients
enrolled in our study, further larger sample studies are required
to confirm our results. Another limitation was the lack of
dose-effect study; the doses of sufentanil and dexmedetomidine
used were based on data provided in the previous studies.
Our drug infusion protocol is not suitable for the emergency
operation, as it requires more than 10min. Despite sufficient
analgesia and sedation, cricothyroid membrane puncture is still
an invasive operation.

CONCLUSION

Both the techniques of topical anesthesia are effective in AFOI,
but cricothyroid membrane puncture anesthesia provided better
intubation conditions and less intubation time with greater
satisfaction of the patient and operator when compared with
topical anesthesia.
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Sepsis-associated coagulation dysfunction greatly increases the mortality of sepsis.

Irregular clinical time-series data remains a major challenge for AI medical applications.

To early detect and manage sepsis-induced coagulopathy (SIC) and sepsis-associated

disseminated intravascular coagulation (DIC), we developed an interpretable real-time

sequential warning model toward real-world irregular data. Eight machine learning

models including novel algorithms were devised to detect SIC and sepsis-associated

DIC 8n (1 ≤ n ≤ 6) hours prior to its onset. Models were developed on Xi’an Jiaotong

University Medical College (XJTUMC) and verified on Beth Israel Deaconess Medical

Center (BIDMC). A total of 12,154 SIC and 7,878 International Society on Thrombosis

and Haemostasis (ISTH) overt-DIC labels were annotated according to the SIC and

ISTH overt-DIC scoring systems in train set. The area under the receiver operating

characteristic curve (AUROC) were used as model evaluation metrics. The eXtreme

Gradient Boosting (XGBoost) model can predict SIC and sepsis-associated DIC events

up to 48 h earlier with an AUROC of 0.929 and 0.910, respectively, and even reached

0.973 and 0.955 at 8 h earlier, achieving the highest performance to date. The novel

ODE-RNN model achieved continuous prediction at arbitrary time points, and with

an AUROC of 0.962 and 0.936 for SIC and DIC predicted 8 h earlier, respectively. In

conclusion, our model can predict the sepsis-associated SIC and DIC onset up to 48 h

in advance, which helps maximize the time window for early management by physicians.

Keywords: SIC, sepsis-associated DIC, irregular time-series data, early real-time prediction, machine learning
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INTRODUCTION

Sepsis is a lethal disease caused by a dysregulated host response in
an infected state (1). Septic-induced organ dysfunction is a major
cause of sepsis high mortality (2). Among these, coagulation
dysfunction is a pervasive complication of sepsis, occurring in
50–70% of sepsis patients, while approximately 35% of patients
proceed to disseminated intravascular coagulation (DIC) (3).
Sepsis-induced coagulopathy (SIC) mortality reaches to 23.1%
(4), while the mortality rate of sepsis-associated DIC is more

than twice that of simple sepsis patients (5, 6). According to
the SIC scoring system proposed by the DIC subcommittee of
International Society on Thrombosis and Haemostasis (ISTH)
in 2017, sepsis patients easily meet the SIC diagnostic criteria

(7). Sepsis-associated DIC was diagnosed by the two-step
sequential approach of SIC and ISTH overt-DIC criteria, which
is a late-phase coagulation disorder that should be detected
early (8). Currently, DIC diagnosis does not have a gold
standard. Physicians diagnose DIC according to the primary
disease, clinical manifestations, and laboratory tests. However,

the clinical signs and symptoms of DIC appear slowly and
the manifestations are complex and varied, resulting in a time
lag in the clinical diagnosis of DIC, which places the patient
in a treatment-refractory phase when sepsis-associated DIC is
clinically determined (9). In addition, studies have shown that
anticoagulation is ineffective in both sepsis and SIC patients, but
effective in sepsis-induced DIC patients (10–12). Hence, early
recognition of sepsis-associated DIC is more important than SIC,
while there are currently no studies on sequential prediction of
sepsis-associated DIC after SIC alerts. Therefore, it is imperative
to establish a model for early sequential real-time prediction of
SIC and sepsis-associated DIC.

The prevalence of electronic health records (EHRs) and the
upsurge of artificial intelligence (AI) provide opportunities for
clinical medical research (13). Studies have shown that machine
learning-based models outperform traditional clinical scoring
and human expert systems in the diagnosis, treatment, and
prognosis prediction of clinical diseases (14, 15). However,
current clinical prediction studies are mainly static and lack real-
time prediction studies. Real-time predictionmodels dynamically
predict the onset of disease within a sliding time-window
by continuously updating clinical data. From the clinical
dynamic treatment perspective, real-time predictive models
would better fit the clinical applications (16). In addition,
the variability of primary diseases, comorbidities and severity
of conditions in ICU patients leads to sparse and irregular
clinical data in terms of sampling time and dimensions (17). To
accommodate irregular time series data, the existing standard
models such as eXtreme Gradient Boosting (XGBoost) (18)
and Recurrent Neural Network (RNN) (19) decompose time
into continuous, non-overlapping uniform intervals, known as
temporal discretization (20). This enables the standard models
to act on fixed dimensional vectors (regular data). However,
this approach lacks the continuity principle and can lead to
undesirable results when applied to irregular medical time-series
data (21). Altogether, it is necessary to develop a model that is
specifically designed to handle sparse irregular time series data in

the real clinical world to achieve real-time accurate predictions at
arbitrary time points.

In summary, we aim to help physicians to identify patients
at high risk of SIC and sepsis-associated DIC early, especially
those who progress to DIC after SIC, as well as improve
existing machine learning models to enable arbitrary time-point
prediction on real-world irregular data. To achieve this, an
interpretable early real-time sequential warning predictor will be
developed that contributes to early personalized treatment and
reasonable administration. The overview of the study design and
model development was shown in Figure 1.

METHODS

Study Cohort and Design
This is a multicenter retrospective cohort study. Research
data were obtained from two medical centers, the Xi’an
Jiaotong University Medical College (XJTUMC) and Beth
Israel Deaconess Medical Center (BIDMC). Structured query
language (SQL) was used to obtain eligible patient data for
the period from January 1, 2013 to December 1, 2018 in
XJTUMC and from 2001 to 2012 in BIDMC, respectively. The
XJTUMC data were obtained from the Center’s Biobank and
the BIDMC data were obtained from the Medical Information
Mark for Intensive Care (MIMIC-III) database (22). The
study was reviewed by the Ethics Committee of the First
Affiliated Hospital of Xi’an Jiaotong University, and all data
were deidentified.

The enrollment process was shown in Figure 2. The
inclusion criteria were as follows: (1) sepsis was diagnosed
within 24 h of admission based on Sepsis 3.0 criteria;
(2) the age was not <18 years; and (3) the duration of
hospitalization was not <3 days. The exclusion criteria
were as follows: (1) patients with DIC onset within 24 h of
admission; (2) patients were affected by hematologic tumors
(leukemia, lymphoma, etc.); (3) patients suffering from
cirrhosis, acute liver failure, with liver function up to Child
C; (4) patients treated with radiotherapy or chemotherapy;
(5) patients with admission diagnosis of combat trauma,
traumatic coagulopathy; (6) patients with pregnancy or
perinatal complications.

Data Preprocessing
We initially obtained a total of 174 laboratory features in
XJTUMC and 259 laboratory features in BIDMC. Subsequently,
we performed the process of merging identical variables (e.g.,
HGB with different units of g/L or g/dl, HGB in blood count
and blood gas test, etc.), eliminating irrelevant variables (e.g.,
hepatitis antibody quantification, blood drug concentration, etc.),
and counting the frequency of variable detection. We removed
indictors that were completely missing and detected <1% of
indicators at all-time points. In addition, we performed the unit
conversions for the XJTUMC laboratory test variables, in order
to maintain consistency with BIDMC. Ultimately, under the
guidance of the laboratory physicians, we identified 99 features
at XJTUMC and 72 features at BIDMC. Of these, the 72 features
at BIDMC were common features for both medical centers. The

Frontiers in Medicine | www.frontiersin.org 2 December 2021 | Volume 8 | Article 77504760

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cui et al. Early Warning Sepsis-Induced Coagulation Dysfunction

FIGURE 1 | Study design and model development overview. (A) Research application design profile. Study developed an early real-time prediction model to

dynamically predict disease progression of sepsis patients after admission to ICU, and to output whether the patient will suffer from SIC and sepsis-associated DIC

and the risk score for their onset in future periods. The model feeds into the information obtained from a continuous 24 h sampling time-window and outputs the

disease status for the next 8n h in real-time. The x-axis indicates the time since admission. (B) Model development overview. The research process comprises to data

processing, model development, model evaluation, and interpretation. The data processing process includes raw data extraction, outlier processing, coagulation

status annotation, and feature engineering. The model development stage included feature set split, sampling time-window selection pre-experimental, model

construction, and training. We built eight models, trained and selected the Full model with good performance on the internal validation set by SGD or Adam

optimization. The Lite models were developed by selecting easily accessible and important features through SHAP and Occlusion analysis. Models were validated at

BIDMC for external validation. The model evaluation and interpretation section include the assessment of model predictive performance, interpretation of model

outputs, individualized disease trajectory prediction, etc.
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FIGURE 2 | The diagram of study patient enrollment. In XJTUMC, coagulation status annotation was based on SIC and ISTH-overt DIC criteria. In BIDMC, DIC were

labeled based on ICD-9. ICD, International Classification of Diseases.

missing information for both medical centers were shown in
the Supplementary Figure 1 (Supplementary File 1). And the
clinical reportable ranges for each identified variable was shown
in Supplementary File 2. All variables were initialized by the
min-max normalization algorithm.

Clinical sequence data are sparse and irregular, manifested by
the presence of a large amount of missing data. Whereas, the
pattern of missing data contains important information, such
as the correlation between the frequency of a certain marker
test and the severity of the disease. Therefore, in this study, we
do not deal with missing data. Instead, we use the modeling of
missing information to identify the role of missing patterns in
prediction, which enhances the model prediction effectiveness.
In brief, it is modeled by learning to characterize the missing
and hidden information from the time-series data, which is then
further introduced into the model network. The multivariate
time series X = {x1, x2, . . . , xT} is the observations at time T.
xt ∈ RDrepresents the observations at time t for all variables. xt
containsD features

{

x1t , x
2
t , x

D
t

}

and xdt represents the d-th feature
variable of xt . st denotes the timestamp of observation xt . We
assume that the timestamp of the first observation is 0 (st = 0),
the time interval between different timestamps may be the same
or different. 1 indicates adjacent time steps for each variable.
To provide an efficient representation of the missing values, we
introduce the mask vector md

t = {0, 1} to represent the missing
variables in xt at time t. Some features are missing continuously
over a period of time, and δ

d
t is defined to represent the time

interval between the last observation and the current timestamp.

To be more specific, we have:

md
t =

{

1, if xdt is observed
0, otherwise

(1)

δ
d
t =







st − st−1 + δ
d
t−1 t > 1, md

t−1 = 0

st − st−1 t > 1, md
t−1 = 1

0 t = 1

(2)

Thus, a dynamic feature of the input would be represented as
Xt = (xdt ,m

d
t ,1, δdt ). In the later section, the missing information

will be introduced into the model for subsequent processing
when improving the algorithm model.

Ground-Truth Labels Using ISTH
We defined all three disease states according to SIC and
ISTH overt-DIC criteria. The details of the disease status
annotation criteria can be found in Supplementary Table 1

(Supplementary File 1). New data were not available for all
8 h time-window of the day because the patient’s laboratory
tests were irregular. If there are no updated data available for
labeling in an 8 h time-window, then the forward interpolation
method is used for labeling based on the labels before and
after that time-window. More specific details were shown in
Supplementary Figure 2 (Supplementary File 1).
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Continuous Models for Irregular Time
Series
The study compared two methods for dealing with irregular
time series. The first is the temporal discretization approach,
in which the standard RNN model is a typical model. In the
second approach, we tackle the irregular time-series problem
by modeling the missing information. Based on the standard
RNN model, we introduced a decay mechanism for modeling
missing information by referencing Che et al.’s study (21),
to eventually develop the RNN-Decay model. In addition, we
developed the Ordinary Differential Equations-Recurrent Neural
Networks (ODE-RNN)model by directlymodeling the unequally
spaced raw data referring to the work of Yulia et al. (23). The
model architecture diagrams were shown in Figure 3. The model
inputs are derived from the extraction of missing patterns of
time series information from “Data Processing” described in the
above section.

Model Development
To select the appropriate sampling time length, we chose 8, 24,
and 48 h sampling time-window to perform pre-experiments.
The results were presented in the Supplementary Table 2

(Supplementary File 1). Finally, we set the sampling time-
window to 24 h and the sliding time-step to 8 h. Then, we
developed several state-of-the-art models that are widely used as
follows: (1) Classic machine learning models: Logistic regression
(LR) (24) and support vector machines (SVM) (25), which are
the most commonly used algorithms in existing research; (2)
Enhanced machine learning models: gradient boosting machine
(LightGBM) (26) and XGBoost (27), which are widely regarded as
the best algorithm for data prediction and are adopted by many
competition winning models in the field of machine learning;
(3) Classic deep learning models: RNN (21) and long short-term
memory network (LSTM) (28), which are the most commonly
chosen deep learning models in time-series data, which have
shown excellent performance in several time series studies; (4)
Improved deep learning models: RNN-Decay and ODE-RNN.
The detailed method was described in Supplementary File 1.
After evaluating the performance, we finally chose the highest-
performing XGBoost model as our predictor.

Model Evaluation
We random divided the XJTUMC data into a train set (70%),
a valid set (10%), and a test set (20%). The BIDMC data ware
used as the external validation set to evaluate generalization
ability of the model. Parameter optimization were performed by
Stochastic Gradient Descent (SGD) or the Adam algorithm. The
area under the receiver operating characteristic curve (AUROC),
the area under the precision-recall curve (AUPRC) and the F1-
score were used as model evaluation metrics. Test samples were
resampled 1,000 times using bootstrapping to calculate 95%
confidence intervals.

Model Interpretation
In this study, we interpreted the machine learning model results
using the Shapley Additive exPlanations (SHAP) algorithm

FIGURE 3 | Architecture diagram of different RNN-based models for

processing irregular time-series data. (A) Diagram of the standard RNN model

processing irregular time-series data. The standard RNN transmits the hidden

layer information forward at a fixed time interval without processing the hidden

layer information; (B) Diagram of RNN-Decay model processing irregular

time-series data. Based on the RNN framework, RNN-decay adds temporal

decay derived from time intervals to the latent space in order to indirectly

process irregular series; however, the longer the time interval, the weaker the

information conveyed. (C) Diagram of ODE-RNN model processing irregular

time-series data. The ODE-RNN directly modeled the unequally spaced raw

data, and propagated a latent variable along the time interval using the Neural

ODE to solve the latent layer information that corresponds to the irregular

timestamp; this allows the arbitrary time-point data to be processed and

guarantees temporal continuity. The time series T = {t0, t1, . . . , tN} is the

observation timestamps, X = {x0, x1, . . . , xN} represents the observations at

time t for all variables, h(t) is the latent space state corresponding to timestamp

t. Orange circles indicate an RNN unit. Blue and black dashed lines with

arrows indicate the shallow and latent features of the input RNN, and orange

dashed lines with arrows indicate data from the previous RNN unit that has

been processed in a different way and then fed into the next RNN unit.

(29) and the deep learning model results using Occlusion
analysis (30).

Statistical Analysis
Baseline data are skewed and expressed as the median and
interquartile range (IQR). Non-parametric tests were used for
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statistical tests. P-values< 0.001 were considered statistically
significant. Navicat Premium (12.1.22), Pytorch (1.7.0), and
Python (3.7.6) with Numpy (1.18.5), Pandas (1.1.5), and
Scikit-learn (0.23.2) formed the data-processing pipeline. All
computational analyses were performed in the Computer Center
of the School of Mathematics, Xi’an Jiaotong University.

RESULTS

Study Baseline
A total of 9,717 infection patients in XJTUMC and 15,059 sepsis
patients in BIDMC were initially included when applying ICD-
9 codes and sepsis 3.0 criteria. After applying the exclusion
criteria, 3,809 and 11, 926 patients were left. We then annotated
the coagulation status of 3,809 XJTUMC sepsis patients by
SIC and ISTH overt-DIC criteria, a total of 12,154 SIC status
labels (positive: 8,909; negative: 3,246); and 7,878 overt-DIC
status labels (positive: 3,051; negative: 4,827); were available in
XJTUMC. Also, we selected 296 patients (1,210 status labels)
who developed DIC during hospitalization at the BIDMC center
using ICD-9 codes. The baseline characteristics of included
patients at XJTUMC and BIDMC were shown in Table 1. For
both XJTUMC and BIDMC, the median age of sepsis patients
is above 60 years and the predominant cause of sepsis was
respiratory system-derived infections. Also, 652/1,415 (46.1%)
of SIC patients developed to DIC, while 652/679 (96%) of DIC
patients fulfilled the SIC diagnosis.

Full Model Performance
The predictive performance of eight different models for early
DIC onset were shown in Figure 4. Figures 4A,B showed that
XGBoost produced the best prediction performance (AUROC:
0.955; AUPRC: 0.939) and was validated in LightGBM, followed
by ODE-RNN (AUROC: 0.936; AUPRC: 0.902). However, ODE-
RNN ensures continuity of model prediction, which is more
suitable for clinical applications than XGBoost. Figure 4C

revealed that the performance of the XGBoost on the BIDMC
external validation set has decreased (AUROC: 0.865). Figure 4D
provided prediction performance of the model at different
prediction time-window, revealing that our model could detect
the event as early as 48 h before the ground-truth. Figure 5
illustrated the prediction performance for SIC, showing similar
results to DIC. Figures 5A,B showed that XGBoost provided the
best prediction performance (AUROC: 0.973; AUPRC: 0.979).
Figure 5C revealed that the performance of the XGBoost on the
BIDMC external validation set has decreased (AUROC: 0.973).
Figure 5D revealed that XGBoost could detect the event as
early as 48 h before the ground-truth with AUROC reached
0.929. The detailed predictive performance of models at different
prediction time-window was shown in Table 2. The model
prediction performance decreases steadily as the prediction time-
window extends. The XGBoost and ODE-RNN still maintain
good prediction performance for SIC and DIC in the 48 h
ahead of prediction time-window. Furthermore, we examined
the early warning performance of the models on SIC and
DIC with different alert thresholds at the 8 h prediction time-
window, the results were shown in Supplementary Tables 3, 4

TABLE 1 | Baseline characteristics of included patients at XJTUMC and BIDMC.

XJTUMC (n = 3,809) BIDMC (n = 11,926)

Demographic

Age (year), median [Q1, Q3] 63 [52,72] 69 [57,80]

Male, n (%) 2,388 (62.7) 6,481 (54.3)

Severity status at admission

SOFA score, median [Q1, Q3] 3 [3, 4] 4 [5, 8]

Infection sources in sepsis, n (%)

Respiratory system 1,702 (44.7) 4,957 (41.6)

Gastrointestinal system 1,435 (37.7) 3,194 (26.8)

Urinary system 5 (0.1) 382 (3.2)

Cardiac bloodstream system 24 (0.6) 728 (6.1)

Oncology cachexia related 567 (14.9) 1,077 (9.0)

Other 76 (2.0) 1,588 (13.3)

Outcome, median [Q1, Q3]

Hospital stay (day) 7 [10, 15] 13 [7, 23]

Coagulation status

SIC onset, n (%) 1,415 (37.1)a Unknown

DIC onset, n (%) 679 (17.8)a 296 (2.5)b

For infection sources in sepsis, respiratory system infections mainly cover the lung,

trachea, bronchus, and chest related diseases; gastrointestinal system infections typically

involve the esophageal, gastric, bowel, liver, spleen, and abdominal related disorders;

urinary system infections include renal, ureteral, bladder, and urethra inflammatory

diseases; cardiac bloodstream system comprise the cardiac, vascular, vascular catheter,

and systemic infection related diseases; oncology cachexia is a variety of malignant

diseases and cachectic manifestations; other infections consist of various inflammatory

states of unknown etiology and brain diseases.
aDiagnosis based on SIC and ISTH-overt DIC criteria for coagulation status annotation.
bDIC diagnosis based on International Classification of Diseases-9th edition (ICD9) codes

(ICD9 diagnosis code for DIC is 2866).

(Supplementary File 1). That allows clinicians to select different
thresholds according to the characteristics of the different stages
of disease development and treatment needs.

Model Interpretation
To understand the contribution of the features to the model
predictions, we interpreted the XGBoost predictions using
Shapley values, which were presented in Figure 6. Figure 6A
showed the top 20 features that contribute most to the model
output; Figure 6B showed the impact of the top 20 features
on all samples in the model. Shaply analysis identified that the
most valuable features for DIC prediction were platelet (PLT), D-
dimer, International normalized ratio (INR), plateletcrit (PCT),
fibrinogen (FIB), fibrin degradation products (FDP). We further
developed dependency plots to capture the non-linear correlation
between a single significant feature and the predicted risk. As
an example, Figure 6C showed that when PLT was below 80,
the shape-value was significantly increased with higher predicted
risk. Figure 6D showed the interaction between PLT and PCT,
where when PCT is low, the corresponding PLT feature value is
low, SHAP takes a high value and themodel output risk increases.
In addition, the SHAP force plot provides insight into the output
risk and decision factors for specific samples. In the case of
Figure 6E, the model predicts the sample at a high risk of a DIC
event based on PT, INR, and PLT.
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FIGURE 4 | Full model performance evaluation. (A) Receiver operating characteristic curves of models for DIC prediction on the internal test set. (B) Precision-recall

curve of candidate models for DIC prediction on the internal test set. (C) Receiver operating characteristic curves on the external test set. (D) The predictive

performance of models at 8, 24, and 48 h ahead of sepsis-associated DIC onset. Precision was defined as the fraction of correctly alerted 8 h before the ground-truth

event. Recall was defined as the proportion of any alarms 8 h prior to the ground-truth event. The lighter-colored intervals above and below the ROC and PR curves

are 95% confidence intervals.

In addition, we interpreted the deep learning model
ODE-RNN using occlusion analysis, as shown in
Supplementary File 3. Occlusion analysis showed that a
global absence of a single feature has small impact on the model
output results for the ODE-RNN model. We also performed
univariate and multivariate analyses of baseline data on the
first day for different coagulation status groups, as detailed in
Supplementary Tables 5, 6 (Supplementary File 1), suggesting
the reliability of the machine learning approach.

Figure 7 showed an example of real-time sequential
prediction using our model on one patient. At each time
point after the patient admission over 24 h, the model provides
a real-time risk and uncertainty assessment of the future SIC
and sepsis-associated DIC onset. This showed that the model

could detect SIC and sepsis-associated DIC 48 h early, which is
important for clinicians to take precautionary approaches ahead
of the event.

Lite Model Development
To enhance the transferability and reduce the data requirements
of the model, we selected the ten most influential features
based on SHAP values, Occlusion analysis, and clinical
practicability (The Lite model feature details were shown
in Supplementary File 2). Based on the selected features, we
constructed the Lite model. Figure 8 indicated that the XGBoost-
based Lite model achieves the best performance of predicting
DIC 8 h in advance, but the model performance is slightly lower
than that of the Full model (AUROC: 0.916 vs. 0.955).
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FIGURE 5 | Full model performance evaluation for SIC prediction. (A) Receiver operating characteristic curves of models for SIC prediction on the internal test set.

(B) Precision-recall curve of candidate models for SIC prediction on the internal test set. (C) Receiver operating characteristic curves on the external test set. (D) The

predictive performance of models at 8, 24, and 48 h ahead of SIC onset.

DISCUSSION

In this study, we developed two models enabling real-time
sequential monitoring of SIC and DIC disease progression
in sepsis. The model could identify high-risk patients 48 h
before the clinical diagnosis of SIC and sepsis-associated DIC,
achieving the state-of-the-art retrospective performance. The
full XGBoost model currently achieved the highest prediction
performance (SIC: 0.973; DIC: 0.955). The Lite XGBoost
model also achieved pleasing prediction performance (DIC:
0.916). On the BIDMC test set, the model performance
decreased slightly (DIC: 0.865). In the 8 h prediction time-
window with a threshold of 0.7, the XGBoost model was
able to predict 89.5% of SIC and 83.1% of sepsis-associated
DIC events correctly. Meanwhile, our study has introduced a

methodological improvement. Specifically, our study provided
the following contributions: (1) We developed and validated
the first model for earlier sequential dynamic monitoring
of sepsis-induced coagulation disease progression; (2) We
processed irregular time-series data for the first time in
dynamic prediction research using ODE method, achieving
predictions at arbitrary time points; (3) We provided the
visual interpretation for deep learning models and machine
learning models, respectively, which improved the recognition of
physicians toward complex models.

Sepsis-induced SIC, particularly sepsis-associated DIC,
is a major cause of increased mortality in sepsis. However,
clinical DIC diagnosis relies on FIB and D-Dimer whose
laboratory testing frequency is <10% (31), resulting in a
lag in DIC diagnosis. Therefore, it is meaningful to use a
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TABLE 2 | Model performance at different prediction time-window for SIC and

DIC prediction.

Model-AUROC SIC DIC

Prediction time-window 8 h 24 h 48 h 8 h 24 h 48 h

LR 0.905 0.911 0.872 0.883 0.857 0.847

SVM 0.858 0.870 0.813 0.843 0.818 0.809

XGBoost 0.973 0.960 0.929 0.955 0.918 0.910

LightGBM 0.970 0.926 0.884 0.953 0.870 0.855

RNN 0.957 0.951 0.919 0.924 0.892 0.878

LSTM 0.961 0.953 0.914 0.928 0.899 0.881

RNN-decay 0.950 0.947 0.915 0.927 0.893 0.884

ODE-RNN 0.962 0.951 0.914 0.936 0.904 0.883

SIC, sepsis-induced coagulopathy; DIC, disseminated intravascular coagulation; LR,

logistic regression; SVM, support vector machines; LightGBM, light gradient boosting

machine; XGBoost, eXtreme gradient boosting; RNN, recurrent neural network; LSTM,

long short-term memory network; RNN-decay, recurrent neural networks-decay; ODE-

RNN, ordinary differential equations-recurrent neural networks.

full spectrum of laboratory tests for the early detection of
coagulation disorders. To our knowledge, there is only one
study using machine learning to predict the progression of
sepsis-induced DIC that was published in 2020 (32). Hasegawa
et al. performed three classical machine learning methods
to predict the progression of sepsis-induced coagulation
disorders. In that study, sepsis was defined based on Systemic
Inflammatory Response Syndrome (SIRS) criteria rather
than sepsis 3.0 criteria. In addition, the study used the
static data and the accuracy of the model to predict the
progression of coagulopathy was only 59.8–67.0% (32). This
is far poorer than our model prediction performance, which
suggests that dynamic data monitoring is more consistent with
clinical application than static models. In our study, high-risk
patients were identified up to 48 h earlier, which suggests that
comprehensive use of laboratory tests could detect coagulation
disorders earlier. The Lite model also achieves satisfactory
predictive performance.

The irregularity of clinical time series data was reflected
in the tables as a large number of missing. Previous studies
deal with large amounts of missing data by removing missing
variables or using statistical interpolation methods, but such
methods are not applicable to time series data (33). Neural
ODE is a continuous dynamics theory that can explore the
dynamic interactions between key features in the timeline of
event onset and development (34). Our results demonstrate
the superiority of ODE in the dynamics of disease. In a
recent review, Alber et al. showed that it remains a challenge
to apply ODE in medical continuous monitoring studies
with incomplete baseline data and low-sampling data (35).
Our study introduced ODE into RNNs and achieved better
performance than RNN and LSTM, showing that ODE-RNNs
are more appropriate for sparse irregular data than standard
deep learning models. However, our results showed that
the performance of the ODE-RNN was lower than that of
the gradient boosted tree model (XGBoost and LightGBM).

We consider that clinical laboratory diagnoses usually use
hierarchical stratification for diagnosis, which fits better with
the splitting structure of the tree model and gives the tree
model a natural advantage. In addition, Qin et al. showed that
neural models are not good at efficient feature transformation
and scaling, while the tree-based model has an advantage in
this respect (36). However, the flexibility and variety of tasks
that can be achieved with deep learning are not available
with traditional methods when dealing with complex tabular
problems. Furthermore, occlusion analysis showed that a single
featuremasking does not affect themodel significantly, indicating
that ODE-RNN has better perturbation resistance. That is, the
overall absence of a particular examination does not have a
large impact on the ODE-RNN model, suggesting that the
ODE-RNN model may have better robustness. Finally, the
arbitrary time point continuous prediction achieved by ODE-
RNN is also not possible with the gradient boosted tree model,
where this arbitrary time point continuity is significant for
clinical applications.

Our study offers the following potential benefits: Firstly,
it is essential for ICU clinicians and nurses to identify
patients who truly need intensive attention and personalized
preventive medication. Our predictor can reduce the
alarm frequency in patients without a high risk of sepsis-
associated DIC occurrence after SIC. Secondly, our ODE-RNN
model provides a reference for model selection of real-
world irregular time series processing. This will facilitate
subsequent studies to build robust models that better match
the characteristics of clinical data. Thirdly, our model can
be used to identify sepsis patients in different states of
coagulation impairment, which could be useful for future
randomized controlled clinical studies and further assist
physicians to evaluate the time window of anticoagulation
therapy appropriately. Finally, our interpretable model provides
a visual interactive operating system prototype for early warning
systems in ICU and will facilitate clinical deployment of
predictive models.

However, some limitations also exist in our study. First
of all, our model was developed in a single center, which
reduces the effectiveness and may require retraining when
the model is migrated to other centers. Furthermore, because
we failed to obtain bedside real-time vital sign monitoring
data, our model did not incorporate these parameters which
may diminish the efficacy of the model. Finally, our study is
retrospective and further prospective clinical studies need to
be validated.

CONCLUSION

Our early dynamic sequential predictor enables identification
of sepsis patients at high risk of SIC and DIC up to 48 h
earlier, achieving the highest performance to date. Our study
showed that the ODE-RNN model achieves better performance
than the standard RNN model. Our study contributes to early
personalized management, and also improves the currently
available algorithms.
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FIGURE 6 | SHAP-based interpretation of model. (A) Overall feature importance of the top 20 features. (B) Beeswarm plot showing the impact of the top 20 features

across all samples in the model. Beeswarm combines feature importance and feature effect, ranking the features by the sum of the SHAP over all samples (y-axis). In

the plot, one row represents one feature and each dot represents the feature SHapley value for one sample, gray dots represent missing values, colors represent

feature values (red high, blue low). Long tails indicate that features are extremely important for a particular patient. The x-axis represents the impact on the model

output, with positive values pushing risk higher and negative values driving risk lower. (C) SHAP dependence plot showing predicted risk vs. feature value for PLT. The

x-axis is the range of eigenvalues of PLT features and the y-axis is the shape-value of PLT features. It showed that when PLT was below 80, the shape-value was

significantly increased with higher predicted risk. (D) SHAP interaction dependency plot describes the relationship between two interaction features and predicted risk.

It showed the interaction between PLT and PCT, where when PCT is low, the corresponding PLT feature value is low, SHAP takes a high value and the model output

risk increases. (E) SHAP force plot shows an interpretable example of single-sample feature prediction results. The base value is the predicted average of the all

sample, and the output value is the predicted value of the current sample. Red indicates that the feature increases the risk, blue indicates that the feature decreases

the risk. Longer feature bars indicate that the feature is contributing more.
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FIGURE 7 | An interpretable real-time risk forecasting example. A 69-year-old male patient was hospitalized with the diagnosis of “Acute biliary pancreatitis,

Obstructive jaundice.” The patient was diagnosed with SIC on the third day and sepsis-associated DIC on the fifth day of admission by the clinician. Our model

predicted the disease progression earlier than the clinician. The predictions revealed that the most of sepsis-associated DIC events could be accurately predicted up

to 8 h earlier. However, there were some sepsis-associated DIC events were still not predicted, mainly in the persistence of DIC onset, which might be related to

clinical medicine interventions. The bottom of the graph is the SIC risk score and the upper is the DIC risk score. Red circles indicate sepsis-associated DIC events

evaluated by the model. Red stars indicate true future predictions (meeting the ISTH overt-DIC criteria).

FIGURE 8 | Lite model performance evaluation. (A) Receiver operating characteristic curves of XGBoost for DIC. (B) Receiver operating characteristic curves of

ODE-RNN for DIC.
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Objective: Most trauma scoring systems with high accuracy are difficult to use quickly

in field triage, especially in the case of mass casualty events. We aimed to develop a

machine learning model for trauma mortality prediction using variables easy to obtain in

the prehospital setting.

Methods: This was a retrospective prognostic study using the National Trauma Data

Bank (NTDB). Data from 2013 to 2016 were used for model training and internal testing,

and data from 2017 were used for validation. A neural network model (NN-CAPSO)

was developed using the ability to follow commands (whether GCS-motor was <6),

age, pulse rate, systolic blood pressure (SBP) and peripheral oxygen saturation, and

a new score (the CAPSO score) was developed based on logistic regression. To achieve

further simplification, a neural network model with the SBP variable removed (NN-CAPO)

was also developed. The discrimination ability of different models and scores was

compared based on the area under the receiver operating characteristic curve (AUROC).

Furthermore, a reclassification table with three defined risk groups was used to compare

NN-CAPSO and other models or scores.

Results: The NN-CAPSO had an AUROC of 0.911(95% confidence interval 0.909

to 0.913) in the validation set, which was higher than the other trauma scores

available for prehospital settings (all p < 0.001). The NN-CAPO and CAPSO score

both reached the AUROC of 0.904 (95% confidence interval 0.902 to 0.906),

and were no worse than other prehospital trauma scores. Compared with the

NN-CAPO, CAPSO score, and the other trauma scores in reclassification tables,

NN-CAPSO was found to more accurately classify patients to the right risk groups.
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Conclusions: The newly developed CAPSO system simplifies the method of

consciousness assessment and has the potential to accurately predict trauma patient

mortality in the prehospital setting.

Keywords: trauma, in-hospital mortality, prehospital, triage, scoring system, machine learning

INTRODUCTION

Trauma remains one of the leading causes of death and disability
worldwide (1). Patients with severe trauma often benefit from
receiving treatment at a higher level of care (2). Therefore,
it is important to identify patients with severe trauma in the
prehospital setting to avoid delayed or inadequate treatment,
especially after amass casualty incident (MCI). However, inmany
cases, the prehospital phase of triage is time-constrained and
aids to diagnosis are limited, and even when many ambulance
personnel do not have the relevant specialization, the number of
personnel is severely insufficient compared to the large number of
casualties (3). Thus, investigating how to quickly and accurately
determine the severity of injuries using the most accessible
assessment methods is needed.

To date, many severity assessment methods applicable to

the early stages of trauma have been proposed and validated,

including scoring systems or predictive models, most of which

were constructed based on logistic regression analysis. The

Revised Trauma Score (RTS), which was first proposed in

1989, used respiratory rate (RR), systolic blood pressure (SBP),

and Glasgow Coma Scale (GCS) to calculate the probability

of survival and is still widely used today (4). The Mechanism,

Glasgow Coma Scale, Age, and Arterial Pressure (MGAP) score

developed in 2010 used four variables to assess the severity of

trauma and performed better than the RTS (5). In contrast,

the Glasgow Coma Scale, Age, Systolic Blood Pressure (GAP)

score was proposed in 2011, which was referenced for the

establishment of the MGAP, performed no less well than the
MGAP with the mechanism of trauma removed (6). The NTS
(New Trauma Score) score used peripheral oxygen saturation
(SpO2) instead of respiratory rate in the RTS and improved
the prediction of death in trauma patients (7). The Trauma
Rating Index in Age, Glasgow Coma Scale, Respiratory rate and
Systolic blood pressure (TRIAGES) score used a generalized
additive model to delineate the interval of variables and had
better performance than the GAP score with the addition of the
respiratory rate variable (8). Composed by the mechanism of
trauma RTS, Injury Severity Score (ISS) (9) and age, the Trauma
and Injury Severity Score (TRISS) was able to predict trauma
mortality accurately (10). Although TRISS can hardly be used in
prehospital settings because of the complex assessment of ISS, it
is often taken as a benchmark for comparison with other trauma
scores. However, in mass casualty incidents, it is also difficult to
have sufficient time and manpower to monitor and assess all vital
signs and complete GCS scores of casualties. Without the use of
assistive electronic devices, calculating scores at the scene also has
the disadvantage of being time-consuming and error-prone. In
addition, the reliability of complete GCS score is dependent on

relevant training and education (11), and it is often difficult for
nonprofessional personnel involved in triage to accurately assess
the GCS (12).

Therefore, it is necessary to explore the optimization of
the input variables that need to be evaluated prehospital, for
example, by considering the simplification of the consciousness
assessment method (13) or by eliminating the systolic blood
pressure variable, which is relatively difficult to measure (14).
Alternatively, scores can be calculated quickly and accurately
with the help of electronic devices, or for better prediction,
sophisticated machine learning models can be embedded in
them. Machine learning models can often better handle complex
non-linear interactions between variables and improve the
accuracy of results by optimizing the error between predicted
and observed results (15). Other studies have shown that using
only the motor component of the GCS is a simple and valid
assessment tool, and even determining whether a patient has
the ability to follow commands (assessing whether the GCS-
motor is <6) has been shown to be a potential alternative to
the GCS in the prehospital phase (16). However, there are no
valid machine learning models or scores using this approach
developed for predicting the mortality of trauma patients in the
prehospital setting. The purpose of this study is to investigate the
development of a machine learning model and a new easy-to-use
trauma score for prehospital trauma mortality prediction. This
will be achieved by using the binary assessment of GCS-motor
(GCS-m) score <6 and other accessible vital signs, of which the
predictive performance is not inferior to the RTS, MGAP, GAP,
and TRIAGES scores.

METHODS

Study Design and Setting
Data were obtained from the National Trauma Data Bank
(NTDB), the largest trauma database in the United States,
which was assembled by the American College of Surgeons (17).
Reporting of this study followed the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD)Guideline (18). Permission to use these data
was obtained from NTDB.

Selection of Participants
This study used data from 2013 to 2017 in the NTDB, totaling
4,112,308 cases. The type of trauma was limited to blunt and
penetrating. Cases without emergency medical service (EMS)
data were excluded. To improve the quality of the included
data, cases with more than three missing variables in the seven
variables of SBP, HR, RR, GCS eye-opening response, GCS speech
score, GCS motor score, and total GCS score were excluded.
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FIGURE 1 | Study participant selection procedure. NTDB, National Trauma Data Bank; GCS, Glasgow Coma Scale; ED, emergency department; and ISS, Injury

Severity Score.

In addition, patients who were transferred from the emergency
department (ED) to other hospitals, refused treatment in the ED,
or had unknown outcomes in the ED were excluded. The age
range of the patients was limited to 16 to 89 years (Figure 1).

Measurements and Outcome
Cases from 2013 to 2016 were used as the derivation cohort,
and cases from 2017 were used as the validation cohort. Eighty
percent of the derivation cohort was randomly assigned to the
training set, and the remaining 20% was used as the internal

testing set. Predictor variables for the study included age and
vital signs that were first recorded in the field. Whether the GCS
motor was <6, i.e., whether the patient had the ability to follow
commands, was a simplified assessment of consciousness used
in this study as an alternative to the GCS. The outcome variable
was in-hospital death from any cause. The missing values in the
derivation or validation cohort were imputed using multivariate
imputation by chained equations (MICE) (19). In addition to the
study variables, vital signs recorded in the emergency department
(ED), type of trauma, injury severity score (ISS), length of
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hospital stay, duration of mechanical ventilation, and length of
intensive care unit (ICU) stay were also used for imputation. Due
to the overlarge amount of data, only one imputed dataset was
used for model development and validation.

Analysis
In the training set, the neural network algorithm and logistic
regression analysis were used to develop mortality prediction
models in trauma patients. The neural network consists of
an input layer, hidden layers, and an output layer, where the
neurons in each layer are first activated by neurons in the
previous layer, then transformed by a non-linear function in the
current layer, and eventually input to the next layer (20). This
non-linear characteristic makes it efficient at learning complex
relationships of input variables. Three models were developed
using three combinations of variables based on the neural
network respectively. The first combination of variables was GCS,
age, pulse rate, SBP, and peripheral oxygen saturation, referred
to as “GAPSO.” The second combination of variables replaced
GCS with a simpler binary assessment of GCS-Motor (GCS-m)
score <6 (i.e., the ability to follow commands), referred to as
“CAPSO.” The third combination removed SBP from the second
combination to further investigate the effect of removing blood
pressure on the model’s performance, referred to as “CAPO.” The
neural network models in this study contain two hidden layers
with 256 and 128 neurons. They were optimized using the Adam
optimizer, and overfitting was prevented by setting the dropout
layer and early stopping.

Logistic regression analysis was performed, and then a score
was developed using the second variable combinations, i.e.,
CAPSO. Considering the non-linear relationship between the
variables and the outcome, the results of the multivariate
generalized additive model were used to delineate the range of
all predictors. Simple integers were assigned to the intervals
according to the coefficients of the logistic regression, referring
to the development of TRIAGES (8). Detailed methods for
delineating variable intervals and assigning integer values are
provided in the Supplementary Material. To be compared with
the new models, the trauma scores previously developed were
calibrated to the population in this study by fitting a logistic
regression model to predict mortality for each score in the
training set. Receiver operating characteristic (ROC) curves
were plotted to compare the classification performance of each
model as well as each score. The area under the receiver
operating characteristic curves (AUROCs) were compared
between different models using Delong’s test (21). The agreement
between the predicted probabilities of models or scores and
observed frequencies of in-hospital mortality of trauma patients
was assessed using probability calibration curves. To compare
the sensitivity, specificity, and accuracy of the models and scores,
it is necessary to select the threshold of mortality, whereby the
prediction samples were classified into positive and negative
samples. In this study, with reference to a previous study (5), the
threshold with a sensitivity of at least 95%was set for comparison.
Finally, to compare the differences between models when further
classifying trauma patients, the trauma mortality predicted by
each model and score was divided into three intervals as

TABLE 1 | Baseline characteristics of trauma patients.

Variables Derivation cohort

(n = 1,366,881)

Validation cohort

(n = 449,842)

Age, years [range] 52.0 [31.0, 70.0] 53.0 [32.0, 71.0]

Male, n (%) 843,371 (61.7) 273,196 (60.7)

Race, n (%)

American Indian 11,196 (0.8) 3,492 (0.8)

Asian 25,923 (1.9) 9,285 (2.1)

Black or African American 204,017 (14.9) 68,516 (15.2)

Native Hawaiian or Other

Pacific Islander

3,422 (0.3) 1,203 (0.3)

White 990,206 (72.4) 322,870 (71.8)

Other 132,117 (9.7) 44,476 (9.9)

Type of trauma, n (%)

Blunt 1,230,013 (90.0) 404,176 (89.8)

Penetrating 136,868 (10.0) 45,666 (10.2)

First recorded vital signs

measured at the scene

of injury

Systolic blood pressure,

mmHg [range]

137.0 [120.0, 154.0] 138.0 [120.0, 156.0]

Pulse rate, beats/min

[range]

89.0 [77.0, 102.0] 88.0 [76.0, 102.0]

Respiratory rate, rate/min

[range]

18.0 [16.0, 20.0] 18.0 [16.0, 20.0]

Oxygen saturation,

% [range]

98.0 [96.0, 99.0] 98.0 [95.0, 99.0]

Glasgow Coma Scale

[range]

15.0 [14.0, 15.0] 15.0 [14.0, 15.0]

Injury Severity Score,

[range]

9.0 [4.0, 13.0] 9.0 [4.0, 13.0]

Outcomes

Length of stay in hospital,

days [range]

4.0 [2.0, 7.0] 4.0 [2.0, 7.0]

ICU admission, n (%) 437,882 (32.0) 130,167 (28.9)

Mechanical ventilation,

n (%)

209,471 (15.3) 55,315 (12.3)

Death, n (%) 65,770 (4.8) 22,208 (4.9)

Medians with 25th−75th interquartile ranges are shown for continuous variables, and

counts with percentages are shown for categorical variables.

described in previous studies (5, 6): trauma patients at low
(<5%), intermediate, and high (>50%) risk of death. The Shapley
additive explanation (SHAP) plots (22) for the CAPSO model
based on neural network were drawn. All statistical analyses were
performed using Python (version 3.7.8) and R (version 4.0.2);
neural network models were based on TensorFlow 2.1.0; p< 0.05
was considered statistically significant.

RESULTS

Characteristics of Study Subjects
Based on the inclusion and exclusion criteria, a total of 1,816,723
cases were included in the study, with 1,366,881 cases in the
derivation cohort and 449,842 cases in the validation cohort
(Figure 1). The main characteristics of the trauma patients after

Frontiers in Medicine | www.frontiersin.org 4 December 2021 | Volume 8 | Article 81019575

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Simplified Prehospital Triage Model: CAPSO

TABLE 2 | Predictors at presentation associated with in-hospital death used to

develop CAPSO in the derivation dataset.

Predictors Beta [95% CI] P value Integerized

score point

Intercept −4.93 [−4.95, −4.90] <0.001

Age, years

16–49 Reference 0

50–64 0.42 [0.39, 0.45] <0.001 1

65–74 0.92 [0.88,0.95] <0.001 2

75+ 1.27 [1.24, 1.30] <0.001 3

Glasgow Coma Scale-Motor

<6 2.39 [2.37, 2.41] <0.001 5

6 Reference 0

Systolic blood pressure, mmHg

0–49 2.25 [2.19, 2.31] <0.001 4

50–89 1.00 [0.87, 1.04] <0.001 2

90–109 0.52 [0.49, 0.55] <0.001 1

110–199 Reference 0

200+ 0.54 [0.49, 0.59] <0.001 1

Pulse rate, beats/min

0–49 1.26 [1.21, 1.32] <0.001 3

50–59 0.63 [0.58, 0.68] <0.001 1

60–119 Reference 0

120–189 0.60 [0.57, 0.63] <0.001 1

190+ 1.39 [1.11, 1.66] <0.001 3

Oxygen saturation, %

0–79 1.50 [1.46, 1.54] <0.001 3

80–89 0.95 [0.94, 0.98] <0.001 2

90–94 0.41 [0.37, 0.44] <0.001 1

95–100 Reference 0

95% CI, 95% confidence interval; mmHg, millimeter of mercury.

imputation of missing values are shown in Table 1. The overall
median age of all cases was 52 years, and the interquartile range
(IQR) was 31 to 70 years. A total of 61.5% of patients were
male, and the overall mortality rate was 4.8%. The baseline
characteristics before imputation of missing values are shown in
Supplementary Table 1.

Development of Mortality Prediction
Models
Based on the neural network algorithm, three models were
developed using three sets of variable combinations respectively,
including neural network-based GAPSO (NN-GAPSO), neural
network-based CAPSO (NN-CAPSO), and neural network-
based CAPO (NN-CAPO). The continuous variables in the
predictor combination CAPSO were classified into categorical
variables based on the generalized additive model. After analysis
through logistic regression, the new score, CAPSO (the Ability
to Follow Commands, Age, Pulse Rate, Systolic Blood Pressure,
and peripheral Oxygen saturation), was defined after assigning
integer values to the variables according to the coefficients
of the regression equation. The CAPSO scores ranged from

a maximum of 18 to a minimum of 0, with higher scores
representing higher risk of death. A score of five, the highest in
one category, was assigned to the inability to follow commands.
A score of four was assigned to systolic blood pressure between
0 and 49, which was the second-highest score in one category
(Table 2).

Validation of the Models
The AUROC analysis showed that the neural network models
had excellent performance in both the internal testing set and
the validation set (internal testing set: Supplementary Table 2,
Supplementary Figure 1; validation set: Table 3, Figure 2). NN-
GAPSO showed the highest performance using the total GCS.
NN-CAPSO replaced the initial GCS with the assessment of
whether the GCS-m was <6, and its AUROC was lower than
that of NN-GAPSO (p < 0.001). After further removal of systolic
blood pressure, the AUROC values of NN-CAPO decreased in
comparison to NN-CAPSO (p < 0.001). The AUROC of the
CAPSO score was lower than that of NN-GAPSO and NN-
CAPSO (both p < 0.001) but the same as that of NN-CAPO (p >

0.05). The AUROCs of NN-GAPSO andNN-CAPSOwere higher
than those of other scores (except TRISS), such as RTS, NTS,
GAP, MGAP, and TRIGAGES (all p < 0.001). The AUROCs of
NN-CAPO and CAPSO scores were similar to that of TRIAGES
(both p > 0.05) and higher than the rest of the above scores
(all p < 0.001). The sensitivity, specificity and accuracy of the
models and scores according to the sensitivity closest to 0.95
are shown in Table 3. The probability calibration curves in the
validation set of the neural network models, CAPSO score, and
other trauma scores calibrated with the training set are shown
in Figure 3, while those in the internal testing set are shown in
Supplementary Figure 2. The SHAP plots of NN-CAPSO model
are shown in Supplementary Figure 3.

Table 4 shows the reclassification of NN-CAPSO with NN-
GAPSO, NN-CAPO, CAPSO score, TRIAGES score, and TRISS
score in the validation set for the severity of trauma in 100,000
randomly selected patients. In NN-CAPSO, compared with NN-
GAPSO, a total of 6,163 patients were misclassified out of 100,000
patients, of which 3,648were overtriaged and the remaining 2,515
were undertriaged. Compared with NN-CAPSO, NN-CAPO
misclassified 4,849 patients (overtriaged: 2,003, undertriaged:
2,846), while the CAPSO score misclassified 5,170 patients
(overtriaged: 1,217, undertriaged: 3,953). When compared with
TRIAGES, NN-CAPSO correctly reclassified 8,612 patients into
the intermediate-risk group, which was classified by TRIAGES
into the low-risk group, and correctly reclassified 344 patients
into the high-risk group, which was classified by TRIAGES into
the intermediate-risk group. However, in this comparison, NN-
CAPSO incorrectly classified 326 patients who should have been
in the high-risk group into the intermediate-risk group, and 927
patients who should have been in the intermediate-risk group
were incorrectly classified into the low-risk group. Compared
with TRISS, NN-CAPSO correctly classified 11,649 patients in
the intermediate-risk group, who were classified as low risk by
TRISS, but incorrectly classified 1,251 patients in the high-risk
group as belonging to the intermediate-risk group.
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TABLE 3 | Comparison of the diagnostic properties of the models/scores at a sensitivity threshold of nearest 95%.

Models/Scores Variables AUROC [95% CI] Sensitivity [95% CI] Specificity [95% CI] Accuracy [95% CI]

NN-GAPSO GCS, Age, Pulse rate, SBP, SpO2 0.921 [0.918, 0.923] 0.951 [0.949, 0.954] 0.559 [0.557, 0.560] 0.578 [0.577, 0.580]

NN-CAPSO Ability to follow commands, Age, Pulse rate, SBP, SpO2 0.911 [0.909, 0.913] 0.951 [0.948, 0.954] 0.546 [0.545, 0.548] 0.566 [0.565, 0.568]

NN-CAPO Ability to follow commands, Age, Pulse rate, SpO2 0.904 [0.902, 0.906] 0.951 [0.948, 0.954] 0.518 [0.517, 0.520] 0.540 [0.538, 0.541]

CAPSO Ability to follow commands, Age, Pulse rate, SBP, SpO2 0.904 [0.902, 0.906] 0.960 [0.957, 0.963] 0.492 [0.490, 0.493] 0.515 [0.513, 0.516]

RTS SBP, RR, GCS 0.851 [0.848, 0.854] 0.760 [0.754, 0.765] 0.879 [0.878, 0.880] 0.873 [0.872, 0.874]

NTS SBP, SpO2, GCS 0.888 [0.885, 0.891] 0.938 [0.935, 0.942] 0.391 [0.390, 0.393] 0.418 [0.417, 0.420]

MGAP Mechanism, GCS, Age, SBP 0.898 [0.896, 0.901] 0.952 [0.949, 0.955] 0.451 [0.449, 0.452] 0.476 [0.474, 0.477]

GAP GCS, Age, SBP 0.897 [0.894, 0.899] 0.967 [0.965, 0.970] 0.377 [0.375, 0.378] 0.406 [0.404, 0.407]

TRIAGES GCS, Age, SBP, RR 0.903 [0.900, 0.905] 0.976 [0.974, 0.978] 0.349 [0.347, 0.350] 0.380 [0.378, 0.381]

TRISS Mechanism, GCS, Age, SBP, RR, ISS 0.934 [0.932, 0.936] 0.959 [0.956, 0.961] 0.575 [0.573, 0.576] 0.594 [0.592, 0.595]

CI, confidence interval; NN, Neural network; GAPSO, Glasgow Coma Scale, Age, Pulse Rate, Systolic Blood Pressure, and Peripheral Oxygen saturation; CAPSO, the Ability to Follow

Commands, Age, Pulse Rate, Systolic Blood Pressure, and Peripheral Oxygen saturation; CAPO, the Ability to Follow Commands, Age, Pulse Rate, and Peripheral Oxygen saturation;

RTS, Revised Trauma Score; NTS, New Trauma Score; MGAP, Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure; GAP, Glasgow Coma Scale, Age, and Systolic Blood

Pressure score; TRIAGES, Trauma Rating Index in Age, GlasgowComa Scale, Respiratory rate and Systolic blood pressure; TRISS, Trauma and Injury Severity Score; AUROC, Area Under

the Receiver Operating Characteristics; GCS, Glasgow Coma Scale; SBP, Systolic Blood Pressure; RR, Respiratory rate; SpO2, Peripheral Oxygen saturation; ISS, Injury Severity Score.

FIGURE 2 | The discrimination of models/scores in the validation cohort. (A) Receiver operating characteristic curves for newly developed models; (B) receiver

operating characteristic curves for trauma scores; (C) p values for a two-by-two comparison between different models and scores. NN, Neural network; GAPSO,

Glasgow Coma Scale, Age, Pulse Rate, Systolic Blood Pressure, and Peripheral Oxygen saturation; CAPSO, the Ability to Follow Commands, Age, Pulse Rate,

Systolic Blood Pressure, and Peripheral Oxygen saturation; CAPO, the Ability to Follow Commands, Age, Pulse Rate, and Peripheral Oxygen saturation; RTS, Revised

Trauma Score; NTS, New Trauma Score; MGAP, Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure; GAP, Glasgow Coma Scale, Age, and Systolic Blood

Pressure score; TRIAGES, Trauma Rating Index in Age, Glasgow Coma Scale, Respiratory rate and Systolic blood pressure; TRISS, Trauma and Injury Severity Score.

DISCUSSION

The aim of this study was to develop a trauma mortality
prediction model using a simple binary assessment of GCS-
Motor (GCS-m) score <6, namely, whether the patient has the

ability to follow commands, instead of the GCS. The prediction

accuracy of the neural network-based CAPSO model was still

higher than that of the other prehospital trauma scores using
the total GCS, although it was slightly worse than that of the

neural network-based GAPSO model, which uses the total GCS.
In addition, the logistic regression-based CAPSO score had a
predictive power similar to that of the TRIAGES score, and it
was superior to other prehospital trauma scores. In addition, the

neural network model NN-CAPO, which used the assessment
of GCS-m <6 and removed the variable SBP, could achieve
predictive accuracy similar to that of the TRIAGES.

In this study, the cutoff value for predicting the probability
of death was chosen first based on the sensitivity closest to 95%,
referring to a previous study (5). However, higher sensitivity
tends to be accompanied by lower specificity, and in this dataset,
even TRISS failed to reach the upper 60% of specificity. In
addition, the reclassification table based on the classification
of trauma patients according to minor, moderate, and severe
injuries is more relevant for practical use. Furthermore, in this
study, to make the results more intuitive, a random sample
of 100,000 patients in the validation set was selected and
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FIGURE 3 | Calibration curves of newly developed models (A) and trauma scores (B) in the validation cohort. NN, Neural network; GAPSO, Glasgow Coma Scale,

Age, Pulse Rate, Systolic Blood Pressure, and Peripheral Oxygen saturation; CAPSO, the Ability to Follow Commands, Age, Pulse Rate, Systolic Blood Pressure, and

Peripheral Oxygen saturation; CAPO, the Ability to Follow Commands, Age, Pulse Rate, and Peripheral Oxygen saturation; RTS, Revised Trauma Score; NTS, New

Trauma Score; MGAP, Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure; GAP, Glasgow Coma Scale, Age, and Systolic Blood Pressure Score;

TRIAGES, Trauma Rating Index in Age, Glasgow Coma Scale, Respiratory rate and Systolic blood pressure; TRISS, Trauma and Injury Severity Score.

grouped according to the 5% and 50% cutoff values of predicted
mortality, referring to previous studies (5, 6). According to
the reclassification table, NN-CAPSO could correctly triage
more patients with moderate and severe injuries than the
TRIAGES score.

In recent years, with the rise of machine learning algorithms,
there has been an increasing number of studies using machine
learning methods other than logistic regression algorithms to
build prediction models. Most of these studies have suggested
that machine learning algorithms have satisfying performance
and broad application prospects in the medical field (23).
Nevertheless, skepticism is also present. It was concluded that
no evidence was found that the machine learning algorithms
outperformed the logistic regression algorithm (24). In low-
dimensional data, the machine learning algorithms were not
considered to perform better than logistic regression (25). Some
researchers have pointed out that the advantage of machine
learning algorithms comes into play when dealing with data with
a large number of features (26, 27), while others have claimed
that machine learning algorithms require a larger data volume to
demonstrate their performance (28). In addition to data quantity
and dimensionality, the nature and processing of the features
also play a very important role when comparing algorithms, such
as the processing of continuous variables and the generation of
interaction terms. In this study, although the number of features
was relatively small, there was a sufficient amount of data, and

the neural network models outperformed the logistic regression
model and scores. Currently, with the widespread availability of
smart electronic devices, machine learning models for predicting
the outcomes of trauma patients, embedded into applications,
will have higher accuracy and efficiency compared to scores
calculated manually, whether applied for rapid assessment of
trauma patient severity in normal times or in MCI. However, it
is difficult to make machine learning algorithms interpretable,
especially neural network algorithms, which are often referred to
as “black boxes.” In this study, SHAP values are used to interpret
the neural network model NN-CAPSO. Furthermore, machine
learning algorithms are still not as commonly used in practice
as intuitive scoring systems. Therefore, in addition to neural
network algorithms, we have developed a simple scoring system
for CAPSO using the logistic regression algorithm to facilitate the
validation and use of this system in clinical settings.

Currently, pulse rate and peripheral oxygen saturation are
easy to obtain in the prehospital phase. The accuracy of
peripheral oxygen saturation measurement is relatively reliable
when it is above 75% (29). In the CAPSO scoring system, we set
the threshold for peripheral oxygen saturation at 80% according
to the coefficients of the multivariate generalized additive model.
In the SHAP plot, age was the second most important feature
in the ranking. Age was also included as a variable in the
MGAP, GAP, and TRIAGES scores which performed well in ROC
analysis. By entering the age into the intelligent device in advance,
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TABLE 4 | Reclassification of severity between NN-CAPSO and other scoring systems in the randomly selected validation cohorta.

Reclassification of severity between NN-CAPSO and NN-GAPSO

NN-GAPSO

Scores Severity Mild (<0.05 points) Moderate (0.05 to 0.5 points) Severe (>0.5 points) Total

NN-CAPSO Mild (<0.05 points) 80,483 (0.96) 2,034 (6.64) 0 (0.0) 82,517 (1.1)

Moderate (0.05 to 0.5 points) 3,500 (3.51) 11,921 (18.25) 481 (71.1) 15,902 (16.61)

Severe (>0.5 points) 1 (0.0) 148 (36.49) 1,432 (90.92) 1,581 (85.77)

Total 83,984 (1.06) 14,103 (16.77) 1,913 (85.94) 100,000 (4.9)

Reclassification of severity between NN-CAPSO and NN-CAPO

NN-CAPO

Scores Severity Mild (<0.05 points) Moderate (0.05 to 0.5 points) Severe (>0.5 points) Total

NN-CAPSO Mild (<0.05 points) 80,675 (1.03) 1,842 (4.13) 0 (0.0) 82,517 (1.1)

Moderate (0.05 to 0.5 points) 2,482 (6.08) 13,259 (18.06) 161 (59.63) 15,902 (16.61)

Severe (>0.5 points) 0 (0.0) 364 (68.96) 1,217 (90.8) 1,581 (85.77)

Total 83,157 (1.18) 15,465 (17.59) 1,378 (87.16) 100,000 (4.9)

Reclassification of severity between NN-CAPSO and CAPSO

CAPSO

Scores Severity Mild (<5 points) Moderate (5 to 10 points) Severe (>10 points) Total

NN-CAPSO Mild (<0.05 points) 81,461 (1.06) 1,056 (4.17) 0 (0.0) 82,517 (1.1)

Moderate (0.05 to 0.5 points) 3,708 (6.07) 12,033 (19.35) 161 (54.66) 15,902 (16.61)

Severe (>0.5 points) 0 (0.0) 245 (67.35) 1336 (89.15) 1581 (85.77)

Total 85,169 (1.28) 13,334 (19.03) 1,497 (85.44) 100,000 (4.9)

Reclassification of severity between NN-CAPSO and TRIAGES

TRIAGES

Scores Severity Mild (<4 points) Moderate (5 to 8 points) Severe (>9 points) Total

NN-CAPSO Mild (<0.05 points) 81,590 (1.0) 927 (9.39) 0 (0.0) 82,517 (1.1)

Moderate (0.05 to 0.5 points) 8,612 (6.08) 6,964 (27.31) 326 (65.95) 15,902 (16.61)

Severe (>0.5 points) 18 (38.89) 344 (61.05) 1,219 (93.44) 1,581 (85.77)

Total 90,220 (1.5) 8,235 (26.7) 1,545 (87.64) 100,000 (4.9)

Reclassification of severity between NN-CAPSO and TRISS

TRISS

Scores Severity Mild(>0.834 points) Moderate (0.353 to 0.834 points) Severe(<0.353 points) Total

NN-CAPSO Mild (<0.05 points) 82,029 (0.98) 465 (20.22) 23 (34.78) 82,517 (1.1)

Moderate (0.05 to 0.5 points) 11,649 (6.3) 3,002 (35.04) 1,251 (68.35) 15,902 (16.61)

Severe (>0.5 points) 83 (36.14) 232 (68.53) 1,266 (92.18) 1,581 (85.77)

Total 93,761 (1.67) 3,699 (35.28) 2,540 (79.92) 100,000 (4.9)

aData in parentheses are the percentages of deaths (%). Severe, high risk (> 50%) of death; Moderate, intermediate risk of death; Mild, low risk (< 5%) of death. NN, Neural network;

GAPSO, Glasgow Coma Scale, Age, Pulse Rate, Systolic Blood Pressure, and Peripheral Oxygen saturation; CAPSO, the Ability to Follow Commands, Age, Pulse Rate, Systolic Blood

Pressure, and Peripheral Oxygen saturation; CAPO, the Ability to Follow Commands, Age, Pulse Rate, and Peripheral Oxygen saturation; RTS, Revised Trauma Score; NTS, New Trauma

Score; MGAP, Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure; GAP, Glasgow Coma Scale, Age, and Systolic Blood Pressure score; TRIAGES, Trauma Rating Index in

Age, Glasgow Coma Scale, Respiratory rate and Systolic blood pressure; TRISS, Trauma and Injury Severity Score.

it ensures that the age is available first when assessing the severity
of the patient’s injury by models or scores, which is applicable
to people who wear the device earlier, such as military personnel
or firefighters. However, if the patient is unconscious and the

age is not available from all other sources in a short period of
time, guesses by medical personnel can be useful but may lead
to some degree of degradation in model accuracy, which is still
subject to further validation. For the assessment of the patient’s
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state of consciousness, the GCS is mostly used today. However,
in specific situations, such as MCI, complete measurement of
the GCS will waste precious time, as it has been reported that
even formally trained clinicians have a probability of up to 20%
of making errors in assessing GCS in a normal setting (30), let
alone in the complicated trauma field. It was reported that the
motor component of the GCS not only correlated linearly with
survival but also retained most of the predictive validity of the
GCS (31). When using GCS-m<6 as a predictor for the need for
treatment at a trauma center, this predictor showed comparable
validity to that using total GCS ≤ 13 (32). In addition, it was
difficult to take manual measurements of blood pressure in the
field (14). In this study, we attempted to replace the GCS with
the ability to follow commands and further to remove SBP to
build models and compare the effect of different models on the
classification results. NN-GAPSO reached the highest AUROC
as expected, while the performance of NN-CAPSO, NN-CAPO,
and CAPSO deteriorated when compared to NN-GAPSO, but
not as much as predicted. When the severity of the randomly
selected patients was reclassified according to three intervals of
mortality, the NN-GAPSO and NN-CAPSO disagreed on a total
of 6,164 patients (6.164%, AUROC difference was nearly 0.01),
while NN-CAPSO and CAPSO score had a different classification
for a total of 5,170 patients (5.17%, AUROC difference was nearly
0.007). The slight sacrifice of models’ performance in exchange
for more ease of application was considered to make sense, even
the accuracy of simplified models was not weaker than that of the
other scores applicable to prehospital settings. The employment
of the simpler model is estimated to increase user-friendliness
and improve the efficiency of triage, although it remains to be
evaluated in other datasets or in a real field setting. Furthermore,
vital signs, assessment of consciousness, and age data of trauma
patients may be missing due to specific comorbidities, injury
conditions, or treatments. Despite the population with missing
values is not very large, they may benefit from specific models
developed for them. Alternatively, the use of algorithms that
are able to handle missing values, or build models that treat
missing values as special values, can preserve the information
of the missing values themselves and facilitate the application
to trauma patients with incomplete information, which requires
further research.

In recent years, various emerging technologies are bringing
about changes in the method of triage. The Wireless Vital Signs
Monitor (WVSM) is a wireless vital sign monitoring device, and
with its help, a health care worker canmonitor up to 20 patients at
the same time,making it very suitable for triaging in the field (33).
Moreover, the use of smart glasses for remote classification is
promising in reaching high accuracy, either through algorithms
embedded into the glasses or by remote video connection to other
physicians (34, 35). The use of wearable devices or radar for
remote vital sign monitoring was supposed to save considerable
manpower and time (36). However, it is complicated to apply
GCS scores for consciousness assessment in the remote situation.
In this case, the application of binary assessment of GCS-m
score <6 rather than GCS would be effective. For example, some
instructions from corresponding devices will ask the casualty
to complete certain actions, and feedback can then be input

into the devices to determine whether the person has the ability
to follow commands. Then, the scoring model embedded in
devices would give advice on triage. Furthermore, it is not easy
to measure SBP with lightweight wearable devices or radar.
Therefore, using machine learning algorithms to develop triage
models not involving SBP will also be highly applicable now and
in the near future.

In summary, the new user-friendly CAPSO system makes it
possible to rapidly and reliably predict in-hospital mortality in
trauma patients. It is suitable for future prehospital intelligent
automated triage applications and is expected to improve the
efficiency of triage by integration into prehospital decision-
making systems.

LIMITATIONS

This study used only data from the NTDB database and
therefore has the limitations of that database. A portion of
patients with much missing information were excluded, but
the absence of vital signs may be due to the patient being
agitated or receiving emergency medical care, etc., so the final
study population included may have been to a degree biased,
although the large sample population of this study is likely
to be useful in reducing bias. While the data from 2017 were
used separately for validation, the models or scores created for
this study still require validation with data from other sources,
particularly prospective data. For comparison with other studies,
the cut-off values for the probability selected for this study
referenced previous studies; however, in practice, the results of
the model or score should be corrected and the appropriate cut-
off values should be selected for decision making based on the
application scenario.
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Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China

Background: Sepsis-associated acute kidney injury (AKI) is frequent in patients admitted

to intensive care units (ICU) and may contribute to adverse short-term and long-term

outcomes. Acute kidney disease (AKD) reflects the adverse events developing after AKI.

We aimed to develop and validate machine learning models to predict the occurrence of

AKD in patients with sepsis-associated AKI.

Methods: Using clinical data from patients with sepsis in the ICU at Beijing Friendship

Hospital (BFH), we studied whether the following three machine learning models

could predict the occurrence of AKD using demographic, laboratory, and other related

variables: Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), decision

trees, and logistic regression. In addition, we externally validated the results in the

Medical Information Mart for Intensive Care III (MIMIC III) database. The outcome was

the diagnosis of AKD when defined as AKI prolonged for 7–90 days according to Acute

Disease Quality Initiative-16.

Results: In this study, 209 patients from BFH were included, with 55.5% of them

diagnosed as having AKD. Furthermore, 509 patients were included from the MIMIC

III database, of which 46.4% were diagnosed as having AKD. Applying machine learning

could successfully achieve very high accuracy (RNN-LSTM AUROC = 1; decision trees

AUROC = 0.954; logistic regression AUROC = 0.728), with RNN-LSTM showing the

best results. Further analyses revealed that the change of non-renal Sequential Organ

Failure Assessment (SOFA) score between the 1st day and 3rd day (1non-renal SOFA)

is instrumental in predicting the occurrence of AKD.

Conclusion: Our results showed that machine learning, particularly RNN-LSTM, can

accurately predict AKD occurrence. In addition, 1 SOFAnon−renal plays an important role

in predicting the occurrence of AKD.

Keywords: intensive care unit, sepsis, acute kidney injury, acute kidney disease, machine learning
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INTRODUCTION

The prevalence of acute kidney injury (AKI) in patients admitted
to intensive care units (ICU) is approximately 50%. Nearly half
of all AKI cases are present with sepsis, which may further
worsen the prognosis (1, 2). Previous studies have reported the
mortality rate of ICU patients with septic AKI as 30–45%, with
the survivors still associated with the increased risk of chronic
kidney disease (CKD) and cardiovascular events (3).

Increased severity and higher duration of AKI are associated
with poor prognosis. In line with several previous results, Kellum
et al. reported poorer clinical outcomes in patients with AKI
lasting longer than 7 days than in patients who had renal function
recovered within 7 days (4). Similar results have been previously
reported in other studies (5, 6). Furthermore, in patients who
developed sepsis persistent AKI beyond 7 days was associated
with adverse clinical outcomes (5, 6). Hence, Acute Disease
Quality Initiative-16 (ADQI-16) workshop suggested defining
acute kidney disease (AKD) as impaired kidney function lasting
7–90 days after AKI (7). Unlike AKI patients, whose renal
function typically recovers within 7 days, AKD patients suffer
from persistent renal impairment and often have poor clinical
outcomes (8).

Recent studies have utilized machine learning techniques
for predicting AKI. Using machine learning techniques such as
logistic regression and extreme gradient boosting (XGBoost),
Zhang et al. identified some important clinical factors associated
with AKI such as age, urinary creatinine concentration,
maximum blood urea nitrogen concentration, and albumin (9).
Zimmerman et al. showed that comprehensive demographics
and physiologic features can accurately predict max serum
creatinine level during day 2 and day 3 and also predict new
AKI onset by cross-validation on linear regression and multiple
machine learning models (10). However, AKD prediction has not
been reported.

The AKD phase is a time window for potentially initiating
key interventions to alter the natural history of kidney disease
(7), and thus, the early identification of patients at high risk
of developing AKD is important. Previous studies have shown
that age, hypertension, diabetes mellitus, the history of CKD,
the severity of AKI, and the use of mechanical ventilators
were associated with the onset of AKD (11–17), however,
machine learning methods have been seldom used to predict the
occurrence of AKD. This study was aimed at using longitudinal
data to predict the occurrence of AKD.

MATERIALS AND METHODS

Data Source and Participants
Patients were recruited from the intensive care unit of Beijing
Friendship Hospital (BFH), between January 1, 2015 and
December 21, 2020. We obtained electronic healthcare data from
Medical Information Mart for Intensive Care III (MIMIC III)
(18). The inclusion criteria were as follows: (1) age ≥ 18 years
old; (2) AKI caused by sepsis. The exclusion criteria were as
follows: (1) AKI duration <48 h; (2) length of survival time <7
days; (3) CKD stage 5 or end-stage kidney disease defined as
estimated glomerular filtration rate <15 ml/min/1.73 m2; (4)

patients with missing important data (e.g., data on demographics
and variables for calculating traditional severity scores). The
study was reported according to the recommendations of the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) statement (19).

Data Extraction
We extracted the following data from BFH and the MIMIC
III records upon admission to ICU (day 1): (1) demographic
information; (2) ICU details, including vitals, laboratory
data, mechanical ventilation requirement, and exposure to
nephrotoxic drugs; (3) severity of illness was measured
using Simplified Acute Physiology Score II (SAPS II), Acute
Physiological Score III (APS III), and non-renal Sequential
Organ Failure Assessment (SOFA) score. The data on non-renal
SOFA, creatinine, and urine output were recorded daily until
day 3. Delta non-renal SOFA, delta creatinine, and delta urine
output was the difference between the value at day 3 and the
admission value.

Outcomes and Definitions
The occurrence of AKD was the primary outcome. AKD was
defined as the presentation of at least KDIGO Stage 1 criteria
for >7 days after an AKI-initiating event, which agrees with
the diagnostic criteria proposed by ADQI-16 in 2017 (7). The
definition of sepsis was based on the diagnostic criteria of
the Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis-3), including a suspected infection and
a SOFA score of ≥2 (20). The Kidney Disease: Improving
Global Outcomes (KDIGO) classification according to both
serum creatinine (SCr) and urine output (UO) criteria were
used to define AKI (21). CKD was defined according to the
Clinical Practice Guideline for the Evaluation and Management
of Chronic Kidney Disease (22).

Sample Size
The sample size was defined as having at least 10 outcome events
per variable per estimated parameter according to a previous
study (23). Our sample and the number of AKD approached that
determined by the calculated result.

Statistical Analysis
Values were presented as total numbers (percentages) for
categorical variables and the means ± SDs or medians
(interquartile ranges) for continuous variables. Comparisons
were made using the Student’s t-test or rank-sum test for
continuous variables, and the Chi-square test or Fisher’s exact
test for categorical variables, as appropriate. All statistical
tests were two-sided, and P-values of <0.05 were considered
statistically significant.

Model Development and Validation
The included patients from BFH and MIMIC III comprised
the training dataset and the validation dataset, respectively.
We selected three models for comparison: Recurrent Neural
Network-Long Short-Term Memory (RNN-LSTM), decision
tree, and logistic regression. The discrimination performance
of these models in the training dataset and the validation
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dataset was evaluated by area under the receiver operating
characteristic (AUROC).

Recurrent Neural Network-Long

Short-Term Memory
The RNN has been widely used to handle the longitudinal
variables, LSTM is one type of RNN (24, 25). It can effectively
process a large amount of sequential data. It comprises several
modules, which can store the processed data from the previous
stage. Unlike ordinary RNN, classic LSTM comprises several
modules called cells. Data can be transferred from the previous
cell to the next cell, including input gate, forget gate, and output
gate. All data are added to the input gate, and the output gate
displays the final data result. Unlike ordinary RNN which can
have only one memory stacking method, LSTM can control the
transmission state through the gating state, remember important
information and forget unimportant information. The forget gate
can enhance the ability of LSTM to process data and avoid the
problem of data dependence.

Decision Tree
Decision tree/random forest can predict the classification (AKD
or non-AKD) from the data, which can display the decision
result more clearly (26). We can use the decision tree to interpret
the prediction results. The process from the root to the leaf
of the tree shows the prediction classification, according to the
algorithm of the decision tree. Each step of the decision tree
involves checking a piece of data. If the predictor satisfied a
certain condition, it would follow the upper branch to indicate
type 0, predicting that AKDwill occur. Otherwise, it would follow
the lower branch to indicate type 1, predicting that AKD will
not occur. The decision trees were trained to create a model that
could factor in multiple input variables and predict the value of
the target variable. The division of the tree continues until the
node contains the minimum number of training examples or

reaches the maximum tree depth. The complexity parameter is
used to indicate the prediction performance, which depends on
how many classes are mixed in the two groups generated by the
decision tree (27). We choose the number of leaves when the
complexity parameter is the lowest to minimize the chance of
making errors in the decision tree.

Logistic Regression
In the training dataset, we used the Least Absolute Shrinkage and
Selection Operator (LASSO) method to select the most useful
predictive variables (28). Continuous variables were made into
dichotomous variables and were entered into a logistic regression
with other variables. The nomogram predicting the occurrence
of AKDwas established using the LASSOmethod for the selected
variables. The performance of the nomogram was evaluated by
calibration curves. The calibration evaluation uses a calibration
chart to show the relationship between the observed frequency
and the predicted probability. The nomogram was verified in the
validation dataset to evaluate the stability of the nomogram. In
addition, decision curve analysis (DCA) was used to evaluate
the clinical utility of the final nomogram (29). The net benefit
is calculated by subtracting the proportion of false positives from
true positives (30).

Moreover, the discrimination of three machine learning
algorithms in predicting the occurrence of AKD patients was
compared using Delong’s method. The discrimination was
validated externally by the AUROC in the MIMIC III database.

We performed all statistical analyzes using R software version
4.0.5 (R Foundation for Statistical Computing).

RESULTS

Participants
As shown in Figure 1, a total of 5,629 patients were screened
during the study period in the BFH. The initial research

FIGURE 1 | Flow chart of patient selection.

Frontiers in Medicine | www.frontiersin.org 3 December 2021 | Volume 8 | Article 79297485

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


He et al. Predict Acute Kidney Disease

TABLE 1 | Baseline characteristics of the Beijing Friendship Hospital (BFH) and Medical Information Mart for Intensive Care III (MIMIC III) cohorts.

BFH cohort MIMIC III cohort

Non-AKD (n = 93) AKD (n = 116) P-value Non-AKD (n = 273) AKD (n = 236) P-value

Age, mean (SD) 54.7 (20.7) 64.5 (14.7) <0.001 64.3 (16.5) 62.6 (18.1) 0.252

Male, (%) 58 (62.4) 74 (63.8) 0.832 160 (58.6) 117 (49.6) 0.041

BMI, kg/m2, median [Q1, Q3] 26.6 (22.5, 30.4) 26.3 (22.4, 29.4) 0.837 27.3 (23.5, 32.2) 27.3 (23.3, 31.2) 0.782

Heart failure, n (%) 19 (20.4) 30 (25.9) 0.357 66 (24.2) 50 (21.2) 0.423

Hypertension, n (%) 45 (48.4) 74 (63.8) 0.025 21 (7.7) 30 (12.7) 0.060

Chronic obstructive pulmonary disease, n (%) 12 (12.9) 19 (16.4) 0.482 62 (22.7) 61 (25.8) 0.410

Chronic liver disease, n (%) 3 (3.2) 6 (5.2) 0.491 30 (11.0) 27 (11.4) 0.872

Diabetes mellitus, n (%) 35 (37.6) 66 (56.9) 0.006 76 (27.8) 52 (22.0) 0.132

Chronic kidney disease, n (%) 37 (39.8) 26 (22.4) 0.007 36 (13.2) 18 (7.6) 0.042

Charlson score, median [Q1, Q3] 2 (1, 3) 2 (1, 4) 0.001 2 (1, 3) 2 (1, 3) 0.729

Emergency department, n (%) 59 (63.4) 75 (64.7) 0.856 33 (12.1) 36 (15.3) 0.298

Surgery, n (%) 25 (26.9) 20 (17.2) 0.092 99 (36.3) 56 (23.7) 0.002

APS III, median [Q1, Q3] 45 (32, 62) 44.5 (32, 63) 0.779 40 (29, 55) 36.5 (26, 48) 0.035

SAPS II, median [Q1, Q3] 35 (25, 46) 35 (27, 44) 0.779 31 (23, 44) 31.5 (23, 41) 0.461

Non-renal SOFA at day 1, median [Q1, Q3] 3 (1, 6) 3 (1, 6) 0.310 3 (1, 5) 2 (1, 4) 0.044

Non-renal SOFA at day 3, median [Q1, Q3] 3 (1, 6) 3 (1, 6) 0.375 2 (1, 4) 2 (1, 4) 0.226

Delta non-renal SOFA, median [Q1, Q3] 0 (0, 0) 0 (0, 1) <0.001 0 (0, 0) 0 (0, 0) 0.478

AKI stage, n (%) <0.001 0.008

1 13 (14.0) 3 (2.6) 132 (48.4) 145 (61.4)

2 33 (35.5) 20 (17.2) 91 (33.3) 55 (23.3)

3 47 (50.5) 93 (80.2) 50 (18.3) 36 (15.3)

Baseline creatinine, mg/dl, median [Q1, Q3] 0.7 (0.5,1.0) 0.8 (0.5, 1.1) 0.880 0.6 (0.5, 0.9) 0.60 (0.4, 0.9) 0.700

Creatinine at day 1, mg/dl, median [Q1, Q3] 1.3 (0.9, 2.2) 1.4 (0.9, 2.5) 0.857 1.1 (0.9, 1.5) 1.0 (0.8, 1.4) 0.050

Creatinine at day 3, mg/dl, median [Q1, Q3] 1.1 (0.9, 1.6) 1.2 (0.8, 2.0) 0.014 1.0 (0.8, 1.3) 0.9 (0.7, 1.4) 0.159

Delta creatinine, mg/dl, median [Q1, Q3] −0.1 (−0.7, 0.0) −0.1 (−0.40, 0.0) 0.001 −0.1 (−0.20, 0.0) 0.0 (−0.1, 0.0) <0.001

Urine output at day1, ml/kg/h, median [Q1, Q3] 0.9 (0.4, 2.9) 0.9 (0.4, 2.8) 0.457 1.9 (0.7, 3.9) 1.9 (0.8, 4.0) 0.324

Urine output at day3, ml/kg/h, median [Q1, Q3] 1.1 (0.7, 1.7) 0.9 (0.3, 1.5) <0.001 1.0 (0.6, 1.6) 1.1 (0.7, 2.1) 0.438

Delta urine output, ml/kg/h, median [Q1, Q3] 1.1 (0.7, 1.7) 0.9 (0.3, 1.5) <0.001 −0.3 (−1.7, 0.0) −0.2 (−1.0, 0.0) 0.219

Diuretics, n (%) 22 (23.7) 94 (81.0) <0.001 126 (46.2) 91 (38.6) 0.084

Mechanical ventilation, n (%) 61 (65.6) 74 (63.8) 0.787 137 (50.2) 103 (43.6) 0.141

Renal toxic drugs, n (%) 46 (49.5) 89 (76.7) <0.001 115 (42.1) 84 (35.6) 0.132

MIMIC III, Medical Information Mart for Intensive Care III; AKD, acute kidney disease; BMI, body mass index; APS III, Acute Physiological Score III; SPAS II, Simplified Acute Physiology

Score II; SOFA, Sequential Organ Failure Assessment.

identified 23,620 ICU admissions from the MIMIC III database.
In addition, 209 and 509 patients were assigned to the
training dataset and validation dataset, respectively. Twenty-
eight predictors were extracted from the database and included
in the model. The occurrence of AKD rate was 55.5% (116
patients with AKD) in the training dataset and 46.4% (236
patients with AKD) in the validation dataset. A comparison of
baseline characteristics between the AKD group and non-AKD
group in BFH and MIMIC-III cohorts are recorded in Table 1.
AKD patients were older and had higher Charlson score and
delta non-renal SOFA; higher creatinine at day 3 and AKI stage;
more medical history of hypertension, diabetes mellitus, and
CKD; more application of diuretics and renal toxic drugs in
the training dataset (p < 0.05), while they had a lower delta
creatinine, urine output at day 3, and delta urine output (p <

0.05). Furthermore, comorbidities of CKD, higher AKI stage, and

lower delta creatinine also showed similar results between AKD
patients and non-AKD patients in the validation dataset (p <

0.05). Our study was reported according to the guidelines of the
TRIPOD statement.

Model Development
In RNN-LSTM, as the validation loss was decreasing over time,
the accuracy of the model increased (Figure 2). The LSTM has
been trained up to 200 epochs to obtain the smallest loss and
the greatest accuracy. Throughout the training process of 200
epochs, our training loss and validation loss had decreased and
accuracy increased gradually, respectively. At the 200th epoch,
the training loss and the validation loss are approximately the
lowest, where the training accuracy and the validation accuracy
reach 97.96 and 97.66%, respectively. We found that the training
graph and the validation graph are quite similar. Thus, it can be
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FIGURE 2 | Loss (A) and accuracy (B) vs. epoch graph (up to 200 epochs).

FIGURE 3 | Significance of the predictors in the Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) model. All 28 important features regarding the

development of the final predictive model are depicted.

concluded that themodel is quite accurate. It is neither overfitting
nor underfitting. The significance of the predictors in the RNN-
LSTM model is presented in Figure 3. The feature variable
importance showed that 1non-renal SOFA had an important
role. Other variables, such as creatinine on day 3, hypertension,
and diuretics, also showed marked effects. As the decision trees
algorithm has nodes that represent variables and conjunction that
connects the nodes, the performance of this algorithm mainly
depends on the number of nodes and tree size (31). We explored
different ways to find the optimal performance of the decision
trees algorithm by adjusting the number of nodes (Figure 4). We
found that the optimal number of nodes that could minimize

the decision trees’ misclassification error rate was 10, where the
complexity parameter was 0.018. Using this number of nodes,
the decision trees’ structure was pruned. Among these variables,
1non-renal SOFA had a crucial role in the prediction of the
occurrence of AKD. If 1non-renal SOFA < 1, delta creatinine
played an important role in the next decision. If 1non-renal
SOFA> 1, whether used diuretics or not was important. If1non-
renal SOFA> 1 and patients did not receive diuretics, he/she was
more likely to be diagnosed with AKD soon (Figure 5).

In logistic regression, twenty-eight variables were included
in the LASSO regression analysis and narrowed down to 10
features in the LASSO regressionmodel (Figure 6). Next, amodel
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FIGURE 4 | Contribution of 28 variables in predicting the occurrence of patients with sepsis-associated AKD.

FIGURE 5 | Optimized decision tree for the classification of acute kidney disease (AKD)/non-AKD of patients.

integrating age, combined with hypertension, diabetes mellitus,
CKD, delta non-renal SOFA, AKI stage, delta creatinine, delta
urine output, diuretics, and nephrotoxic drugs was established
using the training dataset. Based on this model, a nomogram
was plotted to predict the probability of the occurrence of AKD
patients (Figure 7). The calibration curve was described using the
bootstrap method for both, the training and validation datasets
(Figure 8A). The apparent line and a bias-corrected line only
slightly deviated from the ideal line, indicating a good agreement
between the prediction and reality. The DCA curve was plotted to

perform a clinical application of this nomogram. In the training
dataset, clinical intervention guided by this nomogram provided
a greater net benefit when the threshold probability was within
0.01 and 0.71 (Figure 8B).

Model Performance
In the training dataset, we evaluated the discrimination of
three models. RNN-LSTM was well-discriminated in the
external validation dataset (AUROC: 1), which was greater
than decision trees and logistic regression (AUROC: decision
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FIGURE 6 | Clinical feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression. (A) Optimal parameter (lambda)

selection in the LASSO logistic regression. The black vertical lines were drawn at the optimal values by using the minimum criteria and the one SE of the minimum

criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 28 features. A coefficient profile plot was produced against the log (lambda) sequence.

FIGURE 7 | Nomogram developed based on the training dataset with the incorporation of age, combined with hypertension, diabetes mellitus, chronic kidney disease

(CKD), delta non-renal Sequential Organ Failure Assessment (SOFA), acute kidney injury (AKI) stage, delta creatinine, delta urine output, diuretics, and renal toxic drugs.
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FIGURE 8 | Calibration curves (A) and decision curve analysis (B) for nomogram.

FIGURE 9 | The area under the receiver operating characteristic (AUROC) curve of the RNN-LSTM, decision trees, and logistic regression. (A) Training dataset; (B)

Validation dataset.

trees 0.954, logistic regression 0.728; Figure 9A). In the
validation dataset, among RNN-LSTM, decision trees, and
logistic regression algorithms, the RNN-LSTM algorithm
showed the highest performance with an AUROC of 1.000,
followed by the decision trees with an AUROC of 0.872.
Logistic regression had the least predictive accuracy, with
an AUROC of 0.717. All machine learning models, except
the logistic regression model, showed good discrimination
ability in the training and validation datasets. In the
training and validation datasets, the RNN-LSTM algorithm
achieved the best performance among the four models
(Figure 9B).

DISCUSSION

In the present study, a total of 209 patients from BFH
were included, with 55.5% of them diagnosed as having
AKD. Using the data from BFH and MIMIC III records,
we successfully developed and validated machine learning
models to predict the occurrence of AKD in patients
with AKI.

Since the diagnostic criteria for AKD were released in
ADQI-16, several investigations have been undertaken on the
epidemiology of AKD. Kellum et al. reported the incidence
rate of AKD as 36.2% in ICU patients (4). Federspiel et
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al. showed the incidence rate of sepsis-associated AKD as
32.4% in critically ill patients (5). Peerapornratana et al.
reported the incidence rate of sepsis-associated AKD in patients
dying within 7 days was 33.6% (161/479) from the first day
of being diagnosed with AKI (11). Our studies showed an
AKD diagnosis rate of 55.5%. This higher rate could be
attributed to the exclusion of patients with an AKI duration of
<3 days.

Ostermann et al. suggested that nephrotoxic drugs increase
the risk of renal function impairment (32). Drugs are
among the main causes of AKI. Its pathogenesis included
acute tubular necrosis, tubular obstruction by crystals or
casts, and interstitial nephritis induced by drugs and their
metabolites (33). Our study shows that nephrotoxic drugs
increase the incidence of AKD, possibly because they deteriorate
renal function.

There has been a controversy about whether the application
of diuretics can improve renal function in recent years. A
Phase II Randomized Blinded Controlled Trial of the Effect of
furoSemide in Critically Ill Patients With eARly Acute Kidney
Injury (SPARK-RCT) study showed that diuretics improved
neither the recovery rate of AKI nor the prognosis of the
patients (34). The study of Zhao et al. reported that administering
diuretics improved renal function in patients on the MIMIC
III database (35). Our research shows that the use of diuretics
may be related to the low incidence of AKD. The effective
use of diuretics can reflect the recovery of the patients’
renal function, but it may not change it. More research is
needed to further clarify the role of diuretics in improving
renal function.

There are some studies on the prediction of AKD in
hospitalized patients with AKI. Zhao et al. used multivariable
logistic regression analysis with the LASSO method to select
features and build a nomogram (36). The model displayed good
predictive power with an AUROC of 0.834 (95% CI:0.773–0.895)
in the training dataset and an AUROC of 0.851 (95% CI:0.753–
0949) in the validation dataset. Yan et al. also established a
prediction model using multivariable logistic regression analysis
(37). The 8-variable model showed good discrimination and
calibration in predicting AKD stage 2–3 with the AUROC being
0.85 (95% CI:0.83–0.87). Xiao et al. established a prediction
model usingmultivariable logistic regression analysis. Thismodel
showed a large AUROC (0.879 ± 0.009, 0.879 ± 0.011) and had
stable sensitivity (81 and 82%) and specificity (81 and 80%) in
derivation cohort and validation dataset, respectively (38). In
our study, the AUROCs of the logistic regression model were
0.728 (training dataset) and 0.717 (validation dataset), which
were lower than the above studies. This may be due to differences
in the study population. A study by Tuan et al. studied sepsis-
associated AKI patients, however, they predicted progression
to chronic kidney disease rather than AKD (39). Therefore,
to our knowledge, this is the first study to use longitudinal
data to predict the occurrence of AKD with the application of
machine learning.

To identify AKD patients, an important strength of our study
was the use of new criteria of sepsis-associated AKI, and this
method would overcome some inherent weaknesses of using

hospital discharge data (40, 41). The delta non-renal SOFA
contains only 5 simple variables recorded in clinical routines.
Therefore, if implemented, the delta non-renal SOFA will not
require manual input of additional variables as the model is
based on variables routinely collected. In our study, for predicting
the occurrence of AKD, the delta non-renal SOFA score had
high discriminatory power. The delta non-renal SOFA is simple
for calculation and easy to use and has robust discrimination
and calibration. To predict the occurrence of AKD patients
with sepsis, ICU physicians could use the delta non-renal SOFA
and improve clinical decision-making at the bedside. Moreover,
the predictor variables that we used were quite universally
obtained in the emergency department. After further validation
and recalibration, the delta non-renal SOFA appeared to have
the potential to help emergency department clinicians triage
decisions and ICU placement.

Limitations
The study has the following limitations. First, we chose to analyze
the patients admitted to the ICUwith sepsis. There were certainly
patients who had been diagnosed with sepsis before or after the
ICU admission, but we limited our study population to those who
fulfilled sepsis-3 criteria during their 1st day in ICU. Second, we
have a limited number of patients and a small sample size, but we
conducted an external validation by using the data of 509 sepsis-
associated AKI patients from the MIMIC III database, and the
results indicated that the calibration of delta non-renal SOFA was
relatively well with accordance of occurrence of AKD. Finally,
we prepared our dataset from the retrospective database, and the
outcomes of sepsis-associated AKI patients could have changed
over time due to the update of treatment guidelines and advances
in treatment and diagnostic technology.

CONCLUSION

Machine learning could be applied to the predictive AKD, and it
is where the RNN-LSTM model works the best. The non-renal
SOFA plays an important role in predicting the AKD.
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Background: Traumatic brain injury-induced coagulopathy (TBI-IC), is a disease with

poor prognosis and increased mortality rate.

Objectives: Our study aimed to identify predictors as well as develop machine learning

(ML) models to predict the risk of coagulopathy in this population.

Methods: ML models were developed and validated based on two public databases

namedMedical Information Mart for Intensive Care (MIMIC)-IV and the eICU Collaborative

Research Database (eICU-CRD). Candidate predictors, including demographics, family

history, comorbidities, vital signs, laboratory findings, injury type, therapy strategy and

scoring system were included. Models were compared on area under the curve (AUC),

accuracy, sensitivity, specificity, positive and negative predictive values, and decision

curve analysis (DCA) curve.

Results: Of 999 patients in MIMIC-IV included in the final cohort, a total of 493 (49.35%)

patients developed coagulopathy following TBI. Recursive feature elimination (RFE)

selected 15 variables, including international normalized ratio (INR), prothrombin time

(PT), sepsis related organ failure assessment (SOFA), activated partial thromboplastin

time (APTT), platelet (PLT), hematocrit (HCT), red blood cell (RBC), hemoglobin (HGB),

blood urea nitrogen (BUN), red blood cell volume distribution width (RDW), creatinine

(CRE), congestive heart failure, myocardial infarction, sodium, and blood transfusion. The

external validation in eICU-CRD demonstrated that adapting boosting (Ada) model had

the highest AUC of 0.924 (95% CI: 0.902–0.943). Furthermore, in the DCA curve, the

Ada model and the extreme Gradient Boosting (XGB) model had relatively higher net

benefits (ie, the correct classification of coagulopathy considering a trade-off between

false- negatives and false-positives)—over other models across a range of threshold

probability values.

Conclusions: The ML models, as indicated by our study, can be used to predict the

incidence of TBI-IC in the intensive care unit (ICU).

Keywords: traumatic brain injury-induced coagulopathy, TBI-IC, machine learning, external validation, model

interpretation
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INTRODUCTION

Traumatic brain injury (TBI) is still one of the leading
causes of death and disability worldwide with over 10
million people hospitalized every year (1). It is common to
witness the alterations of the coagulative system and disturbed
coagulation function in TBI patients. Results from previous
studies indicated that two in three patients with severe TBI
manifested coagulation system abnormalities upon admission to
the emergency department, and then continued to worsen (2, 3).
And the overall mortality of TBI-induced coagulopathy (TBI-IC)
attains 17–86% (4–6). TBI-IC is characterized by both hypo-
coagulopathy with prolonged bleeding or hyper-coagulopathy
with an increased prothrombotic tendency, or both (4, 7).
Previous study unearthed that coagulopathy following TBI was
related to higher mortality and prolonged intensive care unit
(ICU) stay (8). In early stage, potential mechanisms include the
dysfunction of the coagulation cascade and hyperfibrinolysis,
both of which contribute to hemorrhagic progression. Later, a
poorly defined prothrombotic stage emerges, partly caused by
fibrinolysis shutdown and hyperactive platelets (9–11).

Undoubtedly, it is imperative to promote the early
identification of TBI-IC in a timely way. Laboratory
assays, including international normalized ratio (INR) and
thromboelastogram are widely used to diagnose TBI-IC.
Nonetheless, these assays have limited value in predicting
coagulopathy before it develops. In recent years, as a field of
artificial intelligence, machine learning (ML) is able to learn
from data based on computational modeling. Likewise, ML can
fit high-order relationships between covariates and outcomes in
data-rich environments (12–14).

This study aimed to determine whether ML algorithms using
demographic, comorbidities, laboratory examinations and other
variables could predict TBI-IC with considerable accuracy and
identify factors contributing to the prediction power.

MATERIALS AND METHODS

Data Source
We conducted this retrospective study based on two sizeable
critical care databases, the Medical Information Mart for
Intensive Care (MIMIC)-IV version 1.0 (15) and eICU
Collaborative Research Database (eICU-CRD) version 1.2 (16).
In brief, the MIMIC-IV database, an updated version of
MIMIC-III, incorporated comprehensive, de-identified data of
patients admitted to the ICUs at the Beth Israel Deaconess
Medical Center in Boston, Massachusetts, between 2008 and
2019, containing data from 383220 distinct admissions (single
center). The other database, eICU-CRD, was a multicenter, freely
available, sizeable database with de-identified high granularity
health data associated for over 200,000 admissions to ICUs
across the United States between 2014 and 2015. This study
was approved by the Institutional Review Boards of Beth Israel
Deaconess Medical Center (Boston, MA) and the Massachusetts
Institute of Technology (Cambridge, MA). Requirement for
individual patient consent was waived because the study did
not impact clinical care and all protected health information

was deidentified. One author (CP) has obtained access to both
databases and was responsible for data extraction (Certification
number: 41657645). The study was reported in accordance to the
REporting of studies Conducted using Observational Routinely
collected health Data (RECORD) statement (17).

Participant Selection
Inclusion criteria were patients with moderate and severe TBI
[msTBI: defined as Glasgow Coma Score (GCS) =< 12]. People
with an age of less than 16 years old, ICU stays less than
48 h, and no coagulation index within 24 h of ICU admission
were excluded from the study. Moreover, for patients with ICU
admissions more than once, only data of the first ICU admission
of the first hospitalization were included in the analysis.

Predictors of Coagulopathy
A total of 53 predictor variables for the ML models were initially
included. Specifically, in this study, the data were extracted from
MIMIC-IV and eICU-CRD including age, gender, race, family
history of stroke. Coexisting disorders were also collected based
on the recorded International Classification of Diseases (ICD)-
9 and ICD-10 codes. Then, the Charlson comorbidity index
(CCI) was calculated from its component variables [myocardial
infarction, congestive heart failure, peripheral vascular disease,
cerebrovascular disease, dementia, chronic pulmonary disease,
rheumatic disease, peptic ulcer disease, diabetes, paraplegia,
renal disease, malignant cancer, severe liver disease, metastatic
solid tumor and acquired immunodeficiency syndrome (AIDS)].
Lastly, we extracted data containing vital signs, laboratory
findings, injury type, different therapy strategies and scoring
system on the first day of ICU admission. Details of missing data
can be seen in Supplementary Table 1.

Outcome
In accordance to previous literature, the following parameters
were considered for diagnosing coagulopathy: an activated partial
thromboplastin time (APTT) > 40s, an INR > 1.4, or platelet
(PLT) counts < 100× 109/L (4, 18).

Statistical Analysis
Values were presented as the means with standard deviations
(if normal) or medians with interquartile ranges (IQR) (if
non-normal) for continuous variables, and total numbers with
percentages for categorical variables. Proportions were compared
using χ² test or Fisher exact tests while continuous variables
were compared using the t test or Wilcoxon rank sum test,
as appropriate.

In this study, recursive feature elimination (RFE) as a
feature selection method was used to select the most relevant
features. In short, RFE recursively fits a model based on
smaller feature sets until a specified termination criterion is
reached. In each loop, in the trained model, features were
ranked based on their importance. Finally, dependency and
collinearity were eliminated. Features were then considered in
groups of 15/25/35/45/ALL (ALL = 53 variables, as represented
in Figure 1) organized by the ranks obtained after the feature

Frontiers in Medicine | www.frontiersin.org 2 December 2021 | Volume 8 | Article 79268995

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. Coagulopathy Prediction in TBI Patients

FIGURE 1 | Overview of the methods used for data extraction, training, and testing. ICU, intensive care unit; MIMIC-IV, Medical Information Mart for Intensive Care-IV;

eICU-CRD, eICU Collaborative Research Database; TBI, traumatic brain injury; ML, machine learning; NNET, artificial neural network; NB, naïve bayes; GBM, gradient

boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting.

selection method. To find the optimal hyperparameters, 10-
fold cross-validation was used as a resampling method. In each
iteration, every nine folds were used as training subset, and the
remaining one fold was processed to tune the hyperparameters.
This training-testing process was repeated thirty times. And in
this way, each sample would be involved in the training model,
and also participated in the testing model, so that all data were
used to the greatest extent.

In this study, we employed seven diverse ML algorithms to
develop models, containing artificial neural network (NNET),
naïve bayes (NB), gradient boosting machine (GBM), adapting
boosting (Ada), random forest (RF), bagged trees (BT), and
eXtreme Gradient Boosting (XGB). Initially, we conducted
internal validation on the development sets to quantify optimism
in the predictive performance and evaluate stability of the
prediction model. Bootstrap Resampling technique with 100
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iterations was used to evaluate the internal validity of eachmodel.
External validation of the models was performed in eICU-CRD.
All the models were assessed in multiple dimensions regarding
their model performance. The median and 95% confidence
intervals of area under the curve (AUC)were calculated, where an
AUC value of 1.0means perfect discrimination and 0.5 represents
no discrimination. And the accuracy, sensitivity, specificity,
negative predictive value, and positive predictive value were also
calculated. Additionally, to determine the clinical usefulness of
the included variables by quantifying the net benefit at different
threshold probabilities, we conducted the decision curve analysis
(DCA) (19). Finally, the “Shiny” package in the R was used to
construct a visual data analysis platform.

All analyses were performed by the statistical software
packages R version 4.0.2 (http://www.R-project.org, The R
Foundation). In our study, we used the “Caret” R packages to
achieve the process. P values less than 0.05 (two-sided test) were
considered as statistically significant.

RESULTS

Baseline Characteristics
Variable values on the first day of the TBI patients in MIMIC-
IV were analyzed. As shown in Figure 1 and Table 1 of
5717 TBI patients in MIMIC-IV, 999 were included in the
final cohort. A total of 493 patients developed coagulopathy,
whereas 506 patients did not. A cohort of 285 patients
with coagulopathy following TBI in eICU-CRD was included
as external dataset (Supplementary Table 2). The process of
data extraction, training preparation, data testing via different
ML algorithms is depicted in Figure 1. People who had
coagulopathy weremore likely to be female, with family history of
stroke, myocardial infarction, congestive heart failure, peripheral
vascular disease, cerebrovascular disease, renal disease, malignant
cancer, severe liver disease, metastatic solid tumor as well
as having higher CCI, heart rate, respiratory rate, red blood
cell volume distribution width (RDW), INR, lactate, buffer
excess (BE), FiO2, chloride, sodium, glucose, creatinine (CRE),
blood urea nitrogen (BUN), blood transfusion, sepsis related
organ failure assessment (SOFA), acute physiology score III
(APSIII), and longer APTT, prothrombin time (PT), mechanical
ventilation (MV). Furthermore, they were less likely to have
dementia, cerebral contusion, with lower temperature, mean
artery pressure (MAP), red blood cell (RBC), white blood
cell (WBC), hemoglobin (HGB), PLT, hematocrit (HCT), pH,
bicarbonate, PaO2/FiO2, calcium, urine output, and GCS.

Variable Importance
A total of 15 important predictors (Figure 2) was selected by
the RFE algorithm, including INR, PT, SOFA, APTT, PLT,
HCT, RBC, HGB, BUN, RDW, CRE, congestive heart failure,
myocardial infarction, sodium, and blood transfusion. Then,
these 15 variables were used in all the subsequent analysis for all
models in both training and testing sets.

FIGURE 2 | Association between the number of variables allowed to be

considered at each split and the prediction accuracy in the REF algorithm.

REF, recursive feature elimination.

FIGURE 3 | Area under the curve of receiver operating characteristic curve by

machine learning models in the validation cohort. ROC, receiver operate

characteristics; AUC, area under the curve; NNET, artificial neural network; NB,

naïve bayes; GBM, gradient boosting machine; Ada, adapting boosting; RF,

random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting.

Prediction Performance in eICU-CRD
The discriminatory abilities of all models for the prediction of
coagulopathy are in Figure 3 and Table 2. Within the training
set, the NNET, NB, GBM, Ada, RF, BT and XGB models were
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TABLE 1 | Baseline characteristics of the MIMIC-IV cohorts.

MIMIC-IV

Variables Coagulopathy (n = 493) Non-Coagulopathy (n = 506) P Value

Demographics

Age (y), median [Q1, Q3] 67.00 (52.00, 80.00) 66.00 (48.00, 82.00) 0.809

Male, n (%) 317 (62.65) 343 (69.57) 0.025

Race, n (%)

Black 24 (4.87) 28 (5.53)

White 294 (59.63) 304 (60.08)

Hispanic 14 (2.84) 16 (3.16)

Asian 15 (3.04) 10 (1.98)

Others 146 (29.61) 148 (29.25)

BMI (kg/m2 ), median [Q1, Q3] 26.25 (23.03, 29.80) 26.12 (23.10, 30.10) 0.914

Family history of stroke, n (%) 19 (3.85) 5 (0.99) 0.006

Coexisting disorders, n (%)

Myocardial infarction 69 (14.00) 23 (4.55) <0.001

Congestive heart failure 122 (24.75) 44 (8.70) <0.001

Peripheral vascular disease 39 (7.91) 20 (3.95) 0.012

Cerebrovascular disease 98 (19.88) 75 (14.82) 0.043

Dementia 22 (4.46) 45 (8.89) 0.008

Chronic pulmonary disease 75 (15.21) 61 (12.06) 0.173

Rheumatic disease 11 (2.23) 5 (0.99) 0.189

Peptic ulcer disease 12 (2.43) 5 (0.99) 0.128

Diabetes 108 (21.91) 122 (24.11) 0.452

Paraplegia 47 (9.53) 62 (12.25) 0.202

Renal disease 73 (14.81) 42 (8.30) 0.002

Malignant cancer 36 (7.30) 10 (1.98) <0.001

Severe liver disease 23 (4.67) 0 (0.00) <0.001

Metastatic solid tumor 10 (2.03) 2 (0.40) 0.038

AIDS 2 (0.41) 2 (0.40) 1.000

CCI, median [Q1, Q3] 5.00 (3.00, 7.00) 4.00 (2.00, 6.00) <0.001

Vital signs (1st 24h)

Temperature (◦C), median [Q1, Q3] 37.10 (36.70, 37.50) 37.20 (36.90, 37.52) 0.017

MAP (mmHg), median [Q1, Q3] 79.00 (73.00, 86.00) 81.00 (76.00, 88.00) <0.001

Heart rate (min), median [Q1, Q3] 86.00 (76.00, 99.00) 84.00 (73.00, 95.00) 0.004

Respiratory rate (min), median [Q1, Q3] 19.00 (17.00, 22.00) 18.00 (16.00, 20.00) <0.001

Laboratory findings (1st 24h)

RBC (109/L), median [Q1, Q3] 3.40 (3.00, 3.80) 3.80 (3.30, 4.20) <0.001

WBC (×109/L), median [Q1, Q3] 11.60 (8.33, 14.80) 12.30 (9.50, 15.00) 0.029

HGB (g/dL), median [Q1, Q3] 11.00 (9.00, 12.00) 12.00 (10.00, 13.00) <0.001

PLT (×109/L), median [Q1, Q3] 166.50 (119.00, 224.75) 219.00 (178.00, 265.00) <0.001

RDW (%), median [Q1, Q3] 17.20 (14.50, 47.80) 15.50 (13.60, 44.98) <0.001

HCT (%), median [Q1, Q3] 31.90 (27.83, 35.77) 35.10 (31.20, 38.40) <0.001

APTT (s), median [Q1, Q3] 31.40 (27.70, 38.20) 27.60 (25.70, 30.17) <0.001

PT (s), median [Q1, Q3] 15.40 (13.40, 17.90) 12.90 (12.00, 13.80) <0.001

INR, median [Q1, Q3] 1.40 (1.20, 1.60) 1.20 (1.10, 1.20) <0.001

pH, median [Q1, Q3] 7.39 (7.34, 7.43) 7.40 (7.37, 7.44) 0.001

Bicarbonate (mmol/L), median [Q1, Q3] 22.50 (20.00, 25.00) 23.30 (21.00, 25.00) 0.002

Lactate (mmol/L), median [Q1, Q3] 1.80 (1.20, 2.60) 1.50 (1.00, 2.12) < 0.001

BE (mEq/L), median [Q1, Q3] −0.71 (-3.00, 1.00) 0.00 (-1.50, 1.50) < 0.001

Anion gap (mmol/L), median [Q1, Q3] 14.80 (12.80, 16.70) 14.50 (13.00, 16.30) 0.467

PaO2 (mmHg), median [Q1, Q3] 141.48 (104.91, 191.65) 148.33 (103.25, 193.69) 0.560

PaCO2 (mmHg), median [Q1, Q3] 38.33 (35.00, 42.67) 38.46 (35.00, 43.00) 0.784

(Continued)
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TABLE 1 | Continued

MIMIC-IV

Variables Coagulopathy (n = 493) Non-Coagulopathy (n = 506) P Value

FiO2 (%), median [Q1, Q3] 50.00 (42.50, 60.00) 50.00 (40.00, 57.50) 0.025

PaO2/FiO2, median [Q1, Q3] 286.29 (208.26, 372.00) 313.72 (227.25, 413.23) 0.008

Chloride (mmol/L), median [Q1, Q3] 105.50 (102.00, 109.30) 104.50 (101.00, 108.00) 0.001

Calcium (mmol/L), median [Q1, Q3] 8.30 (7.80, 8.70) 8.50 (8.00, 8.90) <0.001

Sodium, (mmol/L), median [Q1, Q3] 140.00 (137.00, 142.80) 140.00 (137.00, 141.80) 0.049

Potassium (mmol/L), median [Q1, Q3] 4.10 (3.80, 4.40) 4.00 (3.80, 4.30) 0.197

Glucose (mmol/L), median [Q1, Q3] 141.00 (116.00, 166.00) 133.00 (114.50, 159.00) 0.035

CRE (mg/dL), median [Q1, Q3] 1.00 (0.70, 1.30) 0.90 (0.70, 1.10) <0.001

BUN (mg/dL), median [Q1, Q3] 17.50 (12.30, 26.70) 15.00 (11.00, 20.00) <0.001

Urine output (mL), median [Q1, Q3] 1668.00 (1078.00, 2462.50) 1875.00 (1250.00, 2673.75) 0.018

Type of injury, n (%)

Subarachnoid hemorrhage 175 (35.50) 162 (32.02) 0.273

Cranial extradural hematoma 18 (3.65) 16 (3.16) 0.801

Cerebral contusion 74 (15.01) 124 (24.51) < 0.001

Therapy strategy (1st 24h), n (%)

MV 436 (88.44) 401 (79.25) < 0.001

Blood Transfusion 29 (5.88) 5 (0.99) < 0.001

Hyperosmolar therapy 46 (9.33) 63 (12.45) 0.139

Neurosurgical intervention 146 (29.61) 153 (30.24) 0.884

Scoring system

GCS 8.00 (5.00, 10.00) 8.00 (7.00, 10.00) 0.001

SOFA 7.00 (5.00, 10.00) 5.00 (4.00, 6.00) < 0.001

APSIII 39.00 (31.00, 48.00) 35.00 (27.00, 43.00) < 0.001

MIMIC-IV, Medical Information Mart for Intensive Care-IV; BMI, body mass index; AIDS, acquired immunodeficiency syndrome; CCI, Charlson comorbidity index; MAP, mean artery

pressure; RBC, red blood cell; WBC, white blood cell; HGB, hemoglobin; PLT, platelet; RDW, red blood cell volume distribution width; RDW, red blood cell volume distribution width;

HCT, hematocrit; APTT, activated partial thromboplastin time; PT, prothrombin time; INR, international normalized ratio; BE, buffer excess; CRE, creatinine; BUN, blood urea nitrogen;

MV, mechanical ventilation; GCS, Glasgow coma score; SOFA, sepsis related organ failure assessment; APSIII acute physiology score III; Blood Transfusion: defined as RBC, Plasma,

PLT product administered; Hyperosmolar therapy: defined as HTS or mannitol; Neurosurgical intervention: defined as craniectomy or ventriculostomy.

established, and the testing set obtained AUCs of 0.910, 0.867,
0.920, 0.924, 0.915, 0.881, and 0.917, respectively. Comparatively,
Ada had the highest predictive performance among these seven
models (AUC 0.924, 95% Confidence Interval (CI) 0.902 to
0.943), while NB had the poorest generalization ability (AUC
0.867, 95% CI 0.839 to 0.891). The decision curve compared
the net benefit of the best model and alternative approaches for
clinical decision making. As shown in Figure 4, the net benefits
of the Ada model and XGB model surpassed those of other
ML models, including NB for all threshold values, showing that
these two models were more superior in predicting the TBI-IC in
this cohort.

In the Figure 5, the fifth predictor variables in the ML models
are shown. Each variable included in the study had varying
importance over the TBI-IC relying on theML approach. Overall,
the coagulation profile (PLT, INR, PT) was the variable with
relatively higher importance across all ML algorithms, followed
by APTT, SOFA, and so forth.

Model Interpretation
We next used the Shiny to illustrate the impacts of key features
on the coagulopathy prediction model in individual patients. As

shown in Figure 6, the information of one patient was input
into the model: PLT (186 × 109/L), INR (1.1), PT (12s), APTT
(29s), SOFA (4), RDW (44%), no congestive heart failure, RBC
(3.9 × 109/L), CRE (8.7 mg/dL), BUN (24 mg/dL), sodium
(142.3 mmol/L), HCT (39.2%), no myocardial infarction, no
blood transfusion, HGB (14 g/dl). The model analyzed that the
risk of coagulopathy in this patient was 82.10%, indicating that
the probability of coagulopathy for the patients was high, and
precaution measures were recommended.

DISCUSSION

Altered hemostasis and hemorrhagic progression are substantial
challenges in the clinical management of TBI. Patients with
TBI-IC were at a high risk of death over those with normal
coagulation. Notably, studies elucidating the rapid prediction
of TBI-IC, are warranted. In this sense, our study developed
and validated ML models, providing an accurate predictive
tool for coagulopathy in TBI patients. Specifically, seven ML
models (NNET, NB, GBM, Ada, RF, BT and XGB) were used to
predict TBI-IC using variables frequently used in clinical practice.
Concerning the predictive performance, the Ada outperformed
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TABLE 2 | Prediction performance of the machine learning models in the testing set.

Model Accuracy Sensitivity Specificity PPV NPV AUC 95% CI

NNET 0.851 0.733 0.932 0.882 0.835 0.910 (0.886, 0.930)

NB 0.814 0.586 0.971 0.933 0.772 0.867 (0.839, 0.891)

GBM 0.848 0.800 0.881 0.823 0.864 0.920 (0.897, 0.939)

Ada 0.855 0.730 0.942 0.897 0.834 0.924 (0.902, 0.943)

RF 0.862 0.797 0.908 0.857 0.866 0.915 (0.892, 0.935)

BT 0.835 0.747 0.896 0.832 0.837 0.881 (0.854, 0.904)

XGB 0.859 0.744 0.939 0.895 0.841 0.917 (0.894, 0.936)

PPV, positive predictive values; NPV, negative predictive values, AUC, area under the curve; CI, confidence interval; NNET, artificial neural network; NB, naïve bayes; GBM, gradient

boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting.

FIGURE 4 | Decision curve analysis. The net benefits of the Ada and XGB are

relatively larger over a range of threshold probability values compared with

those of other ML models. Ada, adapting boosting; XGB, eXtreme Gradient

Boosting; ML, machine learning. NNET, arti?cial neural network; NB, naïve

bayes; GBM, gradient boosting machine; RF, random forest; BT, bagged trees.

the remainingmodels. Moreover, results from the DCA indicated
that the Ada and XGB models had higher net benefits over a
range of threshold probability values than other models. It is
remarkable that this study combined preoperative characteristic,
comorbidities, and laboratory findings other than coagulopathy
profile to establish a prediction model.

To help surgeons use the model, a calculator was developed,
which provided a user-friendly interface. After entering the
variables, the incidence of TBI-IC will be shown. The explanation
of the ML model at the individual level was consistent with the
aforementioned explanations at the feature level, and gratifyingly,
the black-box concern was further mitigated to a certain extent.
Notably, these results facilitated correct clinical decisions, and
more importantly, timely treatment strategy.

A previous study conducted by Cosgriff et al. (20) developed
a simple score to predict traumatic brain injury-induced
coagulopathy (TIC) using four binary predictors [systolic

blood pressure<70mm Hg, temperature <34◦C, pH <7.1,
and Injury Severity Score (ISS) >25]. However, due to the
fact that the ISS cannot be obtained at the time of decision
making, the application of such a score was limited. To
predict TIC more accurately, two scores have been developed
by prehospital information (21, 22). Mitraet al.’s score used

5 predictors (entrapment; systolic blood pressure < 100mm
Hg; temperature < 34◦C; suspected abdominal or pelvic

injury; and chest decompression), whereas Peltan et al.’s score
employed 6 predictors (age, injury mechanism, prehospital
shock index> = 1, GCS, and need for prehospital tracheal
intubation and/or Cardiopulmonary Resuscitation (CPR)) (21,
22). Nevertheless, in new patients, both scores achieved only
moderate performance, with sensitivity <30%. Additionally,
the Trauma Induced Coagulopathy Clinical Score (TICCS)
employed three components, including general severity, blood
pressure, and extent of significant injuries to predict TIC (23). A
major limitation of above scores was that much of the prognostic
potential of available information was lost through limiting the
number of predictors and dichotomizing continuous variables.
Consequently, a novel predictive model for early-identification
of TIC was established (Predictors: heart rate, systolic blood
pressure, temperature, hemothorax, Focused Assessment with
Sonography for Trauma (FAST) result, unstable pelvic fracture,
long bone fracture, GCS, lactate, base deficit, pH, mechanism
of injury, energy) (24). However, one point worth noting was
that previous study focused on the entire trauma patient,
not TBI patients in particular, which added confusion to
some extent.

By interpreting the full model, it was found that many clinical
variables can contribute to predict the risk of TBI-IC. In this
study, coagulopathy profile (INR, PT, APTT) was found to
be the most important variable in predicting TBI-IC, followed
by SOFA, blood routine test (PLT, RBC, HCT, HGB, RDW),
renal function (BUN and CRE), comorbidities (congestive heart
failure, myocardial infarction) and so forth. Among the fifteen
included variables, the SOFA was an important predictor.
SOFA is an indicator to describe multiple organ dysfunction,
including respiratory system, nervous system, cardiovascular
system, liver, coagulation and kidney (25). Potential mechanisms
may include the fact that SOFA scores are more likely to
indicate liver failure or cardiovascular failure. Those organ
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FIGURE 5 | Variable importance in seven different ML models. ML, machine learning; NNET, artificial neural network; NB, naïve bayes; GBM, gradient boosting

machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting; INR, international normalized ratio; PT, prothrombin time;

SOFA, sepsis related organ failure assessment; APTT, activated partial thromboplastin time; PLT, platelet; HCT, hematocrit; RBC, red blood cell; HGB, hemoglobin;

BUN, blood urea nitrogen; RDW, red blood cell volume distribution width; CRE, creatinine.

failures have a high tendency to bleed, and subsequently leading
to coagulopathy (26).

In this study, PLT, RBC, HCT, HGB and RDWwere important
predictors of TBI-IC. In a prospective observational study
conducted by Davis PK et al. (27), PLT dysfunction was an
earlymarker for TBI-IC. Potential mechanism included the blood
dilution arised from the use of coagulation factor products (28).
Nevertheless, we cannot exclude the likelihood that the blood
coagulation system was activated by the continuous bleeding
itself (29).

RDW, a parameter of red blood cell volume, measures the
variability in size of circulating erythrocytes. Although primarily
used to diagnose different types of anemias, the RDW was also
associated with various thrombotic disease processes including
venous thromboembolism (VTE) (30, 31).

Although the underlying mechanism is unclear, it is
speculated that inflammatory factors destroy the vascular
endothelial integrity, subsequently changing the glycoprotein
and ion channel structure of the erythrocyte membrane (32,
33). Consequently, the deformability of the RBC is reduced, in
turn, further enables endothelial damage to increase, causing the
release of tissue factors that activate the coagulation pathway and
triggers disseminated intravascular coagulation (DIC) (34).

In this study we found that renal function indicators (BUN
and CRE) can help to indicate the risk of TBI-IC. Similarly, a ML
model developed by Zhao QY et al. also identified renal function,

including urine output and CRE to predict sepsis-induced
coagulopathy (SIC) (35). It is worth noting that renal dysfunction
has been associated with both thrombotic and hemorrhagic
complications (36, 37). Potential mechanism included less
adenosine diphosphate (ADP) and serotonin storage in PLT of
patients with renal dysfunction (38, 39). Taken together, the force
of impact at the time of TBI can cause shearing of large and small
vessels, and result in subdural, subarachnoid, or intracerebral
hemorrhages, or a combination of different types. TBI-associated
factors might then alter the intricate balance between bleeding
and thrombosis formation, leading to coagulopathy (9). Indeed,
the complex interactions between the PLT dysfunction, changes
in endogenous procoagulant, anticoagulant factors, endothelial
cell activation, hypoperfusion, and inflammation related to TBI-
IC remain to be elucidated (9, 40, 41).

The strengths of this study lied in the fact that it applied
modern ML approaches to predict TBI-IC. It is worth noting
that early and accurate prediction of TBI-IC can provide
more time for clinicians to adjust corresponding treatment
strategies. For example, this model is applicable if detailed
medical history is not available for intubated severe head-injured
ICU patient. Furthermore, given the heterogeneity of TBI-IC
phenotypes (bleeding/thrombotic tendencies), timely treatment
strategy would still require investigation and further testing
to determine the type and therefore appropriate treatment.
Furthermore, it was based on a real-world data with multicenter
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FIGURE 6 | Examples of website usage. Entering the input value determined the coagulopathy and displayed how each value contributed to the prediction. PLT,

platelet; INR, international normalized ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; SOFA, sepsis related organ failure assessment; RDW,

red blood cell volume distribution width; RBC, red blood cell; CRE, creatinine; BUN, blood urea nitrogen; HCT, hematocrit; HGB, hemoglobin.

and external validation, which heighted the reliability of the
performance of ML models. Besides, all the information in this
dataset was coded independently of the practitioner, making it a
reliable source.

Our study had limitations, consistent with those inherent
to many large administrative database studies. First, only TBI-
IC adults in ICUs were included, while TBI-IC children and
hospitalized TBI-IC cases were not analyzed. Nevertheless, in
light of the immaturity of the coagulation system in children,
more research is indeed required. Second, derived from the ICU
participants, the results of our study cannot be generalized to
other population, and we did not obtain information including
laboratory testing and interventions before ICU admission,
which may cause confounders to some extent. Although our
models can screen out patients who are at a high risk of
TBI-IC, it is the surgeons who decide the administration
of anticoagulant therapy. Usually, the interventions are time
sensitive and need to occur early after admission, starting
in the emergency department. Third, some new coagulation
markers, for example, thrombin-antithrombin-III complex and

plasmin-α2-antiplasmin complex, are useful in coagulopathy
diagnosis (42, 43). Nevertheless, these indicators were not
recorded in the MIMIC-IV and eICU database. This was also
the case for viscoelastic coagulation testing [Thrombelastograghy
(TEG), Rotational thromboelastometry (ROTEM), ClotPro].
Although these testings can provide detailed coagulopathy
diagnosis rapidly and have multiple advantages over the
traditional plasma-based coagulation tests (PT, APTT, INR),
unfortunately, the above indicators were not included in
these two databases. Fourth, we did not obtain the results
of cranial Computer Tomography (CT) scans in this study,
consequently, the original Corticosteroid Randomization After
Significant Head Injury (CRASH)-CT score was not available.
Moreover, as an administrative database, there was possibility
for misclassification of TBI, to reduce bias caused by imprecise
coding, we adopted the extensively used ICD-9, 10 codes. Fifth,
as with all potential retrospective studies, there was a potential
for unmeasured confounders, causing selection bias. Another
major limitation worth noting was the changing nature of the
variables in a critically ill patient from time of injury and right

Frontiers in Medicine | www.frontiersin.org 9 December 2021 | Volume 8 | Article 792689102

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. Coagulopathy Prediction in TBI Patients

throughout the continuum of care to ICU discharge. The nature
of the retrospective database did not allow for correction for
when measurements were taken in relation to the time of injury.
Lastly, although our study deeply explored the coagulopathy of
TBI in the ICU settings, other outcomes, such as long-term
incidence, are also needed further investigation.

CONCLUSIONS

In general, the present study suggested that some important
features were potentially related to the TBI-IC. The ML
model processed large number of variables and subsequently
discriminated TBI patients who would and would not develop
coagulopathy, facilitating the implement of timely yet efficient
treatments. In the future, further validation regarding its clinical
application value will become a necessity.
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Background: There is a high incidence of acute respiratory failure (ARF) in moderate or

severe traumatic brain injury (M-STBI), worsening outcomes. This study aimed to design

a predictive model for ARF.

Methods: Adult patients with M-STBI [3 ≤ Glasgow Coma Scale (GCS) ≤ 12] with

a definite history of brain trauma and abnormal head on CT images, obtained from

September 2015 to May 2017, were included. Patients with age >80 years or <18

years, multiple injuries with TBI upon admission, or pregnancy (in women) were excluded.

Two models based on machine learning extreme gradient boosting (XGBoost) or logistic

regression, respectively, were developed for predicting ARF within 48 h upon admission.

These models were evaluated by out-of-sample validation. The samples were assigned

to the training and test sets at a ratio of 3:1.

Results: In total, 312 patients were analyzed including 132 (42.3%) patients who had

ARF. The GCS and the Marshall CT score, procalcitonin (PCT), and C-reactive protein

(CRP) on admission significantly predicted ARF. The novel machine learning XGBoost

model was superior to logistic regressionmodel in predicting ARF [area under the receiver

operating characteristic (AUROC) = 0.903, 95% CI, 0.834–0.966 vs. AUROC = 0.798,

95% CI, 0.697–0.899; p < 0.05].

Conclusion: The XGBoost model could better predict ARF in comparison with logistic

regression-based model. Therefore, machine learning methods could help to develop

and validate novel predictive models.

Keywords: acute respiratory failure, machine learning, XGBoost model, logistic regression, traumatic brain injury

INTRODUCTION

Acute respiratory failure (ARF) is a common pathophysiological result of pulmonary complications
[pneumonia, neurogenic pulmonary edema, and acute respiratory distress syndrome (ARDS)]
in moderate or severe traumatic brain injury (M-STBI), not only worsening outcomes, but also
extending intensive care unit (ICU) and hospital stays and increasing the cost of hospital care (1–7).
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Consequently, accurately predicting ARF risk may help to
identify cases requiring intensive airway management. This
would help to allocate resources efficiently and improve
morbidity reduction by appropriately monitoring patients at risk.

With the rapid development of software, there is increasing
use of machine learning algorithms. Especially, machine learning
methods have been applied in medicine with excellent results,
deriving predictive algorithms for multiple conditions (8–15).
While traditional predictive models employ selected parameters,
machine learning methods easily include multiple clinical
parameters (16).

Although some predictive score systems or risk calculators
have been developed by previous studies for the prediction
of pulmonary complications (3, 5, 9, 13, 17), to date, studies
assessing RF feature selection and machine learning algorithms
are rare in the M-STBI population.

We hypothesized that supervised machine learning could
help to develop models for better predicting single ARF
occurrence upon M-STBI compared with routine statistical
models. Therefore, this study aimed to utilize a machine
learning model for developing and validating an ARF predictive
model, termed extreme gradient boosting (XGBoost), which
was compared to a conventional logistic regression model
for effectiveness.

MATERIALS AND METHODS

Data Source
Model development and internal validation were based on a large
TBI database, which consists of data of patients admitted to the
department of neurosurgery in the Second Affiliated Hospital
of Fourth Military Medical University, China, from September
2015 to May 2017. This trial had approval from the Institutional
Ethics Board of the Second Affiliated Hospital of Fourth Military
Medical University (TDLL-KY-202110-09) and data reporting
followed the guidelines included in the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement (18).

Selection of Patient
Adult patients with M-STBI [3 ≤ Glasgow Coma Scale (GCS) ≤
12] with a definite history of brain trauma and abnormal head
on CT images, acquired from September 2015 to May 2017, were
included in this study. Patients with age >80 years or <18 years,
multiple injuries with TBI upon admission, or pregnancy (in
women) were excluded from this study.

Data Collection and Outcome Definition
The medical records of the patients were carefully collected by
three authors on separate occasions. Demographic parameters,
clinical and laboratory variables, comorbidities, imaging features,
and outcome variables were recorded. All the patients with
M-STBI underwent the procedure of arterial blood gas (ABG)
analysis within the day of admission; ABGwas repeated, if oxygen
saturation (SpO2) <93% using a nasal catheter or mask oxygen
inhalation for at least 5min after suctioning oropharyngeal
secretions. The primary endpoint of this study was ARF within

72 h of admission, which was defined as respiratory failure with
partial pressure of oxygen (pO2)<60mmHg and respiratory rate
>30 breaths/min or respiratory distress for at least 5 min (19).

Predictors of ARF
Clinical and laboratory parameters recorded in the initial 48 h
after ICU admission were examined for their capabilities of
predicting ARF. For parameters measured many times, both
the maxima and minima were examined. Age, gender, GCS,
comorbidity, and imaging features including the Marshall CT
score and severity scores of lung exudations (seeTables S1, S2 for
the details of the scores) were analyzed. In addition, laboratory
data such as white blood cell (WBC) and neutrophil counts,
neutrophil–lymphocyte ratio, C reactive protein (CRP), and
procalcitonin (PCT) were included. In term of therapy, long-term
sedation (sedation duration > 48 h) was examined. For predictor
selection, the Akaike Information Criterion (AIC) was used for
minimizing the possible collinearity of parameters from a given
patient as well as overfitting (20).

This was a hypothesis-generating retrospective trial, with no
sample size estimation, but including the totality of eligible
patients in the database for statistical power maximization.

Missing Data
We aimed to reflect daily clinical routine where often not all the
data are obtainable. To make our algorithms and study realistic,
we decided not to correct for missing data, e.g., by imputation
techniques and to perform the analysis using the available data
only. While using imputation techniques to estimate missing
variables have many merits in conventional statistics, it is
less preferred in machine learning because it does not reflect
the observed reality—at best a close approximation—and adds
artificially introduced noise to the data. Moreover, there could
be significant reasons why some data are missing, which could
be linked to the outcome variable of interest. In such cases
(and in a number of other scenarios), imputation obscures
important relationships in the observed data or introduces
artificial relationships altogether, which decreases the value of
complex pattern recognition used in machine learning. For
variables with missing values, we coded the missing value as zero
and created the corresponding missing dummy (12).

Statistical Analysis
Continuous and categorical data were presented as median
[interquartile range (IQR)] and number (percentage).
Demographic characteristics between participants with and
without ARF were compared by the Mann–Whitney U test or
the chi-squared test.

The primary model of this study was the XGBoost gradient
boosted tree model. XGBoost represents a tree ensemble
technique building in a progressive fashion on the loss from weak
decision tree base learners. It can learn rapidly and effectively
from substantial data amounts, with a flexibility allowing learning
even from missing data (21). After tuning the XGBoost model,
parameters of the XGBoost model were finally max_depth =

7, subsample = 0.94, colsample_bytree = 0.83, nrounds = 100,
learning rate (eta value)= 0.3, and gamma= 5.
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FIGURE 1 | Study flowchart.

For comparison, another model for predicting ARF
occurrence was developed based on the multivariate logistic
regression analysis.

As a comparison, a second model to predict the occurrence of
ARF was created using the multivariate logistic regression model.

For comparison, model discrimination was assessed using the
area under the receiver operating characteristic (AUROC) curve
and the optimal cutoff value was calculated by Youden index.
The confusion matrixes of the two models were created based
on the optimal cutoff values to evaluates the accuracy, sensitivity,
and specificity.

EmpowerStats (X&Y Solutions, Inc., Boston, MA, USA) and
R version 3.4.2 (http://www.R-project.org) were utilized for data
analysis. p < 0.05 was considered as statistically significant.

RESULTS

Patients
Between September 2015 and May 2017, 312 M-STBI cases
hospitalized in the non-ICU (NICU) of the Second Affiliated
Hospital of Fourth Military Medical University were examined.
There were 232 males and 80 females. Of all patients, 132 (42.3%)
patients had ARF (Figure 1). Characteristics of patients are given
in detail in Table 1.

The ARF group included more individuals with smoking
history (37.12 vs. 26.67%; p = 0.049) and chronic obstructive
pulmonary disease (COPD) history (5.30 vs. 1.11%; p = 0.029)
prior to ICU admission than the non-ARF group. Upon
admission, the minimum GCS values (6.57 ± 2.68 vs. 8.63 ±

3.27 mmol/l; p < 0.001) were lower, while the Marshall CT
scores (5.50 ± 0.95 vs. 4.70 ± 1.39; p < 0.001) and severity
scores of bilateral lung exudations (83.33 vs. 66.67%; p = 0.004)
were higher in ARF cases. ARF cases also showed elevated white
blood cell count (14.87 ± 7.14 vs. 10.96 ± 5.16; p < 0.001),
elevated neutrophil cell count (85.06 ± 9.47 vs. 78.27 ± 12.37;
p < 0.001), lower neutrophil–lymphocyte ratio (5.66 ± 5.83 vs.

9.78 ± 10.11; p < 0.001), and higher CRP (57.10 ± 59.85 vs.
23.51 ± 31.19 mmol/l; p < 0.001) and PCT (2.54 ± 6.09 vs.
0.42 ± 1.13; p = 0.002) compared with the non-ARF group
(Table 1).

The XGBoost Model
Extreme gradient boosting had an AUROC of 0.84 in the training
set, with sensitivity and specificity of 0.71 and 0.84, respectively.
Its precision was 0.78 (95% CI: 0.72–0.83). An error rate of 0.12
was obtained, indicating a correct prediction in roughly 78% of
patients (Table 2).

In the test population, an AUROC of 0.90 was obtained for
XGBoost, which had specificity and sensitivity of 0.85 and 0.78,
respectively, indicating correct prediction of 29 of the 37 ARF
cases in the test set. Meanwhile, 8 cases were incorrectly predicted
[reflecting a precision rate of 0.82 (0.72, 0.90)]. The model had an
error rate of 0.18, indicating correct outcome prediction in>81%
of cases (Table 2).

Variables showing high predictive values were the GCS and
the Marshall CT score, PCT, and CRP on admission. The GCS
was the center factor of the XGBoost model because the gain of
the GCS was the highest among all the variables (Figure 2). Other
variables, e.g., long-term sedation and smoking history had low
prediction power (Figure 2).

Logistic Regression Model
Baseline parameters for the ARF and non-ARF groups are
shown in Table 1. Smoking and COPD history, the GCS and
the Marshall CT score on admission, severity scores of lung
exudations, long-term sedation, neutrophil cell count, WBC,
neutrophil–lymphocyte ratio, PCT, and CRP showed associations
with ARF occurrence in the univariate analysis (p < 0.05,
Table 1). In the stepwise multivariate logistic regression analysis,
bilateral lung exudations [odds ratio (OR), 3.435; 95% CI, 1.248–
9.456], the Marshall CT score (OR for each 1 score increase,
1.078; 95% CI, 1.012–1.148), long-term sedation, increasedWBC
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TABLE 1 | Baseline characteristics of patients with moderate-to-severe traumatic brain injury with or without acute respiratory failure (ARF).

Exposure Non-ARF (N = 180) ARF (N = 132) P-value

AGE 56.0 (45.8–66.0) 57.0 (49.0–66.0) 0.448

Sex (male/%) 129 (71.67%) 103 (78.03%) 0.203

Smoking 48 (26.67%) 49 (37.12%) 0.049

GCS 8.0 (6.0–11.0) 6.0 (5.0–8.0) <0.001

Marshall score 5.0 (4.0–6.0) 6.0 (5.0–6.0) <0.001

Scores of lung exudations 0.004

0 46 (25.56%) 16 (12.12%)

1 14 (7.78%) 6 (4.55%)

2 120 (66.67%) 110 (83.33%)

Comorbidity

Hypertension (n, %) 92 (51.11%) 69 (52.27%) 0.839

Diabetes 12 (6.67%) 7 (5.30%) 0.619

COPD 2 (1.11%) 7 (5.30%) 0.029

Cardiovascular disease 3 (1.67%) 7 (5.30%) 0.072

Long-term sedation 75 (41.67%) 102 (77.27%) <0.001

White cell count, ×109/L 10.3 (7.4–13.7) 13.6 (10.3–18.4) <0.001

Neutrophil cell count, % 81.3 (73.2–87.0) 87.5 (82.5–90.7) <0.001

Neutrophil-lymphocyte ratio 7.3 (3.0–11.6) 4.4 (1.4–8.0) <0.001

CRP, mg/L 6.2 (5.0–28.0) 26.9 (5.0–97.7) <0.001

Not recorded, n 104 (57.7%) 69 (52.3%)

PCT, ng/mL 0.2 (0.2–0.3) 0.3 (0.2–1.7) <0.001

Not recorded, n 96 (53.3%) 54 (40.9%)

LOH 10.0 (7.0–16.0) 17.5 (11.0–28.0) <0.001

Data are expressed as medians ± interquartile ranges and n (percentage), as appropriate.

GCS, Glasgow Coma Scale; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; PCT, procalcitonin.

TABLE 2 | The multivariate logistic regression model with stepwise variable

selection.

Variables OR (95% CL) P-value

Smoking 2.092 (0.989–4.429) 0.054

Scores of lung exudations 1 0.988 (0.158–6.172) 0.990

Scores of lung exudations 2 3.435 (1.248–9.456) 0.017

WBC 1.078 (1.012–1.148) 0.020

GCS 0.788 (0.681–0.913) 0.002

Marshall score 1.706 (1.181–2.463) 0.004

Long-term sedation 6.293 (2.908–13.621) 0.001

PCT 1.121 (0.924–1.360) 0.249

CRP 1.014 (1.004–1.025) 0.007

aPCT (not recorded) 0.540 (0.245–1.190) 0.126

WBC, white blood cell; GCS, Glasgow Coma Scale; COPD, chronic obstructive

pulmonary disease; CRP, C-reactive protein; PCT, procalcitonin.
aPCT dummy variable for missing values.

(OR for each 1 × 109/L increase, 1.076; 95% CI, 1.181–2.463),
and CRP (OR for each 1 mg/l increase, 1.014; 95% CI, 1.004–
1.025) were associated with increased probability of ARF. On the
contrary, the GCS (OR for each 1 score increase, 0.788; 95% CI,
0.681–0.913) was associated with decreased probability of ARF
(Table 2).

The multivariate regression model was created based on the
AIC-selected variables. It showed an AUROC of 0.943 in the
training cohort, with a specificity of 0.946 and a sensitivity of
0.837 (Table 3). Its error rate was 11.6%. In the test population,
AUROC was 0.792 and specificity and sensitivity were 0.913 and
0.667, respectively; its error rate approximated 15.6% (Table 3).

Model Performances
Area under the receiver operating characteristics were
determined for assessing the discriminative abilities of both the
models. XGBoost showed an elevated AUROC in comparison
with the logistic regression model (AUROC, 0.902; 95% CI,
0.834–0.966 vs. 0.789; 95% CI, 0.688–0.891, p < 0.05; Figure 3).
Tables 3, 4 describe the classification and confusion matrixes for
both the models in predicting ARF.

DISCUSSION

Prediction and timely detection of ARF in patients with M-
STBI are critical, crucially impacting M-STBI outcome (22, 23).
This study developed a machine learning-based model to predict
ARF occurrence in M-STBI, with multiple remarkable features.
First, the model included readily available and reproducible
parameters in the initial 48 h after admission. Second, after
analyzing multiple interaction patterns among variables, the
predominance of admission-related parameters (the GCS and the
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FIGURE 2 | Parameters by predictive value in the extreme gradient boosting

(XGBoost) model. To predict acute respiratory failure (ARF) following moderate

or severe traumatic brain injury, gradient boosting used various variables

based on their importance in prediction modeling. In this analysis, the Glasgow

Coma Scale (GCS) and inflammation-associated laboratory parameters upon

admission had higher values in ARF prediction than other features of patient.

TABLE 3 | Confusion matrix for machine learning.

Training

data

Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.840

0 112 28 140 Accuracy 0.782

1 22 67 89 Sensitivity 0.705

Total 134 95 229 Specificity 0.836

Test data Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.902

0 39 8 47 Accuracy 0.820

1 7 29 36 Sensitivity 0.784

Total 46 37 83 Specificity 0.848

AU-ROC, area under the receiver operating characteristic.

Marshall CT score, CRP, PCT, and long-term sedation; Figure 2)
was most significant in determining the occurrence of ARF.
Third, the novel model enhanced performance compared with
the conventional logistic regression model.

This study first investigated ARF prediction in patients with
M-STBI using machine learning methods. This new model
had accuracy and AUROC of 0.83 and 0.90, respectively. Of
greatest importance, sensitivity and specificity of 0.73 and 0.91,
respectively, were obtained in the test cohort.

First, accurate detection of ARF in critically ill individuals with
M-STBI is essential in performing intensive airway management
and making decision with respect to invasive treatments such
as tracheal intubation, invasive mechanical ventilation, and even
tracheostomy. To date, reliable tools for timely predicting ARF in

FIGURE 3 | Receiver operating characteristic curves for examining the

discriminative powers of the XGBoost and the logistic regression models.

TABLE 4 | Confusion matrix for conventional statistics.

Training

data

Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.879

0 99 12 111 Accuracy 0.795

1 35 83 118 Sensitivity 0.874

Total 134 95 229 Specificity 0.739

Test data Statistical

analysis

Predicted

true

0 1 Total AU-ROC 0.789

0 40 13 53 Accuracy 0.771

1 6 24 30 Sensitivity 0.649

Total 46 37 83 Specificity 0.870

AUROC, area under the receiver operating characteristic.

M-STBI are lacking. In this study, we demonstrated enlightened
machine learning methods, including XGBoost, could provide
a great deal of information obtainable from databases and
promote the development and validation of better predictive
models in comparison with conventional logistic regression
techniques. The new model could help to stratify M-STBI
cases right after ICU admission. Therefore, intensive airway
management or invasive treatment could be more accurately
provided to individuals with high odds of developing ARF to
avoid long-term hypoxia, which is associated with increased
morbidity and mortality in patients with M-STBI (24, 25). On
the other hand, intensive airway management needs important
human andmaterial resources, while invasive treatment is related
to complications and high medical costs. Thus, identifying
individuals who could benefit from intensive airwaymanagement
or invasive treatment are critical. However, this analysis provided
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no high level of evidence with respect to the effectiveness of
XGBoost. Further randomized controlled trials that compare
therapies dependent on and independent of the predictive model
should comprehensively examine its effectiveness.

Second, we aimed to design amodel with easy implementation
by neurosurgery residents and staff alike. Therefore, parameters
easily available and reproducible upon admission were required
and quantitative (blood test results, the GCS score, the Marshall
CT score, etc.) and dichotomous (long-term sedation or not,
smoking status, etc.) variables were selected.

Third, the XGBoost model showed that the GCS score, PCT,
the Marshall CT score, CRP, and long-term sedation potentially
predicted ARF in patients withM-STBI. Consistent with previous
reports, the GCS score, PCT, and CRP were related to ARF in
patients with M-STBI, suggesting the extent of TBI and severity
of systematic inflammation (26–29). The GCS was center factor
in the XGBoosting model shown in Figure 2, suggesting that
the severity of brain injury was associated with ARF in patients
with M-STBI significantly. The results agreed with clinical
experience very well. However, to the best of our knowledge,
the association between the Marshall CT score and ARF has not
been confirmed. This study suggested that the Marshall CT score
potentially predicted ARF. The explanation could be that the
Marshall CT score can reflect the extent of brain injury based
on neuroimaging, so the high Marshall CT score is associated
with injury of brainstem centers of respiration or intracranial
hypertension, which causes ARF easily. Moreover, both the
logistic and XGBoost models showed that sedation (more than
48 h) was related to ARF. The results could be explained by the
fact that sedation is an important tool for reducing intracranial
pressure, which cannot be stopped until intracranial pressure
returns to normal. Intracranial hypertension and respiratory
depression caused by sedative drugs contribute to ARF (30, 31).

This study had many strengths. XGBoost modeling represents
a new method not yet applied in respiratory failure studies
of neurological critical patients. XGBoost modeling can learn
swiftly with high efficiency from important data amounts and its
high flexibility enables learning even frommissing data (21). The
XGBoost model had starkly higher predictive accuracy compared
with the generalized linear model, being capable of capturing
complex associations in data without requiring explicit high-
order interactions and non-linear functions (12). Using such
features, predictive models based on clinical and laboratory
variables, which are easily available and reproducible upon
admission, could be built. However, there were also limitations.
First, as a hypothesis-generating study, external validation of the
XGBoost model is important for confirming its usefulness. The
XGBoost model developed in this study will be applied to the
Medical Information Mart for Intensive Care (MIMIC)-IV for

external validation in the next study. Second, because this was
a retrospective study, missing data are inevitable in practice. For
missing data, variables with >70% missing values were excluded
from model construction. Thus, the sample sizes of the training
(n = 86) and test (n = 32) sets were low especially in the logistic
regression model. To some extent, missing data decreased the
performance of the model. Third, this study only explored ARF
within 48 h upon admission and a different time interval (e.g.,
>48 h following admission) was not studied.

CONCLUSION

In total, six major parameters related to ARF were screened to
develop the XGBoost model with enhanced predictive value for
ARF compared with the logistic regression model in patients
with M-STBI.
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Objective: To explore the efficacy of anticoagulation in improving outcomes and safety of

Coronavirus disease 2019 (COVID-19) patients in subgroups identified by clinical-based

stratification and unsupervised machine learning.

Methods: This single-center retrospective cohort study unselectively reviewed 2,272

patients with COVID-19 admitted to the Tongji Hospital between Jan 25 and Mar

23, 2020. The association between AC treatment and outcomes was investigated in

the propensity score (PS) matched cohort and the full cohort by inverse probability

of treatment weighting (IPTW) analysis. Subgroup analysis, identified by clinical-based

stratification or unsupervised machine learning, was used to identify sub-phenotypes

with meaningful clinical features and the target patients benefiting most from AC.

Results: AC treatment was associated with lower in-hospital death risk either in

the PS matched cohort or by IPTW analysis in the full cohort. A higher incidence of

clinically relevant non-major bleeding (CRNMB) was observed in the AC group, but not

major bleeding. Clinical subgroup analysis showed that, at admission, severe cases

of COVID-19 clinical classification, mild acute respiratory distress syndrome (ARDS)

cases, and patients with a D-dimer level ≥0.5µg/mL, may benefit from AC. During the

hospital stay, critical cases and severe ARDS cases may benefit from AC. Unsupervised

machine learning analysis established a four-class clustering model. Clusters 1 and
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2 were non-critical cases and might not benefit from AC, while clusters 3 and 4

were critical patients. Patients in cluster 3 might benefit from AC with no increase

in bleeding events. While patients in cluster 4, who were characterized by multiple

organ dysfunction (neurologic, circulation, coagulation, kidney and liver dysfunction) and

elevated inflammation biomarkers, did not benefit from AC.

Conclusions: AC treatment was associated with lower in-hospital death risk, especially

in critically ill COVID-19 patients. Unsupervised learning analysis revealed that the most

critically ill patients with multiple organ dysfunction and excessive inflammation might not

benefit from AC. More attention should be paid to bleeding events (especially CRNMB)

when using AC.

Keywords: COVID-19, anticoagulation, outcomes, mortality, bleeding events, unsupervised machine learning

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
developed into a pandemic disease and affected nearly every
country in the world. There is no comprehensive and strong
clinical evidence to support the efficacy of any drugs that
specifically target the SARS-CoV-2 (1). Previous research
has found that coagulopathy is very common in COVID-19
patients, and includes thrombosis and coagulation abnormalities
and dysfunction such as an elevated D-dimer level and
prolonged prothrombin time (PT), respectively (2). Autopsy
histopathologic analysis has identified widespread thrombosis
and microangiopathy in small vessels and capillaries of the
lung (3–5), which are different from the pathologies observed
in respiratory failure caused by other diseases (3, 6–8). Some
scholars have therefore proposed anticoagulation (AC) treatment
as an integral part of systemic therapy in the early stage of
COVID-19 (9). Generally, retrospective studies have suggested
that AC may decrease mortality in COVID-19 patients (9,
10), However, these conclusions are not completely reliable
nor applicable to all COVID-19 patients due to limitations
in methodology such as no prospective control or matching
cohort (9–11), large heterogeneity in anticoagulant therapy
(9–12), and a lack of subgroup analysis (10, 11, 13). A
recently completed randomized controlled trial (RCT) found
that, compared with usual-care thromboprophylaxis, an initial
strategy of therapeutic-dose anticoagulation did not result in
a higher probability of survival in critically ill COVID-19
patients (14). The conclusion of this RCT may be inconsistent
with that of previous retrospective studies. At present, the
recommendations for empiric systemic AC treatment currently
differ between COVID-19 management guidelines (15–17), with
some recommending using anticoagulant drugs preventively
for patients who have no contraindications to AC and a
significantly increased D-dimer level, while others recommend
that all hospitalized adults with COVID-19 should receive
pharmacologic thromboprophylaxis with low molecular weight
heparin (LMWH) rather than unfractionated heparin (UFH).

We conducted a retrospective cohort study using a
comprehensive database of COVID-19 patients to investigate

whether AC treatment was protective and safe for COVID-19
patients. Innovative analyses using propensity score matching
(PSM) and inverse probability of treatment weighting (IPTW)
were performed to balance baseline covariates, variates related
to AC treatment assignment and variates related to the
outcome between patients with or without AC treatment.
Further sensitivity analyses were carried out to explore the
association between outcome and duration, dosage and type
of AC treatment. The second aim of the study was to identify
the patients who benefited most from AC treatment using
subgroup analysis that involved stratifying the data according to
the severity of the acute respiratory distress syndrome (ARDS)
(18), COVID-19 clinical classification (17), and D-dimer levels.
Taking into account the heterogeneity of the patients, clinically
relevant patient subpopulations were identified by unsupervised
machine learning algorithms. The effectiveness of AC treatment
was verified further in identified clusters.

MATERIALS AND METHODS

Ethics and Registration
This retrospective cohort study was approved by the ethics
committee of Tongji Medical College, Huazhong University
of Science and Technology (No. 2020-S220). The clinical trial
was registered and verified by the Chinese Clinical Trial
Registry (ChiCTR2000039855).

Patient Population
This single-center retrospective cohort study was conducted
in two designated branches for COVID-19 patients in Tongji
Hospital, an academic hospital affiliated to Tongji Medical
College, Huazhong University of Science and Technology in
Wuhan, China. All patients with confirmed COVID-19 admitted
consecutively to these two institutions between Jan 25 to Mar 23,
2020, were enrolled retrospectively in the study. Approval was
obtained from the ethics committee at our institution that the
patients did not need to provide informed consent for inclusion
in the study. Patients were assigned to three groups, including
one group of patients with systemic AC treatment for at least
7 days, one group of patients with systemic AC treatment for
<7 days and one group of patients without AC treatment. The
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medications administered and clinical outcomes were followed
up to June 4, 2020, when these two branches for exclusive
COVID-19 treatment were closed. All COVID-19 patients were
diagnosed according to the World Health Organization interim
guidelines (19) and the Diagnosis and Treatment Protocol for
COVID-19 Patients (Trial Version 8) (17). The exclusion criteria
for the study were younger than 18 years, pregnant, length of
stay <24 h, insufficient medical information, a history of severe
comorbidities requiring surgical operation including, but not
limited to, multiple trauma, a severe infection that required
debridement, amputation or laparotomy, and patients who were
classified again as COVID positive after RNA for SARS-CoV-2
was detected following their discharge from hospital.

Anticoagulation Exposure
AC treatment was defined as receiving either UFH, LMWH,
Fondaparinux sodium, Argatroban, or direct-acting oral
anticoagulants (DOACs) (mainly Rivaroxaban). The initiation
of AC treatment was decided by the bedside physicians. Possible
reasons for AC treatment were extracted from electronic case
files. Immortal time is a gap period between exposure and
initiation of follow-up (20). We carried out a Cox proportional
hazards model with a time-dependent manner for the drug
exposure in this study.

Outcomes, Definitions, and Data Collection
The primary outcome of this study was in-hospital
mortality. The safety endpoints included bleeding events
and thrombocytopenia. Major bleeding was defined according
to the International Society on Thrombosis and Haemostasis
(ISTH) statement (21) as those that resulted in death, were
life-threatening, caused chronic sequelae, or consumed major
healthcare resources. Hemorrhage that did not fit the criteria
for the ISTH definition of major bleeding but required medical
intervention was classified as clinically relevant non-major
bleeding (CRNMB) (22). Other bleeding events which did not
meet the criteria of either major bleeding or CRNMB, including
bloody sputum, positive fecal occult blood test/gastric occult
blood test and microscopic hematuria, were reported separately.
Thrombocytopenia was defined as a platelet count <100 ×

109/L (23).
The CURB-65 score (21, 24), ARDS (18, 25, 26), and

quick sequential organ failure assessment (qSOFA) (27) were
defined according to the literature, while the COVID-19
clinical classification was made according to the Diagnosis and
Treatment Protocol for COVID-19 Patients (Trial Version 8)
(17). The detailed definition of ARDS and COVID-19 clinical
classification is shown in Supplementary Table 1.

All the characteristics and clinical information of the patients
were obtained from electronic medical and nursing record
systems. This data included age, gender, current smoking history,
comorbidities, laboratory results at admission, CURB-65 score
and qSOFA score at admission, ARDS classification (18) and
COVID-19 clinical classification at admission and during the
hospital stay, antiviral therapies and other treatments during
hospitalization, the level of oxygen therapy at admission, and
the most intense level of oxygen therapy during hospitalization.

Variables with missing data >20% were excluded from this
analysis. Multiple imputations were conducted to address the
presence of missing values.

Unsupervised Clustering
For this work, we used the K-Medoids clustering algorithm to
partition our data into subclasses in an unsupervised manner.
The K-Medoids algorithm randomly selects K samples in the
training data as themedoids. The remaining samples are assigned
to each subclass based on the pairwise dissimilarities. The
sample, which is more similar to the medoid, is assigned to the
corresponding subclass. Next, the medoids are updated based
on the new results of subgrouping. These two steps are iterated
multiple times until there is no change in the assignments. In
particular, we used the Partitioning Around Medoids (PAM),
which is the most common implementation of K-Medoids. For
the dissimilarity measure, we adopted the Manhattan distance
because it has better performance than the Euclidean distance for
the data containing both binary and category variables (28).

A total of 25 variables representing the patients’ clinical
characteristics were used as input features in the unsupervised
learning method, which included demographic features,
comorbidities, vital signs, biomarkers, and oxygen therapy types
at admission and during the hospital stay. Each patient in our
database was presented as a vector with 25 dimensions. To
prepare each patient’s case as a vector for modeling training,
we converted the binary variable as (0, 1), with the category
variable represented by the corresponding categorical index.
Normalization of the numerical variables was performed. After
the normalization, we made sure that each numerical variable
had a normal distribution.

Two prominent probabilistic model selection methods:
Bayesian information criterion (BIC) and Akaike information
criterion (AIC) were used to determine the optimal number of
clusters in this work. In general, the measurement of AIC and
BIC scores are similar. BIC penalizes the complexity of the model
more than AIC (29).

Statistical Analysis
To minimize bias caused by the non-random allocation of
potentially confounding covariates between the AC and non-
AC groups, we adopted PSM methods (30). Propensity score
(PS) was calculated using a logistic regression model, adjusted
for the following covariates: level of oxygen therapy, clinical
classification, high-sensitivity C reactive protein (hs-CRP), D-
dimer levels, platelets count, CURB-65 score for the severity
of pneumonia (31) at hospital admission, and the highest level
of oxygen therapy during hospitalization. The match ratio was
set at 1 to 3 and the maximum allowable distance (caliper)
at 0.1 (32). To detect the selective bias potentially caused by
this PSM, inverse probability of treatment weighting analysis
(IPTW) was carried out based on the same variates used in PSM
modeling (33).

Continuous variables were expressed as medians and
interquartile ranges (IQR) and compared using the Mann-
Whitney U test or Kruskal-Wallis H test. Categorical variables
were compared using the Pearson χ2 test, continuity correction,
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or Fisher’s exact test, as appropriate. Differences between clusters
identified by unsupervised machine learning were judged by
two-tailed Bonferroni correction post hoc tests, with a P-value
< (0.05/6) considered statistically significant. A Kaplan-Meier
curve was used to analyze survival during hospitalization,
with the data stratified according to AC treatment and PAM
clustering subphenotypes.

Univariate and multivariate Cox proportional hazards
regression was used to determine the risk factors for in-hospital
mortality in the PS matched cohort. Residual imbalanced
variates were included in the multivariate Cox proportional
hazards regression for the PSM cohort. Cox regression analysis
with IPTW adjusted covariates of important demographic
characteristics as well as variates associated with outcomes either
reported previously (34–36) or by general clinic consensus,
which included age, gender, platelets count, PT, D-dimer, total
bilirubin, lactate dehydrogenase, urea and hs-CRP. Competing
risk model analyses were carried out using Fine-Gray tests, which
considered death as a competing event for the safety endpoints,
including bleeding events and thrombocytopenia. Sensitivity
analyses were carried out according to the AC exposure
duration, type and dosage in the full cohort. In subgroups
analysis among PS matched cohort, univariate and multivariate
logistic regression analysis was used to explore the association
of outcomes and AC treatment. Residual imbalanced variates
were included in the multivariate logistic regression here. The
interaction effect between AC treatment and subgroups was also
analyzed by logistic regression.

SPSS version 26.0 software (IBM Corp., Armonk, New York,
USA) and SAS version 9.4 (SAS Institute Inc. Cary, NC, USA)
were used for the statistical analyses and PS matching. The
Kaplan-Meier survival plot and forest plot were constructed
using GraphPad Prism version 4.0 software (GraphPad Software
Inc., La Jolla, CA, USA). All tests were two-tailed, with a P < 0.05
considered statistically significant.

RESULTS

Clinical Characteristics of the Patients at
Presentation
Two thousand four hundred and sixty nine confirmed COVID-
19 patients admitted to Tongji Hospital between Jan 25 and
Mar 23, 2020, were consecutively and unselectively reviewed.
After excluding 197 patients who did meet study exclusion
criteria, a total of 2,272 patients were identified for IPTW
analysis and sensitivity analyses. In PSM modeling, 78 patients
who received AC treatment for <7 days were not included
for matching. Finally, PS matching yielded 165 patients in the
AC group (patients who received AC for 7 days or longer)
and 393 in the non-AC group (patients who did not receive
AC) (Figure 1). Detailed AC treatment type, dosage, duration,
time of initiation from admission and possible reasons for AC
treatment were shown in Supplementary Figure 1. In the PS
matched cohort, compared to the non-AC group, patients in
the AC group were older (69 years, interquartile range [IQR]
60–78 vs. 65 years, IQR 53–71 years, P < 0.001) and had

more comorbidities at admission (75.2% vs. 58.5%, P < 0.001,
Table 1).

Primary and Secondary Outcomes
In the PS matched cohort, univariate Cox proportional hazard
regression analysis showed a significantly lower probability of
in-hospital death in the AC treatment group compared to that
in the non-AC treatment group (hazard ratio [HR] = 0.450;
95% confidence interval [CI], 0.278 to 0.727; P < 0.001). Since
there were still residual imbalances between AC and non-AC
groups, multivariate Cox proportional hazard regression was
carried out by adjusting imbalance covariates, including age,
smoking, comorbidities, white blood cells, lactate dehydrogenase,
urea, D-dimer, antiviral therapy, intravenous immunoglobulin,
and oxygen therapy during hospitalization. Multivariate Cox
analysis showed that AC treatment was associated with a lower
probability of in-hospital mortality (adjusted HR = 0.249, 95%
CI 0.143 to 0.436, P < 0.001, Table 2). To explore the immortal
time bias, a further Cox proportional hazards model with a time-
dependent manner for AC exposure was carried out in this study.
This showed that the AC treatment was still associated with a
lower probability of in-hospital death risk in the PS matched
cohort (adjusted HR = 0.531, 95% CI 0.301 to 0.935, P = 0.028,
Figure 2).

To detect the selective bias caused by PSM, IPTW analysis
was performed in the full cohort including 2,272 patients.
Multivariate Cox analysis again showed that AC treatment was
associated with a lower probability of in-hospital mortality by
comparing patients without AC treatment and patients with AC
treatment for 7 days or longer (adjusted HR = 0.164; 95% CI:
0.104 to 0.260, P < 0.001). Sensitivity analyses were carried out
according to the AC exposure duration, type and dosage in the
full cohort. Duration of AC therapy <7 days was not associated
with lower in-hospital mortality (adjusted HR = 1.018; 95% CI:
0.742 to 1.399, P = 0.910). In addition, AC treatment in all
various dosages and types remained consistently associated with
lower mortality (Table 3).

Secondary outcomes included bleeding events and
thrombocytopenia. By adjusting baseline covariates and
time-dependent AC exposure, it was revealed that AC treatment
was associated with higher risk of total bleeding events (adjusted
HR = 3.187, 95% CI, 1.846 to 5.504, P < 0.001), CRNMB
(adjusted HR = 3.713 95% CI, 1.446 to 9.532, P = 0.006) and
microscopic hematuria (adjusted HR = 2.624, 95% CI, 1.280
to 5.380, P = 0.008), but not associated with major bleeding
(P = 1.000) and thrombocytopenia (adjusted HR = 2.167, 95%
CI, 0.750 to 6.263, P = 0.153) (Table 2). Considering death
as a competing event, a competing risk model analysis using
the Fine-Gray test was conducted to explore the association
between AC and bleeding events or thrombocytopenia. Finally,
the AC group had no significantly higher risk of bleeding events
(Fine-Gray test, P = 0.500) or thrombocytopenia (Fine-Gray
test, P = 0.911) than the non-AC group when using death as a
competing event in the model.

Clinical Subgroup Stratification
In-hospital mortality between the AC and the non-AC groups
was compared in individuals stratified according to ARDS
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FIGURE 1 | Flow diagram of the study. COVID-19, Coronavirus Disease 2019; AC, anticoagulation; hs-CRP, high sensitivity C-reactive protein; PS, propensity score.

classification, COVID-19 clinical classification, and D-dimer
levels at both hospital admission and during hospitalization.
At hospital admission, AC treatment was associated with lower
in-hospital mortality in subgroups of mild ARDS (adjusted
odds ratio [OR] = 0.005, 95% CI, 0.000–0.174, P = 0.004),
severe COVID-19 cases (adjusted OR = 0.076, 95% CI,
0.024–0.236, P < 0.001) and patients with a D-dimer level
≥0.5µg/mL (adjusted OR = 0.042, 95% CI, 0.003–0.603,
P = 0.020). During the hospital stay, AC treatment was
associated with lower in-hospital mortality among patients

who developed to severe ARDS (adjusted OR = 0.046,
95% CI, 0.013–0.157, P < 0.001) or critical COVID-19
(adjusted OR = 0.095, 95% CI, 0.034–0.266, P < 0.001)
(Figure 3).

The interaction effect between AC treatment and
the subgroups was also analyzed by logistic regression
(Supplementary Table 2). An interaction effect was observed
between the subgroups identified by ARDS at admission (P <

0.001) or clinical classification at admission (P < 0.001) and
AC treatment.
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FIGURE 2 | Cumulative probability of death in COVID-19 patients with and without AC treatment. Patients with AC treatment had a lower probability of in-hospital

mortality than those without AC treatment (adjusted* HR = 0.531, 95% CI: 0.301–0.935, P = 0.0283). *Adjusted for time-dependent AC exposure and baseline

covariates including age, smoking, comorbidities, white blood cells, D-dimer, lactate dehydrogenase, urea, antiviral therapy, intravenous immunoglobulin,

convalescent plasma therapy, and oxygen therapy in hospitalization. HR, hazard ratio; CI, confidence interval; AC, anticoagulation.

PAM Clustering Analysis
The Optimal Number of Clustering Determination
BIC and AIC scores were used to automatically select the best
number of clusters K for our model. As shown in Figure 4, we
tried to find the optimal K by conducting an exhaustive search
of the possible K values. By and large, the results from AIC
and BIC are proportional. BIC score suggests that four clusters
are optimal. For the AIC score, a shape “elbow point” is also
indicated at four, after four the decrease is becoming notably
smaller. Even though a better fitness of the datamight be achieved
by increasing the number of clusters, an additional cost will
be needed including the over-fitting issue and the complexity
of interpreting clinically plausible subgroups. Therefore, four
clusters were selected to be optimal in this work.

Clinical Features of Patients’ Subgroups
The clinical features of the four clusters are shown in Tables 4,
5 and Figure 5. Patients in clusters 1 and 2 were non-critical
cases. Patients in clusters 1 and 2 had no ARDS at admission
then developed mild ARDS during the hospital stay. They
mainly needed nasal cannula oxygenation at admission as well
as during hospitalization. Within these non-critical clusters,
cluster 1 was characterized by the youngest age (51 years, IQR
39–63) and had the least number of comorbidities (0, IQR
0–1). Compared to clusters 1 and 2, clusters 3 and 4 were
critical cases. In laboratory testing results at admission, both
clusters 3 and 4 had significantly higher neutrophils count, lower
lymphocytes and platelets count, higher lactate dehydrogenase
and hs-CRP, higher urea and creatinine, elevated prothrombin
time and D-dimer. In vital signs, clusters 3 and 4 had significantly
lower peripheral blood oxygen saturation and respiratory rate
at admission. Either at admission or during the hospital stay,

both clusters 3 and 4 had significantly more severe levels of
ARDS and need a higher level of oxygen therapy. Notably,
cluster 4 exhibited as the most critical sub-phenotype. Compared
to cluster 3, patients in cluster 4 had significantly excessive
inflammation (elevated white blood cells, neutrophils and lactate
dehydrogenase), organ dysfunction (higher total bilirubin and
urea), severe coagulopathy (elevated prothrombin time and D-
dimer), unstable hemodynamics (higher rate of vasopressor
use) and neurologic dysfunction (disturbance of consciousness).
Compared to the other three clusters, cluster 4 had severe ARDS
either at admission or during the hospital stay. As a result, cluster
4 also needed the highest level of oxygen therapy accordingly.

AC Treatment and Outcomes in Different Patients

Clusters
In the non-critical cluster (clusters 1 and 2), we found no
significantly lower in-hospital death risk associated with AC
treatment (Figure 6). In cluster 3, patients who received AC
treatment had a significantly lower in-hospital mortality than
those who did not receive this treatment (adjusted OR = 0.027,
95% CI, 0.005 to 0.134, P < 0.001). However, patients in cluster
4, who had elevated inflammation biomarkers and even severe
multi-organ dysfunction, did not benefit from AC treatment. For
safety endpoint, AC treatment was not associated with increasing
bleeding events (Figure 6). In addition, the interaction effect was
found between the AC treatment and sub-phenotypes identified
by PAM clustering (P < 0.001, Supplementary Table 2).

DISCUSSION

COVID-19 infections have affected patients globally. The ISTH
pointed out that COVID-19 patients develop a clinically
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TABLE 1 | Patients Baseline Characteristics and Treatments in propensity score matched cohort.

No. (%)

Total (n = 558) AC treatment (n = 165) Non-AC treatment (n = 393) P-value

Age, median (IQR), years 66 (56, 73) 69 (60, 78) 65 (53, 71) <0.001

Gender

Male 307 (55.0) 91 (55.2) 216 (55.0) 0.967

Female 251 (45.0) 74 (44.8) 177 (450)

Current smoking 40 (7.2) 18 (10.9) 22 (5.6) 0.026

Comorbidities 354 (63.4) 124 (75.2) 230 (58.5) <0.001

Diabetes 118 (21.1) 41 (24.8) 77 (19.6) 0.165

Hypertension 247 (44.3) 90 (54.5) 157 (39.9) 0.002

Cardiovascular disease 71 (12.7) 31 (18.8) 40 (10.2) 0.005

CODP 45 (8.1) 20 (12.1) 25 (6.4) 0.023

Chronic kidney disease 19 (3.4) 6 (3.6) 13 (3.3) 0.845

Chronic liver disease 18 (3.2) 4 (2.4) 14 (3.6) 0.487

Autoimmune disease 8 (1.4) 2 (1.2) 6 (1.5) 1.000

Immunosuppression 2 (0.4) 0 (0) 2 (0.5) 1.000

Malignancy 21 (3.8) 3 (1.8) 18 (4.6) 0.118

Oxygen therapy at admission

Without oxygen inhalation 100 (17.9) 25 (15.2) 75 (19.1) 0.206

Nasal cannula 375 (67.2) 110 (66.7) 265 (67.4)

Face mask with reservivor bag 46 (8.2) 20 (12.1) 26 (6.6)

High-flow nasal cannula 4 (0.7) 2 (1.2) 2 (0.5)

Non-invasive ventilation(bi-level) 20 (3.6) 4 (2.4) 16 (4.1)

Invasive mechanical ventilation 13 (2.3) 4 (2.4) 9 (2.3)

ARDS at admission

No ARDS 331 (59.3) 85 (51.5) 246 (62.6) 0.067

Mild 120 (21.5) 45 (27.3) 75 (19.1)

Moderate 71 (12.7) 25 (15.2) 46 (11.7)

Severe 36 (6.5) 10 (6.1) 26 (6.6)

Clinical classification at admission

Moderate 62 (11.1) 18 (10.9) 44 (11.2) 0.537

Severe 459 (82.3) 139 (84.2) 320 (81.4)

Critical 37 (6.6) 8 (4.8) 29 (7.4)

CURB-65 score at admission 1 (0, 2) 1 (0, 2) 1 (0, 1) 0.099

qSOFA score at admission 0 (0, 1) 0 (0, 1) 0 (0, 1) 0.608

Initial laboratory parameters, median (IQR)

White blood cells, ×109/L 6.29 (4.89, 8.58) 7.15 (5.40, 9.57) 5.97 (4.60, 8.02) <0.001

Neutrophils, ×109/L 4.71 (3.12, 7.04) 5.65 (4.06, 7.78) 4.24 (2.90,6.37) <0.001

Lymphocytes, ×109/L 0.90 (0.60, 1.31) 0.84 (0.60, 1.15) 0.94 (0.61, 1.34) 0.060

Platelets, ×109/L 217.0 (153.0, 291.3) 209.0 (143.5, 278.0) 219.0 (159.0, 293.0) 0.129

Total bilirubin, mmol/L 9.6 (7.2, 13.7) 10.7 (7.0, 14.8) 9.4 (7.2, 13.1) 0.072

Lactate dehydrogenase, U/L 321.0 (237.0, 450.3) 357.0 (262.5, 468.0) 313.0 (228.0, 434.5) 0.002

Urea, mmol/L 5.0 (3.6, 7.0) 5.2 (4.1, 7.4) 4.8 (3.4, 6.8) 0.019

hs-CRP, mg/L 43.6 (13.0, 102.0) 50.9 (1.0, 112.7) 36.9 (10.6, 99.0) 0.009

Prothrombin time, s 14.0 (13.4, 15.0) 14.1 (13.5, 15.2) 14.0 (13.4, 14.9) 0.142

D-dimer, mg/mL 1.36 (0.58, 2.98) 2.22 (1.11, 6.21) 1.11 (0.56, 2.58) <0.001

Creatine 72 (58, 89) 74 (59, 90) 71 (58, 89) 0.707

Antiviral therapy 522 (93.5) 162 (98.2) 360 (91.6) 0.004

Other treatments

Intravenous immunoglobulin 186 (33.3) 82 (49.7) 104 (26.5) <0.001

Corticosteroid 276 (49.5) 107 (64.8) 169 (43.0) <0.001

Convalescent plasma 22 (3.9) 15 (9.1) 7 (1.8) <0.001

(Continued)
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TABLE 1 | Continued

No. (%)

Total (n = 558) AC treatment (n = 165) Non-AC treatment (n = 393) P-value

Oxygen therapy in hospitalization

Without oxygen inhalation 6 (1.1) 1 (0.6) 5 (1.3) <0.001

Nasal cannula 328 (58.8) 85 (51.5) 243 (61.8)

Face mask with reservivor bag 43 (7.7) 15 (9.1) 28 (7.1)

High-flow nasal cannula 25 (4.5) 8 (4.8) 17 (4.3)

Non-invasive ventilation(bi-level) 79 (14.2) 15 (9.1) 64 (16.3)

Invasive mechanical ventilation 72 (12.9) 36 (21.8) 36 (9.2)

ECMO 5 (0.9) 5 (3.0) 0 (0)

Variables represented the poorest value of the first day at admission. AC, anticoagulation; IQR, interquartile range; COPD, Chronic obstructive pulmonary disease; ARDS, acute respiratory

distress syndrome; qSOFA, quick sequential organ failure assessment; hs-CRP, high sensitive C reacting protein; ECMO, extracorporeal membrane oxygenation.

TABLE 2 | Primary and secondary outcomes of PS matched cohort.

No. (%)

Total

(n = 558)

AC group

(n = 165)

Non-AC group

(n = 393)

Crude HR

(95% CI)

Adjusted* HR

(95% CI)

Adjusted* HR for

time-dependent AC exposure

(95% CI)

Primary outcomes

In-hospital mortality 107 (19.2) 23 (13.9) 84 (21.4) 0.450 (0.278–0.727) 0.249 (0.143–0.436) 0.531 (0.301–0.935)

Secondary outcomes

Bleeding events 121 (21.7) 42 (25.5) 79 (20.1) 0.673 (0.460–0.984) 0.675 (0.413–1.104) 3.187 (1.846–5.504)

Major bleeding 4 (0.7) 0 (0) 4 (1.0) 0.017 (0–58.149) – –

CRNMB 32 (5.7) 17 (10.3) 15 (3.8) 1.339 (0.663–2.705) 1.149 (0.465–2.839) 3.713 (1.446–9.532)

Bloody sputum 9 (1.6) 3 (1.8) 6 (1.5) 0.628 (0.155–2.544) 0.201 (0.008–4.896) 0.958 (0.051–18.063)

Positive FOBT/GOBT 5 (0.9) 4 (2.4) 1 (0.3) 4.011 (0.447–35.976) – –

Microscopic hematuria 80 (14.3) 25 (15.2) 55 (14.0) 0.597 (0.370–0.965) 0.443 (0.232–0.846) 2.624 (1.280–5.380)

Thrombocytopenia 79 (14.2) 25 (15.2) 54 (13.8) 0.608 (0.372–0.993) 0.665 (0.334–1.327) 2.167 (0.750–6.263)

*Adjusted for baseline covariates including age, smoking, comorbidities, white blood cells, D-dimer, lactate dehydrogenase, urea, antiviral therapy, intravenous immunoglobulin,

convalescent plasma therapy, and oxygen therapy in hospitalization. PS, propensity score; AC, anticoagulation; HR, hazard ratio; CI, confidence interval; CRNMB, clinically relevant

non-major bleeding; FOBT, fecal occult blood test; GOBT, gastric occult blood test.

TABLE 3 | Hazard ratio for in-hospital mortality in the full cohort by AC treatment duration, dosage and type in sensitivity analyses.

No. of in-hospital

death/total no. (%)

Crude HR (95% CI) Adjusted* HR (95% CI) Adjusted* HR for IPTW

model# (95% CI)

Non-AC treatment 91/2002 (4.5) Reference Reference Reference

Duration

AC treatment <7 days 44/78 (56.4) 13.600 (9.482–19.507) 3.424 (2.242–5.230) 1.018 (0.742–1.399)

AC treatment for 7 days or longer 38/192 (19.8) 2.881 (1.943–4.272) 0.864 (0.560–1.335) 0.164 (0.104–0.260)

Dosage

Low dose thromboprophylaxis 43/176 (24.4) 4.354 (3.020–6.277) 1.387 (0.923–2.085) 0.498 (0.329–0.754)

Intermediate dose thromboprophylaxis 21/55 (38.2) 6.702 (4.153–10.816) 1.492 (0.870–2.560) 0.349 (0.224–0.545)

Therapeutic dose anticoagulation 18/39 (46.2) 6.959 (4.131–11.723) 1.575 (0.905–2.742) 0.225 (0.132–0.384)

Type

LMWH 80/262 (30.5) 5.120 (3.878–7.162) 1.432 (1.004–2.043) 0.382 (0.271–0.537)

Non-LMWH 2/8 (25.0) 3.590 (0.866–14.884) 2.029 (0.482–8.538) 0.094 (0.019–0.466)

*Adjusted for baseline covariates including age, gender, levels of platelets count, prothrombin time, D-dimer, total bilirubin, lactate dehydrogenase, urea, and high-sensitivity C

reactive protein.
#Covariates in IPTW model: level of oxygen therapy, clinical classification, high-sensitivity C reactive protein and D-dimer levels, Platelet count at admission, CURB-65 score at hospital

admission, and the highest level of oxygen therapy during hospitalization.

AC, anticoagulation; HR, hazard ratio; CI, confidence interval; IPTW, inverse probability of treatment weighting analysis; LMWH, low molecular weight heparin.
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FIGURE 3 | Subgroup analysis based on clinical stratification of in-hospital mortality between AC treatment and non-AC treatment patients. The multivariate logistic

regression analysis adjusted for baseline covariates including age, smoking, comorbidities, white blood cells, D-dimer, lactate dehydrogenase, urea, antiviral therapy,

intravenous immunoglobulin, convalescent plasma therapy, and oxygen therapy in hospitalization. ARDS, acute respiratory distress syndrome; AC, anticoagulation.

FIGURE 4 | Model selection and cluster visualization. The selection of the best number of clusters K is based on BIC and AIC score. K = 4 was chosen after

comparing the BIC score of models with different number of clusters by unsupervised clustering analysis. For AIC score, K = 4 is also a good choice for the trade-off

between model complexity and the fitting of the data. (A) Unsupervised clustering analysis for choosing the best number of clusters. BIC, Bayesian information

criteria; AIC, Akaike information criterion. (B) Three-dimensional visualization of clustering results. We visualize our clustering results in three-dimensional space. The

high dimensional training data was projected into three-dimensional space by using principal component analysis. PC, Principal component.
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TABLE 4 | Variables included in the PAM-based clustering model.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

(n = 144) (n = 203) (n = 158) (n = 53)

Age 51 (39, 63) abc 69 (62, 76) 67 (59, 74) 68 (63, 72) <0.001

Gender a de

Female 42 (29.2, −4.4) 156 (76.8, 11.4) 38 (24.1, −6.2) 15 (23.8, −2.6) <0.001

Male 102 (70.8, 4.4) 47 (23.2, −11.4) 120 (75.9, 6.2) 38 (71.7, 2.6)

No. of comorbidities 0 (0,1) abc 1 (0, 2) 1 (0, 2) 1 (1, 2) <0.001

Initial laboratory parameters

White blood cells, ×109/L 5.62 (4.47, 7.81) c 5.97 (4.89, 7.60) e 6.61 (4.72, 8.84) f 11.38 (8.96, 15.77) <0.001

Neutrophils, ×109/L 3.79 (2.62, 5.44) bc 4.22 (3.03, 5.71) de 5.46 (3.47, 7.74) f 10.55 (7.64, 14.68) <0.001

Lymphocytes, ×109/L 1.27 (0.90, 1.58) bc 1.06 (0.77, 1.42) de 0.61 (0.46, 0.82) 0.51 (0.36, 0.76) <0.001

Platelets, ×109/L 283 (223, 342) abc 226 (177, 296) de 161 (127, 222) 157 (102, 216) <0.001

Total bilirubin, mmol/L 8.9 (6.4, 12.1) bc 8.3 (6.4, 12.1) de 11.6 (8.3, 14.4) f 14.6 (10.6, 23.4) <0.001

Lactate dehydrogenase, U/L 258 (205, 320) bc 284 (224, 344) de 444 (333, 524) f 601 (458, 795) <0.001

Urea, mmol/L 3.95 (3.10, 5.28) bc 4.60 (3.30, 5.70) de 6.35 (4.70, 9.20) f 9.80 (6.60, 13.85) <0.001

Creatinine, µmol/L 70 (58, 82) bc 63 (54, 78) de 83 (66, 101) 91 (75, 121) <0.001

hs-CRP, mg/L 17.0 (6.7, 55.6) bc 17.0 (5.9, 43.3) de 109.8 (69.9, 162.3) 112.3 (71.4, 186.3) <0.001

Prothrombin time, s 13.7 (13.2, 14.2) bc 13.8 (13.2, 14.3) de 14.5 (13.8, 15.4) f 16.2 (15.1, 17.6) <0.001

D-dimer, mg/mL 0.91 (0.39, 2.10) bc 1.17 (0.58, 2.59) de 1.58 (0.86, 3.01) f 21.00 (2.72, 21.00) <0.001

Hemoglobin, g/L 131 (120, 141) a 119 (109, 128) de 131 (120, 141) 132 (117, 142) <0.001

At admission

Oxygen therapy bc de f

Without oxygen inhalation 32 (22.2, 1.6) 47 (23.2, 2.4) 20 (12.7, −2.0) 1 (1.9, −3.2) <0.001

Nasal cannula 105 (72.9, 1.7) 147 (72.4, 2.0) 103 (65.2, −0.6) 20 (37.7, −4.8)

Face mask with reservoir bag 3 (2.1, −3.1) 8 (3.9, −2.8) 23 (14.6, 3.4) 12 (22.6, 4.0)

High-flow nasal cannula 1 (0.7, 0) 0 (0, −1.5) 1 (0.6, −0.1) 2 (3.8, 2.8)

NIV 2 (1.4, −1.6) 0 (0, −3.4) 6 (3.8, 0.2) 12 (22.6, 7.8)

IMV 1 (0.7, −1.5) 1 (0.5, −2.2) 5 (3.2, 0.8) 6 (11.3, 4.6)

Vasopressor 0 (0, −1.9) c 0 (0, −2.4) e 2 (1.3, −0.6) f 8 (15.1, 7.7) <0.001

Disturbance of consciousness 0 (0, −3.0) c 2 (1.0, −2.9) e 6 (3.8, −0.4) f 16 (30.2, 9.8) <0.001

SpO2 97 (95, 98) bc 97 (95, 99) de 93 (86, 96) 90 (79, 96) <0.001

Respiratory rate, /min 20 (20, 22) bc 20 (20, 22) de 20 (20, 25) 25 (20, 32) <0.001

Heart rate, /min 92 (84, 105) a 86 (77, 99) d 96 (86, 109) 88 (78, 113) <0.001

MAP, mmHg 97 (90, 104) 97 (89, 106) 96 (89, 107) 99 (91, 107) 0.771

During hospitalization

Oxygen therapy bc de f

Without oxygen inhalation 4 (2.8, 2.3) 2 (1.0, −0.2) 0 (0, −1.5) 0 (0, −0.8) <0.001

Nasal cannula 121 (84.0, 7.1) 173 (85.2, 9.6) 34 (21.5, −11.2) 0 (0, −9.1)

Face mask with reservoir bag 8 (5.6, −1.1) 13 (6.4, −0.9) 22 (13.9, −0.9) 0 (0, −2.2)

High-flow nasal cannula 4 (2.8, −1.1) 6 (3.0, −1.3) 14 (8.9, 3.1) 1 (1.9, −1.0)

NIV 3 (2.1, −4.8) 1 (0.5, −7.0) 57 (36.1, 9.3) 18 (34.0, 4.3)

IMV 3 (2.1, −4.5) 8 (3.9, −4.8) 27 (17.1, 1.9) 34 (64.2, 11.7)

ECMO 1 (0., −0.3) 0 (0, −1.7) 4 (2.5, 2.6) 0 (0, −0.7)

Vasopressor 3 (2.1, −5.7) bc 7 (3.4, −6.6) de 43 (27.2, 3.8) f 45 (84.9, 13.5) <0.001

Lowest SpO2 95 (93, 96) bc 95 (92, 96) de 89 (77, 94) f 67 (56, 80) <0.001

Quantitative variables are expressed as medians (interquartile ranges). Categorical variables are expressed as No. (%, adjusted standardized residuals). It is considered that the difference

between the actual frequency and the expected frequency of this value is statistically significant if the absolute value of the adjusted standardized residual is >2. Bonferroni correction

for multiple comparison was used in the comparison of cluster analysis results. The letters “a” to “f” indicate a significant difference between two group, respectively (a = cluster 1 vs.

cluster 2, b = cluster 1 vs. cluster 3, c = cluster 1 vs. cluster 4, d = cluster 2 vs. cluster 3, e = cluster 2 vs. cluster 4, f = cluster 3 vs. cluster 4. PAM, partitioning around medoids;

hs-CRP, high sensitivity C-reactive protein; NIV, noninvasive ventilation (bi-level); IMV, invasive mechanical ventilation; SpO2, peripheral blood oxygen saturation; MAP, mean arterial

pressure; ECMO, extracorporeal membrane oxygenation.
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TABLE 5 | Outcome and variables not included in the PAM-based clustering model.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

(n = 144) (n = 203) (n = 158) (n = 53)

Symptoms

Fever 120 (83.3, 0.4) 159 (78.3, −1.8) 135 (85.4, 1.2) 45 (84.9, 0.5) 0.306

Cough 109 (75.7, 0.1) 145 (71.4, −1.6) 123 (77.8, 0.9) 43 (81.1, 1.0) 0.367

Expectoration 66 (45.8, 0.3) 86 (42.4, −0.8) 75 (47.5, 0.8) 22 (41.5, −0.5) 0.746

Shortness of breath 74 (51.4, −1.7) 117 (57.6, 0.1) 100 (63.3, 1.8) 29 (54.7, −0.4) 0.210

Myalgia 27 (18.8, −0.8) 38 (18.7, −1.0) 41 (25.9, 1.8) 11 (20.8, 0) 0.332

Fatigue 48 (33.3, −0.3) 68 (33.5, −0.3) 57 (36.1, 0.5) 19 (35.8, 0.2) 0.942

Diarrhea 23 (16.0, −2.2) 50 (24.6, 0.9) 39 (24.7, 0.7) 14 (26.4, 0.7) 0.177

Nausea/vomiting 17 (11.8, −0.7) 29 (14.3, 0.4) 23 (14.6, 0.5) 6 (11.3, −0.5) 0.842

At admission

FiO2 0.30 (0.27, 0.30) bc 0.30 (0.27, 0.30) de 0.36 (0.30, 0.42) f 0.51 (0.38, 0.63) <0.001

SBP, mmHg 124 (117, 136) ac 131 (121, 143) 131 (120, 146) 135 (122, 151) 0.004

DBP, mmHg 81 (76, 90) 79 (72, 87) 78 (73, 88) 80 (72, 88) 0.258

CURB-65 score 0 (0, 1) abc 1 (1, 1) de 1 (1, 2) f 2 (2, 3) <0.001

ARDS at admission bc de f

No ARDS 108 (75.0, 4.4) 170 (83.7, 8.9) 49 (31.0, −8.6) 4 (7.5, −8.1) <0.001

Mild 29 (20.1, −0.5) 26 (12.8, −3.8) 55 (34.8, 4.8) 10 (18.9, −0.5)

Moderate 5 (3.5, −3.9) 6 (3.0, −5.2) 41 (25.9, 5.9) 19 (35.8, 5.3)

Severe 2 (1.4, −2.9) 1 (0.5, −4.3) 13 (8.2, 1.1) 20 (37.7, 9.7)

Initial laboratory parameters

Hematocrit, % 38 (34, 40) a 35 (32, 38) de 37 (34, 40) 38 (34, 41) <0.001

ALT, U/L 28 (19, 48) a 20 (13, 36) d 29 (17, 47) 24 (19, 41) <0.001

AST, U/L 27 (20, 38) bc 23 (18, 34) de 40 (28, 62) 41 (26, 56) <0.001

Total protein, g/L 69.6 (66.2, 73.5) bc 68.0 (64.6, 72.7) de 65.9 (62.5, 70.5) 63.3 (60.8, 69.9) <0.001

Albumin, g/L 35.7 (31.5, 39.5) bc 34.4 (31.4, 38.3) de 31.4 (28.4, 34.2) 29.3 (26.7, 31.8) <0.001

Globulins, g/L 33.3 (29.9, 37.8) b 33.5 (30.1, 37.1) d 34.9 (31.4, 39.1) 34.8 (31.5, 39.1) 0.003

During hospitalization

Highest FiO2 0.30 (0.30, 0.36) bc 0.33 (0.30, 0.36) de 0.66 (0.45, 1.00) f 1.00 (0.70, 1.00) <0.001

ARDS during hospitalization bc de f

No ARDS 62 (43.1, 5.3) 83 (40.9, 5.9) 2 (1.3, −8.5) 0 (0, −4.6) <0.001

Mild 60 (41.7, 3.6) 80 (39.4, 3.7) 27 (17.1, −4.2) 0 (0, −5.0)

Moderate 11 (7.6, −2.1) 22 (10.8, −0.9) 35 (22.2, 4.3) 2 (3.8, −2.0)

Severe 11 (7.6, −7.1) 18 (8.9, −8.6) 94 (59.5, 9.1) 51 (96.2, 10.7)

In-hospital mortality 2 (1.4, −6.3) bc 6 (3.0, −7.4) de 52 (32.9, 5.2) f 47 (88.7, 13.5) <0.001

Survival time, days 23 (17, 34) abc 31 (18, 40) e 31 (14, 44) f 10 (6, 17) <0.001

Bleeding events 21 (14.6, −2.4) bc 31 (15.3, −2.8) de 51 (32.3, 3.8) 18 (34.0, 2.3) <0.001

Major bleeding 0 (0, −1.2) 0 (0, −1.5) 4 (2.5, 3.2) 0 (0, −0.7) 0.021

CRNMB 6 (4.2, −0.9) 7 (3.4, −1.8) 14 (8.9, 2.0) 5 (9.4, 1.2) 0.070

Bloody sputum 2 (1.4, −0.2) 2 (1.0, −0.9) 5 (3.2, 1.8) 0 (0, −1.0) 0.378

Microscopic hematuria 12 (8.3, −2.4) bc 21 (10.3, −2.0) de 34 (21.5, 3.0) 13 (24.5, 2.2) <0.001

Positive FOBT/GOBT 1 (0.7, −0.3) 2 (1.0, 0.2) 1 (0.6, −0.4) 1 (1.9, 0.8) 0.713

Thrombocytopenia 5 (3.5, −4.3) bc 7 (3.4, −5.5) de 37 (23.4, 3.9) f 30 (56.6, 9.3) <0.001

Quantitative variables are expressed as medians (interquartile ranges). Categorical variables are expressed as No. (%, adjusted standardized residuals). It is considered that the difference

between the actual frequency and the expected frequency of this value is statistically significant if the absolute value of the adjusted standardized residual is >2. Bonferroni correction

for multiple comparison was used in the comparison of cluster analysis results. The letters “a” to “f” indicate a significant difference between two group respectively (a = cluster 1 vs.

cluster 2, b = cluster 1 vs. cluster 3, c = cluster 1 vs. cluster 4, d = cluster 2 vs. cluster 3, e = cluster 2 vs. cluster 4, f = cluster 3 vs. cluster 4. PAM, partitioning around medoids; FiO2,

fraction of inspired oxygen; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; ARDS, acute respiratory distress syndrome; ALT, Alanine aminotransferase; AST, Aspartate

aminotransferase; CRNMB, clinically relevant non-major bleeding; FOBT, fecal occult blood test; GOBT, gastric occult blood test.

significant coagulopathy, characterized by thrombocytopenia,
mildly prolonged prothrombin time, and elevated serum D-
dimer levels (27). Recent research indicates that coagulopathy is

not only common in COVID-19 patients but is also associated
with increased mortality (9). The potential mechanism for
the development of coagulopathy in COVID-19 patients may
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FIGURE 5 | Clinical characteristics and probability of death of the four clusters. Clusters 1 and 2 were non-critical cases from admission to discharge and they

showed lower probability of death. Cluster 3 had significant higher in hospital mortality and probability of death than clusters 1 and 2, but lower than that in cluster 4.

Cluster 4 had the highest in hospital mortality and probability of death, and there were significant differences with the other three clusters. (A) Clinical characteristics of

four clusters. Some of the significant clinical features are plotted for each cluster. The features are displayed by color-coded heatmap with normalized values. (B)

Comparison of probability of death between four clusters. There was statistically significant difference in the survival distribution between any two groups (P < 0.001),

except that there was no statistically significant difference in the survival distribution of cluster 1 and cluster 2 (Log-Rank test, P = 0.512 > 0.008).

be related to endothelial cell dysfunction (37) and hypoxia-
induced thrombosis (38) following a SARS-CoV-2 infection.
Because the endothelium plays an important role in regulating
hemostasis, fibrinolysis, and vessel wall permeability, endothelial
dysfunction in pulmonary microvessels may act as a trigger
for immunothrombosis, resulting in coagulopathy. Histological
analysis of pulmonary vessels in COVID-19 patients shows more
widespread thrombosis with microangiopathy compared to that
observed in patients with influenza. Based on this preliminary

evidence, AC treatment may be beneficial for COVID-19
patients by inhibiting thrombin generation and thereby reducing
mortality. The ISTH suggests that a prophylactic dose of LMWH
should be considered in all patients without contraindications.
Moreover, the Chinese Diagnosis and Treatment Protocol for
COVID-19 Patients (Version 8.0) also suggested using AC
treatment in selected patients. However, these recommendations
require additional clinical evidence to determine the association
between AC treatment and the outcome of COVID-19 patients,
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FIGURE 6 | Comparing of in-hospital mortality and bleeding events between AC treatment and non-AC treatment patients based on unsupervised machine learning.

AC, anticoagulation.

and also to clarify the indications, contradictions and optimal
duration, dose, and time to use AC. We conducted this matched
cohort study using a comprehensive source of COVID-19
patients. In general, results showed that receiving AC treatment
was associated with a decreased in-hospital mortality in these
patients. Although patients who received AC treatment exhibited
a significant increase in CRNMB and microscopic hematuria,
they had no increase in the incidence of major bleeding. A
clinical subgroup analysis was also carried out to identify patient
subgroups who receive greater benefit from AC treatment. At
hospital admission, patients of severe COVID-19 clinical cases,
patients with mild ARDS or patients who had a D-dimer level
≥0.5µg/mL weremore likely to benefit fromAC therapy. During
hospitalization, patients who developed severe ARDS or critical
COVID-19 cases were more likely to benefit from AC therapy
(Figure 3). Results of clusters identified by unsupervisedmachine
learning revealed similar results as of clinical subgroups. Critical
patients of cluster 3 could benefit from AC treatment whereas
non-critical patients in clusters 1 and 2 did not. Nevertheless, a
sub-phenotype (cluster 4) exhibited even severe multiple organ
dysfunction and excessive inflammation might not benefit from
AC therapy.

To date, several research works have investigated systemic AC
therapy in COVID-19 patients (9–13, 39). Although the results
generally suggested that AC treatment was associated with lower
mortality of COVID-19 patients, a constant instruction for clinic
application was not easy to conclude. Several possible reasons are
worth to be noted. As a retrospective cohort study, imbalance of
baseline covariates, covariates related to outcome and covariates
related to exposure assignment might lead to biased results.
Among the existing studies, some studies used propensity score
methods for reducing the effects of confounding (12, 39), some
did not (9, 10). In our study, we applied PSM which yield a
relatively balanced cohort. We also did IPTW analysis, another
propensity score method, to detect the selective bias potentially
caused by PSM in the full cohort. The results from PS matched

cohort and IPTW analysis in the full cohort both revealed that
AC treatment was associated with lower death risk.We also noted
that, without the PS method, either the crude results or baseline-
adjusted results will lead to an adverse conclusion. Immortal
time is a gap period between exposure (usually the span after
cohort follow-up) and initiation of follow-up (20). This might
cause potential immortal time bias and exaggerate the association
between the exposure and outcome. As a result, we carried out a
Cox proportional hazards model with a time-dependent manner
for the drug exposure in this study.

Another key question concerns the confounders involving
various durations, dosages and types of AC treatment. In a
retrospective cohort study from the Mount Sinai Health System
(11), the duration of hospitalization (median 5 days, IQR 3–
8 days) and the course of AC treatment (median 3 days, IQR
2–7 days) were relatively short. Within the current consensus
on anticoagulant therapy for venous thromboembolism, it is
generally considered that patients with confirmed deep vein
thrombosis or pulmonary embolism need LMWH treatment for
at least 5 days followed by Dabigatran or Edoxaban (40). As a new
disease without comprehensive study until now, to determine
the optimal duration, type and dosage of AC treatment need
more evidence. In our study, we conducted a series of sensitivity
analyses to investigate the relationship between outcome and
AC treatment duration, dosage and type. We found that AC
treatment for 7 days or longer was associated with a lower
death risk while AC treatment for <7 days was not. Low dose
thromboprophylaxis, intermediate dose thromboprophylaxis
and therapeutic dose anticoagulation were all associated with
lower death risk. Although we recorded detailed AC treatment
type, the majority was LMWH (Supplementary Figure 1), we
only investigated LMWH and non-LMWH for sensitivity
analyses here. It is revealed that both LMWH and non-LMWH
treatment were associated with a lower death rate.

The heterogeneity of the research population is another
vital confounder that influences the results. In our study, we
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analyzed a full cohort of unselected patients from two designated
hospitals including mild to critical cases. In general, we found
that AC treatment was associated with low mortality, which
had a constant result with the previous studies. Furtherly, we
investigated who might benefit from AC treatment in subgroup
analyses. The stratification criteria used in our study included
the most frequently used classification of clinical severity of
the COVID-19 patients. It is well-known that hypoxia is a
core clinical manifestation and major pathophysiology change
that contributes to the death of COVID-19 patients (41–43).
The classification of both ARDS (18, 29, 44) and COVID-19
clinical severity classification (17, 45) indicates the severity of
hypoxia and accordingly, they are used frequently by clinicians
to evaluate and triage patients and to decide major treatments
(e.g., levels of oxygen therapy). As a result, we stratified
patients according to ARDS classification, COVID-19 clinical
classification, and D-dimer levels at both hospital admission
and during hospitalization. By this strategy, we found that, at
admission, severe cases of COVID-19 clinical classification, mild
ARDS cases and patients with a D-dimer level ≥0.5µg/mL may
benefit fromAC.While during the hospital stay, critical cases and
severe ARDS cases may benefit from AC. These results were in
constant with Sun et al.’ study (9) with severe cases and subgroup
analysis from Shen et al. (39) and CORIST Studies (12).

Clustering the study population may help minimize the
influence of heterogeneity on the results. The traditional way
to categorize patients is based on pre-defined standards. The
standards are usually defined by a group of experienced experts
with a strong background and prior knowledge in the medical
area. Therefore, the procedure for generating the standards
alone takes considerable effort and time. In addition, these
standards cannot easily be quickly established or updated for a
new situation in a short period, which was apparent when we
faced this new pandemic, COVID-19. Unsupervised clustering
algorithms in machine learning offer another perspective to
perform the identification of data subclasses. Unsupervised
clustering approaches can achieve more stable and robust
clustering results without any prior knowledge of the meaning of
each variable in the data. In addition, it may also identify some
intrinsic correlations between the variables which sometimes
cannot be easily noticed by human experts. Considering the
heterogeneity of COVID-19 patients, an innovative strategy was
carried out to identify subphenotype of patients who exhibited
distinct clinical characteristics and respond to certain treatment
using unsupervised learning approach (46). To this end, a four-
class PAM-based clustering model was established, representing
four distinct COVID-19 patient subphenotypes with different
clinical characteristics. In particular, clusters 1 and 2 were non-
critical cases with significantly lower mortality. Patients in these
two clusters did not benefit from AC treatment. Clusters 3 and 4
were critical cases both exhibited significant abnormal laboratory
testing results at admission and unstable vital sign. Cluster 3
had mild to moderate ARDS at admission and progressed to
severe ARDS during the hospital stay. Patients in cluster 3 can
benefit from AC treatment and had no significant increase in
bleeding events. Compared to cluster 3, cluster 4 was the most
critical cases and has the highest mortality. A novel result by the

clustering approach was that, among these most critical patients
(clusters 4), who had moderate or severe ARDS at admission and
developed severe ARDS during the hospital stay, AC treatment
was not associated with a lower death risk. Further characteristic
analysis of these clusters revealed cluster 4 was characterized
by multiple organ dysfunction and excessive inflammation. This
led us to conclude that critical COVID-19 patients with these
features cannot benefit from AC treatment. Recently, an open-
label, adaptive, multiplatform, randomized control trial was
published (14), with the researchers noting that the initial strategy
of therapeutic-dose anticoagulation did not result in a greater
probability of survival in critically ill COVID-19 patients (defined
as COVID-19 that led to the receipt of ICU-level respiratory or
cardiovascular organ support in an ICU) compared to usual-care
thromboprophylaxis. This result was different from our clinical
subgroup analysis but similar to the phenotypes of clusters 4 in
our unsupervised clustering analysis.

Analysis of safety endpoints showed that although the risk of
bleeding events, including CRNMB and microscopic hematuria,
were higher in the AC group compared to the non-AC group,
there was no significant difference in the risk of major bleeding
events or thrombocytopenia between the two groups. In brief,
the above findings suggested that the use of AC treatment for 7
days or longer in hospitalized COVID-19 patients was associated
with increased CRNMB and microscopic hematuria but not
with other bleeding events, especially major bleeding. These
key observations are consistent with those reported in recent
studies (11, 39). Although the competing risk model analysis
in this study revealed that there was no significant difference
in bleeding risk between the AC and non-AC groups when
considering death as a competitive event, the increase of CRNMB
still reminds clinicians should be more cautious when using
anticoagulation treatment.

This study had several limitations. Firstly, as a retrospective
cohort study, imbalanced confounders and selective bias may
exist. Large-scale, multicenter, randomized, controlled trials are
urgently needed to fully assess the efficacy of AC in patients with
COVID-19. Besides, our unsupervised clustering model did not
take the importance of each variable into consideration, as it
treated all the variables equally as numerical values andmeasured
the similarity between patients based on geometric distance.
However, the variables could have completely different semantic
meanings. Therefore, it is still necessary for human experts to
inspect the clustering results to make sure that the results are
explainable. Future work could be to intrinsically integrate the
importance of clinic variables into the similarity measurements
of unsupervised cluster models.

CONCLUSION

COVID-19 patients who received AC treatment for 7 days or
longer had a significantly lower in-hospital death risk but not
higher risk of major bleeding. Through the clinical subgroup
analysis, critically ill patients were more likely to benefit
from AC treatment. Specifically, the unsupervised machine
learning model revealed that, within critically ill COVID-19
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patients, patients characterized by multiple organ dysfunction
(neurologic, circulation, coagulation, kidney and liver
dysfunction) and excessive inflammation may not benefit from
AC treatment.
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Background: Acute renal failure (ARF) is the most common major complication

following cardiac surgery for acute aortic syndrome (AAS) and worsens the postoperative

prognosis. Our aim was to establish a machine learning prediction model for ARF

occurrence in AAS patients.

Methods: We included AAS patient data from nine medical centers (n = 1,637) and

analyzed the incidence of ARF and the risk factors for postoperative ARF. We used data

from six medical centers to compare the performance of four machine learning models

and performed internal validation to identify AAS patients who developed postoperative

ARF. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve

was used to compare the performance of the predictive models. We compared the

performance of the optimal machine learning prediction model with that of traditional

prediction models. Data from three medical centers were used for external validation.

Results: The eXtreme Gradient Boosting (XGBoost) algorithm performed best in the

internal validation process (AUC = 0.82), which was better than both the logistic

regression (LR) prediction model (AUC = 0.77, p < 0.001) and the traditional scoring

systems. Upon external validation, the XGBoost prediction model (AUC =0.81) also

performed better than both the LR prediction model (AUC = 0.75, p = 0.03) and the

traditional scoring systems. We created an online application based on the XGBoost

prediction model.
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Conclusions: We have developed a machine learning model that has better predictive

performance than traditional LR prediction models as well as other existing risk scoring

systems for postoperative ARF. This model can be utilized to provide early warnings when

high-risk patients are found, enabling clinicians to take prompt measures.

Keywords: machine learning, acute renal failure, acute aortic syndrome, prediction model, eXtreme Gradient

Boosting

INTRODUCTION

Acute aortic syndrome (AAS) is a serious and life-threatening
disease process involving the ascending aorta and aortic arch.
Traditionally, surgical intervention is the best way to treat AAS
(1). Acute renal failure (ARF) is an important complication
affecting the prognosis of AAS patients after surgery. This
complication indicates that the patient has a poor prognosis,
and it can increase postoperative mortality and morbidity (2).
While renal replacement therapy (RRT) is a feasible treatment
modality, it is arguablymore important to identify the risk factors
for postoperative ARF and identify potential patients with a
higher likelihood of developing ARF in the postoperative setting.
Some scoring systems already exist for predicting ARF after
cardiac surgery (3–6), but they are usually employed for coronary
artery bypass graft or heart valve surgery. Whether these scoring
systems can be used in AAS-related surgery is unclear.

In recent years, machine learning has become increasingly
widely used in medicine; it can help us process large amounts
of data and find potential data relationships. Multiple excellent
algorithms have been developed in the field of machine learning
so that we can use them to build predictive models.

The main purpose of this study was to establish a predictive
model for the occurrence of ARF in AAS patients after surgery
through machine learning, thereby helping to identify potential
patients who may develop ARF, and compare it with a traditional
logistic regression (LR) prediction model and other scoring
systems. This study followed the recommendations of the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis statement (7).

MATERIALS AND METHODS

Participants
A total of 1,637 AAS patients undergoing surgery and treatment
at nine medical centers in China from January 1, 2015,
to December 31, 2019 were recruited for this study. The
ethics committee of Beijing Anzhen Hospital approved this
retrospective cohort study (No. 2018015; Date: 2018-10-18).
Patients’ written informed consent was waived due to the
retrospective nature of the study. We collected demographic,
surgical, and clinical data with a potential relationship to the renal
function of patients from admission through discharge. Patients
who had renal failure before surgery, incomplete surgical data, or
surgery involving the abdominal aorta and below were excluded.
All patients were diagnosed with Stanford type-A AAS through
aortic computed tomography angiography (CTA) by experienced

imaging specialists and cardiovascular surgeons. The diagnosis of
ARF was established according to the Kidney Disease: Improving
Global Outcomes guidelines (8). Postoperative ARF was defined
as an increase of >3 times or an increase of >4.0 mg/dL (353.6
µmol/L) in postoperative serum creatinine (Scr) or the initiation
of RRT compared to baseline. The estimated glomerular filtration
rate (eGFR) was calculated using the Chronic Kidney Disease
Epidemiology Collaboration formula (CKD-EPI) (9). Surgery
was performed by the surgical team of the medical center at the
time of the patient’s admission.

Surgical Details
Anesthesia was maintained by either total intravenous
anesthetics (propofol and sufentanil) or an inhalational
agent (sevoflurane) with vecuronium bromide. Tranexamic acid
was used for coagulation support. Cardiopulmonary bypass
(CPB) was routinely instituted at 2.2 to 2.5 L/min/m2. When
the lesion involved the aortic arch, arterial cannulation was
performed in the right axillary and/or femoral artery and/or
ascending aorta; venous cannulations were bicaval. Cold blood
cardioplegia for myocardial protection was perfused through
the left and right coronary arteries. If the distal aorta or aortic
arch needed reconstruction, this process was performed under
deep or moderate hypothermia and circulatory arrest. Once the
distal reconstruction was complete, the aortic graft was clamped
proximally. Selective anterograde perfusion was most often
instituted through the innominate arteries. During core cooling,
accompanying cardiac procedures, including aortic valve repair
or replacement, sinus reconstruction, and root replacement, were
performed if necessary. If the lesion involved only the ascending
aorta, arterial cannulation was performed in the ascending aorta;
venous cannulations were bicaval. Subsequently, reconstruction
of the ascending aorta was performed.

Data Pre-processing
For missing data, we used the k-nearest neighbors approach to
fill in missing values (10). By calculating the Euclidean distance
between each case, themissing value was imputed using themean
value from the five nearest neighbors. When the data were in the
range of 0 to 1, most machine learning algorithms had excellent
performance. To improve the performance of machine learning,
we used the method provided by the MinMaxScaler function to
scale the data during data pre-processing.

Statistical Analysis
The description of the data and basic statistical analysis were
performed using IBM SPSS Statistics for Windows Version 25.0.
Continuous variables are expressed as the median (along with
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the first and third quartile values). Categorical variables are
expressed as frequencies (n) with percentages (%). Statistical
analysis of continuous variables was performed using the Mann–
Whitney U test, while categorical variables were analyzed using
the chi-squared test and Fisher’s exact test. The area under the
curve (AUC) of the receiver operating characteristic (ROC) curve
was compared with the machine learning prediction model.
DeLong’s test (11) was used to calculate the P value. A P <

0.05 was considered statistically significant, and all statistical tests
were two-sided.

Establishment of Prediction Model
We used Python for programming and used the scikit-learn
0.22.1 package to build machine learning classifiers (12). The
concise process of establishing and evaluating the prediction
model is shown in Supplementary Figure 1.

The machine learning prediction model used data from 1,637
patients from nine medical centers in China. Among them,
1,318 patient data points from six medical centers in Beijing,
Zhejiang, Shandong, Liaoning and Henan provinces were used
for machine learning training and internal validation. Training
and validation data were divided by ten-fold cross-validation,
each time 90% of the data was used as training data, and 10% of
the data was used as validation data. And 319 patient data points
from three medical centers in Heilongjiang and Guangdong
provinces and Xinjiang Uygur Autonomous Region were used
for external validation of the prediction model. The division of
internal validation and external validation data was determined
by the geographic location of the medical centers. The six
medical centers used for machine learning training and internal
validation were located in central China, and the three medical
centers used for external validation were located in northern,
southern and western China. This division method was suitable
for evaluating the generalization ability of predictive models.

For the selection of machine learning algorithms, we chose
the support vector machine classifier (SVC) linear kernel and
Nu-SVC with the radial basis function kernel in the SVC
algorithm. These are two classic algorithms that use the classifier
with the largest interval in the feature space for classification,
and can perform data classification after linear-range or high-
dimensional mapping. It is still valid when the feature has a
high-dimensional relationship. Among them, SVC uses a linear
algorithm, while Nu-SVC uses a radial basis function. At the same
time, we chose the AdaBoost algorithm (13) and the eXtreme
Gradient Boosting (XGBoost) algorithm (14) in the ensemble
methods, which are popular algorithms in machine learning
classifiers and can combine the predictions of several base
estimators so that they have excellent performance. AdaBoost
integrates multiple basic decision trees, uses misclassified data
points to identify problems, and improves the model by adjusting
the weights of misclassified data points. XGBoost uses negative
gradients to identify problems, and calculates negative gradients
to improve themodel. In addition, we also tested the combination
of two algorithms. This combination uses two independent
algorithms to build prediction models separately, and uses the
results of the two prediction models as features to retrain the new
prediction model, which is also called a stacking algorithm. We

tested the combination of XGBoost + random forest algorithm
and XGBoost+ decision tree algorithm.

Feature Selection
To make the prediction model more accurate, we selected all
demographic characteristics and preoperative clinical data as
the features for machine learning. At the beginning of model
training, all 134 features were used (Supplementary Table 3),
and Shapley additive explanations (SHAP) was used to judge the
importance of each feature. In the machine learning prediction
model, SHAP can analyse the impact of each feature of each
patient on the prediction result (15). Finally, the features that
were considered important in all prediction models were used as
the final features of the machine learning model.

Ten-Fold Cross-Validation
Ten-fold cross-validation is considered a reliable method for
model evaluation and performance improvement (16), and it
was used for parameter adjustment and algorithm comparison.
Since machine learning algorithms usually cannot use training
data as test data, 10-fold cross-validation is generally used to
evaluate machine learning algorithms. Ten-fold cross-validation
can divide the data into 10 parts. The classifier used nine
of them for training, and the remaining part was used for
testing. Ten repetitions constituted a 10-fold cross-validation
(Supplementary Figure 2). The average of 10 test results was
used to evaluate the predictive ability of machine learning
algorithms and parameters.

Each classifier algorithm had many parameter settings, and
the choice of parameters had a great impact on the results of
the classifier. We used the grid-search algorithm and internal
validation data to determine the best parameters for each
classifier algorithm.

The grid-search algorithm used 10-fold cross-validation to
select the parameters of the machine learning algorithm. We
told the grid search algorithm the potential optimal parameter
range of the classifier, and the grid search algorithm used
10-fold cross validation to calculate the predictive ability
of each set of parameters. After the grid-search algorithm
calculated each set of parameter combinations, it told us the
optimal parameter combination. After constantly changing the
parameter range used by the grid search algorithm, the optimal
parameter combination of this machine learning algorithm was
finally obtained.

Similarly, 10-fold cross-validation was used to compare
classifier algorithms. The ROC curve and AUC were calculated
at each validation, and the mean and standard deviation of each
AUC were compared to obtain the optimal classifier algorithm.

Evaluation of Predictive Models
To compare the machine learning prediction model with the
traditional prediction model, we used multivariable LR analysis
to establish an LR prediction model with ARF as the end point.
In addition, the Cleveland scoring system (3), the simplified
renal index (SRI) scoring system (5) and the Leicester scoring
system (6) were selected as representatives of the traditional
prediction model. The endpoints of these three classic scoring
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systems were renal failure and RRT, and they were also scored
for complex surgery. To evaluate the prediction model, we
compared the machine learning prediction model with the four
traditional prediction models. The ROC curve and AUC of
the prediction model were calculated using internal validation
data. The machine learning prediction model used 10-fold cross-
validation to calculate the mean ROC curve and the AUC. In
the external validation, the machine learning predictive model
was trained using internal validation data. Then, we used the
parametric approach based on Platt’s logistic model to calibrate
the probability of the machine learning model (17) and evaluated
the discrimination and calibration of the model by calculating
the Brier score. The trained machine learning prediction model
was compared with the traditional prediction models using
external validation data to evaluate the generalization ability of
the prediction model.

RESULTS

Patient Characteristics
A total of 1,637 patients were enrolled in the study, with 1,318 of
these cases being used for machine learning training and internal
validation. The main characteristics of patients in the internal
validation group are presented in Table 1. The median age of
the patients was 50.0 (42.0–57.0) years; 301 (22.8%) patients
were female.

Incidence and Prognosis of Postoperative

ARF
The incidence of ARF after aortic surgery was 11.5% (151
in 1,318). The prognostic characteristics of the patients are
presented in Supplementary Table 1. Patients with postoperative
ARF had a poor prognosis and had longer ICU stays (204.0
(104.5–308.2) h vs. 43.0 (20.0–112.5) h, P < 0.001) as well as
longer ventilator use times (114.0 (62.0–179.0) h vs. 20.0 (15.0–
48.0) h, P < 0.001). Postoperative ARF may be related to the
use of more blood products and drug infusions. Furthermore,
patients with postoperative ARF had more postoperative
complications (74.8 vs. 34.5%, P < 0.001). Most importantly,
there were significant differences in mortality between patients
with and without ARF (12.6 vs. 0.8%, respectively, P < 0.001).

Risk Factors for Postoperative ARF
As a comparison with machine learning models, we used
traditional statistical methods to analyse all preoperative and
intraoperative factors that either had significant differences or
were clinically believed to be related to ARF and calculated the
risk factors for postoperative ARF. A multivariable binary LR
with the “Forward: LR” method was conducted to determine
the risk factors for postoperative ARF (Table 2). The results
showed that, among the preoperative factors, older age, a higher
pulse rate, emergency surgery, and an increased absolute value
of leukocytes in the preoperative setting were all risk factors. It
was also noted that an increased estimated glomerular filtration
rate (eGFR) and platelet count were protective factors against
postoperative ARF. In the combined analysis of preoperative
and intraoperative factors, in addition to the aforementioned

preoperative factors, longer cardiopulmonary bypass time, lower
rectal temperature when circulatory arrest, and surgery with
circulatory arrest were risk factors for postoperative ARF. We
used preoperative factors to establish an LR prediction model for
the predictive model to have the ability to predict postoperative
ARF of patients before surgery (Table 2).

Machine Learning Prediction Model
Feature Selection

In the initial stage, we built machine learning models using all the
preoperative features and unoptimized parameters. We analyzed
the feature importance of thesemachine learningmodels through
SHAP (15) and finally selected 15 features for building machine
learning prediction models (Table 3).

Among the 15 features used to establish these models,
we collected complete demographic and renal function data.
However, as AAS patients may require emergency surgery,
occasionally, the blood test results were partially missing. We
used the k-nearest neighbors approach to fill in missing values.
Supplementary Table 2 shows the details of missing values.

Internal Validation

Machine learning models were trained using internal validation
data, and the performance of the machine learning models was
evaluated using 10-fold cross-validation. The results showed the
mean ROC curve and AUC of each machine learning model
after 10-fold cross-validation (Figure 1). We found that among
the prediction models established by a single algorithm, the
XGBoost machine learning model performed best (AUC = 0.82,
95% confidence interval (CI): 0.79–0.85), and the combination
of XGBoost and other algorithms did not improve performance
(Supplementary Figure 3); thus, we chose the XGBoost model
as the final machine learning model to evaluate its performance.
This model had 750 gradient boosted trees, the maximum tree
depth was eight, the learning rate was 0.01, the subsample
ratio of columns when constructing each tree was 0.75, and the
subsample ratio of the training instance was 0.68.

Subsequently, the importance of each feature of the XGBoost
model was analyzed by the SHAP method. Figure 2 shows the
results of the feature importance analysis, with more important
features distributed on the top and relatively unimportant
features on the bottom. Most of the characteristics, either
positively or negatively, correlated with the prediction results;
however, activated partial thromboplastin time (APTT), fasting
blood glucose, body mass index (BMI), international normalized
ratio (INR), and alanine aminotransferase (ALT) that were either
too high or too low increased the risk of ARF. At the same time,
we also analyzed the feature importance based on the fitted trees
of the XGBoost model (Supplementary Figure 4), and the result
is similar to the result of SHAP.

We used internal validation data to calculate the ROC curve
and the AUC of the four traditional prediction models (Figure 3)
and found that the XGBoost model (AUC = 0.82, 95% CI: 0.79–
0.85) performed better than the LR prediction model (AUC =

0.77, 95% CI: 0.73–0.81, P<0.001), the Cleveland scoring system
(AUC = 0.73, 95% CI: 0.69–0.77, P<0.001), the SRI scoring
system (AUC = 0.72, 95% CI: 0.68–0.76, P<0.001), and the
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TABLE 1 | Main characteristics of patients in the internal validation groups.

Overall Without ARF Combined ARF P value

Number of patients (cases) 1,318 1,167 151

Gender, female (cases) 301 (22.8%) 269 (23.1%) 32 (21.2%) 0.61

Age (years) 50.0 (42.0–57.0) 49.0 (41.0–57.0) 53.0 (46.0–60.0) < 0.001

Information on admission

Pulse (beats/min) 80.0 (75.0–85.0) 80.0 (75.0–85.0) 80.0 (77.0–88.0) 0.003

Height (cm) 170.0 (166.0–175.0) 170.0 (166.0–175.0) 170.0 (165.0–175.0) 0.06

Weight (kg) 75.0 (65.0–82.4) 75.0 (65.0–83.0) 73.2 (65.0–80.0) 0.62

Body mass index (kg/m2 ) 25.4 (22.9–27.8) 25.4 (22.9–27.8) 25.4 (23.4–28.0) 0.35

Systolic pressure (mmHg) 130.0 (120.0–142.0) 130.0 (120.0–143.0) 129.0 (110.0–140.0) 0.009

Diastolic pressure (mmHg) 78.0 (70.0–84.1) 78.0 (70.0–85.0) 78.0 (70.0–82.0) 0.10

Medical history

Smoking history (cases) 507 (38.5%) 449 (38.5%) 58 (38.4%) 0.99

History of previous cardiac surgery (cases) 107 (8.1%) 98 (8.4%) 9 (6.0%) 0.30

Peripheral vascular disease history (cases) 9 (0.7%) 9 (0.8%) 0 (0.0%) 0.61

Echocardiographic results

Left ventricular ejection fraction (%) 63.0 (60.0–66.0) 63.0 (60.0–66.0) 62.0 (58.0–65.0) 0.21

Preoperative laboratory examination results

Absolute value of leukocytes (109/L) 9.69 (7.00–13.18) 9.30 (6.80–12.90) 12.33 (10.29–15.33) < 0.001

Platelets (109/L) 185.0 (147.0–228.3) 189.0 (150.0–231.0) 158.0 (126.0–201.0) < 0.001

Hemoglobin (g/L) 137.0 (122.0–148.0) 137.0 (123.0–148.0) 136.0 (121.0–144.0) 0.12

CK–MB (ng/mL) 1.88 (0.90–9.30) 1.70 (0.80–8.20) 7.10 (1.60–15.00) < 0.001

Lactate dehydrogenase (U/L) 221.5 (179.0–288.3) 214.0 (176.0–279.0) 277.0 (225.0–332.2) < 0.001

D–dimer (ng/mL) 1,100.0 (270.8–3,269.3) 940.0 (231.0–2,887.0) 3,328.0 (1,120.0–14,485.0) < 0.001

INR 31.9 (28.9–36.5) 31.9 (28.8–36.3) 32.2 (29.5–37.8) 0.02

APTT (s) 48.8 (39.6–60.1) 48.6 (39.5–60.0) 51.4 (40.5–65.1) 0.03

Blood amylase (U/dL) 21.0 (15.0–34.0) 21.0 (15.0–33.0) 27.0 (16.0–45.0) 0.07

ALT (U/mL) 22.0 (18.0–32.0) 22.0 (17.0–30.0) 29.0 (21.0–46.0) 0.005

AST (U/mL) 39.1 (35.6–42.1) 39.2 (35.6–42.2) 38.9 (35.2–40.7) < 0.001

Albumin (g/mL) 78.3 (64.6–99.6) 76.7 (63.9–95.8) 99.7 (78.0–138.6) 0.08

Creatinine (µmol/L) 6.30 (4.99–8.10) 6.10 (4.90–7.78) 8.20 (6.01–10.30) < 0.001

BUN (mmol/mL) 95.0 (73.1–107.1) 97.1 (77.0–108.4) 69.1 (49.0–93.4) < 0.001

eGFR (ml/min/1.73 m2) 6.49 (5.39–7.77) 6.38 (5.30–7.67) 7.26 (6.28–8.48) < 0.001

Fasting blood glucose (mmol/L) 9.69 (7.00–13.18) 9.30 (6.80–12.90) 12.33 (10.29–15.33) < 0.001

Diagnosis

Coronary artery disease (cases) 35 (2.7%) 33 (2.8%) 2 (1.3%) 0.42

Congestive heart failure (cases) 26 (2.0%) 23 (2.0%) 3 (2.0%) 1.00

Chronic respiratory disease (cases) 31 (2.4%) 28 (2.4%) 3 (2.0%) 1.00

Hypertension (cases) 905 (68.7%) 786 (67.4%) 119 (78.8%) 0.004

Diabetes (cases) 62 (4.7%) 54 (4.6%) 8 (5.3%) 0.71

Surgery

Operative duration (min) 405.0 (340.0–479.0) 396.0 (330.0–465.0) 454.6 (390.0–520.0) < 0.001

Emergency surgery (cases) 650 (49.3%) 536 (45.9%) 114 (75.5%) < 0.001

Cardiopulmonary bypass time (min) 186.0 (144.0–224.0) 181.0 (140.0–218.0) 224.0 (188.0–266.0) < 0.001

Aortic cross–clamp time (min) 104.0 (82.6–131.0) 102.0 (80.0–127.0) 125.0 (103.0–149.0) < 0.001

With circulatory arrest (cases) 997 (75.6%) 855 (73.3%) 142 (94.0%) < 0.001

Circulatory arrest time (min) 21.0 (17.4–27.0) 21.0 (17.6–26.6) 21.0 (17.0–27.0) 0.88

Nasopharyngeal temperature when circulatory arrest (◦C) 24.1 (23.1–24.9) 24.1 (23.2–24.9) 23.5 (22.5–24.5) < 0.001

Rectal temperature when circulatory arrest (◦C) 25.6 (24.8–26.7) 25.8 (24.9–26.8) 25.0 (24.0–26.0) < 0.001

RBC transfusion volume (U) 4.00 (0.00–6.00) 3.50 (0.00–6.00) 5.50 (4.00–8.00) < 0.001

INR, international normalized ratio; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; AST, aspartate transaminase; BUN, blood urea nitrogen; eGFR, estimated

glomerular filtration rate.
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TABLE 2 | Multivariable binary logistic regression results.

Characteristics B Standard error P value OR value OR 95%CI

Preoperative factors only

Age (years) 0.028 0.010 0.003 1.029 1.010–1.048

Absolute value of leukocyte 0.076 0.022 0.001 1.079 1.033–1.127

Pulse (beats/min) 0.021 0.008 0.006 1.021 1.006–1.037

eGFR (ml/min/1.73m2 ) −0.019 0.004 < 0.001 0.982 0.974–0.989

Platelet (109/L) −0.005 0.002 0.003 0.995 0.992–0.998

Emergency surgery 0.779 0.216 < 0.001 2.179 1.426–3.331

Constant −4.207 1.057 < 0.001 0.015

Preoperative and intraoperative factors

Age (years) 0.032 0.010 0.001 1.032 1.012–1.052

Absolute value of leukocyte 0.062 0.023 0.008 1.064 1.017–1.114

Pulse (beats/min) 0.023 0.008 0.004 1.023 1.007–1.039

eGFR (ml/min/1.73m2 ) −0.017 0.004 < 0.001 0.983 0.976–0.991

Platelet (109/L) −0.004 0.002 0.011 0.996 0.993–0.999

Emergency surgery 0.587 0.222 0.008 1.799 1.164–2.781

Cardiopulmonary bypass time (min) 0.006 0.002 < 0.001 1.006 1.003–1.010

Surgery with circulatory arrest 0.875 0.379 0.021 2.400 1.142–5.042

Rectal temperature when circulatory arrest (◦C) −0.129 0.054 0.017 0.879 0.792–0.977

Constant −3.315 1.842 0.072 0.036

eGFR, Estimated Glomerular Filtration Rate.

TABLE 3 | Features used to build machine learning prediction model.

Information on admission

Age (years)

Pulse (beats/min)

BMI (kg/m2)

Diastolic pressure (mmHg)

Echocardiographic results

Left ventricular ejection fraction (%)

Preoperative laboratory examination results

Absolute value of leukocytes (109/L)

Platelets (109/L)

D-dimer (ng/mL)

INR

APTT (s)

ALT (U/mL)

Albumin (g/mL)

eGFR (ml/min/1.73 m2)

Fasting blood glucose (mmol/L)

Surgery

Emergency surgery

BMI, body mass index; INR, international normalized ratio; APTT, activated partial

thromboplastin time; ALT, alanine aminotransferase; eGFR, estimated glomerular

filtration rate.

Leicester scoring system (AUC = 0.72, 95% CI: 0.68–0.77, P <

0.001) (Table 4).

External Validation

The external validation group included 319 patients. The
comparison of the internal and external validation group

characteristics is presented in Table 5. The median of the average
age of patients in the external validation group was 50.0 (16.0)
years. The incidence of ARF after aortic surgery was similar to
that in the internal validation group (11.0 vs. 11.5%, P = 0.807).

After probability calibration, the Brier score of the machine
learning prediction model using the external validation data
was 0.087, which showed that the prediction model had good
discrimination and calibration. Using external validation data for
evaluation, we found that the XGBoost model after probability
calibration (AUC = 0.81, 95% CI: 0.75–0.88) performed better
than the LR prediction model (AUC = 0.75, 95% CI: 0.67–0.83,
P = 0.03), the Cleveland scoring system (AUC = 0.71, 95% CI:
0.63–0.80, P = 0.04), the SRI scoring system (AUC = 0.70, 95%
CI: 0.61–0.79, P = 0.02), and the Leicester scoring system (AUC
= 0.67, 95% CI: 0.59–0.75, P= 0.002) (Table 4).

Finally, to make the XGBoost prediction model easy to
use, we developed an application (https://ljzyal.github.io/ARF/)
for clinical use. The application used a probability-calibrated
XGBoost prediction model, which had the same performance as
the prediction model in external validation. We set the cut-off
value based on the results of external validation. The prediction
model had a sensitivity of 82.9% and a specificity of 67.6%. The
risk calculated by the application increased with the possibility of
postoperative ARF.

DISCUSSION

Factors Influencing Postoperative ARF and

the Role of a Prediction Model
ARF is the end stage of acute kidney injury, and it is the most
common major complication following cardiac surgery (18).
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FIGURE 1 | Mean ROC curve and AUC of machine learning models. This figure depicts the mean ROC curve and AUC of the linear kernel SVC (A), Nu-SVC (B),

AdaBoost (C) and XGBoost (D) using internal validation data (n = 1,318). The blue line represents the mean of each ROC curve after 10-fold cross-validation. The

shaded area is the 95% confidence interval of the mean ROC curve. The other translucent lines are ROC curves for each cross-validation. (E) Comparison of the

mean ROC curves for each algorithm.
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FIGURE 2 | Feature importance analysis. This figure shows the results of the analysis on the importance of the features in the XGBoost model through the SHAP

method. Each feature value of each patient is marked as a dot on the graph. The color of the dot represents the degree of deviation of the feature value from the

overall value according to the ordinate, and purple represents that the feature of the patient is close to the mean of the feature of the overall patient value. The SHAP

value of the dot indicates the influence of the feature on the prediction result. A negative SHAP value indicates that the patient’s risk of ARF is reduced, while a positive

SHAP value indicates that the patient’s risk of ARF is increased.

ARF can lead to poor patient prognosis and is independently
associated with increased morbidity and mortality after cardiac
surgery (19). In this study, the incidence of postoperative ARF
in AAS patients reached 11.5%, and patients with ARF had a
longer ICU length of stay, longer ventilator use time and a
worse prognosis.

The mechanism of ARF after cardiac surgery remains to be
elucidated, and its pathogenesis is currently thought to be related
to renal hypoperfusion, tissue ischaemia-reperfusion injury and
the inflammatory response (20). Previous studies have shown
that risk factors for ARF include female sex, advanced age,
previous heart surgery, chronic obstructive pulmonary disease,
diabetes, complex heart surgery, prolonged cardiopulmonary
bypass, rapid heart rate, emergency surgery, and intraoperative
infusion of 2 or more packed red blood cell (RBC) units (21–
23). In this study, we found that patients with AAS have more

complex risk factors for postoperative ARF. In addition to the
above factors, we found that postoperative ARF was also related
to preoperative leukocyte and platelet counts, which may be
because the occurrence of ARF is related to the inflammatory
response (20). The higher preoperative leukocyte count may
indicate that the inflammatory response caused by AAS is more
serious. This effect may continue to play a role after surgery,
making postoperative ARF more likely to occur. Furthermore,
abnormal blood coagulation is another potential mechanism of
ARF (24). Lower preoperative platelets may be a manifestation
of a hypercoagulable state and intravascular coagulation, which
makes AAS patients with higher preoperative platelet counts less
prone to postoperative ARF.

Early identification of patients with a higher ARF risk can
help clinicians strengthen patient monitoring and take measures
to prevent ARF. Many studies have used risk factors or novel
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FIGURE 3 | ROC curve and AUC of the traditional prediction models with internal validation data. This figure describes the ROC curve and the AUC of the Cleveland

scoring system, the SRI scoring system, the Leicester scoring system and the LR prediction model with internal validation data (n = 1,318).

biomarkers to build prediction models for ARF (3–6, 25). Novel
biomarker-related prediction methods, however, are usually
cumbersome, and no new biomarker has been widely accepted
(25). Currently, the best-performing large-sample model is poor
at predicting ARF after complex surgery (6). Aortic surgery
usually results in a higher incidence of postoperative ARF;
therefore, postoperative ARF prediction methods for complex
heart and aortic surgeries are necessary.

Clinical Applications and Strategies
According to the results of this study, we recommend the
following measures to reduce the occurrence of ARF. Once the
model is used to predict the postoperative risk of ARF, for those
with a low predicted risk, it is recommended to perform surgery
in a timely fashion once the patient is surgically prepared.

For patients with a higher predicted risk of ARF, it is
recommended to attempt to ameliorate the modifiable risk
factors that are included in the prediction model. This could
be achieved by improving preoperative preparations, such as
administering antimicrobials, considering platelet transfusion,

controlling blood glucose levels, maintaining adequate diastolic
blood pressure, and controlling heart rate. In addition, during
the operation, it is recommended to pay more attention to renal
function and to maintain renal perfusion by taking measures to
maintain circulatory stability. In addition to the aforementioned
modifications, intraoperative innovations in surgical methods
should be adopted, which can help reduce the operative and
CPB time.

Additionally, for patients noted to be at a higher risk of ARF,
it is also recommended to use stricter monitoring and more
favorable preventive and treatment measures in perioperative
management, which could include minimizing the use of
nephrotoxic drugs and administering treatment for renal injury
as soon as possible to prevent patients from progressing to ARF.

Features of Machine Learning Prediction

Models
Risk prediction plays an important role in cardiovascular disease
research. As the most commonly used traditional predictive
model, LR sometimes cannot handle complex clinical data
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TABLE 4 | Performance of machine learning prediction model and scoring system.

Prediction methods AUC 95% CI of AUC P value

Internal validation

Machine learning prediction model (XGBoost) 0.82 0.79–0.85

LR prediction model 0.77 0.73–0.81 < 0.001

Cleveland scoring system 0.73 0.69–0.77 < 0.001

SRI scoring system 0.72 0.68–0.76 < 0.001

Leicester scoring system 0.72 0.68–0.77 < 0.001

External validation

Machine learning prediction model (XGBoost) 0.81 0.75–0.88

LR prediction model 0.75 0.67–0.83 0.03

Cleveland scoring system 0.71 0.63–0.80 0.04

SRI scoring system 0.70 0.61–0.79 0.02

Leicester scoring system 0.67 0.59–0.75 0.002

AUC, area under the receiver operating characteristic (ROC) curve; XGBoost, eXtreme Gradient Boosting; LR, logistic regression; SRI, simplified renal index.

The AUC of the ROC curve was compared with a machine learning prediction model (XGBoost), and DeLong’s test was used to calculate the P value.

and thus cannot obtain an ideal predictive model. Conversely,
machine learning can handle complex clinical data and thus
potentially has more advantages (26). In this study, by selecting
AAS as a disease process for focused research, we found that the
performance of machine learning predictive models is better than
that of traditional predictive models. This suggests that machine
learning algorithms are more suitable for building clinical
prediction models and have a higher performance than LR.

In this study, we found that the XGBoost algorithm has the
best prediction performance and still has excellent performance
in external validation. XGBoost is a machine learning algorithm
that uses classification and regression trees as weak classifiers
(14). Compared with other algorithms, the XGBoost algorithm
allows easy adjustment of parameters and can deal with nonlinear
features. It usually has higher sensitivity and specificity when
overfitting is avoided. In most cases, XGBoost has higher
prediction performance than other algorithms (27, 28).

Machine learning algorithms are also suitable for the
construction of other predictive models, which have excellent
performance and can be continuously trained with new data
to have greater potential. After the prediction model is
established, the newly collected data can be used to continue
training, thereby enhancing the generalization ability of the
prediction model.

Machine learning algorithms have been considered a black
box in the past, which is the main disadvantage compared to LR.
However, the SHAP method can explain the machine learning
prediction model. We used the SHAP method to analyse the
importance of particular features in the prediction model. This
method can analyse the impact of each variable on each patient
so the predictionmodel is interpretable. We found that the SHAP
method is effective in determining the importance of particular
individual features.

To compare with LR, all features included in an LR
are also considered important features in machine learning
prediction models. Concurrently, however, the SHAP method

also judges other features, those that are not considered
statistically significant in the LR, as important features. This
possibly results in LR not including certain relevant features,
whereas the SHAP method does not exclude such features.
According to the results of the feature importance analysis,
we can also judge the impact of each variable on the results
to determine the patient’s treatment direction to prevent
postoperative ARF.

Limitations
First, all data for this study were sourced from China. Due to
ethnic differences, the performance of our predictive model in
other countries may decrease. However, our research method
is innovative, and it is feasible to establish such a model in
other countries through this investigational method. Second,
machine learning algorithms are more complex than LR,
and model representation is also very complicated (29). Our
predictive model cannot be similar to LR, and it does not
provide a scoring system for clinicians. We have therefore
developed an online application for convenience. Third, our
machine learning prediction model needs more extensive data
for verification. Finally, although the performance of our
prediction model was better than that of LR, some data were
not involved in the initial data collection, such as detailed
laboratory test results, detailed medical history and detailed
documentation of the use of nephrotoxic drugs. Supervised
machine learning can improve the model after supplementing
these data, and consequently, our predictive model has the
potential to improve.

In summary, our findings suggest that machine learning
prediction models can provide better prediction performance
than traditional LR prediction models and other existing risk
scoring systems for AAS and complex cardiac and aortic
surgeries. This predictive model is helpful for the early detection
of patients with high ARF risk, thus enabling clinicians to take
early measures to prevent and treat ARF.
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TABLE 5 | Comparison of characteristics in the internal and external validation groups.

Internal validation group External validation group P value

Number of patients (cases) 1,318 319

Incidence of postoperative ARF 151 (11.5%) 35 (11.0%) 0.81

Need CRRT treatment (cases) 137 (90.7%) 30 (85.7%) 0.36

Information on admission

Gender, female (cases) 301 (22.8%) 65 (20.4%) 0.34

Age (years) 50.0 (42.0–57.0) 50.0 (43.0–59.0) 0.10

Pulse (beats/min) 80.0 (75.0–85.0) 80.0 (74.0–85.0) 0.62

Height (cm) 170.0 (166.0–175.0) 170.0 (165.0–175.0) 0.59

Weight (kg) 75.0 (65.0–82.4) 74.0 (65.0–83.0) 0.42

Body mass index (kg/m2 ) 25.4 (22.9–27.8) 25.4 (23.1–27.8) 0.71

Systolic pressure (mmHg) 130.0 (120.0–142.0) 135.0 (120.0–160.0) < 0.001

Diastolic pressure (mmHg) 78.0 (70.0–84.1) 80.0 (70.0–95.0) < 0.001

Medical history

Smoking history (cases) 507 (38.5%) 96 (30.1%) 0.005

History of previous cardiac surgery (cases) 107 (8.1%) 20 (6.3%) 0.27

Peripheral vascular disease history (cases) 9 (0.7%) 3 (0.9%) 0.71

Echocardiographic results

Left ventricular ejection fraction (%) 63.0 (60.0–66.0) 61.0 (57.0–66.0) 0.02

Preoperative laboratory examination results

Absolute value of leukocytes (109/L) 9.69 (7.00–13.18) 11.08 (7.78–14.29) < 0.001

Platelets (109/L) 185.0 (147.0–228.3) 184.0 (143.0–236.0) 0.93

Hemoglobin (g/L) 137.0 (122.0–148.0) 134.0 (122.0–147.0) 0.19

CK-MB (ng/mL) 1.88 (0.90–9.30) 3.30 (1.00–11.60) < 0.001

Lactate dehydrogenase (U/L) 221.5 (179.0–288.3) 224.0 (189.0–277.4) 0.32

D-dimer (ng/mL) 1,100.0 (270.8–3,269.3) 715.9 (18.4–4,230.0) < 0.001

INR 31.9 (28.9–36.5) 34.0 (29.1–39.7) 0.39

APTT (s) 48.8 (39.6–60.1) 50.4 (43.0–58.4) < 0.001

Blood amylase (U/dL) 21.0 (15.0–34.0) 23.0 (15.0–36.0) 0.14

ALT (U/mL) 22.0 (18.0–32.0) 22.0 (18.0–33.0) 0.14

AST (U/mL) 39.1 (35.6–42.1) 38.5 (35.0–42.0) 0.56

Albumin (g/mL) 78.3 (64.6–99.6) 80.4 (66.8–101.6) 0.12

Creatinine (µmol/L) 6.30 (4.99–8.10) 6.40 (5.10–8.70) 0.48

BUN (mmol/mL) 95.0 (73.1–107.1) 92.3 (70.4–107.3) 0.05

eGFR (ml/min/1.73 m2) 6.49 (5.39–7.77) 6.63 (5.40–7.65) 0.22

Fasting blood glucose (mmol/L) 9.69 (7.00–13.18) 11.08 (7.78–14.29) 0.94

Diagnosis

Coronary artery disease (cases) 35 (2.7%) 6 (1.9%) 0.43

Congestive heart failure (cases) 26 (2.0%) 1 (0.3%) 0.04

Chronic respiratory disease (cases) 31 (2.4%) 15 (4.7%) 0.02

Hypertension (cases) 905 (68.7%) 216 (67.7%) 0.74

Diabetes (cases) 62 (4.7%) 13 (4.1%) 0.63

Surgery

Operative duration (min) 405.0 (340.0–479.0) 390.0 (321.2–480.0) 0.21

Emergency surgery (cases) 650 (49.3%) 164 (51.4%) 0.50

Cardiopulmonary bypass time (min) 186.0 (144.0–224.0) 184.0 (135.2–236.0) 0.70

Aortic cross-clamp time (min) 104.0 (82.6–131.0) 108.0 (82.0–140.0) 0.13

With circulatory arrest (cases) 997 (75.6%) 223 (69.9%) 0.04

Circulatory arrest time (min) 21.0 (17.4–27.0) 21.2 (17.0–28.0) 0.63

Nasopharyngeal temperature when circulatory arrest (◦C) 24.1 (23.1–24.9) 24.2 (23.0–25.0) 0.32

Rectal temperature when circulatory arrest (◦C) 25.6 (24.8–26.7) 25.8 (24.5–27.0) 0.84

RBC transfusion volume (U) 4.00 (0.00–6.00) 4.00 (2.00–6.00) 0.006

CRRT, continuous renal replacement therapy; INR, international normalized ratio; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; AST, aspartate transaminase;

BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate.
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Background: Invasive mechanical ventilation plays an important role in the prognosis

of patients with sepsis. However, there are, currently, no tools specifically designed to

assess weaning from invasive mechanical ventilation in patients with sepsis. The aim of

our study was to develop a practical model to predict weaning in patients with sepsis.

Methods: We extracted patient information from the Medical Information Mart for

Intensive Care Database-IV (MIMIC-IV) and the eICU Collaborative Research Database

(eICU-CRD). Kaplan–Meier curves were plotted to compare the 28-daymortality between

patients who successfully weaned and those who failed to wean. Subsequently,

MIMIC-IV was divided into a training set and an internal verification set, and the eICU-CRD

was designated as the external verification set. We selected the best model to simplify

the internal and external validation sets based on the performance of the model.

Results: A total of 5020 and 7081 sepsis patients with invasive mechanical ventilation

in MIMIC-IV and eICU-CRD were included, respectively. After matching, weaning was

independently associated with 28-day mortality and length of ICU stay (p < 0.001 and

p = 0.002, respectively). After comparison, 35 clinical variables were extracted to build

weaning models. XGBoost performed the best discrimination among the models in the

internal and external validation sets (AUROC: 0.80 and 0.86, respectively). Finally, a

simplified model was developed based on XGBoost, which included only four variables.

The simplified model also had good predictive performance (AUROC:0.75 and 0.78 in

internal and external validation sets, respectively) and was developed into a web-based

tool for further review.

Conclusions: Weaning success is independently related to short-term mortality in

patients with sepsis. The simplified model based on the XGBoost algorithm provides

good predictive performance and great clinical applicablity for weaning, and a web-based

tool was developed for better clinical application.

Keywords: sepsis, invasive mechanical ventilation, weaning, XGBoost, simple prediction model
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INTRODUCTION

Difficult weaning or prolonged invasive mechanical ventilation is
more common in patients with sepsis (1, 2). Lung susceptibility
to ventilatory injury is thought to be increased by sepsis (3, 4),
and mechanical ventilation may also lead to the exacerbation of
pulmonary infection (5). Prolonged mechanical ventilation can
lead to a poor prognosis (6, 7). However, insufficient duration
of mechanical ventilation is unfavorable for patients. Weaning in
unprepared patients leads to increased mortality and prolonged
ICU stay (8). Therefore, the choice of an appropriate weaning
time is of great importance.

Previous studies on weaning have evaluated numerous
methods on weaning, such as rapid shallow breathing index
(RSBI) (9), spontaneous breathing experiment (SBT), and
compliance, oxygenation, respiratory rate, and pressure (CROP)
index. Nevertheless, weaning factors specific to patients with
sepsis are scarce. Unfortunately, the accuracy of these factors
in predicting weaning is unsatisfactory (10, 11). Moreover,
weaning from mechanical ventilation has also been shown to
be related to consciousness, diaphragmatic function, and cardiac
function (12–14). Traditional prediction of weaning has several
limitations. On the one hand, traditional methods of weaning as
a complex process are inadequate for the use of clinical indicators
utilization. On the other hand, traditional methods have deficits
in predictive performance due to disease-related differences in
the target population, as there are no specific target populations.

Given the rapid development of clinical medicine, a refined
weaning scheme is needed to meet the demands of clinical
development. A simple and reliable weaning program could
not only effectively assist clinicians but also improve the
patient prognosis, especially in patients with sepsis with
ventilator dependence.

In this study, we aimed to develop a reliable model for
predicting weaning success in patients with sepsis. To this end,
we extracted data within 24 h from patients with sepsis before
weaning from a large dataset. Features were selected based on
their clinical availability and explained by their importance. In
addition, our model was further validated using datasets from
various sources.

METHODS

Data Source
Our study was a retrospective cohort study based on the
MIMIC-IV (version 1.0) database. This database contains over
40,000 ICU patients from Beth Israel Deaconess Medical Center
between 2008 and 2019. Moreover, we used an independent
external validation set called eICU-CRD Collaborative Research
(eICU-CRD) Database (version 2.0), which is a multicenter
database of over 200,000 ICU admissions in the United States.
We carefully studied the courses and obtained permission
to use the database (record ID 39691989). Because the
patient privacy information was encrypted in the database, the
ethics committee at the two medical centers did not require
informed consent.

Patients and Definitions
In this study, sepsis was diagnosed based on the Sepsis-3 criteria
[(15); SOFA score≥ 2, and suspicious infection]. The contents of
a recent guideline had been considered before implementing the
criteria for successful weaning (16). The definition of weaning
success (WS) was as follows: (a) no intubation or invasive
ventilation within 48 h after weaning, (b) no death within 48 h
after weaning, and (c) noninvasive ventilation time was shorter
than 48 h after weaning. The patients who experienced invasive
mechanical ventilation and met the criteria for Sepsis-3 were
included in both datasets. The exclusion criteria were as follows:
(a) repeated ICU admissions and (b) age < 18 years (Figure 1).

Data Collection and Variable Extraction
For modeling, we preferred variables with a single measurement.
Clinical importance and shapley additive explanations (SHAP)
values were used to further reduce the amount of data. Patient
demographics were collected, including age, sex, and body
mass index (BMI). Clinical and chemical variables had been
extracted within 24 h prior to weaning to create models. The
extracted variables were the worst value of the day, which
was as follows: arterial blood gas [pH value, arterial oxygen
partial pressure (PaO2), arterial carbon dioxide partial pressure
(PaCO2), base excess (BE)], full blood count [white blood cell
count (WBC), hemoglobin (HB), platelet (PLT)], laboratory
index (creatinine, anion gap), vital signs [heart rate, respiratory
rate, mean arterial pressure (MAP), peripheral oxygen saturation
(SPO2), temperature, oxygenation index (OI)], and urine output.
In addition, data on therapeutic measures [days of invasive
ventilation, days of antibiotic use, days of continuous renal
replacement therapy (CRRT), and vasopressor therapy within
24 h]. The variables in the matched data were from the first
day of ICU admission and included the variables listed above
(Supplementary Table 1). To further balance the differences in
baseline data between the patients with weaning failure (WF) and
patients with weaning success, comprehensive indicators were
extracted, such as the sequential organ failure assessment (SOFA)
score, Glasgow coma scale (GCS) score, and simplified acute
physiology score (SAPS II). Comorbidities, as well as infection
classification (Supplementary Table 4), were also considered
based on the recorded International Classification of Diseases
codes (ICD-9 and ICD-10), and the Charlson comorbidity index
was also calculated.

Data Analysis
Continuous variables are described as median and interquartile
range (IQR). The Mann–Whitney U-test was used for statistical
comparison between the two groups. Categorical variables were
described as total number and percentage, and the chi-square
test or Fisher’s exact test was used for comparison between
groups. Propensity score matching (PSM) was used to balance
the differences between successful and unsuccessful weaning
groups. Inverse probability weighting (IPW) (17) was used to
further adjust for possible imbalances between the variables of
the two groups. The Kaplan–Meier (K–M) curve was used to
describe the 28-day survival rate between the two groups, and
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FIGURE 1 | The flow chart of data extraction. eICU-CRD, eICU-CRD Collaborative Research Database. MIMIC-IV, Medical Information Mart for Intensive Care-IV; ICU,

intensive care unit.

the differences in survival rates between groups were compared
using the log-rank test.

After comparison, we divided the MIMIC-IV data into
two parts: 80% as a training set and 20% as an internal
validation set, and the integrated machine-learning algorithm
eXtremely Gradient Boosting (XGBoost) to construct a weaning
prediction model, which is based on multiple decision trees with
gradient boost as a learning framework. The hyperparameters
were optimized using a grid search (Supplementary Table 3).
Other models, such as KNearest Neighbor (KNN), Multi-
Layer Perceptron (MLP), Random Forest (RF), Support Vector
Machine (SVM), and Logistic Regression (LR), were also derived
from the training set and applied to the test set. The prediction
efficiency of the models was compared using a receiver operating
characteristic (ROC) curve. In addition, the model was further
explained by the SHAP value, demonstrating a linear relationship
through local weighted regression scatter smoothing (LOWESS).

Variables with more than 50% missing data were
excluded. The missing features of the matched data and
model data are shown in Supplementary Figure 1A and
Supplementary Table 2. Missing values were input using the
multiple imputation method. Due to the different missing
datasets, we had extracted only the CROP and RSBI 24 h before
weaning in MIMIC-IV, and the predictive performance was
also compared with XGBoost in the internal validation set. In
addition, the model was further simplified using the recursive
feature elimination algorithm (RFE).

Structured query language was used to extract the data from
these two databases. All statistical analyses were performed

using R 3.6.2 (Chicago, Illinois) and Python (version 3.6.6), and
statistical significance was set at p < 0.05.

RESULTS

Matching Baseline and Clinical Outcomes
As shown in Figure 1, 5,020 patients with sepsis who received
invasive mechanical ventilation were ultimately included in the
MIMIC-IV database. The baseline characteristics on the first
day of ICU admission are shown in Supplementary Table 1.
PSM and IPW were used to better balance the differences
between the two groups. A total of 1,676 patients were
included (Supplementary Table 1), and the standardized mean
difference (SMD) between groups was significantly reduced
(Supplementary Figure 1B). In comparison, there was a
significant difference in the length of stay in the ICU between the
two groups (Figure 2B, p= 0.002). Similarly, theWS group had a
significantly lower 28-day mortality rate (Figure 2A, p < 0.001).

Baseline Characteristics of Models
In the MIMIC-IV cohort, successful weaning was associated with
reductions in highest WBC, highest creatinine, highest anion
gap, highest heart rate, highest respiratory rate, highest body
temperature, highest PEEP level, antibiotic duration, invasive
mechanical ventilation (IMV) duration, and vasopressor use 1
day before weaning (Table 1). Consequently, the performance
of these indicators behaved similarly in the eICU-CRD cohort,
except for age and the highest FiO2 (Table 1). Regarding
comorbidity, it was observed that successful weaning benefited
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FIGURE 2 | (A) K-M curves estimated 28-day survival probability of weaning failure and weaning success patients. (B) Box-plot of weaning failure and weaning

success patients.

chronic pulmonary disease, congestive heart failure, renal
disease, and diabetes in the MIMIC-IV cohort. However, except
for severe liver disease, other comorbidities were inconsistent
between the WS and WF groups (Table 1).

Comparison and Explanation of Models
We trained the models using the training set from MIMIC-
IV. As shown in Table 2, the XGBoost model with all available
variables had a striking AUROC of 0.80 [95% confidence interval
(CI): 0.77–0.82 in the internal validation set, and 0.86 (95% CI:
0.85–0.87)] in the external validation set, while the other five
representative models had the highest AUROC, 00.74 (95% CI:
0.71–0.77) in the internal validation set, and 0.83 (95% CI: 0.82–
0.84) in the external validation set. The final hyperparameter
settings for XGBoost are listed in Supplementary Table 3. The
SHAP values for the XGBoost model were assessed and are shown
in Figure 3A. The importance of the variables was sorted by
the gap value and is shown in Figure 3B. Figures 4A,B show
the comparison between the XGBoost model and the other five
models or predictive factors. As can be seen, the XGBoost model
significantly outperformed the other five models or predictive
factors in both the internal validation and external validation.
Due to the extensive missing data, we did not show the ROC
curves of CROP and RSBI in the external validation set. In
addition, we performed a decision curve analysis (Figure 4C) and
a calibration plot (Figure 4D) to illustrate the performance of the
XGBoost model.

SHAP Values Depending on Variables
The probability of successful weaning increases with an increase
in the following indicators: urine output, lowest base excess, GCS,
lowest SPO2, congestive heart failure, lowest pH, lowest map,
highest PaCO2, renal disease, lowest platelet count, BMI, and
OI (Figure 3A). The contribution of each feature in the internal

validation set is shown in Figure 3B in order of importance.
Finally, we performed a partial dependency plot of the four
contributing continuous variables to explain the impact of the
change in value of each variable on the patients with WS,
as shown in Figure 5. The remaining variables are shown in
Supplementary Figures 2, 3. As shown in the partial dependency
plot, feature values are indicated by a blue scatter plot, with
the linear relationship represented by a red curve, where SHAP
values represent an increase in the probability of WS when the
value is positive and vice versa.

Figure 5 shows the change trend of WS probability
with the change in variables. For some variables, there is
a discernable trend where the WS probability increases
with an increase in the value of variables. These variables
are urine output (Figure 5C), lowest BE (Figure 5D),
GCS (Supplementary Figure 2B), and lowest SPO2

(Supplementary Figure 2D). In contrast, the decrease in
some indicators, such as the highest PEEP level (Figure 5B),
the highest anion gap level (Supplementary Figure 2A),
and age (Supplementary Figure 2H), suggests a decrease in
WS probability. Additionally, some variables seem to have a
reasonable value, and the best cut-off value for these variables
can be roughly judged by the LOWESS curve (Figure 5A;
Supplementary Figures 2C,E–G). To obtain the best WS
possibility, the values of these variables should be kept close to
the cut-off value.

The Web-Based Tool and an Example

Scenario
We simplified the previous XGBoost model according to
the variable importance. The four variables (IMV duration,
highest PEEP level, urine output, and lowest base excess) with
the highest importance were used to develop a simplified
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TABLE 1 | Baseline characteristics of the MIMIC-IV and eICU cohorts.

Variables MIMIC-IV cohort eICU cohort

Overall

(n = 5,020)

Weaning failure

(n = 2,159)

Weaning success

(n = 2,861)

p Overall

(n = 7,081)

Weaning failure

(n = 938)

Weaning success

(n = 6,143)

p

n 5,020 2,159 2,861 7,081 938 6,143

Age (years) 68 (57, 78) 68 (56, 79) 68 (57, 78) 0.335 64 (53, 74) 68 (57, 77) 63 (52, 73) <0.001

Male 2,944 (58.6) 1,241 (57.5) 1,703 (59.5) 0.154 3,976 (56.2) 511 (54.5) 3,465 (56.4) 0.283

BMI (kg/m2) 28 (24, 33) 28 (24, 33) 28 (24, 32) 0.428 28 (23, 33) 27 (23, 33) 28 (23, 33) 0.02

Chronic pulmonary disease (n, %) 1,719 (34.2) 689 (31.9) 1,030 (36.0) 0.003 1,334 (18.8) 175 (18.7) 1,159 (18.9) 0.914

Congestive heart failure (n, %) 2,155 (42.9) 788 (36.5) 1,367 (47.8) <0.001 1,174 (16.6) 158 (16.8) 1,016 (16.5) 0.852

Dementia (n, %) 239 (4.8) 88 (4.1) 151 (5.3) 0.056 207 (2.9) 40 (4.3) 167 (2.7) 0.012

Severe liver disease (n, %) 547 (10.9) 286 (13.2) 261 (9.1) <0.001 209 (3.0) 60 (6.4) 149 (2.4) <0.001

Renal disease (n, %) 1,463 (29.1) 574 (26.6) 889 (31.1) 0.001 949 (13.4) 151 (16.1) 798 (13.0) 0.011

Rheumatic disease (n, %) 211 (4.2) 84 (3.9) 127 (4.4) 0.375 165 (2.3) 21 (2.2) 144 (2.3) 0.934

Diabetes (%) 1,665 (33.2) 675 (31.3) 990 (34.6) 0.014 2,129 (30.1) 283 (30.2) 1,846 (30.1) 0.971

Charlson comorbidity index 6 (4, 8) 6 (4, 8) 6 (4, 8) 0.082 3 (2, 5) 4 (3, 6) 3.00 (2, 5) <0.001

GCS 14 (10, 15) 13 (7, 15) 14 (10, 15) <0.001 8 (6, 10) 4 (3, 8) 9 (6, 10) <0.001

Highest WBC (×109/L) 14.1 (9.8, 19.9) 14.7 (9.8, 21.3) 13.8 (9.9, 18.9) <0.001 11.9 (8.7, 16.4) 14.7 (9.7, 20.5) 11.7 (8.6, 15.8) <0.001

Lowest hemoglobin (g/L) 9.2 (8.0, 10.6) 9.1 (7.9, 10.6) 9.3 (8.1, 10.6) 0.002 9.7 (8.4, 11.3) 9.3 (7.9, 10.8) 9.8 (8.5, 11.4) <0.001

Lowest platelets (×109/L) 143 (89, 213) 136 (75, 212) 147 (100, 215) <0.001 167 (113, 233) 141 (76, 212) 170 (118, 236) <0.001

Highest creatinine (mg/dL) 1.3 (0.9, 2.3) 1.6 (1.0, 2.7) 1.2 (0.8, 1.9) <0.001 1.1 (0.7, 1.8) 1.7 (1.0, 3.0) 1.0 (0.7, 1.6) <0.001

Highest anion gap (mEq/L) 15.0 (13.0, 19.0) 17.0 (14.0, 22.0) 14.0 (12.0, 17.0) <0.001 10.0 (8.0, 14.0) 13.0 (10.0, 18.0) 10.0 (7.7, 13.0) <0.001

Lowest pH level 7.3 (7.3, 7.4) 7.3 (7.2, 7.4) 7.3 (7.3, 7.4) <0.001 7.4 (7.3, 7.4) 7.3 (7.2, 7.4) 7.4 (7.3, 7.4) <0.001

Lowest PaO2 (mmHg) 80 (53, 106) 75 (48, 99) 84 (60, 110) <0.001 85 (69, 115) 78.00 (61, 102) 86 (69, 117) <0.001

Highest PaCO2 (mmHg) 45 (39, 51) 44 (38, 52) 45 (40, 50) 0.837 43 (37, 49) 42 (36, 52) 43 (37, 49) 0.977

Lowest base excess (mEq/L) −3.0 (−7.0, 0.0) −4.0 (−10.0, 0.0) −2.0 (−5.0, 0.0) <0.001 −1.0 (−5.4, 2.0) −5.5 (−12.4,0.6) −0.6 (−5.0, 2.2) <0.001

Highest heart rate (/min) 103 (90, 119) 108 (94, 124) 100 (88, 115) <0.001 103 (90, 118) 112 (97, 129) 102.00 (89, 116) <0.001

Highest respiratory rate (/min) 27 (23, 31) 29 (24, 33) 26 (22, 30) <0.001 25 (21, 31) 30.00 (25, 35) 25.00 (21, 30) <0.001

Lowest MAP (mmHg) 60 (54, 65) 59 (52, 64) 60 (56, 66) <0.001 65 (57, 73) 59 (49, 68) 66 (59, 74) <0.001

Highest body temperature (◦C) 37.4 (37.0, 38.1) 37.5 (36.9, 38.2) 37.4 (37.1, 37.9) 0.021 37.4 (37.0, 37.9) 37.4 (36.9, 38.1) 37.4 (37.1, 37.9) 0.362

Lowest SPO2 94 (91, 96) 93 (89, 95) 94 (92, 97) <0.001 94 (91, 97) 91 (82, 94) 94 (91, 97) <0.001

Highest PEEP (cmH2O) 7 (5, 10) 9 (5, 12) 6 (5, 10) <0.001 5 (5, 8) 5 (5, 10) 5.00 (5, 6) <0.001

Lowest tidal volume (ml) 397 (328, 455) 395 (325 452) 398 (329 459) 0.154 422 (343, 497) 423.50 (356, 493) 422.00 (340, 498) 0.591

Lowest OI 174 (105, 250) 152 (91, 232) 188 (120, 260) <0.001 206 (144, 282) 161 (98, 227) 212 (150, 288) <0.001

Highest FiO2 (%) 50 (40, 80) 50 (40, 90) 50 (40, 80) <0.001 50 (40, 100) 60 (40, 100) 50 (40, 80) <0.001

Antibiotic duration (day) 1 (1, 4) 2 (1, 5) 1 (1, 3) <0.001 0 (0, 2) 1 (0, 4) 0 (0, 2) <0.001

CRRT duration (day) 0 (0, 0) 0 (0, 0) 0 (0, 0) <0.001 0 (0, 0) 0 (0, 0) 0 (0, 0) <0.001

IMV duration (day) 1.5 (0.6, 3.7) 1.9 (0.7, 4.4) 1.2 (0.6, 3.2) <0.001 2.0 (1.0, 5.0) 3.0 (2.0, 6.0) 2.0 (1.0, 5.0) <0.001

Urine output (ml/kg/h) 0.6 (0.2, 1.2) 0.5 (0.1, 1.1) 0.7 (0.4, 1.3) <0.001 0.6 (0.3, 1.1) 0.3 (0.1, 0.8) 0.64 (0.3, 1.1) <0.001

Vasopressor used 1 day before

weaning (n, %)

3,882 (77.3) 1,712 (79.3) 2,170 (75.8) 0.004 2,337 (33.0) 511 (54.5) 1,826 (29.7) <0.001

Values are presented as median and interquartile range (IQR); BMI, body mass index; GCS, Glasgow coma scale; WBC, white blood cell count; PaO2, arterial oxygen partial pressure; PaCO2, arterial carbon dioxide partial pressure;

MAP, mean arterial pressure; SPO2, pulse oxygen saturation; PEEP, positive end expiratory pressure; OI, oxygenation index; FIO2, fraction inspired oxygen concentration; CRRT, continuous renal replacement therapy; IMV, invasive

mechanical ventilation.
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model; the performance of the simplified model is shown
in Figure 4 and Table 2. As shown, although the predictive
performance of the simplified model decreased slightly, the
model was greatly simplified. Subsequently, a web-based tool was
developed for clinicians to use a simplified model. The tool can
be accessed at http://49.235.211.121/frontdoc/sepweaning.html.
After submitting the required data, the probability of weaning
was calculated based on the simplified model.

When patients with sepsis are ready to be weaned from
invasive mechanical ventilation, clinicians can make a quick
decision using the SHAP dependency plots. For scenarios that
require precise calculation, the web tool can provide an accurate
probability of successful weaning based on the input indicators.

DISCUSSION

This retrospective analysis included two large study cohorts from
MIMIC-IV and eICU-CRD. First, we compared mortality and
length of ICU stay from WS and WF in patients with sepsis
using an effective balance method. Unfortunately, we found
significant differences in mortality between patients withWS and
WF. Therefore, the XGBoost model and the other five models
were applied and evaluated sequentially to identify the beneficial
factors associated with WS of patients with sepsis in the ICU.
To our knowledge, this is the first study to predict weaning in
patients with sepsis based on extensive public data. The difference
from previous studies is that we developed an integrated machine
learning model with high performance. In addition, we fully
evaluated our model using another equally large public dataset.
Finally, we explained the main variables and described the effects
of their changing trends on weaning.

The matched results showed that there was a significant
difference in the length of stay in the ICU between the WS and
WF groups (Figure 1B, p= 0.002). This trend was not confirmed
in the external validation set (Supplementary Figure 4C).
Nevertheless, successful weaning of patients with sepsis
significantly reduced mortality (Figure 1A, p < 0.001), and
the matched result from the external validation set showed
a similar trend (Supplementary Figure 4B). These results
were comparable to those of previous studies (18). Therefore,
successful weaning is a key factor in improving survival and
potentially shortening ICU stay.

In both the internal validation set and the external validation
set, our model showed excellent reliability and prospective
generalization ability, and the prediction performance
was significantly better than that of the traditional method
(Figure 4C). In the model, the contribution to the prediction
of WS varied with the variables. Previous studies have
shown that the duration of IMV plays an important role
in weaning (19–21). However, because IMV duration is
the strongest variable in our model, the contribution of
IMV duration to these models is inconsistent. We only
included patients with sepsis admitted to the ICU in our
study. Therefore, population diversity could lead to this
difference. Moreover, it was observed that the best IMV duration
was maintained for about 1 day according to the LOWESS
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FIGURE 3 | (A) Distribution of the impacts of each variable on the output of the XGBoost model estimated using the SHAP values. (B) Ranking of variables

importance.

curve (Figure 5A). Other variables with prospective cut-off
values were antibiotic duration (Supplementary Figure 2C),
highest body temperature (Supplementary Figure 2E), highest
heart rate (Supplementary Figure 2F), highest respiratory
rate (Supplementary Figure 3A), and highest PaCO2

(Supplementary Figure 3C). Although these variables have
also been mentioned in previous studies (19, 21, 22), the
trends and specific contributions of these variables have not
been clarified.

In our study, age showed a clear downward trend of
successful weaning ability with increasing value, especially in
patients aged >75 years (Supplementary Figure 2H). This trend
is supported by increasing evidence (19, 23). Interestingly, BMI
and congestive heart failure as low-contributing variables were
proportional to WS probability in our study. This finding is
supported by previous studies (24, 25). However, there is also an
opposite conclusion (19). In a study on viral infections, excessive
BMI may lead to worse clinical outcomes (26). However, in
another study, even a reasonably high BMI can help patients
improve their disease (27). In summary, these differences may
be due to the diversity of the population and the diversity
of diseases.

PEEP, urine output, and SPO2, as the most commonly
measured indices, play a key role in predicting WS. In this
study, a low PEEP strategy was found to be more beneficial
for patients with sepsis weaning from ventilation. Although the
low-level PEEP strategy did not have a significant effect on
improving ventilator weaning in a cohort study (28), it still
has the potential to promote ventilator weaning (29). There is

increasing evidence that high levels of PEEP are a risk factor in
reducing the likelihood of WS (19, 30). As we have considered,
high levels of PEEP lead to lung congestion and increase the
respiratory burden of patients (31), which may explain why
high levels of PEEP play a positive role in the weaning process
(Figure 5B). Urinary output is the primary means for humans to
maintain fluid balance, and excellent fluidmanagement strategies
could significantly improve patient survival (32). Polyuria has
been shown to have no negative impact on weaning (33), but
negative fluid balance significantly impedes weaning success
(34, 35). These findings are consistent with those of the present
study (Figure 5C). The pH was an interesting finding in our
study. As the most important indicator of acid-base balance,
an abnormally high or low pH had a detrimental effect on
weaning in our study. Nevertheless, low pH was more likely to
cause weaning failure (Supplementary Figure 2G). This finding
is consistent with previous studies, as low pH of extracellular fluid
compromises the immune function of the body in patients with
sepsis (36). BE and PaCO2 are indicators closely related to pH.
Early studies have shown that removing PaCO2 from the body
effectively improves the success rate of weaning (37, 38). The
relationship between BE and weaning has not yet been studied.
In any case, extracellular acid-base balance is susceptible to the
interaction of several variables. For the three variables of BE,
PaCO2, and pH, we used an interactive effects plot to explain
the relationship between the three variables. As can be seen in
Supplementary Figure 3, the tendency of these three variables to
predict weaning tended to be consistent, which also shows the
rationality of using this model.
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FIGURE 4 | Receiver operating characteristic curves (ROCs) of the XGBoost, LRM, RF, MLP, SVM, KNN, and simplified model. (A) Internal validation set. (B) External

validation set. (C) Decision curve analysis of the XGBoost and simplified model. (D) Calibration curve of the XGBoost and simplified model. XGBoost, eXtremely

gradient boosting; KNN, KNearest neighbor; MLP, multi-layer perceptron; RF, random forest; SVM, support vector machine; LRM, logistic regression; RSBI, rapid

shallow breathing Index; CROP, compliance, oxygenation, respiratory rate, pressure index.

In clinical practice, weaning should be a medical behavior
that needs careful consideration. Inappropriate weaning may
lead to worsening of disease, higher mortality, longer hospital
stays, and higher hospital costs (7, 39, 40). Therefore, a simple
and effective prediction method is needed. Compared with the
traditional prediction model, our model has better prediction
performance (11, 41). Although some new weaning models have
been proposed in recent years (19, 20, 42, 43), the performance
of the model varies according to the target population. In
patients with sepsis, the developed model was able to predict
weaning well, as reflected by a high AUROC value of 0.80 and
0.86 in the internal and external validation sets, respectively.

Interestingly, the performance of the model was better in
patients with pulmonary infections than in the validation sets
(Supplementary Figure 5). Obviously, the performance of our
model was better in the external validation set. Apart from the
good generalization ability of our model, we believe that the
different data sources could explain this phenomenon, which also
occurs in other studies (44). Finally, we simplified our model
and developed a web-based tool that allows convenient use of
the model.

There are still potential limitations in our research. First,
because of the limitation of the database, other variables
that could have predictive value, such as lactate and central
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FIGURE 5 | SHAP dependency plots of IMV duration (A), highest PEEP level (B), urine output (C), and lowest base excess level (D).

venous pressure, with excessively high error rates, were
not included in the model. Considering the availability of
comprehensive clinical indicators, such as SOFA and SAPS,
were not included in the model, although these indicators
could improve the predictive performance of the model (19,
45, 46). Second, although our model was validated using
data from multiple data sources, we still need additional
data sources to further demonstrate the generalizability of
the model. Third, in our study, the positive predictive value
(PPV) and negative predictive value (NPV) were 0.81, 0.62,
0.79, and 0.77 in the internal and external validation sets,
respectively, which means that the model still has some
degree of false-positive and false-negative rates. More valuable
variables and dynamic prediction models could improve
the performance.

In conclusion, weaning success is independent of short-
term mortality in patients with sepsis. We developed a
prospective model for weaning from invasive mechanical
ventilation using the XGBoost algorithm. This model included
35 conventional clinical variables and proved to be more
interpretable and predictive. In addition, the model was
simplified, and a web-based tool was developed for better
clinical application.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://physionet.org/about/database/.

AUTHOR CONTRIBUTIONS

MY and WL carried out the concepts, design, data acquisition,
and manuscript preparation. GT, ZL, and YZ carried out
literature search and manuscript preparation. WX, JZ, YL, and
TH performed manuscript review, including revision of key
technical content and English expression. All authors have read
and approved the content of the manuscript.

FUNDING

This work is supported by National Natural Science Foundation
of China (Grant No. 82072134).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.814566/full#supplementary-material

Frontiers in Medicine | www.frontiersin.org 9 January 2022 | Volume 8 | Article 814566149

https://physionet.org/about/database/
https://www.frontiersin.org/articles/10.3389/fmed.2021.814566/full#supplementary-material
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Liu et al. Weaning Model for Sepsis Patients

REFERENCES

1. Zilberberg MD, Nathanson BH, Ways J, Shorr AF. Characteristics, hospital

course, and outcomes of patients requiring prolonged acute versus short-term

mechanical ventilation in the United States, 2014-2018. Crit Care Med. (2020)

48:1587–94. doi: 10.1097/CCM.0000000000004525

2. Amoateng-Adjepong Y, Jacob BK, Ahmad M, Manthous CA. The effect of

sepsis on breathing pattern andweaning outcomes in patients recovering from

respiratory failure. Chest. (1997) 112:472–7. doi: 10.1378/chest.112.2.472

3. Nin N, Lorente JA, Fernández-Segoviano P, De Paula M, Ferruelo A, Esteban

A. High-tidal volume ventilation aggravates sepsis-induced multiorgan

dysfunction in a dexamethasone-inhibitable manner. Shock. (2009) 31:429–

34. doi: 10.1097/SHK.0b013e318188b720

4. Wellman TJ, Winkler T, Costa EL, Musch G, Harris RS, Zheng H,

et al. Effect of local tidal lung strain on inflammation in normal and

lipopolysaccharide-exposed sheep∗. Crit Care Med. (2014) 42:e491–500.

doi: 10.1097/CCM.0000000000000346

5. Motta-Ribeiro GC, Hashimoto S, Winkler T, Baron RM, Grogg K, Paula

LFSC, et al. Deterioration of Regional Lung Strain and Inflammation

during Early Lung Injury. Am J Respir Crit Care Med. (2018) 198:891–902.

doi: 10.1164/rccm.201710-2038OC

6. Fernandez-Zamora MD, Gordillo-Brenes A, Banderas-Bravo E, Arboleda-

Sánchez JA, Hinojosa-Pérez R, Aguilar-Alonso E, et al. Prolonged mechanical

ventilation as a predictor of mortality after cardiac surgery. Respir Care. (2018)

63:550–7. doi: 10.4187/respcare.04915

7. Frutos-Vivar F, Esteban A, Apezteguia C, González M, Arabi Y, Restrepo MI,

et al. Outcome of reintubated patients after scheduled extubation. J Crit Care.

(2011) 26:502–9. doi: 10.1016/j.jcrc.2010.12.015

8. Saiphoklang N, Auttajaroon J. Incidence and outcome of weaning from

mechanical ventilation in medical wards at Thammasat University Hospital.

PLoS ONE. (2018) 13:e0205106. doi: 10.1371/journal.pone.0205106

9. Frutos-Vivar F, Ferguson ND, Esteban A, Epstein SK, Arabi Y, Apezteguía

C, et al. Risk factors for extubation failure in patients following

a successful spontaneous breathing trial. Chest. (2006) 130:1664–71.

doi: 10.1378/chest.130.6.1664

10. Sassoon CS, Mahutte CK. Airway occlusion pressure and breathing pattern

as predictors of weaning outcome. Am Rev Respir Dis. (1993) 148:860–6.

doi: 10.1164/ajrccm/148.4_Pt_1.860

11. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome

of trials of weaning from mechanical ventilation. N Engl J Med. (1991)

324:1445–50. doi: 10.1056/NEJM199105233242101

12. Hilbert G, Gruson D, Portel L, Vargas F, Gbikpi-Benissan G, Cardinaud JP.

Airway occlusion pressure at 01 s (P01) after extubation: an early indicator

of postextubation hypercapnic respiratory insufficiency. Intensive Care Med.

(1998) 24:1277–82. doi: 10.1007/s001340050762

13. Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in

patients who fail a trial of weaning from mechanical ventilation. Am J Respir

Crit Care Med. (1997) 155:906–15. doi: 10.1164/ajrccm.155.3.9117025

14. Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G.

Transthoracic Echocardiography with Doppler Tissue Imaging predicts

weaning failure from mechanical ventilation: evolution of the left

ventricle relaxation rate during a spontaneous breathing trial is the key

factor in weaning outcome. Crit Care. (2012) 16:R81. doi: 10.1186/cc

11339

15. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman

CS, et al. Developing a new definition and assessing new clinical criteria

for septic shock: for the third international consensus definitions

for sepsis and septic shock (Sepsis-3). JAMA. (2016) 315:775–87.

doi: 10.1001/jama.2016.0289

16. Schönhofer B, Geiseler J, Dellweg D, Fuchs H, Moerer O, Weber-Carstens S,

et al. Prolonged weaning: S2k guideline published by the German Respiratory

Society. Respiration. (2020) 2020:1-102. doi: 10.1159/000510085

17. Robins J. A new approach to causal inference in mortality studies

with a sustained exposure period—application to control of the

healthy worker survivor effect. Math Model. (1986) 7:1393–512.

doi: 10.1016/0270-0255(86)90088-6

18. Yang CH, Hsiao JL, Wu MF, Lu MH, Chang HM, Ko WS, et al. The

declined levels of inflammatory cytokines related with weaning rate during

period of septic patients using ventilators. Clin Respir J. (2018) 12:772–8.

doi: 10.1111/crj.12593

19. Zhao QY, Wang H, Luo JC, Luo MH, Liu LP, Yu SJ, et al. Development

and validation of a machine-learning model for prediction of

extubation failure in intensive care units. Front Med. (2021) 8:676343.

doi: 10.3389/fmed.2021.676343

20. Goel N, Chakraborty M, Watkins WJ, Banerjee S. Predicting extubation

outcomes-a model incorporating heart rate characteristics index. J Pediatr.

(2018) 195:53–58.e1. doi: 10.1016/j.jpeds.2017.11.037

21. Thille AW, Boissier F, Ben Ghezala H, Razazi K, Mekontso-Dessap A, Brun-

Buisson C. Risk factors for and prediction by caregivers of extubation failure

in ICU patients: a prospective study. Crit Care Med. (2015) 43:613–20.

doi: 10.1097/CCM.0000000000000748

22. Minozzi S, Pifferi S, Brazzi L, Pecoraro V, Montrucchio G, D’Amico R. Topical

antibiotic prophylaxis to reduce respiratory tract infections and mortality in

adults receiving mechanical ventilation. Cochrane Database Syst Rev. (2021)

1:CD000022. doi: 10.1002/14651858.CD000022.pub4

23. Warnke C, Heine A, Müller-Heinrich A, Knaak C, Friesecke S, Obst A, et al.

Predictors of survival after prolonged weaning from mechanical ventilation. J

Crit Care. (2020) 60:212–7. doi: 10.1016/j.jcrc.2020.08.010

24. Keng LT, Liang SK, Tseng CP, Wen YF, Tsou PH, Chang CH, et al. Functional

status after pulmonary rehabilitation as a predictor of weaning success and

survival in patients requiring prolonged mechanical ventilation. Front Med.

(2021) 8:675103. doi: 10.3389/fmed.2021.675103

25. Nguyen Q, Coghlan K, Hong Y, Nagendran J, MacArthur R, Lam W.

Factors associated with early extubation after cardiac surgery: a retrospective

single-center experience. J Cardiothorac Vasc Anesth. (2021) 35:1964–70.

doi: 10.1053/j.jvca.2020.11.051

26. Chand S, Kapoor S, Orsi D, Fazzari M, Tanner T, Umeh G, et al. COVID-19-

associated critical illness-report of the first 300 patients admitted to intensive

care units at a New York City Medical Center. J Intensive Care Med. (2020)

35:963–70. doi: 10.1177/0885066620946692

27. Sakr Y, Alhussami I, Nanchal R, Wunderink RG, Pellis T, Wittebole X, et al.

Being overweight is associated with greater survival in ICU patients: results

from the intensive care over nations audit. Crit Care Med. (2015) 43:2623–32.

doi: 10.1097/CCM.0000000000001310

28. Zhao H, Su L, Ding X, Chen H, Zhang H, Wang J, et al. The risk factors

for weaning failure of mechanically ventilated patients with COVID-19:

a retrospective study in national medical team work. Front Med. (2021)

8:678157. doi: 10.3389/fmed.2021.678157

29. Writing Committee and Steering Committee for the RELAx Collaborative

Group, Algera AG, Pisani L, Serpa Neto A, den Boer SS, Bosch FFH, et al.

Effect of a lower vs higher positive end-expiratory pressure strategy on

ventilator-free days in ICU patients without ARDS: a randomized clinical trial.

JAMA. (2020) 324:2509–20. doi: 10.1001/jama.2020.23517

30. Ionescu F, Zimmer MS, Petrescu I, Castillo E, Bozyk P, Abbas A, et al.

Extubation failure in critically ill COVID-19 patients: risk factors and

impact on in-hospital mortality. J Intensive Care Med. (2021) 36:1018–24.

doi: 10.1177/08850666211020281

31. Retamal J, Bugedo G, Larsson A, Bruhn A. High PEEP levels are associated

with overdistension and tidal recruitment/derecruitment in ARDS patients.

Acta Anaesthesiol Scand. (2015) 59:1161–9. doi: 10.1111/aas.12563

32. Zhang Z, Zheng B, Liu N. Individualized fluid administration for critically ill

patients with sepsis with an interpretable dynamic treatment regimen model.

Sci Rep. (2020) 10:17874. doi: 10.1038/s41598-020-74906-z

33. Aliyali M, Sharifpour A, Abedi S, Spahbodi F, Namarian N, Zarea A, et al.

The ability of polyuria in prediction of weaning outcome in critically ill

mechanically ventilated patients. Tanaffos. (2019) 18:74–8.

34. Maezawa S, Kudo D, Miyagawa N, Yamanouchi S, Kushimoto S. Association

of body weight change and fluid balance with extubation failure in intensive

care unit patients: a single-center observational study. J Intensive Care Med.

(2021) 36:175–81. doi: 10.1177/0885066619887694

35. Lin MY, Li CC, Lin PH, Wang JL, Chan MC, Wu CL, et al. Explainable

machine learning to predict successful weaning among patients requiring

prolonged mechanical ventilation: a retrospective cohort study in Central

Taiwan. Front Med. (2021) 8:663739. doi: 10.3389/fmed.2021.663739

36. Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol.

(2001) 69:522-30. doi: 10.1189/jlb.69.4.522

Frontiers in Medicine | www.frontiersin.org 10 January 2022 | Volume 8 | Article 814566150

https://doi.org/10.1097/CCM.0000000000004525
https://doi.org/10.1378/chest.112.2.472
https://doi.org/10.1097/SHK.0b013e318188b720
https://doi.org/10.1097/CCM.0000000000000346
https://doi.org/10.1164/rccm.201710-2038OC
https://doi.org/10.4187/respcare.04915
https://doi.org/10.1016/j.jcrc.2010.12.015
https://doi.org/10.1371/journal.pone.0205106
https://doi.org/10.1378/chest.130.6.1664
https://doi.org/10.1164/ajrccm/148.4_Pt_1.860
https://doi.org/10.1056/NEJM199105233242101
https://doi.org/10.1007/s001340050762
https://doi.org/10.1164/ajrccm.155.3.9117025
https://doi.org/10.1186/cc11339
https://doi.org/10.1001/jama.2016.0289
https://doi.org/10.1159/000510085
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1111/crj.12593
https://doi.org/10.3389/fmed.2021.676343
https://doi.org/10.1016/j.jpeds.2017.11.037
https://doi.org/10.1097/CCM.0000000000000748
https://doi.org/10.1002/14651858.CD000022.pub4
https://doi.org/10.1016/j.jcrc.2020.08.010
https://doi.org/10.3389/fmed.2021.675103
https://doi.org/10.1053/j.jvca.2020.11.051
https://doi.org/10.1177/0885066620946692
https://doi.org/10.1097/CCM.0000000000001310
https://doi.org/10.3389/fmed.2021.678157
https://doi.org/10.1001/jama.2020.23517
https://doi.org/10.1177/08850666211020281
https://doi.org/10.1111/aas.12563
https://doi.org/10.1038/s41598-020-74906-z
https://doi.org/10.1177/0885066619887694
https://doi.org/10.3389/fmed.2021.663739
https://doi.org/10.1189/jlb.69.4.522
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Liu et al. Weaning Model for Sepsis Patients

37. Abrams DC, Brenner K, Burkart KM, Agerstrand CL, Thomashow BM,

Bacchetta M, et al. Pilot study of extracorporeal carbon dioxide removal

to facilitate extubation and ambulation in exacerbations of chronic

obstructive pulmonary disease. Ann Am Thorac Soc. (2013) 10:307–14.

doi: 10.1513/AnnalsATS.201301-021OC

38. Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S,

et al. The feasibility and safety of extracorporeal carbon dioxide removal

to avoid intubation in patients with COPD unresponsive to noninvasive

ventilation for acute hypercapnic respiratory failure (ECLAIR study):

multicentre case-control study. Intensive Care Med. (2016) 42:1437–44.

doi: 10.1007/s00134-016-4452-y

39. Thille AW, Harrois A, Schortgen F, Brun-Buisson C, Brochard L. Outcomes

of extubation failure in medical intensive care unit patients. Crit Care Med.

(2011) 39:2612–8. doi: 10.1097/CCM.0b013e3182282a5a

40. Perren A, Previsdomini M, Llamas M, Cerutti B, Györik S, Merlani G,

et al. Patients’ prediction of extubation success. Intensive Care Med. (2010)

36:2045–52. doi: 10.1007/s00134-010-1984-4

41. Hendra KP, Bonis PA, Joyce-Brady M. Development and prospective

validation of a model for predicting weaning in chronic ventilator

dependent patients. BMC Pulm Med. (2003) 3:3. doi: 10.1186/1471-24

66-3-3

42. Vassilakopoulos T, Routsi C, Sotiropoulou C, Bitsakou C, Stanopoulos I,

Roussos C, et al. The combination of the load/force balance and the

frequency/tidal volume can predict weaning outcome. Intensive Care Med.

(2006) 32:684–91. doi: 10.1007/s00134-006-0104-y

43. Jia Y, Kaul C, Lawton T, Murray-Smith R, Habli I. Prediction of

weaning from mechanical ventilation using convolutional neural

networks. Artif Intell Med. (2021) 117:102087. doi: 10.1016/j.artmed.2021.

102087

44. Chen Y, Jiang S, Lu Z, Xue D, Xia L, Lu J, et al. Development and verification

of a nomogram for prediction of recurrence-free survival in clear cell renal cell

carcinoma. J Cell Mol Med. (2020) 24:1245–55. doi: 10.1111/jcmm.14748

45. Brix N, Sellmer A, Jensen MS, Pedersen LV, Henriksen TB. Predictors for an

unsuccessful INtubation-SURfactant-Extubation procedure: a cohort study.

BMC Pediatr. (2014) 14:155. doi: 10.1186/1471-2431-14-155

46. Jaber S, Quintard H, Cinotti R, Asehnoune K, Arnal JM, Guitton C, et al.

Risk factors and outcomes for airway failure versus non-airway failure in

the intensive care unit: a multicenter observational study of 1514 extubation

procedures. Crit Care. (2018) 22:236. doi: 10.1186/s13054-018-2150-6

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Liu, Tao, Zhang, Xiao, Zhang, Liu, Lu, Hua and Yang. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 11 January 2022 | Volume 8 | Article 814566151

https://doi.org/10.1513/AnnalsATS.201301-021OC
https://doi.org/10.1007/s00134-016-4452-y
https://doi.org/10.1097/CCM.0b013e3182282a5a
https://doi.org/10.1007/s00134-010-1984-4
https://doi.org/10.1186/1471-2466-3-3
https://doi.org/10.1007/s00134-006-0104-y
https://doi.org/10.1016/j.artmed.2021.102087
https://doi.org/10.1111/jcmm.14748
https://doi.org/10.1186/1471-2431-14-155
https://doi.org/10.1186/s13054-018-2150-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


ORIGINAL RESEARCH
published: 31 January 2022

doi: 10.3389/fmed.2021.813640

Frontiers in Medicine | www.frontiersin.org 1 January 2022 | Volume 8 | Article 813640

Edited by:

Zhongheng Zhang,

Sir Run Run Shaw Hospital, China

Reviewed by:

Songqiao Liu,

Southeast University, China

Ming Zhong,

Fudan University, China

*Correspondence:

Wen Li

ciwenzi@sina.com

Yuxiao Deng

dengyuxiao@renji.com

Yuan Gao

rj_gaoyuan@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Intensive Care Medicine and

Anesthesiology,

a section of the journal

Frontiers in Medicine

Received: 12 November 2021

Accepted: 28 December 2021

Published: 31 January 2022

Citation:

Li Z, Qin S, Chen C, Mei S, Yao Y,

Zhao Z, Li W, Deng Y and Gao Y

(2022) Emerging Trends and Hot

Spots of Electrical Impedance

Tomography Applications in Clinical

Lung Monitoring.

Front. Med. 8:813640.

doi: 10.3389/fmed.2021.813640

Emerging Trends and Hot Spots of
Electrical Impedance Tomography
Applications in Clinical Lung
Monitoring

Zhe Li 1†, Shaojie Qin 1†, Chen Chen 1, Shuya Mei 1, Yulong Yao 1, Zhanqi Zhao 2,3, Wen Li 1*,

Yuxiao Deng 1* and Yuan Gao 1*

1Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
2Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China, 3 Institute of Technical Medicine,

Furtwangen University, Villingen-Schwenningen, Germany

Objective: This study explores the emerging trends and hot topics concerning

applications on electrical impedance tomography (EIT) in clinical lung monitoring.

Methods: Publications on EIT applications in clinical lung monitoring in 2001–2021 were

extracted from the Web of Science Core Collection (WoSCC). The search strategy was

“electrical impedance tomography” and “lung.” CiteSpace, a VOS viewer was used to

study the citation characteristics, cooperation, and keyword co-occurrence. Moreover,

co-cited reference clustering, structural variation analysis (SVA), and future research

trends were presented.

Results: Six hundred and thirty-six publications were included for the final analysis. The

global annual publications on clinical lung monitoring gradually increased in the last two

decades. Germany contributes 32.2% of total global publications. University Medical

Center Schleswig-Holstein (84 publications, cited frequency 2,205), Physiological

Measurement (105 publications, cited frequency 2,056), and Inéz Frerichs (116 articles,

cited frequency 3,609) were the institution, journal, and author with the largest

number of article citations in the research field. “Electrical impedance tomography”

(occurrences, 304), “mechanical ventilation” (occurrences, 99), and “acute respiratory

distress syndrome” (occurrences, 67) were the top most three frequent keywords,

“noninvasive monitoring” (Avg, pub, year: 2008.17), and “extracorporeal membrane

oxygenation” (Avg, pub, year: 2019.60) were the earliest and latest keywords. The

keywords “electrical impedance tomography” (strength 7.88) and co-cited reference

“Frerichs I, 2017, THORAX” (strength 47.45) had the highest burst value. “Driving

pressure,” “respiratory failure,” and “titration” are the three keywords still maintaining a

high brush value until now. The largest and smallest cluster of the co-cited references

are “obstructive lung diseases” (#0, size: 97) and “lung perfusion” (#20, size: 5). Co-

cited reference “Frerichs I, 2017, THORAX” (modularity change rate: 98.49) has the

highest structural variability. Categories with most and least interdisciplinary crossing are

“ENGINEERING” and “CRITICAL CARE MEDICINE.”
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Conclusions: EIT is a valuable technology for clinical lung monitoring, gradually

converting from imaging techniques to the clinic. Research hot spots may continue

monitoring techniques, the ventilation distribution of acute respiratory distress syndrome

(ARDS), and respiratory therapy strategies. More diversified lung function monitoring

studies, such as lung perfusion and interdisciplinary crossing, are potentially emerging

research trends.

Keywords: bibliometric analysis, EIT, lung, ARDS, hotspot

INTRODUCTION

Electrical impedance tomography (EIT) is a non-invasive,
radiation-free functional imaging technology invented over three
decades ago, with the real-time application of monitoring
global and regional lung function and ventilation distribution
at the bedside (1). Recently, in the development of evidence-
based medicine, a growing number of studies have confirmed
that EIT is a useful tool in optimizing individual ventilator
parameters, improving gas exchange, increasing oxygen levels,
and decreasing ventilator-induced lung injury in respiratory
failure (2–4). Clinical trials have reported that patients with acute
respiratory distress syndrome (ARDS) could benefit from EIT-
guided respiratory therapy (5, 6). With the clinical experience
and the progress of clinical studies, topics regarding EIT
clinical applications have been presented in different professional
journals and scientific conferences. Much more attention has
been given to the clinical applications of EIT. An intuitive
overview and explicit research trends of clinical applications
of EIT are beneficial for researchers to improve knowledge
uptake, identify scientific advances, hot spots, research trends,
and cooperative relationships as well as promote interdisciplinary
cooperation. However, the studies that show the emerging
trends and hot spots of publications in the field have not
been reported.

A bibliometric analysis analyzes research publications based
on big data and artificial intelligence (AI) (7). Research
publications play an essential role in transmitting the process
information of scientific development in a certain research
field. AI has an innate advantage in dealing with huge
amounts of data, e.g., enormous publications, and is more
convenient in interpreting different quantitative rules in the
network world. Therefore, a bibliometric analysis is used to
evaluate contributions to a research field, including those by
countries, institutions, authors, and journals (8). With the
continuous improvement in the performance and effect of
machine learning, AI has promoted the upgrading of bibliometric
technology going deeper into investigation hot spots and research
trends (9).

To explore the current status, emerging trends, and hot
spots of EIT in clinical applications, a bibliometric analysis was
conducted on the topic for the past two decades. This study helps
researchers identify the most significant and impactful articles
that highlight the characteristics of EIT application in clinical
lung monitoring, and provide valuable insights into the most
noteworthy research landscape, and forecast future work.

METHODS

Data Sources and Search Strategies
The Web of Science (WoS) database, which has a rich collection
of scientific literature, is commonly chosen for bibliometric
analysis. In this study, all data were retrieved from the Web
of Science Core Collection (WoSCC). The search strategy
was TS = (“electrical impedance tomography”) AND (“lung”),
Time window: January 1, 2001, to May 29, 2021, Publication
type: “Article,” “Review,” and “Letter,” Language: English. All
investigators collected the literature on May 29, 2021, to avoid
database update bias.

Data Collection
Two investigators (QSJ and LZ) independently extracted all
data, including publications, author, title, abstract, keywords,
source, language, citation. Publications less relevant to clinical
applications are defined as studies and reviews based on image
processing, algorithm, equipment assembly not limited to the
electrode, and belt optimization or exploring the monitoring of
other biological directions. The data were saved in a text and a
UTF-8 format from theWoS core collection and saved for further
software analysis.

Bibliometric Analysis
WoS Core Database Output Analysis
The intrinsic functions of the WoS core database and Microsoft
Excel (version Microsoft 365) were used to describe the features
of the publications, including the total number of literature,
annual, national, institutional, individual article counts, research
field distributions, and top-cited literature.

Network Analysis
Our data were imported into the bibliometric analysis software
VOS (VOS viewer 1.6.16, Leiden University, Leiden, the
Netherlands) or CiteSpace 5.7R5 (Chen Meichao, Drexel
University) using a UTF-8 or a text format for network analysis.
VOS finished top citations, coauthorship, co-occurrence analysis
of authors, institutions, countries, keywords, and other factors.
The numbers of documents and citations and the strength of the
links were recorded and visually rendered with corresponding
symbol color and line weight. The reference cluster analysis,
citation bursts, and timeline view analysis, structural variation
analysis (SVA), category co-occurrence analysis, etc., were
finished using CiteSpace. Cluster type, size, strength timeline,
and landmark literature were analyzed and visual rendering with
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FIGURE 1 | Flow chart of included publications. WoSC, Web of science center.

corresponding image features (10). Keyword timeline view and
keyword strongest citation burst analysis were conducted to show
the topic’s time scale and strength. The SVA was conducted to
show landmark literature’s contribution to this field. The category
analysis was used to evaluate disciplinary cooperation.

RESULTS

Bibliometric Analysis of Publication Output
Following the retrieval strategy, 1,068 publications were
identified and further screened. Finally, 636 research articles,
reviews, and letters published in English on EIT applications in
clinical lung monitoring were analyzed, and 432 publications
were excluded (Figure 1).

Growth Trend of Publications and Global
Cooperation
The literature counts between 2001 and 2020 illustrated
the growth trend and global geographic distribution of

publications in the field. Following the WoSCC database,
48 countries contributed to publications on EIT related to
clinical lung monitoring. The global and top 10 countries
in publications are indicated in Figure 2A. Overall, the
annual EIT global publication number is increasing.
Germany contributed the largest number of publications
and has the most active cooperation on EIT applications
in clinical lung monitoring studies with other countries
(Figure 2B). Global national cooperation and countries
collaborating most with Germany were indicated in
Supplementary Figure 1.

Analysis of Top Publications and Reference
Articles
The ranking of the top 10 institutions, journals, authors of
publications, and reference articles cited using EIT clinical lung
monitoring publications is indicated in Table 1. Universities
and their affiliated hospitals are the primary institution
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FIGURE 2 | The number of annual publications, growth trends (A), and country coauthorship analysis (B) of global and top 10 countries on electrical impedance

tomography (EIT) applications in clinical lung monitoring research from 2001 to May 29, 2021. (A) The gray line indicated the trend of the annual world publication

number. The color indicated different countries. The width of the color plate indicated the annual publication number of each country. (B) The color indicated

countries; color plate size indicated the number of publications; the thickness of lines indicated linkage strength.

TABLE 1 | The top 10 institutions, journals, authors of publications, and reference articles on electrical impedance tomography (EIT) lung monitoring.

Rank Institution Publications Citations Journal Publications Citations Author Publications Citations Cited

reference

Citations

1 Univ Med Ctr

Schleswig

Holstein

84 2,205 Physiol Meas 105 2,056 Frerichs, I 116 3,609 Victorino JA,

2004, AM J

RESP CRIT

CARE (11)##

196

2 Univ São Paulo 49 2,061 Intens Care

Med

31 1,723 Zhao, ZQ 43 896 FrerichsI, 2017,

THORAX (12)*

147

3 Univ Milan 37 803 Crit Care Med 23 1,115 Adler, A 34 1,113 Frerichs I,

2002, J APPL

PHYSIOL (13)#

138

4 Furtwangn

Univ

57 1,000 Crit Care 33 784 Leonhardt, S 28 814 Adler A, 2009,

PHYSIOL

MEAS (14)*

109

5 RWTH Aachen

Univ

35 1,044 Curr Opin Crit

Care

22 625 Tingay, D 27 628 Zhao ZQ, 2009,

INTENS CARE

MED (15)##

98

6 Royal

Childrens

Hospi

32 662 J Appl Physiol 18 586 Weiler, N 25 991 Meier T, 2008,

INTENS CARE

MED (16)#

95

7 Carleton Univ 38 1,152 Acta Anaesth

Scand

25 360 Mauri, T 23 839 Frerichs I,

2000, Physiol

Meas (17)*

94

8 Univ

Melbourne

31 440 Resp Care 18 287 Amato, M 21 1,297 Hinz j, 2003,

CHEST (18)#
92

9 Fourth mil Med

Univ

30 134 PLoS ONE 17 162 Schibler, A 20 666 Brower RG,

2000, New Engl

J Med (19)##

89

10 Murdoch

Childrens Res

Inst

29 602 Am J Resp

Crit Care

16 1,128 Moeller, K 35 554 Frerichs I, 2006,

Am J Resp Crit

Care (20)#

86

Cited reference: the references articles of publications on EIT applications in clinical lung monitoring involved in the analysis.

*Review.
#Animal research.
##Clinical research.
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FIGURE 3 | The keyword co-occurrence network and overlay analysis on EIT lung monitoring research from 2001 to May 29, 2021. (A) Network visualization of the

keyword co-occurrence. (B) Overlay visualization of keyword co-occurrence. The color indicated various clusters (A) and the average publication year (B). The circle

size indicated the number of occurrences, and the thickness of lines indicated the linkage strength. The color indicated the average publication year of keywords.

Circle size indicated the number of occurrences; the thickness of lines indicated the strength of the linkage. The distance between circles indicated their relationship.

types contributed to publications in our research field. The
department of University Medical Center Schleswig-Holstein
(Univ Med Ctr Schleswig-Holstein) (publications: 84 and
citing frequency: 2,205) owns most publications, Furtwangen
University (Furtwangen Univ) (publications: 57 and citing
frequency: 1,000) and University of São Paulo (Univ São
Paulo) (publications: 49 and citing frequency: 2,061) ranked
the second and third. Fourth Military Medical University
(Fourth mil Med Univ) (publications: 30 and citing frequency:
134) ranked ninth and was the only Chinese institution to
enter the top ten. Close cooperation can be observed in most
productive and cited institutions (Supplementary Figure 1). The
journal of Physiological Measurement (PHYSIOL MEAS) (105
publications, cited frequency 2,056), Critical Care (CRIT CARE)
(33 publications, cited frequency 784), Intensive Care Medicine
(INTENS CARE MED) (31 publications, cited frequency
1,723), Acta Anaesthesiologica Scandinavica (ACTA ANAESTH
SCAND; 25 publications, cited frequency 360), and Critical
Care Medicine (CRIT CARE MED; 23 publications, cited
frequency 1,115) had the top five numbers of EIT publications
in lung monitoring. Three of them are critical care-specialized
journals. Inéz Frerichs (Frerichs, I; 116 publications, cited
frequency 3,609) published most publications in the research
field, followed by Zhao Zhanqi (Zhao ZQ; 43 publications, cited
frequency 896), and Andy Adler (Adler A; 34 publications,
cited frequency 1,113). Frerichs owned the largest author
cooperative relationships as the most productive author.
Furthermore, active cooperation could be found between high
publishing and cited authors (Supplementary Figure 1). The
top 10 most cited reference articles consisted of three reviews,
four animal studies, and three clinical studies, “Victorino JA,
2004, AM J RESP CRIT CARE” (cited frequency 196), a
clinical study, was a reference article with the most cited
frequency (11).

TABLE 2 | Top 10 highly frequent keywords from the included publications on EIT

lung monitoring (n = 100).

Rank Keyword Occurrences Total link strengths

1 Electrical impedance tomography 304 557

2 Mechanical ventilation 99 259

3 Acute respiratory distress syndrome 67 188

4 Positive end-expiratory pressure 38 116

5 Ventilation distribution 35 89

6 Image reconstruction 19 48

7 Infant 19 56

8 Lung recruitment 16 49

9 Ventilator-induced lung injury 14 39

10 Cystic fibrosis 12 22

Bibliometric Analysis of Keyword
Co-occurrence and Topic Trends
Keyword Co-occurrence Network and Overlay

Analysis
One thousand two hundred keywords were identified from the
included articles. A total of 100 keywords that occurred five
or more times were defined as high-frequency keywords and
enrolled in a co-occurrence network and overlay analysis. The
keywords co-occurred in 10 clusters, 1,578 links, and 3,560 total
link strengths (Figure 3A). “EIT” (occurrences, 304; total link
strengths, 557) takes the top of highly frequency keyword, with
a strong co-occurrence to “mechanical ventilation” (occurrences,
99; link strengths with EIT, 46), “acute respiratory distress
syndrome” (occurrences, 67; link strengths with EIT, 40), “acute
lung injury” (occurrences, 42; link strengths with EIT, 22),
and “positive end-expiratory pressure (PEEP)” (occurrences, 38;
link strengths with EIT, 19). The next top four high-frequency
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TABLE 3 | The top 10 earliest and latest keywords of included publications on EIT lung monitoring (n = 100).

Earliest Latest

Rank Keyword Occurrences Avg, pub, year Keyword Occurrences Avg, pub, year

1 Non-invasive monitoring 6 2008.17 Extracorporeal membrane oxygenation 5 2019.60

2 Pulmonary edema 5 2008.60 Obesity 5 2019.00

3 Intensive care unit 5 2009.60 Lung perfusion 6 2017.67

4 Regional lung ventilation 11 2011.00 High-flow nasal cannula 6 2017.33

5 Premature infant 5 2011.40 Overdistention 6 2017.33

6 Diagnostic imaging 8 2011.75 Pulmonary function testing 5 2017.20

7 Regularization 6 2011.83 Transpulmonary pressure 6 2017.17

8 Regional ventilation 11 2011.91 peep 13 2017.00

9 Ventilation distribution 35 2012.03 Acute respiratory distress syndrome 5 2017.00

10 Lung impedance 7 2012.14 General anesthesia 5 2017.00

Avg, pub, year: Average co-occurrence year (to the nearest 2 decimal place).

keywords were “mechanical ventilation” (occurrences, 99; total
link strength, 259), “acute respiratory distress syndrome”
(occurrences, 67; total link strength, 188), “PEEP” (occurrences,
38; total link strength, 116), and “ventilation distribution”
(occurrences, 35; total link strength, 89). The top ten highly
frequent keywords are ranked in Table 2.

The overlay analysis of the keywords representing the topic
trends of EIT applications in clinical lung monitoring. The
color distribution of keywords in the overlay visual map
showed different periods (Figure 3B). The top 10 earliest
and latest keywords are summarized in Table 3. “Noninvasive
monitoring” (blue, occurrences 6, Avg, pub, year: 2008.17)
was the earliest co-occurrence keyword, and “extracorporeal
membrane oxygenation” (yellow, occurrences 5, Avg, pub, year:
2019.60) was the latest keyword (Supplementary Figure 2).
“Ventilation distribution” (occurrences, 35; Avg, pub, year,
2012.03) had the highest co-occurrence frequency in the earliest
keywords, and “PEEP” (occurrences, 13; Avg, pub, year, 2017.00)
had the highest co-occurrence frequency in the latest keywords.

Keyword Burst Value Analysis
The keyword burst value analysis identified the hot spot
keywords that have attracted the attention of peer investigators
within a certain period. The top 25 keywords with the
strongest burst value are summarized in Figure 4. During
the entire period from 2003 to 2021, “electrical impedance
tomography” (strength 7.88) had the highest burst strength,
followed by “derecruitment” (strength 7.06), “monitoring”
(strength 6.49), “mortality” (strength 6.1), and “functional
EIT” (strength 5.55). Separately in 2001–2017, keywords about
ventilation distribution monitoring device including “EIT,”
“derecruitment,” “monitoring,” “bedside” (strength 5.27), and
“spatial distribution” (strength 5.18) were strongly concerned,
and in 2017–2021, keywords about ventilation injury and
strategy, such as “protective ventilation” (strength 5.37),
“titration” (strength 5.46), “transpulmonary pressure” (strength
5.18), “driving pressure” (strength 3.67), and induced “lung
injury” (strength 4) were strongly cited. The keywords that still
maintained a high brush value until now are “driving pressure,”

“respiratory failure” (strength 3.66), and “titration” (strength
5.46), which may be the recent hot spot topics of investigators.

Bibliometric Analysis of Co-cited
Reference Analysis
Co-cited Reference Clustering and Time Evolution

Analysis
The co-cited reference clustering report exhibited a completely
mean silhouette of 0.87 and a whole modularity Q score
of 0.76, indicating that the clustering effect is efficient and
convincing and the features and definition of every subdomain
were distinct. Within the analysis, publications on EIT lung
monitoring research were divided into 20 clusters (Figure 5),
a vertically descending order showed cluster size, and cluster
labels were obtained using the log-likelihood ratio (LLR) and
mutual information (MI). The largest cluster is “obstructive
lung diseases” (#0, size: 97) and the smallest cluster is “lung
perfusion” (#20, size: 5). The next five largest clusters are “lung
collapse” (#1, size: 94), “regional lung volume” (#2, size: 81),
“acute hypoxemic respiratory failure” (#3, size: 72), “spontaneous
effort” (#4, size: 66), and “increasing PEEP” (#5, size: 52). The
large six clusters are summarized in Supplementary Table 1.
Co-cited reference time evolution analysis shows that in the
largest six clusters, “lung collapse” (1#), “regional lung volume
change” (2#), and “increasing PEEP” (3#) were highly cited before
2010. “Obstructive lung disease” (0#), “regional lung volume
change” (3#), and “acute hypoxemic respiratory failure” (4#) are
highly cited since 2010 and kept as citation hotspot until now.
Interestingly, despite the Q score, our result showed the two
clusters (#6, #11) labeled as “Preterm lambs” using LLR.

Co-cited Reference Burst Value and SVA
The top 25 co-cited references with the strongest burst value
on EIT applications in clinical lung monitoring from 2001 to
2020 are summarized in Figure 6. Top co-cited references are
mostly from the specialty journals of respiratory and critical
care, eight animal studies, seven reviews, and 10 clinical studies
were included, and references began to burst since 2003, the
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FIGURE 4 | The top 25 keywords with the strongest burst value on EIT applications in clinical lung monitoring research from 2001 to May 29, 2021. The dark blue bar

showed that the years in which keywords received slight increases in co-occurrence, the red bar indicates that co-occurrence rose sharply.

publication “Frerichs I, 2017, THORAX” (12) (strength 47.45)
had the highest burst strength, next four references with the
burst strength above 15 were “Victorino JA, 2004, AM J RESP
CRIT CARE” (11) (strength 25.04), “Meier T, 2008, INTENS
CARE MED” (16) (strength 20.33), “Frerichs I, 2002, J APPL
PHYSIOL” (13) (strength 16.29), and “Costa ELV, 2009, INTENS
CARE MED” (21) (strength 15.82). The average duration of the
burst value lasts for 3–4 years, “Amato MBP, 2015. NEW ENGL
J MED” (22) (strength 11.25, 2016–2021) is the only reference
with a burst duration of more than 5 years and is still highly cited
today with the other three literature “Frerichs I, 2017, THORAX”
(12) (strength 47.45, 2017–2021), “Bellani G, 2016, JAMA-J AM

MED ASSOC” (strength 10.2, 2017–2021) (23), and “Spadaro
S, 2018, CRIT CARE” (24) (strength 9.31, 2019–2021). Co-cited
reference burst value analysis showed the publications that are
highly frequently cited in a specific period imply rising research
interests of the topic of these publications.

To identify the capacity of cited references to make
extraordinary or unexpected connections across distinct clusters
and detect the potential landmark studies in the EIT research
field, the SVAwas conducted. The top five structurally variational
references are listed in Table 4. The clustering and clustering
time evolution situations of these articles are marked in Figure 7.
The publication with the highest modularity change rate in our
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FIGURE 5 | The co-cited reference clustering and time evolution analysis on EIT applications in clinical lung monitoring research from 2001 to May 29, 2021. (A)

Co-cited reference network clustering analysis. The color indicates the publication year. The descending order vertically indicated cluster size. The line thickness

indicated the strength of linkage. (B) The co-cited reference time evolution analysis. The color indicates the publication year. The colored curves represent co-citation

links added in the year of the corresponding color. The large-sized nodes indicated they are either highly cited or have citation bursts or both. The descending order

vertically indicated cluster size. The publication year is indicated above the map.

data set is “Frerichs I, 2017, THORAX” (12) (the modularity
change rate: 98.49; cited frequency: 147), spanning three clusters:
“obstructive lung diseases” (#1), “acute hypoxemic respiratory
failure” (#3), and “spontaneous effort” (#4). “Leonhardt S, 2012,
INTENS CARE MED” (26) (the modularity change rate: 95.06;
cited frequency: 96); “Adler A, 2012, PHYSIOL MEAS” (25) (the

modularity change rate: 93.82; cited frequency: 108) spanning
the same clusters “pediatric respiratory diseases” (#10) and #1
“lung collapse” (#1) took the second and third place. Three of
the top five structural variational references were review articles,
among them “Leonhardt S, 2012, INTENS CARE MED” (26),
a review summary of the state-of-the-art in EIT for ventilation
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FIGURE 6 | The top 25 cited references with the strongest burst value on EIT applications in clinical lung monitoring research from 2001 to May 29, 2021. The dark

blue bar indicated the years in which keywords slightly increased as a co-occurrence. In contrast, the red bar shows that co-occurrence rises sharply. *Review,
#Animal research, and ##Clinical research.

TABLE 4 | The top five co-cited references with the strongest structural variation value.

Title Publication

type

Author Publication

year

Journal Modularity

change rate

Citations Cluster

linkage

Centrality

divergence

Chest electrical impedance tomography

examination data analysis terminology

clinical use and recommendations:

consensus statement of the TRanslational

EIT developmeNt stuDy group*

Review Frerichs I 2017 Thorax 98.49 147 0.73 0.16

Electrical impedance tomography: the holy

grail of ventilation and perfusion

monitoring?*

Review Leonhardt S 2012 Intens Care

Med

95.06 96 0.03 0.82

Whither lung EIT: Where are we where do

we want to go and what do we need to

get there?*

Review Adler A 2012 Physiol Meas 93.82 108 3.75 0.59

Detection of local lung air content by

electrical impedance tomography

compared with electron beam CT#

Original Article Frerichs I 2002 J Appl

Physiol

90.68 138 67.04 0.35

Imbalances in regional lung ventilation—A

validation study on electrical impedance

tomography##

Original Article Victorino JA 2004 Am J Resp

Crit Care

88.57 196 24.94 0.37

Modularity change rate: the structural changes of the underlying network are induced due to connections with a contribution from new publications. Cluster linkage: an effect of between-

cluster links before and after a new paper becomes available. Centrality divergence: the structural variations arising from a new article based on the divergence of the distributions between

the central measures of all nodes in the network before and after the information from the new article are considered. *Review, #Animal research, ##Clinical research.

Frontiers in Medicine | www.frontiersin.org 9 January 2022 | Volume 8 | Article 813640160

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Trends and Hotspots of Chest EIT

FIGURE 7 | The co-cited reference structural variation analysis (SVA) on EIT lung monitoring research from 2001 to May 29, 2021 (Modularity Q = 0.76; Weighted

Mean Silhouette S = 0.87). The stars indicate citing articles, and the dashed lines indicate novel co-citation links. [①: Victorino et al. (11); ②: Frerichs et al. (12); ③:

Frerichs et al. (13); ④: Adler et al. (25); 5©: Leonhardt et al. (26)].

and perfusion imaging, had the lowest number of citations,
but took the second place of the modularity change rate. All
the top five structural variation references have a burst value
of at least 11. Boundary-spanning ideas may contribute to
interdisciplinary scientific and technological progress and raise
significant concerns among investigators.

Category Co-occurrence Analysis
The category co-occurrence map showed 62 disciplines cross and
penetrate each other with 172 link lines (Figure 8). The largest
five categories are “GENERAL & INTERNAL MEDICINE”
(frequency: 213; Centrality: 0.24), “CRITICAL CARE
MEDICINE” (frequency: 192; Centrality: 0.01), “PHYSIOLOGY”
(frequency: 136; Centrality: 0.48), “ENGINEERING” (frequency:
136; Centrality: 0.84), and “ENGINEERING, BIOMEDICAL”
(frequency: 125; Centrality: 0.24). Among the major categories,
“ENGINEERING” with a high centrality of 0.84 showed
currently active interdisciplinary crossing, “CRITICAL CARE
MEDICINE” with a centrality score of 0.01 represents weak
interdisciplinary crossing.

DISCUSSION

This study performs a bibliometric analysis of publications on
EIT applications in clinical lung monitoring from 2001 to 2021.
A total of 636 publications were analyzed (Figure 1), the result
reflects the development process, the current situation, emerging
trends, and hot spots of the research field over time. The number

of publications showed an approximately increasing trend from
2001 to 2020, suggesting that EIT has become a concerned
research field (Figure 2).

The publication composition indicated that Germany as the
pioneer country published the largest number of articles on EIT
with lung monitoring every year from 2001 to 2021 (Figure 2).
It was noticed that there was a remarkable increase in Chinese
publications after 2019, this may be because of the availability
of EIT equipment for clinical research after obtaining the license
from the China Food and Drug Administration in 2014 (1) and
increasing demand for bedside non-invasive lung monitoring
technology after the outbreak of COVID-19 (27–29).

Citation counts of institutions, journals, authors, and
reference articles generally represent scientific acknowledgment
for peer investigators (30). Highly cited institutions,
authors, and countries cooperated closely and published a
considerable number of publications, as shown in Table 1 and
Supplementary Figure 1. International scientific cooperation
can enhance research quality and promote medical progress
(31), follow the trend of international diversification, join
online or offline international specialized conferences, and
seek interdisciplinary potential and effective ways to promote
transnational cooperation. Journal citation analysis can provide
reliable references for researchers to search literature or submit
manuscripts (32). The journal Physiological Measurement has
a tradition of collaborating with the EIT annual conference
and publishes a special issue each year after the conference.
It produced the highest number of publications and had the
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FIGURE 8 | The category co-occurrence analysis on EIT applications in clinical lung monitoring research from 2001 to May 29, 2021. The circle indicates the

category; the circle size indicates publication number, the color shows the first publication year. The thickness of the lines indicated the strength of the linkage. The

purple ring indicates centrality above 0.1 of categories. Centrality: metric score indicates the catenation value of the category in the entire network structure, ranges

from 0–1, above 0.1 indicate turning points.

highest citation. Critical care-specialized journals contribute
most publications and cited frequency in the research field as
the most promising application direction of lung monitoring
with EIT occurs in the ICU. The validation of animal or clinical
studies between EIT and gold standards, such as CTs under
physiological conditions or disease models (11, 13, 20), studies
defining new parameter indicators from EIT (15, 16), and
systematic reviews of EIT imaging technology and clinical
applications with increasing clinical evidence (12) were highly
cited (Table 1). All these results indicate that EIT, as a convenient
lung function measuring device, plays an essential role in the
field of daily and scientific research use in critical care and
intensive care medicine.

Refining the research topic with keywords, in the last two
decades, the primary research direction of EIT with clinical lung
monitoring has focused on diagnostic imaging for ARDS, which
is the most life-threatening and difficult respiratory syndrome
worldwide and is possible to remain as research hot spots over
the next few years. The biggest advantage of EIT technology
is the potential to monitor the regional pulmonary function of
intensive care patients at the bedside, and early studies focused
on clinical use scenarios related to EIT, such as “noninvasive

monitoring,” “intensive care unit,” andmonitoring indicators that
can be completed, such as “lung impedance” and “ventilation
distribution.” With the clinical acceptance and promotion of
the technology, clinical research of EIT more specifically focuses
on optimal respiratory treatment strategies for ARDS, such
as monitoring “regional mechanical ventilation distribution”
and “PEEP titration” (Figure 4, Tables 2, 3), the controversies
of protective ventilation in ARDS provided researchers the
opportunities to study ARDS using EIT. With more recent
experience in clinical use, the topics extend beyond ARDS
back to EIT technology as exploring the ventilation statues
of new respiratory treatment methods for acute respiratory
failure (ARF), e.g., “high-flow nasal cannula” and “extracorporeal
membrane oxygenation” as well as a specific population,
e.g., “obesity” or subjects under “general anesthesia” become
an emerging trend of EIT-related clinical studies (Table 3,
Supplementary Figure 2).

Our keyword analysis also showed the understanding of EIT
clinic applications on one topic changing over time, for example,
“ARDS,” early burst keywords focus on the clinical phenomenon,
such as “pulmonary edema.” With advances in clinical practice
and scientific research, investigators found that the nature
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behind these phenomena was “lung injury” and subsequent
research gradually focused on clinical intervention strategies,
such as “lung protective ventilation.” The same holds true for
the understanding of “lung recruitment”: early understanding
may lie in some diseases causing pathophysiological changes
as “alveolar collapse” and with the clinical introduction of
EIT, it was recognized that such physiological changes can be
visualized through diagnostic images as “lung recruitment” and
“derecruitment” after which we can apply this topic to clinical
treatments, such as “PEEP titration” (Figure 4). The depth and
breadth of the clinical application of EIT have also changed over
time. As mentioned earlier, the current clinical research of EIT
is not limited to “ARDS” but an evolution to more generalized
“ARF,” the Research Topic expands beyond the ventilation, such
as “perfusion” and the clinical application scenario is not limited
to the intensive care unit but anesthesia. These changes interact
with the discipline’s cognitive progress of disease and the clinical
scientific research application of visual EIT monitoring.

References are essential for the selection, execution, and
summary of scientific research. The high-quality literature
of a specific research object can give a reference for this
research direction and form a system through positive research
accumulation. References of publications on EIT applications in
clinical lung monitoring cluster toward the evaluation of ARDS
lung ventilation like lung collapse and increasing PEEP in the
early years (Figure 5). Presently, similar to keyword analysis,
respiratory failure, regional ventilation, and extensive pulmonary
function monitoring may become research hot spots in EIT
clinical use. From our results, for topics with a high clustering
intensity at an early age but not in recent years, e.g., “lung
perfusion,” technical bottleneck, and clinical adaptation might be
the reasons for changes.

Focus on the content of cited reference: Among studies with
high burst values, in early days, animal studies that validated
EIT and imaging gold standards (13, 18), and animal model
studies (16, 20) had high burst values, as medium animals,
such as pigs and sheep, are preferred for simulating respiratory
physiology and establishing disease model for validation studies.
This is vital for introducing EIT as a new technology for
clinical ventilation monitoring. Since EIT was used in complex
clinical scenarios, volunteer and patient studies (11, 21) are
frequently cited. In addition, clinical studies introduced new
parameters calculated by EIT (15, 33) and related articles in
ARDS treatment (34) are also highly cited (Figure 6). Another
highly cited type is reviews. The topic of EIT-related review
started on the principles and EIT indications, and then focused
on the summary of clinical applications, the exploration of
new fields, “Frerichs I, 2017, THORAX” (12), a consensus
statement of the translational EIT development study group
provides examination, data analysis, terminology, and clinical
use recommendations of EIT, had the highest burst strength
three times higher than others. The literature “Amato MBP,
2015, NEW ENGL J MED” (22), an observational trial regarding
driving pressure in ARDS without mentioning EIT, is the only
reference with a burst duration of more than 5 years, and is still
highly cited today (Figure 6). It was supposed that this article
brings the investigators to the physiological changes of local

ventilation during ARDS, which is exactly what EIT monitoring
technology can approve. Our analysis suggests that a high-
quality review or guideline from pioneers in the professional
field may provide reliable evidence for the beginning of new
studies on EIT related to clinical lung monitoring. Additionally,
the progress and concept of clinical diseases, implying rising
research interest trends, were also essential for promoting EIT’s
clinical use. As a visualized ventilation monitoring tool, a
gradual understanding of EIT and its application need multiple
levels of validation. with a deeper understanding of disease
and EIT technology, the breadth of future researches will be
expanded.

The structural variation analysis was conducted to find the
co-cited reference spanning cluster boundaries. High structural
variation references are high burst value reviews (Figure 7 and
Table 4). “Frerichs I, 2017, THORAX (12),” a clinical application
consensus gives a detailed clinical application protocol of
EIT, spanning three clusters. “Leonhardt S, 2012, INTENS
CARE MED (26)” reviewed EIT applications in ventilation and
perfusion imaging and got a high modularity change rate relative
to cited frequency. That is probably because it elaborated special
respiratory monitoring using EIT, which gives an impetus to
cross-category research. It is not difficult to infer that macro-
overview or review depth in branch direction have a high
reference value for research on EIT monitoring.

Some studies on EIT applications in clinical lung monitoring
have the characteristics of interdisciplinary crossing.
“PHYSIOLOGY,” “ENGINEERING,” and “RESPIRATORY
SYSTEM,” the three categories, represent the technical
foundation and operational value of EIT, which confirmed
the active interdisciplinary crossing. “CRITICAL CARE
MEDICINE” is a hot subject, but building a collaboration with
other disciplines needs to be addressed in further research
(Figure 8).

STRENGTHS AND LIMITATIONS

This study is the first bibliometric analysis evaluating
publications on the application of EIT in clinical lung
monitoring extracted from the WoS core database. This
study provides a quick and objective reference for interested
researchers by visualizing the current status, hot spots, and
emerging trends of EIT from 2001 to 2021. However, some
limitations are inevitable. First, the WoSCC database is updated
continuously and dynamically. There might be some new
data missing, even all the database searches were conducted
in 1 day. Second, to obtain more subject-oriented research,
only English original articles and reviews about clinical
applications were included, the sample size of articles finally
included in the analysis is limited and a discrepancy may exist
between our results and the real publication characteristics.
Finally, the multiple expressions of author, institution, and
keywords result in the dispersion of counts and clusters.
Although these problems were addressed with the merge
and normalization function of the software, they cannot be
avoided completely.
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CONCLUSION

Electrical impedance tomography applications in clinical lung
monitoring are concerned research fields from 2001 to 2021.
Germany was a pioneer country in this research field,
while the Univ Med Ctr Schleswig and Frerichs I achieved
significant research results and contributed to the development
of EIT research. Professional macro and in-depth review and
interdisciplinary literature could give a reliable reference for EIT
research, while cooperation would promote the development
of the research field. Ventilation distribution in ARDS and
respiratory therapy strategies were research focus in the past two
decades and will continue as research hot spots. More diversified
lung function monitoring techniques, such as lung perfusion
and interdisciplinary crossing with EIT, are potential emerging
research trends on EIT applications in clinical lung monitoring.
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The increased use of electronic health records (EHRs) has improved the availability of

routine care data for medical research. Combined with machine learning techniques this

has spurred the development of early warning scores (EWSs) in hospitals worldwide.

EWSs are commonly used in the hospital where they have been developed, yet few

have been transported to external settings and/or internationally. In this perspective, we

describe our experiences in implementing the TREWScore, a septic shock EWS, and the

transportability challenges regarding domain, predictors, and clinical outcome we faced.

We used data of 53,330 ICU stays from Medical Information Mart for Intensive Care-III

(MIMIC-III) and 18,013 ICU stays from the University Medical Center (UMC) Utrecht,

including 17,023 (31.9%) and 2,557 (14.2%) cases of sepsis, respectively. The MIMIC-III

and UMC populations differed significantly regarding the length of stay (6.9 vs. 9.0 days)

and hospital mortality (11.6% vs. 13.6%). We mapped all 54 TREWScore predictors

to the UMC database: 31 were readily available, seven required unit conversion, 14

had to be engineered, one predictor required text mining, and one predictor could

not be mapped. Lastly, we classified sepsis cases for septic shock using the sepsis-

2 criteria. Septic shock populations (UMC 31.3% and MIMIC-III 23.3%) and time to

shock events showed significant differences between the two cohorts. In conclusion, we

identified challenges to transportability and implementation regarding domain, predictors,

and clinical outcome when transporting EWS between hospitals across two continents.

These challenges need to be systematically addressed to improve model transportability

between centers and unlock the potential clinical utility of EWS.

Keywords: early warning score (EWS), TREWScore, sepsis, septic shock, intensive care

INTRODUCTION

Early recognition and diagnosis of hospitalized patients at risk of clinical deterioration is crucial for
adequate treatment. To aid healthcare professionals in their systematic assessment of these patients,
a plethora of flowcharts and early warning scores (EWSs) have been developed for various diseases.
Such scores are especially relevant for early detection of potentially life-threatening syndromes
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where time is of essence (1–3). For sepsis, in particular, several
EWS have been developed for the identification of preseptic
patients in hospital wards, emergency departments (EDs), and
intensive care units (ICUs) (4). The continuous registration and
collection of clinical and vital parameters in the ICU provide a
unique opportunity to continuously calculate EWS for sepsis and
adjust treatment thereupon (5). Consequently, many such scores
have been developed and published, albeit almost exclusively
in single centers. As EWS are currently not transported and
implemented to other centers, the universal potential of these
models cannot be fully exploited yet.

Transporting scores between healthcare settings faces several
challenges. First, the EWS needs to be openly accessible to
reproduce themodel. Code is often not publicly shared, including
the predictors of EWS and, therefore, either needs to be requested
or reverse-engineered (5). Second, no hospital is alike as patient
populations tend to be rather hospital-specific based on the size
of the hospital, location, and case-mix (4). Moreover, EWS input
parameters are not always readily available throughout different
hospitals as they are either recorded differently or may not
be available at all. Finally, EWS have to be carefully tested to
assess their clinical validity in the recipient center, a step that
is frequently omitted (4). Broad, international, and interhospital
application of algorithm-based EWS will have to tackle and
overcome these hurdles.

Even though these challenges are widely recognized in
literature, we were interested in addressing and evaluating the
scope of these challenges related to the domain, predictor, and
clinical outcome (6, 7). As a use case, we attempted to transport
the Targeted Real-time Early Warning Score (TREWScore)
algorithm proposed by Henry et al. in 2015 to our center (8).
The TREWScore was trained on electronic health record (EHR)
data from the publicly available Medical Information Mart for
Intensive Care (MIMIC)-II database to prospectively identify
patients with septic shock in the ICU (9). With a high accuracy
[0.83 area under the curve (AUC)] at a median diagnostic lead
time of 28.2 h before shock onset, the TREWScore was received
with great enthusiasm.

We explored transportability and implementation challenges
relating to domain, predictors, and clinical outcomes. This
study was performed according to the Declaration of Helsinki,
the GDPR and the institutional review board approved of the
study (registration number 19/543). Only pseudonymized data
were used.

Domain Challenge
First, we evaluated the domain by comparing the ICU
populations of the MIMIC-III and the University Medical Center
(UMC ICU) Utrecht.We included 55,330 and 18,013 consecutive
ICU stays for MIMIC-III and UMC ICU, respectively. The
MIMIC-III is a publicly available database comprising data from
the ICU units of the Beth Israel Deaconess Medical Center
collected between 2001 and 2012 (10). UMC Utrecht is a large
tertiary referral hospital located in Utrecht, Netherlands. From
the UMC, ICU included all patients between 2011 and 2019.
From both databases, we included consecutive patients older

than 18 years, and data were combined for patients who were
readmitted to the ICU within 24 h.

The UMC ICU cohort was younger (64.1 vs. 65.8 years) with a
higher proportion of men (56.6 vs. 53.3%) (Table 1). ICU length
of stay was shorter in the UMC ICU cohort (1.0 vs. 2.2 days),
whereas total hospital length of stay was longer in the UMC
cohort (9.0 vs. 6.91). Proportions of hospital mortality, blood
pressure monitoring, and mechanical ventilation were all higher
in the UMC ICU cohort, whereas MIMIC-III had a two-fold
higher sepsis prevalence compared to the UMC ICU, 31.8 and
14.2%, respectively. There were thus significant differences in
cohort characteristics between MIMIC-III and UMC ICU, with
the latter appearing more severely ill.

Predictor Challenge
From a total of 54 predictors, the TREWScore automatically
selected 26 by removing uninformative predictors with lasso
regularization (11). We mapped all 54 TREWScore predictors
used for training to our database. As clinical practice differs
among centers, not all predictors were recorded for the UMC
ICU cohort and/or were measured in a different unit of measure.
Apart from missingness and unit discrepancies, TREWScore
also comprises engineered predictors based on a combination of
predictors and/or International Classification of Diseases (ICD)-
9 codes. As ICD-9 codes are not available in the stored routine
care data in the UMC ICU cohort, we extracted these predictors
from the Dutch National Intensive Care Evaluation (NICE)
minimal dataset, the Dutch ICUQuality Registry that is manually
maintained regularly next to the hospital information system.
To explore the predictor mapping discrepancy between both
cohorts, we followed a staged approach for each predictor: (1)
first we checked whether a predictor is part of routine care
data, i.e., is it automatically processed and displayed in the EHR
system; (2) then we checked if the predictor is available in the
EHR system, does it need to be converted to a different unit (3),
for predictors not available in the system, we checked whether
the predictor components are available, and if so, (4) whether the
predictor needed to be engineered or mined from the text.

Results on the TREWScore predictor mapping are shown
in Figure 1 and Supplementary Table 1. Of the 54 predictors,
38 predictors were available in the UMC EHR system; 31 were
readily available and seven required unit conversion: FiO2 and
hematocrit from percentage to fraction, the hemoglobin from
mmol/l to g/dl, admission weight and current weight from kg
to pounds, blood urea nitrogen from mmol/l to mg/dl, and
serum creatinine from µmol/l to mg/dl. Of the 31 readily
available features, eight were based on ICD-9 codes for which
we could find a surrogate in the NICE dataset. The remaining
16 predictors required other sources of information in terms of
predictor engineering or text mining. The time since the first
organ dysfunction (chronic or acute) predictor could not be
mapped as the time of organ dysfunction was not clearly defined
by Henry et al. (8). The remaining 53 predictors could be mapped
by either engineering (N = 14) or text mining (n = 1). After
unit conversion, all predictors were available to engineer the
14 predictors.
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TABLE 1 | Characteristics of intensive care unit stays.

MIMIC-III (N = 53,330) Of which septic

shock (N = 4,631)

UMC ICU (N = 18,013) Of which septic

shock (N = 794)

Included years of ICU admission 01-01-2001 / 31-12-2012 01-01-2011 / 30-06-2019

Distinct patients, count 38,511 17,038

Hospital admissions, count 49,694 17,195

Patient characteristics

Age, years, median [Q1–Q3] 65.8 [52.9–77.9] 67.4 [55.4–79.3] 64.1 [53.0–72.5] 62.0 [52.0–69.0]

Gender, male ICU stays (%) 21,796 (56.6%) 2,469 (53.3%) 11,522 (64.0%) 502 (63.2%)

ICU admissions with at least one sepsis episode during

ICU stay, count

17,032 (31.8%) 2,557 (14.2%)

Characteristics and outcomes of ICU stay

ICU length of stay, median days [Q1–Q3] 2.2 [1.2–4.2] 1.0 [0.8–3.2]

Hospital length of stay, median days [Q1–Q3] 6.91 [4.0–11.9] 9.0 [5.8–18.2]

ICU mortality (%) 4,560 (8.6%) 1,623 (9.0%)

Hospital mortality (%) 5,739 (11.6%) 2,450 (13.6%)

Invasive arterial blood pressure monitoring, count (%) 39,149 (73.4%) 17,457 (96.9%)

Mechanical ventilation, count (%) 25,740 (48.3%) 15,549 (86.3%)

Length of stay of ICU admissions with at least one septic

shock period during ICU stay, count

Mean

151.3 [68.9–319.8]

244.2

248.8 [97.1–522.7]

423.4

Time to first shock event, median hours [Q1–Q3]

Mean

19.6 [8.7–45.7]

53.2

44.4 [21.6–136.3]

138.7

ICU, Intensive Care Unit.

As real-time algorithms require a continuous feed of data to
make predictions, we were interested in the data characteristics
in both cohorts in terms of data availability and sampling
frequency. As only a subset of the predictors was available in
both cohorts, we only included the 22 numerical predictors
required to apply the sepsis criteria that were available in both
cohorts for this analysis. We assessed the data availability by
counting the number of patients with at least one predictor
measurement. Around 50% of all MIMIC-III patients had
at least one measurement on a majority of the predictors
(Supplementary Figure 1), whereas over 85% of the UMC ICU
patients had at least one measurement available of all predictors.

The sampling frequency was assessed by calculating the
average time between predictor measurements for patients
with at least two measurements (Supplementary Table 2).
Continuous vital predictors, i.e., DBP, FiO2, HR, MBP, RR,
SBP, SpO2, and temperature were registered at a higher
continuous rate in the UMC ICU than in the MIMIC-III
database, whereas non-vital predictors (e.g., laboratory values)
were available in similar sampling times in both cohorts
(Supplementary Figure 2). Also, we computed the average of
each predictor to compare differences in predictor population
means between both cohorts. Sampling times were different
and the population means between both cohorts. Population
summary statistics of the predictors were similar in both cohorts
(Supplementary Figure 3).

Clinical Outcome Challenge
Following the methodology of Henry et al. (8), we applied
the sepsis-2 criteria to identify patients progressing

to the clinical outcome of shock in both cohorts
(Supplementary Material Methods). From the 2,557 sepsis
cases in the UMC cohort, 795 (31.3%) developed shock, whereas
3,961 (23.3%) of the 17,023 MIMIC-III sepsis cases developed
shock (Table 1).

Furthermore, we computed the number of hours in ICU
until shock onset, thereby evaluating the potential clinical value
of implementing such a model in our center. The majority of
MIMIC-III shock patients developed shock in the first 50 h of
IC stay (Supplementary Figure 4). Median time to first shock
event was higher for UMC ICU shock patients compared to
MIMIC-III, 44.4 [IQR 21.6–136.3] vs. 19.6 [IQR 8.7–45.7] h,
respectively. These findings underline differences in clinical
outcomes between MIMIC-III and UMC ICU patients.

DISCUSSION

The transportability of algorithms built on routinely collected
EHR could provide hospitals with an early warning for disease.
However, here we identified three challenges relating to domain,
predictors, and clinical outcome that we encountered when
attempting to transport the TREWScore to our center. First,
comparisons between the MIMIC-III and UMC ICU cohorts
showed differences in medical severity. Second, more than two-
thirds (38 out of 54) of the predictors could be readily mapped
to the EHR system of our center, one quarter (15 out of 54) of
the predictors would have to be compiled with either engineering
or text mining and we found differences in data collection and
predictor statistics between both centers. Third, the incidence of
sepsis and the time to shock were different between both cohorts.
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FIGURE 1 | Mapping of the 54 TREWScore predictors to the UMC ICU database. Predictors are listed below each end-node. The increasing width of the bar

represents the difficulty scale from easy to hard of mapping each predictor category. Underlined predictors are within 24 h documented in the UMC ICU EHR system

and therefore not readily available at ICU admission. EHR, Electronic Health Record; SBP, Systolic Blood Pressure; GCS, Glasgow Coma Scale; RR, Respiratory Rate;

HR, Heart Rate; SOFA, Sequential Organ Failure Assessment; WBC, White Blood Cell count; MAP, Mean Arterial Pressure; BP, Blood Pressure; BUN, Blood Urea

Nitrogen; BUN/CR, BUN Creatinine Ratio; SIRS, Severe Inflammatory Response Syndrome; HIV, Human Immunodeficiency Virus.

Thesemajor challenges in all three domains provide evidence that
the TREWScore cannot be easily transported to other centers and
question the transportability of EWS in general.

Comparisons between the MIMIC-III and UMC ICU cohorts
showed that UMC ICU patients are more intensively monitored
in terms of measurement frequency and data availability. This
illustrates a difference in clinical practice between a Dutch and
a US American center as the ICU in the Netherlands is reserved
for critically ill patients in a more acute state, while the American
hospitals have a higher proportion of ICU beds in comparison
to other countries (12). Nonetheless, sepsis prevalence in the
MIMIC-III cohort was significantly higher than in the UMC
ICU. Patients in the UMC ICU were evaluated daily clinically
for having sepsis as part of the NICE minimal dataset in
the Netherlands, whereas MIMIC-III patients were identified
as having sepsis based on suspicion of infection defined by
ICD-9 codes. As ICD-9 codes may suffer from administrative
errors and retrospective allocation, this may have resulted in an
overestimation of the sepsis incidence in MIMIC-III.

Because of the identified transportability challenges in this
case study, we decided neither to try and validate TREWScore
in our center nor further prepare it for implementation. First,
TREWScore would require us to alter our clinical workflow to,
for example, engineer and collect predictors that are not part
of our routine clinical practice, which we would also need to

obtain over a longer period to facilitate calibration of the model
on existing data from our center. For example, comorbidities
are available in the NICE dataset and can be used as surrogates
for the ICD-9 codes. However, the physician is requested to
document these comorbidities within 24 h after ICU admission,
making these data not available at admission. In comparison to
the drawbacks of ICD-9 documentation as mentioned above,
this system would provide more accurate data for the score.
Moreover, we found differences in data collection in terms of
frequency ofmeasurements. Lastly, it remains unclear to us how a
range of laboratory variables was exactly measured. For example,
whether bilirubin was measured conjugated or unconjugated, on
what analyzer from what manufacturer using what assay type.
Because of all limitations described in our article, we question
whether the limited value for our center would outweigh our
efforts to implement such a system.

Interestingly, the septic shock time to event was higher for
the UMC ICU cohort in comparison with the MIMIC-III cohort.
This effect can partly be explained by the longer length of
stay of UMC ICU patients as compared to the MIMIC-III
cohort. Moreover, the different subgroups of patients in both
ICU cohorts could also explain this effect, as explained above.
Furthermore, we have not stratified community vs. nosocomial
onset and were not able to compare care severity between
cohorts as these data were not available. These differences
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should be carefully explored before implementing EWS scores in
clinical practice.

Data-driven ICUmodels have the potential to improve patient
care in other centers, beyond yielding interesting research papers
for literature. Here, we showed compelling evidence that there
are many differences between centers in terms of domain,
predictors, and clinical outcome. Our perspective resonates with
recently reported challenges during external validation efforts
of the Epic Sepsis Model for sepsis (13). Moreover, the lack of
methodological details to reproduce research and differences in
clinical practice currently further complicates transportability.

Data scientists in healthcare that make a commitment to
improving patient care have the obligation to sufficiently address
transportability issues. First, this means that code and data are
made available in an understandable way and that description
of methodology facilitates reproducibility, e.g., using current
reporting guidelines (14, 15). Second, to improve the predictor
mapping, researchers should adhere to data standards, such as
FHIR and SNOMED CT, which should be facilitated by IT
infrastructures accordingly (16, 17). Third, to further promote
uptake around the globe, researchers should use predictors that
are ubiquitously available in the medical domain when making
models to reduce center and/or region-specific bias. These efforts
should help to ameliorate the transportability of models to
other centers for external validation and assessment of clinical
relevance (18). Here, we show that all three transportability
challenges, regarding domain, predictors, and clinical outcome,
should be addressed before an EWS can be transported and used
in another center. Only then, the true potential of the universal
implementation of machine learning models in the intensive
care can be assessed and potentially achieved for the benefit of
our patients.
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A Novel Strategy for Predicting 72-h
Mortality After Admission in Patients
With Polytrauma: A Study on the
Development and Validation of a
Web-Based Calculator

Song Chen 1†, Meiyun Liu 2†, Di Feng 2, Xin Lv 2* and Juan Wei 2*

1Department of Orthopaedic Trauma, East Hospital, School of Medicine, Tongji University, Shanghai, China, 2Department of
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Background: Early and accessible screening of patients with polytrauma at a high risk

of hospital death is essential. The purpose of this research was to seek an accurate

and convenient solution to predict deaths occurring within 72 h after admission of

these patients.

Methods: A secondary analysis was conducted on 3,075 patients with polytrauma from

the Dryad database. We imputed missing values in eligible individuals with the k-nearest

neighbor algorithm and then randomly stratified them into the training group (n = 2,461)

and the validation group (n = 614) based on a proportion of 8:2. The restricted cubic

spline, univariate, backward stepwise, and multivariate logistic regression methods

were employed to determine the suitable predictors. Calibration and receiver operating

characteristic (ROC) curves were applied to assess the calibration and discrimination of

the obtained model. The decision curve analysis was then chosen as the measure to

examine the clinical usage.

Results: Age, the Glasgow Coma Scale score, the Injury Severity Score, base excess,

and the initial lactate level were inferred as independent prognostic factors related to

mortality. These factors were then integrated and applied to construct a model. The

performance of calibration plots, ROC curves, and decision curve analysis indicated that

the model had satisfactory predictive power for 72-h mortality after admission of patients

with polytrauma. Moreover, we developed a nomogram for visualization and aweb-based

calculator for convenient application (https://songandwen.shinyapps.io/DynNomapp/).

Conclusions: A convenient web-based calculator was constructed to robustly estimate

the risk of death in patients with polytrauma within 72 h after admission, which may aid

in further rationalization of clinical decision-making and accurate individual treatment.

Keywords: injury severity score, Glasgow Coma Scale, base excess, lactate, polytrauma, mortality, nomogram
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INTRODUCTION

Trauma is the leading cause of death and disability in the world.
More than 5 million deaths annually are due to injuries from
falls, traffic accidents, landslides, and explosions, among others.
Patients with polytrauma are the main contributors to this figure,
accounting for 65 to 72% of the cases (1, 2). These patients are
often severely injured, which is associated with hemorrhagic or
traumatic shock and immune dysfunction, requiring accurate
assessment and rapid treatment. Moreover, early screening of
patients at risk of in-hospital death is crucial for ensuring patient
safety, allocating medical resources appropriately, and reducing
healthcare costs (3).

At present, various trauma scoring systems and hematological
tests are suitable for evaluating the overall prognosis of
patients with multiple traumas, and the introduction of
internal environmental indicators, such as initial blood
lactate, base excess (BE), and pH, in particular, provides
early predictive evaluations for clinical purposes (4–6).
However, these independent assessment methods are
tedious to calculate, have too many scoring criteria, and
have limited predictive power in assessing patient prognosis
in the initial phase of trauma. Development of a simple
and easy-to-use predictive model that incorporates factors
related to the high risk of early death in patients with
polytrauma is desirable.

Of all the models available, the logistic regression approach
can provide a personalized, evidence-based, highly precise risk
estimation in classification tasks. In addition, the advent of
nomograms and network calculators has made the models
user-friendly for disease prognosis and prediction, which
facilitates decision-making related to patient management (7–
9). Inspired by these efforts, this study aimed to develop
and validate a prediction model and wrap it into a web-
based calculator that allows rapid and precise individualized
prediction of the risk of death within 72 h in patients with
multiple traumas, by incorporating a few easily accessible
clinical predictors.

METHODS

Data Source
The data sets yielded and analyzed are available from the
Dryad Digital Repository, [https://datadryad.org/stash/dataset/
doi.10.5061/dryad.bnzs7h45v]. The Dryad, an open resource
database, provides a broad range of discoverable, freely reusable,
and referable research data. Private information in the database
has been anonymized. Data collection respects the principles
outlined in the Declaration of Helsinki and has been approved
by the local ethics committee.

Abbreviations: KNN, k-nearest neighbor; BMI, body mass index; ISS, Injury

Severity Score; GCS, Glasgow Coma Scale; BE, base excess; IQR, interquartile

range; OR, odds ratio; aOR, adjusted odds ratio; CI, confidence interval; ROC,

receiver operator characteristic; AUC, area under the ROC curve; RCS, restricted

cubic spline; VIF, variance inflation factor; DCA, decision curve analysis; PPV,

positive predictive value; NPV, negative predictive value.

TABLE 1 | Baseline characteristics of the training and validation sets.

Characteristics Training set

(N = 2461)

Validation set

(N = 614)

P value*

Age, years, median (IQR) 43 (28, 61) 43 (28, 61) 0.917

Sex, n (%)

Female 642 (26.1) 170 (27.7) 0.421

Male 1,819 (73.9) 444 (72.3)

BMI, kg/m∧2,median (IQR) 24.7 (23.4, 26.1) 24.7 (23.4, 26.2) 0.687

ISS, median (IQR) 29 (22, 38) 27 (22, 36) 0.153

GCS, median (IQR) 6 (3, 14) 10 (3, 15) 0.225

pH, median (IQR) 7.34 (7.28, 7.38) 7.34 (7.29, 7.38) 0.400

BE, mmol/L, median (IQR) −2.90

(−5.45, −1.10)

−2.70

(−5.30, −1.26)

0.632

Lactate, mmol/L, median (IQR) 2.30 (1.50, 3.50) 2.24 (1.50, 3.30) 0.195

*P-values between groups were assessed by chi-square and Mann-Whitney tests.

BMI, body mass index; ISS, injury severity score; GCS, Glasgow Coma Scale; BE, base

excess; IQR, interquartile range.

Study Design and Participants
A secondary retrospective analysis was performed based on the
cohort study (10), which included multi-injury adult patients
(>18 years old) treated at a Level I trauma center of the
University Hospital Zurich from January 1, 1996 to January 1,
2013 andwhich excluded those with chronic diseases, oncological
diseases, or genetic disorders that affect the musculoskeletal
system. Time from injury to admission was defined as <24 h.
Patients with multiple traumas were identified using an Injury
Severity Score (ISS) of 16 or above, along with the criteria
of the Berlin definition (11). Items selected from the data
set for analysis are summarized in Table 1. The outcome was
determined as patient’s death within 72 h after admission. Related
measurements of variables have been described carefully in the
original article (10). Finally, among 3,668 patients recorded, 3,075
were enrolled, except for 579 (15.8%) with ISS values <16, 13
(0.4%) with no outcome data, and 1 (0.03%) with an incorrect
body mass index (BMI) value marked as 0.

Missing Data
To maximize statistical power and minimize bias, k-nearest
neighbor (KNN) (12) imputation with k equal to 10 was
used to impute missing values in eligible patients. Then, the
obtained imputation data were randomly stratified into two
parts (i.e., training and validation cohorts) under a ratio of
8:2. We also carried out repeated analyses in the cohorts with
complete data (i.e., data with all missing values removed)
for comparison. Details on the statistical results are given in
the Supplementary Material.

Sample Size Calculation
The “pmsampsize” package of R, version 4.0.2 (http://www.r-
project.org/), was utilized to calculate the minimum training
sample size required. Eight candidate predictor parameters were
chosen to construct a multivariable prediction model for the
binary outcome. Moreover, based on previous evidence (10),
outcome prevalence is anticipated to be 0.268 (26.8%), and a
lower bound for the new model’s R-squared value is 0.288. For
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the validation of sample size, a power calculation was carried
out using PASS 15 (NCSS, LLC., Kaysville, UT, United States).
The area under the receiver operating characteristic (ROC) curve
(AUC; equivalent to the concordance statistic [C statistic]) was
expected to be at least 0.8, and a two-tailed test with an alpha
error of 0.05, beta error of 0.1, and power of 0.9 was conducted.
As a result, the minimum sample size required for the training
cohort is 302 patients with 81 events, while the validation cohort
is 45 patients with 12 events. The eligible population is sufficient
for model development and validation.

Statistical Analysis
Continuous variables were expressed as medians with
interquartile ranges (IQRs) and were compared by unpaired
Mann-Whitney test. Categorical variables were compared by
χ2 test. For each continuous variable at a significant level in the
training cohort, we used a restricted cubic spline (RCS) with
five knots at the 5, 35, 50, 65, and 95th percentiles to flexibly
model its relationship with 72-h mortality after admission.
Potential nonlinearity was tested using a likelihood ratio test
comparing the model with only a linear term against the model
with linear and cubic spline terms. Aiming to relax linear
relationship assumptions, identified nonlinear continuous
predictors were further categorized according to corresponding
reference points determined by RCSs and horizontal lines
with an odds ratio equal to 1. Then, linear continuous and
acquired categorical predictors were examined with a univariate
logistic regression approach for investigating the independent
risk factors of mortality. All significant variables associated
with death risks were candidates for stepwise multivariate
analysis. To visualize the obtained model, a nomogram was
generated according to multivariate logistic regression analysis
outcomes and by applying the “rms” package. The predictive
performance of the final model was measured by C statistic
(13) and calibrated with 1,000 bootstrap samples for reducing
overfitting bias. We also calculated the variance inflation
factor (VIF) to examine the collinearity of each predictor
in the prediction model and performed a formal sensitivity
analysis, as described by Vander Weele and Ding (14), to
capture the potential effect of unmeasured predictors on an
obtained estimate.

For clinical utilization of the model, the total score for each
patient was calculated from the nomogram. An ROC curve
analysis was conducted to find optimal cutoff values that were
determined by maximizing the Youden index (i.e., sensitivity
+ specificity−1). The accuracy of the optimal cutoff value was
evaluated by the sensitivity, specificity, predictive values, and
likelihood ratios. In addition, we established ROC curves for
every predictor from the model. Pairwise comparisons of AUCs
were tested with Delong’s method. As a complement, decision
curve analysis (DCA) was performed to quantify the clinical
applicability of the model.

All the statistical analyses were completed with the R software.
The remaining packages of R used were as follows: “car,” “caret,”
“splines,” “pROC,” “EValue,” “rmda,” and “ggplot2”.

A two-tailed test was carried out to determine the level of
statistical difference, and p < 0.05 was considered statistically

TABLE 2 | Baseline characteristics of patients who died or survived in the training

cohort.

Characteristics Alive

(N = 1,911)

Dead

(N = 550)

P value*

Age, years, median (IQR) 42 (27, 58) 51 (31, 72) <0.001

Sex, n (%)

Female 484 (25.3) 158 (28.7) 0.110

Male 1,427 (74.7) 392 (71.3)

BMI, kg/m∧2, median (IQR) 24.6 (23.1, 26.1) 24.9 (24.0, 26.0) <0.001

ISS, median (IQR) 27 (21, 34) 34 (25, 50) <0.001

GCS, median (IQR) 12 (3, 15) 3 (3, 3) <0.001

pH, median (IQR) 7.35 (7.30, 7.38) 7.28 (7.19, 7.35) <0.001

BE, mmol/L, median (IQR) −2.55

(−4.40, −0.90)

−5.39

(−9.70, −2.40)

<0.001

Lactate, mmol/L, median (IQR) 2.10 (1.40, 3.04) 3.30 (2.20, 5.50) <0.001

*P-values between groups were assessed by chi-square and Mann-Whitney tests.

BMI, body mass index; ISS, injury severity score; GCS, Glasgow Coma Scale; BE, base

excess; IQR, interquartile range.

significant except in pairwise comparison of AUCs. In this
scenario, p-values were adjusted by Bonferroni correction and
tested with a bound of 0.003.

RESULTS

Baseline Characteristics
A total of 3,075 adult patients with polytrauma were entered
in the design data set. To account for missing data, KNN
imputation was performed for BMI in 1,501 (48.8%), the Glasgow
Coma Scale (GCS) score in 43 (1.4%), pH in 832 (27.1%), base
excess (BE) in 703 (22.9%), and lactate in 472 (15.3%). The
median patient age was 43 (IQR 28–61) years. In total, 2,263
(73.6%) patients were men and 687 (22.3%) died within 72 h
after admission. A similar population distribution was detected
in the complete data, except for the mortality rate of 117
(11%). This discrepancy may be due to the removal of a large
amount of missing information, resulting in a biased estimate
(Supplementary Table S1).

Among the 3,075 patients, 2,461 and 614 were assigned
to the training and validation groups, respectively. Baseline
characteristic distributions were similar between the cohorts.
Mortality was 550 (22.3%) and 137 (22.3%) patients in the 2
groups, respectively (Table 1).

Compared to survivors in the training cohort, those who
died showed a higher rate of age (42 [IQR 27–58] vs. 51 [IQR
31–72], P < 0.001), BMI (24.6 [IQR 23.1–26.1] vs. 24.9 [IQR
24–26], P < 0.001), ISS (27 [IQR 21–34] vs. 34 [IQR 25–50],
P < 0.001), and lactate (2.1 [IQR 1.4–3.04] vs. 3.3 [IQR 2.2–
5.5], P < 0.001) and presented a lower value in the GCS score
(12 [IQR 3–15] vs. 3 [IQR 3–3], P < 0.001), pH (7.35 [IQR
7.3–7.38] vs. 7.28 [IQR 7.19–7.35], P < 0.001), and BE (−2.55
[IQR −4.40–−0.9] vs. −5.39 [IQR −9.7–−2.4], P < 0.001).
No statistical difference was detected in gender between the
two cohorts (Table 2).
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FIGURE 1 | Association between continuous predictors and 72-h mortality in patients with polytrauma by the RCS analysis. For each curve, five knots at the 5th,

35th, 50th, 65th, and 95th percentiles were selected. Solid lines represent odds ratios, and shaded areas represent 95% CIs. The reference point is the first value

closest or equal to the odds ratio at 1 (i.e., the intersection of the two red dashed lines). RCS, restricted cubic spline; BMI, body mass index; ISS, injury severity score;

GCS, Glasgow Coma Scale; BE, base excess.

TABLE 3 | Comparisons between patients who survived and deceased patients

across all post-conversion variables in the training cohort.

Variables Alive

(N = 1911)

Dead

(N = 550)

P value*

Age, years, n (%)

<43

≥43

978 (51.2)

933 (48.8)

215 (39.1)

335 (60.9)

<0.001

BMI, kg/m∧2,n (%)

< 24

≥ 24

717 (37.5)

1,194 (62.5)

129 (23.5)

421 (76.5)

<0.001

ISS, n (%)

< 25

≥ 25

679 (35.5)

1232 (64.5)

58 (10.5)

492 (89.5)

<0.001

Lactate, mmol/L, n (%)

<2.33

≥2.33

1,095 (57.3)

816 (42.7)

152 (27.6)

398 (72.4)

<0.001

*P-values between groups were assessed by the chi-square test.

BMI, body mass index; ISS, injury severity score.

Model Specifications and Predictors
As presented in Figure 1, continuous variables like age,
BMI, ISS, and lactate do not meet the linear relationship
assumptions (All Pnon−linear < 0.05). We converted
these variables to categorical variables with reference
points as cutoff values for the next univariable logistic
analysis. Comparisons between those who survived and
deceased patients were significant across all post-conversion
variables (Table 3).

TABLE 4 | A logistic regression analysis of the 72-h mortality for patients in the

training cohort.

Univariable Multivariable

Variables OR (95% CI) P value aOR (95% CI) P value

Factors selected by stepwise analysis

Age, years

<43

≥43

1 [Reference]

1.63 (1.35, 1.98)

NA

<0.001

1 [Reference]

2.25 (1.78, 2.83)

NA

< 0.001

ISS

<25

≥25

1 [Reference]

4.66 (3.52, 6.28)

NA

<0.001

1 [Reference]

2.96 (2.15, 4.07)

NA

< 0.001

Lactate,

mmol/L

<2.33

≥2.33

1 [Reference]

3.51 (2.86, 4.33)

NA

<0.001

1 [Reference]

2.16 (1.67, 2.81)

NA

< 0.001

GCS 0.78 (0.76, 0.81) <0.001 0.80 (0.78, 0.83) < 0.001

pH 0.003 (0.001, 0.007) <0.001 0.32 (0.08, 1.23) 0.097

BE, mmol/L 0.86 (0.84, 0.88) <0.001 0.94 (0.91, 0.98) 0.001

Factors not selected by stepwise analysis

BMI, kg/m∧2

<24

≥24

1 [Reference]

1.96 (1.58, 2.44)

NA

<0.001

NA NA

BMI, body mass index; ISS, injury severity score; GCS, Glasgow Coma Scale; BE,

base excess; OR, odds ratio; aOR, adjusted odds ratio; CI, confidence interval; NA,

not applicable.

The results of the univariate logistic analysis are shown in
Table 4. Backward stepwise selection with AIC determined the
following 6 variables that were most strongly associated with
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FIGURE 2 | Nomogram for estimating the risk of 72-h mortality after admission in patients with polytrauma. Using a nomogram, we first determined the location of the

axis corresponding to each variable and drew a vertical line to the “Points” axis to get a score, then, summed scores from all variables, and drew another vertical line

from the “Total Points” axis to the “Probability of Risk” axis for the predicted probability. BE, base excess; GCS, Glasgow Coma Scale; ISS, injury severity score.

death risk: age, ISS, lactate, GCS, pH, and BE. In themultivariable
analysis, age of at least 43 years old (OR 2.25; 95% confidence
interval [CI] 1.78–2.83; P < 0.001), ISS of at least 25 (OR
2.96; 95% CI 2.15–4.07; P < 0.001), lactate of at least 2.33 (OR
2.16; 95% CI 1.67–2.81; P < 0.001), GCS score (OR.8; 95% CI
0.78–0.83; P < 0.001), and BE (OR 0.94; 95% CI 0.91–0.98;
P = 0.001) were all independently related to mortality (Table 4).
Similar findings are obtained in the complete data, as shown in
Supplementary Table S3.

Model Development and Validation
The identified independently associated risk factors were then
applied to construct the final model and form a nomogram for
estimating 72-h mortality risk after admission (Figure 2). For
predictors from the model, VIFs were 2.76 or less, indicating
the absence of collinearity. Moreover, the E-value, a standard
way to quantify the potential effect of unmeasured predictors
on the obtained estimate, for each predictor is calculated
and presented in Supplementary Figure S1. The lowest one is
1.21; that is to say, our estimates were robust to unmeasured
confounders, except in the case of a strong unmeasured
confounder that was substantially associated with death risk.
In order to simplify the clinical application of the model,
we also designed a web-based calculator (https://songandwen.
shinyapps.io/DynNomapp/) to predict death risks for patients
with polytrauma (Supplementary Figure S2).

Regarding model performance testing, we first completed
internal validation with the bootstrap method. The model had
good discrimination in assessing mortality, with an unadjusted

C statistic of 0.85 (95% CI 0.83–0.86) and a bootstrap-corrected
C statistic of 0.85. Besides, the calibration plots indicated
a good agreement between risk estimates and actual deaths
(Figure 3A), whereas in the validation data set, the model
presented a C statistic of 0.84 (95% CI 0.81–0.88) for predicting
mortality. There was also a satisfactory calibration curve for risk
estimation (Figure 3B).

To further compare the predictive value of the model, age,
ISS, GCS, BE, and lactate for the 72-h mortality in patients
with polytrauma, ROC curves were plotted (Figure 4). In the
training cohort, relative AUCs were 0.85 (95% CI:0.83–0.86),0.6
(95% CI:0.57–0.63),0.67 (95% CI:0.66–0.69),0.76 (95% CI:0.74–
0.77),0.7 (95% CI:0.67–0.73), and 0.71 (95% CI:0.69–0.74). There
were no statistical differences among ISS, GCS, BE, and lactate
(all P > 0.003), while differences between our model and any
of the others were statistically significant (all P <0.001) as well
as age (P < 0.001). As for validation, the AUCs showed modest
changes and were 0.84 (95% CI:0.81–0.88),0.62 (95% CI:0.56–
0.68),0.69 (95% CI:0.64–0.74),0.76 (95% CI:0.73–0.8),0.69 (95%
CI:0.64–0.75), and 0.69 (95% CI:0.64–0.74). Differences between
the model and any of the others remained statistically significant
(all P< 0.001), but no significance was observed in the remaining
comparisons (all P > 0.003). The above evidence suggested that
our model had superior predictive performance over any of the
single predictors mentioned.

Clinical Usage of the Model
We assumed that a patient with a nomogram score above a
defined threshold was at high death risk, but that with the
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FIGURE 3 | Receiver operating characteristic curves for validating the discrimination of our model and included variables: (A) in the training cohort (n = 2461) and (B)

in the validation cohort (n = 614). ISS, injury severity score; GCS, Glasgow Coma Scale; BE, base excess.

FIGURE 4 | Calibration plots of the model for predicting 72-h mortality in patients with polytrauma (A) in the training cohort (n = 2461) and (B) in the validation cohort

(n = 614). ROC, receiver operator characteristic.

defined threshold was at low death risk. Then, a total score was
calculated for each patient and an optimal cutoff value of 111
was determined. On this basis, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) were
81.5, 74, 47.4, and 93.3% in the training cohort and 82.5, 73.8,
47.5, and 93.6% in the validation cohort, respectively (Table 5).

Furthermore, we utilized DCAs to evaluate the net
benefit of the model for decision-making. As illustrated in
Figure 5, in the training cohort, the model is applicable
when the threshold is between 0.01 and 0.9, as net benefits
are >0, while the validation cohort has a valid range of
between 0.01 and 0.74.

Frontiers in Medicine | www.frontiersin.org 6 April 2022 | Volume 9 | Article 799811177

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Early Mortality in Polytrauma Patients

DISCUSSION

It is vital to evaluate the clinical condition of patients with
multiple traumas in an early stage. From the views of most
authors, estimating early mortality plays an equally important
role in predicting subsequent complications (15–18). In this
study, age, ISS, GCS, BE, and lactate were identified as
independent risk factors for early death in patients with
polytrauma based on the information extracted from an online
database. The proposed model, which incorporated the above
5 readily accessible variables, performed impressively, being
backed by C statistic values of 0.85 and 0.84 in the training
and validation cohorts, respectively, and calibration curves

TABLE 5 | Performance metrics of the nomogram for estimating the risk of 72-h

mortality after admission.

Value (95% CI)

Performance metrics Training set Validation set

Cutoff score* 111 111

Sensitivity, % 81.5 (77.9, 84.6) 82.5 (75.1, 88.4)

Specificity, % 74.0 (72.0, 75.9) 73.8 (69.6, 77.7)

Positive predictive value, % 47.4 (44.9, 53.0) 47.5 (42.4, 59.5)

Negative predictive value, % 93.3 (91.8, 93.9) 93.6 (90.4, 94.8)

Positive likelihood ratio 3.13 (2.88, 3.41) 3.15 (2.66, 3.73)

Negative likelihood ratio 0.25 (0.21, 0.30) 0.23 (0.16, 0.34)

*Optimal cutoff scores were determined by maximizing the Youden index (i.e., sensitivity

+ specificity−1). CI, confidence interval.

indicated an excellent agreement between predictions and actual
observations. Furthermore, our results revealed that age, ISS,
GCS, BE, and lactate were less accurate in predicting mortality
than our new model. To adapt the model to clinical practice, we
summarized sensitivity, specificity, NPV, and PPV for assessing
mortality risk by considering 111 as the cutoff value (Table 5).
Patients with scores of 111 or more (1,185 of 3,075, [38.5%])
are selected into the high-risk subgroup. The corresponding
net benefit values are 0.19 in the training cohort and 0.2 in
the validation cohort. The abovementioned evidence support
that our model might serve as an efficient and reliable tool for
estimating the risk of 72-h death after admission and might aid
in clinical decision-making.

The Glasglow Coma Scale and the ISS are routine initial
assessment scoring systems for patients with polytrauma. The
former, an essential measurement of neurological function and
severity of the head injury, has advantages such as being simple,
practical, time-efficient, and cost-effective (19). Several authors
have determined that low GCS was associated with poor outcome
(20–22), which is consistent with our evidence from the RCS of
GCS in Figure 1. The ISS is another major predictor of trauma
mortality and focuses on anatomical scoring. Contrary to the
GCS scores, the probability of patient survival decreases with
increasing ISS scores (23). Watts et al. (24) reported that ISS
was positively associated with in-hospital mortality in elderly
patients with trauma. It is not unique. In our findings, compared
to patients with ISS <25, the risk of death was approximately
three-fold greater in patients with larger values. However,
the above scoring systems fail to assess both physiological
disorders and anatomical damages in patients with polytrauma.
In addition, there is always confusion on how to scientifically

FIGURE 5 | Decision analysis curves for the developed model for predicting 72-h mortality in patients with polytrauma. The black line represents a scheme to make all

patients alive. The light blue line represents an improper protocol, leading to all patient mortality that occurred during the course of the study. The yellow line

represents net benefits of the clinical application of the model. (A) In the training cohort (n = 2461), when the threshold is between 0.01 and 0.9, the model is

applicable, since the net benefit is >0. (B) In the validation cohort (n = 614), the valid range is between 0.01 and 0.74.
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synthesize the results of multiple scoring systems to guide next
clinical implementations. Fortunately, none of these are issues
for the model-based network calculator, and all it takes is to
correctly categorize ISS values and determine the corresponding
GCS values.

Age is also a predictor for the risk of mortality related to
multiple injuries but not a part of the above two scoring systems
(25). In a meta-analysis of older adults with trauma, Hashmi et
al. (26) found that the risk of death increased with age and was
two times higher in patients aged 74 than in those aged 62. We
agree with the efforts of Hashmi et al. In addition, we noticed
that the risk kept increasing faster when the patient was over 50
years old (Figure 1). In comparison with those younger than 43,
the older ones were exposed to an additional 2.25-fold risk of
death (OR 2.25; 95% CI 1.78–2.83). This reminds us that more
attention should be paid to both middle-aged and older patients
with multiple injuries. The subtle gap between our results and
those of Hashmi et al. (26) is possibly due to various observed
populations and different statistical methods chosen for analysis.
In any case, it is certainly a sensible move to include age in our
model to improve the accuracy of the estimates.

Admission BE is a recognized trauma marker that can
evaluate injury severity and forecast post-traumatic outcomes
(27). Several studies have shown that an initial negative BE
predicts the mortality risk of patients with trauma, meaning that
the poorer the BE, the higher the in-hospital mortality (28–
30). Across such research, we could observe a trend toward
higher mean BE in survival than in death, which is also reflected
in our study (−2.55 [IQR −4.40–−0.0] vs. −5.39 [IQR −9.7–
−2.4], P < 0.001). Lichtveld et al. (28) concluded that BE
was an independent predictor of mortality in patients with
trauma, with an OR of 0.92 (95% CI:0.89–0.95), indicating an
8% increase in the risk of death for each unit reduction in BE.
Our findings were in close agreement with those published by
Lichtveld et al. The OR is 0.94 (95% CI:0.91–0.98), suggesting
that every 1 mmol/L decrease in BE was associated with a
6% increase in the risk of death. These slight discrepancies
may be explained by the different enrollment populations
of the two studies. Furthermore, the effect of BE on 72-h
mortality was also assessed by the ROC analysis. However, the
measured AUCs were still significantly lower than the fit of the
model we developed.

Lactate is a usual clinical biomarker for diagnosing shock
and monitoring resuscitation. It is valuable not only for patients
with sepsis shock (31) but also for patients with trauma. In
a study including 1,829 patients with blunt trauma, Gale et
al. (32) confirmed that the initial lactate was a dependable
prognosticator of patients at a higher risk of in-hospital mortality.
In another observational cohort study with 1,075 patients with
trauma, Raux et al. (33) observed that admission lactate was
superior in predicting early deaths, severe traumatic lesions,
and massive hemorrhage. According to our research, patients
with admission lactate over the bound of 2.33 mmol/L were
at 2.16-fold risk of 72-h death than others (OR 2.16; 95% CI
1.67–2.81). The AUC of ROC used to estimate the predictive
value of lactate for 72-h mortality was 0.71 in the training
group and 0.69 in the validation group, which is close to 0.716

reported by Sammour (34) and lower than the performance
of our model.

Moreover, we opted for a logistic regression approach to
construct the prediction model, which may be limited by
its linearity assumption. Although great care has been taken
to build RCS models for exploring this assumption, the
residual predictor-response variable complex relationship may
still have been overlooked. These challenges may be easily
solved by machine learning algorithms, which do not require
assumptions of strict data structure and have the ability to
learn complex functional forms with nonparametric methods.
Furthermore, ensemble modeling methods, i.e., combining two
or more machine learning algorithms, can be applied for the
improvement of prediction accuracy (35). We are considering
the application of this promising technology as an alternative in
future research.

Limitations
Our study has several limitations. First, in the final prediction
model, missing data were present for the BMI, GCS, pH, BE,
and lactate variables. The data were considered to be missing
at random, and KNN imputation was conducted to minimize
selection bias. We repeated the analysis on the complete data
and obtained similar results. Second, this is a secondary analysis
with fixed data, and we may have overlooked some important
predictors. Therefore, we quantified the unmeasured factors to
assess the robustness of our model. Third, all the analyses were
conducted on the basis of data from one institution; there
is a need to validate the results from other centers. Further
prospective studies are also required to affirm the dependability
of our model. Hence, the web calculator was developed to make
these requirements easy to implement. In addition, although the
model reached good predictive accuracy with a cutoff of 111,
the false positive and false negative rates were 26 and 18.5% in
the training cohort and 26.2 and 17.5% in the validation cohort,
respectively. For 72-h mortality prediction, the performance
of our model still needs to be improved to make meaningful
clinical decisions.

CONCLUSIONS

A clinical prediction model was constructed and wrapped into
a web-based calculator to estimate mortality risk easily and
robustly in patients with polytrauma within 72 h of hospital
admission, which may contribute to further rationalization
of clinical decision-making and accurate individual treatment.
Under another aspect, the calculator may identify patients at a
high risk of death and thus avoid corresponding adverse events.
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Objective: Fluid therapy for sepsis patients has always been a problem that puzzles

clinicians, that is, knowing when patients need fluid infusion and when they need negative

fluid balance. Different clinicians may have different judgment criteria and make different

decisions. Recently, studies have suggested that different fluid treatment strategies can

cause different clinical outcomes. This study is intended to establish and verify a model

for judging the direction of fluid therapy based on machine learning.

Method: This study included 2705 sepsis patients from the Peking Union Medical

College Hospital Intensive Care Medical Information System and Database (PICMISD)

from January 2016 to April 2020. The training set and test set (January 2016 to

June 2019) were randomly divided. Twenty-seven features were extracted for modeling,

including 25 state features (bloc, vital sign, laboratory examination, blood gas assay and

demographics), 1 action feature (fluid balance) and 1 outcome feature (ICU survival or

death). SARSA was used to learn the data rules of the training set. Deep Q-learning

(DQN) was used to learn the relationship between states and actions of the training

set and predict the next balance. A double-robust estimator was used to evaluate the

average expected reward of the test set in the deep Q-learning model. Lastly, we verified

the difference between the predicted fluid therapy model and the actual treatment for

the patient’s prognoses, with sepsis patient data from July 2019 to April 2020 as the

validation set.

Results: The training set and test set were extracted from the same database, and

the distribution of liquid balance was similar. Actions were divided into five intervals

corresponding to 0–20, 20–40, 40–60, 60–80, and 80–100% percentiles of fluid balance.

The higher the reward of Q(s, a) calculated by SARSA from the training set, the lower the

mortality rate. Deep Q-learning indicates that both fluid balance differences that are too

high and too low show an increase in mortality. The more consistent the fluid balance

prediction with the real result, the lower the mortality rate. The smaller the difference

between the prediction and the reality, the lower the mortality rate. The double-robust
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estimator shows that the model has satisfactory stability. The validation set indicates that

the mortality rate of patients in the “predicted negative fluid balance and actual negative

fluid balance” subgroup was the lowest, which was statistically significant, indicating that

the model can be used for clinical verification.

Conclusion: We used reinforcement learning to propose a possible prediction model

for guiding the direction of fluid therapy for sepsis patients in the ICU. This model may

accurately predict the best direction for fluid therapy, thereby improving patient prognosis.

Keywords: sepsis, fluid therapy, machine learning, prognosis, model prediction

INTRODUCTION

Fluid resuscitation is the basic treatment for sepsis. However,
in recent years, clinicians have found that an inappropriate
infusion of large amounts of fluid may cause volume overload,
which has become an independent risk factor for disability
and death during critical illness (1–4). In the early treatment
of sepsis, to improve organ perfusion, fluid therapy should
be performed in a timely manner, but continuous positive
fluid balance is not advocated. With the infusion of a large
amount of fluid, a positive balance may cause treatment-
related damage, such as capillary leak syndrome and pulmonary
edema (5). In fact, an increasing number of studies suggest
that having a negative fluid balance during the late treatment
of sepsis can improve overall prognosis (6). However, how
to prevent and address the fluid balance problem caused by
volume therapy in clinical practice has become a problem
that puzzles clinicians. Recently, physicians have used several
methods to investigate resuscitation strategies for septic shock
patients. Ma et al. (7) used finite mixture modeling and K-means
clustering to identify subclasses of septic shock and dynamic
treatment regime was used to give customized fluid volume
and norepinephrine dose prescription for each patient. Lu et al.
(8) explore the sensitivity of Dueling Double Deep Q-Networks
to data preparation and modeling decisions in the context of
hemodynamic management in septic patients. In this paper,
we would like to explore fluid therapy balance strategies for
ICU sepsis patients based on SARSA Algorithm, Q-learning and
DQNmodel.

OBJECTS AND METHODS

Patient Enrollment, Data Extraction, and
Interventions
Inclusion and Exclusion Criteria
Patients who were diagnosed with sepsis between January
2016 and April 2020 at the Department of Intensive Care,
Peking Union Medical College Hospital, were included in
this study. Informed consent was given by patients (or
their legally authorized representative/next of kin if the
patients were dead) before any data extraction. Patients
were excluded from this study if they met any of the
following criteria: (1) they were younger than 18 years

old or (2) they were admitted to the ICU for fewer
than 24 h.

Definition of Sepsis and Initial Time of Fluid

Resuscitation
The initial timing of fluid resuscitation is when patients are
diagnosed as “sepsis”. Specifically, definition of sepsis is the time
when both “infection is diagnosed” and “new onset of 1SOFA
≥ 2” are reached (9). Infection was defined as follows: (1) if an
antibiotic was used first, the etiology was obtained within 24 h
after antibiotic treatment OR (2) if the etiology was noted first,
the antibiotic was used within 72 h.

Data Extractions
Data were extracted from the Peking Union Medical College
Hospital Intensive Care Medical Information System and
Database (PICMISD). The parameters extracted from the
database included demographics, vital sign data collected by
bedside monitoring, laboratory examination data, blood gas
analysis, microbiological examination results, antibiotic usage
and total fluid balance. Notably, data de-identification was
performed before any further analysis.

Ethical Approval
The authors assert that all procedures contributing to this
work comply with the ethical standards of the relevant national
and institutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in 2008. All
the experimental protocols were approved by the Institutional
Research and Ethics Committee of Peking Union Medical
College Hospital, which approved this study for human
subjects (No. SK-1241).

Data Collection and Cleaning Strategy
A total of 2,705 patients were included based on sepsis 3.0.
The average ICU time was 4.3-day, as calculated by PICMISD.
We included patient data over each 6 h period up to 108 h (4.5
days), for 18 periods in total. For patients who transferred out
of the ICU or died within 108 h, the last period was their last
record in the ICU. The values of each feature are the average
value for each period. The final outcome was patient death or
survival over the last period, that is ICU survival or death. Death
includes clinical death and the withdrawal of treatment without
any further action. Each 6 h is identified as a block, which is
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abbreviated as “Bloc”. Because the laboratory features do not
need to bemeasured frequently, the missing values were forward-
filled. Missing values of other features with <30% missing
rate were filled by KNN. Twenty-seven features were used for
modeling, including 25 state features (bloc, vital sign, laboratory
examination, blood gas and demographics), one action feature
(fluid balance), and one outcome feature. We included 2,443
sepsis patients, with 2,095 survivors and 348 non-survivors. Each
group of data includes all 27 features for one period for one
patient. Each patient could contribute 18 groups of data at most
depending on their ICU time. There were 31,425 groups of
data generated from 2,443 patients (the data selection strategy
is shown in Figure 1). The features and outlier manipulation
criteria are shown in Table 1.

State, Action, and Rewards
Q-Learning is a basic form of Reinforcement Learning which
uses Q-values (also called action values) to iteratively improve
the behavior of the learning agent. Q-Learning technique is an
off-Policy technique and uses the greedy approach to learn the
Q-value. SARSA technique, on the other hand, is an On Policy
and uses the action performed by the current policy to learn the
Q-value. DQN model is based on Q-learning, which we use to
uncover the relationship between states and actions, obtain new
knowledge from existing data and find the best treatment plan to
predict the reasonable range of fluid balance.

The purpose of reinforcement learning is to obtain an optimal
policy for a specific problem to maximize the reward obtained
under a given strategy. A strategy is mapped from state to action,
which can determine what behavior to choose under a certain
state and then enter the next state. The transition in the state is
equivalent to adding a reward to the Markov decision process.
Hence, the next state is related not only to the current state but
also to the current action. Every decision consists of a status,
behavior and reward. Given that the prediction is the interval of
fluid balance, which can be divided into five intervals, we used
the value iteration method of reinforcement learning.

In this research, each data point is a group of states, which
includes 25 features except the balance and outcome. The action
refers to how much liquid should be given under a certain state,
which is divided into five groups by 0–20, 20–40, 40–60, 60–
80, and 80–100% of the percentiles of fluid balance. Each group
of actions and the corresponding balance is shown in Table 2.
“Rewards” refers to a survival-derived score. At the terminal
timestamp of each patient, we issued a reward of +15 if they

survived their ICU stay and a reward of−15 if they died. The
rewards were all 0 at the other timestamps.

Algorithm Description
All the patients were divided randomly 8:2 into a training
set and test set, corresponding to 2,095 (25,149 blocs) in the
training data and 348 patients (6,326 blocs) in the test data.
We needed to evaluate the expected reward when performing
an action in a certain state; the higher the expected reward is,
the better the effect of performing this action. The reward is
called Q(s, a), with s being the current state and a being the
performing action. Q(s, a) is also the q-value performing action a
in state s. All Q(s, a) are initialized as 0, and Q′(s, a) is updated by
performing different actions under different states and obtaining
rewards from different next states. Then, the model can learn the
possibilities of different Q(s, a) under a certain state and choose
the action with the highest possibility as the next action.

There are two methods to update Q′(s, a): SARSA and
Q-learning (10).

The formula for updating the Q′(s, a) in SARSA is as follows:

Q′(s, a) ← Q(s, a)+ α[r + γQ(s′, a′)− Q(s, a)]

s ← s′; a← a′

The formula for updating the Q′(s, a) of Q-learning is as follows:

Q(s, a) ← Q(s, a)+ α[r + γmaxa′Q(s
′, a′)− Q(s, a)]

s ← s′

where r is the reward of the current action and α and γ are the
parameters of 0–1.

When updating the Q′(s, a), SARSA chooses a′ from all
possible next actions to the next state s′ and obtains Q′(s′, a′).
Then, it performs a′ in state s to state s′. Q′(s, a) will be updated
in the next iteration from one next action in state s′. Q-learning
updates Q(s, a) with the highest Q′(s′, a′) in state s, but the next
action will be chosen in another way in the next iteration rather
than using the a′ ofQ′(s′, a′). In general, the a′ in state s is chosen
randomly; in this case, we could find out how much balance
(a1) the patients have in state s1, then enter state s2, but if the
action is random (such as a2), and all patients in state s1 did
not have the balance a2 in the existing data, we would not know
what the next state could be. Thus, the next state should be
chosen from the given sequence of data. The updated strategy for
Q(s, a) with SARSA is exactly the same as the actual implemented

FIGURE 1 | Data selection strategy.
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TABLE 1 | Missing rate and outlier manipulation criteria of the modeling features.

Feature Description Missing rate Outlier manipulation method

Invasive mean pressure (mmHg) Vital sign 0.033 Exclude data with values below 0 and the value is 0 but not dead

Invasive systolic blood pressure (mmHg) Vital sign 0.034 Exclude data with values below 0 and the value is 0 but not dead

Invasive diastolic blood pressure (mmHg) Vital sign 0.034 Exclude data with values below 0 and the value is 0 but not dead

Temperature (◦C) Vital sign 0.004 -

Breathe rate (bpm) Vital sign 0.0002 Exclude data with values above 100 and the value is 0 but not dead

Oxygen concentration (%) Vital sign 0.204 Set the values below 21 to 21. Exclude data with values above 100

Perfusion index Vital sign 0.004 Exclude data with values above 50

CVP (mmHg) Vital sign 0.250 Exclude data with values below or equal to 0

SPO2 (%) Vital sign 0.001 Exclude data with values of 0 or greater than 100

Heart rate (bpm) Vital sign 0.0002 Exclude data with values of 0 but not dead

White blood cell (×109/L) Laboratory examination 0.581 -

Neutrophilic granulocyte percentage (%) Laboratory examination 0.583 Exclude data with values of 0

Hemoglobin (g/L) Laboratory examination 0.581 -

Blood platelets (×109/L) Laboratory examination 0.581 -

Creatinine (mmol/L) Laboratory examination 0.675 -

Total bilirubin (mmol/L) Laboratory examination 0.725 -

pO2 (mmHg) Blood gas 0.074 -

pCO2 (mmHg) Blood gas 0.074 -

BE Blood gas 0.096 -

pH Blood gas 0.074 Exclude data with values below 6.7

Lactate (mmol/L) Blood gas 0.074 Exclude data with values above 30

Gender Demographics - -

Age (yrs) Demographics - -

Weight (kg) Demographics - -

bloc - -

Balance (mL) Output volume-input volume - Exclude data with outputs or inputs below 0 or above 5,000 and empty values

Outcome Dead or survived - -

TABLE 2 | Fluid balance as the division of actions.

Actions Action 0 Action 1 Action 2 Action 3 Action 4

Fluid balance intervals (mL) <-110.68 −110.68 to −45.68 −45.68 to −0.67 −0.67 to 45.00 >45.00

strategy, which is called on-policy, while inconsistent with Q-
learning, which is called off-policy. SARSA is aimed at learning
the characteristics of the original data, and Q-learning tends to
discover new strategies (11).

Data Evaluation
First, we used SARSA to learn the characteristics of the
original data to then obtain the relationship between reward
and mortality to evaluate whether the rewards were reasonable.
Q(s, a) is the expected reward. The relationship between the
expected reward and mortality could be acquired by calculating
the mortality rate of each data point in Q(s, a). Ideally, the higher
the expected reward is, the lower the mortality rate. We used the
training set to build the SARSA model. Since the state cannot
be exhaustive, we used a function (neural network) as the state
to build a reinforcement learning model. The neural network
consists of 1 input layer, two hidden layers, and one output layer.
The input layer consists of 25 features (25 nodes). Each hidden

layer has 128 hidden nodes. The output layer is the probability of
Q(s, a) corresponding to the five action categories, and softmax is
used to select the highest probability action as the final output.

Each node of the neural network represents a function and
includes weights w and biases b. The weights are different in
different nodes, and the biases are the same in the same layer and
different in different layers. w and b are initialized as randomly
generated decimals of a normal distribution with a mean value
of 0 and a standard deviation of 1, generally within the interval
[−1,1]. Due to the size of the training set, data are usually
trained in small batches in a fixed-size sample that is randomly
selected from all training data for each iteration. The sample
size is called the batch size, and the batch size of this project is
32. First, the network receives the input and calculates using the
received input and parameters, comparing the estimated output
with the real output, it obtains the mean square error, and then
it updates the parameters of each node according to the error.
The learning rate for updating the parameters is 0.0001 to ensure
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that the amplitude of each update parameter will not be too
large so that the current parameters can gradually approach the
best parameters. Normally, the error will keep decreasing during
training, and the decrease will be fast and then slow. When the
error becomes stable as the training times increase, the training
can be stopped to avoid overfitting.

Figure 2 shows the approach of SARSA updates Q(s, a). In
the project, there are five actions, a1, a2, a3, a4, a5. Suppose
the states are s1,s2,s3.... Each data point includes a state and
action group. The updating order is the same as the data
order. As shown in Figure 2, suppose the first state is s1,
the action to be performed is a2, and we update Q(s1, a2).
With first input s1, we could have five Q values of five
actions, then we could obtain s2 as the next state and a1 as
the next action, using Q(s2, a1) to update Q(s1, a2). Then, we
would update Q(s2, a1)... in the same way until the end of
the iterations.

Balance Prediction
Next, we used deep Q-learning (DQN) based on Q-learning to
uncover the relationship between states and actions, obtain new
knowledge from existing data and find the best treatment plan
to predict the reasonable range of fluid balance. We used the
training set to train themodel and the test set to make predictions
on the trained model.

Figure 3 describes the approach of DQN updates with Q(s, a).
The updating order of Q(s, a) is also the same as the data order;
unlike SARSA, DQN uses the highest Q(s, a) among five Q(s, a)
to update Q(s1, a2). Suppose the highest Q(s, a) is Q(s2, a4), and
we use Q(s2, a4) to update Q(s1, a2).

The principle of updating Q(s, a) with DQN and Q-learning
is the same. Both use the max method. However, there will be an
overestimation problem. If the data are noisy, the best Q(s, a) is
not the largest Q(s, a). There may be biases after each iteration,
and the biases will approach Q with greater values (12).

FIGURE 2 | SARSA updates approach.

Frontiers in Medicine | www.frontiersin.org 5 April 2022 | Volume 9 | Article 766447186

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Su et al. Fluid Therapy by Reinforcement Learning

FIGURE 3 | DQN updates approach.

To solve the problem, we use double deep Q-learning
(DDQN). The method of updating Q(s, a) with DDQN is
as follows:

Q(st , at) ← Q(st , at)+ α[Rt+1 + γQ′(st+1, a)− Q(st , at)]

a = maxaQ(st+1, a)

The method of calculating losses with DQN and DDQN is shown
in Figure 4.

θ is the parameter of the neural network; the method of
obtaining Q is called selection, and the calculation loss is called
an evaluation. DDQN implements the two methods with two Q
networks, avoiding the risk of using the same Q network.

We define two identical structured Q networks, the primary
QN and target QN, train with the primary QN and evaluate with
the target QN (13). The calculation process is as follows:

(1) Use the primary QN to select the action with the highest
Q(s, a) in st+1, where Q(s, a) is called q1;

(2) Use target QN to evaluate the Q(s, a) of the action, and the
evaluated Q(s, a) is called q2;

(3) Set the difference between q2 and q1 as the loss, update the
parameters of the primary QN with back propagation, and
do not update the parameters of target QN;

(4) Repeat (1) (2) (3) until convergence.

Algorithm Evaluation
The algorithm evaluation method compares the original average
reward and the average reward calculated by the model on the
test set. If the average reward calculated by the model is higher
than that of the original test set, we can argue that the model has
an effect on optimizing treatments. However, because the model
is built on the training set, we cannot ensure that the distribution
(probability of occurrence) of the test set is the same as that of
the training set, and it is inaccurate to use the mean prediction
rewards for comparison. To ensure that the two groups of data
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FIGURE 4 | Calculating loss with DQN and DDQN.

are unbiased, the inverse probability score (IPS) is generally used
for approximating the test set to the training set distribution.

The formula of the IPS is as follows:

Vπ

IPS =
1

|N|

∑N

i= 1

Airi

πi(xi)
(1)

where A is whether an event occurs or not, r is the reward, and
πi(xi) is the probability of an event occurring. If the probability
on the test set is lower than that of the training set, as the
denominator, r will be multiplied by a multiple greater than 1,
which is the inverse. If the probability of an event occurring
is correct, the test set will be unbiased. However, there are
two problems. First, we cannot ensure that the probability is
completely correct. Second, the variance will be too large if the
probability is very small.

We can also use regression-based model m(xi) for prediction,
and the formula is as follows:

m(xi) = E(r|A = 1, x) (2)

where A indicates whether AI policy is consistent with clinical
policy, 1 indicates consistency and 0 indicates inconsistency.

Vmodel =
1

N

∑N

i=1
[Airi + (1− Ai)m(xi)] (3)

If A= 1, (1− Ai) is 0, and according to the formula, the original
reward will be used. If A = 0 and Airi is 0, the predicted reward
will be used. Similarly, if the model is correct, the result will
be unbiased.

A double-robust estimator is the combination of IPS and a
regression model. The formula is as follows:

Vπ

DR =
1

|N|

∑N

i=1
[
Ai(ri −m(xi))

πi(xi)
+m(xi)] (4)

OR:

Vπ

DR =
1

|N|

∑N

i=1
[
Airi

πi(xi)
−

Ai − πi(xi)

πi(xi)
m(xi)] (5)

wherem(xi) is themodel, which is used for predicting the reward.
If the model is correct, according to formula 4, the model is
able to predict ri, and if ri − m(xi) = 0, Vπ

DR =
1
|N|m(xi), the

result is unbiased. If the model is not correct, the probability of
an event occurring is correct. According to formula 5, Vπ

DR =
1
|N|

∑N
i=1

Airi
πi(xi)

, and the result is also unbiased. In other words,

at least one of the models and the event probability estimation is
correct, and the result is unbiased (doubly robust) (14–17).

Model Validation
Patient data from July 2019 to April 2020 were extracted from
PICMISD as the validation set. We compared the predictions
and actual clinical conditions and prognoses of four different
types of negative fluid balance and fluid infusion in the validation
set. The preprocessing method of the validation set is the same
as that used for the data collection and cleaning strategy in
Section 2. Lastly, the validation set included 399 sepsis patients
(representing 5269 time-blocks) were used for verification,
with 357 survivors (including 4677 time-blocks), and 42 non-
survivors (including 592 time-blocks). We divided the predicted
and clinical 5-group fluid balance into two groups based on the
total amount of fluid (positive or negative balance). The previous
categories 0, 1, and 2 correspond to the new category 0, indicating
negative fluid balance (negative balance), and categories 3 and
4 correspond to the new category 1, indicating fluid infusion
(positive balance). In addition, the actual negative fluid balance
and fluid infusion were determined according to the actual
clinical PICMISD records. We calculated the morality of the four
combinations of prediction and clinical results. The mortality
rate is the lowest when the predicted fluid management strategy
is the same as the actual strategy.

Statistical Analysis
All statistical analyses were performed using SPSS Statistics for
Windows (version 19.0, IBM Corporation, Armonk, NY) and
R 3.4.3. Student’s t-test or the Wilcoxon rank sum test was
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used to compare continuous variables. The categorical data
were compared using the chi-square test or Fisher’s exact test.
The Kruskal-Wallis test was used to compare differences in
continuous parametric variables with abnormal distributions.
Differences in the variables between the groups were considered
statistically significant at the a p level of < 0.01.

RESULTS

General Description
Table 3 shows the significant difference between each feature
of the training set and test set. The p-values of all the features
are greater than 0.01, which means that there is no significant
difference between the two datasets.

Data Distribution
As shown in Figure 5, from left to right, the first row shows
the fluid balance distribution, action distribution and reward
distribution of the training set based on the frequency. The test
set shown in the second row follows the same distribution. Each
data point represents the data from each period for each patient.
The balance distribution figure shows that most patients had
a balance of ±500, with the highest being 1608.92 and lowest

being −1097.58, which was similar to those in the test set. The
action distribution figure shows that although the balance of each
patient for each period is mostly different, the percentage of each
action in the training set and test set are basically the same. The
number of each group of actions in the training set and test set
are the same. In the reward distribution figure on the training
set, the rewards of 2,095 individuals are alive, and 348 individuals
died. In addition, most of the rewards were 0. The proportion of
rewards in each part of the test set is basically the same as that of
the training set. The results above show that the distributions of
the training set, test set, and validation set are basically the same.

Prediction of SARSA
Each training dataset includes a group of states and actions
Q(s, a). Figure 6 describes the mortality and expected reward of
the training set. Clearly, the higher the expected reward is, the
lower the mortality rate, and the reward value is properly set.

Prediction of Q-Learning
Figure 7B shows the predicted action distribution of the test set.
Action 2 has the highest amount among the five actions, and the
corresponding balance is−45.68 to−0.67. Action 0 and action 4
have the lowest amount, which corresponds to too little and too

TABLE 3 | Comparison of 27 features of the training set and test set.

Features* Training set Test set Validation set p-value (training p-value (training vs.

median (25th, 75th) median (25th, 75th) median (25th, 75th) vs. test set) validation set)

Invasive mean pressure 88.33 (81.56–95.57) 89.25 (81.76–97.12) 83.74 (78.0–89.9) 0.1320 0.1320

Invasive systolic blood pressure 131.57 (120.47–143.62) 132.91 (121.83–145.56) 122.56 (112.02–135.0) 0.2992 0.2992

Invasive diastolic blood pressure 67.33 (60.75–74.22) 68.45 (61.41–76) 64.29 (58.79–69.58) 0.0144 0.0144

Temperature 37 (36.5–37.5) 37 (36.55–37.5) 37.0 (36.5–37.5) 0.2956 0.2956

Breathe 18.08 (15.86–20.83) 18.12 (15.71–21.1) 17.33 (15.38–20.2) 0.4522 0.4522

Oxygen concentration 31 (28–38.75) 31 (27.76–39.21) 36.29 (30.53–43.12) 0.1943 0.1943

Perfusion index 1.5 (0.79–2.4) 1.6 (0.81–2.63) 1.13 (0.64–1.87) 0.0224 0.0224

CVP 8 (6.5–9.64) 8 (6.33–9.61) 8.33 (7.0–10.0) 0.1711 0.1711

SPO2 (%) 98.64 (97.45–99.6) 98.38 (97.14–99.29) 98.4 (96.84–99.5) 0.0500 0.0500

Heart rate 92.86 (82.5–103.67) 93.45 (82.33–105) 94.56 (85.1–102.97) 0.1275 0.1275

White blood cell 11.8 (8.49–16.59) 11.22 (7.94–15.47) 11.61 (7.71–16.29) 0.2308 0.2308

Neutrophilic granulocyte percentage 86.1 (80.6–90.2) 86.2 (80.46–90.4) 88.05 (82.3–92.03) 0.0163 0.0163

Hemoglobin 96 (86–109) 97 (88–110) 91.0 (83.67–100.46) 0.0190 0.0190

Blood platelets 144 (89–208) 138 (80–208) 93.0 (63.67–140.92) 0.0660 0.0660

Creatinine 86 (60–138) 79 (55–139) 106.0 (79.0–164.0) 0.0221 0.0221

Total bilirubin 16.9 (11.4–30.9) 16.7 (11.2–30.1) 28.1 (15.3–59.49) 0.2970 0.2970

Lac 1.3 (0.9–1.83) 1.30 (1–2) 1.6 (1.13–2.59) 0.3278 0.3278

pO2 92.80 (79.3–111) 92.91 (79.5–110) 94.72 (79.26–117.0) 0.4295 0.4295

pCO2 39.05 (35.8–42.6) 39.3 (35.95–43.1) 39.85 (36.26–43.0) 0.3987 0.3987

BE 3.03 (0.4–5.47) 3.17 (0.6–5.9) 3.0 (0.0–5.6) 0.4494 0.4494

pH 7.45 (7.42–7.48) 7.45 (7.41–7.48) 7.44 (7.41–7.47) 0.3254 0.3254

Age 62 (48–70) 62 (50–70) 59.0 (50.0–68.0) 0.2671 0.2671

Weight 65 (58–75) 65 (58–75) 65.0 (60.0–74.0) 0.4209 0.4209

Bloc 8 (4–13) 8 (4–12) 9.0 (4.0–13.0) 0.1800 0.1800

Fluid balance −20.83 (−90.66–32.87) −19.24 (−90.25–37.31) −31.19 (−109.05–36.81) 0.1606 0.1606

*All parameters do not obey normal distribution.
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FIGURE 5 | Frequency distribution for the balance distribution, action distribution, and reward distribution of the training set, test, and validation set.

much balance. In comparing the origin distribution in Figure 7A,
the amount of balance that was too high and too low decreased
significantly. Figure 7C shows the APACHE II score of these
different actions.

Figure 8 shows the relationship between fluid balance
difference and mortality. We used the median fluid balance
interval as the predicted value, and the difference was the
predictive value minus the actual value. The closer the model is to
the clinical fluid balance difference, the lower the mortality rate.
This trend shows that the model is able to conclude clinical rules.
However, a fluid balance difference that is too high or too low is
not good for patients. Mortality is higher in patients with a lower
fluid balance difference than in those with a higher fluid balance
difference. The supplemental figure shows the predicted - real
fluid balance difference and APACHE II score.

Evaluation
A double-robust estimator was used to calculate the average
expected reward [Q(s, a)] of the original test set, and the average

predicted reward was calculated by the Q-learning model. The
result is shown in Table 4. The results show that the average
reward keeps increasing as the iterations increase. The increase is
significant at the beginning, while the number of iterations rises
from 20,000 to 30,000. Compared to the first 10,000 iterations, the
increase in the average reward is much lower and could gradually
become stable in future iterations. There could also be a risk of
overfitting. Thus, we chose the model with 30,000 iterations as
the final model.

Validation
As shown in Figure 9A, patient mortality was lowest when
negative fluid balance was predicted to be the same as clinical
in both the validation set and the test set. The mortality is
lower when the reinforcement strategy is the same as the clinical
strategy. When the reinforcement strategy is different from the
clinical strategy, it is more serious to predict negative fluid
balance as fluid infusion than to predict fluid infusion as negative
fluid balance, and the mortality of the former is lower than that
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of the latter. The results are shown in Figure 9B, which show the
high value of the model in reality.

DISCUSSION

Our study indicates that the use of reinforcement learning
methods can clearly predict a patient’s future liquid treatment
strategy. To our knowledge, clinical decision-making is a process
that usually not gives immediate feedback. A certain treatment
strategy may improve or worsen the state of illness. However,
it does not mean the treatment prior to change of the illness
is right or wrong. In clinical practice, a series of treatment
procedures work together to accomplish the therapeutic effect.
Hence, clinical decision-making in ICU is not a simple static
classification problem. Instead, it is a dynamic process which we
should learn through environmental rewards and punishments.

FIGURE 6 | Mortality and expected reward.

Under this circumstance, reinforcement learning should be
used to maximize rewards or achieve specific goals through
learning strategies in the interactive process of the environment.
The SARSA model can be used to simulate the equation
between expected mortality and actual mortality during the
liquid treatment process. The Q-learning model shows that as the
model prediction and actual intake and output become closer, the
mortality rate decreases. Additionally, if the intake and output are
too high or too low which caused abnormal fluid imbalance, the
mortality rate would be higher. Patients with higher positive fluid
imbalance may have higher mortality than those with a higher
negative fluid imbalance. We used a double-robust estimator to
calculate the average expected reward of the test set in the Q-
learning model after training 30,000 times as the final prediction
model. Using a validation data set, the results suggest that if
the model predicts that the patient should be dehydrated while
the patient is dehydrated under actual treatment, the fatality
rate is significantly lower compared with other circumstances. In
particular, these data are from the first 108 h of entering the ICU
ward, which suggests that the resuscitation is not a positive mass
fluid resuscitation. This is worth thinking about for the clinicians.

Fluid overload is related to the prognosis of severely ill patients
with septic shock and/or acute respiratory distress syndrome
(ARDS). Excessive fluid load may lead to a vicious cycle in which
interstitial edema causes organ dysfunction, leading to fluid
accumulation, organ edema and dysfunction. All the potentially
harmful consequences of fluid overload in different end-organ
systems have an impact on patient morbidity and mortality.
Therefore, although infusion is advocated in early resuscitation
strategies, the side effects of inappropriate or excessive infusion
are increasingly recognized by practitioners. Fluid therapy can
be considered a double-edged sword. In 2000, a retrospective
cohort study conducted by Alsousand et al. indicated that
patients with a negative fluid balance for at least one day
during the first 72 h of septic shock had a better prognosis
(OR 5.0; 95% CI 2.30–10.9, p < 0.001) (18). In 2006, the
FACTT study showed that although negative fluid balance had
no effect on the mortality rate, it can significantly reduce the
time of mechanical ventilation and the ICU stay in critically
ill patients (19). Since 2006, more studies have focused on

FIGURE 7 | (A) Action distribution of clinical policy on the test set. (B) Action distribution of AI policy on the test set. (C) Action distribution of APACHE II on the test set.
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FIGURE 8 | Predicted - real fluid balance difference and morality.

the relationship between fluid balance and mortality in sepsis,
suggesting the disadvantages of positive fluid balance for patients
with sepsis from the perspective of evidence-based medicine
(1–4). A recent systematic review involving fluid balance and
prognosis in critically ill children suggests that after initial
resuscitation, these children may develop edema and progress
to fluid overload. More evidence shows that fluid overload
causes more complicated treatment and serious outcomes, which
could increase morbidity and mortality (20). Therefore, when
treating patients with sepsis, we should be alert to the “reinjury”
caused by excessive volume load, and more methods should
be used to identify and assist in decision-making about fluid

therapy strategies. In particular, our research has found that
early infusion does not require a large amount of fluid infusion

for the ICU admission in the real world. If fluid therapy
can be performed more appropriately and a negative balance

can be reached earlier, patients will ultimately benefit. For

critically ill patients, at the beginning of ICU admission, it is
necessary to choose an assessment every 6 h. Regarding the
liquid usage within these 6 h period, actual fluid balance rather
than the actual amount of input and output is the core of the
resuscitation treatment. Our study provided effective treatment
decision-making recommendations that have good predictive
performance based on fluid balance and each time interval. For
example, patients with “recommended negative fluid balance but
actual negative fluid balance” have a better prognosis, while those
with “recommended negative fluid balance but actual positive
fluid balance” have the worst prognosis.

TABLE 4 | Average expected reward.

Items Average reward

Original data from test set 4.07

Q-learning model (3,000 iterations) 4.05

Q-learning model (10,000 iterations) 9.06

Q-learning model (20,000 iterations) 10.37

Q-learning model (30,000 iterations) 10.47

The average infusion volume of patients with severe infection
and septic shock on the first day of admission to the ICU is
lower than recommended by the Surviving Sepsis Campaign
bundle. An infusion of more than 5 L of fluid on the first day
of admission to the ICU is associated with a significant increase
in the risk of death and a significant increase in hospitalization
costs (21). Vincent and De Backer recently proposed a conceptual
model for managing the shock state. This model is aimed at
fluid management during the treatment of critical illness. The
treatment of shock is divided into four phases: (1) recovery
phase: the goal is to achieve the lowest blood pressure level
sufficient to maintain life; (2) optimum phase: the goal is to
increase cardiac output to meet the requirements of the body;
(3) stable phase: the goal of this phase is organ support and
avoiding complications; and (4) de-escalation phase: patients in
this stage should gradually leave the ICU intervention measures.
This approach formally puts forward the necessity of liquid
de-escalation therapy (22, 23). On this basis, Monnet et al.
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FIGURE 9 | (A) Comparison of survival and death patients’ blocks in the prediction and clinical balance groups in the validation set. (B) Comparison of survival and

death patients’ blocks predictions and clinical balance in the test set.

(24) discussed different fluid management strategies, including
early goal-oriented fluid management, late conservative fluid
management, and late goal-oriented fluid removal management.
In addition, the “Four-D” (medication, Dosage, Duration and
Degradation) concept of fluid therapy is expanded. When
treating patients with septic shock, four stages of fluid therapy
should be considered to answer these questions. Doctors should
be fully aware of the proper time to start or stop intravenous
infusion, when to start reverse resuscitation or actively drain
fluid, and when to stop reverse resuscitation. However, it is
difficult to give a clear standard to explain how patients should
implement fluid therapy accurately. These abstract concepts are
not conducive to clinical implementation. Sometimes the success
or failure of a treatment depends on the doctor’s own experience
and understanding of related theories. Recent studies have shown
that achieving a negative volume balance in the ICU is associated
with a reduction in 90-day mortality. An earlier negative fluid
balance is associated with a reduction in mortality. Each liter
of negative fluid balance increases the mortality rate (20). This
finding shows that fluid treatment, especially the identification
of the de-escalation stage, is of great significance. Our model
proposes this possibility both theoretically and practically. Using
the Q-learning model can provide us with the direction of
liquid therapy for clinical reference. Our model really brings the
theoretical idea of fluid resuscitation back to the scale of clinical
operability, with the help of computer reinforcement learning.

However, we should never forget avoiding excessive negative
fluid balance during treatment. Our goal for negative fluid
balance is to remove excess volume in the interstitial spaces.
However, the volume in the circulation must be removed first.
When the interstitial fluid resorption rate (plasma refilling rate)

is sufficient to prevent hypovolemia, hypotension does not occur.
Currently, we do not completely know the lowest fluid resorption
rate that may prevent hypotension. Studies have shown that in
patients with severe negative fluid balance, increased fluid intake
and urine output are related to a decrease in hospital mortality.
However, achieving a more negative fluid balance compared to
a mild fluid balance is not associated with reduced mortality
(25). In addition to giving certain liquid treatment strategies,
our model suggests that excessive negative fluid balance and
positive fluid balance also bring side effects. Our model gives
us a better basis for making choices, which gave a boundary
between negative fluid balance and positive fluid balance. This
is the contribution of machine learning to precision medicine.

Several limitations should be mentioned in this study. This
study uses a single-center database. The sample size and the
treatment stereotype of the treatment center may weaken the
universality of the model. In particular, the weights of 18 blocks
for each patient were equal in this study. At present, a method
to solve the time series problem has been presented (26, 27).
Further study, including temporal evolution along blocks of the
fluid balance, can be performed. In addition, the amount and
timing of negative fluid balance and positive fluid balance in
this model cannot be completely calculated. Our finding can
give directions for fluid therapy dependent onmodel predictions.
Hence, the results given by the model should be combined
with the clinical results. Any current medical applications of
artificial intelligence cannot replace physician’s medical decision
making. Third, several confounding factors may influence the
result of analysis. For example, usage of vasopressors and
variation of cardiac functions may contribute to outcome and
fluid balance. Patient’s severity of illness is not invariable during
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the treatment progresses. Moreover, the treatment of severe
illness is very complicated. Although we considered the impact
of disease severity when analyzing each bloc, it is impossible
for us to update the value of the relevant scoring system every
6 h according to current data. The impact of any machine
learning model on actual clinical conditions must be confirmed
by BCT studies. Whether other interventions have also affected
the process and conclusions of reinforcement learning, we may
answer and solve them through more advanced methods if
possible (28, 29).

CONCLUSION

This study proves that the reality of fluid therapy for patients with
sepsis in the early stage of ICU admission is that a large amount
of fluid infusion may not be required. If it can be converted to
the negative fluid balance resuscitation phase as soon as possible,
the patient’s prognosis is better. Reinforcement learning methods
were used to propose a possible predictive model for guiding
the fluid therapy of patients with sepsis in ICUs.Our study
presents a methodological model for fluid therapy. It is believed
that machine learning will ultimately assist in clinical decision-
making regarding the fluid therapy of critically ill patients in
the future.
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