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A New Two-Stage Approach with
Boosting and Model Averaging for
Interval-Valued Crude Oil Prices
Forecasting in Uncertainty
Environments
Bai Huang1, Yuying Sun2,3,4* and Shouyang Wang2,3,4

1School of Statistics and Mathematics, Central University of Finance & Economics, Beijing, China, 2Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing, China, 3Center for Forecasting Science, Chinese Academy of
Sciences, Beijing, China, 4School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China

In view of the intrinsic complexity of the oil market, crude oil prices are influenced by
numerous factors that make forecasting very difficult. Recognizing this challenge,
numerous approaches have been introduced, but little work has been done
concerning the interval-valued prices. To capture the underlying characteristics of
crude oil price movements, this paper proposes a two-stage forecasting procedure to
forecast interval-valued time series, which generalizes point-valued forecasts to
incorporate uncertainty and variability. The empirical results show that our proposed
approach significantly outperforms all the benchmark models in terms of both forecasting
accuracy and robustness analysis. These results can provide references for decision-
makers to understand the trends of crude oil prices and improve the efficiency of economic
activities.

Keywords: crude oil prices forecasting, forecast combination, interval-valued time series, model averaging, vector
L2-boosting

1 INTRODUCTION

As one of the most important commodities, crude oil plays a vital role in various fields. In the past
decades, crude oil prices have been extremely volatile (see Figure 1). The oil-related industries are
highly sensitive to oil price changes (Ebrahim et al., 2014; Taghizadeh-Hesary et al., 2016). Accurate
prediction of crude oil prices and the market volatility is valuable for market participants tomake risk
management plans and investment decisions (Zaabouti et al., 2016; Zhang et al., 2020). The crude oil
prices are volatile, and are dependent on many factors such as market trends, sentiments and stock
markets. The aforementioned factors make the crude oil prices unstable and makes its prediction
complicated and challenging. Thus, we aim to develop a reliable model for crude oil price forecasting.

In recent literatures, most of the existing methods focus on the point-valued crude oil closing
prices (Abramson and Finizza, 1995; Zhang et al., 2008; Kilian, 2009; Zhang et al., 2009; Shin et al.,
2013; Zhao et al., 2017; Binder et al., 2018; Álvarez-Díaz, 2019). However, the use of closing prices has
the disadvantage that it does not take into account the oil price variation information within a given
period time, e.g., the midpoint and range of crude oil prices in October 2008 are about $76.61/bbl and
$36.31/bbl respectively. While the midpoint and range of crude oil prices in November 2009 are
around $77.99/bbl and $5.42/bbl respectively.
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Such forecasts with point-valued crude oil price data have not
been particularly successful when compared with the interval-
valued time series forecasts (see Sun et al., 2019). What is more,
recent studies also provide empirical evidence suggesting that ITS
models have achieved great success on improving the forecast
accuracy in a wide range of fields such as stock price forecasting
(Maia and de Carvalho, 2011; Xiong et al., 2017) and forecasting
in energy markets, such as electric power demand (García-
Ascanio and Maté, 2010; Hu et al., 2015), and crude oil prices
(Yang et al., 2016). By accessing more information (e.g., highs,
lows, midpoints, and range), an interval-based method is
expected to be superior to the point-based method (Sun et al.,
2018). Here, highs and lows are points of inflection for prices. The
price range is the difference between two boundaries, which gives
the interval length. It can be regarded as a measure of volatility to
reflect the price fluctuation. For example, instead of traditional
point-based method, Yang et al. (2012) introduce interval
dummy variables in the autoregressive conditional interval
models. Sun et al. (2019) apply a threshold autoregressive
interval-valued model. Qiao et al. (2019) develop an interval-
valued factor pricing model. Conclusions from prior studies
suggest that interval-valued time series (ITS) models may
produce more accurate forecasts.

Therefore, the desirable characteristics of the interval
modeling make them ideal candidates for the prediction of
crude oil prices. In addition, it is well known that a large set
of factors are responsible for changes in the crude oil price,
including overall economic conditions, demand and supply,
monetary policy, as well as speculative trading (Hamilton,
2008; Yoshino and Taghizadeh-Hesary, 2014). Thus, the
number of potential predictors can be very large. In such
cases, interval-valued variable selection is considered necessary
and becomes the critical step in achieving promising forecasting
performances in data-rich environments. On the other hand, in
practice, when only some of the variables are selected to include as
the predictors in a model, model misspecification is unavoidable,
which can worsen the model forecast performance of the model.

Therefore, model averaging is considered to take a weighted
average of possible combinations of selected interval-valued
predictors.

For these reasons, this paper proposes a new two-stage
procedure for interval valued crude oil price forecasting based
on boosting andmodel averaging. First, we extend the L2 boosting
method by Buhlmann (2006) to achieve variable selection for the
interval model. Several penalized methods have been proposed to
achieve variable selection. Examples include the class of Bridge
estimators (Frank and Friedman, 1993), where the Lasso-type
estimators are included a special case (Knight and Fu, 2000), or
the smoothly clipped absolute deviation (SCAD) estimator (Fan
and Li, 2001). Instead of these regularized (penalized) methods,
Donald et al. (2009) apply information criteria for moment
selection, Ng and Bai (2009) develop boosting for variable
selection, where variable selection and shrinkage are
performed simultaneously to increase prediction accuracy. The
proposed vector boosting algorithm can achieve significant
dimension reduction when a long list of interval-valued
variables is available.

Next, we extend the LsoMA method developed by Liao et al.
(2019) to average predictions from interval models with interval-
valued exogenous variables to reduce model uncertainty. The idea
of model averaging (MA) is first introduced to combine
predictions from many forecasting models by Bates and
Granger (1969) and has received great interest in econometrics
and statistics. Model averaging is an extension of model selection
which can substantially reduce the selection bias induced by
selecting only one candidate model. Hoeting et al. (1999)
provide a comprehensive summary of previous research on
Bayesian model averaging (BMA) where models are weighted
by the posterior model probabilities. Unlike BMA, frequentist
model averaging (FMA) usually select the optimal weighting with
the smallest information criteria scores (Buckland et al., 1997;
Hjort and Claeskens, 2003; Hjort and Claeskens, 2006; Zhang and
Liang, 2011; Zhang et al., 2012; Xu et al., 2014), Mallows model
averaging (MMA) by Hansen (2007), jackknife model averaging

FIGURE 1 | Crude oil West Texas Intermediate (WTI), January 2005–December 2020.
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(JMA) by Hansen and Racine (2012). Liao and Tsay (2016)
extend MMA to the situation of the VAR models.

Univariate and bivariate methods are broadly the two main
approaches in the interval modeling literature. In the univariate
method, models are presented separately for a pair of attributes of
interval variables (e.g., midpoint and range). The two attributes are
estimated separately (De Carvalho et al., 2004; Maia et al., 2008),
thus only information of one attribute is used in estimating model
parameters at a time. Unlike the univariate method, the bivariate
method estimates the two attributes simultaneously (e.g., Cheung
et al., 2009; He et al., 2010; Lima Neto and De Carvalho, 2010;
Arroyo et al., 2011; González-Rivera and Lin, 2013), which is more
desirable in ITS forecasting. Therefore, in this paper, in order to
consider possible interdependence between midpoint and range,
the LsoMA methods are constructed following the bivariate
modeling approach to efficiently use the contained information.

This paper proposes a two-stage vector boosting model
averaging (2SVBMA) forecasting framework: Stage 1 uses vector
L2 Boosting to select interval-valued variables; Stage 2 uses the
leave-subject-out cross-validation model averaging method with
exogenous interval-valued variables to average interval-valued
predictions. Our procedure combines the merits of these two
techniques and can be easily adapted to any new situation. We
compare our 2SVBMA method with other competing methods
including model selection methods by Akaike information
criterion (AIC), Bayesian information criterion (BIC), Hannan-
Quinn (HQ), and model averaging methods by smoothed AIC,
smoothed BIC (Buckland et al., 1997), smoothedHQ, andMMA in
interval model. The empirical results indicate that the 2SVBMA
method has better forecasting performance than the commonly
used model selection and averaging methods.

Our proposed 2SVBMA forecasting procedure has a few
appealing features. First, this approach extends the forecasting
success of point-valued data models of crude oil price to interval-
valued data models, which is capable of assessing and forecasting
the changes in both the trend and volatility of crude oil prices
simultaneously due to the informational gain from interval-
valued data. Second, our vector boosting method provides a
parsimony and feasible solution to the interval-valued variable
selection problem for interval models. Third, the extended
interval-valued LsoMA model with interval-valued exogenous
variables demonstrates the gains in forecast accuracy through
forecast combination. By doing so, our approach improves crude
oil price forecasting performances significantly.

The remainder of this paper is organized as follows. Section 2
first proposes 2SVBMA methodology, starts with extended L2
boosting to interval-valued variable selection and develops the
LsoMAwith interval-valuedmodel with interval-valued exogenous
variables. Section 3 provides the empirical implementations.
Section 4 discusses the empirical results. Section 5 concludes.

2 METHODOLOGY

2.1 Model Framework
Let (Ω,F , P) be a probability space, where Ω is the set of
elementary events, F is the σ-field of events, and

P: F → [0, 1] is the σ-additive probability measure. An interval
random variable is defined as a measurable mapping
X: F → [xL, xU ] ∈ R, such that for all x ∈ [xL, xU ] there is a set
AX(x) ∈ F , where AX(x) � {w ∈ Ω|X(w) � x} with x ∈ [xL, xU ]
(Arroyo et al., 2011; González-Rivera and Lin, 2013). A stochastic
ITS {yt � [yL,t , yU ,t]}Tt�1 can be represented by its midpoint and
range, i.e., yt � < yc,t , yr,t >, where yc,t � 1

2 (yL,t + yU ,t) and
yr,t � yU ,t − yL,t . Assume that {yt} is stationary and follows a
vector autoregressive models with interval-valued exogenous
variables:

yt � ∑p
i�1

αiyt−i +∑q
j�1

βjxt−j + εt

≡ Π′zt + εt , t � 1, . . . ,T ,

(1)

where ytb(yc,t , yr,t)′, xt−jb(xc,t−j, xr,t−j)′, and εt � (εc,t , εr,t)′ is
an interval-valued sequence with mean zero and covariance
matrix Eεtεt′ ≡ Σ , and αi and βj are the coefficient matrix
that satisfies ∑p

i�1‖αi‖<∞ and ∑q
j�1‖βj‖<∞, zt � (yt−1′ , . . . ,

yt−p′ , xt−1′ , . . . , xt−q′ )′ is a 2(p + q) × 1 vector, Π � (α1, . . . ,
αp, β1, . . . , βq)′ is a 2(p + q) × 2 vector, and the assumed initial
data are {yt}0t�−p+1. This data generating process guarantees the
natural order of the intervals, i.e., the lower bound is smaller than
or equal to the upper bound.

In matrix form, (1) is represented by

Yc � ZΠc + εc, (2)

and

Yr � ZΠr + εr , (3)

where Yc � (yc,1, . . . , yc,T )′, Yr � (yr,1, . . . , yr,T)′,
Z � (z1, . . . , zT)′, Π ≡ (Πc,Πr), εc � (εc,1, . . . , εc,T )′, and εr �
(εr,1, . . . , εr,T)′.

The least squares estimators of Πc and Πr are given by

Π̂c � (Z′Z)−1Z′Yc, (4)

and

Π̂r � (Z′Z)−1Z′Yr . (5)

2.2 First Stage: Vector Boosting
We first extend L2Boosting regularization method to interval
model to select a subset of interval-valued variables. Zk is the kth

row in Z. They are the potential interval-valued variables that will
be selected by vector boosting. Zk,t is the tth element in Zk andΠk

is the corresponding kth interval-valued coefficient of Π, where
k � 1, . . . , p + q. Let m denote the mth iteration in the vector
boosting procedure, and M̄ denote the maximum number of
iteration. At each step m, the interval-valued variable Π̂

̂

km
that

is most relevant to the “current interval-valued residual” is
selected. Denote Fm,t as the strong learner and fm,t as the
weak learner for k � 1, . . . , p + q. Let ̂εm � ( ̂εm,1, . . . , ̂εm,T)′, fm �
(fm,1, . . . , fm,T)′ and Fm � (Fm,1, . . . , Fm,T)′.

Vector L2 Boosting performs an interval-valued variable
selection for Y using the following procedure:
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1. When m � 0, the initial weak learner for yt is

F0,t � f0,t � 1
T
∑T
t�1

yt . (6)

2. For each step. m � 1, . . . ,M̄
1) Compute the “current interval-valued residual,”

̂εm,t � yt − Fm−1,t .
2) Regress the current interval-valued residual

̂εm,t � ( ̂εc,m,t , ̂εr,m,t)
′ on each Zk,t . The estimator Π

̂
k is

obtained as

Π̂c,k � minΠc,k ∑
T

t�1
̂εc,m,t − Zk,tΠc,k)2,( (7)

Π̂r,k � minΠr,k ∑
T

t�1
̂εr,m,t − Zk,tΠr,k)2.( (8)

The interval-valued variables that has the minimum sum of
squared residuals is picked up, such that

km � argmink∈{1,...,p+q} ∑T
t�1

̂εm,t − Zk,t Π̂k)2.( (9)

3) The weak learner is

fm,t � Zkm ,tΠ̂km
, (10)

where Zkm ,t is the interval-valued variable that is selected.

4) The strong learner Fm,t is updated as

Fm,t � Fm−1,t + cmfm,t , (11)

with cm > 0, where cm is a learning rate, which can be seen as a
small step size when updating Fm,t .

To avoid overfitting, a version of AIC is used to choose the
optimal number of iteration M

̂
. Define Pm � Zkm(Zkm′Zkm)

−1Zkm′
to be an T × T matrix. From Equation (10),

ZkmΠ̂km
� Pm ̂εmfm � Pm Y − Fm−1( ). (12)

The strong learner at each step m is

Fm � Fm−1 + cmPm Y − Fm−1( )
� IT×T −∏m

a�0
IT×T − ckaPka( )⎡⎣ ⎤⎦Y �: BmY.

AIC is given as

AIC(m) � log( ̂σ2m) +
1 + trace(Bm)/T

1 − (trace(Bm) + 2)/T . (13)

where log( ̂σ2m) � 1
T ∑T

t�1( ̂εm − cmfm,t)2. Then
M̂ � argminm�1,..., ̄MAIC(m).

2.3 Second Stage: LsoMA
After selecting these important exogenous interval-valued
variables, LsoMA technique is extended to interval candidate

models with interval-valued exogenous variables, which is
adopted to reduce model uncertainty and increase forecast
accuracy.

Consider S candidate models used to approximate the DGP in
Eq. (1) with S to be infinite if the sample size is going to infinity.
The sth (1≤ s≤ S) candidate model is given by

yt � ∑is
i�1

αiyt−i +∑js
j�1

βjxt,j + εt ,

≡ z(s)′t Π(s) + εt , t � S + 1, . . . ,T ,

where z(s)t � (yt−1′ , . . . , yt−is′ , xt,1′ , . . . , xt,js′ )′, Π(s) � (α1, . . . , αis,
β1, . . . , βjs)′, and 1≤ is, js ≤ S. Then in matrix form, we have

Y � Z(s)Π(s) + ε,

where Y � (yS+1, . . . , yT)′, Z(s) � (z(s)S+1, . . . , z
(s)
T )′, and

ε � (εS+1, . . . , εT)′. For each candidate model, we use
multivariate least squares (LS) method to estimate parameters

and thus the LS estimator of Π(s) is Π̂(s) � (Z(s)′Z(s))−1Z(s)′Y,
and the corresponding estimator of conditional mean μ is ̂µ(s) �
Z(s)Π̂(s) in sth candidate model.

Let the weight vector w � (w1, . . . ,wS)′ ∈ W �
{w ∈ [0, 1]S: ∑S

s�1ws � 1}. Then the model averaging estimator

of conditional mean μ is ̂µ(w) � ∑S
s�1ws ̂µ(s). To obtain the

optimal weights, it is common to minimize the following
squared loss function:

L(w) � ‖μ − μ(w)‖2. (14)

However, this loss is infeasible because of the unknown
conditional mean μ. We follow the spirit of Liao et al. (2019)
to use the following feasible leave-subject-out cross-validation
criterion of choosing weights

LsoMA(w) � trace{(Y − ̃µ(w))Σ−1(Y − ̃µ(w))′}, (15)

where ̃µ(s) � ( ̃µ(s)′
S+1 , . . . , ̃µ(s)′

T )′, ̃µ(s)
S+t � ψ(s)t

̃µ(s)
[t], ψ(s)t is the

selected matrix to select observations at time point S + t, ̃µ(s)
[t]

is the leave-subject-out cross-validation estimator after deleting

some observations around S + t, and ̃µ(w) � ∑S
s�1ws ̃µ(s); see more

discussions in Liao et al. (2019). Minimizing this criterion, we
have

ŵ � arg minw∈WLsoMA(w), (16)

and thus the model averaging estimator is ̂µ(ŵ). As Liao et al.
(2019) proved, the weight obtained by minimizing the feasible
cross-validation criterion LsoMA(w) is asymptotically optimal in
the sense of achieving the lowest possible quadratic errors, i.e.,

L(ŵ)
infw∈HTL(w)

� 1 + op(1).

This shows that the squared error loss obtained from the
selected weight vector ŵ is asymptotically equivalent to the
infeasible optimal averaging estimator.
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3 EMPIRICAL IMPLEMENTATIONS

This section applies the proposed 2SVBMA procedure to forecast
the real price of crude oil. Data and preliminary analysis are
introduced in Section 3.1. Then the selected interval-valued
factors are introduced in Section 3.2. Section 3.3 introduces
the candidate models. Section 3.4 provides competing methods.

3.1 Data and Preliminary Analysis
Following Wang et al. (2017), Chai et al. (2018) and Yu et al.
(2019), the daily point-valued WTI crude oil prices are used to
construct the interval-valued monthly prices. yU ,t and yL,t denote
the daily maximum and minimum prices within tth month. yc,t �
(yU ,t + yL,t)/2 and yr,t � yU ,t − yL,t are the midpoint and range
from an interval-valued price observation yt � 〈yc,t , yr,t〉. The
data period used in the research is from January 2005 to
December 2017. Data on crude oil prices are collected from
the US Energy Information Administration (EIA). Figure 2
presents the interval-valued crude oil prices: the range (yr,t ,
right y-Axis), the maximum (yU ,t , left y-Axis), and minimum
(yL,t, left y-Axis) prices within 1 month, where we can see that the
boundaries and ranges are interlinked, e.g., a strong increase in

volatility (yr,t) is accompanied by a significant decrease in crude
oil prices during the second half of 2008.

Table 1 presents the summary of statistical characteristics.
First, it is shown that the spread of ranges is slightly smaller than
the volatility in the boundaries (DyU ,t � yU ,t − yavg ,t−1 and
DyL,t � yL,t − yavg ,t−1), where yavg,t is the monthly prices from
EIA. In addition, the skewness and leptokurtic kurtosis are
different among yr,t , DyL,t and DyU ,t . Compared with DyL,t
and DyU ,t , yr,t is with greater skewness and higher leptokurtic.
We can see from Table 1 that the interval-valued data can capture
more information than the point-valued data.

3.2 Interval-Valued Control Variables in the
First Stage
The potential choices of monthly interval-valued explanatory
variables from various aspects are considered in this section,
including the stock market, commodity market, technology
factor, search query data, speculation, monetary market and
currency market (Pan et al., 2014; Wang et al., 2016; Wang
et al., 2017; Chai et al., 2018; Yu et al., 2019); see Table 2 for more
discussions. First, the Augmented Dickey-Fuller tests suggest that

FIGURE 2 | Interval valued crude oil prices from EIA, January 2005–December 2017.

TABLE 1 | Basic statistical analysis on monthly interval-valued crude oil prices.

Mean Median Maximum Minimum Std. dev Skewness Kurtosis

yU,t 75.63 73.19 145.31 32.74 24.32 0.35 −0.71
yL,t 67.31 65.26 122.30 26.19 22.78 0.23 −1.01
yavg,t 71.41 69.54 133.88 30.32 23.54 0.30 −0.86
DyU,t 0.06 0.06 0.32 −0.15 0.08 0.32 0.93
DyL,t −0.06 −0.04 0.13 −0.64 0.11 −1.95 6.30
yr,t 0.12 0.10 0.49 0.04 0.07 2.11 8.33
yc,t 0.00 0.01 0.22 −0.39 0.09 −1.03 2.83
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the null hypothesis for the original control variables is hardly
rejected at the 5% significance level, except for non-commercial
net long ratio (NLt) and the Federal funds rate (FDt). For
stationarity, we use the Hukuhara’s difference of interval-
valued exogenous variables. The Hukuhara’s difference
between a pair of intervals is essentially equal to the regular
difference between points in intervals. As Yang et al. (2016)
mentioned, the concept of interval with Hukuara’s difference is
useful and suitable for econometric analysis of interval data. Take
S&P 500 index (SPt) as an example. It is defined as
ΔSPt � SPt − SPt−1 � [Δ̃SPc,t , Δ̃SPr,t], where Δ is the
Hukuhara’s difference between intervals, and Δ

̃
is the regular

difference between intervals. This implies that the midpoints and
centers of these interval-valued exogenous variables are
stationary after Hukuhara’s difference. Similarly, we have
ΔDJt , ΔGFt , ΔCFt and ΔRDt ; see specific definitions in Table 2.

Second, Table 3 provides a summary of statistical
characteristics. It is shown that no matter whether the time
series is transferred by Hukuhara’s difference, the midpoints
and ranges for interval-valued control variables appear to have

different skewness and leptokurtic kurtosis properties. This
suggests that using one attribute of ITS contains partial
information only. Thus, it is highly desirable to utilize the
information contained in interval-valued data.

Third, we use the extended L2 Boosting regularization method
to select interval-valued control variables. Specifically, we set the
lag length L � 12 for every control variable and thus the number
of the potential explanatory interval-valued variables equals
12 × 9 � 108. For vector boosting, we start with the learning
rate c � 0.01, iteration � 100 times. These parameters are adjusted
during training. After using various training sets, ΔSPt+h−1,
ΔGFt+h−1, ΔGFt+h−2, ΔGFt+h−3, WBt+h−1, and GTt+h−4 are
selected with duplicates removed and used to do h-step-ahead
out-of-sample forecasts of interval-valued crude oil prices.

Furthermore, these selected interval-valued control variables
have important economic interpretation for crude oil prices as
follows:

ΔSPt+h−1: It provides information of fundamentals and
volatility contained in S&P 500. The movement of S&P 500
Index may closely mirror that of the crude oil prices (e.g.,

TABLE 2 | Monthly interval-valued exogenous variables.

Variables Description Transformation Explanation

SPt � [SPc,t ,SPr,t ] S&P 500 index Δ ln Affect expected cash flows and/or discount rates,
DJt � [DJc,t ,DJr,t ] Dow Jones industrial index Δ ln be affected through the expected rate of inflation and the expected real

interest rate
GFt � [GFc,t,GFr,t ] COMEX gold future closing prices Δ ln Safe haven against oil price movements
CFt � [CFc,t ,CFr,t ] LME copper future closing prices Δ ln
WBt � [WBc,t ,WBr,t ] WTI-Brent spot price spread Level Measure of the technology influence
FDt � [FDc,t , FDr,t ] Federal funds rate Level As oil prices increased, so did concerns about increasing inflation
RDt � [RDc,t ,RDr,t ] Generalized real US dollar index Oil price is dollar-denominated
GTt � [GTc,t ,GTr,t ] The key word of oil price in the Google trend search

engine
Level Reflect psychological behaviors of investors

NLt � [NLc,t ,NLr,t ] Non-commercial net long ratio Level Provide liquidity to offset risks

Note: (1) These interval-valued variables after transformations are used in candidatemodels. Transformations are (i) level: Xt � St; (2) Δ ln: Xt � lnSt − lnSt−1; (iii) Δ: Xt � St − St−1, where St

is the original series obtained from EIA or Wind database.

TABLE 3 | Basic statistical analysis on monthly interval-valued explanatory variables.

Mean Median Maximum Minimum Std. dev Skewness Kurtosis

ΔSPr,t 0.05 0.04 0.31 0.01 0.04 3.63 17.41
ΔSPc,t 0.00 0.00 0.06 −0.16 0.03 −1.82 7.59
ΔDJr,t 0.05 0.04 0.28 0.01 0.04 3.47 16.36
ΔDJc,t 0.00 0.00 0.05 −0.14 0.03 −1.59 5.90
ΔGFr,t 0.07 0.06 0.24 0.02 0.03 1.77 4.24
ΔGFc,t −1.81 −1.73 −1.22 −2.58 0.31 −0.55 −0.35
ΔCFr,t 0.09 0.08 0.51 0.02 0.06 3.06 17.02
ΔCFc,t 1.81 1.73 2.52 1.26 0.32 0.54 −0.49
WBr,t 2.29 1.69 15.36 0.01 2.15 2.39 9.12
WBc,t 1.12 0.86 12.24 −2.87 1.77 2.03 9.76
GTr,t 0.28 0.21 0.97 0.04 0.19 1.14 0.80
GTc,t 3.88 4.01 4.54 2.60 0.47 −0.93 0.30
NLr,t 0.03 0.03 0.12 0.01 0.02 1.48 2.97
NLc,t 0.11 0.12 0.25 −0.09 0.07 −0.23 −0.70
FDr,t 0.03 0.02 0.10 0.00 0.02 0.90 0.84
FDc,t −0.15 −0.18 0.01 −0.21 0.06 1.92 1.88
RDr,t 0.19 0.09 2.75 0.01 0.32 4.61 28.40
RDc,t 1.34 0.28 5.32 0.06 1.77 1.26 0.08
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Kilian, 2009; Miller and Ratti, 2009; Balcilar et al., 2015; Ding
et al., 2016). As discussed in Kilian (2009) and Miller and Ratti
(2009), the oil price shocks influence stock prices by affecting
expected cash flows and discount rates, since crude oil is an
important input in production and its price can influence the
costs for the manufacturing and transport sectors.

ΔGFt+h−j (j � 1,2,3): It is the logarithmic difference between
Comex gold future prices at t + h − j and t + h − j − 1, which
provides information in Comex gold future market (e.g., Baur
and Lucey, 2010; Reboredo, 2013; Souček, 2013; Kang et al.,
2017). Gold serves as store of value especially during periods of
economic uncertainties. Oil prices can affect levels of inflation
(Zhao et al., 2016). Gold investment can be used as a hedge
against inflation and currency depreciation. It can also be viewed
as a safe haven against the stock market turbulence for investors.

WBt+h−1: It is WTI-Brent spot price spread, which is the price
difference between crude oil and the byproducts refined from it.
The crack spread gives the profit margin that a refinery can
expect. Thus, a tight spread can be seen as a indicator that refiners
may slow production to tighten supply.

GTt+h−4: It is the search query data collected from Internet,
which has been widely applied as indicator when analyzing the
crude oil prices and has been demonstrated to be effective in
improving forecasts performance (Fantazzini and Fomichev,
2014; Li et al., 2015a; Wu et al., 2021; Yang et al., 2021). The
keyword “oil price” is searched in the Google Trend search
engine. Search query data is expected to reflect the
psychological aspects of investors when they making strategic
investment decisions in the crude oil market (Li et al., 2015b).

3.3 Model Averaging in the Second Stage
3.3.1 Candidate Models
We consider 6 lagged dependent variables yt−1, . . . , yt−6 and 6
exogenous variables selected from vector boosting. As we use
monthly interval-valued crude oil prices, the maximum lag is set
to 6, including the past half year information. Exogenous
variables are sorted by relevance to yt during the estimation
period. Then, 12 nested interval predictive candidate models are
considered as:

Model 1. yt+h � α1yt+h−1 + εt+h.
Model 2. yt+h � ∑2

i�1 αiyt+h−i + εt+h.
Model 3. yt+h � ∑3

i�1 αiyt+h−i + εt+h.
Model 4. yt+h � ∑4

i�1 αiyt+h−i + εt+h.
Model 5. yt+h � ∑5

i�1 αiyt+h−i + εt+h.
Model 6. yt+h � ∑6

i�1 αiyt+h−i + εt+h.
Next, 6 exogenous variables are added to Model 6 to construct

Models 7–12, sorted by relevance to Y:
Model 7. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + εt+h.
Model 8. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 + εt+h.
Model 9. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +
β3ΔGFt+h−2 + εt+h.

Model 10. yt+h � ∑6
i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +

β3ΔGFt+h−2 + β4ΔGFt+h−3 + εt+h.
Model 11. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +
β3ΔGFt+h−2 + β4ΔGFt+h−3 + β5WBt+h−1 + εt+h.

Model 12. yt+h � ∑6
i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +

β3ΔGFt+h−2 + β4ΔGFt+h−3 + β5WBt+h−1 + β6GTt+h−4 + εt+h.

These candidate models are used for LsoMA in the second
stage. We do h-step-ahead prediction with h ∈ {1, 4, 8, 12}.

3.4 Competing Methods
In this paper, we compare 2SVBMA forecasts with various
competing methods, including AIC, BIC, HQ, Mallows model
averaging (MMA; Liao et al., 2019), smoothed AIC (SAIC),
smoothed BIC (SBIC) and smoothed Hannan-Quinn (SHQ)
based on the same set of candidate models (model 1 - model 12).

The AIC criterion for the sth candidate model (1≤ s≤ 15) is
AIC(s) � ln | ̂Σ(s)| + 2s22/T , where ̂s minimizes AIC(s) and

̂Σ(s) � (T − S)−1(Y − ̃µ(s))′(Y − ̃µ(s)) as the residual covariance
matrix from the sth candidate model. Similarly, BIC and HQ
are model selection methods, minimizing the corresponding
criteria BIC(s) � ln | ̂Σ(s)| + (ln T)s22/T , HQ(s) � ln | ̂Σ(s)|+
2(ln lnT)s22/T , respectively. These three selected candidate
models ares used as benchmark models.

Four model averaging (or forecast combination) methods are
considered here. MMA proposed by Liao and Tsay (2016) is an
extension of Mallows criterion to vector regression models.
Specifically, the multivariate Mallow criterion for model
averaging takes the following form:

CT(w) �(T − S) trace ̃Σ(S)−1 ̂Σ(w)) + 2 · 22s′w(
where ̃Σ(S) � 1

T−S−2S ∑T
t�S+1 ̂εt(S) ̂εt(S)′, ̂Σ(w) � 1

T−S ∑T
t�S+1 ̂ε

t(w) ̂εt(w)′, and s′w � ∑S
s�1w(s)s. The Mallows weight vector

is defined by:

ŵ � argmin
w∈W

CT(w).

SAIC, SBIC and SHQ are simple model averaging methods
with the weights

wAIC,s � exp −AIC(s)/2( )/∑S
s�1

−AIC(s)/2( ),
and

wBIC,s � exp −BIC(s)/2( )/∑S
s�1

−BIC(s)/2( ),
and

wHQ,s � exp −HQ(s)/2( )/∑S
s�1

−HQ(s)/2( ),
respectively.

4 EMPIRICAL RESULTS

This section compares the forecasting performance of the
proposed 2SVBMA approach with various competing methods
presented in previous studies by using interval-valued crude oil
prices. The whole sample from 2005 January to 2017 December
are divided into two parts: one is used for parameter estimation,
and the other is used for out-of-sample forecasting. Various
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subsamples for estimation and forecast are used to test prediction
accuracy; see Tables 4, 5.

Tables 4, 5 report the MSPEs of h-step-ahead (1,4,8,12)
forecasts for the interval-valued crude oil prices using various
estimation and forecast samples. First, it is worth noticing that for
the horizons of 1, 4, 8 and 12 months, the 2SVBMA method
outperforms other competing methods in most cases; out of the 48
cases considered, with respect to RMSFE of midpoints and ranges,
it yields the best outcomes 42 times and the second best outcomes 6
times. Intuitively, the proposed 2SVBMA method selects the
important factors at the first stage and then give the optimal
weights averaging across the 12 nested regression forecasts. Second,
2SVBMA based on LsoMA outperforms various model averaging
and model selection methods, including MMA. One possible
explanation is that leave-subject-out cross-validation is more
suitable for vector autoregressive situations with heteroscedastic
and auto-correlated errors. Additionally, as shown in Liao et al.
(2019), the approximate unbiasedness of LsoMA and its

asymptotic optimality in terms of obtaining the lowest quadratic
errors are established. This is why LsoMA outperforms other
model averaging methods (i.e., SAIC, SBIC, and SHQ) in the
second stage.

Second, the SBIC estimators always produce the second-best
forecasts after the 2SVBMA estimator among all model averaging
methods, while SAIC achieves higher forecast criteria than other
model averaging methods. Similarly, BIC always yields best
forecasts among all model selection methods, while the AIC
estimator achieves higher MSFE in most cases. This happens
because AIC prefers selecting the relatively complicated model,
which is inappropriate for out-of-sample forecasting even though
it has good in-sample fitting. A simple model may be better for
out-of-sample forecasting.

Furthermore, it is shown that at the second stage, model
averaging forecasts outperform model selection forecasts in
almost 90% of all cases. The significant advantages of model
averaging support the argument of Rapach et al. (2010) that

TABLE 4 | MSPE (10−2) of the recursive prediction for interval-valued crude oil prices (I).

Estimation: 2005–2010; Forecast:2011–2013

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.75 2.09 1.58 1.10 1.39 5.59 1.10 5.59
ranges 0.70 2.62 1.79 1.33 1.60 4.99 3.92 5.15

4 midpoints 0.32 2.17 1.20 0.90 1.09 3.50 3.29 3.60
ranges 1.20 4.71 2.79 2.11 2.52 5.42 6.86 5.41

8 midpoints 0.38 1.55 1.06 0.85 0.98 1.71 1.93 1.78
ranges 1.05 2.99 1.98 1.65 1.85 3.61 3.68 3.64

12 midpoints 0.39 2.10 1.20 0.91 1.09 3.67 3.17 3.67
ranges 0.65 3.20 1.64 1.24 1.48 6.89 4.90 6.89

Estimation: 2006–2011; Forecast:2012–2014

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.22 0.66 0.47 0.36 0.43 1.21 0.91 1.17
ranges 0.33 1.03 0.73 0.55 0.66 2.07 1.61 1.84

4 midpoints 0.26 0.97 0.64 0.49 0.58 1.43 1.50 1.34
ranges 0.41 0.97 0.70 0.56 0.64 1.39 1.27 1.35

8 midpoints 0.22 0.75 0.47 0.33 0.41 1.29 1.20 1.23
ranges 0.40 0.80 0.50 0.42 0.47 1.57 1.22 1.50

12 midpoints 0.09 0.45 0.22 0.14 0.18 1.36 0.61 1.20
ranges 0.25 0.42 0.29 0.27 0.28 0.65 0.56 0.66

Estimation: 2007–2012; Forecast:2013–2015

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.07 0.16 0.14 0.11 0.13 0.38 0.18 0.34
ranges 0.13 0.22 0.19 0.16 0.18 0.60 0.26 0.35

4 midpoints 0.09 0.39 0.24 0.17 0.21 0.58 0.74 0.58
ranges 0.18 0.20 0.21 0.18 0.20 0.48 0.25 0.29

8 midpoints 0.17 0.24 0.24 0.23 0.23 0.30 0.35 0.36
ranges 0.37 0.39 0.46 0.42 0.44 1.36 0.31 0.79

12 midpoints 0.22 0.27 0.25 0.24 0.24 0.37 0.26 0.35
ranges 0.49 0.73 0.56 0.54 0.55 0.83 0.67 0.97

Note: “Estimation” denotes the sample during this period used to estimate parameters, and “Forecast” denotes the sample during this period used to do out-of-sample forecasts. The best
forecasts are marked by boldface, and the second best forecasts are marked by underline.
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“model uncertainty and instability seriously impair the
forecasting ability of individual predictive regression models.”

Overall, the proposed approach using interval-valued data is
capable of assessing and forecasting the changes in both level
and volatility. We can see from the results that forecasting with
model averaging is generally better than obtaining the
predictions from just one model (model selection). Since we
may choose a very different model when there are small changes
in the original data set, which may lead to a big change in the
final conclusions, resulting in non-effective decision-making
due to the unstable forecasting process. The proposed
method is able to help obtain more stable decision-making
when a long list of interval-valued predictors is available in a
wide range of fields, for example, the daily trading strategy in the
finance field.

5 CONCLUSION

We propose a novel 2SVBMA forecasting procedure to capture
the relevant information available in the interval format and
the underlying characteristics of crude oil price movements.
Vector L2Boosting in the first stage and LsoMA in the second
stage are extended to interval models with interval-valued
exogenous variables. Empirical results show that our
proposed approach outperforms other competing model
averaging and model selection methods in terms of MSFE of
midpoints and ranges.

There are some limitations and potential extensions of our
study. First, more advanced optimization algorithms for
interval-valued variable selection can be proposed in future
work. Second, the candidate models with different structures
in model averaging methods can further be developed to
enhance forecasting. It would also be interesting to develop
interval-based machine learning methods to improve forecast
accuracy. Furthermore, the proposed methodology in this
paper can be extended to the vector autoregressive (VAR)
model, which can cover more applications in economics and
finance.

In general, 2SVBMA provides a methodological framework
for interval-valued data forecasting when there are a large
number of potential predictors. For example, this methodology
can be used to quantify the impact of COVID-19 pandemic on oil
and gas industry. 2SVBMA can also provide implications for the
post-COVID recovery management. The accurate prediction of
crude oil prices will assist policy makers in understanding issues
affecting different oil industry segments, and help governments
be better prepared for the recovery.

6 COMPLIANCE WITH ETHICAL
STANDARDS

The authors thank a number of the participants at Symposium
on Interval Data Modelling: Theory and Applications
(SIDM 2019) in Beijing for their valuable comments and

TABLE 5 | MSPE (10−2) of the recursive prediction for interval-valued crude oil prices (II).

Estimation: 2008–2013; Forecast:2014–2016

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.15 0.30 0.29 0.23 0.27 0.61 0.34 0.57
ranges 0.81 1.14 1.03 0.96 1.00 1.50 1.03 1.38

4 midpoints 0.39 0.47 0.52 0.46 0.50 0.69 0.65 0.70
ranges 1.11 1.71 1.47 1.31 1.41 2.15 2.01 2.12

8 midpoints 0.47 1.38 0.93 0.77 0.87 2.83 0.43 3.29
ranges 1.07 2.44 1.98 1.61 1.82 5.63 1.03 5.34

12 midpoints 0.54 2.45 1.18 0.88 1.05 5.84 0.61 5.85
ranges 0.90 2.52 1.67 1.32 1.52 4.40 1.96 4.54

Estimation: 2009–2014; Forecast:2015–2017

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.22 0.55 0.52 0.40 0.47 1.08 0.33 1.03
ranges 1.14 2.37 2.12 1.71 1.96 4.45 1.21 4.37

4 midpoints 0.82 1.61 1.47 1.14 1.34 2.46 0.66 2.45
ranges 2.03 3.46 2.69 2.17 2.48 5.94 2.75 6.01

8 midpoints 0.47 1.67 1.17 0.87 1.05 6.87 0.35 4.15
ranges 1.52 2.92 2.51 1.91 2.25 10.06 1.58 9.45

12 midpoints 0.49 5.15 1.69 1.06 1.42 13.58 0.40 12.92
ranges 0.75 3.93 2.08 1.44 1.81 8.94 1.51 8.32

Note: “Estimation” denotes the sample during this period used to estimate parameters, and “Forecast” denotes the sample during this period used to do out-of-sample forecasts. The best
forecasts are marked by boldface, and the second best forecasts are marked by underline.
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The Construction and Empirical Study
on Evaluation Index System of
International Low-Carbon Economy
Development
Zhang Zhongyu1* and Zhang Zhongxiang2

1College of Management and Economics, Tianjin University, Tianjin, China, 2Ma Yinchu School of Economics, Tianjin University,
Tianjin, China

Global climate change has become one of the core issues of world governance. Many
countries have put forward the goal of carbon neutrality one after another, leading to the
intensification of international low-carbon economy competition. To assess the current
low-carbon competitiveness among countries, this article constructs an evaluation index
system of international low-carbon economy development, and obtains the scores and
rankings of countries in energy, society, economy and environment, as well as overall.
Taking 20 countries with the highest carbon emissions in the world in 2019 as samples,
starting from the concept of low-carbon economy and five evaluation principles, this article
selects 40 low-carbon evaluation indicators from five aspects, including economy, society,
science and technology, environment, and energy structure. By using the principal
component factor analysis method to calculate and test, the four factors, energy
factor, society factor, economy factor, and environment factor, are finally extracted to
construct the evaluation index system. Results show that South Korea, France, China,
Canada, and Germany are among the world’s top five low-carbon economies. The overall
competitiveness of China’s low-carbon economy is in a relatively favorable position (3rd

overall), with the most outstanding performance in terms of economic strength (1st), but
poor performance in terms of social development (9th) and environmental carrying capacity
(9th), and the biggest disadvantage in terms of energy structure (13th).

Keywords: low-carbon economy, evaluation index system, international competitive power, principal component,
factor analysis, China

INTRODUCTION

With the release of the IPCC AR6 Synthesis Report on August 9, 2021, the world will fully enter the
era of “carbon neutrality,” and countries will strive to achieve carbon neutrality by the middle of
the century. This ambitious goal will bring about the transformation of the whole social economy and
the arrival of a new round of competition. Global competition for low-carbon economy is further
intensified, and green and low-carbon development has become the focus of boosting global
economic prosperity.

The European Union (EU), the US, and Japan were the first to peak carbon in 1979, 2007, and
2008 and will take 40–70 years to become carbon neutrality. As a developing country and the world’s
largest CO2 emitter (accounted for 28.82% of the world’s emissions in 2019), China will strive to
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achieve these two goals within 30 years. Then, compared with
other countries, what advantages and obstacles does China have
in developing a low-carbon economy? In what areas should China
stick to its own development path, and in what areas should
China learn from the experience of other countries? How does
China fit into the global low-carbon economy?

However, there has not yet been an authoritative evaluation
index system for low-carbon economy in the world, which makes
it impossible to give guidance and suggestions on the
development direction of low-carbon economy at the
national level.

First, it is necessary to clarify the objective of the index system
evaluation—low-carbon economy. The term “Low Carbon
Economy” was first proposed by Kinzig and Kammen (1998), and
was officially used as an official term in the UK Energy White Paper
in 2003 (Vivid Economics 2009), the report (2009) on G20 countries’
low-carbon competitiveness defined the Low Carbon Economy was
an economic form with a certain level of carbon productivity and
sustainable development, which had characteristics about low energy
consumption, low pollution, low emission and environment friendly,
and global shared vision to control greenhouse gas emissions and
develop social economy (Lu and Zhu, 2013).

As early as in 2005, the research on low-carbon economy in
China started from Zhuang (2005, 2007), He et al. (2010), Fu and
Liu (2010) et al. (e.g., Bao et al., 2008; Fu et al., 2008; Zhang et al.,
2009). They took the lead in discussing low-carbon economy
from the aspects of development form, development mode, and
development process. Pan et al. (2010) believed that low-carbon
economy had three core characteristics, namely “low-carbon
emissions,” “high carbon productivity,” and “stages.”

Therefore, it can be seen that the essence of low-carbon economy
is the efficient utilization of energy and the development of clean
energy. Its core is technological and institutional innovation, and its
goal is to control greenhouse gas emissions and promote the
sustainable development of human beings (e.g., Yang, 2012; Xie
et al., 2017; Zhong, 2018). In recent years, governments around the
world have been racing to turn the development of a low-carbon
economy from idea into practice. The EU took the lead in developing
a number of low-carbon policies to change the traditional lifestyle of
residents (Dagoumas and Barker, 2010; Hughes and Strachan, 2010;
Government, 2009). The US paid more attention to technological
innovation to solve environmental problems. Japan rapidly
developed high and new technologies and applied them in the
field of clean energy (Strachan et al., 2008; “2050 Japan Low-
Carbon Society” project team, 2008). Countries in economic
transition and developing countries, such as Russia, South Korea,
China, South Africa, Brazil, and India, have joined the international
competition led by low-carbon economy one after another.

Second, in terms of establishing the evaluation index system of
low-carbon economy, Chinese scholars Fu and Zhuang (2010)
were the first to set indicators with different linear weights (AHP
and DEA) and rank them. Then, Zhuang and Pan et al. (2011)
constructed an evaluation system by judging whether various
indicators were within the preset threshold. To further refine the
indicators, Fu and Zheng et al. (2011) designed an index system of
evaluating the level of low-carbon economy development, which
involved one target layer, five rule layers, and nineteen index

layers, and then used the Analytic Hierarchy Process (AHP)
method to carry out quantitative evaluation on the low-carbon
economy at the provincial scale in China, and compared and
contrasted some key indicators with those of other countries. Luo
and Tong (2011) used the factor analysis method and the entropy
weight method to calculate and rank the low-carbon economy
development capacity of China’s provinces, and thus summarized
the national low-carbon economy development capacity; Yan and
Ma (2015) took Chongqing as the research object and
comprehensively applied the expert scoring method (Delphi
method), AHP, entropy weight method, and TOPSIS method
(the superior and inferior solution distance method); Duan et al.
(2016) took Dalian as the research object and adopted the AHP-
entropy method; Azizalrahman and Hasyimi (2018) established a
general multi-criteria evaluation model to evaluate ten cities
around the world.

Most importantly, the existing literature fails to consider, from
the nation level, to construct international low-carbon economy
development indicators, and compare the low-carbon economy
development level among counties. Most of current domestic and
foreign research objects involve: first, the industry level, such as
manufacturing (Wang and Pan, 2019), tourism (Tao, 2017),
transportation (Fan et al., 2018), etc.; second, the city level
(Xu and Liu, 2014; Pei and Tan, 2013; Yuan et al., 2017);
third, the provincial level (Yang, 2012; Shi et al., 2018) and
regional level (Xie et al., 2017; Zhong, 2018).

The main contributions of this article are as follows:

1) A new evaluation index system of international low-carbon
economy development is designed and applicable to the
national level.

2) Using principal component factor analysis, four principal
factors are extracted (energy factor, social factor, economic
factor, and environmental factor).

3) A clear list of four factor rankings and scores for 20 countries,
as well as total scores and rankings, in which China presents
clear strengths and weaknesses.

The rest of this article is organized as follows. Construction of
evaluation index system is presented in Construction of
Evaluation Index System. Empirical analysis is studied in
Empirical Analysis. And conclusions and suggestions are
drawn in Conclusions and Suggestions.

CONSTRUCTION OF EVALUATION INDEX
SYSTEM
Significance, Theoretical Basis, and
Principles of Index Construction
Reexamining the international low-carbon economy evaluation
index system is of great theoretical and practical significance for
further vigorously promoting global climate governance. To
assess the main nations by multiple dimensions, we can
understand the status quo of the world’s low-carbon economy
development, identify the advantages and disadvantages of
different countries, and put forward the universal evaluation
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standard. At the same time, for China, it can clearly identify the
level and shortcoming, which is conducive to exploring excellent,
replicable, and generalizable institutional achievements of other
countries, learning effective major reform measures and
successful experiences, and promoting the realization of
carbon neutrality goals.

This evaluation system is a means and tool to objectively
evaluate the level of low-carbon economy development of each
country at the nation level. Its theoretical basis consists of the
connotation and characteristics of core concepts, such as
sustainable development, green economy, low-carbon
economy, ecological civilization, new climate economics,
carbon emission decoupling, and coping with climate change
(Zhuang et al., 2020; Zhou et al., 2018).

The five principles of the index system construction are: 1)
Comprehensiveness: the selected indicators should fully reflect

the factors affecting the development of a country’s low-carbon
economy from multiple aspects; 2) Effectiveness: the selected
indicators should have a high adoption rate in reflecting the low-
carbon economy; 3) Applicability: the selected indicators should
be applicable to the evaluation needs at the nation level, and the
data should be available; 4) Correlation: the selected indicators
should be representative, but the highly overlapping indicators
with complete correlation (correlation coefficient 1, p value 0)
should not be retained at the same time; 5) Foresight: the selected
indicators should reflect both the current situation and the
potential of low-carbon economy development in the future
(Lan and Zheng, 2013; Lv et al., 2013; Cao, 2018).

Index Screening and Data Collection
Based on the policy evaluation of domestic low-carbon
construction and the review of domestic and foreign low-

TABLE 1 | The evaluation index system of international low-carbon economy development.

Target layer The international low-carbon economy development level

Criterion layer Indicator layer Direction

Economy development indexes 8 Gross production GDP per capita (constant 2010 US$) +
GDP growth (annual %) +

Industrial structure Industry (including construction), value added (% of GDP) −

Services, value added (% of GDP) +
Gross fixed capital formation (% of GDP) +
External balance on goods and services (% of GDP) −

Foreign direct investment, net inflows (% of GDP) −

Energy imports, net (% of energy use) −

Society development indexes 8 Social development Population growth (annual %) −

Population density (people per sq. km of land area) −

Urban population (% of total population) +
Living standard Gini index (World Bank estimate) −

Poverty headcount ratio at $5.50 a day (2011 PPP) (% of population) −

Consumer price index (2010 � 100) +
Labor force participation rate, total (% of total population ages 15–64) +
Unemployment, total (% of total labor force) −

Technology development indexes 8 Technical level Research and development expenditure (% of GDP) +
Researchers in R&D (per million people) +
Scientific and technical journal articles +
Patent applications, residents +
High-technology exports (% of manufactured exports) +
Electric power transmission and distribution losses (% of output) −

Education investment Tertiary education enrollment (% gross) +
Government expenditure on education, total (% of GDP) +

Environment development indexes 8 Air pollution PM2.5 mean annual exposure (micrograms per cubic meter) −

CO2 emissions (metric tons per capita) −

CO2 emissions (kg per 2011 PP P $ of GDP) −

CO2 intensity (kg per kg of oil equivalent energy use) +
Greening protection Forest area (% of land area) +

Fertilizer consumption (kilograms per hectare of arable land) −

Renewable internal freshwater resources per capita (cubic meters) +
Disaster risk reduction progress score (1–5 scale; 5 � best) +

Energy structure development indexes 8 Energy consumption Energy use (kg of oil equivalent per capita) −

GDP per unit of energy use (constant 2011 PP P $ per kg of oil equivalent) +
Fossil fuel energy consumption (% of total) −

Alternative and nuclear energy (% of total energy use) +
Electricity production from oil, gas, and coal sources (% of total) −

from hydroelectric sources (% of total) +
from nuclear sources (% of total) +
from other renewable sources (% of total) +
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carbon economy index system, we preliminarily established an
evaluation index system according to the development and
operability of low-carbon economy.

The index system includes five dimensions: economy, society,
science and technology, environment, and energy structure. For
screening indicators of dimension, we searched and collected
relevant information extensively, drew on the low-carbon
development indicator system of relevant regions, provinces,
and industries. Then, we sorted, summarized, classified, and
summarized nearly one hundred effective indicators with high
adoption rate, and screened out suitable indicators at the national
level and available data (2009–2019). In addition, we solicited the
opinions of low-carbon economic experts. Finally, the
correlation test was carried out on all the variables according
to the correlation principle, and the indexes that were completely
correlated with each other were eliminated. A total of 40 indexes
covering 5 dimensions were retained to ensure that the above five
principles were met.

As shown in Table 1, the index system mainly includes three
levels: target layer, criterion layer, and indicator layer (Fu et al.,
2011). The target layer is the international low-carbon economy
development level, the criterion layer includes five dimensions of
economy, society, science and technology, environment, and
energy structure, and the index layer includes 11 first-level
indicators and 40 second-level indicators.

It is worth noting that the positive and negative correlation
(Table 1) between the indexes and low-carbon economy is
limited to the general economic laws, and the specific and
detailed change laws are not within the scope of this article.

In accordance with the principles of openness, reliability, and
consistency in the process of data collection, basic data from open
channels were used as much as possible in this article. The data of

the 40 development indexes of the above 20 countries were
mainly derived from the World Bank database, International
Energy Agency (IEA), U.S. Energy Information Administration
(EIA), the World Economic Yearbook, the BP Statistical Review
of World Energy, the report of the United Nations Food and
Agriculture Organization, and other relevant statistics.

To maintain the authenticity, accuracy, and availability of the
data, for the difference in the updating time of different indexes in
the statistical data, data of 2019 were selected uniformly in this
article for comparative analysis. For statistical data differences
caused by different statistical calibers, the World Bank database
shall prevail in this article. For the default values, the method of
substitution of adjacent years, or averaging or substitution of
similar countries were adopted.

EMPIRICAL ANALYSIS

Selection of Representative Countries
This article selects the world’s top 20 CO2 emitters in 2019, and
the total carbon emissions of these countries reach nearly 80% of
the world’s total carbon emissions. Table 2 lists the proportion
and growth rate of CO2 emissions in 20 countries in 2019, as well
as in the past 10 years.

In Table 2, the global CO2 emission in 2019 reaches 34.17 billion
tons, among which China (28.76%), the United States (14.53%), and
India (7.26%) account for nearly half of the global carbon emissions.
In 2019, global carbon emissions grow by 0.5%, less than half the
average growth rate of 1.1% over the past decade. Nine countries,
including the United States, Russia, Japan, the United Kingdom, and
some EU countries, have experienced long-term negative growth in
their carbon emissions, whichmeans that they have reached “carbon

TABLE 2 | Countries rank of carbon dioxide.

Million tonnes Share (%) 2019 Growth rate per annum (%)

2019 2008–2018

1 China 9,825.8 28.8 3.4 2.6
2 US 4,964.7 14.5 −3.0 −1.1
3 India 2,480.4 7.3 1.1 5.3
4 Russian Federation 1,532.6 4.5 −1.0 −0.03
5 Japan 1,123.1 3.3 −3.5 −1.1
6 Germany 683.8 2.0 −6.5 −1.0
7 Iran 670.7 2.0 4.1 2.5
8 South Korea 638.6 1.9 −3.6 2.2
9 Indonesia 632.1 1.8 8.8 4.4
10 Saudi Arabia 579.9 1.7 1.1 3.0
11 Canada 556.2 1.6 −1.7 0.4
12 South Africa 478.8 1.4 1.8 −0.1
13 Mexico 455.0 1.3 −2.5 0.8
14 Brazil 441.3 1.3 −0.2 1.7
15 Australia 428.3 1.3 4.2 −0.2
16 United Kingdom 387.1 1.1 −2.5 −3.4
17 Turkey 383.3 1.1 -2.2 3.6
18 Italy 325.4 1.0 −2.0 −2.8
19 Poland 303.9 0.9 −4.9 0.0
20 France 299.2 0.9 −2.6 −1.8

Total World 34,169.0 100 0.5 1.1

Data source: BP statistical review of world energy 2020.
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peak.”With economic growth slowing in 2019 and some of the one-
off factors driving energy demand easing in 2018, the growth of
energy markets across the world has slowed, especially in the US and
Russia, where carbon emissions’ growth has fallen back from 2.61
and 4.19% in 2018 to −2.97 and −1.02% in 2019, respectively. With
the exception of China, its carbon emissions are still growing at a
faster pace (3.4%) in 2019, indicating a good economic growth.

Principal Component Factor Analysis
As we know, there are numerous indicators or variables that
reflect the low-carbon economy development of a nation. It is
necessary to reduce the data dimension and the complexity of
problem analysis. Moreover, there are some structures or
dimensions in the data that exist but cannot be observed
directly, or variables that have, between themselves, relatively
high correlation coefficients, so new variables that capture the
joint features of the original variables are desired to be established
for subsequent multivariate analyses.

Factor analysis is a multivariate technique that tries to identify
a relatively small number of factors that represent the joint
behavior of interdependent original variables. Each one of
these new variables is called common factor, which can be
understood as the cluster of variables from the previously
established criteria (Fávero and Belfiore, 2019). Among the
methods used to determine factors, the one known as
principal components is, without a doubt, the most widely
used in factor analysis, because it is based on the assumption
that uncorrelated factors can be extracted from linear
combinations of the original variables.

The principal component factor analysis has four main
objectives: 1) to identify correlations between the original
variables to create factors that represent the linear
combination of those variables (structural reduction); 2) to
verify the validity of the previously established constructs,
bearing in mind the allocation of the original variables to each
factor; 3) to prepare rankings by generating performance indexes
from the factors; and 4) to extract orthogonal factors for future
use in confirmatory multivariate techniques that need the absence
of multicollinearity (Fávero and Belfiore, 2019).

The Model
Let us assume a dataset that hasn countries, and for each
countryi(i � 1, ..., n), values corresponding to each one of
thepmetric variablesX. And there is a strong correlation
between these variables, then the basic matrix form of the
factor model can be expressed as:

X − μ � LF + ε, (1)

whereX � (X1, X2,/, Xp)′, μ � (μ1, μ2,/, μp)′, L �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l11 l12 ... l1m
l21 l22 ... l2m
... ... ...
lp1 lp2 ... lpm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, F � (F1, F2, ..., Fm)′, ε � (ε1, ε2, ..., εi)′,

and where Xi − μirepresents the ith standardized variableX,
i � 1, 2, ..., p. Fj represents thejth extracted principal factor,

j � 1, 2, ..., m, and usually m is much less than p. lij is the
coefficient value of factor Fj, which represents the load of the
ith variable on thejth factor (factor loading). εi represents the
special factor or error of the ith variable, and is the part that
cannot be explained by principal factors.

Hypotheses are that

E(F) � 0, cov(F,E) � E(FF′) � I, (2)

E(ε) � 0, cov(ε, ε) � E(εε′) � Ψ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψ1 0 ... 0
0 ψ2 ... 0
... ... ...
0 0 ... ψp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

cov(ε, F) � E(εF′) � 0. (4)

In this article, we discuss the orthogonal factor model (1),
which satisfies hypothesis (2)–(4).

Next, when choosing the number of factors, only the factors
that correspond to eigenvalues greater than one are considered.
This criterion is often used and known as the latent root criterion
or Kaiser criterion. Also, these extracted factors have respective
proportions of variance shared by the original variables and the
first factorF1, formed by the highest proportion, is also called
principal factor. In general, when the cumulative proportion of
variance reaches more than 80%, it can be thought that these
extracted factors are enough to explain the original variables.

Next, the principal components method is used to calculate
the factor loadings, which simply are Pearson correlations
between the original variables and each one of the factors.
This method expresses the factor F (Expression 5) in the
linear form of the variableX, so that the variance of the
variable can be explained by the principal component, which
is suitable for the situation where the least variable is used to
explain as much variance as possible. Moreover, the total shared
variance of each variable in all the extracted factors is also
calculated, which is defined as Communality.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F1

F2

...
Fp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11 α12 ... α1p

α21 α22 ... α2p

... ... ...
αp1 αp2 ... αpp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1

X2

...
Xp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
var(Fi) � αi′Σαi, i � 1, 2, ..., p,

cov(Fi, Fj) � αj′Σαj, i, j � 1, 2, ..., p.

(5)

where αi � (αi1, αi2, ..., αip)′and αi′αi � 1. Under this constraint
condition, the principal component is solved by maximizing the
variance of the linear function F1 � α1′X.

Next, to better visualize the variables represented by a
certain factor, we can think about a rotation around the
origin of the originally extracted factor F, so that we can
bring the points corresponding to variable X closer to one
of the new factors. Even though there are several factor
rotation methods, the orthogonal rotation method, also
known as Varimax, whose main purpose is to minimize the
number of variables that have high loadings on a certain factor
through the redistribution of the factor loadings and
maximization of the variance shared in factors that
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correspond to lower eigenvalues, is the most frequently used
(Fávero and Belfiore, 2019).

Based on Expression 1, the new rotated factor is expressed as a
linear combination of the original variables again, and factor
scores are calculated.

F̂ � BX � L′R−1X, (6)

where B is the regression coefficient that needs to be estimated; X
is the standardized variable; L′ is the rotated factor loading; R is
the correlation matrix.

The Results
The overall adequacy of the factor analysis needs to be evaluated
based on the KMO statistic and, mainly using the result of
Bartlett’s test of sphericity. These 15 index variables (Table 4)
are the optimal combination results of the factor analysis model.
The KMO statistic provides the proportion of variance
considered common to all the variables present in the analysis,
and by calculating, KMO � 0.628, which suggests that the overall
adequacy of the factor analysis is middling. On the other hand,
Sig.χ2Bartlett < 0.05 allows us to reject that correlation matrix is
statistically equal to identity matrix with the same dimension, at a
significance level of 0.05 and based on the hypotheses of Bartlett’s
test of sphericity. Thus, we can conclude that the factor analysis is
adequate.

In Table 3, based on the Kaiser criterion, only four factors that
correspond to eigenvalues greater than 1 are taken into
consideration, formed by sharing 81.541% of the total variance
of the original variables, that is, with a total variance loss of
18.459%. After factor rotation, 22.572, 21.929, 20.610, and
16.429% of the total variance are shared to form each factor
respectively, representing the weight of each factor in the
total score.

Further combined with Table 4, it is found that after rotation,
variables X1-X4 have high loadings on the first factor, named as
“energy factor,” variables X5-X8 have high loadings on the
second factor, named as “society factor,” variables X9-X12
have high loadings on the third factor, named as “economy
factor,” variables X13-X15 have high loadings on the fourth
factor, named as “environment factor.”

Based on Expression (6), we can calculate the factor scores
expressions from the loadings. The rotated factor scores can be
obtained through the estimation of four multiple linear regression
models, in which a certain factor is considered to be a dependent
variable in each one of them, and as explanatory variables, the
standardized variables. For example, we are able to write the
expressions for factor F1 as follows:

F̂1 � 0.298 ·X1 − 0.33 ·X2 +/ + 0.078 ·X15

The four factor scores of each country are shown in Table 5,
with higher scores leading to higher rankings. However, for the
energy factor, the lower the score, the smaller the energy
consumption, the more in line with the requirements of low-
carbon economy, so the higher the ranking.

Finally, a well-accepted criterion that is used to form
integrated rankings from factors is known as weighted rank-

sum criterion. In this criterion, for each country, the values of all
the extracted factors obtained weighted by the respective
proportions of shared variance are added, with the subsequent
ranking of the countries based on the results obtained. In Table 5,
for example:

ScoreChina � 22.572 · ScoreenergyChina + 21.929 · ScoresocietyChina + 20.610

· Scoreeconomy
China + 16.429 · Scoreenvironment

China

Result Analysis
From Tables 4, 5, we can see that the first factor has a relatively
high factor loading in the four indicators, such as energy
consumption, power generation, and CO2 intensity, which
indicate that the low-carbon economy is first and most
significantly affected by the energy consumption and structure.
In the ranking of “energy factor,” France (−3.25), Brazil (−1.20),
and Canada (−1.13) rank the top three, indicating that these
three countries have the best performance in energy factor.
Combined with the statistics of the World Bank in 2019, the
main reasons are as follows: Brazil and Canada have abundant
water resources, and their hydropower generation accounts for
about 60% of the total electricity generation; nuclear power
accounts for 77.63% of France’s electricity generation. Thus,
these three countries are relatively low in fossil energy
dependence and CO2 intensity. On the contrary, Japan,
Australia, South Africa, Poland, and Iran rank at the
bottom, whose fossil energy consumption accounts for about
90%, since they have basically given up nuclear power generation,
or lack of domestic water resources or abundant fossil resources,
respectively.

The second factor has a relatively high factor loading in the
four indicators, such as R&D expenditure and researchers, school
enrolment ratio, and poverty ratio, which indicates that the low-
carbon economy is secondary affected by science and technology,
education, social security, and other social factors. In the ranking
of “society factor,” South Korea (1.64), Australia (1.37), and
United States (0.82) rank the top three, indicating that as
developed countries, they have higher levels of science,
technology, education, and income, and can realize low-carbon
production and life style. For example, factories use more
advanced low-carbon production technology and equipment,
and residents generally accept low-carbon and environmentally
friendly life style and have the economic ability to take actions
and implement it. On the contrary, Indonesia, India, and South
Africa, as developing countries, rank at the bottom. Since the
government does not invest enough in research and education,
citizens are too poor to attend higher education institutions, and
factories are lack of high-tech talent and high-tech enterprises,
which hinder the transition to low-carbon economy severely.

The third factor has a relatively high factor loading in the four
indicators, such as GDP growth rate, services value added, gross
fixed capital formation, and the urbanization ratio, which
indicates that the low-carbon economy is based on the
economic foundation and vitality. In the ranking of “economy
factors,” China (2.34), India (2.08), and South Korea (1.20)
rank the top three, whileBrazil, the United Kingdom, and South
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Africa rank the bottom three. In 2019, the world economy faces
downward pressure due to a combination of major uncertainties,
such as trade frictions, trade protection, geopolitics, and recession
risks. Regardless of the backdrop of weak global business
confidence and investment motivation, emerging economies,
such as China, India, and South Korea, are likely to gain
momentum (Zhi, 2020).

The fourth factor has a relatively high factor loading in the
three indicators, such as forest coverage rate, PM2.5
concentration, and labor force participation ratio, which
indicates that the low-carbon economy cannot be separated
from a country’s environmental carrying capacity. In the
ranking of “environment factors,” Japan (1.94), South Korea
(1.19), and Indonesia (1.14) rank the top three, mainly due to
their extremely high proportion of forest area, which reaches 68.5,
63.4, and 49.9%, respectively. In addition, the three countries are
all island countries or peninsulas, where the air is highly mobile
and the PM2.5 concentration is relatively low. On the contrary,
Saudi Arabia and Iran are at the bottom, with weak
environmental carrying capacity due to their arid deserts, low
forest cover, oil production, and high levels of PM2.5. In addition,
the labor force participation rate is included as an environmental
factor. According to the test, the labor force participation rate is
significantly negatively correlated with the PM2.5 concentration
at the level of 1%, and significantly positively correlated with the
forest coverage rate at the level of 5%.

In terms of overall scores, the top five countries are South
Korea (84.51), France (75.19), China (49.73), Canada (29.04),
and Germany (24.13), the last three areMexico, Iran, and South
Africa. Combined with the statistical data of 2019 and the factor
scores in Table 5, every country has different status quo and
advantages of the low-carbon economy.

South Korea, which ranks first overall, also ranks among the
world’s top three in terms of technology, environment, and
economy. While its population is just 51million, the per capita
income is $31,400. In 2019, industrial output ranked the sixth
in the world, with manufacturing and service industries as the
main industries, particularly shipbuilding, automobile,
electronics, steel, textile, and other industries ranked among
the world’s top 10 in output, and semiconductor sales ranked
the first in the world, and tourism was also relatively
developed. Moreover, South Korea attaches great
importance to the development of education and science
and technology, such as high-speed Internet services, the
aerospace industry, robot, and biotechnology, which are
highly competitive in the world. However, South Korea is at

a relative disadvantage in terms of energy factors in developing
low-carbon economy, due to its small land area, few mineral
resources, lack of natural resources, and dependence on
imports of major industrial raw materials.

Interestingly, France, which ranks second overall, ranks first
in energy factor, in complete contrast to South Korea. France has
low CO2 intensity, due to its high use of clean energy. It has closed
all iron and coal mines, fully exploited hydropower and
geothermal resources, and even approximately 78% of
electricity is provided by nuclear power. Its GDP ranks
seventh in the world; the service sector employees account for
approximately 77% of the total labor force; it is the world’s largest
tourist reception country, but also the world’s consumption
center, due to developed business. In addition, in the world, it
ranks second in nuclear power equipment capacity, petroleum
and petroleum processing technology, third in aviation and
aerospace industry, and sixth in steel and textile industry. It is
also a high-welfare country with a well-developed social
insurance system.

China’s Ranking
China, which ranks third overall, ranks first in economy factor.
The rapid accumulation of capital has become the most important
factor for a country’s economic growth, since natural resources are
limited by land area and labor force is restricted by population
growth rate. 1) Based on these three factors of production, China is
the fourth largest in land area and the first largest in population in
the world. 2) China’s GDP growth rate is 6.81%, and gross fixed
capital formation accounts for 42.29% of GDP, compared with 2
and 20% in most developed countries, respectively.

The disadvantages of China’s low-carbon economy are also
obvious. In terms of the other two indicators of “economy
factors,” China’s added value of services and the urbanization
rate, rank fourth from the bottom and third from the bottom
among the 20 countries, respectively. 1) Although China has
advantages in production factors, it obviously does not allocate
the factors in the tertiary industry with higher added value, and the
industrial structure is unreasonable. 2) In addition, although the
urbanization rate has increased from 10.64% in 1949 to 59.58% in
2019, with an average annual increase of 0.71 percentage points,
making it the largest and fastest urbanization in the history of the
world, there is insufficient support in basic areas and frequent
problems in urban development.

China ranks 9th in society factor. In the process of economic
growth, technological progress can break the law of declining
returns on capital while accumulating capital and maintaining

TABLE 3 | Extracted principal components and total variance explained.

Component Initial eigenvalues Rotation sums of squared loadings

Total % Of
variance

Cumulative % Total % Of
variance

Cumulative %

F1 6.326 42.173 42.173 3.386 22.572 22.572
F2 2.706 18.042 60.215 3.289 21.929 44.502
F3 2.021 13.471 73.687 3.092 20.610 65.112
F4 1.178 7.854 81.541 2.464 16.429 81.541
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high enthusiasm for capital accumulation, which is also
conducive to product innovation and industrial upgrading. 1)
China spends 2.13% of its GDP on R&D, much less than South
Korea (4.5%), Japan (3.2%), and Germany (3.04%). 2) China has
1,234 R&D researchers per million people, compared with 7,514 in
SouthKorea and 5,304 inGermany. 3) As the support of education is
undoubtedly behind the talents, the enrollment rate of Chinese
colleges and universities is 50.6%, while that of South Korea is
94.35%. 4) In addition to the urgent need for national investment in
education, poverty is a top priority. According to the World Bank’s
standard of $5.50/day, China’s poverty rate is 27.2%, while that of

developed countries is only 0.2–3.5%. China’s GDP per capita is
$7,752, only 14% of that of the United States. Therefore, compared
with developed countries, China still has a higher proportion of poor
population, insufficient development of higher education, and
shortage of research funds and researchers, which leads to the
relatively backward pace of low-carbon economy development.

China ranks 9th in environment factor. 1) China’s forest coverage
rate is only 22.35%. On the one hand, because of the serious
desertification, rocky desertification, and soil erosion in northwest
China, on the other hand, because of the high proportion of domestic
agriculture, there is a great demand for water resources and arable

TABLE 4 | Rotated factor loadings matrix and component score coefficient matrix.

Indexes F1 F2 F3 F4

Load Coef Load Coef Load Coef Load Coef

X1 Fossil fuel energy consumption 0.897 0.298 0.260 0.129 −0.056 -0.069 −0.243 −0.039
X2 Alternative and nuclear energy consumption −0.894 −0.330 0.293 0.127 −0.094 0.092 0.081 −0.174
X3 Electricity production from oil, gas and coal 0.884 0.305 −0.183 −0.051 0.241 −0.011 −0.101 0.138
X4 CO2 intensity 0.852 0.265 −0.012 0.051 0.240 0.019 −0.221 0.024

X5 R&D expenditure −0.144 0.002 0.674 0.200 0.069 0.152 0.569 0.182
X6 Researchers in R&D −0.198 0.002 0.757 0.224 −0.127 0.087 0.491 0.108
X7 Tertiary education enrollment 0.048 −0.002 0.885 0.382 −0.076 0.103 0.001 −0.173
X8 Poverty headcount ratio 0.072 −0.001 −0.809 −0.280 0.453 0.058 −0.063 0.143

X9 GDP growth rate 0.164 −0.036 −0.189 0.072 0.852 0.318 −0.130 −0.007
X10 Services, value added -0.262 -0.002 0.324 −0.004 -0.653 −0.202 0.258 0.041
X11 Gross fixed capital formation 0.053 −0.037 0.085 0.144 0.890 0.389 0.163 0.095
X12 Urban population ratio −0.070 0.044 0.586 0.130 −0.664 −0.184 0.142 −0.049

X13 Labor force participation ratio −0.180 0.066 0.349 −0.010 −0.128 0.020 0.737 0.345
X14 PM2.5 mean annual exposure 0.186 −0.093 −0.150 0.148 0.575 0.202 −0.626 −0.316
X15 Forest area ratio 0.194 0.078 −0.020 −0.174 0.014 0.024 0.840 0.482

TABLE 5 | Rankings and scores of low-carbon economy development level.

Country Low-carbon Energy factor Society factor Economy factor Environment factor

Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score

South Korea 1 84.51 7 −0.18 1 1.64 3 1.20 2 1.19
France 2 75.19 1 −3.25 7 0.51 8 -0.04 16 −0.51
China 3 49.73 13 0.47 9 0.32 1 2.34 9 0.32
Canada 4 29.04 3 −1.13 10 0.30 13 −0.42 8 0.33
Germany 5 24.13 6 −0.19 6 0.61 10 −0.22 4 0.66
United States 6 14.35 10 0.04 3 0.82 14 −0.48 7 0.43
Australia 7 7.21 19 0.93 2 1.37 9 −0.17 10 0.10
Turkey 8 3.90 11 0.12 4 0.80 5 0.56 18 −1.36
Indonesia 9 3.79 9 −0.11 20 −1.92 4 1.19 3 1.14
Japan 10 2.46 20 1.12 8 0.40 15 −0.63 1 1.94
India 11 1.87 4 −0.33 19 −1.65 2 2.08 17 −0.75
Russia 12 −2.23 12 0.36 12 0.15 11 −0.22 6 0.45
United Kingdom 13 −12.22 5 −0.26 11 0.27 19 −1.09 13 −0.08
Brazil 14 −12.47 2 −1.20 17 −1.18 20 −1.10 5 0.55
Poland 15 −18.82 17 0.90 14 −0.11 6 0.11 11 0.10
Italy 16 −27.73 8 -0.13 15 −0.37 17 -0.99 14 −0.13
Saudi Arabia 17 −34.46 14 0.58 5 0.69 7 −0.01 20 −2.22
Mexico 18 −51.24 15 0.59 16 −1.04 16 −0.77 12 0.04
Iran 19 −54.46 16 0.77 13 0.00 12 −0.34 19 −1.84
South Africa 20 -82.54 18 0.92 18 −1.60 18 −1.00 15 −0.36
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land. 2)Meanwhile, China’s rich coal, poor oil, a little gas, and energy-
intensive industries have resulted in a PM2.5 concentration of 52.66,
compared with 7.41 in the United States.

China ranks 13th in energy factor. China is the world’s largest
energy consumer, accounting for 24% of global energy
consumption and 34% of global growth in energy
consumption in 2019. 1) In the primary energy consumption,
fossil fuels account for 87.67% of energy consumption, among
which coal account for 58%. 2) Fossil fuels account for 72.96% of
electricity generation. 3) Due to China’s heavy reliance on fossil
fuels, CO2 intensity is as high as 3.37, compared with 1.25 in
France. 4) China has been optimizing its energy structure for
many years, with coal consumption accounting for 58%, down
from 72% a decade ago. In 2019, renewable energy consumption
grows 29%, accounting for 45% of global growth.

CONCLUSIONS AND SUGGESTIONS

Research Conclusions
This article focuses on the low-carbon economy development
evaluation indicators at the nation level, taking the world’s top
20 countries in CO2 emissions as the research observations, closely
concentrating on the concept of low-carbon economy, based on the
five principles of index evaluation (comprehensiveness,
effectiveness, applicability, correlation, and foresight), 40
indicators were selected from five dimensions of economy,
society, science and technology, environment, and energy structure.

Since there are somany indicators tomeasure the development of
a country’s low-carbon economy, we need to reduce the data
dimension. Factor analysis is a multivariate technique that tries to
identify a relatively small number of factors that represent the joint
behavior of interdependent original variables. Thus, by using
correlation coefficients to group variables, four factors, energy
factor, society factor, economy factor, and environment factor,
are generated and extracted. Then, based on the factor scores, the
ranking of the four factors and the total score of 20 countries are
given. In the end, South Korea, France, China, Canada, and
Germany ranked among the world’s top five countries in terms
of low-carbon economy development and competitiveness.

Furthermore, through the evaluation index system of
international low-carbon economy development, we have clearly
identified the strengths and weaknesses of the 20 countries in
developing a low-carbon economy, which will help China to
define its own position, discover its own problems, identify the
right development direction, learn useful experience, draw lessons
from the experience, and avoid repeating the same mistakes.

Measures and Suggestions
Overall, China’s low-carbon economy development is in a
relatively favorable position, ranking the third in the world. It
is most prominent in terms of economic strength (No. 1), but
underperforms in terms of social development (No. 9) and
environmental carrying capacity (No. 9). The biggest weakness
is in the energy structure (No. 13).

Taking into account China’s national conditions, development
stage, sustainable development strategy, and international

responsibility, China should accelerate the development of
low-carbon economy, focus on key points, strengthen weak
areas, and refine various indicators and tasks.

1) Promoting high-quality, efficient, and steady economic
development. We will accelerate the development of
advanced manufacturing and modern service industries,
and apply the concept of low-carbon development to the
whole process of urban planning, construction and
management, and raise people’s income through targeted
poverty alleviation and full employment.

2) Strengthening support for science, technology, and human
resources. For developing countries, in a relatively short
period of time and at a lower cost, for realizing low-carbon
technological innovation, we can not only introduce, imitate,
and purchase patents, but also need to strengthen the research
and development new technologies such as energy saving and
consumption reduction, renewable energy and advanced
nuclear energy, carbon capture, utilization, and storage.
And most importantly, giving priority to education.

3) Increasing carbon sink and reducing environmental pollution.
We will continue to take action to prevent and control air
pollution from its source with all the people, and build an
environmental governance system in which the government
plays the leading role, enterprises play the main role, and
social organizations and the public participate.

4) Building a low-carbon energy system and forming an energy-
saving and low-carbon industrial system. In 2019, China’s energy
structure continued to improve: the proportion of coal
consumption in the primary energy reached a record low
(57.7%); renewable energy consumption grew 14.2%,
accounting for 26% of global growth. China’s electricity
generation accounted for 96% of net global growth.
Compared with 2018, solar power generation increased by
26.5%, wind power by 10.9%, biomass and geothermal energy
by 9.7%, and water power by 5.9%. Nuclear power generation
grew by 18.2%, higher than the 10 years average growth rate
(+15%), and China accounted for 56% of the global increase
(Dudley Bob, 2020). China will continue to follow a new path of
industrialization, develop the circular economy, improve the
industrial structure, strictly control the expansion of industries
that have high emissions and energy intensive, speed up the
phasing out of backward production facilities, and vigorously
develop the service sector and strategic emerging industries.
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Electricity demand forecasting plays a fundamental role in the operation and planning
procedures of power systems, and the publications related to electricity demand
forecasting have attracted more and more attention in the past few years. To have a
better understanding of the knowledge structure in the field of electricity demand
forecasting, we applied scientometric methods to analyze the current state and the
emerging trends based on the 831 publications from the Web of Science Core
Collection during the past 20 years (1999–2018). Employing statistical description
analysis, cooperative network analysis, keyword co-occurrence analysis, co-citation
analysis, cluster analysis, and emerging trend analysis techniques, this study gives a
comprehensive overview of the most critical countries, institutions, journals, authors, and
publications in this field, cooperative networks relationships, research hotspots, and
emerging trends. The results can provide meaningful guidance and helpful insights for
researchers to enhance the understanding of crucial research, emerging trends, and new
developments in electricity demand forecasting.
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INTRODUCTION

Nowadays, electricity is the most critical energy and plays an indispensable role in many fields. In
recent years, a large number of researchers have proved that the accuracy of electricity demand
forecasting is the basis of power system planning and operation (Raza and Khosravi, 2015; Kuster
et al., 2017). Accurate electricity demand forecasting can not only ensure the reliable operation of
power systems but also have an excellent cost-saving potential for power corporations (Al-Ghandoor
et al., 2009).

With the increase of electricity demand and the rapid development of artificial intelligence,
electricity demand forecasting has attracted more and more attention, and new research methods,
emerging trends, and new developments have emerged at the same time (Alfares and Nazeeruddin,
2002). A lot of forecasting techniques and researches have been proposed and applied in electricity
load forecasting (Hippert et al., 2001; Bourdeau et al., 2019), and support vector regression
(Mohandes, 2002; Sousa et al., 2014) and ANN (Bhattacharyya and Thanh, 2004; Cavallaro,
2005) are widely used in recent years. In addition, more and more hybrid models are applied in
electricity load forecasting. Mohan et al. (2018) applied dynamic mode decomposition (DMD) to
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extract the spatiotemporal dynamic characteristics of power loads
that change with time and forecasted future electric load. Al-
Musaylh et al. (2019) presented a hybrid model that including
multivariate adaptive regression, and multiple linear regression,
artificial neural network models to forecast short-term electricity
demand in Australia.

In the past, many scholars had reviewed the methods,
techniques, and methods of evaluation in the field of
electricity demand forecasting. Shao et al. (2017) conducted
decomposition methods for electricity demand forecasting and
presented that Empirical mode decomposition and wavelet
decomposition are the most popular technique. Kuster et al.
(2017) presented a review that revealed that artificial neural
networks, multivariate regression, time series analysis, and
multiple linear regression are popular and effective methods
for electricity and electricity forecasting. Hong et al. (2016)
offered a summary of the recent research progress about
probabilistic energy forecasting and introduced the Global
Energy Forecasting Competition 2014 with load forecasting.
However, previous review studies focused on the techniques
and methods already used in power load forecasting and very
little research has analyzed the collaborative relationship, new
developments, and emerging trends of electricity demand
prediction and visualized the knowledge map of the field.

Scientometrics is a crucial method to explore the scientific
research rules, identify research trends, and evaluate the
development of the field (Kim and Chen, 2015; Olawumi and
Chan, 2018). Yu and Xu (2017) analyzed the current status of
carbon emissions trading and discussed future research trends by
the scientometric method. Olawumi and Chan (2018) evaluated
the research development status of institutions, countries, and
journals in the research field. Niazi and Hussain (2011) evaluated
all sub-domains of agent-based computing and found agent-
based computing extensive in other dominos.

With the rapid growth of attention and publications for
electricity demand forecasting, it is necessary and urgent to
summarize the current situation and analyze the collaborative
relationship, new developments, and emerging trends of
electricity demand forecasting. According to Web of Science
(WoS), about 831 papers related to electricity demand
forecasting have been published in the last 20 years
(1999–2018), but no research has been performed to analyze
and visualize the overall knowledge structure of this topic.
Therefore, the purpose of this study is to assess the research
on electricity demand forecasting and seek an overview of the
structure of the relevant information. In this study, scientometrics
analysis is performed in the electricity demand forecasting
domain, and software named CiteSpace is utilized to analyze
and visualize the emerging trends. CiteSpace, invented by Chen
Chaomei, is a particularly popular software of scientometrics that
can be used to identify knowledge areas and emerging trends in a
visual form (Lairmore et al., 2000; Chen, 2006). In recent years,
CiteSpace has attracted the interest of many scholars and has been
applied to many fields. Chen et al. (2014) used published
literature to investigate new developments and emerging
trends in the field of regenerative medicine. Yang et al. (2018)
comprehensively analyzed the status of PM2.5 research and

found the frontiers of research in this field. Fang et al. (2018)
examined the interaction between climate change and tourism
and described the research characteristics of the field in the past
25 years.

The structure of this article is as follows:Methodology gives the
source and search strategy of publications. Basic summary of
electricity demand forecasting research introduces the basic
summary of electricity demand forecasting research. In
Cooperative structure in the field of power demand forecasting,
this study visualizes the cooperation network of authors,
institutions, and countries/regions. Active topics and emerging
trends analyzes the active topics and emerging trends in electricity
demand forecasting, including keyword analysis and co-citation
analysis. Conclusions gives comprehensive conclusions and
discussions.

METHODOLOGY

This section provides the search strategy of data. For the searched
phrase in Web of Science (WoS), some articles perform an exact
search on a certain phrase, such as Yu and Xu (2017), and some
articles perform an exact search on multiple phrases and merge
the results, such as Chen (2017). Searching with inexact themes
requires that the query words do not have to appear
consecutively, which gets a large number of publications that
are not related to the search subject. It is worth noting that this
article searches precise themes and non-precise titles. This article
focuses on a more subdivided field, and the number of related
articles is little. Searching with precise themes will ignore
indispensable publications in this field and affect the
conclusion of this article seriously. To improve the recall rate
and avoid retrieving a large number of irrelevant publications,
this article adopts the strategies of searching with precise themes
and inexact titles. To ensure the accuracy of publications being
retrieved, this study culled out irrelevant publications through
means of manual screening.

The data used for analysis in our research is downloaded from
WoS, and the search strategy followed is below:

1) TS�(“electric* load forecast*” OR “electric* load predict*” OR
“electric* demand forecast*” OR “electric* demand predict*"
OR “electric* consumption forecast*” OR “electric*
consumption predict*” OR “power load forecast*” OR
“power load predict*” OR “power demand forecast*” OR
“power demand predict*” OR “power consumption
forecast*” OR “power consumption predict*” OR “grids
load forecast*” OR “grids load predict*”) OR TI�(electric*
load forecast* OR electric* load predict* OR electric* demand
forecast* OR electric* demand predict* OR electric*
consumption forecast* OR electric* consumption predict*
OR power load forecast* OR power load predict* OR
power demand forecast* OR power demand predict* OR
power consumption forecast* OR power consumption
predict* OR grids load forecast* OR grids load predict*)

2) Databases � Science Citation Index Expanded (SCI-
EXPANDED) and Social Sciences Citation Index (SSCI)
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3) Timespan � “1999–2018”
4) Document types � “article” or “review”
5) Literature type � “English”; 901 publications are retrieved, and

70 publications that were not related to electricity demand
forecasting were deleted through means of manual screening.
Finally, 831 publications were downloaded on October
18, 2019.

BASIC SUMMARY OF ELECTRICITY
DEMAND FORECASTING RESEARCH

This section provides statistical analysis from five parts,
including distribution of time, subject categories, high-yield
journals, high-yield institutions, high-yield authors, and highly
cited publications in electricity demand forecasting.

The Distribution of Publications
Figure 1 shows that the number of publications in electricity
demand forecasting is increasing over the past 20 years, from
eight publications in 1999 to 148 publications in 2018, with
steady growth in 199–2009 and rapid growth in 2010–2018.
The publications have been cited 19,506 times from 1999 to
2018. The number of citations is increasing, year by year,
and has similar growth trends with the numbers of
publications. From this, it can be seen that electricity
demand forecasting has received more and more attention,
especially in the last decade.

Figure 2 shows that China, the United States, Iran, and the
United Kingdom are the main countries publishing papers in this
field. China is the country with the most publications, especially
after 2015, the number of publications in China exceeds the sum
of the United Kingdom, the United States, and Iran. It should be
noted that the publications of Taiwan and Hong Kong are
included in China. The numbers of publications in the
United States and the United Kingdom are both fluctuating.
Iran has published its first publication in 2007, and Iran has
published more than three papers each year. In 1999–2018, China
published 33.81% (281) of the total publications in electricity

demand forecasting, the US for 9.99% (83), Iran for 6.74% (56),
and the United Kingdom for 6.14% (51).

Subject Categories
Figure 3 shows that electricity demand forecasting is a cross-
disciplinary research area, including energy fuels accounting for
36.82% (306), engineering electrical electric accounting for
26.23% (218), computer science artificial intelligence
accounting for 16.49% (137), thermodynamics accounting for
13.48% (112) and economics accounting for 6.38% (53).

High-Yield Journals
199 journals published papers in electricity demand forecasting
from 1999 to 2018 in our dataset. Table 1 lists the top 10 journals,
and it can be seen that energy and power are areas of most
significant concern to the top 10 journals. “Energy” is the highest
yield journal with 81 publications, followed by “Energies”,
“International Journal of Electrical Power Energy Systems”,
“Applied Energy”, “Energy Conversion and Management”,
“Electric Power Systems Research”, “Energy and Buildings”,
“International Journal of Forecasting”, “IEEE Transactions on
Power Systems”, and “Lecture Notes in Computer Science”. In the
top 10 journals, the impact factor of “Energy”, “Applied Energy”,
“Energy Conversion and Management”, and “IEEE Transactions
on Power Systems” are all more than 5.

Figure 4 shows the distribution of leading journals in
electricity demand forecasting. There are 29 journals in
Figure 4 and each of them published at least five publications.
We denoted withNPj the number of publications for the journal
j, Ti,j the publication year of publication i in the journal j,NCi,j

the number of citations for publication i in journal j from 1999 to

2018. And AYj � ∑
i�1

NPj

Ti,j/NPj represents the average year of

publication in the journal j, AACj � ∑
i�1

NPj NCi,j

2019−Ti,j
/NPj represents

the average annual citation for the journal j. The black horizontal
dashed line in Figure 4 represents the average annual citation of
all publications in this field, and the number of an average annual
citation for each journal above this line is higher than the average

FIGURE 1 | Numbers of publications and citations in electricity demand
forecasting, 1999–2018.

FIGURE 2 |Distribution of publications in electricity demand forecasting,
1999–2018.
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FIGURE 3 | Distribution of the main Subjects in electricity demand forecasting, 1999–2018.

TABLE 1 | High-yield journals in electricity demand forecasting.

Num Journal TP Proportion (%) If Country

1 Energy 81 9.75 5.537 England
2 Energies 63 7.58 2.707 Switzerland
3 International Journal of Electrical Power Energy Systems 46 5.54 4.418 England
4 Applied Energy 39 4.69 8.426 England
5 Energy Conversion and Management 29 3.49 7.181 England
6 Electric Power Systems Research 26 3.13 3.022 Switzerland
7 Energy and Buildings 23 2.77 4.495 Switzerland
8 International Journal of Forecasting 23 2.77 3.386 Netherlands
9 IEEE Transactions on Power Systems 22 2.65 6.807 United States
10 Lecture Notes in Computer Science 19 2.29 0.402 United States

Note: TP: the total number of publications; IF: Impact Factor.

FIGURE 4 | Distribution of main journals in electricity demand forecasting, 1999–2018.
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in this field. The black vertical dashed line in Figure 4 represents
the average year of publications in this field, and the average year
of publication for each journal on the right of this line is closer.
The intersection of the horizontal and vertical dashed lines is
(2012.76, 4.18), which means that the average year of publication
for 831 publications is 2012.76, and the average number of
citations for 831 publications is 4.18. The size of the dot in
Figure 4 represents the number of publications for a journal from
1999 to 2018, which means that the larger the dot, the greater the
number.

Figure 4 shows the number of publications, publication time,
and citations of significant journals in this field. The journals in
the 1, 2, and 4 quadrants are worthy of our attention, especially
the journals in the first quadrant, whose publications had been
cited more in recent years (such as “Renewable and Sustainable
Energy Reviews”, “European Journal of Operational Research”,
“Applied Energy”, “IEEE Transactions on Smart Grid”,
“Energy”, “Energy and Buildings”, “Applied Soft Computing”,
“IEEE Transactions on Industrial Informatics”). The journals in
the second quadrant are likely to publish much-watched
publications by 2012. Journals in the fourth quadrant
published articles with low citations recently, but their
articles may become hotspots in the future. There are some
journals, such as “Energy” and “Energies”, had published the
most publications in this field.

High-Yield Institutions
848 institutions published papers in electricity demand
forecasting from 1999 to 2018. Table 2 lists the top 10
institutions, it can be seen that five of the top 10 institutions
come from China and China also published the largest number of
articles, which is also the same conclusion as Figure 2. North
China Electric Power University is the highest yield Institution
with 57 publications, followed by Lanzhou University, University
of North Carolina, Islamic Azad University, Oriental Institute of
Technology, Electricite de France edf, University of Tehran,
University of Oxford, Dongbei University of Finance
Economics, and Hefei University of Technology.

High-Yield Authors
Table 3 shows high-yield authors, published the most
publications in this field, mainly from China, the
United States, Iran, England, and France. Table 3 shows
that Wang JZ had published the most articles in this field,
with 24 publications. Hong WC is the most cited author,
with a total of 1,473 citations, and had 17 publications that
had been cited more than 17 times. The publications of
Taylor JW have cited an average of 133.4 times, and the
maximum number of citations of his publications was cited
269 times.

Figure 5 shows the distribution of leading authors in
electricity demand forecasting. There are 32 authors in
Figure 5 and each of them published at least five publications.
Similar to Figure 4, AY in Figure 5 represents the average year of
publication for an author,AAC in Figure 5 represents the average
annual citation for an author, and the size of the dot represents
the number of publications for an author from 1999 to 2018. The
intersection of the horizontal and vertical dashed lines is
(2012.76, 4.18) too. The number of average annual citations
for each author above this line is higher than the average in
this field, and the average year of publication for each author on
the right of this line is closer.

Figure 5 shows the number of publications, publication
time, and citations of leading authors in this field. The
authors in the 1, 2, and 4 quadrants are worthy of our
attention, especially the authors in the first quadrant,
whose articles have received extensive attention in recent
years, such as Zareipourh, Khosravia, Hong T, Abediniao,

TABLE 2 | High-yield institutions in electricity demand forecasting.

Institution Country TP TPC (%) TPW (%)

North China Electric Power University CHINA 57 20.28 6.86
Lanzhou University CHINA 35 12.46 4.21
University of North Carolina United States 24 29.27 2.89
Islamic Azad University IRAN 18 32.14 2.17
Oriental Inst Technol CHINA 15 5.34 1.81
Electricite De France Edf FRANCE 14 56.00 1.69
University of Tehran IRAN 14 25.00 1.69
University of Oxford UK 13 25.49 1.56
Dongbei University of Finance Economics CHINA 13 4.63 1.56
Hefei University of Technology CHINA 13 4.63 1.56

Note: TPC: publications share in its country; TPW: publications share in the world.

TABLE 3 | High-yield authors in electricity demand forecasting.

Author Country TP TC TC/TP MC H-index*

Wang JZ China 24 864 35.21 95 16
Hong WC China 21 1,473 70.14 254 17
Niu DX China 16 370 23.13 181 10
Hong T United States 11 611 55.55 180 11
Azadeh A Iran 11 490 44.55 141 8
Amjady N Iran 10 604 60.4 181 9
Taylor JW England 10 1,334 133.4 269 9
Yang SL China 10 123 12.3 36 6
Goude Y France 8 275 34.38 75 6
Che JX China 7 199 28.43 71 6

Note: TC: the total citations of TP; MC: the max citations of his/her one publication.
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FIGURE 5 | Distribution of main authors in electricity demand forecasting, 1999–2018.

TABLE 4 | Highly cited publications in electricity demand forecasting.

Authors Year Journal TC ACY

Alfares and Nazeeruddin, (2002) 2002 International Journal of Systems Science 272 15.11
Taylor, (2003) 2003 Journal of the Operational Research Society 265 15.59
Pai and Hong, (2005) 2005 Electric Power Systems Research 239 15.93
Bunn, (2000) 2000 Proceedings of the IEEE 236 11.8
Hahn et al. (2009) 2009 European Journal of Operational Research 233 21.18
Taylor and Buizza, (2002) 2002 IEEE Transactions on Power Systems 231 12.83
Akay and Atak, (2007) 2007 Energy 223 17.15
Hsu and Chen, (2003) 2003 Energy Conversion and Management 220 12.94
Taylor et al. (2006) 2006 International Journal of Forecasting 219 15.64
Li et al. (2013) 2013 Knowledge-Based Systems 218 31.14

Note: ACY: average citations per year.

TABLE 5 | Highly average annual cited publications in electricity demand forecasting.

Authors Year Journal TC ACY

Hong and Fan, (2016) 2016 International Journal of Forecasting 159 39.75
Hong et al. (2016) 2016 International Journal of Forecasting 143 35.75
Ahmad et al. (2014) 2014 Renewable and Sustainable Energy Reviews 207 34.5
Raza and Khosravi, (2015) 2015 Renewable and Sustainable Energy Reviews 157 31.4
Li et al. (2013) 2013 Knowledge-Based Systems 218 31.14
Quan et al. (2014) 2014 IEEE Transactions on Neural Networks and Learning Systems 172 28.67
Mohammadi et al. (2018) 2018 Neural Processing Letters 48 24
Kaboli et al. (2017) 2017 Energy 68 22.67
Boroojeni et al. (2017) 2017 Electric Power Systems Research 66 22
Hahn et al. (2009) 2009 European Journal of Operational Research 233 21.18
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and Guo S. The authors of the second quadrant is likely to
publish a much-watched article by 2012. Authors of the
fourth quadrant recently published articles with low
attention, but their articles may become hotspots in the
future. There are also some authors, such as Hong WC,
Wang JZ, and Hong T, who published the most
publications in this field.

Highly Cited Publications
The top 10 highly cited publications are shown in Table 4.
Only the article published by Li et al. (2013) on “Knowledge-
Based Systems” was published after 2009. Others were
published before 2009. Among them, Taylor JW, Hong
WC, and other authors are shown in Figure 5. It is worth
noting that Alfares HK; Nazeeruddin M and Taylor JW had
paid little attention to this field after 2009. These articles are
an essential foundation in this field and are helpful for
researchers to understand the important basics of this
field. Alfares and Nazeeruddin (2002) offered a review
and categorization of electricity demand forecasting
techniques. They classified these techniques into nine
categories and discussed these technique’s advantages and
disadvantages.

Table 5 shows the top 10 publications with the highest
average citations per year. Only the article published by
Hahn et al. (2009) in “European Journal of Operational
Research” was published in 2009. Others were published
after 2013. Among them, Hong Tao, Guo Sen, Fan Shu, and
other authors are shown in Figure 5. It is worth noting that
the publications with the highest average citations per year

are mainly published in the past 5 years, indicating that the
electricity demand forecasting may have received more
attention in the near future, or new developments have
appeared. Hong and Fan (2016) offered a review of
probabilistic power load forecasting and introduced the
methodologies, techniques, applications, evaluation
methods, and future research needs.

COOPERATIVE STRUCTURE IN THE FIELD
OF POWER DEMAND FORECASTING

Author Cooperation Network
The author’s cooperative network shows the cooperation of
all authors in the 831 papers in the field of electricity demand
forecasting. The node size is proportional to the number of
the author’s publications, and the connection between nodes
represents the author’s cooperative relationship. The
thickness of the connection represents the strength of the
cooperation between the authors. The color of the
connection between nodes and nodes corresponds to the
time when the cooperation first appeared. The change of
connection’s color from cool, such as blue and green, to
warm, such as yellow, indicates the change of time from early
to recent.

There are 2,143 nodes and 3,561 edges in the author’s
cooperation network. Obviously, there are many scholars
involved in the field of electricity demand forecasting, but
most of them only cooperate in a small scope. Many small
independent networks of cooperation have not formed

FIGURE 6 | Author cooperation network in electricity demand forecasting (A, B, C, D represent the four largest cooperative networks).
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extensive cooperation. There is also a large independent
cooperation network in the cooperative network. This study
extracted the four largest cooperative networks from the
author’s cooperation network, as shown in Figure 6.

Figure 6A shows the four largest cooperative networks, with
74, 70, 53, and 24 nodes in each of the four networks. Part a of
Figure 6B is the largest cooperative network with 74 nodes.
Among them, JianzhouWang, Caihong Li, Yang Yi, Lian Li, Chen
Wang, Weigang Zhao, Jie Wu, and other authors constitute a
research cluster based on LanzhouUniversity. Part b of Figure 6C
is the second network with 70 nodes. Among them, Dongxiao
Niu, Ming Meng, and other authors constitute the research
cluster based on North China Electric Power University.
Weichang Hong, Guofeng Fan, Liling Peng, and other authors.
It constitutes a research cluster based on the Pingdingshan
Normal University of Jiangsu Normal University. Part c of
Figure 6D is the third network with 53 nodes. Among them,
Tao Hong, Bidong Liu, Pu Wang, Jingrui Xie, and other authors,
who are researchers at the University of South Carolina,
constitute a research cluster. Nima Amjady, Oveis Abedinia,
and other authors, who are researchers at the University of
Semnan, constitute a research cluster, and authors such as Shu
Fan and Hamidreza Zareipour, who are researchers at the
University of Calgary, constitute a research cluster. Authors
such as Fei Gao, Shanlin Yang, Yaoyao He, Zhen Shao, and
Kaile Zhou, who are researchers at Hefei University of Science
and Technology, constitute a research cluster. Other scholars with
a large number of publications and extensive cooperation include
Azadeh A of Tehran University; Goude Y of the University of
Paris-Sud; Taylor JW of Oxford University. Although there are
many participants, there are more networks of less than 10
partners in the cooperation network, indicating that
cooperation in the field of electricity demand forecasting is lack.

Institutional Cooperation Network
The institutional cooperative network in electricity demand
forecasting has 859 nodes and 894 edges. Figure 7 shows the
largest independent network in the institutional cooperation
network, with 217 nodes. North China Electric Power
University and Lanzhou University are the leading
contributors to the cooperation in this field and have
published the most articles. 10 institutions that have more
than 10 connections were listed: North China Electric Power
University (57), Lanzhou University (35), Islamic Azad
University (18), Oriental Institute of Technology (15),
University of Tehran (14), Hefei University of Technology
(13), Dongbei University of Finance and Economics (13),
University of Oxford (12), Semnan University (11), University
of North Carolina (10). Most institutions in this field are located
in China, and there is more cooperation between domestic
institutions and transnational institutions. The cooperators of
Lanzhou University in China are mainly the University of
Chinese Academy of Sciences, Hefei University of Science and
Technology, Dongbei University of Finance and Economics. It is
worth noting that Wang Jinzhou is a highly productive author in
this field, and he has worked at Lanzhou University and Dongbei
University of Finance and Economics, which also indicates the
cooperative relationship between Lanzhou University and
Dongbei University of Finance and Economics. The University
of Tehran and Islamic Azad University are the main partners of
each other, and both of them are located in Iran. Besides, cross-
border cooperation is widespread, with Lanzhou University,
University of Technology, Tsinghua University, and Semnan
University cooperating with each other. At the same time, it is
evident that compared with the author’s cooperation network,
and the institutional cooperation network is closer.

FIGURE 7 | Institutional cooperation network in electricity demand
forecasting.

FIGURE 8 | Countries/regions cooperation network in electricity
demand forecasting.
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Country/Region Cooperation Network
The countries cooperative network for electricity demand
forecasting has 37 nodes and 89 edges (deleting links with
fewer than two). Figure 8 shows the largest connected
network that contains 30 countries/regions. The top 10
countries are the People’s Republic of China, the USA, Iran,
England, Turkey, Spain, Australia, Brazil, Canada. From
Figure 8, it can be found that China is the largest contributor
to the country’s cooperation network in this field. The main
partners of China are the United States (16), Australia (8) and
Canada (8), the United Kingdom (7), and Japan (4). The figures in
parentheses indicate the number of articles published in
cooperation between the two countries. The main partners of
the United States are China (15), Italy (3), Pakistan (3), and
Poland (3). The main partners of Iran are Australia (3), Malaysia
(3), Canada (2), United Kingdom (2), and Hungary (2). The main
partners of the UK are China (7), France (3), Brazil (2), Singapore
(2), and the United States (2).

ACTIVE TOPICS AND EMERGING TRENDS

Co-Occurrence Network
Keywords are a clear sign of the critical content of research. Co-
occurrence analysis is used to analyze the number of occurrences
of a pair of words within the same literature and measure the
relationship between different publications. The burst detection
of keywords is often applied to reveal the emergence of hotspots
and active topics. Figure 9 shows a keyword co-occurrence
network for electricity demand forecasting. For ease of
observation, Figure 9 only retains nodes where the co-

occurrence frequency is greater than 10. The keyword co-
occurrence network is intricate and complex, and the nodes
are closely related. It mainly presents the nouns and methods
used in this field. The keywords with occurrence frequency higher
than 100 are neural network (351), model (190), forecasting
(170), demand (127), system (125), algorithm (123), and time
series (109). It can be found that the left part of Figure 9 mostly
refers to the main terms related to electricity demand forecasting
such as forecasting, load, demand, consumption, etc., and the
main methods involved in electricity demand forecasting are the
neural network, model, algorithm, support vector regression,
regression, etc.

Table 6 shows 17 keywords with the highest bursts, and their
strength, begin time and end time. The red line in Table 6
represents the specific time period for keywords burst. This
study found that the neural network is the keyword with the
most strength (9.4035), and its duration is as long as 9 years
(1999–2007), which indicates that the neural network is one of
the most essential basic methods in this field. At the same time,
the larger keywords detected by burst are mostly methods. The
reason is that the field is too narrow, and the research is more
concentrated in this field. On the other hand, the new hotspots in
this field are mostly referred to as the improvement of methods.

Co-Citation Network Analysis
Co-citation network analysis is an analysis tool, usually used to examine
a large number of documents and reveal the knowledge map of a
scientific discipline. In co-citation networks, some key nodes are easily
identified because of their prominent structure and characteristics.

The publication with citation bursts represents it has attracted
special attention in this field for a period of time. Table 7 shows

FIGURE 9 | Keyword co-occurrence network in electricity demand forecasting.
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that the top-ranked references by bursts were published by Hippert
et al. (2001), with bursts strength of 20.7847. The second one was
Bakirtzis et al. (1996), with bursts strength of 11.1269.

There are 875 nodes and 4,429 edges in Figure 10. The
development history and research Frontier in this field, and the
crucial articles in this field are mainly concentrated after 2009,
which also shows that the articles in this field have experienced
explosive growth in recent 10 years. The authors of crucial articles

overlap with a large number of high-yield and high-cited authors
in the field, such as Hong Tao, Fan S, Taylor JW, and so on.
Hippert et al. (2001) reviewed articles published from 1991 to 1999
to assess the practical application of neural networks in short-term
electricity load forecasting, and evaluate the design and testing of
the neural networks presented in these papers critically. So it
becomes a key node in the network. Taylor et al. (2006) assessed
the forecast accuracy of short-term electricity demand forecasting

TABLE 6 | Top 17 keywords with bursts during 1999–2018.

Keywords Year Strength Begin End 1999–2018

Neural network 1999 9.4035 1999 2007

System 1999 4.277 1999 2003

Implementation 1999 4.9452 2002 2012

Short term 1999 4.8666 2005 2011

Load forecasting 1999 5.5095 2005 2006

Time-series 1999 7.3654 2006 2011

Turkey 1999 4.9077 2009 2011

Electricity demand 1999 3.3649 2010 2012

Short-term load forecasting 1999 4.4801 2012 2014

Particle swarm optimization 1999 4.2798 2013 2016

Combination 1999 3.8789 2013 2016

Network 1999 3.8621 2014 2016

Intelligence 1999 3.6923 2014 2016

Selection 1999 5.4265 2015 2018

Energy 1999 3.0846 2016 2018

Support vector regression 1999 3.7342 2016 2018

Wavelet transform 1999 3.4861 2016 2018

TABLE 7 | Top 10 references with the strongest citation bursts during 1999–2018.

References Year Strength Begin End 1999–2018

Bakirtzis et al. (1996) 1996 11.1269 1999 2006

Ramanathan et al. (1997) 1997 7.1414 2000 2007

Hippert et al. (2001) 2001 20.7847 2002 2011

Darbellay and Slama, (2000) 2000 8.8169 2003 2010

Pai and Hong, (2005) 2005 6.1568 2006 2013

Taylor, (2003) 2003 5.2395 2006 2013

Shyh-Jier and Kuang-Rong, (2003) 2003 9.3716 2006 2013

Cottet and Smith, (2003) 2003 4.4897 2006 2013

Amjady, (2007) 2007 3.9629 2008 2015

Fan and Chen, (2006) 2006 6.8201 2008 2015
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with six univariatemethods. Fan andHyndman (2012) proposed a
semiparametric model to estimate the impact of electricity
demand data on model variables. Hong (2011) proposed an
electricity demand forecasting method combining chaotic
artificial bee colony algorithm and a seasonal recursive support
vector regression model. Suganthi and Samuel (2012) reviewed

various energy demand prediction models, such as regression,
time series, fuzzy logic, ARIMA, support vector regression, and
neural networks.

It is obvious that the network has six clusters of a
combined model, price forecasting, electricity consumption
forecasting, peak load forecasting, support vector regression,

FIGURE 10 | Reference co-citation network in electricity demand forecasting.

FIGURE 11 | Main co-cited references cluster in electricity demand forecasting.
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neural networks, probabilistic forecasting, and turkey in
Figure 11. Figure 12 is a line graph of the co-citation of
the literature, similar to the keyword timeline. It shows the
time evolution process of the six clusters. From the results,
the earliest cluster is neural networks, and it’s also the same as
the keyword timeline visualization results, which illustrates
the importance of neural networks in this field. The combined
model is the largest cluster, which has been continuously
appearing since 2004, indicating that the research Frontier is
a hybrid model. Price forecasting, electricity consumption
forecasting, peak load forecasting, and probabilistic
forecasting reflect the main content of this field. Price
forecasting and peak load forecasting are the contents of
early attention. Probabilistic forecasting and electricity
consumption forecasting are more concerned in recent
years. Support vector regression shows that it is one of the
important methods in the field. Turkey was the main cluster
between 1998 and 2008, indicating that during this period
turkey’s power forecasting was an area of concern. From the
clustering results, the changes in the method of the field and
changes in the content of the research. In particular, it is
pointed out that the recent research method hotspot is the
combined model.

In Table 8, Size represents the number of articles in a cluster,
and there are 140 articles in the cluster (#0). Silhouette is a measure
of a cluster’s homogeneity, and the closer its value is to 1, the more
homogeneous it is. Mean (Year) represents the average year of
publications in a cluster, and it is used to evaluate the average time

when the cluster appears. All silhouettes of eight clusters are greater
than 0.99, which means the clustering results are reliable.

CONCLUSION

This study offered a bibliometric and visualization analysis on
electricity demand forecasting based on 831 publications
retrieved from the Web of Sciences. A basic summary,
integrated knowledge maps, hot topics, and emerging trends of
electricity demand forecasting are presented by statistical
description analysis, cooperative network analysis, keyword co-
occurrence analysis, co-citation analysis, cluster analysis, and
emerging trend analysis techniques. Some interesting and
useful conclusions are as follows.

First, electricity demand forecasting has received more and
more attention, the numbers of citations and publications are
increasing rapidly, especially in the last decade. “Energy fuels”,
which account for 36.82%, is the largest subject category in the
electricity demand forecasting research area. “Energy” is the
highest yield journal with 81 publications, followed by
“Energies”, “International Journal of Electrical Power Energy
Systems” and “Applied Energy”. “Renewable and Sustainable
Energy Reviews”, “European Journal of Operational Research”
and “Applied Energy”, are of constant interest to researchers in
this field recently. North China Electric Power University,
Lanzhou University, University of North Carolina, Islamic
Azad University and Oriental Institute of Technology is the
top five yield Institution. Wang Jianzhou, which publishing 24

FIGURE 12 | A timeline visualization for the main references cluster.

TABLE 8 | Largest clusters of co-cited references, 1999–2018.

Cluster ID Size Silhouette Mean (Year) Label (LLR)

0 140 0.995 2013 combined model
1 98 0.996 2008 price forecasting
2 90 0.995 2010 electricity consumption forecasting
3 72 0.997 2001 peak load forecasting
4 58 0.998 2004 support vector regression (svr)
5 57 0.998 1995 neural networks
6 56 0.998 2011 probabilistic forecasting
7 53 0.999 2003 turkey
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articles in the field, is the most high-yield author, followed by
Hong Weichang, Niu Dongxiao, and Hong Tao. In recent years,
the publications of Zareipourh, Khosravia, Hong, Abediniao, and
Guo have attracted much attention, and the publications of Fan
have attracted lots of attention all the time. The top 10 highly
cited publications were mainly published before 2009 but the top
10 publications with the highest average citations per year were
mainly published after 2013. The reason may be that earlier
publications were the essential foundation of this field and got a
lot of citations, and recent publications were the current research
focus and got more citations recently.

Second, there are 2,143 scholars involved in the field of
electricity demand forecasting but most of them only cooperate
in a very small scope and almost cooperate with authors in the
same institution. The largest cooperative networks were formed
with Wang Jianzhou, who is the largest Structural hole in the
cooperative networks. North China Electric Power University,
Lanzhou University, Islamic Azad University, Oriental Institute
of Technology, and the University of Tehran are the five most
irreplaceable productive institutions and contributors in the field of
electricity demand forecasting. The People’s Republic of China
(including Taiwan, Hong Kong, and Macau), United States, Iran,
England, and Turkey are the five most significant contributors to
country/region cooperation networks.

Third, combined model, neural network, and support vector
regression are the main methods in electricity load forecasting,
and support vector regression, combined model, and wavelet
transform are hotspots methods. Price forecasting, electricity
consumption forecasting, peak load forecasting, and
probabilistic forecasting are primary researches in electricity
demand forecasting. Probabilistic forecasting and electricity
consumption forecasting are hotspots.

The basic situation of subject classification, journals, authors,
institutions, countries, and highly cited papers in the electricity
demand forecasting can be figured out based on the research of
this study. At the same time, the collaboration of countries/regions,
institutions, and authors is also studied in our study. Furthermore,
emerging trends and new developments in this field are also discussed
in this research. The results of this research provide a comprehensive

description of electricity demand forecasting and are helpful for
scholars to maintain the development of this field.

The limitations of our study are that, due to the limits of co-citation
analysis in citespace, the literature in our paper are only retrieved from
the core database of WoS, document types are limit in “article” or
“review”, and literature type are limit in “English”, which may make
some significant literature have been overlooked.
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Forecasting of Steam Coal Price
Based on Robust Regularized Kernel
Regression and Empirical Mode
Decomposition
Xiangwan Fu1†, Mingzhu Tang1*, Dongqun Xu2, Jun Yang3, Donglin Chen1 and
Ziming Wang4†

1School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, China, 2China Datang
Corporation Ltd, Beijing, China, 3Hunan Datang Xianyi Technology Co., Ltd., Changsha, China, 4School of Computer Science
and Information Security, Guilin University of Electronic Technology, Guilin, China

Aiming at the problem of difficulties in modeling the nonlinear relation in the steam coal
dataset, this article proposes a forecasting method for the price of steam coal based on
robust regularized kernel regression and empirical mode decomposition. By selecting the
polynomial kernel function, the robust loss function and L2 regular term to construct a
robust regularized kernel regression model are used. The polynomial kernel function does
not depend on the kernel parameters and can mine the global rules in the dataset so that
improves the forecasting stability of the kernel model. This method maps the features to
the high-dimensional space by using the polynomial kernel function to transform the
nonlinear law in the original feature space into linear law in the high-dimensional space and
helps learn the linear law in the high-dimensional feature space by using the linear model.
The Huber loss function is selected to reduce the influence of abnormal noise in the dataset
on the model performance, and the L2 regular term is used to reduce the risk of model
overfitting. We use the combined model based on empirical mode decomposition (EMD)
and auto regressive integratedmoving average (ARIMA) model to compensate for the error
of robust regularized kernel regression model, thus making up for the limitations of the
single forecasting model. Finally, we use the steam coal dataset to verify the proposed
model and such model has an optimal evaluation index value compared to other contrast
models after the model performance is evaluated as per the evaluation index such as
RMSE, MAE, and mean absolute percentage error.

Keywords: the steam coal price forecasting, kernel function, empirical mode decomposition, Huber loss function, L2
regular term

INTRODUCTION

Accurate forecasting of the steam coal price can provide a certain basis for enterprises related to
steam coal to formulate the procurement plan. The steam coal price indicates the general
performance of supply and demand on the steam coal market. China is a big consumer of coal
(Xiong and Xu, 2021; Wang and Du, 2020). Forecasting the steam coal price accurately can help in
the analysis of the steam coal market, grasp the implied law in the steam coal market, and improve
the steam coal market’s efficiency.
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In recent years, many references have proposed many different
methods for coal price forecasting. The time series model can mine
the implicit law in the time series. Matyjaszek et al. removed the
effect of abnormal fluctuations in prices on the forecasting model
by using the transgenic time series (Matyjaszek et al., 2019). Ji et al.
effectively improved the forecasting accuracy of the forecasting
model by using the ARIMA model and neural network model (Ji
et al., 2019). Wu et al. decomposed the price series into several
components, used the ARIMAmodel and SBLmodel for coal price
forecasting, and added up the forecasted values of all the
components as final forecasting result. Compared to the
contrast model adopted, this model can effectively improve the
model forecasting precision (Wu et al., 2019). Chai et al. combined
STL decomposition method with ETS model. The experimental
results show that it has the best forecasting performance compared
with benchmarkmodels and neural network (Chai et al., 2021). It is
difficult to learn the implicit nonlinearity law in the data by using
the time series model, which is sensitive to the abnormal value in
the data and only considers a single variable factor other than other
influence factors.

A neural network model can learn the nonlinearity law in the
data which is studied based on the interconnection between nerve
cells. Alameer et al. effectively improved the forecasting accuracy of
coal price based on LSTMmodel and DNNmodel (Alameer et al.,
2020). Lu et al. adopted the full empirical mode to decompose and
preprocess the original dataset, and then chose the radial basis
function neural network model for model training and forecasting.
The results show higher stability (Lu et al., 2020). Yang et al.
adopted the improved whale optimization algorithm to optimize
the decomposition and LSTM combined model based on the
improved integration empirical model, which has a better
model forecasting performance compared to other reference
models (Yang et al., 2020). Zhang et al. decomposed the
original data series by multi-resolution singular value
decomposition method and forecasted the coal price by using
MFO-optimized ELM model. Experimental results show the
forecasting performance of the proposed model was superior to
that of the contrast model (Zhang et al., 2019). However, the neural
network model is a black box model which is difficult to interpret.

The steam coal market is a complex nonlinear system,
containing influence factors such as economy, steam coal
transportation, steam coal supply, and steam coal demand. The
influence factors involve a wide range and many feature data and
contain some noise data. This method improves the model
interpretability by using linear model and reduces the adverse
impact of noise data on the forecast model by using Huber loss
function (Gupta et al., 2020). We use the kernel function to mine
the implicit nonlinearity law in the steam coal data (Li and Li, 2019;
Vu et al., 2019; Ye et al., 2021). The combined model can improve
the model performance based on the advantages of the sub-model
(Wang et al., 1210; Zhou et al., 2019; Wang et al., 2020a; Wang
et al., 2020b; Qiao et al., 2021; Zhang et al., 2021). This method can
decompose the forecasting error of the forecasting model into
multiple modal components by using the EMD method (Yu et al.,
2008; Xu et al., 2019;Wang andWang, 2020; Xia andWang, 2020),
build the ARIMAmodel (Conejo et al., 2005; Karabiber and Xydis,
2019) for each modal component for forecasting, and add up the

forecasted values of all the modal components to compensate error
for the original forecasting model.

For the problem of difficulties in modeling the nonlinear
relation in the steam coal dataset, this article proposes a
forecast method for the price of steam coal based on robust
regularized kernel regression and empirical mode decomposition.
The second part introduces the used algorithm theory content;
the third part states the data preprocessing steps, the selection of
features, and the whole process of model training and forecasting;
the fourth part shows the model comparison and experimental
results; and the fifth part contains conclusion and prospect.

METHODOLOGY

Huber–Ridge Model
The Huber function (Huber et al., 1992) has great robustness, which
can effectively reduce the negative influence of abnormal data on
model performance. The Huber loss function is shown in Eq. 1:

ϕhub(u) � { u2 |u|≤M
M(2|u| −M) |u|>M, (1)

where u is the residual value and M is the threshold value of the
Huber function. The Huber function imposes the punishment
which is larger than the threshold value residual to effectively
lower the influence of abnormal sample points on the model
training.

The Ridge model is added with L2 penalty term based on the
objective function of the linear regression model. The objective
function of the model is shown in Eq. 2:

min
ω

1
2
‖Xω − Y‖22 + αl2‖ω‖22, (2)

where X refers to the set of feature parameters, ω refers to the
weight coefficient vector, Y refers to the forecasted target
quantity, ‖ω‖22 refers to the L2 penalty term, and αl2 refers to
the regular coefficient.

L2 regular term compresses the feature weight value adversely
to the model forecasting and makes it approximate to 0 in order
to reduce the impact of features with low correlation. When the
regular coefficient of αl2 is large, the L2 regular term makes more
parameters’ weight in the parameter weight vector approximate
to 0 to screen out main features and mitigate the degree of model
overfitting to some extent.

The Huber loss function and L2 regular term are combined to
construct the Huber–Ridge model (Owen, 2006), improving the
model robustness and lowering the overfitting risk. Its objective
function is shown in Eq. 3:

ŵj � argminw
⎛⎝ϕhub(u) +

λ

2
∑k
j�1
(wj)2⎞⎠. (3)

Polynomial Kernel Huber–Ridge Model
The T.M. Cover theorem (Cover, 1965) points out that the data in
the high-dimensional space can show the linearity law more
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easily. The kernel function maps the vector of low-dimensional
feature space to the high-dimensional feature space, and
transforms the nonlinearity law in the low-dimensional feature
space into linearity law in the high-dimensional space to learn the
linearity law in the high-dimensional space by using the linear
model and indirectly learn the nonlinearity law in the original
feature space based on the model. Due to the high-dimensional
feature space having high dimensionality, the dimension disaster
may happen if the model is directly used for fitting in the high-
dimensional space. The introduced kernel function can effectively
solve the above problem, and the kernel function can represent
inner product value in the high-dimensional space with the inner
product value in the low-dimensional space. Thus, it can avoid
the inner product calculation in the high-dimensional space and
greatly reduce the calculation of the model.

The regular risk functions have a unified expression mode
(Schölkopf et al., 2001), as shown in Eq. 4:

f(x) � ∑n
i�1

wik(x, xi) + b. (4)

The kernel function is introduced to the Huber–Ridge model
(Jianke Zhu et al., 2008). Thus, the model can learn the implicit
nonlinearity law in the data. The objective function of
Huber–Ridge kernel model is shown in Eq. 6:

u � yi − f(x), (5)

where yi is the actual value, f(x) is the forecasting value, and u is
the forecasting error

ϕhub(yi, f(x)) � ⎧⎪⎨⎪⎩
M(2u −M) A1 � {x|u>M}
u2 A2 � {x| −M≤ u≤M}
−M(2u −M)A3 A3 � {x|u>M}

,

(6)

ŵj � argminw ∑n
j�1
ϕhub

⎛⎝yi,∑n
i�1

k(xi, xj)wj + b⎞⎠

+ λ ∑n
i,j�1

wiwjk(xi, xj), (7)

T � argminw ∑
n

i�1
ϕhub

⎛⎝y,∑n
i�1

kTi w + b · I⎞⎠ + λwTKw. (8)

Eqs. 9–12 can be obtained, respectively, by getting the partial
derivative of w and b:

zT
zw

� 2(λKw +KI0Kw +Kq) � 0, (9)

q � −I0y +me + b · I0, (10)

ei �
⎧⎪⎨⎪⎩

1
0
−1

xi ∈ A1

xi ∈ A2

xi ∈ A3

, (11)

zT

zb
� 2(I0Kw + q) � 0, (12)

where I0 is a diagonal matrix of shape (n, n), the values of its
elements in the A domain are 1, and the remaining values are 0.

The basic Newton method is used to iteratively update w and
b, as shown in Eq. 13:

[w′
b′ ] � [w

b
] − γH−1∇, (13)

where H−1 is the first derivative of the gradient matrix as shown in
Eq. 14, γ is the length of the step, usually with a value of 1, and ∇
is a Hessen matrix as shown in Eq. 15:

H−1 � 1
2
[ λK + KI0K I0K

KI0 I0
]−1

, (14)

∇ � 2[ λKw +KI0Kw +Kq
I0Kw + q

]. (15)

Simplify Eq. 13 to obtain the final computational equation of
objective function of the kernel Huber–Ridge model, as shown in
Eq. 16:

[w′
b′ ] � [ 0

b
] + [ λI + I0K 1

1 0
]−1[ q

0
]. (16)

The polynomial kernel is a commonly used kernel function,
and the polynomial kernel function is shown in Eq. 17:

K(x, x) � (x · x + 1)d, (17)

where x � (x1, x2,/, xn) is the feature vector and d is the kernel
parameter. The polynomial kernel function (17) is substituted
into Eq. 16 to obtain the final computational equation of
polynomial kernel Huber–Ridge model objective function.

EMD Model
The empirical mode decomposition is a signal decomposition
technology and decomposes the original signal into a series of
components which are the intrinsic mode functions. The empirical
mode decomposition is often used to handle the time series data
and decomposes the original time series into a series of different
components to explore the implicit law in the time series data.

The intrinsic mode function should meet the two conditions
below:

1. In the data interval, difference between numbers of extreme
points and zero points is at most one.

2. The average value of the upper envelope and the lower
envelope is zero.

The EMD model is adaptive and can decompose the original
series for a time series data without the number of components
specified till the standard of stopping decomposition is met. The
relationship between the original series and the decomposed
components is shown in Eq. 18:

X(t) � ∑n
i�1

imfi + r, (18)

where X(t) refers to the original time series, ∑n
i�1 imfi refers to the

sumof the components, and r refers to the residual.When the residual
series is a monotonic function, the decomposition stopped.
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The decomposition step of empirical mode decomposition is
shown as follows:

STEP 1: Identify all the maximum points andminimum points
in the time series, and fit the upper envelope eu and the lower
envelope el by using the cubic spline finite difference method
according to maximum points and minimum points.

STEP 2: Calculate the average value of the upper envelope eu
and the lower envelope el, and obtain the mean envelope emean(emean�eu+el

2 ) .
STEP 3: Calculate the difference between the original series

X(t) and the mean envelope emean, and obtain the intermediate
time series( ei � X(t) − emean).

STEP 4: Judge whether the intermediate time series ei can be
an intrinsic mode function according to the constraint condition
of intrinsic mode functions. If satisfied, the intermediate time
series shall be used as the imf i component. If unsatisfied, such
intermediate time series shall be used as the basis to execute the
steps 1–4.

STEP 5: Subtract the component imf i from the original time
series X(t) and execute the steps 1–4 again. If the standard of
stopping decomposition is satisfied, the decomposition process
will end.

ARIMA Model
The autoregressive integrated moving average (ARIMA) model is
defined in Eq. 19:

yt � φ1y
t−1 + φ2y

t−2 +/ + φpy
t−p + εt − θ1ε

t−1 − θ2ε
t−2 −/

− θqε
t−q + θ0,

(19)

where yt and εt indicate the actual value and residual value at the
time point t, respectively, and φ � (φ1,φ2,/,φp) and θ �
(θ1, θ2,/, θq) refer to the weight vectors. p and q are the
model orders. The historical time series data and historical
white noise error data of the variable are used to forecast the
current value.

The prerequisite of using ARIMA model is to use stationary
data. The non-stationary data can be handled by combining the
autoregressive integrated moving average (ARIMA) model and
different methods (Gilbert, 2005). The ARIMA model has three
parameters, (p, d, q), in which d refers to the differential order of
the data series.

Evaluation Indexes
The model performance is evaluated by the mean absolute error
(MAE) and the definition of MAE is shown in Eq. 20:

MAE � 1
n
∑n

i�1
∣∣∣∣yi − ŷi

∣∣∣∣. (20)

The root-mean-square error (RMSE) is used for model
performance assessment and the definition of RMSE is shown
in Eq. 21:

RMSE �
������
1
n
∑n

i�1

√
(yi − ŷi)2. (21)

Themean absolute percentage error (MAPE) is used for model
performance assessment and the definition of MAPE is shown in
Eq. 22:

MAPE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣, (22)

where n is the number of samples in the set verified, ŷi is the
forecasted value of the model, and yi is the true value. The closer
the MAE, RMSE, and MAPE values are to 0, the better the model
performance will be.

The Training and Forecasting Process of
Polynomial Kernel
Huber–Ridge–EMD–ARIMA Model
The training and forecasting process for the forecast framework
of polynomial kernel Huber–Ridge–EMD–ARIMA model
(PK–Huber–Ridge–EMD–ARIMA) proposed is shown in
Figure 1. Its process steps are as follows.

STEP 1: Data preprocessing and feature selection: Screen the
correlation features according to Pearson correlation coefficient
and Spearman correlation coefficient after the data preprocessing
and divide training dataset and test dataset.

STEP 2: Model training: The model parameter M, αl2, and
training dataset are input to the polynomial kernel Huber–Ridge
for model training.

STEP 3: Model forecasting: The test dataset is input to the
trained polynomial kernel Huber–Ridgemodel. Themodel outputs
the time series {y1′ ,/, yk′ , yk+1′ } of coal price forecasting data.

STEP 4: Forecast the forecasting error of steam coal price at the next
time point: The forecasting error series {ε1,/εk} of coal price is input
to the EMDmodel, and the EMDmodel outputs j modal components
(IMF1,/, IMFj). Each modal component is subject to training and
forecasting by the ARIMA model; the ARIMA model
(ARIMA1,/,ARIMAj) corresponding to each modal component
outputs the coal price forecasting error (ε1k+1,/, εjk+1) of each modal
component at the next time point, respectively. The (ε1k+1,/, εjk+1)
series accumulation is conducted, and the accumulation result {ε’k+1} is
used as the forecasted value of the coal price forecasting error at a time
point k+1.

STEP 5: Obtain the final forecasted value of steam coal price at
the next time point: The forecasted value {ε’k+1} of coal price
forecasting error at the time point k+1 is used for {y’

k+1}
correction of the forecasted value of coal price at a time point
k+1. The forecasted value {y’’

k+1} of coal price after correction is
used as the forecasted value of coal price at the final time point k+1.

EMPIRICAL STUDY

Data Description
Qinhuangdao steam coal price data that are 4500-kilocalorie,
5000-kilocalorie, and 5500-kilocalorie steam coal exit price data
of Qinhuangdao Port from Jan. 2017 to Jul. 2021, are used for
experimental study. The sampling is conducted once a week,
which is the weekly frequency data.
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Data Preprocessing
The original data about steam coal price and its features have the
disadvantage of missing value and inconsistent data time

sampling frequency; so, such original data shall be pre-
processed and the data processed can be brought into the
model for model training and forecasting.

FIGURE 1 | Flowchart for training and forecasting of the PK–Huber–Ridge–EMD–ARIMA model.
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FIGURE 2 | Dynamic division of training dataset and test dataset.

TABLE 1 | Selection of steam coal feature data.

Types of the feature Feature set

Coal production Raw coal production of key state-owned coal mines, coal production of large coal enterprises, . . . . . . . . . , and raw coal
production of non–state-owned coal mines

Coal supply National coal import quantity, coal inventory and dispatching data of Qinhuangdao Port, cargo ship ratio of four ports around
Bohai Sea, and historical data of total coal storage in five ports around Bohai Sea

Coal transportation Coal transportation quantity of Daqin Line, coal sales volume of national key coal mines, . . . . . . . . ., and daily average number
of coal railway loading vehicles

Coal consumption National industrial power consumption, national social electricity consumption, power generation in coastal provinces, and
coal consumption in power grid

Macroeconomic Coal future price, added value of national secondary industry, GDP, consumer price index, the producer price index, and
investment in fixed assets of the whole society

TABLE 2 | Parameters setting of the feature selection process.

Types of parameter rmp rsp delaymax

Parameter value 0.5 0.5 5

TABLE 3 | Linear features with optimal delay.

Features Optimal
delay order (delay)

Pearson correlation coefficient
(rp)

Quantity of anchored vessels in Caofeidian Port 1 0.589,706,909
Volume of ships anchored at Caofeidian Port Phase II 1 0.594,892,547
Total coal stock in ports around the Bohai Sea 1 0.552,136,323
Power coal future closing price 1 0.895,980,863
/// /// ///

Total coal stock in Fangcheng Port 4 0.575,740,516
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The data preprocessing step is shown as follows:

1. Unify the data sampling frequency: The data input to the
model have the features of one-to-one relationship between
coal feature data and coal price, that is, the sampling frequency
of coal feature data and coal price data is the same. When the
sampling frequency of the original coal price data and related
feature data is inconsistent, such original data shall be
operated at the unified data sampling frequency; the
frequency of the data higher than the specified sampling
frequency shall be reduced and the frequency of the data
lower than the specified sampling frequency shall be raised.
The daily frequency data are reduced to weekly frequency data.
The quarterly and monthly data are raised to the weekly data
and the missing value arises after the low-frequency data are

raised to the high-frequency data. The raised data are
processed by ascending order as per the date, and then the
missing value is filled up by linear difference filling.

2. Fill up the missing value: There are some missing values and
non-numerical parts in the original coal data which need to
be filled up to better utilize the dataset. The missing part in
the data is filled up by linear difference, and the non-
numerical part is deleted and then the missing part
deleted is filled up by linear difference. The equation of
missing value between filling points (x0, y0) and (xk , yk) is
shown in Eq. 23:

ϕ(x) � x − xk

x0 − xk
y0 + x − x0

xk − x0
yk. (23)

3. Standardize the dataset: There is a dimensional difference
between different types of data. To avoid the dimensional error
and lower the model performance, the standardized equation
is used to transform the data distribution into standard
distribution with the mean value of 0 and variance of 1.
The standardized equation is shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
xki � Xki −Xi

σ i
σ i � (X1i −Xi)2

+
(X2i −Xi)2

+ . . . + (Xni −Xi)2

n
.

(24)

After transformation as per Eq. 24, the distribution of original
feature data is transformed into a standard normal distribution
with the mean value of 0 and variance of 1. xki indicates the kth
numerical value of the ith feature index. Xi indicates the mean
value of the ith feature index data, σ i indicates the standard
deviation of the ith feature index, and n indicates the sample size
of the ith feature index.

4) Divide training dataset and test dataset: The training
dataset and test dataset are not fixed, but they change
dynamically. In the energy market, the influencing factors
of energy indicators change with time (Liang et al., 2019). The
coal data and related feature data at the time point within the
sliding window of k width are used as the training dataset for

TABLE 4 | Nonlinear features with optimal delay.

Features Optimal
delay order (delay)

Pearson correlation coefficient
(rs)

Ship ratio of four ports around the Bohai Sea 3 0.74,183,513
Quantity of anchored vessels in Qinhuangdao Port 2 0.743,160,533
Quantity of anchored vessels in CIT Jingtang Port 2 0.552,341,897
Total coal stock in mainstream ports 5 0.625,224,659
/// /// ///

Total coal stock at coastal ports 5 0.589,975,915

TABLE 5 | Value of hyper-parameters for five different models.

Forecasting model Value of hyper-parameters
for forecasting model

Lasso αl1 � 0.1
Ridge αl2 � 0.2
Huber–Ridge M � 1.35; αl2 � 0.2
PK–Huber–Ridge d � 2;M � 1.35; αl2 � 0.2
PK–Huber–Ridge–EMD–ARIMA dk � 2;M � 1.35; αl2 � 0.2;p ∈ [1,2, 3, 4];

da ∈ [1, 2, 3];q ∈ [1, 2, 3, 4]

TABLE 6 | Evaluation index value of forecasting results of five forecasting models.

Dataset Forecasting model MAE RMSE MAPE(%)

Dataset 1 Lasso 36.0138 53.6206 6.6257
Ridge 28.6532 44.1649 5.1159
Huber–Ridge 30.7005 50.0595 5.6320
PK–Huber–Ridge 26.8503 40.3592 4.8223
PK–Huber–Ridge–EMD–ARIMA 19.2267 26.0293 3.4813

Dataset 2 Lasso 38.6772 60.7722 6.2920
Ridge 29.8993 47.9723 4.5484
Huber–Ridge 32.3476 55.5871 5.1023
PK–Huber–Ridge 30.4047 45.9770 4.6723
PK–Huber–Ridge–EMD–ARIMA 18.9126 26.3342 2.9432

Dataset 3 Lasso 37.6168 63.9781 5.3979
Ridge 34.8572 57.777 4.7187
Huber–Ridge 34.0952 61.9462 4.8548
PK–Huber–Ridge 33.828 56.22 4.7179
PK–Huber–Ridge–EMD–ARIMA 22.9183 37.6673 3.1237
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training the price forecasting model. The price forecasting
model outputs the forecasted coal price at a time point
according to the coal-related feature data after sliding the
window. The corresponding original price data and relevant
feature data are used as the test dataset to verify the model
forecasting performance. The dynamic division of the training
dataset and test dataset progresses over time, as shown in
Figure 2.

Feature Selection
Selecting comprehensive and relevant features can greatly
improve the performance of the forecasting model. All feature
data are presented as a data matrix, and the optimal feature
variable is chosen according to the feature type and feature
optimal time interval.

Feature type: The coal price pertains to many factors; there are
many factors influencing coal market price, and the main

FIGURE 3 | A histogram of the predictive evaluation index values based on dataset 1 for five types of forecasting models.

FIGURE 4 | A histogram of the predictive evaluation index values based on dataset 2 for five types of forecasting models.
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influence factors cover coal supply coal consumption, coal
transportation, and economic factor. The feature indexes
chosen are shown in Table 1.

There are many initial feature indexes, so the feature screening
needs to be performed. The feature variable at the same time
point as the forecasted target variable does not necessarily have
the highest correlation, and it is necessary to find out the optimal
time interval, that is, optimal delay order, for each feature
variable. The optimal delay linear feature and the optimal
delay nonlinear relevant features are screened as per Pearson
correlation coefficient and Spearman correlation coefficient.

The value range of Pearson correlation coefficient rp Spearman
and correlation coefficient rs is [-1, 1]. The closer the absolute
value of rp and rs is to 1, the stronger the correlation will be; the
closer the absolute value of rp and rs is to 0, the weaker the
correlation will be.

Given the corresponding threshold values of the Pearson
correlation coefficient and Spearman correlation coefficient are
rmp and rsp, respectively, the feature indexes whose correlation
coefficient exceeds the threshold value rmp and rsp are screened.
Given the maximum delay order of the feature is delaymax, the
parameter setting is shown in Table 2.

The chosen feature variables and steam coal price are input to
the forecasting model mentioned, and the model outputs the
steam coal price at the next time point. Table 3 and Table 4 show
the selection of the optimal delay feature variable when
forecasting the steam coal price on Jul. 6, 2021. The feature
variable selected as per this method changes over time.

ExperimentResult
In this article, Lasso, Ridge, Huber–Ridge, PK–Huber–Ridge, and
PK–Huber–Ridge–EMD–ARIMA models are used for
comparison. One-step forecasting is used for empirical test.

Qinhuangdao thermal coal data and feature data at the first
120 time points are used as the data variables of the
forecasting model, and the forecasting model outputs the
thermal coal price data at the 121st time point.

The set values of hyperparameters of Lasso, Ridge, Huber–Ridge,
PK–Huber–Ridge, and PK–Huber–Ridge–EMD–ARIMA models
are shown in Table 5.Here, αl1 is the coefficient of L1 regular
term; αl2 is the coefficient of L2 regular term; M is the threshold of
Huber loss function; dk is the kernel parameter of the polynomial
kernel and represents the order of the polynomial; p is the
autoregressive order of ARIMA model; da represents the
difference order; and q represents the moving average order. BIC
criterion (Burnham and Anderson, 2004) is used to select the
optimal ARIMA model hyperparameters p, da, and q.

The forecasting model is used to forecast 4500-kilocalorie
steam coal price data (Dataset 1), 5000-kilocalorie steam coal
price data (Dataset 2), and 5500-kilocalorie steam coal price data
(Dataset 3) of Qinhuangdao Port from March 17, 2020 to July 6,
2021. Table 6 and Figure 3 and Figure 4 and Figure 5 show the
evaluation index results of the forecasting model.

Through the comparison of the experimental results of five
thermal coal price forecasting models, the following conclusions
can be obtained.

Compared with the single model, the proposed combination
model has a better forecasting performance. In dataset 1, dataset 2,
and dataset 3 experiments, the forecasting performance of
PK–Huber–Ridge–EMD–ARIMA model is better than the Lasso
model, Ridge model and Huber–Ridge model, and
PK–Huber–Ridge model. The thermal coal price dataset is
complex, and the forecasting performance of a single forecasting
model is very limited. The combination model can better deal with
complex datasets. PK–Huber–Ridge–EMD–ARIMAmodel adopts
the method of decomposition integration and time series

FIGURE 5 | A histogram of the predictive evaluation index values based on dataset 3 for five types of forecasting models.
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forecasting model to compensate for the error of single model. We
consider the residual error rule of model forecasting to
complement the hidden rules that the original single model
does not learn.

Compared with the ordinarymodel, the robust kernel function
model has better performance. In dataset 1, dataset 2, and dataset
3 experiments, the forecasting performance of
PK–Huber–Ridge–EMD–ARIMA model is better than the
Lasso model, Ridge model, and Huber–Ridge model. Thermal
coal dataset has nonlinear law. PK–Huber–Ridge–EMD–ARIMA
model uses polynomial kernel function to map nonlinear features
into high-dimensional space, so that the linear model can learn
the nonlinear law in the original feature space, so as to further
improve the forecasting performance of the forecast model.

RESULT AND DISCUSSION

For the nonlinearity law in the steam coal dataset and
limitations of the single forecasting model, this article
proposes the forecast method for the price of steam coal
based on robust regularized kernel regression and empirical
mode decomposition. The robust regularized kernel regression
model learns the nonlinearity law in the original data by using
the kernel function. This model selects the Huber loss function
to enhance the robustness of the forecasting model. We select
the L2 regular term to lower the risk of model overfitting. The
combined model based on EMD and ARIMA is used for error
compensation against the Huber–Ridge polynomial kernel
model, further improving the forecasting performance of the
forecasting model. Compared to Lasso, Ridge, Huber–Ridge,
and PK–Huber–Ridge, the proposed forecasting model
(PK–Huber–Ridge–EMD–ARIMA) has the minimum value of
MAE, RMSE, and MAPE.

The influence factors of steam coal price are complex which
are easily affected by national policies. How to quantify policy
factors and input them into the forecasting model for model
training and model forecasting is the next work.
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As the largest producing country of municipal solid waste (MSW) around the world, China
is always challenged by a lower utilization rate of MSW due to a lack of a smart MSW
forecasting strategy. This paper mainly aims to construct an effective MSW prediction
model to handle this problem by using machine learning techniques. Based on the
empirical analysis of provincial panel data from 2008 to 2019 in China, we find that the
Deep Neural Network (DNN) model performs best among all machine learning models.
Additionally, we introduce the SHapley Additive exPlanation (SHAP) method to unravel the
correlation between MSW production and socioeconomic features (e.g., total regional
GDP, population density). We also find the increase of urban population and agglomeration
of wholesales and retails industries can positively promote the production of MSW in
regions of high economic development, and vice versa. These results can be of help in the
planning, design, and implementation of solid waste management system in China.

Keywords: municipal solid waste, influencing factors, machine learning, deep learning, SHAP value

INTRODUCTION

Over the past decade, the urban population in China has reached up to 900 million residents with an
urbanization rate of over 60% (NBSC, 2021), which significantly challenges the existing urban
sources (e.g., water, air, and energy) related to residents’ life quality (Hoornweg and Bhada-Tata,
2012). The municipal solid waste (MSW), as renewable energy, is considered an essential part of the
Waste-to-Energy (WtE) system (Ouda et al., 2013; Kuznetsova et al., 2019; Mukherjee et al., 2020). It
is reported that the production of MSW in China was around 242 million tons in 2020 compared
with that of 8.17 million tons in 2008 (NBSC, 2020). In other words, the efficient management of
municipal solid waste is becoming an important concern for urban sustainability governance.
However, the utilization efficiency of MSW was merely about 45% in China, which was much lower
than that in other advanced countries, such as over 80% in Japan (Ding et al., 2021). Therefore, how
to increase the utilization efficiency of MSW would impact both central and local governments in
China to promote urban sustainable development (He and Lin, 2019).

In general, an integrated decision-support methodology for waste-to-energy management
systems (WtEMS) design is mainly composed of three modules: 1) the waste modeling and
prediction, 2) optimization of WtEMS, and 3) a multi-dimensional assessment, as shown in
Figure 1 (Kuznetsova et al., 2019). Among these three modules, waste modeling and its
prediction of MSW play a fundamental role in effectively conducting urban planning and
energy management. Many international scholars have carried out extensive studies on this
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module by using group comparisons, time series analysis, and
system dynamics (Beigl et al., 2008). Recently, with the popularity
of machine learning (ML) methods, alternative methods were put
forward to forecast the quantity of generated municipal solid
waste effectively (Guo et al., 2021). For instance, based on the
example of Suzhou (Niu et al., 2021), constructed the long short-
term memory (LSTM) neural network, autoregressive integrated
moving average (ARIMA), and traditional neural network to
predict the MSW production. They found that the LSTM played a
vital role in predicting MSW production but did not reveal the
correlation between the production of MSW and socio-economic
variables. Nguyen et al. (2021) selected residential areas in
Vietnam as a case of study and figured out that both the
random forest (RF) and the k-nearest neighbor (KNN)
approaches performed effectively in predicting the amount of

urban waste. Birgen et al. (2021) developed a Gaussian Processes
Regression (GPR) method to predict the daily lower heating value
of MSW by combining the historical data of a WtE plant and the
weather and calendar data. In addition, other ML methods, such
as the support vector machine (SVM) (Kumar et al., 2018) and
decision tree (Kannangara et al., 2018) have also been employed
to predict the MSW production.

Similar to other energy forecasting research topics (e.g., crude
oil prices, gas consumption), MSW production is also was highly
influenced by various socio-economic factors (Zhang et al., 2009;
Liang et al., 2019; Huang et al., 2021a). However, previous studies
neither revealed the correlation between each factor and MSW
production nor identified their interaction in different socio-
economic circumstances (Kannangara et al., 2018; Niu et al.,
2021; Nguyen et al., 2021). In the context of China, existing

FIGURE 1 | Integrated decision support method for WtEMS design: methodology flowchart.
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studies scarcely discussed the performances and applications of
different ML methods in predicting MSW. Therefore, this paper
mainly aimed to construct a prediction model by using machine
learning models by using provincial panel data of 2008–2019 in
China. Besides, it also discussed the comparison of the
performances of six different ML models in predicting China’s
municipal solid waste generation. Considering that data input
form and model hyperparameters have a great influence on
prediction results, we tested different preprocessing strategies
to ensure robust estimation and prediction of the ML model.
Finally, this paper provided some potential implications for both
policy-makers and other industry stakeholders in terms of
convincing evidence concluded from the ML prediction model.

The initial contributions of this paper are threefold. First, it
emphasized the good performance of machine learning

approaches in predicting MSW production and extended the
existing literature to construct a prediction model by comparing
six supervised learning algorithms. These models varied from
linear, non-linear to ensemble methods and artificial neural
network methods, including a body of discussions on data
preprocessing, resampling, model training, testing, and
interpretation steps. Therefore, the constructed prediction
model of MSW would theoretically shed light on other similar
research related to prediction issues in the future. Second, this
paper estimated the impacts of diverse socio-economic factors on
MSW production, such as the regional economic development
level (e.g., regional GDP, population density, per capita
disposable income), industrial structure (e.g., wholesale and
retail values added), and waste generation characteristics.
Third, to improve the interpretations of ML models, this
paper employed the SHapley Additive exPlanation (SHAP)
approach and visualized the SHAP value of each explanatory
variable. This technique would also provide good evidence to
explain the outcomes of ML models for other researchers in the
future.

The remaining sections of this paper are organized as follows:
Materials and Methods describes the models adopted in this
paper and the process of data acquisition. Results reports the
results of comparison among six ML models, via presenting the
predictive capability and SHAP analysis. Conclusion provides
conclusions and some implications.

MATERIALS AND METHODS

Figure 2 outlines the main steps of the methodology used in
this study. In this paper, we first preprocessed the original
database and selected critical variables for MSW prediction.
Second, this paper focused on comparing with six ML models,
including the multiple linear regression (MLR), support vector
regression (SVR), Random Forest, extreme gradient boosting
(XGBoost), k-nearest neighbor, and deep neural network
(DNN). Thirdly, three evaluation metrics are used to
compare the prediction performance of each algorithm.
Finally, the SHAP method is employed to analyze and
discuss the output.

ML-Based Models and Applications for
Waste Prediction
The Multiple Linear Regression Liner Model
The multiple linear regression is a commonly used MLmethod to
estimate the marginal effects of independent variables (or called
feature vector in machine learning techniques) on the dependent
variable. It is widely applied to waste prediction of desirable
explanatory power in different regions and countries (Beigl et al.,
2008). In China, this approach is also employed to predict the
MSW production in “Calculation and Prediction Method of
Municipal Solid Waste Production (CJ/T 106-1999)”, which is
the official guide compiled by the Ministry of Construction,
China.

The model can be expressed as Eq. 1:

FIGURE 2 | Procedures of methodology.
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Y � β0 + β1X1 + . . . + βkXk + ϵ, (1)

where Y is MSW generation in this paper, β0 denotes regression
constant, β1 ∼ βk are regression coefficients, X1 ∼ Xk are
explanatory variables, ϵ marks the regression residuals.

Usually, MLR uses the ordinary least squares (OLS) method to
estimate the parameters that can achieve the lowest sum-of-
squared errors between the observed and predicted responses.
Under the OLS estimation, MLR’s results could be easily
interpreted. However, some drawbacks have to be considered
in MLR. For instance, the multicollinearity among the predictors
can result in estimation errors, as well as the omitted variables
could induce a biased estimation. In this paper, we mainly
concentrated on the performance of each ML model and
considered the variables selection based on earlier studies
(Kannangara et al., 2018; Namlis and Komilis, 2019; Niu et al.,
2021; Nguyen et al., 2021). The multicollinearity and omitted
variables problems are not our concerns.

Support Vector Regression
SVM was originally used to deal with pattern recognition
problems, and recently extended to estimate regression models
due to its properties of the sparse solution and good
generalization (Demir and Bruzzone, 2014). By introducing an
ε-tube to reformulate the optimization problem, the SVM model
could be transformed to an SVR model and finds the optimal
approximation of the continuous-valued function while
balancing the complexity and prediction error of the
prediction model (Huang et al., 2021b). In addition, the
accuracy of an SVR model heavily relies on three parameters:
a penalty parameter (C), the kernel width (c) and the precision
parameter (ε) (Abbasi and El Hanandeh, 2016; Li et al., 2021).
Specifically, the smaller C is, the smaller the fitting error and the
weaker the generalization ability would be. The larger c is, the
more support vectors; and vice versa. ε is a precision parameter
representing the tube’s radius located around the regression
function. In other words, the choice of ε donates the
magnitude of errors that can be neglected. Since the above
three parameters are critical to the adaptability of the model,
we will tune them using a grid optimization approach in Results to
optimize the SVR model.

A great body of literature has discussed the SVR and SVM
models in predicting the generation of MSW. For example
(Abbasi and El Hanandeh, 2016), adjusted the hyper-
parameters of SVR by combining the grid search method and
applying the model with the optimal parameters to the monthly
prediction of MSW in Logan City, Australia. They found that
SVR can effectively reduce the mean absolute error (MAE) and
root-mean-square error (RMSE), and improve prediction
performance (R-square). Besides (Nguyen et al., 2021), applied
SVM to the prediction of MSW production in Vietnam with an
MAE of 131.07, which confirmed that the SVMmodel performed
a better prediction. Kumar et al. (2018) applied it to the prediction
of the production rate of plastic waste, and found that the
prediction result of SVM (R2�0.74) is better than RF
(R2�0.66) and lower than artificial neural network (ANN)
(R2�0.75). Mehrdad et al. (2021) argued that SVM was

superior to both the adaptive neuro-fuzzy inference system
and artificial neural network models in predicting methane
generation.

Random Forest
Random Forest is an evolution of Bagging which aims to reduce
the variance of a statistical model, simulates the variability of data
through the random extraction of bootstrap samples from a single
training set and aggregates predictions on a new record (see
Breiman, 1996). It performs amore stable and better prediction of
explained variables than other machine learning models (Huang
et al., 2021b). Generally, the RF algorithm implementation can be
expressed as follows:

1) Bagging is used to randomly generate sample subsets;
2) Use the idea of random subspace by randomly extracting

features, splitting nodes, and building a regression sub-
decision tree;

3) Repeat the above steps to construct T (the number of decision
trees) regression decision subtrees to form a random forest;

4) Take the predicted values of T sub-decision trees and take the
mean as the final prediction result.

The RF model was widely used in the prediction of waste.
Kumar et al. (2018) used RF for the prediction of plastic waste
generation rate that showed an R-square of 0.66. The size of the
random forest, that is, the number of decision trees (Ntrees) and
the number of features tried in each segmentation (Nfeatures)
have a significant impact on the predictive ability of the RF model
(Hariharan, 2021). When Ntrees exceed a certain value, the
prediction performance of the model converges. In this case,
increasing the number of decision trees will not improve the
model performance, but will result in model redundancy. In
addition, using a smaller number ofNtrees reduces the similarity
in the forest, but also reduces the complexity and strength of the
model. Conversely, the increase in Ntrees can make each tree
more powerful, but also increase the correlation between the
trees. Therefore, in the following section, we will optimize these
two hyper-parameters to acquire better results.

Extreme Gradient Boosting
XGBoost algorithm, proposed in 2016, is a relatively new
approach (Chen and Guestrin, 2016). Different from RF
model using bagging integration method, XGBoost model is
an integration tree model using boosting method to integrate
classification and regression tree (CART). It has the advantages of
fast training speed and high prediction accuracy. The result of
XGBoost is the sum of prediction scores of all CARTs (Chen and
Guestrin, 2016) as formed in Eq. 2:

ŷ � ∑N

n�1 fm(X), (2)

where N represents the number of trees in the model, fm

represents each CART tree and ŷ is predicted result.
Since its introduction, the XGBoost model has been widely

used in the prediction of oil price (Costa et al., 2021) and energy
usage (Feng et al., 2021). However, up to date, XGBoost model
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has not been applied to the research of MSW generation
prediction. Similar to RF, the number of integrated CARTs
(Ntrees) in XGBoost has a great influence on the prediction
performance. Therefore, in order to increase the model’s
performance in predicting the MSW generation, it is necessary
to optimize this hyper-parameter. In Results, we also use the grid
search method to confirm the different combinations of these two
parameters to obtain the optimal model structure.

K-Nearest Neighbor
KNN algorithm is a non-parametric learning method first
proposed by Cover and Hart (Cover and Hart, 1967). Since its
introduction, it has been widely used in regression and
classification due to its simple and intuitive mathematical
form (Wu et al., 2008). It is essentially a supervised learning
technique that via the clustering algorithm classify the similarity
between the test sample and K nearest training samples (Zheng
et al., 2020). Here, K is a user-defined number, normally an odd
number, and the similarity is measured by the commonly used
Euclidean distance. The test sample is classified based on the most
frequent classification among the training samples. The mean
value of the K nearest training samples is regarded as the
predicted value. The mathematical measurement of Euclidean
distance is expressed in Eq. 3:

d(x, y) � ����������������������������������(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2
√

�
����∑n

i�1

√ (xi − yi)2 (3)

One drawback of KNN approach is the pre-selected number of
K, a hyperparameter, because it would greatly influence the
numbers of nearest samples (Wu et al., 2008; Zheng et al.,
2020). In the following section, we first limit K to positive
integers between 1 and 30, and then cross-verify them on a
10-fold sample to avoid this drawback.

Several studies applied the KNN approach into the prediction
of MSW. For example, (Abbasi and El Hanandeh, 2016) first
attempt to evaluate the ability of KNN to forecast MSW
generation. They concluded that KNN can give good
prediction performance and may be applied to establish the
forecasting models that could provide accurate and reliable
MSW generation prediction. Nguyen et al. (2021) predicted
the MSW production in Vietnam and the R-square was over
0.96, which indicated that more than 96% of MSW production
would be explained by the KNN model.

Artificial Neural Network
The ANN model is a computational system composed of
multiple layers of neurons (input-hidden-output) (Al-Dahidi
et al., 2019). This model is widely used in waste management
because of its strong fault-tolerant ability to describe the
complex relationship between variables in a multivariate
system. (Abbasi and El Hanandeh, 2016; Mehrdad et al.,
2021; Nguyen et al., 2021; Niu et al., 2021). The deep neural
network is a branch of ANN based on a perceptron model.
Indeed, an ANN model with multiple hidden layers is called a
DNN since it has to train and process through multiple layers

(Liu et al., 2017). The structure of DNN also includes input
layer, hidden layer, and output layer. In general, the structure of
DNN and ANN is similar, and their training algorithm is not
different. However, studies showed that DNN tends to provide
better performance and accuracy than conventional ANN
models (Yang et al., 2021).

In this paper, a DNN with four layers of structure is
constructed, namely the input layer, the first hidden layer, the
second hidden layer and the output layer with one neuron. The
number of neurons in the hidden layer has a great influence on
the prediction performance of DNN. The smaller the number of
neurons, the more likely it is to lead to insufficient fitting. On the
contrary, an excessive number of neurons may lead to over-
fitting. Therefore, selecting the appropriate number of neurons
for DNN is also one of the bases to improve the model
performance. In this paper, the number of neurons in the first
hidden layer (Nh1) and the number of neurons in the second
hidden layer (Nh2) are optimized to gain better results.
Specifically, we first specify the numerical space of the number
of neurons, and then test on the train and test samples, taking the
optimal result as the optimal network structure.

Data Collection
In this paper, we aim to construct a ML-based prediction model
of MSW production that is the predictor in all ML models.
However, because there are no relevant statistics of MSW
production in China at present, we utilize a proxy indicator of
the MSW removal volume (Niu et al., 2021; Namlis and Komilis,
2019). More specifically, we obtained this annual statistical data
for all provinces in mainland China from 2008 to 2019 to support
our research.

The input variables of this paper in predicting MSW
production are collected from provincial panel databases of
the China Statistical Yearbook 2008–2019. Nine diverse socio-
economic factors on MSW production, such as the regional
economic development level (e.g., regional GDP, population
density, per capita disposable income), industrial structure
(e.g., wholesale and retail values added), and waste generation
characteristics are obtained (Nguyen et al., 2021). Table 1
reported the variable definition and descriptive statistics. As
plotted in Figure 3, the skewness and kurtosis of each variable
existed noticeable differences. To mitigate the influences in
predicting the MSW production, we employ three different
data preprocessing methods and proceed to explore the
model’s performance under different circumstances in the
following sub-sections.

Machine Learning Techniques
Data Preprocessing and Re-Sampling
The preprocessing methods adopted include linear normalization
(Range) and standard deviation normalization (Scale), as shown
in Eq. 4 and Eq. 5 respectively. For ML models (such as KNN)
that need to calculate the distance between samples, different
orders of magnitude between variables will greatly affect the
performance of the model. We retained the original input data
in this paper (Raw), and conducted two normalization strategies
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of Range and Scale to reduce the influence of data’s dimensions
and skewness on the predictions. Thus, the results of the three
preprocessing methods would be comparable.

x � x − xmin

xmax − xmin
, (4)

x � x − �x

σ2
, (5)

where xmin represents the minimum value of variables while xmax

represents the maximum value. �x represents the numerical
average value and σ2 is the variance of each variable.

Tominimize the deviation caused by sampling and prevent the
model from over-fitting, we adopted the 10-folds cross validation
method of resampling technique to create a random sample
subset of input data as a training set. The remaining data was
used as test set to obtain the generalization ability of the
algorithms.

Metrics of the Model
To evaluate the performance of each machine learning
algorithm, we use three metrics of the MAE, RMSE and
the coefficient of determination (R2) (Chai et al., 2021;

TABLE 1 | Definition of variables and descriptive statistics.

Category Variable Description Mean Median Maximum Minimum Std.Dec Unit

Explained variable MSW Total solid waste collected amount 8343.85 6125.25 42951.80 130.00 7767.28 10,000 tons
Explanatory
variables

InGDP Total Regional GDP. 20265.24 14580.35 107986.90 398.20 18414.77 100 million RMB
InTSP Value added by transportation, warehousing, and

postal services
932.68 727.80 3658.00 20.60 746.80 100 million RMB

InWAR Wholesale and retail value added 1955.78 1250.85 11000.20 23.40 2097.82 100 million RMB
InAAM Value added by the accommodation and catering

industry
379.55 284.75 1880.50 13.10 339.47 100 million RMB

Ca City area 6065.09 4625.75 23206.32 295.00 5135.54 Square
kilometers

Upd Urban population density 2788.65 2584.46 5967.00 515.00 1193.25 people/
square km

Nup The number of urban populations. 601.03 493.97 3347.32 16.30 477.08 10,000 people
Dip Urban per capita disposable income 2393.92 2112.35 8226.00 64.89 1601.20 RMB
Scg Total retail sales of consumer goods 26277.49 25027.32 73848.51 9746.80 11190.64 100 million RMB

FIGURE 3 | Histogram plots for the different inputs and output variables used to train the MLmethods. (A) is InGDP, (B) is InTSP, (C) is InAAM, (D) is InWAR, (E) is
Ca, (F) is Upd, (G) is Nup, (H) is Dip, (I) is Scg, (J) is MSW.
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Nguyen et al., 2021). These measurements are formulated as
Eqs 6–8.

MAE � ∑n
i�1
∣∣∣∣yi − xi

∣∣∣∣
n

, (6)

RMSE �
������������
∑ n

i�1
(yi − xi)2

n

√
, (7)

R2 � 1 − ∑n
i�1(yi − xi)2

∑n
i�1(yi − �x)2 , (8)

where n is the number of samples, xi is the predicted response by
the model, yi is the actual value of the response, xi is average
estimated value.

Model Interpretation
Model interpretability is a major challenge to applications of ML
methods, which has not been given enough attention in the field of
ML andMSW forecasting research. To improve the interpretations
of machine learning models, this paper employed the SHAP
method that assigned each input variable a value reflecting its
importance to predictor (Lundberg and Lee, 2017).

For socio-economic factor subset S4F (where F stands for the
set of all factors), two models are trained to extract the effect of
factor i. The first model fS ∪ {i}(xS ∪ {i}) is trained with factor i
while the other one fS(xS) is trained without it, where xS ∪ i}{ and
xS are the values of input features/socio-economic factors. Then
fS ∪ {i}(xS ∪ {i}) − fS(xS) is computed for each possible subset
S4F\ i .}{ The Shapley value of a risk factor i is calculated
using Eq. 9.

ϕi � ∑
S4F\{i}

|S|!(|F| − |S| − 1)!
|F|! (fS ∪ {i}(xS ∪ {i}) − fS(xS)), (9)

However, a major limitation of Eq. 9 is that as the number of
features/socio-economic factors increases, the computation cost
will grow exponentially. To solve this problem (Lundberg et al.,
2020), proposed a computation-tractable explanation method,
i.e., TreeExplainer, for decision tree-basedMLmodels such as RF.
The TreeExplainer method marks it much more efficient to
calculate a risk factor’s SHAP value both locally and globally
(Ayoub et al., 2021).

The SHAP combines optimal allocation with local
explanations using the classic Shapley values. It would help
users to trust the predictive models, not only what the
prediction is but also why and how the prediction is made
(Ayoub et al., 2021). Thus, the SHAP interaction values can be
calculated as the difference between the Shapley values of factor i
with and without factor j in Eq. 10:

ϕi,j � ∑
S4F\{i,j}

|S|!(|F| − |S| − 2)!
|F|! (fS ∪ {i,j}(xS ∪ {i,j})

− fS ∪ {i}(xS ∪ {i}) − fS ∪ {j}(xS ∪ {j}) − fS(xS)). (10)

For this superiority, we employ it to explain RF models which
is based on decision trees. Therefore, compared with the existing
methods (Nguyen et al., 2021), SHAP can reflect the influence of
features in each sample, show the positive and negative effects of
the influence, and thereby improve the explanatory of the model
output.

RESULTS

Comparison of Model Results
The programming environment used in this study is Python
(version 3.8.3) with additional support packages namely scikit-
learn (version 0.24.1), Tensorflow (version 2.2.2) to calculate and
run the ML algorithms.

Tuning
In this section, parameters of machine learning models are tuned,
excluding multiple linear regression approach because it doesn’t
involve any hyper-parameters. Specific adjustment for
parameters is shown in Table 2.

In the tuning process of SVR, we conduct the aforementioned
three data preprocessing strategies (the Raw, Range, and Scale)
respectively. As shown in Table 3, in the Raw strategy, that is to
retain the original form of input data, the penalty parameter (C)
varies from 1 to 4000, compared with that in the Range strategy of
0.01–10. The precision parameter (ε) is an interval between
0.0001 and 0.001 in the Range and Scale strategies, compared
with that of an interval from 0 to 5000. The kernel width (c)
doesn’t show any differences among the three strategies. The
processing strategies of Range and Scale can effectively improve
the normalization and scaling of the distributions of input
variables.where Scaled and Auto in c represent the results of
Eq. 11 and Eq. 12 as the c value of the SVR.

Scaled: c � 1
NS × S2

, (11)

Auto: c � 1
NS

, (12)

where NS represents the number of sample features and S2

represents sample variance. The optimization results are
shown in Figure 4.

The hyper-parameters in other ML models are also
tuned. For RF, the number of variables tried in each

TABLE 2 | Hyper-parameters optimization.

Algorithm Hyper-parameters Other parameter settings

SVR (C, c, ε) Kernel � Gaussian Kernel
KNN K Using Default Parameters
RF (Ntree,Nfeatures) Using Default Parameters
XGBoost Ntree Learning Rate � 0.05
DNN (Nh1,Nh2) Activation Function � Relu

TABLE 3 | Hyper-parameters search space of SVR.

Strategy C c ε

Raw (1, 4000) (Scaled,Auto) (0, 5000)
Range (0.01, 10) (Scaled,Auto) (0.0001, 0.001)
Scale (0.01, 10) (Scaled,Auto) (0.0001, 0.001)
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segmentation (Nfeatures) is set as positive integers between 1
and 9 in terms of nine input variables in this paper. The forest
size (Ntree) is set as positive integers between (50,400). The
optimization results of hyper-parameters are shown in
Figure 5. In Figures 4, 5, the redder the color is, the higher
the R2 of the parameter combination (therefore, the better the
prediction), and vice versa. For KNN, the number of neighbors
K is set as a positive integer between 1 and 29. For the XGBoost,
the number of trees (Ntree) is set to 23 positive integers
between 50 and 490. For DNN, the number of neurons in
the first hidden layer (Nh1) is set as a positive integer increasing
by 16 between (16,240), and the number of neurons in the
second hidden layer (Nh2) is set as one half of the number of
the first hidden layer.

Moreover, the Adma method is used as the optimization
method, MAE is set as the loss function and the

maximum number of epochs is set to 200. Meanwhile, to
prevent over-fitting of the DNN, the EarlyStop mechanism
is introduced, and the minimum learning rate is set as 0.003
and the tolerance is set as 20. The hyper-parameter selection
results of KNN, XGBoost, and DNN are shown in Figure 6.
The hyper-parameters adopted by each method are shown
in Table 4.

Model Application and Generation Ability
Figure 7 presents the prediction performance of different ML
models by using three preprocessing strategies. Several findings
can conclude from the comparison among models. First, the
prediction performance of MLR is the worst among all the
methods because it doesn’t involve hyper-parameter and
responding adjustments. Second, the overall performances of
SVR and KNN are similar, but the prediction ability of SVR is

FIGURE 4 |Grid search results of SVR under different preprocess methods and different c. (A) is Raw & c � Auto, (B) is Scale & c � Auto, (C) is Range & c � Auto,
(E) is Raw & c � Scaled, (F) is Scale & c � Scaled, (G) is Range & c � Scaled.

FIGURE 5 | Grid search results of RF under different preprocess methods. (A) is Raw, (B) is Scale, (C) is Range.
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slightly higher than that of KNN except for results in Scale
processing. Normally, the conducting SVR model needs a
more complex process than KNN. By inputting different forms
of data, the KNN only needs to adjust one super parameter, which
requires less work than SVR. Third, the RF and XGBoost models
present significant and similar advantages in predicting MSW
production compare with MLR, SVR, and KNN according to the
performance measurement of R2. Fourth, the DNN has the best
predictive performance among all the algorithms.

In this study, the RF and DNNmodels showed high R2 values
( > 0.9) during all preprocessing methods. That means the

developed ML models had a good power of explanation and
were not over-fitted or over-trained. Compared with the ML
method forMSW prediction developed in the earlier studies, our
results were significantly better in prediction accuracy. For
example (Niu et al., 2021), developed LSTM and ANN
models for predicting MSW generation and during the
testing phase, the R2 value were 0.92 and 0.74, respectively
(Table 5). In addition, (Nguyen et al., 2021), reported a DNN
model with predictive performance (R2) of 0.9 for MSW
production projections in Vietnam. According to Kumar
et al. (2018) and Kannangara et al. (2018) the ANN, SVM
and other ML models for predicting MSW generation
showed R2 even lower than 0.8. Thus, the machine learning
model developed in this paper promotes the effective prediction
of MSW production.

SHAP Analysis
Overall Analysis
Figure 8 shows the SHAP summary plot that orders features
based on their importance to predict MSW production.

FIGURE 6 | Hyperparameter optimization results of different methods under different preprocess approaches. (A) is KNN and Raw, (B) is KNN and Scale, (C) is
KNN and Range, (D) is XGBoost and Raw, (E) is XGBoost and Scale, (F) is XGBoost and Range, (G) is DNN and Raw, (H) is DNN and Scale, (I) is DNN and Range.

TABLE 4 | Hyper-parameter selection result for each algorithm.

Algorithm Raw Scale Range

SVR (4000,Scaled,202) (1.019,Auto, 0.0001) (4.049,Auto, 0.0001)
KNN 7 3 6
RF (92,2) (78,1) (67,1)
XGBoost 110 110 170
DNN (208,104) (208,104) (48,24)
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Specifically, a higher SHAP value of a feature indicates higher-
ranked importance to theMSWproduction volume. For example,
the difference in the region’s GDP has the greatest impact on the
model’s prediction of MSW production. It is likely because waste
production is highly related to the household wealth that directly
influences one’s daily consumption and potential production of
MSW (Malinauskaite et al., 2017). Moreover, higher value of this
feature result in higher SHAP values, which correspond to a
higher output amount of MSW.

In addition, the industry structure presents a great influence
on MSW production because of its indirect impacts on the
citizens’ consumption. For instance, a higher degree of the
added value of wholesale and retail trade indicates higher

FIGURE 7 | Comparisons of algorithms predicts performance under different preprocess methods. (A) is Raw, (B) is Scale, (C) is Range.

TABLE 5 | Comparison of model performance for prediction of MSW generation.

Method MAE RMSE R2 References

DNN 861.03 1288.80 0.97 This study
RF 774.30 1348.63 0.91
XGBoost 1219.91 1706.78 0.90
LSTM N/A 935.08 0.92 Niu et al. (2021)
ANN N/A 547.14 0.74
DNN 177.6 294.6 0.91 Nguyen et al. (2021)
ANN N/A 9.53 0.75 Kumar et al. (2018)
SVM N/A 9.88 0.74
RF N/A 9.88 0.66
Decision Trees N/A 23 0.54 Kannangara et al. (2018)
Neural Networks N/A 16 0.72

FIGURE 8 | SHAP summary plot.
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production of MSW compared with other industries (e.g.,
transportation, warehousing, and postal services industries).
Some studies have argued that consumption patterns and
population increase are important factors that contribute to
MSW production in developing countries (Liu et al., 2019;
Nguyen et al., 2021). Besides, the urban population also shows
a significant impact on MSW production, because of its
functioning on the total amount of MSW production. In
contrast, other socio-economic features have a relatively
insignificant impact on MSW in China. In the following
paper, we will continue to analyze the dependency among
these three features to discover the generation mode of MSW
in China.

Dependence Analysis
Figure 9 plots the relationship between a feature and its SHAP
value dependent on another feature in the RF model. We select
Nup and InWAR as the features to discuss and identify their
variation as changes of InGDP. As shown in Figures 9A,B, the
red points represent a higher value of InGDP, and the blue points
represent the lower one.

Figure 9A plots the moderating effects of GDP on the impacts
of urban population onMSW production. It shows that under the
condition of a low Nup and a low InGDP, the SHAP value of
Nup is below zero, which indicates that the impact ofNupwould
negatively impact the MSW production under these
circumstances. In other words, the less developed region might
undermine the impact of the urban population on MSW
production, although the local urban population increases. In
contrast, with the economic growth, the increase of the urban
population will promote the production of MSW. It could be
recognized by the red color of the SHAP value in this figure.

Figure 9B reflects the interaction between GDP and the added
value of wholesale and retail industries on MSW production. For
example, before InWAR reached 600 billion, its SHAP value is
always negative. However, if InWAR exceeds 600 billion yuan as
the increase of total GDP, the increase of the added value of
wholesale and retail trade plays a positive role in promoting the
production of MSW. It means that if the added value of the

wholesale and retail industry remains at a low level (less than
6,000 billion yuan), these industries have little effect on MSW
production. However, if the added value is more than the
threshold of 6000 billion yuan, the regional GDP would
promote the impact of the WAR industry added value.
Correspondingly, the SHAP value of InWAR indicates a
significant promotion on MSW production.

CONCLUSION

To address the prediction in the production of municipal solid
waste and support the WtE system design, we mainly
constructed the MSW prediction method in China by using
machine learning algorithms. In the comparisons of six ML
models, we concentrated our attention on the predictive
performances of each algorithm, particularly, by introducing
three preprocessing strategies. As a result, SVR had the lowest
hyperparameter consistency under different preprocessing
strategies. Among the six ML methods established in this
study, DNN has the best predictive ability, with an R-square
of over 0.97 under all three data preprocessing strategies. The
prediction performance of the machine learning methods
developed in this paper is also significantly higher than the
current standard (MLR) in China.

In addition, we find that the form of input hyper-parameter
had a great influence on the models’ performances. Specifically,
the explanatory indicators of the regional GDP, urban
population, the added values of wholesale and retail industries,
are the most important variables that affect MSW production in
different provinces of China. With the development of the urban
economy, the urban population increase will promote the
generation of municipal solid waste. Inversely, in less
developed regions, the increase of the urban population will
reduce the generation of MSW. Besides, the different stages of
the development of the wholesale and retail industries also impact
the production of MSW. It means that in the less developed
regions, a less added value of the wholesale and retail industries
indicates a weak impact on MSW production, and vice versa.

FIGURE 9 | Feature dependence analysis. (A) is Nup and InGDP. (B) is InWAR and InGDP
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Our findings provide a reliable forecasting method for
stakeholders. By increasing the prediction capability of MSW
production, national and local policymakers could effectively
conduct a series of governance policies to promote a friendly
residential environment and urban sustainability. However, if
given data from lower administrative, we can build even more
powerful predictive models. Future studies can make effort on
this to achieve more reliable and accurate results.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JW and LY conceived, designed, and performed the experiments.
YZ, XN, and ZS prepared, analyzed the data. QG contributes
policy suggestions. LY and XN wrote the early version of the
paper and all authors contributed discussion and revisions, all
authors have read and approved the final manuscript.

FUNDING

This research is supported by Beijing Social Science Foundation
(No. 17GLB014), National Key Research and Development
Program of China (2018YFF0214804), BUCT Funds for First-
Class Discipline Construction (XK1802-5), BUCT (G-JD202002).

REFERENCES

Abbasi, M., and El Hanandeh, A. (2016). Forecasting Municipal Solid Waste
Generation Using Artificial Intelligence Modelling Approaches. Waste Manag.
56, 13–22. doi:10.1016/j.wasman.2016.05.018

Al-Dahidi, S., Ayadi, O., Adeeb, J., and Louzazni, M. (2019). Assessment of
Artificial Neural Networks Learning Algorithms and Training Datasets for
Solar Photovoltaic Power Production Prediction. Front. Energ. Res. 7, 130.
doi:10.3389/fenrg.2019.00130

Ayoub, J., Yang, X. J., and Zhou, F. (2021). Combat COVID-19 Infodemic Using
Explainable Natural Language Processing Models. Inf. Process. Manag. 58,
102569. doi:10.1016/j.ipm.2021.102569

Beigl, P., Lebersorger, S., and Salhofer, S. (2008). Modelling Municipal Solid Waste
Generation: A Review. Waste Manag. 28, 200–214. doi:10.1016/
j.wasman.2006.12.011

Birgen, C., Magnanelli, E., Carlsson, P., Skreiberg, Ø., Mosby, J., and Becidan, M.
(2021). Machine Learning BasedModelling for Lower Heating Value Prediction
of Municipal Solid Waste. Fuel 283, 118906. doi:10.1016/j.fuel.2020.118906

Breiman, L. (1996). Bagging Predictors. Mach Learn. 24, 123–140. doi:10.1007/
BF00058655

Chai, J., Zhao, C., Hu, Y., and Zhang, Z. G. (2021). Structural Analysis and Forecast
of Gold price Returns. J. Manag. Sci. Eng. 6, 135–145. doi:10.1016/
j.jmse.2021.02.011

Chen, T., and Guestrin, C. (2016). Xgboost: A Scalable Tree Boosting System. in
Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, August 13-17, 2016. San Francisco, CA, USA,
785–794.

Costa, A. B. R., Ferreira, P. C. G., Gaglianone, W. P., Guillén, O. T. C., Issler, J. V.,
and Lin, Y. (2021). Machine Learning and Oil price point and Density
Forecasting. Energ. Econ. 102, 105494. doi:10.1016/j.eneco.2021.105494

Cover, T., and Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEE
Trans. Inform. Theor. 13, 21–27. doi:10.1109/TIT.1967.1053964

Demir, B., and Bruzzone, L. (2014). A Multiple Criteria Active Learning Method
for Support Vector Regression. Pattern Recognition 47, 2558–2567. doi:10.1016/
j.patcog.2014.02.001

Ding, Y., Zhao, J., Liu, J.-W., Zhou, J., Cheng, L., Zhao, J., et al. (2021). A
Review of China’s Municipal Solid Waste (MSW) and Comparison with
International Regions: Management and Technologies in Treatment and
Resource Utilization. J. Clean. Prod. 293, 126144. doi:10.1016/
j.jclepro.2021.126144

Feng, Y., Duan, Q., Chen, X., Yakkali, S. S., and Wang, J. (2021). Space Cooling
Energy Usage Prediction Based on Utility Data for Residential Buildings Using
Machine Learning Methods. Appl. Energ. 291, 116814. doi:10.1016/
j.apenergy.2021.116814

Guo, H.-n., Wu, S.-b., Tian, Y.-j., Zhang, J., and Liu, H.-t. (2021). Application of
Machine Learning Methods for the Prediction of Organic Solid Waste

Treatment and Recycling Processes: A Review. Bioresour. Tech. 319, 124114.
doi:10.1016/j.biortech.2020.124114

Hariharan, R. (2021). Random forest Regression Analysis on Combined Role
of Meteorological Indicators in Disease Dissemination in an Indian City: A
Case Study of New Delhi. Urban Clim. 36, 100780. doi:10.1016/
j.uclim.2021.100780

He, J., and Lin, B. (2019). Assessment of Waste Incineration Power with
Considerations of Subsidies and Emissions in China. Energy Policy 126,
190–199. doi:10.1016/j.enpol.2018.11.025

Hoornweg, D., and Bhada-Tata, P. (2012).What a Waste: A Global Review of Solid
Waste Management. Urban development series; knowledge papers no. 15.
Washington, DC: World Bank.

Huang, B., Sun, Y., and Wang, S. (2021). A New Two-Stage Approach with
Boosting and Model Averaging for Interval-Valued Crude Oil Prices
Forecasting in Uncertainty Environments. Front. Energ. Res. 9, 707937.
doi:10.3389/fenrg.2021.707937

Huang, Q., Yu, Y., Zhang, Y., Pang, B., Wang, Y., Chen, D., et al. (2021). Data-
driven-based Forecasting of Two-phase Flow Parameters in Rectangular
Channel. Front. Energ. Res. 9, 10. doi:10.3389/fenrg.2021.641661

Kannangara, M., Dua, R., Ahmadi, L., and Bensebaa, F. (2018). Modeling and
Prediction of Regional Municipal Solid Waste Generation and Diversion in
Canada Using Machine Learning Approaches. Waste Manag. 74, 3–15.
doi:10.1016/j.wasman.2017.11.057

Kumar, A., Samadder, S. R., Kumar, N., and Singh, C. (2018). Estimation of the
Generation Rate of Different Types of Plastic Wastes and Possible Revenue
Recovery from Informal Recycling. Waste Manag. 79, 781–790. doi:10.1016/
j.wasman.2018.08.045

Kuznetsova, E., Cardin, M.-A., Diao, M., and Zhang, S. (2019). Integrated
Decision-Support Methodology for Combined Centralized-Decentralized
Waste-To-Energy Management Systems Design. Renew. Sust. Energ. Rev.
103, 477–500. doi:10.1016/j.rser.2018.12.020

Li, R., Li, W., Zhang, H., Zhou, Y., and Tian, W. (2021). On-Line Estimation
Method of Lithium-Ion Battery Health Status Based on PSO-SVM. Front.
Energ. Res. 9, 693249401. doi:10.3389/fenrg.2021.693249

Liang, T., Chai, J., Zhang, Y.-J., and Zhang, Z. G. (2019). Refined Analysis and
Prediction of Natural Gas Consumption in China. J. Manag. Sci. Eng. 4, 91–104.
doi:10.1016/j.jmse.2019.07.001

Liu, J., Li, Q., Gu, W., and Wang, C. (2019). The Impact of Consumption Patterns
on the Generation of Municipal Solid Waste in China: Evidences from
Provincial Data. Ijerph 16, 1717. doi:10.3390/ijerph16101717

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E. (2017). A Survey of
Deep Neural Network Architectures and Their Applications. Neurocomputing
234, 11–26. doi:10.1016/j.neucom.2016.12.038

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B.,
et al. (2020). From Local Explanations to Global Understanding with
Explainable AI for Trees. Nat. Mach Intell. 2, 56–67. doi:10.1038/
s42256-019-0138-9

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 76397712

Yang et al. Solid Waste Forecasting Machine Learning

61

https://doi.org/10.1016/j.wasman.2016.05.018
https://doi.org/10.3389/fenrg.2019.00130
https://doi.org/10.1016/j.ipm.2021.102569
https://doi.org/10.1016/j.wasman.2006.12.011
https://doi.org/10.1016/j.wasman.2006.12.011
https://doi.org/10.1016/j.fuel.2020.118906
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.jmse.2021.02.011
https://doi.org/10.1016/j.jmse.2021.02.011
https://doi.org/10.1016/j.eneco.2021.105494
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/j.patcog.2014.02.001
https://doi.org/10.1016/j.patcog.2014.02.001
https://doi.org/10.1016/j.jclepro.2021.126144
https://doi.org/10.1016/j.jclepro.2021.126144
https://doi.org/10.1016/j.apenergy.2021.116814
https://doi.org/10.1016/j.apenergy.2021.116814
https://doi.org/10.1016/j.biortech.2020.124114
https://doi.org/10.1016/j.uclim.2021.100780
https://doi.org/10.1016/j.uclim.2021.100780
https://doi.org/10.1016/j.enpol.2018.11.025
https://doi.org/10.3389/fenrg.2021.707937
https://doi.org/10.3389/fenrg.2021.641661
https://doi.org/10.1016/j.wasman.2017.11.057
https://doi.org/10.1016/j.wasman.2018.08.045
https://doi.org/10.1016/j.wasman.2018.08.045
https://doi.org/10.1016/j.rser.2018.12.020
https://doi.org/10.3389/fenrg.2021.693249
https://doi.org/10.1016/j.jmse.2019.07.001
https://doi.org/10.3390/ijerph16101717
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Lundberg, S. M., and Lee, S. I. (2017). A Unified Approach to Interpreting Model
Predictions. In 31st conference on neural information processing systems, 4768–4777.

Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E.,
Rostkowski, P., et al. (2017). Municipal Solid Waste Management and
Waste-To-Energy in the Context of a Circular Economy and Energy
Recycling in Europe. Energy 141, 2013–2044. doi:10.1016/j.energy.2017.11.128

Mehrdad, S. M., Abbasi, M., Yeganeh, B., and Kamalan, H. (2021). Prediction of
Methane Emission from Landfills Using Machine Learning Models. Environ.
Prog. Sust. Energ. 40, e13629. doi:10.1002/ep.13629

Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., and Bhowmik, R. (2020). A
Review on Municipal Solid Waste-To-Energy Trends in the USA. Renew. Sust.
Energ. Rev. 119, 109512. doi:10.1016/j.rser.2019.109512

Namlis, K.-G., and Komilis, D. (2019). Influence of Four Socioeconomic Indices
and the Impact of Economic Crisis on SolidWaste Generation in Europe.Waste
Manag. 89, 190–200. doi:10.1016/j.wasman.2019.04.012

NBSC (2020). China Statistical Yearbook 2020. Beijing, China: Transport and
Disposal of Consumption Wastes in Cities by Region. (in Chinese).

NBSC (2021). Urban and Rural Population and Floating Population. Beijing,
China: Bulletin of the Seventh National Census. (No. 7) (in Chinese).

Nguyen, X. C., Nguyen, T. T. H., La, D. D., Kumar, G., Rene, E. R., Nguyen, D. D.,
et al. (2021). Development of Machine Learning - BasedModels to Forecast Solid
Waste Generation in Residential Areas: A Case Study from Vietnam. Resour.
Conservation Recycling 167, 105381. doi:10.1016/j.resconrec.2020.105381

Niu, D., Wu, F., Dai, S., He, S., and Wu, B. (2021). Detection of Long-Term
Effect in Forecasting Municipal Solid Waste Using a Long Short-Term
Memory Neural Network. J. Clean. Prod. 290, 125187. doi:10.1016/
j.jclepro.2020.125187

Ouda, O. K. M., Cekirge, H. M., and Raza, S. A. R. (2013). An Assessment of the
Potential Contribution from Waste-To-Energy Facilities to Electricity
Demand in Saudi Arabia. Energ. Convers. Manag. 75, 402–406.
doi:10.1016/j.enconman.2013.06.056

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., et al. (2008).
Top 10 Algorithms in Data Mining. Knowl Inf. Syst. 14, 1–37. doi:10.1007/
s10115-007-0114-2

Yang, L., Nguyen, H., Bui, X.-N., Nguyen-Thoi, T., Zhou, J., and Huang, J. (2021).
Prediction of Gas Yield Generated by Energy Recovery from Municipal Solid
Waste Using Deep Neural Network and Moth-Flame Optimization Algorithm.
J. Clean. Prod. 311, 127672. doi:10.1016/j.jclepro.2021.127672

Zhang, X., Yu, L., Wang, S., and Lai, K. K. (2009). Estimating the Impact of Extreme
Events on Crude Oil price: An EMD-Based Event Analysis Method. Energ.
Econ. 31, 768–778. doi:10.1016/j.eneco.2009.04.003

Zheng, J., Lai, C. S., Yuan, H., Dong, Z. Y., Meng, K., and Lai, L. L. (2020).
Electricity Plan Recommender System with Electrical Instruction-Based
Recovery. Energy 203, 117775. doi:10.1016/j.energy.2020.117775

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yang, Zhao, Niu, Song, Gao andWu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 76397713

Yang et al. Solid Waste Forecasting Machine Learning

62

https://doi.org/10.1016/j.energy.2017.11.128
https://doi.org/10.1002/ep.13629
https://doi.org/10.1016/j.rser.2019.109512
https://doi.org/10.1016/j.wasman.2019.04.012
https://doi.org/10.1016/j.resconrec.2020.105381
https://doi.org/10.1016/j.jclepro.2020.125187
https://doi.org/10.1016/j.jclepro.2020.125187
https://doi.org/10.1016/j.enconman.2013.06.056
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.jclepro.2021.127672
https://doi.org/10.1016/j.eneco.2009.04.003
https://doi.org/10.1016/j.energy.2020.117775
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Forecasting Electricity Load With
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Power has totally different attributes than other material commodities as electrical energy
stockpiling is a costly phenomenon. Since it should be generated when demanded, it is
necessary to forecast its demand accurately and efficiently. As electrical load data is
represented through time series pattern having linear and non-linear characteristics, it
needs a model that may handle this behavior well in advance. This paper presents a
scalable and hybrid approach for forecasting the power load based on Vector Auto
Regression (VAR) and hybrid deep learning techniques like Long Short Term Memory
(LSTM) and Convolutional Neural Network (CNN). CNN and LSTM models are well known
for handling time series data. The VARmodel separates the linear pattern in time series data,
and CNN-LSTM is utilized to model non-linear patterns in data. CNN-LSTM works as CNN
can extract complex features from electricity data, and LSTM can model temporal
information in data. This approach can derive temporal and spatial features of electricity
data. The experiment established that the proposed VAR-CNN-LSTM(VACL) hybrid
approach forecasts better than more recent deep learning methods like Multilayer
Perceptron (MLP), CNN, LSTM, MV-KWNN, MV-ANN, Hybrid CNN-LSTM and
statistical techniques like VAR, and Auto Regressive Integrated Moving Average
(ARIMAX). Performance metrics such as Mean Square Error, Root Mean Square Error,
and Mean Absolute Error have been used to evaluate the performance of the discussed
approaches. Finally, the efficacy of the proposedmodel is established through comparative
studies with state-of-the-art models on Household Power Consumption Dataset (UCI
machine learning repository) and Ontario Electricity Demand dataset (Canada).

Keywords: vector auto regression, convolutional neural network, long short term memory, electrical load
forecasting, time series

1 INTRODUCTION

As an option of petroleum products to create power, elective asset like sunlight based, wind and so on
have become , quite possibly, the most encouraging sustainable power sources within the presence of
greenhouse effect and polluted environment (Miller et al., 2009). The electric grid framework is
complex since it should keep up the equilibrium among production, transmission and distribution of
power. Taking into account the yield power from an alternate source is trademark in instability and
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discontinuity, presenting incredible difficulties to load
dispatching, exact electrical load estimating assumes a
significant part in soothing the pressing factor of managing
top load and improving robustness limit with respect to
electrical load demand. Electricity demand forecasting plays an
important role as it enables the electric industry to make
informed decisions in planning power system demand and
supply. Moreover, accurate power demand forecasting is
necessary as energy must be utilized as it is produced due to
its physical characteristics (Ibrahim et al., 2008). Albeit ample
studies have been dedicated to building powerful models to
predict accurate electrical load (Du et al., 2019), the greater
part of them are utilized for producing deterministic point
prediction with single-variable yield each time. Generally
applied point estimating models for electrical load can be
partitioned into two classes: statistical models and machine
learning models. Statistical models exploit as completely as
conceivable the past records by giving attention to connections
and patterns between the old and future exhibition of power load
data dependent on the development of mathematical models (Ma
et al., 2017). Nevertheless, statistical strategies can diminish the
anticipating mistakes when the data features are under ordinary
conditions, having high prerequisite for simple time series. Work
like ARMA (Bikcora et al., 2018) and ARIMA (Wu et al., 2020)
address traditional time series prediction strategies, however they
ordinarily neglect to consider the impact of other covariate
factors (Wu et al., 2020). Therefore, to counter the weaknesses
of statistical models, machine learning models, known as artificial
neural networks (ANN), are deployed for power load forecasting
(Khwaja et al., 2020), (Wu et al., 2019) and (Xiao et al., 2016).

As a promising part of AI strategies, deep learning, mostly
referring tomulti-layer network having feature learning potential,
has acquired a wide recognition for power load prediction due to
three significant properties: solid generalization ability, large scale
data processing and unsupervised way for the feature learning.
From the work (Bedi and Toshniwal, 2019), it is widely perceived
that deep learning models exhibit good performance in terms of
precision, scalability and stability. Nonetheless, one of significant
criticisms of picking up deep learning algorithms is, it lacks strong
theoretical foundation and mathematical induction. This is
additionally an effectively a disregarded issue in the viable use
of electrical load prediction. To keep away from that issue, this
paper presents a mathematical form of problem formulation
followed by the proposed solution as VACL model which is a
combination of statistical model VAR and Deep Learning
methods CNN,LSTM. The present work is an extension of our
previous work (Sinha et al., 2021).

Electricity demand forecasting can be of multiple types: short
term (day), medium term (week to month) and long term (year).
These forecasts are necessary for the proper operation of electric
utilities. Precise power load forecasting can be helpful in
financing planning to make a strategy of power supply,
management of electricity, and market search (Stoll and
Garver, 1989). It is a time series problem that is multivariate
as electrical energy depends on many characteristics that use
temporal data for the prediction. Temporal data depends on time
and represented using time stamps. Prediction using classical load

forecasting methods is challenging as power consumption can
have a uniform seasonal pattern but an irregular trend
component. To continue the discussions, the rest of the paper
is organized as: Section 2,literature review of existing state-of-
the-art models and issues relatingto them that will lead to the
problem statement as presented in Section 3. To understand the
basics about the multivariate time series analysis and deep
learning forecasting strategies, section 4 is presented. In
continuation to existing approach, Section 5 presents the
detail about proposed methodology followed by Section 6
which consists of experimental studies and discussion of
application of proposed model on two large datasets.
Finally,Section 7 is about conclusion and states the future
scope of the proposed method.

2 LITERATURE REVIEW

The new improvement of deep learning models, like Deep Neural
Network (DNN), Recurrent Neural Network (RNN),
Convolutional Neural Network (CNN), has had an incredible
impact in the fields of Natural Language Processing (NLP),
computer vision, and recognition of speech. DNN can exhibit
to model a function which is complex in nature and can efficiently
mine important features of a dataset. Many researchers have
explored these techniques for the multivariate time-series
forecasting. Some of the recent advancement in this area is
summarized as:

Authors in (Choi, 2018) discussed the ARIMA-LSTM hybrid
model for time series forecasting. They used LSTM for temporal
dependencies and their long-term predictive properties. To
circumscribe linear properties, ARIMA is used, and for
residuals that contain non-linear and temporal properties,
LSTM is used. This hybrid model is compared with other
methods, and it gave better results for evaluation metrics such
as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). In (Kim and Cho,
2019), authors proposed a hybrid CNN-LSTM model that is
evaluated on power consumption data. It is proposed that CNN
can extract temporal and spatial features between several
variables of data. In contrast, LSTM takes data returned by
CNN as input and models temporal data and irregular trends.
The proposed model is compared with other models like GRU,
Bi-LSTM, etc., and it performed better on evaluation metrics such
as MSE, RMSE, MAE, MAPE, etc. While Mahalakshmi et al.
surveyed various methods for forecasting time series data and also
discussed various types of time-series data that are being
forecasted (Mahalakshmi et al., 2016), research has been done
on various types of data such as electricity data, stockmarket data,
etc. The performance evaluation parameter such as MAE, MSE
proves that the hybrid forecasting model yields good results
compared to other models. To investigate the forecasting
outcome for non-linear data, Gasperin et al. discussed the
problem of accurately predicting power load forecast owing to
its non-linear nature (Gasparin et al., 2019). The authors worked
on two power load forecast datasets and applied state-of-the-art
deep learning techniques to short-term prediction data. Most
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relevant deep learning models applied to the short-term load
forecasting problem are surveyed and experimentally evaluated.
The focus has been given to these three main models: Sequence to
Sequence Architectures, Recurrent Neural Networks, and
recently developed Temporal Convolutional Neural Networks.
LSTM performed better as compared to other traditional models.
In continuation to use the deep learning models for forecasting
no-linear data, authors in (Erica, 2021) propose a novel short-
term load forecasting approach with Deep Neural Network
architecture,CNN components to learn complex feature
representation from historical load series,then the LSTM based
Recurrent Neural component models the variability and
dynamics in historical loading.

Siami-Namini et al. in their proposed work (Siami-Namini
et al., 2018) compared deep learning methods such as LSTM
with the traditional statistical methods like ARIMA for financial
time series dataset. According to them, a forecasting algorithm
based on LSTM improves the prediction by reducing the error
rate by 85% when compared to ARIMA. On the similar lines,
Wang et al. (Wang et al., 2016) worked on CNN-LSTM
consisting of two parts: regional CNN and for predicting the
VA rating method used is LSTM. According to their evaluation,
regional CNN-LSTM outperformed regression and traditional
Neural Network-based methods. Authors in (Sherstinsky, 2018)
explained the essential fundamentals of RNN and CNN. They
also discussed “Vanilla LSTM” and discussed the problems
faced when training the standard RNN and solved that by
RNN to “Vanilla LSTM” transformation through a series of
logical arguments. The work done in (Hartmann et al., 2017)
adopted the Cross-Sectional Forecasting approach on the
AutoRegression model. It consumes available data from
multiple same domain time series in a single model, covering
a wide domain of data that also compensates missing values and
quickly calculates accurate forecast results. This model can only
deal with linear data but with multiple time series
simultaneously while in (Choi and Lee, 2018), authors
presented a novel LSTM ensemble forecasting algorithm that
can combine many forecast results from a set of individual
LSTM networks. The novel method can capture non-linear
statistical properties and is easy to implement and is
computationally efficient. In another domain with similar
characteristics, Chniti et al. (Chniti et al., 2017) presented
robust forecasting methods for phone price prediction using
Support Vector Regression (SVR) and LSTM. Models have been
compared for both univariate and multivariate data. In the
multivariate model, LSTM performed better as compared to
others. Another work like (Yan et al., 2018) attempted short-
term load forecasting (STLF) for the electric power
consumption dataset. Due to the varying nature of data for
electricity, traditional algorithms performed poorly as
compared to LSTM. To increase further accuracy, the
authors discussed a hybrid approach consisting of CNN on
top of LSTM and experimented on five different datasets. It
performed fairly better than ARIMA, SVR, and LSTM alone. As
a more advanced hybrid model, authors in (Babu and Reddy,
2014) proposed a linear and non-linear models combination
that is a combination of ARIMA and ANN models where

ARIMA is used for linear component and ANN for a non-
linear component. For further improvement, the authors
proposed that the nature of time series should be taken
into account so volatile nature is taken into account by
moving average filter, and then hybrid model applied; the
proposed hybrid model is compared with these individual
models and some other models, and it performed fairly well as
compared to other models. While the work in (Shirzadi et al.,
2021) showed that by utilizing deep learning, the model could
foresee the load request more precisely than SVM and
Random Forest (RF). However, it does not validate the
result on more than one dataset. In (Bendaoud and Farah,
2020) another type of CNNN for one-day ahead load estimate
utilizing a two-dimensional information layer (remembering
the past states’ utilizations for one layer and climatic and
relevant contributions to another layer). They applied their
model to a contextual analysis in Algeria and announced
MAPE and RMSE of 3.16 and 270.60 (MW), individually.
An approach based on clustering techniques, authors in
(Talavera-Llames et al., 2019) introduced a clustering
technique dependent on kNN to predict power price
utilizing a multivariate dataset. The proposed model was
applied on a power dataset in Spain (OMIE-Dataset, 2020)
and the authors juxtaposed the outcome with existing state of
art methods like MV-ANN (Hippert et al., 2001), MV-RF and
traditional multivariate Box-Jenkins (Lütkepohl, 2013) model
like ARIMAX (Box et al., 2011), autoregressive-moving-
average (ARMAX) and autoregressive (ARX).

Coming to a more popular model, authors have proposed
Elmann Recurrent Neural Networks (ERNN) in Elman (1990)
to sum up feedforward neural network to better take care of
ordered sequential data like time-series. Notwithstanding of
the model simplicity, Elmann RNNs are difficult to prepare
because of less efficiency of gradient (back) propagation.
While forecasting the time series with Multi-Step
Prediction method, authors in Sorjamaa and Lendasse
(2006) proposed a DirRec strategy based on the
combination of Recursive and Direct strategy. In this
approach, a model is trained in a single mode to predict
one next step of the time series data and combine it with a
multiple model predictor with the same input. Authors in
Bontempi (2008) presented a model as MIMO strategy where
a single model is evolved to predict complete output sequence
in a single effort. However the more advanced popular model
known as DIRMO model Taieb et al. (2009) was proposed
which is like a tradeoff with the MIMO and Direct approach.
This model was proved to be more advanced in terms of
multistep forecasting and computational time.

In a nut shell, the above literature survey generally centers
around DNN, RNN and CNN models and shows that deep
learning strategies can convey much better load forecasting
precision than those accomplished by traditional models.
Other deep learning models have not been investigated much
for load forecastings, for example, attention model (Bourdeau
et al., 2019), ConvLSTM and BiLSTM. Notwithstanding the
works referred to, a different researchers have also centered
around load anticipating at the structure scale, utilizing AI
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and deep learning strategies (Rashid et al., 2009), (Shi et al., 2017)
and (Rahman et al., 2018). In any case, fewer investigations have
analyzed the capacity of information digging methods for large-
scale data and established their model’s efficacy on multiple
datasets with different characteristics.

3 LOAD FORECASTING INTRICACIES

Stemming out the research gap from the literature survey from
Section 2, the present work aims at building a model that can
accurately forecast power load data. The mathematical
formulation and objectives of the problem is as follows:

1) Given fully observed time series data Y � {y1, y2,., yT} where yt
belongs to Rn and n is the variable dimension, aim is to predict
a series of future time series data

2) That is, assuming {y1, y2,., yT} is available, then predicting yT+h
where h is the desirable time horizon ahead of the current
timestamp (Chatfield, 1996).

3) The following constraints need to be satisfied by the model:
a) Model should be able to handle numerous series data
b) Model should be able to handle incomplete data
c) Model should be able to handle noisy data

4 MULTIVARITE TIME SERIES ANALYSIS
WITH DEEP LEARNING

4.1 Time Series
It is a series of discrete data points which are taken at fixed intervals
of time (Wikipedia, 2021). An explicit order dependence is added
between observations by time series via time dimension. Order of
observations in time series gives a source of extra information
which can be used in forecasting. There may be one or more
variables in the time series. A time series that is having one variable
changing over time is univariate time series. If greater than one
variable varying with time, then that time series is multivariate.

It can have applications in many domains such as weather
forecasting, power load forecasting, stock market prediction,
signal processing, econometrics, etc.

4.2 Time Series Analysis
It constitutes methods for analyzing and drawing out meaningful
information and patterns from data which can help in deciding
the methods and getting better forecasting results (Cohen, 2021).
It helps to apprehend the nature of the series that is needed to be
predicted.

4.3 Time Series Forecasting
Time series forecasting involves creating a model and fitting it
on a training set (historical data) and then using that model to
make future predictions. In classical statistical handling,
taking forecasts in the future is called extrapolation. A time
series model can be evaluated by forecasting the future term
and analyzing the performance by specific evaluation metrics
like MSE, MAE, and RMSE.

4.4 Time Series Types
Time series forecasting techniques are inspired by various research
on machine learning and have been changed from regression
models to neural network-related models. There are multiple
types of time series, of which two types are most common.

• STATIONARY: If statistical properties like mean, variance,
autocorrelation, etc., of time series do not change with time,
then that time series is stationary. As we know, stationary
processes are easy to predict; we simply need to find out their
statistical properties, which will remain the same over a while.

• NON-STATIONARY: In a non-stationary time series, data points
have statistical properties like mean, variance, covariance,
etc. and vary with time. There may be non-stationary
behavior like trends, seasonality, and cycles that exists in
the series data. Some of the most common patterns observed
in non-stationary time series are(Erica, 2021):

• TREND: If there is a long duration increment or decrement in
data, then trend exists. It need not be linear.

• SEASONALITY: When seasonal factors such as month of year,
day of month etc. impact time series, then seasonal patterns
are said to exist in time series with firm and known frequency.

• CYCLIC:When data exhibit rise and fall patterns without fixed
period, then cyclic patterns occur.

4.5 Time Series Evaluation Metrics
The most commonly used error metrics for forecasting are:

• MEAN SQUARED ERROR: It is the average cumulative sum of the
square of all prediction errors. It is formulated as:

MSE � ∑n
i�1

(yi − ŷi)2/n (1)

• MEAN ABSOLUTE ERROR: It is the average cumulative sum of
the absolute value of all prediction errors. It is formulated as:

MAE � ∑n
i�1

‖yi − ŷi‖/n (2)

• ROOT MEAN SQUARED ERROR: It is a square root of the mean of
the cumulative sum of the square of all prediction error. It is
formulated as:

RMSE �
������������
∑n
i�1

(yi − ŷi)2/n
√

(3)

4.6 Terminology in Time Series Forecasting
• DIFFERENCING: It is a technique to transform non-stationary
time series into a stationary one. In differencing, we take the
difference of each value in the time series from its next value
and continue until the new series become stationary.

• AIC: It refers to Akaike’s Information Criterion. For models
such as VAR, it provides information about how well a
model can be fitted on the data by considering the terms
count in the model.
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• NOISE: The randomness in data series is frequently known
as noise.

• TIME SERIES MODEL: It is a derived function that considers past
observations of time series along with some parameters to
predict the future.

• WEIGHT: Weights stipulate the importance given to individual
parameters in forecasting, respectively. In order words, it
decides the impact of each item on forecasting.

• DECOMPOSITION: It refers to splitting a time series into
seasonal, trend, and cyclic components.

4.7 Artificial Neural Network
Artificial Neural Network (ANN) (Yao, 1993) consists of nodes
that are interconnected, simulating neurons in the biological
neural system. It can be utilized for various tasks such as
regression, forecasting, and pattern recognition in
circumstances of complex features such as seasonality and
trends observed, handling linear and non-linear data, etc.
ANN model that is being used is Multilayer Perceptron, as
earlier ANNs consists of only a single layer with no hidden
layers, which resulted in some limitations:

• Single neurons cannot solve complex tasks.
• The model cannot learn difficulty in learning non-linear
features.

MLP is a feed-forward neural network that is comprised of
inputs, many hidden layers, and an output layer (Shiblee et al.,
2009). In MLP, every layer is connected fully to the next layer
such that neurons between contiguous layers are fully connected
while neurons between the same layers have no connection. Input
is fed into the input layer, and output is extracted from the output
layer. The number of the hidden layers can be increased to learn
more complex features according to the task.

Input represents the data that is needed to be fed in the model.
Data and weights are fed to next layer. Suppose X(x1, x2, . . . , xn)
be the input vector and w(w1, w2, . . . , wn) are weights associated
for a neuron,then input to neuron of hidden layer is Input:

f(X) � ∑n
i�1
(xi.wi) (4)

Primary learning of the model takes place at the hidden
layer (also known as the processing unit). Using the activation
function, it remodels the value received from the input layer.
Activation function is non-linear function applied on hidden
layer input that enables the model to describe erratic relations.
Sigmoid, ReLU, and tanh are the most widely used activation
functions. Activation Functions mostly used are as (Yao,
1993):

• SIGMOID: It is formulated as:

σ � 1/(1 + e−x) (5)

• Rectified Linear Unit (ReLU): It is most extensively used
activation function having a minimum 0 threshold and
formulated as:

f(x) � max(0, x) (6)

• tanh(x): Non-linear activation function with values lying
between 0 and 1. It is formulated as:

tanh(x) � 2/(1 + e−2x) − 1 (7)

The main issue with MLP is the adjustment of its weights in
the hidden layer, which is necessary to get better results as output,
is dependent on these weights to minimize the error. Back
propagation is used for the adjustment of weight parameters
in the hidden layer. After loss calculation in the forward pass, the
loss is backpropagated, and the model weights are updated via
gradient descent. Backpropagation rule is given
mathematically as:

δw � w − wprev � −η p δE

δw
(8)

Where weights are represented by w, E(w) represents cost
function, representing how far the predicted output is, from
actual output, and η represents the learning rate.

4.8 Long Short Term Memory
RNN (Jordan, 1990), (Elman, 1990), (Chen and Soo, 1996) are
types of neural networks where the goal is to predict the
sequence’s next step given previous steps in the sequence. In
RNN, the basic idea is to learn information about the earlier state
of sequence to predict the later ones. In RNN, hidden layers store
the information captured about previous states of data. The same
tasks (same weights and biases) are performed on every element
of sequential data to capture information for the sequence to
forecast future unseen data. The main challenge for RNN is the
problem of Vanishing Gradients. To overcome the problem of
Vanishing Gradients, a particular type of RNN is used, which is
LSTM (Hochreiter and Schmidhuber, 1997), which is specifically
designed to handle long-term dependency issues. The way LSTM
achieves that, is by the use of a memory line. Remembering early
data trend is made possible in LSTM via some gates which can
control information flow through the memory line, LSTM
consists of cells that capture and store the data streams.
Adding some gates in each cell of LSTM enables us to filter,
add or dispose of the data. It enables us to store the limited
required data while forgetting the remainder. There are three
types of gates that are used in LSTM. Gates are based on the
sigmoid layer enabling LSTM cells to pass data or disposing of it
optimally (Olah, 2013).

There are three types of gates mainly (Hochreiter and
Schmidhuber, 1997):

• Forget Gate: This gate filters out the information cell state
should discard. It considers previous hidden state (ht-1)
and input (xt) and returns a vector consisting of values
between zero and one for each number respectively in cell
state Ct-1 determining what to keep or discard. It is
formulated as:

ft � σ(Wf.[ht−1, xt] + bf (9)
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• Input Gate: It decides new information that we need to put
in a cell. It consists of a sigmoid-based layer that decides
what values need to be updated. Moreover, it contains a tanh
layer that creates a new candidate values vector, ~C that is
needed to be added to the state. We need to combine these
two to define the update:

it � σ(Wi.[ht−1, xt] + bi) (10)

C̃t � tanh(Wc.[ht−1, xt] + bc) (11)

Now, the cell state will be updated by first forgetting the things
from the previous state that was decided to be forgotten earlier
and then adding it p C̃t. It is formulated as:

Ct � ft p Ct−1 + it p C̃t (12)

• Output Gate: This gate decides the output out of each cell. To
get output, we run a sigmoid layer on input data and a hidden
layer that decides what will be output. Then cell state (Ct) is
passed through the tanh layer and multiplied by the output
gate such that we get the values that are decided as output:

ot � σ(Wo.[ht−1, xt] + bo) (13)

ht � ot p tanh(Ct) (14)

4.9 CNN-Long Short Term Memory Neural
Network
This model extracts temporal and spatial features for
effectively forecasting time series data. It consists of a
Convolutional Layer with a max-pooling layer on top of
LSTM. CNN (Fukushima, 1980), (Rawat and Wang, 2017)
consists of an input layer that accepts various correlated
variables as input and an output layer that will send
devised features to LSTM and other hidden layers. The
convolution layer, ReLU layer, activation function, and
pooling layer are types of hidden layers. The convolutional
layer reads the multivariate input time series data, applies the
convolution operation with filters, and sends results to the
next layer, reducing the number of parameters and making the
network deeper. If x0

i � {x1, x2, . . . , xn} is input vector, y1
ij

output from first convolutional layer is (Fukushima, 1980),
(Rawat and Wang, 2017):

yl
ij � σ b1j + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (15)

y1
ij is calculated by input x0

ij from previous layer and bias bij
represents bias for jth feature map, weights of kernel is
represented as w and σ denotes the ReLU (Nair and Hinton,
2010) like activation function. Similarly resultant vector from kth
convolutional layer is formulated as:

yl
ij � σ blj + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (16)

The convolution pooling layer is followed by a pooling
layer that reduces the space size of the devised results from
the convolutional layer, thereby reducing the number of

parameters and computing costs. The most commonly used
pooling approach is Max Pooling (Albawi et al., 2017) which
uses the maximum value from previous neuron clusters. Suppose
k is the stride and Z is the pooling cluster size. Max pooling
operation is formulated as:

Pl
ij � max

z∈Z
yl−1
ixk+z,j (17)

After convolution operation, LSTM is used, which is the lower
layer in CNN-LSTM neural network, which stores temporal
information from features extracted from the convolution layer.
It is well suited for forecasting as it reduces vanishing and exploding
gradient, which is generally faced by Recurrent Neural Networks.
Remembering early data trend is made possible in LSTM by gates
which control the flow of information down the memory line.

LSTM consists of cells that capture and store the data streams.
Adding some gates in each cell of LSTM enables us to filter, add or
dispose of the data. Gates are based on the sigmoid layer, enabling
LSTM cells to pass data or disposing it optimally.

Last unit of CNN-LSTM consists of dense layer (also known as
fully connected layer) which can be used to generate the final
output result. Here as we are forecasting for 1 h so no of the
neuron units in dense layer is 1.

5 PROPOSED HYBRID MODEL FOR LOAD
FORECASTING

Themodel which is best suited depends on historical data analysis
and relationships between data to be forecasted. Neural networks
can extract complex patterns from data thus are better suited as
compared to statistical models. Among neural networks, RNNs
are better suited for time series forecasting tasks. RNNs can
remember the past inputs, thus improving the performance of
sequential data, while neural network models like Multilayer
Perceptron will treat the data like numerous inputs without
considering the significance of time.

5.1 VAR-CNN-Long Short Term Memory
Hybrid (VACL)
This model combines the ability of the statistical model to learn
with combination with deep learning models. Time series data is
known to be made of linear and non-linear segments which can
be expressed as:
dt � Nt + Lt + ϵ

Lt is a linear component at time t, Nt is a component that is
non-linear at time t and ϵ is the error component. VARector is a
traditional statistical model for time series forecasting, which
performs well on linear problems. On the other hand, neural
network models like CNN-LSTM seem to work well on problems
that have non-linearity in data. So, a combination of both models
can identify both linear and non-linear patterns in data.

In this model, VAR can identify linear interdependence in data
and residuals left from VAR used by CNN-LSTM to capture non-
linear patterns in data. Now we will discuss each of these sectors
used in the algorithm.
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5.1.1 Vector Auto Regression Sector
When two or more time-series influence each other, then vector
auto-regression can be used. This model is autoregressive, and in
this model, each variable is formulated as a function of past values
of variables (Prabhakaran, 2020). Compared to other models like
ARIMA, the variable output is built as a linear combination of its
past values and values of other variables in this model. In contrast,
ARIMA output depends on the value of those particular variables
on which we want to make predictions. A typical Auto Regression
with order “p” can be formulated as:

Yt � α + β1Yt−1 + β2Yt−2 +/ + βpYt−p + ε (18)

where α is a constant denoting the intercept, β1, β2, . . . , βp are lag
coefficients. To understand the equation for VAR (Biller and
Nelson, 2003)let us assume there are two time-series Y1 and Y2
and have to be forecast at time t.We know that to calculate predicted
values, VAR needs to consider past data of all related variables. So,
equations of the value predicted at time t and order p become:

Y1,t � α1 + β11,1Y1,t−1 + β12,1Y2,t−1 +/ + β11,pY1,t−p + β12,pY2,t−p

(19)

Y2,t � α2 + β21,1Y1,t−1 + β22,1Y2,t−1 +/ + β21,pY1,t−p + β22,pY2,t−p

(20)

As a prerequisite, time series needs to be stationary to apply the
VARmodel. If it is stationary, we can directly predict using the VAR
model; or else we need tomake data differences tomake it stationary.
For checking the time-series stationarity, the Augmented Dickey-
Fuller Test (ADF Test) can be used. It is a unit root stationarity test.
The property of time series that makes it non-stationary is a unit
root. The number of unit roots determines how many differencing
operations are needed to make the series stationery. Consider the
following equation (Biller and Nelson, 2003):

Yt � α + βt + cYt−1 + δ1ΔYt−1 + δ2ΔYt−2 +/ + δpΔYt−p + ε

(21)

For the ADF Test, if the null hypothesis δ � 1 in the model
equation proves to be true, then the series is non-stationary; or
else the series is stationary. Since the null hypothesis assumes the
presence of unit root (δ � 1), the value of p should be less than the
significant level of 0.05 for rejecting the null hypothesis, hence
proving that series is stationary.

After the series becomes stationary by differencing the series and
verifying using ADF Test, we need to find the right order for VAR.
For that purpose, we will iterate over different order values and fit
the model. Then find out the order which gives us the least AIC.

AIC stands for Akaike Information Criterion, which is a
method for selecting a model based on score. Suppose m be
the no of parameters estimated for the model and L be the
maximum likelihood. Then AIC value is the following:

AIC � 2 pm − 2ln(L) (22)

We will select that model which has the least value of AIC.
Though AIC rewards the goodness of fit, but the penalty function
is implemented as increasing with an increase in several estimated
parameters. After testing and getting all requisite parameters,

forecasting can be performed on the data. The residual received
after subtracting forecasted data from original test data is used as
input to CNN, and that data contains non-linear patterns. It is
formulated as:

dt − Lt � Nt + ϵ (23)

5.1.2 CNN-Long Short Term Memory Sector
As we know, neural networks have a good performance on non-
linear data primarily due tomany versatile parameters. Moreover,
due to non-linear activation functions in layers, they can quickly
adapt to non-linear trends. They can model residuals received
from VAR very effectively.

This model extracts temporal and spatial features for effectively
forecast time series data. It consists of a convolutional layer with a
max-pooling layer on top of LSTM. CNN (Fukushima, 1980),
(Rawat and Wang, 2017) consists of an input layer that accepts
various correlated variables as input and an output layer that will
send devised features to LSTM. The convolution layer, ReLU layer,
activation function, and pooling layer are types of hidden layers.
The convolutional layer reads the multivariate input time-series
data, applies the convolution operation with filters, and sends
results to the next layer to reduce the number of parameters and
make the network deeper. If x0

i � {x1, x2, . . . , xn} is input vector,y1
ij

output from first convolutional layer is as from (Fukushima, 1980),
(Rawat and Wang, 2017):

y1
ij � σ b1j + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (24)

y1
ij is calculated by input x0

ij from previous layer and bias bij
represents bias for jth feature map, weights of kernel is
represented as w and σ denotes the Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010) like activation function.
Similarly resultant vector from kth convolutional layer is
formulated as:

yl
ij � σ blj + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (25)

The convolution pooling layer is followed by a pooling layer
that reduces the space size of the devised results from the
convolutional layer, thereby reducing the number of
parameters and computing costs. Max pooling (Albawi et al.,
2017) operation is formulated as:

Pl
ij � max

z∈Z
yl−1
ixk+z,j (26)

After convolution operation, LSTM is used, which is the lower
layer in CNN-LSTM neural network, which stores temporal
information from features extracted from the convolution layer.
It is well suited for forecasting as it reduces the problem of vanishing
and exploding gradient, which RNNgenerally face. Remembering
early data trends is made possible in LSTM using some gates that
control the flow of information through the memory line. LSTM
consists of cells that capture and store the data streams. Adding
some gates in each cell of LSTM enables us to filter, add or dispose of
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the data. Gates are based on a sigmoid layer that enables LSTM cells
to pass data or dispose of it optimally. There are three types of gates
mainly (Hochreiter and Schmidhuber, 1997):

• Forget Gate: This gate filters out the information that the
cell state should discard. It is formulated as:

ft � σ(Wf.[ht−1, xt] + bf) (27)

• Input Gate: It decides what new information should bein a
cell. It consists of a sigmoid-based layer that decides which
values need to be updated. Moreover, it contains a tanh layer
that creates a new candidate values vector, ~C that needs to be
added to the state. We need to combine these two to define
the update:

it � σ(Wi.[ht−1, xt] + bi) (28)

C̃t � tanh(Wc.[ht−1, xt] + bc) (29)

Cell state is updated by disregarding the things from the
previous state that was decided to be disregardedearlier and
then adding it p C̃t. It is formulated as:

Ct � ft pCt−1 + it p C̃t (30)

• Output Gate: This gate decides the output out of each cell.
To get output, we run a sigmoid layer on input data and a
hidden layer for deciding what we are going to output. Then
cell state (Ct) is passed through tanh layer and gets
multiplied by the output gate such that we get the
parameters to output:

ot � σ(Wo.[ht−1, xt] + bo) (31)

ht � ot p tanh(Ct) (32)

The last unit of CNN-LSTM consists of a dense layer (also
known as a fully connected layer) which can be used to generate
the final output result. As we are forecasting for 1 h, the number
of neuron units in a dense layer is 1.

6 EXPERIMENTATION AND RESULT
DISCUSSION

The experimentation has been done on two publicly available
datasets:Household Electricity Consumption Dataset (Hebrail
and Berard, 2012) and Ontario Electricity Demand Dataset
(ontario Energy Price-Dataset, 2020) and (official website of
the Government of Canada, 2020). The detail description of
both the datasets and outcome of the proposed model using
that dataset is presented in next two sections 6.1 and 6.2.

6.1 Discussion on Household Power
Consumption Dataset
It is a multivariate time series dataset consisting of household
energy consumption in a span of 4 years (2006–2010) at per
minute sampling provided by UCI machine learning repository

(Hebrail and Berard, 2012). It consists of seven time series
namely:

1) global active power: total active power consumption by
household (measured in kilowatt);

2) global reactive power: total reactive power consumption by
household (in kilowatt);

3) voltage: average voltage of household (in Volts);
4) global intensity: average intensity of current (measured in

amperes);
5) sub metering 1: active energy utilized for kitchen (watt-

hours);
6) sub metering 2: active energy utilized for laundry (watt-

hours);
7) sub metering 3: active energy utilized for climate control

systems (watt-hours).

6.1.1 Preliminary Analysis
Preliminary analysis of data is being done, and patterns are
evaluated, enabling us to make correct predictions. It is
observed that given time series follow the seasonal pattern but
with irregular trend components. We also performed correlation
analysis and see there is a positive correlation between the two
variables. Global Intensity has a significant impact on forecasting
GAP value, and global active power and voltage do not have a
strong correlation.

6.1.2 Performance Comparison of Models
The best-fitted model to be used depends on historical data
availability and the relationship between variables to be
forecast. Experiments are conducted for other neural network
models consisting of MLP, LSTM, CNN-LSTM, etc., to establish
the effectiveness of the proposedmodels, and results are evaluated
with MSE and RMSE. Next, we will go through the architecture of
each of these models and compare the results:

6.1.3 Multilayer Perceptron Model
Multilayer perceptron architecture is dependent on parameter
adjustment and the number of hidden layers in the network.
Multilayer perceptron consists of the input layer consisting of
input neurons, hidden layers, and output layer. Hidden layers
consist of dense layers. Parameters such as number of neurons in
hidden layers, learning algorithm, and loss function can be
optimized based on input data. Here input data is resampled
to convert it into hour-based sampling. Input data consist of a
sliding window of 24 data points for which we will predict the
next hour of the result. Input is basically 24 × 7 size data where 24
is the number of time steps, and the number of variables is seven
in each step. Adopted architecture has two hidden layers, each
with 100 neurons used to extract patterns from the data. Model is
trained with up to 50 epochs, and early stopping is used on data
with a patience value of eight, which ensures if there is similar
validation loss in each of eight consecutive epochs, then the
model will stop running, and most optimal weights will be stored
as output. ReLU activation is being used in the hidden layers, and
for optimizing the weights adam optimizer is used. The result of
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this model is as MAE:0,395, MSE:0,303, and RMSE:551. The
graph of actual vs predicted is as Figure 1:

6.1.4 Long Short Term Memory
The architecture of LSTM is dependent on the types of layers and
parameters adjustment of layers in the network. It consists of the
LSTM layer, Dropout Layer (to prevent overfitting), and Dense
layer to predict the output. After preliminary analysis of data
parameters such as number of layers, neurons in each layer, loss
functions, and optimization, algorithms are adjusted to give the
best possible outcome.

Input data consists of a sliding window consisting of 24
data points (resampled to an hour). So, the input to the LSTM
is 24 × 7 size data. There are a total of seven variables used to
make the prediction. The proposed architecture for the LSTM
layer with 100 neurons has been used for extracting patterns
from the data. Model is trained with up to 100 epochs, and
early stopping is used on data with a patience value of eight. It
ensures that if there is a similar validation loss in each of eight
consecutive epochs, then the model will stop running, and the
most optimal weights will be stored as output. For optimizing
the weights adam optimizer with a learning rate 0.0001 is used
with a batch size of 256.

The result of this model is asMAE:0,382, MSE:262, and RMSE:
512. The graph of actual vs predicted is as Figure 2.

6.1.5 CNN-Long Short Term Memory
The architecture of CNN-LSTM varies according to the number
of layers, type of layers, and parameter adjustment in each layer. It
consists of convolution layers, pooling layers, flatten layer, LSTM
layers, and dense layer to predict the corresponding output. For
convolution, the number of filters, size of the filter, and strides
need to be adjusted. By adjustment of these parameters to an
optimal level, accuracy can be significantly improved. To properly
adjust the parameters of the model, data should be analyzed
appropriately. As we already know that in CNN-LSTM, CNN
layers use multiple variables and extract features between them
hence improving time series forecasting significantly.

The correlation matrix shows a high correlation between
different time-series variables with the variable we want to
predict, i.e., Global Active Power (GAP). Input data consists
of a sliding window consisting of 24 data points (resampled to
an hour). So, the input to the CNN-LSTM is 24 × 7 size data.
There are a total of seven variables used to make the
prediction. The result of this model is as MAE:0,320, MSE:
221, and RMSE:470. The graph of actual vs predicted is as
Figure 3.

6.1.6 VAR-CNN-Long Short Term Memory(VACL)
In this model architecture, first, we estimate VAR correctly on
training data, and then we extract what VAR has learned and use
it to refine the training of the CNN-LSTM process, giving better
results. Firstly, to properly create a VAR model, data should be
stationary. As already discussed, using ADFTest, it can be
verified whether a time series is stationary or not. We
applied the ADF Test on variables like global active power,
global reactive power, voltage, global intensity, sub-metering 1,
sub-metering 2, and sub-metering 3 with the null hypothesis
that data has a unit root and is non-stationary. The ADF Test
shows that all-time series are stationary, so differentiation is not
needed for the series.

After doing this preliminary check, we need to find out the
lag order, which can be calculated using AIC. All we need to
do is to iterate through lag orders and find out the lag order
with a minimum AIC score compared to its predecessors. In
this case, 31 comes out to be the best lag order, as evident in
Table 1. After getting the best order for VAR, we fit the VAR
model on differentiated data. VAR can learn linear
interdependencies in time series. This information is
subtracted from raw data and gets the residuals that contain
non-linear data.

The architecture of the above model varies according to the
number of layers, type of layers, and parameter adjustment in
each layer. It consists of convolution layers, pooling layers, flatten
layer, LSTM layers, and dense layer to predict the corresponding
output. For convolution operation, the number of filters, filter

FIGURE 1 | Prediction vs Actual result of Multilayer Perceptron (Household Electricity Data).
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size, and strides need to be adjusted. By adjustment of these
parameters to an optimal level, accuracy can be significantly
improved. To properly adjust the parameters of the model, data
should be analyzed appropriately. Input provided to the model
consists of a sliding window of 24 data points (resampled to an
hour). So, the input to CNN-LSTM is 24 × 7 size data. The result
of this model is as MAE:0,317, MSE:210, and RMSE:458. The
graph of actual vs predicted is as Figure 4.

The combined results of all the algorithms are displayed in
Table 2. We can observe that from the above table that both
CNN-LSTM and the proposed approach perform well for given
data, but the proposed model performed slightly better in terms
of error metrics.

6.2 Discussion on Ontario Power Demand
Dataset
Amultivariate time-series dataset consists of characteristics about
Ontario Electricity Demand and corresponding Ontario Price
and various other variables affecting these per 5-min sampling. It
consists of ten time-series namely:

Ontario Price, Ontario Demand, Northwest, Northwest Temp,
Northwest Dew Point Temp, Northwest Rel Hum, Northeast,
Northeast Temp, Northeast Dew Point Temp, Northeast Rel
Hum. The target is to forecast Ontario Price into the future by
taking these variables. For the problem of price forecasting, two

FIGURE 2 | Prediction vs Actual result of LSTM model (Household Electricity Data).

FIGURE 3 | Prediction vs Actual result of CNN-LSTM model (Household Electricity Data).

TABLE 1 | Akaike information criterion on HouseHold data (Hebrail and Berard,
2012).

Lag order AIC BIC

29 −5.3868 −5.0376
30 −5.3882 −5.0271
31 −5.3893 −5.0161
32 −5.3892 −5.0040

AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.
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datasets from the Ontario region (Canada) are collected and
combined from the following data sources:

1) ieso Power Data Directory. (ontario Energy Price-Dataset,
2020);

2) climate and weather data, Canada. (official website of the
Government of Canada, 2020).

6.2.1 Preliminary Analysis
Preliminary analysis of data is being done, and patterns are
evaluated, enabling us to make correct predictions. It is
observed that time series follow seasonal patterns but there are
irregular trend components. Figure 5 depicts that only the
Ontario Demand time series should be considered for
forecasting the Ontario Price time series. The reason is the
approximately minimum coefficient value of correlation
should be 0.3 for having a constructive relationship between
each of these time series.

6.2.2 Performance Comparison of Models
The best-fitted model to be used depends on available historical
data, and the relationship between variables to be forecast.
Experiments have been conducted for other neural network
models consisting of MLP, LSTM, CNN-LSTM, etc., to

establish the effectiveness of the proposed models, and results
are evaluated with MSE and RMSE. Next, we will go through the
architecture of each of these models and compare the results:

6.2.3 Multilayer Perceptron Model
Multilayer perceptron architecture depends on parameter
adjustment and the number of hidden layers in the network.
Multilayer perceptron consists of input layer consisting of input
neurons, hidden layers, and output layer. The hidden layers
consist of dense layers. We can optimize the number of
neurons in hidden layers, learning algorithm, and loss
functions based on input data. Here input data is resampled to
convert it into hour-based sampling. Input data consists of a
sliding window of 24 data points for which we will predict the
next hour of the result. Input is 24 × 2 size data where 24 is the
number of time steps, and 2 is the number of variables in
each step.

The used architecture has one hidden layer with 100
neurons used to extract patterns from the data. Model is
trained with up to 80 epochs, and early stopping is used on
data with a patience value of eight. It ensures, if there is a
similar validation loss in each of eight consecutive epochs,
that the model will stop running, and the most optimal
weights will be stored as output. ReLU activation is being
used in the hidden layers, and for optimizing the weights,

FIGURE 4 | Prediction vs Actual result of VAR CNN-LSTM model (Household Electricity Data).

TABLE 2 | Combined results of all the algorithms on Household Data (Hebrail and Berard, 2012).

Mean absolute error Mean squared error Root
mean squared error

VAR 0.698 0.654 0.865
MLP 0.395 0.303 0.551
ERNN-MIMO Bontempi (2008) 0.56 0.201 0.79
Seq2Seq Sutskever et al. (2014) 0.56 0.201 0.78
LSTM Hochreiter and Schmidhuber (1997) 0.57 0.221 0.512
Hybrid CNN-LSTM Alhussein et al. (2020) 0.310 0.220 0.462
CNN-LSTM 0.320 0.221 0.470
VAR-CNN-LSTM(VACL) 0.317 0.210 0.458
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adam optimizer with learning rate, 0.000001 is used. The
result of this model is as MAE:0,309, MSE:00204, and RMSE:
0452. The graph of actual vs predicted is as Figure 6.

6.2.4 Long Short Term Memory
The architecture of LSTM depends on the types of layers and
parameters adjustment of layers in the network. It consists of the
LSTM layer, Dropout Layer (to prevent overfitting), and Dense
layer to predict the output. After preliminary analysis of data
parameters such as the number of layers, neurons in each layer,
loss functions, and optimization algorithms are adjusted to give
the best possible outcome.

Input data consists of a sliding window consisting of 24 data
points (resampled to an hour). So, the input to the LSTM is 24 × 2
size data. There are a total of two variables used to make the
prediction. The proposed LSTM layer, each with 64 neurons, has
been used for extracting patterns from the data. Model is trained
with up to 100 epochs, and early stopping is used on data with a
patience value of eight, which ensures if there is similar validation

loss in each of eight consecutive epochs, then the model will stop
running, and most optimal weights will be stored as output. The
result of this model is as MAE:0,265, MSE:0015, and RMSE:0389.
The graph of actual vs predicted is as Figure 7.

6.2.5 CNN-Long Short Term Memory
The architecture of CNN-LSTM varies according to the
number of layers, layer type, and parameter adjustment in
each layer. It consists of the convolution layers, pooling layers,
flatten layer, LSTM layers, and dense layer to predict the
corresponding output. For convolution operation, the
number of filters, size of the filter, and strides need to be
adjusted. By adjustment of these parameters to an optimal
level, accuracy can be significantly improved. To properly
adjust the parameters of the model, data should be analyzed
appropriately.

It is known that in CNN-LSTM, CNN layers use multiple
variables and extract features between them, improving time
series forecasting significantly. As from the correlation matrix

FIGURE 5 | Correlation matrix (Ontario Demand Data).

FIGURE 6 | Prediction vs Actual result of Multilayer Perceptron (Ontario Demand Data).
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in Figure 5, it is observed that there is a high correlation
between Ontario Price and Ontario Demand. Input data
consists of a sliding window consisting of 24 data points
(resampled to an hour). So, the input to the CNN-LSTM is
24 × 2 size data. There are a total of 2 variables used to make
the prediction. The result of this model is as MAE:0,119, MSE:
00068, and RMSE:02616. The graph of actual vs predicted is as
Figure 8.

6.2.6 VAR-CNN-Long Short Term Memory(VACL)
In this model architecture, we first estimate VAR correctly on
training data, and then we extract what VAR has learned and
use it to refine the training of the CNN-LSTM process. Firstly,
to properly create a VAR model, we need to make data
stationery, if not in the requisite format. As already
discussed, using the ADFTest, we can check whether a time
series is stationary or not. Results from the ADF Test show
that every time-series are stationary, we do not need to
differentiate the series.

After doing these preliminary checks, we need to find out the lag
order, which can be calculated using AIC. All we need to do is to
iterate through lag orders and find out the lag order with a
minimum AIC score compared to its predecessors. In this case,
29 comes out to be the best lag order, as evident in this Table 3.
After getting the best order for VAR, we fit the VAR model on
differentiated data. VAR can learn linear interdependencies in time
series. This information is subtracted from raw data to get the
residuals which contain non-linear data as evident from Figure 9.

FIGURE 7 | Prediction vs Actual result of LSTM model (Ontario Demand Data).

FIGURE 8 | Prediction vs Actual result of CNNLSTM model (Ontario Demand Data).

TABLE 3 | Akaike information criterion on ontario demand data (ontario Energy
Price-Dataset, 2020) (official website of the Government of Canada, 2020).

Lag order AIC BIC

28 17.5311 17.5587
29 17.5303 17.5589
30 17.5304 17.5598
31 17.5266 17.5571
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After getting forecasting results from VAR, CNN-LSTM
is trained on those forecasted results along with original
data to learn all the intricacies from the data. The
architecture of the CNN-LSTM model varies according to
the number of layers, layer type, and parameter adjustment in
each layer. It consists of convolution layers, pooling layers,
flatten layer, LSTM layers, and dense layer to predict the
corresponding output. For convolution operation, the
number of filters, filter size, and strides need to be
adjusted. By adjustment of these parameters to an optimal
level, accuracy can be significantly improved. To properly
adjust the parameters of the model, data should be analyzed

appropriately. Input provided to the model consists of a
sliding window of 24 data points (resampled to an hour).
So, the input to CNN-LSTM is 24 × 2 size data as shown in
Figure 10. The result of this model is as MAE:0,123, MSE:
00054, and RMSE:0233. The graph of actual vs predicted is as
Figure 11.

The combined results of all the algorithms for Ontario
Demand Data is displayed in Table 4. From the results of
Table 4, it is clearly observed that the proposed VAR-CNN-
LSTM(VACL) hybrid model has been compared with state of
art models MV-KWNN(Talavera-Llames et al., 2019), MV-
ANN(Hippert et al., 2001), ARIMAX (Box et al., 2011), VAR,

FIGURE 9 | Residuals left after applying VAR (Ontario Demand Data).

FIGURE 10 | VAR CNN-LSTM model summary (Ontario Demand Data).
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MLP, LSTM and CNN-LSTM, and it outperforms all other
models in terms of performance.

7 CONCLUSION AND FUTURE SCOPE

In this paper, the forecasting method for electricity load is
investigated on a large dataset having linear and non-linear
characteristics. We first formulated the problem as predicting the
future term of multivariate time-series data, and then the proposed
hybrid model VAR-CNN-LSTM(VACL) was deployed for efficient
short-term power load forecasting. We have shown that the
historical electrical load data is in the form of time series that
consists of linear and non-linear components. Due to hybrid nature
of the proposed model, the linear components were handled by
VAR and residuals containing non-linear components by the
combined CNN-LSTM layered architecture. The output
efficiency was further enhanced by data preprocessing and
analysis. With data preprocessing, the problem of missing values
was solved, and data were normalized to bring values of the dataset
to a common scale (Jaitley, 2019). From the data analysis, the
correlation between variables have been discovered for, e.g., in
household power consumption data, it was found that Global
Active Power is correlated with all the variables in time series,
so all variables wereused for forecasting. Since in Ontario Demand

Dataset, only two variables were correlated, so all others were
filtered out. The proposed method is modeled and tested on two
publicly available datasets: Household Power Consumption Dataset
and Ontario Demand dataset for short-term forecasting. The
evaluation metrics used were MAE, MSE, and RMSE to show
the effectiveness and errors respectively. From the results, it was
established that the proposed hybrid VACLmodel performed better
than other statistical and deep learning based techniques like VAR,
CNN-LSTM, LSTM, MLP, and state-of-the-art model like MV-
KWNN, MV-ANN and ARIMAX in all evaluation metrics.

One of the limitations of the proposed model was that
determining all the hyperparameters like number of neurons,
learning rate, number of epochs, batch size, etc., required great
effort and time. As a future scope, more advanced
hyperparameter optimization techniques may be used. Since
the model has been tested for short-term load forecasting, the
presented model will further analyze for the medium and long-
term forecasting scenario.
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FIGURE 11 | Prediction vs Actual result of VAR CNN-LSTM model (Ontario Demand Data).

TABLE 4 | Combined results of all the algorithms on Ontario Demand Data (ontario Energy Price-Dataset, 2020) (official website of the Government of Canada, 2020).

Mean absolute error Mean squared error Root
mean squared error

VAR 0.651 0.521 0.569
MLP 0.0309 0.00204 0.0452
LSTM Hochreiter and Schmidhuber (1997) 0.0265 0.0015 0.0389
CNN-LSTM 0.0119 0.00068 0.02616
MV-kWNN Talavera-Llames et al. (2019) 0.0471 0.0421 0.0396
MV-ANN Hippert et al. (2001) 0.0596 0.0623 0.0696
ARIMAX Box et al. (2011) 0.0460 0.0583 0.0596
VAR-CNN-LSTM(VACL) 0.0123 0.00054 0.0233
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A Novel Decomposition and
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Forecasting Monthly Electricity
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With the share of electricity in total final energy consumption increasing quickly, the world is
becoming increasingly dependent on electricity, which makes it more and more important
to improve the forecasting accuracy of electricity consumption to ensure the normal
operation of economic activities. In this paper, a novel decomposition and combination
technique to forecast monthly electricity consumption is proposed. First, we use STL
decomposition to obtain the trend, season, and residual components of the time series.
Second, we use SARIMA, SVR, ANN, and LSTM to forecast trend, season, and residual
component, respectively. Third, we use time correlation principle to improve the
forecasting accuracy of season component. Fourth, we integrated the residual
component predicted by SARIMA, SVR, ANN, and LSTM into a new sequence to
improve the forecasting accuracy of residual component. In order to verify the
performance of the proposed forecast model, monthly electricity consumption data in
China is introduced as an example for empirical analysis. The results show that after STL
decomposition, time correlation modification, and residual modification, the forecasting
accuracy of each model has been gradually improved. We believe that the proposed
forecast model in this paper can also be used to solve other mid- and long-term forecasting
problems with obvious seasonal characteristics.

Keywords: monthly electricity consumption, STL, time correlation modification, ANN, LSTM

INTRODUCTION

Background
Resource depletion and global climate change are serious problems that human society is facing and
will face for a long time. To escape from this dilemma, the global energy mix needs two
transformations: clean energy substitution on the energy supply side and electric energy
substitution on the energy consumption side. This paper focuses on electricity consumption.
According to statistics, global electrification of the final consumption continues to follow an
increasing trend, and the share of electricity in total final energy consumption is close to 20% in 2020.

As the world becomes more and more dependent on electricity, planning for electricity
production is crucial. In addition, electricity is difficult to store, so it is usually used
immediately after it is generated. This further increases the need for power companies to plan
their electricity supply in a proactive manner. Reliable forecast of future electricity consumption
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level is the primary guiding principle of planning. In particular,
high forecasting accuracy of medium- and long-term electricity
consumption is the key to power system scheduling and
planning. In contrast, inaccurate forecast of electricity
consumption can backfire. Overestimation will waste scarce
energy resources, huge capital investment, and long
construction time. Underestimation will lead to more serious
negative consequences, such as power shortage. Clearly, if
effective early warning is given in advance based on high
forecasting accuracy of electricity consumption, some
measures can be adopted to avoid negative consequences.
However, electricity consumption is uncertain, complex, and
nonlinear, which depends on political conditions, economy (Lin
and Liu, 2016), human activities, population behavior (Hussain
et al., 2016), climate factors (Hernández, 2013), and other
external factors affecting the forecasting accuracy of
electricity consumption.

Literature Review and Motivation
At present, many techniques are used to forecast electricity
consumption, which can be roughly divided into three
categories: nonlinear intelligent model, statistical analysis
model, and gray forecasting model. Nonlinear models mainly
include the artificial neural network (Kandananond, 2011; Kaytez
et al., 2015; Liu et al., 2017; Ghadimi et al., 2018; Bedi and
Toshniwal, 2019; Hamzaçebi et al., 2019), support vector machine
(Pai and Hong, 2005; Kavaklioglu, 2011; Cao andWu, 2016), and
Markov chain (Zhao et al., 2014). In addition to the nonlinear
intelligent models mentioned above, statistical analysis models,
such as regression analysis method (Mohamed and Bodger,
2005; Wang et al., 2018) and autoregressive integrated moving
average (Yuan et al., 2016), have also been widely used in
electricity consumption forecasting. The gray forecasting
model proposed by Deng enjoys high popularity in many
forecasting applications because it can describe the
characteristics of uncertain systems even in the face of a
small amount of data. Therefore, some literature forecast
electricity consumption based on the gray model (Akay and
Atak, 2007; Bahrami et al., 2014; Zhao and Guo, 2016; Xu et al.,
2017; Ding et al., 2018; Wu et al., 2018).

These methods can generally provide good forecasts.
However, the statistical analysis models have the limitation
of linear (or near linear) assumption, the gray forecasting
models are usually only suitable for time series that
approximate exponential growth, and the nonlinear
intelligent models often suffer from overfitting or the
difficulty of parameter selection. To remedy these
shortcomings, some decomposition and combination
techniques have been proposed in recent years and achieve
better performance: the SARIMA model with residual
modification (Wang et al., 2012), wavelet transform
combined with machine learning and time series models
(Nguyen and Nabney, 2010), weighted hybrid model where
trend and seasonal components are predicted by combined
method, and SARIMA, respectively (Zhu, 2011), bagging
ARIMA and exponential smoothing methods (de Oliveira
and Cyrino Oliveira, 2018), convolutional neural networks

and fuzzy time series (Sadaei et al., 2019), and structural
combination of seasonal exponential smoothing forecasts
(Rendon-Sanchez and de Menezes, 2019).

For the above existing researches, there are still some issues
that need to be further studied. First, the statistical analysis
models assume linearity and have good forecasting accuracy
for periodic and regular sequences. The nonlinear intelligent
model can forecast nonlinear and irregular time series better,
but it has the problem of overfitting. How could the
advantages of the two methods be combined to improve
the forecasting accuracy? Second, except for the
fluctuations of monthly electricity consumption affected by
extreme weather changes, and sudden major economic and
health events, the monthly electricity consumption also shows
strong periodicity and regularity, so the comprehensive
utilization of these two characteristics is meaningful to
increase forecasting accuracy.

Contributions
To bridge the gap discussed above in the Literature review and
motivation section, this paper develops a novel decomposition
and combination forecasting technique. The primary research
contents of this paper include three parts. First is the research on
the monthly electricity consumption forecast based on STL
decomposition. Second is the research on a time correlation
modification based on annual periodicity and adjacent
similarity to improve the forecasting accuracy of the season
component. Third, considering the residual component has
nonlinear and irregular characteristics, the individual model
may only extract a certain feature of the sequence. Therefore,
we integrate the residual component predicted by four
models into a new sequence to improve the forecasting
accuracy of the residual component. The main contributions
of this paper are as follows:

1) A novel decomposition and combination forecasting model
utilizing STL decomposition, time correlation principle
(embodied as annual periodicity and adjacent similarity),
and hybrid forecasting principle is proposed.

2) The monthly electricity consumption data of China
are applied to evaluate the performance of the
proposed model.

The remainder of the paper is organized as follows. The
Electricity consumption month-ahead forecasting model section
introduces the proposed forecasting model. The Case study
section presents the simulation results and discussion, in
which the performance of the proposed forecasting model is
evaluated. Finally, conclusions are drawn in the Conclusion
section.

ELECTRICITY CONSUMPTION
MONTH-AHEAD FORECASTING MODEL

This section first briefly introduces individual models, including
the STL algorithm, SARIMA, SVR, ANN, and LSTMmodel. Then
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the operation process of the proposed decomposition and
combination method is described.

Seasonal–Trend Decomposition Using
Loess Decomposition
For seasonal time series, academics generally use STL
decomposition proposed by Cleveland et al. (1990) to obtain
trend, season, and residual components. STL is a decompose
model in the form of addition. In STL, loess is used to divide the
time series into trend component, seasonal component, and
residual component. Division is addition, that is, adding up
the parts to get the original series. Specifically, the steps of
STL decomposition are 1) detrending; 2) periodic subsequence
smoothing: establish a sequence for each seasonal component and
smooth it separately; 3) smoothing periodic substring low-pass
filtering: recombine substring to smooth; 4) detrending the
seasonal series; 5) detrending the original series using the
seasonal components calculated in the previous steps; and 6)
smoothing the de-seasonal sequence to obtain the trend
component.

Seasonal Autoregressive IntegratedMoving
Average
SARIMA is one of the most widely used linear models for time
series prediction. The general equation of this model is given by
Eq. 1.

ϕp(B)(1 − B)dΦP(Bs)(1 − Bs)Dyt � θq(B)ΘQ(Bs)at. (1)

Here yt is time series, at is white noise, and B is the lag
operator. D represents the seasonal differentiation order, and d
represents the regular differentiation order.

ϕp(B) � 1 − φ1B − φ2B
2 − . . . − φpB

p. (2)

θp(B) � 1 − θ1B − θ2B
2 − . . . − θqB

q. (3)

Eqs. 2, 3 represent the autoregressive and moving average
polynomial, respectively. They represent the dependence of
future values of time series on past values as well as errors.

ΦP(B) � 1 − μ1B
S − μ2B

2S − . . . − μPB
PS. (4)

ΘQ(B) � 1 − υ1B
S − ]2B2S − . . . − ]PBQS. (5)

Similarly, Eqs. 4, 5 represent the seasonal autoregressive and
seasonal moving average polynomials, respectively. Addition
of these polynomials to the ARIMA equation helps in
capturing the seasonal variation in time series.
Differentiation is necessary for converting the nonstationary
time series to a stationary one. S represents the order of
seasonality.

Support Vector Machine
SVM was first proposed by Vapnik (1963) based on the statistical
learning theory and principle of structural risk minimization,
which possess good performance even for small samples. The

basic idea of support vector regression is to map original data to
high-dimensional feature space and perform linear regression in
the space. It can be formulated into:

f(x) � wTφ(x) + b, (6)

where φ(x) is a nonlinear mapping function, f(x) is the
estimation value, and wT and b are weights. It can be
translated into an optimization problem:

Min
1
2
wTw + C∑T

t�1(ξt + ξpt ),
s.t

⎧⎪⎨⎪⎩
wTφ(xt) + b − yt ≤ ε + ξt, (t � 1, 2, . . . , T)
yt − (wTφ(xt) + b)≤ ε + ξpt , (t � 1, 2, . . . , T)

ξt, ξ
p

t ≥ 0
, (7)

where C is the penalty parameter, and ξt and ξpt are the
nonnegative slack variables. Generally speaking, the
parameters of SVR have a great influence on the accuracy of
the regression estimation. Thereby, the grid search method is
employed to automatically choose the optimal parameters of SVR
in this paper.

Artificial Neural Network
ANN is an information processing method based on the
biological neural network. Neural networks can theoretically
simulate any complex nonlinear relationship through
nonlinear units (neurons) and have been widely used in the
field of forecast. The structure of artificial neural network consists
of input layer, hidden layer, and output layer. The most widely
used ANNmodel is the BP neural networkmodel based on the BP
algorithm. The neural network is determined by determining the
weight between each layer. Therefore, the neural network is
trained to set all the weights before being used for prediction.
The initial weights are set randomly, and the output data can be
obtained according to certain rules when the training process is
going forward. The weights are modified based on the difference
between the output data and the expected data during the fallback
process. The forward and backward process is repeated until the
difference between the output data and the required data is small
enough.

Long Short-Term Memory
Traditional artificial neural networks (ANN) attempt to establish
direct mapping between input historical data and output forecast
data to achieve prediction methods. However, due to the absence
of time correlation in data series, the neural network model
cannot capture the relationship between data and time, which
limits its application in time series prediction methods.
Therefore, recursive neural network (RNN) is proposed to
overcome this shortcoming. By adding cyclic connections on
neurons, RNN can establish sequence-to-sequence mappings
between input and output data. Therefore, the output of each
time step is affected by the input of the previous time step.
Therefore, RNN is used to realize the memory feature (Sutskever
et al., 2014; LeCun et al., 2015).

The structure of RNN is shown in Figure 1. Each node
represents a single time-step neuron. The connection weight
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of input neuron isW1, the self-connection weight of each neuron is
W2, and the connection weight of output neuron is W3. The input
data sequence enters the network in turn according to the time step,
and the weight coefficient is recycled.

The Proposed Forecast Framework
The proposed forecast framework utilizing STL decomposition,
time correlation modification (embodied as annual periodicity
and adjacent similarity) and residual modification is illustrated in
Figure 2.

In Figure 2, The proposed forecast framework consists of four
steps:

In the first step, we use the Seasonal–Trend decomposition
using Loess (STL decomposition) to obtain the trend, season, and
residual components of the time series.

In the second step, we use SARIMA, SVR, ANN, and LSTM
to forecast trend, season, and residual component,
respectively.

In the third step, we use the time correlation principle
to improve the forecasting accuracy of the season component.
The season component presents time correlation
characteristics, which embodies as annual periodicity
and adjacent similarity. Here the annual periodicity
means that data from the same month in the next year are

FIGURE 1 | The structure of recursive neural network (RNN) (Wang et al., 2020).

FIGURE 2 | The proposed forecast framework.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7923584

Zhang and Li Electricity Consumption Forecasting

83

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


similar. The adjacent similarity means that data are close to
each other in adjacent months. In the second step,
only adjacent similarity is used. We divide the season
component into 112 subsequences, each of which
represents a certain month. Then the exponential
smoothing method is used to forecast each subsequence.
The forecasting results are weighted with the season
component predicted by each model (SARIMA, SVR, ANN,
LSTM) to improve the forecasting accuracy of the season
component. The weight is calculated based on the last
forecasting error of the model.

In the fourth step, because the residual component has
nonlinear and irregular characteristics, the individual model
may only extract a certain feature of the sequence, so the
forecasting accuracy is low. In fact, it is rare that a single
forecasting model is always best in all cases. Each model has
its own unique strengths and weaknesses. When multiple
forecasting models are available, consider a combined
approach, which is a good way to take full advantage of
the strengths of each model. Therefore, we integrate the
residual component predicted by SARIMA, SVR, ANN,
and LSTM into a new sequence, and replace the residual
component predicted by the above four methods with the new

sequence to improve the forecasting accuracy of the residual
component.

CASE STUDY

Data Collection
We evaluate the performance of the proposed forecasting method
using the monthly electricity consumption data of China.
However, these figures cannot be used directly as Chinese
New Year always lasts for a few days in January or February.
Almost all companies and factories have stopped operating. As a
result, electricity consumption in January and February is
sometimes abnormal. To avoid this problem, we treat the
January and February averages as observations of a new
month 1 and 2 each year, i.e., each year has 11 monthly
values with a period length of 11. This study collects electricity
consumption data from the beginning of 1 and 2 2006 to the end
of August 2021 to keep relevant to the current situation of
electricity development. These original data are shown in
Figure 3.

Experimental Design
We select the data from1 and 2 2006 toDecember 2018 as the training
dataset (i.e., thefirst 143 data points) and the remaining data as the test
dataset (i.e., the last 29 data points). The training data set is further
divided into the optimization training data set and the verification data

FIGURE 3 | The monthly electricity consumption of China from 1 and 2 2006 to August 2021.

2In the later empirical research, we treat the January and February averages as
observations of a new month 1 and 2 each year.
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set. The optimization training data set contains the first 121 data
points, and the verification training data set contains the last 22
data points. Optimization training and validation data sets were
used to determine the hyperparameters of SVR, ANN, and
LSTM models, while test data sets are used to evaluate
forecasting performance.

Three error indices, mean absolute error (MAE), mean absolute
percentage error (MAPE), and correlation coefficient (COR), are
applied to evaluate the model performance according to forecast
results. The official functions of the three error indices are:

MAE � ∑n
i�1
∣∣∣∣yi − ŷi

∣∣∣∣
n

.

MAPE � 100%
n

∑n

i�1
∣∣∣∣yi − ŷi

∣∣∣∣
yi

∣∣∣∣.
COR � Cov(yi , ŷi)

σyσ ŷ
,

where y is the actual value, ŷ is the forecasted value, and i is the
index value of the data.

FIGURE 4 | The trend, seasonal, and residual for monthly electricity consumption data decomposed by Seasonal–Trend decomposition using Loess (STL).

TABLE 1 | Performance evaluations of different models with or without Seasonal–Trend decomposition using Loess (STL).

Horizons One-step ahead Two-step ahead Three-step ahead

Indices Mean
absolute
error
(MAE)
(TWh)

Mean
absolute

percentage
error

(MAPE)
(%)

Correlation
coefficient(COR)

MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR

Without STL SARIMA 230 3.58 0.88 259 4.06 0.86 280 4.40 0.85
SVR 346 5.59 0.79 346 5.59 0.79 383 6.22 0.76
Artificial neural
network (ANN)

266 4.22 0.87 266 4.22 0.87 317 5.07 0.86

LSTM 336 5.36 0.78 336 5.36 0.78 406 6.35 0.71

With STL STL-SARIMA 126 1.98 0.96 121 1.93 0.96 131 2.10 0.96
STL-SVR 145 2.23 0.95 145 2.23 0.95 197 3.04 0.94
STL-ANN 150 2.34 0.95 150 2.34 0.95 189 2.99 0.94
STL-LSTM 169 2.78 0.96 173 2.83 0.96 211 3.41 0.93
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FIGURE 5 | Trend, season, random error ratio.

TABLE 2 | Performance evaluations of different models with time correlation modification and residual modification.

Horizons One-step ahead Two-step ahead Three-step ahead

Indices MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR

TCM STL-SARIMA-TCM 118 1.86 0.97 115 1.83 0.96 127 2.04 0.96
STL-SVR-TCM 131 2.05 0.97 131 2.05 0.97 182 2.84 0.96
STL-ANN-TCM 134 2.11 0.97 136 2.14 0.96 168 2.68 0.96
STL-LSTM-TCM 158 2.61 0.97 165 2.71 0.97 167 2.70 0.95

RM STL-SARIMA-
TCM-RM

113 1.82 0.97 113 1.80 0.97 123 1.98 0.96

STL-SVR-TCM-RM 135 2.14 0.97 136 2.15 0.97 187 2.92 0.96
STL-ANN-TCM-RM 129 2.06 0.97 132 2.10 0.96 156 2.48 0.96
STL-LSTM-TCM-RM 129 2.10 0.97 131 2.11 0.97 141 2.27 0.96

FIGURE 6 | Comparison between different models for 1-month ahead forecasting.
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FIGURE 7 | Comparison between different models for 2-month ahead forecasting.

FIGURE 8 | Comparison between different models for 3-month ahead forecasting.

FIGURE 9 | STL-SARIMA–time correlation modification (TCM)–residual modification (RM) for 1-month ahead forecasting.
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Results
Seasonal–Trend decomposition using Loess
Decomposition
Figure 4 shows the STL decomposition results of the monthly
electricity consumption. The trend component of the electricity
consumption of China is increasing year by year, and the growth
trend has accelerated since 2016. This is mainly because in 2016,
eight departments in China jointly issued The Guidelines on
Promoting the Substitution of Electric Energy, with a view to
increasing the proportion of electric energy in the final energy
consumption to 27%. Electric energy substitution is an important
way to achieve carbon peak and carbon neutrality by replacing

coal, oil, gas, and wood with electricity in energy consumption.
The season component vibrates more and more. Due to financial
crisis, extreme weather events, and epidemic, there are several
relatively large negative and positive shocks on the residual
component. If the original sequence is directly used, these
huge shocks will seriously threaten the forecasting accuracy of
the model.

Table 1 shows the performance evaluation results of four
models without STL decomposition and with STL
decomposition. The model comparisons demonstrate that STL
decomposition is effective in boosting the forecasting accuracy of
monthly electricity consumption. Compared with any single

FIGURE 10 | STL-SARIMA-TCM-RM for 2-month ahead forecasting.

FIGURE 11 | STL-SARIMA-TCM-RM for 3-month ahead forecasting.

TABLE 3 | Performance evaluation of STL-SARIMA-TCM-RM in 2019, 2020, and 2021.

Horizons One-step ahead Two-step ahead Three-step ahead

Indices MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR

2019 70 1.16 0.99 52 0.86 0.99 48 0.76 0.99
2020 166 2.77 0.97 193 3.19 0.97 220 3.66 0.96
2021 97 1.36 0.98 82 1.11 0.99 89 1.24 0.98
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model (SARIMA, SVR, ANN, LSTM), the models with STL
decomposition leads to reductions in all of the evaluation
indices (MAE, MAPE and COR).

According to Table 1, the divide-and-conquer strategy
improves the forecasting accuracy. Next, we analyze the
source of errors, that is, the percentage of trend, season,
and residual component forecasting errors to the total
errors. As shown in Figure 5, for any model, most of the
errors come from residual component forecast. SARIMA, in
particular, was the least effective. This is because the residual
component has nonlinear and irregular characteristics, and
SARIMA is not good at forecasting these kinds of sequences. In
addition, a single model may only extract a certain feature of
the sequence, so the forecasting accuracy is low. For trend
component, it can be seen that SARIMA has the highest
forecasting accuracy, while for machine learning algorithms,
such as SVR, ANN, and LSTM, the accuracy is not high.
Therefore, it can be concluded that the traditional statistical
method is better for simple sequence like trend component.
The forecasting errors of season component also account for a
large part.

Time Correlation Modification
As shown in Figure 5, the errors caused by season component
account for 18%–28%. In this section, we use the periodicity of
the seasonal series to improve the forecasting accuracy of the
season component. As we can see, the season component presents
time correlation characteristics, which embodies as annual
periodicity and adjacent similarity. We divide the season
component into 11 subsequences, each of which represents a
certain month. Then exponential smoothing method is used to
forecast each subsequence. The forecasting results are weighted
with the season component predicted by each model (SARIMA,
SVR, ANN, and LSTM) to improve the forecasting accuracy of
the season component. The weight is calculated based on the last
forecast error of the model. Rows 3–6 in Table 2 show that the
forecasting accuracy has been improved after time correlation
modification (TCM).

Residual Modification
Figure 5 shows that most of the errors come from a residual
component. This is because the residual component has
nonlinear and irregular characteristics; a single model may
only extract a certain feature of the sequence, so the
forecasting accuracy of a single model is low. Therefore, we
need to improve the forecasting accuracy of the residual
component. We integrate the residual component predicted
by SARIMA, SVR, ANN, and LSTM into a new sequence,
and replace the residual component predicted by the
above four methods with the new sequence to optimize
each model. Rows 7–10 in Table 2 show that the
forecasting accuracy has been improved after residual
modification (RM).

Comparison Between Different Models
Figures 6–8 show that after STL decomposition, time correlation
modification, and residual modification, the forecasting accuracy

of each model has been gradually improved. Among them, the
forecasting accuracy improved themost after STL decomposition.
This is mainly because there are many random disturbances in
the original sequence, and the model will be affected by these
disturbances if it is not decomposed.

DISCUSSION

According to Figures 6–8, STL–SARIMA–TCM–RM is the most
accurate forecasting model.3. As we can see, on the one hand,
compared with machine learning, SARIMA is better at forecasting
trend, season, and other sequences with clear patterns. That is why it
is so accurate. On the other hand, SARIMA is not good at forecasting
an irregular random term. Therefore, residual modification can
improve the forecasting accuracy of SARIMA most significantly.
Figures 9–11 show the STL–SARIMA–TCM–RM forecasting
performance in the data set, as well as a scatter plot of
forecasting results and actual values.

Considering that the test set includes COVID-19, we divide the
test set into 2019, 2020, and 2021. Table 3 shows that the 2019
forecast results are significantly better than that for 2020 and 2021.

CONCLUSION

This paper provides a novel decomposition and combination
method to forecast electricity consumption. This approach
first uses STL to decompose the sequence into trend, season,
and residual components. Then the three decomposed
subsequences are forecasted, and the season component
forecasting results are modified according to the annual
periodicity, and the forecasting results of the residual
component of each model are integrated. The results show
that STL-SARIMA-TCM-RM is the most accurate
forecasting model.

In addition to electricity forecasting, we believe that the
forecasting method proposed in this paper can also be used to
solve other mid- and long-term forecasting problems with
obvious seasonal characteristics, including tourist flow
forecasting, energy consumption forecasting, traffic flow
forecasting, and so on. Furthermore, this paper only focuses
on univariate time series analysis and does not consider other
factors affecting electricity consumption. If these factors can be
introduced into the proposed learning method, the predictive
performance may be better.
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Urban Household Energy
Consumption Forecasting Based on
Energy Price Impact Mechanism
Zhang Lianwei* and Xiaoni Wen

School of Economics and Management, Xidian University, Xi’an, China

The energy price influence system is one of the key mechanisms in the study of energy
consumption. China’s household energy consumption has obvious regional differences,
and rising income levels and urbanisation have changed the willingness and ability of
households to make energy consumption choices. Based on the linear price effect of
household energy consumption, this paper explores the scenario characteristics of energy
prices affecting energy consumption, taking electricity and natural gas consumption as
examples. Based on household energy consumption statistics from 2005 to 2018 in 36
major cities across China, the accuracy and change trends of household energy
consumption forecasts are investigated through the decision tree-support vector
machine (DT-SVR) non-linear forecasting technique. The study shows that the non-
linear forecasting technique accurately portrays the predicted trends of changes in
total urban household electricity and natural gas consumption. Within the less
developed regions of economic development, income levels are still the main
constraint on changes in urban household energy consumption, and the stimulating
effect of income levels on household energy consumption has not been seen in the
process of economic development in these less developed regions. Urbanisation as an
important factor in examining household energy consumption, different development
patterns and development processes will gradually be reflected in scenario aspects
such as the choice of urban household energy consumption and changes in total
consumption.

Keywords: household energy consumption, electricity, natural gas, DT-SVR, energy forecasting

INTRODUCTION

Globally, household energy consumption has reached nearly 35% of energy end-use consumption;
the actual figures for China reflect this proportion to be over 10%, making it the second largest energy
consuming sector in addition to industrial energy consumption. With the rapid economic and social
development of China, household energy consumption has been growing at a relatively fast rate, with
an average annual growth rate of 8% over the last two decades (Zheng et al., 2014), and this growth
trend will continue to accelerate in the future (Yuan et al., 2015).

In terms of the main types of energy consumed by households in China, the use of fossil fuels is
still the main source of household energy consumption. Under the constraints of global warming and
environmental pollution, policy changes in household energy consumption will face reconciliation of
accounts in terms of consumption structure and consumption patterns. There are many factors
influencing household energy consumption, including per capita income, urbanisation and climatic
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conditions, when examined in terms of economic, social and
environmental factors. Among these, there are inconsistent
findings on the impact of urbanisation on household energy
consumption. As the role of the population changes with
urbanisation, the increased demand for electricity and the
consumption of new electrical products are the main reasons
for the increase in energy consumption due to the shift from rural
to urban households (Fan et.al., 2017) Another type of study
suggests that the efficient use of public facilities due to dense
urban populations will help reduce the growth of household
energy consumption (Han et al., 2016), etc. In addition, the main
factor influencing household energy consumption is temperature
conditions, which is important for the characteristics of
household energy consumption in China. Energy consumption
in the country is concentrated in a number of typical economic
regions. Overall, there is a significant spatial distribution of
household energy consumption in China. Beijing, Tianjin and
Hebei are the main centres of energy consumption. In terms of
changes in total per capita energy consumption, the main
regional characteristics are “high in the north and low in the
south”, and the national trend of household coal consumption is
“high in the west and low in the east”. In the area of household
electricity consumption, the nationwide pattern is “high in the
south and low in the north”.

REVIEW OF THE LITERATURE

Macro Factors of Household Energy
Consumption
In terms of the influence of key factors on changes in total
household energy consumption, income levels and population
size are the main drivers of changes in household energy
consumption. Increasing per capita income is positively
correlated with household energy consumption; urbanisation
has a typical “U” shaped non-linear relationship with
household energy consumption; and energy prices have a
significant negative relationship in influencing the change in
total household energy consumption. At the same time, the
trend of the influence of regional temperature on household
energy consumption varies from region to region. In terms of
household electricity consumption, per capita income, energy
price, regional temperature, and urbanisation all show non-linear
relationships on changes in household electricity consumption
(Ding and Peng, 2020).

The consumption of energy in households has become a
major sector contributing to the main growth in energy
consumption. In this context, domestic and international
research on household energy consumption is increasing
year by year. In terms of exploring the factors influencing
household energy consumption, Barnes et al. found, based on
the energy ladder theory, that the structure of energy
consumption shifts as household income increases; when
household income increases by a certain amount (US$1000-
1500) the consumption of electricity and natural gas increases
significantly (Dougherty, 1993). Of course, changes in
household energy mix need to take into account other

factors such as utilities, resource endowments, cultural
preferences, etc. However, because of possible economies of
scale, demographic factors are important factors in examining
structural changes in household energy consumption
(Jingchao et al., 2012).

On the other hand, as urbanisation continues, the differences
in energy consumption between urban and rural households have
been widely discussed. Urban households have higher energy
requirements per capita than other households due to differences
in availability endowments (Lenzen et al., 2006). China’s
residential energy consumption has significant regional and
stepwise characteristics: heating is the main component of
winter energy consumption in northern cities; urban
households have better energy consumption attributes than
rural households in several aspects. Overall, total household
energy consumption in China is low, dominated by coal
consumption, and there is a large gap between urban and
rural household energy consumption behaviour.

Micro-factors of Household Energy
Consumption
Since the 1990s, the public has become aware of the fact that large
emissions of greenhouse gases are the main cause of warming,
and that greenhouse gases mainly originate from human
consumption of energy, so that the relevant subjects
concerning energy consumption and its carbon emissions have
become the focus of academic research. Energy consumption in
the household sector, on the other hand, has been a major area of
study in recent years where the energy consumption sector is set
to grow. Generally speaking, household energy consumption is
contextually and morphologically diverse and can be divided into
residential energy consumption generated in the internal space of
the home and transport energy consumption generated outside
the home through the use of private cars.

With regard to the micro perspective on the factors
influencing household energy consumption, domestic studies
have mainly conducted quantitative analysis from the
perspective of household characteristics (e.g., housing type,
household size, household type, etc.) and individual attributes
(e.g. income level, education level, age stage, occupational
category, etc.) (Saunders, 2013). However, the variability in
habits and lifestyles of different households is one of the main
reasons for intra-household differences in energy consumption.
For example, changes in the lifestyles of household members,
such as an increase in the number of dual-earner households and
more time spent on leisure activities outside the home, can lead to
a reduction in the amount of time people spend indoors and,
consequently, a reduction in residential energy consumption.
However, it has also been suggested that the relationship
between residence time and energy consumption should be
analysed more comprehensively in relation to the socio-
economic characteristics of household members. Many foreign
scholars have found that households with fewer members
consume more residential energy. In the case of single-person
households, for example, these households consume 17–30%
more energy than households with two people living together.
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This finding also demonstrates the importance of economies of
scale in reducing energy consumption levels.

Energy Mix Characteristics of Household
Energy Consumption
As China’s economy develops and urbanisation progresses, the
demand for household energy consumption has increased
significantly. In the vast rural areas, it is still common for
residents to rely on direct burning of firewood, straw and coal
for their daily cooking. According to statistics, in 2014, China’s
per capita domestic energy use was 346 kg of standard coal, of
which 364 kg of standard coal were used by urban residents and
325 kg of standard coal by rural residents. From the perspective of
research, there are three perspectives on China’s rural energy
consumption: 1) Based on provincial-level rural energy statistics,
the spatial pattern distribution and temporal distribution
characteristics of China’s rural energy consumption are
studied. 2) A study of the structure and willingness to
consume energy in rural areas, based on field survey data
from rural households. 3) An analysis of the characteristics of
rural individual energy consumption.

There are two different judgments on the transition of rural
household energy consumption in academia: one view is that
rural households in China still mainly use traditional biomass
energy sources such as fuelwood, a representative survey report
includes the household energy consumption survey by Renmin
University of China (Baltruszewicz et al., 2021), and other studies
using household surveys have also reached similar conclusions;
the other view is that rural household energy consumption is
dominated by coal, a representative study includes The other view
is that rural household energy consumption is dominated by coal,
and representative studies include a study by Tian Yishui of the
Ministry of Agriculture and field research by other scholars.
Therefore, it is difficult to judge the stage of rural household
energy consumption in China through the results of existing
studies alone, and to identify whether a fundamental shift from
traditional non-commodity energy to commodity energy has
been achieved. The lack of judgement on the current structure
of rural household energy consumption will greatly influence the
formulation of relevant public policies, such as whether to invest
more in rural energy infrastructure, whether to promote policies
aimed at eradicating rural energy poverty, and whether to
increase efforts to transform and upgrade rural energy.

Regional Structural Characteristics of
Household Energy Consumption
The Energy Ladder theory suggests that rural households with
low incomes mostly use fuelwood or dung as cooking fuel, and as
incomes increase, they gradually move up the ‘energy ladder’ to a
new stage of using electrical lighting and fossil fuels for cooking
activities. This shift to modern fuels is generally achieved when
per capita incomes reach US$1,000 to US$1,500. This theory
clarifies the link between income and the type of energy used and
indicates the level of income required for the energy transition.
According to the “energy ladder” the shift in the structure of

energy consumption will be a gradual replacement of polluting
energy by clean energy, inefficient energy by efficient energy, and
less convenient energy by more convenient energy. Lu Hui et al.
used hierarchical analysis to study the relationship between
household income and energy consumption structure in
Jiangsu and Anhui provinces, and showed that farmers with
higher income levels placed more importance on comfort,
convenience and hygiene when choosing energy sources (Lu
and Lu, 2006).

Energy consumption in rural households in China is likely to
go through a process of gradual substitution of high quality
energy for low quality energy in a sequential manner (Wang
et al., 2018; Zhong et al., 2020). Table 1 presents the
corresponding findings of representative literature based on
household energy surveys of rural households in China in
recent years. As can be seen, the point in time of the study,
the area surveyed and the final conclusions vary greatly between
the different literatures.

MODEL CONSTRUCTION AND DATA
SOURCES
Household Energy Consumption
Forecasting Model Construction
This paper applies the “linear regression-decision tree”method to
analyse changes in energy consumption trends in urban
households in China, based on a linear variable importance
analysis. Figure 1 illustrates the logic of the analysis in this
paper. Linearity in this paper refers to linearity in a broad
sense, i.e., the relationship between data and data.

1) Principle features of regression

Assuming that the data is x and the result is y, the model in the
middle is actually an equation, which is a one-sided
interpretation, but helps us to understand what a model really
is. Mathematical modelling is about finding the relationship
between data and data from the data given in the question,
building a mathematical equation model, and getting the result
to solve real world problems (Qi et al., 2021) and finding solutions
to real-world problems based on data, especially the processing of
random data in the context of big data era (Wang, et al., 2022). It
is actually the same as the model in machine learning (Zhang
et al., 2020). So what is the general model of linear regression? The
general model expression for linear regression is.

hθ(x) � ∑n
i�0

θixi � θTx � θ0x0 + θ1x1 + θ2x2 + · · ·θnxn (1)

The mystery of the model has been unveiled to us in the form of
this formula above. Don’t be intimidated by the formula, just
know what the model looks like. Suppose i � 0, which represents a
quadratic equation, a straight line through the origin in the
coordinate system, and so on. Loss function: This is used to
estimate the extent to which the predicted value of your model,
f(x), is inconsistent with the true value of YY. The smaller the loss
function, the better the model will be.
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f(θ0, θ1, ..., θn) � 1
2m

∑m
i�1
(hθ(x(i)) − y(i))2 (2)

At first the loss function is relatively large, but as the
straight line keeps changing (the model keeps being
trained), the loss function gets smaller and smaller, thus
reaching the minima point, which is the final model we
want to obtain. This method is collectively known as
gradient descent. As the model continues to be trained, the
gradient of the loss function becomes flatter and flatter until
the point of minima, where the distance from the point to the
line and the minimum, so that the line passes through all the
points, which is the model (function) we require. By analogy,
the same is true for a high-dimensional linear regression
model. The model is optimised using gradient descent to
find the extreme value points, which is the process of
model training.

But there are two main issues in the process of model fitting.
One is that in machine learning model training, the better the
generalization ability of a model, the better the model performs.
What is the generalisation capability of a model? Amodel’s ability
to generalise: how well a machine learning model learns concepts
that the model has not encountered when it is in the process of
learning. The generalisation ability of a model is a direct result of
the over- and under-fitting of the model. Our goal is to minimise

the sum of squares of the points to the line, so it is clear from the
above illustration that the middle graph is a good fit, the leftmost
case is an underfit, and the rightmost case is an overfit.
Underfitting: The predicted value of the training set is quite
wrong with the true value of the training set, which is called
underfitting. Overfitting: The predicted value of the training set,
which exactly fits the true value of the training set, is called
overfitting. Underfitting is already well understood, that is, the
error is relatively large, and overfitting is the training set on the
performance is very good, a new batch of data for prediction
results will be very unsatisfactory, generalization generalization is
said to be a generalization. The solution uses a regularization
term, which is a parameter to the gradient descent formula,
i.e., Change in loss function from Eq. 3 to Eq. 4

f(θ) � 1
2m

∑m
i�1
(hθ(x(i)) − y(i))2 (3)

f(θ) � 1
2m

⎡⎢⎢⎣∑m
i�1
(hθ(x(i)) − y(i))2+λ∑n

j�1
θ2j
⎤⎥⎥⎦ (4)

Adding this regularisation term has the advantage of
controlling the magnitude of the parameters and not allowing
the model to become “uncontrolled”. Limiting the parameter
search space solves the problem of underfitting and overfitting. As
I said before, I’m explaining the principles and optimisation of
linear regression models, but when it comes to actually using
these methods, it’s a simple matter of saying that someone else
has already prepared these computational libraries, thanks to
open source!

2) Algorithmic features of decision trees

A decision tree is a supervised learning algorithm. It applies to
categories and continuous input (features) and output (predictor)
variables (as shown Figure 2). The tree-based approach divides
the feature space into a series of rectangles and then places a
simple model (like a constant) for each rectangle. Conceptually,
they are simple and effective. First we go through an example to
understand decision trees. The process of creating a decision tree
is then analysed using a formal analytical approach. Consider a
simple data set of customers of a lending company. We are given
all customers’ checking account balances, credit history, length of
tenure and previous loan status. The relevant task is to predict
whether the customer’s risk rating is credible. The problem can be
solved using the following decision tree.

TABLE 1 | Key findings on the structural characteristics of household energy consumption.

Author Scope of the survey Key findings

Tonooka et al. (2006) Shaanxi Province Biomass-based fuels
Li et al. (2013) Jilin Province Biomass-based fuels
Wang et al. (2007) Shandong Province Source coal-based
Zhang and Yang (2019) Beijing, Tianjin, Hebei Source coal-based
Xu et al. (2014) Fujian, Shandong, Inner Mongolia, Guizhou, Hebei, Gansu and Qinghai Provinces Similar proportion of biomass energy to coal use
Zhang et al. (2014) Shanxi Province, Guizhou Province, Zhejiang Province Similar proportion of biomass energy to coal use

FIGURE 1 | Model training process simulation process.
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We now turn our attention to the details of the CART
algorithm for regression trees. Briefly, the creation of a
decision tree consists of two steps (Kupka et al., 2010).

1. divide the predictor space, i.e., the set of possible values X_1,
X_2, . . ., X_p, into J distinct and non-overlapping regions R_1,
R_2, . . ., R_J.

2. the same prediction is made for each sample observation
entering region R_J, and that prediction is the mean of the
training sample predictions in R_J.

In order to create J regions R_1, R_2,. . ., R_J, the predictor
regions are divided into high-dimensional rectangles or boxes.
The aim is to find the box region R_1, R_2, . . ., R_J that
minimises the RSS by means of the following equation

∑J
j�1

∑
i ∈ Rj

(yi − ŷRj
)2

(5)

where yhat_Rj is the average predicted value of the training
observations in the jth box shape.

Since this spatial splitting is computationally infeasible, we
often use a greedy approach to partition the region, called
recursive binary splitting.

It is greedy because at each step of the tree creation process the
best partition is selected at each particular step, rather than
predicting the future and picking a partition that will appear
in future steps and help create a better tree. Note that all partition
regions R_j are rectangles. In order to perform a recursive binary
partition, the predictor X_j is first selected and the cut point s

∑
i: xi ∈ R1(j,s)

(yi − ŷR1
)2 + ∑

i: xi ∈ R2(j,s)
(yi − ŷR2)2 (6)

where yhat_R1 is the average predicted value of the observed
samples in region R_1(j,s) and yhat_R2 is the average predicted

value of the observed samples in region R_2(j,s). This process is
repeated to find the best predictors and cut points, and to further
separate the data to minimise the RSS within each sub-region.
However, we do not split the entire predictor space, we only split
one or two of the previously identified regions. This process will
continue until a stopping criterion is reached, for example we can
set the stopping criterion to contain a maximum of m
observations per region. Once we have created regions R_1,
R_2, . . . R_J, given a test sample, we can use the average
predicted value of all training samples in that region to predict
the value of that test sample.

3) Least squares regression tree production algorithm

Input: training set—data set D.
Output: regression tree f(x).
In the input space where the training data set is located,

recursively divide each region into two sub-regions and decide
on the output value of each sub-region to construct a binomial
decision tree.

Step 1: Choose the optimal cut variable j and cut point s. Solve
that

min
j,s

⎡⎢⎢⎢⎢⎢⎢⎢⎣min
c1

∑
xi∈Ri(j,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j,s)

(yi − c2)2⎤⎥⎥⎥⎥⎥⎥⎥⎦ (7)

Iterate over variable j, scanning the cut point s for a fixed cut
variable j, choosing to use the above formula to bring it to a
minimum value.

Step 2: Divide the region by the selected (j,s) and decide on the
corresponding output value.

R1(j, s) � {x∣∣∣∣x(j)≤ s} (8)

R2(j, s) � {x∣∣∣∣x(j) ≻ s} (9)

ĉm � 1
Nm

∑
xi∈Rm(j,s)

yi, x ∈ Rm, m � 1, 2 (10)

Step 3: continue to call steps (1) and (2) for both subset regions
until the stop condition is met.

Step 4: Divide the input space into M regions, R1, R2,. . ., Rm,
to generate a decision tree.

f(x) � ∑M
m�1

ĉmI(x ∈ Rm) (11)

EMPIRICAL ANALYSIS

Analysis of Forecast Results for Urban
Household Electricity Consumption
1) Linear forecast results for household electricity consumption

For the process of forecasting household energy
consumption, both linear and non-linear forecasting
techniques are used in this paper, and the results are

FIGURE 2 | General logical characteristics of a decision tree.
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compared for two household energy varieties, electricity and
natural gas consumption. Figure 3 shows the sub-regional
scenarios for linear forecasting of household electricity
consumption. Figure 3A represents the national forecast of
household electricity consumption levels; Figure 3B
represents the forecast of household electricity consumption
levels in the eastern region; Figure 3C represents the forecast
of household electricity consumption levels in the central

region; and Figure 3D represents the forecast of household
electricity consumption levels in the western region.

The specific forecast results show a high degree of accuracy
and trend consistency in the national forecast of household
electricity consumption. The forecasted values of household
electricity consumption at a national level, as expressed in the
total sample forecast, are relatively close to the true value levels.
By region, the forecast accuracy is better in the Eastern region,

FIGURE 3 | Linear forecast results for national urban household electricity consumption.

FIGURE 4 | Ranking the importance of linear predictor variables of electricity consumption in urban households across the country.
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followed by the Western region, and less accurate in the Central
region. However, the trend in the distribution of forecast values
shows that the forecast values for household electricity
consumption in the East, Central and West regions show a
better trend than the regional differences in electricity
consumption levels.

Figure 4 shows the importance of the predictor variables for
household electricity consumption at the national level. The
national ranking shows that housing area, urbanisation rate
and disposable income per capita are the top three factors in
importance, indicating that living environment, urbanisation
development and income play an important role in the growth
of urban household electricity consumption; in terms of the
directional characteristics of the impact, they all contribute
positively to the growth of urban household electricity
consumption.

2) Non-linear prediction results for household electricity
consumption

Figure 5 shows the non-linear forecast of household electricity
consumption by region. In particular, Figure 5A represents the
national forecast of household electricity consumption levels;
Figure 5B represents the forecast of household electricity
consumption levels in the eastern region; Figure 5C represents
the forecast of household electricity consumption levels in the
central region; and Figure 5D represents the forecast of
household electricity consumption levels in the western region.
Compared to the linear forecast trend, the non-linear forecast
results are more accurate.

Figure 5A shows the results of the non-linear forecasts of
household electricity consumption at a national level. The non-
linear forecasts capture the evolution of changes in household

electricity consumption in terms of the trend between the
forecasted and true values. Across the region, the predicted
values of household electricity consumption are highly
consistent with the true values and are more accurate than the
linear forecasts. The Eastern region model forecasts accurately
express the trends and levels of change in the true values, but the
forecasts fluctuate more than the true values. At the same time,
the predicted values accurately predict the direction of
fluctuations in the true values. In the specific case of urban
household electricity consumption in the central region, the
forecast values accurately predict the trends in household
electricity consumption, but are less accurate in terms of the
magnitude and direction of fluctuations in the forecast values to
the true values. In terms of the forecast for urban household
electricity consumption in the western region, similar to the
central region, the forecast values pounce well on the trends in
total household electricity consumption in the western cities, but
in individual cities the gap between the forecast values and the
true values is large.

Figure 6 shows the degree of importance of factors influencing
urban household electricity consumption in a non-linear forecasting
scenario for urban household electricity consumption, from a
national as well as a sub-regional perspective. From a national
perspective, the level of urbanisation development is the number
one factor influencing urban household electricity consumption and
has a significant influence. In addition to the level of urbanisation, the
top three influencing factors are the size of the housing stock and the
price of electricity. The top three most important factors influencing
urban household electricity consumption in the Eastern region are
consistent with the national level, with the difference being in the
order of importance. The first most important factor in the Eastern
region is still the level of urbanisation, while the impact of electricity
prices on household electricity consumption overtakes that of house

FIGURE 5 | Non-linear forecast results for national urban household electricity consumption.
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size in second place. In the central region, housing area, industrial
structure and per capita disposable income are the three most
important factors influencing urban household electricity
consumption within the region. The area of the house is the first,
while the industrial structure and disposable income per capita are the
second and third. In the western region, the important factors
influencing urban household electricity consumption are more
distinctly different from those in the national, eastern and central
regions, with house size, electricity price and average temperature
being the three most important factors influencing urban household
electricity consumption within the region. Further, in terms of
economic development in the traditional sense, we find that the
level of urbanisation and prices in the more economically developed
regions, such as the coast, compared to the inland, are important
factors influencing changes in household energy consumption.
Factors affecting household electricity consumption in less
economically developed regions in the traditional sense, such as
the western region, are mainly manifested in factors such as climatic
factors and the condition of residence. In the central region, in the
context of the new economic development in recent years, the
important factors affecting household electricity consumption in
urban areas are economic factors such as industrial factors and
household income factors.

Analysis of Forecast Results for Urban
Household Gas Consumption
1) Linear prediction results for household gas consumption

Figure 7 shows the results of the linear forecast of urban
household gas consumption. On a national scale, the overall

forecast results are better. At the eastern scale, the trend in the
forecast values is the same as the trend in the composition of the
true values, with the forecast values largely reflecting the level of
change in urban household gas consumption. At the central scale,
the overall forecast is lower than the true value of household gas
consumption in the central cities, but basically reflects the trend
in the composition of household gas consumption, which is a
good forecast. At the western end of the scale, the projections are
generally closer to the level and composition of household gas
consumption.

Figure 8 shows the ranking of the importance of the predictor
variables in the context of linear consumption of natural gas by urban
households. At a national level, the top three most important factors
influencing household gas consumption are per capita disposable
income, house size and industrial structure, which are positively
influencing urban household gas consumption. At the same time, in
terms of the negative relationship, we find that the level of
urbanisation and natural conditions are negatively important
factors influencing the change in urban gas consumption. At the
eastern scale, disposable income per capita, industrial structure and
average temperature are the main factors that positively influence the
change in urban gas consumption, while the level of urbanisation and
the volume of gas sales are important factors that negatively inhibit
the change in household gas consumption. At the central level, the
main factors influencing changes in household gas consumption are
industrial structure, urbanisation and per capita disposable income,
all of which contribute positively to the growth of household gas
consumption. The CPI index, gas sales and weather conditions are
the main factors inhibiting the growth of household gas
consumption. On a western scale, the size of housing stock and
disposable income per capita are the main drivers of change in urban

FIGURE 6 | Ranking the importance of non-linear predictor variables of electricity consumption in urban households across the country.
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household gas consumption, while annual rainfall, the price of gas
sales and industrial structure are the main factors inhibiting the
growth of urban household gas consumption.

2) Non-linear prediction results for household gas consumption

Figure 9 shows the results of the regional perspective on the
forecasted changes in urban household natural gas

consumption in China in the context of non-linear
forecasting techniques. On a national scale, the non-linear
forecasting results are closer to the true levels and composition
trends of urban household natural gas consumption. On an
eastern scale, the point projections for different cities are closer
to the true value of urban household gas consumption, but the
overall projections are smaller than the true value of gas
consumption. At the central scale, the forecasts of urban

FIGURE 7 | Linear projection results for urban household gas consumption.

FIGURE 8 | Importance of linear predictor variables for urban household gas consumption.
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household gas consumption are more accurate in predicting
the trends and composition of the true values, but in the
comparison of the forecasts of urban household gas
consumption levels, the majority of the forecasts are lower
than the true values. At the western end of the range, the
forecasts for urban household gas consumption are good, with
the forecasts for gas consumption levels in the sample cities
generally close to the true levels and reflecting the composition

of the true values, demonstrating the accuracy of the non-
linear forecasts in the urban household gas consumption
process.

Figure 10 shows the degree of importance of the influencing
factors affecting changes in household gas consumption in the
non-linear forecasting process for urban household gas
consumption. At a national level, the factors influencing
changes in urban household gas consumption remain the sales

FIGURE 9 | Non-linear forecast results for urban household gas consumption.

FIGURE 10 | Importance of non-linear predictor variables for urban household gas consumption.
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price of gas, the size of the housing stock and disposable income
per capita. At the eastern level, disposable income per capita,
industrial structure and the level of urbanisation are the main
factors that positively drive changes in urban household gas
consumption. At the central scale, climatic conditions (average
temperature) are the absolute drivers of growth in urban
household gas consumption. At the western scale, the size of
housing stock, the price of natural gas sales and the average
temperature are important factors influencing the change in
urban household gas consumption within the region. From a
non-linear forecasting perspective, all influencing factors are
positively associated with the level of change in urban
household gas consumption.

The forecasting analysis of urban household electricity and natural
gas consumption above shows that the overall non-linear forecasting
technique is superior to the linear forecasting technique. From a sub-
regional research perspective, the drivers affecting household energy
consumption vary across regional scales, showing significant regional
differences. This may be related to the differences in the scale and
level of development of the more pronounced regional economies in
China.

Analysis of Forecast Results for Urban
Household Gas Consumption
1) Evaluation of urban household electricity consumption

forecasts

This paper uses the DT-SVR non-linear technique for
forecasting urban household energy consumption. Specific
analyses were carried out to forecast and analyse urban
household electricity consumption levels from four
perspectives: national, eastern, central and western. In order to
assess the effectiveness of the DT-SVR forecasting technique
chosen in this paper, the forecasting results are evaluated in
this paper, comparing the accuracy evaluation criteria of the
linear and non-linear forecasting approaches respectively.

Table 2 indicates the accuracy evaluation indicators for the
forecasts in this section. Firstly, the squared absolute error values
of forecasts for national urban household electricity consumption
show that the mean absolute error (MAE) values for the decision tree
algorithm and the support vector machine approach are significantly
smaller than the MAE values under the linear forecasting approach.
At the same time, the root mean-square error (RMSE) values for the
decision tree algorithm and the support vectormachine approach are
significantly smaller than the RMSE values under the linear
forecasting approach. These types of evaluation indicators

illustrate that at the national level, non-linear forecasting of
household electricity consumption is more accurate. Secondly, the
accuracy of the urban household electricity consumption forecasting
results is seen in the eastern, central and western parts of the region,
while the mean absolute error and root mean square error values of
the non-linear forecasts are significantly smaller than the MAE and
RMSE values of the linear forecasts. Further, this paper shows the
results of linear and non-linear forecasting techniques by comparing
the directional symmetry of the forecasts. The results show that the
directional symmetry of directional symmetry (DS) under the
national urban household electricity consumption level forecast is
significantly higher than the DS value obtained under the non-linear
forecasting technique.

These results further validate the role of non-linear forecasting
techniques in influencing the level of urban household electricity
consumption.

RMSE �

�����
1
N

∑N
t�1

√√
(xt − x̂t)2

(12)

MAE � 1
N

∑N
t�1

∣∣∣∣∣∣xt − x̂t

∣∣∣∣∣∣ (13)

DS � 1
N

∑N
t�1

d(t) × 100%, d(t)

� { 1 if(xt+1 − xt)(xt+1 − xt)≥ 0
0 otherwise

(14)

4) Trends in non-linear forecasts of household electricity
consumption

Table 3 shows the forecast trend of household electricity
consumption in major cities in eastern China. The forecast
results show that in mega cities, such as Beijing, Tianjin and
Shanghai, household electricity consumption is forecast to show a
year-on-year growth trend from 2019 to 2023. The DT-SVR non-
linear forecast finds that household electricity consumption in
cities such as Xiamen and Ningbo will show fluctuations in
individual years from 2019 to 2023. In comparison, urban
household electricity consumption in Hangzhou and Fuzhou
will show individual year declines.

Table 4 shows the forecast trend of household electricity
consumption in major cities in Central China. The forecast results
indicate that urban household electricity consumption in the central
region is expected to exhibit a continuous growth trend during
2019–2023. The forecast results show that in major coal

TABLE 2 | Comparison of evaluation indexes of linear and non-linear results.

Region Linear model (LR) Decision trees (GBDT) Support vector machines (SVR)

MAE RMSE DS MAE RMSE DS MAE RMSE DS

National Coal Power 240,946 9.94E+10 0.800 240,637 1.2E+11 0.830 233,234 9.81E+10 0.862
Eastern Coal Power 233,159 8.84E+10 0.890 222,139 7.3E+10 1.000 235,379 8.99E+10 1.000
Central Coal Power 150,975 3.48E+10 0.710 122,916 3E+10 0.720 150,163 3.57E+10 0.710
Western Coal Power 193,473 6.78E+10 0.820 219,857 8.4E+10 0.910 188,065 7.06E+10 0.900
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producing provinces, such as Shanxi, urban household electricity
consumption shows a relatively large expected growth. Central cities,
such as Wuhan, also show very strong growth in urban household
electricity consumption. From a regional perspective, cities in the
northeastern provinces, such as Changchun and Harbin, show
greater potential for growth in urban household electricity
consumption.

Table 5 shows the forecast trends in household electricity
consumption levels for the major cities in the western region of
China. Western cities’ household electricity consumption will
show a large fluctuating trend between 2019 and 2023. Chengdu,
as one of the major representatives of cities in the western region,
maintains a continuous growth momentum. While urban cities
such as Lanzhou, Yinchuan and Xi’an have expected
consumption fluctuations in urban household electricity
consumption from 2019 to 2023. While cities in remote areas,
such as Urumqi will continue to increase the level of urban
household electricity consumption, maintaining a clear trend of
growing household electricity consumption.

2) Evaluation of urban household gas consumption forecasts

This paper uses the DT-SVR non-linear technique for
forecasting urban household energy natural gas. In order to

assess the validity of the DT-SVR forecasting technique chosen
in this paper, the results are evaluated by comparing the
accuracy evaluation criteria of linear and non-linear
forecasting methods. For the forecasting of urban household
gas consumption levels, the paper also compares the model
evaluation values of the above three forecasting techniques.
The analysis shows that both at the national and sub-regional
levels, the decision tree non-linear forecasting technique is
more accurate than the non-linear analysis technique, in terms
of the level of values taken for the three types of indicators. The
mean absolute error (MAE) and root mean square error
(RMSE) values for non-linear forecasting are smaller than
the corresponding evaluation indicator values for the
decision tree forecasting technique (Rasheed, 2021).
Comparing the linear forecasting technique with the
support vector machine analysis technique similarly
expresses the high accuracy of the non-linear forecasting
technique in the forecasting process of urban household gas
consumption levels. Further, this paper compares the
directional symmetry indicators of urban household natural
gas consumption level forecasting and finds that none of the
DS values of the non-linear forecasting techniques are smaller
than those of the linear forecasting techniques, illustrating the
good results of this paper’s DS-SVR non-linear forecasting

TABLE 3 | Forecast trends in urban household electricity consumption in the Eastern Region (billion kWh).

Year Beijing Tianjin Shijiazhuang Shenyang Shanghai Nanjing Hangzhou Xiamen Qingdao Shenzhen Fuzhou Ningbo

2018 89.41 56.57 28.45 47.87 120.00 51.31 23.88 92.42 19.89 11.96 6.26 19.70
2019 89.76 56.87 31.77 51.77 121.98 53.14 24.58 93.77 21.93 16.14 7.56 21.61
2020 91.52 57.89 32.45 53.86 123.84 54.19 26.87 94.18 22.78 22.98 8.65 22.68
2021 93.68 62.06 33.94 55.21 125.79 55.52 29.08 94.98 23.53 23.86 10.91 23.50
2022 95.79 63.33 35.61 57.09 127.36 57.90 32.55 95.39 24.76 25.15 11.06 24.78
2023 98.99 65.71 36.97 59.32 132.25 61.99 36.35 96.72 25.89 26.34 12.43 25.37

TABLE 4 | Forecast trends in urban household electricity consumption in the Central Region (in billion kWh).

Taiyuan Hohhot Changchun Harbin Hefei Nanchang Zhengzhou Wuhan Changsha

2018 180.00 82.56 210.00 37.20 78.48 100.00 50.49 200.00 16.94
2019 183.46 83.63 212.01 44.41 77.78 105.61 52.23 201.23 18.30
2020 185.55 84.34 213.16 47.98 79.02 111.42 53.76 204.78 22.22
2021 188.98 85.23 215.16 51.74 80.32 113.36 55.87 211.65 24.17
2022 192.23 87.18 217.84 53.46 81.87 117.01 57.89 217.98 26.07
2023 195.52 90.22 220.59 56.66 83.56 123.67 61.13 222.31 28.07

TABLE 5 | Forecast trends in urban household electricity consumption in the Western Region (in billion kWh).

Urumqi Guiyang Kunming Xining Lanzhou Yinchuan Xi’an Chengdu

2018 34.76 11.64 24.34 28.12 24.03 55.77 68.07 65.93
2019 35.88 12.78 26.61 29.99 25.69 56.65 70.54 67.08
2020 37.32 14.67 28.15 31.33 26.99 57.77 73.44 69.55
2021 41.67 16.87 30.68 33.08 28.18 59.32 76.15 71.98
2022 42.98 18.36 32.33 35.01 30.39 60.46 77.28 74.44
2023 43.84 21.25 35.08 37.18 33.02 61.64 80.76 76.12
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model in urban household natural gas consumption level
forecasting (as shown in Table 6).

4) Trends in non-linear projections of household gas
consumption

Table 7 shows the projected trends in the amount of change in
household natural gas consumption in the major cities in the
eastern region of China. Household natural gas consumption in
the major cities all show an increasing trend of change. Natural
gas, as the main source of energy consumption in major urban
households, shows an almost consistent trend of growth in
consumption in all large cities. In particular, cities such as
Background, Tianjin and Qingdao. Relatively speaking, the
total level of household natural gas consumption in the sub-
developed cities on the eastern seaboard was largely flat, but still
maintained its future growth trend.

Table 8 shows the projected trends in the level of household
natural gas consumption in the central region of China. Looking
at the forecast levels for the major cities, the incremental increases
in household natural gas consumption in central cities are
modest, but all have a trend of year-on-year growth. In
comparison, cities along the Yangtze River, such as Wuhan
and Changsha, have higher levels of total annual household

gas consumption than most other cities. Taiyuan, as one of
the major representatives of central cities, has a more
pronounced growth trend in urban household gas consumption.

Table 9 shows the projected trends in household natural gas
consumption levels in the western region of China. As
representatives of the cities in the western region, Xi’an and
Chengdu cities have continued to increase their household energy
consumption changes. In contrast, cities in remote areas such as
Lanzhou and Xining cities show a smaller increase in household
natural gas consumption. Yinchuan, on the other hand, is
expected to show a more significant change in natural gas
growth trends.

In summary, projections of natural gas consumption levels in
urban households in China show significant regional variation.

TABLE 6 | Comparison of prediction results between linear and non-linear prediction methods.

Region Linear model (LR) Decision trees (GBDT) Support vector machines (SVR)

MAE RMSE DS MAE RMSE DS MAE RMSE DS

National Gas 20,417 1.09E+09 0.600 20,186 1.7E+09 0.760 18,762 1.1E+09 0.760
Eastern Gas 10,806 1.69E+08 0.830 12,817 2.9E+08 0.830 9,162 1.28E+08 1.000
Central Gas 9,652 1.1E+08 0.750 8,933 1E+08 0.750 8,486 97922570 0.750
Western Gas 17,990 9.93E+08 0.850 15,231 1.9E+09 0.920 16,350 1.19E+09 1.000

TABLE 7 | Projected trends in urban household gas consumption in the Eastern Region.

Year Beijing Tianjin Shijiazhuang Shenyang Shanghai Nanjing Hangzhou Xiamen Qingdao Shenzhen Fuzhou Ningbo

2018 17.16 0.90 1.22 3.94 3.60 2.39 0.88 0.88 0.81 7.83 2.04 1.71
2019 18.91 1.03 1.99 4.66 3.88 3.98 1.08 0.97 1.21 8.12 2.32 1.88
2020 20.72 1.36 2.07 5.35 4.07 4.56 1.46 1.23 1.32 9.03 2.63 2.21
2021 22.24 1.69 2.34 6.13 4.33 4.79 1.99 1.45 1.45 10.17 2.89 2.42
2022 24.81 2.09 3.01 7.82 4.63 5.35 2.13 1.89 1.56 11.42 3.31 2.67
2023 25.97 2.56 3.44 8.74 4.98 6.02 2.45 2.02 2.12 12.18 3.47 3.01

TABLE 8 | Projected trends in urban household gas consumption in the Central Region.

Taiyuan Zhengzhou Wuhan Changsha Zhengzhou Nanchang

2018 2.97 2.35 2.80 1.08 1.06 1.47
2019 3.15 2.93 3.11 1.37 1.48 1.68
2020 3.46 3.75 3.47 1.62 1.93 2.43
2021 4.04 4.27 4.16 2.16 2.38 2.99
2022 4.47 4.99 4.64 2.55 2.97 3.32
2023 5.51 5.71 5.18 3.03 3.38 3.99

TABLE 9 | Projected trends in urban household gas consumption in the Western
Region.

Xi’an Chengdu Lanzhou Xining Yinchuan

2018 2.43 4.84 2.60 1.81 3.39
2019 2.86 5.35 2.95 2.22 3.88
2020 3.46 6.03 3.16 2.67 4.21
2021 3.97 6.88 3.42 3.02 4.53
2022 4.24 7.32 3.78 3.64 4.89
2023 4.87 7.87 4.31 4.17 5.03
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There are regional differences not only in the annual aggregate
characteristics of the change in natural gas consumption growth,
but also in the comparative magnitude of growth. Projections of
household gas consumption are generally higher in developed
coastal cities than in less developed inland cities; and the growth
trend in household gas consumption is generally higher in cities
with faster economic growth inland than in cities with less
developed economic development. These characteristics will
play a positive role in the process of formulating and
evaluating household energy consumption policies, and will
help to objectively assess the effectiveness and regional
synergistic effects of household energy policies.

DISCUSSION OF THE PREDICTED
RESULTS OF URBAN HOUSEHOLD
ENERGY CONSUMPTION
Discussion of Forecast Results for
Household Electricity Consumption
Electricity consumption is the main type of energy consumed by
urban households in China and has a diversity of uses. The level
of urbanisation development becomes an important factor
influencing urban household electricity consumption, both in
non-linear and linear projections (Baltruszewicz et al., 2021).
From an analytical perspective of household energy policy
efficiency, urbanisation development is an important economic
category in China, with two points of concern: firstly, the path of
urbanisation development in China, whether it manifests itself in
the form of population migration as urbanisation progresses, or
in the form of local urbanisation. Secondly, the availability of
household energy in the development of urbanisation. In terms of
the first point, we argue that the development of urbanisation
changes the quality and level of accessibility of household energy
consumption. In particular, for the period of transition from rural
to urbanisation, urbanisation has on the one hand reduced the
structure of energy supply for rural households after urbanisation
and on the other hand increased the cost of energy access for
urban households (Shen et al., 2020). Electricity, as a clean,
modern energy source, has two important apparent outcomes
in the urbanisation process. One is the total growth of electricity
consumption due to the influence of energy consumption rigidity;
the other is the total growth of electricity consumption due to the
substitution between energy consumer goods. This is particularly
true for the movement of people in the development of
urbanisation (rural-urban migration due to urbanisation).

The level of per capita income remains a major constraint on
household energy consumption in central and western cities. In
recent years, with China’s Belt and Road Economic Belt initiative
and a series of policies to vigorously develop content city clusters,
public income levels have gradually increased under the operating
mechanism of urbanisation development pushing back the
economy (Mrówczyńska et al., 2020). In rural areas in
particular, the phenomenon of energy poverty has gradually
improved in individual areas. But the potential for the role of
per capita income levels on household energy consumption is
stronger in the central and western range. On the one hand,

income factors remain the main constraint on the ability to spend
on consumption in the traditionally less developed regions of the
Midwest. On the other hand, the gradual increase in income levels
has been accompanied by a gradual release of the potential for
household energy consumption. In this sense, the potential for
urban household energy consumption, particularly electricity
consumption, in the central and western regions will continue
to grow in the short term as income levels increase.

Discussion of Forecast Results for
Household Gas Consumption
Natural gas consumption is one of the key categories of energy
consumption in urban households (Wang et al., 2021). In this
paper, both linear and non-linear forecasting techniques are
applied to urban household gas consumption. The results
show that the non-linear forecasts more accurately reflect the
changes and trends in the composition of urban household
natural gas consumption, but the important factors affecting
urban household natural gas consumption vary slightly across
regions. Overall, the main factor influencing urban household gas
consumption is income level (Gassar et al., 2019). However, in
China’s urbanisation process, there are important structural
factors in household gas consumption, namely the
composition of the main consumers of gas in urban
households. This is inextricably linked to the way in which
China’s urbanisation is progressing. As mentioned earlier, the
transfer of rural to urban populations will contribute to the
growth of urban household gas consumption in terms of
aggregate uplift. The urbanisation of rural areas in situ will
contribute to the change in the total volume of household gas
consumption from the perspective of the structural composition
of the consumer group. The process of urbanisation has, in some
cases, reduced the ease and diversity of access to energy in rural
areas and increased the consumption of key energy sources. This
is also influenced to some extent by supply policies accordingly.

In terms of the impact of rising incomes on urban household
gas consumption, the impact of disposable income on changes in
urban household gas consumption within the Midwest is more
pronounced (Jürisoo et al., 2019). From the indication of the
forecast results, the sales price of natural gas is an important
factor influencing natural gas consumption. On the one hand,
urban residents are less price sensitive to household natural gas
consumption due to the rigid nature of natural gas consumption
in the context of urban life; on the other hand, the potential of
income to stimulate consumption capacity is under-stimulated in
the urban household consumption scenario. That is, with the
further rise in income levels of urban residents in less developed
regions and the further acceleration of urbanisation, the growth
in total urban household natural gas consumption will
increasingly manifest itself in the continued growth of total
urban household natural gas consumption. At the same time,
while taking into account economic factors, social factors, climate
factors are also key elements affecting natural gas consumption.
Natural gas consumption is a modern clean energy source and an
important source of supporting urban household energy
consumption in the urbanisation process. In the future, as the
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urbanisation process accelerates and develops, the total change in
urban household natural gas consumption will continue to
maintain a continuous growth process.

CONCLUSION

In this paper, we apply linear and non-linear forecasting
techniques to forecast and analyse the trends in total urban
household electricity and natural gas consumption and the
factors affecting them. In the implementation of the
forecasting analysis, we compare the forecasting accuracy of
household electricity and natural gas consumption in the
context of linear and non-linear analyses respectively. Also,
the important factors influencing urban household electricity
and natural gas consumption are examined and ranked
separately in the context of the two forecasting techniques.
Again on the basis of this the research implications and value
of the forecasting results are analysed through discussion.

The findings show that non-linear forecasting techniques
are highly effective in accurately portraying changes in urban
household electricity consumption and changes in total
natural gas consumption. When looking at the factors
influencing urban household electricity consumption and
natural gas consumption from four scoping perspectives -
nationwide, eastern, central and western the degree to which
the main influencing factors play a role varies and exhibits
significant regional differences.

In general, the important influencing factor on household
energy consumption in the eastern region is mainly manifested
in the level of urbanisation development, the influencing factor
on household energy consumption in the central region is
mainly influenced by factors such as industrial structure, and
the change in total urban household energy consumption in the
western region is more influenced by natural conditions and
income levels. From the traditional sense of the degree of
economic development, within the less developed economic
development regions, income level is still the main factor
limiting the change in urban household energy consumption,

income level on household energy consumption has not been
stimulated in the process of economic development in these less
developed regions, is not yet fully released, will be further
manifested in the promotion of household energy
consumption on the role. Urbanisation as an important
factor in examining household energy consumption, its
different development patterns and processes will gradually
be reflected in the choice of urban household energy
consumption and changes in total consumption and other
scenarios. This is also an important consideration in the
development of household energy policies.
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Ensemble Forecasting Frame Based
on Deep Learning and Multi-Objective
Optimization for Planning Solar Energy
Management: A Case Study
Yongjiu Liu1, Li Li 1* and Shenglin Zhou2

1School of Statistics, Shandong Technology and Business University, Yantai, China, 2School of Political Science and Public
Administration, Shandong University, Qingdao, China

There are many prediction models that have been adopted to predict uncertain and
non-linear photovoltaic power time series. Nonetheless, most models neglected the
validity of data preprocessing and ensemble learning strategies, which leads to low
forecasting precision and low stability of photovoltaic power. To effectively enhance
photovoltaic power forecasting accuracy and stability, an ensemble forecasting
frame based on the data pretreatment technology, multi-objective optimization
algorithm, statistical method, and deep learning methods is developed. The
proposed forecasting frame successfully integrates the advantages of multiple
algorithms and validly depict the linear and nonlinear characteristic of
photovoltaic power time series, which is conductive to achieving accurate and
stable photovoltaic power forecasting results. Three datasets of 15-min
photovoltaic power output data obtained from different time periods in Belgium
were employed to verify the validity of the proposed system. The simulation results
prove that the proposed forecasting frame positively surpasses all comparative
hybrid models, ensemble models, and classical models in terms of prediction
accuracy and stabilization. For one-, two-, and three-step predictions, the MAPE
values obtained from the proposed frame were less than 2, 3, and 5%, respectively.
Discussion results also verify that the proposed forecasting frame is obviously
different from other comparative models, and is more stable and high-efficiency.
Thus, the proposed frame is highly serviceable in elevating photovoltaic power
forecasting performance and can be used as an efficient instrument for intelligent
grid programming.

Keywords: artificial intelligence, ensemble forecasting system, photovoltaic power forecasting, renewable energy
management, smart grid management

1 INTRODUCTION

The exhaustion of fossil energy and global warming have been inescapable events for humans (Das
et al., 2015; Takilalte et al., 2019; Irfan et al., 2021). To work out these events, exploring and exploiting
renewable energy worldwide should be the ultimate focus of attention (Islam, 2017; Shezan et al.,
2017; Liu et al., 2020; Elavarasan et al., 2021). Photovoltaic (PV) power, which is unlimited, green,
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and available, has become a key point in new energy resource
research (Jithin and Roykumar, 2018; Shelat et al., 2019; Zhu and
Pi, 2020; Tan et al., 2021). The International Energy Agency
announced that, until 2019, the global accumulative installed
capacity of PV power exceeded 627 GW.1 Nevertheless, PV power
is labile and fluctuates at high frequency, which unpredictably
impacts the facility wastage and grid stability of the intelligent
electric system. Therefore, enhancing the forecasting accuracy
and stability of PV power must be considered to help solve the
aforementioned tasks and optimize the intelligent electric system
operation.

By reviewing past studies, we can see that several forecasting
models have been proposed and developed to enhance prediction
precision and effectiveness (Yildiz and Acikgoz, 2021). With
respect to the calculative mechanism, the forecasting model
can be summarized as the following rough categories (Abdel-
Nasser and Mahmoud, 2019; Liu et al., 2022): physical, statistical,
and artificial intelligent models. Physical models rely on sky
cameras and satellite data to forecast PV power (Dong et al.,
2020). PV power prediction with satellite imaging or sky cameras
has been developed as a key theme based on data capture and
cloud movement (Elsinga and van Sark, 2017). Physical methods
exhibit satisfactory performance when the state of the weather is
stabilized (Li et al., 2020). In contrast to physical models,
statistical models use sufficient actual data to conduct short-
term PV power forecasting, and these models with regard to
short-term forecasting surpass physical models in terms of
performance (Zhang et al., 2019). The prediction performance
of statistical models is impacted when the input variables have a
nonlinear relationship. Autoregressive moving average (ARMA)
(David et al., 2016), autoregressive integrated moving average
(ARIMA) (Pedro and Coimbra, 2012), Kalman filter (Soubdhan
et al., 2016), and other statistical models have been adopted and
gained significant prediction results. In addition, artificial
intelligent models, which incorporate artificial neural networks
(ANNs) (Yacef et al., 2014), fuzzy logic methods (Tanaka et al.,
2011), and deep learning methods (DLMs) (Jiang et al., 2020), are
widely adopted tools for short-term PV power forecasting (Yagli
et al., 2019; Devaraj et al., 2021). Based on their outstanding
capabilities, DLMs can deal with the fuzzy relationship between
the actual data and forecasting data. As a booming branch of
artificial intelligence methods, DLM has attracted wide attention
in numerous fields (Zhou et al., 2020). Compared with the two
models, DLMs depend on historical data and have high fault
tolerance, which means that DLMs can robustly and adaptively
predict PV power. In addition, DLMs can dispose of nonlinear
data, conduct adaptive forecasting, and judge fuzzy relationships
(Li, 2020). Nonetheless, DLMs have instinctive shortcomings,
including over-fitting, easy to local optimum, and low
convergence speed (Jiang and Liu, 2019). Apart from the
abovementioned forecasting models, hybrid models have also
received great attention. Hybrid approaches can overcome the
limitation of individual model by combining predictor with other
algorithms (Kushwaha and Pindoriya, 2019). For example, Qu

et al. (2021b) established a hybrid gated recurrent unit (GRU) to
forecast day-ahead PV generation and proved hybrid GRU is
superior to individual GRU in terms of forecasting accuracy.
Korkmaz (2021) used variational mode decomposition approach
and convolutional neural network (CNN) to improve PV power
forecasting ability. Relative to benchmark deep learning models,
the proposed hybrid model can provide better forecasting results.
Eseye et al. (2018) developed a novel hybrid short-term
forecasting method, which integrated wavelet transform (WT),
particle swarm optimization (PSO) with support vector machine
(SVM) to enhance PV power forecasting precision. By comparing
with various prediction approaches, the proposed model showed
excellent prediction performance, which is helpful to integrate PV
into power grid. However, forecasting performance of a definite
forecasting model is different with respect to different datasets
and observation sites. Thus, one forecasting approach cannot be
applied to all forecasting situations.

The drawbacks of the aforementioned methods can be
concluded as follows:

(1) Physical models cannot obtain satisfactory results pertaining
to short-term PV power prediction based on several
disadvantages: running efficiency is lower, consumed
computing resources are expensive, and forecasting results
are unsatisfactory. Hence, physical models cannot offer a
satisfactory service for short-term PV power forecasting.

(2) Statistical models are poor in predicting data with high
fluctuation and nonlinear characteristics. It cannot
effectively forecast PV power based on the linear
hypothesis (Niu and Wang, 2019).

(3) Compared with the aforementioned models, the artificial
intelligence model, such as DLMs, can detect the
nonlinear relationship between the historical and
forecasted values. It has attracted several researchers over
the past several years for the validity to forecast complicated
relationships (Feng et al., 2017). Nonetheless, DLMs have
instinctive shortcomings, such as over-fitting, easy to local
optimum, and low convergence speed (Iversen et al., 2016).

(4) Because of the instinctive drawbacks of each model, the
individual model cannot forecast time-series data that vary
under the changing environment, resulting in poor
forecasting performance in some situations.

To overcome the above disadvantages, the ensemble learning
strategy based on multiple forecasting models that proposed by
Bates and Granger (1969) has been widely used by researchers.
Ensemble strategy employs multiple forecasting models to
achieve an aggregated result that is superior to every base
forecasting model (Opitz and Maclin, 1999). The main
principle of this strategy is to obtain optimal weights to ensure
the minimum sum of squared errors of the training set (Hao and
Tian, 2019). By combing multiple predictors, we can better utilize
more useful information and remove particular deviations
brought by individual predictor. Moreover, the ensemble
strategy can successfully integrate the merit of all involved
sub-predictors, such as their good ability to grasp different
data characteristic and the good property to overcome1https://news.solarbe.com/202004/29/324368.html.
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negative effect (e.g., overfitting), which is proved to be effective to
improve forecasting performance inmany forecasting fields (Xiao
et al., 2015; Liu et al., 2019; Wang et al., 2021). Yang and Dong
(2018) proposed a seasonal time series ensemble model that used
six component models from different families and 8 ensemble
methods to conduct PV power output forecasting. A simple
remedy was added to the ensemble model, which was proved
to be effective to improve forecasting ability. Li et al. (2020) used
wavelet packet decomposition (WPD) to decompose PV power
data and used long short-term memory (LSTM) to forecast the
decomposed series. The predicted sub-series are ultimately
integrated based on linear weighting strategy to obtain the
final forecasting values. Simulation results verified its high-
quality forecasting ability. Sharma et al. (2021) proposed a
novel forecasting frame, where the maximal overlap discrete
wavelet transform technique was used for decomposition and
the LSTM was used for sub-series forecasting. By integrating the
sub-series forecasting results, the final PV power forecasting
results were finally obtained. More studies about ensemble
forecasting models are listed in Table 1. From the above
review, we can find that most existing ensemble models are
more likely to use a single forecasting model. However, PV
power series is fluctuant and uncertain with both intricate linear
and nonlinear characteristics, which must be captured by
different class of forecasting models. To this end, in this
paper, both statistical model and DLMs are combined
together to better grasp the linear and nonlinear
characteristics of PV power series. Moreover, some existing
ensemble models use linear weighting method to calculate the
final ensemble forecasting results. Considering linear weighting
method may not reflect the importance of the prediction results
of each component, a multi-objective optimization algorithm
(MOOA) is used to optimize the combining weights, which can
effectively improve PV power forecasting performance. Besides,
data preprocessing is an important process in PV power
forecasting because it can filter the high-frequency noise in
original time series and retain the useful information.
Nevertheless, most studies may ignore the importance of data
preprocessing or adopt poor preprocessing methods. In this
paper, an effective data preprocessing method, namely singular
spectrum analysis (SSA), is used to preprocess the historical PV
power output forecasting, which can better grasp the data

characteristic of PV power series and effectively improve
forecasting ability.

In our study, proposed ensemble forecasting frame (PEFF) is
built, which incorporates SSA, multi-objective grasshopper
algorithm (MOGOA), ARIMA, and DLMs. Specifically, SSA
was selected to eliminate irregular fluctuations of observed
values in a complex environment. SSA can effectively process
the original time series to enhance the forecasting performance.
ARIMA and three DLMs (i.e., deep belief network (DBN), GRU,
LSTM) were adopted to conduct PV power forecasting, and the
ensemble coefficient of each model was obtained using MOGOA.
ARIMA can effectively predict the linear trend of PV power
generation, whereas DLMs can effectively predict nonlinear
trends. The PEFF fills the gap between the statistical and
artificial intelligence models. MOGOA can effectively combine
forecasting results based on an effective style. The PEFF that
integrates the benefits of individual models with data
pretreatment techniques and intelligent optimization
algorithms can validly improve the PV power prediction
ability (Tian and Hao, 2018).

The leading course of our study relative to other studies in the
domain of PV power forecasting is summarized below:

(1) A data pretreatment technique was adopted to relieve the
random fluctuation of PV power sequences in real time. The
observed PV power output time series will be disintegrated
into several subseries; then, the subseries with the highest
frequency fluctuation is abnegated, and the residuals are
structured to conduct PV power forecasting. Considering
this disposal, the essential character of PV power could be
better extracted, and hence, the forecasting performance can
be greatly improved.

(2) The statistical model is beneficial to grasp linear
characteristics, while DLMs make for nonlinear
characteristics. For the sake of comprehensive control of
the linear and nonlinear characteristics of PV power,
ARIMA (the statistical model) is used to forecast the
linear trend, and three DLMs are used for the nonlinear
trends.

(3) MOGOA, as an effective parameter optimization technology,
can determine the optimal coefficient of each sub-model.
MOGOA with an archive to determine approximative values

TABLE 1 | Relevant studies.

Literature Methods of construction Year

Literature 1 (Yin et al., 2020) Extreme learning machine, non-iterative correction theory, seasonal model 2020
Literature 2 (Niu et al., 2020) Random forest feature selection, complete ensemble empirical mode decomposition, backpropagation, particle swarm

optimization
2020

Literature 3 (Zhang et al., 2020a) Dendritic neural network, wavelet transform algorithm 2020
Literature 4 (Li et al., 2020) Wavelet packet decomposition, LSTM 2020
Literature 5 (Agga et al., 2021) CNN, LSTM, ConvLSTM 2021
Literature 6 (Mellit et al., 2021) LSTM, Bidirectional LSTM, GRU, Bidirectional GRU, CNN, CNN-LSTM, CNN-GRU 2021
Literature 7 (Luo et al., 2021) Pearson correlation coefficient, LSTM, physical constraints 2021
Literature 8 (Zhen et al., 2021) Genetic algorithm, Bidirectional LSTM 2021
Literature 9 (Qu et al., 2021a) CNN, LSTM, CNN-LSTM 2021
etc.
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of the Pareto optimal solution can prompt prediction
precision and prediction stability. MOGOA can help deal
with an intricate optimization problem.

(4) The developed ensemble frame (EF) can assist in the
operation and optimization of smart grids. Based on the
realistic PV power data and comprehensive prediction
result analyses, the PEFF is verified as an effective
forecasting frame and can be applied to other forecasting
fields in future.

At present, an accurate and stable forecasting system is
urgently needed for renewable energy generation. However, in
the current study, the developed prediction models have defects.
Therefore, we propose a PEFF for PV power generation
prediction to compensate for the defects of the current
prediction model and provide a new scheme for PV power
generation prediction.

2 METHODS

In this section, SSA and MOGOA are presented in detail, and a
particular process of the PEFF is introduced.

2.1 Data Preprocessing Strategy
SSA, as an instrumental data preprocessing technique to process
the observed PV power values, has been continually adopted in
various fields, such as biology (Hassani and Ghodsi, 2015),
physics (Krishnannair et al., 2016), climatology (Unnikrishnan
and Jothiprakash, 2018), and economics (de Carvalho and Rua,
2017). The flow of the SSA is listed as follows:

Step 1. Embedding
Conversing original time series X � (x1, x2,/xN) into Z �

(z1, z2,/, zK) as Eq. 1.

X � (x1, x2,/, xN) → Z � (z1, z2,/, zK), (1)

where zi � (xi, xi+1, · · · , xi+L−1)T ∈ RL, K � N − L + 1,
L ∈ [2, N]. The consequence of this mapping is embodied as a
trajectory matrix with the mathematical expression of

Z � [Z1,Z2, · · ·,ZK] � (zij)L,Ki,j�1 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 · · · xK

x2 x3 · · · xK+1
· · · · · · · · · · · ·
xL xL+1 · · · xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(2)

Step 2. Singular values decomposition
Given a covariance matrix (S � XXT), this step is employed to

obtain L eigenvalues (λ1, λ2, · · · , λL) and eigenvectors
(U1,U2, · · · ,UL). Suppose t � max(i, such that λι > 0) and Vi �
XTUi




λi

√ (i � 1, 2, ..., t), then, S � XXT in this step can be
indicated by

Z � E1 + E2 + · · · + Et, (3)

where Ei �



λi

√
UiVi and the rank of Zi is 1. Therefore, V1,V2, ·

· · ,Vt are the principal components, and ( 


λi

√
,Ui,Vi) denotes

the characteristic root of the trajectory matrix (Z).

Step 3. Grouping
The interval (i � 1, 2, ..., t) is disintegrated into several

components (S1, S2, · · · , Sm) without a connection between
them. Suppose that S � (s1, s2, · · · , sp), then ZS is defined as
ZS � Zs1 + Zs2 + · · · + Zsp, and Z can be disintegrated into Z �
ZS1 + ZS2 + · · · + ZSm.

Step 4. Diagonal averaging
In this step, the grouping result is converted into a sequence

with N points. Assume that Z is an L p K matrix, Lp � min(L,K)
and Kp � max(L,K). If L < K, then z*ij � zij, or else, z*ij � zji.
Finally, Z is turned into a sequence (r1, r2,/, rN) based on the
following formula:

rk �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k + 1

∑k+1
q�1z

p
q,k−q+1, 1≤ k≤ L

*

1
Lp ∑Lp

q�1Z
p
q,k−q+1 L*≤ k≤K*

1
N −K + 1

∑N−Kp+1
q�1 Zp

q,k−q+1 K
* ≤ k≤N

, (4)

2.2 Intelligent Optimization Algorithm
MOGOA simulates the location of the grasshopper population,
which is used to search for the optimal solution to a definite
problem. Based on related articles (Mirjalili et al., 2018), the
operating mechanism of the MOGOA can be summarized as
follows:

The motion of each grasshopper is principally influenced by
individual interactions, weight, and wind strength. In addition,
Xi represents the location of the ith grasshopper, as shown in
Eq. 5.

Xi � Si + Gi + Ai, (5)

where Si,Gi, andAi denote the individual interaction, weight, and
wind strength of each grasshopper, respectively.

Si can be quantized by subsequent equations:

Si � ∑N
j�1
j ≠ i

s(dij)d̂ij, (6)

dij �
∣∣∣∣Xj −Xi

∣∣∣∣, (7)

d̂ij � (Xj −Xi)/dij, and (8)

s(r) � fe−r/l − e−r, (9)

where dij denotes the space between the ith and jth grasshopper
and d̂ij denotes a normalized vector from the ith grasshopper to
the jth grasshopper. s(r) quantizes individual interactions based
on f and l.

The weight is computed via Eq. 10:

Gi � −gêg, (10)
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Here, g denotes the gravitational coefficient, and êg defines a
normalized vector to the earth’s core. In addition, the wind
strength of each grasshopper can be calculated using Eq. 11.

Ai � uêw, (11)

Here, u defines a constant parameter, and êw denotes a vector
normalized to wind direction. Moreover, Eq. 5 can be expressed
in detail using Eq. 12.

Xi � ∑N
j�1
j ≠ i

s(∣∣∣∣Xj −Xi

∣∣∣∣)Xj −Xi

dij
− gêg + uêw, (12)

Here, N denotes population size. Moreover, the
aforementioned formulas simulate the motion of the ith
grasshopper under hypothetical status.

The force applied by gravitation is insignificant. The wind
strength is related to the orientation (T̂d). Therefore, Xi can be
extended as follows:

Xd
i � c( ∑N

j�1
j ≠ i

c
ubd − lbd

2
s(∣∣∣∣∣Xd

j −Xd
i

∣∣∣∣∣)Xj −Xi

dij
) + T̂d, (13)

Here, ubd and lbd represent the upper and lower boundaries of
the dth variable, respectively. T̂d denotes the dth variable value of
the optimal solution. In addition, c determined using Eq. 14 can
reduce exploration and improve exploitation such that the
operation speed can be correspondingly decreased based on
the iteration number.

c � cmax − l
cmax − cmin

L
, (14)

Here, cmax and cmin denote the maximum and minimum
values, respectively, and l and L represent the present iteration
and max iteration, respectively.

To conduct multi-objective optimization via GOA, a Pareto
optimal solution is adopted to modify the solution distribution.
The distance between each solution and neighboring solutions is
quantized. Then, the neighboring solution number is adopted to
measure the density of the Pareto optimal solutions. The
probability of selecting the search objective of the archive of
the current iteration is defined in Eq. 15.

Pi � 1
Ni

, (15)

Here,Ni represents the neighboring solution number of the ith
solution.

2.3 Flow of the PEFF
Bates et al. proved that the effective ensemble prediction accuracy
of different forecasting models far surpasses that of the individual
models (Bates and Granger, 1969). 1,450 values were collected
from three periods: the 1st–1160th values were selected as the
training set, the 1161st–1392nd values were considered as the
validation set, and the 1393rd–1450th values were selected as the
testing set. In prediction process, rolling forecasting mechanism is

used, and the principle of rolling forecasting is that updating the
input data by discarding the old data for each loop to perform the
forecasting. In our study, the input set for each loop is 5 samples
{yyPV(t − 4), yyPV(t − 3), yyPV(t − 2), yyPV(t − 1), yyPV(t)}, (t �
5, 6, . . ., 1,449), and the outputs of forecasting models are
{ŷPV(t + 1)}, {ŷPV(t + 2)}, and {ŷPV(t + 3)} from one-step to
three-step forecasting, respectively. In this study, PEFF forecasts
the linear and nonlinear trends of the PV power output sequence,
and the flow is listed in this subsection and exhibited in Figure 1.

2.3.1 Operating Mechanism 1: Data Preprocessing
SSA is adopted to conduct the real-time treatment of the initial
PV power series, so that the dominating feature of the PV power
sequence will be mastered, and effective forecasting will be
conducted subsequently.

2.3.2 Operating Mechanism 2: Prediction of Hybrid
Predictors
Based on the linear and nonlinear characteristics of the PV
power sequence, ARIMA and DLMs were selected to build the
PEFF. By combining SSA and these models, hybrid models
were employed as sub-models to predict PV power. The PV
power output values corresponding to the validation set were
forecasted based on the rolling forecasting mechanism. Based
on real data, hybrid models perform single-step and multi-step
predictions. The linear model (SSA–ARIMA) in sub-models
can predict the linear trend of the PV power sequence, and
nonlinear models (SSA-DLMs) can predict the
nonlinear trend.

The input vector of DLMs in the training set is as follows:

input trainDLMs

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yy(1th) yy(2th) · · · yy(5th)
yy(2th) yy(3th) · · · yy(6th)

« « 1 «

yy((1156 − k)th) yy((1157 − k)th) · · · yy((1160 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

output trainDLMs � [ y((5 + k)th) y((6 + k)th) · · ·
y(1160th) ]⊤

(17)

The input vector of ARIMA in the training set is as follows:

input trainARIMA �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yy(1th) yy(2th) · · · yy(295th)
yy(2th) yy(3th) · · · yy(296th)

« « 1 «

yy((866 − k)th) yy((867 − k)th) · · · yy((1160 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

output trainARIMA � [ y((295 + k)th) y((296 + k)th)
· · · y(1160th) ]

⊤

(19)

where k denotes the forecasting step, and y denotes the actual PV
values, and yy denotes the processed PV values.

The input vector of DLMs in the validation set is as follows:
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input validationDLMs

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yy(1157th) yy(1158th) · · · yy(1161th)
yy(1158th) yy(1159th) · · · yy(1162th)

« « 1 «

yy((1388 − k)th) yy((1389 − k)th) · · · yy((1392 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

output validationDLMs � [ y(1161th) y(1162th) · · ·
y(1392th) ]⊤

(21)

The input vector of ARIMA in the validation set is as follows:

input validationARIMA

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yy((867 − k)th) yy((868 − k)th) · · · yy((1161 − k)th)
yy((868 − k)th) yy((869 − k)th) · · · yy((1162 − k)th)

« « 1 «

yy((1098 − k)th) yy((1099 − k)th) · · · yy((1392 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

output validationARIMA � [ y(1161th) y(1162th) · · ·
y(1392th) ]⊤

(23)

where k denotes the forecasting step, and y denotes the actual PV
values, and yy denotes the processed PV values.

The input vector of DLMs in the testing set is as follows:

input testDLMs

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yy(1389th) yy(1390th) · · · yy(1393th)
yy(1390th) yy(1391th) · · · yy(1394th)

« « 1 «

yy((1435 − k)th) yy((1436 − k)th) · · · yy((1450 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

output testDLMs � [ y(1393th) y(1394th) · · · y(1450th) ]⊤
(25)

The input vector of ARIMA in the testing set is as follows:

input testARIMA

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yy((1099 − k)th) yy((1100 − k)th) · · · yy((1393 − k)th)
yy((1100 − k)th) yy((1101 − k)th) · · · yy((1394 − k)th)

« « 1 «

yy((1156 − k)th) yy((1157 − k)th) · · · yy((1450 − k)th)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

output validationARIMA � [ y(1393th) y(1394th) · · ·
y(1450th) ]⊤

(27)

where k denotes the forecasting step, and y denotes the actual PV
values, and yy denotes the processed PV values.

2.3.3 Operating Mechanism 3: Ensemble Forecasting
In this stage, MOGOA is applied to determine the best
weight coefficient of the forecasting values of each sub-
model. Based on MOGOA, prediction values matching the
validation set of four prediction sub-models obtained from
Process 2 are used to search for the best weight coefficient of
each sub-model, and real values matching the testing set are
used to test the forecasting performance of the PEFF. Finally,
the final PV power prediction result is aggregated via the
prediction values matching the testing set of each sub-model
and the optimal weight coefficients corresponding to each
sub-model. The objective functions of MOGOA are
prediction accuracy and stability in PEFF, and its fitness
function is provided:

min{Ob1 � mean(abs(y − ŷ)/y) × 100%
Ob2 � std(y − ŷ) (28)

where y denotes the actual PV values, and ŷ denotes the
forecasting PV values.

The fitness function can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{w} � arg min
{w}

{Ob1 � mean(abs(y − ŷ)/y) × 100%
Ob2 � std(y − ŷ)

s.t. − 2≤w≤ 2
ŷ � sub ŷARIMA × wARIMA + sub ŷDBN × wDBN

+ sub ŷGRU × wGRU + sub ŷLSTM × wLSTM,
w � {wARIMA,wDBN,wGRU,wLSTM}

(29)

The weights are optimized to achieve good forecasting
performance in validation set by MOGOA. Ultimately,
the final forecasting results are calculated as
ŷ(1393th − 1450th).

FIGURE 1 | Flowchart of the proposed ensemble forecasting system (including data preprocessing, sub-model forecasting, and ensemble forecasting based on
MOGOA).
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2.3.4 Operating Mechanism 4: Forecasting
Performance Assessment
The forecasting accuracy and stability were assessed using four
indicators (see Table 2 for details) based on three experiments,
and five discussions were held to further analyze the prediction
effect of PEFF.

3 EXPERIMENTAL SETUP AND RESULT
ANALYSES

In this section, the experimental setup and forecasting result
analyses based on three PV power datasets are presented to verify
the forecasting ability of our PEFF.

3.1 Datasets
Initial PV power data were acquired from three datasets in
Belgium with a time interval of 15 min. When the light
intensity reaches a certain level, the PV power generation has
sufficient output; therefore, this study considers PV power
generation data from 9:00 to 16:00 every day as the
verification dataset. Specifically, 1,450 data points for
continuous 50 days from different time period were adopted as
the reference dataset. The detailed data characteristics of the
PEFF are shown in Figure 2.

There is no official or specific procedure to select the
optimal training-to-test ratio. In actual application, with the
improvement of training-to-test, the forecasting accuracy can
be obviously improved, while too many training data may
result in overfitting issue. In this paper, based on previous
experiences and researches, the ratio of training, validation,
and test set is set to 20:4:1. Specifically, the 1st–1160th values
were selected as the training set, the 1161st-1392nd values
were considered as the validation set, and the 1393th-1450th
values were selected as the testing set. The relevant data
characteristics are listed in Table 3.

3.2 Assessment Indicators of Forecasting
Performance
There must be a scientific evaluation system to determine
whether the prediction performance is satisfactory. In this
section, four indicators, including the mean absolute error
(MAE), mean absolute percent error (MAPE), root mean
square error (RMSE), and standard deviation of error (SDE),

are introduced to verify the forecasting effort of our PEFF. The
concepts and equations of the four indicators are listed inTable 2.

3.3 Experimental Setup
Based on the PV power dataset, three experiments were designed
to compare the PEFF and reference models. In these experiments,
Experiment I contrasted the prediction ability of the PEFF and
hybrid models. Experiment II compared the PEFF with the EFs,
employing different data pretreatment strategies and MOOAs in
terms of forecasting effect. Experiment III compared the
prediction capacity of the PEFF and classical models. The
prediction ability of 1-step to 3-step prediction is testified via
four indicators, and experimental result analyses are described.

Experiment I was conducted to verify the advantages of PEFF
compared with hybrid models. The parameter setting of the SSA
is the same as that of the PEFF, and the rolling number of the
models was set to 5.

TABLE 2 | Four performance indicators.

Metric Definition Equation

MAE (Aygül et al., 2019) Average absolute error MAE � ∑M
i�1|êi − ei |/M

MAPE (Zhang et al., 2020b) Mean absolute percentage error MAPE � (∑M
i�1|(ei − êi)/ei |/M) × 100%

RMSE (Nie et al., 2020) Root mean square error RMSE �














∑M

i�1(êi − ei)2/M
√

SDE (Liu et al., 2021) Standard deviation of error SDE �














∑M

i�1(ei − êi)2/M
√

Note: ei denotes the actual PV power output at point i, and êi denotes the forecasting PV power output at point i. MAE, MAPE, and RMSE are used to measure prediction accuracy, and
standard deviation is used to measure prediction stability.

FIGURE 2 | Original PV power output time series in these studied
datasets.
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Experiment II was conducted to prove that the ensemble learning
strategy of PEFF surpasses the EFs structured via other data
pretreatment techniques (complete ensemble empirical mode
decomposition (CEEMD)) and MOOAs (multi-objective dragonfly
algorithm (MODA) and multi-objective grey wolf optimizer
(MOGWO)). For each EF, the ensemble learning strategy
changes, and the input and output settings remain unchanged.

Experiment III was employed to reveal the forecasting superiority
of the PEFF with classical models (backpropagation (BP) neural
network, extreme learning machine (ELM), Elman neural network
(ENN), echo state network (ESN), least squares support vector
machine (LSSVM) and radical basis function (RBF)).

3.4 Experiment I: Comparison With Hybrid
Predictors
The experimental results are listed in Table 4. For Dataset 1,
PEFF has an unrivaled characteristic in one-step and multi-step
predictions. In particular, theMAPE value is 1.7722% in one-step,
2.5428% in two-step, and 4.3568% in three-step predictions,
which are minimum compared with the involved models. For

Dataset 2, the lowest MAE, MAPE, RMSE, and SDE were
obtained from the PEFF in one step, with values of 13.5285,
0.9495%, 21.3817, and 21.5428, respectively. In multi-step
prediction, the most satisfactory results are achieved by the
PEFF, confirming the forecasting effect of our PEFF. For
Dataset 3, the forecasting accuracy and stability of PEFF
signally precede that of the reference models. This implies that
although hybrid models can improve the prediction precision
weakly, the PEFF is better.

Remark. The PEFF obtains a more satisfactory prediction
ability with the smallest error indicator values among all of
the involved models, proving the short-term prediction
availability of the proposed PEFF in PV power output.

3.5 Experiment II: Comparison With EFs
Adopting Diverse Ensemble Strategies
Experiment II compares the EFs with different data
pretreatment techniques (CEEMD) and MOOAs (MODA
and MOGWO). The forecasting results are listed in
Table 5. For Dataset 1, the PEFF is precise and stabilized

TABLE 3 | Relevant data characteristics of three datasets.

Datasets Datasets Number Mean Std Min Max Kurtosis Skewness

Dataset 1 Training Set 1,160 830.33 476.36 32.97 2055.73 −0.41 0.54
Validation Set 232 768.81 506.05 101.23 1818.68 −1.19 0.39
Testing Set 58 1,208.61 343.51 519.97 1825.68 −0.73 −0.06
All Samples 1,450 835.62 482.98 32.97 2055.73 −0.63 0.45

Dataset 2 Training Set 1,160 1,486.61 473.34 253.56 2,320.85 −0.38 −0.56
Validation Set 232 1,281.88 453.91 363.65 2,211.87 −0.67 −0.02
Testing Set 58 1,648.02 272.66 1,101.78 2069.63 −1.10 −0.05
All Samples 1,450 1,460.31 471.21 253.56 2,320.85 −0.48 −0.48

Dataset 3 Training Set 1,160 1,083.22 497.29 183.47 2073.17 −1.06 0.15
Validation Set 232 1,067.73 473.69 252.92 2001.07 −1.21 0.07
Testing Set 58 1,507.73 322.29 786.71 1971.44 −0.87 -0.40
All Samples 1,450 1,097.72 494.67 183.47 2073.17 −1.09 0.09

TABLE 4 | Comparison of the prediction performance of the PEFF and hybrid models.

Datasets Models 1-Step 2-Step 3-Step

MAE MAPE RMSE SDE MAE MAPE RMSE SDE MAE MAPE RMSE SDE

Dataset 1 SSA-ARIMA 64.5753 6.4809 80.5735 80.6501 87.5710 6.2232 85.3681 85.3949 98.9754 7.4362 107.1025 106.0687
SSA-DBN 20.8679 2.0754 28.8039 29.0033 58.0964 5.7688 75.5247 74.8270 81.7015 7.1736 101.2765 100.4727
SSA-GRU 37.2952 3.7035 48.5440 39.1455 65.7595 5.6530 72.4347 43.8018 73.7984 7.3753 97.2019 96.0304
SSA-LSTM 41.5859 3.6510 46.4083 28.2302 57.0653 5.0747 64.8244 41.1532 71.4108 6.3817 89.8253 80.8380
PEFF 16.0007 1.7722 28.9642 28.5218 24.1139 2.5428 36.5499 36.7695 40.6881 4.3568 57.1474 57.5807

Dataset 2 SSA-ARIMA 45.1211 2.7987 49.3694 49.4504 47.5442 3.0058 65.7468 65.8141 57.7359 3.8265 86.1445 86.2185
SSA-DBN 15.1359 1.0225 22.2644 22.3720 35.4919 2.3595 51.7319 48.7248 56.1531 3.7176 81.2890 77.9517
SSA-GRU 27.8566 1.7620 32.2005 27.8333 35.5072 2.2519 45.2732 35.8688 58.4671 3.7642 94.6169 94.9409
SSA-LSTM 42.0471 2.6084 45.8709 24.1338 31.1521 2.0103 40.4655 34.0953 52.4383 3.3406 68.4523 68.8433
PEFF 13.5285 0.9495 21.3817 21.5418 18.3995 1.2623 29.2054 29.0429 31.3365 2.0810 44.2778 44.3717

Dataset 3 SSA-ARIMA 41.5486 2.9235 49.0275 49.0931 40.1157 2.9690 48.7420 48.7538 45.6637 3.5356 73.9258 73.8198
SSA-DBN 12.8713 1.0139 19.7119 19.6991 38.4924 2.8621 55.3783 55.6886 43.8516 3.2763 64.9805 62.5742
SSA-GRU 32.1875 2.2983 35.5315 18.6984 37.6604 2.7164 43.5752 29.5510 73.7979 4.8642 86.3725 61.1768
SSA-LSTM 37.6564 2.6550 40.6847 19.9823 39.9714 2.8341 46.1460 32.2411 46.0131 3.2804 58.1740 51.5115
PEFF 11.0289 0.9060 16.4936 16.6610 18.0331 1.4887 26.4301 24.4284 31.9175 2.4017 41.5250 34.7977
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in PV power prediction, which can be concluded based on the
MAPE values (1.7722, 2.5428, and 4.3568%) in each
forecasting step. For Dataset 2, the four assessment
indicator values in each forecasting step obtained from
PEFF are the most satisfactory. The MAPE in one-step
forecasting obtained from the PEFF is 0.9495%, which is
0.2132% higher than that of SSA-MOGWO-EF, which is
second in the prediction effect. As for Dataset 3, regardless
of the prediction step, the PEFF obtains the optimal
forecasting result proved by obviously lower error indicator
values. For instance, in three steps, the PEFF provides the
lowest MAE, MAPE, RMSE, and SDE of 31.9175, 2.4017%,
41.5250, and 34.7977, respectively, while the highest MAPE
was obtained from CEEMD-MOGOA-EF at 4.8862%.

Remark. The assessment indicator values in Experiment II
show that the PEFF precedes the EFs based on other ensemble
strategies in terms of forecasting precision and stability,
regardless of the prediction step and dataset.

3.6 Experiment III: Comparison With Classic
Models
The experimental results reveal the forecasting ability of the
PV power sequence by comparing the PEFF with classic
models (BP, ELM, ENN, ESN, LSSVM, and RBF). The
prediction results are listed in Table 6. For Dataset 1, with
regard to the one-step prediction, PEFF exhibits the optimal
forecasting performance. With regard to two- and three-step

TABLE 5 | Comparison of the forecasting performance of the PEFF and EFs employing other ensemble strategies.

Datasets Models 1-Step 2-Step 3-Step

MAE MAPE RMSE SDE MAE MAPE RMSE SDE MAE MAPE RMSE SDE

Dataset 1 CEEMD-MOGOA-EF 31.8597 2.4202 40.9902 40.8996 37.9407 3.8876 51.3962 49.2323 61.3274 6.2315 78.4916 73.9839
SSA-MODA-EF 18.8108 2.0113 28.5070 28.7373 37.1732 3.5273 45.4530 40.5328 60.3734 6.0215 71.5867 63.0439
SSA-MOGWO-EF 18.6543 1.9854 27.7369 27.9771 30.2334 3.0368 40.4392 39.0266 58.6560 5.7436 69.5111 57.5834
PEFF 16.0007 1.7722 28.9642 28.5218 24.1139 2.5428 36.5499 36.7695 40.6881 4.3568 57.1474 57.5807

Dataset 2 CEEMD-MOGOA-EF 15.7684 1.0647 22.4003 24.5794 31.6600 2.0732 39.0680 35.1800 56.1855 3.4025 72.8122 70.6055
SSA-MODA-EF 14.5178 1.0158 23.1657 22.5536 27.3173 1.8540 37.8721 33.7889 47.2092 3.1136 67.6010 67.5988
SSA-MOGWO-EF 13.7641 0.9688 22.8846 22.2488 23.2763 1.5750 33.9391 33.5204 41.2373 2.7012 53.5360 44.8950
PEFF 13.5285 0.9495 21.3817 21.5418 18.3995 1.2623 29.2054 29.0429 31.3365 2.0810 44.2778 44.3717

Dataset 3 CEEMD-MOGOA-EF 15.9487 1.2555 22.8784 23.0553 40.9837 3.1094 63.2146 63.0417 58.7871 4.8862 84.1269 78.6112
SSA-MODA-EF 12.4153 0.9827 18.6229 18.6425 31.6632 2.3163 40.8688 26.8852 41.0942 3.0999 55.7911 47.0912
SSA-MOGWO-EF 11.8032 0.9550 18.3029 18.4288 23.8026 1.8575 32.7021 25.9686 40.6278 3.0528 54.5274 44.3540
PEFF 11.0289 0.9060 16.4936 16.6610 18.0331 1.4887 26.4301 24.4284 31.9175 2.4017 41.5250 34.7977

TABLE 6 | Comparison of the prediction performance of the PEFF and reference models.

Datasets Models 1-Step 2-Step 3-Step

MAE MAPE RMSE SDE MAE MAPE RMSE SDE MAE MAPE RMSE SDE

Dataset 1 BP 36.1011 6.5977 81.6468 81.7840 83.3276 18.1566 132.0443 131.5471 105.8290 20.7587 164.0412 164.1236
ELM 42.5785 7.5592 91.4609 91.6177 81.1682 15.0630 142.4280 142.5972 122.4549 21.9137 205.6969 206.0437
ENN 39.7156 7.4723 84.4419 84.5207 82.3793 14.7120 143.5108 143.7415 119.3047 21.7489 203.0020 203.3021
ESN 46.5811 8.7681 98.2482 98.3220 90.3716 17.6039 143.7276 143.9530 133.0377 26.0459 189.5262 189.8139
LSSVM 42.4525 7.4831 92.1394 91.9860 78.2665 14.5620 141.7317 141.6096 116.6006 21.9949 190.9299 190.8851
RBF 44.9547 8.4727 102.9092 102.9386 83.7915 16.1391 159.0064 159.1626 120.7738 23.7272 196.3467 196.4828
PEFF 16.0007 1.7722 28.9642 28.5218 24.1139 2.5428 36.5499 36.7695 40.6881 4.3568 57.1474 57.5807

Dataset 2 BP 32.5137 3.7464 75.4105 75.5294 64.2328 7.6081 117.2039 117.1351 96.1471 11.1675 156.8650 156.7773
ELM 36.3188 4.3381 77.0213 77.0773 65.9400 7.5464 116.5061 116.6311 98.3678 11.1553 155.4301 155.2397
ENN 35.6443 4.1737 77.1195 77.1545 68.5001 7.8467 119.2438 119.2861 96.3027 10.9769 154.5617 153.9480
ESN 46.7721 4.9832 108.2536 108.4385 86.3844 9.1621 145.8431 145.9740 122.5856 12.9829 183.3423 183.1392
LSSVM 45.1141 5.6019 97.4178 97.5851 70.9837 7.9522 128.6216 128.7701 93.4934 9.9382 155.3779 155.4104
RBF 35.4258 4.2141 78.9399 79.0719 63.1031 7.1286 116.0497 116.2490 89.6376 9.9341 149.9513 150.1800
PEFF 13.5285 0.9495 21.3817 21.5418 18.3995 1.2623 29.2054 29.0429 31.3365 2.0810 44.2778 44.3717

Dataset 3 BP 30.2430 4.0074 64.9896 64.9369 61.3442 7.6853 109.0110 109.1889 89.7525 11.4595 146.1884 146.3795
ELM 29.6854 3.9093 65.1172 65.1585 63.7582 7.9744 111.1659 111.2437 96.6048 11.8075 151.4255 151.1732
ENN 31.3175 4.0124 66.2060 66.2620 62.3144 8.0096 108.9393 108.8660 95.4399 11.9277 150.2073 150.0207
ESN 36.2387 4.2851 80.6081 80.5945 71.8532 8.2486 123.1829 122.9609 110.2528 12.5923 166.9108 166.8145
LSSVM 29.0768 3.7328 64.2934 64.3394 59.7767 7.5425 105.9502 106.0854 92.8919 11.5781 145.6523 145.8945
RBF 30.0137 3.8859 64.9002 64.9930 62.5905 7.9905 108.4614 108.6286 95.1872 11.9129 148.0287 148.2561
PEFF 11.0289 0.9060 16.4936 16.6610 18.0331 1.4887 26.4301 24.4284 31.9175 2.4017 41.5250 34.7977
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forecasting processes, the assessment indicators of the PEFF
are minimally compared with the classical models, which
indicate that the PEFF is more valid in PV power
prediction. For Dataset 2, classical models achieved
unsatisfactory prediction effects with higher values of MAE,
MAPE, RMSE, and SDE. Specifically, in 2-step forecasting, the
MAPE values of BP, ELM, ENN, ESN, LSSVM, and RBF are
7.6081, 7.5464, 7.8467, 9.1621, 7.9522, and 7.1286%,
respectively, and the MAPE values of PEFF were 1.2623,
6.3458, 6.2841, 6.5844, 7.8999, 6.6899, and 5.8664%. As for
Dataset 3, the PEFF precedes other involved models with
average values of the evaluation criteria of 20.3265,
1.5988%, 28.1495, and 25.2957, respectively, in three steps.

Remark. Based on the results of this experiment, we can
conclude that the PEFF has a stronger effect than the classical
models in short-term PV power prediction.

4 DISCUSSION

In this section, the PEFF is discussed in detail, including the
significance, sensitivity analysis, operational efficiency, practical
applications, defects, and future directions of the PEFF.

4.1 Forecasting Significance of the PEFF
To investigate whether there is a prominent difference in the
prediction ability between the PEFF and reference models, the
Diebold–Mariano (DM) test (Jiang et al., 2021) was conducted.
The concrete theory of this test can be found in (Zhang et al.,
2021).

As for our study, Table 7 lists the DM values from 1-step to 3-
step prediction based on the three datasets. First, the PEFF is
different from classical models (BP, ELM, ENN, ESN, LSSVM,
and RBF) at a significance level of 99%. Moreover, although the
DM values computed based on the difference between the PEFF
and hybrid models are lower than that computed based on the
difference between the PEFF and each classical model, the PEFF

has a distinguishing prediction capacity compared with each
hybrid model at a significance level of 95%. Then, when
comparing the PEFF with the EFs adopting disparate ensemble
strategies, the DM statistical magnitude pertaining to one-step to
three-step prediction based on each dataset exceeds the critical
value at a significance level of 95%, which illustrates that there is a
95% possibility that we will not reject H1.

Based on the DM statistical magnitude, the forecasting
results of PEFF are significantly different from those of
classical models (BP, ELM, ENN, ESN, LSSVM, and RBF),
hybrid models (SSA-ARIMA, SSA-DBN, SSA-GRU, and SSA-
LSTM), and EFs using diverse ensemble strategies (CEEMD-
MOGOA-EF, SSA-MODA-EF, and SSA-MOGWO-EF). Thus,
it is valuable to exploit PEFF and employ it in practical PV
power forecasting.

4.2 Sensitivity Analysis of the PEFF
To explore the prediction ability of the PEFF when a certain
parameter changes, sensitivity analysis was performed to measure
the output result sensitivity of PEFF based on the parameter
settings of SSA and MOGOA. The standard deviation (STD) of
error indicators, as shown in Table 8, was adopted to assess the
level at which the parameter setting impacted the properties of
PEFF (Liu et al., 2021). The results of the sensitivity analysis are
listed in Table 9, where the window length and principal

TABLE 7 | DM results of the models included in this study.

Models Dataset 1 Dataset 2 Dataset 3

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

BP 8.0975a 8.2785a 8.5469a 8.9575a 8.9649a 8.1576a 8.9706a 8.9572a 8.4854a

ELM 8.3003a 7.6419a 7.9218a 8.4157a 8.2922a 8.4595a 8.1557a 7.5357a 8.3491a

ENN 9.4340a 9.1787a 9.2577a 9.2431a 8.8922a 9.1555a 8.6712a 9.2060a 8.5318a

ESN 8.7769a 8.5462a 8.5971a 9.3235a 9.1948a 8.8171a 9.4502a 8.5344a 8.9387a

LSSVM 8.0816a 8.4655a 8.4952a 7.8869a 8.1898a 8.1456a 8.3463a 8.4094a 8.4547a

RBF 6.7760a 7.1797a 7.1551a 6.6626a 6.6190a 6.9984a 7.4597a 6.8404a 7.0853a

SSA-ARIMA 2.0238b 2.5513b 2.0551b 2.3060b 2.4991b 2.6909a 2.7593a 2.3472b 1.9986b

SSA-DBN 1.9993b 2.0575b 2.6407a 2.0543b 2.6143a 2.0435b 2.7293a 2.1500b 1.9966b

SSA-GRU 2.0511b 2.4160b 2.2733b 2.1517b 2.6308a 2.3853b 2.3497b 2.7172a 2.0858b

SSA-LSTM 2.5572b 2.5537b 2.1804b 2.3678b 1.9759b 1.9740b 2.3308b 2.5792a 2.7340a

CEEMD-MOGOA-EF 2.0899b 2.5288b 2.4294b 1.9719b 2.2971b 2.1222b 2.7543a 2.2712b 2.4885b

SSA-MODA-EF 2.1256b 2.5620b 2.2230b 2.6141a 2.6492a 2.7082a 2.4105b 2.0438b 2.1890b

SSA-MOGWO-EF 2.8733b 2.1124b 2.7858a 2.4983b 2.9561a 2.0382b 2.4027b 2.0667b 2.9219a

Note:
a99% significance level (critical value � 2.576).
b95% significance level (critical value � 1.960).

TABLE 8 | Four designed indicators of sensitivity analysis.

Metrics Definition Equations

SMAE STD of MAE of n times
prediction

SMAE � Std(MAE1 ,MAE2 , ...,MAEn)

SMAPE STD of MAPE of n time
prediction

SMAPE � Std(MAPE1 ,MAPE2 , ...,MAPEn)

SRMSE STD of RMSE of n time
prediction

SRMSE � Std(RMSE1 ,RMSE2 , ...,RMSEn)

SSDE STD of SDE of n time
prediction

SSDE � Std(SDE1 ,SDE2 , ...,SDEn)
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component decomposition number (PCDN) belong to SSA and
the population size, iteration number, and archive size belong to
MOGOA.

Sensitivity analyses were conducted by changing one parameter,
and the remaining parameters remained unchanged. It must be
known that each parameter value is assigned as 40, 45, 50, 55, and
60 in terms of window length, and 10, 15, 20, 25, and 30 in terms of
PCDN, respectively. Meanwhile, the parameter is set as 10, 30, 50,
70, and 90 in terms of population size; 300, 400, 500, 600, and 700
in terms of iteration number; and 100, 150, 200, 250, and 300 in
terms of archive size.

(1) As the parameters of SSA change, the SMAE, SMAPE, SRMSE,
and SSDE values of the two parameters become higher. For
instance, in the three-step prediction based on Dataset 1, the
SMAPE value is 0.2948 for window length and 0.2097 for

PCDN, which are lower than the SSDE values but still higher
than the SMAPE values of MOGOA parameters. The above
results indicate that the SSA significantly impacts the
forecasting performance of the PEFF.

(2) When the parameter inMOGOA is altered, compared with the
sensitivity analysis results obtained from SSA, the measured
indicators of MOGOA are lower than those of SSA, indicating
that the fluctuation of forecasting performance generated by
parameter alteration in MOGOA is slight.

4.3 Operational Efficiency of the PEFF
To further explore the operational efficiency of PEFF, the run time of
eachmodel based on three datasets, regardless of the forecasting step,
is listed in Table 10. In particular, the mean value of the operational
time of the PEFF is 164.5339 s, which is shorter than the EFs based
on different ensemble strategies. The computing time of PEFF is

TABLE 9 | STD values of the results acquired by changing parameters.

Datasets Algorithms Parameters 1-Step 2-Step 3-Step

SMAE SMAPE SRMSE SSDE SMAE SMAPE SRMSE SSDE SMAE SMAPE SRMSE SSDE

Dataset 1 SSA Window Length 2.4813 0.2350 2.3475 2.3814 2.4059 0.3147 2.6224 2.9407 2.3837 0.2948 3.4107 2.7419
PCDN 2.3360 0.2054 2.3083 2.3926 2.2226 0.2817 2.8869 2.8968 2.7934 0.2097 2.4408 2.7966

MOGOA Population Size 1.1213 0.0917 1.1665 0.8483 1.7892 0.1428 1.2537 1.1912 0.4999 0.1025 1.2675 1.5429
Iteration Number 1.2564 0.0336 1.1484 1.2494 1.9742 0.1214 1.0036 1.8143 0.4316 0.0543 0.6807 0.8152
Archive Size 0.3559 0.1024 0.6964 0.4870 0.4273 0.0452 0.7552 0.8221 0.7834 0.1017 1.3152 1.3772

Dataset 2 SSA Window Length 2.3800 0.2428 1.8090 2.0273 4.4983 0.3094 4.5220 0.9046 6.5667 0.4377 5.1595 0.4256
PCDN 2.7747 0.2052 2.5614 1.7477 4.5408 0.2985 4.4322 0.9292 4.6348 0.4184 5.0983 0.4358

MOGOA Population Size 1.1489 0.0616 0.5079 0.3770 2.0190 0.1531 2.0844 0.2835 2.8884 0.2013 2.4218 0.2682
Iteration Number 1.1993 0.0717 0.6826 0.6831 2.6139 0.1805 2.4364 0.2175 1.9861 0.1461 1.7761 0.2883
Archive Size 1.3714 0.0815 1.1076 0.7743 0.9389 0.0742 0.9619 0.5533 2.0549 0.1344 1.9448 0.2166

Dataset 3 SSA Window Length 2.0610 0.1698 1.9280 2.6148 2.0962 0.1984 3.2311 3.8987 3.7061 0.2162 4.0595 4.8314
PCDN 2.2278 0.1803 2.2001 1.9136 2.8146 0.2428 2.3597 2.6772 5.3466 0.3361 6.0052 6.1229

MOGOA Population Size 0.3832 0.0237 0.3812 0.4114 1.2668 0.1207 1.8670 1.9202 0.7750 0.0640 0.4889 0.7453
Iteration Number 0.9925 0.0607 0.8133 0.7673 1.7904 0.0701 0.9975 1.8172 0.9138 0.0791 0.6670 0.5771
Archive Size 0.7819 0.0500 0.3134 0.3099 0.6165 0.0530 0.5860 1.7270 0.7736 0.0549 0.6798 0.8035

TABLE 10 | Run time of each model.

Models Dataset 1 Dataset 2 Dataset 3 Average

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

BP 1.6324 2.0975 1.2785 1.9572 2.4854 1.8003 2.1419 1.4218 1.9157 1.8590
ELM 1.0469 0.9575 0.9649 0.8922 0.9595 0.9557 1.0357 0.8491 0.9340 0.9551
ENN 5.1576 4.9706 4.9572 4.6787 4.7577 4.7431 5.3922 4.6555 5.1712 4.9427
ESN 3.9595 3.6557 3.0357 2.7655 2.7952 3.1869 3.4898 3.4456 2.6463 3.2200
LSSVM 2.4854 2.8003 3.1419 2.7060 3.0318 3.2769 3.0462 3.0971 2.8235 2.9343
RBF 7.8491 6.9340 6.6787 6.7094 6.7547 7.2760 6.6797 6.6551 7.1626 6.9666
SSA-ARIMA 15.4218 16.9157 15.7922 15.6948 16.3171 15.9502 17.0344 16.4387 16.3816 16.2163
SSA-DBN 129.6555 110.1712 112.7060 121.7513 113.2551 109.5060 113.6991 124.8909 119.9593 117.2883
SSA-GRU 144.0318 153.2769 144.0462 135.5472 126.1386 136.1493 125.2575 123.8407 124.2543 134.7270
SSA-LSTM 152.7577 161.7431 141.3922 143.1190 152.4984 145.9597 133.3404 122.5853 154.2238 145.2911
CEEMD-MOGOA-EF 209.0971 198.8235 199.6948 190.8143 191.2435 189.9293 198.3500 203.1966 211.2511 199.1556
SSA-MODA-EF 218.8147 216.9058 217.1270 218.6160 219.4733 220.3517 218.8308 217.5853 217.5497 218.3616
SSA-MOGWO-EF 223.9134 225.6324 226.0975 225.9172 226.2858 225.7572 224.7537 223.3804 225.5678 225.2562
PEFF 163.3171 160.9502 161.0344 164.0759 165.0540 163.5308 167.7792 166.9340 168.1299 164.5339

Note: The running time is measured in seconds (s).
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shorter than that of SSA-MODA-EF, which confirms the superiority
of the MOGOA adopted in PEFF. Moreover, in contrast to hybrid
and classical models, the average operational time of PEFF is longer,
which is reasonable owing to its excellent prediction ability. The
operational efficiency of the PEFF can be improved by adopting a
high-powered computer.

4.4 Practical Applications of the PEFF
In practical scenarios, real-time missions considering PV power
generation planning and grid security safeguards require effective
forecasting. In particular, precise and stable PV power prediction
can solve the challenge caused by the irregular undulations of PV
power, which is the key point for the businesslike running of PV
power generation systems and can improve the stability and
efficiency of the energy market and energy industry. Accurate
and stable PV power forecasting can also effectively boost the PV
penetration degree, reduce the use of fossil fuels, and enhance
economic and environmental benefits, which is conductive to the
sustainable development of the society.

Moreover, the forecasting results of the PV power output
support decision-makers in maintaining the power system
stability, installing large PV power stations, and monitoring the
security of power systems. When the predicted PV power output
result is inconsistent with the real data, energy producers can assess
efficiency degradation caused by motor aging or motor faults and
deal with it in time to reduce economic loss. In other words,
accurate PV output forecasting provides valuable assistance for
monitoring the running status of equipment, which saves
maintenance costs and reduces the risk of power grid breakdown.

Furthermore, accurate forecasting is essential for grid
operators to help them determine balancing power that can
satisfy unnecessary demand for fossil fuels. By referring to PV
power forecasting results, decision makers can determine
reasonable power supply volumes of PV power and fossil fuel
power plants so as to satisfy the country’s power demand.
Meanwhile, accurate PV power forecasting is conductive to
setting reasonable rotating reserve capacity so as to enhance
energy economy and reduce the risk of PV abandonment.

4.5 Defects and Future Directions
The main limitation of PEFF is that the applied area is limited to
power systems containing PV power stations, instead of finance,
such as future price predictions.

After PV power prediction, adaptable improvements for
future are as follows:

(1) Finding more effective data preprocessing methods to
process PV power data and process the irregular
characteristics of the initial PV power data more effectively.

(2) Enhancing sub-models to provide satisfactory forecasting
results for the subsequent forecasting of EF.

(3) The operation efficiency of the proposed PEFF should be
improved by GPU acceleration.

(4) More underlying external factors, such as weather and solar
irradiation, must be taken into consideration to obtain better
forecasting results for longer forecasting horizons.

5 CONCLUSION

We developed an ensemble forecasting frame that capitalizes the data
preprocessing technique and optimization algorithm to forecast PV
power. The proposed system has been proved to be effective and
efficient to improve the prediction accuracy and stability of short-
term PV power. Specifically, a data preprocessing technique is
employed to disintegrate the original PV power sequence and
integrate a processed sequence to decrease prediction errors
created by the irregular undulations of the PV power series.
ARIMA and three DLMs were adopted as sub-models to forecast
PV power sequences. Further, MOGOAwas adopted to compute the
weight of each sub-model of the PEFF and obtain the final prediction
result. Simulation results prove that the proposed system
(SSA–MOGOA–EF) surpasses the comparative models.
Specifically, in Experiment I, the lowest average MAPE based on
each dataset was obtained from PEFF with values of 2.89, 1.43, and
1.60%, which were reduced by 3.82, 1.78, and 1.54%, respectively,
compared with the maximum values obtained from SSA–ARIMA.
This revels that the proposed ensemble forecasting scheme is
obviously superior to the comparative hybrid models in terms of
accuracy and stability. The ensemble strategy can successfully
improve short-term PV power forecasting performance. In
Experiments II, the MAPE values of PEFF based on all datasets
are the most satisfactory, which implies that the PEFF based on SSA
and MOGOA technologies exceeds the comparative ensemble
models based on other data preprocessing technologies and
optimization algorithms. Thus, it is a wise choice to use
SSA–MOGOA–EF for PV power forecasting. Similarly, in
Experiment III, the improvement of the proposed forecasting
system over the classical individual models is more significant,
further testifies the effectiveness of the proposed ensemble system.
Five discussions are further conducted to testify the performance of
the proposed frame. Based on the discussions, we testify that there is
an observable difference between the prediction results of the PEFF
and the benchmark models, and the proposed forecasting frame is
less sensitive to the parameter change of MOGOA than that of SSA.
Furthermore, the proposed forecasting frame incurs a lower cost
compared with EFs adopting other ensemble strategies. Thus, we can
conclude that the PEFF successfully improves the forecasting
accuracy and stability of PV power and can achieve more efficient
and time-saving forecasting results, which can provide useful support
for smart grid planning.
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The impact channel of crude oil market risk on the macroeconomy is highly related to oil
attributes. This paper uses a stepwise test method with dummy variables to identify the
channel effect of commodity market risk as well as financial market risk and explore the
characteristics of the channel effect in different periods dominated by different oil
attributes. Furthermore, this paper investigates the asymmetric characteristics of the
channel effect under the condition of crude oil returns heterogeneity. The empirical
results show that: First, commodity market risk, as well as financial market risk plays a
channel role in the impact of crude oil market risk on the macroeconomic operation.
Second, there is a significant difference in the ability of the commodity market and financial
market to cope with shocks of crude oil market risk in periods dominated by different
attributes. During the period dominated by the commodity attribute of oil, both commodity
market and financial market play the role of “risk buffer”; during the period dominated by
dual attributes of oil, the commodity market risk plays the role of “risk buffer”, while the
financial market risk plays the role of “magnifier” of the crude oil market risk. Third, the
channel effect pattern and degree of commodity market risk and financial market risk are
significantly asymmetric.

Keywords: channel identification, upward and downward return risk, macro economy, Commodity market, financial
market

1 INTRODUCTION

The impact of crude oil market risk on the smooth operation of the macroeconomy is related to the
dual attributes of the oil. As a key input factor, the price fluctuation of crude oil will directly or
indirectly affect macroeconomic factors such as inflation, interest rate and price level (Bloch et al.,
2015; Ratti and Vespignani, 2016; Sodeyfifi and Katircioglu, 2016; Kang et al., 2017; Shi and Sun,
2017; Ji et al., 2019a; Saeed and Ridoy, 2020). The dependence of economic development on crude oil
is the main factor that determines the direct shock of the crude oil market. Since 1993, China has
become a net importer of crude oil, and the import volume shows an upward trend. In 2014, China
became the world’s largest importer of crude oil. China’s consumption of crude oil is also on the rise,
making it the second-largest consumer of crude after the United States. In addition, the commodity
and financial attributes of oil reflect the indirect impact of the crude oil market on the smooth
operation of the macroeconomy. Crude oil, on the one hand as the main commodity, its price
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fluctuation will cause the price of other commodities to change in
the same direction; on the other hand, as the necessity of
production and life, the change of its price as well as the
change of other commodities prices will inevitably lead to the
change of many macroeconomic indicators, such as the price
level. In addition, due to the influence of demand, the
international crude oil market price has a great uncertainty,
which in turn changes the macroeconomic operation (Guo
et al., 2016; Choi et al., 2018; Gong and Lin, 2018; Humbatova
et al., 2019). Given this, violent oil price fluctuations must have an
impact on the smooth operation of the economy, and the impact
of the crude oil market on the economy is heterogeneous under
different oil attributes.

The focus of investigating the ability of the commodity market
and financial market to cope with the oil market risk impact is
mainly on the channel effect. In terms of commodity markets, on
the one hand, China, as the largest importer, could be changed by
the fluctuation of crude oil price, thus affecting the supply of
crude oil. Moreover, changes in crude oil market price would lead
to changes in commodity market price, which indirectly affect
economic development (Ji et al., 2018). On the other hand, China
focuses on strengthening the energy reserves and infrastructures
construction to buffer shocks of the external environment. The
decline of crude oil market price reduces the constraints of the
cost factor on China and provides conditions for expanding
energy reserves and increasing energy infrastructure
construction. From the perspective of the financial market, the
negative correlation between crude oil price and the financial
market creates more profit space for investors, especially fund
investors (Wen et al., 2019a; Zheng and Du 2019). Investors take
crude oil as a hedge asset, grasp the downward trend of crude oil
prices, and obtain excess profits in a short time. This kind of
capital flow challenges the effectiveness of the financial market
and then affects economic development (Ji et al., 2019a; Meng
et al., 2020).

The main purpose of this paper is to identify the channels
through which crude oil market risk affects macroeconomic
operation and to analyze the asymmetric characteristics of
channel effect under the condition of oil returns heterogeneity.
The formation of dual attributes of oil has enhanced the channel
effect of the commodity market as well as a financial market in the
impact of the crude oil market on economic development. In
addition, the rise and fall of returns in the crude oil market will
affect the speed of obtaining market information and investors’
expectations, thus the correlation between risks in the crude oil
market and commodity market is different from that between
risks in the crude oil market and financial market (Cheng et al.,
2016; Ji et al., 2019a; Wu et al., 2021). The financial attribute of
crude oil has attracted more and more investors to consider oil as
a financial commodity while providing opportunities for
speculators. Due to the heterogeneity of information access
between investors and speculators, investors and speculators
have different responses to market price fluctuations under
different trends (Ahmed et al., 2017; Ji et al., 2019b). This
paper investigates the asymmetric impact of the international
crude oil market risks on the stable economic operation from the
perspective of the rising and falling returns of the crude oil

market, which is conducive to improving the cross-market
information sharing mechanism and preventing the shock
from the price fluctuation in the international crude oil
market to the stable economic operation.

The existing literature mainly identifies the impact channels of
the crude oil market and price level. Alvarez et al. (2011) analyzed
the indirect effect of the crude oil market on price levels in Spain
and Europe. Razmi et al. (2016) investigated the mediating
mechanism of currency in the impact of crude oil price on the
price level. The results show that before the financial crisis, the
mediating effect of currency is not obvious, but after the financial
crisis, the price of crude oil will not only directly affect the price
level, but also have an indirect effect on the price level through
currency. In addition, the interaction mechanism between crude
oil price and price level can also be realized through other
channels, such as the channel of interest rate level (Smets and
Peersman, 2001; Tillmann, 2008; Kose et al., 2012), the channel of
credit level (Wulandari, 2012), the mediating effect of exchange
rate market (Takhtamanova, 2010), and the mediating effect of
stock price (Gregoriou and Kontonikas, 2010; Nistico, 2012; Chen
et al., 2020). Sek (2017) analyzed the channel role of crude oil
export price and production cost in the relationship between
crude oil price and price level. The results show that crude oil
export price and production cost play a channel role in the
relationship between crude oil price and price level, but in the
long run, the crude oil price has no indirect effect on the price
level. Sek (2019) further analyzed the heterogeneity of the indirect
effect of crude oil price on price level between crude oil exporting
and importing countries. Chen et al. (2020) studied the impact
mechanism of Brent (WTI) crude oil price on CPI/PPI. The
results show that Brent has a significant negative indirect impact
on CPI, PPI and MPPI, while the financial market has no channel
effect in the impact of WTI crude oil price on the price level.

However, despite the channel effect behind the relationships
between crude oil markets and macroeconomics, there are still
several gaps in most of the existing studies. Firstly, most of the
existing literature focuses on the channel effect of the financial
market, and analysis of the channel effect of the commodity
market focuses on a single commodity such as gold or natural
gas. Secondly, the channel effect needs to be updated with the oil
dual attributes. the existing related literature ignores the
perspective of different oil attributes. Finally, according to
the review of the relevant literature concerning the
influence mechanism of the international crude oil market,
existing researches ignore the asymmetry of the channel effect
caused by investors’ expectation when the returns of the
international crude oil market rise and fall.

To overcome the deficiencies, the main contributions are as
follows. The first is to identify the channel effect of commodity
market risk. As a core part of the commodity, the oil risk
evolution not only exhibits the main risk resource for natural
gas or gold, but also snapshots the risk evolution of the
commodity market index. Additionally, the commodity market
plays an important role in macroeconomic. In this sense, this
paper identifies the channel role of the commodity market risk as
well as financial market risk in the impact of crude oil market on
the macroeconomic operation. Secondly, this paper illustrates the
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channel effects of commodity market risk or financial market risk
taking accounting into the dual attributes of the oil. On the one
hand, there are differences in the risk evolution characteristics of
the crude oil market in periods dominated by oil’s financial
attributes and commodity attributes. On the other hand, the
formation mechanism of different oil attributes leads to a
different correlation between the crude oil market and the
commodity market as well as the financial market. Based on
this, this paper analyzes the correlation between the influence
channels of the crude oil market and oil attributes. Finally, we
analyze the asymmetric channel effect commodity market risk or
financial market risk existing in the oil pass-through to
macroeconomic under different oil return trends.

The overall framework of this paper is as follows: Section 2
proposes the research hypotheses of this paper; Section 3
elaborates the research design; Section 4 identifies the channel
effect of commodity market and financial market and analyzes its
asymmetry. The main conclusions of this paper are summarized
in the fifth Section.

2 HYPOTHESES

The identification of the impact channels of crude oil market risks
includes two aspects: the direct impact of international crude oil
market risks on the smooth operation of the macroeconomy and
the indirect impact of commodity market risks as well as financial
market risks. Changes in the international crude oil market risks
will affect investors’ expectations, enterprise operations and
external environment, and then directly affect the smooth
operation of the macroeconomy (Hamilton, 1983; Killian,
2009; Sek, 2017, 2019; Gong and Lin, 2018; He and Lin, 2019;
Huang et al., 2019). From the perspective of investors’
expectation, the change of the crude oil market risk means the
increase of the crude oil price uncertainty and the change of
investors’ expectation, which in turn changes investors’ capital
allocation, leading to the fluctuation of output (Gonzalez-
Concepcion et al., 2018; Wang et al., 2021). From the
perspective of enterprise operation, changes in crude oil
market risks affect the operating cost of enterprises. To
control costs and maximize their profits, manufacturers will
adjust their oil input. If the input of other production factors
remains unchanged, the change of oil input will affect the total
production amount, that is, the actual output level of the
enterprise will change, and then affect the smooth operation
of the macroeconomy (Long and Liang, 2018). The external
environment mainly includes two aspects: industrial structure
adjustment and monetary policy adjustment. The effect of crude
oil price fluctuations on industrial structure adjustment is mainly
due to the difference in oil dependence, and the adjustment of
resource allocation is cyclical to a certain extent, which eventually
increases the burden of economic self-regulation (Chen et al.,
2020). The effect of monetary policy adjustment is also affected by
the risk of the crude oil market (Wen et al., 2019b). On the one
hand, crude oil market risk causes the transfer of wealth between
oil importing and exporting countries (Wei, 2019); on the other
hand, monetary authorities will formulate corresponding policies

to mitigate the impact of changes in crude oil prices. Wealth
transfer and policy change will lead to the change of money
supply in the domestic market. In the case of constant money
demand, the change of money supply will affect the domestic
investment environment, change the investment strategy of
enterprises, and ultimately affect the smooth operation of the
economy. To sum up, the international crude oil market risk will
change the stability of macroeconomic operations.

The commodity market and financial market are the key
channels through which the risks of the crude oil market
affect the smooth operation of the economy (Fan et al., 2021;
Xiao et al., 2021). Commodity market risks are directly related to
macroeconomic operation such as domestic output and price
level (Shi and Sun, 2017). Fundamentally, fluctuation in
commodity prices changes the transportation costs of related
products, thus affecting the price changes of final products.
Therefore, the channel effect of the commodity market is
highly correlated with such factors as manufacturer cost,
wealth transfer, monetary policy, industrial structure
adjustment and consumer expectation (Gong and Lin, 2018;
He and Lin, 2019). So commodity market is one channel. In
addition, the development of crude oil market financialization
provides more new assets for investors or enterprises in pursuit of
profits. The price fluctuation of the crude oil market will increase
the uncertainty of the financial market, and then affect the
behavior of investors, and finally affect the macroeconomy
(Cong and Shen, 2013; Coronado et al., 2018). Specifically, the
price fluctuation in the crude oil market will change the allocation
proportion of investors or enterprises’ funds between the real
economy and the financial market through the expected effect;
the cost effect will change the oil demand of manufacturers; the
monetary policy effect will change the investment strategy.
Changes in these factors ultimately affect the smooth
operation of the macro-economy. Therefore, the financial
market plays a channel role in the influence of the crude oil
market on the macroeconomic operation.

Based on the above analysis, this paper puts forward the basic
hypothesis of the channel role of the commodity market as well as
the financial market.

Hypothesis 1: Commodity market risks, as well as financial
market risks play a channel role in the impact of the crude oil
market on the smooth operation of the macroeconomy.

The channel effect of the commodity market is significantly
related to the dual attributes of the oil. Commodity prices are
directly related to the macro-economic operation, such as
domestic output and price level (Shi and Sun, 2017; Song
et al., 2019). Fundamentally, the price fluctuation of the crude
oil market will lead to the change of commodity price, and then
lead to the change of commodity import price, which will be
transferred to the change of product price. Due to the differences
in the formation mechanism of different oil attributes, there are
differences in the ability of the commodity market to cope with
the risk impact of the crude oil market (Figure 1). From the
perspective of oil’s commodity attribute, fluctuations in crude oil
price will lead to changes in the price of raw materials, and then
change the production costs of enterprises (Hewitt et al., 2019).
The change of enterprise production cost will lead to the change

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7396533

Jia et al. Asymmetric Channel, Crude Oil Risk

123

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


of enterprise investment strategy, and ultimately affect the
smooth operation of the macro-economy. Consumers are
recipients of commodity prices. As a consumer necessity, the
price fluctuation of agricultural products such as grain will affect
the operation of the macro-economy. Monetary policy has a
moderating effect on price stability. Price fluctuations in the
crude oil market will affect the prices of other commodities.
Monetary policies such as quantitative easing can increase the
money supply by ensuring low interest rates, and then stimulate
investment to slow down the impact of changes in the prices of
crude oil and other commodities, and finally affect the economic
situation (Yang and Zhou, 2017).

From the perspective of the financial attribute of oil, the
information effect of commodity price on macroeconomic
operation increases with the financialization of oil and other
commodities (Zhang et al., 2017). Changes in commodity prices
triggered by fundamentals (changes in the relationship between
supply and demand of commodities) will transmit different
signals to other markets about the functioning of the global
economy, changing market confidence, and thus affecting the
smooth operation of the macroeconomy. If commodity
financialization improves the information content of
commodity prices, it will help the commodity market to play a
signal function, and lead to a stronger response of the
macroeconomy to commodity price shocks. If commodity
financialization brings more speculative noise, it will increase
the distortion of market price signals, which will interfere with
market players and further amplify the change of output.

Investor expectations have a significant impact on the
mediating effect of commodity markets (Dong et al., 2019;
Chen et al., 2020). When returns of the crude oil market rise,
the market investors’ expectations are high and the market
sentiment is positive. Enterprises adjust their investment
strategies and focus on the demand for a single commodity.
When returns fall, the diversity of the commodity market is the
main way for market participants to cushion the blow of a major
event. Through the purchase of diversified commodities,
investors have reduced oil demand, driving down international
oil prices and pushing up the prices of other commodities. Due to
the difference in the impact of investors’ expectations on the
demand changes of different commodities, the channel effect of
commodity market risk is greater when returns fall (Ji et al.,
2019a).

Based on the above analysis, this paper puts forward the basic
hypothesis on channel asymmetry in the commodity market.

Hypothesis 2a: Under different attributes of oil, the channel
effect of commodity market risk is different.

Hypothesis 2b: Under the condition of returns heterogeneity,
the mediating effect of commodity market risk is asymmetric.

Financial market risk is one of the key influence factors for the
smooth operation of the macroeconomy. The mediating effect of
the financial market is mainly related to the economic effect of
financial market risks, specifically including the following aspects
(Figure 2): first, enterprises solve their financing constraints
through the financial market to improve economic activities;
second, financial market influences the efficiency of capital
allocation and industrial structure; third, price fluctuation in

the financial market has monetary policy effect; fourth,
financial market has wealth effect (Dong et al., 2019; Sek,
2019; Chen et al., 2020). Based on the commodity attribute of
oil, risks of the crude oil market change operating costs of
enterprises. The financial market is one of the main financing
channels for enterprises. Enterprises finance by issuing financial
assets such as stocks and bonds for their development. When the
capital market is prosperous, the economic activities of
enterprises are active, and the cost of financing through the
financial market is reduced. The high liquidity of the capital
market attracts a large number of funds to enter the market. Risks
in the financial market will affect the expectations of investors,
and then change their investment strategies to seek investment
benefits.

The mediating effect of the financial market is also related to
investor behavior (Song et al., 2019; Chen et al., 2020; Li and
Zhong, 2020). The financial market can curb inflation by
attracting idle funds in the financial field. Fast financial
market development has attracted a large number of risk
preference investors to enter the market for trading, which has
a storage function for the idle funds of the real economy. This
function changes the inflation level through price fluctuation of
the financial market. In addition, the price fluctuation of the
financial market will make the capital flow from the real economy
into the virtual economy (Li et al., 2020). Specifically, financial
market risks make asset prices falsely high, and the profits of
investing in the virtual economy far outweigh those in the real
economy, causing capital flow from the real economy to the
financial markets, resulting in money supply shortage in the real
economy, which leads to the decline of output, the reduction of
efficiency, the lack of motivation for technological innovation,
and finally reduced allocation of social resources (Gong and Lin,
2018; He and Lin, 2019). Compared with the decline of returns,
the rise of crude oil returns makes it easier for investors to obtain
expected profits, reducing financing constraints of enterprises as
well as the cost of obtaining capital. In addition, market
uncertainty increases when returns fall, and market investors
are risk-preference ones, reducing the funds’ storage function of
the financial market. Therefore, the crude oil market risk has a
greater impact on the macroeconomic operation through the
financial market when returns rise.

Based on this analysis, this paper puts forward the basic
hypothesis of asymmetric channel effect in the financial market.

Hypothesis 3a: The channel effect of financial market risk is
different with different attributes of crude oil.

Hypothesis 3b: There is an asymmetry in the mediating role of
financial market risk under different trends.

3 STUDY DESIGN

3.1 Selection for Channel Identification
Model
This paper uses a stepwise test approach to identify the impact
channels of crude oil market risk. If crude oil market risk has
an impact on the smooth operation of the macroeconomy by
influencing commodity market risk or financial market risk, it
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is said that commodity market risk or financial market risk has
a mediating effect. There are two methods to test the mediating
effect: structural equation model and stepwise test. Bentler
(1980) first proposed the structural equation model and
analyzed the path of attitude influencing behavior. Since
then, the structural equation model has been widely used in
psychological research. From the perspective of engineering
project operation, Qureshi and Kang (2015) analyzed the
influence of project size on project complexity and analyzed
its influence path. Dong et al. (2020), based on the structural
equation model, analyzed mediating roles of economic
conditions and financial conditions in the business cycle
affecting the health system financing process. By setting the
relationship between latent variables and explicit variables, the
structural equation model can be used to further analyze the
interaction between latent variables and latent variables. But
this model requires high data quantity, so it is frequently used
in questionnaire analysis. The stepwise test model verifies the
mediating effect of variables by sequentially testing coefficients
significance. This model was first proposed by Baron and
Kenny (1986). Chen et al. (2020) analyzed the channel roles
of stock prices and local government debt in the influence of
crude oil prices on price levels. Compared with the structural
equation model, the stepwise test method requires less data
quantity. Therefore, this paper selects the stepwise test
method.

The stepwise test consists of three steps. The first step is to fit the
regression model as 1) to test the significance of the influence
coefficient c of international crude oil market risk on the price level.

plt � β00 + cBRISKt + βXt + εt, (1)

where plt represents stable operation of China’s macro economy
at time t; BRISKt is international crude oil market risk; Xt is the
control variable.

In the second step, regression models such as 2) and 3) are
fitted to test the significance of coefficients a and b in turn.

chat � β01 + aBRISKt + βXt + εt, (2)

plt � β03 + c′BRISKt + bchat + βXt + εt, (3)

where chat represents the channel variable, specifically refers to
commodity market risk.

In the third step, if both coefficients a and b are significant,
their significance is tested; If at least one of them is not significant,
the Sobel test is used to further analyze the mediating effect of
commodity market risk or financial market risk.

Accordingly, the mediating effect test can be divided into three
steps. The first step is to test the significance of c. The significance
of coefficient c, which describes the significance of crude oil
market risk and macroeconomic operation. If the effect is not
significant, it is not necessary to conduct a subsequent mediating
effect test. If the effect is significant, the second step test is carried
out. The second step is to test whether coefficients a and b are
significant. The significance of coefficient a reflects the
significance of the impact of crude oil market risk on the
mediating variables (commodity market risk or financial
market risk), and the significance of coefficient b represents
the significance of the impact of mediating variables on the
smooth operation of the macroeconomy. a × b reflects the
indirect effect of crude oil market risk on the smooth
operation of the macroeconomy. Therefore, checking whether
a × b is 0 is the key of the third step. In Step 3, a × b is tested
according to different situations. 1) If both coefficients a and b are
significant, it indicates that a × b is not 0, then the significance of
the direct effect of crude oil market risk on the smooth operation
of the macroeconomy (c′) is tested. 2) If at least one of the
coefficients a and b is not significant, the Sobel test is used to
analyze whether a × b is 0. If c′ is significant, it indicates that the
risk of the crude oil market has both direct and indirect effects on

FIGURE 1 | Formation mechanism of the channel effect of commodity market risk.
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macroeconomic operation; if c′ is not significant, it indicates that
the risk of the crude oil market only has an indirect effect on
macroeconomic operation. In addition, if the Sobel test is passed,
it means that a × b is not significant, that is, the risk of the crude
oil market has an indirect effect on macroeconomic operation, so
we continue to test the significance of the coefficient c′. On the
contrary, it indicates that the risk of the crude oil market has no
indirect effect on macroeconomic operation, so the test should be
stopped.

The Sobel test statistic (S.TE) is proposed by Sobel (1982), and
the null hypothesis of the test is a × b � 0. The statistical
calculation method is shown in.

S.TE � a × b

b2 × S2a + a2 × S2b( )1/2. (4)

where S2a and S2b represent the standard error of the estimation of
coefficients a and b, respectively.

3.2 Variable Selection and Measurement
According to themodel selection part, variables selected in this paper
include macro-economic operation, international crude oil market
risk, commodity market risk, financial market risk and related
control variables. The description and measurement methods of
the variables selected in this paper are summarized in Table 1.

This paper employs four type variables, that is Explained
variable, Explanatory variable, Mediating variable and Control
variable (shown in Table 1). Specifically, we use consumer price
index (CPI) and producer price index (PPI) to measure the
Explained variable. And this paper employs Conditional
Autoregression quantile Value-at-Risk (CAViaR) to model the
Explanatory variable (crude oil market risk) and Mediating
variable (commodity market risk or financial market risk).
Finally, the Control variables include money supply and lagged
CPI/PPI.Monetary policy is the key variable affecting CPI and PPI,
andmoney supply is the direct embodiment of monetary policy. In
this way, to eliminate the seasonal effect inmonetary supply, we use
the year-on-year ratio of M2 to measure the monetary supply.
Moreover, since the influence of insufficient selection of control
variables on the empirical results, this paper also selects the first-

order lag of the explained variable as control variables (Li et al.,
2021b).

This paper employs the CAViaR model to measure the key
explanatory variable as well as channel variables, crude oil market
risk, commodity market risk and financial market risk. Existing
risk measurement methods are mainly based on different natures
of crude oil market returns. On the one hand, market risks are
measured from the perspective of the heteroscedasticity nature of
asset returns. Relevant literature uses static and dynamic VaR
based on the GARCH model to predict financial market risks
such as stock market, crude oil market and virtual financial asset
market (Bernardi and Catania, 2016; Ferraty and Quintela-Del-
Río, 2016; Gkillas and Katsiampa, 2018; Li et al., 2018; Saculsan
and Kanamura, 2020). On the other hand, market risks are
measured from the perspective of asset returns with an
agglomeration nature. Most of the relevant literature uses the
expected shortfall (ES) method to measure risks. ES mainly
forecasts financial market risks from the perspective of
extreme events to make up for the characteristics that
ordinary VaR cannot capture. The above methods have two
common features. One is based on a specific distribution of
crude oil market returns. The other is based on parameter
estimation. For the former feature, returns of the crude oil
market are usually limited to some specific distributions, such
as normal distribution, t distribution and GED distribution.
According to historical experience, a parametric model is used
to measure the risks of the crude oil market. In addition, for
parametric models, the accuracy of parameter estimation and the
degree of model fitting are two aspects that need to be considered
in model construction. According to the definition of risk, the
measurement of crude oil market risk is forecasting quantiles.
Therefore, a conditional autoregressive value at risk model
(CAViaR) proposed by (Engle and Manganeli, 2004) is
adopted, considering the agglomeration effect of
international crude oil market returns and the application of
quantile regression in risk measurement. The CAViaR model
does not need to presuppose the distribution of the
international crude oil market returns, and it uses the
quantile regression to calculate quantiles; meanwhile,
considering the agglomeration nature of international crude

FIGURE 2 | Formation mechanism of the channel effect of financial market risk.
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oil market risks, the model adds the lag term of risks. By using
the four model forms of CAViaR, existing literature predicts the
dynamic risks of upward and downward asset returns (Meng
and Taylor, 2018; Li et al., 2020, 2021a).

The basic form of the CAViaR model is as (5):

Riskt β( ) � β1 +∑q
i�1

βiRiskt−i β( ) +∑r
j�1

βjl Rt−j( ), (5)

where Riskt represents international crude oil market risk in
month t; l (Rt−j) is a function of exogenous variables, mainly
describing the impact of different forms of international crude
oil market returns on risks; the lag term Riskt−i(β) describes
the agglomeration of international crude oil market risk.
Based on different forms of international crude oil market
returns and different model variants, (Engle and Manganeli,
2004) further put forward four forms of CAViaR model:
absolutely symmetric model, asymmetric model, indirect
GARCH model and adaptive model, with specific forms
as (6)–(9).

Absolute symmetry model:

Riskt β( ) � β1 + β2Riskt−1 β( ) + β3|Rt−1|. (6)

Asymmetry model:

Riskt β( ) � β1 + β2Riskt−1 β( ) + β3 Rt−1( )+ + β4 Rt−1( )−, (7)

where (Rt−1)+ � max(R(t−1), 0), (Rt−1)− � min(R(t−1), 0),
depicting positive or negative monthly returns of international
crude oil market in the previous period.

Indirect GARCH(1,1) model:

Riskt β( ) � β1 + β2Risk
2
t−1 β( ) + β3R

2
t−1( )1/2. (8)

Adaptive model:

Riskt β1( ) � Riskt−1 β1( )
+ β1 1 + exp G Rt−1 − Riskt−1 β1( )[ ]( )[ ]−1 − α{ },

(9)

where G is a finite positive integer. When returns exceed the
measured value of risk, the value of G should be increased
appropriately; on the contrary, the value of G should be

TABLE 1 | Selection of mediating effect test variables.

Variable type Variable Indicator Measure method

Explained variable Macroeconomic Operation CPI CPI
PPI PPI

Explanatory variable Returns upward risk in international oil market BURISK CAViaR
Returns downward risk in international oil market BDRISK

Mediating variable Commodity market risk CRISK CAViaR
Financial market risk FRISK

Control variable Monetary policy M2 M2 chain index
Lag term CPI/PPI First-order lag of the explained variables

FIGURE 3 | Dynamic feature recognition of oil commodity attribute. Note: Shadow parts show negative relationship between the structural shocks of oil demand
and oil price.
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reduced appropriately. Only in this way can the goodness of fit of
the adaptive model be increased. This papermainly constructs the
appropriate CAViaR model from the former three models to
measure the international crude oil market risk1

The test of the model fitting effect is to compare the fitting
situation of different risk measurement methods to the
international crude oil market risk. This paper uses the values
of HIT and DQ statistics proposed by Engle and manganeli
(2004), based on the properties of VaR and dynamic quantile
test. The HIT mainly examines the difference between the risk
measurement results and the returns of the international crude oil
market. The HIT test statistic is expressed as (10),

Hitt β( ) � I Rt <Riskt β( )( ) − α, (10)

where I (·) is the indicative function, when Rt < Riskt(β), the value
ofHitt(β) is 1 − α; otherwise, it is − α. In addition, according to the
quantile function definition, the value of the statistic Hitt(β) is 0
when data of period t − 1 are given. In other words, the value of
Hitt(β) is not related to international crude oil market risk and its
lag term, so the HIT test may not be sufficient to test the goodness
of fit of the model. Further, (Engle andManganeli, 2004) proposed
the DQ test, including fitting sample test and test sample test. The
statistics of DQ test are expressed as (11) and (12),

DQIS �
Hit′ β̂( )X β̂( ) M̂TM̂T′( ) −X′ β̂( )Hit′ β̂( )

α 1 − α( ) ∼ χ2q, (11)

DQOS � N−1
R Hit′ β̂TR

( )X β̂TR
( ) X′ β̂TR

( )X β̂TR
( )[ ]−1

×X′ β̂TR
( )Hit′ β̂TR

( )/α 1 − α( ) ∼ χ2q, as R → ∞,
(12)

where DQIS and DQOS refer to DQ test statistics of fitting samples
and test samples, respectively; X(β̂) is related to β̂, for measuring

the returns information of the international crude oil market of
the fitting sample, i.e., Hit(β̂) � [Hit1(β̂), Hit2(β̂), . . . ,
HitT(β̂)]′. Similarly, assume TR represents the size of fitting
sample data and NR is the size of test sample data, X(β̂TR

) is
related to β̂TR

, n � TR + 1, TR + 2, . . . , TR + NR, for measuring the
returns information of the international crude oil market of the
test sample, i.e., Hit(β̂TR

) � [HitTR+1(β̂TR
), HitTR+2(β̂TR

),
. . . , HitTR+NR(β̂TR

)]′, and

M̂T � X′ β̂( ) − { 2TĈT( )−1 ∑T
t�1

I |Rt <Riskt β̂( )|< ĈT( )
×X′ β̂( )∇Riskt β̂( )}D̂−1

T ∇′Riskt β̂( ).
3.3 Sampling Scheme
In this paper, the structural vector autoregressive model (SVAR) is
used to identify the dominant period of different oil attributes. The
financial and commodity attributes of oil determine that the price
of the crude oil market is positively affected bymonetary policy and
crude oil demand respectively. The financial attribute of oil means
that the formation and fluctuation of crude oil market price have
the basic characteristics of financial products and can play a role in
the financial market (Chen et al., 2016; Zhang et al., 2017; Raheem
et al., 2020). As a demand regulation policy, expansionary
monetary policy will increase oil demand, reduce the
uncertainty of the crude oil market, and release good news for
investors. Investors’ knowledge of the news enhances their
optimistic expectations, which in turn changes the allocation of
their funds in real and financial investments, increasing speculative
demand (Tang and Xiong, 2010; Oleg and Ekaterina, 2020).

Oil supply is inelastic in the short term, and OPEC’s regulation
of oil supply has lagged effect, so the price of the crude oil market
is affected by the demand in the short term. The demand for
crude oil is usually correlated with the total demand of the
national economy (Ghassan and Alhajhoj, 2016). In the long

FIGURE 4 | Dynamic feature recognition of oil financial attribute. Note: Shadow parts show negative relationship between the structural shocks of oil demand and
monetary policy.

1We refer to Section 4 of Engle and Manganeli, (2004) for model parameter
estimation.
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run, the supply of crude oil is more elastic. However, as oil is a
non-renewable resource, its reserves, resource endowment,
production cost, production capacity and OPEC resolutions all
limit the supply of crude oil (Loutia et al., 2016).

Changes in crude oil price will alter the production cost of
enterprises as well as the oil demand, and then affect a
country’s inflation level. As one of the objectives of
monetary policy, to maintain price stability, countries
formulate corresponding monetary policy to adjust the
inflation level, so the crude oil market price will also affect
monetary policies. However, traditional linear models cannot
fully describe the correlation between the crude oil market,
monetary policy and crude oil demand. Considering the
immediate impact of international crude oil price, oil
demand and monetary policy, as well as the characterization
of structural shocks on the correlation, this paper refers to

Kilian (2009) and constructs an SVAR model to identify the
dual attributes of the oil.

The basic form of SVAR(p) model constructed in this paper is
shown in Formula (13),

B0Xt � ∑p
i�1

BiXt−i + εt. (13)

where Xt � (opit, demt, mpot)′ is a 3 × 3 vector; opit represents
the international crude oil price at time t; demt refers to the oil
demand at time t; mpot represents the monetary policy at time
t; p is the lag order which is identified with the SC criterion; B0
describes the immediate effect of international crude oil
market price, oil demand and monetary policy, and
similarly, Bi describes the marginal impact lagged i order.

Since B0 is reversible, Formula (13) can be simplified as (14).

FIGURE 5 | The channel effect of commodity market risk under different returns trends. Note:(A)–(B) show the channel effect of commodity market risk in the
impact of international crude oil market downward returns risk when oil commodity attribute and dual attribute dominate, respectively; (C) represents the channel effect
of the commodity market risk when the dual attribute of oil dominates in the international crude oil market upward returns risk. The number on the arrow represents the
impact coefficient.
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Xt � ∑p
i�1

B−1
0 BiXt−i + B−1

0 εt, (14)

where εt � (εprice−shockt , εdemand−shock
t , εpolicy−shockt )′ is the structural

vector of international oil price shocks, including specific oil price
shocks, international oil price demand shocks and international
oil price monetary policy shocks.

Combined with the research purpose of this paper and existing
literature, this paper imposes short-term zero constraints on the
immediate impact matrix, and constructs the SVAR model. The
specific constraint matrix is shown in,

B0Xt �
1 b12 b13
0 1 b23
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ opit
demt

mpot

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (15)

The corresponding position in the matrix represents the
immediate impact between variables. Specifically, the crude oil

price will respond to the shock of oil demand and monetary
policy, so the first element of the first row of the constraint matrix
is 1, and the other elements are not 0. Although global economic
activities take oil as the main raw material and fuel, when oil price
changes, the oil demand will have a lag effect on the crude oil
price due to the development of enterprise investment plans and
oil reserves, that is, the oil price shock will not affect the current
oil demand, b21 � 0. In addition, changes in crude oil prices and
oil demand will not cause changes in monetary policy, i.e. b31 �
b32 � 0. But changes in monetary policy will cause changes in oil
demand in the current period.

3.4 Summary
In different periods dominated by different attributes of oil,
the mediating effect of commodity market risk and financial
market risk is different. To distinguish different oil attribute
dominant periods, based on the identification of oil attributes

FIGURE 6 | The channel effect of financial market risk under different returns trends. Note:(A,B) show the channel effect of financial market risk in the impact of
international crude oil market downward returns risk when oil commodity attribute and dual attribute dominate, respectively; (C) represents the channel effect of the
financial market risk when the dual attribute of oil dominates in the international crude oil market upward returns risk. The number on the arrow represents the impact
coefficient.
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in 3.3, three dummy variables are added in this paper,
representing oil commodity attribute dominance (DC), oil
financial attribute dominance (DF) and oil dual-attribute
dominance (DB), and the difference of mediating effect is
analyzed with the stepwise test method. The analysis process is
shown in (16)–(18),

plt pDt � β00 + cBRISKt pDt + βXt pDT + εt, (16)

chat pDt � β01 + aBRISKt pDt + βXt pDT + εt, (17)

plt pDt � β03 + c′BRISKt pDt + bchat pDt + βXt pDT + εt.

(18)

where Dt refers to the dummy variable, representing different
dominant periods of different oil attributes.

4 ASYMMETRIC EFFECTS OF
INTERNATIONAL CRUDE OIL MARKET
RISK WITH DIFFERENT RETURNS TRENDS

4.1 Inferred Oil Attributes
According to Section 3.3, the variables of oil attribute
identification include international crude oil market price,
oil demand and monetary policy. In this paper, Brent oil
spot price is used as the proxy variable of international
crude oil market price. Oil demand is measured by the

growth rate of the Baltic dry bulk index (BDI). Imitating
the practice of Kilian (2009), considering the close
relationship between shipping index and oil demand, this
paper selects dry bulk freight index as the proxy variable of
oil demand. In addition, this paper selects the global money
supply to measure monetary policy. After obtaining the money
supply of the United States, Japan and the European Union, we
use historical bilateral exchange rate data to convert the money
supply into US dollars and then aggregate them to get the value
of the monetary policy proxy variables. Considering the
seasonal effect of variables, this paper uses X12 to adjust
the international crude oil price, BDI and money supply
(GM2) seasonally. On this basis, to eliminate
heteroscedasticity, this paper further implements
logarithmic processing on the data. The above-mentioned
data are from the Wind database2.

The dominant position of oil commodity attribute and
financial attribute has dynamic characteristics. Figure 3 and
Figure 4 respectively show the dynamic feature recognition of
oil commodity attribute and financial attribute. On the one
hand, from the correlation between demand, monetary policy
and structural shock of crude oil price, it can be seen that

TABLE 2 | Stage characteristics dominated by dual attributes of oil.

Attribute Name Specific dominant period Maximum duration Minimum duration Period proportion

Commodity attribute 2003.7–2006.8; 2007.3–2007.6 38 months 4 months 51%
2013.4–2015.5; 2016.1–2019.2

Financial attribute 2006.9–2007.2; 2007.7–2007.12 15 months 5 months 23%
2012.1–2013.3; 2015.6–2015.12

2019.3–2019.9; 2020.7-

Dual attributes 2008.1–2011.12; 2019.10–2020.7 48 months 10 months 26%

TABLE 3 | Channel effect test of commodity market risk and financial market risk for the full sample.

D.V. Step one: (1) Step two: (2) Step three: (3)

CPI PPI CRISK FRISK CPI CPI PPI PPI

BRISK −2.597* −7.155* 0.495* 0.067* −2.137* −0.728 −6.657* −1.409
(0.732) (1.231) (0.027) (0.030) (0.747) (1.321) (1.264) (2.171)

CRISK — — — — — −3.252* −10.01*
— — — — — (1.919) (3.152)

FRISK — — — — −2.285* — −2.493 —

— — — — (0.958) — (1.546) —

C.V. Y Y Y Y Y Y Y Y

R2 0.914 0.954 0.764 0.840 0.916 0.915 0.954 0.956
P(F) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

P(S.TE) — — — — — — 0.191

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; P(F) refers to the P value of statistic F of model goodness of
fit; and P(S.TE) reports the P value of the Sobel test.

2The results of SVAR model stability test and lag order test can be obtained from
the author
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crude oil demand and structural shock of crude oil price
change in the same direction, except for 2006M07-
2007M03, 2011M12-2013M04, 2015M05-2015M12,
2019M02-2019M09, 2020M01-2020M06. Monetary policy
and crude oil price structure shocks also basically change
in the same direction, except for 2004M01-2006M09,
2018M09-2019M02, 2020M01-2020M07. On the other
hand, to further compare and analyze the dynamic
characteristics of the dual attributes of oil in the sample
period except for the above-mentioned periods, this paper
compares the symbols of the structural shocks of crude oil
demand and monetary policy. For example, in the second half
of 2003, there is a positive relationship between crude oil
demand shock and monetary policy shock as well as crude oil
price shock, but the shock of monetary policy on international
crude oil price has a certain lag effect. This indicates that the
fluctuation of international crude oil price is mainly affected
by the oil demand, while the influence of monetary policy lags,
that is, the fluctuation of crude oil price is mainly regulated by

the relationship between oil supply and oil demand (Jia et al.,
2021). Therefore, at this time, the oil commodity attribute is
dominant. For example, from the second half of 2007 to the
beginning of 2008, although the oil demand shock is positively
related to the shock of the crude oil market price, the shock is
still negative; while the monetary policy shock is positively
related to the shock of crude oil market price, and the shock is
positive. This shows that the financialization of the commodity
market has gradually taken shape, and a large amount of oil has
entered the reserve field as an investment or even speculation,
but not into the production field. Therefore, the financial
attribute of oil is dominant at this time. The same has
happened since July 2020. To sum up, this paper obtains
the stage characteristics dominated by dual attributes of oil
as shown in Table 2.

Different attributes of oil alter dynamically (Zhao et al.,
2020a). On the one hand, oil has the attributes of commodity
and finance. On the other hand, the dominance of different
attributes of oil is dynamic, and there is a situation of dual

TABLE 4 | Test on the mediating effect of commodity market risk and financial market risk when oil commodity attribute dominates.

D.V. Step one: (16) Step two: (17) Step three: (18)

CPI PPI CRISK FRISK CPI CPI PPI PPI

BRISK −1.498* -3.876* 0.431* 0.092* −1.68* −3.448* −4.337* −1.561
(0.548) (1.231) (0.023) (0.024) (0.555) (1.018) (1.249) (2.305)

CRISK — — — — — 4.213* — -4.980
— — — — — (1.863) — (4.194)

FRISK — — — — 1.625* 3.814*
— — — — (0.928) (2.089)

C.V. Y Y Y Y Y Y Y Y

R2 0.945 0.946 0.881 0.945 0.946 0.947 0.954 0.946
P(F) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

P(S.TE) — — — — — — — 0.236

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; P(F) refers to the P value of statistic F of model goodness of
fit; and P(S.TE) reports the P value of the Sobel test.

TABLE 5 | Test on the mediating effect of commodity market risk and financial market risk when oil financial attribute dominates.

D.V. Step one: (16) Step two: (17) Step three: (18)

CPI PPI CRISK FRISK CPI CPI PPI PPI

BRISK −2.666* −3.876* 0.333* 0.021 −2.633* −2.630* −4.365* −4.941
(0.855) (1.231) (0.031) (0.031) (0.891) (1.131) (1.053) (1.343)

CRISK — — — — — 0.099 — 2.172
— — — — — (2.070) — (2.688)

FRISK — — — — −0.161 — 1.297* —

— — — — (1.218) — (1.526) —

C.V. Y Y Y Y Y Y Y Y

R2 0.964 0.946 0.806 0.965 0.964 0.964 0.960 0.960
P(F) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S.TEST 0.896 0.961 0.590 0.420

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; P(F) refers to the P value of statistic F of model goodness of
fit; and P(S.TE) reports the P value of the Sobel test.
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attributes co-domination. Most of the dominant periods of oil
financial attribute are before and after the occurrence of special
events (Hu et al., 2021; Jia et al., 2021), mainly including six
periods: 2006.9–2007.3, 2007.7–2007.12, 2011.12–2013.4,
2015.5–2015.12, 2019.2–2019.9 and 2020.7-. The dominant
period of oil commodity attribute is in the stable period of the
crude oil market, which includes four periods: 2003.7–2006.9,
2007.3–2007.6, 2013.4–2015.5 and 2016.1–2019.2. In addition,
the period in which oil dual attributes jointly dominate the
international crude oil market price is related to special events
(Zhao et al., 2020b, 2020c; Xie et al., 2020), which are
2008.1–2011.12 and 2019.10–2020.7.

4.2 Channel Test of Crude Oil Market Risk
According to the dynamic feature identification results of
different oil attributes dominant periods in Section 4.1, based
on the availability of data, this paper extracts the oil attributes
dominant period 2006.7–2020.10 to test the channel effects of
commodity market risk and financial market risk. According to
the research design, EVIEWS 8.0 software is used for the stepwise
test, and online test tools (quantpsy.org/sobel/sobel.htm) are used

for the Sobel test. Tables 3–6 show the channel effect of
commodity market risk, as well as financial market risk in the
impact of crude oil market downward returns risk on
macroeconomic operation; Tables 7–9 report the channel test
results of the impact of international crude oil market upward
returns risk on the stable operation of the macroeconomy.

In the full sample, the impact of international crude oil market
risk on CPI/PPI is different through commodity market risk or
financial market risk. Table 3 reports the stepwise results of the
channel effect of commodity market risk and financial market
risk in the full sample. According to the results of the first step in
Table 3, the impact of international crude oil market risk on CPI/
PPI is significantly negative. The second step is to test the
significance of the impact of international crude oil market
risk on commodity market risk as well as financial market
risk. Similarly, international crude oil market risk has a
significant positive impact on commodity market risk as well
as financial market risk. Finally, the significance of the coefficients
is analyzed by Formula (3). As shown in Table 3, both
international crude oil market risk and financial market risk
have significant impacts on CPI, while financial market risk has

TABLE 6 | Test on the mediating effect of commodity market risk and financial market risk when dual attribute of oil dominates.

D.V. Step one: (16) Step two: (17) Step three: (18)

CPI PPI CRISK FRISK CPI CPI PPI PPI

BRISK −2.928* −8.360* 0.511* 0.055* −2.197* 2.863* −7.121* 2.324
(0.616) (0.948) (0.022) (0.025) (0.603) (1.458) (0.961) (2.161)

CRISK — — — — — −8.844* −16.93*
— — — — — (2.039) (3.130)

FRISK — — — — -3.857* — -5.613* —

— — — — (0.838) — (1.415) —

C.V. Y Y Y Y Y Y Y Y

R2 0.968 0.960 0.914 0.955 0.971 0.971 0.963 0.965
P(F) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; P(F) refers to the P value of statistic F of model goodness of
fit; and P(S.TE) reports the P value of the Sobel test.

TABLE 7 | Test results of the spillover mechanism of international crude oil market upward returns risk under full sample.

D.V. Step one: (16) Step two: (17) Step three: (18)

CPI PPI CRISK FRISK CPI CPI PPI PPI

BRISK −3.334* −5.285* 0.401* 0.085 −2.407* −0.724 −3.876 3.753
(1.375) (2.482) (0.090) (0.056) (1.396) (1.588) (1.656) (2.624)

CRISK — — — — — −3.823* — −13.27*
— — — — — (1.251) — (2.045)

FRISK — — — — −2.572* — −3.879* —

— — — — (0.971) — (1.656) —

C.V. Y Y Y Y Y Y Y Y

R2 0.911 0.946 0.394 0.837 0.914 0.915 0.947 0.957
P(F) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

P(S.TE) — — — — 0.187 — 0.202

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; P(F) refers to the P value of statistic F of model goodness of
fit; and P(S.TE) reports the P value of the Sobel test.
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an insignificant impact on PPI. Based on this, this paper uses the
Sobel test to further identify the mediating effect of financial
market risk in the impact of international crude oil market risk on
PPI, and the test results fall into the acceptance domain, that is,
there is no mediating effect. In addition, the impact on CPI/PPI is
significant, but after controlling the commodity market risk, the
impact of international crude oil market risk on CPI/PPI is not
significant, that is, the direct effect does not exist. According to
the comprehensive results of the stepwise test, under the full
sample, international crude oil market risk will affect CPI through
financial market risk, but will not affect PPI, that is, the mediating
effect of financial market risk only exists in the relationship
between international crude oil market risk and CPI (Chen
et al., 2020). In addition, international oil market risks
indirectly affect CPI/PPI through commodity market risk,
while direct effects do not exist. So, Hypothesis 1 is true.

Under the dominance of oil commodity attribute, crude oil
market risk affects CPI/PPI through financial market risk, while
through commodity market risk, it only affects CPI. Table 4
reports the stepwise test results of the channel effect of
commodity market risk and financial market risk when oil
commodity attribute dominates. The first step fits Formula

(16) to test the significance of the impact of crude oil market
risk on CPI/PPI. As can be seen from the table, the impact of
crude oil market risk on CPI/PPI is significantly negative. The
second step tests the significance of the impact of crude oil market
risk on commodity market risks or financial market risks through
fitting Formula (17). Similarly, the crude oil market risk has a
significant positive impact on commodity market risk as well as
financial market risk. Finally, Formula (18) is fitted to analyze the
significance of coefficients. As shown in Table 4, both crude oil
market risk and financial market risk have significant impacts on
CPI/PPI. Crude oil market risk and financial market risk have a
significant impact on CPI, but not on PPI. Based on this, this
paper uses the Sobel test to further identify the mediating effect of
financial market risk in the impact of crude oil market risk on
PPI, and the test results fall into the acceptance domain, that is,
there is no mediating effect. For the mediating effect test of
commodity market risk, the test results fall into the acceptance
domain, that is, crude oil market risk will not influence PPI
through commodity market risk. According to the
comprehensive results of the stepwise test, under the
dominance of oil commodity attribute, there is a mediating
effect of financial market risk in the impact of crude oil

TABLE 8 | Test results on the spillover mechanism of international crude oil market upward returns risks when single oil attribute dominates.

D.V. (a)Commodity
attribute dominates

Step one: (16) (b)Financial
attribute dominates

Step one: (16)

CPI PPI CPI CPI

BURISK −0.175 (0.826) 0.124 (1.917) −0.982 (1.034) −0.675 (1.305)
CRISK — — — —

FRISK — — — —

C.V. Y Y Y Y

R2 0.943 0.942 0.963 0.956
P(F) 0.000 0.000 0.000 0.000

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; (a) shows the test results of the spillover mechanismwhen oil
commodity attribute dominates; (b) shows the test results of the spillover mechanism when oil financial attribute dominates.

TABLE 9 | Test results on the spillover mechanism of international crude oil market upward returns risks when dual attribute of oil dominates.

D.V. Step one: (16) Step two: (17) Step three: (18)

CPI PPI CRISK FRISK CPI CPI PPI PPI

BURISK −4.932* −10.08* 0.435* 0.078* 0.078* −0.995 -8.059* 1.890
(1.063) (1.705) (0.079) (0.041) (0.995) (1.412) (1.656) (2.023)

CRISK — — — — — −4.616* — −15.04*
— — — — — (1.148) — (1.794)

FRISK — — — — −4.226* — −7.178* —

— — — — (0.804) — (1.493) —

C.V. Y Y Y Y Y Y Y Y
R2 0.968 0.951 0.705 0.955 0.972 0.971 0.957 0.965
P(F) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Considering the length of the paper, the table only reports the key variables and omit the control variables; * indicates that the coefficient is significant at the confidence level of 0.05;
D.V. represents the explained variable of each step; C.V. reports whether the control variable is included; R2 is the adjusted R2; P(F) refers to the P value of statistic F of model goodness of
fit; and P(S.TE) reports the P value of the Sobel test.
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market risk on CPI and PPI, while the mediating effect of the
commodity market only exists in the impact of crude oil market
risk on CPI (Ji et al., 2018; Jia et al., 2021).

In the dominant period of oil financial attribute, crude oil
market risk will not affect CPI/PPI through financial market risk
and commodity market risk. Table 5 reports the stepwise test
results of the channel effect of commodity market risk as well as
a financial market risk when the financial attribute of oil is
dominant. The first step is fitting 16) to test the impact of
international crude oil market risk on CPI/PPI. It can be seen
from the table that the impact of international crude oil market
risk on CPI/PPI is significantly negative, and the impact on PPI
is greater than that on CPI, which indicates that the increase of
crude oil market risk can reduce the level of CPI/PPI. The
second step is to test the significance of the impact of crude oil
market risk on commodity market risk or financial market risk
by fitting (17). Similarly, the impact of crude oil market risk on
commodity market risk is significantly positive, while the
impact on financial market risk is not significant. Finally, the
significance of the coefficients is analyzed by fitting Formula
(18). It can be seen from the table that the impact of commodity
market risk on both CPI and PPI is not significant; the impact of
financial market risk on CPI is not significant, and the impact is
significant on PPI. Since the impact of international crude oil
market risk and financial market risk is not significant in Step
two, we need to do the Sobel test for all the mediating effects in
the third step. All the test results fall into the acceptance
domain, indicating that there is no mediating effect of
commodity market risk and financial market risk (Gregorious
and Kontonikas 2010; Meng et al., 2020; Jia et al., 2021).
According to the stepwise test results, when the financial
attribute of oil is dominant, the risk of the crude oil market
directly affects CPI/PPI.

During the period dominated by the dual attribute of oil, the
impact of crude oil market risk on CPI and PPI is different
through financial market risk and commodity market risk (Chen
et al., 2020; Meng et al., 2020). Table 6 reports the stepwise test
results of the channel effect of commodity market risk and
financial market risk when the dual attribute of oil dominates.

The first step fits Formula (16) to test the significance of the
impact of crude oil market risk on CPI and PPI. As can be seen
from the table, the impact of crude oil market risk on CPI and PPI
is significantly negative, and the impact on PPI is greater than that
on CPI, which indicates that the increase of crude oil market risk
can reduce the level of both CPI and PPI. The second step is to
test the significance of the impact of crude oil market risks on
commodity market risks as well as financial market risks
through fitting (17). Similarly, the risk of the crude oil
market has a significant positive impact on the commodity
market risk as well as the financial market risk, but the impact
on the commodity market risk is greater than that on the
financial market risk. Finally, Formula (18) is fitted to analyze
the significance of coefficients. As can be seen from the table,
both crude oil market risk and financial market risk have
significant impacts on CPI and PPI. In addition, the impact
of commodity market risk on CPI/PPI is also significant. After
controlling the risk of the commodity market, the impact of
crude oil market risk on CPI is significant, but the impact on
PPI is not significant. The comprehensive stepwise test results
show that when the dual attribute of oil dominates, the
financial market risk has a mediating effect, while the
mediating effect of the commodity market risk only exists
in the impact of the international crude oil market risk on CPI,
and the crude oil market risk indirectly affects PPI through the
commodity market risk.

Under the full sample, the impacts of crude oil market upward
returns risk on CPI/PPI are different through commodity market
risk and financial market risk (Ji et al., 2019b). Table 7 reports the
stepwise test results of the risk of the upward returns in the crude
oil market for the full sample. The first step is to examine the
significance of the impact of the crude oil market risk on CPI/PPI.
It can be seen from the table that the impact of the crude oil
market upward returns risk on CPI/PPI is significantly negative,
and the impact on PPI is greater than that on CPI, which indicates
that the increase of international oil market risk can reduce the
levels of both CPI and PPI. The second step is to examine the
significance of the impact of crude oil market risk on commodity
market risk as well as financial market risk. Similarly, the risk of

TABLE 10 | Comparison of the spillover mechanism of international crude oil market risk under different returns trends.

Commodity market
CPI

PPI Financial market
CPI

PPI

(a) International crude oil market downward returns risk

Full sample *(−) *(−) √(−)
Commodity attribute dominates √(+) √(+) √(+)
Financial attribute dominates
Dual attribute dominates √(−) *(−) √(−) √(−)

(b) International crude oil market upward returns risk

Full sample *(−) *(−)
Dual attribute dominates *(−) *(−) √(−) √(−)

Note:√ represents channel effect exists and * represents indirect effect exists. The pluses and minuses in parentheses indicate the direction of the effect. (a) shows the test results of the
spillover mechanism of downward returns risk in international crude oil market; (b) shows the test results of the spillover mechanism of upward returns risk in international crude oil market.
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the crude oil market has a significant positive impact on the
commodity market risk, but has no significant impact on the
financial market risk. Finally, Formula (3) is fitted to analyze the
significance of coefficients. It can be seen from Table 7 that
financial market risk has a significant impact on both CPI and
PPI, while the impact of crude oil market upward returns risk on
PPI is not significant. Based on the results of the second step, this
paper further uses the Sobel test for the mediating effect of
financial market risk in the impact of the crude oil market on
CPI/PPI, and the test results fall into the acceptance domain, that
is, there is no mediating effect. In addition, the impact of the
commodity market risk on CPI/PPI is significant, but after
controlling the commodity market risk, the impact of the
crude oil market risk on CPI/PPI is not significant, that is, the
direct effect does not exist. According to the stepwise test results,
there is no mediating effect of financial market risk under the full
sample. Crude oil market risks indirectly affect both CPI and PPI
through commodity market risks, while direct effects do not exist.
Further, this section examines the spillover mechanism of the crude
oil market upward returns risk in different oil attribute periods.

When dominated by a single attribute of oil, neither
commodity market risk nor financial market risk has a
mediating effect. Table 8 reports the stepwise test results of
the spillover mechanism of the international crude oil market
upward returns risk during the period dominated by a single
attribute of oil. The first step fit Formula (16) to test the
significance of the impact of the international crude oil market
upward returns risk on CPI/PPI. It can be seen from the table that
regardless of oil commodity attribute or financial attribute, the
impact on CPI/PPI is not significant. Comprehensive stepwise
test results show that the risk of upward returns in the
international crude oil market will not affect CPI/PPI through
commodity market risk and financial market risk, and the
mediating effect is not tenable.

During the period dominated by the dual attribute of oil, the
impacts of crude oil market risk on both CPI and PPI are different
through financial market risk and commodity market risk.
Table 9 reports the stepwise test results of the spillover
mechanism of the return rise risk in the crude oil market
when the dual attribute of oil dominates. The first step fits
Formula (16) to test the significance of the impact of crude
oil market risk on CPI/PPI. As can be seen from the table, the
impact of crude oil market risk on both CPI and PPI is
significantly negative, and the impact on PPI is greater than
that on CPI, which indicates that the increase of crude oil
market risk can reduce the levels of CPI and PPI. The second
step is to test the significance of the impact of crude oil market
risk on commodity market risk as well as the financial market
risk through fitting (17). Similarly, the risk of the crude oil
market has a significant positive impact on commodity market
risk as well as financial market risk. Finally, Formula (18) is
fitted to analyze the significance of coefficients. As can be seen
from the table, both international oil market risk and financial
market risk have significant impacts on CPI and PPI. In
addition, the impact of commodity market risk on CPI/PPI
is also significant. After controlling the commodity market risk,
the impact of crude oil market risk on CPI/PPI is not significant.

The comprehensive stepwise test results show that when the
dual attribute of oil dominates, the financial market risk has a
mediating effect, while the crude oil market risk will indirectly
affect CPI/PPI through the commodity market risk.

Under the condition of heterogeneous comprehensive returns,
the channel effects are asymmetric for the impact of crude oil
market risk on the macro-economic operation. This paper
further summarizes the stepwise test results (Table 10),
compares and analyzes the numerical differences of the
channel effects of commodity market risk and financial
market risk during different periods dominated by different
oil attributes.

The channel effect of commodity market risk is related to the
returns trend of the crude oil market. Table 10 (a) reports the
summary of the channel effect test of commodity market risk
under different returns trends. When the returns rise, the crude
oil market risk indirectly affects CPI/PPI through the commodity
market risk, and the direction is negative. When the oil
commodity attribute is dominant, the commodity market risk
has a positive mediating effect on the crude oil market risk and
CPI. When the financial attribute of oil is dominant, there is no
mediating effect of commodity market risk. When the dual
attribute of oil dominates, crude oil market risk harms CPI
through commodity market risk, but a significant negative
indirect impact on PPI. When the returns fall, the crude oil
market risk indirectly affects CPI/PPI through the commodity
market risk when the dual attribute of oil dominates for the full
sample. This is mainly due to asset diversification under different
returns trends. When the returns rise, investors in the crude oil
market have higher expectations, and the market sentiment is
better. Enterprises adjust their investment strategies and focus on
the demand for a single commodity. When returns fall, the
diversity of commodity markets is the main way for market
participants to mitigate the impact of major events (Li et al.,
2021b). Through purchasing diversified commodities, investors
reduce the demand for crude oil, which makes the international
crude oil price fall, but increases the prices of other commodities.

Different trends of crude oil market returns have a significant
influence on the channel effect of the financial market. As can be
seen from Table 10 (b), in the case of the full sample, the risk of
the downward returns of the crude oil market significantly
reduces the CPI level through financial market risk, but does
not affect the PPI level. Under the domination of oil commodity
attributes, the risk of the downward returns of the crude oil
market has a significantly positive impact on CPI and PPI
through the financial market risk. On the contrary, the
financial market risk has a significant negative mediating effect
when dominated by the dual attribute of oil. When returns rise,
the significant negative mediating effect of financial market risk
only plays a role when the dual attribute of oil dominates. This is
mainly due to the difference in investor behavior in different
returns trends. Compared with the downward returns, the rise in
crude oil returns makes it easier for investors to obtain expected
profits, enterprises have fewer financing constraints, and the cost
of obtaining funds is also lower (Song et al., 2019; Chen et al.,
2020). In addition, market uncertainty increases when returns
fall, and most investors in the market are risk-prone, which
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reduces the storage function of financial markets for funds. To
sum up, Hypotheses 2a and 3a are true.

4.3 Asymmetry Analysis of the Impact
Channel of International Crude Oil Market
Risk
This section further analyzes the numerical characteristics of the
impact channels of upward and downward return risk of the
international crude oil market under different oil attributes. The
numerical characteristics of the channel effect of commodity
market risk and financial market risk are shown in Figure 5
and Figure 6 respectively.

Different attributes of oil have significant impacts on the
channel effect of commodity market risk under different
returns trends. Figure 5A,B ) and (b) show the numerical
characteristics of the levels of CPI and PPI influenced by the
risk of downward return of the crude oil market during the period
dominated by different oil attributes through the commodity
market risk. Figure 5C depicts the numerical characteristics of
the levels of CPI and PPI influenced by the risk of the upward
return of the crude oil market during the period dominated by
dual attribute of oil through the commodity market risk. When
the returns fall, under the domination of the oil commodity
attribute, the direct effect of international crude oil market risk on
CPI is −3.488, and the indirect effect of international crude oil
market risk through the channel of commodity market risk is 1.815
(� 0.431 × 4.213). Under the domination of the dual attribute of oil,
the direct effect of international crude oil market risk on CPI is
2.863, and the indirect effect through the channel of commodity
market risk is −4.519 (� 0.511 × (−8.844)). In addition, the indirect
effect of international oil market risk on PPI through commodity
market risk is −8.651 (� 0.511 × (−16.93)). When returns rise, the
indirect effect of commodity markets risk occurs only when the dual
attribute of oil dominates. The indirect effect of international oil
market risk on CPI through commodity market risk is −2.007 (�
0.435 × (−4.616)). Besides, the indirect effect of international oil
market risk on PPI through commodity market risk is −6.542 (�
0.435 × (−15.04)). The channel effect of commodity market risk is
greater when returns fall because investors’ expectations lead to
different influences on demand changes of different commodities.
So Hypothesis 2b is true.

When returns rise, the impact of crude oil market risk on the
macroeconomic operation is greater through financial market
risk compared with commodity market risk. Figure 6A,B show
the numerical characteristics of the impact of the risk of
downward return of the crude oil market on the levels of
CPI and PPI through the financial market in the period
dominated by different oil attributes. Figure 6C depicts the
numerical characteristics of the impact of the risk of upward
return of the crude oil market on CPI/PPI through the financial
market in the period dominated by the dual attribute of oil.
Under the oil commodity attribute, the direct effect of
international crude oil market risk on CPI is −1.68, and the
indirect effect on CPI through financial market risk is 0.1495 (�
0.092 × 1.625). The direct impact of international oil market
risk on PPI is −4.337, and the indirect impact on PPI through

financial market risk is 0.351 (� 0.092 × 3.814). Under the
domination of dual attribute of oil, the direct impact of
international crude oil market risk on CPI is −2.197, and the
indirect impact on CPI through financial market risk is −0.212
(� 0.055 × (−3.857)). The direct impact of international crude
oil market risk on PPI is −7.121, and the indirect impact on PPI
through financial market risk is −0.308 (� 0.055 × (−5.613)).
When returns rise, the direct impact of international crude oil
market risk on CPI is −4.272, and the indirect effect on CPI
through financial market risk is −0.329 (� 0.078 × (−4.226)).
The direct impact of international crude oil market risk on PPI
is −8.059, and the indirect impact on PPI through financial
market risk is −0.602 (� 0.078 × (−7.718)). In conclusion,
Hypothesis 3b holds.

5 CONCLUSION

The channels through which crude oil market risk impacts
macroeconomic operation are affected by the double effects
of returns trend and oil attributes. This paper first uses SVAR to
identify the dynamic features of oil attributes domination from
July 2003 to October 2020. Secondly, this paper uses a stepwise
regression test to analyze the channel effects of commodity
market risk and financial market risk. Finally, the paper analyzes
the asymmetric characteristics of the channels through which
crude oil market risk impacts the smooth operation of the
macroeconomy under the condition of returns heterogeneity.
The conclusions are as follows:

The commodity market risk and financial market risk
snapshot a “buffer” or “magnifier” role on crude oil risk pass-
through to macroeconomic during oil dual attributes dominance.
When the oil commodity attribute is dominant, the commodity
market risk and the financial market risk show the role of
“buffer”, that is, the direct and indirect effects of the crude oil
market risk on the smooth operation of the macro-economy
through the commodity market and the financial market risk are
opposite. Specifically, the direct effect of crude oil risk on CPI/PPI
is negative, while the channel effect of commodity (financial)
market risk on oil pass-through to CPI/PPI is positive during oil
commodity attribute dominating. When oil financial attribute is
dominant, commoditymarket risk and financialmarket risk have no
channel effect. When dominated by the dual attribute of oil,
commodity market risk is an effective channel for the
macroeconomic operation to cope with the impact of crude oil
market risk, while financialmarket risk acts as a “magnifier” of crude
oil market risk. In other words, when crude oil risk increases, the
degree of CPI/PPI could direct decrease. Considering the channel
role of commodity (financial) market risk, the increase of crude oil
risk would lead to an increase in CPI/PPI.

There are significant asymmetric channel effects of commodity
market risk or financial market risk on the relationship between
crude oil risk and macroeconomic under different oil return trends.
On the one hand, when the returns of crude oil market rise, the
channel effect of commodity market risk as well as financial market
risk is mainly reflected in the dominant period of oil commodity
attribute and dual attribute.When the international crude oil market
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returns fall, the commoditymarket risk and the financial market risk
play the channel effect in the oil dual attribute dominant period. On
the other hand, the risk of falling returns in the international crude
oil market has a greater impact on CPI(PPI) through the commodity
market risk than when the returns rise, which is 4.519 (8.651) and
2.007 (6.542), respectively. In contrast, the risk of rising returns in
the international oil market has a greater impact on CPI/PPI
through financial market risk, which is 0.329 (0.602) and 0.212
(0.308), respectively.

Based on the above conclusions, this paper puts forward the
following policy suggestions. First, we should pay attention to the
mediating role of the commodity market and financial market in
preventing the impact of crude oil market risk in the dominant
period of different oil attributes. Counter-cyclical regulation and
other policies can be adopted to prevent and defuse the impact of
crude oil market risks on the macroeconomy. The second is to
pay attention to both the impact of the risk of the downward
return and the upward returns risk of the crude oil market. The
downward returns risk in the international crude oil market is a
key factor affecting the operation of the commodity market, the
financial market and the macroeconomy. However, the risk of the
upward return provides more possibilities for investors to obtain
expectations and also causes information transmission between
markets.

This paper bears several limitations. Despite we presented the
channel effect of commodity market risk or financial market risk
on crude oil risk pass-through to macroeconomic, this paper
neglects shocks of major events to the crude oil market. Thus, we
could further explore the effect of structural breaks in the crude
oil market on macroeconomic stability. Moreover, further studies

about the moderating effect of commodity market risk or
financial market risk and the mixture of mediating with
moderating effect on crude oil risk pass-through to
macroeconomic could be regarded as a valuable area.
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A Hybrid Model for Power
Consumption Forecasting Using
VMD-Based the Long Short-Term
Memory Neural Network
Yingjun Ruan, Gang Wang, Hua Meng and Fanyue Qian*

School of Mechanical Engineering, Tongji University, Shanghai, China

Energy consumption prediction is a popular research field in computational intelligence.
However, it is difficult for general machine learning models to handle complex time series
data such as building energy consumption data, and the results are often unsatisfactory.
To address this difficulty, a hybrid prediction model based on modal decomposition was
proposed in this paper. For data preprocessing, the variational mode decomposition
(VMD) technique was used to used to decompose the original sequence into more robust
subsequences. In the feature selection, the maximum relevance minimum redundancy
(mRMR) algorithm was chosen to analyse the correlation between each component and
the individual features while eliminating the redundancy between individual features. In
the forecasting module, the long short-term memory (LSTM) neural network model was
used to predict power consumption. In order to verify the performance of the proposed
model, three categories of contrast methods were applied: 1) Comparing the hybrid
model to a single predictive model, 2) Comparing the hybrid model with the
backpropagation neural network (BPNN) to the hybrid model with the LSTM and 3)
Comparing the hybrid model using mRMR and the hybrid model using mutual
information maximization (MIM). The experimental results on the measured data of an
office building in Qingdao show that the proposed hybrid model can improve the
prediction accuracy and has better robustness compared to VMD-MIM-LSTM. In the
three control groups mentioned above, the R2 value of the hybrid model improved by 10,
3 and 3%, respectively, the values of the mean absolute error (MAE) decreased by 48.9,
41.4 and 35.6%, respectively, and the root mean square error (RMSE) decreased by
54.7, 35.5 and 34.1%, respectively.

Keywords: load forecasting, variational mode decomposition, feature selection, machine learning, deep learning

1 INTRODUCTION

Energy is critical in modern society, and energy consumption is a major issue that has long plagued
humanity. Increasing demand for energy is gradually drawing attention to energy conservation issues
around the world. Among energy sources, building electricity consumption accounts for a large
proportion of total social energy consumption. From a global perspective, building energy
consumption accounts for about 40% of the global energy consumption, and this proportion is
likely to increase in the future.
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Scientists have explored various methods for predicting
building electricity consumption, aiming to achieve intelligent
energy management and energy-saving building reconstruction
based on predicted energy consumption. However, building
electricity forecasting continues to be a challenging effort due
to the variety of factors that affect energy consumption, such as
building structure, equipment, weather conditions, and energy-
use behaviours of the building occupants.

Building electricity consumption predictions can be divided
into three methods according to the type of data input and
processing method used: White-box physics-based models,
grey-box reduced-order models and black-box data-driven
models.

White-box physics-based models rely on thermodynamic
rules for detailed energy modelling and analysis. The
construction of the physical model requires a large number of
physical parameters related to the building and a detailed setting
of the system operation. Its accuracy depends on the input
parameters and the selected simulation software. Zhu et al.
(Zhu et al., 2012; Said, 2016) compared the Dest, Energy Plus
and DOE-2 simulation software calculation methods, and their
research results showed that the difference of load between the
simulation results of Dest and Energy Plus was less than 10%.
However, some detailed architectural data may not be readily
available to researchers, resulting in an inability to provide
accurate inputs and thus leading to poor predictive performance.

Grey-box modelling approaches offer a combination of
physical and data-driven prediction models, leveraging the
advantages and minimizing the disadvantages of both
approaches. In grey-box models, some internal parameters and
equations are physically interpretable (Eom et al., 2012; Amasyali
and El-Gohary, 2018). Grey-box models may also show better
performance compared to black-box and white-box models. For
example, Dong et al. (Dong et al., 2016) developed a hybrid model
which coupled a data-driven model and a thermal network model
for predicting the total energy consumption of residential areas
and compared its prediction performance to artificial neural
networks (ANN), support vector machines (SVM) and least
square support vector machine (LSSVM)-based models.

Unlike physical models, black-box data-driven models do not
require detailed building data, but rather they learn from the
available historical data to make predictions. Common machine
learning algorithms include SVM and ANN. These algorithms
have a wide range of applications in the field of energy
consumption prediction. Currently, about 47% of studies use
ANN to predict energy consumption (Liu et al., 2019). For
example, Mansoor et al. (Muhammad et al., 2020) compared
two different neural network models, feed-forward neural
networks (FFNN) and echo state networks (ESN) for electrical
load forecasting in real commercial buildings; their results
indicated that the ESN model generally performed slightly
better than the FFNN model Katarina. Liu et al. (Liu et al.,
2020) proposed a hybrid forecasting model that combined the
Jaya algorithm and SVM. In this model, the representative
features of the input data were selected and the hyper-
parameters of SVM were optimized by using the Jaya
optimization algorithm to efficiently improve the forecasting

accuracy of wind speed. Mendonça et al. (de Paiva et al.,
2020) investigated the application of machine learning models
for solar radiation intensity prediction. They evaluated multigene
genetic programming (MGGP) and the multilayer perceptron
(MLP) ANN. The results showed that MGGP produced better
results in the case of a single prediction, while ANN presented
more accurate results for ensemble forecasting. Anderso et al.
(Marcello Anderson et al., 2017) applied portfolio theory to solar
and wind energy forecasting to improve resource forecasting for
specific solar and wind energy conditions in the Brazilian region.
Their study showed that the optimal combination of 30% solar
and 70% wind resources generated the smallest calculated
standard deviation.

However, the original time series were often unstable due to
the disturbance of uncertainty. For this type of data, a single
model did not produce excellent results (He et al., 2018). To
improve the prediction accuracy, the segregation of these series
with different frequencies from the energy data was considered as
a possible solution.

Empirical mode decomposition (EMD) was proposed by Dr
Norden E. Huang in 1998 (Huang Norden et al., 1998) as a
method for processing nonstationary signals; it is an adaptive
time-frequency localization analysis method, the number of
decomposed IMFs depends on the data itself. Liu et al. (Liu
et al., 2012) proposed a standard hybridization of EMD with the
backpropagation neural network (BPNN) method. In this study,
all intrinsic mode functions (IMFs) and the residue were
forecasted with BPNN models. Similarly, Guo et al. (Guo
et al., 2011) proposed a modified EMD–FFNN model in the
form of an EMD-based FFNN ensemble learning paradigm. This
study showed that the first IMF containing high-frequency
components was mostly unsymmetrical and disordered, which
led to the generation of large forecasting disturbances. The
simplest combinations of hybrid EMD–SVM models are
presented in the literature (Lin and Peng, 2011; Zhang et al.,
2015). These models decomposed wind data into a series of
components (IMFs) using EMD, and then different models
were built with various kernel functions and parameters for
each component using the SVM model.

However, the IMF components obtained by EMD often
exhibit mode mixing, resulting in inaccurate IMF components.
To solve this problem, many scholars have proposed improved
algorithms. Wu and Huang (Wu and Huang, 2009) suggested the
ensemble empirical mode decomposition (EEMD) method.
Numerous articles in distinct research areas have claimed the
superior performance of the EEMD method over hybrid EMD
models. The hybrid EEMD–SVM model has been used in the
literature and has achieved better prediction accuracy than other
models (Hu et al., 2013; Wu et al., 2018). In one work (Wu et al.,
2018), wind speed data was decomposed into seven IMF
components with EEMD and then the IMFs were predicted
using the appropriate SVM models. Elsewhere, a similar
approach was used in which the first IMF (IMF1) was
removed from the prediction analysis and all remaining IMFs
were forecasted with SVMmodels (Hu et al., 2013). Yu et al. (Wu
et al., 2018) proposed a novel model based on EEMD and LSTM
for crude oil price forecasting. In this study, a method to select the
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same number of proper inputs in various decomposition scenarios
was developed. To extract features from the selected components
more adequately, LSTMwas introduced as a forecasting method to
predict price movement directly. Dragomiretskiy and Zosso
(Dragomiretskiy and Zosso, 2014) introduced the variational
mode decomposition (VMD) method in 2014. The VMD
algorithm is more robust in that it inherits the advantages of
the EMD algorithm while solving the mode mixing problem of the
EMD algorithm. In recent years, the VMD algorithm has been
successfully applied in many fields, such as fault diagnosis research
(Zhang et al., 2017) and forecast research (Liu et al., 2018; Niu et al.,
2020). The studies of He (He et al., 2019) and Li (Li et al., 2018)
have shown that the combinationmodel based on “decomposition-
prediction” can achieve high prediction accuracy in heating and
cooling seasons. He et al. developed a VMD-LSTM forecasting
model for electricity load forecasting in Hubei province. They
divided the 1-year data into four parts, corresponding to four
seasons. The results show that the proposed forecasting model has
high forecasting accuracy on all four data sets. The lowest
prediction accuracy is found in summer, attributed to the
higher fluctuation and uncertainty of load in summer.

Studies using signal decomposition methods have some
shortcomings. Firstly, some literature uses different prediction
methods for different IMF frequencies while ignoring the
feature selection variability of IMFs. Secondly, it is difficult to
provide a reasonable explanation for the physical meaning of each
component using signal decomposition methods. To address these
inadequacies, a hybrid system was developed that comprises three
modules to predict the electricity load of public buildings in
Qingdao. Compared with existing studies on short-term load
forecasting, the main contributions of this paper are as follows:

1) A novel deep learning-based method for predicting building
electricity consumption is proposed. The idea of
‘‘decomposition–reconstruction–integration” results in a
feasible and efficient method to model and forecast
nonlinear, non-stationary, complex time series.

2) Due to the volatility and uncertainty of the load data, VMD is
used to decompose the raw load into more stable series. Most
of the literature does not detail the determination of the
number of VMD components (Sun et al., 2019b). In this
paper, the mean value of the instantaneous frequency of each
component is used to determine the number of K.

3) Most of the literature does not provide a reasonable
interpretation of the components decomposed by the
modal decomposition algorithm. In this paper, the highly
volatile load is decomposed into several subsequences by
VMD. The redundancy between features is removed by the
mRMR algorithm so that each subsequence has a suitable
feature. With the features selected by mRMR, this paper
attempts to analyse the physical meaning of each subsequence.

This study is organized as follows. Section 2 outlines the principles
of the methods related to the proposed hybrid system. In addition, a
case study is presented in Section 3. Finally, the study’s conclusions
and avenues for future work are presented in Section 4. Note that the
data decomposition and feature selection were performed on a laptop

with an Intel(R) i5-7400CPUwithMATLAB 2020a installed, and the
deep learning model was performed on a laptop with an Intel(R) i5-
7400 CPU with Python 3.8 installed.

2 METHODOLOGY

The main contents of this section introduce the algorithm used in
this paper: Variational mode decomposition (VMD), Max-
Relevance and Min-Redundancy (mRMR) and Long Short-
Term Memory Neural Network (LSTM). The flow chart of the
hybrid model is shown in Figure 1.

2.1 Principle of Variational Mode
Decomposition
2.1.1 VMD Principle
In order to solve the modal mixing problem existing in EMD,
Dragomiretskiy et al. (Dragomiretskiy and Zosso, 2014) proposed
the VMD algorithm, which is essentially a set of adaptive Wiener
filter sets. The decomposition number K of VMD is determined
artificially. Theoretically, if the value of K is more reasonable, it
can effectively suppress the modal mixing phenomenon. the main
process of VMD is divided into five steps:

1) Suppose uk is the Kth order mode of the original signal f and
δ(t) is a Dirac distribution. The analytic signal of the mode uk
is calculated by Hilbert transform, then its unilateral
frequency spectrum can be expressed as:

(δ(t) + j

πt
)*uk(t) (1)

2) Adding a pre-estimated center frequency to the resolved signal
of the mode, the frequency of the mode can be modulated to
the corresponding baseband:

[(δ(t) + j

πt
)*uk(t)]e−jwkt (2)

3) Calculating the bandwidth of each modal signal, the
constrained optimization problem is expressed as:

min
{uk},{wk},

⎧⎨⎩∑k
k�1










σt[(δ(t) +
j

πt
)*uk(t)]e−jwkt










2

2

⎫⎬⎭ (3)

where the constraint of Eq. 3 is: ∑k
k�1uk(t) � f(t).

4) The Lagrangian function λ(t) and quadratic penalty factor α
are introduced to solve the optimal solution of the constrained
problem and transform the constrained optimization problem
into an unconstrained optimization problem.

L[{uk}, {wk}, λ] � α∑k
k�1










σt[(δ(t) + j

πt
)*uk(t)]e−jwkt










2

2
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+〈λ(t), f(t) −∑k
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uk(t)〉 (4)
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5) Use the multiplicative operator alternating direction method
to update un+1k , wn+1

k , λn+1 alternately in both directions until
the following iteration conditions are satisfied:

∑
k








u∧n+1k − u
∧n

k








2

2
/





u∧nk








2

2
< ε (5)

Where ε> 0, un+1k , wn+1
k , λn+1 are denoted as:

ûn+1
k (w) � f̂(ω) −∑i< kû

n+1
k (ω) −∑i> kû

n
k(ω) + λ̂

n(w)
2

1 + 2α(ω − ωn
k)2 (6)

ωn+1
k � ∫∞

0
ω
∣∣∣∣ûn+1

k (w)∣∣∣∣2dω
∫∞

0

∣∣∣∣ûn+1
k (w)∣∣∣∣2dω (7)

λ̂
n+1(ω) � λ̂

n(ω) + τ(f̂(w) − ûn+1
k (ω)) (8)

where τ is the updated noise parameter.

2.1.2 VMD parameter determination
1) Modal Number

The number of modalities K should be determined before
the VMD is used to decompose. Too large or too small a value
of K will affect the accuracy of the model. In this paper, the
mean value of instantaneous frequency of each component is
used to determine the number of K. When the value of k is too

large, and the high-frequency component will be broken. It
means that the instantaneous frequency at the break of the
high-frequency component is 0. As a result, the high-frequency
component breaks lead to a decrease in the average
instantaneous frequency. Figure 2 shows the mean values of
instantaneous frequencies for the nine cases of VMD
components. It can be seen from the figure that the number
of VMD components increases to a certain number, and the
curve has an obvious bending phenomenon. To sum up, the
value of K is chosen as 4.

2) Penalty Factor

The penalty factor changes the constrained variational
problem into a non-constrained variational problem.
According to Ref. (Wu, 2016), when the value of the penalty
factor is set to 2000 has strong adaptability and can ensure a
certain convergence speed.

2.2 Principle of Max-Relevance and
Min-Redundancy
Peng et al.(Peng et al., 2005) proposed a feature selection method
based on Mutual Information, which uses Mutual Information to
measure the dependency between two variables while taking into
account the redundancy between features.

FIGURE 1 | Hybrid model flow chart.
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2.2.1 Max-Relevance
The maximum correlation criterion solution can be expressed as
the average of the mutual information between the feature xi and
the target variable y:

maxD(J, y) � 1

|J| ∑xi∈J I(xi, y) (9)

where xi is the characteristic; y represents the target variable; J is
the set containing the xi; I(xi, y) represents the mutual
information between the feature xi and the target variable y.
The expression is as follows:

I(xi, y) � ∫∫p(xi, y)log p(xi, y)
p(xi)p(y) dxidy (10)

where p(xi), p(y) are the edge probability density functions of xi

and y, respectively , p(xi, y) is the joint probability density
function of of xi and y.

2.2.2 Minimum Redundancy
The overlapping information between any two feature variables
is called redundancy information. The features selected
according to Eq. 9 only consider the degree of correlation
and do not consider the existence of redundancy between
features. The input of redundant features increases the
number of input features, and decreases the accuracy of the
prediction model. The Minimum Redundancy expression is as
follows:

minR(J) � 1

|J|2 ∑
xi∈J,xj∈J

I(xi, xj) (11)

mRMR can be expressed by Eqs 9, 11 as:

maxψ(D,R),
ψ � D − R. (12)

2.3 Prediction Model
The prediction part uses Long Short-Term Memory Neural
Network (LSTM) model, which was proposed by Hochreiter
and Schmidhuber (Hochreiter and Schmidhuber, 1997) to
learn long-term dependence information. It can handle more
complex problems, and has more mature applications in the field
of load prediction (Sun et al., 2019a). Long short-term memory
neural network is a special form of the recurrent neural network.

FIGURE 2 | Average instantaneous frequency when K from 1 to 9

FIGURE 3 | LSTM structure.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7725085

Ruan et al. Load Forecasting with VMD-LSTM

145

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


LSTM is composed of cells with the same structure (Figure 3). In
this model, the data of the next moment is predicted each time by
the previous data and historical data, which is processed by the
cells. Each cell has three input parameters: Historically stored
information Ct−1, historical dataXt and ht−1, which represent the
prediction results of the last cell and input parameter to the cell.
Each cell contains four parts, including the forgotten gate, the
input gate, the update gate and the output gate.

The data ht−1 that processed by the previous cell, and the
input data of the current time Xt are linked by a matrix and
obtain X’

t,

X’
t � [ht−1, Xt] (13)

In the forgotten gate, LSTM can decide what information to
discard from the cell. After the sigmoid function processing, X’

t
can get ft1. LSTM can remember large amounts of historical data
by ft1 filtered data.

ft1 � σ(Wf ·X’ + bf) (14)

In the input gate, LSTM acquires the new data, After the
sigmoid function processing, X’

t can get it. The it decides the
useful data in X’

t. Moreover, X’
t is processed by the tanh function

to calculate C’
t,

it � σ(Wi ·X’ + bt) (15)

C’
t � tan h(Wc ·X’ + bc) (16)

ft2 � it × C’
t (17)

Ct is updated in the update gate. To obtain the historical data,
Ct−1 and ft1 are multiplied by the matrix, In order to keep more
accurate rules in the cell for accurate prediction, ft2 is added to
the equation to get output Ct,

Ct � ft1 × Ct−1 + ft2 (18)

LSTM outputs the result in the output gate. After the sigmoid
function processing, X’

t can get Ot. Ot decides which Ct needs to
be retained as the result. In addition, Ct is processed by the tanh
function to get h’t, h

’
t and Ot are multiplied to obtain the final

data ht,

Ot � σ(Wo ·X’
t + bo) (19)

ht � Ot × tanh(Ct) (20)

tan h(x) � e2x − 1
e2x + 1

(21)

σ(x) � ex

ex + 1
(22)

In order to compare the prediction results of different models,
three evaluation metrics will be used in this paper: Decision
factor: R-square (R2), mean absolute error (MAE), and root mean
square error (RMSE). The specific calculation of these metrics is
described as follows:

R2 � 1 − ∑i(Pi − Qi)
∑i( �Qi − Qi)2

2

(23)

MAE � 1
n
∑n
i�1
|Qi − Pi| (24)

RMSE �

���������������
⎛⎝1
n
∑n
i�1
(Qi − Pi)2⎞⎠

√√
(25)

WhereQi is the recorded value of building power consumption at
time i, and Pi is the predicted value of building power
consumption at time i. These three criteria describe the close-
ness of the predicted data to the actual data in three different
ways, The value of R2 is between 0 and 1, with 0 indicating worse
than the mean and 1 indicating perfect prediction, And for MAE
and RMSE, the smaller the value, the better the prediction result
of the model.

3 CASE STUDY

3.1 Data Introduction
The building electricity consumption data obtained in this article
was obtained from the Qingdao civil building energy
consumption monitoring platform. Raw data was selected
from three summer cooling months (June, July and August)
with a time granularity of 1 hour. The maximum and
minimum values of the original data are 803.5 KW and
65 KW; the difference between the maximum and minimum
values is 738.5 KW, which demonstrates the volatility of the
data. The mean and standard deviation of this data are
333.48 KW and 199.97 KW, respectively, which shows the
large dispersion of the data. In Figure 4, which illustrates the
sequence of the original data, it can be seen that the raw load
fluctuates considerably.

3.2 Comparison of Decomposition by EEMD
and VMD
Figure 5A shows how EEMD decomposes the original load into
11 intrinsic mode functions (IMFs) and a residual, and Figure 5B
shows the spectrum after passing the Fourier transform. Even
with the improved EMD algorithm, the phenomenon of modal
mixing is still evident. Modal mixing occurs when one modal
component is decomposed into multiple components. In the
figure, the frequency band of IMF4 overlaps with the
frequency bands of IMF3 and IMF5. Modal mixing is a defect
of the EEMD algorithm and leads to degradation of the model
accuracy, so it is important to avoid this phenomenon.

The VMD algorithm solves the modal mixing problem
inherent in the EEMD algorithm. In Figure 6A, the VMD
decomposition results are shown for K � 4 and the penalty
parameter a � 2000, which were determined in Section 2.1.2.
u1 is the lowest frequency component, u2 is the medium
frequency component and u3 and u4 are the highest frequency
components. According to the additional analysis supplied by the
spectrogram in Figure 6B, there is no overlap in the frequencies
of the components, which indicates that the VMD algorithm
solves the problem of modal mixing.
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In summary, both the EEMD and VMD algorithms are
capable of handling volatile raw data, and both algorithms
decompose the load into several stable components. The
EEMD algorithm is an improved algorithm based on EMD,
but it is limited due to the phenomenon of modal confusion.
The VMD algorithm overcomes this shortcoming. The VMD
algorithm can sufficiently decompose the raw load data to obtain
more physically meaningful components and improve the
accuracy of the model prediction.

3.3 Feature Selection
Building electricity consumption is influenced by climate and
historical load. However, the raw data contains only
meteorological factors. To fully consider the independence of
each component and research the physical significance of each
component, a set of feature matrices are established in this paper.
The appropriate feature set is selected by the mRMR algorithm
for input into the prediction model. The established feature
matrices and their representations are shown in Table 1.

The time interval of the load data collected in this paper is 1 h.
In Table 1, D_t represents the load point for the previous 48 h at
time t. Similarly, T_t, H_t and Dp_t represent the temperature,
humidity and dew point temperature, respectively, for the
previous 48 h at time t. The wind speed, temperature,
humidity and dew point are the meteorological characteristics
of the dataset.

After establishing the feature matrix, each component of the
decomposition is used as the target variable y, and xi is the data
point in the feature matrix. The mRMR values are calculated
according to Eq. 12 and the calculation results are sorted in
descending order. The top 15 influencing factors are selected as
the feature matrix of the input model. The final selection results
are shown in Table 2.

To illustrate the superiority of the mRMR algorithm, mutual
information maximization (MIM) (Novakovic et al., 2011) is used as
a comparison in this paper. The MIM algorithm is based on the
theory ofmutual information, but unlikemRMR, theMIM algorithm
only considers the correlation between features and target variables

and does not consider the redundancy between features. The results
of the MIM feature selection are shown in Table 2.

Consider u1 and u4 in Table 2 as an example. The low-
frequency components u1 and u2 are mainly influenced by
D_t, which indicates that the u1 and u2 components are
influenced more heavily by the historical load of the past 48 h.
It is further seen through Figure 6A that although both u1 and u2
are strongly influenced by historical loads, u1 presents a load
variation trend with a week as a period, while u2 presents a load
variation trend with a 24-h period. In contrast, the high-
frequency components u3 and u4 are not only influenced by
the historical load but also by the weather factor. Weather factors
are usually seen as uncertainty factors. The influence of humidity
on u4 is ranked second among all the features. This explains why
u4 is more volatile than u1: u1 is mainly influenced by historical
load and has a certain regularity, while u4 is influenced by
uncertainties such as humidity. Thus, u4 is more irregular.

Table 3 shows that the results of the MIM feature selection
method are similarly ranked, with the higher-ranked features all
being historical loads at a given moment. This is especially
apparent for the u3 and u4 components. The top five features
selected using MIM have a high degree of overlap because the
MIM algorithm only considers the maximum correlation
between features and variables while ignoring the degree of
redundancy between features. This is improved by using the
mRMR algorithm. For u3 and u4, the feature overlap selected
using the mRMR algorithm is not high, and features that are not
considered by MIM, such as wind speed and humidity, are taken
into account by the mRMR algorithm.

In summary, the mRMR algorithm considers not only the
correlation between features and target variables but also the
degree of redundancy between features. The selected features can
better reflect some characteristics of the modal components and
reduce the dimensionality of the feature matrix.

3.3 Model Predictions
In this paper, the LSTM model is used for predictions. The
training and test sets are divided for a total of 2,208 data

FIGURE 4 | Original total energy series.
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points from June 1, 2017 to August 31, 2017. Of this data, 80% is
used to build the model and 20% is used to check the validity of
the established models.

The number of layers of the LSTM model serves to remember
important information, and theoretically, more hidden layers give
the model an improved nonlinear fitting ability and a better
learning effect. However, increasing the number of layers

consumes a considerable amount of computation time.
According to the literature (Pan, 2018; Li et al., 2019), the
number of implied layers generally does not exceed 3, so the
number of implied layers in this paper has been determined to be 1.

The number of nodes in the hidden layer affects the
performance of the model. If the number of nodes in the
implicit layer is too small, less effective information is

FIGURE 5 | (A) The decomposition results of EEMD. (B) The decomposition spectrogram of EEMD.
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obtained in the prediction process. If the number of nodes in the
implicit layer is too large, it may lead to a longer training time and
overfitting problems. According to the literature (Xu et al., 2020),
the number of nodes in the hidden layer can be determined by
Eq. (26):

l � �����
m + n

√ + a (26)

where l is the number of nodes in the hidden layer, m is the
number of input nodes, n is the number of output nodes, and a is

a constant from 1 to 10. By calculation, the number of nodes l in
the hidden layer is determined to be 8. The LSTM network is
trained using the Adam optimization algorithm (Wang et al.,
2019). By referring to relevant literature (Kong et al., 2019; Pei
et al., 2020) and experimental measurements, the remaining
parameters are set: The number of iterations of the neural
network is set to 1,000, the learning rate is set to 0.01, and the
expected error is set to 0.0004. The prediction results are shown in
Figure 7 and Table 4.

FIGURE 6 | (A) The decomposition results of VMD. (B) The decomposition spectrogram of VMD.
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Figure 7 and Table 3 demonstrate that the integrated model
proposed in this paper achieves better results for the prediction of
each component. In general, the prediction results for the low and
medium frequency components (u1 and u2, respectively) are
better, with R2 values of 0.997 and 0.994, respectively. The u3
component also achieved a better prediction, having an R2 value
of 0.992. In contrast, the prediction results for the high-frequency
component u4 are slightly worse, with an R2 value of only 0.982.

Table 3 also shows the prediction results for each component
obtained using the MIM feature selection method. The R2 values
of the prediction results for all four components are lower than
those obtained by the mRMRmethod, especially for the u2 and u3

components. The main reason for this result is because the MIM
feature selection algorithm does not consider the redundancy
among the features, which leads to a certain degree of
repetitiveness of the selected features.

3.4 Model Comparison
The proposed model is compared and analysed alongside other
models to verify its reliability. The other models are singular and
include a model using EEMD decomposition
(EEMD–mRMR–BPNN), a model using the MIM algorithm
(VMD–MIM–LSTM) and a model using the BPNN algorithm
(VMD–mRMR–BPNN). The prediction results and evaluation
metrics of all models are shown in Figure 8 and Table 4.

The predictions of the integrated model with the addition of
the modal decomposition algorithm are more accurate compared
to the single prediction model (LSTM), as shown in Figure 8.
This indicates that the modal decomposition algorithm can
indeed handle more complex data and improve the accuracy
of the model. In addition, the prediction model proposed in this
paper has the highest prediction accuracy among the four models.

According to the evaluation metrics analysis in Table 4, the
prediction error of the single LSTM model is larger than the
prediction error of the integrated model. This is mainly due to the
instability of the load data and the limitations of the input

TABLE 1 | Construction of feature matrix.

Feature name Representation

D_t D_1,D_2,D_3. . .D_48
T_t T_1,T_2,T_3. . .T_48
H_t H_1,H_2,H_3. . .H_48
Dp_t Dp_1,Dp_2,Dp_3. . .Dp_48
Wind speed Wind speed
Temperature Temperature
Humidity Humidity
Dew point Dew point

TABLE 2 | Feature selection results.

Number u1 u2 u3 u4

mRMR MIM mRMR MIM mRMR MIM mRMR MIM

1 D_8 D_8 D_1 D-1 D_2 D-2 D_1 D-1
2 D_46 D-15 D_13 D-2 D_15 D-3 Humidity D-2
3 D_15 D-16 D_43 D-6 Humidity D-4 D_12 D-3
4 D_1 D-5 D_7 D-13 D_8 D-1 D_21 D-4
5 D_36 D-4 D_27 D-5 D_23 D-7 1D_8 D-5
6 D_26 D-46 D_36 D-10 D_45 D-6 D_2 D-6
7 D_17 D-30 D_47 D-7 D_4 D-5 D_41 D-8
8 D_30 D-26 D_17 D-3 D_13 D-10 D_47 D-23
9 D_44 D-10 D_2 D-9 D_33 D-9 D_14 D-24
10 D_4 D-47 D_10 D-4 D_1 D-8 D_3 D-12
11 D_10 D-48 D_16 D-12 D_17 D-13 Wind speed D-25
12 D_48 D-14 D_6 D-8 D_7 D-23 D_10 D-7
13 D_39 D-28 D_48 D-27 D_46 D-12 D_23 D-9
14 D_16 D-22 D_38 D-11 D_3 D-14 D_4 D-10
15 D_3 D-39 D_3 D-28 D_14 D-11 D_35 D-22

TABLE 3 | VMD component prediction result.

Model Subsequences MAE (kWh) RMSE (kWh) R2

VMD + mRMR + LSTM u1 2.61 3.34 0.997
u2 8.61 11.23 0.994
u3 2.90 4.02 0.992
u4 2.18 3.07 0.982

VMD + MIM + LSTM u1 8.83 10.44 0.977
u2 25.63 35.95 0.943
u3 7.08 11.14 0.960
u4 2.11 3.09 0.980
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features. The modal decomposition algorithm can decompose the
fluctuating data into several stable IMFs, and the mRMR
algorithm can select suitable features for the model. Thus, the
prediction results of the integrated model are better than those of
the single LSTM model. In addition, the integrated model using
the VMDmodal decomposition method (VMD–mRMR–BPNN)
predicts better results than the integrated model using EEMD
(EEMD–mRMR–BPNN). The R2 is improved by 5.6% and the

FIGURE 7 | VMD component prediction figure.(A) u1, (B) u2, (C) u3, (D) u4.

TABLE 4 | Evaluation metrics of each model.

Model MAE (kWh) RMSE (kWh) R2

LSTM 41.77 67.70 0.87
VMD + mRMR + BPNN 36.42 47.54 0.94
EEMD + mRMR + BPNN 50.39 62.21 0.89
VMD + MIM + LSTM 33.15 46.42 0.94
VMD + mRMR + LSTM 21.36 30.64 0.97

FIGURE 8 | Prediction results of each model.
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MAE and RMSE are reduced by 27.7 and 23.6%, respectively,
because the VMD algorithm solves the problems of modal
aliasing and elusive components.

Comparing the VMD–MIM–LSTM and
VMD–mRMR–LSTM integrated models, the mRMR
algorithm, which takes into account the redundancy between
features, achieves better prediction accuracy for the feature
selection algorithm. The R2 is improved by 3.0%, the value of
the MAE is reduced by 35.6% and the value of RMSE is reduced
by 34.1%. This is because the mRMR algorithm takes into account
the redundancy between features and can select the appropriate
feature matrix for each IMF.

Comparing the VMD–mRMR–LSTM and
VMD–mRMR–BPNN prediction models, the integrated
model using LSTM outperforms the integrated model using
BPNN. The R2 of the LSTM integrated model is improved by
3.0%, the value of MAE is reduced by 41.4% and the value of
RMSE is reduced by 35.5%. The power load series is a sample of
power load variation over time, and the BPNN model has
shortcomings in analysing these types of time series. For the
time series, the LSTM model better mines the relationship

between the data points. In brief, the model proposed in this
paper has the highest prediction accuracy.

3.5 Model Robustness
The experimental results show that the hybrid model proposed in
this paper has high prediction accuracy. In this section, the
robustness of the hybrid model is analysed by varying the
number of input feature parameters and the number of
neurons in the hidden layer. For simplicity, the VMD-
decomposed u4 has been selected as the target dataset.

3.5.1 Number of Neurons in The Hidden Layers
In theory, with the increase of the number of neurons in the
hidden layer and the more abstract features extracted by deep
learning, the more accurate a time series will be, which is
favourable for predictions (Zhang et al., 2020). Figure 9A
shows the RMSE of the VMD–mRMR–LSTM and
VMD–MIM–LSTM models when the number of neurons in
the hidden layer is changed. When the number of hidden
layer nodes is between 5 and 25, the RMSE shows a gradual
decrease; when the number of hidden layer nodes is between 25

FIGURE 9 | (A) Effect of the number of hidden layers on RMSE of u4. (B) Effect of the number of input parameters on RMSE of u4.
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and 65, the RMSE has a large fluctuation; when the number of
hidden layer nodes is between 65 and 100, the RMSE tends to be
smooth, its value is mostly between 3 and 5 and the prediction
error is relatively stable, which indicates that these twomodels are
highly robust. In addition, the RMSE of VMD–mRMR–LSTM is
lower than that of VMD–MIM–LSTM in most situations, which
indicates that VMD–mRMR–LSTM has better prediction
performance and more stable robustness.

3.5.2 Number of Input Parameters
The redundancy between features is theoretically taken into
account by the mRMR algorithm so that more input
parameters lead to a better prediction performance of the
model. However, too many feature parameters can increase
the complexity of the model and increase the computing cost.

Figure 9B illustrates the effect of the number of feature
parameters on the accuracy of the model. When the number
of input features is between 1 and 6, the RMSE of the models is
decreasing and fluctuates. When the number of input features is
between 6 and 15, the RMSE of both models decreases smoothly
with values in the range of 3.5–4.5. The prediction error of the
VMD–mRMR–LSTM model is smaller than that of the
VMD–MIM–LSTM model. Therefore, the
VMD–mRMR–LSTM model is more robust than the
VMD–MIM–LSTM model when the number of input features
is changed.

3.5.3 Effect of Input Data
To investigate the effect of different input data on the accuracy
of the model, the training set in the 3.1 section is used as the

FIGURE 10 | (A) The decomposition results of training set. (B) The decomposition spectrogram of training set.
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raw data input to the hybrid model. Figure 10A shows the
results of the training set decomposed by VMD. Comparing
the decomposition results in Figure 6A, 10A, it can be seen
that the trend of the training set is similar to the original data.
Further comparing the spectrograms in Figure 6B, 10B,
although the peak frequency of the training data set and the
original data set is different, they appear at the same locations.
The decomposition results of the training set are input into the
hybrid model, and the prediction result is shown in Figure 11.
The predicted values of MAE, RMSE, and R2 are 30.96 kWh,
38.96 kWh, and 0.95, respectively. Compared with the results
of decomposing the original data (VMD–mRMR–LSTM), the
R2 of the decomposed training dataset model (Training_Set-
VMD–mRMR–LSTM) decreased by 2%, and the RMSE and
MAE increased by 27 and 44.9%, respectively, indicating that
the selection of the input data can have an impact on the
accuracy of the model. Training_Set- VMD–mRMR–LSTM
still has higher accuracy than the single LSTM model, and the
R2 improved by 7%, RMSE and MAE reduced by 42.4 and
25.9%, respectively. In conclusion, the use of training data as
model input reduces the accuracy of the model, but the impact
is small in general. Compared with a single model, the
proposed hybrid model still has a greater superiority.

4 CONCLUSION

A hybrid short-term load forecasting model, namely
VMD–mRMR–LSTM, was proposed in this paper. To solve
the modal mixing problem presented by the EMD algorithm,
the VMD algorithm was used, and the value of its decomposition
number K was determined by the average instantaneous
frequency. For feature selection, the mRMR algorithm was
used to select the related feature by analysing the correlation
between each component and feature as well as the redundancy
between features. Finally, the LSTM model was used for the

prediction model. The case study in this paper demonstrated the
following:

1) Compared to single prediction models, hybrid models have
higher accuracy and are more robust in the field of energy
consumption prediction and have a broad application prospect
for the short-term prediction of building energy consumption.

2) Using VMD to decompose the original sequence can have a
better decomposition effect than when EEMD is used.
Decomposition by VMD solves the problem of modal
confusion so that the decomposed sequence is stable. The
prediction results of the hybrid model using VMD are higher
than those of the hybrid model using EEMD.

3) The mRMR algorithm can eliminate the redundancy between
features and show the influencing factors of the modal
components. The experimental results prove that the
features selected by the mRMR algorithm have a higher
prediction accuracy and better interpretability than those
selected by MIM, which is supported by the value of R2

increasing by 3%, the value of MAE decreasing by 35.6%
and the value of RMSE decreasing by 34.1%.

4) The hybrid model proposed in this paper can achieve an R2 value of
0.97, and its prediction results are higher than those of the singlemodel
(LSTM) and the general integrated model (VMD–MIM–LSTM).
Therefore, the proposed VMD–mRMR–LSTM approach has a
high potential for practical applications in energy systems, such as
forecasting building energy consumption.

5) By varying the number of input feature parameters and the
number of neurons in the hidden layer, the model is proven to
have good robustness.

In this paper, all decomposed components were predicted
using the LSTM model. However, since the frequency of each
component varied, the LSTM may not have produced ideal
results for each component. For example, in Table 3, the
difference between the R2 values of the u1 and u4 components

FIGURE 11 | Prediction results of model with training set.
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for the VMD–mRMR–LSTMmodel was not negligible. Choosing
appropriate prediction models for the different frequency
components may lead to better results. We will conduct more
research in this direction in the future.
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Green Bond Index Prediction Based on
CEEMDAN-LSTM
Jiaqi Wang1, Jiulin Tang1 and Kun Guo1,2*
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Green bonds, which are designed to finance for environment-friendly or sustainable
projects, have attracted more and more investors’ attention. However, the study in this
field is still relatively limited, especially in forecasting the market’s future trends. In this
paper, a hybrid model combining CEEMDAN and LSTM is introduced to predict green
bond market in China (represented by CUFE-CNI High Grade Green Bond Index). In order
to evaluate the performance of our model, we also use EMD to decompose the green bond
index. Our empirical result suggests that, compared with EMD-LSTM and LSTM models,
CEEMDAN-LSTM is themost accurate model in green bond index forecasting. Meanwhile,
we find that indices from the crude oil market and green stock market are both effective
predictors, which also provides ground on the correlations between the green bond
market and other financial markets.

Keywords: green bonds, CEEMDAN, LSTM, green finance, machine learning

INTRODUCTION

In order to achieve the goal of peak carbon dioxide emission and carbon neutrality, China is now
attempting to transit to low-carbon economy, leading to the urgent financing demand of many green
projects. Therefore, the development of various green finance instruments has enjoyed a rapidly
growing attention. Compared with traditional financial alternatives, these green instruments are
specially designed to support the environment-friendly or sustainable programs. Among them, green
bonds, also called climate bonds at times, are viewed as promising green securities to meet the
immense capital needs for low-economy projects (Kochetygova and Jauhari, 2014). Different from
other bonds, green bonds have some unique features: firstly, the purpose of issuing green bonds is to
support environmental companies or programs; secondly, there is a strict procedure of evaluating
and choosing green projects; thirdly, the funds raised by green bonds can only be used in the
environmental programs and the use of funds will be tracked transparently; finally, annual reports
about funds are disclosed every year, which enables the investors to supervise the use of funds (World
Bank Group, 2015).

The first green bond emerged in 2007, when the European Investment Bank announced the
raising of money for environment-protecting programs by issuing bonds. Shortly after that, in 2008,
the first worldwide green bond was issued by the World Bank. Based on statistics from the Climate
Bonds Initiative (CBI, 2021), from 2013 to 2020, the international green bond market has developed
dramatically, with the amount of green bonds issued each year growing 26 times from approximately
11 billion dollars to over 290 billion dollars. Until the first half of 2021, the cumulative amount of
bonds issued has reached 1.3 trillion and the growth rate is still growing. At the same time, the
geographic features of green bonds issuance have also changed remarkably. The emerging market
began to participate in the green bond market in 2014, which only occupied 2% of the global market
at first. However, at the end of 2020, the proportion reached 16%, demonstrating the rapid growth of
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the emerging market. In China, green bonds appeared in April
2015, and the People’s Bank of China together with the Ministry
of Finance promulgated Guidance on building a green financial
system in August 2016, which marks China as the first country in
the world to provide explicit government support in the
establishment of green financial systems (Chen and Zhao, 2021).

Although the green bonds did not become prevalent in China
until the recent years, they have experienced fast development.
According to CBI (2020), China merely issued 1.3 billion dollars
in green bonds in 2015, which occupied no more than 3% of the
global green bond issued. However, the amount of issued green
bonds was roaring by nearly 20 times in the next year, exceeding
20 billion dollars, and accounted for 25% of global green bonds
issued. Since then, the figure has been growing year by year,
except for 2020 due to COVID-19. In addition, it is estimated that
the green bond market in China is bigger than statistics suggests
because the evaluation and information disclosing standards of
green bonds in China are not consistent with international
standards, which may decrease the attractiveness of Chinese
green bonds in the global markets (Zhang, 2020). Statistics
indicates that almost half of the green bonds issued by China
in 2020 failed to meet the standards of CBI. Fortunately, China is
now attempting to revise its classification system to make it in
closer alignment with global taxonomy by publishing the Green
Bonds Endorsed Projects Catalogue (2021 edition). It is foreseeable
that China is sure to be one of the most profound green bond
markets in the future once the standards are more harmonized.

While the green bond market is booming these days, the
researches in this field are relatively inadequate. Particularly,
there are few studies relevant to the prediction of green bond
markets. As green bond indices are beneficial in improving the
market efficiency and transparency, investors are eager to
anticipate the future trend of the green bond market by
predicting green bond indices (Kochetygova and Jauhari,
2014). Therefore, the purpose of this study is to forecast the
green bond index through various machine learning models.

However, compared with stock prices, it is much more
complex to predict the bond prices because of the dearth of
trading information (Ganguli and Dunnmon, 2017). Owing to
the asymmetric information needed and offered, the price of
bonds cannot reflect the fair value accurately at times. In this
paper, we attempt to forecast the green bond index based on two
frameworks. The first one is to predict the bond prices and
returns depending on indicators from the bond market, stock
market, and commodity market (Lin et al., 2018; Choi and Kim,
2018; Chordia et al., 2014; Nazlioglu et al., 2020; Gormus et al.,
2018). As the work related to bond returns prediction is limited,
some studies have already chosen several widely used stock price
predictors to forecast bond returns on the basis of co-movement
between the stock and bond markets (Connolly et al., 2005). For
instance, motivated by stock price forecasting, Devpura et al.
(2021) choose 12 predictor variables to predict bond returns.
Fong andWu (2020) utilize the typical technical rules in the stock
market to testify the predictability of 48 sovereign bond markets,
and the result suggests that technical indicators are suitable
predictors especially when machine learning method is used.
The second topic that is closely affiliated to our work is to apply

the machine learning method in the prediction of financial
markets (Henrique et al., 2019; Gu et al., 2020; Jiang, 2021).
Relevant literature has shown that the nonlinear algorithms
perform better in forecasting bond returns (Bauer and
Rudebusch, 2017; Huang et al., 2020; Giacoletti et al., 2021).
As a result, the machine learning models are proven to achieve
highest accuracy in the financial time series prediction (Ghoddusi
et al., 2019; Bianchi et al., 2021; Sadorsky, 2021).

Based on previous literature, in this work we utilize machine
learning methods to forecast the closing price of the green bond
index. The index predicted in the empirical study is the CUFE-
CNI High Grade Green Bond Index, which appears to be one of
the most representative green bond indices in China. In terms of
choosing predictor variables, we are inspired by the literature of
bond returns and stock indices prediction. Historical prices and
other trading indicators are widely acknowledged predictors to
forecast financial markets (Jiang, 2021). Owing to the limited
transaction information about green bonds, we select several
historical trading indicators, including the closing price, the
opening price, the trading volume, the turnover of trading
volumes, and the daily return rate. Moreover, many studies
have proven that there are significant relations between the
green bond market and other financial markets (e.g., stock
market, crude oil market, carbon emission market), implying
that indices from other markets can be effective predictors
(Reboredo, 2018; Reboredo and Ugolini, 2020; Dutta et al.,
2021). The co-movements, however, do not necessarily lead to
the predictability of green bond market unless the leading roles of
other markets are confirmed. Thus, the Grey relational analysis is
applied to examine whether our predictor variables are leading
indicators of the closing price of the green bond index. In
addition, as the machine learning method is largely used in
predicting financial series, we use Long Short-Term Memory
Networks (LSTM), an effective model in stock indices prediction
for its advantages of combining long-term and short-term
information, to forecast the green bond index (Cao et al.,
2019; Sanboon et al., 2019; Sethia and Raut, 2019). Since the
green bond index is unstable and nonlinear, the Empirical Mode
Decomposition (EMD) and Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) are
introduced to decompose the green bond index into several
intrinsic mode functions (IMFs) and a residue. After
decomposing, the original index is separated into several stable
series, and thus, the prediction accuracy could be enhanced.

Given the results of our empirical study, it is suggested that
CEEMDAN-LSTM model is the most effective tool in analyzing
the future trends of the green bond market. We also apply four
loss functions in this study to measure the out-of-sample
prediction errors of CEEMDAN-LSTM, EMD-LSTM, and
LSTM. The results of loss functions also indicate CEEMDAN-
LSTMmodel is optimal. Meanwhile, our paper demonstrates that
indices from the crude oil market and green stockmarket are both
suitable predictor variables for the green bond market, as the
prediction accuracy is significantly improved after the two indices
are involved in our model.

The contribution of our work is twofold. On the one hand, our
paper is the first to predict the future trend of the green bond
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market. As indices are normally used to assess the overall
performance of assets, investors in the green bond market will
greatly benefit from the prediction of the green bond index
(Partridge and Medda, 2018). On the other hand, by
examining the predictability of the stock index and crude oil
index to the green bond index, we reinforce the finding that there
are co-movements between the green bond market and other
financial markets.

The rest of the paper is organized as follows: Literature Review
highlights the previous work about the green bond market and
predicting methods; Data and Methodology introduces the data
and methods we have employed in this paper, including EMD,
CEEMDAN, Grey relational analysis, LSTM, and some loss
functions; Empirical Results presents the process of training
and the out-of-sample prediction results; and Conclusion
summarizes the whole study and puts forward the conclusion.

LITERATURE REVIEW

In this section, we first summarize literature about two topics:
green bond market and financial market prediction models,
which are both closely related to our work. After presenting
the existing literature, we also illustrate how our work is related to
and different from these studies.

Green bond market
Recently, there has been a wide concern about some
environment-friendly financial products. Broadly speaking,
these green financial instruments play important roles in both
environmental protection and financing. Copenhagen Accord
introduced in 2009 points that financial innovation is a
powerful way to defeat against global warming. Many
economies are also in agreement that it is urgent to transform
the economic development mode by attracting investors to green
their portfolios, and one of the most effective ways is to provide
more appealing green financial instruments (Piñeiro-Chousa
et al., 2021). On the contrary, a few works also raise the
different voices. For example, Bracking (2015) argues whether
the virtual green financial assets could boost the development of
real asset markets, after studying the case of the Clean
Development Mechanism in South Africa. Christophers (2019)
also questions the correlations between green financial derivative
market and energy commodity market.

At the same time, green financial tools, serving as a kind of
financial innovation product, can exert positive influence in two
aspects: the companies’ perspective and the investors’ perspective.
Going green has been one of the managing aims in many
companies. Some studies have shown that companies are able
to get extra green premium by providing socially responsible
products or investing in green projects (Besley and Ghatak, 2007;
Orlitzky et al., 2011). Friede et al. (2015) find a positive
relationship between environmental, social, and governance
(ESG) investing and corporate financial performance by
studying 2,200 empirical cases. Tang and Zhang (2019) believe
the institutional ownership will increase after a company
announces the issuance of green stocks. Other studies also

show that companies who pay much more attention on
sustainability and environment protection normally behave
better in financial performance (Khan et al., 2016; Trinks
et al., 2018). Zerbid (2019), on the other hand, finds there is a
small negative premium on green bonds. From investors’
perspective, the issuance of green bonds is likely to promote
the disclosure of corporate ESG information (Piñeiro-Chousa
et al., 2021). Flammer (2021) suggests that companies’ long-term
value and environmental performance can be enhanced after
issuing green bonds, which will benefit long-term green investors.

However, while environmental stocks have been on heated
discussion, the study in green bonds is relatively limited. One
reason is that compared with other kinds of financial tools, the
green bond market still occupies a relatively small share (less than
1%) of the whole bondmarket (CBI, 2018), and since it is a newly-
emerged financial product, the data related in this field are also
inadequate. Due to the insufficient materials, there are still some
research gaps in this field.

Previous works on green bonds mainly focus on the green
premium of green bonds, as well as the dynamic relationship
between the green bond market, and other types of financial
markets (Hachenberg and Schiereck, 2018). Febi et al. (2018) use
the LOT liquidity model raised by Lesmond et al. (1999) to
explain the yield spread of green bonds and suggest that the liquid
risk of green bonds is so minor that it can be negligible. Sheng
et al. (2021) examine the green bonds issuance in China and
propose that there is a negative premium in green bonds issuing,
which is more significant in state-owned enterprises. Liaw (2020)
reports an opposite conclusion after surveying and believes that
compared with traditional bonds, the yield of green bonds
is lower.

As for the relations between the green bond market and other
markets, most studies are concentrated on their spillover effects.
Reboredo and Ugolini (2020) find the green bond market is closely
connected with the fixed-income and currency markets, while the
correlations between the green bondmarket and the stock and energy
markets are weak. Dutta and Noor (2021) examine the correlations
between the climate bondmarket and other markets during COVID-
19, and the empirical result suggests that there are bidirectional
spillover effects between the climate bondmarket and the stock, gold,
and oilmarkets. Hammoudeh et al. (2020) apply a novel time-varying
Granger causality test in the study and find the significant
relationships between green bond index and the US 10-year
Treasury bond index and the carbon dioxide emissions index.
Meanwhile, some scholars also raise other factors that will affect
the price of green bonds. Pham et al. (2020) find that the attention of
investors can influence the returns and volatility of green bonds. They
use Google Search Volume Index (GSVI) to represent investor
attention and several green bond indices to represent the
performance of green bond market. The vector auto-regression
(VAR) model is employed to explore the correlation between
these two variables. The result has shown that the relationship
between investor attention and green bond index varies over time,
but in the short term, the relation is stronger. Similarly, Piñeiro-
Chousa et al. (2021) analyze how the social network will influence the
green bond market and argue that investor sentiment plays an
important role in green bond market fluctuation.
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Although the contemporaneous correlations and causality
between green bond market and other financial markets are
on heated discussion, few studies illustrate the lagged
relationships among these markets. Our work contributes to
the lagged correlations between the green bond market and
other financial markets (crude oil and stock markets) by
testify the ability of crude oil and stock prices (represented by
the Crude Oil Price Index and the CNI EP Index) to predict the
green bond price (represented by the CUFE-CNI High Grade
Green Bond Index). The empirical result demonstrates that in
China, the crude oil index and stock index are both effective
predictor variables in forecasting the green bond market,
implying the transmission of lagged prices between the green
bond market and the other two markets.

Prediction models
The predictability of financial markets has been a classic research
topic in financial fields. For this problem, Fama (1965) gives a
discouraging answer by proposing an efficient market hypothesis.
As markets are efficient, prices vary following random paths,
suggesting no analysis can be utilized to predict the markets
accurately. However, there are some opposite voices. Many
empirical studies have shown that future trends of various
financial markets can be predicted, which may ascribe to some
psychological factors and the immature markets (Henrique et al.,
2019). Traditional prediction of financial instrument prices is
based on technical analysis and fundamental analysis (Jiang,
2021). A series of classic time series prediction techniques, like
moving average and auto-regressive, are also employed to forecast
financial markets (Kumar and Thenmozhi, 2014). Thanks to the
fast development of artificial intelligence, more and more
advanced methods such as machine learning are used in the
field of predictions. Given the nonlinear, unstable, noisy, dynamic
nature of financial time series, it is reasonable to apply machine
learning into financial market prediction (Hsu et al., 2016;
Bezerra and Albuquerque, 2017; Zhang et al., 2017; Shah et al.,
2019).

Among various machine learning approaches, the neutral
network algorithm appears to be the most accurate method in
financial market prediction (Li and Ma, 2010). Kim et al. (2021)
have employed several approaches to forecast the corporate bond
yield spreads, including linear regression, nonlinear regression,
support vector machine (SVM), random forest, and neutral
network. Among them, neutral network is reported to
outperform any other technique. Similarly, after comparing
the prediction result, Gao and Chai (2018) find the recurrent
neural network (RNN) works most accurately when it comes to
the prediction of stock indices. Based on different types of neutral
networks, some studies have already created new hybrid
forecasting models. Sun et al. (2019) have put forward a new
model combining the auto-regressive and moving average model
(ARMA), generalized auto-regressive conditional
heteroskedasticity (GARCH), and neutral network to detect
the shock hitting the US stock market by using the high-
frequency data of the US stock market. This model proves to
forecast the high-frequency market accurately in their study.
Huynh et al. (2017) propose a new method based on

bidirectional gated recurrent unit (BGRU) in order to
investigate the potential relation between investor sentiment
and stock price. Consequence shows that the prediction
accuracy can be enhanced to nearly 60% when BGRU is used
in forecasting S&P 500 index and it stills perform well in
corporate stock prediction.

More and more researchers pay attention to the powerful
predicting ability of LSTM in financial markets forecasting.
Compared with other machine learning techniques, LSTM is
considered to be the advanced RNN, capable of combining short-
time memory and long-time memory (Zhang et al., 2018; Kamal
et al., 2020). Because of its advantages, it is frequently used to
predict financial data. Akita et al. (2016) employ the LSTM
method to forecast 10 listed companies’ stock prices, based on
textual information collected from newspapers articles. The
experiment demonstrates that the effectiveness of LSTM is
higher than multi-layer perceptron (MLP) and support vector
regression (SVR) and RNN. Gite et al. (2021) collect the
information from a famous Indian financial news website and
create a sentiment indicator to predict stock price with LSTM.
They find that financial news has a great influence on the
volatility of stock prices, and the predicting accuracy of LSTM
can go up to 96.2%. Lin et al. (2021) use several models to testify
whether S&P500 and CSI300 can be forecasted. The result shows
that all the models are capable of predicting these stock indices,
while the forecasting error rate of CEEMDAN-LSTMmodel is the
lowest.

Nevertheless, since financial product prices are results of a
series of combined factors, it is still difficult to estimate the future
movements at times. Zhou et al. (2018) point that some factors
influence the prices in the short term, while others exert a longer
impact. Thus, the financial data would be predicted more
accurately once it is decomposed into several parts according
to the frequency. In the related literature, EMD and CEEMDAN
are commonly utilized to deal with the unstable, volatile financial
time series before the sequence is applied into prediction (Xian
et al., 2020). Some studies have confirmed the noise reducing
ability of EMD and CEEMDAN in market prediction. For
example, Vlasenko et al. (2020) has proposed a hybrid model
based on EMD and multi-dimensional Gaussian neuro-fuzzy
analysis. The prediction result suggests that after the financial
time series is decomposed, the prediction accuracy can be
enhanced significantly. Cao et al. (2019) also find that the
combined model CEEMDAN-LSTM outperforms single
LSTM, MLP, and SVM. Lin et al. (2021) draw the similar
conclusion, suggesting CEEMDAN is an effective tool in stock
indices prediction. Moreover, this paper also compares the
performance of EMD-LSTM and CEEMDAN-LSTM. The
latter novel method achieves higher accuracy, probably owing
to the mode mixing effect of EMD.

All in all, forecasting financial time series is attached with a
substantial consequence and significant challenge. Compared to
traditional forecasting techniques, the machine learning
approach performs better in dealing with unstable and
nonlinear financial data. Among various machine learning
methods, LSTM is reported to be the most suitable tool to
predict financial markets. Since stable financial series with
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lower volatility will be predicted more accurately, the
decomposing approaches EMD and CEEMDAN are often
utilized to reduce noise in the forecasting processes.
Particularly, as CEEMDAN avoids the problem of mode
mixing, it is regarded as a useful tool to predict the prices of
various assets (Colominas et al., 2014).

After summarizing the literature about financial data
prediction, we are surprised to find there are limited works
about bond indices prediction, partly because of the
insufficient trading data in the bond market. In particular, no
work has predicted the green bond market. According to Ganguli
and Dunnmon (2017), though the bond prices are more
challenging to forecast for a lack of trading information, the
machine learning technique can be used to settle down this
problem to some extent. Therefore, our work attempts to fill
the study gap by applying hybrid model CEEMDAN-LSTM to
predict the green bond index. The result is consistent with the
previous work, demonstrating the powerful forecasting ability of
LSTM in the prediction of the green bond market.

As green bonds are becoming prevalent these days,
transactions in the green bond markets are becoming more
frequent as well. As a result, the volatility of the green bond
market can change dramatically in short terms, resulting in
unexpected market risks. At the same time, serving as a type
of promising environmental financial products, green bonds not
only help investors to diversify their portfolios, but also play vital
roles in mitigating the negative impact of economy development.
In that case, they are sure to become important financial tools in
the future. Therefore, it is of great significance to study the returns
and volatility of the green bond market. The green bond index,
consisting of several representative green bonds, is an effective
instrument for us to analyze the market. Nonetheless, there is no
previous work about the forecasting of green bond indices.
Considering the long time-span and the high volatility
characteristics of financial time series, we choose the widely
used method, LSTM, to predict the green bond index. Also,
instability has been one of the major difficulties in dealing
with financial data. In this paper, we attempt to use EMD and
CEEMDAN to stabilize the green bond index, which improve the
prediction accuracy greatly.

DATA AND METHODOLOGY

Data
With the fast development of green bonds in China, several green
bond indices have emerged to explain the financial performance
of green bonds, including the ChinaBond China Green Bond
Index, the CUFE-CNI High Grade Green Bond Index, the FTSE
Chinese (Onshore CNY) Green Bond Index, and so on. In this
paper, we use CUFE-CNI High Grade Green Bond Index, one of
the most representative green bond indices in China, as the
benchmark of the green bond market. The CUFE-CNI High
Grade Green Bond Index, which consists of labeled and non-
labeled green bonds in the China onshore bond market, was
launched by the International Institute of Green Finance (IIGF)
in the Central University of Finance and Economics (CUFE) and

Shenzhen Security Information Co., Ltd. (SSI) in March 2017.
Compared with other types of green bond indices, the CUFE-CNI
High Grade Green Bond Index mainly focuses on high quality
green bonds, including bonds issued by government-related
organization or AAA-rated corporations. As the index is
designed to present the financial performance of green bonds
whose proceeds are used exclusively for environmental projects,
the weights are determined by the green asset amount of
constituent bonds.

As for predictors, some trading indicators such as opening
price and turnover rate are widely used to predict the financial
indices. Many studies use the historical price to predict the trend
of the stock market (Assis et al., 2018; Chen et al., 2019). Al-
Thelaya et al. (2019) augment the predictors into some technical
indicators. Dingli and Fournier (2017) also select some technical
indicators including momentum, volume, and volatility rate.
Given the previous literature, in this paper, we also choose
some trading indicators as our predictor variables, including
the closing price, the opening price, the trading volume, the
turnover of trading volumes, and daily return rate. Daily return
rate (DRR) describes the increment percentage of today’s closing
price (Pt) relative to yesterday’s closing price (Pt−1), and it is
calculated as follows:

DRR � Pt − Pt−1
Pt

(1)

At the same time, some macroeconomic indicators can also be
used to predict the green bond market. Dingli and Fournier
(2017) argue that since the financial markets are closely
connected, the movement of other markets can result in the
changes of the stock market. As a result, they utilize the price of
commodities and the currency exchange rate to forecast the stock
price. Similarly, Zhong and Enke (2017) employ the factors from
bond market and currency exchange market into the forecasting
model. Considering the possible spillover effects between the
green bondmarket and other financial markets (Reboredo, 2018),
we also take the price changes of other markets into
consideration.

In this paper, two price indices from the commodity market
and stock market are used to forecast the CUFE-CNI High
Grade Green Bond Index as well. The crude oil market is
represented by the Crude Oil Price Index, while the
environment-friendly stock market is represented by the CNI
EP Index. The Crude Oil Price Index is designed to reflect the
daily price of crude oil based on the closing prices of WTI and
Brent crude oil future contracts. The CNI EP Index is the one of
the benchmarks presenting the environment-friendly stocks in
China, which comprises 40 representative company stocks
related to the environmental protection, accounting for the
overall performance of the listed environmental companies in
the China A-share market.

For the three indices, we collect daily data from January 4,
2013, to December 31, 2020, to reflect the prices of the green bond
market, the crude oil market, and the environment-friendly stock
market in China. In order to testify whether the crude oil price
and the stock price can be employed to predict the green bond
index effectively, we later use the Grey relational analysis to
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examine the correlations between the lagged two indices and the
green bond index. The data of the CUFE-CNI High Grade Green
Bond Index and the Crude Oil Price Index are available on the
China Stock Market & Accounting Research Database (CSMAR),
while the data of the CNI EP Index is obtained from the Wind
database.

The data set is separated into two parts: the training set and the
test set. Since the data are time series, we use 80% data sorted by
chronological order to train the model and the remaining 20% are
used for out-of-sample prediction. Figure 1 presents the closing
price of the CUFE-CNI High Grade Green Bond Index from 2013
to 2020. It is clearly shown that it has maintained an upward
tendency since 2013. By the end of 2020, the closing price had
increased by more than 50% compared with that index in 2013,
reaching 156.37. It is obvious that the green bondmarket has been
booming during the past few years, which also indicates investors’
growing preferences of green bonds. Meanwhile, we can see there
are some small fluctuations in short terms, reflecting the volatility
of the market. Therefore, it is essential to stabilize the series by
decomposing it into several parts before prediction.

Table 1 gives the statistical description of the CUFE-CNI High
Grade Green Bond Index, Crude Oil Price Index, and CNI EP
Index. The total number of observations is 1944. Compared with
the Crude Oil Price Index and CNI EP Index, the price of the
CUFE-CNI High Grade Green Bond Index changed in a
considerable small range from 2013 to 2020, indicating it had
less volatility. Therefore, the green bond index could be a useful
fixed income instrument to diversify the risk of investment
portfolios. The Crude Oil Price Index and CNI EP Index, on
the other hand, changed dramatically in the 7 years, suggesting
the extremely high market risks. Table 1 also shows that the
skewness of the CUFE-CNI High Grade Green Bond Index is
−0.0839, suggesting the index is skewed to the left. The kurtosis of
the CUFE-CNI High Grade Green Bond Index also indicates that
this index does not accord with normal distribution, so it is
reasonable to standardize it before predicting. Meanwhile, the

distribution of the CUFE-CNI High Grade Green Bond Index is
more closed to the normal distribution than the other two indices,
which means it can be predicted more accurately by means of
machine learning.

Methodology
In this paper, three machine learning models are used for
forecasting the green bond index, which are CEEMDAN-
LSTM, EMD-LSTM, and LSTM. When choosing our predictor
variables, our paper takes the possible lagged correlations
between the green bond market and other financial markets
into consideration based on previous literature. In order to
testify whether the crude oil index and the stock index are
suitable predictors, following (Hou et al., 2018), we employ
the Grey relational analysis to examine the correlations
between the predictors and the next day’s closing price.
Meanwhile, as the green bond index is unstable, the
CEEMDAN and EMD are utilized to decompose the index
into several sequences according to their frequency. Finally,
after they are normalized, these time sequences are used to
predict the future green bond trend with LSTM.

EMD
EMD is an adaptive signal time-frequency processing method
(Huang et al., 1998). It decomposes the time series into a number
of IMFs, according to the time scale feature of data. EMD is
widely used in predicting stock price (Wang and Wang, 2017,
Rezaei et al., 2021), sovereign bond yield (Wang et al., 2017), and
crude oil price (Yu et al., 2008; Zhang et al., 2009).

The specific decomposition process of EMD is as follows. First,
for an original data sequence s(t), find all its maximum points as
the upper envelope and all its minimum points as the lower
envelope by using cubic spline interpolation, and work out m(t)
as the mean value of the upper envelope and the lower envelope.
Then calculate the intermediate signal h1(t) � s(t) −m(t) and
judge whether it is an IMF. If so, define h1(t) � IMF1(t). Next,

FIGURE 1 | The closing price of the CUFE-CNI High Grade Green Bond Index from 2013 to 2020.
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calculate m1(t) as the mean value of the upper and lower
envelope of IMF1(t) and determine the second component
IMF2(t) using the same method. Then, repeat this process for
n times until the residue rn(t) is a constant or a monotone
function. Finally, the decomposition process is terminated. s(t) is
decomposed into several IMFs and a residue, as shown in the
following:

s(t) � ∑n

i�1IMFi(t) + rn(t), i � 1, 2, . . . , n (2)
where t is time, s(t) is the original sequence, IMFi(t) is the ith
IMF decomposed from s(t), and rn(t) is the residue.

CEEMDAN
Although EMD does well in decomposing time series and has
the adaptability to process data with complex structure, this
method was criticized for its mode mixing effect. In order to
solve this problem, Ensemble Empirical Mode Decomposition
(EEMD) was proposed when the normally distributed white
noise is added to the original sequence, largely eliminating
mode mixing in EMD (Wu and Huang, 2009); but at the same
time, this method has a new problem, that is, white noise
cannot be completely cancelled after lumped average,
resulting in reconstruction errors. Therefore, CEEMDAN
was put forward by Torres et al. (2011), which adds
adaptive noise to each component decomposed by EEMD,
settling down the mode mixing and reconstruction errors
simultaneously. Similarly, the CEEMDAN method has many
applications in the studying stock market (Jothimani and
Yadav, 2019), commodity market (Li et al., 2019; Zhou
et al., 2019), and sovereign credit default swap market (Li
et al., 2021).

Different from EMD, the Gaussian white noise sequence with
standard normal distribution ui(t) is added to the original signal
s(t) in the first step. ε0 denotes the noise coefficient, m refers to
the times of white noise sequence, and the original sequence is
expressed as follows:

si(t) � s(t) + ε0u
i(t), i � 1, 2, · · ·, m (3)

The decomposing process is then performed to obtain the first
IMF1(t) � 1

m∑m
i�1IMFi

1(t). After the first IMF component is
acquired, we calculate the first residue signal r1(t) � s(t) − IMF1(t).

After obtaining the residue, the second component is
expressed as follows:

r1(t) + ε1E1(ui(t)) � IMFi
2(t) + ri2(t), i � 1, 2, · · ·, m (4)

IMF2(t) � 1
m
∑m

i�1IMFi
2(t) (5)

where E1(ui(t)) denotes the first IMF component obtained by
EMD, and sequence r1(t) + ε1E1(ui(t)) is decomposed by EMD
to get IMFi

2(t).
And for the remaining process (j � 2, ..., n), (j − 1)th residue

rj−1(t) � rj−2(t) − IMFj−1(t) and we can get jth IMF component
IMFj(t) � 1

m∑m
i�1(Ej−1(rj−1(t)) + εj−1Ej−1(ui(t))). Repeat the

steps above until the last IMF of CEEMDAN cannot be
decomposed. Finally, the original sequence is decomposed as

s(t) � ∑n

j�1IMFj + rn(t) (6)

LSTM
As is mentioned above, LSTM is a developed type of RNNs.
Compared with other neutral networks, RNN allows information
to persist for a long time, making it possible to use historical
information. But RNN has the problem of long-term
dependencies, which means the gradient vanishing would
occur when the time sequence is long (Bengio et al., 1994).
LSTM, which is capable of learning long-term series, was
proposed to settle down the problem, (Hochreiter and
Schmidhuber, 1997). It adds memory units to each neural unit
of hidden layer, so that the memory information of time series
can be controlled. Because of its unique structure, it is more
suitable for processing and predicting time series problems. Thus,
it is widely applied in analyzing financial markets (Kim andWon,
2018; Livieris et al., 2020; Vidal and Kristjanpoller, 2020). The
calculation process can be separated into the following steps.

First, put data into forget gate and determine what should be
discarded. At time t, the forget gate will get the input xt and the
previous output ht−1. The inputs are processed by the
corresponding weight matrix W plus the corresponding bias
vector b, then we use a sigmoid layer to get rid of some
information.

ft � σ(Wf · [ht−1, xt] + bf) (7)
At the same time, calculate the value of the input gate to

determine the new inputs that need to be retained. We use the
input gate to update the value and a tanh layer to create a vector of
new candidate values.

it � σ(Wi · [ht−1, xt] + bi) (8)
~Ct � tanh(WC · [ht−1, xt] + bC) (9)

Then the memory cell Ct−1 will get a new state value after
forgetting the previous memory and absorbing in new inputs.

Ct � ft pCt−1 + it p ~Ct (10)

TABLE 1 | The statistical description of three indexes

Index Count Min Max Mean Standard deviation Skewness Kurtosis

CUFE-CNI High Grade Green Bond Index 1944 104.03 158.23 130.7882 15.9270 -0.0839 1.9325
Crude Oil Price Index 1944 192.64 1446.87 826.4793 295.0567 0.6810 2.3139
CNI EP Index 1944 2068.17 5593.01 3152.3180 624.4271 0.7550 3.7546
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Finally, get the final outputs through the forget gate. We use
the output gate to determine what kind of state values will be
output. Then we use a tanh activation function to calculate the
candidate value of current state valueCt and it is multiplied by the
output of the sigmoid gate.

ot � σ(Wo · [ht−1, xt] + bo) (11)
ht � ot p tanh(Ct) (12)

The cell structure of LSTM is shown in Figure 2.

Grey relational analysis
The Grey relational analysis method is used to measure the
correlations among factors according to the degree of similarity. It
has no requirements on sample size and statistical rules, so it is a
common method when studying the relationship between variables
(Feng et al., 2009). For example, Malinda and Chen (2021) use the
Grey relational analysis method in predicting consumer exchange-
traded funds (ETFs) and find fourmain factors influencing consumer
ETFs from eight different variables, which are EUR/USD exchange
rate, Commodity Research Bureau Index, New York Stock Exchange
Composite Index, and put/call ratio. In addition, Chen et al. (2014)
utilize Grey relational analysis and artificial neural network to predict
the return of real estate investment trust and find that Grey relational
analysis is of great significance in correcting predication errors.

The calculation process of this method is as follows. First,
determine the reference sequence that reflects the characteristics
of the system behavior and the comparison sequences that affect
the system behavior. Then, make the reference sequence and
comparison sequence dimensionless and calculate the Grey
relational coefficient between reference sequence X0 �
{x0(1), x0(2), · · ·, x0(n)} and comparison sequences Xi �
{xi(1), xi(2), · · ·, xi(n)}, i � 1, 2, · · ·, m.

The Grey relational coefficient ξ(xi) is calculated as
follows:

ξ0i �
min

i
min

t
|x0(t) − xi(t)| + ρmax

i
max

t
|x0(t) − xi(t)|

|x0(t) − xi(t)| + ρmax
i

max
t

|x0(t) − xi(t)| (13)

FIGURE 2 | The structure of the LSTM cell.

FIGURE 3 | The flowchart of our integrated forecasting model.
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where ρ denotes the identification coefficient (in the range of 0–1,
usually ρ � 0.5), min

i
min
t

|x0(t) − xi(t)| denotes the two-stage
minimum difference, and max

i
max

t
|x0(t) − xi(t)| denotes the

two-stage maximum difference.
After that, we calculate the correlation level ri � 1

n∑n
t�1ξi(t) to

make comparisons. The correlation level is higher when the value
of ri is closed to 1. Finally, we rank these correlation levels by
finding out the maximum ri.

Integrated forecasting model
Most previous literature have confirmed that the combined
CEEMDAN-LSTM model have excellent performance in financial
series prediction (Hu, 2021; Wang et al., 2021; Weng et al., 2021). In
this paper, we also apply Grey relational analysis, CEEMDAN, and
LSTM into the prediction of the green bond Index. The flow chart of
our integrated forecasting model is presented in Figure 3. First, based
on the previous literature, we have chosen five trading indicators of the
green bond index as the predictors (closing price, opening price,
volume, turnover of trading volumes, and daily return rate).
Considering the dynamic correlations between the green bond
market and other financial markets, we innovatively introduce the
crude oil index and green stock index as predictors as well. After that,
the Grey relational analysis is used to testify whether the predictors we
choose are capable of predicting the green bond index. In this part, we
use the closing price as the reference sequence and the lagged
predictors as the comparison sequences to examine the correlations
between them. If the correlations are significant, it means that the
closing price is closely related to the first lag of predictors, suggesting
our predictors can be used to predict the bond index ahead of time.

At the same time, in order to stabilize the green bond index, we
use CEEMDAN and EMD to decompose the index, respectively.
This index is decomposed into several IMFs with different signal
frequency and a residue that stands for the trend. These sequences
are then used as the inputs of LSTM model. After the predicted
sequences are output from LSTM, the forecasted green bond
index can be obtained by summing up the predicted IMF
sequences and the predicted residue sequence, as follows:

prediction(t) � ∑n

i�1IMFi(t) + rn(t), i � 1, 2, 3, · · ·, n (14)
where prediction(t) is the result of forecasting model, and n
stands for the number of IMFs.

Before testing the prediction ability of our LSTMmodel, we have
to train the model first. In this study, we divide our dataset into two
parts: 80% of the data serve as the training data and the remaining
20% are used for out-of-sample prediction. In order to select the
optimal model, we have built up three models in this paper:
CEEMDAN-LSTM, EMD-LSTM, and LSTM model. These three
models differ in the data processing of the green bond index. In
CEEMDAN-LSTM and EMD-LSTM models, the predicted
sequences are the IMFs and residue decomposed by CEEMDAN
or EMD, respectively, while in the LSTM model, the original green
bond index is used as the predicted sequence directly.

Evaluation criteria
Prediction accuracy means the similarity between the predicted
value and the actual value. The closer the predicted value is to the

actual value, the higher the prediction accuracy is. Following
(Huang et al., 2005; Cao et al., 2019), we adopt four loss functions
(MSE, RMSE, MAE, and MAPE) to evaluate the accuracy of
different prediction models.

We use ŷ to represent the predicted value and y to represent
the real value. h + 1 is the start date of prediction, and h + n is the
end date of prediction. n refers to the total number of days.

1) Mean square error (MSE) represents the mean of squares of
the distances between each predicted value and the actual value.
The greater the MSE is, the greater the errors are.

MSE � 1
n
∑h+n

i�h+1 (yi − ŷi)2 (15)

2) RMSE stands for root mean square error. The relationship
between MSE and RMSE is similar to the difference between
variance and standard deviation.

RMSE �
����������������
1
n
∑h+n

i�h+1 (yi − ŷi)2
√

(16)

3) Mean absolute error (MAE) is similar to RMSE and
represents the mean of absolute value of the distances between
each predicted value and the actual value.

MAE � 1
n
∑h+n

i�h+1
∣∣∣∣yi − ŷi

∣∣∣∣ (17)

4) Mean absolute percentage error (MAPE) compares the
difference between the predicted value and the actual value to
the actual value to see how much it is accounted for.

MAPE � 1
n
∑h+n

i�h+1

∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣ (18)

EMPIRICAL RESULTS

The result of Grey relational analysis
In order to evaluate whether the predictors we utilize are
reasonable, we apply the method of Grey relational analysis
to testify the relationships between one-day-lagged predictors
and the closing price of the green bond index. Table 2 shows
the result of Grey relational analysis, presenting that the Grey
relational grades of these seven indicators are all above 0.75. It
proves that the lagged variables are closely related to the
closing price. Among the predictors, the lagged closing
price and the lagged opening price are highly correlated
with the closing price. It means that there exists first-order
auto correlation in the closing price series. Therefore, we are
able to predict the future trends of the green bond index based
on historical data. Besides, the relationships between the
closing price and other trading indicators are also
demonstrated. It is worth noticing that the lagged crude oil
index and lagged stock index are both closely related to the
green bond index, indicating that the price changes in the
crude oil market and green stock market will exert influence on
the next day’s green bond market. Therefore, it is reasonable to
dig out relationships between green bond markets and other
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financial markets. In a word, the predictors we select are highly
related to the next day’s closing price of green bond index,
which means they would lead the green bond market to a
certain extent and can be used in the prediction of CUFE-CNI
High Grade Green Bond Index.

EMD and CEEMDAN methods
The EMD and CEEMDAN methods are widely applied in
decomposing time series. Since (Huang et al., 2005) first
introduced EMD to predict the stock price, many studies
have utilized it to decompose the financial time series into
several sequences for predicting various financial markets.
CEEMDAN is later raised based on EMD to mitigate mode
mixing and reduce noise. Compared with the original sequence,
the decomposed sequences are more stable and smoother,
which can be predicted more accurately. In our study, we
use CEEMDAN and EMD, respectively, to decompose the
CUFE-CNI High Grade Green Bond Index into five IMFs
and a residue. These components are later used to predict
the index through LSTM.

As is shown in Figures 4, 5, IMFs with higher frequency are
placed at the higher places. In fact, the high-frequency sequences
are often viewed as the noise in the green bond market, while the
low-frequency sequences represent the fluctuations. Also, the
residue representing the basic trend of the green bond index is
arranged at the bottom of two figures. Table 3 gives a brief
statistical description of the IMFs decomposed by CEEMDAN. It
can be seen that all IMFs pass the Augmented Dickey-Fuller test
under the statistical significance of 1%, suggesting they are all
stationary series.

Training process and the results
After decomposing, the IMFs are supposed to be normalized before
training. In this study, we use the following normalization equation:

XNorm � X −Xmin

Xmax −Xmin
(19)

where XNorm refers to the data after normalization, X represents
the original data, Xmax is the maximum of the series, and Xmin is
the minimum.

TABLE 2 | The results of Grey relational analysis on predictors

Predictors Lagged closing price Opening price Volume Turnover DRR Crude
Oil Price Index

CNI EP Index

Grey relational grade 0.9986 0.9976 0.8424 0.8424 0.7994 0.7544 0.8425

FIGURE 4 | The IMFs decomposed by CEEMDAN.
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To get the optimal predicted green bond index, we have
trained the model many times, and the parameters are set as
follows. In the process of CEEMDAN decomposing, the number
of white noise trials is 50. As for the hyper-parameters in LSTM,
after many experiments, we finally choose the number of
epochs, which is the total times of training, as 175; and the
figure of batch size, which refers to the samples captured in one
training session is 64. In the first of hidden layer, the number of
neurons is 50 and there is 1 neuron in the output layer to predict
the closing price.

Figures 6–8 present the predicted curves of the CUFE-CNI
High Grade Green Bond Index, through CEEMDAN-LSTM,
EMD-LSTM, and LSTM models, respectively. It is transparent
that, compared with original series, IMFs obtained through the
CEEMDAN and EMD methods could be used to predict the
future trend better. From Figure 8, we can see that the
predicted curve of LSTM is of high volatility, suggesting

there are more noise signals that weaken the accuracy of
predicted value. Meanwhile, CEEMDAN-LSTM and EMD-
LSTM all perform relatively well in forecasting, which
means the prediction accuracy can be significantly enhanced
when the original series is decomposed according to the signal
frequency.

However, since CEEMDAN-LSTM and EMD-LSTM all
have good performance in predicting, we apply four loss
functions to compare these two models’ predicting abilities,
and the result is suggested in Table 4. The four forecasting
criteria we have chosen are MSE, RMSE, MAE, and MAPE. By
contrasting forecasting errors of the CEEMDAN-LSTM and
EMD-LSTM models, we can easily draw the conclusion that
CEEMDAN-LSTM is the optimal method. Nomatter what kind
of loss functions are used to evaluate the prediction
performance, the CEEMDAN-LSTM model has the highest
forecasting accuracy rate. In addition, the RMSE of the

TABLE 3 | The statistical description of IMFs

Components Count Min Max Mean Standard
deviation

Skewness Kurtosis ADF test

IMF1 1944 −0.3195 0.2988 −0.0001 0.0519 0.1104 5.7492 −14.2975***
IMF2 1944 −0.5221 0.5248 −0.0003 0.0663 −0.0955 15.1253 −18.7529***
IMF3 1944 −0.5385 0.5044 0.0026 0.1359 0.0371 1.6438 −16.8431***
IMF4 1944 −1.6634 1.4910 0.0196 0.3877 0.2593 4.1055 −10.1823***
IMF5 1944 −2.3431 2.1464 0.0378 0.7417 0.1651 0.8597 −6.3438***

Notes: *** represents the statistical significance of 1%.

FIGURE 5 | The IMFs decomposed by EMD.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 79341311

Wang et al. Green Bond Index Prediction

167

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


CEEMDAN-LSTM model suggests that on average, the
difference between the predicted value and the actual value
of the CUFE-CNI High Grade Green Bond Index is 0.267635.
Therefore, our CEEMDAN-LSTM model can predict the

closing price of the CUFE-CNI High Grade Green Bond
Index to a large extent. Figure 9 shows the predicted closing
price of the CUFE-CNI High Grade Green Bond Index based on
the CEEMDAN-LSTM model. By contrasting the predicted

FIGURE 6 | The forecasting results based on CEEMDAN-LSTM.

FIGURE 7 | The forecasting results based on EMD-LSTM.
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value and the actual closing price presented in Figure 1, we find
our model fit the CUFE-CNI High Grade Green Bond Index

well. Therefore, the CEEMDAN-LSTM model performs well in
forecasting the green bond index.

Further discussion
The relationships between the green bond market and other
financial markets have been heatedly discussed by lots of
studies. Some papers suggest the correlation is weak
(Reboredo and Ugolini, 2020), while others hold the opposite
opinion (Dutta and Noor, 2021). Our work also partly answers
the question by testing the predicting ability of other markets’

TABLE 4 | The results of prediction using LSTM, EMD-LSTM, and CEEMDAN-
LSTM

Model MSE RMSE MAE MAPE

CEEMDAN-LSTM 0.267635 0.517335 0.446490 0.294982
EMD-LSTM 0.315517 0.561709 0.499066 0.329675
LSTM 0.830592 0.911368 0.745647 0.486262

FIGURE 9 | The predicted CUFE-CNI High Grade Green Bond Index based on CEEMDAN-LSTM.

FIGURE 8 | The forecasting results based on LSTM.
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indices. When choosing predictors, we also take the price indices
of the crude oil market and green stock market into account.
Table 5 compares the forecasting results when the Crude Oil
Price Index and CNI EP index are employed or not. It is shown
that when Crude Oil Price Index and CNI EP Index are used as
predictors, the forecasting performance of CEEMDAN-LSTM
can be greatly improved.

In Table 6, we give a further analysis on the prediction
performance that improved when the Crude Oil Price Index
and the CNI EP Index served as the indicators. We can find that if
the two indices are not included, the values of the loss functions
MSE, RMSE, MAE, and MAPE of the CEEMDAN-LSTM model
are 1.211728, 1.100785, 1.023617, and 0.673265 correspondingly.
A new indicator Δ is defined as the improvement of the loss
function after adding a new predictor. It is shown that when the
Crude Oil Price Index or the CNI EP Index is used separately, the
forecasting performance of CEEMDAN-LSTM can both be
improved. Moreover, there exists Δstock >Δoil for all loss
functions, which illustrates that compared to crude oil index,
environment-friendly stocks index is a more important factor to
predict the green bond market. Besides, after the two indices are
introduced into the model together, we can see that Δoil+stock >Δoil

and Δoil+stock >Δstock, showing that the accuracy of the
CEEMDAN-LSTM model, would increase greatly after adding
two predictors. This is in coincidence with the previous study,
which implies the green bond markets could receive sizable
influence from other financial markets.

CONCLUSION

As ESG is attached with greater importance, many financial
products designed to help environment-friendly projects are
emerging. Green bond, serving as an innovative fixed-income
asset, has been appealing to a majority of investors. However, this
kind of financial instrument does not exist until 2007, which leads
to the limited studies about it. Up to now, the prediction of the
green bond market is still a research gap.

Previous literature has illustrated that machine methods (especially
LSTM) perform better in terms of financial market prediction, and the
prediction accuracy would be enhanced when the data are decomposed
byCEEMDAN.Motivated by these studies, our paper proposes a hybrid
CEEMDAN-LSTMmodel to forecast the green bond index (represented
by the CUFE-CNIHigh Grade Green Bond Index). As for the predictor
variables, we mainly utilize several technical predictors, including the
closing price, the opening price, the trading volume, the turnover of
trading volumes, and daily return rate. Considering the potential
correlations between green bond market and other financial markets,
we also try to use indices from the crude oil market and environmental
stock market to forecast the green bond index. To examine the
performance of our mixed CEEMDAN-LSTM model, we also apply
the EMD-LSTM model and the LSTM model to predict the index.

Our empirical results suggest that compared with the other two
models, our CEEMDAN-LSTM model is optimal with considerably
high prediction accuracy, which demonstrates the powerful
prediction ability of machine learning methods. Besides, our study
also shows that the crude oil market and the environmental stock
market could exert influence on the green bondmarket, implying the
correlations among these three markets. The indices of these two
markets can be used in green bond market forecasting.

Given our findings, several policy implications are put forward
as follows:

(a) The rapid development of green bonds will definitely fuel the
sustainable economy, which is especially significant for a
developing country like China to seize the opportunity and
promote the green investment.

(b) Our study has shown that the green bond index could be
predicted considerably accurately through historical
information. However, the trading information of the
bond market is relatively inadequate compared with the
stock market, resulting in the difficulty to forecast the
future trend. Therefore, it is of great importance to set up
the comprehensive information disclosure mechanism in the
green bond market, which would also enable investors to
green their portfolios effectively.

TABLE 6 | The improvements when different indexes are added in the model

Improvement
of loss functions

MSE RMSE MAE MAPE

Improvement with oil Δoil 0.412919 0.207024 0.216598 0.140436
Improvement with stock Δstock 0.716732 0.397225 0.380109 0.249619
Improvement with oil and stock Δoil+ stock 0.944093 0.58345 0.577127 0.378283

TABLE 5 | The results of prediction when the Crude oil Price Index and CNI EP Index are used or not

Model Oil Stock MSE RMSE MAE MAPE

CEEMDAN-LSTM Yes Yes 0.267635 0.517335 0.446490 0.294982
CEEMDAN-LSTM No Yes 0.494996 0.703560 0.643508 0.423646
CEEMDAN-LSTM Yes No 0.798809 0.893761 0.807019 0.532829
CEEMDAN-LSTM No No 1.211728 1.100785 1.023617 0.673265
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(c) As demonstrated in our work and previous literature, the green
bondmarket could receive sizeable influence from othermarkets
(e.g., crude oil market, stock market), suggesting the potential
risk contagion among financial markets. Thus, more suitable
government regulations are supposed to be implemented in
order to monitor the financial contagion.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JW: Conceptualization, Data Curation, Methodology, Software,
Formal analysis, Investigation, Writing-original draft,

Visualization. JT: Conceptualization, Investigation, Writing-
original draft, Visualization. KG: Conceptualization,
Methodology, Investigation, Writing-review and editing,
Supervision.

FUNDING

This research was funded by the University of Chinese Academy
of Sciences and the Fundamental Research Funds for the Central
Universities.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenrg.2021.793413/
full#supplementary-material

REFERENCES

Akita, R., Yoshihara, A., Matsubara, T., and Uehara, K. (2016). “Deep Learning for
Stock Prediction Using Numerical and Textual Information,” in International
Conference on Computer and Information Science (ICIS) (Okayama, Japan:
IEEE), 1–6. doi:10.1109/ICIS.2016.7550882

Al-Thelaya, K. A., El-Alfy, E.-S. M., and Mohammed, S. (2019). “Forecasting
of bahrain Stock Market with Deep Learning: Methodology and Case
Study,” in 2019 8th International Conference on Modeling Simulation and
Applied Optimization (ICMSAO), 1–5. doi:10.1109/ICMSAO.2019.
8880382

Assis, C. A. S., Pereira, A. C. M., Carrano, E. G., Ramos, R., and Dias, W. (2018).
“Restricted BoltzmannMachines for the Prediction of Trends in Financial Time
Series,” in 2018 International Joint Conference on Neural Networks (IJCNN),
1–8. doi:10.1109/IJCNN.2018.8489163

Bauer, M. D., and Rudebusch, G. D. (2017). Resolving the Spanning Puzzle in
Macro-Finance Term Structure Models*. Rev. Finance 21 (2), 511–553. doi:10.
1093/rof/rfw044

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning Long-Term Dependencies
with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 5 (2), 157–166.
doi:10.1109/72.279181

Besley, T., and Ghatak, M. (2007). Retailing Public Goods: The Economics of
Corporate Social Responsibility. J. Public Econ. 91 (9), 1645–1663. doi:10.1016/
j.jpubeco.2007.07.006

Bezerra, P. C. S., and Albuquerque, P. H. M. (2017). Volatility forecasting via
SVR–GARCH with mixture of Gaussian kernels. Comput. Manag. Sci. 14 (2),
179–196. doi:10.1007/s10287-016-0267-0

Bianchi, D., Büchner, M., and Tamoni, A. (2021). Bond Risk Premiums with
Machine Learning. Rev. Financial Stud. 34 (2), 1046–1089. doi:10.1093/rfs/
hhaa062

Bracking, S. (2015). Performativity in the Green Economy: How Far Does Climate
Finance Create a Fictive Economy? Third World Q. 36 (12), 2337–2357. doi:10.
1080/01436597.2015.1086263

Cao, J., Li, Z., and Li, J. (2019). Financial Time Series Forecasting Model Based on
CEEMDAN and LSTM. Physica A: Stat. Mech. its Appl. 519, 127–139. doi:10.
1016/j.physa.2018.11.061

Chen, J.-H., Chang, T.-T., Ho, C.-R., and Diaz, J. F. (2014). Grey Relational
Analysis and Neural Network Forecasting of REIT Returns. Quantitative
Finance 14 (11), 2033–2044. doi:10.1080/14697688.2013.816765

Chen, L., Chi, Y., Guan, Y., and Fan, J. (2019). “A Hybrid Attention-Based EMD-
LSTM Model for Financial Time Series Prediction,” in 2019 2nd International
Conference on Artificial Intelligence and Big Data (ICAIBD), 113–118. doi:10.
1109/ICAIBD.2019.8837038

Chen, Y., and Zhao, Z. J. (2021). The Rise of green Bonds for Sustainable Finance:
Global Standards and Issues with the Expanding Chinese Market. Curr. Opin.
Environ. Sustainability 52, 54–57. doi:10.1016/j.cosust.2021.06.013

Choi, J., and Kim, Y. (2018). Anomalies and Market (Dis)integration. J. Monetary
Econ. 100, 16–34. doi:10.1016/j.jmoneco.2018.06.003

Chordia, T., Goyal, A., Nozowa, Y., Subrahmanyam, A., and Tong, Q. (2014). Is the
Cross-Section of Expected Bond Returns Influenced by Equity Return
Predictors? Res. Collection Lee Kong Chian Sch. Business. Available at:
https://ink.library.smu.edu.sg/lkcsb_research/4521.

Christophers, B. (2019). Environmental Beta or How Institutional Investors Think
about Climate Change and Fossil Fuel Risk. Ann. Am. Assoc. Geogr. 109 (3),
754–774. doi:10.1080/24694452.2018.1489213

Climate Bonds Initiative (2018). Bonds and Climate Change: State of the Market.
Available at: http://www.climatebonds.net/resources/reports/green-bonds-
state-market-2018 (Accessed October 10, 2021).

Climate Bonds Initiative (2020). China State of the Market 2020 Report. Available
at: http://www.climatebonds.net/resources/reports/china-state-market-2020-
report (Accessed November 25, 2021).

Climate Bonds Initiative (2021). Sustainable Debt Highlights H1 2021. Available at:
http://www.climatebonds.net/resources/reports/sustainable-debt-highlights-
h1-2021 (Accessed November 25, 2021).

Colominas, M. A., Schlotthauer, G., and Torres, M. E. (2014). Improved Complete
Ensemble EMD: A Suitable Tool for Biomedical Signal Processing. Biomed.
Signal Process. Control. 14, 19–29. doi:10.1016/j.bspc.2014.06.009

Connolly, R., Stivers, C., and Sun, L. (2005). Stock Market Uncertainty and the
Stock-Bond Return Relation. J. Financ. Quant. Anal. 40 (1), 161–194. doi:10.
1017/S0022109000001782

Devpura, N., Narayan, P. K., and Sharma, S. S. (2021). Bond Return Predictability:
Evidence from 25 OECD Countries. J. Int. Financial Markets, Institutions
Money 75, 101301. doi:10.1016/j.intfin.2021.101301

Dingli, A., Fournier, K. S., and Fournier, K. S. (2017). Financial Time Series
Forecasting - A Deep Learning Approach. Int. J. Machine Learn. Comput. 7 (5),
118–122. doi:10.18178/ijmlc.2017.7.5.632

Dutta, A., Bouri, E., and Noor, M. H. (2021). Climate Bond, Stock, Gold, and Oil
Markets: Dynamic Correlations and Hedging Analyses during the COVID-19
Outbreak. Resour. Pol. 74, 102265. doi:10.1016/j.resourpol.2021.102265

Fama, E. F. (1965). The Behavior of Stock-Market Prices. J. Bus 38 (1), 34–105.
doi:10.1086/294743

Febi, W., Schäfer, D., Stephan, A., and Sun, C. (2018). The Impact of Liquidity Risk
on the Yield Spread of green Bonds. Finance Res. Lett. 27, 53–59. doi:10.1016/j.
frl.2018.02.025

Feng, D., Qingmei, T., and Xiaohui, L. (2009). “The Relationship between Chinese
Energy Consumption and GDP: An Econometric Analysis Based on the Grey
Relational Analysis(GRA),” in 2009 IEEE International Conference on Grey

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 79341315

Wang et al. Green Bond Index Prediction

171

https://www.frontiersin.org/articles/10.3389/fenrg.2021.793413/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2021.793413/full#supplementary-material
https://doi.org/10.1109/ICIS.2016.7550882
https://doi.org/10.1109/ICMSAO.2019.8880382
https://doi.org/10.1109/ICMSAO.2019.8880382
https://doi.org/10.1109/IJCNN.2018.8489163
https://doi.org/10.1093/rof/rfw044
https://doi.org/10.1093/rof/rfw044
https://doi.org/10.1109/72.279181
https://doi.org/10.1016/j.jpubeco.2007.07.006
https://doi.org/10.1016/j.jpubeco.2007.07.006
https://doi.org/10.1007/s10287-016-0267-0
https://doi.org/10.1093/rfs/hhaa062
https://doi.org/10.1093/rfs/hhaa062
https://doi.org/10.1080/01436597.2015.1086263
https://doi.org/10.1080/01436597.2015.1086263
https://doi.org/10.1016/j.physa.2018.11.061
https://doi.org/10.1016/j.physa.2018.11.061
https://doi.org/10.1080/14697688.2013.816765
https://doi.org/10.1109/ICAIBD.2019.8837038
https://doi.org/10.1109/ICAIBD.2019.8837038
https://doi.org/10.1016/j.cosust.2021.06.013
https://doi.org/10.1016/j.jmoneco.2018.06.003
https://ink.library.smu.edu.sg/lkcsb_research/4521
https://doi.org/10.1080/24694452.2018.1489213
http://www.climatebonds.net/resources/reports/green-bonds-state-market-2018
http://www.climatebonds.net/resources/reports/green-bonds-state-market-2018
http://www.climatebonds.net/resources/reports/china-state-market-2020-report
http://www.climatebonds.net/resources/reports/china-state-market-2020-report
http://www.climatebonds.net/resources/reports/sustainable-debt-highlights-h1-2021
http://www.climatebonds.net/resources/reports/sustainable-debt-highlights-h1-2021
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1017/S0022109000001782
https://doi.org/10.1017/S0022109000001782
https://doi.org/10.1016/j.intfin.2021.101301
https://doi.org/10.18178/ijmlc.2017.7.5.632
https://doi.org/10.1016/j.resourpol.2021.102265
https://doi.org/10.1086/294743
https://doi.org/10.1016/j.frl.2018.02.025
https://doi.org/10.1016/j.frl.2018.02.025
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Systems and Intelligent Services (GSIS 2009) (Nanjing, China: IEEE), 153–157.
doi:10.1109/GSIS.2009.5408333

Flammer, C. (2021). Corporate green Bonds. J. Financial Econ. 142, 499–516.
doi:10.1016/j.jfineco.2021.01.010

Fong, T. P. W., and Wu, S. T. (2020). Predictability in Sovereign Bond Returns
Using Technical Trading Rules: Do Developed and Emerging Markets Differ?
North Am. J. Econ. Finance 51, 101105. doi:10.1016/j.najef.2019.101105

Friede, G., Busch, T., and Bassen, A. (2015). ESG and Financial Performance:
Aggregated Evidence from More Than 2000 Empirical Studies. J. Sustain.
Finance Investment 5 (4), 210–233. doi:10.1080/20430795.2015.1118917

Ganguli, S., and Dunnmon, J. (2017). Machine Learning for Better Models for
Predicting Bond Prices. arXiv preprint arXiv:1705.01142. Available at: https://
arxiv.abs/1705.01142.

Gao, T., and Chai, Y. (2018). Improving Stock Closing price Prediction Using
Recurrent Neural Network and Technical Indicators. Neural Comput. 30 (10),
2833–2854. doi:10.1162/neco_a_01124

Ghoddusi, H., Creamer, G. G., and Rafizadeh, N. (2019). Machine Learning in
Energy Economics and Finance: A Review. Energ. Econ. 81, 709–727. doi:10.
1016/j.eneco.2019.05.006

Giacoletti, M., Laursen, K. T., and Singleton, K. J. (2021). Learning from
Disagreement in the U.S. Treasury Bond Market. J. Finance 76 (1),
395–441. doi:10.1111/jofi.12971

Gite, S., Khatavkar, H., Kotecha, K., Srivastava, S., Maheshwari, P., and Pandey, N.
(2021). Explainable Stock Prices Prediction from Financial News Articles Using
Sentiment Analysis. PeerJ Comput. Sci. 7, e340. doi:10.7717/peerj-cs.340

Gormus, A., Nazlioglu, S., and Soytas, U. (2018). High-yield Bond and Energy
Markets. Energ. Econ. 69, 101–110. doi:10.1016/j.eneco.2017.10.037

Gu, S., Kelly, B., and Xiu, D. (2020). Empirical Asset Pricing via Machine Learning.
Rev. Financial Stud. 33 (5), 2223–2273. doi:10.1093/rfs/hhaa009

Hachenberg, B., and Schiereck, D. (2018). Are green Bonds Priced Differently from
Conventional Bonds? J. Asset Manag. 19 (6), 371–383. doi:10.1057/s41260-018-
0088-5

Hammoudeh, S., Ajmi, A. N., and Mokni, K. (2020). Relationship between green
Bonds and Financial and Environmental Variables: A Novel Time-Varying
Causality. Energ. Econ. 92, 104941. doi:10.1016/j.eneco.2020.104941

Henrique, B. M., Sobreiro, V. A., and Kimura, H. (2019). Literature Review:
Machine Learning Techniques Applied to Financial Market Prediction. Expert
Syst. Appl. 124, 226–251. doi:10.1016/j.eswa.2019.01.012

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput. 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

Hou, X., Zhu, S., Xia, L., and Wu, G. (2018). “Stock price Prediction Based on Grey
Relational Analysis and Support Vector Regression,” in 2018 Chinese Control
and Decision Conference (CCDC) (Shenyang, China: IEEE), 2509–2513.
doi:10.1109/CCDC.2018.8407547

Hsu, M.-W., Lessmann, S., Sung, M.-C., Ma, T., and Johnson, J. E. V. (2016).
Bridging the divide in Financial Market Forecasting: Machine Learners vs.
Financial Economists. Expert Syst. Appl. 61, 215–234. doi:10.1016/j.eswa.2016.
05.033

Hu, Z. (2021). Crude Oil price Prediction Using CEEMDAN and LSTM-Attention
with News Sentiment index. Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles
76, 28. doi:10.2516/ogst/2021010

Huang, D., Jiang, F., Tong, G., Tong, G., and Zhou, G. (2020). “Real Time Macro
Factors in Bond Risk Premium, SSRN Journal,” in Asian Finance Association
(AsianFA) 2018 Conference. doi:10.2139/ssrn.3107612

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al.
(19981971). The Empirical Mode Decomposition and the Hilbert Spectrum for
Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. Lond. A. 454,
903–995. doi:10.1098/rspa.1998.0193

Huang, W., Nakamori, Y., and Wang, S.-Y. (2005). Forecasting Stock Market
Movement Direction with Support Vector Machine. Comput. Operations Res.
32 (10), 2513–2522. doi:10.1016/j.cor.2004.03.016

Huynh, H. D., Dang, L. M., and Duong, D. (2017). “A New Model for Stock Price
Movements Prediction Using Deep Neural Network,” in Proceedings of the
Eighth International Symposium on Information and Communication
Technology, 57–62. doi:10.1145/3155133.3155202

Jiang, W. (2021). Applications of Deep Learning in Stock Market Prediction:
Recent Progress. Expert Syst. Appl. 184, 115537. doi:10.1016/j.eswa.2021.
115537

Jothimani, D., and Yadav, S. S. (2019). Stock Trading Decisions Using Ensemble-
Based Forecasting Models: a Study of the Indian Stock Market. J. Bank Financ.
Technol. 3, 113–129. doi:10.1007/s42786-019-00009-7

Kamal, I. M., Bae, H., Sunghyun, S., and Yun, H. (2020). DERN: Deep Ensemble
LearningModel for Short- and Long-Term Prediction of Baltic Dry Index.Appl.
Sci. 10 (4), 1504. doi:10.3390/app10041504

Khan, M., Serafeim, G., and Yoon, A. (2016). Corporate Sustainability: First
Evidence on Materiality. Account. Rev. 91 (6), 1697–1724. doi:10.2308/accr-
51383

Kim, H. Y., and Won, C. H. (2018). Forecasting the Volatility of Stock price index:
A Hybrid Model Integrating LSTMwith Multiple GARCH-type Models. Expert
Syst. Appl. 103, 25–37. doi:10.1016/j.eswa.2018.03.002

Kim, J.-M., Kim, D. H., and Jung, H. (2021). Applications of Machine Learning for
Corporate Bond Yield Spread Forecasting. North Am. J. Econ. Finance 58,
101540. doi:10.1016/j.najef.2021.101540

Kochetygova, J., and Jauhari, A. (2014). Climate Change, green Bonds and index
Investing: the New Frontier. Retrieved, 20, 2017. Available at: https://www.
spglobal.com/spdji/en/documents/research/research-climate-change-green-
bonds-and-index-investing-the-new-frontier.pdf.

Kumar, M., and Thenmozhi, M. (2014). Forecasting Stock index Returns Using
ARIMA-SVM, ARIMA-ANN, and ARIMA-Random forest Hybrid Models.
Int. J. Banking Account. Finance 5 (3), 284–308. doi:10.1504/IJBAAF.2014.
064307

Lesmond, D. A., Ogden, J. P., and Trzcinka, C. A. (1999). ANewEstimate of Transaction
Costs. Rev. Financ. Stud. 12 (5), 1113–1141. doi:10.1093/rfs/12.5.1113

Li, J., Hao, J., Sun, X., and Feng, Q. (2021). Forecasting China’s sovereign CDS with
a decomposition reconstruction strategy. Appl. Soft. Comput. 105, 107291.
doi:10.1016/j.asoc.2021.107291

Li, T., Zhou, Y., Li, X., Wu, J., and He, T. (2019). Forecasting Daily Crude Oil Prices
Using Improved CEEMDAN and ridge Regression-Based Predictors. Energies
12 (19), 3603. doi:10.3390/en12193603

Li, Y., and Ma, W. (2010). “Applications of Artificial Neural Networks in Financial
Economics: a Survey,” in 2010 International symposium on computational
intelligence and design (Hangzhou, China: IEEE), 211–214. doi:10.1109/ISCID.
2010.70

Liaw, K. T. (2020). Survey of Green Bond Pricing and Investment Performance.
J. Risk Financial Manage. 13 (9), 193. doi:10.3390/jrfm13090193

Lin, H., Wu, C., and Zhou, G. (2018). Forecasting Corporate Bond Returns with a
Large Set of Predictors: An Iterated Combination Approach. Manage. Sci. 64
(9), 4218–4238. doi:10.1287/mnsc.2017.2734

Lin, Y., Yan, Y., Xu, J., Liao, Y., and Ma, F. (2021). Forecasting Stock index price
Using the CEEMDAN-LSTM Model. North Am. J. Econ. Finance 57, 101421.
doi:10.1016/j.najef.2021.101421

Livieris, I. E., Pintelas, E., and Pintelas, P. (2020). A CNN-LSTM Model for Gold
price Time-Series Forecasting. Neural Comput. Applic 32 (23), 17351–17360.
doi:10.1007/s00521-020-04867-x

Malinda, M., and Chen, J.-H. (2021). The Forecasting of Consumer Exchange-
Traded Funds (ETFs) via Grey Relational Analysis (GRA) and Artificial
Neural Network (ANN). Empir Econ. 2021, 1–45. doi:10.1007/s00181-021-
02039-x

Nazlioglu, S., Gupta, R., and Bouri, E. (2020). Movements in International Bond
Markets: The Role of Oil Prices. Int. Rev. Econ. Finance 68, 47–58. doi:10.1016/j.
iref.2020.03.004

Orlitzky, M., Siegel, D. S., and Waldman, D. A. (2011). Strategic Corporate Social
Responsibility and Environmental Sustainability. Business Soc. 50 (1), 6–27.
doi:10.1177/0007650310394323

Partridge, C., and Medda, F. (2018). The Creation and Benchmarking of a green
Municipal Bond index. SSRN J. Available at SSRN 3248423. doi:10.2139/ssrn.
3248423

Pham, L., and Luu Duc Huynh, T. (2020). How Does Investor Attention Influence
the green Bond Market? Finance Res. Lett. 35, 101533. doi:10.1016/j.frl.2020.
101533

Piñeiro-Chousa, J., López-Cabarcos, M. Á., Caby, J., and Šević, A. (2021). The
Influence of Investor Sentiment on the green Bond Market. Technol. Forecast.
Soc. Change 162, 120351. doi:10.1016/j.techfore.2020.120351

Reboredo, J. C. (2018). Green Bond and Financial Markets: Co-movement,
Diversification and price Spillover Effects. Energ. Econ. 74, 38–50. doi:10.
1016/j.eneco.2018.05.030

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 79341316

Wang et al. Green Bond Index Prediction

172

https://doi.org/10.1109/GSIS.2009.5408333
https://doi.org/10.1016/j.jfineco.2021.01.010
https://doi.org/10.1016/j.najef.2019.101105
https://doi.org/10.1080/20430795.2015.1118917
https://arxiv.abs/1705.01142
https://arxiv.abs/1705.01142
https://doi.org/10.1162/neco_a_01124
https://doi.org/10.1016/j.eneco.2019.05.006
https://doi.org/10.1016/j.eneco.2019.05.006
https://doi.org/10.1111/jofi.12971
https://doi.org/10.7717/peerj-cs.340
https://doi.org/10.1016/j.eneco.2017.10.037
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1057/s41260-018-0088-5
https://doi.org/10.1057/s41260-018-0088-5
https://doi.org/10.1016/j.eneco.2020.104941
https://doi.org/10.1016/j.eswa.2019.01.012
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CCDC.2018.8407547
https://doi.org/10.1016/j.eswa.2016.05.033
https://doi.org/10.1016/j.eswa.2016.05.033
https://doi.org/10.2516/ogst/2021010
https://doi.org/10.2139/ssrn.3107612
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.cor.2004.03.016
https://doi.org/10.1145/3155133.3155202
https://doi.org/10.1016/j.eswa.2021.115537
https://doi.org/10.1016/j.eswa.2021.115537
https://doi.org/10.1007/s42786-019-00009-7
https://doi.org/10.3390/app10041504
https://doi.org/10.2308/accr-51383
https://doi.org/10.2308/accr-51383
https://doi.org/10.1016/j.eswa.2018.03.002
https://doi.org/10.1016/j.najef.2021.101540
https://www.spglobal.com/spdji/en/documents/research/research-climate-change-green-bonds-and-index-investing-the-new-frontier.pdf
https://www.spglobal.com/spdji/en/documents/research/research-climate-change-green-bonds-and-index-investing-the-new-frontier.pdf
https://www.spglobal.com/spdji/en/documents/research/research-climate-change-green-bonds-and-index-investing-the-new-frontier.pdf
https://doi.org/10.1504/IJBAAF.2014.064307
https://doi.org/10.1504/IJBAAF.2014.064307
https://doi.org/10.1093/rfs/12.5.1113
https://doi.org/10.1016/j.asoc.2021.107291
https://doi.org/10.3390/en12193603
https://doi.org/10.1109/ISCID.2010.70
https://doi.org/10.1109/ISCID.2010.70
https://doi.org/10.3390/jrfm13090193
https://doi.org/10.1287/mnsc.2017.2734
https://doi.org/10.1016/j.najef.2021.101421
https://doi.org/10.1007/s00521-020-04867-x
https://doi.org/10.1007/s00181-021-02039-x
https://doi.org/10.1007/s00181-021-02039-x
https://doi.org/10.1016/j.iref.2020.03.004
https://doi.org/10.1016/j.iref.2020.03.004
https://doi.org/10.1177/0007650310394323
https://doi.org/10.2139/ssrn.3248423
https://doi.org/10.2139/ssrn.3248423
https://doi.org/10.1016/j.frl.2020.101533
https://doi.org/10.1016/j.frl.2020.101533
https://doi.org/10.1016/j.techfore.2020.120351
https://doi.org/10.1016/j.eneco.2018.05.030
https://doi.org/10.1016/j.eneco.2018.05.030
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Reboredo, J. C., and Ugolini, A. (2020). Price Connectedness between green Bond
and Financial Markets. Econ. Model. 88, 25–38. doi:10.1016/j.econmod.2019.
09.004

Rezaei, H., Faaljou, H., and Mansourfar, G. (2021). Stock price Prediction Using
Deep Learning and Frequency Decomposition. Expert Syst. Appl. 169, 114332.
doi:10.1016/j.eswa.2020.114332

Sadorsky, P. (2021). A Random Forests Approach to Predicting Clean Energy Stock
Prices. J. Risk Financial Manag. 14 (2), 48. doi:10.3390/jrfm14020048

Sanboon, T., Keatruangkamala, K., and Jaiyen, S. (2019). Singapore: IEEE,
757–760. doi:10.1109/CCOMS.2019.8821776 A Deep Learning Model for
Predicting Buy and Sell Recommendations in Stock Exchange of Thailand
Using Long Short-Term Memory2019 IEEE 4th International Conference on
Computer and Communication Systems (ICCCS)

Sethia, A., and Raut, P. (2019). “Application of LSTM, GRU and ICA for Stock
price Prediction,” in Information and Communication Technology for
Intelligent Systems (Singapore: Springer), 479–487. doi:10.1007/978-981-13-
1747-7_46

Shah, D., Isah, H., and Zulkernine, F. (2019). Stock Market Analysis: A Review and
Taxonomy of Prediction Techniques. Int. J. Financial Stud. 7 (2), 26. doi:10.
3390/ijfs7020026

Sheng, Q., Zheng, X., and Zhong, N. (2021). Financing for Sustainability: Empirical
Analysis of green Bond Premium and Issuer Heterogeneity. Nat. Hazards 107,
2641–2651. doi:10.1007/s11069-021-04540-z

Sun, J., Xiao, K., Liu, C., Zhou, W., and Xiong, H. (2019). Exploiting Intra-day
Patterns for Market Shock Prediction: A Machine Learning Approach. Expert
Syst. Appl. 127, 272–281. doi:10.1016/j.eswa.2019.03.006

Tang, D. Y., and Zhang, Y. (2020). Do shareholders Benefit from green Bonds?
J. Corporate Finance 61, 101427. doi:10.1016/j.jcorpfin.2018.12.001

Torres, M. E., Colominas, M. A., Schlotthauer, G., and Flandrin, P. (2011). “A
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,” in
2011 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). doi:10.1109/ICASSP.2011.5947265

Trinks, A., Scholtens, B., Mulder, M., and Dam, L. (2018). Fossil Fuel Divestment
and Portfolio Performance. Ecol. Econ. 146, 740–748. doi:10.1016/j.ecolecon.
2017.11.036

Vidal, A., and Kristjanpoller, W. (2020). Gold Volatility Prediction Using a CNN-
LSTM Approach. Expert Syst. Appl. 157, 113481. doi:10.1016/j.eswa.2020.
113481

Vlasenko, A., Rashkevych, Y., Vlasenko, N., Peleshko, D., and Vynokurova, O.
(2020). “A Hybrid EMD - Neuro-Fuzzy Model for Financial Time Series
Analysis,” in 2020 IEEE Third International Conference on Data Stream
Mining & Processing (DSMP) (Lviv, Ukraine: IEEE), 112–115. doi:10.1109/
DSMP47368.2020.9204179

Wang, J., Sun, X., Cheng, Q., and Cui, Q. (2021). An Innovative Random forest-
based Nonlinear Ensemble Paradigm of Improved Feature Extraction and Deep
Learning for Carbon price Forecasting. Sci. Total Environ. 762, 143099. doi:10.
1016/j.scitotenv.2020.143099

Wang, J., Sun, X., and Li, J. (2017). How Does Economic Policy Uncertainty
Interact with Sovereign Bond Yield? Evidence from the US. Proced. Comput. Sci.
122, 154–158. doi:10.1016/j.procs.2017.11.354

Weng, Y., Wang, Z., and Zhou, L. (2021). LSTM Framework Design and Volatility
Research on Intelligent Forecasting Model for Solving the Parallel Dislocation
Problem. J. Phys. Conf. Ser. 1982 (1), 012028. doi:10.1088/1742-6596/1982/1/
012028

World Bank Group (2015). What Are green Bonds? (English). Available at: https://
documents.worldbank.org/en/publication/documents-reports/documentdetail/
400251468187810398/what-are-green-bonds (Accessed November 24, 2021).

Wu, Z., and Huang, N. E. (2009). Ensemble Empirical Mode Decomposition: a
Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 01 (01), 1–41.
doi:10.1142/s1793536909000047

Xian, L., He, K., Wang, C., and Lai, K. K. (2020). Factor Analysis of Financial Time
Series Using EEMD-ICA Based Approach. Sustainable Futures 2, 100003.
doi:10.1016/j.sftr.2019.100003

Yu, L., Wang, S., and Lai, K. K. (2008). Forecasting Crude Oil price with an EMD-
Based Neural Network Ensemble Learning Paradigm. Energ. Econ. 30 (5),
2623–2635. doi:10.1016/j.eneco.2008.05.003

Zerbid, O. D. (2019). The Effect of Pro-environmental Preferences on Bond Prices:
Evidence from green Bonds. J. Bank. Financ. 98, 39–60. doi:10.1057/s41260-
018-0088-5

Zhang, H. (2020). Regulating green Bond in China: Definition Divergence and
Implications for Policy Making. J. Sustain. Finance Investment 10 (2), 141–156.
doi:10.1080/20430795.2019.1706310

Zhang, N., Lin, A., and Shang, P. (2017). Multidimensionalk-nearest Neighbor
Model Based on EEMD for Financial Time Series Forecasting. Physica A: Stat.
Mech. its Appl. 477 (1), 161–173. doi:10.1016/j.physa.2017.02.072

Zhang, X., Yu, L., Wang, S., and Lai, K. K. (2009). Estimating the Impact of Extreme
Events on Crude Oil price: An EMD-Based Event Analysis Method. Energ.
Econ. 31 (5), 768–778. doi:10.1016/j.eneco.2009.04.003

Zhang, Y., Xiong, R., He, H., and Pecht, M. G. (2018). Long Short-Term Memory
Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-
Ion Batteries. IEEE Trans. Veh. Technol. 67 (7), 5695–5705. doi:10.1109/TVT.
2018.2805189

Zhong, X., and Enke, D. (2017). Forecasting Daily Stock Market Return Using
Dimensionality Reduction. Expert Syst. Appl. 67, 126–139. doi:10.1016/j.eswa.
2016.09.027

Zhou, Y., Li, T., Shi, J., and Qian, Z. (2019). A CEEMDAN and XGBOOST-Based
Approach to Forecast Crude Oil Prices. Complexity 2019, 1–15. doi:10.1155/
2019/4392785

Zhou, Z., Lin, L., and Li, S. (2018). International Stock Market Contagion: A
CEEMDAN Wavelet Analysis. Econ. Model. 72, 333–352. doi:10.1016/j.
econmod.2018.02.010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wang, Tang and Guo. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 79341317

Wang et al. Green Bond Index Prediction

173

https://doi.org/10.1016/j.econmod.2019.09.004
https://doi.org/10.1016/j.econmod.2019.09.004
https://doi.org/10.1016/j.eswa.2020.114332
https://doi.org/10.3390/jrfm14020048
https://doi.org/10.1109/CCOMS.2019.8821776
https://doi.org/10.1007/978-981-13-1747-7_46
https://doi.org/10.1007/978-981-13-1747-7_46
https://doi.org/10.3390/ijfs7020026
https://doi.org/10.3390/ijfs7020026
https://doi.org/10.1007/s11069-021-04540-z
https://doi.org/10.1016/j.eswa.2019.03.006
https://doi.org/10.1016/j.jcorpfin.2018.12.001
https://doi.org/10.1109/ICASSP.2011.5947265
https://doi.org/10.1016/j.ecolecon.2017.11.036
https://doi.org/10.1016/j.ecolecon.2017.11.036
https://doi.org/10.1016/j.eswa.2020.113481
https://doi.org/10.1016/j.eswa.2020.113481
https://doi.org/10.1109/DSMP47368.2020.9204179
https://doi.org/10.1109/DSMP47368.2020.9204179
https://doi.org/10.1016/j.scitotenv.2020.143099
https://doi.org/10.1016/j.scitotenv.2020.143099
https://doi.org/10.1016/j.procs.2017.11.354
https://doi.org/10.1088/1742-6596/1982/1/012028
https://doi.org/10.1088/1742-6596/1982/1/012028
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/400251468187810398/what-are-green-bonds
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/400251468187810398/what-are-green-bonds
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/400251468187810398/what-are-green-bonds
https://doi.org/10.1142/s1793536909000047
https://doi.org/10.1016/j.sftr.2019.100003
https://doi.org/10.1016/j.eneco.2008.05.003
https://doi.org/10.1057/s41260-018-0088-5
https://doi.org/10.1057/s41260-018-0088-5
https://doi.org/10.1080/20430795.2019.1706310
https://doi.org/10.1016/j.physa.2017.02.072
https://doi.org/10.1016/j.eneco.2009.04.003
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1016/j.eswa.2016.09.027
https://doi.org/10.1016/j.eswa.2016.09.027
https://doi.org/10.1155/2019/4392785
https://doi.org/10.1155/2019/4392785
https://doi.org/10.1016/j.econmod.2018.02.010
https://doi.org/10.1016/j.econmod.2018.02.010
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Overnight-Intraday Mispricing of
Chinese Energy Stocks: A View from
Financial Anomalies
Min Zhou1 and Xiaoqun Liu2*

1School of Design and Art, Hunan Institute of Technology, Hengyang, China, 2School of Economics, Hainan University, Haikou,
China

We verify the existence of firm-level “intraday return vs. overnight return” pattern and
overnight-intraday effect of nine financial anomalies of Chinese energy industry stocks of
the Chinese stockmarket. Though energy finance has been an independent research area,
we also take Chinese A-shares stocks as samples for empirical analysis to avoid the so-
called sample selection bias. Specifically, it verifies that the overnight returns are strongly
negative and intraday returns are positive for energy industry stocks, which is totally
contrary to the American stock markets. In addition, alphas of the zero-cost strategies
based on nine classic financial anomalies are almost earned at night for energy industry
stocks. Finally, it is risk-related anomalies that occur overnight for energy industry stocks,
while both four risk-related anomalies and two firm characteristics related anomalies occur
at night for all A-shares stocks. Our empirical findings based on Chinese financial markets
enrich the existing research on the mispricing of financial anomaly and shed a new sight on
the asset pricing in energy finance.

Keywords: trading strategies, overnight-intraday effect, energy industry, financial anomaly, fama-macbeth cross-
sectional regression

1 INTRODUCTION

The empirical analysis of the existence and mechanism of financial anomalies have always attracted
much attention from scholars. In recent years, extant papers mainly focus on pinning down which
model is optimal to simultaneously depict financial anomalies, and how to make profits through
those financial anomalies. Admittedly, financial anomaly represents an access to arbitrage, and
investors can fully exploit this mispricing opportunity by constructing zero-costing trading strategies
and exactly quantify the risk exposure of the anomaly by Fama and MacBeth (1973) regression.

Numerous financial anomalies are usually documented by various factor models, including the
three-factor model of Fama and French (1993), the five-factor model of Fama and French (2015), the
four-factor model of Fama and French (1993) and Carhart (1997), the four-factor “q-factor”model of
Hou et al. (2015a), and the four-factor mispricing-factor model of Stambaugh et al. (2015). For
instance, Stambaugh et al. (2015) construct two mispricing factors from the set of 11 prominent
anomalies examined by Stambaugh et al. (2012), Stambaugh et al. (2014), Stambaugh et al. (2015). In
addition, Hou et al. (2015a), Hou et al. (2015b) examined 73 anomalies, such as the total volatility,
idiosyncratic volatility, and systematic volatility in Ang et al. (2006), the failure probability in
Campbell et al. (2008), the dispersion of analysts’ earnings forecasts in Diether et al. (2002), the total
accrual in Richardson et al. (2005), and the illiquidity in Amihud (2002). They concluded that their
q-factor model consisting of the market factor, a size factor, an investment factor, and a profitability
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factor largely summarizes the cross-section of average stock
returns, while one-half of the anomalies are insignificant in
the broad cross-section.

Anomalies mean that we could earn profits by a long-short
strategy based on the specific anomaly, that is, a chance of
arbitrage exists. Taking the Ang et al. (2006) idiosyncratic
volatility and Campbell et al. (2008) distress risk, for example,
both high idiosyncratic stocks and financially distressed stocks
have delivered anomalously low return, named idiosyncratic
volatility puzzle and financial distress puzzle by researchers,
respectively. These two puzzles represent that the investors
could earn profits by trading strategies of long (short) high
(low) idiosyncratic stocks and long (short) high (low)
financially distressed stocks.

In recent years, the literature documents unique
characteristics of the components of close-to-close return
among different financial markets (Cliff et al., 2008; Cai and
Qiu 2009; Kelly and Clark 2011; Aboody et al., 2018; Lou et al.,
2019; Muravyev and Ni 2020; Hendershott et al., 2020; Qiao and
Dam 2020). Specifically, Cliff et al. (2008) document that strongly
positive return at night and negative return during the day holds
for individual stocks, equity indexes, and future contracts on
equity indexes Cai and Qiu (2009) find that overnight non-
trading period returns are significantly higher than both
trading period returns and close-to-close daily returns in 23
countries at the stock index level, and they asserted that short
selling contributed to this phenomenon. Kelly and Clark (2011)
also report the positive overnight and negative intraday risk
premium at index exchange-traded funds level. Aboody et al.
(2018) examine the suitability of using overnight returns to
measure firm-specific investor sentiment by analyzing whether
they possess characteristics expected of a sentiment measure. Lou
et al. (2019) verify the overnight-intraday effect with 14
anomalies, demonstrating that risk-adjusted alphas are either
totally overnight effect or totally intraday effect. Muravyev and
Ni (2020) decompose option returns into intraday and overnight
components, finding a pattern of positive intraday returns and
negative overnight returns. Hendershott et al. (2020) find that
stock returns are positively related to beta overnight, whereas
returns are negatively related to beta during the trading day. Qiao
and Dam (2020) document the average overnight return in the
Chinese stockmarket is negative and argue that the “T+1” trading
rule contributes significantly to this overnight return puzzle.

Energy finance is interdisciplinary, setting up a bridge on two
most important industries, that is, finance and energy, in real life.
In recent years, topics on asset pricing, financial risk
management, investment, and so on have been widely applied
in the energy industry area (Wen et al., 2021a; Wen et al., 2021b;
Cao et al., 2022; Farouq et al., 2021; Liu et al., 2021; Peng et al.,
2021; Tian et al., 2021; Zheng et al., 2021). In this paper, we verify
the existence of firm-level “intraday return vs. overnight return”
pattern and overnight-intraday effect of nine financial anomalies
in the energy industry market. Though energy finance has been
an independent research area, we also take A-shares stocks as
samples for empirical analysis to avoid the so-called sample
selection bias. The empirical results show that strong
persistence of overnight and intraday firm-level return emerge

both in energy industry stocks and A-shares stocks. In addition,
the overnight returns are strongly negative and intraday returns
are positive, which is totally contrary to the American stock
markets. However, Qiao and Dam (2020) also provide evidence of
negative overnight returns in the Chinese stock market, and they
argue that the “T+1” trading rule contributes significantly to this
overnight return puzzle. Finally, profits are almost earned entirely
overnight among nine trading strategies in energy industry stocks
and A-shares stocks, which is sharply in contrast to the results of
Lou et al. (2019).

The organization of this paper is as follows. Section 2 puts
forward the motivation, a brief summary of energy finance, and
potential contributions. Section 3 describes the data and
methodology. Section 4 presents the empirical analysis of the
anomaly strategies at levels of portfolio analysis and Fama-
MacBeth regression. Section 5 concludes.

2 MOTIVATION AND CONTRIBUTION

Motivated by the literature on non-trading hour vs. trading hour
return patterns at individual stock, index stock, and index fund
levels, the overnight-intraday effect from a portfolio strategies
view of Lou et al. (2019), and the special overnight effect in the
Chinese stock market of Qiao and Dam (2020), we attempt to
examine overnight-intraday trading strategies in the cross-section
of energy industry stock returns in China. As for the construction
of trading strategies, we choose the basic five financial anomalies
according to the five-factor model of Fama and French (2015)
and the “q-factor”model of Hou et al. (2015a), that is, size, value,
momentum, reversal, and profitability. In addition, we choose the
following most influential anomalies, named idiosyncratic
volatility puzzle, beta, and turnover.

Energy is the foundation and driving force for the progress of
human civilization. Energy and resource constraints, together
with climate change, environmental risks, and challenges have
become severe global problems in the modern world. How to
develop a clean and low-carbon energy strategy matters to world
energy security, to addressing global climate change, and to
boosting global economic growth. Energy finance mainly
focuses on the significant connection between energy and
finance. As the asset pricing and financial risk management
are the frontiers in finance (Güngör and Tastan 2021; Huong
et al., 2021; Liow et al., 2021; Mao and Zhang 2021; Umutlu and
Bengitöz 2021), in recent years, the literatures on energy-based
asset pricing, and energy financial risk management have received
considerable attention (Gong and Lin 2017, Gong and Lin 2018,
Gong and Lin 2021; Gong et al., 2021).

Energy finance is an interdisciplinary, setting up a bridge
between two most important industries in real life. In recent
years, topics on asset pricing, financial risk management,
investment, and so on have been widely applied in the energy
industry area (Lian et al., 2020; Ye et al., 2020; Zolfaghari et al.,
2020; Dai et al., 2021; Ghoddusi and Wirl, 2021; Si et al., 2021;
Wang et al., 2021). Specifically, Lian et al. (2020) examine how the
tail behavior of various risk factors affects the tail behavior of
individual oil stock returns; Ye et al. (2020) investigate the
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interaction between crude oil prices and investor sentiment from
the time and the frequency domains; Zolfaghari et al. (2020)
verify that the energy market and the stock market have stronger
co-volatility spillover than foreign currency market; Ghoddusi
and Wirl (2021) discuss the risk-hedging feature of the refinery
industry when the crude oil market faces supply vs. demand
shocks; Dai et al. (2021) demonstrate that the skewness of oil
price return can predict the aggregate stock market returns; Si
et al. (2021) investigate the effects of financial deregulation on the
energy enterprises’ operational risks in China; Wang et al. (2021)
examine the impact of equity concentration on the investment
efficiency of Chinese energy companies based on the shock that
the shareholding ratio restriction of qualified foreign institutional
investors (QFIIs) is relaxed.

The potential contributions of this paper are as follows: at first, it
is a nature point that we investigate the overnight-intraday effect of
trading strategies in the energy industry, and as far as we know, we
are the first to empirically test which financial anomaly belongs to
overnight effect or intraday effect in the energy industry stocks as
well as in A-shares stocks. Second, we demonstrate the pattern of
overnight anomaly vs. intraday anomaly both in the Chinese
energy industry market and Chinese A-shares markets, thus, it
could not only avoid the sample bias, but also contribute to the
empirical asset pricing in the area of energy finance. Last, it is
beneficial to well understand the financial anomalies in a particular
industry and in all Chinese A-shares stock markets from the
perspective of components of return, as we do find differences
between these two samples. That is, in cases of trading strategies
based on market risk and liquidity risk, profits are earned entirely
overnight for energy industry stocks, while there are much more
financial anomalies belonging to overnight effect for A-shares
stocks beside the risk-related anomalies.

3 DATA AND METHODOLOGY

The data is collected from China Stock Market & Accounting
Research (CSMAR) database and Wind database from January
2001 to December 2019 for all energy stocks and A-shares stocks
traded in Chinese stock markets. Stocks with prices below ¥1 a
share are excluded from the sample. For each firm i, at one day d,
we decompose daily close-to-close return (riclose−to−close,d) into
close-to-open return (rovernightclose−to−open,i,d) and open-to-close return
(rintradayopen−to−close,i,d) as Lou et al. (2019). The specific formula is as
follows:

riclose−to−close,d �
Pi
close,d

Pi
close,d−1

− 1

rintradayopen−to−close,i,d �
Pi
close,d

Pi
open,d−1

− 1

rovernightclose−to−open,i,d �
Pi
open,d

Pi
close,d−1

− 1

Then, we calculate the monthly overnight return and intraday
return by accumulating the above daily return components across
days in each month d, namely rintradayopen−to−close,i,m, r

overnight
close−to−open,i,m.

Because we conduct our trading strategies at the portfolio
level, so we also calculate the following three components of the
portfolio, p,

rintradayopen−to−close,p,m � ∑ iw
i
t−1r

intraday
open−to−close,i,m.

rovernightclose−to−open,p,m � ∑ iw
i
t−1r

overnight
close−to−open,i,m.

where w stands for weights of constructing the portfolio, and in
this paper, we use market capitalization value-weight portfolios.

The main object of this paper is to analyze which financial
anomalies belong to overnight effect or intraday effect, so it is of
interest to explain how to measure these anomalies as well. Based
on the influential five-factor model of Fama and French (2015)
and the “q-factor” model of Hou et al. (2015a), in this paper, we
construct nine trading strategies according to the size, value,
momentum, reversal, profitability, idiosyncratic volatility, beta,
turnover, and the corresponding definition or measurement,
which are introduced in Section 4.

4 EMPIRICAL RESULTS

In this section, we first examine the persistence of overnight/
intraday return for the anomaly alphas pattern of the anomalies
by portfolio analysis and Fama-MacBeth regression. More
specifically, we decompose the abnormal returns earned by a
range of trading strategies based on the following anomalies,
including size, value, momentum, reversal, profitability,
idiosyncratic volatility, beta, and turnover into their overnight
and intraday components.

4.1 Persistence of Overnight/Intraday
Abnormal Returns for Trading Anomaly
Strategy
Trading strategies are constructed to capture the alpha associated
with trading at night or during the day, and thereby we should
first test the persistence in the components of close-to-close
return. We conduct the test by calculating the raw excess
decomposed returns and the risk-adjusted excess decomposed
returns based on overnight return-sorted and intraday return-
sorted portfolios, respectively. Specifically, given that the
existence of the persistence of overnight returns or intraday
returns, we could see a positive (negative) long-short overnight
(intraday) alpha of the overnight return-based portfolio, and a
negative (positive) long-short overnight (intraday) alpha of the
intraday return-based portfolio, respectively.

We verify the overnight-intraday continuation and reversal
patterns by rebalancing the portfolios in the current month and
calculating the components of the close-to-close return in the
next month both in the energy industry stocks and China
A-shares stocks.

Table 1 shows the basic descriptive statistics of the main
variables for energy industry stocks. First, there are 74 energy
industry stocks over the period from 2002 to 2019. The mean
(media) monthly overnight return of the Chinese energy stock
market is −3.71% (−3.67%), while the mean monthly intraday
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return is 2.83% (2.93), further confirming the pattern of overall
negative overnight return and positive intraday return in the
Chinese stock market, as documented by Qiao and Dam
(2020). Meanwhile, the corresponding monthly standard
deviations of the monthly overnight return and intraday
return are 0.0143 and 0.0114, consistent with the classic
hypothesis of return-risk tradeoff. The average monthly
turnover, price earnings ratio (PE), and return on equity
(ROE) are 56.65, 62.16, and 0.97, respectively. In addition,
the mean monthly idiosyncratic volatility and market beta are
0.024 and 0.068, respectively.

For energy industry stocks, due to the limited sample data, we
construct zero-cost trading strategies of longing (shorting) the
current month value-weight top (bottom) quintile for the past 1-
month overnight return-sorted portfolios (Panel A) and the
intraday return-sorted portfolio (Panel B), respectively.
Table 2 reports monthly portfolio raw excess return, and two
risk-adjusted abnormal overnight return and intraday return.

Correspondingly, as for all A-shares stocks, we construct zero-
cost trading strategies of longing (shorting) the current month
value-weight top (bottom) decile for the past 1-month overnight
return-sorted portfolios (Panel A) and the intraday return-sorted

TABLE 1 | Descriptive statistics

Mean std 5% 25% Median 75% 95% Count

Overnight return −0.0371 0.0143 −0.0656 −0.0448 −0.0367 −0.0276 −0.0157 74
Intraday return 0.0283 0.0114 0.0108 0.0203 0.0293 0.0349 0.0465 74
Close to close return −0.0088 0.0103 −0.0284 −0.0116 −0.0055 −0.0025 0.0001 74
Turnover 56.6461 33.4854 18.3256 34.5915 46.3667 70.9966 122.3308 74
PE 62.1596 109.5379 −37.1063 24.0591 44.2928 80.6917 192.0541 74
ROE 0.9706 16.5457 −11.8013 1.6297 3.4302 6.4195 9.8928 74
Idiosyncratic volatility 0.0241 0.0052 0.0155 0.0203 0.0239 0.0267 0.0334 74
beta 0.0675 0.1425 −0.1186 −0.0267 0.0832 0.1392 0.2859 74

This table provides a brief description of themain variables that are used in this study. The variables aremonthly overnight return, monthly intraday return, monthly close-to-close return, the
main firm characteristics (i.e., turnover, PE, ROE), the main market-risk related characteristics (i.e., idiosyncratic volatility, market beta). The summary statistics includes the number of
observations, mean, median, standard deviation (STD), the percentiles (5 and 95%), and quartiles (25 and 75%) distribution of the variables. The definition of daily intraday return is the price
appreciation between market open and close of the same day, while the daily overnight return is the price appreciation between market open price of the current day and close of the past
day. Daily close-to-close return is the price appreciation between market close of the current day and close of the past day. We calculate the monthly components of returns by
accumulating corresponding daily intraday return and overnight return. Monthly turnover is the number of shares traded in the current month scaled by the number of shares outstanding.
Price earnings ratio (PE) is the stock price divided by the earnings per share (EPS). ROE is the return on equity. Monthly betas of the stock with respect to the Shanghai Composite Index
estimated following CAPM, that is, we estimate time-varying monthly betas using daily returns over rolling 12-months windows. Idiosyncratic volatility is the standard deviation of daily
residuals based on the Fama-French-Carhart four-factor model over the preceding 1 year. The sample period is 2002–2019.

TABLE 2 | Persistence of overnight-intraday return for energy industry stocks

Panel A: Portfolios sorted by lagged 1-month overnight returns

Quintile Overnight return Intraday return

Excess CAPM Three-Factor Excess CAPM Three-Factor

1 −4.17%ppp −4.40%ppp −4.41%ppp 3.11%ppp 2.69%ppp 2.67%ppp

(−14.62) (−10.87) (−10.58) (8.68) (5.71) (5.92)
5 −1.93%ppp −2.09%ppp −2.11%ppp 0.77%ppp 0.35% 0.45%

(−4.99) (−6.61) (−6.66) (2.96) (0.86) (1.14)

5–1 2.24%ppp 2.31%ppp 2.30%ppp −2.34%ppp −2.34%ppp −2.22%ppp

(6.23) (6.40) (5.83) (−4.39) (−4.27) (−4.24)
Panel B: Portfolios sorted by lagged 1-month intraday returns

Quintile Overnight return Intraday return

Excess CAPM Three-Factor Excess CAPM Three-Factor

1 −1.94%ppp −2.11%ppp −2.05%ppp 1.05%ppp 0.60% 0.63%p

(−4.14) (−7.08) (−6.97) (3.86) (1.63) (1.76)
5 −4.72%ppp −4.90%ppp −4.86%ppp 2.78%ppp 2.33%ppp 2.41%ppp

(−17.70) (−8.64) (−8.36) (7.81) (4.75) (4.71)

5–1 −2.77%ppp −2.79%ppp −2.81%ppp 1.73%ppp 1.73%ppp 1.77%ppp

(−5.62) (−5.53) (−5.46) (3.20) (3.16) (3.10)

This table reports overnight-intraday return persistence and reversal patterns for Energy industry stocks. In Panel A, all stocks are sorted into quantile based on their lagged 1-month
overnight returns. In Panel B, stocks are sorted based on their lagged 1-month intraday returns. We then go long the value-weight winner quantile and short the value-weight loser quantile.
The first three columns show the overnight return in the subsequent month of the two short-term reversal strategies, and the next three columns show the intraday returns in the
subsequent month. We report monthly raw excess portfolio returns, alphas adjusted by the CAPM and by the Fama-French three-factor model. t-statistics are calculated by correcting
standard errors for serial-dependence with 12 lags. p,pp,ppp represent that the results are 10, 5, 1% statistically significant, respectively. Sample period is 2001–2019.
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portfolio (Panel B), respectively. Table 3 reports monthly
portfolio raw excess return, and two risk-adjusted abnormal
overnight and intraday returns.

The empirical results in both the energy stocks and China
A-shares stocks totally contrast to Lou et al. (2019). When using
the energy stocks as the sample, a long-short strategy based on the
past 1-month overnight returns earns a strongly significant raw
excess overnight return of 2.24% as well as significantly CAPM or
the three-factor adjusted alphas, reaching 2.31% or 2.30% in the
current month, respectively. Meanwhile, a significantly average
CAPM (three-factor)-adjusted intraday alpha of −2.34%
(−2.22%) per month is earned based on the overnight-return
hedge portfolio, verifying a reversal in the intraday period as well.

We almost get the same results when utilizing the Chinese
A-shares stocks as a sample, a long-short strategy based on the
past 1-month overnight returns yields a strongly significant
average raw excess overnight return of 2.83% in the current
month. When adjusted by CAPM and Fama-French 3 factor
models, the overnight alphas are still significantly positive.
Meanwhile, a significantly average CAPM (three-factor)-
adjusted intraday alpha of −3.06% (−2.95%) per month is
earned based on the overnight-return hedge portfolio, that is,
an intraday reversal effect exists.

On the other hand, when we go long the top quantile of the
energy stocks and go short the bottom ones based on the past 1-
month intraday return, we could get significant positive
(negative) raw excess intraday (overnight) returns and two-
risk adjusted intraday (overnight) alphas. Again, the above
finding continues to hold when sorting stocks using the China
A-shares stocks as our sample.

In all, Table 2 and Table 3 confirm that there are striking
overnight/intraday momentum and reversal patterns both in
China A-shares stocks and the energy stocks. In addition, we
depict these momentum and reversal patterns in overnight return
and intraday return in Figure 1 and Figure 2.

4.2 Cross-Sectional Overnight-Intraday
Alphas of the Anomalies
In this part, we use a list of popular financial anomies to
understand the overnight-intraday pattern. We decompose the
abnormal returns earned by a range of trading strategies based on
the following anomalies, including size, value, momentum,
reversal, profitability, idiosyncratic volatility, beta, and
turnover, into their overnight and intraday components.

We empirically test the cross-sectional overnight/intraday
alphas of the anomalies by portfolio analysis and Fama-
MacBeth regressions. In the portfolio analysis, for each
financial anomaly, we calculate the CAPM-adjusted overnight/
intraday alphas of zero-cost trading strategies, that is, we get the
risk-adjusted alpha by long (or short) the top portfolio and short
(or long) the bottom portfolio according to the characteristics of
the anomies. For instance, as for idiosyncratic volatility anomaly,
we go long low idiosyncratic volatility quantile and short high
idiosyncratic volatility quantile. However, for the well-known
momentum anomaly, we will go long the top winner cumulative
returns of the portfolio and go short the bottom loser cumulative
ones. Section 4.2.1 and Section 4.2.2 present the overnight
anomalies and intraday anomalies with the portfolio analysis,
respectively.

TABLE 3 | Persistence of overnight/intraday return for A-shares stocks

Panel A: Portfolios sorted by past 1-month overnight returns

Decile Overnight return Intraday return

Excess CAPM Three-Factor Excess CAPM Three-Factor

1 −4.19%*** −4.37%*** −4.38%*** 4.56%*** 4.08%*** 4.06%***
(−14.62) (−17.70) (−17.54) (8.68) (12.18) (12.91)

10 −1.36%*** −1.52%*** −1.50%*** 1.49%*** 1.01%*** 1.11%***
(−4.99) (−5.97) (−5.95) (2.96) (3.44) (3.67)

10–1 2.83%*** 2.85%*** 2.88%*** −3.07%*** −3.06%*** −2.95%***
(22.32) (20.89) (21.30) (2.96) (−9.91) (−9.71)

Panel B: Portfolios sorted by past 1-month intraday returns

Decile Overnight Intraday

Excess CAPM Three-Factor Excess CAPM Three-Factor

1 −1.09%*** −1.26%*** −1.22%*** 1.92%*** 1.43%*** 1.46%***
(−4.14) (−5.55) (−5.37) (3.86) (4.49) (4.75)

10 −4.37%*** −4.55%*** −4.53%*** 4.07%*** 3.62%*** 3.79%***
(−17.70) (−15.36) (−15.08) (7.81) (10.30) (10.15)

10–1 −3.28%*** −3.29%*** −3.30%*** 2.15%*** 2.18%*** 3.79%***
(−18.42) (−16.44) (−15.65) (5.67) (5.93) (6.19)

This table reports overnight-intraday return persistence and reversal patterns for A-shares stocks. In Panel A, all stocks are sorted into deciles based on their lagged 1-month overnight
returns. In Panel B, stocks are sorted based on their lagged 1-month intraday returns.We then go long the value-weight winner decile and short the value-weight loser decile. The first three
columns show the overnight return in the subsequent month of the two short-term reversal strategies, and the next three columns show the intraday returns in the subsequent month. We
report monthly raw excess portfolio returns, alpha adjusted by the CAPM and by the Fama-French three-factor model. t -statistics are calculated by correcting standard errors for serial-
dependence with 12 lags. *,**,*** represent that the results are 10, 5, 1% statistically significant, respectively. Sample period is 2001–2019.
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4.2.1 Overnight Anomalies
We verify that four out of nine financial anomalies in energy
industry stocks, including idiosyncratic volatility, beta, turnover,

and reversal, belong to the overnight effect. Table 4 and Table 5
report overnight alphas and intraday alphas based on equity
premium and eight cross-sectional anomaly-based strategies for

FIGURE 1 | This figure depicts the overnight-intraday persistence and reversal pattern return for energy industry stocks, as reported in Panel A of Table 2. The blue
dotted curve corresponds to using 1-month lagged overnight returns to forecast the current overnight return. The green dashed curve corresponds to using lagged
overnight returns to forecast the current intraday return. The red solid curve corresponds to using lagged overnight returns to forecast the current close-to-close return.

FIGURE 2 | This figure depicts the intraday-overnight persistence and reversal pattern return for energy industry stocks, as reported in Panel B of Table 2. The blue
dotted curve corresponds to using 1-month lagged intraday returns to forecast the current overnight return. The green dashed curve corresponds to using lagged
intraday returns to forecast the current intraday return. The red solid curve corresponds to using lagged intraday returns to forecast the close-to-close return.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 8078816

Zhou and Liu Overnight Financial Anomalies Energy Stocks

179

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


the energy industry stocks and A-shares stocks, respectively. The
details are shown in the following part. Energy industry stocks
and A-shares stocks are sorted into quantile and decile,
respectively.

Specifically, the first discussed two zero-cost trading strategies
are risk-related financial anomies. Themost traditional one is that
high market beta stocks should have high return original from the
CAPM of Sharpe (1964), Lintner (1965), and Black (1972), while

TABLE 4 | Overnight-intraday abnormal return of anomalies for energy industry stocks

Panel A overnight anomalies

Overnight alpha Intraday alpha Overnight alpha Intraday alpha

Beta 0.98%*** −0.50% Ivol 2.23%*** −0.79%
(2.65) (−0.93) (5.55) (−1.29)

Turnover 2.54%*** −1.29%** Reversal 1.45%*** −0.51%
(5.08) (−2.18) (2.99) (−0.99)

Panel B intraday anomalies

Overnight alpha Intraday alpha Overnight alpha Intraday alpha

Index −2.28%*** 1.23%*** Size −1.57%*** 1.90%***
(−6.77) (2.56) (−5.85) (3.47)

Panel C others

Overnight alpha Intraday alpha Overnight alpha Intraday alpha

BM −2.63%*** −0.51% Mom −1.30%*** 0.52%
(−5.49) (−0.94) (−2.82) (0.83)

ROE 0.56% −0.65%
(1.28) (−1.28)

This table reports abnormal return to of various cross-sectional strategies during the day vs. at night for energy industry stocks. In Panel A, we examine the overnight/intraday abnormal
return of four risk-related financial anomalies, including beta, idiosyncratic volatility, turnover, and short-term reversal. In Panel B, we examine the overnight/intraday abnormal return of
equity premium and size anomaly. In Panel C, we examine the overnight/intraday abnormal return of two firm characteristics related anomalies (value and probability) and momentum
anomaly. The definition of the financial anomalies and the detailed zero-strategies based on these anomalies are explained in Section 4.2.1 and Section 4.2.2. t -statistics are calculated
by correcting standard errors for serial-dependence with 12 lags. *,**,*** represent t.

TABLE 5 |Overnight/intraday abnormal return of anomalies for A-shares stocks. This table reports abnormal return to of various cross-sectional strategies during the day vs.
at night for A-shares stocks. In Panel A, we examine the overnight/intraday abnormal return of four risk-related financial anomalies (beta, idiosyncratic volatility, turnover,
short-term reversal) and two firm characteristics related financial anomalies (value and probability). In Panel B, we examine the overnight/intraday abnormal return of the
momentum anomaly. The definition of the financial anomalies and the detailed zero-strategies based on these anomalies are explained in Section 4.2.1 and Section 4.2.2.
t -statistics are calculated by correcting standard errors for serial-dependence with 12 lags. *,**,*** represent that the results are 10, 5,1% statistically significant,
respectively. The sample period is 2001–2019.

Panel A overnight alpha adjusted by CAPM

Overnight alpha Intraday alpha Overnight alpha Intraday alpha

BM 1.61%*** −0.80%* ROE 1.36%*** −0.91%**
(9.33) (−1.85) (8.20) (−2.27)

Beta 1.10%*** −0.38% Ivol 2.80%*** −1.84%***
(6.31) (−0.86) (14.33) (−3.75)

Turnover 1.97%*** −1.53%*** Reversal 1.72%*** −0.64%
(9.89) (−3.19) (8.05) (−1.61)

Panel B intraday alpha adjusted by CAPM

Overnight alpha Intraday alpha Overnight alpha Intraday alpha

Index −1.68%*** 2.03%*** Size −0.88%*** 3.17%***
(−7.10) (4.72) (−5.24) (5.70)

Panel C others

Overnight alpha Intraday alpha

Mom −1.15%*** 0.29%
(−5.46) (0.62)
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be challenged by empirical evidence which shows that the security
market line is not volatile (Frazzini and Pedersen 2014); the other
is the well-known “idiosyncratic volatility puzzle” found by Ang
et al. (2006), which argued that high idiosyncratic volatility stocks
had abnormally low return.

We analyze the beta strategy that goes long the low-beta quintile
(decile) and short the high-beta quintile (decile) for energy stocks
(A-shares stocks). According to Lou et al. (2019) and Dimson (1979),
wemeasure beta using daily returns over the last 12months with three
lags in the market model regression for each stock, the beta is the sum
of the four coefficients, which is beneficial to taking non-synchronous
trading issues into account. Panel A of Table 4 and Table 5
demonstrate that the beta alphas are totally overnight
phenomenon in energy industry and all A-shares stocks, which is
in sharp contrast to the Lou et al. (2019). Specifically, the overnight
CAPM alpha is 0.98% (1.10%) with an associated t-statistics of 2.65
(6.31) for energy stocks (all A-shares stocks), and the corresponding
intraday CAPM alpha is −0.50% (−0.38%) with an associated
t-statistics of −0.93 (−0.86) for energy stocks (all A-shares stocks).

As for the idiosyncratic strategy (Ivol), we go long the low
idiosyncratic volatility quintile (decile) and short the high
idiosyncratic volatility quintile (decile) for the energy stocks
(all A-shares stocks). We measure the idiosyncratic volatility
as the volatility of the residual from a daily Fama-French-
Carhart four-factor regression estimated over the last year.
Panel A of Table 4 and Table 5 report that the Ivol alphas are
a totally overnight phenomenon in energy stocks (all A-shares
stocks) inconsistent with the result of Lou et al. (2019).
Specifically speaking, the overnight CAPM alpha is 2.23%
(2.80%) with an associated t-statistics of 5.55 (14.33) for all
energy stocks (all A-shares stocks), and the corresponding
intraday CAPM alpha is −0.27% (−1.84%) with an associated
t-statistics of −1.29 (−3.75) for energy stocks (all A-shares stocks).

Then, we examine the turnover and short-term reversal
anomalies, which is related to the liquidity risk. We first analyze
the turnover strategy that goes long the lowest turnover quintile
(decile) and short the highest turnover quintile (decile) for energy
stocks (all A-shares stocks) based on the previous findings of Datar
et al. (1998) and Lee and Swaminathan (2000), who show that
turnover could negatively explain the cross-section average returns.
We measure the turnover as the average daily volume over the last
12 months following Lee and Swaminathan (2000). Again, Panel A
of Table 4 and Table 5 report that the turnover premiums are a
totally overnight phenomenon in the energy industry and all
A-shares stocks as there is significant negative expected intraday
return, inconsistent with the result of Lou et al. (2019). In
particular, the strongly statistically significant overnight CAPM
alpha is 2.54% (1.97%) for energy stocks (all A-shares stock), and
the corresponding insignificant intraday CAPM alpha is −1.29%
(−1.53%) for energy stocks (all A-shares stocks).

At last, we measure short-term reversal as 1-month return and
analyze this strategy (reversal) that goes long the low past 1-
month return quintile (decile) and short the high turnover
quintile (decile) for the energy stocks (A-shares stocks). Panel
A of Table 4 and Table 5 report that the STR premiums are
totally overnight phenomenon in energy industry and all
A-shares stocks, inconsistent with the result of Lou et al.

(2019). Specifically, the highly significant overnight CAPM
alpha is 1.45% (1.72%) for energy stocks (all A-shares stocks),
and the corresponding insignificant intraday CAPM alpha is
−1.29% (−0.64%) for energy stocks (A-shares stocks).

Except the above four risk-related financial anomalies, value and
probability anomalies documented in Fama-French five-factor
model belong to overnight effect for all A-shares stocks. We
investigate the value strategy that goes long the highest book-to-
market quintile (decile) and short the lowest book-to-market quintile
(decile) for energy stocks (A-shares stocks). It is found that for
A-shares stocks, essentially, the value alpha occurs overnight, which
is totally inconsistent with Lou et al. (2019), while the value alpha
does not exist for energy stocks. Specifically, as for energy stocks,
both the overnight and intraday CAPM alphas are negative, −2.63%
with a t-statistics of −5.49 and −0.51% with a t-statistics of −0.94,
respectively. However, as for all A-shares stocks, the overnight
CAPM alphas are 1.61% with a t-statistics of 9.33, while the
intraday CAPM alpha is slightly negative, −0.80%, and
statistically significant with an associate t-statistic of −1.85.

Besides the classic firm characteristics, the literature
documented that profitability could be another anomaly in
cross-sectional stock markets (Haugen and Baker 1996;
Vuolteenaho 2002; Novy-Marx 2013), and the latest and
famous one is Fama and French (2015) who proposed and
tested that the profitability could help capture the cross-section
of average returns based on the Fama-French 3-factor. In this
paper, we measure the profitability by the return on equity (ROE),
then conduct profitability strategy that goes long the highest
profitability quintile (decile) and short the lowest profitability
quintile (decile) for energy stocks (all A-shares stocks). Panel C
of Table 4 and Panel A of Table 5 report that the profitability
alphas are overnight phenomenon for all A-shares stocks.
Specifically, both the overnight and intraday CAPM alpha are
not statistically significant in energy stocks, while the overnight and
intraday CAPM alpha are 1.36% with an associated t-statistics of
8.20 and −0.91% with an associated t-statistics of 8.20, respectively,
for all A-shares stocks. In all, essentially, the profitability alpha in
China belongs to overnight, which is contrary to the result of Lou
et al. (2019), implying a huge difference in these twomarkets exists.

4.2.2 Intraday Anomalies
We verify that two out of nine financial anomalies both in energy
industry stocks and all A-shares stocks, including equity
premium and size belong to the intraday effect.

First, we analyze the basic equity overnight premium and
intraday premium at an index level, we could interpret it as the
anomaly related to CAPM. Panel B ofTable 4 shows that themarket
portfolio as measured by the value-weight energy stocks has an
average monthly overnight raw excess return of −2.28% and an
average intraday raw excess return of 1.23%. Panel B of Table 5
shows that the market portfolio as measured by the value-weight all
A-shares stocks has an average monthly overnight alpha of 2.03%
and an average intraday excess return of −1.68%. These findings
mean that the equity premium is an overnight phenomena both in
energy industry stocks and A-shares stocks, which is consistent
with previous work done by Qiao and Dam (2020), who document
the average overnight return in the Chinese stock market is
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negative and argue that the “T+1” trading rule contributes
significantly to this overnight return puzzle.

It is well acknowledged that size effect and value effect,
proposed by Fama and French (1992), are the first two
anomalies in empirical asset pricing. Then, momentum effect,
first proposed by Jegadeesh and Titman (1993), and formally put
forward as an asset pricing factor by Carhart (1997) along with
the size and value effect were widely used as a risk-adjustment
benchmark in empirical studies. Specifically, as for the size
anomaly, we go buying the smallest quintile (decile) and
selling the largest quintile (decile) for energy stocks (A-shares
stocks). Panel B of both Table 4 and Table 5 report the Size’s
CAPM-adjusted overnight and intraday abnormal returns for
energy stocks and all A-shares stocks, respectively. We find the
size alpha occurs intraday for both samples, which is quite
consistent with Lou et al. (2019). As we can see, the CAPM-
adjusted intraday alphas are 1.90% with an associated t-statistics
of 3.47 and 3.17% with t-statistics of 5.70, while the CAPM-
adjusted overnight alphas are −1.57% with an associated
t-statistics of 3.47 and −0.88% with an associated t-statistics of
−5.24 for energy stocks and all A-shares stocks, respectively.

We then pin down the abnormal overnight returns and intraday
returns of the momentum strategy founded by Jegadeesh and Titman
(1993) and developed by Carhart (1997). We find the momentum
premium almost does not occur in overnight and intraday for the two
samples, specifically, the intraday CAPM alpha is statistically
insignificant, 0.52% with an associated t-statistics of 0.62 (0.29%
with t-statistics of 0.83) for the winner quintile (decile) minus the
loser quintile (decile) for energy stocks (all A-shares stocks), and the
corresponding overnight CAPM alpha is significantly negative,
−1.15% with an associated t-statistics of 0.62 (with t-statistics of
−1.30%). These results are quite different from Lou et al. (2019),
implying there are obvious discrepancies of the investors’ behavior
between the United States and China’s stock market.

In all, the results of Panel A ofTable 4 andTable 5 show unique
characteristics of the overnight and intraday abnormal profits of a
series of trading strategies in China energy industry stocks and
A-shares stocks, which is quite different from the America stock
market. On the one hand, only the alpha of the Size strategy occurs
within the day, and the premia of the other seven strategies all
occur overnight. However, in Lou et al. (2019), the alphas of three
momentum (momentum, price momentum, industrymomentum)
and reversal strategy mainly occur overnight, while others all occur
within the day. Why do such significant differences exist between
these two countries? We think that the potential reason lies in the
“T+1” trading mechanism in China. “T+1” trading rule prohibits
traders to sell shares they bought on the same day, leading to
asymmetric effects for buyers and sellers and making most of the
investors prefer to trade at the close rather than at the open. Qiao
and Dam (2020) verify that the “T+1” trading rule produces a
discount on opening prices due to this asymmetric effect, in essence
a liquidity discount, and it could explain the negative overnight
return, named overnight return puzzle. On the other hand, it is
risk-related anomalies that occur during overnight for energy
industry stocks, while both four risk-related anomalies and two
firm characteristics related anomalies occur within the day for all
A-shares stocks.

4.2.3 Fama-MacBeth Regressions
We further conduct the Fama-MacBeth regressions to test the
cross-section of intraday and overnight expected abnormal
returns. The advantage of this econometric method is that we
could control for a list of characteristics and thus make the result
more precise, while we could only do one-dimension, double-
dimension, or at most three-dimension portfolio sorts. We carry
out five cross-sectional regressions as does Lou et al. (2019).

The five cross-sectional regressions conclude: the dependent
variables are close-to-close return (regression 1), overnight return
(regression 2), intraday return (regression 3), overnight return minus
intraday return (regression 4), scaled overnight returnminus intraday
return (the coefficient in this regression is the difference between the
overnight coefficient p24/18.5 and intraday coefficient p24/5.5
(regression 5), respectively. In each regression, we include the
above anomalies except for short-term reversal (Str), as we also
control the most recent 1-month intraday/overnight return
(ret_intraday/ret_overnight), the exponentially weighted moving
averageovernight/intraday return (ewma_overnight/ewma_intraday).

As for energy stocks, (Regression 1) in Table 6 shows that
ewma_overnight, Mom, and Turnover are statistically significant.
(Regression 2) shows that ret_overnight, Size, Turnover, ROE,
and Ivol are statistically significant, while (Regression 3) reveals
that all the ret_overnight, ewma_overnight, Size, Turnover, ROE
are significant. It is worth noting that the sign of the coefficient of
the same significant independent variables are totally different for
(Regression 2) and (Regression 3). (Regression 4) and (Regression
5) indicate that the overnight and intraday partial alpha for each
anomaly is not equal, and the scaled difference is obvious.

As for A-shares stocks, the results are essentially same with
Energy stocks. Regression (1) in Table 7 shows that ret_intraday,
Size, BM, and Turnover are statistically significant. Regression (2)
shows that ewma_overnight, ewma_intraday, Size, Turnover, and
ROE are statistically significant, while Regression (3) reveals no
independent variables are significant. Regression (4) and
Regression (5) indicate that the overnight and intraday partial
alpha for each anomaly is not equal, and the scaled difference is
obvious.

In summary, the predictive power of these characteristics to the
overnight return is better than that of the intraday component,
which is consistent with the fact that most characteristic strategies
of Table 4 occur in the overnight to a certain extent.

5 CONCLUSION

Financial anomaly is one of the most important topics in empirical
asset pricing and financial risk management. The extant papers show
that there is a sharp distinction in the financial anomalies between the
Chinese stock market and the Western stock market due to their
market structure, market institution, investor’s structure, and so on.
For instance, Hou et al. (2020) confirm that 65% of the 452 anomalies
fail to hold up at the t-value of 1.96, while Qiao (2019) constructs 231
anomalies in Chinese A-shares stock market and find only 41
anomalies are significant at the 5% significance level. Enlightened
by Lou et al. (2019) who link investor heterogeneity to the persistence
of the overnight return and intraday returns, this paper attempts to
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explore the financial anomalies in the energy industry from the
perspective of the component of close-to-close return. The paper
demonstrates a unique characteristic of the overnight and intraday

abnormal profits of a series of trading strategies in Chinese energy
industry stocks and A-shares stocks, which is quite contrary to Lou
et al. (2019).

TABLE 6 | Fama-MacBeth return regression for Energy industry stocks. This table reports Fama-MacBeth regressions of monthly excess components of stock returns on
lagged firm characteristics. The dependent variable in the first column is the close-to-close return in the following month; the dependent variable in the second column is
the overnight return in the following month, and the dependent variable in the third column is the intraday return in the following month. In Column 4, we report the difference
between the coefficients in Columns 2 and 3 (i.e., overnight-intraday). In Column 5, we report the difference between the overnight coefficient p24/18.5 and intraday
coefficient p24/5.5. The independent variables are the same with Table 5 t -statistics are calculated by correcting standard errors for serial-dependence with 12 lags.
*,**,*** represent that the results are 10, 5,1% statistically significant, respectively. Sample period is 2001–2019.

Close-to-close Overnight Intraday Overnight-intraday Scaled difference

[1] [2] [3] [4] [5]

Intercept −0.0096 0.0186*** −0.0264*** −0.0449*** 0.1392***
(−1.22) (5.08) (−3.80) (5.71) (4.53)

ret_overnight −0.0028 0.0022** −0.0049*** 0.0070*** 0.0241***
(−1.50) (2.15) (−3.06) (3.68) (3.39)

ret_intraday −0.0009 −0.0006 −0.0003 −0.0003 0.0004
(−0.98) (−1.01) (−0.27) (−0.23) (0.09)

ewma_overnight −0.0069* 0.0025 −0.0089*** 0.0114*** 0.0421***
(−1.93) (1.42) (−2.70) (2.92) (2.84)

ewma_intraday −0.0008 −0.0010 0.0004 −0.0014 −0.0028
(−0.53) (−0.97) (0.24) (−0.68) (−0.42)

mom 0.0007* 0.0001 0.0006 −0.0005 −0.0023
(1.72) (0.57) (1.42) (−0.90) (−1.26)

Size 0.0004 −0.0008*** 0.0012*** −0.0020*** −0.0062***
(1.17) (−5.13) (3.82) (−5.77) (−4.57)

Bm −7.74e-05 −8.06e-05 6.07e-06 −8.67e-05 −0.0001
(−1.31) (−1.29) (0.14) (−0.96) (−0.56)

Ivol 0.0067 0.0112* −0.0038 0.0150 0.0310
(0.57) (1.75) (−0.35) (1.15) (0.65)

beta 0.0002 −0.0003 0.0006 −0.0009* −0.0029*
(0.61) (−1.10) (1.57) (−1.69) (−1.69)

turnover 5.23e-06* −7.44e-08 5.17e-06* −5.24e-06 −2.27e-05*
(1.75) (−0.05) (1.75) (−1.40) (−1.66)

Roe −4.857e-06 2.7e-05*** −2.9e-05*** −5.649e-05*** 0.0002***
(−0.38) (2.99) (−2.77) (3.72) (3.28)

No.obs 10135 10135 10135 10135 10135

As for A-shares stocks, the results are essentially same with Energy stock. (Regression 1) in Table 6 shows that ret_intraday, Size, BM, and Turnover are statistically significant.
(Regression 2) shows that ewma_overnight, ewma_intraday, Size, Turnover, and ROE are statistically significant, while (Regression 3) reveals no independent variables are significant.
(Regression 4) and (Regression 5) indicate that the overnight and intraday partial alpha for each anomaly is not equal, and the scaled difference is obvious.

TABLE 7 | Fama-MacBeth return regression for A-shares stocks.

Close-to-close Overnight Intraday Overnight-intraday Scaled difference

[1] [2] [3] [4] [5]

Intercept 0.0071*** 0.0252*** 0.0338*** −0.0608*** −0.1876***
ret_overnight 0.0004 0.0015 −0.0002 0.0004 −0.0001
ret_intraday −0.0024** −0.0014 0.0004 0.0000 0.0006
ewma_overnight 0.0000 0.0000*** 0.0000 0.0*** 0.0000
ewma_intraday 0.0000 −0.000*** 0.0000 0.0000 0.0000
mom 0.0009 0.0000 0.0009 −0.0004 0.0005
Size 0.0131** 0.0231** 0.0084 0.0056 0.0097
Bm −0.0002*** −0.0002 0.0000 0.0001 0.0000
Ivol 0.0000 0.0000 0.0000 0.0000 0.0000*
beta 0.0002 −0.0002 −0.0003 −0.0004 −0.0004
turnover 0.1249*** 0.1585*** 0.0782 0.1072* 0.0952*
Roe 0.0019 −0.0026** −0.0011 −0.0009 −0.0009

This table reports Fama-MacBeth regressions of monthly excess components of stock returns on lagged firm characteristics. The dependent variable in the first column is the close-to-
close return in the followingmonth; the dependent variable in the second column is the overnight return in the followingmonth, and the dependent variable in the third column is the intraday
return in the followingmonth. In Column 4, we report the difference between the coefficients in Columns 2 and 3 (i.e., overnight-intraday). In Column 5, we report the difference between the
overnight coefficient p24/18.5 and intraday coefficient p24/5.5. The independent variables are the same with Table 5. t -statistics are calculated by correcting standard errors for serial-
dependence with 12 lags. *,**,*** represent that the results are 10, 5,1% statistically significant, respectively. Sample period is 2001–2019.
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More specifically, we first verify that there are overnight/intraday
return persistence and reversal patterns. Contrary to the developed
countries, the overnight premium is negative for energy industry
stocks and A-shares stocks. In addition, by using portfolio analysis
and Fama-MacBeth regression, it is found that risk-adjusted alphas
earned by seven trading strategies based on the value, profitability,
beta, turnover, idiosyncratic volatility, and reversal are actual
overnight effects, while only size trading strategy is an intraday
effect. However, in Lou et al. (2019), the premia of three types of
momentum and reversal strategy mainly occur overnight, while
others all occur within the day. We think it possible that overnight
return puzzle caused by “T+1” trading rule in Qiao and Dam (2020)
might contribute to the above results. Finally, the energy industry has
its own uniqueness, that is, it is risk-related anomalies that occur
during overnight for energy industry stocks, while both four risk-
related anomalies and two firm characteristics related anomalies
occur within the day for all A-shares stocks.
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Research on Risk Features and
Prediction of China’s Crude Oil
Futures Market Based on Machine
Learning
Yaoqi Guo1, Shuchang Zhang1 and Yanqiong Liu2*

1School of Mathematics and Statistics, Central South University, Changsha, China, 2School of Mathematics and Statistics, Hunan
First Normal University, Changsha, china

Facing the rapidly changing domestic and foreign futures markets, how to accurately and
immediately predict the price trend of crude oil futures in order to avoid the risks caused by
price fluctuations is very important for all participants in the crude oil futures market. Based
on the 5-min high-frequency trading data of China’s crude oil futures market in recent
3 years, this paper uses the EMD-MFDFA model combined with multifractal detrended
fluctuation analysis (MF-DFA) and empirical mode decomposition unsupervised K-means
clustering and Gaussian mixture model (GMM) to identify the risk status of each trading
day. Further, Support vector machine (SVM), extreme gradient lifting (XGBoost) and their
improved algorithms are used to predict the risk state of China’s crude oil futures market.
The empirical results are as follows: first, There are obvious multifractal features in the
return rate series of China’s crude oil futures market and its single trading day; Second,
compared with the traditional SVM model, the improved Twin Support Vector Machine
(TWSVM) based on solving the sample imbalance issue has better prediction ability for
China’s crude oil futures risk.; Third, The XGBoost has a great impact on the prediction of
China’s crude oil risk, and the Focal-XGBoost with focal loss function performs the best in
predicting the risk of China’s crude oil futures market.

Keywords: China’s crude oil futures, multifractal, clustering, sample imbalance, risk prediction

INTRODUCTION

With the rapid development of economy, energy issues have become the focus of the world. Energy is
indispensable to the world economic development, and crude oil plays an important role in the
energymarket. According to the 2019–2020 Blue Book of China’s Oil and Gas Industry Development
Analysis and Prospect Report, China ranks among the top in both crude oil imports and
consumption. Specifically, China’s crude oil imports reached 506 million tons in 2019, with a
year-on-year growth of 9.5%, and its external dependence reached 70.8%. In terms of crude oil
consumption, China consumed 696 million tons in 2019, with a year-on-year growth of 6.8%. The
data indicate that the crude oil market has a huge impact on China’s energy economic market, and its
price fluctuation often brings huge consequences.

With the rapid development of economy, energy issues have become the focus of the world.
Energy is indispensable to the world economic development, and crude oil plays an important role in
the energy market. According to the 2019–2020 Blue Book of China’s Oil and Gas Industry
Development Analysis and Prospect Report, China ranks among the top in both crude oil imports
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and consumption. Specifically, China’s crude oil imports reached
506 million tons in 2019, with a year-on-year growth of 9.5%, and
its external dependence reached 70.8%. In terms of crude oil
consumption, China consumed 696 million tons in 2019, with a
year-on-year growth of 6.8%. With the sustained and rapid
growth of China’s economy, the demand for crude oil import
and consumption is increasing, the fluctuation of crude oil price
has an increasing impact on China.

After years of development, the crude oil market, which is closely
related to the economic development of each country, has formed a
relatively authoritative price system, and its supply and demand as
well as trade are carried out in the global scope. Before the official
launch of Chinese crude futures, West Texas Intermediate (WTI) of
the United States and Brent of the United Kingdom dominated the
pricing system for global oil prices. After 17 years of careful planning,
China’s crude oil futures market was officially listed on the Shanghai
International Energy Exchange on 26 March 2018, denominated in
RMB, and filled the gap of domestic crude oil futures market. Less
than half a year after listing, China’s crude oil futures trading volume
has reached 17 million contracts, accounting for 12% of the global
crude oil futures market volume, and its accumulated trading
volume reached 8.57 trillion yuan, ranking among the top three
in the world. As can be seen from the data, China’s crude oil futures
market is developing rapidly. Up to now, China’s crude oil futures
market has exceeded 6% of the international market share, and the
market activity has been continuously improved, becoming the third
largest crude oil futures variety in the world after WTI and Brent.

China’s oil futures is of great significance to the global oil futures
market. It sets a benchmark for Asian oil futures markets and
provides a channel for Chinese companies to hedge their oil
consumption and avoid risks. At the same time, the
establishment of a crude oil price benchmark level that reflects
the relationship between demand and supply in China and the Asia-
Pacificmarket has filled the gap in the existing international crude oil
pricing system and increased China’s participation in the
international market. However, compared with the mature crude
oil futures market, China’s crude oil futures market, which has been
established for a short time, has many aspects to be improved and
the demand for risk aversion has become increasingly urgent.
Therefore, it is necessary to study the risk status of China’s crude
oil futures market from the perspective of market price fluctuation.

However, traditional risk research models, such as VaR (Value
at Risk), are mainly based on the efficient market hypothesis
(EMH) proposed by Fama. EMH believes that investors can
respond to information rationally and linearly, so market
prices can timely and fully reflect information changes in the
system, that is, prices in the financial market have no long-term
memory, and price fluctuations are unpredictable. However, a lot
of research found that financial market usually shows nonlinear
structural characteristics, and its complex operation mechanism,
which cannot reflect the actual situation of the market, is contrary
to the efficient market hypothesis. Therefore (Altman, 1967),
proposed the nonlinear fractal theory for measuring financial
investment risk. Further (Peters, 1994a), proposed the Fractal
Market Hypothesis (FMH) on the basis of Mandelbrot’s theory.
From the practical point of view, he regarded the capital market as
a complex nonlinear dynamic system with the characteristics of

interaction and self-adaptability. Therefore, FMH, with the
characteristics of interaction and self-adaptability, can better
describe the complexity of the market, analyze the nonlinear
dynamic characteristics of market price fluctuations, measure the
impact of information on prices, and explore the predictability of
the market. A large number of studies also show that fractal
features are indeed universal in financial markets.

Furthermore, with the development of computer technology,
machine learning algorithms, such as Decision Tree, Support
Vector Machine (SVM) and Artificial Neural Network (ANN)
came into being. With the further development of technology, the
integration algorithm, which combines several weak learners into
strong learners, has received more and more attention. The main
ways to synthesize weak learners are bagging, boosting and
stacking. For example, Random Forest is the representative of
bagging algorithm, and Extreme Gradient Boosting (XGBoost) is
a boosting algorithm. Machine learning models have been widely
used in the research of risk prediction due to their outstanding
advantages in dealing with nonlinear complex systems.

Taking China’s crude oil futures market as the research object,
this paper introduces the multifractal feature parameters into the
machine learning model, and carries out risk status recognition
and prediction of China’s crude oil futures market. In the
turbulent economic situation, futures with its unique hedging
function is favored by more and more investors, and has become
a crisis management means to deal with the economic recession.
By predicting the risk of China’s crude oil futures market, relevant
investors can find the potential risk in advance and formulate
preventive and control measures in time, so as to avoid the risk
reasonably and reduce the loss to a large extent.

LITERATURE REVIEW

Existing relevant literaturemainly focuses on four aspects, namely, the
characteristics of crude oil futures, multifractal method, multifractal
spectrum parameters and financial market risk prediction.

The first is to study the risk features of crude oil futures. At
present, more and more scholars study China’s crude oil futures,
China’s crude oil market environment and oil policy. Sun et al.
(2018) used GARCH and TARCH models to study the fluctuation
characteristics of China’s crude oil futures returns rate based on
high-frequency data, and they found that the changes of China’s
crude oil futures returns rate in the current as well as the lag period
were mainly influenced by itself, and the influence coefficient of one
period lag was larger and the influence time was longer. Ji and Zhang
(2019) analyzed the initial characteristics of China’s crude oil futures
market, laying a good foundation for subsequent studies. Li et al.
(2019) proposes a new, novel crude oil price forecasting method
based on online media text mining, with the aim of capturing the
more immediate market antecedents of price fluctuations, the
empirical results suggest that the proposed topic-sentiment
synthesis forecasting models perform better than the older
benchmark models. Liu et al. (2019a) constructed Copula-POT-
CoVaR model to study the Risk Spillover Effect of crude oil market
on BRIC stock markets, and found that there was significant risk
spillover. Özdurak (2021) constructed DCC-GARCH model to
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study the spillover effect of crude oil price on clean energy
investment, and found that with the rise of oil price, renewable
energy investment will also tend to decrease. Weng et al. (2021)
proposed a modeling framework, genetic algorithm regularization
online extreme learning machine with forgetting factor (GA-RFOS-
ELM), to estimate the effects of news during the COVID-19
pandemic on the volatility of crude oil futures which could be
effective and efficient in volatility forecasting of crude oil futures.

The second is to study the multifractal method. Since the
traditional efficient market theory does not conform to the
objective facts, Mandelbrot (Altman, 1967) first proposed the
concept of fractal in the 1970s. On this basis, Peters (1994a)
proposed the fractal market hypothesis (FMH). R/S method was
first proposed byHurst in hydrological analysis in 1951, andwas first
used in the analysis of financial time series by Mandelbrot
(Mandelbrot and Wheeler, 1983) in 1983. However, the research
of Lo (1989) and Peters (1994b), Peters (1996) found that the length
of sample interval and the short-term correlation of samples will
affect the analysis results of R/s method. In order to solve this defect,
Peng et al. (1994) proposed detrended fluctuation analysis (DFA)
when studying the chimeric tissue of DNA, which distinguishes local
correlation from long-term correlation, so as to remove the pseudo
correlation phenomenon, and can effectively analyze the long-term
power-law correlation of unstable time series, which is widely used in
financial time series analysis. On this basis (Kantelhardt et al., 2002),
generalized the DFA method and obtained the multifractal
detrended fluctuation analysis (MF-DFA) method. In 2008,
podobnik and Stanley (Podobnik and Stanley, 2008; Podobnik
et al., 2009) formed detrended cross correlation analysis (DCCA)
on DFAmethod, which expanded it into a method that canmeasure
the long-term correlation of two non-stationary time series. Jiang
and Zhou (2011) and others further improved the MF-DCCA
method and proposed multifractal detrended moving average
correlation analysis (MF-X-DMA) (Wang et al., 2012). Combined
statistical moment with multifractal cross-correlation analysis to test
the cross multifractality between the two sequences. Ruan et al.
(2016) used the price and trading volume data of gold spot and
futures to study the cross-correlation and time-varying
characteristics of price and trading volume. Zhang et al. (2019)
and others studied the multifractal characteristics of bitcoin market
with MF-DCCA, and further analyzed the multifractal correlation
between bitcoin price and other financial market prices. Feng and
Cao (2022) used multifractal detrended cross-correlation analysis
(MF-X-DFA) and multifractal detrended partial cross-correlation
analysis (MF-DPXA) to explore the fluctuation characteristics of
cross-correlation between China and the United States agricultural
futures market before and after canceling the price of West Texas
medium crude oil futures, as well as the impact and cross-correlation
on the market.

The third is to study the multifractal spectrum parameters. In the
field of engineering, multifractals are mostly used to extract the
characteristics of signals, and then the extracted parameters are used
in the research of signal recognition and classification. Li and Xie
(2013) identified the multifractal spectrum characteristics of radar
signals and discussed the identification mechanism of multifractal
spectrum parameters. The empirical study shows that the feature
parameters are effective to recognize signals. Li et al. (2020a) verified

the validity of multifractal spectral parameters by analyzing the
multifractal features of friction signals and quantitatively describing
the friction vibration characteristics under different friction states
through the calculated spectral parameters. In the field of finance,
multifractal parameters have also been widely used. Sun et al. (2001)
found that the main parameter Δf(α) of the multifractal spectrum
was directly related to the daily return rate of Hang Seng Index. In
order to make better use of the statistical information in the
multifractal spectrum (Wei and Huang, 2005), constructed a new
market risk measurement method, which contains the
comprehensive information of the multifractal spectrum
parameters Δα and Δf(α). After theoretical and empirical
research, they believe that the multifractal parameter method is a
powerful tool for studying price fluctuations in financial markets,
from which a large amount of statistical information can be
obtained, which is helpful for us to understand the complexity of
financial markets. Yuan et al. (2009) used the MF-DFA to study the
multifractal features of daily returns of Shanghai Composite Index,
and they also used the range (Δh) and standard deviation (σh) of the
generalized Hurst index to measure the risk of the securities market.
They believe that the greater Δh and σh are, the greater the
multifractal intensity is, and the greater the market risk is. The
empirical results show that this risk measurement index is
reasonable to the Chinese stock market risk measurement. Zhu
and Zhang (2018) analyzed the multifractal structure of China’s
stock market by using the MF-DFA, and they found that the shape
and width of the multifractal spectrum were related to the order.
Through further study, they found that the multifractal parameters
played an important role in risk prediction.

The fourth aspect is the financial market risk prediction
research. At present, the risk prediction models of financial
market can be divided into two categories: one is the statistical
approach, which mainly includes linear models such as
univariate, multivariate and logistic regression. The idea of
multivariate linear early warning model was first proposed by
(Altman, 1967), whose Z-score model is the most classic and
representative linear risk prediction model at present. Dong et al.
(2019) use the CAViaR method to forecast the oil return risks,
and further depict the dynamic and heterogeneous features
during the crisis (or non-crisis) period, as well as in different
markets via DCC-GARCH models. Latunde et al. (2020) uses the
CAPM and some statistical tools (variance, covariance andmean)
to study risks on the expected return of investing in four common
Deutsche Bank (DB) crude oil assets, the result reveals that DTO-
DB Crude oil Double Short has the highest beta risk and highest
expected return. And the higher the risk, the higher the expected
return, and vice versa, that is, the risk is directly proportional to
the expected return. Liu et al. (2019b) extend the Copula-CoVaR
models by introducing the Peak-over-Threshold and construct
the Copula-POT-CoVaR model to investigate the risk spillover
effect from crude oil market to BRICS stock markets. By using the
crude oil market and BRICS stock market data from 2006 to 2016
as the sample, the empirical study results show that: there is a
significant risk spillover from crude oil market to BRICS stock
markets, and the risk of crude oil market explains more than 50
percent of BRICS stock markets’ risk. Li et al. (2021) use the
Conditional Autoregressive Value at Risk models (CAViaR)
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approach to forecast the risk of Bitcoin’s returns, the results show
that Bitcoin’s volatility is significantly related to the volatility of
the crypto-asset’s return and the main determinants of volatility
are speculation, investor attention, market interoperability and
the interaction between speculation and market interoperability.
Li et al. (2020b) measure the return risks of the cryptocurrencies
by using the CAViaR model, the results show that they have
similar risk tendencies, the risk spillover directions are highly
correlative with the market capitalizations of the
cryptocurrencies. However, the statistical approach, which
mainly includes linear models, is difficult to describe the
nonlinear relationship in the financial market. The second
category is the machine learning approach. With the rapid
development of machine learning algorithms, many scholars
begin to combine computer technology with relevant
knowledge of financial markets to do interdisciplinary research
on the risk prediction of financial markets, with algorithms such
as Support Vector Machine (SVM) and Extreme Gradient Boost
(XGBoost). Tam and Kiang (1990) compared the neural network
model and the traditional statistical model in predicting the risks
of banks, and he found that the prediction accuracy of the BP
(back propagation) neural network was higher. Later, in order to
make the results more reliable (Tam, 1991), compared the
prediction results of the BP neural network with those of
other algorithms (such as logistic regression, decision tree and
feed-forward artificial neural network), and he found that the
prediction effect of the BP neural network was the best.
Uthayakumar et al. (2020) proposed a cluster-based
classification model, including improved K-means clustering
and fitness-scaling chaotic genetic ant colony algorithm
(FSCGACA) classification model to predict financial crises.
Zhao et al. (2018) used least squares support vector machine
(LSSVM) to predict systemic financial risks, and Particle Swarm
Optimization (PSO) was used to optimize the parameters of the
model, and the results show that LSSVM is better at accurate
prediction and generalization. Ma and Lv (2019) took the
objective function of machine learning algorithms such as
support vector machine and neural network as the basis
function to carry out the weighted average, and used the
constructed Multi-Lingual Information Access (MLIA) model
to predict the credit risk of Internet finance. The empirical results
show that this model has a higher prediction accuracy compared
with logistic regression. Li and Quan (2019) used BP neural
network to predict the financial risks of manufacturing
enterprises, optimized the model parameters by using
improved particle swarm optimization (IPSO), and established
a financial risk prediction model based on the IPSOBP model.

Throughout the above literature, although the existing literature
has carried out a large number of studies on the multifractal theory
and analysis methods, multifractal spectrum parameters and risk
prediction models, there is still room for further research. ① Since
China’s crude oil futuresmarket is an emergingmarket, there are few
studies on it at present. Most of the existing research focus on price
fluctuations of China’s crude oil futures, or comparison with other
markets through econometric models by studying the co-integration
relationship, Granger causality relationship or linkage effect between
markets. Although (Wang et al., 2011) introduced the multifractal

method into the research of China’s crude oil futures market, they
did not study the risk of this market from the perspective of
multifractal spectrum parameters. ② A large number of existing
studies focus on the confirmation and generation mechanism of
multifractal features of financial markets, but the achievements of
fractal theories applied to financial markets are relatively scattered.
Although some scholars have substituted the fractal indirect index
(fractal spectral parameter) for variance to measure the financial
market risk, there are few studies that combine the multi-fractal
parameters with clustering algorithm to carry out pattern
recognition of market risk. ③ Although the machine learning
method has been introduced into the research of financial market
risk prediction, it mainly focuses on the analysis andmeasurement of
the overall risk of the market, instead of using the multi-fractal
parameters to predict the risk status of the financial market from the
perspective of the multifractal features. In this paper, therefore, with
China’s crude oil futures as the research object, we employ the
multifractal theory framework and introduce multifractal feature
parameters into the machine learning model to identify and predict
China’s oil futures market risk, so as to provide relevant investors a
more effective reference for risk management by helping them
identify potential risks in advance and promptly formulate
prevention and control measures.

The marginal contribution of this paper is mainly reflected in the
following two aspects. First, this paper studies the multifractal
features of China’s crude oil futures market from the perspective
of high frequency. This paper calculates the intra-day multifractal
spectrum parameters through the improved EMD-MFDFAmethod,
and combines it with the unsupervised clustering algorithm to
identify as well as define the risk status of the market in each
trading day. Second, this paper adopts SVM and XGBoost as well as
their improved algorithms based on sample imbalance issue to
predict the risk status of China’s crude oil futures market, so that
relevant investors can identify potential risks in advance and
formulate prevention and control measures in time.

The overall framework of this paper is as follows: Section 3
analyzes the risk characteristics of China’s crude oil futures
market, providing sample data for the risk prediction of
energy futures market; Section 4 identifies and measures the
risk of China’s crude oil futures market; Section 5 is about the risk
prediction of China’s crude oil futures market. The main
conclusions of this paper are in Section 6.

RISK FEATURES OF CHINA’S CRUDE OIL
FUTURES MARKET
Data Sources and Basic Analysis of China’s
Crude Oil Futures Market
This paper selects China’s crude oil futures issued in March 2018
as the research object, and the sample data time span is from 26
March 2018 to 1 March 2021, with a total of 73,575 5-min high-
frequency trading records of 712 trading days (excluding
weekends and holidays; data are from Shanghai Futures
Exchange). Data collection starts at 21:00 p.m. on the day
before trading and ends at 15:00 p.m. on the day of trading,
recording once every 5 min, then 111 pieces of data can be
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collected on each trading day (Note: the trading time of each
trading day is 21:00-02:30, 09:00-11:30, 13:30-15:00).

This paper defines the logarithmic return rate as:
Return � lnP(t + 1) − lnP(t), where P(t) represents the
closing price of China’s crude oil futures market at time t.
Figure 1 shows the fluctuation situation of the closing price of
China’s crude oil futures and the corresponding return rate. As
can be seen from the figure, the price of China’s crude oil futures
dropped significantly at the end of 2018, even erasing all the
gains since the beginning of the year. The possible reason for
this situation is that the growth of international crude oil
demand is weak, but the supply is greatly increased, leading
to the imbalance between supply and demand. Secondly, the
rapid rise of oil price at the early stage has a negative impact on
economy and society (high oil price leads to economic recession,
which in turn leads to a series of social unrest), thus leading to
the continuous decline of oil price. Similarly, from the end of
2019 to the beginning of 2020, affected by the global COVID-19
epidemic, the export and storage of crude oil were blocked,
leading to a continuous and significant decline in the oil price,
and the corresponding returns fluctuation increased
significantly compared with other periods, and there was an
obvious fluctuation aggregation phenomenon.

In addition, Table 1 displays the descriptive statistics of
sample data. The series skewness and kurtosis shown in the
table are obviously not zero, indicating obvious non-normality of
both the price series and the return rate series. Specifically, the
skewness values of price and returns are both less than 0, and the
kurtosis values are greater than 0. According to the skewness
value, the distribution of the return rate series is slightly to the left.
The kurtosis value indicates that the return rate series presents the
characteristic of sharp peak and thick tail. What’s more, the
Jarque-Bena (JB) statistic is used to test the normality of the
sequence, and it is found that the JB statistic is relatively large,
which indicates that the hypothesis of the sequence obeying
normal distribution is rejected at the 1% confidence level.

Multifractal Features of China’s Crude Oil
Futures Market
Although the MF-DFA method can effectively analyze the
multifractal features of non-stationary time series, there are
still some shortcomings in this method. Firstly, the MF-DFA
method requires the time series to be detrended. Specifically, it
is found that when the MF-DFA method is used to segment the
whole sequence, the segmented interval length is not always an
integral multiple of the original sequence length, so the
segmented interval is not always continuous. This
uncertainty will lead to the discontinuity of the fitting
polynomials of adjacent segmented intervals, which may
produce new pseudo-random fluctuation error, and then
make the fluctuation function produce a certain deviation,
resulting in the distortion of the scale index. Therefore, in this
paper, the sliding-window method is adopted to improve the
discontinuity problem of the segmented interval, so that the
segmentation of the non-overlapping interval is optimized into
continuous overlapping interval, and the error caused by the
discontinuity of the segmented interval is avoided. Secondly, in
the MF-DFA method, the polynomial fitting method is used to
estimate the local trend of the sequence, and each interval
should be de-trended. But the polynomial fitting needs to
determine the order of polynomial artificially in advance,
and there is no certain standard for the choice of order, so
it is subject to great random interference. Therefore, this paper
combines the empirical mode decomposition (EMD) with
multifractal detrended fluctuation analysis to improve the
shortcomings of MF-DFA. The improved EMD-MFDFA
method eliminates the trend term extracted by empirical
mode decomposition from the original series, so as to
eliminate the trend in the time series and avoid the error
caused by the unfixed order of polynomial fitting.

To sum up, this paper combines the advantages of the sliding-
window technology and the EMDmethod to improve the original

FIGURE 1 | Time series of China’s crude oil futures market price and return rate.
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MF-DFA method, and uses the improved EMD-MFDFA method
to analyze the multifractal features of the return rate series of
China’s crude oil futures market, which are shown in Figure 2.

The following conclusions can be drawn from Figure 2:

① Figure2A shows the double logarithm relationship between
the scale s and the fluctuation function Fq(s) (q-order wave
function) at different values of q. It is obvious that when s
increases to a certain extent, the fluctuation function Fq(s)
increases roughly linearly, which indicates that the return rate
series of China’s crude oil futures market has obvious power-
law correlation and long-term correlation. It should be noted

that the above linear relationship changes when s = 23, and
that 23 corresponds to about 1 month, which is consistent with
the results of most financial markets.
② As is known to all, when the value of h(q) (Generalized
Hurst index) changes with the value of q, the sequence will
show a multifractal feature, otherwise, it will show a single
fractal feature. As can be seen from Figure 2B, when the value
of q changes from -10 to 10, the return rate series h(q)
decreases from 0.7932 to 0.2748, indicating that the return
rate series of China’s crude oil futures market has obvious
multifractal features. Specifically, when the order q is a large
positive number, it reflects the behavioral information of large

TABLE 1 | Descriptive statistics of data.

Mean Maximum Minimum Standard Deviation Skewness Kurtosis JB statistics

Price 408.02 597.60 209.70 87.88 −0.46 1.99 5785.73
Returns rate −6.99E-07 0.09 −0.09 0.00 −0.11 302.11 2.74E+08

FIGURE 2 | Multifractal features analysis of China’s crude oil futures market with the EMD-MFDFA.
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fluctuation components of the price series. In this case,
h(q)< 0.5, which indicates that the large fluctuation
presents anti-persistence characteristics and is more prone
to trend changes. However, when the order number q is small
or negative, the small fluctuation component of the price series
is amplified, and at this point, h(q)> 0.5, indicating that the
small fluctuation shows a certain degree of persistence. In
addition, when q � 2, h(q) at this time is the traditional Hurst
index. According to the experimental results, h(2) � 0.5320,
which is greater than 0.5, indicating that the market has long-
term memory characteristics. Therefore, China’s crude oil
futures market has relatively obvious long-term memory
characteristics.
③ It can also be seen from Figure 2C that there is an obvious
nonlinear relationship between the Renyi index τ(q)
(Multifractal scaling index) and q of the return rate series
of China’s crude oil futures market; the image is presented as
an increasing convex function, which further verifies the
multifractal features of the series.
④ Figure 2D shows the multifractal spectrum of the sequence.
It can be seen from the figure that the multifractal spectrum
changes with α, showing an obvious arch shape, and the values
of α are between −0.8134 and −0.1142, indicating the existence
of multifractal features in this sequence.

The above analysis of the generalized Hurst index and
multifractal spectrum is only a direct and qualitative
analysis on multifractal features. On this basis, we also need
to carry out quantitative analysis to accurately describe the
multifractal degree. Because the multifractal parameters Δh
and Δα can reveal the fluctuating state of the series, and
measure the intensity of the multifractal features of the
series, we use these two indicators to quantify the
multifractal degree of the trading rate series of China’s
crude oil futures market. The calculation formulas of Δh
and Δα are as follows:

Δh � max[h(q)] −min[h(q)] (1)
Δα � max[α] −min[α] (2)

Since Δh can be used to reflect the fluctuation mode and
relative amplitude of the series, and Δα represents the dispersion
degree of the trend distribution of the financial time series, they
can be used to measure the absolute range of the series
fluctuation. As can be seen from Table 2, the values of the
multifractal parameters Δh and Δα are 0.5184 and 0.6993,
respectively, indicating that the relative as well as the absolute
amplitude of the fluctuation change of this series is large, that is,
the multifractal degree of the series is large.

RISK IDENTIFICATION AND
MEASUREMENT OF CHINA’S CRUDE OIL
FUTURES MARKET

Risk Identification of China’s Crude Oil
Futures Market Based on Fractal
Characteristics
The price fluctuation of China’s crude oil futures market has
obvious multifractal characteristics. On this basis, this paper
divides the whole sample data into daily trading data and
calculates the daily multifractal spectrum parameters, so as to
effectively identify the daily risk pattern of the market. In order to
make the research more rigorous, this paper first analyzes the
multifractal features of each trading-day series with the EMD-
MFDFA by selecting a trading day at random, and the results are
shown in Figure 3.

Taking the 5-min high-frequency trading data on 24May 2018
as an example, the double logarithm graph and multifractal
spectrum are drawn. It can be seen from Figure 3A that the
daily return rate series of China’s crude oil futures market has
obvious power-law relationship under different q values, that is, it
has multifractal features. In addition, the multifractal spectrum,
Figure 3B, also shows an obvious arch shape, which is consistent
with the overall multifractal results. It should be noted that other
trading days have similar performance. Therefore, we find that
the daily price fluctuation of China’s crude oil futures also has
multifractal features. It is worth mentioning that the multifractal
parameters are calculated based on the 5-min high-frequency
data of the day’s trading, so they can cover most of the trading
information of the day. Compared with the return rate
corresponding to the daily closing price, the risk state defined
by the multifractal parameters is more real and reliable.
Therefore, this paper further analyzes the daily multifractal
spectrum parameters.

The definition of Δα, the width of the fractal spectrum, has
been given above, and the corresponding parameter Δf is also
defined. According to the partition function method, αmin and
αmax represent the minimum probability measure and the
maximum probability measure respectively. The larger Δα is,
the wider the multifractal spectrum is, indicating that the price
distribution of the day is more uneven and the absolute range of
fluctuation is greater. Due to the same probability measure of
αmin and αmax, there exist corresponding parameters f(αmin)
and f(αmax). f(αmin) represents the possibility that the
sequence trend is above the average, and f(αmax) represents
the possibility that the sequence trend is below the average, so
Δf � f(αmin) − f(αmax) can be used to measure the uniformity
and complexity of the sequence in a certain period of time. Since
Δf has its own sign, when Δf> 0, it indicates that the price stays
above the average for a long time, and investors believe that the
price trend is good; otherwise, when Δf< 0, prices are below the
average, investors perceive the market as weak. Generally
speaking, the larger the absolute value of Δf is, the more
uneven the time series distribution is and the more complex
the fluctuation state is.

TABLE 2 | Multifractal parameters Δh and Δα.

Max min Δ

h 0.7932 0.2748 0.5184
α −0.1142 −0.8134 0.6993
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To sum up, Δα can be used to measure the absolute amplitude
of price fluctuation in a day, and Δf can be used to measure the
relative trend height and complexity of price fluctuation.
Therefore, this paper will further analyze the daily multifractal
characteristics of the return rate series of China’s crude oil
futures, so as to provide data support for accurately defining
the normal state and risk state of the market. After calculating the
multifractal spectrum parameters of each trading day, the scatter
diagram is drawn, as shown in Figure 4.

Obviously, the data distribution in the lower left corner of the
figure is relatively concentrated. In combination with the above
theoretical analysis, it can be seen that the larger the values of Δα
and Δf are, the greater the fluctuation of the sequence is and the
higher the complexity of the fluctuation is, and vice versa.
Therefore, the sample points in the lower left corner of
Figure 4 indicate that the market is in a normal state on the
trading day. In order to make the identification of market daily
risk status more accurate, this paper introduces the unsupervised
clustering algorithm, without setting the threshold value for Δα

and Δf, the impact of artificial random interference on risk
identification is avoided.

In this paper, the K-means clustering and the Gaussian
Mixture Model (GMM) are used to cluster the parameters Δα
and Δf calculated above.

In short, the GaussianMixture Model (GMM) can be regarded
as an optimization of the K-means algorithm. It is not only a kind
of technical means commonly used in industry, but also belongs
to a generation model. The GMM is to mix the probability
distribution of multi-dimensional Gaussian model, so as to fit
different sample data sets, so it has strong generalization ability
and good fitting effect. In the K-means algorithm, the probability
that the sample belongs to each cluster is qualitative, only “yes” or
“no,” and the corresponding probability value cannot be output.
The GMM method, on the other hand, gives the probability of
these sample data points being assigned to each cluster, and it can
assign samples to different clusters according to artificial
threshold values. Therefore, the information obtained by the
GMM method is more. Figure 5 shows the risk pattern
recognition results with K-means clustering and GMM
clustering algorithms for China’s crude oil futures market. It is
also obvious from the clustering results in the figure that the
results gathered by the GMM are more accurate and more in line
with the actual situation of the market. Therefore, this paper uses
the GMM algorithm to identify the risks of China’s crude oil
futures market and defines the market risk status into two
categories: the normal status and the risk status, providing a
label basis for subsequent risk prediction model.

Selection of Risk Feature Indicators
After obtaining the risk status indicator variables of China’s crude
oil futures market, it is also necessary to select appropriate feature
indicator variables for the market risk prediction model. Since
there are many factors that affect market volatility, in order to get
as much information as possible, this paper selects the risk feature

FIGURE 3 | Multifractal analysis of the return rate of China’s crude oil futures market under day granularity (taking 2018/05/24 as an example).

FIGURE 4 | Scatter diagram of Δα ~ Δf .
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indicators from two aspects: basic indicators and technical
indicators.

To be specific, This paper selects eight basic indicators (open,
high, low, close, volume, settle, pre_settle, return) and 16
technical indicators (MA5, MA10, MACD, SAR, BOP, ATR,
MFI, MOM, K, D, J, ROCP, CCI, RSI, OBV, WILLR) as the
eigenvectors of the prediction model. Among them, most of the
technical indicators in this paper are calculated from the
quantified transaction package Ta-Lib in Python. The basic
meanings of indicators are shown in Table 3.

Data Processing
Through the above analysis, this paper transforms and processes
eight basic indicators to calculate 17 technical indicators,
obtaining the feature indicator variables of China’s crude oil
futures market in each trading day from 26 March 2018 to 1
March 2021; then, this paper combines the variables with the risk
pattern recognition results (label index) in Section 4.2 to form a

sample data set of risk prediction model. The feature indicators
and the label indicators can be expressed as x(i)

t and yt

respectively. Specifically, x(i)
t is the i-th feature indicator

corresponding to trading day t; yt indicates the risk status
indicator corresponding to the t-th trading day, and its value
is 0 or 1 (where 0 indicates that the market is in a normal state and
1 indicates that the market is in a risk state). Therefore, the feature
indicator variables and the status indicator variables constitute
the sample point (x(i)

t , yt) of this paper. And because this paper is
to predict the risk of China’s crude oil futures market, that is, to
predict the status indicator variables of the next moment through
the feature indicator variables of the current moment, then the
sample data set used in the prediction model is (x(i)t , yt+1).

Because the selected feature indicators have different orders
of magnitude, if they are not processed, the information
extraction of the data will be incomplete, and the effect of
the model will also be greatly affected. In order to narrow the
magnitude gap among feature data and improve the accuracy
of model prediction, this paper adopts the Min-Max method to
normalize the sample feature data, that is, to make linear
changes to the original feature data so that the processed
data results can be mapped to a unified interval. The
specific formula is as follows:

x(i)′ � x(i) −min(x(i))
max(x(i)) −min(x(i)) (3)

After data normalization, the prediction accuracy and
convergence speed of the model can be improved.

Screening of Risk Feature Indicators
The prediction model is a complex model with multiple
indicators. Only by accurately extracting the feature vectors
that affect market risks can we make the risk prediction more
accurate. It is worth noting that many technical indicators are
calculated based on the basic indicators, so the feature indicators
we select may have obvious correlation between each other, and
the information contained in one indicator may be relatively
similar with another. Therefore, choosing more indicators will
not make the model better, but will reduce the learning efficiency
and increase the time cost of the model. At the same time, there
may be some unclassifiable feature indicators in the initial ones.
Thus, in order to simplify the complexity of the model and

FIGURE 5 | Risk identification of China’s crude oil futures market by K-means clustering (left) and GMM clustering (right).

TABLE 3 | Risk feature indicators.

Basic indicators Indicators explanation

open Opening price
high Highest price
low Lowest price
close Closing price
volume Trading volume
settle Settlement price
pre_settle Pre settlement price
return Logarithmic rate of return

Technical indicators Indicators explanation

MA Moving average
MACD Moving average convergence divergence
SAR Stop and reverse indicator
BOP Balance of power indicator
ATR Average true range indicator
MFI Money flow index
MOM Momentum index
KDJ Stochastic oscillator indicators
ROCP Return of capital indicator
CCI Commodity Channel Index
RSI Relative strength index
OBV On balance volume
WILLR Williams %R

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 7410189

Guo et al. Crude Oil Risk Prediction

194

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


improve its prediction efficiency and accuracy, we need to further
screen the selected initial feature indicators, so that the selected
ones can contain the information of the majority of features, and
achieve the effect of dimensionality reduction and denoising.
Therefore, in order to extract the representative risk
measurement indicators of China’s crude oil futures market
from the initial indicators, this paper adopts the decision tree
algorithm and calls the feature_importances interface in the
decision tree model to obtain the importance of the features.
This method mainly measures whether a feature is important or
not from two aspects: first, the total number of features split;
Second, the total (average) information gain from features. The
more the total number of feature splits or the greater the total
(average) information gain, the higher the importance of the
feature is, and vice versa. In this paper, information gain will be
used to calculate the importance of each feature, and the results
are shown as follows:

In the decision tree construction, the larger the information
gain of a feature, the stronger the ability of classification, that is,
the higher the importance of the feature. Therefore, we need to
select features with large information gain from the original
features as the feature indicator variables. As can be seen from
Figure 6, the top 10 variables of information gain are ATR, RSI,
OBV, J, return, CCI, MACD, vol, MA_10 and MFI, so this paper
takes them as the feature indicators in the risk prediction model
of China’s crude oil futures market.

RISK PREDICTION OF CHINA’S CRUDE OIL
FUTURES MARKET

Risk Prediction Evaluation Criteria
After the above data processing, this paper obtained a complete
data set for risk prediction, including 10 characteristic indicators
and label indicators obtained by multi-fractal spectral parameter

clustering. According to the statistics, among the 691 trading days
included in the sample, 550 trading days are in the normal state
and 141 trading days are in the risk status. The proportion of risk
samples and normal samples is close to 1:4, so the samples are
unbalanced. Therefore, the accuracy of classification can not be
used as an evaluation criterion of the quality of the model, and
some other evaluation criteria are necessary to measure the
training ability and generalization ability of the classification
model. Based on the confusion matrix, this paper calculates
two comprehensive evaluation indexes as model evaluation
criteria to solve the problem of sample imbalance in this
paper. The specific meaning of confusion matrix is shown in
Table 4:

According to the results of the confusion matrix, the accuracy,
precision, recall rate and specificity of the risk prediction model
can be calculated. The specific meanings and formulas are as
follows:

Accuracy: The proportion of all correctly predicted samples to
the total number of samples.

Accuracy � TP + TN
TP + FP + TN + FN

(4)
Precision: the proportion of true minorities in all samples
predicted to be minorities.

precision � TP
TP + FP

(5)
Recall rate: The percentage of a sample that is actually a minority
category that is predicted to be a minority category.

FIGURE 6 | The importance ranking of feature indicator variables based on information gain.

TABLE 4 | The confusion matrix table.

Actual minority class Actual majority class

Actual minority class True Positive (TP) False Negative (FN)
Actual majority class False Positive (FP) True Negative (TN)
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Recall � TP
TP + FN

(6)
Specificity: a measure of how many samples that are actually in
the majority class are correctly predicted to be majority.

Specificity � TN
TN + FP

(7)

To sum up, there is a trade-off between accuracy and recall
rate, and the balance between the two means that we should
try not to miss the majority class while capturing the
minority. Therefore, in order to meet the above
requirements, the harmonic mean of the two is calculated
as a comprehensive index and expressed by F1. According to
the characteristics of the harmonic mean which tends to favor
the index with a smaller value, when the accuracy and recall
rate are both large, the closer the value of F1 is to 1, the better
the classification effect of the model. The specific formula of
F1 is as follows:

F1 � 2
1

Precision + 1
Recall

� 2pPrecisionpRecall
Precision + Recall

(8)

In addition, according to the calculation formulas of recall
rate and specificity, recall rate can be used to measure the
classification accuracy of the minority class, while specificity
can represent the classification accuracy of most classes.
Similarly, in order to take both recall rate and specificity
into account, the geometric mean of both are constructed as
a comprehensive evaluation index G, that is, only when both
recall rate and specificity are high, the corresponding G value
will be relatively ideal.

G �
���������������
RecallpSpecificity

√
(9)

To sum up, F1 and G, the two comprehensive evaluation
indexes, can be used to measure the prediction ability of the
model for samples of the minority class and the comprehensive
prediction ability for two classes of samples, respectively. The
larger the F1 is, the better the prediction ability of the model is in
predicting the minority class samples, and vice versa. If G is large,
it indicates that the model has high accuracy in predicting both
classes of samples. Therefore, this paper measures the effect of the
classification model of unbalanced samples by using two
comprehensive evaluation indexes, F1 and G, which are
calculated from the confusion matrix.

Selection of Risk Prediction Methods and
Comparison of Prediction Results
Based on the sample data set constructed by the feature indicator
variables and the label indicator variables constructed above, and
considering the advantages of the support vector machine (SVM)
model in dealing with such problems, this paper firstly uses the
SVM model to forecast the risks of China’s crude oil futures
market. The empirical process is completed in Python, mainly
using Numpy, Pandas, Sklearn and other libraries. At the same

time, in order to make the experimental prediction results more
accurate, this paper also uses the five-fold cross validation
method, and adopts the StratifiedKFold sampling method
when dividing the training set and the test set to ensure that
the proportion of normal samples and risk samples in the training
set and the test set is consistent with the original data set. In the
empirical study, the function SVC in Sklearn library, which is
used to classify support vectors, is used to process the sample data
in this paper. Considering the imbalance of samples in this paper,
the class_weight parameter in the SVC function is set to balanced
to make the results of the model more accurate.

After empirical adjustment, the values of F1 and G are 0.1356
and 0.1387, respectively, both of which are relatively small,
indicating that the prediction ability of the model is poor.
Although the class_weight parameter has been processed, the
decision hyperplane of SVM will still automatically bias to the
minority class when processing asymmetric data sets, which will
result in weak prediction ability of the model and failure to
accurately identify the risk samples in this paper. Therefore, twin
support vector machine (TWSVM) is introduced in this paper on
the basis of SVM. One decision hyperplane in SVM is extended
into two decision hyperplanes, making each hyperplane close to
the sample points of this class and far away from the sample
points of the other class, so as to overcome the defect of SVM
when dealing with the problem of sample imbalance.

The Twin Support Vector Machine (TWSVM) method was
first proposed by Khemchandani and Chandra (2007) Its basic
idea is similar to the traditional SVM algorithm. It transforms a
large classification problem into two small classification
problems, so that the constraints of each quadratic
programming problem become half of the original.
Specifically, two non-parallel decision hyperplanes are
determined by solving two related SVM classification
problems, and samples are classified according to the closest
decision hyperplane of a given sample point. This improvement
not only solves the error caused by the sample imbalance to some
extent, but also improves the generalization ability and iteration
speed of the model.

In order to make the prediction results of the two models
comparable, the same training set and test set are also adopted in
TWSVM, and the prediction results of SVM and TWSVM are
compared, as shown in Table 5:

It can be found from the results in Table 5 that the F1 and G
values of the TWSVM in the test set are significantly higher than
those of traditional SVM model, that is, the prediction ability of
the TWSVMmodel for samples of theminority class as well as the
comprehensive class are better than that of SVM, indicating that
TWSVM can effectively solve the problem of sample imbalance to
some extent, and has high prediction accuracy.

TABLE 5 | Comparison of prediction results of SVM and TWSVM.

Model F1 G

SVM (RBF) 0.1356 0.1387
TWSVM (RBF) 0.3860 0.6425
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Risk Prediction Algorithm Selection and
Prediction Results Comparison
For the problemof sample imbalance,most existing studies start from
the data set level and solve the sample imbalance by over-sampling
and under-sampling. However, over-sampling will lead to the
problem of over-fitting, and under-sampling will lose important
information in the data, so they are not advisable. At the
algorithm level, in addition to changing the decision-making ideas
of the algorithm (such as the TWSVMmethodmentioned above), we
can start from the loss function of the algorithm. Lin et al. (2017)
introduced the Focal loss function and weighted loss functions on the
basis of XGBoost, an extreme gradient lifting algorithm proposed by
Chen Tianqi, and proposed an algorithm of Imbalance- XGBOOST
for unbalanced samples. On this basis, Wang et al. (2020) derived the
theory in detail, and verified that the method could effectively solve
the problem of sample imbalance through practical application, and
expanded the use scenarios of XGBoost. For the convenience of
understanding, two loss functions used in the improved algorithm are
listed. It should be noted that since this paper is aimed at classification
problems, the activation functions are all sigmoid functions.

For the focal loss function:

Lfocal � −∑m
i�1
[yi(1 − ŷi)γlog(ŷi) + ŷγi (1 − yi)log(1 − ŷi)] (10)

For the weighted loss function:

Lweighted � −∑m
i�1
[αyi log(ŷi) + (1 − yi)log(1 − ŷi)] (11)

Where yi is the actual label; ŷi � 1
1+exp(−zi), α, γ are parameters.

In the empirical study of this section, this paper mainly calls the
integrated libraries such as Sklearn and Imbalance-XGboost in
Python to predict the risks of China’s crude oil futures market.
Similarly, the samples used in this section are the same as those in the
previous section, and the training set and the test set are also the
same. When adjusting the parameters of the model, GridSearch is
used to optimize the parameters of the above loss functionwithin the
range of (Altman, 1967; Li et al., 2019), and the optimal parameters
(α � 3, γ � 1.5) are returned through the best_estimator_ interface.
Further, we compared the values of F1 and G of XGBoost and its
improved models under the optimal parameters, and the results are
shown in Table 6.

According to the empirical results, both F1 and G values of the
original XGBoost are low, indicating that the non-equilibrium
samples have a great impact on the prediction effect of the
XGBoost algorithm. After the improvement of its loss function,
the values of F1 andG are significantly improved, andwhen the focal
loss function is used, the F1 and G of Focal-XGBoost are the best,
indicating that Focal-XGBoost could effectively solve the problem of

sample imbalance existing in this paper and improve the prediction
accuracy of the model.

CONCLUSION

This paper takes the return rate series of China’s crude oil futures
market as the research object, and uses the EMD-MFDFAmethod to
study the multifractal characteristics based on 5-min high-frequency
trading data. At the same time, themultifractal analysis is carried out
on 111 trading data generated in each trading day, and the calculated
daily multifractal spectral parameters are used to analyze the risk
status of each trading day. The unsupervised clustering algorithms
K-means and Gaussian Mixture Model (GMM) are further used to
cluster the obtained spectral parameters. Each trading day is
identified as the risk status or the normal status, and the
identified risk status is used as the label data and combined with
the corresponding technical indicators. SVM, XGBoost and their
improved algorithms are used to predict the risks of China’s crude oil
futures market, Based on the calculation results of confusion matrix,
the prediction effects of each model are compared, and the optimal
model is selected to predict the risks of China’s crude oil futures
market, so that relevant investors can identify potential risks in
advance and formulate prevention and control measures in time.
The following conclusions are drawn:

① There are obvious multifractal characteristics in the return
rate series of both China’s crude oil futures market and its
single trading day, and the calculated daily multifractal
parameters can effectively show the fluctuation of the series.
② Due to the imbalance of sample data, twin support vector
machine (TWSVM) model has better prediction ability than
the traditional support vector machine (SVM) model for the
risk prediction of China’s crude oil futures market.
③ The XGBoost algorithm has a great impact on the risk
prediction, and the Focal-XGBoost is better for China’s crude
oil market risk prediction.
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