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The preprocessing of functional magnetic resonance imaging (fMRI) data is necessary
to remove unwanted artifacts and transform the data into a standard format. There are
several neuroimaging data processing tools that are widely used, such as SPM, AFNI,
FSL, FreeSurfer, Workbench, and fMRIPrep. Different data preprocessing pipelines yield
differing results, which might reduce the reproducibility of neuroimaging studies. Here,
we developed a preprocessing pipeline for T1-weighted structural MRI and fMRI data
by combining components of well-known software packages to fully incorporate recent
developments in MRI preprocessing into a single coherent software package. The
developed software, called FuNP (Fusion of Neuroimaging Preprocessing) pipelines, is
fully automatic and provides both volume- and surface-based preprocessing pipelines
with a user-friendly graphical interface. The reliability of the software was assessed
by comparing resting-state networks (RSNs) obtained using FuNP with pre-defined
RSNs using open research data (n = 90). The obtained RSNs were well-matched with
the pre-defined RSNs, suggesting that the pipelines in FuNP are reliable. In addition,
image quality metrics (IQMs) were calculated from the results of three different software
packages (i.e., FuNP, FSL, and fMRIPrep) to compare the quality of the preprocessed
data. We found that our FuNP outperformed other software in terms of temporal
characteristics and artifacts removal. We validated our pipeline with independent local
data (n = 28) in terms of IQMs. The IQMs of our local data were similar to those
obtained from the open research data. The codes for FuNP are available online to
help researchers.

Keywords: functional magnetic resonance imaging, data preprocessing, volume- and surface-based
preprocessing, fully automated software, fusion of existing software

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a useful tool for exploring brain functions non-
invasively. The preprocessing of raw fMRI data is an essential step before performing further
analyses because of the following reasons. First, fMRI measures spontaneous fluctuations of blood
oxygen-level dependent (BOLD) signals that are related to neuronal activities. However, BOLD
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signals contain non-neuronal contributions, such as head
motion, physiological contributions, tissues outside the scope of
interest, and MRI-induced artifacts, as well as neuronal signals
(Murphy et al., 2013; Bright and Murphy, 2015; Caballero-
Gaudes and Reynolds, 2017). The non-neuronal components
in BOLD signals complicate the interpretation of fMRI signals.
Secondly, the quality of fMRI data largely depends on the
image acquisition parameters used. Different MRI data might
have a different range of intensity values, matrix sizes, and
orientations depending on the acquisition parameters used.
Thus, preprocessing steps for fMRI data are required to handle
these issues.

In previous studies, researchers have developed freely available
open-source neuroimaging data preprocessing tools, such as
statistical parametric mapping (SPM)1, analysis of functional
neuroimages (AFNI) (Cox, 1996), FMRIB software library (FSL)
(Jenkinson et al., 2012), FreeSurfer (Fischl, 2012), Workbench
(Marcus et al., 2013), and fMRIPrep (Esteban et al., 2019).
These are widely used software tools, but each one of them
employs a different strategy for data preprocessing. SPM and
FSL provide fully automated graphical user interface (GUI)-
based preprocessing pipelines and are suitable for volume data.
FreeSurfer is suitable for surface data and provides a fully
automated command line-based pipeline. AFNI and Workbench
process both volume and surface data, but they do not provide
a fully automated pipeline in a user-friendly interface. Users
need to rearrange different functions in these disparate software
tools if they seek to implement automatic data preprocessing.
Different data preprocessing strategies across different software
packages might yield differing results, which might reduce the
reproducibility of the neuroimaging studies. The fMRIPrep is a
recent development incorporating many of the state-of-the-art
MRI preprocessing steps.

There are many steps in a given preprocessing pipeline,
including field inhomogeneity correction, motion correction,
registration, and segmentation steps. Many of these steps are
standardized, but some of them are still being actively developed
and refined to better preprocess fMRI data. For example,
many researchers argue that cortical signals are better handled
via surface-based approaches, while sub-cortical signals are
better handled via volume-based approaches (Glasser et al.,
2013, 2016a,b). Data-driven approaches, such as independent
component analysis (ICA), to identify unwanted signals are being
increasingly adopted (Salimi-Khorshidi et al., 2014; Pruim et al.,
2015a,b). Time-series volume data with large head movements
are sometimes removed based on frame-wise displacement (FD)
(Power et al., 2012; Damaraju et al., 2014; Yeo et al., 2015). To
the best of our knowledge, no single software package has all
the recent developments fully incorporated. Thus, neuroimaging
researchers are forced to integrate different components of
various software packages if they seek to adopt all the recent
developments in fMRI preprocessing.

Here, we propose a novel software for fMRI data
preprocessing, named FuNP (Fusion of Neuroimaging
Processing) pipelines, a wrapper software that combines

1http://www.fil.ion.ucl.ac.uk/spm/

components of existing software tools (i.e., AFNI, FSL,
FreeSurfer, and Workbench) to fully incorporate recent
developments in MRI preprocessing. Such wrapper software
might be of practical impact for researchers with limited data
processing background. Our software consists of preprocessing
steps for structural (T1-weighted MRI) and functional (fMRI)
data. We assessed the reliability of our software by comparing
resting-state networks (RSNs) obtained using FuNP with pre-
defined RSNs because it is difficult to obtain the ground truth
of the preprocessing results. In addition, the quality of the
preprocessed data was assessed using the image quality metrics
(IQMs) proposed in the previous paper (Esteban et al., 2017).
The major advantages of our software are as follows. FuNP
can handle both volume- and surface-based preprocessing. The
software is fully automated and has a user-friendly GUI.

MATERIALS AND METHODS

FuNP provides two different types of fMRI preprocessing
steps: (1) volume-based and (2) surface-based preprocessing
pipelines. Both preprocessing pipelines include steps to process
structural (T1-weighted MRI) and functional (fMRI) data. In
the volume-based pipeline, data are preprocessed in 3D volume
space. Volume-based analysis has been widely adopted in many
neuroimaging studies. In the surface-based pipeline, data are
preprocessed both in volume and surface spaces. The surface-
based pipeline operates in 2D surface space but requires
intermediate outcomes from volume analyses. In this pipeline,
the cortical regions are represented as a 2D surface, while the
sub-cortical regions are represented as a 3D volume. This mixing
of surface and volume spaces is a recent development, and
some researchers have claimed that it can improve the sensitivity
of neuroimaging studies (Glasser et al., 2013, 2016a,b). Our
software provides flexibility to perform each of the preprocessing
steps. Users can select “Yes” or “No” options for every step
in our software to selectively perform the steps as required.
Furthermore, users can select user specified parameters for each
step. For example, the degrees of freedom (DOF) and cost
functions for registration could be specified in the GUI. Details
of each preprocessing steps can be found in following sections.

Volume-Based T1-Weighted MRI Data
Preprocessing
The volume-based preprocessing steps for T1-weighted
structural data are presented in Figure 1.

De-Oblique
During data acquisition, the scan angle is sometimes tilted from
the horizontal line (i.e., between the anterior and posterior
commissure) to cover the whole brain and to avoid MRI-induced
artifacts caused by air and water in the eyes and nose (Figure 2A).
Such a tilted scan is referred to as an oblique scan. Oblique
scans enable us to acquire data with less noise, but can make
the registration between two different images more difficult.
Thus, a de-oblique process needs to be performed. De-oblique is
performed using the “3drefit” function in AFNI (Cox, 1996).
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FIGURE 1 | Diagram of the preprocessing steps for volume-based
(A) T1-weighted structural MRI and (B) fMRI data.

Re-orientation
The orientation of data depends on the settings of the data
acquisition process (Figure 2B). Differences in orientation might
lead to mis-registration, and thus all data should be matched
to have the same orientation. Orientation is specified with a
three-element vector: (1) left or right, (2) anterior or posterior,
and (3) superior or inferior. For example, if the right, posterior,
and inferior directions are chosen, the orientation of the data is
called RPI. Orientation can be defined in any way but should
be the same for all data. Re-orientation is performed using the
“3dresample” function in AFNI (Cox, 1996).

Magnetic Field Inhomogeneity Correction
The brain consists of different tissues, namely gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF). The magnetic
field within the scanner should be constant but, in reality, it
decreases when it encounters brain tissue, and the decreasing
rate differs across different tissue types (Cheng et al., 2017).
This phenomenon is referred to as magnetic field inhomogeneity.
These differences in the magnitude of the magnetic field cause
abnormally bright and dark areas, which make it difficult to
detect tissue boundaries (Figure 2C). Thus, magnetic field
inhomogeneity correction should be performed before the non-
brain tissue removal and tissue segmentation steps. Magnetic field
inhomogeneity correction is performed using the “3dUnifize”
function in AFNI by making intensity values in WM more
homogeneous (Cox, 1996).

Non-brain Tissue Removal
The region of interest (ROI) of neuroimaging studies lies within
the brain. Non-brain tissues, such as those of the skull, neck,
eyes, nose, and mouth, are thus not important (Figure 2D). The
non-brain tissue removal step is performed by considering the
gradient of the intensity values across different types of tissues.

FIGURE 2 | Preprocessing steps for volume-based T1-weighted structural
MRI data. (A) De-oblique step. Example images of (left) tilted and (right)
non-tilted data are shown. (B) Matched data with different orientations to the
same orientation. (C) Magnetic field inhomogeneity correction. (D) Non-brain
tissue removal. (E) Registration onto the standard space. (F) Segmentation of
brain tissues into gray matter (GM; red), white matter (WM; yellow), and
cerebrospinal fluid (CSF) (blue).

Non-brain tissue removal is performed using the “3dSkullStrip”
function in AFNI (Cox, 1996).

Registration
Registration is the process of aligning images from different
geometric spaces to a common space (Figure 2E). There are
three main components of registration. First, a spatial geometric
transformation needs to be specified. The 3D transformation
parameters are translation, rotation, scaling, and shearing in the
x-, y-, and z-directions. Rigid-body transformation consists of six
DOF, involving three translations and three rotations, while affine
transformation consists of 12 DOFs involving three scaling and
three shearing factors in addition to the rigid-body parameters,
which we adopt in FuNP. Secondly, a cost function that measures
the goodness of alignment has to be specified. In FuNP, users can
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select either the correlation ratio or mutual information as the
cost function. The correlation ratio is useful when registering two
images of the same modality, while mutual information is useful
for images from different modalities. Finally, an interpolation
method has to be specified. In FuNP, the trilinear interpolation
technique is used. Registration is performed using the “flirt”
function in FSL (Jenkinson et al., 2012).

Segmentation
It has been shown that the fluctuations of time series in GM
are associated with neuronal signals, while those in WM and
CSF are related to artifacts (Salimi-Khorshidi et al., 2014). Thus,
distinguishing between GM, WM, and CSF tissues is important
for extracting signals of interest. The Gaussian mixture model
distribution is used for discriminating between GM, WM, and
CSF tissues (Figure 2F). Segmentation is performed using the
“fast” function in FSL (Jenkinson et al., 2012).

Volume-Based fMRI Data Preprocessing
The volume-based preprocessing steps for fMRI data are
presented in Figure 1.

Removal of the First N Volumes
The de-oblique and re-orientation steps are first performed on
fMRI data as described in Section “Volume-Based T1-Weighted
MRI Data Preprocessing.” The next step is to remove the
first few volumes. When a magnetic field is applied to the
brain, hydrogen molecules are aligned in the direction of the
magnetic field. It takes from 5 to 6 s for these molecules to
approach to the steady state, and thus the volumes acquired
during the first few seconds (typically 10 s) have to be removed
(Figure 3A) (Bright and Murphy, 2015; Bijsterbosch et al., 2017).
This process is performed using the “fslroi” function in FSL
(Jenkinson et al., 2012).

Slice Timing Correction
Slice timing correction is performed to correct the time
differences at which each slice was acquired. For example, as
shown in Figure 3B, the time of the signal evoked at slice 8
is shifted toward that of slice 4 to match the starting time.
The shifted signal is then interpolated. Because the slice timing
correction approach uses interpolation, it causes a temporal
smoothing effect, which might cause loss of information. Thus,
this step is not recommended if the repetition time (TR) of the
fMRI data is short (<1 s) (Bijsterbosch et al., 2017). Slice timing
correction is performed using the “slicetimer” function in FSL
(Jenkinson et al., 2012).

Motion Correction and Volume
Scrubbing
Participants are instructed not to move their heads during
an MRI scan. However, there are always unavoidable head
movements, and thus the data becomes corrupted with motion-
related artifacts. Thus, head motion correction should be
performed on all fMRI data. Motion correction is performed by
registering all volumes to a reference volume via a rigid-body
transformation (Figure 3C). The reference volume can be any

volume, but typically the first or middle volume of the whole
data is selected. The next step is to remove volumes with severe
head motion. This approach is referred to as volume scrubbing
(Power et al., 2012). As the rigid-body transformation is used,
three translation parameters (with their units in millimeters)
and three rotation parameters (with their units in degrees) are
calculated. These six motion parameters are used to calculate FD,
which measures the degree of head motion (Power et al., 2012).
Volumes whose FD exceed 0.5 mm are considered to have severe
head motions and are thus removed. Volumes with severe head
motion are detected using the “fsl_motion_outliers” function and
motion correction is performed using the “mcflirt” function in
FSL (Jenkinson et al., 2012).

Field Map Correction
After head motion correction, field inhomogeneity correction can
be performed. This step requires the collection of a dedicated
field map. However, many neuroimaging studies, especially older
ones, did not collect field map data and thus we make this step
optional. This was intentional so that our software could be
applied to many existing neuroimaging studies. If a certain study
has a field map-corrected EPI data (e.g., computed using FSL),
the user can supply this data as an optional input to our software
and the program will proceed with the rest of the pipeline using
the field map-corrected data.

Intensity Normalization
Because MRI data does not have a specific unit, different
MRI data might have different ranges of intensity values.
Intensity normalization is performed to standardize the range
of intensity values across all 4D volumes with a specific value
(Figure 3D). In FuNP, a value of 10,000 is used. Intensity
normalization is performed using the “fslmaths” function in FSL
(Jenkinson et al., 2012).

Registration
Unlike T1-weighted structural MRI data, the resolution of
fMRI data is lower and has lower inter-tissue contrast. Thus,
it is difficult to directly register fMRI data to the standard
space. In FuNP, two-stage registration is adopted (Figure 3E)
(Jenkinson et al., 2012; Glasser et al., 2013). Low-resolution
fMRI data is registered onto high-resolution preprocessed T1-
weighted structural MRI data of the same subject via a rigid-body
transformation. The T1-weighted structural MRI data is then
registered onto the standard space via an affine transformation.
The two transformation matrices are concatenated and then
applied to the fMRI data to register them onto the standard
space. Registration is performed using the “flirt” function in FSL
(Jenkinson et al., 2012).

Nuisance Variable Removal
The fMRI data contains both signal and noise components.
The noise components include head motion, WM, CSF, cardiac
pulsations, and arterial and large vein-related contributions. The
noise components can be removed via ICA-FIX (Figure 3F)
(Salimi-Khorshidi et al., 2014). ICA is a method for decomposing
fMRI signals into a set of spatially independent components
(ICs) (Beckmann and Smith, 2004; Beckmann et al., 2005).
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FIGURE 3 | Preprocessing steps for volume-based fMRI data. (A) Removal of the first few volumes. (B) Slice timing correction. (C) Head motion correction (left) and
volume scrubbing (right). (D) Intensity normalization. (E) Two-stage registration. (F) Nuisance variable removal via ICA-FIX. (G) Temporal filtering. (H) Spatial
smoothing.
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The computed ICs are further classified into signal and noise
components considering their temporal and spatial features
(Salimi-Khorshidi et al., 2014). This classification procedure is
performed using a hierarchical classification model described in
a previous study and it successfully removed artifacts (Salimi-
Khorshidi et al., 2014). There are automatic methods to classify
ICs, but their performance can be unreliable at times (Kelly
et al., 2010; Griffanti et al., 2017). Thus, a manual approach to
classify ICs is recommended. The following three major aspects
have to be considered to distinguish between signal and noise
components. First, spatial maps of signal components largely
overlap with GM, while those of noise components overlap
with WM, CSF, and blood vessels (Kelly et al., 2010; Griffanti
et al., 2017). Secondly, the time series of signal components are
relatively stable without sudden spikes (Kelly et al., 2010; Griffanti
et al., 2017). Components with sudden isolated spikes in their
time series are often classified as head motion-related artifacts.
Finally, the frequency spectrum of signal components usually
occupies the low-frequency range (<0.1 Hz), while that of noise
components occupies a variable band (Kelly et al., 2010; Griffanti
et al., 2017). Once the noise components are defined, they are
regressed out from the original fMRI data. Nuisance variable
removal is performed using the “fix” function in FSL (Jenkinson
et al., 2012). The FuNP uses the pre-trained datasets that were
trained using different image acquisition settings provided by the
FSL team2. Thus, the users do not need to manually train their
data but choose from one of the several choices that best suits the
input data.

Temporal Filtering
The signals of interest of fMRI data are known to exist in the low-
frequency range (<0.1 Hz) (Biswal et al., 1995; Boubela et al.,
2013). However, extremely low-frequency signals (<0.01 Hz)
are considered as slow drifts (i.e., non-neuronal signals) (Biswal
et al., 1995; Boubela et al., 2013). Thus, band-pass filtering
with a frequency range between 0.009 and 0.08 Hz is widely
used to capture the signals of interest (Figure 3G). The cut-
off frequencies are slightly different across studies, but filtering
ranges of 0.008–0.09 Hz and 0.01–0.1 Hz are typically considered
(Biswal et al., 1995; Margulies et al., 2010; Yeo et al., 2011; Boubela
et al., 2013). In FuNP, users can select either low-pass, high-pass,
or band-pass filters with user-set cut-off frequencies. Temporal
filtering is performed using the “3dFourier” function in AFNI
(Cox, 1996).

Spatial Smoothing
Spatial smoothing is achieved by calculating the weighted average
over neighboring voxels using a Gaussian kernel and yields
blurred data (Figure 3H). The full width at half maximum
(FWHM) of the kernel is usually set as two times the voxel size
(Worsley and Friston, 1995; Mikl et al., 2008). Spatial smoothing
offers the advantage of reducing noise, but it also can lower the
intensity of the signal. Therefore, researchers need to proceed
with caution when applying spatial smoothing. Spatial smoothing
is performed using the “3dmerge” function in AFNI (Cox, 1996).

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX/UserGuide

Surface-Based T1-Weighted MRI Data
Preprocessing
The surface-based preprocessing steps of MRI data contain both
volume and surface processing steps. This is because the surface
processing steps require output from the volume processing
steps. The required volume processing steps are largely the same
as those described in the previous sections. The surface-based
preprocessing steps for T1-weighted structural data is presented
in Figure 4. Initial surface-based preprocessing is performed
using the “recon-all” function in FreeSurfer (Fischl, 2012). For
volume processing, magnetic field inhomogeneity correction,
non-brain tissue removal, intensity normalization, segmentation,
and registration are performed. For surface processing, white
and pial surfaces are generated. The white surface is located
between WM and GM, while the pial surface is located between
GM and CSF. These white and pial surfaces are generated
by following the boundaries between different tissues. The
surfaces are then inflated to spheres, and spherical registration
between the T1-weighted structural data and the standard space
is performed. The surfaces constructed using FreeSurfer are
adjusted to obtain accurate surfaces using Workbench as follows
(Marcus et al., 2013). The T1-weighted volume data preprocessed
using FreeSurfer are registered onto the standard space via an
affine transformation. Afterward, the transformation matrix is
applied to the white and pial surfaces to register them onto the
standard space. These surfaces are then averaged to generate
a mid-thickness surface, which is in turn used to generate an
inflated surface. The spherical surface is finally registered onto a
164k vertex mesh and then down-sampled to a 32k vertex mesh.

Surface-Based fMRI Data Preprocessing
The surface-based preprocessing steps for fMRI data also contain
volume and surface processing steps. The volume preprocessing
steps are the same as those described in Section “Volume-
Based fMRI Data Preprocessing” except for spatial smoothing
(Figure 4). Spatial smoothing is only performed to subcortical
areas and not to cortical areas. The surface-based preprocessing

FIGURE 4 | Diagram of the preprocessing steps for surface-based
(A) T1-weighted structural MRI and (B) fMRI data.

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2019 | Volume 13 | Article 51011

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX/UserGuide
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00005 February 7, 2019 Time: 18:22 # 7

Park et al. Preprocessing Software for fMRI

steps are performed using Workbench and FSL (Jenkinson et al.,
2012; Marcus et al., 2013). The preprocessed fMRI cortical
volume data are converted into surface data to define vertices
within the GM ribbon using a cortical ribbon-constrained
algorithm (Glasser et al., 2013). Voxels with high variation in
their time series (>0.5 standard deviation [SD] of the mean
variation of other voxels in a 5-mm neighborhood) are not
converted into a surface because they usually contain large blood
vessels (Glasser et al., 2013). Surface smoothing on the cortical
areas is applied with a FWHM value of twice the voxel size
(Worsley and Friston, 1995; Mikl et al., 2008).

Experiments
The reliability of the developed software was assessed by
constructing RSNs using preprocessed resting-state fMRI (rs-
fMRI) data obtained from the Human Connectome Project
(HCP) database (Van Essen et al., 2013). We hypothesized
that if the data were preprocessed properly, the obtained RSNs
should be consistent with existing known RSNs. To compare
the quality of the preprocessed data from FuNP and other
software, we compared our results with those from volume-
based preprocessing pipeline using FSL (Jenkinson et al., 2012)
and fMRIPrep (Esteban et al., 2019). The IQMs proposed in the
previous paper (Esteban et al., 2017) were calculated from the
preprocessed data of three different software packages (i.e., FuNP,
FSL, and fMRIPrep).

Participants and Imaging Data
The data used in this study came from two sources. The
first dataset was obtained from the HCP database. We used
all the data in the Q3 release version which had both T1-
weighted and rs-fMRI data, which led to 90 healthy subjects
(58% female) (Van Essen et al., 2013). The mean age was
28.74 with an SD of 3.42. The Institutional Review Board
(IRB) of Sungkyunkwan University approved this retrospective
study, and it was performed in full accordance with local IRB
guidelines. All participants provided written informed consent.
All imaging data were obtained using a Siemens Skyra 3T scanner
at Washington University. The imaging parameters of the T1-
weighted structural data were as follows: TR = 2,400 ms; echo
time (TE) = 2.14 ms; field of view (FOV) = 224 mm × 224 mm;
voxel size = 0.7 mm isotropic; and number of slices = 256. The
imaging parameters for rs-fMRI were as follows: TR = 720 ms;
TE = 33.1 ms; FOV = 208 mm × 180 mm; voxel size = 2 mm
isotropic; number of slices = 72; and number of volumes = 1,200.

An additional 28 T1-weighted structural MRI and rs-fMRI
data of healthy subjects (100% female) were recruited from
Sungkyunkwan University to assess the reproducibility of our
software. The mean age was 23 with an SD of 2.09. All
subjects provided written informed consent according to the
procedures approved by the IRB of Sungkyunkwan University.
The imaging data were obtained using a Siemens Skyra 3T
scanner at Sungkyunkwan University. The imaging parameters of
the T1-weighted structural data were as follows: TR = 2,400 ms;
TE = 2.34 ms; FOV = 224 mm × 224 mm; voxel size = 0.7 mm
isotropic; and number of slices = 224. The imaging parameters
for rs-fMRI were as follows: TR = 1,000 ms; TE = 39.8 ms;

FOV = 224 mm × 224 mm; voxel size = 2 mm isotropic; number
of slices = 72; and number of volumes = 360.

RSN Construction
RSNs were defined via an ICA approach (Minka, 2000; Himberg
and Hyvärinen, 2003; Beckmann and Smith, 2004; Beckmann
et al., 2005; Calhoun et al., 2009). Volume-based preprocessed
rs-fMRI data were temporally concatenated across all subjects
and fed into the “melodic” function in FSL (Beckmann and
Smith, 2004; Beckmann et al., 2005; Jenkinson et al., 2012).
The number of dimensions was automatically determined via
principal component analysis (PCA) (Minka, 2000; Beckmann
and Smith, 2004; Beckmann et al., 2005). The generated volume-
based ICs (VICs) were classified as signal and noise components
via visual inspection (Kelly et al., 2010; Griffanti et al., 2017).
The signal VICs were compared with known RSNs via cross-
correlation to see whether the generated VICs were similar to the
pre-defined RSNs (Smith et al., 2009).

Surface-based preprocessed rs-fMRI data were handled using
the ICASSO approach on the temporally concatenated voxel-wise
time series across all subjects3 (Himberg and Hyvärinen, 2003).
This was done because FSL cannot perform ICA on surface-
based preprocessed rs-fMRI data. The generated surface-based
ICs (SICs) were visually compared with the known RSNs because
there are no openly available RSN data in surface format.

Comparison With Other Software
We compared the results of FuNP with those from volume-
based preprocessing pipeline using FSL (Jenkinson et al., 2012)
and fMRIPrep (Esteban et al., 2019). The comparison was
limited to volume-based approaches as FSL did not provide
surface-based results. The preprocessing steps of FSL were
as follows: the first 10 s volumes were removed and head
motion was corrected. The non-brain tissue was removed
using the temporally averaged fMRI data. The noise reduction
process was performed using a non-linear filtering. The intensity
normalization, high-pass filtering, and spatial smoothing were
applied. The fMRI data were registered onto the T1-weighted
structural data and then consequently onto the MNI standard
space. The preprocessing steps of fMRIPrep were as follows: a
reference volume and its skull removed data were generated.
Head motion and susceptibility distortions were corrected.
The distortion corrected data were registered onto the T1-
weighted structural data and then consequently onto the MNI
standard space. The nuisance variables including head motion,
physiological regressors, and global signals of WM, CSF, and
the whole brain were removed. The ICA-based Automatic
Removal Of Motion Artifacts (ICA-AROMA) was performed to
remove the head motion-related artifacts (Pruim et al., 2015b).
High-pass filtering was applied and then volumetric resampling
configured with Lanczos interpolation was applied to minimize
the smoothing effect. The quality of the preprocessed data was
assessed using the IQMs proposed in the previous paper (Esteban
et al., 2017). The IQMs that assess the temporal information
were (1) SD of DVARS (D means temporal derivative of time

3https://research.ics.aalto.fi/ica/icasso/
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series, VARS means root mean square variance over voxels) that
measures the rate of BOLD signal changes and (2) temporal
signal-to-noise ratio (tSNR). The IQMs that assess the artifacts
were (1) mean FD that measures the amount of displacement
of the head motion, (2) percentage of the volumes with large
head motion over the whole volumes, (3) ghost-to-signal ratio
(GSR) in x- and (4) y-directions, (5) AFNI’s outlier ratio (AOR)
that calculates number of outliers across the time series, and
(6) AFNI’s quality index (AQI) that represents mean quality
index by measuring whether the intensity values of each volume
are not very different from norm of the whole volumes. We
also compared the computational performances among the
three software packages. The computational performances were
measured using running time and peak memory usage over a
subset of HCP data (n = 10). The software packages were allowed
access to a single-thread CPU resource. The size of the input
data (format of .nii.gz) was 1.67 GB on average. Our computation
node was equipped with Intel Xeon CPU E5-2637 v3 and 256 GB
of memory.

RESULTS

Developed Software
We developed a novel data preprocessing software, called FuNP
(Figure 5), for T1-weighted structural MRI and fMRI data. FuNP
consists of volume- and surface-based preprocessing approaches.
The volume-based approach requires AFNI and FSL (Cox,
1996; Jenkinson et al., 2012), and the surface-based approach
requires AFNI, FSL, FreeSurfer, and Workbench (Cox, 1996;
Fischl, 2012; Jenkinson et al., 2012; Marcus et al., 2013). Each
approach performs the preprocessing of T1-weighted structural
MRI and fMRI data separately. Our software, FuNP, is available
at in GitLab4.

Reliability of the Software
To assess the reliability of the output of FuNP, we constructed
volume- and surface-based RSNs using the HCP rs-fMRI data
preprocessed by FuNP. A total of 29 VICs were automatically
generated and classified as 24 signals and 5 noise components
(Figure 6). VICs 1–5 were the visual network (VN), consisting
of the superior-, middle-, and inferior-occipital gyri, cuneus, and
the lingual gyrus. VICs 6 and 7 were the default mode network
(DMN), consisting of the superior- and middle-frontal gyri, the
medial orbitofrontal gyrus, and the posterior cingulate cortex.
VICs 8–10 were the executive control network (ECN), consisting
of the middle- and medial-orbitofrontal gyri and anterior
cingulate cortex. VICs 11–17 were the frontoparietal network
(FPN), consisting of the middle- and inferior-orbitofrontal
gyri and the superior- and inferior-parietal lobule. VICs 18–
21 were the sensorimotor network (SMN), consisting of the
paracentral lobule and the postcentral gyrus. VICs 22 and 23
were the auditory network (AN), consisting of Heschl’s gyrus,
the superior temporal gyrus, and the supramarginal gyrus. VIC
24 was the cerebellum. These 24 functionally interpretable VICs

4https://gitlab.com/by9433/funp

FIGURE 5 | Screenshot of the developed software, called FuNP.

were compared with pre-defined RSNs by computing cross-
correlation (Smith et al., 2009). The mean cross-correlation
value was 0.38, with an SD of 0.17. The results obtained
with FuNP showed high similarities between the generated
VICs and the pre-defined RSNs, indicating that the data were
properly preprocessed.

In addition to the VICs, 20 SICs were generated and classified
as 16 signal and 4 noise components (Figure 7). SICs 1 and 2 were
the VN, consisting of the primary visual cortex (V1), the early
visual cortices (V2 and V3), and the extrastriate visual cortices
[V3A, V6, V6A, middle temporal (MT), and middle superior
temporal (MST)]. SICs 3 and 4 were the DMN, consisting of the
dorsolateral prefrontal cortex, the medial- and inferior-frontal
cortices, the anterior- and posterior-cingulate cortices, and the
insula. SICs 5–7 were the ECN, consisting of the dorsolateral
prefrontal cortex, the medial orbitofrontal cortex, the inferior
frontal cortex, and the anterior cingulate cortex. SICs 8–14 were
the FPN, consisting of the dorsolateral prefrontal cortex, the
medial- and inferior-frontal cortices, the superior- and inferior-
parietal lobules, and the paracentral lobule. SICs 15 and 16 were
the SMN, consisting of the somatosensory and motor cortices,
the premotor cortex, and the paracentral lobule. Regions of the
AN were partly included in the SICs of the FPN (SICs 10, 11,
12, and 14). The SICs showed similar patterns to those of known
RSNs, suggesting that the preprocessing pipeline was reliable.
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FIGURE 6 | Generated VICs using the HCP data (labeled in a white font) along with pre-defined RSNs (labeled in a yellow font) (Smith et al., 2009). The
cross-correlation values of the spatial maps between the generated VICs and RSNs are presented.

FIGURE 7 | Generated SICs using the HCP data matched with known RSNs.

Comparison With Other Software
The quality of the volume-based preprocessed rs-fMRI data
from FuNP, FSL, and fMRIPrep was assessed using the IQMs
(Esteban et al., 2017). We found that FuNP yielded lower SD
of DVARS compared to other software. The mean FD and
percentage of volumes with large head motion of FuNP were
comparable to fMRIPrep and lower than FSL. The results suggest
the head motion-related artifacts were better removed using

FuNP (Figure 8). The tSNR and GSR showed higher values
in FuNP compared to other software indicating the processed
data using FuNP were robust to noise (Figure 8). In addition,
AOR and AQI showed smaller values for FuNP suggesting
there was a smaller number of outliers compared to other
software (Figure 8). Taken together, our FuNP outperformed
other software in terms of temporal characteristics and
artifacts removal.
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FIGURE 8 | The IQMs of the volume-based preprocessed rs-fMRI data using different software packages. The values were plotted using violin plots. The white circle
denotes the median value. The AOR and AQI were very small but the results of some software packages had high variability.

Comparison of Computational
Resources
We measured the computational performances among the three
software packages using running time and peak memory usage.
On average, the running time was approximately 3 h for
FuNP, 11 h for fMRIPrep, and 11 h and 30 min for FSL
(Table 1). Possible reasons behind the longer computation
time for fMRIPrep could be different head motion correction
and registration methods compared to ours. The FuNP took
6 min, while fMRIPrep took 86 min on average for the motion
correction (Table 1). The FuNP was faster (12 min) than
fMRIprep (4 h and 52 min) for the registration procedure on
average (Table 1). During the 4D data registration, fMRIPrep
splits the 4D data into 3D volumes and performs registration
onto the reference space. The results of the registration were
stored on a disk for all 3D volumes and later concatenated
to form the 4D registered data. The operations involve many
disk input/output operations and thus could be slow. Our
FuNP performs the entire procedure all within the memory
and thus does involve fewer disk input/output operations than
fMRIPrep. This could lead to faster computation for FuNP. For
both fMRIPrep and FSL, the longer computation time might
be due to the use of different noise removal strategies. The
FuNP was faster (1 h and 29 min) than the two approaches
(fMRIPrep; 9 h and 25 min, FSL; 11 h) (Table 1). The
fMRIPrep performs nuisance variable removal by calculating
various kinds of confounds of mean global signal, mean tissue
class signal, PCA-based noise areas defined by anatomy or
temporal variance, FD, DVARS, six head motion parameters,

respectively (Esteban et al., 2019). In addition, ICA-AROMA
for head motion-related artifact removal is performed if the
option is set. In contrast, FuNP only uses ICA-FIX that
showed good performance of noise removal (Salimi-Khorshidi
et al., 2014). In addition, the use of complex non-linear
noise filtering algorithm, smallest univalue segment assimilating
nucleus (SUSAN), across the whole time series might affect
the computation time (Smith and Brady, 1997). In contrast,
FuNP only does temporal filtering using a conventional Fourier
transform and spatial smoothing for noise removal. Although
simple approaches were adopted in FuNP, it exhibited lower
outlier ratio compared to other software packages (Figure 8).
In terms of peak memory usage, FuNP used 12.5 GB on
average, fMRIPrep used 33.1 GB, and FSL used 9.5 GB. Note
that the peak memory usage was dependent on the size of
the input data. In summary, the running time for the whole
preprocessing was fastest when the FuNP was adopted compared
to fMRIPrep and FSL.

Reproducibility of the Software
To assess the reproducibility of our software, FuNP, we
performed additional data preprocessing using local data
(n = 28). The quality of the results was assessed using
IQMs. Figure 8 shows that the IQMs of the preprocessed
local and HCP data using FuNP were similar. In addition
to the IQMs, we performed volume- and surface-based ICA
and found results (from local data) that were similar to the
main results (HCP data) (Figures 6, 7 and Supplementary
Figures S1, S2). Taken together, we believe our pipeline
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TABLE 1 | Computation time of each preprocessing step for three software packages.

fMRIPrep FSL FuNP

First N volumes removal N/A 7.4 m(0.5 m) 7.4 m(0.5 m)

Slice timing correction N/A N/A N/A

Volume scrubbing N/A N/A 26.8 m(0.4 m)

Motion correction 1 h 26.6 m(6.3 m) 2.2 m(0.4 m) 6.2 m(0.8 m)

Non-brain tissue removal 6.4 m(5.0 m) 4.2 m(0.4 m) 4.6 m(0.5 m)

Intensity normalization N/A 1.2 m(0.4 m) 1.2 m(0.4 m)

Registration 4 h 52.0 m(1 h 3.2 m) 1.1 m(0.3 m) 12.0 m(2.0 m)

Nuisance variable removal 9 h 25.0 m(1 h 45.2 m) 11 h 0.2 m(1 h 8.8 m) 1 h 29.2 m(10.5 m)

Temporal filtering 1.1 m(0.3 m) 3.2 m(0.4 m) 3.2 m(0.4 m)

Spatial smoothing N/A 1.8 m(0.4 m) 1.8 m(0.4 m)

Total 11 h 6.6 m(12.9 m) 11 h 35.0 m(52.6 m) 2 h 55.0 m(11.2 m)

Means and SDs are reported. SD values are reported in parentheses.
h, hour; m, minute; N/A, not available.

could yield reproducible results based on the analyses of two
independent data sets.

DISCUSSION

In this study, we developed a preprocessing pipeline for
T1-weighted structural MRI and fMRI data by combining
components of well-known software packages, namely AFNI,
FSL, FreeSurfer, and Workbench, to fully incorporate recent
developments in MRI preprocessing into a single software
package (Cox, 1996; Fischl, 2012; Jenkinson et al., 2012;
Marcus et al., 2013). The developed software, FuNP, is not the
first wrapper software that incorporates recent developments
in MRI preprocessing. The fMRIPrep is a notable software
package that incorporates many of the state-of-the-art MRI
preprocessing steps from existing software tools of AFNI, FSL,
FreeSurfer, and ANTs (Esteban et al., 2019). They reported
that the pipeline is robust to the acquisition parameters
of the input data, easy to use as it requires a minimum
number of user specified parameters for each step, and
provides a summary in results of segmentation, registration,
global signals, and motion-related artifacts (Esteban et al.,
2019). Our software, FuNP, has the following advantages. First,
FuNP contains both volume- and surface-based preprocessing
pipelines. Using the surface-based pipeline, researchers can
handle cortical and sub-cortical data better and more consistently
with recent developments (Glasser et al., 2013, 2016a,b).
Secondly, FuNP provides a fully automated preprocessing
framework. Thirdly, FuNP is user-friendly owing to its
graphical interface, which is intuitive and easy to manipulate.
Fourthly, we designed our software so that the pipeline
could be applied to fMRI data without field map data.
This might be important because, in old neuroimaging
studies, researchers often did not collect field map data.
In such cases, modern researchers cannot use up-to-date
preprocessing pipelines that require field map data. The
reliability of FuNP was assessed by constructing RSNs using
rs-fMRI data from the HCP database (Van Essen et al.,
2013). Both the volume- and surface-based brain networks

were well-defined and were consistent with pre-defined brain
networks (Figures 6, 7). In addition to RSNs, the IQMs
of temporal characteristics and artifacts were calculated to
assess the quality of the preprocessed data. We found that
FuNP outperformed FSL and fMRIPrep in terms of the
IQMs (Figure 8). These results indicate that the developed
preprocessing pipelines for T1-weighted structural MRI and
fMRI data are of high-quality and reliable. Our software
can be used as robust and easy-to-use neuroimaging data
preprocessing framework.

There are several options to choose from to perform
a given preprocessing step. Following statements are the
justifications of the choices we made for each preprocessing
step. Some choices (e.g., skull stripping) could be considered
as optimal (Iglesias et al., 2011; Puccio et al., 2016), still,
some could be suboptimal due to on-going controversies
(e.g., nuisance removal) (Ciric et al., 2017). To remove the
non-brain tissues, we selected “3dSkullStrip” function in AFNI
rather than “bet” function in FSL, “antsBrainExtraction”
function in ANTs, and “HWA” function in FreeSurfer.
Previous studies reported that the function in AFNI
outperformed equivalent functions in FSL and FreeSurfer
for non-brain tissue removal (Iglesias et al., 2011; Puccio
et al., 2016). A previous study reported ANTs showed
better skull stripping results than other conventional
approaches by visual inspection suggesting that our choice
might be suboptimal (Esteban et al., 2019). For the step
of magnetic field inhomogeneity correction, we chose
“3dUnifize” function in AFNI out of coincidence. There are
alternatives of “N4BiasFieldCorrection” function in ANTs
and “fast” function in FSL. When performing registration,
we chose “flirt” function in FSL. One study reported that
neuroimaging registration could be better performed using
“antsRegistration” function in ANTs compared to FSL and
SPM (Dadar et al., 2018). Thus, we built two versions
of FuNP. The new version adopted “antsRegistration”
function and is referred to as FuNP v.2.0. We decided to
keep the old version, referred to as FuNP v.1.0, because
“flirt” requires fewer computation resources (i.e., runs
fasters) compared to ANTs. For fMRI data registration,
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the FuNP used the two-stage registration that aligns the
fMRI data to the T1-weighted structural data and then
subsequently onto the MNI standard space. However, a
previous study demonstrated that registration of fMRI data
using echo planar imaging template improved the statistical
power and reduced variability across subjects compared to the
two-stage registration approach (Calhoun et al., 2017). Thus,
our strategy for fMRI data registration might be suboptimal.
In the tissue segmentation step, “fast” function in FSL was
adopted that showed good performance compared to other
algorithms (Eggert et al., 2012; Kazemi and Noorizadeh, 2014;
Valverde et al., 2015). For slice timing correction, we chose
“slicetimer” function in FSL and there are alternatives of
“3dTshift” function in AFNI and “spm_slice_timing” function
in SPM. For head motion correction, “mcflirt” function in
FSL was adopted. It was shown that there was no single
package that outperformed others for head motion correction
(Oakes et al., 2005). There are many approaches to remove
the nuisance variables in fMRI data such as head motion,
cardiac, respiratory, WM, and CSF, but there is no single
approach that can eliminate the artifacts completely (Ciric
et al., 2017). A previous study reported that there were
trade-offs among different strategies for nuisance variables
removal and thus users need to select appropriate strategies
in the context of their scientific goals (Ciric et al., 2017).
In FuNP, “fix” function in FSL, the state-of-the-art approach,
was adopted to remove nuisance variables of head motion,
WM, CSF, cardiac pulsations, and arterial and large vein-
related contributions (Salimi-Khorshidi et al., 2014). This
approach requires the pre-trained datasets to classify between
the signal and noise components (Parkes et al., 2018).
The FuNP uses the pre-trained datasets that were trained
using different image acquisition settings provided by the
FSL team2. The users of FuNP need to choose which pre-
trained data best suits their data being processed. Thus, the
users do not need to manually train their data but choose
from one of the several choices. However, if the input data
were scanned with a very different image acquisition setting
compared to existing choices, then “fix” function of FSL might
not work well.

We compared the computational performances among three
different software packages. We found that FuNP outperformed
other software packages in terms of running time. This
computational efficiency might be practical beneficial for
preprocessing large-scale data which are likely to become more
pervasive. A previous study reported that the total processing
speed for registration accelerated two to three times when
graphics processing unit (GPU) was adopted (Luo et al., 2015).
The processing speed of recon-all, which was used for surface-
based T1-weighted MRI data preprocessing in FuNP, could
be improved 10 to 150 times with the help of GPU based
computations according to the FreeSurfer official website6. We
plan to update FuNP with GPU capabilities in the future.

6 https://surfer.nmr.mgh.harvard.edu/fswiki/CUDADevelopersGuide

CONCLUSION

In this study, we incorporated existing software packages of
AFNI, FSL, FreeSurfer, and Workbench to build a preprocessing
pipeline for T1-weighted structural MRI and fMRI data. The
developed software, FuNP, provides a fully automated and
user-friendly GUI volume- and surface-based preprocessing
pipelines. The FuNP showed good performance in terms
of temporal characteristics and artifacts removal. We believe
our pipeline might help researchers who need MRI data
preprocessing.
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When properly implemented and processed, anatomic T1-weighted magnetic resonance

imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM)

and gray matter (GM) in the living human brain. Although MRI is more suitable

for distinguishing GM from WM than computed tomography (CT), the growing

clinical use of the latter technique has renewed interest in head CT segmentation.

Such interest is particularly strong in settings where MRI is unavailable, logistically

unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a

sophisticated and technically-mature research field, the task of automatically classifying

soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation

methods for MRI hold considerable potential for adaptation and application to CT

image processing. Here we demonstrate this by combining probabilistic, atlas-based

classification with topologically-constrained tissue boundary refinement to delineate WM,

GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this

approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric

concussion victims with both MRI and CT scans. Comparison of the two segmentations

yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and

91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM),

3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that

the segmentation approach is sensitive enough to yield WM, GM and CSF volume

estimates within ∼5%, ∼4%, and ∼3% of their MRI-based estimates, respectively. To

our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous

within-subject comparison with high-resolution MRI. Results suggest that (1) standard-

quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the

task of soft brain tissue classification from CT merits further attention from neuroimaging

researchers.
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INTRODUCTION

The clinical use of computed tomography (CT) for patient
diagnosis and treatment has been increasing steadily throughout
the past few decades, particularly in relation to stroke and
traumatic brain injury (TBI) (Haydel et al., 2000; Pelc, 2014). In
developed countries, the number of CT scanners greatly exceeds
that of magnetic resonance imaging (MRI) machines, and CT
may be preferable to MRI in emergency radiology settings due
to the former modality’s convenience, wide availability and speed
(Seo et al., 2008). Nevertheless, the task of classifying soft brain
tissues based on CT images has long been disregarded because
white matter (WM) and gray matter (GM) have relatively poor
contrast in CT compared to T1- or T2-weighted MRI. The
primary reason for this is that soft brain tissues have relatively
similar radiodensities, which means that conventional CT images
acquired at standard radiation doses typically differentiate GM
from WM rather poorly. This frequently makes the CT-based
delineation of WM/GM boundaries difficult and inaccurate; if
hard thresholds of image intensity are used as primary criteria
for delineation, poor GM/WM contrast can lead to substantial
error during tissue segmentation. For similar reasons, models
involving seed-based region-growing techniques can also lead to
misleading results.

Whereas the automatic segmentation of brain MRI volumes is
relatively routine compared to CT segmentation (Friston, 2007;
Jenkinson et al., 2012; Velasco-Annis et al., 2017), there are very
few software solutions for CT-based brain tissue classification.
Nevertheless, recent progress in CT scanner technology and
the accompanying improvement in CT image quality both
suggest that the ability to distinguish soft tissue types using
CT is becoming increasingly feasible (Li et al., 2014). As of
the date of this study, only a handful of automatic methods
for CT brain tissue segmentation exist, none of which have
been applied to or validated on neurotrauma patients. Gupta
et al. (2010), for example, proposed a heuristic segmentation
method which leverages intensity thresholding to distinguish
WM from GM and from CSF. The efficacy of this method,
however, was only postulated based on manually-contoured,
high-confidence fiducial brain regions and in the absence of
independent confirmation by other imaging techniques. By
contrast, Kemmling et al. (2012) introduced a probabilistic
atlas based on previously-segmented MRI volumes which was
co-registered to CT images to perform tissue classification,
but no validation or quantitative evaluation of this approach
was implemented in their study. More recently, Manniesing
et al. (2017) proposed a method for CT-based segmentation
which requires manual corrections using dedicated software and
which also relies on the averaging of CT volumes acquired
longitudinally from the same subject after the administration
of a contrast agent to improve SNR. The accuracy of these
authors’ approach is unknown in the scenario where no more
than one CT scan is available, as in our case. Furthermore,
averaging of longitudinally-acquired CT volumes may produce
undesirable results in cases where pathology evolution between
time points modifies brain shape and structure, such as in TBI or

stroke. Additionally, the method of Manniesing et al. involves the
segmentation of GM, WM and CSF from contrast CT.

The premise of the present study is that brain segmentation
methods for MRI hold considerable potential for adaptation
to CT image processing. Specifically, our purpose here is to
illustrate how two standard MRI analysis methods—namely
(A) probabilistic, atlas-based classification and (B) topologically-
constrained tissue boundary refinement—can be combined to
delineate WM, GM and cerebrospinal fluid (CSF) from head
CT images. In MRI analysis, voxel intensities are often modeled
using a mixture of Gaussian random variables and tissue
classification can be performed within a Bayesian framework.
The probability that each voxel belongs to a certain tissue class is
then calculated based on anatomic priors, and class membership
is assigned based on this probability. In CT, however, where
GM/WM contrast is typically quite poorer than in MRI,
this approach can frequently result in spurious, anatomically-
implausible class membership assignments for voxels near
tissue boundaries. We propose to address this shortcoming by
applying a standard approach to the neuroanatomy-constrained
correction of tissue boundaries based on the local topological
properties of the GM/WM interface. Because this method was
previously applied only to MRI, part of our study’s novelty
involves its application to CT.

The feasibility and utility of the segmentation approach
illustrated here are revealed by direct comparison of MRI
vs. CT segmentations in a group of concussion victims from
whom both standard-quality CT and T1-weighted MRI were
acquired. Here and throughout, “standard-quality CT” refers to
CT images acquired at radiation dosages which are typical of
routine clinical scans in the United States (∼2 mSv). Because
radiation dosage is intimately related to CT signal quality and
to the signal-to-noise ratio (SNR) of CT images, the utility of
contrast-based approaches to brain segmentation is substantially
dependent upon radiation dosage. In this context, applying
our method to CT scans acquired at a standard radiation
dosage is critical for highlighting the broad applicability of the
segmentation approach.

To our knowledge, this is the only CT segmentation method
to undergo rigorous within-subject comparisonwith high-fidelity
MRI. Furthermore, none of the existing CT methods has been
used to segment the brains of older adults or of concussion
victims. Both qualitative and quantitative comparison of CT-
vs. MRI-based segmentations of WM, GM, and CSF indicate
noteworthy agreement between the two, as well as superior
segmentation quality compared to the very few other methods
currently available. On the other hand, our findings also
suggest that—although the reliable CT-based calculation of
WM/GM/CSF volumetrics is feasible at standard radiation
dosages—the accuracy of CT-derived metrics is unlikely to ever
surpass that of MRI-derived ones as the “gold standard” in
the field. Scientists who wish to use CT-based volumetrics to
make scientific inferences should be mindful that CT-based
volumetrics are likely associated with greater error than MRI-
based measures. Awareness of this is necessary to prevent
future CT-based segmentation studies from conveying an overly
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optimistic impression regarding the ability of CT segmentations
to furnish reliable estimates of brain volumetrics.

MATERIALS AND METHODS

Participants
This study was carried out in accordance with the
recommendations of the Institutional Review Board of the
University of Southern California with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Institutional Review Board at the University
of Southern California. Study participants were selected from
two volunteer pools, namely (i) concussion victims who had
participated in an unrelated study, and (ii) individuals who had
been scanned using MRI/CT for clinical treatment unrelated to
this study. To be included, patients had to (A) have had both
MRI and CT volumes acquired and available, (B) be 50 years
of age or older at the time of their initial brain scan, and (C)
exhibit no gross head pathology detectable using CT or MRI at
scan time. The exclusion criteria were (A) unavailability of MRI
and/or CT data; (B) patient age under 50 years; (C) the existence
of substantial, gross head pathology at scan time, as detected via
CT and/or MRI and (D) poor CT/MRI data quality (e.g., visually
detectable artifacts of any kind). The concussed group included
10 participants (5 males; age: mean µ = 65 years; standard
deviation σ = 7 years; range: 54–75 years). The non-concussed
group included 25 participants (12 males; age: µ = 61 years;
σ = 9 years; range: 52–83 years). Volunteers under the age of 50
were excluded because of our desire to test our method on brains
with variable degrees of atrophy. The most important difference
between the two groups pertains to the spatial resolution of
CT/MRI data. Specifically, in the concussed volunteer group,
CT slice thickness was 1.25mm and MRI slice thickness was
1mm; in the non-concussed volunteer group, slice thickness was
3.75mm for CT and 5mm for MRI. This selection of data was
intentional, as the difference in spatial resolution allowed us to
explore segmentation reliability as a function of slice thickness
and to illustrate the necessity of evaluating CT segmentation
approaches like ours using MRI of research-grade resolution.

Data Acquisition
All data were deidentified and delinked prior to analysis.
CT volumes were acquired using a 16-slice General Electric
scanner. In the concussed volunteer group, images were acquired
clockwise, in helical mode, with a standard convolution kernel
and the following parameters: matrix size = 512 × 512;
voxel size = 1.5mm × 1.5mm × 1.25mm; kilovoltage peak
(kVp) = 120 kV; data collection diameter = 500mm; exposure
time = 600ms; X-ray tube current = 100mA; exposure = 100
mA·s; focal spot = 1.2mm. MRI volumes were acquired at
3 T using a Prisma MAGNETOM Trio TIM scanner (Siemens
Corp., Erlangen, Germany). Images were acquired using a
magnetization-prepared rapid acquisition gradient echo (MP-
RAGE) sequence with the following parameters: repetition
time (TR) = 1,950ms; echo time (TE) = 3ms; inversion
time (TI) = 900ms; flip angle (FA) = 9 degrees; percentage

sampling = 100; pixel bandwidth (BW) = 240 Hz/pixel; matrix
size = 256 × 256; voxel size = 1mm × 1mm × 1mm. In
the non-concussed volunteer group, CT volumes were acquired
clockwise, in helical mode, with a standard convolution kernel
and the following parameters: matrix size = 512 × 512; voxel
size = 1.5mm × 1.5mm × 3.75mm; kVp = 120 kV; data
collection diameter = 250mm; exposure time = 750ms; X-
ray tube current = 220mA; exposure = 130 mA·s; focal
spot = 1.2mm. MRIs were acquired at 3 T using a Signa
HDxt scanner (General Electric Corp., Boston, USA). Images
were acquired using a fast spin-echo (FSE) sequence with the
following parameters:TR = 567ms; TE = 18ms; FA= 90 degrees;
percentage sampling = 100; pixel BW = 81 Hz/pixel; matrix
size= 512× 512; voxel size= 0.5mm× 0.5mm× 5mm.

MRI Segmentation
MRI volumes were segmented using the widely-utilized
FreeSurfer 6.0 software as detailed elsewhere (Dale et al., 1999;
Fischl et al., 1999), with default execution parameters. Very
briefly, this process includes (1) the removal of non-brain tissue
using a hybrid watershed/surface deformation procedure, (2)
automated Talairach space transformation, (3) volume intensity
normalization, (4) segmentation of cortical and subcortical GM,
(5) tessellation of the GM/WM boundary, and (6) automated
surface topology correction. The reader is referred to references
(Dale et al., 1999; Fischl et al., 1999) for comprehensive details on
each of these steps involved in the MRI segmentation procedure.

CT Segmentation
As previously stated, an important goal of this study is to
illustrate how MRI-tailored approaches can be combined and
adapted for CT. Because of this, our segmentation strategy is
inspired by MRI-tailored approaches to template-based tissue
classification, including pioneering approaches by Ashburner
and Friston (1997, 2000, 2005, 2007) and by Dale et al.
(1999) and Fischl et al. (1999). The starting point for our
implementation was the probabilistic classification method of
Ashburner and Friston (2005), as available in SPM 12.0; this was
adapted, modified and augmented in MATLAB to incorporate
topology-constrained segmentation (Dale et al., 1999; Fischl
et al., 1999). An overview of the entire tissue classification
procedure is provided in this section, and details specific to each
step are described in subsequent sections. Briefly, to perform
tissue classification, voxel intensity values are used to assign
their probabilities of belonging to one of several tissue classes
by estimating the parameters of the intensity distributions of
each class. This is accomplished by first defining an objective
function derived from a mixture of Gaussian random variable
models, and by then minimizing the value of this function
using a parameter optimization process. A set of a priori
tissue probability maps specified in a standard space (atlas)
are used to assist the classification. The objective function can
assist this process by weighing the probability maps of the
standard space according to Bayesian inference principles and
then deforming them so that they match the volumes being
segmented. Specifically, the template is warped to each subject’s
brain volume (Collins et al., 1995), after which the latter can
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be segmented and the ensuing spatial classifications can be
smoothed (Evans et al., 1994). When combined with a priori
information specified by the template, Bayesian inference can be
used to calculate posterior probabilities, based on each subject’s
voxel intensity values. The interface between the resulting
GM and WM volumes is smoothed according to principles
inspired from nonlinear filter theory, subject to topological
constraints dictated by the structural neuroanatomy of the
human brain (Dale et al., 1999; Fischl et al., 1999).

Gaussian Mixture Model
The distribution of image intensities in a neuroimaging volume
is modeled here by a mixture of K clusters, each consisting
of Gaussian random variables (Bishop, 1995). Each Gaussian
variable is parameterized by its mean µk, variance σ 2

k
and mixing

coefficient γk, subject to the constraint that the sum of all mixing
coefficients must be equal to 1. Fitting this Gaussian mixture
model to the image intensity data vector y of length I involves
maximizing the probability of observing the data given the model
parameterization. The probability that a voxel has intensity yi
given that it belongs to the k-th Gaussian random variable (i.e.,
given that ci = k) parameterized by µk and σ 2

k
is

P
(

yi|ci = k,µk, σ
2
k

)

=
1

(

2πσ 2
k

)1/2
exp

[

−

(

yi − µk

)2

2σ 2
k

]

. (1)

Because the probability that yi belongs to the k-th Gaussian
random variable given the proportion γk of voxels which belong
to that random variable is P

(

ci = k|γk
)

, Bayes’ rule indicates that

P
(

yi, ci = k|µk, σ
2
k , γk

)

= P
(

yi|ci = k,µk, σ
2
k

)

P
(

ci = k|γk
)

, (2)

and the total probability of observing yi becomes

P
(

yi|µ, σ , γ
)

=

K
∑

k=1

P
(

yi, ci = k|µk, σ
2
k , γk

)

, (3)

whilst the probability

P
(

y|µ, σ , γ
)

=

I
∏

i=1

P
(

yi|µ, σ , γ
)

(4)

that all I intensities in y are observed given µ, σ , and γ can be
maximized by varying the latter parameters in the cost function

E = − log P
(

y|µ, σ , γ
)

. (5)

Spatial Priors, Deformation, and
Regularization
A probabilistic atlas is used to specify the prior probability
that each voxel belongs to any tissue class in the Gaussian
mixture model. This is done without assuming that any intensity
distribution for each class is Gaussian, such that the prior

probability of voxel i being drawn from the k-th Gaussian
distribution is

P
(

ci = k|γ
)

=
γkPik

∑K
j=1 γjPij

, (6)

where Pik is the tissue probability for class k at voxel i.
For voxels located at the boundary between tissues (e.g., the
GM/WM boundary), this model accommodates the difficulty of
ascertaining the class to which voxel i belongs. The atlas used
here is a modified version of the MNI152 atlas (Grabner et al.,
2006), which is based on an average of T2-weightedMRI volumes
acquired from 152 healthy control subjects. The original atlas has
a resolution of 1mm × 1mm × 1mm and its image intensities
range from 0 to 90 in increments of 1.3 × 10−3. For the present
study, the atlas in question was modified to reflect the intensity
profile of CT brain scans, where CSF is hypointense.

Let α be a vector of diffeomorphic deformation parameters
which allow the co-registration of the spatial template and a
subject volume. Here, spatial priors are deformed according to
α, to allow co-registration according to

P
(

ci = k|γ , α
)

=
γkPik(α)

∑K
j=1 γjPij(α)

. (7)

With this adjustment, one obtains

E = −

I
∑

i=1

log P
(

y|µ, σ , γ ,α
)

(8)

or, more explicitly,

E = −

I
∑

i=1

log

K
∑

k=1

P
(

ci = k|γ , α
)

P
(

yi|ci = k,µk, σ
2
k

)

. (9)

The parameterization of the deformation is implemented using
a linear combination of sinusoidal transform bases (Christensen
et al., 1994) subject to spatial regularization by maximizing
P

(

y, α|µ, σ , γ
)

. Only the lowest frequencies of a discrete sine
transform were used, resulting in 392 (7 × 3 × 8) parameters
to describe deformations along each spatial dimension. Three
additional parameters were used to model linear scaling and
one parameter was used to model linear image intensity
inhomogeneities (Ashburner and Friston, 1999). The probability
densities of the spatial parameters α are modeled by multivariate
Gaussian random variables with mean 0 and covariance matrices
Cα . The spatial regularization involving these covariance
matrices and deformations prevents undesirable interactions
between parameter estimates (Evans et al., 1994). Initially,
parameter value estimates are assigned randomly, and nonlinear
deformation coefficients are set to zero. Model parameters
are then optimized using an expectation maximization (EM)
algorithm (Bishop, 1995), where the Gaussian mixture and
deformations are re-calculated by iteratively updating exactly one
while the others are held constant. Deformations are optimized
using a Gauss-Newton scheme (Wedderburn, 1974).
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Topology-Constrained Refinement
After probabilistic assignment of voxels to one of three classes
(WM, GM or CSF), the segmentation is refined iteratively using
a priori information concerning the local properties of the cortex
(Dale et al., 1999). Specifically, because the surface defined by
the WM/GM interface is smooth and its curvature is both
defined and finite everywhere on it, the local topology of the
brain can be used to correct the probabilistic tissue classification.
This process is analogous to the application of a nonlinear,
anisotropic filter whose nonlinearity is high near the WM/GM
boundary. As the distance from some given voxel to theWM/GM
boundary increases, the filter becomes more linear; because the
true boundary is topologically smooth, the filter shape must
be planar at this interface. In our approach, the segmentation
is corrected in two steps. First, we identify the plane crossing
the boundary which is intersected by voxels whose intensity
variance is minimal. Once this is done, the voxels within this
plane are examined to determine whether (A) a substantial
proportion of them have ambiguous classifications based on their
intensity or whether (B) they are surrounded by voxels whose
class memberships vary greatly. If changing the class assignment
of these voxels decreases the in-plane intensity variance, the
voxels in question are re-assigned to their more appropriate class
(Dale et al., 1999).

Qualitative Segmentation Comparison
CT segmentations were compared to MRI-based segmentations
within each participant. Prior to this comparison, the skull-
stripped MRI and CT volumes were co-registered using a 12-
parameter, affine registration. MRI- and CT-based segmentations
were compared by plotting both and inspecting the ability of
the CT segmentation to reproduce cortical folding patterns
and to identify landmarks of interest, including the thalamus,
ventricular system, and various gyri. To visually inspect the
effect of slice thickness upon segmentation, the CT volume
of a representative concussion victim was first down-sampled
using trilinear interpolation to change the voxel size from
1mm × 1mm × 1.25mm to 1mm × 1mm × 3.75mm. The
lower-resolution volume was then segmented, and the results
were compared.

Quantitative Segmentation Comparison
In addition to comparing the CT- and MRI-based GM, WM and
CSF classifications qualitatively, four measures were calculated:
(1) the Sørensen-Dice coefficient (which conveys the extent
of overlap between CT and MRI tissue label maps), (2) the
Hausdorff distance (which measures, in this case, how far the
CT- and MR-based boundaries are between two tissues), (3) the
intraclass correlation coefficient (a measure of how reproducible
measurements are when made using distinct techniques) and
(4) the stretching distance (a measure of average spatial prior
deformations).

For two tissue classes X and Y , the Sørensen-Dice coefficient
CSD is defined as

CSD = 2
|X ∩ Y|

|X| + |Y|
. (10)

If there is perfect overlap between the two tissue classes, CSD is
equal to 1; no overlap results in CSD being equal to 0. The original
Hausdorff distance dH is defined as

dH(X,Y) = max
{

supxǫX infyǫY d
(

x, y
)

, supyǫY infxǫX d(x, y)
}

(11)

where X and Y are non-empty sets of a metric space (M, d), sup
is the supremum and inf is the infimum. This measure involves
the distance between points located along the edges of two
surfaces and conveys how well the two surfaces overlap. In the
present study, X and Y are MRI- and CT-derived segmentation
volume surfaces, respectively, and d is a Euclidian distance. Here,
the modified Hausdorff distance is used, as defined formally
elsewhere (Dubuisson and Jain, 1994).

The intraclass correlation coefficient rIC is a measure of
within-subject measurement variability relative to between-
subject variability (Iscan et al., 2015). In the present case, these
measurements are volumes of the GM, WM, or CSF computed
from eitherMRI or CT, and their rIC value can be used to quantify
the reliability of the CT segmentation. As reported elsewhere,
the calculation of rIC is predicated upon experimental design
and statistical model assumptions (Shrout and Fleiss, 1979). In
cases like ours, the one-way random effect model is appropriate
(McGraw andWong, 1996), such that rIC ≃ (MSb −MSw) /MSb,
whereMSb andMSw are between- and within-group mean sums
of squared measurements, respectively. These quantities were
computed like in an analysis of variance (Shou et al., 2013).
Bootstrapping was used to calculate the average amount by which
CT volume estimates can be expected to deviate from their
MRI-derived values.

To assess the relationship between segmentation quality and
the amount of deformation applied to the spatial priors, one
can calculate the mean absolute stretching distance dS between
two volumes (Ewert et al., 2019). Intuitively, this distance can be
conceptualized as the average amount by which volume elements
within a moving volume must move to match the shape of a
target volume. Themapping between volume elements in the two
volumes (template and subject) is specified by the deformation
field of the transformation. In other words, dS is the average
amount by which voxels in the atlas must move to optimize
the atlas-subject deformation. The larger the deformation, the
greater dS.

To determine whether outliers as well as any bias existed
in favor of any of the segmentation classes, the MRI- and CT-
derived volumes of WM, GM, and CSF were plotted against each
other. The relationships between dH and CSD, and between dH
and dS were explored visually in a similar way, i.e., by plotting
one against the other. In this study, all GM and WM measures
were calculated based on all neuroanatomical structures in the
cranial cavity. By contrast, only ventricular CSF volumes and
Sørensen-Dice coefficients were compared because T1-weighted
MRI is insufficiently suited—compared toT2-weightedMRI—for
quantifying water content in the CSF layer around the cerebrum,
as well as in locations surrounding the cerebellum, brainstem,
etc. However, T2-weighted MRI scans were unavailable to us;
to alleviate this drawback, only ventricular CSF measures were
compared across modalities.
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In implementations like ours, there is a risk that segmentation
results could be dominated by the nonlinear deformation of
the template to each individual case. In other words, the
radiodensities of distinct tissue classes (e.g., GM, WM) may
have relatively little influence upon the segmentation. To test
this hypothesis, the following analysis was implemented for each
CT volume: (A) The mean µ and standard deviation σ were
calculated across all brain CT voxels. (B). All brain voxels were
assigned radiodensity values sampled at random from a Gaussian
distribution with parameters µ and σ. This operation effectively
removed the contrast between GM and WM. (C) The modified
brain CT volume was segmented. (D) CSD and dH values were
computed based on the segmentation of the modified brain CT
volume and then compared to the values of these metrics as
obtained by segmenting the original CT volume. We argue that,
if tissue class radiodensities had no effect upon segmentations,
there would be no statistically-significant difference between CSD

values calculated based on original CT volumes vs. based on
modified CT volumes.

RESULTS

Qualitative Assessment
The conclusions of our qualitative assessment are reflected by
the results conveyed in Figure 1, where both MRI and CT
segmentations are displayed for a representative subject. When
performing this comparison, the MRI-based segmentation is
treated as the gold standard. Overall, the agreement between
MRI- and CT-derived classifications is quite reasonable, with our
method being able to capture the most prominent features of
cerebral neuroanatomy appropriately. In what follows we discuss
specific findings, as reflected by the sagittal, coronal and axial
views of the brain, respectively.

The sagittal slice of the brain displayed in Figure 1 is
approximately co-planar with the longitudinal fissure. This
depiction indicates visually-acceptable agreement between the
segmentations, with good coverage of cerebral GM, callosal
WM and of the brainstem. Ventricular CSF classifications also
appear to be satisfactory. There is even agreement between
segmentations pertaining to cerebral areas where only little GM
is visible in the selected slice, such as the medial parietal lobe and
occipital lobes. The most notable difference in the sagittal view
pertains to the frontal lobe, where the CT algorithm appears to
have classified more tissue along the longitudinal fissure as GM
than the MRI method. This, however, is to be expected due to
the relatively low SNR of CT compared to MRI as well as to the
excellent ability of FreeSurfer software to delineate the natural
boundary between hemispheres.

The coronal slice displays a view of the parietal lobe, with
a substantial portion of the cerebellum and lateral ventricles
being visible as well. This view is particularly useful because
it conveys the substantial similarities in gyrification patterns
between the two segmentations. Visual assessment confirms that
local structural variations are captured relatively well in the CT
segmentation. Though the basal ganglia are poorly delineated
by CT, our segmentation appears to be able to capture them
well. The axial slice is at the level of the inferior temporal

lobe, with some frontal lobe structures—such as the orbital
gyri/sulci—being visible as well. As in the coronal slice, the
overall local shape of the GM/WM boundary is reflected well in
the CT segmentation.

Figure 2 displays MRI- and CT-based three-dimensional
reconstructions of the ventricular CSF, brain, bones and skin for
the volunteer in Figure 1. The second row displays segmentation
results based on the original-resolution volume (1mm × 1mm
× 1.25mm). Although the MRI-based segmentation is superior
in its ability to resolve the gyrification of the cortex, the CT
segmentation does reproduce the overall shape of the brain and
ventricular system. The reconstruction of the lateral ventricles,
third ventricle and inter-thalamic adhesion appears to be within
reasonable limits for the purposes of neuroanatomic reference
and delineation. Results in the third row are based on the same
volume after down-sampling to the resolution of the volumes
acquired from non-concussed volunteers (1mm × 1mm ×

3.75mm). Here, the method is seen to over-estimate GM volume
and to lose some ability to capture cortical folding details;
overall, there is some perceived loss of tissue classification fidelity
compared to MRI.

Quantitative Assessment of Concussion
Group
Across all concussion cases considered, the mean and standard
deviation of the Sørensen-Dice coefficient were found to be
86.7 ± 5.6% for WM, 86.0 ± 2.0% for GM, and 92.2 ± 0.7%
for ventricular CSF. The means and standard deviations of
the coefficient are more similar for WM and GM, presumably
because these tissues’ similar radiodensities translates into similar
abilities to classify them. On the other hand, ventricular CSF
has a somewhat greater coefficient presumably because its
lower radiodensity compared to GM/WM makes CSF easier
to distinguish from soft brain tissue. The average modified
Hausdorff distance was found to be 3.4 ± 1.5mm (WM), 3.7
± 1.8mm (GM), and 2.5 ± 1.3mm (CSF), which confirms that
CSF classification is likely best, followed by WM and then GM.
This view is recapitulated by the fact that dS was found to have
means of 3.4 ± 2.3mm (WM), 3.5 ± 1.9mm (GM), and 1.8 ±

0.6mm (CSF).
In the concussion sample, the intraclass correlation coefficient

was found to be 0.64 for WM, 0.68 for GM, and 0.74 for CSF.
Bootstrapping results suggested, based on this sample, that the
segmentation method is sensitive enough, to yield WM, GM,
and CSF volume estimates within ∼5.4%, ∼4.3%, and ∼3.2%
of their MRI-based estimates, respectively. As percentages of the
MRI-derived mean volume, the 2σ confidence intervals (CIs) for
these error estimates were [2.9, 7.9]% for GM, [2.2, 6.4]% for
WM, and [1.4, 5.0]% for CSF. In other words, for a randomly
selected volunteer, there was a ∼95% estimated probability that
the discrepancy between her/his CT-derived and her/his MRI-
derived GM volume was between 2.9% and 7.9% of the latter.

The results of the quantitative assessment for concussion
victims are summarized in Figure 3. In particular, Figure 3A
suggests that, in the case of volume measurements, no outlier
or bias in favor of any tissue class are present in our cohort of
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FIGURE 1 | MRI and CT segmentations and their corresponding imaging slices for a representative subject. Colored voxel label maps are translucent to ease

inspection of the underlying neuroanatomy. (A) T1-weighted MRI slices show GM (green). The WM is left uncolored to facilitate identifying occasional differences

between the true GM/WM boundary and the FreeSurfer-identified boundary. (B) CT slices display labeled GM (red), WM (yellow) and CSF (light blue) based on

segmentation at the original CT volume resolution (1 × 1 × 1.25mm). (C) Like (B), based on segmentation at a down-sampled CT volume resolution (1 × 1 ×

3.75mm).

concussion victims. Figure 3B suggests that, as expected, there
is a direct relationship between dH and CSD. Comparison of the
plots for WM, GM and CSF illustrates how both metrics have a
smaller range and variance for CSF than for the other two classes.
This can be explained by the fact that CSF is easier to segment
from both CT and MRI due to the relatively large difference
in radiodensity between CSF and either GM or WM. This is
confirmed by Figure 3C, where the relationship between dH and
dS is explored. As expected, these quantities are also directly
proportional to each other because they both trend higher as the
quality of the segmentation decreases.

When testing the hypothesis that tissue class intensities had
no effect upon segmentations, the Sørensen-Dice coefficients
computed based on CT volumes with modified radiodensities

were found to be 64.2 ± 8.9% for WM and 69.4 ± 7.3% for
GM across all concussion cases. The average modified Hausdorff
distance was found to be 5.21 ± 1.61mm (WM) and 4.87
± 1.95mm (GM) in this group. These values are significantly
different (p < 0.001) from those obtained based on the original
CT volumes, which suggests that tissue class radiodensities do
have a significant effect upon segmentations.

Quantitative Assessment of Volunteers
Without Concussions
Across non-concussed participants (whose MRI volumes had
thicker slices), the mean and standard deviation of the Sørensen-
Dice coefficient were found to be 63.7 ± 7.2% for WM, 59.4
± 8.9% for GM, and 73.5 ± 6.6% for ventricular CSF. In this
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FIGURE 2 | Reconstructions of the brain (light red), ventricular CSF (blue), bones (white), and skin (translucent) for a representative participant. The brain and

ventricular CSF are based on MRI (left) and on CT (right). Bones and the skin surface were reconstructed from CT.

group, the average modified Hausdorff distance was found to
be 6.18 ± 2.34mm (WM), 6.75 ± 2.87mm (GM), and 4.89 ±

1.86mm (CSF). Presumably, the results are substantially inferior
to those obtained in the concussed patient sample because the
MRI slice thickness in the non-concussed group was 3.75mm.
The intraclass correlation coefficient was found to be 0.51 for
WM, 0.56 for GM, and 0.61 for CSF. In this lower-resolution
sample, the segmentation method was estimated to be sensitive
enough to detect percentage volume differences between MRI
and CT which amounted to an average of ∼7.1% (CI: [3.9,
10.3]%) for WM, ∼6.2% (CI: [3.5, 8.9]%) for GM, and ∼5.4%
(CI: [3.1, 7.7]%) for CSF. The dS metric was found to be 7.1
± 4.12mm (WM), 6.7 ± 3.9mm (GM), and 3.4 ± 1.6mm
(CSF). Although the means and standard deviations of these
quantities differ from those observed in the concussion group,
the relationships between quantities recapitulate the findings
illustrated in Figure 3 to indicate that dH and dS are directly
proportional. Overall, these results thus confirm the necessity
of validating CT-based soft tissue segmentations using MRI of
standard, research-grade thickness (e.g., 1mm) rather than MRI
with slices of relatively large thickness (e.g., 3.75mm).

DISCUSSION

Feasibility
The ability to segment soft brain tissues from CT is largely
dependent upon image contrast-to-noise ratio (CNR). In CT,
the CNR itself depends on tube settings, iterative reconstruction
method, radiation dosage and other factors; at standard dosages,
the average radio-densities of GM andWMhave been reported as
38.7± 2.2 Hounsfield units (HU) and 31.8± 2.3 HU, respectively
(Craddock et al., 2006), resulting in an average X-ray attenuation
of ∼5 HU. Bier et al. (2016) similarly report radio-densities
of 40.2 ± 3.3 HU (GM) and 28.48 ± 3.6 HU (WM) in their

CT images, with the GM-WM radio-intensity difference being
significantly different (p < 0.0001). The GM-WM CNR is
reported as∼3 (Rapalino et al., 2012; Bier et al., 2016), but image
filtering techniques have been reported to enhance the CNR by
a factor as large as ∼10 (Diwakar and Kumar, 2014; Bier et al.,
2016). This allows the CT GM-WM CNR to compare favorably
with the GM-WM CNR obtained from T1-weighted MRI at 3 T,
where a meta-analysis found that single-slice and multi-slice
MR images yield CNRs of ∼18 and ∼9, respectively (Fushimi
et al., 2007). Together, these findings suggest that the delineation
of the GM/WM boundary from CT is feasible using available
CT technology. Nevertheless, it should be reiterated that, when
available and of enough quality, MRI is by far preferable to CT
for the purpose of brain soft tissue segmentation.

Applications
Despite very limited previous research on CT brain tissue
segmentation, there are numerous potential applications for this
technology, including (1) the detection of brain pathology, (2)
the measurement of brain volumetrics to assist studies of aging
in health and disease, and (3) the quantitation of neuroanatomy
in settings where MRI is undesirably expensive, unavailable or
inaccessible. For example, the US Centers for Disease Control
(CDC) report that the number of CT scanners exceeds that
of MRI scanners by a factor which ranges between ∼1.5
(developed countries) and ∼5 (developing countries) (CDC,
2010). Furthermore, CT is more affordable than MRI and
additionally constitutes the method of choice in certain clinical
settings where image acquisition time is of the essence, such as
neurocritical care (Williamson et al., 2017). For the latter reason,
the availability of CT segmentation tools could be beneficial for
TBI studies.

In stroke, TBI and other conditions which frequently involve
CT, segmentation of images acquired with this modality could
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FIGURE 3 | Results of quantitative analysis for concussion victims. For all quantities plotted, the regression line of best fit (blue) and residuals (red) are shown on plots

with identical ranges along both x and y, to facilitate comparison. (A) MRI- vs. CT-derived volumes. (B) The Hausdorff distance dH vs. the Sørensen-Dice coefficient

CSD. (C) The Hausdorff distance dH vs. the stretching distance dS. Quantities pertaining to WM, GM, and CSF are displayed in the first, second, and third rows,

respectively.

also be used to analyze perfusion imaging to study blood flow in
the brain and to distinguish between the cores and penumbrae
of cerebral lesions. CT-based volumetrics could also be useful
in quantitative studies of brain atrophy associated with healthy
aging, TBI or neurodegenerative diseases. Specifically, because
the rate of brain atrophy in health differs from that observed in
many diseases of the central nervous system, brain volumetrics
can be used in conjunction with other anatomic and functional
measures to estimate mortality risk and other parameters which
are of substantial interest to clinicians, biomedical scientists,
demographers, and epidemiologists.

Given that MRI availability in developing countries is
relatively limited, software for CT-based brain segmentation
could substantially extend the scope of certain large-scale
epidemiological studies being carried out there. One such
study is the Tsimané Health & Life History Project now
underway in a region of rural Bolivia where MRI is logistically
unfeasible yet where CT is available (Kaplan et al., 2017).
Furthermore, because some patients cannot undergo MRI
scanning due to claustrophobia, pacemaker implantation
or other contraindications, techniques such as ours could
facilitate the enrollment of these individuals in imaging
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studies. Given how transformative the research field of
brain MRI processing has been over the past 30 years,
the potential applicability of CT-based segmentation is
thus clear.

Comparison to Other Methods
There are very few other methods to which our approach can
be compared quantitatively. One study which reports metrics
like ours is that of Manniesing et al. (2017), where averages and
standard deviations for CSD, dH , and dC are reported for CT-
only segmentations of WM and GM. In all cases, our results
compare very favorably to theirs; for example, Manniesing et al.
report 〈CSD〉 = 0.79± 0.05 and

〈

dH
〉

= 0.74± 0.26mm for WM,
where 〈〉 denotes the mean. In all three cases, our Sorensen-
Dice coefficients are greater and the two distances quoted are
smaller than theirs, as desirable; this statement also applies to the
comparison of GM segmentations. By contrast, as expected,MRI-
based segmentations clearly remain preferable. For example,
Iscan et al. (2015) report that, for FreeSurfer-segmented GM,
〈rIC〉 = 0.88 ± 0.15 in a dataset of repeated MRI measurements.
Furthermore, whereas our approach can—at its best— yield GM
volume measurements which are within an average of ∼5.4%
of their MRI-derived values, the latter typically fall within <1%
of their true values, on average (Eggert et al., 2012). Similarly,
a comparison of the MRI- and CT-derived surfaces in Figure 1

easily indicates that only MRI-based segmentation can capture
fine local variations in cortical shape, such as those due to gyri
and sulci. In conclusion, our method could clearly benefit from
refinement and from technology improvements to improve CT
image SNR and CNR.

LIMITATIONS

For clarity, our study’s limitations can be divided into two groups,
i.e., extrinsic or intrinsic. Extrinsic limitations involve factors
pertaining to the imaging data themselves and which affect the
efficacy of the method independently of it; such factors include
radiation dose, the number of scans available, and the presence
of metal objects inside the head. Since there is a direct—albeit
nonlinear—relationship between radiation dose and SNR (Yu
et al., 2009), we expect our algorithm to perform better if the
data are acquired at higher radiation doses. Similarly, if repeated
measurements are obtained, within-subject co-registration and
averaging of CT volumes can improve SNR. If, on the other hand,
metal objects (e.g., deep brain stimulation electrodes) are present
inside the head, resulting artifacts may substantially compromise
segmentation efficacy. One intrinsic limitation of our approach
is the fact that, as Figure 1 illustrates, its ability to identify tissue
boundaries correctly is suboptimal at brain locations where thin,
long slabs of WM protrude into GM. Because the ability of our
method to capture the geometric variability of the GM/WM
interface is dependent upon GM/WM contrast, it results that the
algorithm may not perform well in locations where the structure
of the boundary is particularly complex. Improvements in the
SNR and CNR between GM andWM can alleviate this drawback.
A second limitation of this study involves the fact that T2-
weighted MRI is preferable to T1-weighted MRI for quantifying

water concentration in the brain. For this reason, the validation
of CT-based CSF segmentations should be performed, if possible,
based on the former MRI technique. Here, to circumvent this
problem in the absence of T2-weighted MRI, we opted to
compare ventricular CSF segmentations because brain ventricles
are typically much larger than the CSF layer around the brain,
especially in older adults. Nevertheless, future studies should
strive to include T2-weighted MRI when undertaking validation
of CT segmentations.

CONCLUSION

The ability to segment soft brain tissues accurately from CT
can substantially extend the utility of this important and
cost-effective neuroimaging technique. Despite the limitations
pertaining to the approach proposed here, our preliminary results
indicate that reasonable segmentations of WM, GM and CSF can
be obtained based on standard CT volumes of the human head.
The methodological contributions described in this study can
also be used as a foundation for the development of additional,
more complex segmentation procedures for tasks such as the
automated labeling of brain lobes and/or the identification of
smaller structures such as gyri and sulci. Such refinements of
our method, if feasible, would likely increase the utility of
CT segmentation for brain imaging studies. Nevertheless, the
accurate labeling of GM within thin gyri and of CSF within
narrow sulci based on CT is likely to remain quite limited
without substantial progress on CT technology to allow major
improvements of image quality. When undertaking population-
based studies of brain volumetrics calculated from CT data,
researchers should duly account for the uncertainty of these
measurements, especially in their statistical analyses. Such
uncertainties are recapitulated by the magnitude of the variance
in our Dice coefficients andHausdorff distances, and this suggests
that our ability to further refine our segmentation approach is
largely predicated on the availability of CT head volumes with
improved CNRs between WM and GM. MRI+CT data acquired
from larger human samples are also required to improve the
statistical estimates of our CT-based volume measurement errors
relative to MRI.
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We present Visbrain, a Python open-source package that offers a comprehensive

visualization suite for neuroimaging and electrophysiological brain data. Visbrain consists

of two levels of abstraction: (1) objects which represent highly configurable neuro-

oriented visual primitives (3D brain, sources connectivity, etc.) and (2) graphical user

interfaces for higher level interactions. The object level offers flexible and modular

tools to produce and automate the production of figures using an approach similar

to that of Matplotlib with subplots. The second level visually connects these objects

by controlling properties and interactions through graphical interfaces. The current

release of Visbrain (version 0.4.2) contains 14 different objects and three responsive

graphical user interfaces, built with PyQt: Signal, for the inspection of time-series

and spectral properties, Brain for any type of visualization involving a 3D brain and

Sleep for polysomnographic data visualization and sleep analysis. Each module has

been developed in tight collaboration with end-users, i.e., primarily neuroscientists and

domain experts, who bring their experience to make Visbrain as transparent as possible

to the recording modalities (e.g., intracranial EEG, scalp-EEG, MEG, anatomical and

functional MRI). Visbrain is developed on top of VisPy, a Python package providing

high-performance 2D and 3D visualization by leveraging the computational power of

the graphics card. Visbrain is available on Github and comes with a documentation,

examples, and datasets (http://visbrain.org).

Keywords: visualization, neuroscience, python, open-source, brain, OpenGL, EEG, MEG
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INTRODUCTION

The aim of scientific visualization is to graphically illustrate
datasets—which are can be highly complex- in order to provide
a better understanding and facilitate the interpretation of the
data. As scientific technologies continue to evolve, it becomes
increasingly important to develop up-to-date and comprehensive
visualization software capable of handling complex and large
datasets. This is especially true in the field of neuroscience, which
involves a myriad of neural recording types, and consequently, a
wide and diverse range of possible data representations.

To date, Matlab (Mathworks, 2012) is one of the most widely-
used commercial programming language for brain data analysis
and visualization, thanks to a large number of toolboxes such
as SPM (Penny et al., 2011), Brainstorm1 (Tadel et al., 2011),
EEGlab2 (Delorme andMakeig, 2004) and Fieldtrip3 (Oostenveld
et al., 2011). Alternative visualization solutions that run on non-
commercial open-source programming environments, such as
Python, are rare. These include high-quality packages such as
MNE4 (Gramfort et al., 2013), PySurfer5, Nilearn6 (Abraham
et al., 2014) or 3d slicer (Fedorov et al., 2012). Both MNE
and Nilearn rely on Matplotlib for visualizations which is not
suited for real-time interactions of brain imaging data involving
thousands of data points. In addition, MNE also relies on
PySurfer for 3D visualizations. PySurfer is built on top of Mayavi
which contains a powerful rendering engine and allows smooth
interactions. However, some issues have been reported when
installing Mayavi, (which uses VTK), which may affect its user-
friendliness.

In this context, we propose a Python open-source software
called Visbrain, distributed under a Berkeley Software
Distribution (BSD) license and dedicated to the visualization
of neuroscientific data. Visbrain is built on top of VisPy
(Campagnola et al., 2015), a high-performance visualization
library that leverages the Graphics Processing Units (GPU). As a
result, Visbrain efficiently handles the visualization of large and
complex multi-dimensional datasets. The purpose of Visbrain is
two-fold: (1) To provide within a common framework several
Python-based visualization tools for neuroscientific data, (2)
To allow users, including those with little or no programming
skills access to high-end visualization functions, through a
comprehensive documentation7 and a user-friendly API.

Many scenarii for the use of Visbrain are possible. For
instance, a user with a set of intracranial EEG data could use
visbrain to visualize in a first subplot the location of electrodes
(e.g., NumPy array) either in individual or standard MNI space.
Next, in a second subplot, the user may choose to project the data
onto the cortical mesh (e.g., gamma power, t-values, decoding
accuracies, etc). Additional subplots can be added, for example,
to include data from other subjects, or various contrasts across

1http://neuroimage.usc.edu/brainstorm/
2https://sccn.ucsd.edu/eeglab/
3http://www.fieldtriptoolbox.org/
4https://martinos.org/mne/stable/index.html
5https://pysurfer.github.io/
6http://nilearn.github.io/
7http://visbrain.org

experimental conditions. Because figures are dynamic, subplots
can be added on the fly with various visualization objects such
as connectivity, region of interest etc. The same procedure could
be applied to M/EEG source data. Finally, each subplot can be
animated and exported into a video file (e.g., animated GIF) or
in a standard high-resolution publication-ready image file (e.g.,
PNG, JPG, TIFF).

With the release of this package and publication of this paper,
we hope to develop a community of users that could facilitate
extending and adapting this software to better cover the needs
of researchers in neuroscience.

MATERIALS AND METHODS

The philosophy of Visbrain is to provide elementary visualization
building blocks which can easily be combined in a modular
manner, and to design a flexible and responsive graphical
user interface (GUI) which can be used to change the active
visualization parameters in real time. Visbrain is not designed to
duplicate data analysis functions which are already available in
well-established packages such as scipy8, pandas9, SciKits10, or
statsmodels11, except when it serves illustration purposes.

Programming Language and
Code Guidelines
Although we initially considered Matlab and Julia (Bezanson
et al., 2017) as language for Visbrain given their high level of
abstraction, we finally chose Python since this mature and easy-
to-learn language benefits from a large range of high-quality
packages, a thriving and rapidly growing user community, and
thorough documentation. Python software packages are portable,
cross-platform, and easily distributed. More importantly, Python
is free, open source, open access, and is thereby ideal for
open science.

From a programming perspective, we paid particular attention
to avoid memory-intensive data copy and to enable loading and
processing of large dataset. Visbrain is hosted on GitHub12,
and is documented using NumPyDoc, a Sphinx extension
to generate NumPy-like documentation. We also provide
illustrative examples and datasets. Code blocks are well-
commented and follow PEP8 guidelines for code readability.
Finally, package installation and features are tested under
Linux and Windows through a continuous integration protocol
(current coverage >85%).

Dependencies
As Python 2.7 will not be maintained past 2020, Visbrain is a pure
Python package for Python 3 only. Here is the list of Visbrain’s
dependencies are listed in Table 1.

8https://www.scipy.org/
9https://pandas.pydata.org/
10http://scikits.appspot.com/
11http://www.statsmodels.org/stable/index.html
12https://github.com/EtienneCmb/visbrain
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In addition to the above-mentioned packages, the use of some
specific functionalities will require a few more dependencies.
These include:

• Pandas (McKinney, 2011): for importing and exporting region
of interest defined in the brain

TABLE 1 | List of dependencies and package version.

Package name Purpose Version

NumPy Scientific computing ≥1.13

SciPy Scientific computing -

PyQt5 Graphical user interfaces creation -

VisPy Graphics rendering ≥0.5.2

Matplotlib Colors/colormaps related functions ≥1.5.5

Pillow Screenshots and image file format support -

PyOpenGL Python binding to OpenGL -

• MNE-Python (Gramfort et al., 2013): alternative for loading
sleep data files instead of using functions included in Visbrain

• Nibabel: for supporting certain file formats
• Tensorpac13 for computing phase-amplitude coupling
• Imageio: for Graphics Interchange Format (GIF) export

Finally, the Visbrain package can be downloaded using the
python package manager pip14.

GPU-Powered High-Speed Graphics
As the size, dimensionality and complexity of brain data
continues to increase, data visualization tools have to be
increasingly efficient, in particular if real-time interaction
is needed. For example, high-density EEG or full-night
sleep recordings can be associated with files of up to
tens of gigabytes. Matplotlib, which is one of the most

13https://github.com/EtienneCmb/tensorpac
14https://pypi.org/project/visbrain/

FIGURE 1 | Architecture of the Visbrain software. The left branch in blue illustrates the three included graphical user interfaces (Signal, Brain, and Sleep and). For

advanced users that want to interact programmatically with Visbrain, the right branch in red shows 6 of the 14 implemented objects in Visbrain. These objects are

presented in circles to emphasize the fact that each of them is independent. Then, using the scene (SceneObj) these objects can be superimposed or juxtaposed into

subplots inside a unique figure. The scene offers a finer grain control over the layout. Note that each subplot is interactive, meaning that rotation, translation and zoom

can be applied in real time on each subplot.
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FIGURE 2 | Illustration of the main features of the brain object (BrainObj). This object delivers some basic features as the possibility to display a translucent or opaque

brain mesh (A) or to pick only one hemisphere (B). Intracranial data can also be projected onto the surface (C) and other recording modalities can also be displayed

[fMRI activation (D) and MEG data (E)]. In addition, parcels can also be used (G) and data can be assigned to those parcels (H). All of those subplots use MNI

templates included with Visbrain, but the user can also define and save a custom template by defining subsets of vertices and faces (F).

famous Python plotting libraries (Hunter, 2007), is primarily
designed to provide static publication-quality figures and is
unfortunately currently not suited for handling large data
and user interactions. Seaborn15, which is built on top of
Matplotlib is also not a viable option for the same reasons.
Among libraries with mature development and real-time
interaction, we also considered PyQtGraph16 and Glumpy17

(Rougier, 2015). Both options could certainly have been
excellent alternatives. We rather considered the VisPy package
(Campagnola et al., 2015), which is a high-performance
interactive 2D/3D data visualization library leveraging the
computational power of the GPU through OpenGL. The
choice of VisPy was made mainly for the ease of installation
and also because it is a combined effort by the authors
of several visualization libraries (PyQtGraph, VisVis, Galry,
and Glumpy)

15http://seaborn.pydata.org
16http://pyqtgraph.org/
17https://glumpy.github.io/

The use of VisPy library is a critical component of Visbrain.
By offloading most of the graphical rendering cost to the
GPU, VisPy allows real-time interactivity, even for large
datasets, while at the same time minimizing CPU overhead.
As a result, Visbrain is able, on any modern-day laptop,
to efficiently display large datasets and allows for real-time
user interactions.

Graphical Interface and User Interactions
Scientific visualization software often come with easy-
to-use GUIs. Although most of the analyses can be
performed in the command-line, such interfaces often
greatly enhance the user experience. GUIs also allow
users with no or little programming knowledge to
use the software, making it more accessible to the
scientific community.

To embed VisPy graphics in full-featured widgets, we chose to
use the cross-platform C++ GUI toolkit Qt18, for which Python

18https://www.qt.io/

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2019 | Volume 13 | Article 143435

http://seaborn.pydata.org
http://pyqtgraph.org/
https://glumpy.github.io/
https://www.qt.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 3 | Illustration of the main features of the region of interest (ROI) object (RoiObj). Visbrain provides several default atlases that can be used to extract the

mesh of specific regions (A,B,F). In addition, the source object (SourceObj) can interact with the ROI object. For example, sources’ activity can be projected onto the

mesh (C). The RoiObj can also be used to identify in which region a source is contained. Here, sources are color-coded according to the MIST (D) but a table with all

of the anatomical informations can also be exported. Finally, it is also possible to keep only the sources that fall into the volume formed by the mesh (E).

bindings are available (i.e., PyQt & PySide). Specifically, GUIs of
the different Visbrain modules were built using the Qt designer
tool and were then converted to Python code using PyQt.

Documentation and Examples
Visbrain comes with a detailed step-by-step documentation
built with Sphinx19 and hosted on the Visbrain website20. This
documentation describes how to install Visbrain and use its
modules. We also provide a description of GUI components and
inputs for all class modules. Moreover, we provide a description
of each graphical element using tooltips that appear when
hovering corresponding widgets with the cursor. Lastly, we
provide examples21 and python scripts that can be downloaded
from the website. Some examples requires additional data to
be fully functionals. Those data are either generated or comes
from other open-sources softwares (i.e., MNE-Python, PySurfer,
and Nilearn).

19http://www.sphinx-doc.org/en/stable/
20http://visbrain.org
21http://visbrain.org/auto_examples/index.html

RESULTS

From the user’s perspective, Visbrain is subdivided into two
main levels: (1) Objects: independent visual primitives that can
be defined and used without the need for a GUI. (2) Graphical
user interface: a user-friendly interface built on top of Visbrain
objects for interactive visualization. The visbrain architecture is
summarized in Figure 1.

Objects
Objects represent the lowest level of Visbrain and can be
considered as neuro-oriented visual primitives. Each object is
highly configurable and serves a single visualization purpose. For
example, the brain object (BrainObj) is used to display 3D brains.
The definition of every object is independent, but some of them
can interact together. For example, the activity of a source object
can be projected onto the surface of the brain (see section Source
object for the description of the projection). Those primitives
bring modularity to Visbrain.

Those objects can then be superimposed and juxtaposed
inside subplot (see section Scene object). It should be noted
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FIGURE 4 | Illustration of the main features of the source object (SourceObj) using an intracranial dataset. Additional data can be assigned to sources and the color

can either be individually defined or based on a colormap (A). A text can also be attached to sources (B). In a similar way to Figure 3D, here, sources are colored

according to Brodmann areas (C). The data attached to sources in (A) is then projected onto the surface of the brain (D) or onto the surface of the default mode

network (DMN) (E). Finally, the cortical repartition (F) is the number of contributing sources per vertex. It can be an interesting feature to estimate the number of

sources that have contributed to each point of the cortical mesh when projecting source’s data.

FIGURE 5 | Illustration of the main features of the connectivity object (ConnectObj). The three sub-visuals express three coloring methods. The first method (A) is

simply to color edges by connectivity strength. The second (B) color edges according to the number of connections per node and finally, (C) use colors that are

manually defined.

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2019 | Volume 13 | Article 143637

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Combrisson et al. Visbrain: Brain Data Visualization Software

FIGURE 6 | Illustration of additional implemented objects. (A) cross-section of fMRI data (CrossSecObj). The cross-section can be used to load background

anatomical images and superimposed activations. It is also possible to move around the volume by clicking on it (still under development). Subplots (B, C)

respectively illustrate time-series (TimeSeries3DObj) and pictures (Picture3DObj) embedded inside the mesh. Here, the pictures are time-frequency maps. (D) Plot

vector-valued (VectorObj) MEG inverse solution. Visbrain also contains objects to plot images (ImageObj) as illustrated in (E) with a connectivity matrix, time-frequency

maps (TimeFrequencyObj) (F), phase-amplitude coupling (PacmapObj) (G). Finally, the TopoObj can be used to plot topographic representations of EEG data, draw

levels and connectivity links between EEG sensors (H).

that Figures 2–6, that combine these objects, were not post-
paginated (i.e., static rendering), but were generated from the
scene object as real-time interactive figures. Finally, objects
can also be animated, either independently or within subplots.
Furthermore, such animations can be exported as a gif file.

Implemented Objects
The current version of Visbrain implement many classes, among
them 14 defines visual objects that can be directly imported from
visbrain.objects and be added to a scene. The API for interacting
with those primitives are described inside the documentation22

(see Table 2 for a list of the visual objects).

Illustrations of the Main Functionalities of the Objects
In this section, we provide a non-exhaustive review of the main
features of some of the most used objects.

Scene object
Probably one of the most useful objects of Visbrain is called the
scene (SceneObj). The scene is not a visual primitive in the sense
that it cannot be used to represent any kind of brain data. Instead,
it is an equivalent of Matplotlib’s subplots meaning that objects
can be superimposed inside sub visuals or displayed side by side.
While requiring from the user some modest programming skills,
the scene presents three major advantages: 1) it is undoubtedly
a more flexible way to meet some specific visualization needs,

22http://visbrain.org/api.html#objects

TABLE 2 | List of the 14 visual objects implemented in Visbrain.

Object name Description

BrainObj 3D brain with vertices colored according to data

ColorbarObj Colorbar associated with another object

ConnectObj 3D connectivity lines between nodes

CrossSecObj Interactive fMRI cross-section (axial, sagittal and

coronal views)

HypnogramObj Hypnogram for sleep data

ImageObj Images or 2D arrays

PacmapObj Phase-amplitude coupling of a single time-series

(PAC)

Picture3DObj Images distributed in 3D space

RoiObj Volumetric region of interest

SourceObj Sources distributed in 3D space

(intracranial/MEG/EEG)

TimeFrequencyObj Time-frequency map of a single time-series

TimeSeries3DObj Time-series distributed in 3D space

VectorObj 3D vectors

VolumeObj Volumetric data

2) scenes can be integrated inside loops, on a local computer or
on a distant server which means that the production of figures
can easily be automated,3) the layout of figures for scientific
publications can be assessed using this scene and 4) subplots
remains interactives which allow the user to continue to interact
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with each object independently. Figures 2–6 are defined using
the SceneObj and the code snippet 1 illustrates a basic example
of how to use the scene object to define the layout of a figure.

import numpy as np

from visbrain.objects import BrainObj, SourceObj, SceneObj

# Define the scene

sc = SceneObj()

# Define two brain objects with, respectively only the left and right hemisphere

b_left = BrainObj('white', hemisphere='left', translucent=False)

b_right = BrainObj('white', hemisphere='right', translucent=True)

# Define randomMNI coordinates for 100 sources / intracranial sites. We

# We then define a source object

xyz = np.random.uniform(0, 50, (100, 3))

s_obj = SourceObj('sources', xyz)

# Add these two brain objects and sources to the scene and to different subplots

sc.add_to_subplot(b_left, row=0, col=0, rotate='right', title='Left hemisphere')

sc.add_to_subplot(b_right, row=0, col=1, rotate='left', title='Right

hemisphere')

sc.add_to_subplot(s_obj, row=0, col=1)

# Finally, display the scene

sc.preview()

Code Snippet 1 | Display the left and right hemispheres into two separate

subplots along with random MNI sources/contacts/electrodes.

Brain object
The brain object (BrainObj) can be used for every scenario where
a 3D brain mesh is needed. Left and right hemispheres can
be individually displayed on a translucent or opaque mesh. In
addition, overlays of data can also be added to the mesh to
illustrate fMRI, M/EEG or intracranial activations. The brain
object capabilities are summarized in Figure 2.

Region of interest object.
Regions of interest (ROI) are labeled volumes, i.e. a 3D array of
voxels associated with an anatomical label (e.g., “Somatosensory
cortex”). By default, Visbrain supports Brodmann areas, the
Automated Anatomical Labeling (AAL; Tzourio-Mazoyer et al.,
2002), the Talairach atlas (Talairach and Tournoux, 1993) and the
Multiresolution Intrinsic Segmentation Template (MIST; Urchs
et al., 2017). New ROIs can also be defined by providing a 3D
array for the volume and labels. The RoiObj provide the users
with an interface to the volume and let them extract the mesh of a
specific region and assign different colors to it. The code snippet
2 shows how to extract the mesh of the thalamus and Figure 3

demonstrates some core features of this object.

from visbrain.objects import RoiObj

# Load the AAL atlas

aal = RoiObj('aal')

# Get all labels included with the volume

labels = aal.get_labels()

print(labels)

# Find the integer index of the thalamus

idx = aal.where_is('Thalamus')

# Extract the mesh of the thalamus

aal.select_roi(idx)

# Display thalamus

aal.preview()

Code Snippet 2 | Display the left and right thalamus

Source object
The source object (SourceObj), depending on the recording
modality can either represent intracranial recording sites,M/EEG
sensors or reconstructed source activity. A text and marker color
can also be assigned to each source. In addition, data can be
provided to those sources to have marker radius proportional to
the data.

Another useful and relatively rare feature among existing
software is the ability to use the source object to project
intracranial data onto a mesh (e.g the cortical surface of the brain
or onto ROI). Usually, the implantation of intracranial electrodes
is subject dependent, which then poses a problem to visualize
the results across subjects. Cortical projections can solve this
limitation and have been previously used (Combrisson et al.,
2017a). When projecting the data, each vertex in the mesh can
be considered a bin which simply accumulates the data (e.g. beta
power) from nearby intracranial sites. The data from all sites that
are under a certain radius (10mm by default) contribute to this
bin. It is what gives the circular aspect to this projection (see
Figure 2C). Instead of projecting data, it is also possible to project
the number of sources that contribute to each point of the mesh.
In this case, the color indicates how many sources participated.
Finally, the last feature that we want to point out is the possibility
to get anatomical informations on sources using the ROI object.
For example, this can be used to deduce in which Brodmann area
a source (e.g., or an electrode) is contained. Those functionalities
are presented in Figure 4.

Connectivity object
The connectivity object (ConnectObj) is used to draw
connectivity lines between nodes. We provide three coloring
methods: 1) set color to the edges according to connectivity
strength, 2) set color to the node according to the number of
connections per node or 3) set color of edges manually. Figure 5
shows an example of those differences in coloring methods.
Display of directional connectivity is still an experimental feature
and therefore is not presented.

Other objects
Visbrain contains several other objects serving various purposes,
such as drawing vectors, displaying images, time-frequency
maps, and phase-amplitude coupling comodulograms. For EEG
recordings, topographic representations such as cross-sections
previously shown for anatomical and functional MRI can also be
plotted. Figure 6 summarizes the use of these objects.

For a list of all supported data types for the various objects we
refer the reader to the online API documentation23

GUI Based Interfaces
The main objective of GUIs is to connect and centralize the
main features of the smaller visualization bricks. At the moment,
Visbrain contains three interfaces:

• Signal: for the inspection of time-series and spectral properties
(PSD power and time-frequency map decomposition, phase-
amplitude coupling,...)

23http://visbrain.org/api.html#module-visbrain.objects
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FIGURE 7 | Example of the GUI of the Signal module. Leftmost is the setting panel, and side-by-side are all of the time-series re-arranged into a 2D clickable grid and

rightmost, an enlarged version of one of those time-series.

• Brain: for any type of visualization involving a representation
containing an opaque or translucent brain

• Sleep: for plotting, staging, and analyzing sleep data

GUI can be imported from visbrain.gui. Those interfaces share
the following properties and functionalities:

- A responsive GUI with a common graphical design and
structure: a “quick settings” panel disposed on the left (which
can be hidden or displayed) and plot on canvases displayed
on the rest of the screen. This settings panel contains PyQt
widgets to control objects’ properties and apply changes in
real time.

- The use of VisPy to exploit GPU capabilities.
- A “File” menu to import and export files (such as datasets,

annotations, . . . ). From this menu, it is also possible to save
and load the GUI state, i.e., the value of each PyQt graphical
elements (checkboxes, comboboxes,...). The configuration is
saved into a text file with a JavaScript Object Notation (JSON)
structure and can later be reloaded to retrieve the session.

- A “Display” menu that controls which elements are displayed
or hidden on the screen.

- A “Help” menu to open an informative web page in a browser
about the current module and features. This help can also be
downloaded in PDF format.

- The support of keyboard shortcuts and mouse events (left and
right clicks, double clicks, mouse wheel scrolling,...). The list
of supported shortcuts is referenced in a table accessible from
the help menu.

- A screenshot window to either export the entire window or
select canvas with controllable size, resolution, and printing
options. Visbrain supports several standard picture formats
(such as PNG, JPG, PDF, EPS, or TIFF). The transparency and
background color can also be controlled from this window. An
“auto-crop” option can also be checked to automatically crop
the exported image to the closest non-background pixel.

Signal: Time-Series Visualization and

Spectral Properties
A common first step when exploring electrophysiological data
consists of inspecting time-series. This inspection phase is
useful to get an idea of the shape of the signals, as well
as quickly detecting artifacts, epileptic spikes, eye movement
contamination, etc. Spectral properties such as power spectrum
density (PSD) or time-frequency maps are complementary
tools for such quality control and data exploration. Such data
inspection can be complicated for multi-dimensional datasets
(e.g., number of trials x tasks x time points). To address this
issue, we developed the Signal24 module for the visualization of
multidimensional signals. The GUI is divided into two layouts
presented in Figure 7. On the left, the dataset overview. This
consists of a grid where all of the time-series in the dataset are
displayed. Multi-dimensional arrays are systematically reshaped
into a 2D grid. On the right, the detailed view of a single signal.

24http://visbrain.org/signal.html
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FIGURE 8 | Plotting capabilities of Signal. (A) 104 intracranial recording sites of 4,000 time points each are rearranged into a clickable 13 rows by 8 columns grid. A

double-click on one signal of the grid enlarges it in the second layout. This enlarged time-series can either be displayed as a continuous line (B) or a cloud of points

(C). A histogram can also be computed (D) as well as the time-frequency map using Morlet’s wavelets (E) or the power spectrum density (F).

This second layout can be used to plot the time-series, the PSD or
the time-frequency map.

Grid disposition
The usefulness of this data exploration module is demonstrated
by one of the VisPy examples25, in which thousands of signals,
each having thousands of points, can be instantly plotted using
theGPU graphics rendering. These signals are presented in a two-
dimensional grid and the user can zoom on each of them. Since
this grid of signals can be useful for plotting electrophysiological
data, this representation has been integrated into the Signal
module (see Figure 7). The aim of this grid is to provide an
overview of the entire dataset in a convenient way to visualize
all the time-series at once. In order to take advantage of the
width and height of the screen, the program tries to determine
an optimal number of rows and columns for the grid. A title can
also be added on top of each signal of the grid to facilitate the
orientation of the user. To better visualize the signal on a specific
channel, the user can double-click on it in the grid. This enlarges
the selected signal by opening it in the second layout.

Plotting forms
In addition to the grid, a second layout is provided to inspect one
time series at a time. The default plotting method is a continuous

25https://github.com/vispy/vispy/blob/master/examples/demo/gloo/

realtime_signals.py

line but it can be changed to markers for a cloud of points. We
also included the possibility to compute the histogram, the PSD
or a highly configurable wavelet-based time-frequencymap (such
as normalization method, baseline bounds, etc.). The grid and
those plotting forms are summarized in Figure 8.

Annotations, thresholding, and signal processing tools
This module also supports annotations by double-clicking
on the canvas that contains the single time-series. All
inserted annotations are referenced in a table that can
be exported or imported. Selecting a row of this table
displays the annotated trial with associated annotations.
Then, the Signal module also allows the user to define a
lower and upper threshold for the identification of time-
series extrema. These annotations and thresholding capabilities
are summarized in Figure 9. We also included some signal
processing tools such as filtering, detrending, smoothing,
and demeaning.

Brain: Visualization on a 3D Brain
Brain26 is the second graphical interface that has been
developed for all types of visualizations involving a
3D brain. This interface is not intended to provide
extra functionality compared to what can be done with
the Visbrain objects and scenes. Instead, it provides

26http://visbrain.org/brain.html
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FIGURE 9 | Thresholding and annotation example of an intracranial time-series. The two horizontal lines indicate the threshold values and time points that are either

above or under are turned in red. The green markers show inserted annotations that can also be exported.

a GUI to control these objects and the interactions
between them.

Object and colorbar control
The Brain class can take as input objects or list of objects from
the following classes: brain, sources and connectivity (BrainObj,
SourceObj and ConnectObj), 3D time-series, pictures, and vectors
(TimeSeries3DObj, Picture3DObj, VectorObj) and volume related
objects (VolumeObj,CrossSecObj, and RoiObj). Any object passed
to the Brain class can then be directly controlled from the Object
tab inside the settings panel (see Figure 10). In addition, since
each visual object has its own color properties, the colorbar can
be controlled individually for each of them from the Cbar tab
(see Figure 11).

Class method for command line interaction
All the functionality and object properties that are accessible from
the GUI can also be used and set using Brain class methods. The
use of methods does not require the graphical interface to be
open, even for screenshots. Hence, users can leverage those class
methods in custom python scripts to speed up the production
of large sets of figures. All of these methods are referenced in
the documentation26.

Sleep: Polysomnographic Data Visualization

and Edition
Sleep27 is the Visbrain module dedicated to the visualization
and analysis of sleep data and has been previously described
(Combrisson et al., 2017b). It should be noted that new features
have been added to the Sleep module since the publication of
this article, such as the possibility to replace the default event
detections with custom external algorithms. This allows different
sleep research teams to use the same data visualization platform
while still keeping their custom, lab-specific, algorithms for the
detection of transient events during sleep.

API and Scripting
As visbrain is subdivided into two main levels (Objects and GUI
where GUIs are built on top of objects) we also provide an API
for higher level interactions. GUIs are of course ideal when user
interaction is needed. That said, GUIs are obviously not intended
to be embedded inside loops for scripting. Conversely, the object
level offers less options for graphical interactions (except for
translations and rotations) but is ideal for scripting, automating
and streamlining the production of high-quality figures. This
could be implemented either on a local computer or remotely

27http://visbrain.org/sleep.html
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FIGURE 10 | Example of the GUI of the Brain module. The settings panel on the left can either be displayed or hidden. This panel contains two tabs: Objects, in order

to control the properties of each visual class (e.g., BrainObj, SourceObj, etc.) passed to the interface and Cbar for controlling the colorbar and color properties of a

selected object. On the right, the main canvas contains the MNI brain with sources and connectivity links between those sources. This canvas allows fluid rotation,

zoom and translation, but also mesh slicing along the (x, y, z) axes. Here, the colorbar of connectivity strength is displayed but it can also be hidden.

on a distant server. In addition, the API provision also implies
that other toolboxes that have intensive visualization needs (e.g.
MNE-Python) can benefit from this API and the modularity of
Visbrain objects. The full Visbrain’s API can be found in the
online documentation28.

DISCUSSION

Summary
The ever-growing complexity of neuroimaging recording
techniques, relying on analyses in higher-dimensional space
and on larger datasets, are gradually transforming brain
data visualization into a real challenge for the existing
body of neuroimaging software. This challenge is further
complicated by the difficulty of meeting the specific needs
from individual research teams and by license compatibility
issues with proprietary software. With these problems in
mind, we propose Visbrain, a versatile Python 3 package for
multi-modal brain data visualization. As other softwares,
Visbrain includes graphical user interfaces for higher level
interactions with visual primitives. But the greatest novelty
and added-value of Visbrain lies in its structure and especially
the object level which, once configured properly, can offer
a great modularity for designing figures and layout that

28http://visbrain.org/api.html

reflect brain data results. This package is also configured
and tested on continuous integration servers to improve its
robustness on different platforms using Travis (Linux) and
AppVeyor (Windows). In addition, the documentation is
built and deployed automatically using CircleCi. This also
implies that Visbrain can be used on a remote server in
headless mode.

Limitations and Perspectives
Although much effort has been devoted in providing a
software compatible with multi-modal data, it is not equally
featured across recording techniques. For example, fMRI
cross-section is still a beta feature and electrocorticographic
data-specific visualization tools are not implemented so far.
Secondly, efforts must now be made to make Visbrain fully
compatible with Jupyter in order to have visuals embedded
inside notebooks and iPython for interactive shell. We are
also considering adding the compatibility with the Brain
Imaging Data Structure (BIDS; Gorgolewski et al., 2016; Niso
et al., 2018), a set of guidelines for organizing behavioral,
MRI and M/EEG data that facilitates data sharing and
reproducibility. Finally, Visbrain also contains experimental
functions for the compatibility with MNE-Python (Gramfort
et al., 2013), but this compatibility will be substantially enhanced
in the future.
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FIGURE 11 | Colorbar control. The Cbar tab of the settings panel contains all of the properties to design the colorbar of a specific object (width, colormap, limits,

lower and upper thresholds, title, etc.). In addition, these properties can be modified for each object. Here, the widget controls the colorbar for the data projected onto

the surface of the brain.

CONCLUSIONS

In summary, Visbrain is a Python open-source and cross-
platform software for brain data visualization which
provides, among others, the following features: (1) GPU-
powered graphical rendering providing efficient data
plotting, even for large datasets and real-time interactions.
(2) Modularity and flexibility with respect to users’
specific needs through neuro-oriented visual primitives
that can be juxtaposed or superimposed into subplots,
following a Matplotlib-like behavior. (3) Complete
control over the aesthetic through highly customizable
configuration of color properties, allowing better use of
this particularly informative dimension. Visbrain is in its
early stages of development, but the present core should
hopefully motivate users and programmers to contribute
to the project and build a community-driven, powerful,
sustainable, and full-featured open-source solution for brain
data visualization.
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Motion analysis is used to study the functionality or dysfunctionality of the neuromuscular

system, as human movements are the direct outcome of neuromuscular control.

However, motion analysis often relies on measures that quantify simplified aspects

of a motion, such as specific joint angles, despite the well-known complexity of

segment interactions. In contrast, analyzing whole-body movement patterns may offer

a new understanding of movement coordination and movement performance. Clinical

research and sports technique evaluations suggest that principal component analysis

(PCA) provides novel and valuable insights into control aspects of the neuromuscular

system and how they relate to coordinative patterns. However, the implementation

of PCA computations are time consuming, and require mathematical knowledge and

programming skills, drastically limiting its application in current research. Therefore,

the aim of this study is to present the Matlab software tool “PManalyzer” to facilitate

and encourage the application of state-of-the-art PCA concepts in human movement

science. The generalized PCA concepts implemented in the PManalyzer allow users to

apply a variety of marker set independent PCA-variables on any kinematic data and

to visualize the results with customizable plots. In addition, the extracted movement

patterns can be explored with video options that may help testing hypotheses related to

the interplay of segments. Furthermore, the software can be easily modified and adapted

to any specific application.

Keywords: sensorimotor control, motion analysis, clinical gait analysis, postural control, coordination, principal

component analysis PCA

INTRODUCTION

Sensorimotor control of movements is one of the most important functions of the nervous system.
It involves detecting the physical state which the biomechanical system is in; processing this
information to determine which changes to the system are desired or need to be opposed; and
activating the motor system to generate the forces that produce the required changes to the system.
From a biophysical viewpoint, the state of the biomechanical system is fully described, when the
position and velocity of the body segments are known. Thus, full-body motion analysis offers an
approach for studying the function of the nervous system by determining, on the one hand, the
state of the system and thus the input to the various sensory systems, and, on the other hand, the
accelerations of the body segments and thus the resultant output of the neuromuscular system.
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However, multi-segment human movements allow many
degrees of freedom DOF and typically allow a large variety
of different movement strategies to successfully achieve a goal
(Bernstein, 1967), i.e., human movements are mechanically
complex. Therefore, conventional movement analyses often
look into specific, pre-determined aspects of a motion. Such
analyses often neglect important information about segment
interactions; and the complex nature of these interactions makes
a priori variable determination prone to false identification
of important aspects. That is why other approaches quantify
whole body kinematics (Honegger et al., 2013; Boström et al.,
2018). Nevertheless, most of these approaches still rely on pre-
defined aspects of specific movements such as angles, torques, or
segment trajectories.

In the past two decades several principal component analysis
(PCA) based approaches were developed for various applications
in kinematic data analysis (Sadeghi et al., 1997; Troje, 2002;
Daffertshofer et al., 2004; Wang et al., 2014), with the aim of
determining relevant aspects of a motion in an unbiased and
data driven way. One of these approaches identifies whole-
body movement components (Troje, 2002; Daffertshofer et al.,
2004), later called principal movements PMk (Federolf et al.,
2012), thus reducing data complexity without neglecting segment
interactions. In this framework, a PCA yields eigenvectors PCk,
eigenvalues EVk and score time-series called principal positions
PPk(t). Each PCk defines one type of movement or movement
strategy that the respective PMk describes, while each EVk

determines the amount of total variance in the data explained
by the respective PMk. Furthermore, the scores PPk(t) determine
the evolution of the respective PMk over time.

Among the first papers applying PCA in this sense were
studies on walking patterns and gait forms (Troje, 2002;
Daffertshofer et al., 2004; Verrel et al., 2009). In these studies,
a separate PCA was conducted for each trial and the individual
EV-spectra characterizing the amount of contribution of each
individual postural strategy were compared. On the one hand,
this approach allowed programming a motion synthesizer that
displays gait forms according to different classifiers such as
gender, weight, and emotional condition (Troje, 2002). On the
other hand, it could be shown that gait regularity is not only
affected by cognitive dual-tasking, but that different age groups
display different changes in regularity (Verrel et al., 2009).

These results established PCA as a useful tool to analyze
human movements. However, only EV-spectra describing the
contribution of trial specific movement patterns could be
compared, thus the comparison of movements between subjects
or trials remained unsolved. Soon after, it was shown that one
PCA could be conducted on several trials of various participants
simultaneously, if the datasets were normalizing appropriately
(Federolf P. et al., 2013). This approach enabled the comparison
of the movement executions PPk(t) between trials. Furthermore,
the relative contribution of each PMk to a trial’s overall variance
(corresponding to the EVk) was quantified with the variable
rVARk computed on the PPk(t).

Amongst others, the rVARk and PPk(t) have provided new
insights into the execution of sports techniques in alpine skiing,
cross-country skiing, karate, dancing, cycling and race-walking

(Donà et al., 2009; Moore et al., 2011; Masurelle et al., 2013;
Federolf et al., 2014; Gløersen et al., 2017; Zago et al., 2017a).
Moreover, related variables such as residual variances RVk or
relative standard deviations rSTDk have been used to quantify
the dimensionality of coordinative tasks such as juggling or
balancing (Zago et al., 2017b; Haid and Federolf, 2018).

While the studies discussed so far applied the PCA method
to compare movements, they have not calculated velocities
or accelerations, and thus have not studied the control of
movements. Only in 2016 it was suggested to differentiate
the PPk-time series to obtain principal velocities PVk and
principal accelerations PAk (Federolf, 2016). Since then, PAk

and variables based on PAk have been used to study differences
in movement control due to aging (Haid et al., 2018) or leg
dominance/laterality (Promsri et al., 2018a). The PPk and PPk-

variables were also applied in postural control research and linked
to COP-time-series (Federolf, 2016), which are analyzed in a
range of clinical applications that investigate impairments due
to aging, overweight, back pain, concussion, multiple sclerosis,
autism spectrum disorders, or Parkinson’s disease (Fino et al.,
2016; Huisinga et al., 2017; Lim et al., 2017; Yamagata et al., 2017;
Han et al., 2018; MacRae et al., 2018; Nikaido et al., 2018). A
recent study evaluated COP-irregularity by linking it to PPk(t)
irregularity and to the complexity of the movement structure as
defined by rSTDk (Haid et al., 2018).

Variables computed on PM time-series contain information
about whole-body positioning, which allows studying the
movements of the human body as a system, while preserving
or possibly enhancing (Federolf P. A. et al., 2013) the ability
to discriminate groups. Therefore, the PCA approach is well-
suited for addressing any research questions where coordination
or the interplay of segment movements is of importance.
However, despite its research potential the implementation of
PCA approaches requires a fair amount of programming and
mathematical skills, and can be very time consuming. Therefore,
the development of new PCA based variables and research
output validation comparing different computational options is
severely hampered.

The main goal of this paper is to present the PManalyzer-
software. It generalizes many of the existing PCA concepts
and was designed to motivate the development and validation
of kinematic PCA related variables and methods within a
user-friendly graphical environment. On the one hand, the
software will allow researchers and clinicians without extensive
programming or mathematical skills to perform PCA on
kinematic data; on the other hand, it will allow users with more
advanced knowledge in the area to adapt and further develop
the software.

MATERIALS AND METHODS

The software was designed to pre-process the kinematic input
data and then compute a PCA on it. Furthermore, the
PManalyzer can compute a range of PCA variables. In this section
the mathematical background of kinematic feature extraction
and some of the most important variables are explained.
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General Data Model and Data
Pre-processing
Typical kinematic data consists of 3D positions in time obtained
by tracking the motion of n anatomical landmarks; either
utilizing a motion capture system or video-tracking (Figueroa
et al., 2003). The kinematic data is then available in matrix
form in which the N = 3 · n columns represent the time-series
si(t) (i ∈ {1, 2 . . . , N}) of the respective x-y-z-coordinates of
each anatomical landmark. Each row contains the measured 3D
positions of all markers at one time-point:

D =











s1(t1) · · · sN(t1)
...

. . .
...

s1(tT) · · · sN(tT)











,

Where T equals the number of measured time-points. The
application of PCA to human movement is based on the idea of
identifying linear whole-body movement patterns that dominate
the recorded movements. However, when identifying movement
patterns within a group of several subjects, both the mean
positioning of a participant and anthropometrical differences
distort the results. To reduce such distortions, the data of each
subject can be centered, weighted and normalized (Federolf P.
et al., 2013; Zago et al., 2017b; Haid et al., 2018).

The data is centered by subtracting the mean < si > of
each individual time-series si (each column) from the respective
time-series sc

i
= si− < si >:

D
c =











s
c

1
(t1) · · · s

c

N
(t1)

...
. . .

...
s
c

1
(tT) · · · sc

N
(tT)











,

preventing differences in mean marker positioning in space to
affect the results. Furthermore, a participant’s weight distribution
can influence marker movements. As an example, when moving
a hand, less mass has to be accelerated and controlled, in
comparison to moving a thigh. Therefore, each of the N time-
series can be scaled according to the weightwi (i ∈ {1, 2 . . . , N}),
that the respective marker represents:

D
c, w = D

c·











w1 · · · 0
...

. . .
...

0 · · · wN











,

Weighting has been applied in literature (Federolf P. et al., 2013;
Gløersen et al., 2017; Haid et al., 2018; Promsri et al., 2018a),
often considering gender-specific mass distributions (Defense
Technical Information Center, 1988; de Leva, 1996; Gallagher
and Heymsfield, 1998).

Another important aspect to be considered when comparing
trials is that anthropometric differences can influence the amount

of movement produced. Therefore, each data-set should be
normalized according to application specific criteria:

D
c, w,n = D

c,w ·
1

dnorm

Normalization factors dnorm such as the mean Euclidean distance
(MED) (Federolf P. et al., 2013; Zago et al., 2017b) or the body
height (Haid and Federolf, 2018; Haid et al., 2018) have been
proposed to reduce anthropometric differences. In detail, the
MED ensures that all subjects contribute equally to the overall
variance, while the body height normalization scales the data to a
trial-independent anthropometric parameter.

Once the data sets of each participant are centered, weighted
and normalized1, one large datamatrixDall is formed, containing
all data sets of all X trials concatenated vertically (with index
1..X representing different subjects and/or several trials of
different subjects):

D
all =







D
c, w,n
1

...
D
c, w,n
X







Feature Extraction—PCA
After pre-processing, the eigenvectors PCkand eigenvalues EVk

of the covariance matrix of Dall are computed [implemented
as SVD (Shlens, 2014)]. The eigenvectors PCk form a new
orthonormal basis that spans posture space (Federolf P. et al.,
2013), a space in which each of the axes determines one specific
linear, one-dimensional whole-body movement. Furthermore,
scores S can be obtained by projecting the data onto the new
PCk basis:

S = D
all · PCk (1)

The k-th column of the score matrix S can be interpreted as time-
series PPk(t) that quantitatively describes the evolution over time
of the respective principal movement PMk, i.e., the manifestation
of the one-dimensional PMk defined by the corresponding PCk:

S =







PP1(t1) · · · PPN (t1)
...

. . .
...

PP1(tT) · · · PPN (tT)







In addition, the eigenvalues EVk describe the amount of variance
(or movement) explained by each PMk and are typically
presented as percentages or relative eigenvalues rEVk

2.
To compute one PCA on each trial separately can be done

by running the software for each trial separately. However,

1The default order in the software is centering, then weighting and finally

normalizing the individual data sets. Depending on the pre-processing selection,

the order might influence the results.
2In literature the “relative eigenvalues” rEVk are sometimes referred to as EVk out

of simplicity. In addition, the term “relative eigenvalues” may refer to the “trial

specific relative variances” as described in the following section. In this manuscript

we aim at consistency.
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this feature is not explicitly supported, because the authors
recommend only comparing trials with respect to one PCA
basis that describes the group as a whole. The benefit of the
current procedure—being able to compare the PPk(t) of trials—
outweighs the benefit of obtaining several, trial-specific PCA-
bases that only allow comparisons of rEVk-spectra, but not of
PPk (t) . Moreover, the PPk(t) can be used to compute variables
that describe the subjects specific variance explained by each PMk

and further variables that quantify the additional aspects of a
movement or of neuromuscular control.

Interpretation of the
Movement Components
As mentioned in the previous section, the PCk form a basis
of the posture space. Moreover, they have the property that
they point in the direction of the largest correlated variance
expressed in the data. Therefore, they point in the direction of
the most common patterns of correlated marker movements.
As a consequence, the PMk are linear approximations of the
analyzed movements and interpreting them as real movements
should be done with caution. For example, to explain non-linear
movements such as rotations at least two linear components are
needed. Nevertheless, for movements with small perturbations
such as static balancing tasks (tandem, bipedal, one-legged) past
research has found the PMk to describe themain dynamics of well
established, nonlinear movement strategies, e.g., ankle sway or
upper body rotation (Haid and Federolf, 2018; Haid et al., 2018;
Promsri et al., 2018a). Moreover, also for movements with higher
amplitudes the PMk have been found to reflect the main the
dynamics of established movement strategies, such as isolated leg
or arm swinging, trunk leaning, or coordinated multi-segment
movements (Troje, 2002; Verrel et al., 2009; Eskofier et al., 2013;
Gløersen et al., 2017; Zago et al., 2017a,b).

Advantages of analyzing the movement with PMs are that
few variables are needed to approximate the movement to great
detail and obtaining the PMs is data-driven—not postulated from
subjective observations. Moreover, the PMs can be visualized
which improves interpretation of results. In the current paper
we further propose that movement analysis involving rotational
movements of large amplitudes could additionally benefit from
non-linear coordinate transformations. To the best of our
knowledge, there is no literature to support this assumption,
therefore, a motivational example will be presented.

PCA Variables
In the following some of the most common kinematic PCA
variables in literature are described. These, amongst others, are
pre-implemented in the software.

Trial Specific Movement Structure or Composition

The rEVk determine the overall variance explained by each PMk

either in the respective trial—if one PCA is computed for one
trial—or in the overall variance produced by all trials—if one
PCA is computed for the concatenated trials-matrix. In the
latter, trial-specific relative variances rVARk can be computed that
represent the explained variance of each PMk (Federolf P. et al.,
2013), analogously to the rEVk for applications in which one PCA

is computed for each trial. Therefore, the sum of all variances of
each trial’s individual PPk(t) ∼ time-series

totVARtrial :=
∑

k
VARtrial

k
:=

∑

k
VAR

(

PP
trial

k
(t)

)

,

can be computed. The subject specific relative variances are then
defined by

rVARtrialk =
VARtrial

k

totVARtrial
· 100.

To obtain a similar variable that quantifies the movement
structure and explains the relative contributions to a movement,
but scales as the original movement, the variance in the rVARk

computation can be replaced by the standard deviation to
compute trial-specific relative standard deviations rSTDk (Haid
and Federolf, 2018; Haid et al., 2018).

When the dimensionality of a movement is of interest,
it makes sense to define subject specific cumulative relative
variances as

CUM_rVARk :=
61≤n≤kVAR

trial
n

totVARtrial
· 100,

or analogously CUM_rSTDk, which explain the cumulative
contribution of the respective component order. This can further
be used to compute subject specific residual variances

RV3
:= 100− CUM_rVARm =

∑

k>m VARtrial
k

∑

k VAR
trial
k

· 100

where m is the highest PC-order included (Zago et al., 2017b,c).

Kinematics in Posture Space and Measures of

Postural Control

Similarly to conventional kinematics in biomechanics (Federolf,
2016) the PPk(t) time-series can be utilized to analyze the
execution of movements with respect to their PMk. Different
trajectories or performances can therefore be directly compared
to another if the PPk(t) of all trials are coordinates in the same
posture space, i.e., if one only one PCA was computed.

Furthermore, the PPk(t) can be utilized to compute
principal velocities PVk(t) and principal accelerations PAk(t)
by differentiating the PPk once and twice, respectively.
The dynamics of all three PM time-series can be studied
using conventional time-series analysis. For example, postural
reconfiguration can be ascribed to acting external forces, such
as gravity, and internal forces, such as acting muscle forces.
Therefore, the PAk(t) can be used to compute variables that
characterize the neuromuscular control of movement, as they
represent the acceleration of the postural movements. For
example, it has been shown that the PAk can be used to quantify
the amount and the variability of the neuromuscular control, by
further defining variables Nk and σk (Haid et al., 2018; Promsri
et al., 2018a), which represent the number of PAk -zero-crossings
(changes in the direction in which the neuro-muscular control

3Residual variances can also be computed for the overall contributions by

substituting the rVARk with the rEVk.
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system influences the current motion) and the time-variability
between the zero-crossings, respectively.

Table 1 contains a summary and a description of these PCA
variables. However, any other type of time-series analysis that fits
the research question may be applied to the three PM time-series.

PCA Validity Considerations
To quantify whichPCk basis is adequate to describe the group as a
whole, a leave-one-out cross-validation can be performed (Diana
and Tommasi, 2002; Bro et al., 2008; Camacho and Ferrer, 2012).
Therefore, the PCk are computed several times, while omitting
one trial each time. The changes between the used PCk and the

newly obtained PC
′

k
can be quantified as angles and serve as a

PM-inclusion criterion (Federolf, 2016; Haid and Federolf, 2018;
Haid et al., 2018).

RESULTS—THE PMANALYZER SOFTWARE

The Interface
As depicted in Figure 1, the PManalyzer interface is organized
into five main panels with red margin and font: 1. “Input data,”

TABLE 1 | Summary and description of the variables.

Abbreviation Variable name Description

PCk Principal

components/eigenvectors

Contains the information about the

marker movements that define the PMk

EVk Eigenvalues Absolute contribution of PMk to overall

variance

PPk (t) Principal positions Time-series that quantifies the evolution

of the posture with respect to PCk

PVk (t) Principal velocities Time-series that quantifies the velocity

of the postural changes defined by PMk

PAk (t) Principal accelerations Time-series that quantifies the

acceleration of the postural changes

defined by PMk

rEVk Relative eigenvalues Relative contribution of PMk to overall

variance

rVARk Relative variances Relative contribution of PMk to variance

produced by trial.

rSTDk Relative standard

deviations

Relative contribution of PMk to

movement of trial.

CUM_rEVk Cumulative relative

eigenvalues

Cumulative relative contribution of PMk

to overall variance.

CUM_rVARk Cumulative relative

variances

Cumulative relative contribution of PMk

to variance produced by trial.

CUM_rSTDk Cumulative relative

standard deviations

Cumulative relative contribution of PMk

to movement in trial.

RVm Residual variance Unexplained variance after setting

threshold of PM-order m.

Nk number of PA zero

crossings

Number of interventions of the control

system with respect to the movement

defined by PMk

σk Standard deviation of

times between zero

crossings

Standard deviation of times between

the interventions of the control system

with respect to the movement defined

by PMk

2. “Computation and output,” 3. “Plots,” 4. “Videos” and 5.
“Save/Load interface settings.” Following the subpanels one by
one allows the user to move through the conventional steps for
a PCA applied to kinematic data as described in the section
Materials and methods. The block scheme in Figure 2 visualizes
the steps of the parameter selection when using the PManalyzer.

Once the computational options are selected, the user can save
interface settings and reload them later if needed. To improve
efficiency when repeating calculation steps, computed data can
also be saved, and loaded. The compatibility of the computing
vs. loading vs. disabling options is regulated over the interface to
avoid the selection of incompatible features.

Note: The interface was created with the “guide” tool in
“MATLAB 2015a” in “Windows 10” on a screen with a 1,920
× 1,080 resolution. Both “Units” and “FontUnits” were set to
“normalized” with respect to screen size. For other software
or hardware configurations (for example on Mac books) some
adaptations may be necessary. Also, some of the plotting features
may produce errors if the PManalyzer is run on earlier versions
of MATLABTM.

Code Structure and Computation
The source code is built upon the structure of the user interface
and kinematic PCA described in the methods. To monitor
the code activity a text describing the current computational
step is printed in the output-console. Furthermore, the code
is documented by comments to identify the task of each code
section and help identifying important computational variables
and their respective role in the code. Despite the self-regulating
interface, it is possible to select options that do not match the
data. The code has implemented fail-safes to identify obvious
selection errors and forward them to the user, e.g., when users
choose to make video files of data that was not read in.

Functions containing computational options meant for the
user to customize (pre-processing, coordinate transformations,
normalizations, weighting, variables on PM time-series, video-
coloring and creating additional plots) are contained in the
PManalyzer subfolder “FunctionsToEdit.” Users can follow the
descriptions and the examples provided inside each function
to implement their new options. When starting, the GUI
automatically loads all functions contained in subfolders and
updates the interface with the available options.

Application Example
In this section, an example computation will be presented to
highlight the flexibility of the software. Then, a standard PCA-
analysis procedure is outlined. The input is a data subset taken
from a previously published tandem stance study that served as
template for the PManalyzer (Haid et al., 2018).

Computational Parameters and Modifications

For the sample tandem-stance data the first two columns
containing time-frames and the headers were deleted. Then
gap-filling (Gløersen and Federolf, 2016) was performed on
each data set if needed, and a pre-processing option was
created that mirrors specific data to make it comparable
(unsymmetrical markers were deleted and data with left foot
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FIGURE 1 | General user interface (GUI) of the PManalyzer. The input settings shown here were used for the computation of the example discussed in the

current paper.

FIGURE 2 | Block-scheme of the PManalyzer computation options. Gray fields describe essential parameter selections. White field represent optional GUI features

(Welch’s PSD-estimation can be used to estimate the power spectral density of data and to determine a plausible cut-off frequency).

in front was mirrored). The data was then centered, weighted
to standard human mass distribution (Defense Technical
Information Center, 1988) and normalized with the height of
the participants. We also filtered the data with a low-pass

filter of 7Hz, since Fourier analysis suggested signal power
up to this frequency. As this example shows, standard pre-
processing options can be performed on all of the data by simple
parameter selection.
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Another interesting pre-processing option that is rarely
taken advantage of in kinematic PCA-research is a coordinate
transformation. The PManalyzer has two types of coordinate
transformations pre-implemented (spherical and cylindrical).
Hence, we recomputed the analysis twice using the same
parameter selection as described above, but transforming the data
either into spherical or cylindrical coordinates, respectively.

Moreover, we selected several of the standard plotting options
for the standard PCA variables (rEVk, rSTDk, rVARk, PP, PV ,
PA). Further variables such asNk or σk (Haid et al., 2018; Promsri
et al., 2018a) can be computed by selecting “Compute selfdefined
variables” and can either be analyzed via Excel output or plotted
by defining plots in the function personalizedPlots.m. In addition,
we selected several video options (2D, 3D, and three different
coloring choices. The Supplementary Files contain a summary
of the important results of these computations, which we will
discuss in the following section.

PCA Results

As a common first step, the overall eigenvalues were analyzed
to see how much overall variance can be explained by
the components (individually or cumulatively). These results
(Figure 3) show that using spherical or cylindrical coordinate
transformations would allow to explain more variance with fewer
components. Therefore, we chose to continue the analysis with
the results obtained by using spherical coordinates.

As a next step, the PM-movies can be used to describe the
movement components to form a better understanding of the
extracted movements (compare “ColoringNone_2D_PM1-
5_vis.mp4”). It is often helpful to implement specific coloring
options (compare “Coloring1_2D_PM1-5_vis.mp4” and
“Coloring1_2D_PM1-5_vis.mp4”). For this sample data, the
first principal movement resembled an anteroposterior ankle
sway. The second PM resembled an upper body retraction
accompanied by front knee flexion, etc. The amplification
factors displayed in the titles can be adjusted individually for
every PMk. This is helpful when identifying movements of
different magnitudes.

Furthermore, PM time-series plots show the execution of
the individual trials with respect to the extracted movements
(see Figure 4) and the PP activity over time can also be
displayed in the video option (“Subject1_2D_PM-5.mp4” and
“Subject1_3D_PM-5.mp4”). Both can be useful developing
hypotheses related to the dynamics of PMs or their interplay.
Users may define any sort of variable in the function
optionsVariablesComp.m. These variables can then be computed
on PPk -, PVk- and PAk-time-series, thus describing specific
aspects of movement components that were not a priori defined,
but play an important role producing the observed variance.
As an example, we plotted the trial specific relative variances
rVARk and standard deviations rSTDk that have been very useful
when comparing movement structures amongst various groups
(Federolf, 2016; Haid et al., 2018; Promsri et al., 2018a). In
the current example it can be observed that while the overall
movement of subject 2 is dominated by anteroposterior ankle
sway, subject 3 has a more balanced movement structure, where
several movements contribute effectively (Figure 5).

DISCUSSION

Application of PCA-Variables
In human movement analyses, one of the most important steps
is the reduction of the numerous degrees of freedom. Several
approaches have been proposed in order to reduce the DOFwhile
capturing the most important dynamics of human movements.
For example, in static balance research, one of the most common
approaches is to quantify the center of pressure movement,
reducing the complex whole-body kinematics to the resultant
point where the vertical ground reaction forces act. Indeed, COP
based variables proved to be effective at distinguishing different
pathological groups and different balancing conditions. However,
literature findings are inconsistent and some interpretations
are controversial. For example, COP-irregularity has been
interpreted as a sign of very active and effective postural control
(Cavanaugh et al., 2006; Donker et al., 2007; Haran and Keshner,
2008; Stins et al., 2009; De Beaumont et al., 2011), but also as a
sign of a disordered and less effective control (Donker et al., 2007;
Stins et al., 2009; Borg and Laxåback, 2010; Gao et al., 2011).

Reducing the DOF via PCA has helped to address some
of the inconsistencies in COP literature. As a first step it was
shown that the information contained in the COP-excursion
should also be contained in PCA variables, since the COP-
trajectories can be calculated from the PPk and PAk time series
(Federolf, 2016). Then, follow-up research found that COP-
irregularity correlates with both the mechanical complexity of
the movement, as quantified by the movement structure rSTDk,
and the irregularity of the neuromuscular control as quantified
by PPk-irregularity (Haid and Federolf, 2018). Hence, these
findings suggest that COP-irregularity depends on more than
one interacting phenomenon, possibly explaining some of the
controversial results.

As another example, in research areas that involve postural
control and motor control theories, e.g., neurosciences,
distinguishing movement strategies can be of great importance.
For example, the minimal intervention principle MIP, as
discussed in the context of the optimal feedback control theory
(Todorov and Jordan, 2002), states that postural control focuses
on task relevant movements, while allowing variability in
redundant ones. Furthermore, evidence suggests that ankle,
knee and hip strategies dominate the whole-body kinematics
of balancing tasks (Gage et al., 2004; Kuznetsov and Riley,
2012). In addition, coherence analyses of respective joint angles
(Kilby et al., 2015; Masumoto and Inui, 2015) and muscle-EMGs
(Alfuth and Gomoll, 2018; Pollock et al., 2019) suggest that these
strategies are coordinated (Huisinga et al., 2017; Shahvarpour
et al., 2018). Nevertheless, further evidence suggests that when
modeling the dynamics according to these segment interactions
(Oliveira et al., 2017; McNair et al., 2018), the models seem
unable to explain the full extent of the movement dynamics
(Hume et al., 2019). Hence, since these studies depend on only a
few pre-selected muscles and DOF they might be limited when
testing hypotheses related to the MIP.

The advantage of the PCA approach is that the extracted
principal movement components are inherent in the data.
They represent coordinated marker movements that generate
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FIGURE 3 | Eigenvalue and cumulative eigenvalue spectra obtained from three coordinate systems (standard kinematic PCA applications use Cartesian-coordinate

systems). To explain roughly 98% of the variance it takes 9 PMs using Cartesian, 8 PMs using polar and 6 PMs using spherical coordinates.

FIGURE 4 | Exemplary PP-, PV- and PA-time-series produced by the PManalyser. This specific data was recorded from a subject performing a tandem stance

balance trial. The number of trials, subjects and PMs displayed per figure can be selected in the interface. Units are arbitrary (AU), since they represent a combined

motion of all markers and may depend on pre-processing options.

quantifiable amounts of the overall variance produced by the
analyzed movement. This allows categorizing them with respect
to their relative contribution to the overall movement and to

determine a movement’s composition of PM, i.e. the movement
structure (rSTD). Furthermore, the respective PM-time-series
can be used to quantify novel aspects of postural control, such
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FIGURE 5 | Subject specific relative variances and standard deviations (rSTD and rVAR) for five subjects performing a tandem stance, using spherical coordinates.

These eigenvalues are useful to compare the coordinative structure of a movement. In a similar fashion to Figure 3 the cumulative versions of the variables can also

be plotted with the software.

as how tight a movement is controlled (how often the control
system intervenes (Nk) and how variable the control (σk) of
the respective PMk is). As an example, in accordance with the
MIP the tandem stance study mentioned in the results of this
paper (Haid et al., 2018) found that aging effects emerged in
the movement structure and control of specific, task relevant
components, but did not affect other movement components. In
detail, the movement component with the least base of support
exhibited less relative contribution and tighter control in the
younger age group. Also leg dominance was studied in a similar
fashion (Promsri et al., 2018b) revealing differing movement
control characteristics in different movement components.

In addition, the PCA variables were used in several studies
with clinical purposes, or for fundamental research. Specifically,
they were helpful to classify gait patterns that are a result of
spastic diplegia (Zago et al., 2017c), affect (Karg et al., 2010),
gender or age (Troje, 2002; Verrel et al., 2009; Eskofier et al.,
2013), or shoe material (Maurer et al., 2012; von Tscharner
et al., 2013). Principal movements were also calculated as pre-
processing step in research on work-related musculoskeletal
disorders that aimed at characterizing the variability and
the local dynamic stability of the movements (Longo et al.,
2018a,b). The PM calculation allowed distinguishing cycle-
to-cycle variability from changes in the overall postural
configuration—a prerequisite for the calculation of non-linear
variables such as the largest Lyapunov exponent in this context.
In sports, coordinative strategies were studied, by identifying and
quantifying PCA-eigenvectors, eigenvalues and score time-series,
for example in alpine skiing (Federolf et al., 2014), cross-country
skiing (Gløersen et al., 2017), Karate (Zago et al., 2017a), dancing

(Masurelle et al., 2013), cycling (Moore et al., 2011), diving
(Young and Reinkensmeyer, 2014), and race-walking (Donà
et al., 2009).

In summary, literature suggests that kinematic PCA can
be an effective tool to study pathological conditions or sport
performance, and to address unsolved problems of motor control
theories such as the minimal intervention principle. The basic
code structure of the PManalyzer was originally developed for
the tandem stance study (Haid et al., 2018). Later, the code was
further developed to be applicable in a wider range of static
balancing tasks. However, as discussed in the following section,
it is also modifiable to be used in other application areas.

Computational Features and Advantages
of the Software
The main purpose of the PManalyzer software was to make PCA
computations more easily accessible for users, particularly for
users less familiar with programming or with the mathematical
background of PCA applications. The PManalyzer offers the
broad spectrum of available computational options and the large
variety of easily customizable visualization options. It also allows
a user to perform pre-processing steps like PCA-based gap-filling
(Gløersen and Federolf, 2016), deleting markers, columns or
rows, or to integrate any other self-defined data pre-processing
steps. Additionally, the PManalyzer can transform data from
a Cartesian into a spherical or polar coordinate system. Users
with more advanced mathematical knowledge can implement
further coordinate transformations. Moreover, a number of pre-
defined normalization options are available, of which two have
been validated (mean Euclidean distance and height) through
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previous research (Federolf P. et al., 2013; Zago et al., 2017b; Haid
et al., 2018; Promsri et al., 2018a), while others (such asmaximum
movement range in x, y, or z direction) have yet to be explored.
Also the weighting options for the standard 39 and 37 (no fingers)
plug-in gate marker systems are pre-implemented, as well as the
specialized 28 marker system (only symmetric markers) used in
the tandem stance study of the results (Haid et al., 2018).

Furthermore, new variables can easily be implemented to be
computed on all PM-time-series. If selected, they will be saved
with the other variables on the PP-, PV- and PA-time-series
(rVAR, rSTD, N, σ, RMS, mean, standard deviation, amongst
others). For users not familiar with Matlab programming, the
results of all computed variables can be exported to an Excel
spread sheet. Moreover, users can create customized plots that are
directly integrated into the interface. Finally, any video coloring
option can be added to the software without extensive Matlab
skills, saving programming time and effort.

To validate the obtained basis PCk, a leave one out
cross-validation has been implemented that produces a figure
displaying the angle-changes as described in section PCA validity
considerations. Furthermore, a figure containing aWelch’s power
spectral density estimate can be created to help determine a
suitable filtering frequency. Moreover, specifying a vector of
cut-off frequencies will run the selected PCA-computations
consecutively with different filtering cut-off frequencies and
saving the results in separate folders. This is particularly useful,
in order to conduct a frequency analysis to ensure that statistical
results are stable for various cut-off frequencies (Haid and
Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a).

Limitations and Future Research Potential
When it comes to effectively applying kinematic PCA and
to establishing reliable norm values for a clinical and sports
related environment, several factors should be considered. First,
kinematic PCA is only one of many interesting feature extraction
algorithms. For example, independent component analysis (von
Tscharner et al., 2013), isometric feature mapping (Blackburn
et al., 2003) and linear discriminant analysis (Karg et al.,
2010) have been used as kinematic feature extraction tools and
shown to outperform PCA in specific situations. Hence, there is
tremendous potential for systematic research into the advantages
and disadvantages of PCA compared to several other feature
extraction techniques (Van Der Maaten et al., 2009).

Second, in order to establish norm values it is essential
to define standard procedures. Hence, marker systems, pre-
processing options, normalization and weighting, and coordinate
transformations must be explored and standardized for different
types of movements. Specifically, coordinate transformations are
an interesting, yet relatively unexplored feature in kinematic
PCA. As an example, the tandem-stance study analyzed nine
different ankle, knee, upper body and head strategies, explaining
98% of the overall variance. The results in this study show that
only 6 PMs would be necessary to achieve the same accuracy,
if spherical coordinates were used. Furthermore, also moving
coordinate systems offer unexplored potential. The example of
alpine skiing technique analysis (Federolf et al., 2014) shows
that body-positioning-dependent coordinate systems can help

focus the analysis by neglecting movements with respect to
specified planes. A similar, implemented pre-processing feature
in the PManalyzer is the pre-processing option that moves the
coordinate system into the center of mass, which can be used to
avoid body displacements being represented as PMs.

Third, PCA based variables described in this study have been
applied successfully to quantify movement coordination and
complexity (rEV , rVAR, rSTD, and RV), and movement control
(N, σ , PP-irregularity), amongst others. However, especially
the variables of movement control computed on the PA-time-
series (N, σ ) react sensitively to the quality of kinematic data
and filtering settings, due to double differentiation of the data.
Nevertheless, a frequency analysis of the variables of movement
control indicated that the underlying effects are robust to changes
in filtering frequency and not random artifacts (Haid and
Federolf, 2018; Haid et al., 2018; Promsri et al., 2018a). Hence,
it should be possible to use PCA variables to establish objective
norm values that describe movement performance. However,
follow-up research is needed to further validate existing variables
and possible to develop new ones.

Finally, the extracted principal movements must be carefully
interpreted. Each PM is defined by one linear movement of
each marker. Since real whole-body movements are usually not
linear, individual PMs can only approximate real movements, at
best. However, some of the PMs obtained from movements with
small amplitudes, such bipedal static balancing tasks (Federolf,
2016; Haid et al., 2018), seem to be realistic approximations
of movement strategies that were already described in the
literature, such as ankle sway and hip-strategies (Gage et al.,
2004; Kuznetsov and Riley, 2012; Kilby et al., 2015). Others,
such as certain upper body strategies have not been described
in literature but seem realistic in the author’s eyes. Furthermore,
non-linear movements with higher amplitudes would require at
least two or more PMs to be approximated in a realistic way. In
theory, this limitation could be overcome with specialized non-
linear coordinate transformations or other feature extraction
techniques. At the moment, evidence suggests that the PMs of
higher amplitude movements describe interesting features that
allow group classifications, e.g., gait recognition (Troje, 2002;
Verrel et al., 2009; Karg et al., 2010) or sport performance (Donà
et al., 2009; Federolf et al., 2014; Young and Reinkensmeyer,
2014). However, further research is needed to link specific linear
PM-combinations to realistic non-linear movements.

In terms of the PManalyzer, some of the GUI options, for
example weighing markers according to the segment masses they
represent, depend on the input data (number and distribution of
markers) and the type of movement analyzed. A flexible usage
requires the user to define these options for non-standardized
input data, since, specifically for these options, the software relies
on pre-implemented options rather than on software recognition.
However, only basic, easily acquirable Matlab knowledge is
needed to follow the templates in the editable functions and to
perform such changes in the according functions. Furthermore,
despite beta testing, bugs can never be excluded. Nevertheless, we
are confident that the software works well, as it has been tested
on various data sets (Haid and Federolf, 2018; Haid et al., 2018;
Longo et al., 2018a,b, 2019; Promsri et al., 2018a,b), yielding the
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expected results. We encourage the community to report possible
improvements to the authors.

CONCLUSIONS

We presented the PManalyzer, a software tool that is meant as a
basis code for applying PCA in the analysis of human movement
and its sensorimotor control. We hope this will encourage
colleagues to more often apply PCA in their movement control
related research. The computational options are not meant to
be complete, but rather to enable easy software modifications to
assist future users in the development of specialized applications.
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A crucial link of electroencephalograph (EEG) technology is the accurate estimation of

EEG electrode positions on a specific human head, which is very useful for precise

analysis of brain functions. Photogrammetry has become an effective method in this field.

This study aims to propose a more reliable and efficient method which can acquire 3D

information conveniently and locate the source signal accurately in real-time. The main

objective is identification and 3D location of EEG electrode positions using a system

consisting of CCD cameras and Time-of-Flight (TOF) cameras. To calibrate the camera

group accurately, differently to the previous camera calibration approaches, a method

is introduced in this report which uses the point cloud directly rather than the depth

image. Experimental results indicate that the typical distance error of reconstruction in

this study is 3.26mm for real-time applications, which is much better than the widely used

electromagnetic method in clinical medicine. The accuracy can be further improved to a

great extent by using a high-resolution camera.

Keywords: EEG, TOF camera, system calibration, point cloud, electrode localization

INTRODUCTION

The electroencephalograph (EEG) technology is now widely used in clinical medicine such as
epilepsy, coma, brain deaths and so on, due to its use, economy, safety, and non-invasive detection
(Jeon et al., 2018). To well-use the EEG technology for analyzing the brain activities, it is important
to accurately locate the position of scalp signal in the cerebral cortex (Qian and Sheng, 2011;
Reis and Lochmann, 2015; Butler et al., 2016; Saha et al., 2017; Liu et al., 2018). At present,
there are several kinds of EEG electrode localization methods, including (1) manual method,
(2) digital radio frequency (RF) electromagnetic instrument, (3) magnetic resonance (MR), (4)
ultrasonic transmission and reflection, and (5) photogrammetric method (Koessler et al., 2007).
The manual method needs a relevant tool to measure the distance according to the preset
sensor. This method is low in cost, but it is time-consuming and labor-consuming, and it is
easy to cause errors due to manual operation (Russell et al., 2005). Electromagnetic RF digital
instrumentation is currently the most widely utilized method. The principle is to locate the
position of an EEG electrode through the magnetic field, and its accuracy is up to 4mm. Of
course, it is faster and more convenient than the manual method, but the disadvantage is that
single point measurements are prone to mistakes, which means that to obtain accurate results
the work needs to be repeated many times. Moreover, this method is strict with the overall
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measurement environment, requiring appropriate air humidity
and temperature and no metal artifacts. Additional data
conversion tools are also necessary. The specific implementation
of the MR method requires an additional calibration object,
which is not applicable to multi-sensor situations. The ultrasonic
method is the same as the digital electromagnetic conversion
method, which requires a single point measurement and
consumes time and energy. One of the common disadvantages of
the above methods is that the electrical signal will interfere with
the weak EEG signals, which will affect the final detection results.

Compared with traditional methods, the photogrammetric
method is fast, accurate, and easy to operate. From early 2000,
Bauer et al. used a method to achieve the EEG electrode
localization system with 12 industrial cameras, which did not
specify the system settings and operating procedures (Bauer
et al., 2000). Russell et al. used 11 sets of industrial cameras to
locate the electrode position (Russell et al., 2005). The method
is simple in operation, time-saving for operators, and there is no
need for additional devices. The experimental process only takes
15–20min, and patients are not required to participate in the
subsequent data processing, which brings great convenience to
patients and doctors. The working principle of this method is to
calibrate the 11 cameras and obtain the three-dimensional (3D)
information of each electrode with the ideas of stereo matching
in computer vision. Yet, there are three shortcomings. Firstly,
each electrode of the image must be manually marked, which
is likely to cause artificial errors. Secondly, the system is only
suitable for self-made electrode caps, not applicable to other types
of electrode caps, but other traditional methods do not have
this limitation. Thirdly, the system can only identify the visible
electrode points. For some invisible electrode points which may
be hidden in the hair, this method is useless, but electromagnetic
digital method and ultrasonic method do not have this limitation
(Zhang et al., 2014). The equipment is so complex that it is not
easy to operate. Baysal and Sengül (2010) used only one camera
to locate the electrode position, hoping to reduce costs. The
working process is to move the camera along a pre-set route,
taking pictures at every angle (Koessler et al., 2007). Although
the cost is reduced, the patient must stay still for a long period
of time, increasing the likelihood of human error and prolonging
the duration of data acquisition.

Recently, there has been a great deal of interest in the
development and applications of time-of-flight (TOF) depth
cameras. In 2015, Yao et al. presented the full very large-scale
integration (VLSI) implementation of a new high-resolution
depth-sensing system on a chip (SoC) based on active infrared
structured light, which estimates the 3D scene depth by matching
randomized speckle patterns (Yao et al., 2015). At the same year,
Golbach et al. presented a computer-vision system for seedling
phenotyping that combines best of both approaches by utilizing
TOF depth cameras (Golbach et al., 2016). Although TOF has
its unique features, the practical applicability of TOF cameras is
still limited by low resolution and quality of depthmeasurements.
This has motivated many researchers to combine TOF cameras
with other sensors in order to enhance and upsample depth
images (Eichhardt et al., 2017). Calibration between depth
cameras and other sensors has become a major concern. A

modified method about multi-modal camera calibration is
proposed in this report.

In summary, methods in previous studies, to some degree,
can solve data acquisition and operability, but there are still
many limitations. This report proposes a convenient and accurate
method, which is also based on the photogrammetry principle
(Russell et al., 2005; Clausner et al., 2017). The acquisition system
of EEG signals based on RGB-Depth (RGB-D) multi-modal data
is constructed by using the high resolution industrial camera and
the high precision depth camera to capture the object’s distance
and color information simultaneously. The system captures
images from five perspectives, which contains all the collected
electrodes from all the perspectives. Electrode distribution of
the electrode cap adopts the international 10–20 standard. The
information collecting process can be performed in real-time. All
image processing algorithms are achieved off-line, which greatly
improves the flexibility and operability of the system.

This article reports the design of such a photogrammetry
system both theoretically and experimentally. The remainder
of this report is structured as follows. Section Technology
and Implementation introduces the implementation technology,
including the sensing method, camera calibration, and singular
value decomposition (SVD) algorithm. The experimental process
for electrode identification and localization will be presented in
section Experiments and Results. Finally, the report summarizes
the findings and concluding remarks.

TECHNOLOGY AND IMPLEMENTATION

System Setup
The existing photogrammetric methods, whether measured
through a monocular, binocular, or multi-camera system,
without exception, are to obtain 3D information of the electrode
positions by adopting the stereo vision method. Theoretically,
each electrode point needs to be captured by two or more
cameras. They need to deal withmore pictures, and the algorithm
is more complex. Therefore, this report proposes the use of a
depth camera, MESA-SR-4000, based on TOF technology, which
can directly obtain the depth information. The existing depth
camera cannot directly identify the position of the EEG electrode
because of its low resolution. However, the color camera can
get the target color, texture and other 2D information. Hence,
this project combines the two cameras to get the distance and
color information of the scene. Accordingly, the EEG signal
acquisition system based on RGB-D multi modal data is built.
As long as all the electrodes are captured by the system, all the
3D information of the electrode can be obtained. This system
can avoid the complexity of shooting the same electrode from
two or more angles. Compared with the multipurpose camera,
the system reduces the cost of materials, decreases the number
of cameras, and greatly simplifies the algorithm. Compared with
the single-camera, this system simplifies the experimental process
and makes the operation simpler. There is no need to have a pre-
set line nor to debug the angle of the placed mirror (Qian and
Sheng, 2011), while at the same time, it improves efficiency.

The system processes in the following way. Firstly, the image
is collected by using both the color camera and the depth camera.
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FIGURE 1 | The camera system.

FIGURE 2 | The electrode cap on a head model and on a subjective head.

The color camera is responsible for the color picture of the
electrode, so that the EEG electrode can be conveniently detected
in the image and the 2D information of the electrode can be
obtained. The depth camera is responsible for obtaining the
point cloud data of the electrode, so that distance information
of the electrode can be obtained. The key issue is the calibration
of two different cameras. Secondly, this project uses the multi-
camerameasurement scheme, which can obtain all the electrodes,
rather than the distance information. In this project, a five-
camera group is applied to photograph the experimental targets
in five angles. The five angles are located around the head.
Of course, if the experimental equipment is not complete, the
same camera group can also be located around the head at five
angles, respectively. Ideally all the electrode information can be
captured by the camera in five angles. Compared with the color
camera based photogrammetry system, the photogrammetric
system designed in this project has greatly reduced the number
of angles taken and the complexity of the systematic framework.

In this project, the resolution of the color camera CCD is
1,624 × 1,234, and the depth camera TOF (MESA-SR-4000) has
a resolution of 176×144. The combined camera system is shown
in Figure 1. The electrode cap covered on a head model and a

FIGURE 3 | The schematic diagram.

subjective head for practical tests are shown in Figure 2. The 10–
20 electrodes are organized on a cap that is placed on the heads.
The different colors on the electrode dot can easily be made, e.g.,
using some paint coat or sticky paper. In either way it is also
easy to change colors. Making the dot colors does not affect the
electrode functions or costs.

According to the accuracy of the TOF camera’s sensing range,
the best shooting distance of the TOF camera is between 0.5 and
8m. The schematic diagram is shown in Figure 3. Five groups of
cameras are used in this system to take pictures simultaneously,
four (1, 2, 3, and 4 in Figure 3) of which are aligned around the
head with an angle of 90◦, while the last is located overhead. Then
all the electrodes will be reconstructed through the color image
captured by the CCD camera and depth information is obtained
by the TOF camera. The target RGB-D data is obtained from
multiple angles. The horizontal distance between the model and
the camera is 60 cm and the vertical distance is 40 cm.

The operational flow of the system is shown in Figure 4.
Firstly, the color images and the 3D point cloud data are obtained
by using the color camera and the depth sensor in five angles.
Then, electrode coordinates are detected and extracted in color
images. Its coordinates in 3D space can be calculated by using
the calibration results of color camera and depth sensor. Finally,
the correlation algorithm is used to calculate the relationship
between the five coordinate systems of the five views (Wang et al.,
2017). Therefore, all the electrodes of different angles of view in
five different coordinate systems are registered in the same spatial
coordinate system.

System Calibration
Traditionally, the calibration method utilizes the depth map
obtained by the TOF camera and the color map obtained by the
CCD camera to complete calibration (Cheng et al., 2016; Raposo
et al., 2016). Nevertheless, the resolution of the depth image is
very low, and the results are often unstable. In order to solve this
problem, this project uses a new calibration plate and accurate
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FIGURE 4 | Data processing flow.

point cloud data to perform camera calibration (Jung et al., 2015;
Wei and Zhang, 2015). The comparison of the two methods will
be described in the next section. The camera calibration model is
designed as follows. Assuming that Q is a point in the space, the

coordinates of the camera coordinate system are (xc, yc, zc)
T . The

projection of point Q in the normalized image is Xn

Xn =

[

x
y

]

=

[

xc/zc
yc/zc

]

(1)

If taking into account the lens distortion, the above coordinates
are mapped Xd

Xd =

[

x′

y′

]

= (1+ k1r
2 + k2r

4)Xn (2)

where r =
√

x2 + y2, k1, k2 are radial distortion coefficients. Xd

is mapped to the image coordinates Xq, i.e.,

Xq =

[

x
∗

y
∗

]

=

[

fxx
′ + cx

fyy
′ + cy

]

(3)

where f x and f y are focal length in x and y directions, respectively,
and cx and cy are the principle point coordinates.

The relationship between the camera groups can be described
as the relationship between the coordinates of the point Q in the

two camera coordinates. Assuming Xcd is the coordinate vector
of the point Q in the TOF camera coordinate system, Xcc is the
coordinate vector of the point Q in the CCD camera coordinate
system, and their relationship can be described as

Xcc = RXcd + T (4)

The goal of calibration is to solve the rotation matrix R and the
translation matrix T.

Decomposition for Data Stitching
With regard to the point cloud stitching problem, many works
use an ICP algorithm or improved ICP algorithm (Cheng et al.,
2016; Yang et al., 2016). However, here, due to the large deviation
of the angle of view, the performance of ICP algorithm is
not ideal, thus SVD is adopted to calculate the conversion
relationship between the two sets of point clouds (Sorkine, 2009;
Jung et al., 2015; Raposo et al., 2016). The principle is described
firstly from this transform

(R, t) = armgin

n
∑

i=1

wi ‖(Rmi + t) − ni‖
2 (5)

wherewi >0 is the weight of each point in the cloud. Calculate the
displacement, and the above formulaR is set to invariant to derive
t, at the same time F(t) = (R, t), which has the derived derivative

0 =
∂F

∂t
=
∑n

i=1
2wi (Rmi + t − ni)

= 2t
(

∑n

i=1
wi

)

+ 2R
(

∑n

i=1
wimi

)

− 2
∑n

i=1
wini (6)

where

m =

∑n
i=1 wimi
∑n

i=1 wi
, n =

∑n
i=1 wini
∑n

i=1 wi
(7)

t = n− Rm (8)

Substitute (6–8) into (5) and we have

n
∑

i=1

wi ‖(Rmi + t) − ni‖
2 =

n
∑

i=1

wi ‖Rmi + n− Rm− ni‖
2

=

n
∑

i=1

wi

∥

∥R(mi − m)− (ni − n)
∥

∥

2
(9)

Xi : = mi − m, Yi := ni − n. (10)

R = armgin

n
∑

i=1

wi ‖RXi − Yi‖
2 (11)

To calculate the amount of rotation (11), is expanded in a
matrix representation,

‖RXi − Yi‖
2 = (RXi − Yi)

T (RXi − Yi)

=

(

Xi
TRT − Yi

T
)

(RXi − Yi)

= Xi
TRTRXi − Yi

TRXi − Xi
TRT

Yi + Yi
T
Yi

= Xi
T
Xi − Yi

TRXi − Xi
TRT

Yi + Yi
T
Yi (12)
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Since the rotation matrix R is an orthogonal matrix, there is
RTR = 1. Yi

TRXi and Xi
TRT

Yi are scalar. The transposition of
the scalar is still equal to the scalar itself, i.e.,

Xi
TRT

Yi = (Xi
TRT

Yi)
T
= Yi

TRXi. (13)

‖RXi − Yi‖
2 = Xi

T
Xi − 2Yi

TRXi + Yi
T
Yi (14)

Only one of them is related to R and transforms it into the
minimum of its variable,
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n
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(15)
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n
∑
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n
∑
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(

WYTRX
)

(17)

The conversion of the above formula makes a switch from
cumulative to matrix based multiplication. Here,W is a diagonal
matrix of n × n, and X and Y are 3 × n matrices. The traces of

these matrices are equal to the left-hand side of the equation.

tr (AB) = tr (BA) (18)

tr
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)

= tr
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(19)
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)

(21)

The last step of the above transformation also uses the nature of
(18). Since U, R, and V are orthogonal matrices, O = VTRU is
also an orthogonal matrix.

I = oTj oj =

d
∑

i=1

o2ij H⇒ oij ≤ 1 H⇒
∣

∣oij
∣

∣ < 1(22)
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FIGURE 5 | Calibration plate. (A) Color image of the target, (B) depth image, (C) detected points, (D) fitted points.

FIGURE 6 | Comparison of the depth map and point cloud. (A) Original depth map, (B) point cloud, (C) projected coordinates without distortion.
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From the above two terms, if the maximum trace is required, we
must make the value of Oii equal to I, while O is the orthogonal
matrix. So, O must be the unit matrix

I = O = VTRU H⇒ V = RU H⇒ R = VUT (24)

EXPERIMENTS AND RESULTS

This section contains two parts, i.e., camera calibration and
electrode identification and localization. The accuracy of camera
calibration plays a very important role in the whole system.
In this part, a new calibration method for the depth camera
is proposed and compared with the traditional method. The
experimental results show that the accuracy of our calibration
method is more significant. The experimental procedure of
electrode identification and localization is also described in detail
in this part.

Calibration
The traditional method to calibrate the TOF camera and the CCD
camera (Wei and Zhang, 2015; Bonnabel et al., 2016; Onunwor
and Reichel, 2017) produces very unsatisfactory results because
the resolution of the TOF camera is quite different from the
CCD camera resolution, and the acquired parameters are very
unstable. The pixel of the depth image acquired by the depth
camera represents the distance from the subject to the camera.
In 2012, Li and Zhuo proposed a 2.5D calibration plate that takes
full advantage of the depth image characteristics, which improves
the accuracy of camera registration, and simplifies the complexity
of the algorithm (Li and Zhuo, 2012).

Figure 5 shows the calibration plate designed in this project.
Figure 5A is the color image of the calibration plate. Figure 5B
shows the depth image of the calibration plate. The size of
the calibration plate is 500 × 500mm, round hole diameter is
30mm, and pitch of holes is 50mm, there are 100 holes. The
characteristic point is the center of each circular hole of the
calibration plate.

The calibration process has two main steps. The first is to
extract calibration points, i.e., to select a region of interest (ROI),
to binarize the image by an automatic threshold, to remove image
noise, to calculate the connected area, and to determine the center
of each connected area, as shown in Figure 5C. The center of the

FIGURE 7 | Error comparison.

connected area is regarded as a feature point. The second step is
to fit feature points. The least square method is used to fit the
characteristic points of each column and row in order to reduce
the position error, as shown in Figure 5D.

The above method improves the accuracy of registration, yet
the depth map still has radial distortion, as shown in Figure 6A.
Although the use of fitting feature points can reduce errors, there
is still room for improvement. Therefore, this report modifies the
process of cameral calibration proposed in Li and Zhuo (2012) by
employing accurate point cloud data other than the depth map.
The specific process in this report includes two stages. The first
is point cloud interpolation. Since the TOF camera has a low
resolution, in order to obtain more accurate data, the system uses
the bilinear interpolation algorithm to interpolate the point cloud
data, so that its resolution is consistent with the color map. The
second stage is to convert a point cloud to a 2D image. Since the
point cloud represents 3D data, it cannot be directly calibrated
with the color image, and thus the point cloud is required to be
converted into a 2D image. In this project, the 3D coordinates
are projected onto the 2D plane using the pinhole model as
the theoretical basis. The result is indicated in Figures 6B,C.
Compared with Figures 6A,C, we may discover that the image
distortion is almost resolved.

According to the results obtained by the two methods, we can
compare the distance errors of the two sets of points. The abscissa
represents 100 data points, and the ordinate represents the
distance difference between the two points before and after the
calibration. Figure 7 shows the comparison of errors caused by
Li-Zhuo method (Li and Zhuo, 2012) and the proposed method

FIGURE 8 | Electrode distribution diagram.
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in this study. From the data we can find that the calibration error
has dropped from the original average 3.95–1.16 mm.

Electrode Point Identification and
Localization
Electrode Identification

Assume that the electrode cap has a 30-channel EEG
amplified signal recorder (Trotta et al., 2018). The electrode
dot distribution diagram, provided by the electrode cap
manufacturers, is typically shown in Figure 8. The electrodes
here are marked with black color, and those names are shown in
the figure.

If the precise position of the EEG electrode in color
image is determined, the 3D location of the EEG electrode

can be calculated by the transformation presented in section
Calibration, using the similar calibration equations. In order to
get precise EEG electrodes in the color image, this project adopts
a method by detecting the connected region of the color image.

When the electrode is detected in the color image, there will be a

lot of interference because of the real electrode cap. When the

color image is binarized with the appropriate threshold, there

are lots of little interference regions, as shown in Figure 9A. In

order to solve this problem, all connected regions are calculated

and labeled, and the area of each connected region is calculated,

after selecting the ROI, which contains the electrodes on the
head in this picture, as shown in Figure 9B. In order to detect
the electrode accurately, the algorithm adaptively adjusts the
appropriate area threshold to preserve the connected area larger

FIGURE 9 | Real electrode detection on the EEG signal cap (A) Binarization (B) Select ROI (C) EEG detection (D) EEG marker.

FIGURE 10 | EEG electrode registration.
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TABLE 1 | Electrodes, camera views, and quantities.

Electrode Camera view N

Fp1 1 1

Fp2 1 1

AFz 1 + 5 2

F8 4 1

F4 1 + 4 + 5 3

Fz 1 + 5 2

F3 1 + 2 + 5 3

F7 2 1

FT7 2 1

FC3 1 + 2 + 5 3

FCz 1 + 2 + 3 + 4 + 5 5

FC4 1 + 4 + 5 3

FT8 4 1

T8 4 1

C4 4 + 5 2

Cz 1 + 2 + 3 + 4 + 5 5

C3 2 + 5 2

T7 2 1

TP7 2 1

CP3 2 + 3 2

CPz 2 + 3 + 5 3

CP4 3 + 4 2

TP8 4 1

P7 2 1

P3 2 + 3 2

Pz 3 + 5 2

P4 3 + 4 2

P8 4 1

O1 3 1

O2 3 1

than the threshold, filter out the connected area less than the
threshold, as shown in Figure 9C. This method reduces the noise
of the electrodes. Then, the center of the connected region is
calculated, and that is the center of the electrode. The coordinates
of the center point are used as the positions of the electrodes,
as shown in Figure 9D. Taken as an example, Figure 9 shows
the image of view 3, and other views have the same process.
When this step is finished, there are five color images with
detected electrodes.

Electrode Localization

Figure 10 shows the five shot images from each direction. The
first row is the color image which is obtained by the CCD camera,
with the detected electrodes. The second row is the depth image
which is obtained by the TOF camera with the transformational
electrodes, and the third row is the point cloud data with the 3D
electrode positions. The electrodes in the first row are detected
by the method described in section Electrode identification.
The electrodes in the second and third row are determined
by using the transformation between the CCD camera and the
TOF camera. Of course, the electrodes in the third row have
three dimensions.

3D Registration

We need to rebuild the entire brain model and the position of
electrodes. In the process of point cloud stitching, many people
use the classic ICP algorithm (Kim, 2015), which is only suitable
for small angle stitching, i.e., with a large overlapped area, and
so it is not ideal for the situation in this study. Since the angle
intervals between five camera groups are relatively large, in order
to reduce registration errors, this report takes the surrounding
four point cloud points, i.e., view1, view2, view3, and view4, to
match the view5 point cloud, respectively. The SVD algorithm
described earlier in this report is used to solve the transformation
relation. The electrodes, the camera angle, and the number
of angles are shown in Table 1, which illustrates the situation
of how the electrodes are taken. Figure 11 shows the results
of the registration for all electrodes into the same coordinate
system. Figure 11A is a registration diagram containing only the
electrodes. Figure 11B shows the distribution of the electrodes
on the head model.

The SVD algorithm can obtain stable and reliable results with
only two angles of 5–15 sets of matching points, which is much
simpler than traditional photography methods. This is mainly
because the TOF camera can directly obtain the exact depth of
the value. In the traditional photographic methods, for either
multi-camera or single-camera with multi-angle, each electrode
must be shot from different directions and the depth information
can be calculated according to that. The process is not only
complex, but also very easy to cause human errors and matching
errors. The algorithm of the multi-purpose camera method is too
complicated and requires manual participation in the electrode
marking process and can only use the matching electrode cap. A
single camera method is a brilliant approach, yet the operation
requirements are high, which is easy to cause human error. Qian
and Sheng (2011) also proved that only six electrodes could
reduce error when shot by more cameras, and that the other
electrodes did not have this trend.

RESULTS

In the EEG positioning system, the inaccurate location of the
electrode may cause an incorrect location of the source, and thus
the accuracy of the electrode positioning is very important for
research in brain science. The standard positioning error is given

by 1 =
√

(Xa − X)2 + (Ya − Y)2 + (Za − Z)2, where X, Y, Z
are estimated 3D coordinates, Xa, Ya, Za are the real coordinate
values obtained by a higher precision device, for which in this
study we use a portable 3D handheld scanner, the Artec 3Ds
Space Spider, with an accuracy of 0.05 mm.

The experimental process is repeated five times, using the
electrode cap on the head model. A typical result of the average
error of the 30 electrodes is shown in Table 2. We also tested the
same process with the electrode cap on human heads and got the
similar results. Therefore, with the RGB-D multi modal system,
the proposed method yields an average of 3.26mm localization
error, much better than other digitizer methods where the typical
equipment has a mean error of 6.1mm. Furthermore, if we use
a high-precision CCD camera for calibration and measurement,
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FIGURE 11 | Registration results. (A) EEG electrode registration. (B) Registration of electrodes on head model.

the accuracy can be easily improved up to 10 times, i.e., the error
can be reduced to about 0.3mm. Since the error is much less than
the size of an electrode dot which has a diameter of 10mm, our
result is good enough for practical applications. Anyway, there
are two sources of the experimental errors. One of them is the
error resulting from the camera calibration, introduced in section
Calibration the other is from the point cloud splicing. The points
with large errors are mainly located in the edge position of the
electrode cap. The error of the point in the middle position is
much smaller. In fact, it is normally accepted for users if the error
is <5mm for dense arrays of electrodes. Therefore, the proposed
system with this accuracy is rather sufficient for most practical
applications. Some technology information and data sets carried
out in this project are available on the web, http://www.sychen.
com/research/vision/LEEG.htm, where someMATLAB codes are
provided to demonstrate the main algorithms.

There is another advantage that the method achieves good
performance in terms of flexibility and simplicity of operation,
which can be used in EEG source localization applications on the
human brain. On the other hand, since the calibration process
and brain model building can be done off-line, the on-line
process only needs to detect the electrodes and map them to the
brain model. This process is performed very fast and can be easily
implemented for real-time applications.

DISCUSSION

In this study, we combine a TOF depth camera and a CCD
color camera to locate the EEG electrode positions in 3D space
and yield satisfactory results for practical use. Compared with
the existing contributions in the literature (Table 3), such 3D
positions are normally obtained by a stereo vision system, where
a pair of CCD cameras used as two eyes for identification and 3-
D reconstruction of electrodes. However, stereo vision is normal
useful for robots but it always has its own limitations and it’s still
used for industrial applications, especially when there is a high

TABLE 2 | Electrode positioning error (mm).

Electrode 1X 1Y 1Z 1r

Fp1 1.41 0.21 −0.37 1.47

Fp2 −1.39 −0.20 0.39 1.45

AFz −0.79 −1.55 −2.94 3.42

F8 −4.75 0.59 −0.31 4.80

F4 −3.27 −0.88 −1.77 3.82

Fz 0.78 −0.80 2.53 2.77

F3 −2.00 2.99 −0.10 3.60

F7 2.60 −1.46 1.84 3.50

FT7 1.55 0.85 −1.27 2.18

FC3 −0.24 0.92 −1.43 1.72

FCz 1.84 −1.17 1.33 2.55

FC4 1.78 2.91 0.11 3.41

FT8 −1.15 −5.22 −0.42 5.36

T8 0.64 2.42 −2.01 3.21

C4 −3.46 −1.78 2.04 4.39

Cz 1.16 2.1 3.12 3.94

C3 −0.54 0.35 −1.32 1.47

T7 0.19 1.10 −4.01 4.16

TP7 −3.14 0.44 −0.76 3.26

CP3 1.48 −2.49 −0.56 2.95

CPz −1.68 1.40 −1.10 2.45

CP4 3.19 1.49 0.15 3.52

TP8 0.47 2.15 0.67 2.3

P7 −1.20 −0.92 4.19 4.45

P3 1.30 −1.78 3.42 4.07

Pz −1.31 0.01 −2.95 3.23

P4 1.76 −1.74 −0.53 2.53

P8 4.80 0.05 2.07 5.23

O1 2.89 1.13 −1.56 3.47

O2 −2.78 −1.03 1.22 3.20

AVE 3.26

requirement on precision and reliability. For example, the work
by Schulze et al. (2014) is a typical realization of this technology.
There are some comparisons between photogrammetry system
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TABLE 3 | Comparison of the typical methods.

Method Principle Equip size Time Accuracy Reliability Typical Ref.

Manual measurement Coordinate measuring, calipers Small Very slow (>10min) 0.4mm Mid De Munck et al.

(1991)

Camera matrix Stereo vision Large Real-time (<0.1 s) 1.27mm Bad Koessler et al.

(2007)

Positioning tool Electromagnetic digitizer Small 5min 2–8mm Mid Dalal et al. (2014)

Photogrammetry Structure-from-motion Small Slow (5–10min) 0.8mm Mid Clausner et al.

(2017)

Laser scanner Laser Small Slow 0.05–0.2mm Good Jeon et al. (2018)

Color+depth Color+TOF Small Real-time 0.3–3.3mm Good This report

and manual measurements or electromagnetic digitizers made
in Koessler et al. (2007). One main problem of stereo vision
is its reliability. The passive vision system is very sensitive to
environmental conditions. When anything, like the lighting, the
object size in the working space, the vision system structure,
the working distance, changes, the vision system will meet a big
problem of 3D reconstruction. It even could not obtain a good
image for analysis anymore. The calibration of stereo cameras is
very tedious because it requires an inconvenient process by an
expert in robot vision. Furthermore, such a process has to be
redone when either one of the settings, such as the focus, the
baseline distance, the camera pose, is changed. That means such
an expert has to stay there for making the system use in practical
clinical applications.

Regarding the locating accuracy, an error below 5–10mm can
satisfy the current EEG signal research or clinical applications. A
manual process with a tool can get the accuracy of 3.6mm, but it
takes about 8min. Schulze et al. reports their system of camera
matrix can achieve a localization error of 0.761mm. In fact,
Koessler et al. (2007) already achieve the position error under
1.27mm 10 years ago, where they distribute 11 CCD cameras
on the dome for imaging. Actually, with the currently new CCD
cameras, higher accuracy, e.g., 0.1mm, can also be theoretically
achieved. However, it is hard to produce general systems using
such technology of stereo vision for the clinical applications.
On the other hand, using laser-based equipment can, of course,
get very high accuracy, e.g., the 3D handheld scanner in our
laboratory can give us the accuracy of 0.05 mm.

Since there is no complicated computation required to
perform the algorithms of this study, the system can be
implemented for real-time applications with common personal
computers. In the experiments, we mostly use ordinary devices,
e.g., TOF camera (MESA-SR-4000) and CCD camera (Manta G-
201C 30fps). It is performed in a personal computer with Intel
i3-4130 CPU at 3.4 GHz, 4.0 GB RAM, and x64-based Windows
7 OS. A relatively lower configuration of the computer does
not much affect the efficiency. Due to the resolution limited by
MESA-SR-4000 and MG-201C, the result is got with a precision
of 3.26 mm within 30 ms. This is usually adequate for practical
real-time applications. Of course, using latest better hardware
with higher resolutions, e.g., TOF camera (OPNOUS GC4 NIR)
and CCD camera (Kodak KAI-08050 PoE) in our lab, we can get
a corresponding higher precision but lower efficiency. Increasing

the resolution of the cameras would significantly improve the
accuracy, but at the same time it correspondingly decreases the
efficiency. On the contrary, the number of EEG sensors has little
sense to affect the performance because there are only tens of
points in total.

Anyway, we have to concern the aspects of reliability,
flexibility, and real-time computation for the positioning system.
As we know, due to the corresponding process in stereo vision,
it takes several minutes for computing and thus cannot be used
for real-time purpose, e.g., when the subject needs to move the
heads during a test. One advantage of the technology in this study
is that it avoids the complicated computation of correspondence
among multiple images, which is unlikely realized in real-time
for high-resolution images on a common computer. The data
acquisition and registration process is very fast by the method in
this report. It means the method can be used for dynamic tests
where the patient is free to move its head or body during the
acquisition time. Therefore, some other research or test tasks can
also be done with a system by this technology. Our method also
takes advantage of flexibility. We do not need to setup a large
equipment structure or working space, like a dome. The subject
will also feel comfortable in the test because both the sensors and
the subjects can move freely in the space.

CONCLUSION

In this report, an EEG electrode positioning method using
photogrammetry is presented. By combining CCD and TOF
cameras, the system can achieve both good accuracy (due to
the precise industrial camera) and real-time efficiency (due to
the reliable TOF camera). The vision system can reliably get the
position and colors of the electrodes at the same time. A depth
calibration plate for the TOF camera is designed, according to
its distance-sensitive feature. Meanwhile, in order to improve the
accuracy we apply the point cloud data to replace the traditional
depth map with the calibration. In the experiments, we use a
head model and 30-channel EEG electrode cap. The calibration
process can be performed off-line, and the on-line acquisition
algorithm can be realized in real-time, which can bring great
convenience for patients and doctors. Thus, the combination of
the TOF camera and the CCD camera can not only ensure the
accuracy of positioning, but also simplify the complexity of the
algorithm and operation.
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Accurate and automatic segmentation of infant hippocampal subfields from magnetic

resonance (MR) images is an important step for studying memory related infant

neurological diseases. However, existing hippocampal subfield segmentation methods

were generally designed based on adult subjects, and would compromise performance

when applied to infant subjects due to insufficient tissue contrast and fast changing

structural patterns of early hippocampal development. In this paper, we propose a

new fully convolutional network (FCN) for infant hippocampal subfield segmentation by

embedding the dilated dense network in the U-net, namely DUnet. The embedded dilated

dense network can generate multi-scale features while keeping high spatial resolution,

which is useful in fusing the low-level features in the contracting path with the high-level

features in the expanding path. To further improve the performance, we group every pair

of convolutional layers with one residual connection in the DUnet, and obtain the Residual

DUnet (ResDUnet). Experimental results show that our proposed DUnet and ResDUnet

improve the average Dice coefficient by 2.1 and 2.5% for infant hippocampal subfield

segmentation, respectively, when compared with the classic 3D U-net. The results also

demonstrate that our methods outperform other state-of-the-art methods.

Keywords: fully convolutional network, dilated dense network, deep learning, hippocampal subfield segmentation,

infant hippocampus

INTRODUCTION

Hippocampus plays important roles in memory and spatial navigation, and is closely related to
neurological diseases, such as autism, attention deficit hyperactivity disorder, and Alzheimer’s
Disease (Shi et al., 2009; Bartsch, 2012; Li et al., 2013). Hippocampus consists of several
histologically and functionally specialized subfields (Dalton et al., 2017). It has been shown
that different pathological conditions affect subfields differently, suggesting that subfields may
provide more precise information for earlier disease diagnosis than simply using the whole
hippocampus (Small, 2014).

Accurate segmentation of hippocampal subfields from magnetic resonance (MR) brain images
is a critical step for studying memory-related neurological diseases. However, it is a challenging
task especially in infant subjects, because of the small size of each hippocampal subfield, the
blurred boundaries between subfields, and the large inter-subject variations. Manual segmentation
is widely adopted, but it suffers high intra- and inter-operator variability, and is also excruciatingly
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time-consuming. Therefore, automatic hippocampal subfield
segmentation methods are desirable. The existing automatic
hippocampal subfield segmentation methods can be mainly
categorized into three different types: (1) generative model based
method (Van Leemput et al., 2009), (2) multi-atlas based method
(Wang et al., 2013; Pipitone et al., 2014; Caldairou et al., 2016;
Romero et al., 2017), and (3) multi-modality learning based
method (Wu et al., 2018).

In the first category (Van Leemput et al., 2009), a generative
model of image around the hippocampal area was produced
by using a mesh-based probabilistic atlas learned from a set
of ultra-high-resolution training images. The model was used
to obtain automated hippocampal subfield segmentations on 10
adult subjects with the age range of 22–89 years.

In the past years, the second category of methods, namely
multi-atlas based image segmentation (MAIS) methods, have
been widely used in the field of medical image segmentation,
including hippocampal subfield segmentation on adult subjects
(Wang et al., 2013; Pipitone et al., 2014; Caldairou et al.,
2016; Romero et al., 2017). In the MAIS methods, all selected
atlas images are first registered to the target image, and the
corresponding atlas labels are then warped to the target image
space. Afterwards, these warped atlas labels are combined to
obtain the final segmentation by label fusion. Note, in the
MAIS methods, label fusion plays an important role. For
example, a weighed voting label fusion was proposed (called
joint label fusion) in a previous work (Wang et al., 2013), in
which weights were obtained by minimizing the total expected
error between the consensus segmentation and the ground-
truth segmentation. This method was later combined with
a learning-based error correction method for hippocampal
subfield segmentation (Yushkevich et al., 2015). In another
work (Romero et al., 2017), a new non-local patch based
label fusion method was proposed based on a multi-contrast
patch matching process. To further improve the segmentation,
authors exploited a neural network-based error correction
step for minimizing systematic segmentation errors. MAGeT-
Brain (Multiple Automatically Generated Templates) was also
proposed for automatic segmentation of the hippocampus and
subfields, aiming to minimize the number of atlases needed
whilst still achieving similar agreement to the multi-atlas
approaches (Pipitone et al., 2014),. Besides, a surface patch-based
segmentation method (Caldairou et al., 2016) was proposed
for hippocampal subfield segmentation by combining surface-
based processing with a patch-based template library and
feature matching.

Besides the above two categories of methods, learning-
based methods in the third category were also proposed for
adult hippocampal subfield segmentation using 3T multi-
modality MR images, including structural MRI (T1w,
T2w) and resting-state fMRI (rs-fMRI) (Wu et al., 2018).
In that paper (Wu et al., 2018), authors extracted both
appearance features and relationship features to capture
the appearance patterns in structural MR images and the
connectivity patterns in rs-fMRI, respectively. These extracted
features were then fed into a random forest classifier for
voxel-wise classification.

Although several automatic methods have also been proposed
for hippocampal subfield segmentation, most of them were
evaluated only on the adult subjects, and thus cannot
be directly applied to infant subjects due to insufficient
tissue contrast and fast changing structural patterns of early
hippocampal development.

In the recent years, deep convolutional neural networks
(CNN) have been widely applied in the medical image
segmentation (de Brébisson and Montana, 2015; Zhang et al.,
2015; Moeskops et al., 2016). In CNN based segmentation
methods, a patch centered at the target voxel (or pixel for 2D
images) is taken as input for networks, and the tissue class of
the center voxel is produced as the output of the networks. By
learning sets of convolutional kernels, CNNs can capture highly
non-linear mappings between inputs and outputs. Compared
with MAIS methods and the traditional learning-based methods,
CNN based segmentation methods are free of image registration
and manual feature extraction.

A drawback of the CNN based segmentation approaches is
that the input patches from neighboring voxels have huge overlap
and the same convolutions are computed for many times. To
address this limitation, fully convolutional networks (FCN) were
proposed for voxel-wise dense prediction, by reformatting the
fully connected layers as convolutional layers (Long et al., 2015).
So far, a number of FCNs have been proposed and successfully
used in medical image segmentation, including hippocampal
segmentation (Ronneberger et al., 2015; Milletari et al., 2016;
Chen Y. et al., 2017; Yu et al., 2017; Cao et al., 2018). For example,
in the paper (Ronneberger et al., 2015), a U-net architecture
was proposed by comprising a contracting (down-sampling)
path, followed by an expanding (up-sampling) path. The features
in the contracting path are concatenated to the corresponding
features in the expanding path to recover the detailed image
information that is lost during the down-sampling process. In the
work (Milletari et al., 2016), authors extended U-net to a V-net
structure by incorporating residual blocks (He et al., 2016a). In
the paper (Yu et al., 2017), authors proposed a new volumetric
convolutional neural network with mixed residual connections,
where both the short connections between successive layers and
the long connections between contracting path and expanding
path are implemented with residual connections. In the work
(Cao et al., 2018), authors proposed a multi-task CNN for joint
hippocampal segmentation and clinical score regression with
U-net as a subnet for hippocampal segmentation. In the paper
(Chen Y. et al., 2017), authors proposed a multi-view ensemble
approach to combine multiple decision maps obtained from
several deep neural networks for hippocampal segmentation.
Besides these contracting-expanding structures, dilated FCNs
were also proposed for image segmentation, which can enlarge
the receptive field exponentially without reducing any spatial
resolution (Liang-Chieh et al., 2015; Yu and Koltun, 2015;Li et al.,
2017; McKinley et al., 2017).

The U-net like structures are particularly successful in
the field of medical image segmentation. One of the most
important factors in the U-net is the long-skip connections
which can concatenate the features in the contracting path to
the corresponding features in the expanding path to recover the
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lost image information. However, the levels of features in the
contracting path are much lower than those in the expanding
path. Thus, it may not obtain optimal results when directly
concatenating these features.

In this paper, we develop an automatic method to address the
challenging infant hippocampal subfield segmentation problem
with state-of-the-art deep learning techniques (LeCun et al.,
2015; Litjens et al., 2017; Shen et al., 2017). To overcome the
limitation of U-net structure, we propose a novel network by
embedding a dilated dense network in the U-net, namely DUnet.
The embedded dilated dense network can generate multi-scale
features while keeping high spatial resolution, which is useful
in fusing the low-level features in the contracting path with the
high-level features in the expanding path. To further improve
the performance, we use residual connections to group every
pair of convolutional layers in DUnet, and obtain the Residual
DUnet (ResDUnet).

The proposed method was applied for segmenting infant
hippocampal subfields based on the Baby Connectome Project
(BCP) dataset, containing 10 infant subjects. To the best of
our knowledge, this is the first work to propose an automatic
method for infant hippocampal subfield segmentation. To
further illustrate the effectiveness of our proposed method,
we also validated our proposed method for segmenting
adult hippocampal subfields on a publicly available dataset.
Experimental results show that our proposed DUnet and
ResDUnet, respectively, improve the average Dice coefficient
by 2.1 and 2.5% for infant hippocampal subfield segmentation,
and 0.5 and 0.6% for adult hippocampal subfield segmentation,
compared to the classic 3D U-net (Çiçek et al., 2016). Our
proposed ResDUnet also outperforms both the state-of-the-
art ConvNet (Yu et al., 2017) and hippocampal subfield
segmentation method (HIPS) (Romero et al., 2017).

MATERIALS

Two image datasets were used for validating our method. The
first dataset is from BCP, which was funded by the National
Institutes of Health (NIH) as a component of the Lifespan
Human Connectome Project. The BCP aims to provide scientists
with unprecedented information about how the human brain
develops from birth through early childhood and will uncover
factors contributing to healthy brain development. For this
project, researchers are acquiring MRI scans (including T1- and
T2-weighted structural MRI, DTI, and rs-fMRI) of 500 typically
developing children, ages 0–5 years, over the course of 4 years.
In our experiment, 10 infant subjects (6 females/4 males) were
randomly selected, each with T1w and T2w images acquired at
12 months old with 3T Siemens Prisma MRI scanners at the
Biomedical Research Imaging Center (BRIC) at the University of
North Carolina at Chapel Hill. Table 1 lists the imaging protocol
for acquiring the T1w and T2w MR images. Five hippocampal
subfields were manually labeled for each subject by the consensus
of two neuroradiologists, including cornu ammonis sectors
1 (CA1), CA2/3, subiculum (SUB), CA4/dentate gyrus (DG),
and Uncus. All T1w and T2w images underwent intensity

inhomogeneity correction using the N3 bias field correction,
and T2w images were rigidly aligned with corresponding T1w
images. All images were aligned to a selected subject with
affine registration.

The second dataset is a publicly available dataset (https://
www.nitrc.org/projects/mni-hisub25), which contains 25 adult
subjects (31 ± 7 years, 12 males). Each subject consists of an
isotropic 3D-MPRAGE T1-weighted image (TR = 3,000ms;
TE = 4.32ms; TI = 1,500ms; flip angle = 7◦; matrix size
= 336 × 384; FOV = 201 × 229 mm2; 240 axial slices with
0.6mm slice thickness resulting in 0.6 × 0.6 × 0.6 mm3 voxels;
acquisition time = 16.48min), an anisotropic 2D T2-weighted
TSE image (TR = 10,810ms; TE = 81ms; flip angle = 119◦;
matrix size = 512 × 512; FOV = 203 × 203 mm2, 60 coronal
slices angled perpendicular to the hippocampal long axis, slice
thickness of 2mm, resulting in 0.4 × 0.4 × 2.0 mm3 voxels;
acquisition time = 5.47min), and a manually labeled image
for hippocampal subfields including CA1-3, SUB, and CA4/DG
(Kulaga-Yoskovitz et al., 2015). All T1w and T2w images
underwent automated correction for intensity non-uniformity
and intensity standardization. All images were linearly registered
to the MNI152 space and resampled to a resolution of 0.4×0.4×
0.4 mm3. Following the previous work (Romero et al., 2017), we
named this dataset as Kulaga-Yoskovitz dataset. Figure 1 shows
an example of T1w image and manual hippocampal subfield
segmentation from the BCP dataset and the Kulaga-Yoskovitz
dataset, respectively.

To facilitate the processing, we identified a bounding box that
is big enough to cover the hippocampus of unseen target subject
(Hao et al., 2014). In particular, for each subject in the BCP
dataset and the Kulaga-Yoskovitz dataset, we went through all
the training subjects to find the minimum and maximum x, y,
z positions of the hippocampus, and empirically add 32 voxels
in each direction as a bounding box to cover the hippocampus
and its surrounding tissues. This step was done separately for
these two datasets given the large hippocampus size differences
in infants and adults. Then, we cropped all images with the box
and applied a histogrammatching method to the cropped images
for obtaining similar intensity levels across all training subjects.
To leverage the limited data, we left-right flipped each training
image to double the number of training subjects.

METHODS

We propose a new FCN for hippocampal subfield segmentation.
The FCN based segmentation methods can implement dense
prediction by estimating the posterior probabilities for each
voxel. Given the posterior probability pk(x|θ) of voxel x
belonging to the kth category, where θ is the FCN model
parameters, the hippocampal subfield label of voxel x is
determined by

L(x) = argmaxk∈C pk (x|θ) ,

where C = {1, 2, . . . ,K}, and K is the number of categories. In
the remaining part of this section, we will introduce the details of
our proposed FCN architectures and its loss function.
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TABLE 1 | Imaging protocol for acquiring infant T1w and T2w MR images.

Matrix FOV Resolution mm3 FA TE TR Slices orientation AF/MB Time

T1w 320 × 320 256 × 256 0.8 × 0.8 × 0.8 8 2.24 2,400/1,060 208/Sag AF = 2 6:38

T2w 320 × 320 256 × 256 0.8 × 0.8 × 0.8 VAR 564 3,200 208/Sag AF = 2 5:57

FIGURE 1 | T1w image and manual segmentation of a representative subject from the BCP dataset (top row) and Kulaga-Yoskovitz dataset (bottom row),

respectively.

Dilated Dense Network
Recent 3D neural networks often use small convolutional kernels
with size 3 × 3 × 3 to reduce the number of parameters,
and enlarge the receptive field by alternating convolutions
and pooling operations to capture large image contexts (Çiçek
et al., 2016). This successive down-sampling process will
significantly reduce spatial resolution, which will lose detailed
image information. Recently, dilated convolutions were proposed
for semantic image segmentation (Liang-Chieh et al., 2015; Yu
and Koltun, 2015). By using the dilated convolutions, the feature
maps can be computed with a high spatial resolution, and the
size of the receptive field can be enlarged arbitrarily. Figure 2
illustrates the dilated convolutional kernels with different dilation
rates. Let F : Z

3→ R be a 3 dimensional discrete function,
and h : �r→ R be a discrete filter with a dilation rate l, where
�r = [−r, r]3

⋂

Z
3. The dilated convolution ∗l can be defined as

(Yu and Koltun, 2015),

(

F∗lh
) (

p
)

=
∑

s+lt=p

F (s) h (t) . (1)

Note that, when l = 1, the dilated convolution becomes the
normal convolution.

With the dilated convolutions, we design a dilated dense
network using dense connections (Huang et al., 2016), as
shown in Figure 3. In the dilated dense network, we use
dilated convolutions with different dilation rates to enlarge
the receptive field, and use dense connections to concatenate
all previous generated features to the current feature maps.
To avoid overfitting, dropout operations are used after each
3× 3× 3 convolution with dropout rate 0.5 (Srivastava et al.,
2014). Thus, the dilated dense network can capture contextual
image information while keeping high spatial resolution and
generate multi-scale image features. This dilated dense network
will be embedded in our proposed DUnet, as introduced in the
next subsection.

Dilated Dense U-Net
U-net (Ronneberger et al., 2015) consists of a contracting path to
extract abstract features and an expanding path to recover spatial
resolution. The features in the contracting path are concatenated
to the corresponding features in the expanding path to provide
the detailed image information that is lost during the successive
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FIGURE 2 | Illustration of dilated convolutional kernels: 1-dilated convolutional kernel (left); 2-dilated convolutional kernel (middle); 4-dilated convolutional kernel

(right).

FIGURE 3 | The structure of the dilated dense network. The number in each operation rectangle is the number of kernels. All operations are implemented in a 3D

manner, and “c” denotes the concatenation.

down-sampling steps. However, the level of features in the
contracting path is much lower than that in the expanding path.
It will not obtain the optimal results when directly concatenating
these features. To overcome this limitation, we embed the dilated
dense network in the U-net to obtain a new network (DUnet).
Figure 4 shows the structure of our proposed DUnet.

Same to U-net, the proposed DUnet consists of a contracting
path and an expanding path. The contracting path is built by
alternating two 3 × 3 × 3 convolutions and one 2 × 2 × 2 max
pooling operation with stride 2. The contracting path is followed
by two 3 × 3 × 3 convolutions. Correspondingly, the expanding
path is built by alternating one 4 × 4 × 4 deconvolution with
stride 2, and two 3 × 3 × 3 convolutions. The expanding path
is then followed by a 1 × 1 × 1 convolution, which outputs K
feature maps (K is the number of label categories including the
background). Each 3 × 3 × 3 convolution is followed by a batch
normalization layer and a rectified linear unit (ReLU). Different
from the original U-net, some padded convolution layers are also
used to maintain the spatial dimension.

The feature maps before the first pooling layer and the last
pooling layer are concatenated to the corresponding featuremaps
in the expanding path. The feature maps before the second
pooling layer are first input into the dilated dense network which
is introduced in the last subsection of this paper. Then, the
output features of the dilated dense network are concatenated
to the corresponding feature maps in the expanding path. The
dilated dense network can provide multi-scale features while
remaining high spatial resolution. Moreover, two different kinds

of features provided by the dilated dense network and the
contracting-expanding path are fused, providing more abundant
image information for dense prediction.

Residual Dilated Dense U-net
To further improve the performance, we use residual connections
in DUnet to promote the information flow within the network
(He et al., 2016a). Formally, the residual connection can be
expressed as:

xl = Hl

(

xl−1

)

+ xl−1,

where xl−1 and xl are the input and output of the lth unit,
and Hl(·) is a non-linear function which is used to learn the
residual xl − xl−1 of the lth unit. We group every pair of
convolutional layers with one residual connection along the
contracting path and the expanding path of DUnet, and obtain
the Residual DUnet (ResDUnet). Figure 5 shows the structure of
our proposed ResDUnet. The difference between ResDUnet and
DUnet is the use of residual connections in ResDUnet, which
connects two adjacent convolutions with an identity mapping
(or a 1 × 1 × 1 convolution if the number of feature maps is
not matched).

Loss Function
We train our models using Softmax loss (Gu et al., 2017):

LSoftmax = −

N
∑

i=1

K
∑

k=1

1
{

yi = k
}

log
ezk,i

∑K
j=1 e

zj,i
,
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FIGURE 4 | The structure of our proposed DUnet. The number in each operation rectangle is the number of kernels. All operations are implemented in a 3D manner.

FIGURE 5 | The structure of our proposed ResDUnet. The number in each operation rectangle is the number of kernels. “⊕” denotes the element-wise summation,

and all operations are implemented in a 3D manner.

where zk,i represents the kth output of the last network layer for
the ith voxel, yi ∈ {1, 2, . . . ,K} represents the corresponding
ground-truth label, K and N are the number of categories and

the number of voxels, respectively. The term e
zk,i

∑K
j=1 e

zj,i
represents

the prediction probability for the kth class of the ith voxel, which
is computed by the Softmax function.

Evaluation Metrics
We evaluated the image segmentation results based on two types
of segmentation evaluation measures (Jafari-Khouzani et al.,
2011): Dice coefficient (Dice) and Average Symmetric Surface
Distance (ASSD). Dice is used to measure the relative volumetric
overlap between the automated segmentation and the manual
segmentation, and ASSD is used to measure the agreement

between segmentation boundaries. By denoting A as the manual
segmentation, B as the automated segmentation, and V(X) as
the volume of segmentation X, the two evaluation measures are
defined as:

Dice = 2
V(A ∩ B)

V (A) + V(B)
,

ASSD =
(

meane∈∂A

(

minf∈∂Bd
(

e, f
))

+meane∈∂B

(

minf∈∂Ad
(

e, f
)))

/2,

where ∂A denotes the boundary voxels of A, and d(·, ·) is the
Euclidian distance between two points.
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EXPERIMENTS AND RESULTS

Experimental Details
Five-fold cross validation was used in the experiment for the
BCP dataset. In each fold, we selected 7 subjects for training,
1 subject for validation, and 2 subjects for testing. Experiments
were performed using a NVIDIA Titan Xp with 12 GB memory.
Because of the restriction of limited training subjects and GPU
memory, we randomly extracted patches from each training
subject, instead of using the whole images as input for each
network. We extracted about 1,300 patches from each subject.
These patches were extracted as follows. First, we extracted
patches one by one with stride of 2 × 2 × 2. The extracted
patches that contain at least one hippocampal voxel were taken,
and were numbered as 1, 2,. . . , n. Then, these numbers were
randomly reordered. At last, we took the first half part of the
reordered patches as our training patches. The patch size was
optimally set to 24 × 24 × 24 by comparing the results obtained
by the baseline 3D U-net method with different patch sizes,
which is shown in Table 2. Since both T1w and T2w images
were available, we concatenated the corresponding T1w and T2w
image patches as input for each network. The networks were
trained by Adam method with a batch size of 5, which were
implemented with Caffe (Jia et al., 2014). The learning rates were
initially set to 0.0001 and were decreased by a factor of γ = 0.1
every 10,000 iterations. We used a weight decay of 0.0005 and
a momentum of 0.9 in all networks. The training process was
stopped after 60,000 iterations. For segmenting a testing image,
patches were extracted to feed into the trained models with an
overlapped sliding windows strategy. The patch size was set to
24 × 24 × 24 with stride of 8 × 8 × 8. We used a majority
voting strategy for the overlap regions to get the whole image
prediction. Note that we used the same hyper-parameters during
the 5-fold cross-validation.

As the networks are trained based on image patches extracted
around the hippocampus, the global spatial information of brain
structures may not be perfectly captured. Thus, the obtained
network models can well-recognize the hippocampal subfields
around the hippocampus, but cannot recognize those far away
from hippocampal region. For example, a patch in the caudate
(denoted by the pink circle in the left of Figure 6) may look
similar to the patches in the hippocampus, and will be classified

TABLE 2 | Mean (STD) values of Dice for each subfield segmentation using

different patch sizes (R×R×R) on the BCP dataset by 3D U-net.

R = 16 R = 24 R = 32

CA1 0.635 (0.066) 0.648 (0.078) 0.638 (0.107)

CA2/3 0.565 (0.071) 0.567 (0.082) 0.556 (0.099)

SUB 0.717 (0.038) 0.719 (0.080) 0.708 (0.123)

CA4/DG 0.711 (0.063) 0.709 (0.072) 0.706 (0.057)

Uncus 0.710 (0.034) 0.712 (0.050) 0.704 (0.069)

Average 0.668 0.671 0.662

Higher Dice values indicate better segmentation performance. The best results are shown

in bold.

to hippocampal subfields in the testing stage. As a result, there
are some isolated false positives outside the hippocampal region,
as shown in Figure 6. To remove these artifacts automatically,
our post-processing steps include searching the voxels of each
automated segmentation to find the non-zero neighbors of
current voxel, and to obtain several connected regions. Then, we
selected two regions with maximum volumes for the final left and
right hippocampal subfields.

Five-fold cross validation was also used in the Kulaga-
Yoskovitz dataset. In each fold, we selected 15 subjects for
training, 5 subjects for validation, and 5 subjects for testing. The
same experimental settings were used as the BCP dataset, except
that the patch size was set to 32 × 32 × 32 as the resolution
of images in this dataset is much higher, and the batch size
was set to 3 because of the GPU memory limit. The same post-
processing was used to remove isolated tiny blocks outside the
hippocampal region.

The Efficacy of Multi-Modality
In this subsection, we studied the efficacy of multi-modality by
comparing the segmentation results obtained using only single
modality images (i.e., T1w or T2w) and multi-modality images
(T1w+T2w), respectively. All experiments were carried out on
the BCP dataset with the same network architecture (ResDUnet)
and the same training strategies. Table 3 lists the Dice coefficients
of segmentation results using different imagemodalities. It shows
that training using multi-modality images can obtain better
results in the most subfields, compared with those using only
either T1w or T2w single-modality images. This demonstrates
that the network trained with multi-modality images can
generate more discriminative features, which improves the
performance of hippocampal subfield segmentation. From the
results, we also find that T1w images can provide more
useful information than T2w images for hippocampal subfield
segmentation on the BCP dataset. In some subfields, training
using only T1w images obtains similar or even a little better
segmentation results than those using multi-modality images.

Comparison With State-of-the-Art Methods
Our proposed method was also compared with two state-of-the-
art networks, namely, 3D U-net (Çiçek et al., 2016) and ConvNet
(Yu et al., 2017). The 3D U-net is extended from the previous
2D version (Ronneberger et al., 2015) into a 3D variant for
volumetric feature representation. For a fair comparison, the 3D

FIGURE 6 | An example of isolated tiny blocks, outside the hippocampal

region, appeared in the automated segmentation.
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TABLE 3 | Mean (STD) values of Dice for each subfield segmentation using

different modalities on the BCP dataset.

T1w T2w T1w+T2w

CA1 0.674 (0.044) 0.604 (0.142)*# 0.672 (0.050)

CA2/3 0.571 (0.069)* 0.546 (0.104)* 0.598 (0.041)

SUB 0.745 (0.032) 0.644 (0.223)*# 0.745 (0.051)

CA4/DG 0.723 (0.027) 0.662 (0.157)* 0.729 (0.032)

Uncus 0.725 (0.031) 0.645 (0.203)*# 0.736 (0.035)

Average 0.688 0.620 0.696

Higher Dice values indicate better segmentation performance. The best results are shown

in bold.

*Indicates that T1w + T2w achieves significant improvement over the corresponding

method, and # indicates that T1w achieves significant improvement over the

corresponding method in the Wilcoxon signed rank tests with p < 0.05.

U-net used in our experiments consists of three pooling layers
and three deconvolutional layers, which are the same as our
proposed DUnet. The only difference is that the dilated dense
network is used to fuse themiddle level features of the contracting
path with those of the expanding path in DUnet, instead of
directly concatenating them as in 3D U-net. ConvNet (Yu
et al., 2017) is a volumetric convolutional neural network with
mixed residual connections, which also consists of three pooling
layers and three deconvolutional layers. In ConvNet, residual
connections are used between the successive convolution layers
to form the residual blocks, and also between the feature maps of
contracting path and those of expanding path. Besides, ConvNet
(Yu et al., 2017) exploits a deep supervision mechanism to
accelerate its convergence speed. All these comparative networks
use Softmax loss as loss function, and the same post-processing
is used to remove the tiny isolated blocks of segmentation results
that appear outside of the hippocampal region.

Table 4 reports the Dice coefficients of the segmentation
results obtained by different networks on the BCP dataset. It
shows that our proposed DUnet outperforms 3D U-net (Çiçek
et al., 2016) in segmenting CA1, SUB, CA4/DG and Uncus, and
our proposed ResDUnet outperforms 3D U-net (Çiçek et al.,
2016) in segmenting CA1, CA2/3, SUB, and Uncus, according
to the Wilcoxon signed rank tests with p < 0.05. As can be
seen in the table, our proposed ResDUnet achieves the highest
Dice coefficient for the average of subfields. Table 5 reports the
ASSD coefficients of the segmentation results, which shows that
our proposed ResDUnet achieves the best ASSD coefficient for
the average of subfields. Figure 7 shows hippocampal subfield
segmentations of a randomly selected subject from the BCP
dataset, obtained by manual segmentation and four different
networks. It can be seen that our proposed ResDUnet achieves
the most accurate results.

Results on a Public Adult Dataset
Tables 6, 7 list the Dice and ASSD coefficients of the
segmentation results obtained by five different networks on the
Kulaga-Yoskovitz dataset. The results show that our proposed
DUnet outperforms 3D U-net (Çiçek et al., 2016) and ConvNet
(Yu et al., 2017) in segmenting CA1-3 and SUB, and our

proposed ResDUnet outperforms 3D U-net (Çiçek et al., 2016)
and ConvNet (Yu et al., 2017) in segmenting all subfields,
according to the Wilcoxon signed rank tests with p < 0.05.
Table 6 also lists the comparison of our proposed method with
the state-of-the-art hippocampal subfield segmentation method
(HIPS), which obtained the best segmentation results on the
Kulaga-Yoskovitz dataset so far (Romero et al., 2017). Note that,
for a fair comparison, we use the published results of HIPS as
reported in Romero et al. (2017). It shows that our proposed
DUnet and ResDUnet also outperform HIPS method, especially
for segmenting the CA4/DG subfield which is the most difficult
task (Dalton et al., 2017). Figure 8 shows hippocampal subfield
segmentations of a randomly selected subject from Kulaga-
Yoskovitz dataset, obtained by manual segmentation and four
different networks. It can be seen that our proposed DUnet and
ResDUnet achieve the most accurate results.

DISCUSSION

FCNs have achieved great success in the field of medical image
segmentation, which usually consist of a contracting path to
extract abstract features, and an expanding path to up-sample
the feature maps for dense prediction (Ronneberger et al., 2015;
Çiçek et al., 2016; Chen H. et al., 2017; Lian et al., 2018; Nie
et al., 2018). The detailed image information may be lost during
these contracting and expanding processes. The existing U-net-
like FCNs concatenate the feature maps in the contracting path to
the corresponding feature maps in the expanding path to recover
the lost image information. However, the levels of features in the
contracting path are much lower than those in the expanding
path. It may not obtain the optimal results when directly
concatenating these features. To overcome this limitation and
fully exploit multi-level image features, we proposed a new FCN
by exploiting a dilated dense network to connect the features of
the contracting path and the features of the expanding path. The
dilated dense network uses the dilated convolutions to extract
contextual features without reducing spatial resolution, and it
also employs dense connections to aggregate multi-scale features.
Thus, multi-scale features can be generated from the dilated
dense network, which are fused with the corresponding features
in the expanding path. To avoid overfitting, dropout operations
are also used in the dilated dense network (Srivastava et al., 2014).

By using the dilated dense network to connect the feature
maps in the contracting path and expanding path, our
proposed method provides a way to fuse the finer-grained
low-level features in the contracting path and the coarse
high-level features in the expanding path. Moreover, the
multi-scale features extracted by the dilated dense network
are useful for segmenting multi-structures with different
shapes and different scales. To further promote information
propagation and accelerate the convergence, we introduce
residual connections to group every pair of convolutional layers
(He et al., 2016a,b).

Different from natural images, many imaging modalities
are 3D in the field of medical image analysis. In the past few
years, a lot of effort has been dedicated to exploit CNNs to
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TABLE 4 | Mean (STD) values of Dice for each subfield segmentation by different networks on the BCP dataset.

3D U-net (Çiçek et al., 2016) ConvNet (Yu et al., 2017) DUnet (proposed) ResDUnet (proposed)

CA1 0.648 (0.078)*# 0.670 (0.046) 0.665 (0.061) 0.672 (0.050)

CA2/3 0.567 (0.082)* 0.584 (0.038)* 0.589 (0.045)* 0.598 (0.041)

SUB 0.719 (0.080)*# 0.737 (0.045)* 0.742 (0.052) 0.745 (0.051)

CA4/DG 0.709 (0.072)# 0.726 (0.030) 0.733 (0.028) 0.729 (0.032)

Uncus 0.712 (0.050)*# 0.721 (0.035) 0.733 (0.034) 0.736 (0.035)

Average 0.671 0.688 0.692 0.696

Higher Dice values indicate better segmentation performance. The best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method, and # indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.

TABLE 5 | Mean (STD) values of ASSD for each subfield segmentation by different networks on the BCP dataset.

3D U-net (Çiçek et al., 2016) ConvNet (Yu et al., 2017) DUnet (proposed) ResDUnet (proposed)

CA1 0.175 (0.089)* 0.146 (0.033) 0.158 (0.048) 0.147 (0.034)

CA2/3 0.211 (0.104)* 0.175 (0.020) 0.178 (0.028)* 0.170 (0.025)

SUB 0.153 (0.073)* 0.132 (0.030) 0.136 (0.040) 0.134 (0.039)

CA4/DG 0.157 (0.080) 0.133 (0.019) 0.134 (0.019) 0.133 (0.020)

Uncus 0.179 (0.055)* 0.168 (0.038) 0.170 (0.041) 0.167 (0.044)

Average 0.175 0.151 0.155 0.150

Smaller ASSD values indicate better segmentation performance. The best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method in the Wilcoxon signed rank tests with p < 0.05.

FIGURE 7 | Hippocampal subfield segmentations of a randomly selected subject from the BCP dataset, obtained by manual segmentation, and four different

networks.

process volumetric data. Some of them applied 2D CNNs to
each slice of volumetric images (Prasoon et al., 2013; Setio
et al., 2016; Chen Y. et al., 2017). To effectively make full use
of the 3D spatial information, recent studies applied 3D CNNs
to deal with volumetric images (Çiçek et al., 2016; Chen H.
et al., 2017;Nie et al., 2018; Wachinger et al., 2018). Following

these methods, our proposed FCNs were also implemented
in a 3D manner. As the number of our training subjects is
limited, we randomly extracted patches from each training
subject, instead of using the whole image as the input for
each network. The patch size was set to 24 × 24 × 24 for
the BCP dataset and 32× 32× 32 for Kulaga-Yoskovitz
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TABLE 6 | Mean (STD) values of Dice for each subfield segmentation by five different methods on the KULAGA-YOSKOVITZ dataset.

HIPS (Romero

et al., 2017)

3D U-net (Çiçek

et al., 2016)

ConvNet (Yu

et al., 2017)

DUnet

(proposed)

ResDUnet

(proposed)

CA1-3 0.916 (0.015) 0.916 (0.011)*# 0.918 (0.010)*# 0.919 (0.011) 0.920 (0.011)

CA4/ DG 0.862 (0.034) 0.871 (0.021)* 0.870 (0.016)* 0.875 (0.020)* 0.879 (0.020)

SUB 0.886 (0.021) 0.883 (0.016)*# 0.887 (0.018)*# 0.890 (0.016) 0.888 (0.018)#

Average 0.888 0.890 0.892 0.895 0.896

Higher Dice values indicate better segmentation performance. Best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method, and # indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.

TABLE 7 | Mean (STD) values of ASSD for each subfield segmentation by four different networks on the KULAGA-YOSKOVITZ dataset.

3D U-net (Çiçek

et al., 2016)

ConvNet (Yu et al.,

2017)

DUnet (proposed) ResDUnet (proposed)

CA1-3 0.065 (0.011)*# 0.064 (0.009)*# 0.062 (0.009) 0.062 (0.010)

CA4/DG 0.077 (0.014)* 0.079 (0.015)* 0.075 (0.015)* 0.072 (0.014)

SUB 0.069 (0.013)*# 0.066 (0.013)*# 0.064 (0.012) 0.065 (0.013)#

Average 0.070 0.070 0.067 0.066

Smaller ASSD values indicate better segmentation performance. The best results are shown in bold.

*Indicates that ResDUnet achieves significant improvement over the corresponding method, and # indicates that DUnet achieves significant improvement over the corresponding method

in the Wilcoxon signed rank tests with p < 0.05.

FIGURE 8 | Hippocampal subfield segmentations of a randomly selected subject from the Kulaga-Yoskovitz dataset, obtained by manual segmentation, and four

different networks.

dataset, considering different image resolutions in these
two datasets.

As both T1w and T2w images were available for each
subject, we concatenated the extracted T1w and T2w image
patches as input to the networks. Compared with single

modality data, multi-modality MR images can provide
complementary contextual information, which contributes
to better segmentation performance. From our experiments, we
find that training using multi-modality images can obtain better
results than using only single-modality images, and we also find
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that T1w images can provide more discriminative information
than T2w images for hippocampal subfield segmentation.

Experimental results on the BCP dataset show that our
proposed DUnet and ResDUnet improve the average Dice
coefficient by 2.1 and 2.5%, respectively, for infant hippocampal
subfield segmentation, compared with the 3D U-net (Çiçek
et al., 2016). To further validate the effectiveness, we also
applied our proposed method for adult hippocampal subfield
segmentation based on a publicly available dataset. The results
show that our proposed DUnet and ResDUnet improve the
average Dice coefficients of 0.5 and 0.6%, respectively, compared
with the 3D U-net (Çiçek et al., 2016). The improvement of our
proposed ResDUnet method on both infant dataset and adult
dataset comes from (1) multi-scale image features aggregation
for distinguishing different hippocampal subfields; (2) utilization
of the embedded dilated dense network for effectively fusing
the low-level features in the contracting path and the high-
level features in the expanding path; and (3) utilization of
residual connections for promoting information propagation and
accelerating the convergence.

However, the proposed method was mainly designed for
infant hippocampal subfield segmentation on the BCP dataset.
First, the embedded dilated dense network can provide multi-
scale image features, which are especially useful for segmenting
infant hippocampal subfields, since tissue contrast between infant
hippocampal subfields are much blurrier than in adults. Second,
the task of infant hippocampal subfield segmentation on the BCP
dataset is to segment hippocampus into five parts (CA1, CA2/3,
SUB, CA4/ DG, and Uncus), while there are only three parts
(CA1-3, SUB, and CA4/DG) on the Kulaga-Yoskovitz dataset.
Therefore, the segmented hippocampal subfields in the infant
subjects are much smaller than those of the adult subjects. In
our proposed network, the embedded dilated dense network can
capture contextual image information without losing detailed
image information, which is extremely useful for segmenting
small structures.

CONCLUSION

In this paper, we have proposed a new FCN by integrating
U-net and dilated dense network for hippocampal
subfield segmentation. Our proposed method can
avoid losing the detailed image information in the
successive down-sampling steps, effectively fuse the
low-level features of the contracting path with the
coarse high-level features of the expanding path, and
generate multi-scale image features. Experimental results
show that our proposed method outperforms the
state-of-the-art methods.
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Neuroscience
Xue Fan* and Henry Markram

Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland

Our knowledge of the brain has evolved over millennia in philosophical, experimental
and theoretical phases. We suggest that the next phase is simulation neuroscience.
The main drivers of simulation neuroscience are big data generated at multiple levels
of brain organization and the need to integrate these data to trace the causal chain
of interactions within and across all these levels. Simulation neuroscience is currently
the only methodology for systematically approaching the multiscale brain. In this review,
we attempt to reconstruct the deep historical paths leading to simulation neuroscience,
from the first observations of the nerve cell to modern efforts to digitally reconstruct
and simulate the brain. Neuroscience began with the identification of the neuron as the
fundamental unit of brain structure and function and has evolved towards understanding
the role of each cell type in the brain, how brain cells are connected to each other,
and how the seemingly infinite networks they form give rise to the vast diversity of
brain functions. Neuronal mapping is evolving from subjective descriptions of cell types
towards objective classes, subclasses and types. Connectivity mapping is evolving
from loose topographic maps between brain regions towards dense anatomical and
physiological maps of connections between individual genetically distinct neurons.
Functional mapping is evolving from psychological and behavioral stereotypes towards
a map of behaviors emerging from structural and functional connectomes. We show
how industrialization of neuroscience and the resulting large disconnected datasets
are generating demand for integrative neuroscience, how the scale of neuronal and
connectivity maps is driving digital atlasing and digital reconstruction to piece together
the multiple levels of brain organization, and how the complexity of the interactions
between molecules, neurons, microcircuits and brain regions is driving brain simulation
to understand the interactions in the multiscale brain.

Keywords: simulation neuroscience, digital reconstruction, brain modeling, neuronal types, connectome, brain
structure and function, history

THE NEXT PHASE OF BRAIN RESEARCH

Over past millennia, brain research evolved through a series of fundamental transformations
of human thinking to approach the mind and the brain. At the dawn of human civilization,
mainly based on intuitive and analogical thinking, the deeply philosophical phase relied on
subjective experience and ‘‘pure reason’’ (Lamb, 1925), without any empirical method for proving
suggested ideas. To gain empirical evidence, mainly based on reductionist thinking, brain research
evolved into an experimental phase, by means of observation, measurement and experimentation,
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which led to the hyper-specialization we see in modern
neuroscience. During this phase, huge amounts of disconnected
datasets were produced, each limited to a certain level of
brain structure and function (Frackowiak and Markram, 2015).
To deal with the daunting forests of data, abstraction and
simplification methods from physics, mathematics and computer
science gave rise to the theoretical phase of neuroscience.
This kind of abstractive thinking follows the logic that ‘‘if
one squeezes out all the complexity from a system, one
eventually reaches its essence and then, and then only, does one
truly understand the brain.’’ Theoretical neuroscience tries to
interpret experimental data and to gain analytical tractability by
simplifying experimental observations, generating concepts and
building minimal mathematical models (Gerstner et al., 2012).
This phase also gave rise to artificial intelligence and its evolution
to its current form today.

Experimental and theoretical phases have developed through
three main paths: neuronal mapping that tries to classify and
catalog different types of cells in the brain; connectivity mapping
that aims to map connectivity between individual neurons
(neighboring neurons, neurons in neighboring groups, neurons
in distant brain regions), between groups of neurons (layers,
columns, nuclei, etc.) and between brain regions (visual area,
auditory area, etc.); functional mapping that tries to relate brain
function and behavior to the structure of the brain (e.g., role of
partial connectomes or the whole connectome).

Neuronal mapping is evolving from subjective descriptions
towards objective classifications of cell types, from
morphological types (Berlin, 1858; Meynert, 1867; Golgi,
1883; Ramón y Cajal, 1909) to genetic types (Monyer and
Markram, 2004; Toledo-Rodriguez et al., 2004; Urban and
Rossier, 2012; Wagner et al., 2016) and multidimensional types
(e.g., according to a combination of morphological, electrical,
afferent, efferent, molecular and genetic types; Markram et al.,
2004, 2015; Zeng and Sanes, 2017).

Connectivity mapping is evolving from loose topographic
maps of major nerve tracts between brain regions (Vicq-d’Azyr,
1786; Gall and Spurzheim, 1810; Meynert, 1871) towards dense
anatomical and physiological maps of connections between
individual genetically distinct neurons (Oh et al., 2014; Swanson
and Lichtman, 2016). The nomenclature of the types of
connections formed in the brain evolves at the pace of the
development of the nomenclature of cell types and is set on a path
towards a nomenclature for a large addressing system indicating
each cell type in the brain.

Functional mapping is evolving from psychological and
behavioral stereotypes towards a map of behaviors emerging
from structural and functional connectomes (Gall and
Spurzheim, 1810; Vogt and Vogt, 1903; Brodmann, 1908;
Sporns, 2016), from observing and characterizing brain
responses to stimulation (Hitzig and Fritsch, 1870; Penfield and
Boldrey, 1937) towards understanding the causal relationship
between neural connectivity and brain function (Bassett and
Sporns, 2017; Reimann et al., 2017a). Today, at the cellular
level, neuroscientists are still surprised to find that different
neurons respond to different inputs in a different manner
and are still composing an endless spectrum of stimulus

preference maps for neurons, while we are moving from
considering only how the type of neurons is responsible for
their different responses towards identifying the contribution
of the underlying networks. At the whole-brain level, studies
are beginning to reveal how the underlying connectome shapes,
for example, functional magnetic resonance imaging (fMRI)
image patterns. At the behavioral level, attempts to map
signatures of specific cognitive functions to the underlying
structures are still limited to networks of brain regions. As
the number of brain regions found to be involved in any
cognitive task grows, functional mapping will likely evolve
from statistical subgraphs of the brain towards dynamic
full graphs.

However, in these three paths, experimental and theoretical
approaches are hindered by the barriers of scale and complexity.
How can we scale up cellular phenotyping and deal with the
dynamics of cellular properties to achieve a comprehensive
census of cell types in mammalian brains? How can we rise to
the challenge of volume, time and dynamics in full connectome
mapping potentially even down to the nanoscale? How can we
trace all the molecular and cellular mechanisms that give rise to
brain function and behavior?

To transcend these barriers, simulation neuroscience was
born. It is arguably the next phase of brain research, after its
philosophical, experimental and theoretical phases. Simulation
neuroscience combines experimental and theoretical approaches
to achieve a dense digital reconstruction of the brain consistent
with experimental data, which in itself forms a unifying theory
of brain structure and function and which can be used to test
and evolve new theories (Figure 1). The goal of simulation
neuroscience is to build a digital copy of the brain instead of
an arbitrary model, even if that model could imitate certain
brain functions (Markram, 2006; Markram et al., 2015). Since
neither a comprehensive repertory of data nor a complete
map of the brain exists or will likely be obtained purely from
experiments, we obviously cannot do this blindly. It requires
building the digital copy by formulating principles of cellular
structure to synthesize all the neurons and glial cells, principles
of molecular organization and interaction, principles of how ion
channels and receptors are formed and distributed in neurons,
principles of synaptic connectivity, principles of how brain
regions are connected, and ultimately, principles of how the
brain is coupled to the body. It is through formulating and
exercising these principles that simulation neuroscience makes
progress systematic and understanding tractable. If correct, these
principles allow predicting vast gaps in data and drive a new
question: what is the minimal, not maximal, data we need to
reconstruct the brain? Indeed, experimental neuroscience should
be asking what can be predicted and what must be measured.

Reconstructing the brain recapitulates the history of
neuroscience by evolving and accelerating its major steps,
from early morphological descriptions of the nerve cell to
later electrophysiological and biochemical studies of neural
connectivity: synthesize and evolve available knowledge,
methods and technologies into a new science, and take
a quantum leap onto a path that, in the end, can lead to
understanding the multiscale brain. Industrialization of
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FIGURE 1 | Understanding the multiscale brain.

neuroscience and the resulting large disconnected datasets
are generating demand for integrative neuroscience; the scale
of neuronal and connectivity maps is driving digital atlasing
and reconstruction to piece together the multiple levels of brain
organization, and the complexity of the interactions between
molecules, neurons, microcircuits and brain regions is driving
simulation neuroscience to understand the multiscale brain.
To explore the origin and making of this paradigm shift, we
reconstruct the deep historical paths leading to simulation
neuroscience through the philosophical, experimental and
theoretical phases of brain research, in particular, from the first
observations of the nerve cell to modern attempts to digitally
reconstruct and simulate the brain, by identifying the major
scientific, technological and conceptual breakthroughs that have
guided this passionate quest of humans to understand the brain
and their own condition.

FROM THE WEIGHT OF THE HEART TO
BRAIN SIMULATION

Humans see and feel, live and die, conscious of their own
existence. They think and desire to understand themselves.

About 3,000 years ago, in ancient Egypt, almost 200,000 years
after the birth of Homo sapiens and 9,000 years after the
Agricultural Revolution (Harari, 2014), the heart was still
considered to be the seat of emotions and thoughts, weighed after
death by gods against a feather representing truth and order to
determine the destiny of the deceased: to go to heaven or to be
devoured by a monster (‘‘Book of the Dead,’’ Papyrus of Ani,

1250 BC). The brain, considered trivial, was the first organ to
be thrown away during embalming: part of it was drawn out
through the nostrils with a crooked piece of iron, and the rest
was rinsed with drugs (Herodotus, 1875).

About 2,500 years ago, in Ancient Greece, Alcmaeon
of Croton (∼460 BC), a great philosopher and pioneer of
anatomical dissection, traced the nerves of the sense organs until
their terminations in the brain and inferred that the brain was the
seat of sensation and thought (Tannery, 1887). Thus were laid
the foundations of brain science. One century later, influenced
by Alcmaeon of Croton, Plato (∼360 BC) located the immortal
soul, the logos (thinking and reasoning), in the head, since it is in
the form of a globe, at the top of the body, close to the heaven,
reflecting the perfect image of God and the Universe (Lamb,
1925). The logos is a dæmon inside each of us, a genius given
by God to guide humans to communicate with the divine soul
of the Universe. Plato located in the thorax the mortal soul—the
thymos and the eros—our fearful but ineluctable passions and
desires. However, in Aristotle’s view (∼350 BC), the intellectual
soul (nous), imperishable and self-existing, which bestowed on
humans the ability to understand and which distinguished them
from plants and animals, did not operate through any specific
bodily organ (Hicks, 1907). Relating sensation to the blood,
relying on the idea that the brain was bloodless and cold, Aristotle
thought that the heart was the seat of sensation, while the brain
was just an organ for cooling the heat produced by the heart
(Ogle, 1911).

About 500 years ago, what has become known as the
‘‘Scientific Revolution’’ began (Burtt and Edwin, 1923;
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Butterfield, 1959). We acknowledged our ignorance (Harari,
2014) and embarked on an exploration of the unknown. Modern
science was born. The view of the universe and the nature
of human life was transformed through the transition from
mainly relying on the internal mind to external observation.
To survive and evolve, to increase their capacities and to
produce new resources, humans gained knowledge and invented
technologies both transmittable to others to accelerate scientific
discoveries—therefrom arose the powerful collective scientific
process. We explored the world and our own body, including the
brain. Brain science accelerated.

About 475 years ago, Vesalius (1543) dissected human
corpses, described the anatomy of the brain and first
distinguished between gray matter and white matter. About
300 years ago, ‘‘fine vessels’’ were observed within a nerve
under a self-made one-lens microscope (van Leeuwenhoek,
1719). More than 100 years later, ‘‘large, colorless and
free globules’’ and ‘‘granules connected in rows by delicate
filaments’’ were described in leech nervous tissue through an
achromatic microscope (Ehrenberg, 1833). About 30 years
later, ‘‘protoplasmic processes’’ were identified through carmine
staining (Deiters, 1865). In about 150 years, ‘‘vessels,’’ ‘‘globules’’
and ‘‘protoplasmic processes’’ were finally connected together
in the human mind to form a single cellular unit, the nerve cell,
named later the ‘‘neuron’’ (von Waldeyer-Hartz, 1891).

Where are we now? Our quest to understand the brain has
advanced in scale and complexity through the experimental
and theoretical phases of brain research. We are beginning to
understand the structural and functional diversity of neurons,
how they are connected, and how a specific network of neurons
gives rise to emergent functions.

However, since Alcmaeon of Croton dissected brains and
suggested that the brain was the seat of sensation and thought,
almost 2,500 years have elapsed (Tannery, 1887). We still
do not understand the basic neural mechanisms underlying
brain function, which give rise to our emotions, thoughts
and memories (Koch et al., 2016; Südhof, 2017). We remain
‘‘strangers to ourselves’’ (address by Shimon Peres when the
Human Brain Project was awarded, the European Parliament,
March 12, 2013).

Modern philosophers continue to reason about the mind and
the brain in diverse forms. Dualists argue for the irreducibility
of conscious experience and sensory qualia—surviving forms of
Plato’s and Descartes’ substance dualism. In their view, we will
probably never obtain a complete explanation of consciousness
based on neural mechanisms—What is it like to be a bat
or a zombie (Nagel, 1974; Chalmers, 1996)? Relying on the
concept of multiple realizability and the computational theory
of mind, functionalists pay little attention to neuroscientific
details, presuming that a given mental state can be realized
through diverse physical mediums, either a brain or a computer
(Fodor, 1975; Putnam, 1965). The rise of neurophilosophy fosters
the co-evolutionary research methodology, in particular the
co-evolution of philosophy with cognitive and computational
neuroscience (Churchland, 1986), with the aim of applying
neuroscientific findings to classical philosophical concepts such
as morality (Prinz, 2007; Churchland, 2011). On the basis of

eliminative materialism, neurophilosophers try to replace the
categories of ‘‘folk psychology’’ with neuroscientific ontology
(Churchland, 1986). Contrary to dualists, they search for a
neurobiological explanation of consciousness, a unified theory
of how the mind-brain works (Searle, 1992; Dennett, 1993;
Churchland and Churchland, 1997). However, today, this goal
still remains vague.

In parallel with these philosophical pursuits, methodologies
in neuroscience also evolved by crossing the boundaries between
different doctrines and disciplines. Against rationalist Descartes’
‘‘Cogito ergo sum’’ (Descartes, 1905), empiricists argued a
half-century later for ‘‘tabula rasa’’ and thought that instead
of a priori reasoning, the nature of the world and the
mind could only be understood through empirical research
with observations and experimental reasoning (Locke, 1689).
This view prepared the philosophical ground for the rise of
experimental neuroscience. Influenced by modern mathematical
logic developed in the late 19th century (Frege, 1879, 1960), early
empiricism further evolved into logical empiricism (Carnap,
1928; Neurath, 1932), which led to the idea of the mind as a logic
machine and the computational theory of mind (McCulloch and
Pitts, 1943; Putnam, 1965; Fodor, 1975). This gave rise to another
phase in brain research—theoretical neuroscience.

Reduction is the major form of reasoning in both
experimental and theoretical neuroscience, although it varies
from intertheoretic reduction to ‘‘reductionism-in-practice’’
(Hooker, 1981a,b,c; Bickle, 2003). This kind of reasoning
has been challenged by several theories of neuroscientific
explanations. Causal-mechanistic reasoning aims to capture the
unity of neuroscience by producing a mosaic of explanations at
different levels, instead of reductive, unifying or model-based
forms of scientific explanations (Craver, 2009). However,
to the philosophers of neuroscience in search for a unified
theory of brain function and behavior, understanding the
brain will require both neurobiology and large-scale theoretical
frameworks. In this view, a major methodological theme
consists in the co-evolution of macrotheory and microtheory,
an interanimation of philosophy, psychology, computer science
and neuroscience, of top-down and bottom-up research
(Churchland, 1986). This endeavor aims to combine multiple
disciplines, in particular philosophy and neuroscience, into a
unified science, to obtain a unified theory of the mind-brain.
However, since the birth of neurophilosophy, more than 30 years
have passed, this goal still remains remote. Why cannot we
understand the mind-brain?

Brain research over past millennia is like solving a strange
jigsaw puzzle that is devoid of a predetermined picture—various
pieces have been accumulated semi-randomly in the hope that
all the data and knowledge will self-organize. The mind does not
have a shape, but the brain does. Instead of imposing arbitrary
forms on the mind, can we reconstruct a brain from its basic
molecular and cellular units, find out the principles that connect
them together and test our theories in a systematic manner?
This quest gave rise to simulation neuroscience. What is the
philosophy of this new science?

For thousands of years, seeking truth, philosophers have been
addressing fundamental questions about the mind and ourselves,
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FIGURE 2 | Epistemological and methodological evolution of brain research.

yet without producing empirical evidence; their reasoning
wanders in the silence of the desert. For hundreds of years,
seeking completeness, experimental neuroscientists have been
trying to understand every single part of the brain by breaking
it into its basic components and have built forests of datasets,
but how much more elements are there still to map, are we lost?
For nearly a century, seeking a single unified theory, theoretical
neuroscientists have been trying to walk out of these forests by
cutting down trees; the complexity indeed decreases but also
the structural and functional richness of the ecosystem. Finally,
have not the models simply become data fitting functions? If
several models can fit the data, does it mean that they all explain
brain function? To transcend the barriers to these endeavors,
can we get an overview of all the forests of datasets, reorganize
and integrate them in the context of the whole brain, while
filling the gaps that experiments will never be able to fill and
finding ways through the forests by considering the ecosystem
of the brain? The deep meaning of simulation neuroscience
consists in reconstructing and simulating the brain from the most
fundamental principles we can isolate to understand and link the
multiple layers that form ourselves, from molecules and cells to
brain function and behavior, to give meaning and life to data
and theories.

Due to reductionist thinking, experimental neuroscience
is hindered by huge amounts of disconnected datasets and
seemingly infinite scale and complexity. Based on abstractive
thinking, theoretical neuroscience tries to address these
problems through simplification but abstracts away detailed
brain structures and their emergent functional properties. To
reconcile and transcend these two extremes, by leveraging high
performance computing, simulation neuroscience approaches
the brain through integrative and predictive thinking:
integration of experimental and theoretical approaches,
integration of disconnected datasets and knowledge and
integration of the multiple scales of brain structure and

function, in association with predictive methods for filling the
gaps (Figure 2).

The brain is a multidimensional network of networks of genes,
proteins, cells, synapses and brain regions, all interacting inside
a dynamically changing environment of neurochemicals. Brain
functions emerge as electrical, chemical and mechanical chain
interactions through these networks. Since there is no scientific
evidence that we can ignore any kind of these interactions, the
only way to understand all aspects of the multiscale brain is to
reconstruct and simulate all these types of interactions.

The philosophy of simulation neuroscience originates from
the will to transcend the barriers of scale and complexity during
the evolution of neuronal mapping, connectivity mapping and
functional mapping in the experimental and theoretical phases
of brain research. The present review will trace the historical
evolution of this pursuit by identifying the major milestones that
are the most related to it and that are capable of characterizing
it in a concise way, instead of conducting an exhaustive survey of
all the investigators whose important work has contributed to the
evolution of brain research.

NEURONAL MAPPING: FROM THE BIRTH
OF THE NEURON TOWARDS A
COMPREHENSIVE CENSUS OF BRAIN
CELL TYPES

Neurons and glial cells constitute the two major cellular
populations in the human brain (∼86 billion neurons vs.
∼85 billion non-neuronal cells; von Bartheld et al., 2016).
Although they were probably first described at the same time
(Dutrochet, 1824), neurons have been more studied because their
electrical excitability correlates well with higher brain functions
and are therefore considered essential to brain function and
behavior (Galvani, 1791; du Bois-Reymond, 1843). Neurons are
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divided into diverse types characterized by their morphological,
physiological or molecular properties. Just in the retina, the
number of neuronal types is estimated to be 100–150, and
2,500–5,000 in the adult mammalian nervous system (Bota et al.,
2003; Zeng and Sanes, 2017). Although efforts are underway to
try to achieve a comprehensive census of neuronal cell types
over the next decade (Zeng and Sanes, 2017), neuronal cell-type
classification is controversial and extremely challenging for the
future of neuroscience. Even so, then we will still need to ask:
‘‘What does each cell type do?’’

To better visualize the trajectory of neuronal mapping in
the future, we need to understand its origin. What is the
history of the neuron, from its first descriptions to modern
neuronal classification? First of all, how did humans discover
the neuron?

In fact, humans did not discover the neuron; they
reconstructed it.

All Began With a Nerve
About 300 years ago, ‘‘fine vessels’’ were observed within a
nerve under a self-made one-lens microscope (van Leeuwenhoek,
1719), clearly identified as axons only more than 60 years later
(Fontana, 1781). After about 50 years, ‘‘large, colorless and free
globules’’ and ‘‘granules connected in rows by delicate filaments’’
were described in leech nervous tissue through an achromatic
microscope, considered yet to be the ‘‘excreted nuclei’’ of red
blood cells (Ehrenberg, 1833). Three years later, appeared the
first microscopic image of the nerve cell body with the nucleus
and nucleolus, but the ‘‘primitive fiber’’ (axon) and the ‘‘globule’’
(soma) were still considered to be separated elements (Valentin,
1836). Nevertheless, in the same year, the anatomical continuity
between the nerve fiber and the nerve cell body was observed
(Remak, 1836). However, ‘‘protoplasmic processes’’ (dendrites)
were only described more than 80 years after the identification of
the axon, owing to chromic acid fixation and carmine staining
(Deiters, 1865). Only then did humans succeed to reconstruct
together the ‘‘vessel,’’ ‘‘globule’’ and ‘‘protoplasmic processes’’
into a single nerve cell, which took almost 150 years.

However, at that time, the soma and fiber of the nerve cell
were still considered functionally separated. The nerve cell body,
often taken for a trophic center, was thought unnecessary to
nerve conduction because most anatomists believed that the
nerve fiber ran straight through the cell body (Bernard, 1858;
Lorente de Nó, 1935). Therefore, electrophysiology was only
based on the study of nerves. Nevertheless, recordings of spinal
cord antidromic evoked potentials showed that the polarization
of conduction in the spinal cord was not a property of nerve
fibers, but rather localized in the soma (Sherrington, 1897).
However, it was not until the development of intracellular
recording (Hodgkin and Huxley, 1939; Ling and Gerard, 1949),
making it possible to characterize local potentials in different
parts of a neuron, that the soma and fiber of the neuron
were functionally reconstructed together by humans, almost
90 years after the morphological reconstruction of the nerve cell
(Eccles, 1952).

Even so, at this stage, humans still did not succeed to
completely reconstruct the neuron, hindered by the fierce

controversy over the mode of connection between nerve
cells. On the one hand, nerve cell anastomotic networks
connected by axons and/or by dendrites were observed through
ammoniated carmine and gold chloride staining or Camillo
Golgi’s ‘‘black reaction’’ (silver nitrate impregnation after
fixation with potassium dichromate and osmic acid), which
established the reticular theory (von Gerlach, 1872; Golgi,
1875). On the other hand, ontogenetic method and retrograde
degeneration method revealed that each nerve fiber originated
from a single cell and that the degeneration of the fibers and
somas of nerve cells was limited to the units directly affected
(Forel, 1887; His, 1887). These observations were later supported
by direct histological evidence obtained with improved Golgi’s
method, which showed the individuality of each nerve cell
and founded the neuron doctrine (Ramón y Cajal, 1888;
von Waldeyer-Hartz, 1891).

And yet, neuroscientists at that time were still confronted
with another question: how do nerve cells communicate between
them? Camillo Golgi thought that the communication between
nerve cells and the unified functioning of the nervous system
could only be achieved through a continuous network, while
Santiago Ramón y Cajal suggested that neural transmission could
occur through a kind of ‘‘granular cement’’ or a ‘‘particular
conductive substance’’ connecting the surfaces of nerve cells
in contact. Ramón y Cajal’s idea announced the concept of
the synapse (Foster and Sherringon, 1897), demonstrated later
through Loewi’s famous experiment during which a substance
collected from a stimulated heart stimulated another heart in the
same way as the action of a nerve (Loewi, 1921).

However, it was not until the mid-20th century that the
individuality of each nerve cell and the existence of the synaptic
cleft were finally confirmed, owing to electron microscopy
(EM) observations (Palade and Palay, 1954; De Robertis and
Bennett, 1955). Since the first observation of nerve fibers (van
Leeuwenhoek, 1719), the human reconstruction of the neuron
as an independent cellular unit had taken almost 240 years.
How much time would take the classification of different
types of neurons?

A Way Through the “Butterflies of the Soul”
What is the path through the labyrinth of billions of the
‘‘butterflies of the soul’’ (Ramón y Cajal, 1917)? Early researchers
first noticed different shapes of nerve cells and named them
either by their morphological features or after their discoverers.
With the development of histological techniques in the mid-19th
century, nerve cells were first classified into pyramidal cells,
small and irregular or granular cells and spindle-shaped
cells, which founded cytoarchitectonics (Berlin, 1858). Then
this morphological classification was further elaborated in
association with cortical layers and cell function (Meynert,
1867). About 16 years later, using the ‘‘black reaction,’’ Golgi
distinguished two basic types of nerve cells in the cerebral
cortex and suggested their functions: Type I cell with a long
axon giving off a small number of lateral filaments was motor
cell; Type II cell with a short axon divided into many complex
lateral branches was sensory cell (Golgi, 1883). However, this
functional definition of the two cell types was later refuted by
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Ramón y Cajal (1894), who observed that Type I cells were
abundant in sensory organs and Type II cells were distributed
in all nerve centers. This revealed the complex relationship
between nerve cell morphology and function. Ramón y Cajal
(1909) also attempted to classify neurons by their shapes.
However, were these morphological descriptions a reliable way
to classify neurons?

Confronted with the subjectivity of these morphological
classifications determined by single investigators, some
researchers tried to establish objective criteria to classify
nerve cells by their electrophysiological or biochemical features.
Nissl (1894), using basic aniline dyes, classified nerve cells
according to which parts of the cell content were stained
and which parts were not and the relationships between the
stained and unstained parts. Neurons were also classified by the
velocity of their action potentials measured with the cathode
ray oscilloscope (Gasser and Erlanger, 1922). Due to a better
understanding of the chemical transmission of nerve impulses,
neurons were divided into two types: cholinergic and adrenergic
cells (Dale, 1933).

However, electrophysiological and biochemical states
are limited by their sensitive condition-dependence. Faced
with this problem, researchers attempted to characterize
neurons with more stable features. With the development of
immunohistochemistry in the 1940s and that of RNA and
DNA sequencing in the 1970s (Coons et al., 1941; Min Jou
et al., 1972; Wu, 1972), molecular classification methods were
introduced to classify neurons according to their molecular
properties, in particular protein composition and mRNA
composition, with the assumption that some molecular features
stay permanent to maintain cell identity (Fishell and Heintz,
2013; Deneris and Hobert, 2014). Single-cell transcriptomics,
developed in the early 1990s, is considered to have the potential
to provide a ‘‘complete’’ census of neuronal types (Toledo-
Rodriguez et al., 2004; Poulin et al., 2016; Zeng and Sanes, 2017).
High-throughput, multiplexed methods, such as multiplexed
fluorescence in situ hybridization (FISH) and in situ sequencing
methods, are being developed to scale up the enterprise of
neuronal cell-type classification (Ke et al., 2013; Lee et al., 2014;
Chen et al., 2015, 2016).

In 160 years, neuronal classification has evolved from
subjective, morphological description to objective, multi-criteria
identification; from monothetic approach to polythetic clustering
(Berlin, 1858; Ramón y Cajal, 1909; Markram et al., 2004;
Migliore and Shepherd, 2005; Armañanzas and Ascoli, 2015).
However, a comprehensive census of neuronal cell types is still
out of reach. What are the major challenges?

Towards a Comprehensive Census of Brain
Cell Types
Neuroscience aims to achieve a comprehensive census of neurons
and glial cells in the brain, with molecular annotation at
subcellular resolution, such as mRNA expression, ion channels
and synaptic proteins. However, there are ∼86 billion neurons in
the human brain, and every neuron appears unique; single-cell
transcriptome analysis represents only a snapshot due to cyclic
and stochastic fluctuations in RNA content (Raj and van

Oudenaarden, 2008; Shapiro et al., 2013); gene expression
and phenotypic properties of cells can dynamically change in
response to internal and external cues (Cohen and Greenberg,
2008; West and Greenberg, 2011). Due to these factors, all
neuronal classifications are provisional and hypothetical.

Faced with these challenges, how can we build a way through
billions of the ‘‘butterflies of the soul’’? It is true that there are
∼86 billion neurons in the human brain, but it is possible to
define a minimum sample size able to reliably reveal distinct
types. It is true that every neuron appears unique, but we have to
reduce dimensionality by defining a relevant level of granularity
to identify neuronal types. It is true that gene expression in cells
is dynamic, but we have to find out their molecular ground
states that maintain cell identity. So, the question is: how can
we overcome the barriers of scale and complexity to achieve a
reliable neuronal cell-type classification?

CONNECTIVITY MAPPING: FROM WHITE
MATTER TRACTS TOWARDS A FULL
CONNECTOME

Leaves of a Cabbage
Arising from a stem, dispersed into leaves spreading out in a
circular shape to form cavities, in the eyes of a 17th-century
anatomist, the extending nerve tracts in the brain formed loose
nets and ventricles like the leaves of a cabbage (Malpighi and
Fracassati, 1669). Since Ancient Greece, nerve tracts had been
considered related to brain function (Tannery, 1887). A question
then arose: how to trace these tracts?

About 330 years ago, white matter was observed to be
composed of fibrils arranged in bundles through the scraping
method of dissection (Vieussens, 1684). A century later,
nerve tracts were divided into inter- and intra-hemispherical
pathways (callosal and association systems; Vicq-d’Azyr, 1786).
The first category connected the two hemispheres, including
the corpus callosum, the corpora quadrigemina, the anterior
and posterior commissures, the cerebral peduncles, the pons,
the anterior medullary velum, the interthalamic adhesion and
the trigeminal tubercle. The second category was supposed
to assure the communication between the base and other
parts of the brain, including the arcuate fasciculus, the
pillars of the fornix, the peduncles of the pineal gland, the
tracts connecting the mammillary tubercles and the anterior
thalamic tubercles. More than 20 years later, the projection
system was identified through blunt dissection, including
afferent and efferent fiber pathways linking the cortex with
the subcortical regions, the brain stem and the spinal cord
(Gall and Spurzheim, 1810).

However, dissection techniques could not determine the
precise trajectory and arrangement of nerve tracts. Detailed
tract tracing only became possible with the development of
histological methods. Using a Zeiss-microscope and carmine
or gold chloride staining, Theodor Meynert identified clearly
the three main types of white matter tracts: the association
systems—the short arcuate fibers and long association fibers
connecting the various parts of the cerebral cortex; the

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2019 | Volume 13 | Article 328788

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Fan and Markram A Brief History of Simulation Neuroscience

commissural pathways connecting the two hemispheres; the
afferent and efferent projection systems linking the cortex to the
subcortical structures (Meynert, 1871).

Early tracing studies, relying on physical diffusion of dyes in
fixed material, were limited to large fiber tracts between brain
regions. The studies of neurocircuitry required more refined
methods applicable to living tissue. Degeneration methods
inferred neuronal connectivity from pathological changes
following experimental lesions to the nervous system (Türck,
1849; Waller, 1850; von Gudden, 1870; von Monakow, 1897).
However, lesions were usually nonspecific, degeneration altered
the normal morphology of neurons, and pathological changes
were extremely variable (Cowan et al., 1972).

To remedy this, tracing methods exploiting axonal transport
in living neurons were developed in the 1970s. Retrograde tracing
techniques introduced an enzyme or fluorescent tracer in a
downstream location relative to the targeted neurons, capable
of labeling the somas of the neurons projecting to the injection
site, but unable to visualize the fiber pathways linking them
(Kristensson, 1970; Kristensson and Olsson, 1971; LaVail and
LaVail, 1972). This problem was resolved by anterograde tracing
techniques, based on macromolecule transport from the soma
to the axon terminals, such as autoradiographic tracing method
(Cowan et al., 1972).

Nevertheless, injections of tracers usually resulted in
indiscriminate labeling of different types of neurons, and
the surgical procedure to introduce an exogenous tracer was
complex. To deal with this, tracing techniques exploiting genetic
engineering were developed more than 20 years ago (Prasher
et al., 1992; Chalfie et al., 1994), which use intrinsic fluorescence
to label exclusively the projections of neurons that express a
specific molecular phenotype (Feng et al., 2000; Livet et al.,
2007; Kuhlman and Huang, 2008). These techniques were even
adapted for live imaging of intact animals such as Drosophila
(Boulina et al., 2013). The leaves of a cabbage have become a
forest of rainbow trees.

However, these tracing methods are limited to anatomical
connectivity, which alone is not sufficient to account for
brain function, because the synapse is dynamic (Tsodyks
and Markram, 1997). Therefore, physiological methods
were invented. Owing to intracellular recording techniques,
synaptic plasticity was better understood, such as the
quantal release of neurotransmitters (Fatt and Katz, 1952),
central synaptic inhibition (Coombs et al., 1953), short-term
synaptic plasticity (Curtis and Eccles, 1960) and spike-timing-
dependent plasticity (STDP; Markram and Sakmann, 1995).
Neural plasticity also inspired theoretical studies, such as
Hebbian cell assembly and learning rule (Hebb, 1949) and
the theoretical study of STDP (Abbott and Blum, 1996;
Gerstner et al., 1996). Theoretical approach abstracts away
detailed biological mechanisms to loosely model neural
connectivity by building artificial neural networks. About
75 years ago, the first mathematical model of a simplified
neural network appeared (McCulloch and Pitts, 1943), which
led to the computational theory of mind and machine
learning. This model then evolved into more sophisticated
ones, in particular, multilayer perceptrons (Rosenblatt,

1957), recurrent neural networks (Hopfield, 1982) and
convolutional neural networks (Cireşan et al., 2011). However,
to get deep insights into the detailed neural structures and
mechanisms underlying brain function, we still need biologically
realistic models.

Although the aforementioned experimental methods are able
to trace neuronal connections on the cellular or even molecular
scale, these invasive techniques are limited to postmortem brain
tissue and experimental animals. To better understand our own
brain, would it be possible to trace the neural connections in
the living human brain? In the early 1970s, the development of
noninvasive neuroimaging techniques, in particular MRI, made
it possible to study the structural and functional connectivity
of the human brain in vivo (Damadian, 1971; Lauterbur, 1973).
Nowadays, human brain atlasing combines MRI with gene
expression studies, such as the Allen Human Brain Atlas that
comprises a comprehensive ‘‘all genes–all structures’’ array-
based dataset (Shen et al., 2012). Nevertheless, generally, MRI
methods can only trace neural connections between brain regions
usually with millimeter resolution.

Over the past 300 years, connectivity mapping has evolved
from gross tracing of major tracts in fixed brains to mapping
neuronal projections with cellular and molecular resolution in
living tissue, from mapping static neural connectivity to dynamic
synaptic plasticity, from postmortem studies to in vivo large-
scale mapping of human brain connectivity including structure,
function and gene expression. Is it possible to experimentally
map all the neural connections of the brain—the ‘‘connectome’’?

Towards Completeness
Science dreams of completeness. Since the emergence of the term
‘‘genome’’ in 1920 (Winkler, 1920), fostered by technological
advances in large-scale, high-throughput research, the ‘‘ome’’ has
become a doctrine, aiming to capture all the parts of biological
systems and their interactions (Sporns, 2013b). Inspired by the
‘‘genome,’’ the term ‘‘connectome’’ was introduced in 2005,
initially referring to a comprehensive structural description of the
network of brain elements and connections (Sporns et al., 2005)
or the set of all neuronal connections of the brain (Hagmann,
2005). ‘‘Connectomics’’ aims to map the connectome on the
macro-, meso-, micro- and nano-scales and to explain its relation
to brain functions (Hagmann, 2005; Sporns, 2013a; Swanson and
Lichtman, 2016).

The concept of the connectome originated from the long-held
belief that neural connections are related to brain functions,
as illustrated by tract tracing since the 17th century. This
relationship has been further revealed by recent research: at the
microscale, synaptic connectivity is linked to neuronal network
dynamics (Chambers and MacLean, 2016); at the macroscale,
the anatomical connectivity of the brain is related to its
functional connectivity and different states (Hermundstad et al.,
2014), and the ‘‘connectivity fingerprint’’ of brain regions may
predict their specific functional properties (Saygin et al., 2016;
Tavor et al., 2016).

Since the function of neural circuits and systems cannot
be explained only through wiring diagrams, we also need
information such as the types of neurons and synapses,
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the dynamics of neuronal synchronization, and the role of
different types of glial cells and neuromodulators (Sporns,
2013b; Fields et al., 2015). Therefore, the concept of the
‘‘connectome’’ is evolving to include all the structural and
functional relationships between different types of neurons,
as well as all their connections with their cellular partners
in a defined neural region or the whole brain (Marc et al.,
2013; Sporns, 2016; Swanson and Lichtman, 2016). Nevertheless,
this concept owes its origins to MRI methods, which enable
in vivo rapid-throughput mapping of human brain connectivity
at the macroscale.

Mapping Long-Range Neural Connections Between
Gray Matter Regions
Macroconnectomics aims to map all the neural connections
between gray matter regions at millimeter resolution. It is best
suited to in vivo human studies with neuroimaging methods,
where few of fine-scale methods used in laboratory animals
are applicable (Sporns, 2013b; Van Essen, 2013). MRI, the
major noninvasive neuroimaging technique for in vivo human
connectome mapping, was developed in the early 1970s, first
used to diagnose cancer (Damadian, 1971; Weisman et al., 1972;
Lauterbur, 1973). Described as ‘‘in vivo Brodmann mapping’’
(Brodmann, 1908; Turner and Geyer, 2014), MRI cerebral
cartography has inherited the long tradition of connectivity
mapping, established since the 18th century (Vicq-d’Azyr, 1786).

Diffusion MRI (dMRI) is the main MRI method of mapping
structural connections of the brain (Glasser and Van Essen, 2011;
Craddock et al., 2013). Invented in the 1980s, dMRI uses water
diffusion anisotropy along myelinated axons to map large white
matter fiber bundles, combined with probabilistic tractography
to estimate fiber trajectories (Le Bihan and Breton, 1985;
Margulies et al., 2013; Le Bihan and Iima, 2015). About 30 years
ago, the first dMRI images of the human brain were obtained
at 0.5T, with an in-plane spatial resolution of 1.09 × 1.09 mm
(Le Bihan et al., 1986). Since then, the sensitivity to diffusion has
augmented about 100 times (McNab et al., 2013). To improve
spatial resolution of white matter fiber tracking, ultrahigh field
magnetic resonance engineering is a basic solution. MRI for
clinical use is usually at 1.5T or 3T, and more recently at 7T. The
first human 8T MRI was installed in 1999 (Robitaille et al., 1999),
and 18 years later, a human whole-body 11.7T MRI (Quettier
et al., 2017). Efforts are underway for human 14–20T MRI
(Ekosi 20 Tesla Project, 2018). Human brain in vivo imaging was
already performed at 9.4T (Vaughan et al., 2006); rodent brain
and human postmortem tissue imaging at 21.1T (Qian et al.,
2012). The final resolution also depends on the acquisition and
reconstruction of diffusion images. For example, reconstructing
nerve fiber orientations, especially in brain regions where fibers
of multiple orientations intersect, involves a trade-off between
the accuracy of the peak orientation and the sensitivity to
crossing fibers and minor fiber bundles (Van Essen et al.,
2012; Lowe et al., 2016). Hitherto, the highest resolution for
the human brain achieved at 7T is 0.2 mm, owing to motion
correction methods (Stucht et al., 2015). However, even this rare
performance is not sufficient to study the connections between
individual neurons.

Functional MRI (fMRI) is the main MRI method for studying
functional connections in the human brain. Developed in the
early 1990s, fMRI first used contrast agents administrated
intravenously (Belliveau et al., 1991), then exploited correlations
in blood oxygen level dependent (BOLD) signals, based
on different magnetic susceptibilities of oxygenated and
deoxygenated hemoglobin to detect functional correlations
between brain regions (Ogawa et al., 1990, 1992; Bandettini et al.,
1992; Kwong et al., 1992). Functional MRI includes two main
methods: resting-state fMRI (rsfMRI), measuring correlations in
spontaneous activity between brain regions in resting subjects,
and task-evoked fMRI (tfMRI), trying to detect functionally
distinct brain regions during various tasks such as visuomotor
or cognitive processes (Glasser et al., 2016). Almost 30 years
ago, human fMRI studies were mostly performed at 1.5T with
a spatial resolution of 3–4 mm (Bandettini et al., 1992; Kwong
et al., 1992). Since then, the spatial resolution of fMRI has been
largely improved, such as the achievement of 0.65-mm resolution
in the human brain at 7T (Heidemann et al., 2012), but this is still
not sufficient to study how individual neurons are connected to
generate brain functions. Furthermore, the temporal resolution
of fMRI is fundamentally limited by the nature of BOLD
signals, which only indirectly reflect neuronal activity. Due to
the temporal dynamics of neurovascular coupling, the peak
of BOLD response to a neural stimulus occurs with 5–6 s
delay (Glover, 2011). Finally, as a result of artifacts and noises,
neurobiologically relevant signals represent only ∼4% of primary
data (Glasser et al., 2013).

Although MRI is a useful tool for studying human brain
connectivity in vivo, it offers little data on the connectivity
between neurocircuits and between individual neurons that
is essential for understanding the mechanisms underlying
brain function. Hence the need for meso-, micro- and
nano-connectomics.

Mapping Connections Between Neuronal Groups
and Between Individual Neurons
Meso- and micro-connectomics aim to map all the connections
between different neuronal groups defined by cell types or
connectivity patterns and between individual neurons at the
micrometer scale. Such studies, using invasive techniques, are
limited to experimental animals and postmortem human brain
tissue. The first mesoconnectome, capturing cell type-specific
connections as well as short- and long-range interregional
axonal projections, was achieved in the mouse in 2014, through
enhanced green fluorescent protein (EGFP)-expressing adeno-
associated viral vectors and high-throughput serial two-photon
tomography (Oh et al., 2014).

Single-cell staining is the first and most influential method
for studying neural circuits at microscale, established by Golgi
and Ramón y Cajal in the late 19th century (Golgi, 1875;
Ramón y Cajal, 1888). However, dyes could only be applied
to small blocks of tissue, making this method unsuitable for
tracing long-distance connections. To resolve this problem,
chemical markers were injected into circumscribed neural areas,
which, however, could not label selectively different types of
neurons (Kristensson, 1970; Kristensson and Olsson, 1971;
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Cowan et al., 1972; LaVail and LaVail, 1972). This was later
remedied by transgenic multicolor labeling strategies such as
‘‘Brainbow’’ (Livet et al., 2007). More recently, non-optical,
high-throughput methods were invented, such as Barcoding
of Individual Neuronal Connections (BOINC), which barcodes
individual neurons and introduces transsynaptic viruses to
map synaptic connections, based on high-throughput DNA
sequencing (Zador et al., 2012). Nevertheless, due to several
factors, connectivity reconstructed by this method is difficult to
interpret as neuronal connectivity with single-synapse precision
(Oyibo et al., 2018).

Light microscopy was, at the origin of the history of
neuroscience, the major tool for elucidating the problem of
intra-/inter-neuronal and interregional connectivity in the brain.
However, conventional light microscopes cannot resolve neural
structures smaller than ∼0.25 µm, due to the diffraction
barrier identified almost 150 years ago (Abbe, 1873). This
barrier was finally broken by super-resolution microscopy
developed in the late 20th century, which can routinely
resolve a few tens of nanometers, such as stimulated emission-
depletion (STED) microscope (Hell and Wichmann, 1994),
structured illumination microscopy (SIM; Gustafsson, 2000) and
photoactivated localization microscopy (PALM; Betzig et al.,
2006). Yet, even so, major challenges still lie ahead, in particular,
mapping connections in small neural areas where many cells are
targeted at the same time and where the connection density is
high (Lichtman et al., 2008). This may require a resolution of
a few nanometers (Huang et al., 2010). How to map neuronal
connections at this scale?

Mapping Neural Connections at Individual Synapses
and Gap Junctions
Nanoconnectomics uses EM, the only method capable
of identifying unequivocally synapses and gap junctions
at nanometer or even sub-nanometer resolution. EM
provides high-resolution validation of macro-, meso- and
micro-connectomes.

The first electron microscope, a transmission electron
microscope (TEM), was built in 1931, only capable of 14.4×

magnification (Ruska, 1993). However, 2 years later, the
resolving power of the TEM (12,000×) surpassed already the
resolution limit of light microscopy at that time (Ruska, 1993).
Another major type of EM is scanning electron microscopy
(SEM), introduced in 1937 (von Ardenne, 1937), capable of
sub-nanometer resolution (Masters et al., 2015). TEM remains
to date the highest resolution technology able to validate specific
gap junctions and small synapses requiring, for example, 0.3 nm
resolution (Marc et al., 2013). Recently, using the aberration
correction technique, scanning TEM (STEM) has even achieved
a sub-ångström resolution of 45 pm (Sawada et al., 2015).

However, EM methods are extremely time-consuming
and labor-intensive, so currently limited to very small
postmortem specimens. The first and the only almost complete
nanoconnectome, that of Caenorhabditis elegans hermaphrodite,
whose nervous system has in total 302 neurons, was achieved in
1986 with serial-section TEM, containing about 5,000 chemical
synapses, 2,000 neuromuscular junctions and 600 gap junctions

(White et al., 1986). Today, studies continue to fill the gaps in
this original connectome and to address further questions such
as the nature of individuality and how genetic and environmental
factors regulate connectivity (Mulcahy et al., 2018).

The goal of connectomics is to experimentally map a full
connectome of the mammalian brain, and ultimately the human
brain. Is this achievable?

Metaphor and Myth
What About Biological Reality?
Although MRI methods are capable of large-scale, rapid-
throughput mapping of human brain connectivity at macroscale,
MRI-derived macroconnectomes result from data reduction,
simplification and assumptions, and they do not necessarily
reflect the actual structure and function of the brain. They are
even described as ‘‘metaphors’’ or ‘‘caricatures’’ (Catani et al.,
2013; Margulies et al., 2013).

MRI methods suffer from low spatial resolution. The isotropic
voxel size often used is 2 mm (dMRI) or 3 mm (rsfMRI) at 3T and
1–2 mm at 7T. However, the human cerebral cortex contains on
average 40,000 neurons and 3 × 108 synapses/mm, and the white
matter contains ∼300,000 axons/mm2 (Van Essen et al., 2012).

The fundamental concept of dMRI consists in using water
molecules to probe neural tissue structure (Le Bihan and
Johansen-Berg, 2012). However, the basic mechanism underlying
water diffusion in neural tissue, especially the role of cell
membranes in modulating water diffusion, remains to be
clarified, hence the fundamental limitation of the sensitivity
of dMRI resides in the complexity of water diffusion in the
microenvironment of the brain (Van Essen et al., 2014; Le
Bihan and Iima, 2015). MRI tractography is indirect and
probabilistic: it reconstructs neuronal connections by estimating
the ‘‘most likely’’ fiber orientations at every voxel, which may
contain tens of thousands of diverging axons; it produces
more invalid than valid bundles (Margulies et al., 2013;
Maier-Hein et al., 2017). MRI tractography is also biased
towards some brain regions, such as the famous ‘‘gyral bias,’’
induced by current fiber tracking algorithms which tend to
track towards gyral crowns rather than the walls of sulci
or the sulcal fundi (Van Essen et al., 2014; Schilling et al.,
2018). The signal-to-noise ratio (SNR) in subcortical regions
is usually weaker than in cortical regions, mainly due to
their buried location relative to the head coil (Uğurbil et al.,
2013). Data processing introduces artifacts and distortions that
are difficult to distinguish from actual neural connections
(Jones et al., 2013).

The sensitivity of fMRI is affected by the fundamental
problem of neurovascular coupling. BOLD signals reflect a
complex combination of vascular system dynamics as well as
the activity of neurons, astrocytes (Iadecola and Nedergaard,
2007), interneurons (Cauli et al., 2004), pericytes (Hall et al.,
2014), vascular endothelium (Hillman, 2014) and smooth
muscle cells (Cipolla, 2009). However, the way all these
elements contribute to fMRI signals still remains to be clarified.
Furthermore, fMRI detects only functional correlations between
brain regions, and most functional connections show significant
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temporal fluctuations depending on measurement and analysis
methods—they do not necessarily reflect the causal relationships
between neural connections (Friston, 2011). This means that the
interpretation of results is often doubtful.

From this point of view, current macroconnectome maps do
not offer an actual image of the brain. Reproducibility is also a
major concern for MRI studies (Zuo et al., 2014).

Volume, Time and Dynamics
The major challenge for micro- and nano-connectomics is the
huge number of neurons in the human brain: ∼86 billion
(Herculano-Houzel, 2012). With current techniques, it
would take ∼10 million years to map all the synapses
in a single human brain (Morgan and Lichtman, 2013).
Moreover, the reconstruction of a complete nanoconnectome
would only be possible in some invertebrates or simple
nervous systems, because the magnification required to
visualize synapses produces very small images of tens of µm2

(DeFelipe, 2015).
The storage and processing of gigantic volumes of data are

problematic (Schreiner et al., 2017). The first fairly complete
reconstruction of the C. elegans nanoconnectome required
∼10,000 EM images (White et al., 1986). Recent local circuit
mapping by EM has high data output rates of gigabytes per
minute (Helmstaedter and Mitra, 2012). At synaptic resolution,
a human brain may require ∼2 million petabytes (Swanson
and Lichtman, 2016). And this is just for the anatomical data,
but what if we include the electrophysiological, biophysical and
biochemical counterparts?

Although section preparation automation techniques such
as SBF (serial block-face) SEM (Denk and Horstmann, 2004)
and ATUM (automated tape ultramicrotomy) SEM (Schalek
et al., 2011) were invented and data acquisition has been
accelerated through parallel image processing (Eberle et al.,
2015), the automation of large-scale image segmentation and
reconstruction remains the fundamental bottleneck for EM.
Methods such as machine learning and crowdsourcing are
gradually reducing the problem (Kim et al., 2014; Greene
et al., 2016; Staffler et al., 2017), but no existing computational
segmentation algorithm is accurate enough to completely
replace human annotators. A recent reconstruction of the
nanoconnectome of 950 neurons in the mouse retina took
∼30,000 h (Helmstaedter et al., 2013). At current speeds, the
complete reconstruction of the nanoconnectome of the human
brain may require ∼14G person-years (Plaza et al., 2014).

Therefore, it seems impossible that we will ever resolve
the full micro- or nano-connectome of any mammal by only
relying on experimental methods (Schröter et al., 2017), which
in the opinion of many researchers, is nothing more than a
myth (Catani et al., 2013). Moreover, the very concept of ‘‘full’’
connectome mapping is problematic: (1) due to connectivity
deduction from primary experimental data, individual variability
and the parallel application of multiple imaging, reconstruction
and analysis methods, any unified map would be based
on probabilistic representations of connectivity data (Sporns,
2013b); (2) all the molecular and cellular components of
the nervous system are constantly resynthesized or replaced;

development involves changes in myelination and the number
of neurons; synaptic connections are subject to continuous
rewiring and changes in strength and dynamics driven by
experiences (Markram and Tsodyks, 1996; Holtmaat and
Svoboda, 2009; Bennett et al., 2018; Roelfsema and Holtmaat,
2018). Therefore, any connectome map represents only a
snapshot of the dynamic brain; and (3) neurons can rapidly
change their functional roles in response to chemical signals
such as peptides, hormones or neuromodulators, all with no
visible modification to the connectivity diagram, and each
wiring diagram can encode many possible circuit outcomes
(Bargmann and Marder, 2013).

However, if we want to understand the neural mechanisms
underlying brain function, we have to identify their constituent
neural connections from the molecular and cellular levels to
the whole brain. Facing the ‘‘metaphor’’ of macro-connectomics
and the ‘‘myth’’ of micro- and nano-connectomics, how can we
overcome the barriers of scale and complexity to reconstruct the
neural connections that give rise to brain function?

FUNCTIONAL MAPPING: FROM CRANIAL
BUMPS TOWARDS NEURAL
MECHANISMS

Feeling the Bumps of the Skull
What is the link between verbal memory and bulging eyes, the
cerebellum and sexuality? About 200 years ago, early attempts
to localize brain functions and behaviors in cerebral structures
began with Franz Gall’s phrenology (Gall and Spurzheim,
1810). The brain was considered to be composed of different
‘‘organs,’’ each with its own function, and the size of cortical
organs depended on the development of mental faculties,
reflected through cranial bumps. Gall noticed that individuals
with a retentive verbal memory had bulging eyes and that
several cases of aphasia were caused by the damage to the
frontal lobe. Therefore, he localized verbal memory in the
frontal lobes, assuming that the super development of these
lobes pushed out the eyes. Feeling the burning nape of a
nymphomaniac widow, he considered the cerebellum to be
the organ of the sexual instinct (Gall et al., 1838). Although
phrenology was based on such false assumptions, it drove
the functional mapping of the brain. After all, Gall was not
completely wrong with the relation between brain structure
and function, which has been partly supported by some
modern studies, in particular, the famous MRI study showing
that London taxi drivers have larger posterior hippocampi
(Maguire et al., 2000).

To surpass the simplistic correlation between cranial bumps
and mental faculties, functional mapping further developed
in cytoarchitectonics and myeloarchitectonics to build maps
of cerebral regions according to their structure and inferred
function. Motor function was one of the first functions to
be located in the brain, owing to the identification of the
giant pyramidal cells (Meynert, 1867; Betz, 1874; Lewis, 1878;
Campbell, 1903). Cécile and Oskar Vogt mapped 200 structural
and functional areas in the monkey cortex, using myelin-
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stained histological sections (Vogt and Vogt, 1903). Five years
later, Brodmann (1908) distinguished 43 cytoarchitectonic areas
in the human cortex, using cell body-stained histological
sections, and assigned to each of them a function. Although
today Brodmann’s map is still largely used to localize
neuroimaging data (Turner and Geyer, 2014), it does not
match recent anatomical and functional data in many brain
regions, and the mosaic-like segregation of the cerebral
cortex is far from reflecting its heterogeneous structure
(Amunts and Zilles, 2015).

Methods in cytoarchitectonics and myeloarchitectonics
mapped brain functions to brain areas mainly by inference. To
relate directly behaviors to brain regions, clinicopathological
correlation was one of the first methods developed in the
history of functional mapping. The faculty of speech was
located in the anterior lobes, the lesions to which led frequently
to the loss of speech (Bouillaud, 1825; Broca, 1861). Motor
centers were located in the region of the middle cerebral artery
through the observation of ‘‘Jacksonian seizures’’ with unilateral
convulsions (Jackson, 1870). These early studies suggested that
the brain consisted of specific, circumscribed, yet interconnected
functional areas, the disconnection of which caused neurological
disorders. This led to the concept of disconnection syndromes,
caused by the destruction of either the centers of convergence
where crucial associations were formed or the conduction
pathways transmitting information between these centers
(Wernicke, 1874; Dejerine, 1892). The concept of disconnection
syndromes was further developed in the 1960s: the studies of
split-brain patients revealed the topographic organization and
functional specificity of the corpus callosum (Gazzaniga et al.,
1962), and neo-associationism reinterpreted apraxia, amnesia,
agnosia and hemispatial neglect (Geschwind, 1965a,b). However,
the phenomenon of ‘‘diaschisis’’ questioned localization of
brain functions: the destruction of a cortical area could produce
transient symptoms in other distant areas, which showed that
immediate symptoms were not a reliable guide to the function
of a destroyed cortical area (von Monakow, 1914). This was
one strong argument held by holists. They considered that
brain functions were distributed continuously throughout
the brain: stimulation of a single point in the nervous system
stimulated the whole system; a weakened point weakened the
whole system (Flourens, 1842). In the late 20th century, brain
functions and dysfunctions were further investigated in vivo in
human subjects with neuroimaging techniques, in particular
positron emission tomography (PET) and fMRI (Frackowiak,
1986, 1994). Today, the relationship between segregation and
integration, localized and distributed aspects of brain functions
still poses a major challenge to neuroscience (Cauda et al.,
2014; Sporns, 2014), and new approaches are mandatory
(Frackowiak and Markram, 2015).

To directly test the function of brain regions, experimental
methods, in particular, electrical stimulation and ablation
techniques were developed. Through electrical stimulation that
induced motor responses, the motor centers were first mapped
in the dog cerebral cortex (Hitzig and Fritsch, 1870), then in
a patient with a cranial malformation exposing parts of both
cerebral hemispheres (Bartholow, 1874). These results were

demonstrated by destructing the motor centers in the monkey
brain, which caused motor paralysis totally dissociated from
sensory paralysis (Ferrier, 1875). However, the localization of
the motor centers was questioned by the ‘‘functional instability’’
of the motor cortex, revealed by stimulating repetitively the
same point in the motor cortex (Brown et al., 1912), which
suggested that the motor cortex was a changing organ. The
famous ‘‘sensory and motor homunculi’’ were built through
electrical stimulation of the cerebral cortex in conscious patients
undergoing surgery for epilepsy (Penfield and Boldrey, 1937).
Owing to ablation techniques, vision was located in the occipital
lobe and auditory function in the temporal lobe (Panizza, 1855;
Munk, 1890). And ablation of the frontal lobe in monkey was
found to disintegrate the personality and to destroy the ability
to classify and synthesize groups of representations (Bianchi,
1920). However, these experimental methods suffered from low
resolution and lacked specificity.

With the development of single-cell recording techniques,
in particular tungsten microelectrodes invented in the 1950s
(Hubel, 1957), specific brain functions were localized in certain
populations of cells, such as ‘‘complex cells’’ in the visual cortex
with specific oriented receptive fields (Hubel and Wiesel, 1962),
‘‘place cells’’ in the hippocampus that respond to stimuli in
specific spatial locations (O’Keefe and Dostrovsky, 1971), ‘‘face
cells’’ in the superior temporal sulcus that respond selectively
to faces (Desimone et al., 1984), and ‘‘mirror neurons’’ in the
rostral part of the inferior premotor cortex that become active
not only during the execution but also during the observation
of specific movements (di Pellegrino et al., 1992). During the
same period, theoretical neuroscience explored brain functions
through mathematical modeling, such as Marr’s famous models
of visual processing widely adopted in computer vision (Marr,
1982). Nevertheless, both of these approaches could not resolve
how different types of brain cells and circuits interact together to
generate the full array of diverse brain functions.

Over the past 200 years, functional mapping has developed
from correlation-based methods to experimental perturbation
of brain activity; from observing correlations between cranial
bumps and behavioral stereotypes, cyto-/myelo-architectures
and brain functions, brain lesions and behavioral deficits, to
relating brain regions to behavioral outputs through electrical
stimulation or ablation techniques; from localization of brain
functions in brain regions to those in specific populations of cells.
Functional mapping is evolving towards causally linking brain
structure to function with high resolution and specificity. How
does modern neuroscience face this major challenge?

Recording and Manipulating Neural
Activity
Current correlation-based methods are particularly represented
by fMRI studies that detect the similarity of regional activation
profiles reflected indirectly in BOLD signals to extract patterns
of correlation or covariance and to infer functional connectivity
between brain regions. Trying to correlate neural connections
and brain regions to pre-defined behavioral categories, this
approach is described by some researchers as ‘‘neophrenology’’
(Miller, 2008). The biophysics of how BOLD signals relate to
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underlying neural activity remains an unsolved question and
represents a fundamental limitation of fMRI studies (Hillman,
2014; Gao et al., 2017). Since correlation-based methods deliver
non-causal similarity-based metrics of statistical dependence
(Bassett and Sporns, 2017), other methods are used to unravel the
causal relationship between neural activity and brain function,
in particular recording and manipulating neural activity and
observing the behavioral outputs.

About 150 years ago, resting and action potentials were first
recorded from frog sciatic nerves with a differential rheotome
(Bernstein, 1868). Almost 80 years ago, the first intracellular
recording of individual neurons was achieved in the squid giant
axon with glass microelectrodes (Hodgkin and Huxley, 1939).
Ten years later, voltage clamp was developed, and patch clamp
in the 1970s (Cole, 1949; Marmont, 1949; Neher and Sakmann,
1976). About 60 years ago, implantable microelectrodes were
developed to record from single neurons in a freely behaving
ground squirrel during 4 days (Strumwasser, 1958). Nowadays,
penetrating multi-electrode arrays (MEAs) can record from
individual neurons simultaneously at multiple sites to study
distributed neural circuits (Gehring et al., 2015; Maccione
et al., 2015), and mesh nanoelectronics, which are tissue-like
electronics consisting of a macroporous mesh structure with
addressable electronic devices, have achieved stable single-
neuron level chronic recording and stimulation in freely
behaving animals for at least 8 months (Fu et al., 2016). Yet, even
so, the huge number of neurons and the complexity of neural
interactions preclude the high-density parallel recordings of the
whole mammalian brain.

Almost 230 years ago, experimental manipulation of neural
activity began with electrical stimulation of nerves. The
first electrophysiological experiments were achieved in frog
neuromuscular preparations through electrical stimulation of
sciatic nerves by using electric machine or atmospheric electricity
during lightening (Galvani, 1791). Electrical stimulation provides
high temporal resolution and can be used in humans to modulate
neural activity, such as deep brain stimulation, introduced in
clinical practice in the 1950s to treat psychiatric disorders
such as schizophrenia (Delgado et al., 1952) and neurological
disorders such as Parkinson’s disease (Benabid et al., 1987).
Multi-electrode arrays were developed in the 1950s to record
and manipulate neural activity in living laboratory animals
(Strumwasser, 1958) and are evolving towards chronic, large-
scale recording and stimulation at the single-neuron level
in freely behaving animals (Fu et al., 2016). Optogenetics,
developed in the early 21st century, has been generalized
during the last decade to test and generate hypotheses on
brain function in non-human neuroscience, using genetically
encoded light-activated proteins to manipulate cell activity with
cell type-specific and high temporal resolution (Zemelman
et al., 2002; Boyden et al., 2005; Lima and Miesenböck, 2005).
Nevertheless, it is extremely challenging to control separately all
of the cells in the mammalian brain with high spatiotemporal
resolution during behavior, particularly due to light scattering
and power deposition requirements (Deisseroth, 2015).

Noninvasive approaches such as EEG and MEG are suitable
for human studies and long-term monitoring of brain activity,

but their low spatial resolution precludes studies at the
cellular level (Babiloni et al., 2009; Wendel et al., 2009).
Efforts are underway to measure at the cellular level brain
activity in persons carrying recording or stimulation electrodes
or neurotechnological devices for therapeutic applications or
experimental studies, such as deep brain stimulation and brain-
machine interface (Moran, 2010; Lozano and Lipsman, 2013).
However, these studies are not scalable to large-scale monitoring.
Noninvasive stimulation techniques for human studies usually
activate brain areas on a centimeter scale, such as transcranial
magnetic stimulation, introduced in 1985 to stimulate the human
motor cortex for neurological examination (Barker et al., 1985).
These techniques lack accuracy and specificity.

Over the past 200 years, experimental studies trying to
unravel the causal relationship between neural activity and
behavior have evolved from recording and stimulating nerves
in frog neuromuscular preparations to chronic monitoring
and manipulation of individual neurons in freely behaving
animals, from electrical stimulation and ablation techniques
to optogenetic manipulation with cell type-specific and high
temporal resolution, from univariate correlation between brain
regions and behavioral stereotypes to large-scale multivariate
monitoring and manipulation of neural circuits, with the
ultimate goal of producing a dense functional map of the
dynamic brain (Insel et al., 2013).

However, to demonstrate the causal relationship between
neural activity and brain function, dense functional mapping
requires in principle a comprehensive map of the connectome
and the parallel recording from the interacting molecules, cells,
circuits and areas throughout the brain. Even with technological
advances, dense functional mapping of the whole brain is
extremely challenging and thus considered by many researchers
to be science fiction (Shen, 2013). How can we overcome this
challenge to identify all the molecular and cellular mechanisms
underlying brain function and behavior?

Identifying the Molecular and Cellular
Mechanisms Underlying Brain Function
and Behavior
Quantifying behavior is a major challenge to studies that
aim to identify the neural correlates of pre-defined classes
of behavioral stereotypes, from the movement of a limb to
decision making and emotions (Blakemore and Robbins, 2012;
Koelsch, 2014; Uhlmann et al., 2017), based on psychological
taxonomy or descriptive representations of observable behavioral
outputs which are individual- and context-dependent. In these
kinds of studies, behaviors are classified into schemes that
are either coarse-grained or intuitively defined and biased by
human observers’ assumptions (Berman, 2018). Such behavior
classifications do not necessarily correspond to inherent behavior
structure constrained by biophysics and neural activity, and they
preclude the identification of intrinsic neural mechanisms that
give rise to behavior—the output of the functioning brain as an
integrated system.

Automated behavior quantification and classification using
techniques such as machine vision and learning to extract
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representations of stereotyped behaviors are the first steps
towards objectivity and consistency in behavior classification and
have the potential to reveal behavioral patterns overlooked by
human observers, although these approaches are still based on
assumptions and biased (Hong et al., 2015; Robie et al., 2017;
Todd et al., 2017; Berman, 2018).

Dense functional mapping is producing huge amounts
of data, ranging from molecular and cellular interactions
to the connectivity between brain regions and behavioral
outputs. Network-based approaches propose to analyze these
big, complex data and to model brain networks with theoretical
and computational methods such as graph theory and algebraic
topology, through statistical inference and dimensionality
reduction (Bassett and Sporns, 2017). Although these approaches
have the potential to uncover structural and functional
features of brain activity, they are subject to methodological
and interpretational limitations that result from uncertainties
in data acquisition and network definition, thus requiring
sophisticated, neurobiologically based brain models down to
the molecular scale to reveal the mechanisms underlying brain
function and behavior (Sporns, 2014; Medaglia et al., 2015;
Bassett and Sporns, 2017).

Organism-level behavior emerges from the interaction of
structural connectivity and signaling processes at the molecular,
cellular and circuit levels, involving the dynamic activity of huge
numbers of molecules and cells as well as multiple physiological
and biochemical systems. It is the output of the functioning
brain as an integrated system. How can we avoid assumptions
in behavior classification that bias our research on the causal
relationship between brain structure and function? How can we
overcome the barriers of scale and complexity to trace the causal
chains of events leading from molecular and cellular mechanisms
to brain function and behavior?

SIMULATION NEUROSCIENCE: FROM THE
SQUID GIANT AXON TO THE HUMAN
BRAIN

Over past millennia, brain research has evolved through
philosophical, experimental and theoretical phases, all of which
have contributed to the development of modern neuroscience.
Great achievements have been realized in neuronal mapping,
connectivity mapping and functional mapping, but these
endeavors are hindered by the barriers of scale and complexity.
How can we scale up cellular phenotyping and deal with the
dynamics of cellular properties to achieve a reliable neuronal
cell-type classification? How can we rise to the challenge of
volume, time and dynamics in full connectome mapping?
How can we identify the molecular and cellular mechanisms
that give rise to brain function and behavior? To overcome
these fundamental barriers, brain research has to shift to a
new phase.

Simulation neuroscience aims to fill the gaps in our
knowledge of brain structure and function through building
a digital copy of the brain with predictive methods, by
combining experimental and theoretical approaches (Markram,

2006; Markram et al., 2015; Figure 3). It has the potential to
overcome the challenge of scale and complexity. The following
pages are aimed at exploring the historical roots of this endeavor
by identifying the major milestones that are the most related to it
and that are capable of characterizing it in a concise way, instead
of conducting an exhaustive survey of all the investigators whose
important work has contributed to the evolution of modeling and
simulation in neuroscience.

All Began With an Axon
Neuroscience originated in a nerve, while detailed simulation in
neuroscience began with an axon.

Action potentials were already measured in frog nerve-
muscle preparations more than 170 years ago (du Bois-Reymond,
1843), but how is the action potential generated? Although a
mathematical model of nerve excitability, the ‘‘integrate and
fire’’ model, was built in the early 20th century, based on data
obtained from frog nerve stimulation, it was a simple capacitor
circuit model (Lapicque, 1907). Since the first measurement
of action potentials, the molecular mechanisms of action
potential generation had remained an open question over the
following 100 years.

More than 60 years ago, two neuroscientists managed to
insert voltage clamp electrodes into a squid giant axon and
measured the flow of electric current through its surface
membrane (Hodgkin and Huxley, 1952). On the basis of their
experimental data and inspired by cable theory rooted in the
19th-century model of signaling through submarine telegraph
cables (Thomson, 1857), they built a mathematical model of ionic
currents to quantitatively account for conduction and excitation
and simulated the action potential on the Cambridge University
computer. Simulations showed how potassium and sodium ion
channels could generate the action potential and predicted the
electrical behavior of the axon consistent with experimental data.
This was the first detailed digital simulation of a physiological
property of a neuron.

Cable theory was further developed to take account of
dendritic branching that largely affects neuronal processing. This
endeavor gave birth to the first multicompartment dendritic
neuron model, based on anatomical and electrophysiological
data and simulated on an IBM 650 computer (Rall, 1959,
1962; Segev and Rall, 1998), which was further developed
in the following years to unravel the role of dendrites in
information transmission (Segev and London, 2000). Single
neuron models then evolved into neurocircuit models to study
the activity of neuronal populations and synaptic connectivity.
The pioneering studies consisted in reconstructions of field
potentials and dendrodendritic synaptic circuits in the olfactory
bulb for interpreting their underlying mechanisms, based on
known anatomical organization and nerve membrane properties
and simulated on Honeywell 800 and IBM 370/168 computers
(Rall and Shepherd, 1968; Shepherd and Brayton, 1979).

The development of supercomputers in the 1980s drove
large-scale simulation of detailed neuron networks, which
made it possible to study collective neuronal activities and
the neural mechanisms underlying certain brain functions. In
1982, a network model of 100 multicompartment hippocampal
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FIGURE 3 | Simulation neuroscience workflow.

neurons, each capable of intrinsic bursting and interconnected
by excitatory chemical synapses, was simulated on an IBM
370/168 to reproduce field potentials and intracellular recordings
during interictal spikes in epilepsy and to identify the
mechanisms underlying this form of neuronal synchronization
(Traub and Wong, 1982; IBM Archives, 2003). Six years later, a
network of 990 multicompartment hippocampal neurons with
different types of cellular interactions was simulated on an
IBM 3090 to analyze in particular the mechanisms regulating
neuronal synchronization in epilepsy (Traub et al., 1988). At
the same time, began the early efforts to simulate neurocircuitry
underlying vertebrate behavior, in particular simulation of a
segmental network of inhibitory and excitatory interneurons
underlying locomotor behavior in lamprey, using Rall neuron
models with one soma and a three-compartment dendritic
tree, which unraveled the cellular bases of segmental pattern
generation, including central and sensory mechanisms and

the immediate supraspinal mechanisms initiating locomotion
(Grillner et al., 1988, 1991).

In the early 1990s, the simulator ‘‘NEURON’’ was developed
for empirically based simulations of single and networks of
neurons with complex anatomical and biophysical properties,
such as complex branching morphology, multiple channel types,
inhomogeneous channel distribution, ionic diffusion and the
effects of second messengers (Hines, 1989, 1993). During the
same period, was released the GEneral NEural SImulation System
(GENESIS), a simulation environment for constructing realistic
models of neurobiological systems from subcellular processes
and individual neurons to networks of neurons and neuronal
systems (Wilson et al., 1989; Bower et al., 2013). In the following
years, simulators such as MCell and STEPS were developed to
simulate biochemical signaling pathways at the molecular scale
(Stiles et al., 1996; Hepburn et al., 2012). As detailed models of
neural systems have become more and more sophisticated, efforts
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are underway to develop a language that provides a common data
format for defining and exchanging descriptions of these detailed
models, such as the NeuroML project which aims to develop an
eXtensible Markup Language (XML) based description language
(Goddard et al., 2001).

In parallel with the development of simulators, large-scale
simulations continued to grow. A single-column thalamocortical
network model with 3,560 multicompartment neurons,
including seven cell types characterized by different types of
morphology, connectivity and electrical behavior, was simulated
on a Linux cluster (IBM e1350) to particularly address the
physiology of network oscillations and epileptogenesis (Traub
et al., 2005). Although the model exhibited gamma oscillations,
sleep spindles and epileptogenic bursts, it was insufficient to
describe other neuronal network behaviors, particularly due
to the omission of many cell types, many unknown structural
details, the absence of synaptic plasticity and the restriction
of the model to a single column. In the modelers’ view, their
work represented an extremely preliminary step towards
understanding subtle aspects of brain function, such as learning
or information processing, and they hoped for more detailed
models to study a broader range of network phenomena. They
considered that detailed modeling of extensive brain circuits
was necessary for understanding brain function and for making
important experimental predictions that would not have been
made without the model.

These previous endeavors mainly aimed to build models to
reproduce certain brain functions or dysfunctions, such as action
potential generation or neuronal synchronization in epilepsy.
However, to trace the causal chains of events leading from
molecular and cellular mechanisms to diverse brain functions
and behaviors, biologically realistic dense reconstructions of
the brain realized without the goal of fitting the model to
any specific function (if reconstructions are correct, functions
should arise naturally) are demanded. This need led to the
birth of simulation neuroscience in the early 21st century
(Markram, 2006). Since then, digital reconstructions have
increased in size and biological accuracy to unravel deeper
mechanisms underlying brain function. To date, the most
detailed reconstruction concerns the microcircuitry of rat
somatosensory cortex, containing ∼31,000 multicompartmental
conductance-based neuron models, including 55 layer-
specific morphological and 207 morphoelectrical subtypes,
and simulated on supercomputers such as the Blue Brain
IV, ranked the 100th most powerful supercomputing system
(Top500, June 2015). This digital reconstruction is able to
generate emergent network activity and to reproduce an array of
in vitro and in vivo experiments without parameter tuning, and
it enables experiments so far impossible either in vitro or in vivo
(Markram et al., 2015).

Since its origin, detailed simulation in neuroscience has
evolved from a single cell type to more than 200 cell types
characterized by morphological and physiological features, from
one type of synaptic connectivity to the predicted anatomical
and physiological properties of all the intrinsic synapses
formed onto and by any neuron, from specific models aimed
at reproducing certain forms of neuronal activity to generic

dense reconstructions of brain regions with various neuronal
activity patterns and emergent network behaviors, from an
action potential generated through a squid giant axon to
diverse network behaviors of rat neocortical microcircuitry
with 31,000 neurons connected through 36 million synapses.
A large body of disconnected experimental datasets and
knowledge accumulated since the origin of neuroscience have
been integrated into a unified digital copy of neocortical
microcircuitry, allowing deeper insights into the neural
mechanisms underlying brain function. Efforts are underway
to reconstruct more electrophysiological and biochemical
mechanisms and to simulate the human brain.

Transcending Scale and Complexity
Simulation neuroscience identifies strategic data and formulates
principles of brain structure and function to accelerate our
understanding of the brain, instead of experimentally mapping
all the elements and activities in the brain, which is impossible
to achieve due to their scale and complexity (Markram, 2006;
Markram et al., 2015; Figure 4).

Neuronal Reconstruction and Simulation
Reconstructions of single neurons are the building blocks of the
digital brain. In the early years of simulation in neuroscience,
some researchers were aware of the importance of describing the
detailed structure of neurons to simulate the voltage response
to inputs impinging on the cell in different locations and
interactions between cells generated by extracellular current
flows. They were also aware of the importance of reconstructing
the diverse types of electrical behavior of neurons. Therefore,
they argued against using point neuron models (Traub et al.,
1988). Nevertheless, at this stage, the endeavor to digitally
reconstruct the morphological and physiological types of
neurons was limited in scale and accuracy, so new approaches
were to be developed.

Historically, neuronal morphologies were first qualitatively
described through visual inspection, then quantitatively
described based on morphometric parameters. Since these
methods are not standardized to objectively describe complex
branching patterns of neuronal trees, topological methods
have been developed in simulation neuroscience to rigorously
quantify the structural differences of neuronal trees and to
classify neurons into distinct morphological types by encoding
the spatial structure of each neuronal tree with a unique
topological signature (Kanari et al., 2018). Then cloning each
morphological type with statistical variations allows scaling up
the reconstruction of neurons belonging to each morphological
type while respecting biological variability.

Automated statistical analysis can reveal distinctive electrical
types; computational multi-parametric approach can extract
combinatorial expression rules of ion channel genes underlying
electrical phenotypes; ion channels can be automatically
inserted by simulators combined with an automated fitting
algorithm. These methods developed in simulation neuroscience
allow objective and high-throughput reconstruction of
electrical types (Khazen et al., 2012; Druckmann et al., 2013;
Markram et al., 2015).
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FIGURE 4 | Transcending scale and complexity.

The high-throughput digital reconstruction of different
types of neurons can be extended from morphological and
electrophysiological features to other dimensions such as
projection and molecular features when sufficient data that
allow quantifying these features become available. Furthermore,
the structure and function of brain cells vary according to
their position in the brain; this should be considered while
reconstructing different classes of brain cells. To support this
endeavor, whole-brain cell atlases are being built, providing
insights into cellular organization only possible at the whole-
brain scale. The first dynamic 3D cell atlas for the whole
mouse brain has recently been achieved, showing cell positions
constructed algorithmically from whole brain Nissl and gene
expression stains, and providing the densities and positions of all
excitatory and inhibitory neurons, astrocytes, oligodendrocytes
and microglia in each of the 737 brain regions defined in the
Allen Mouse Brain Atlas (Erö et al., 2018).

During the evolution of simulation neuroscience, the digital
reconstruction of different types of neurons has become more
and more multi-constrained, realistic and high-throughput, and
it allows evolving current neuronal classifications (Deitcher et al.,
2017). Today, we have objective classification of morphologies
which is helping define morphological types; we have more
or less agreed electrical protocols that can be used to describe
electrical types; we have tracing studies that are helping define
the projection types, and we have single cell transcriptome
data that are beginning to describe the genetically different

types of cells. Efforts are underway to define a minimum
sample size capable of reliably revealing distinct types of brain
cells, to reduce dimensionality by defining a relevant level of
granularity and to identify permanent molecular features that
maintain cell identity—a step forward towards an objective and
comprehensive classification of neuronal types.

Connectivity Reconstruction and Simulation
More than 100 years ago, Santiago Ramón y Cajal initiated
predictive reconstruction by inferring neuronal connectivity
from morphological features of neuronal arbors (Ramón y
Cajal, 1894). About 80 years later, trying to digitally reconstruct
neuronal circuits, some researchers considered pointless to
explicitly specify all the neuronal connections, which is
unattainable experimentally (Traub et al., 1988). They chose to
reconstruct neuronal connections by a series of random choices,
based on the statistical properties of the network topology, such
as the average number of inputs or outputs per cell and the
probability of connection between pairs of cells.

New approaches based on statistical modeling and synaptic
rules have been developed in simulation neuroscience to
accurately predict synaptic connectivity (Perin et al., 2011; Hill
et al., 2012; Ramaswamy et al., 2012), in particular data-driven
algorithmic approaches based on established principles of
synaptic connectivity and constrained by interdependencies
between microcircuit properties such as the number of synapses
and bouton densities. With these approaches, it is possible to
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predict the number and location of all synaptic connection types
shown experimentally and connection properties impossible to
measure experimentally such as the number of source and target
cells and synapses (Markram et al., 2015; Reimann et al., 2015).
The physiology of synapses can be predicted by formulating
rules of synaptic types based on experimental data to generate
a relatively complete map of synaptic dynamics (Markram et al.,
2015). Synaptic plasticity rules can also be formulated (Kalisman
et al., 2005; Loebel et al., 2013). In this way, it is possible to predict
the anatomical and physiological properties of all the intrinsic
synapses formed onto and by any neuron. These predictions
combined with future experiments could be used to further refine
connectivity reconstruction and simulation.

Functional Reconstruction and Simulation
More than 60 years ago, Hodgkin and Huxley’s reconstruction
and simulation of the action potential predicted the properties
of the gating structures of ion channels (Hodgkin and Huxley,
1952), showing the power of simulation in neuroscience to
unravel biological mechanisms long before their experimental
observations. Since the birth of simulation neuroscience, digital
reconstructions and simulations have been used to fill the vast
gaps in our data, to interpret experimental observations and
identify the underlying mechanisms, and to test and generate
theories about brain function and dysfunction (Markram, 2006;
D’Angelo, 2014; Frackowiak and Markram, 2015).

To identify neural mechanisms that give rise to emergent
complex behavior, reconstructing and simulating neurons
embedded in microcircuits, microcircuits embedded in brain
regions and brain regions embedded in the whole brain is an
approach consistent with the biological reality that organism-
level behavior is the output of the functioning brain as an
integrated system, from molecular and cellular interactions to
connections between neurocircuits and between brain regions.
Neurorobotics, combined with digital reconstructions, creates
new possibilities for studying neural mechanisms leading
to emergent behavior across different spatiotemporal scales
(Falotico et al., 2017).

The deep relationship between structure and function that
guided the first investigators at the origin of neuroscience
is the foundation of simulation neuroscience. Recent digital
reconstructions and simulations of rat neocortical microcircuitry
could reproduce the spatial mode and the temporal dynamics
of empirically observed functional networks without parameter
tuning and showed emergent network states modulated by
physiological mechanisms (Markram et al., 2015). In the same
reconstructions, a new algebraic topology approach revealed that
synaptic networks contain an abundance of cliques of neurons
bound into cavities that guide the emergence of correlated
activity, showing a formal link between neural network structure
and function (Reimann et al., 2017b). Our understanding of brain
structure and function is being deepened through building a
digital copy of the brain.

Perspectives and Challenges
The dense digital reconstruction of the brain from sparse,
complementary datasets by predicting biological parameters
that are not available experimentally involves dealing with the

relationships between known and unknown parameters, deriving
principles from experimental data, and reducing biological
complexity while preserving the principles of brain structure
and function.

Initial digital reconstructions need to integrate more types
of neural mechanisms and signaling systems, such as neuro-
glio-vascular unit and neuromodulation (Jolivet et al., 2015;
Ramaswamy and Markram, 2018). They will be challenged and
refined by new experimental observations. As more types of
datasets and parameters are to be integrated, more relevant
biological principles have to be derived, and programming
complexity will largely increase. Efficient computational
methods have to be developed to satisfy the requirements of
this nascent science in rapid evolution. Simulation neuroscience
is rising to these challenges and constitutes an essential phase
of brain research towards transcending scale and complexity
to causally link molecules, genes and cells to brain function
and behavior.

The Next Phase of Brain Research
Simulation neuroscience is an efficient approach to integrating
disconnected datasets and knowledge in neuroscience that have
been accumulated over hundreds of years. The extraction of the
rules of the relationships between datasets that concern different
levels of brain organization helps to build an integrated view
of brain structure and function (Tiesinga et al., 2015). Through
digital reconstructions and simulations, researchers can conduct
in silico experiments, improve experimental methods, test and
generate hypotheses and theories, make predictions and suggest
new experiments (Druckmann et al., 2011; Reimann et al., 2013;
Abdellah et al., 2015; Hay and Segev, 2015).

Neuromorphic computing uses very-large-scale integration
(VLSI) systems containing electronic analog circuits to mimic
neuroarchitectures of the nervous system (Mead, 1990). This
approach has the potential to overcome the major limitations
of traditional computing, such as energy consumption, software
complexity and component reliability. Current neuromorphic
computing consists in large-scale simulations of neuronal
connectivity with few biological details (Furber et al., 2014; The
FACETS Project, 2018). This research field would benefit from
simulation neuroscience, which has the potential to provide the
blueprints of neurocircuits.

Without deeper insights into the fundamental mechanisms
underlying brain function, we cannot effectively treat
neurological disorders, which result from dysfunctions of
neural systems down to the molecular scale. The widely known
neurodegenerative disease, Alzheimer’s disease, was described
more than 110 years ago (Alzheimer, 1906). Today, there is
still no effective treatment (The Lancet, 2016). In fact, this
‘‘disease’’ is poorly defined, referring to an array of various
symptoms ranging from memory loss to diverse cognitive
impairments, caused by multiple distinct brain dysfunctions
(Scheltens et al., 2016; Frisoni et al., 2017). How can we treat a
brain disease if we cannot identify its underlying mechanisms
and clearly define it? How can we restore brain dysfunctions if
we do not even understand the neural mechanisms underlying
normal brain function? Deep understanding of brain structure
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and function is fundamental to clinical research, which will
make it possible to identify the ‘‘biological signature’’ of each
brain dysfunction instead of simple syndromic descriptions
(Frackowiak and Markram, 2015). This is why biologically
realistic digital reconstructions of the brain can be a valuable
tool for modeling and simulating brain dysfunctions and
for developing and validating treatments (D’Angelo, 2014;
Frackowiak and Markram, 2015).

Our understanding of brain structure and function is being
deepened as we build and refine a digital copy of the brain.
Each step unravels new aspects of brain structure and function
in a systematic manner. Even though an accurate and complete
reconstruction and simulation of the human brain will require
at least yottaflop (1024 flops) computing or even more1, we are
getting closer to a comprehensive understanding of the brain by
developing multiscale simulations. According to the nature of
the studied question, some parts of the brain can be simulated
at low resolution, and others at high resolution. This allows
accelerating our understanding of the brain even before enough
computing power becomes available. Finally, it would be possible
to trace the neural mechanisms leading to the emergence of
biological intelligence and to challenge the foundations of our
understanding of consciousness through building a digital copy
of the brain.

UNDERSTANDING THE MULTISCALE
BRAIN

Since the dawn of neuroscience, hundreds of years ago,
this human endeavor has fundamentally been a series of
reconstructions: reconstruction of the neuron as a single cellular
unit; reconstruction of neurons into distinct types according
to their morphological, electrophysiological, biochemical and
molecular properties; reconstruction of neural connectivity
between brain regions, neuronal groups, individual neurons;
reconstruction of the neural mechanisms underlying brain
function and behavior. In attempting to complete the
reconstruction of brain structure and function, experimental and
theoretical approaches are hindered by the fundamental barriers
of scale and complexity.

To overcome these barriers, the tools for reconstructing
neurons and the brain have dramatically evolved, from
Leeuwenhoek’s self-made one-lens microscope to compound
achromatic microscope and Ramón y Cajal’s pencil until today’s
supercomputers. Leveraging high performance computing, data
analysis and statistical inference methods as well as algorithmic
approaches, simulation neuroscience quantifies, integrates, scales

1High-resolution real-time molecular simulation of the human brain would need
∼4 × 1029 flops∗:

• ∼90 billion neurons, ∼1,000 trillion synapses
• ∼90 billion glial cells, ∼450 billion vascular end feet, supporting ∼450 trillion

synapses
• ∼1 trillion molecules/cell, ∼1,000 reactions/molecule/s, ∼20 diffusion jumps/s
• ∼10,000 time steps/s
∗Henry Markram. ‘‘Will Computers Become as Capable as the Brain?’’ presented at
the conference ‘‘What Makes Us Human: From Genes to Machines,’’ The Hebrew
University, Jerusalem, June 4–6, 2018.

up and accelerates all the previous reconstruction processes
and evolves them into a unified digital copy of the brain—a
quantitative and qualitative shift through the dense digital
reconstruction and simulation of the brain from sparse
experimental data, with the aim of causally linking molecular,
cellular and synaptic interactions to brain function and
behavior (Figure 5).

Since the introduction of the first supercomputers in the
mid-20th century, in 70 years, processing power has increased
from ∼103 to ∼143.5 × 1015 flops (Dongarra, 2006; November,
2018 | TOP500 Supercomputer Sites). Since the first observation
of nerve fibers, the microscopic and physiological reconstruction
of the neuron as an independent cellular unit had taken almost
240 years, while the evolution from the first digital reconstruction
of the action potential to the dense digital reconstruction
of neocortical microcircuitry took about 60 years. What will
the future hold for the reconstruction and simulation of the
entire brain?

From the dawn of human civilization, the advances in brain
research have been generated through a series of fundamental
shifts in the types of human thinking to understand the mind
and the brain. Relying on intuitive and analogical thinking,
ancient philosophers tried to address fundamental questions but
were unable to provide empirical evidence. Seeking evidence,
reductionist thinkers in experimental neuroscience have gained
a deep understanding of many components of the brain but
have also produced a huge number of disconnected datasets and
knowledge. Theoretical neuroscience applies abstractive thinking
to be free from the details in the brain, which may advance
artificial intelligence but leaves open the question whether it
will advance our understanding of the causal links between
brain structure and function. To transcend these barriers, brain
research needs a new way of thinking and a new approach. This
new phase is proposed to be simulation neuroscience, which is
based on integrative and predictive thinking.

Will simulation neuroscience be able to go deep enough
through multiple different layers to finally understand the
multiscale brain, to answer the probably ultimate question for us,
humans, of understanding ourselves, which has haunted us since
the dawn of time?

Atoms are combined into molecules; DNA molecules are
bound into sequences to produce genes; genes produce proteins;
different combinations of proteins produce various types of
cells, which are combined into different brain regions to
finally form the unique human brain. How do these complex
mechanisms interact, leading from single atoms and molecules
to brain function and behavior? How does the brain create our
small world immersed in the universe? How does the brain
incorporate our experiences that define our existence? Still so
many unsolved questions.

After thousands of years of brain research, hundreds of
years of neuroscience, we remain strangers to ourselves. From
the Temple of Apollo, traveling through millennia, the Delphic
maxim is still resonating: ‘‘Know thyself (Pausanias, 1918).’’
What will the future hold for us, in 10 years, 100 years, 1,000
years? To understand the multiscale brain, neuroscience now has
to shift to a new phase.

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2019 | Volume 13 | Article 32100101

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Fan and Markram A Brief History of Simulation Neuroscience

AUTHOR CONTRIBUTIONS

XF and HM conceived the research and wrote the text. XF wrote
most of the text and made all the figures.

FUNDING

This work was supported by the EPFL Blue Brain Project Fund
and the ETH Board Funding to the Blue Brain Project.

REFERENCES

Abbe, E. (1873). Beiträge zur theorie des mikroskops und der mikroskopischen
wahrnehmung. Arch. Mikrosk. Anatomie 9, 413–418. doi: 10.1007/BF02956173

Abbott, L. F., and Blum, K. I. (1996). Functional significance of long-term
potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416.
doi: 10.1093/cercor/6.3.406

Abdellah, M., Bilgili, A., Eilemann, S., Markram, H., and Schürmann, F. (2015).
Physically-based in silico light sheet microscopy for visualizing fluorescent
brain models. BMC Bioinformatics 16:S8. doi: 10.1186/1471-2105-16
-s11-s8

Alzheimer, A. (1906). Über einen eigenartigen schweren erkrankungsprozeβ der
hirnrinde. Neurol. Central. 23, 1129–1136.

Amunts, K., and Zilles, K. (2015). Architectonic mapping of the human brain
beyond brodmann. Neuron 88, 1086–1107. doi: 10.1016/j.neuron.2015.12.001

Armañanzas, R., and Ascoli, G. A. (2015). Towards the automatic classification
of neurons. Trends Neurosci. 38, 307–318. doi: 10.1016/j.tins.2015.
02.004

Babiloni, C., Pizzella, V., Gratta, C. D., Ferretti, A., and Romani, G. L.
(2009). Fundamentals of electroencefalography, magnetoencefalography, and
functional magnetic resonance imaging. Int. Rev. Neurobiol. 86, 67–80.
doi: 10.1016/s0074-7742(09)86005-4

Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., and Hyde, J. S. (1992).
Time course EPI of human brain function during task activation. Magn. Reson.
Med. 25, 390–397. doi: 10.1002/mrm.1910250220

Bargmann, C. I., and Marder, E. (2013). From the connectome to brain function.
Nat. Methods 10, 483–490. doi: 10.1038/nmeth.2451

Barker, A. T., Jalinous, R., and Freeston, I. L. (1985). Non-invasive magnetic
stimulation of human motor cortex. Lancet 1, 1106–1107. doi: 10.1016/s0140-
6736(85)92413-4

Bartholow, R. (1874). Experimental investigations into the functions of the human
brain. Am. J. Med. Sci. 66, 305–313. doi: 10.1097/00000441-187404000-00001

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,
353–364. doi: 10.1038/nn.4502

Belliveau, J. W., Kennedy, D. N. Jr., McKinstry, R. C., Buchbinder, B. R.,
Weisskoff, R. M., Cohen, M. S., et al. (1991). Functional mapping of the
human visual cortex by magnetic resonance imaging. Science 254, 716–719.
doi: 10.1126/science.1948051

Benabid, A. L., Pollak, P., Louveau, A., Henry, S., and de Rougemont, J. (1987).
Combined (thalamotomy and stimulation) stereotactic surgery of the VIM
thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol. 50,
344–346. doi: 10.1159/000100803

Bennett, S. H., Kirby, A. J., and Finnerty, G. T. (2018). Rewiring the connectome:
evidence and effects. Neurosci. Biobehav. Rev. 88, 51–62. doi: 10.1016/j.
neubiorev.2018.03.001

Berlin, R. (1858). Beiträge zur Strukturlehre der Grosshirnwindungen. Erlangen:
Junge.

Berman, G. J. (2018). Measuring behavior across scales. BMC Biol. 16:23.
doi: 10.1186/s12915-018-0494-7

Bernard, C. (1858). Leçons sur la Physiologie et la Pathologie du Système Nerveux.
Paris: J.-B. Baillière et fils.

Bernstein, J. (1868). Uber den zeitlichen verlauf der negativen schwankung
des nervenströms. Pflügers Arch. 1, 173–207. doi: 10.1007/bf01
640316

Betz, V. (1874). Anatomischer nachweis zweier gehirncentra. Zbl. Med. Wiss. 12,
578–599.

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S.,
Bonifacino, J. S., et al. (2006). Imaging intracellular fluorescent proteins at
nanometer resolution. Science 313, 1642–1645. doi: 10.1126/science.1127344

Bianchi, L. (1920). La Meccanica del Cervello e la Funzione dei Lobi Frontali.
Melano: Bocca.

Bickle, J. (2003). Philosophy and Neuroscience: A Ruthlessly Reductive Account.
Netherlands: Springer.

Blakemore, S.-J., and Robbins, T. W. (2012). Decision-making in the adolescent
brain. Nat. Neurosci. 15, 1184–1191. doi: 10.1038/nn.3177

Bota, M., Dong, H.-W., and Swanson, L. W. (2003). From gene networks to brain
networks. Nat. Neurosci. 6, 795–799. doi: 10.1038/nn1096

Bouillaud, J. B. (1825). Recherches cliniques propres à démontrer que la perte de la
parole correspond à la lésion des lobules antérieurs du cerveau, et à confirmer
l’opinion de M. Gall, sur le siège de l’organe du langage articulé. Archs. gén.
Méd. 8, 25–45.

Boulina, M., Samarajeewa, H., Baker, J. D., Kim, M. D., and Chiba, A. (2013).
Live imaging of multicolor-labeled cells in Drosophila. Development 140,
1605–1613. doi: 10.1242/dev.088930

Bower, J. M., Cornelis, H., and Beeman, D. (2013). ‘‘GENESIS, the general
neural simulation system,’’ in Encyclopedia of Computational Neuroscience, eds
D. Jaeger and R. Jung (New York, NY: Springer New York), 1–8.

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005).
Millisecond-timescale, genetically targeted optical control of neural activity.
Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

Broca, P. (1861). Nouvelle observation d’aphémie produite par une lésion de la
moitié postérieure des deuxième et troisième circonvolutions frontales gauches.
Bull. Soc. Anat. 36, 398–407.

Brodmann, K. (1908). Beiträge zur histologischen lokalisation der grosshirnrinde.
VI. Mitteilung: die cortexgliederung des menschen. J. Psychol. Neurol. 10,
231–246.

Brown, T. G., Sherrington, C. S., and S, F. R. (1912). On the instability of
a cortical point. Proc. R. Soc. Biol. Sci. 85, 250–277. doi: 10.1098/rspb.
1912.0050

Burtt, E. A., and Edwin, A. (1923). The Metaphysical Foundations of Modern
Physical Science; A Historical and Critical Essay. London: K. Paul, Trench,
Trübner.

Butterfield, H. (1959). The Origins of Modern Science 1300–1800. New York, NY:
The Macmillan Company.

Campbell, A. W. (1903). Histological studies on cerebral localisation. Proc. R. Soc.
72, 488–492. doi: 10.1098/rspl.1903.0077

Carnap, R. (1928). Der logische Aufbau der Welt. Berlin, Allemagne: Weltkreis.
Catani, M., Thiebaut de Schotten, M., Slater, D., and Dell’Acqua, F. (2013).

Connectomic approaches before the connectome. Neuroimage 80, 2–13.
doi: 10.1016/j.neuroimage.2013.05.109

Cauda, F., Costa, T., and Tamietto, M. (2014). Beyond localized and distributed
accounts of brain functions. Comment on ‘‘Understanding brain networks and
brain organization’’ by Pessoa. Phys. Life Rev. 11, 442–443. doi: 10.1016/j.plrev.
2014.06.018

Cauli, B., Tong, X.-K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J.,
et al. (2004). Cortical GABA interneurons in neurovascular coupling:
relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949.
doi: 10.1523/JNEUROSCI.3065-04.2004

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994). Green
fluorescent protein as a marker for gene expression. Science 263, 802–805.
doi: 10.1126/science.8303295

Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory.
New York, NY: Oxford University Press.

Chambers, B., and MacLean, J. N. (2016). Higher-order synaptic interactions
coordinate dynamics in recurrent networks. PLoS Comput. Biol. 12:e1005078.
doi: 10.1371/journal.pcbi.1005078

Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S., and Zhuang, X. (2015). RNA
imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.
Science 348:aaa6090. doi: 10.1126/science.aaa6090

Chen, F., Wassie, A. T., Cote, A. J., Sinha, A., Alon, S., Asano, S., et al. (2016).
Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13,
679–684. doi: 10.1038/nmeth.3899

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2019 | Volume 13 | Article 32101102

https://doi.org/10.1007/BF02956173
https://doi.org/10.1093/cercor/6.3.406
https://doi.org/10.1186/1471-2105-16-s11-s8
https://doi.org/10.1186/1471-2105-16-s11-s8
https://doi.org/10.1016/j.neuron.2015.12.001
https://doi.org/10.1016/j.tins.2015.02.004
https://doi.org/10.1016/j.tins.2015.02.004
https://doi.org/10.1016/s0074-7742(09)86005-4
https://doi.org/10.1002/mrm.1910250220
https://doi.org/10.1038/nmeth.2451
https://doi.org/10.1016/s0140-6736(85)92413-4
https://doi.org/10.1016/s0140-6736(85)92413-4
https://doi.org/10.1097/00000441-187404000-00001
https://doi.org/10.1038/nn.4502
https://doi.org/10.1126/science.1948051
https://doi.org/10.1159/000100803
https://doi.org/10.1016/j.neubiorev.2018.03.001
https://doi.org/10.1016/j.neubiorev.2018.03.001
https://doi.org/10.1186/s12915-018-0494-7
https://doi.org/10.1007/bf01640316
https://doi.org/10.1007/bf01640316
https://doi.org/10.1126/science.1127344
https://doi.org/10.1038/nn.3177
https://doi.org/10.1038/nn1096
https://doi.org/10.1242/dev.088930
https://doi.org/10.1038/nn1525
https://doi.org/10.1098/rspb.1912.0050
https://doi.org/10.1098/rspb.1912.0050
https://doi.org/10.1098/rspl.1903.0077
https://doi.org/10.1016/j.neuroimage.2013.05.109
https://doi.org/10.1016/j.plrev.2014.06.018
https://doi.org/10.1016/j.plrev.2014.06.018
https://doi.org/10.1523/JNEUROSCI.3065-04.2004
https://doi.org/10.1126/science.8303295
https://doi.org/10.1371/journal.pcbi.1005078
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1038/nmeth.3899
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Fan and Markram A Brief History of Simulation Neuroscience

Churchland, P. S. (1986). Neurophilosophy: Toward a Unified Science of the Mind-
Brain. Cambridge, MA: MIT Press.

Churchland, P. S. (2011). Braintrust: What Neuroscience Tells us about Morality.
Princeton, NJ: Princeton University Press.

Churchland, P. M., and Churchland, P. S. (1997). Recent work on consciousness:
philosophical, theoretical, and empirical. Semin. Neurol. 17, 179–186.
doi: 10.1055/s-2008-1040928

Cipolla, M. J. (2009). The Cerebral Circulation. San Rafael, CA: Morgan and
Claypool Life Sciences.
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Reconstructing neuronal microcircuits through computational models is fundamental to

simulate local neuronal dynamics. Here a scaffold model of the cerebellum has been

developed in order to flexibly place neurons in space, connect them synaptically, and

endow neurons and synapses with biologically-grounded mechanisms. The scaffold

model can keep neuronal morphology separated from network connectivity, which can

in turn be obtained from convergence/divergence ratios and axonal/dendritic field 3D

geometries. We first tested the scaffold on the cerebellar microcircuit, which presents

a challenging 3D organization, at the same time providing appropriate datasets to

validate emerging network behaviors. The scaffold was designed to integrate the

cerebellar cortex with deep cerebellar nuclei (DCN), including different neuronal types:

Golgi cells, granule cells, Purkinje cells, stellate cells, basket cells, and DCN principal

cells. Mossy fiber inputs were conveyed through the glomeruli. An anisotropic volume

(0.077 mm3) of mouse cerebellum was reconstructed, in which point-neuron models

were tuned toward the specific discharge properties of neurons and were connected

by exponentially decaying excitatory and inhibitory synapses. Simulations using both

pyNEST and pyNEURON showed the emergence of organized spatio-temporal patterns

of neuronal activity similar to those revealed experimentally in response to background

noise and burst stimulation of mossy fiber bundles. Different configurations of granular

and molecular layer connectivity consistently modified neuronal activation patterns,

revealing the importance of structural constraints for cerebellar network functioning. The

scaffold provided thus an effective workflow accounting for the complex architecture of

the cerebellar network. In principle, the scaffold can incorporate cellular mechanisms at

multiple levels of detail and be tuned to test different structural and functional hypotheses.

A future implementation using detailed 3D multi-compartment neuron models and

dynamic synapses will be needed to investigate the impact of single neuron properties

on network computation.

Keywords: cerebellum, computational spiking models, Python, pyNEST, pyNEURON, connectome
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INTRODUCTION

The causal relationship between components of the nervous
system at different spatio-temporal scales, from subcellular
mechanisms to behavior, still needs to be disclosed, and this
represents one of the main challenges of modern neuroscience.
The issue can be faced using bottom-up modeling, which allows

propagating microscopic phenomena into large-scale networks
(Markram, 2012; Markram et al., 2015; D’Angelo and Wheeler-
Kingshott, 2017).This reverse engineering approach integrates
available details about neuronal properties and synaptic
connectivity into realistic computational models and allows to

monitor the impact of microscopic variables on the integrated

system. Realistic modeling can predict emerging collective
behaviors producing testable hypotheses for experimental
and theoretical investigations (Llinas, 2014) and might also
play a critical role in understanding neurological disorders
(Soltesz and Staley, 2018). In practice, realistic modeling of
microcircuit dynamics and causal relationships among multi-
scale mechanisms poses complex computational problems. First,
the modeling strategy needs to be flexible accounting for a variety
of neuronal features and network architectures, to be easy to
update as new anatomical, or neurophysiological data become
available, and to be easy to modify in order to test different
structural and functional hypotheses. Secondly, the modeling
tools need to be scalable to the dimension of the network and to
the nature of the scientific question (Destexhe et al., 1996), to
be suitable for available simulation platforms, e.g., pyNEST and
pyNEURON (Brette et al., 2007; Eppler et al., 2008; Hines et al.,
2009), and to efficiently exploit High-Performance Computing
(HPC) resources.

Markram et al. recently carried out a digital reconstruction
of the neocortical microcolumn by integrating experimental
measurements of neuronal morphologies, layer heights,
neuronal densities, ratios of excitatory to inhibitory neurons,
morphological and electro-morphological composition,
electrophysiological properties of neurons, and synapses
(Markram et al., 2015). Neuron parameters were derived
from databases specifically addressing cerebro-cortical neuron
properties (e.g., Blue Brain Project and Allen Brain Atlas;
Markram, 2006; Sunkin et al., 2013). Microscopic network
wiring was then estimated computationally through a touch
detection algorithm, that is based on a probability/proximity
rule (i.e., the probability that morphologically defined dendrites
and axons make a synaptic connection depends on their spatial
proximity). This approach, in which the reconstruction of
microcircuit connectivity depends on the 3D morphology of the
axonal and dendritic processes of individual cells, may apply
to brain structures for which datasets comparable to neocortex
are available. However, such specific datasets are not available
in general for all brain regions and it seems convenient in
principle to keep separated neuronal morphology from network
connectivity, which is reported as convergence/divergence
ratios and axonal/dendritic field geometries in the literature in
many cases.

The cerebellum hosts the second largest cortical structure
of the brain and contains about half of all brain neurons.

Modeling the cerebellum brings about specific issues reflecting
the peculiar properties of this circuit, which shows a
quasi-crystalline geometrical organization well-defined by
convergence/divergence ratios of neuronal connections and
by the anisotropic 3D orientation of dendritic and axonal
processes (Figure 1) (D’Angelo et al., 2016). Moreover, the
morphological reconstruction of axonal and dendritic processes
of cerebellar neurons is not as developed as for other brain
microcircuits, like cerebral cortex, and hippocampus (e.g.,
see the NeuroMorpho.org repository —https://www.re3data.
org/repository/r3d100010107; Akram et al., 2018). Therefore
modeling the cerebellum relies on a knowledge base that differs
from that available for the cerebral cortex and thus requires
a more general approach than in the Markram’s modeling
workflow (Markram et al., 2015).

Some recent models were purposefully designed to reproduce
a limited section of the cerebellar cortex, the granular layer
(Maex and De Schutter, 1998; Solinas et al., 2010; Sudhakar
et al., 2017), in great detail and incorporated Hodgkin-Huxley-
style mechanisms and neurotransmission dynamics (D’Angelo
et al., 2001; Solinas et al., 2007a,b; Nieus et al., 2014; Masoli
et al., 2015, 2017; Masoli and D’Angelo, 2017). Other models
were designed to simulate, in a simplified form, large-scale
computationally efficient networks of the olivo-cerebellar system

FIGURE 1 | Reconstruction of a scaffold model of the cerebellar network.

Schematic representation of the cerebellar network (from D’Angelo et al.,

2016). Glomeruli (Glom); mossy fiber (mf); Granule cells (GrC); ascending axon

(aa); parallel fiber (pf); Golgi cells (GoC); stellate cell (SC); basket cell (BC);

Purkinje cell (PC); Deep Cerebellar Nuclei cell (DCNC). Gloms transmit mf

inputs to GrCs, which emit aa and pf, which in turn activate GoCs, PCs, SCs,

and BCs. GoCs inhibit GrCs, SCs and BCs inhibit PCs. DCN cells are inhibited

by PCs and activated by mf. Note the precise organization of PC dendrites,

SC/BC dendrites and GoC dendritic arborization mainly on the parasagittal

plane. The same abbreviations are used also in the following figures.
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(Medina and Mauk, 2000; Yamazaki and Nagao, 2012). In this
work, a new cerebellum scaffold model has been developed
and tested, allowing to incorporate axonal/dendritic field
geometries specifically oriented in a 3D space and to reconnect
neurons according to convergence/divergence ratios typically
well-defined for the cerebellum (D’Angelo et al., 2016). The
cerebellum scaffold model maintains scalability and can be
flexibly handled to incorporate neuronal properties on multiple
scales of complexity and to change its connectivity rules. For
the sake of simplicity, here we used first simplified neuron
and synaptic models to evaluate the impact of construction
rules. The cerebellum scaffold model was validated by testing
its ability to reproduce the structural properties anticipated
experimentally and the emergence of complex spatiotemporal
patterns in network activity. The model was run on the pyNEST
and pyNEURON simulators (Brette et al., 2007; Eppler et al.,
2008; Hines et al., 2009) and a test workflow was integrated into a
large-scale neuroinformatics infrastructure, the Brain Simulation
Platform (https://collab.humanbrainproject.eu/).

MATERIALS AND METHODS

This paper reports the design and implementation of a
scaffold model of the cerebellum microcircuit. The model
architecture is scalable and is designed to host different types of
neuronal models and to determine their synaptic connectivity
from convergence/divergence ratios and axonal/dendritic field
geometries reported in literature. The workflow encompasses
two main modules in cascade: cell placement into a user-
defined volume; connectivity among neurons. The scaffold can
then be used for functional simulations of network dynamics
(Figure 1).The scaffold is designed to be embedded into different
simulators, e.g., pyNEST and pyNEURON. This workflow, by
allowing a flexible reconstruction of the cerebellar network,
will eventually allow to evaluate physiological, and pathological
hypotheses about circuit functioning.

Cell Placement Module
The Cell Placement Module placed the cells in a virtual network
volume divided in layers based on morphological definitions.
The process took into consideration the different cerebellar
neuron types: the Golgi Cell (GoC), Granule Cell (GrC),
Purkinje Cell (PC), Stellate Cell (SC), Basket Cell (BC), Deep
Cerebellar Nuclei glutamatergic GAD-positive Cell (DCNC), and
glomerulus (Glom). Glom is actually a mossy fiber terminal and
is represented as a neuronal element at the input stage, while
DCNCs are placed at the output stage of the circuit. For each
neuron type, the density value in a specific layer was derived from
literature, and geometric features (including soma radius and 3D-
oriented dendritic and axonal fields) were defined according to
experimental data. Through ad hoc algorithms (Bounded Self-
Avoiding Random Walk Algorithm and Purkinje Cells placement
algorithm, see below; and details in Supplementary Material

Placement workflow), the cells were positioned in the 3D volume
of each layer, according to their density, soma radius, and
anisotropic extension, ensuring that their somata did not overlap.
The module was implemented in Python, and its output was

saved in an .hdf5 file containing the unique identification number
(ID) of each cell, its corresponding type (an integer value between
1 and 7, as in Table 1), and the three spatial coordinates of
the soma center (x, y, z). To evaluate the effectiveness of the
cell positioning algorithms, we derived a continuous distribution
of pair-wise distances using kernel density estimation (KDE),
in which the Gaussian kernel had fixed bandwidth for each
cell population. KDE yielded a single maximum when pair-wise
distances were distributed homogeneously (GrC, GoC, SC, BC,
DCNC) and multiple local maxima when distances were placed
according to different geometric rules (PC). A reconstructed
network volume and pair-wise soma distances yielded by this
module are illustrated in Figure 2.

GrCs, GoCs, SCs, BCs, and DCNCs were placed in thin
sublayers (with height = 1.5x soma diameter) using a bounded
self-avoiding random walk algorithm. In each sublayer, the cells
were initially distributed in 2D and then sublayers were piled one
on top of the others. The first cell was placed randomly and each
subsequent one was positioned nearby along a random angular
direction. The overlap among somata was avoided since, along
the selected direction, the minimum distance to place the next
cell was equal to the soma diameter. A term was added to the
minimum distance to scatter the somata. In details, a potential
volume for each cell was computed from density values, then
deriving the difference between this compound sphere radius
and the soma radius (ε); a value was randomly sampled from
as a normal distribution around ε (minimum 0.75· ε, maximum
1.25· ε). This guarantees natural randomness but at the same
time a good exploitation of the whole available volume, avoiding
undesired clusters or not uniform occupancy. If the surrounding
space was completely occupied, i.e., there was insufficient space
to place a further cell, a new starting point was selected resetting
the random walk process for the remaining neurons in that sub-
layer. Once completed, the 2D sub-layer was piled on top of
the underlying one. Then, a vertical coordinate was assigned
to each cell, from a random uniform distribution within the
sublayer height (Korbo et al., 1993). This approach maintained
randomness achieving a realistic quasi-Gaussian distribution of
pair-wise inter-neuron distances (see Figure 2C) and proved
computationally efficient.

TABLE 1 | Neuron types, size, and density.

Type Soma radius

(µm)

Density (neurons/

µm3) *(/ µm2)

Golgi cell (GoC) 8 9 × 10−6

Glomerulus (Glom) 1.5 3 × 10−4

Granule cell (GrC) 2.5 3.9 × 10−3

Purkinje cell (PC) 7.5 0.45 × 10−3*

Basket cell (BC) 6 0.5 × 10−4

Stellate cell (SC) 4 0.5 × 10−4

DCN glutamatergic cell (DCNC) 10 5 × 10−7

The table reports the density of neurons in the layer volume (neurons/µm3 ), *except for

PCs for which the planar density is used (neurons/µm2 ). Data for Glom, GrC, GoC, PC,

SC, BC from Korbo et al. (1993). The density of DCNC was estimated from the ratio of

PCs to DCNCs (Person and Raman, 2012).
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FIGURE 2 | Cell placement and network architecture. (A) The cells are placed in the network 3D space using a Bounded Self-Avoiding Random Walk Algorithm. The

figure shows the volume of 400 × 400 × 900 µm3 containing 96,737 neurons and 4,220,752 synapses used for simulations. (B) Projection of GrC axons to the

molecular layer hosting the PCs (green dots in the PC layer are the somata, the thin green parallelepipeds above are the corresponding dendritic trees occupying the

molecular layer). The figure shows two clusters of GrCs and the corresponding aa and pf, illustrating that the cerebellar network connectivity respects the 3D

architecture shown in Figure 1. (C) Distributions of 3D pair-wise inter-soma distances within each neuronal population: GrCs, SCs, GoCs, BCs, and PCs. Note that

the distributions are nearly normal, except for the PCs.

The PCs were distributed in a single sub-layer forming an
almost planar grid between the granular and molecular layers.
The PC inter-soma distances over this plane were constrained by
the dendritic trees, which are flat and expand vertically on the
parasagittal plane (about 150µm radius× 30µmwidth) without

overlapping (Masoli et al., 2015). Since PC somata do not arrange
in parallel arrays but are somehow scattered, a noisy offset was

introduced creating an average angular shift of about 5◦ between

adjacent PCs. As for the other neuron types, a small randomnoise
was also imposed on the vertical coordinate (Korbo et al., 1993).

The data required for cell positioning in the cerebellar cortex
were obtained from literature (Eccles et al., 1967; Magyar et al.,
1972; Mezey et al., 1977; Hamori and Somogyi, 1983; Jakab and
Hamori, 1988; Korbo et al., 1993; Sultan, 2001; Santamaria et al.,
2007; Barmack and Yakhnitsa, 2008; Solinas et al., 2010) and are
summarized in Table 1. GoCs, GrCs, and Gloms were placed

into the granular layer; BCs and SCs in the lower and upper
half of the molecular layer, respectively. A certain number of
DCNCs was randomly distributed in DCN volume according
to the PC/DCNC ratio, since more specific parameters are still
missing (Gauck and Jaeger, 2000; Aizenman et al., 2003; Person
and Raman, 2012). Special care was given to the GrC ascending
axon (aa) that, starting directly from the soma, makes its way
up vertically toward the molecular layer. The height of each
ascending axon was chosen from a Gaussian distribution in the
range of 181± 66µm (Huang et al., 2006). This value represents
also the vertical coordinate of the corresponding parallel fiber
(pf), running transversally and parallel to the cerebellar surface.

Connectivity Module
The connectivity module created structural connections between
pairs of neurons belonging to specific types. Each neuron type
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formed input and output connections with other neurons of
the same or different types. Therefore, once the placement
was completed, it was possible to reconstruct the connectome
applying intersection-connectivity rules based on proximity of
neuronal processes and on statistical ratios of convergence
and divergence. When available, morphological and statistical
literature data were used, otherwise plausible physiological
constraints were applied. In our scaffold, 16 connection types
were generated (the most important are shown in Figure 3),
from the volume covered by pre-synaptic axonal processes to that
covered by post-synaptic dendritic trees of specific neuron types:

1. From glomeruli to granule cells (Glom-GrC);
2. From glomeruli to basolateral dendrites of Golgi

cells (Glom-GoC);
3. From Golgi cells to Gloms (GoC-Glom): this is fused together

with Glom-GrC to generate directly GoC-GrC connections;
4. Among Golgi cells (GoC-GoC);
5. From ascending axons of granule cells to Golgi cells (aa-GoC);
6. From parallel fibers of granule cells to apical dendrites of Golgi

cells (pf-GoC);
7. Among stellate cells (SC-SC);
8. Among basket cells (BC-BC);
9. From parallel fibers of granule cells to stellate cells (pf-SC);
10. From parallel fibers of granule cells to basket cells (pf-BC);
11. From stellate cells to Purkinje cells (SC-PC);
12. From basket cells to Purkinje cells (BC-PC);
13. From ascending axons of granule cells to Purkinje

cells (aa-PC);
14. From parallel fibers of granule cells to Purkinje cells (pf-PC);
15. From Purkinje cells to DCN cells (PC-DCNC);
16. From glomeruli to DCN cells (Glom-DCNC).

Given a connection type, for each pre-synaptic neuron, the
potential post-synaptic cells were identified as those that
met geometric neuron-specific constraints. Then, given the
convergence and divergence ratios, post-synaptic neurons were
selected among the potential ones, through a pruning process
using distance-based probability functions specific for each
volume direction (details and examples in Figure S1). The
module was implemented in Python, and its output saved in
an .hdf5 file containing a matrix for each connection type,
in which each row was defined by three values: the unique
ID of the pre-synaptic neuron, the unique ID of the post-
synaptic neuron and the inter-soma 3D distance between that
pair (see Figure 4A).The plots in Figures 4B,C compare, for each
connection type, the divergence and convergence ratios reported
by literature to the values obtained after scaffold reconstruction
in a sample volume. The cell placement and connections rules
yielded indeed a very good approximation of the anatomical and
physiological parameters reported in literature.

Functional Simulations
In order to test the functionality of the scaffold, single
neuron models were placed in the corresponding positions
of the connectome matrix. In this first version of the
cerebellar microcircuit, spiking point-neuron models based
on Integrate&Fire (I&F) dynamics with conductance-based

exponential synapses (i.e., synaptic inputs cause an exponential-
shaped change in synaptic conductances) were used. The output
files of these simulations contained all the spike events (neuron
IDs and relative spike times). Glomeruli were represented as
“parrot neurons” just able to pass the imposed stimulation
patterns unaltered. Each other neuron type was characterized by
specific values, directly related to neurophysiological quantities
(Cm, τm, EL, 1tref , Ie, Vr , Vth), corresponding to biological
values taken from literature available from animal experiments
or databases (https://neuroelectro.org/) (Tripathy et al., 2014;
Table 2). In order to account for the neuron-specific dynamics
of GABA and AMPA receptor currents, also the decay times of
the excitatory and inhibitory synaptic exponential functions (τexc,
τinh) were set differently for each neuron type (Table 2). Each
synaptic connection type was characterized by specific values
of weight and delay (Table 3). These estimates approximated
literature data values so that, for example, the synaptic delay
was shorter when fibers impinging on PCs came from aa than
pf synapse.

The input stimulus was set by defining the volume where
Gloms were activated, the onset time, the duration and the
frequency of spikes. A background activity was generated by a
Poisson process of stochastic neuronal firing at 1Hz on all the
glomeruli. Superimposed on it, a burst at 150Hz lasting 50ms
(Rancz et al., 2007) was activated 300ms after the beginning of
simulation. Indeed, mossy fibers have a low basal activity, but in
response to sensorimotor stimuli, can fire at rates beyond 100Hz.
The stimulated volume had a radius of 140µm; the simulation
lasted 1 sec, including 300ms pre-stimulus, 50ms stimulus, and
650 ms post-stimulus.

In a specific set of simulations (see Figure 8), we tested
the partial contribution of SCs and BCs to the spatiotemporal
diffusion of activity among PCs. BCs axonal plexus is
preferentially oriented along the parasagittal axis (see Eccles et al.,
1967). In these simulations, we oriented the SC and BC axonal
plexus orthogonally one to each other and concentrated the
stimulation burst in a sphere of 30 µm radius.

Network Data Analysis
For each neuron population, mean frequency rates were extracted
in three time windows: baseline pre-stimulus, during stimulus,
and steady-state after-stimulus. We then generated peri-stimulus
time histograms (PSTH) for each neuronal population with time
bins of 3ms. For each neuron population, we also separated
excited from inhibited sub-groups, responding with an increased,
or decreased firing rate during the stimulus. To do so, we
compared the number of spikes during stimulus vs. pre-stimulus
normalized by the time-window durations. If the pre-stimulus
firing frequency (i.e., baseline) was at least doubled during
stimulation, then the cell was classified as excited. Conversely,
to classify the inhibited cells. For GrCs, we added a second
constraint: to be labeled as excited, a GrC should fire more than 1
spike during stimulation, allowing to exclude spikes determined
by the background noise. For DCNC, all cells stopped firing
during the stimulation time-window. For each PC, a further ad-
hoc analysis allowed to identify burst–pause responses. The cells
showing a significant stimulus-induced pause (Cao et al., 2012;
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FIGURE 3 | Cell connectivity: examples for specific connections. Examples of divergence and convergence at different connections in the cerebellar network space.

The plots have base area (400 × 400 µm2) and thickness specific for each layer. The plots show a randomly selected pre-synaptic cell together with its connected

post-synaptic neurons (divergence) or viceversa (convergence). (A) Connections of GrCs and GoCs. (B) Connections of PCs, SCs, and BCs. (C) Connections of

DCNCs.

Herzfeld et al., 2015) were recognized as those in which the first
Inter-Spike-Interval (ISI) after the end of the stimulus was >2
standard deviation (sd) of the pre-stimulus ISIs. This comparison
was computed within-cell, i.e., for each PC individually.

Center-Surround Analysis
The Excitatory-Inhibitory balance (EI) and Center-Surround
(CS) were calculated from firing rates (FR) according to Mapelli
and D’Angelo (2007) and Solinas et al. (2010) by considering that
inhibition occurs only after a delay following the beginning of

stimulation. GrC firing rate was then measured 0–20ms (T1) and
20–40ms (T2) after the beginning of stimulation in response to
50ms at 150Hz bursts, both in control (con)and with GoC-GrC
inhibition switched off (in_off ). The CS and EI were calculated
as follows:

EI = FRconT2 − FRin_offT2

CS = FRconT1 − EI

The CS values were normalized between 1 and−1. The extension
of the center and surround was calculated by including zones
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FIGURE 4 | Cell connectivity: pair-wise distance prediction and convergence/divergence validation. (A) Pair-wise distance prediction deriving from the placement and

subsequent cell-to-cell connectivity. The data that find correspondence in literature are indicated as asterisks. For each connection type, the pair-wise distances

between connected cells (inter-soma distance) are reported. Data from: (1) (D’Angelo et al., 2013), (2) (Barmack and Yakhnitsa, 2008), (3) (Rieubland et al., 2014).

(B,C) The plots compare divergence and convergence for the different connections of the scaffold with those anticipated experimentally. The regression lines show a

very close correspondence of the model to experimental results. Linear regression lines are fitted to the data (divergence: r2 = 0.98, slope = 0.88; convergence: r2 =

0.99, slope = 0.99). Data from: (1) (Nieus et al., 2006), (2) (Dieudonne, 1998), (3) (D’Angelo et al., 2013), (4) (Solinas et al., 2010), (5) (Kanichay and Silver, 2008), (6)

(Cesana et al., 2013), (7) (Hull and Regehr, 2012), (8) (Lennon et al., 2014), (9) (Huang et al., 2006), (10) (Jorntell et al., 2010), (11) (Sultan and Heck, 2003), (12)

(Person and Raman, 2012), (13) (Boele et al., 2013).

with CS > 0.5 in the center, and zones with CS < −0.5 in the
surround. The center and surround relative areas could then
be calculated by counting the respective number of pixels and
normalizing by the total number of pixels (see Figure 7C).

Oscillation Analysis
In order to determine the presence and properties of coherent
oscillations in granular layer activity, the activity in a subset of
GoCs with overlapping incoming parallel fibers and the related
GrCs was analyzed (Maex et al., 2000) during a 5 s at 5Hz noisy
background mossy fiber activity. The autocorrelations of GoCs
and GrCs spike trains and the cross correlation between GrCs
and GoCs spike trains were calculated using the equation

C =

∑len(A)
n=0

(

abs(An)
)

len(A)

Where C is the index of coherence, A is the array of
autocorrelation values, and len(A) is the size of the spike
train data array. The same calculus was executed also for
the crosscorrelation.

Simulations in pyNEST, pyNEURON, and
Implementation on the Brain
Simulation Platform
The microcircuit was implemented and simulated both in
pyNEST version 2.14 (Eppler et al., 2008) and in pyNEURON
(Hines et al., 2009). These neural simulators are commonly
used for applications starting from realistic neuron models
and up to more abstract representations. These tests were run
using external HPC and local resources, maximizing available
parallel computing. The time resolution for both simulators was
0.1ms. As internal validation tests, some exemplificative ad-hoc
structural and functional alternatives (see Figure 5) were made
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TABLE 2 | Neuron-specific parameters.

Cell type Cm[pF] τm(= Cm*Rin) [ms] EL[mV] 1tref(spike width)[ms] Ie[pA] Vr[mV] Vth[mV] τexc[ms] τinh[ms]

GoC 76 21 −65 2 36.8 −75 −55 0.5 10

GrC 3 2 −74 1.5 0 −84 −42 0.5 10

PC 620 88 −62 0.8 600 −72 −47 0.5 1.6

BC 14.6 14.6 −68 1.6 15.6 −78 −53 0.64 2

SC 14.6 14.6 −68 1.6 15.6 −78 −53 0.64 2

DCNC 89 57 −59 3.7 55.8 −69 −48 7.1 13.6

The table shows the parameters used to define specific neuronal properties in the model. Cm, membrane capacitance; τm, membrane time constant; Rin, input membrane resistance;

EL, leakage resting potential; 1tref, refractory period; Ie, endogenous current; Vr, reset potential; Vth, threshold potential; τexc, τ inh, excitatory and inhibitory synaptic exponential time

constants). Data are obtained from NeuroElectro (https://neuroelectro.org/) (Tripathy et al., 2014).

TABLE 3 | Synaptic parameters for each connection type.

Connection types Weight [nS] Delay[ms]

Glom-GrC 9.0 4.0

Glom-GoC 2.0 4.0

GoC-GrC (GoC-Glom-GrC) −5.0 2.0

GoC-GoC −8.0 1.0

aa-GoC 20.0 2.0

pf-GoC 0.4 5.0

SC-SC −2.0 1.0

BC-BC −2.5 1.0

pf-SC 0.2 5.0

pf-BC 0.2 5.0

SC-PC −8.5 5.0

BC-PC −9.0 4.0

aa-PC 75.0 2.0

pf-PC 0.02 5.0

PC-DCNC −0.0075 4.0

Glom-DCNC 0.006 4.0

The parameters result from a tuning procedure based on data reported in different papers

and summarized in Maex and De Schutter (1998), Solinas et al. (2010), and Sudhakar et al.

(2017). A main additional constraint is that the connection weight is larger from aa then

pf connections, both for GoCs and PCs (Sims and Hartell, 2005; Cesana et al., 2013).

in the network and then the same simulations were run (in
pyNEST). The firing rates of each cell population and their sub-
groups affected by stimulus are reported in Table 4 and Figure 5

to illustrate the spiking network behaviors.
The entire scaffold can be built and run as a Jupyter

Notebook in the Brain Simulation Platform (BSP), one of
the platforms of Human Brain Project (Markram, 2012).
The BSP is an internet-accessible collaborative platform that
comprises a suite of software tools and workflows to reconstruct
and simulate multi-level models of the brain at different
levels of description, from abstract to highly detailed. Here,
cells, network, and volume configuration parameters can be
easily read and modified, since they are stored in a single
Python script. Such flexible parametric approach allows to
continuously include and tune relevant neurophysiological
information and to operate at different simplification levels.
A test version of the scaffold model is running on the Brain

Simulation Platform at https://www.humanbrainproject.eu/en/
brain-simulation/brain-simulation-platform/.

RESULTS

The cerebellar network is unique for its precise geometrical
organization (Figure 1), which was reconstructed generating
a scaffold model capable of handling neuronal placement,
connectivity, and simulations. The neurons were represented as
single-point leaky integrate-and-fire (LIF) models (Maas, 1997),
tuned to match the input resistance and capacitance, basal
discharge, and input-output relationship of the specific cerebellar
neuron types. The choice of LIF neuronmodels was motivated by
the need to focus first onto the two main construction operations
of the scaffold, cell placement and connectivity, and on the role
of these latter in determining network properties.

The scaffold is demonstrated here through the exemplar
reconstruction and testing of a cerebellar volume of 0.077 mm3.
The cerebellar cortex volume had 400 × 400 µm2 base and
330µm height subdivided into different layers: molecular layer
(150µm), Purkinje cell layer (30µm), granular layer (150µm).
The DCN layer had 200 × 200µm2 base (1/4 of cortex) and
600µm height. As a whole, the model contained 96,734 cells. It
should be noted that these parameters were all user-defined and
may bemodified depending on the needs, as themodel is scalable.

Cell Placement
The Bounded Self-Avoiding Random Walk algorithm (see
section Materials and Methods) successfully placed the neurons
into all cerebellar regions with the only exception of PCs,
which were positioned using a specific algorithm designed to
respect their regular spatial organization (Figure 2A). Figure 2B
shows a row of almost equally distanced PCs connected
to incoming parallel fibers, faithfully reproducing the typical
PCs geometrical organization. These examples show that the
placement algorithms can be flexibly configured to account for
complex and variable rules of cellular positioning.

As an internal validation, the distribution of pair-wise
distances for each cell type was calculated (Figure 2C). For all cell
types (except PCs), pair-wise distances were distributed almost
normally and the minimum inter-soma distance equated twice
the soma radius. As expected, KDE for GrC, GoC, SC, and BC
pair-wise distances returned a single maximum (at 180.1, 191.0,
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FIGURE 5 | Neuronal discharge. Raster plot and PSTH of the different neuron populations of the cerebellar network model in response to a mossy fiber burst (50ms

at 150Hz on 2,932 gloms) superimposed on a 1Hz random background. The two simulations used the same cerebellar scaffold and neurons, which were translated

from pyNEST into pyNEURON. The basal activity of the different cell populations is visible before and after the stimulus. The Glom patterns at the input are imposed,

so they are identical for both simulations. The mean population firing rates for GrCs are similar between the two simulations, probably due to the very high number of

GrCs. Minor differences are detectable for the other neuron types.
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TABLE 4 | Firing rates.

Neuron type N.cells N. Excited (or

inhibited) cells (%)

Before

(300ms) [Hz]

During

(50ms) [Hz]

After

(300ms) [Hz]

Gloms 7,070 ENEST: 2,932 (41%) 1.0 ± 1.8 140.8 ± 4.2 0.9 ± 1.8

ENEURON: 2,932 (41%) 1.0 ± 1.8 140.8 ± 4.2 0.9 ± 1.8

GrCs 88,158 ENEST: 26,195 (29%) 2.0 ± 2.6 114.0 ± 32.2 1.8 ± 2.5

ENEURON: 25,240 (28%) 2.0 ± 2.6 114.8 ± 32.8 1.8 ± 2.5

GoCs 219 ENEST: 146 (66%) 22.7 ± 13.1 157.1 ± 37.2 23.5 ± 11.3

ENEURON: 153 (69%) 22.1 ± 12.4 154.2 ± 28.9 24.9 ± 12.0

SCs 603 ENEST: 445 (73%) 33.9 ± 15.7 126.2 ± 17.4 37.0 ± 14.3

ENEURON: 452 (74%) 34.2 ± 15.9 131.8 ± 19.6 36.9 ± 15.0

BCs 603 ENEST: 429 (71%) 30.1 ± 15.1 124.1 ± 18.4 33.6 ± 14.0

ENEURON: 447 (74%) 29.1 ± 15.3 123.3 ± 24.9 33.8 ± 14.4

PCs 69 ENEST: 45 (65%) 58.5 ± 8.5 255.5 ± 63.0 62.8 ± 8.3

ENEURON: 47 (68%) 60.0 ± 9.3 256.5 ± 63.8 63.0 ± 11.6

DCNCs 12 INEST: 12 (100%) 16.1 ± 1.2 0.0 ± 0.0 16.3 ± 0.9

INEURON: 12 (100%) 16.6 ± 0.0 0.0 ± 0.0 16.6 ± 0.0

For each neuronal population, the firing rates (mean ± sd) are reported before, during and after stimulation. Excited (inhibited) cells are defined as those increasing (decreasing) the

number of spikes during the stimulus (see Methods). Simulation results are shown for pyNEST (white rows) and for pyNEURON (gray rows). In the column “During stim,” the values

indicate the firing rates only averaged on the sub-group “Excited (Inhibited) cells.”

184.6, and 188.5µm, respectively), while for PCs three local
maxima occurred (at 48.6, 142.1, and 267.0µm) (for DCNC,
KDE analysis was meaningless, given the low number of cells).

Cell Connectivity
The connection rules adopted in this work were designed to
account for the rich and specific information available from
literature (Eccles et al., 1967; Palay and Chan-Palay, 1974; Korbo
et al., 1993), which accounts for convergence/divergence ratios,
number of synapses, and spatial distribution of axons and
dendrites (Figure 3). The connecting algorithm imposed these
geometrical constraints allowing to wire the different neuronal
types for a whole of 16 connection types. Five connection
types did not require other than these geometric constraints,
while pruning was needed in the other 11 cases (either for
convergence or divergence or both). The resulting connectome
was then compared to the experimental one for validation.
Figure 4 shows that the connection ratios of the scaffold were
indeed correctly scaling to the physiological ones. Some specific
cases are considered below.

Concerning Glom-GrC connectivity, experimental data
demonstrated that granule cell dendrites have a maximum length
of 40µm, with a mean value of ∼13µm (Solinas et al., 2010).
By imposing a convergence value of 4 (each GrC received one
Glom on each of its 4–5 dendrites), a mean dendrite length of
about ∼12µm was found, therefore matching experimental and
theoretical determinations (Hamori and Somogyi, 1983; Billings
et al., 2014).

Concerning connectivity between the aa and PC dendrites
(aa-PC), connections were possible only when the aa-segment
was very close to the PC dendritic plane. By analyzing the
placement of GrCs in the x-z plane and the vertical extension
of the aa, it is estimated that only ∼20% of GrCs developed
an aa that is sufficiently close to a PC dendrite tree to form a

synaptic contact (Bower and Woolston, 1983; Gundappa-Sulur
et al., 1999). This estimate was indeed closely matched by the
scaffold reconstruction.

Concerning connectivity of parallel fibers with receiving
neurons (pf-GoC, pf-SC, pf-BC, pf-PC synapses), the literature
is incomplete and shows variable estimates. This most likely
reflects difficulties in estimating exact numbers, since the pf
can be several millimeters long and they are often cut on the
parasagittal plane in histological preparations. In the scaffold
reconstruction, the maximum pf length (along z-direction) was
bounded to 400µm (Barbour, 1993; Huang et al., 2006) and pf
from GrCs beyond this length were not taken into account.

The statistical distribution of distances between connected
cells (Table 4) shows a good matching with anatomical values.
This validation of the connectome supports the appropriateness
of cell placement and connecting rules. Biological randomness in
the 3D placement with uniform occupancy of appropriate layers
ensures that the resulting connectivity (based on geometrical
proximity) has plausible biological values and variability for
statistical convergence/divergence ratios, and for distances
among connected neurons.

Neuronal Activations in the Cerebellar
Network Following Mossy
Fiber Stimulation
The aim of these simulations was to assess the emergence of
typical spatio-temporal patterns of cerebellar network activity as
a consequence of mossy fiber inputs. Simulations were carried
out both in pyNEST and pyNEURON. For simplicity, the
following data and figures are taken from pyNEST simulations,
except for a comparison of the two in Figure 5 and Table 4. As
expected, the two simulators yielded similar firing rates in each
cell population. The Glom patterns at the input were imposed,
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so they were identical for both simulation platforms, while very
small differences were detectable for the other neuron types.

Evoked activity simulating the effect of natural sensory
stimulation (Chadderton et al., 2004; Roggeri et al., 2008;
Ramakrishnan et al., 2016)was elicited over a noisy background
(see above) by a 150 Hz−50ms mossy fiber burst. The mossy
fiber activity spread over about 0.012 µm3 of the granular
layer involving 2,932 glomeruli out of the 7,070 placed in the
reconstructed volume. Glomeruli had mean firing rate of ∼1Hz
before the burst, 140Hz during the burst, and ∼1Hz after the
burst. The burst induced transient activity changes, specific for
each neuronal population, which reverted back to baseline after
the end of the stimulus (Figure 5). The sequence of neuronal
activations depended on synaptic delays that were set according
to physiological data (Eccles et al., 1967; Figure 6). The response
of the individual neuronal populations was as follows (Figures 5,
6, and Table 4):

• The GrCs discharged at 1.8Hz at rest and at 114Hz during
burst stimulation, consistent with in-vivo data showing that
GrCs had sparse activity characterized by low background
firing rates (partly due to the presence of tonic GABAergic
inhibition) and high-frequency bursts in response to evoked
sensory stimulation (Chadderton et al., 2004).

• GoCs discharged above 22Hz at rest and above 150Hz during
burst stimulation, consistent with in-vivo data (Heine et al.,
2010). The basal GoCs firing rate was raised by the noisy
background over the autorhythmic frequency and showed a
high variability among cells.

• Molecular layer interneurons, SCs and BCs (N = 603
for each cell type), discharged at ∼30Hz at rest and
above 120Hz during burst stimulation, consistent with
the observation of high-frequency activity during sensory
stimulation (Chu et al., 2012).

• PCs discharged at ∼58–60Hz at rest and at ∼255Hz during
burst stimulation consistent with in-vivo data (Heine et al.,
2010). Interestingly, PCs showed either bursts, or pauses, or
burst-pause responses as observed in vivo (Herzfeld et al.,
2015): out of 69 PCs, the burst was observed in 48 PCs and
the pause in 41 PCs. Of the PCs that showed a pause, in 17
PCs it occurred after a burst, while in the other 24 PCs it
happened alone.

• DCNCs discharged at ∼16Hz at rest and were completely
silenced during burst stimulation. This behavior was expected
from the convergent inhibition coming from PCs, supporting
the hypothesis that cortico-nuclear synapses act as simplified
inverters (Person and Raman, 2012).

Center-Surround Organization of Granular
Layer Responses
A relevant aspect of network activation that emerged in
electrophysiological and imaging experiments is the center-
surround organization (Mapelli and D’Angelo, 2007; Diwakar
et al., 2011; Gandolfi et al., 2014). In the scaffold, the neuronal
response of the granular layer to mossy fiber stimulation
showed a typical center-surround organization (Figure 6). This
reflected the excitatory/inhibitory ratio (see sectionMaterials and

Methods) with the center more excited than the surround due to
lateral inhibition provided by GoCs. The center-surround had a
diameter of about 50µm and GrCs inside the core discharged
up to 3–4 spikes organized in a short burst, reflecting previous
experimental estimates (Gandolfi et al., 2014). Therefore, the
scaffold correctly predicts the consequences of activity in bundles
of mossy fibers.

Recently the connectivity of GoCs and GrCs has been
extended by the demonstration of new synapses, in particular
those between the GrC ascending axon and GoCs (aa-GoC,
excitatory) (Cesana et al., 2013) and between GoCs (GoC-GoC,
inhibitory) (Hull and Regehr, 2012). The selective switch-off
of aa-GoC connections enhanced the center and reduced the
surround, the switch-off of GoC-GoC connections reduced the
center and increased the surround, while smaller effects followed
the switch-off of pf-GoC or mf-GoC synapses (Figure 9C).

The Impact of Molecular Layer
Interneurons on PC Activation
The molecular layer is critical to regulate PC activity in a way
that is still debated (e.g., see Rokni et al., 2007; Santamaria et al.,
2007). The first assumption is a differential orientation of SC cell
axons (mostly transversal or “on-beam”) vs. BC axons (mostly
sagittal or “off-beam”) (Eccles et al., 1967). Moreover, both aa and
pf are used to activate PCs, as reported in literature (Jaeger and
Bower, 1994; Canepari et al., 2001; Figure 8). Consistently, in the
scaffold model, PC responses were circumscribed into a central
spot overlaying the center/surround generated in the granular
layer with little diffusion along either transversal or sagittal axis.
On both axes, in turn, some PCs were clearly inhibited by the
molecular layer interneuron inhibitory network.

Then, the effect of disconnecting different network elements
was tested. Following the switch-off of both SC and BC
inhibition, the responsiveness of PCs increased, as expected from
SC and BC inhibitory action on PCs. As expected from anatomy,
when only BCs were present (i.e., selective switch-off of SCs),
excitation extended more effectively along the transverse axis,
while when only SCs were present (i.e., selective switch-off of
BCs) excitation extended more effectively along the sagittal axis.
However, in both cases there was a diffused (though slight)
increase of excitation, due to the reduced background inhibition
exerted by intrinsic SC and BC discharge. It should also be
noted that the activation of PCs in the central spot remained
poorly altered, suggesting that these PCs were already nearly
maximally activated in control. The selective switch-off of aa
synapses caused a diffuse reduction of PC activation, while the
selective switch-off of pf synapses had a much smaller effect.
Therefore, changes in molecular layer connectivity consistently
modified the PC discharge patterns both on-beam and off-beam
and extended to a distance that reflects the propagation of activity
through the pfs and the molecular layer interneuron network.

Synchronous Oscillations Caused by Noisy
Background Activity in Mossy Fibers
Recordings from the granular layer in vivo have revealed
low-frequency local field potential oscillations that occur
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FIGURE 6 | Cerebellar network response to a mossy fiber burst. (A) Spikegrams of all cerebellar neurons in the model. A burst in gloms causes a burst-to-burst

propagation in GrCs and PCs. GoCs, SCs, and BCs also generate bursts that, by being inhibitory, contribute to terminate the GrC, and PC bursts and to generate the

burst-pause PC response. The DCN cells show a pause during stimulation. (B) Raster plot of one cerebellar neuron for each population in the model. Note the spread

of the mf bursts inside the cerebellar cortical networks and the corresponding pause in the DCN. (C) Spike-time response plot showing the temporal sequence of

neuronal activation and inhibition. The arrows represent the connectivity (solid lines show excitatory connections, dashed lines inhibitory connections). The stars

represent the post-synaptic neuron response: white stars are excited neurons, black stars are inhibited neurons.

synchronously over distances of several hinders of micrometers
(Pellerin and Lamarre, 1997; Hartmann and Bower, 1998).
Similar properties were observed also in previous granular layer
models (Maex and De Schutter, 1998; Solinas et al., 2010;
Sudhakar et al., 2017). In the scaffold model, spontaneous circuit
activity clearly emerged due to background firing in the mossy
fibers, provided that the frequency of the background mossy
fiber discharge was increased from 1 to 5Hz and pfs-GoCs
connection weight was increased from 0.4 to 30.4, supporting
the concept that oscillations require a specific synaptic balance
to emerge (Maex and De Schutter, 1998; Solinas et al., 2010;
Sudhakar et al., 2017; Figure 9). In response to the input,
GrCs sparsely discharged at low frequencies (GrCs do not show
intrinsic spontaneous activity), while the intrinsic activity of all
the other neurons was modulated (GoC, PC, MLI, and DCNC
are autorhythmic) (see Ie values in Table 3). Interestingly, the
neurons of the granular layer (GrCs and GoCs) showed a
pattern of low-frequency oscillations (mean frequency of 1.8Hz)
that was evident across the whole network. The oscillation
frequency is the same in autocorrelograms of both GrCs
and GoCs, and in the cross-correlogram between Golgi and
granule cells. This ensemble behavior is probably due to the

inhibitory feedback from GoCs to GrCs in the following way:
(1) GrCs activity sums up in several GoCs, (2) GoCs, which are
synchronized through parallel fibers and reciprocal inhibitory
synapses, discharge almost synchronously, (3) a large population
of GrCs is phasically inhibited, (4) inhibition terminates and
GrCs recover responsiveness to the background mossy fiber
input, then restarting the cycle.

DISCUSSION

In this paper a new scaffold modeling strategy is presented,
that is used to simulate fundamental functional properties of
the cerebellar microcircuit. The cerebellar scaffold includes the
canonical neuron types (GrCs, GoCs, PCs, SCs, BCs, DCNCs),
each one with specific geometry of dendritic and axonal fields and
with specific convergence/divergence ratios for connectivity. The
neurons were purposefully simplified into single point models
in order to focus on network connectivity before involving
more complex neuronal geometries and properties. The circuit
functionality was then tested by applying background activity
and burst stimuli and evaluating the network responses. In
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FIGURE 7 | Center-surround organization of activity in the granular layer. (A) In response to a mossy fiber burst (40 gloms at 150Hz for 50ms), the granular layer

responds with a core (red area) of activity surrounded by inhibition (blue area). (B) PSTH of GrCs in the center-surround. The activity in the core is characterized by

robust spike bursts, while just sporadic spikes are generated in the surround. No activity changes are observed outside the center-surround structure. (C) The

histogram shows the changes in center-surround extension that occur following selective switch-off of synapses impinging on GoCs. Note the prominent role of

aa-GoC synapses and GoC-GoC synapses (bars are values normalized to control).

addition to faithfully reproduce a broad range of experimental
observations, the cerebellar scaffold shows the emergence of
complex spatiotemporal patterns of activity similar to those
observed in vivo and eventually predicts the critical role of local
connectome for network functionality.

The Scaffold Design
The scaffold includes two modules: cell placement and
connectivity. The first module placed neurons in their
corresponding layers according to density values derived
from literature. Cell placement exploited a bounded self-
avoiding random walk algorithm, except for PCs, which
required a placement rule accounting for their regular
disposition and quasi-planar non-intersecting dendritic trees.
The second module generated microcircuit connectivity
by defining the pre- and post-synaptic neurons among
those intersecting their dendritic and axonal fields and then
establishing the corresponding number of synapses through
specific connection probabilities. Geometrical constraints and
divergence/convergence ratios derived from literature played

a critical role to implement the microcircuit connectome.
The distributions of soma distances, both for cell positioning
and connectivity, were assessed and provided an internal
validation for the network construction processes. The cerebellar
scaffold was then implemented using LIF neuron models,
whose parameters were tuned to approximate the basal firing
and input-output relationships of cerebellar neurons. Finally,
functional simulations required the scaffold to be uploaded into
a neuro-simulator, either pyNEST or pyNEURON, that worked
equivalently well for this purpose.

The scaffold modeling strategy used for the cerebellum
microcircuit differs from that used for the cortical microcolumn
mostly because here the connectivity rules are based on
available statistical and geometrical information rather than
on single neuron morphologies and touch-detection (Markram
et al., 2015). This allows the scaffold to fully exploit the
experimental data available in the cerebellar literature despite
incomplete availability of detailedmorphological reconstructions
of cerebellar neurons. By considering that neuron models based
on detailed morphological reconstructions are still unavailable
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FIGURE 8 | Maps of PC activation and sensitivity to molecular layer connectivity. (A) The maps show the activity change of PCs in response to a mossy fiber burst (40

glom at 150Hz for 50ms). The pattern of activity is determined by various connection properties that are tested in turn. (all active) PC inhibition is achieved through a

differential orientation of SC axons (mostly transversal or “on-beam”) vs. BC axons (mostly sagittal or “off-beam”) and that PC excitation depends on both aa and pf

synapses with specific origin from GrCs. Alternative patterns are generated by (SC off) the specific switch-off of SC, (BC off) the specific switch-off

of BC, or (SC&BC off) the complete switch-off of both SC and BC, (aa off) the specific switch-off of aa synapses, (pf off) the specific switch-off of pf synapses. It should be

(Continued)
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FIGURE 8 | noted that these changes in network connectivity modify the PC discharge patterns both on-beam and off-beam and extend to a distance that reflects

the propagation of activity through the molecular layer interneuron network. The circles indicate the location of the underlying active spots of activity in the granular

layer. The bottom plot represents the activity of GoCs (blue) and GrCs (red) before, during and after the stimulus burst. This activity occurs in a spot (enlarged in the

inset) corresponding to the center-surround shown in Figure 7. (B) The schematic diagrams show the orientation of fibers and connections in the network. (C) The

PC activity was averaged into 3 × 3 matrices in order to better appreciate where activity changes take place. Note the emergence of the central spot in several cases.

FIGURE 9 | Coherent low-frequency oscillations in granular layer neurons. Activity of GrCs (red) and GoCs (blue) during sustained 5Hz random mf input. (A) Raster

plots from exemplar GrCs and GoCs. Note that synchronous patterns are visible in the neuronal response (arrows). In this regimen, GoC activity is more intense than

GrC activity due to the autorhytmic discharge of GoC neurons. The neurons are not necessarily part of a center-surround and therefore not all activities appear

correlated. (B) Cumulative PSTH of the whole GrC and GoC populations of the model along a 5 s period. Note that the two PSTH show marked low-frequency

oscillations (average 1.8Hz) around their average level of activity. (C) Autocorrelograms of activity in the GrC and GoC populations and crosscorrelogram of the GrC

and GoC populations (in this example the inhibition among GoCs is switched off). Note the high level of correlation in all the three cases on the same main frequency

of 1.8Hz.

in most neuronal circuits, the strategy adopted here for
the cerebellum has a large potential for applicability in a
variety of different brain microcircuits. It should be noted
that our “intersection-connection” rule is formally similar to
the “proximity-connection” rule used for touch-detection in

Markram et al. (2015). Eventually, the touch detection strategy
could be implemented in the scaffold providing a construction
alternative, in which connectivity is directly constrained by
neuronal morphology. The advantage would be to specifically
connect synapses on specific positions of the dendritic tree,
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fully exploiting non-linear dendritic computations. Also the data
positioning rules could be changed, for example by importing cell
positions from the Allen Brain Atlas directly (available at https://
portal.bluebrain.epfl.ch/) or using network growing algorithms
(Setty et al., 2011; Nguyen et al., 2016).

Simulation and Validation of Cerebellar
Network Properties
Following background random inputs and punctuate sensory
stimulation, the scaffold model predicted a set of relevant
network response properties that matched experimental
observations. In the granular layer, the GrC and GoC
activity in response to random mossy fiber inputs showed
loose synchronicity, as observed in vivo (Pellerin and
Lamarre, 1997; Hartmann and Bower, 1998). The GrC and
GoC activity in response to bursts in mossy fiber bundles
revealed a center-surround organization, as reported in
vitro (Mapelli and D’Angelo, 2007; Diwakar et al., 2011;
Gandolfi et al., 2014), which was enhanced by aa synapses
(Cesana et al., 2013). At the level of molecular layer, the
spatial PC discharge patterns depended on the geometry
of SC and BC inhibition (Santamaria et al., 2007), and
PC burst-pause discharges were generated (Herzfeld et al.,
2015). The local PC response was enhanced by granule cell
aa, as anticipated by Bower and Woolston (1983), Walter
et al. (2009), and Cesana et al. (2013), supporting the
vertical organization of GrC-PC transmission (Rokni et al.,
2007).

Interestingly, despite the use of simplified LIF neuron
models, the observation of these activity patterns suggests
that structural constraints play a critical role in determining
local neuronal dynamics. In particular, connectivity allows
the emergence of center-surrounds in the granular layer
and spots of PC activity in the molecular layer. There
are several aspects that remain to be assessed and will
be easily incorporated into more advanced versions of the
cerebellar scaffold.

First of all, assessing the role of non-linear neuronal
properties, like intrinsic oscillations, resonance bursting
and rebounds, requires to incorporate into the scaffold
realistic ionic-channel based neuronal models. Along with
this, dendritic computation needs morphologically detailed
neuron models that are currently under construction and
testing. These include the PCs model (e.g., De Schutter
and Bower, 1994; Masoli et al., 2015; Masoli and D’Angelo,
2017), the GrC model (Masoli et al., 2017), the GoC model
(Solinas et al., 2007a,b; Kanichay and Silver, 2008), the SC
and BC model (currently under construction), the DCN
model (Steuber and Jaeger, 2013). Dynamic synapses (Tsodyks
and Markram, 1997; Nieus et al., 2006; Migliore et al., 2015)
will likewise be incorporated to introduce synaptic strength
modulation mechanisms.

Secondly, the scaffold could be used to evaluate the
trade-off between computational efficiency and precision.
Therefore, the present LIF single point neurons could be
substituted by others (extended generalized LIF, E-GLIF)

embedding non-linear firing properties (e.g., Brette and
Gerstner, 2005; Geminiani et al., 2018) and accounting for
synaptic dendritic location by modifying the transmission
weight depending on the distance of synapses from the
soma (Rössert et al., 2016) or based on experimental data
when available.

Thirdly, fully implementing cerebellar connectivity requires
the introduction of models of the inferior cerebellar olive
(IO) (Libster and Yarom, 2013; De Gruijl et al., 2014). This
will complete the DCN-PC-IO cerebellar circuit, allowing
the model to simulate oscillations in the olivo-cerebellar
circuit, their impact on PC dendritic calcium signaling
and computation, and eventually climbing fiber control
of plasticity at parallel fiber synapses (Coesmans et al.,
2004).

Finally, the addition of novel connections and cells,
like the PC to GrC inhibition (Guo et al., 2016) in the
anterior cerebellum, the unipolar-brush cell subcircuit
in the flocculo-nodular lobe (Mugnaini and Floris, 1994;
Subramaniyam et al., 2014), or the DCN to granular
layer connections (Gao et al., 2016) will allow to further
expand the simulation of cerebellar processing in different
cerebellar modules.

CONCLUSIONS

The scaffold model was able to reconstruct the complex
geometry and neuronal interactions of the cerebellar
microcircuit based on intersection-connection rules. Given
its architectural design, that puts in series interchangeable
programming modules, the scaffold could now be used
to plug-in different network configurations into neuronal
simulators like e.g., pyNEST and pyNEURON. Both the
cell placement algorithm, the neuron model types and the
connectivity rules could be substituted to assess different
construction strategies and adapted to available data to probe
specific functional hypotheses. For example, the connectivity
could be recalculated using realistic neuronal morphologies
and touch-detection algorithms (proximity-connection rule),
as in the cortical microcolumn model (Markram et al.,
2015). We envisage that this scaffold modeling strategy,
given its versatility, will also be able to host microcircuits
different from cerebellum, thus providing a new tool for
neurocomputational investigations. It should be noted that
the reconstruction procedure is python-based and can be
imported in many different simulation frameworks. For
example, translation of the scaffold model into PyNN would
facilitate neurorobotic and neuromorphic hardware applications
(Davison et al., 2008).
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Distress is a critical problem in developed societies given its long-term negative effects on

physical and mental health. The interest in studying this emotion has notably increased

during last years, being electroencephalography (EEG) signals preferred over other

physiological variables in this research field. In addition, the non-stationary nature of brain

dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain

signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been

tested. Hence, in the present study two permutation entropies denominated Delayed

Permutation Entropy and Permutation Min-Entropy have been computed for the first

time at different time-lags to discern between emotional states of calmness and distress

from EEG signals. Moreover, a number of curve-related features were also calculated to

assess brain dynamics across different temporal intervals. Complementary information

among these variables was studied through sequential forward selection and 10-fold

cross-validation approaches. According to the results obtained, the multi-lag entropy

analysis has been able to reveal new significant insights so far undiscovered, thus notably

improving the process of distress recognition from EEG recordings.

Keywords: electroencephalography, distress, non-linear metrics, delayed permutation entropy, permutation

min-entropy

1. INTRODUCTION

Emotions are essential in human communication and interaction, and considerably influence
on daily tasks related to cognition, perception and rational decision-making processes (Coan
and Allen, 2007). Traditional techniques for emotion recognition are mainly focused on the
analysis of physical aspects like facial expressions and speech characteristics (Calvo and D’Mello,
2010). However, given that emotional responses are initiated in the brain and then spread to
other biological systems (Gao et al., 2015), interest in electroencephalogram (EEG) signals for
emotion recognition has notably increased during the last years (Martínez-Rodrigo et al., 2017;
Fernández-Sotos et al., 2018; Ramirez et al., 2018).
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Existing affect models include from a few basic
emotions (Ekman, 1992) to a wide variety of emotional
states derived from the combination of basic ones (Schröder and
Cowie, 2011). Russell’s circumplex affect model is one of the
approaches most widely used for emotion classification (Russell,
1980). In this bidimensional approach, emotions are distributed
according to their level of valence (ranging from negative to
positive) and arousal (from deactivated to activated). A relevant
emotion that is receiving growing attention is negative stress, also
called distress, because it presents a high prevalence in developed
countries (Bong et al., 2013; Alberdi et al., 2016). Although today
short-term distress is not considered a risk factor for health, a
chronic condition of this emotion often causes or aggravates
physical and mental disorders (Bender and Alloy, 2011; Mozos
et al., 2017). In this regard, automatic distress identification from
EEG signals would help prevent health problems and improve
people’s quality of life.

Since neural processes are non-linear and non-stationary,
both at cellular and global level (Cao et al., 2015), non-
linear metrics applied to EEG signal analysis should provide
more relevant findings than linear indices traditionally
used (Valenza et al., 2012). But, few studies have applied
non-linearity to automatic detection of negative stress through
EEG recordings (García-Martínez et al., 2019a). This is the
case of symbolic entropies, such as Permutation Entropy
(PE) (Bandt and Pompe, 2002) and Amplitude-Aware
Permutation Entropy (AAPE) (Azami and Escudero, 2016),
having demonstrated their efficiency in discriminating between
calmness and distress (Hosseini and Naghibi-Sistani, 2011;
García-Martínez et al., 2017; Martínez-Rodrigo et al., 2019).
Here, the quantification of similar patterns is typically obtained
through consecutive samples, or their averaging, within a
complete time series.

No lag or time delay between patterns is necessary in those
cases where the autocorrelation function of the signal presents
a steep decay. However, a time series with long-range linear
correlations shows a slow decay in its autocorrelation function.
Not applying a lag may hinder entropy metrics from properly
quantifying the complexity and non-linear dynamics of the
signal. Indeed, it has already been demonstrated that time-
delayed entropy tests are helpful to diminish the influence of
autocorrelation for better evaluation of the non-linearity of time
series (Kaffashi et al., 2008). Hence, a multi-lag approach has
been applied to localization of epileptogenic areas through EEG
recordings (Zhu et al., 2015).

Let us highlight that an improvement of PE called
Permutation Min-Entropy (PME) has been recently
introduced (Zunino et al., 2015). PME consists of an improved
time-delayed symbolic alternative for identifying the existence
of hidden temporal correlations in time series. This allows
a better discrimination of time series with similar temporal
correlations. Moreover, PME has been very recently applied to
emotion recognition by using heart rate variability (Xia et al.,
2018). The promising outcomes open a door to the hypothesis
that time-delayed analysis may uncover existing information in
physiological systems, not revealed before through non-delayed
or basic multiscale entropy (MSE) analyses. Furthermore, to

the best of our knowledge, no previous research has focused on
the study of multi-lag approaches for emotion recognition from
EEG signals.

For this reason, in the present manuscript a time-delayed
version of AAPE—called Delayed Permutation Entropy (DPE)—
and PME metrics are applied for the first time with several
time delays for the sake of checking the influence of the lag
on discrimination between calmness and distress from EEG
recordings. The remainder of this paper is structured as follows.
Section 2 details the analyzed database, the DPE and PMEmetrics
computed from the EEG recordings and the statistical analysis.
Section 3 summarizes the results, which are then discussed in
section 4. Finally, section 5 concludes the most remarkable
findings related to this study.

2. MATERIALS AND METHODS

2.1. Database
EEG signals were extracted from the publicly available
Database for Emotion Analysis using Physiological
Signals (DEAP) (Koelstra et al., 2012) to guarantee the
reproducibility of this study as well as its fair comparison with
previous or future works. This dataset contains a total of 1,280
EEG recordings and other peripheral variables from 32 healthy
participants with ages ranging 19–37 (mean age of 26.9; 50%
male) under different affective conditions. Forty one-minute
length video clips with emotional content were used as stimuli in
the experiment leading to the dataset. After each visualization,
the participants described their emotional state by means of self-
assessment manikins (SAM), two graphical scales representing
nine intensity levels of valence and arousal (Morris, 1995).

Although the trials contained within the dataset cover the
whole valence-arousal space, only two subsets corresponding to
distress and calmness emotional states were studied in the present
study, as shown in Figure 1. Indeed, calmness and distress groups
were selected according to previous works dealing with the same
problem (Bastos Filho et al., 2012; Pomer-Escher et al., 2014;
García-Martínez et al., 2016; García-Martínez et al., 2017). Hence,
distress trials were selected from arousal and valence levels higher
than 5 and lower than 3, respectively. On the other hand, the
calmness group contained trials with arousal and valence values
lower than 4 and between 4 and 6, respectively. Therefore, a
total number of 122 and 137 trials of distress and calmness,
respectively, were finally analyzed in this work. Moreover, it is
important to highlight that only the last 30 s of each trial were
selected for further analysis.

2.2. EEG Signal Preprocessing
EEG signals were recorded at a sampling rate of 512 Hz with
32 electrodes placed according to the 10–20 standard system of
electrode location (Klem et al., 1999). Before starting any kind
of analysis, the recordings were preprocessed to eliminate noise
and artifacts, thus preserving only the information related to
brain activity. To this respect, the signals were initially down-
sampled to 128 Hz and all EEG channels were re-referenced to
the average potential of all electrodes. Next, a forward/backward
high-pass filter at 3 Hz and a low-pass filter at 45 Hz cutoff
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FIGURE 1 | Trials distribution included in DEAP database in the

arousal–valence space. Selected groups of distress and calmness trials are

highlighted.

frequency were applied to remove baseline and power line
interferences, maintaining the frequency bands of interest in EEG
recordings (Koelstra et al., 2012). After that, artifacts derived
from physical activity (e.g., facial movements, eye blinks, heart
bumping, etc.) and technical sources, such as electrode-pops
were eliminated by means of independent component analysis
(ICA) (Goh et al., 2017).

A well-known method with ability to automatically identify
noisy independent components (ICs) was used (Nolan et al.,
2010). Briefly, the algorithm firstly computed correlation between
all ICs and electrooculography channels, as well as spatial
kurtosis, power spectrum slope, Hurst exponent and median
gradient for all ICs. Those components presenting at least an
index with a value three times higher than standard deviation
for all ICs were then removed. As a final step, the denoised EEG
signal was reconstructed from the remaining ICs. It is worth
noting that 1.05 ± 0.60 ICs were removed in average for each
trial. More precisely, any artifactual IC was identified in 38 trials
(14.67%), only one was removed in 168 trials (64.86%) and two
were rejected in the remaining 53 trials (20.47%).

The EEG channels presenting high-amplitude noise were
also detected and replaced by interpolation from adjacent
electrodes (Reis et al., 2014). Although these signals were
identified before ICA-based denoising of artifacts, their
interpolation was developed after that preprocessing. This
approach has been previously used by other authors (Forscher
et al., 2016; Pincham et al., 2016; Bennett et al., 2018) and its
main goal is to avoid mixing any non-linearity introduced by
interpolation into the ICA decomposition (Nolan et al., 2010).
Nonetheless, noisy EEG channels did not contribute to the
rejection of artifacts (Nolan et al., 2010). As a result, the number
of interpolated EEG channels was zero for 162 trials (62.55%),
one for 83 trials (32.05%), two for 13 trials (5.02%) and three for
the remaining trial (0.39%). Additionally, the most frequently
interpolated channels were CP1 (in 21 trials, 21.65%), T8 (in 11
trials, 11.34%), CP5 (in 9 trial, 9.28%), AF4 (in 8 trial, 8.25%), T7

(in 6 trials, 6.19%), and FC2 (in 5 trials, 5.15%). The remaining
channels were interpolated in <4% of trials.

2.3. Time-Delayed Version of
Amplitude-Aware Permutation Entropy
Amplitude-Aware Permutation Entropy (AAPE) is an
improvement of Permutation Entropy (PE) to consider
amplitude information from analyzed time series (Fadlallah
et al., 2013). Although this index has been mainly used
in single-lag analyses, it can be adapted to deal with
different time scales by changing the embedding delay
τ (Azami and Escudero, 2016). Thus, for delayed-time PE
computation, a time series x(n) = {x(1), x(2), . . . , x(N)} of
length N is converted into N − (m − 1) · τ vectors of m
samples, such that Xτ

i,m = {Xτ
i,m(1),X

τ
i,m(2), . . . ,X

τ
i,m(m)} =

{x(i), x(i+ τ ) . . . , x(i+ (m− 1) · τ )}, for 1 ≤ i ≤ N− (m− 1) · τ .
Each vector Xτ

i,m is associated with an ordinal pattern,
described as permutation κi = {r0, r1, . . . , rm−1} of
{0, 1, . . . ,m − 1}, such that its single components fulfill
Xτ
i,m(r0) ≤ Xτ

i,m(r1) ≤ . . . ≤ Xτ
i,m(rm−2) ≤ Xτ

i,m(rm−1). Hence,
a total number of m! ordinal sequences πk are obtained from
patterns Xτ

m. Then, the relative frequency of each sequence πk is
used to estimate its probability of appearance such that

pτ (πk) =

∑N−(m−1)·τ
i=1 δ(πk, κi)

N − (m− 1) · τ
, (1)

being δ(u, v) the Kronecker delta function modified specifically
to work with sequences, i.e.,

δ(u, v) =

{

1, if u(i) = v(i), for every i = 1, 2, . . . ,m;

0, for otherwise.
(2)

Then, delayed-time PE is finally obtained by computing the
Shannon entropy from the probability distribution of all symbols,
such that

PE(x,m, τ ) = −
1

ln(m!)

m!
∑

k=1

pτ (πk) · ln
(

pτ (πk)
)

. (3)

The index is normalized by term ln(m!) to obtain values ranging
between 0 and 1. In the case of a completely predictable signal,
only a pattern πk is found and PE reports a 0 value. On the
contrary, symbols πk in unpredictable time series present the
same probability of occurrence. Thus, PE provides the highest
value 1. Hence, predictability information reported by PE is easily
interpretable (Zanin et al., 2012). Nevertheless, only the ordinal
structure of patterns is considered by this index, thus discarding
the information related to the amplitude of each sample.

As amplitude differences could play a key role to determine the
predictability of a time series, AAPE was introduced to overcome
this limitation (Azami and Escudero, 2016). AAPE computation
is based on calculating the probability of repetition of each
pattern πk by considering its relative frequency, and also the
average absolute (AA) and relative amplitudes (RA) of vectors
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Xτ
i,m. Amplitudes AA and RA are obtained, respectively, for a

specific vector Xτ
i,m as

AAτ
i =

1

m

m
∑

l=1

|Xτ
i,m(l)| (4)

and

RAτ
i =

1

m− 1

m
∑

l=2

|Xτ
i,m(l)− Xτ

i,m(l− 1)| (5)

Then, the relative frequency of πk is computed as

pτ∗(πk) =

∑N−(m−1)·τ
i=1 δ(πk, κi) ·

(

K · AAτ
i + (1− K) · RAτ

i

)

∑N−(m−1)·τ
i=1 K · AAτ

i + (1− K) · RAτ
i

,

(6)
being K an adjusting coefficient of terms AA and RA, ranging
from 0 to 1. As recommended by the authors, a value K = 0.5
was considered here. Finally, delayed-time AAPE, referred to as
Delayed Permutation Entropy (DPE), is computed by means of
Shannon entropy, such that

DPE(x,m, τ ) = −
1

ln(m!)

m!
∑

k=1

pτ∗(πk) · ln
(

pτ∗(πk)
)

. (7)

2.4. Permutation Min-Entropy
Recently, PE has also been generalized by replacing Shannon
entropy with Rényi one, reaching a better characterization of
some rare and frequent ordinal patterns (Zhao et al., 2013). More
precisely, Rényi Permutation Entropy (RPE) is defined as

RPE(x,m, τ , q) =
1

ln(m!)
·

1

1− q
· ln

(

m!
∑

k=1

pτ (πk)
q
)

, (8)

where order q (q ≥ 0 and q 6= 1) is a bias parameter. Indeed,
q < 1 benefits rare events and, contrarily, q > 1 privileges salient
ones. It is mandatory to note that Shannon entropy is an instance
of Rényi entropy for q = 1 and, hence, RPE is a more flexible
tool than PE. In this respect, RPE has reported a more complete
characterization of a variety of complex dynamics, including
physiological processes (Mammone et al., 2015). In addition, RPE
is featured to converge to a minimum entropy in the limit q →

∞, thus providing Permutation Min-Entropy (PME) (Zunino
et al., 2015). This new entropy-based metric is quickly and simply
computed as

PME(x,m, τ ) = −
1

ln(m!)
ln

(

max
k=1,2,...,m!

[

pτ (πk)
]

)

, (9)

still retaining the main advantages of PE, such as its simplicity,
low computational cost, noise robustness, and invariance with

respect to non-linear monotonous transformations. This index
has also proven a greater ability than PE to detect the existence of
subtle temporal structures in EEG channels (Zunino et al., 2015).

2.5. Feature Selection
Firstly, single DPE and PME values from lag τ = 1 to lag
τ = 10 were computed for each subject by using a pattern
length m = 6. Entropies computed for each time-lag are a
measure of predictability of the time series and assess the effect
of time dynamics from an inter-lag perspective. Indeed, larger
entropy values represent more unpredictable dynamics of the
EEG signals, showing an increase of autocorrelated patterns in
a long-term fashion.

On the other hand, multi-lag entropy curves were
parameterized by means of slopes, areas under curves and
arc lengths. Indeed, some studies have previously reported
that features extracted from parameterized curves may reveal
important information related to the dynamics of the signals
across different temporal intervals (Escudero et al., 2006). In
this regard, to estimate the trend evolution of each time-lag
curve, slopes between delay τ = 1 and τ = 2, 4, 6, 8, and
10 were calculated from all EEG channels of each trial and
denoted as Slp1 − τ . The slope is estimated as the straight line
connecting the multi-lag entropy values under study. Higher
slope values suggest larger entropy increases between the original
signal (τ = 1) and higher versions in consecutive multi-lag time
delays (τ = 2–10).

Furthermore, areas enclosed under the multi-lag curve
between lag τ = 1 and lags τ = 2, τ = 4, τ = 6, τ = 8, and τ = 10
were computed and denoted as Ar1 − τ . In this sense, a higher
area is achieved when DPE and PME entropy values are higher
for the majority of time delays, suggesting that time series are
less predictable. Finally, the arc length (AL) for each time-delayed
curve was computed between lags τ = 2 and τ = 10. An arc length
value shows the morphological alterations of the curve across
different lags, and may show significant differences among lags
from different groups of study. The arc length of each multi-lag
curve was computed as

AL =

τ=10
∑

τ=2

√

1+ (E[τ ]− E[τ − 1])2 (10)

referring E to the values of DPE and PME for the corresponding
time-lag τ in each case.

Hence, a total of 21 features were computed for symbolic-
based entropies DPE and PME on each EEG channel. More
precisely, 10 single entropy values (one for each of the 10 time-
lags computed), 5 tendency parameters related to time-lag curves
(slopes Slp1 − 2, Slp1 − 4, Slp1 − 6, Slp1 − 8, Slp1 − 10), and
6 shape-related features (areas under curves Ar1 − 2, Ar1 − 4,
Ar1− 6, Ar1− 8, Ar1− 10, and arc length AL) were obtained for
each EEG channel.

2.6. Statistical Analysis
Once the features were computed for each metric under study,
Shapiro-Wilks and Levene tests corroborated the normality and
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homoscedasticity of the data, such that the results are expressed
as mean and standard deviation. Then, statistical differences
between features obtained for emotional states of calmness and
distress were assessed for each time lag τ using a one-way analysis
of variance (ANOVA). A value of statistical significance ρ < 0.05
was considered as significant.

Furthermore, the discriminatory power of each feature to
distinguish between both groups of emotions was tested by using
a stratified 10-fold cross-validation scheme. This methodology
prevents over-fitting as well as other biases when performing
the training/test operation on classifiers (Jung and Hu, 2015).
Thus, the database selection containing 259 recordings was sliced

into ten equally-sized folds with a balanced number of trials
from both groups. Next, ten iterations were performed, such
that in each one 9 out of 10-folds were used as a training
subset, and 1 out of 10-folds was used as the test subset. To
perform the classification, a receiver operating characteristic
(ROC) approach was computed using the training trials to obtain
an optimal threshold, which was then used to classify the trials
in the test subset. It is worth noting that the threshold was
selected as the cut-off point that maximizes accuracy (Acc).
Values of sensitivity (Se), specificity (Sp), and Acc, obtained from
the 10 iterations, were finally averaged to provide global and
robust estimates.

FIGURE 2 | Mean and standard deviation values of DPE at different time-lags for calmness and distress at the most significant EEG channels.

FIGURE 3 | Mean and standard deviation values of PME at different time-lags for calmness and distress at the most significant EEG channels.

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2019 | Volume 13 | Article 40132133

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Martínez-Rodrigo et al. Multi-Time-Lag Analysis on EEG Recordings

Keeping in mind the objective of assessing possible
relationships and complementary information among features,
several advanced classifiers were used. Thus, a decision tree
classifier (DTC), a support vector machine (SVM), a quadratic
discriminant analysis (QDA) and a k-nearest neighbor (KNN)
classifier were used. Regarding DTC, the nodes’ growth was
stopped when each node solely contained either fragments from
only one group or a number of trials <20% of the entire dataset.
Moreover, every node was split by using an impurity-based
Gini index. Furthermore, the SVM classifier was run with a
cubic kernel function and kernel scale of 1. Finally, the KNN

TABLE 1 | Results of ρ and Acc of the most relevant EEG channels for DPE and

PME at different time-lags.

DPE P3 PO3 O1 Oz CP2 O2

τ = 1
ρ 0.00261 8.85×10−5 0.0044 0.0235 0.132 0.0696

Acc (%) 62.20 62.90 58.00 58.70 54.00 56.40

τ = 2
ρ 1.88×10−4 0.0049 0.0012 0.0139 0.0455 0.0436

Acc (%) 63.70 60.89 60.62 61.78 61.00 61.39

τ = 3
ρ 3.23×10−5 0.913 0.0440 0.3023 0.3045 0.0436

Acc (%) 62.50 56.00 58.80 57.10 54.40 53.30

τ = 4
ρ 6.08×10−5 0.4390 0.2140 0.6010 0.4710 0.6320

Acc (%) 61.80 55.60 55.60 52.50 57.10 53.70

τ = 5
ρ 6.99×10−6 0.7310 0.0866 0.5114 0.2740 0.7310

Acc (%) 61.40 59.85 61.00 64.09 61.00 62.16

τ = 6
ρ 2.69×10−5 0.1210 0.0312 0.341 0.697 0.45

Acc (%) 62.20 59.80 57.60 56.80 55.40 53.30

τ = 7
ρ 3.76×10−5 0.0136 0.0278 0.28 0.185 0.4514

Acc (%) 62.90 60.60 61.00 53.70 57.50 54.40

τ = 8
ρ 6.55×10−5 0.3520 0.0197 0.1130 0.1630 0.205

Acc (%) 62.90 58.70 56.40 56.00 55.20 53.70

τ = 9
ρ 1.14×10−4 0.0932 0.0543 0.3210 0.0148 0.5670

Acc (%) 61.00 57.10 55.00 55.60 60.20 54.80

PME P3 PO3 O1 Oz CP2 O2

τ = 1
ρ 3.33×10−4 8.85×10−4 0.017 0.128 0.0824 0.109

Acc (%) 61.00 59.10 59.10 56.80 54.80 55.60

τ = 2
ρ 4.34×10−4 0.0049 0.0044 0.0637 0.0089 0.1610

Acc (%) 61.40 59.10 61.00 56.80 56.50 56.40

τ = 3
ρ 0.0905 0.913 0.0532 0.362 0.342 0.633

Acc (%) 59.80 60.50 59.80 58.30 57.10 53.70

τ = 4
ρ 0.034 0.439 0.865 0.169 0.476 0.764

Acc (%) 59.20 56.00 56.80 57.80 59.80 61.70

τ = 5
ρ 0.379 0.731 0.181 0.166 0.346 0.749

Acc (%) 57.50 58.70 64.50 61.00 62.50 60.20

τ = 6
ρ 0.216 0.121 0.0334 0.472 0.674 0.593

Acc (%) 56.80 62.20 62.20 62.50 56.40 61.40

τ = 7
ρ 6.85×10−4 0.0136 0.194 0.974 0.0173 0.941

Acc (%) 61.00 64.10 62.20 60.20 62.60 58.2

τ = 8
ρ 1.44 ×10−4 0.352 0.0786 0.0857 0.145 0.734

Acc (%) 65.60 62.50 66.40 65.10 60.20 55.20

τ = 9
ρ 5.38×10−5 0.0932 0.0621 0.675 0.0026 0.798

Acc (%) 68.30 62.90 60.20 59.10 68.70 58.70

classifier used an Euclidean distance metric with 10 neighbors,
where the weight of the distance was computed to perform
the classification by means of squared inverse. Nonetheless,
given the high amount of analyzed features (21 features × 2
metrics × 32 channels), the subset providing most information
was selected in first place for each classifier. Thus, a sequential
forward selection (SFS) approach was used to select the subset of
features minimizing misclassification rate for each classifier. A
stratified 10-fold cross-validation scheme was also used to reduce
overfitting in this analysis.

3. RESULTS

3.1. Results for Delayed Permutation
Entropy and Permutation Min-Entropy
Mean and standard deviation of DPE and PME values for the
most relevant EEG channels at different time-lags (1 ≤ τ ≤ 10)
are shown in Figures 2, 3, respectively. As can be observed,
both metrics obtained a similar trend throughout the increasing
time-lags. DPE and PME values for calmness are higher than
for distress trials, especially at lower lags. However, as time-lag
increases the average differences between groups become smaller,
such that at higher time-lags the mean entropy differences
between groups become imperceptible. Furthermore, a certain
degree of stabilization at time-lags > 3 for both metrics can
also be noticed, where the standard deviation decreases as the
analyzed time-lag increases.

TABLE 2 | Results of ρ and Acc of the DPE curve-related parameters.

DPE P3 PO3 O1 Oz CP2 O2

Slp1− 2
ρ 0.0152 3.30×10−4 0.049 0.0970 0.5606 0.2044

Acc (%) 57.92 61.78 57.14 57.92 54.05 58.69

Slp1− 4
ρ 2.94×10−4 4.71×10−5 0.0048 0.0160 0.1783 0.0504

Acc (%) 58.69 61.39 57.53 60.23 54.44 59.46

Slp1− 6
ρ 4.60×10−4 6.92×10−5 0.0056 0.0189 0.1475 0.0576

Acc (%) 58.30 60.62 59.46 61.12 53.28 58.30

Slp1− 8
ρ 0.0011 1.78×10−4 0.0087 0.0350 0.3408 0.0909

Acc (%) 58.69 62.16 58.30 58.69 53.67 58.42

Slp1− 10
ρ 5.65×10−4 1.22×10−4 0.0089 0.0456 0.3002 0.0933

Acc (%) 59.85 62.23 59.07 57.14 53.67 57.53

Ar1− 2
ρ 4.30×10−5 5.48×10−5 0.0024 0.0174 0.0713 0.0542

Acc (%) 61.67 62.16 59.07 57.45 55.09 56.76

Ar1− 4
ρ 1.33×10−4 2.84×10−4 0.0025 0.0279 0.0717 0.0976

Acc (%) 61.00 59.07 57.92 57.53 55.73 54.05

Ar1− 6
ρ 1.14×10−5 0.0010 0.0031 0.0457 0.1075 0.1443

Acc (%) 60.62 59.46 58.87 56.51 56.76 54.44

Ar1− 8
ρ 0.0016 0.0015 0.0034 0.0543 0.0929 0.1609

Acc (%) 60.23 60.62 58.30 58.69 55.98 53.28

Ar1− 10
ρ 6.42×10−4 9.30×10−4 0.0027 0.0488 0.0516 0.1559

Acc (%) 60.87 59.85 55.20 54.83 57.14 53.02

AL
ρ 0.0021 1.04×10−4 0.0136 0.0351 0.1672 0.0808

Acc (%) 56.37 63.47 57.53 57.92 55.21 54.95
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Table 1 shows the statistical significance and global
classification performance, that is accuracy (Acc), for time-
lags (1 ≤ τ ≤ 10) in DPE and PME metrics, respectively.
Although there are similarities among mean entropy curves,
the performance achieved for each metric differs considerably
throughout the time-lags. In general terms, DPE shows a
poorer performance discriminating between emotional states
of calmness and distress than PME. As can be observed in
Table 1, only lower time-lag entropies show a relevant statistical
significance. Moreover, the overall discriminatory power for
all cases is around 60%, decreasing even more when higher
time-lags are analyzed. This effect is clearly seen at parieto-
occipital and occipital channels PO3, O1, O2, and Oz. For
instance, PO3 channel achieved a global performance of 62.9%
at time-lag τ = 1, while accuracy decreased down to 57.10%
at time-lag τ = 9. Only parietal channel P3 showed a regular
statistical significance throughout every single time-lag, reaching
a maximum global classification performance at time-lag τ = 2
with 63.7% of subjects classified correctly.

On the contrary, PME showed better global classification
performance for certain channels, especially at higher time-lags.
For instance, parietal channel P3, classified correctly 68.3% of
trials between calmness and distress at time-lag τ = 9. Similarly,
centro-parietal channel CP2 showed a poor performance when
no lag was applied (τ = 1), but it raised at higher time-lags,
achieving the best single global performance at time-lag τ = 9,
classifying correctly the 68.7% of the subjects. This improvement
supposes an increase of more than 13% regarding PME at no
lag τ = 1 and more than 8% compared with DPE metric at
time-lag τ = 9. Moreover, there seems to be a certain degree of
complementarity between DPE and PME at different time-lags,
because the same EEG channels measured with each metric show
relevant information at different time-lags. This contrast is well-
noticed at parietal channel P3. No relevant differences between
several time-lags were found when DPE was computed for P3,
i.e., all time-lags presented a similar discriminatory power. On
the contrary, the same channel showed an important increasing
performance when it was analyzed by means of PME metric at
higher time-lags; hence relevant information was noticed when
time-delay was performed.

3.2. Results From Curve-Related
Parameters
Table 2 summarizes diagnostic accuracy of every curve-based
parameter derived from DPE analysis for the most relevant
channels. As can be seen, almost all features achieved statistically
significant differences between groups (ρ < 0.05). Features
obtained from parietal channel P3 achieved a notable statistical
significance, especially in the area under the time-lag curve
(Ar1 − 2 to Ar1 − 6), thus stating the differences between
curves at lower and their convergence at higher time-lags. It
is also remarkable that parieto-occipital channel PO3 achieved
a good performance for all features. With respect to slope-
based parameters, global accuracy ranged from 60.62 to 62.23%,
Slp1 − 10 being the feature with maximum performance for this
channel. Similarly, accuracy of area-based lag parameters ranged

TABLE 3 | Results of ρ and Acc of the PME curve-related parameters.

PME P3 PO3 O1 Oz CP2 O2

Slp1− 2
ρ 0.0324 0.0012 0.2999 0.5982 0.7753 0.2025

Acc (%) 57.92 59.70 54.83 54.83 52.90 54.05

Slp1− 4
ρ 0.0057 2.94×10−4 0.0148 0.05 0.1168 0.1127

Acc (%) 58.38 59.07 58.69 59.07 56.37 55.98

Slp1− 6
ρ 0.0013 4.28×10−4 0.0447 0.1396 0.0939 0.1025

Acc (%) 60.62 58.69 58.42 54.83 55.21 55.60

Slp1− 8
ρ 0.0116 1.89×10−4 0.0344 0.2420 0.1974 0.0688

Acc (%) 58.69 57.92 53.53 54.05 52.51 55.64

Slp1− 10
ρ 0.0063 2.85×10−4 0.0516 0.1980 0.1914 0.1682

Acc (%) 60.68 61.39 58.30 56.37 55.21 54.83

Ar1− 2
ρ 2.06×10−4 2.55×10−4 0.0081 0.0878 0.0292 0.1169

Acc (%) 58.69 59.61 59.07 54.05 51.74 52.90

Ar1− 4
ρ 8.10×10−4 0.009 0.0085 0.1381 0.0447 0.2704

Acc (%) 58.87 59.46 59.85 54.33 52.90 55.41

Ar1− 6
ρ 0.0060 0.0276 0.0089 0.1538 0.0930 0.3011

Acc (%) 59.07 57.63 58.78 55.60 54.44 54.44

Ar1− 8
ρ 0.0051 0.0204 0.0094 0.1734 0.0748 0.3732

Acc (%) 57.92 58.30 59.85 55.21 55.48 53.00

Ar1− 10
ρ 0.0016 0.0193 0.0072 0.1666 0.0440 0.4302

Acc (%) 60.05 57.92 59.15 55.73 55.21 54.44

AL
ρ 0.0097 5.00×10−4 0.0950 0.1582 0.5373 0.0987

Acc (%) 59.82 58.69 56.16 53.67 54.44 58.69

from 59.07 to 62.16%, where Ar1 − 2 reported the maximal
performance. It is also worth noting that arc-length reached the
maximum global accuracy, classifying correctly 63.47% of trials,
and thus overcoming the best performance obtained by single
DPE entropy at the same channel at lag τ = 1. Finally, the rest
of the parameters computed from occipital channels O1, O2,
and Oz and centro-parietal channel CP2 obtained a more limited
performance, their global accuracy ranging from 53.28 to 61.12%.

Similarly, Table 3 summarizes discriminant ability of all
curve-based parameters derived from PME analysis for the most
relevant channels. In this case, both statistical significance and
global accuracy are more limited than for DPE curve-related
parameters. All features computed on parietal channel P3 and
parieto-occipital channel PO3 resulted to be statistical significant.
The global accuracy obtained for these channels ranged from
57 to 61%, thus achieving a worse performance than before.
Moreover, only a few curve-related parameters from occipital
channels O1, O2, and Oz showed statistical significance, and the
global accuracy was below 60% for all the parameters. Finally,
CP2 achieved the worst performance, where global accuracy was
around 55%.

3.3. Multi-Parametric Analysis and
Advanced Classification
For each classifier, the optimal number of features minimizing
its misclassification rate through an SFS scheme ranged from
5 to 8 in each iteration of a 10-fold cross-validation approach.
The occurrence of the most relevant variables are displayed in
Figure 4. As can be seen, entropy-based metrics were mainly
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FIGURE 4 | Occurrence of the most selected features through an SFS scheme within a 10-fold cross-validation approach for each classifier.

TABLE 4 | Values of sensitivity, specificity, and accuracy obtained for each

classifier once the feature selection process had finished.

DTC SVM QDA KNN

Sensitivity (%) 75.41 91.97 82.21 93.72

Specificity (%) 83.94 90.16 61.56 90.66

Accuracy (%) 79.92 91.12 75.66 92.32

chosen for time-lags longer than 1 and curve-related variables
both from DPE and PME. Moreover, it should be noted
that most of these features were selected in nearly all folds,
thus only changing the less relevant ones for the resulting
classification models. More precisely, for all classifiers, most
DPE-based parameters were chosen from EEG channels P3 and
PO3 and most PME-based features from channels P3, Pz, FC5,
C4, and CP5.

Once the feature selection process finished for each classifier,
the obtained classification results are displayed in Table 4 in
terms of sensitivity, specificity and accuracy. Note that global
discriminant ability for all approaches ranged from 75.66% (for

QDA) to 92.32% (for KNN). Furthermore, the SVM classifier
achieved a comparable performance to KNN, classifying correctly
91.12% trials. Finally, it should also be highlighted that both SVM
and KNN classifiers reported the largest diagnostic accuracies
with well-balanced values of sensitivity and specificity.

4. DISCUSSION

During the last years automatic emotion recognition has
received special attention due to its importance in areas,
such as medicine and education. Among the different types
of emotions, continued distress is one of the most studied
because it is often harmful for health. Considering its
relevance, distress has been assessed in a wide variety of
scenarios, including driving tasks (Healey and Picard, 2005),
military exercises (Skinner and Simpson, 2002), surgical
procedures (Marrelli et al., 2014), and on-line exams (Gomes
et al., 2014), among others. An interesting study recently
published shows amethodology to redirect stress episodes toward
positive moods (Fernández-Caballero et al., 2016).

Taking into consideration this preamble, several works have
been published in the literature. Their research is focused on
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FIGURE 5 | Topological EEG representation of average calmness and distress values for time-lags from τ = 1 to τ = 9 using PME metric.

automatic distress recognition using EEG recordings (Hosseini
et al., 2010; Khosrowabadi et al., 2011; Peng et al., 2013;
Minguillon et al., 2016; Al-Nafjan et al., 2017; Al-Shargie
et al., 2018; Jebelli et al., 2018; García-Martínez et al., 2019b).
However, only a few of them have analyzed this phenomena
from a non-linear point of view (García-Martínez et al., 2016).
Recently, another approach reported that symbolic analysis of
brain dynamics was able to detect distress (García-Martínez
et al., 2017). In that study, PE and its extension called AAPE
were used to assess brain dynamics for each EEG channel.
However, the analysis was carried out without considering the
possibility of exploring hidden non-linear information at time-
lags higher than one. This was the starting point that motivated
the present study.

To the best of our knowledge, this is the first work
addressing the effects of multi-lag for distress recognition
from EEG recordings. For this purpose, a modified version of
AAPE was used to analyze EEG signals with distinct time-
lags. Additionally, PME was also considered in this study,
since it is an improved symbolic alternative for identifying the
existence of hidden temporal dynamics in time series and it
allows a better discrimination of signals with similar temporal
correlations (Zunino et al., 2015). Indeed, it has been recently
applied in the study of emotion recognition using heart rate
variability with promising results (Xia et al., 2018).

As expected, both DPE and PME metrics reported the same
trends when calculating the mean entropy values across the
different time-lags, as was observed in Figures 2, 3. Calmness
emotional state reported higher entropy values than distress
for all EEG channels, especially at lower time-lags. However,
this difference became smaller as the time-lag increased.
Furthermore, the time-lag analysis revealed additional entropy
information not observed at time-lag τ = 1, especially at centro-
parietal and occipital channels. This effect can also be well-
noticed in Figure 5, which shows a topological representation
of mean entropy values for each channel at the first nine time-
lags using PME. Although the general trend is maintained
across time-lags, the imprint patterns change, thus revealing
information at certain channels not seen before.

These results enhance the presence of a larger diversity of
ordinal patterns in some local time series in calmness trials in
comparison to distressed ones, thus suggesting the existence of
more complex brain dynamics in calmness state. Such loss of
complexity under distress might be associated to a lower brain’s
ability of adaptation to external stimuli and environmental
changes. Indeed, decomplexification of physiological systems
has been traditionally identified with a lower ability to manage
information, and therefore with a higher probability of suffering
a pathological condition (Goldberger et al., 2002; Lipsitz, 2004).
Interestingly, these findings are in agreement with other studies
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FIGURE 6 | Topological EEG representation of average calm and distressed patients for time-lag τ = 1 vs. τ = 9 using PME metric.

published during the past years. In this sense, increased values
of correlation dimension in calm participants with respect to
distressed subjects have been reported so far (Hosseini et al.,
2015). In another work, a decrease of relative power in subjects
facing a series of distressful stimuli was also described (Bastos
Filho et al., 2012). Finally, the fact that this trend is maintained
throughout the different time-lags reinforces a previous study
where no lag was applied (García-Martínez et al., 2017).

Another relevant finding is that single discriminatory power
in multi-lag analysis has notably improved with respect to
other previous studies dealing with singe-lag (García-Martínez
et al., 2017) and MSE (Martínez-Rodrigo et al., 2019) analysis,
especially in some specific channels. Thus, left parietal channel
P3 is still a very relevant channel for distress detection using
symbolic analysis. This finding was already reported in our recent
previous work where AAPE was applied to the data (García-
Martínez et al., 2017). Nevertheless, other studies have already
corroborated this association with the left parietal area. Thus,
a higher activation has been observed during normal non-
depressed and reasonably positive moods in the left parietal
area than in the right one (Davidson, 1988). In the same
line, meditation has also been characterized by an increasing
activity of the left parietal region (Manna et al., 2010). In the
present study, P3 showed robustness and consistency across
different time-lags when discriminating between emotional states
of calmness and distress. Nevertheless, the global classification
performance was improved notably for time-lags higher than

one, especially when data was analyzed by means of PME metric,
increasing from 61% when no lag was applied up to 68.30% when
time-lag τ = 9 was computed.

These findings may indicate the existence of long-range
correlations in the data, which have only been sufficiently
highlighted by considering a multi-lag entropy-based analysis.
Indeed, these observations can be visually corroborated in the
topological representation of brain areas depicted in Figure 6. It
represents average PME values computed from emotional states
of calmness and distress for time-lags τ = 1 (a) and τ = 9 (b). As
can be seen, entropy values obtained at time-lag τ = 9 are quite
different compared to the analysis with no lag, showing a more
balanced pattern between left and right hemispheres throughout
frontal, parietal and occipital areas. In addition, the entropy
differences between calmness and distress are also shown in this
figure (on the right column). Thus, the higher differences are
found in left central region for τ = 1, whereas a higher activation
of left parietal region is obtained for τ = 9.

The right frontal channel F4 also presents a considerable
difference of activation between calmness and distress states both
in τ = 1 and τ = 9 cases. Interestingly, the relevance of the
mentioned areas and the possible relation between frontal and
parietal areas of opposite hemispheres has already been depicted
in our previous studies. In fact, 30 years ago it was verified that
a relative left parietal brain activation is balanced by a relative
right parietal brain activation and vice-versa (Davidson, 1988).
A similar outcome has also been observed in another study
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where patients with different mental disorders were conducted
to practice meditation (Rubia, 2009).

Moreover, the right brain hemisphere deserves especial
attention in this work. Considering our previous findings, the
right centro-parietal channel CP2 showed no relevance when
analyzing emotional states with symbolic entropies (García-
Martínez et al., 2017). This outcome has been corroborated again
in this work, where neither DPE nor PME showed statistical
significance at τ = 1 (no lag), and the global classification was
below 55% in both cases (see Table 1). However, when analyzing
the same brain area at higher time-lags, a notable increase of
statistical significance and discriminatory power was observed.
It is especially the case for CP2 with PME at time-lag τ = 9
(ρ = 0.0026 and Acc = 68.70%), thus achieving the highest global
classification in this study. The relevance of the channel CP2 can
also be observed in Figure 6, where the difference is not notable
for τ = 1, but it is for τ = 9.

These findings, together with the relevance of the results
reported by the left parietal channel P3, reveal the possible
existence of complementary information among the parietal
lobes of both brain hemispheres. Indeed, a number of previous
works reported a certain degree of complementarity between
right and left posterior areas under stimulation of distress
and calmness. For instance, interesting information about
parietal and occipital asymmetry at different frequency bands

during distressful tasks has been described (Park et al., 2011).
Furthermore, an intensive parietal lobe activation under anxiety
and distress conditions has also been reported (Nitschke, 1998).

Recently, occipital electrodes O1 and O2 have also been
explored to evaluate variations in complexity provoked by
visual elicitation (Tonoyan et al., 2016). In a similar line,
the posterior brain area has been related to the arousal
component of emotions, thus being their processing essential
for the recognition of emotions (Dolcos and Cabeza, 2002).
Interestingly, in our previous study the combination of the left
parietal channel P3 and the right parietal channel P4 achieved a
notable performance discriminating between emotional states of
calmness and distress, thus demonstrating the inter-correlation
of these brain regions (García-Martínez et al., 2017). However, in
that study, brain dynamics were assessed by means of different
computation approaches, where each methodology highlighted
one of the hemispheres in isolation. In the present work,
both areas have resulted to be significant when analyzed with
PME metric at higher time-lags, obtaining results comparable
to those reported individually by other metrics used in our
previous works.

The obtained multi-lag curves were also parameterized and
studied to compare the relative complexity of normalized time
series. The use of curve profiles for characterization of biological
signals has been already proposed by other authors (Costa et al.,

TABLE 5 | Comparison of the most relevant works dealing with automatic identification of negative stress from the recordings.

Work Experiment Features
Statistics/

Results
Classifier

Hosseini et al., 2010 15 subjects FDb, CDc, and WEnd LDAe and SVM LDA: 80.1% SVM: 84.9%

5 EEG channels

IAPSa

Bastos Filho et al., 2012 32 subjects Statistical features, PSDf, and HOCg KNN Stat.: 66.25%

4 EEG channels PSD: 70.1%

Videoclips HOC: 69.6%

Peng et al., 2013 13 subjects CD, LZCh, LLEi, PSD ANOVA Higher complexity in stress

3 EEG channels

Eyes closed, no stimuli

García-Martínez et al., 2016 32 subjects SEj, QSEk, and DEl Decision tree 75.29%

32 EEG channels

Videoclips

García-Martínez et al., 2017 32 subjects QSE, PE, and AAPE SVM 81.31%

32 EEG channels

Videoclips

García-Martínez et al.,

2019b

32 subjects QSE, CEm, and CCEn SVM 80.31%

32 EEG channels

Videoclips

This work 32 subjects DPE and MPE KNN 92.32%

32 EEG channels

Videoclips

a IAPS, International Affective Picture System. b FD, Fractal dimension. c CD, Correlation dimension. d WEn, Wavelet entropy. e LDA, Linear discriminant analysis. f PSD, Power spectral
density. g HOC, High-order crossings. h LZC, Lempel-Ziv complexity. i LLE, Largest Lyapunov exponent. j SE, Sample entropy. k QSE, Quadratic sample entropy. l DE, Distribution
entropy. m CE, Conditional entropy. n CCE, Corrected conditional entropy.
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2005). Accordingly, Slp1−4 and Slp1−6 reflect that the degree of
change in the complexity of some EEG channels is more relevant
in smaller time-lags. These outcomes were observed in Figures 2,
3, where changes in the slopes could be seen until the curves
stabilized around time-lag τ = 5. In this regard, parietal and
occipital channels showed statistical relevance at these slopes for
DPE metric, but only parietal channels resulted relevant when
curved-related parameters were calculated for PME metric. It is
worth noting that the same outcomes were also obtained for the
area under curve parameters.

On the other hand, the developed multivariate analysis has
shown that putting all the data together led to a notably
overall performance increase, which demonstrated that multi-lag
analysis is able to provide additional, as well as complementary
information, to single-lag one. To this respect, an SFS scheme was
applied under a 10-fold cross-validation approach to choose the
optimal subset of features maximizing the classification rate for
each classifier. Interestingly, the most relevant features selected
for each classifier were mainly computed from EEG channels
showing the largest differences between emotional states of
calmness and distress. Indeed, DPE computed from channels
PO3 and P3 reported high statistically significant differences
between the two groups of trials, as shown in Tables 1, 2.
Similarly, PME obtained from channels P3, Pz, FC5, C4, and
CP5 provided high visual differences, as shown in Figures 5,
6. Moreover, let us highlight that all selected features were
computed from time-lag longer than 1 or from τ -based curves,
as shown in Figure 4.

Another relevant aspect is that the results obtained in the
present study outperformed notably other similar works that
have analyzed non-linear metrics from the same database with no
lag, such as summarized in Table 5. Indeed, a global accuracy of
69.6% has only been reported by applying a high-order crossing
approach to four EEG channels (Bastos Filho et al., 2012). In
addition, different non-linearmetrics have reported a higher level
of complexity in stressed subjects (Peng et al., 2013). In other
work, combining quadratic sample entropy values from several
EEG channels through a DTC classifier, a discriminant ability
around 75% has been provided (García-Martínez et al., 2016). On
the other hand, a discriminant model based on SVM and using
irregularity and symbolic metrics reached a diagnostic accuracy
>80% (García-Martínez et al., 2019b). Similarly, variants of
PE have already been applied to distress recognition, with a
classification performance of 81.31% (García-Martínez et al.,
2017). However, in the present study an improvement of about
10% has been reported by making use of the same kind of
SVM classifier.

Likewise, the classification results obtained in the present
study also significantly improved the sole recent work
conducting a MSE analysis on EEG signals for distress
identification (Martínez-Rodrigo et al., 2019). In fact, making
use of the same SVM-based approach, here a classification
rate between distress and calmness emotional states has been
obtained about 6% higher than for MSE. It should be noted that
bothMSE andmulti-lag entropy analyses pursue the same goal of
quantifying complexity at different time scales. For this purpose,
MSE uses a rescaling procedure based on filtering out the shorter
oscillations and keeping the longer ones (Humeau-Heurtier,

2015). This approach unavoidably removes some frequency
content, specially from rescaled time series presenting very fast
oscillations (Humeau-Heurtier, 2015). Such loss of frequency
information could explain the aforementioned poorer outcome
reached by MSE, because entropy computation from time-lagged
samples does not alter time and frequency information from
original data (Govindan et al., 2007; Kaffashi et al., 2008).
Moreover, this finding could also justify the fact that, whereas no
changes were noticed across all time scales in MSE analysis in
brain areas activating and supporting distress (Martínez-Rodrigo
et al., 2019), large differences have been observed for different
time-lags, as extensively described in previous paragraphs.

Finally, there are some limitations in this study that
deserve our attention. Firstly, the studied DEAP database
is not exclusively designed for recognition of calmness and
distress emotions. In fact, many other emotional states
were also recorded during the experiment (Koelstra et al.,
2012). Moreover, the number of trials eliciting calmness and
distress is notably unbalanced for each healthy volunteer, thus
making the use of a subject-based classification impossible.
Secondly, further analyses on other similar databases like
ASCERTAIN (Subramanian et al., 2018), AMIGOS (Miranda
Correa et al., 2018), and DREAMER (Katsigiannis and Ramzan,
2018) are required to corroborate and generalize the obtained
results. However, the impact of some potential confounding
aspects on the results provided by several databases will have
to be carefully analyzed for this purpose. Thus, it should
be thoughtfully scrutinized how different experimental setups,
population distributions in terms of age and gender, and technical
aspects related to the acquisition of EEG signals mask changes
in brain dynamics under distress. Thirdly, the video clips used
as stimuli have a duration of 1 min, which may be too much
time to just elicit a single emotional state. Thus, participants
may present different emotions for the same stimulus, making
it difficult to properly rate their level of valence and arousal.
Finally, only EEG signals were assessed in this work, thus
discarding the information reported by other physiological
variables. However, peripheral recordings also contained in
DEAP and other databases, in combination with brain dynamics,
will be explored in further studies for the sake of detecting
distress episodes.

5. CONCLUSIONS

In this study, two permutation entropies, adapted to work in
a multi-lag context, have been analyzed for the first time to
automatically identify negative stress. This multi-lag analysis has
revealed new insights never seen before, thus notably improving
the performance of distress identification. Considering the
relevant results that permutation entropy has previously reported
in non-lag and multiscale contexts for human emotion detection,
it becomes highly interesting to analyze brain dynamics from a
time delay viewpoint. For this reason, we hypothesized that there
might exist relevant and complementary information at higher
time-lags among different brain areas. The results obtained
after performing the analyses have confirmed our initial ideas,
reporting an improved classification between emotional states of
calmness and distress.
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Moreover, left parietal and right centro-parietal channels
showed remarkable activation at higher time lags, suggesting
that removing long-range linear correlations may help to better
evaluate the non-linear information of the data. Finally, several
discriminant models obtained from advanced classifiers were
used to study the complementarity of the features computed
at different time-lags for each EEG channel. The resulting
functions have combined single entropy values from different
channels calculated at lags higher than one with curve-related
parameters, thus corroborating that there are more relevant
information when time-lags are applied to the time series than
when data are analyzed without any time delay or averaging
consecutive samples.
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Magnetic resonance imaging (MRI) is a key technology in multimodal animal studies
of brain connectivity and disease pathology. In vivo MRI provides non-invasive, whole
brain macroscopic images containing structural and functional information, thereby
complementing invasive in vivo high-resolution microscopy and ex vivo molecular
techniques. Brain mapping, the correlation of corresponding regions between multiple
brains in a standard brain atlas system, is widely used in human MRI. For small
animal MRI, however, there is no scientific consensus on pre-processing strategies
and atlas-based neuroinformatics. Thus, it remains difficult to compare and validate
results from different pre-clinical studies which were processed using custom-made
code or individual adjustments of clinical MRI software and without a standard brain
reference atlas. Here, we describe AIDAmri, a novel Atlas-based Imaging Data Analysis
pipeline to process structural and functional mouse brain data including anatomical
MRI, fiber tracking using diffusion tensor imaging (DTI) and functional connectivity
analysis using resting-state functional MRI (rs-fMRI). The AIDAmri pipeline includes
automated pre-processing steps, such as raw data conversion, skull-stripping and
bias-field correction as well as image registration with the Allen Mouse Brain Reference
Atlas (ARA). Following a modular structure developed in Python scripting language,
the pipeline integrates established and newly developed algorithms. Each processing
step was optimized for efficient data processing requiring minimal user-input and user
programming skills. The raw data is analyzed and results transferred to the ARA
coordinate system in order to allow an efficient and highly-accurate region-based
analysis. AIDAmri is intended to fill the gap of a missing open-access and cross-platform
toolbox for the most relevant mouse brain MRI sequences thereby facilitating data
processing in large cohorts and multi-center studies.
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INTRODUCTION

Understanding brain function in health and disease at different
hierarchical levels requires collaborative interdisciplinary efforts
using multiple experimental methods. Neuroimaging, especially
magnetic resonance imaging (MRI), is a critical element of
that approach since the use of MRI preserves the anatomical
morphology of the brain tissue almost perfectly. Conscious of
the high data integrity, large-scale human MRI initiatives are
currently underway to provide standardized sharing repositories
(Hodge et al., 2016; Gorgolewski et al., 2017) and processing
tools (Rex et al., 2003; Jenkinson et al., 2012). In order to be
able to compare information derived from different studies,
images are spatially normalized to a common coordinate system
such as the brain atlas with defined coordinates and assigned
structures from Talairach and Tournoux (Fang et al., 1995) or
the Montreal Neurological Institute/International Consortium
of Brain Mapping (MNI/ICBM; Mazziotta et al., 1995). In
order to achieve similar routine atlas-based neuroinformatics
of mouse brain MRI, several challenges need to be overcome:
(1) the image signal-to-noise ratio (SNR) is dramatically
reduced due to image voxels in mice which are 10–15-fold
smaller in all dimensions (Nieman et al., 2005); (2) scanner
hardware consisting of gradients, coils as well as the animal
fixation and anesthesia need to be miniaturized and adapted
to the mouse body and physiology (Driehuys et al., 2008);
(3) humanMRI processing tools usually do not work with mouse
brain data due to the striking differences in voxel size; and
(4) a common 3D MRI-compatible brain atlas with a detailed
segmentation is needed to facilitate atlas-based neuroinformatics
at different scales. Recent developments in scanner hardware,
e.g., ultra-high-field MRI scanner (>7T) and dedicated ultra-
sensitive coils, enabled in vivo mouse brain MRI with structural
anatomical details at 100 µm in-plane resolution as well as
brain-wide network analysis at the functional and structural level
(Hoehn and Aswendt, 2013). However, there is currently no
standardization or consensus on MRI acquisition, processing,
and atlas-based neuroinformatics. Although several mouse brain
atlases have been developed and applied (Hess et al., 2018),
not all of them are continuously updated and maintained to
be accessible online. The most detailed 3D mouse brain atlas,
the Allen Brain Reference Atlas (ARA), provides more than
1,000 brain structures (Lein et al., 2007; Dong, 2008). However,
the ARA was generated from two-photon microscopy images
with a very low image correlation to MRI (e.g., ventricles appear
black and not white as in T2-weighted MRI). Most labs rely
on custom-made code or adapt their data to the processing
requirements of human imaging toolboxes (van Meer et al.,
2010; Hübner et al., 2017; Green et al., 2018), often with
lack of validation. Existing software pipelines (Supplementary
Table S1) require commercial software, use different MRI atlases
or do not incorporate algorithms for both, structural and
functional MRI (Budin et al., 2013; Koch et al., 2019). The
associated lack of reproducibility and comparability represents
a key drawback for reliable multi-center and translational
animal studies. Therefore, we developed a novel the Atlas-based
Imaging Data Analysis Pipeline, AIDAmri, for structural and

functional MRI of the mouse brain using the ARA coordinate
system. AIDAmri provides an automated, efficient and highly
accurate region-based analysis of multi-parametric MRI, such as
anatomical T2-weighted MRI, diffusion tensor imaging (DTI)
and resting-state functional MRI (rs-fMRI). The modular and
open-source concept was developed in Python 3.6 for cross-
platform use. That allows the critical comparison of different
imaging methods and studies. Each processing step of the
pipeline was validated with qualitative and quantitative measures
on mouse brain MRI data acquired at 7.0, 9.4 and 11.7T
using different mouse strains and experimental stroke models.
Stroke was chosen as an example, as lesions result in dynamic
brain deformations due to tissue swelling and atrophy, which
presents a major challenge for all automated processing and atlas
registration algorithms.

MATERIALS AND METHODS

Pipeline Overview
The AIDAmri pipeline enables the processing and analysis of
both structural and functional mouse brainMRI through distinct
modules which can also be used separately. In the following, we
provide a detailed explanation of the processing steps (Figure 1).
The software pipeline is freely available on Github1. For a
detailed how-to and installation instructions see the manual
(Supplementary Material, Manual). The AIDAmri interface
(GUI) is available for executing the main functions.

A reference adult mouse T2-weighted (T2-w), DTI
and rs-fMRI data set acquired at 9.4T is available for
testing purposes2. Image processing is performed in the
Allen Mouse Common Coordinate Framework (CCF v3)
using the Allen Mouse Brain Reference Atlas, ARA3.
It is possible to use manually drawn regions-of-interest
(ROIs) or other brain atlases as well. Here, the ARA was
implemented as it is the most advanced brain atlas to-date
(Supplementary Figure S1 and Supplementary Table S2).
To describe the following complex morphological operators
(e.g., the image registration), we chose the commonly used
mathematical model to describe the image with the given
image function I(x) where x describes all voxel positions
with x = {

−→x ,−→y ,−→z }. Based on that model, the given
functions transfer voxels of one subset X into another subset
Y with f (x) = {x ∈ X | f (x) ∈ Y} in the three-dimensional
image space.

We have included algorithms for the most widely used and
most relevant MRI sequences assessing structural and functional
connectivity changes using MRI which are not available in other
pipelines (see Supplementary Table S1, for a selection of other
mouse brain imaging pipelines):

(1) T2-weighted MRI (acquired with Turbo spin echo (TSE) or
Rapid Acquisition with Refocused Echoes (RARE) sequences)
for high-contrast and high spatial resolution imaging of brain

1https://github.com/maswendt/AIDAmri
2https://doi.org/10.12751/g-node.70e11f
3http://mouse.brain-map.org/static/atlas
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FIGURE 1 | Schematic overview of AIDAmri processing modules and subsequent computational steps for anatomical data (T2-weighted and T2 map), structural
(diffusion tensor imaging, DTI) and functional data (resting-state functional magnetic resonance imaging, rs-fMRI). The given image function I(x) represents the 3D
MRI image space and describes all intensities at the position x = {−→x ,−→y ,−→z }. All data types are pre-processed using a re-orientation f re(x), bias correction fbc(x) and
brain extraction fex(x). The user has the opportunity to define individual regions of interest (ROIs), e.g., a lesion mask, to compare particular areas over different
measurements by generating an incidence map. The combined transformation f of the affine fA and non-linear transformation fNL is applied to MRI template MTPL
IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT2(x). DTI IDTI (x) and rs-fMRI IfMRI(x) processing steps were implemented based on established
protocols (Budde and Song, 2010; Kim et al., 2012; Gorges et al., 2017). AIDAmri generates a variety of outputs such as the connectivity matrices which can be
used for further atlas-based connectivity analysis. Icons designed by Smashicons from www.flaticon.com.

anatomy and pathophysiology (e.g., hyperintense signal for
segmentation of stroke lesions),

(2) Quantitative T2-mapping (measured for example by
multi slice multi echo, MSME, sequences), e.g., for
longitudinal monitoring of contrast agent accumulation
or lesion development,

(3) DTI, which maps the diffusion process of the water
molecules in biological tissues (acquired with diffusion-
sensitized sequences such as echoplanar imaging, EPI, along at
least 6 directions). DTI is used to derive quantitative measures

such as Fractional Anisotropy (FA), Mean Diffusivity (MD),
Radial Diffusivity (RD), and Axial Diffusivity (AD). These
measures relate to biological differences and are used
for clinical diagnosis (Bihan et al., 2001). Furthermore,
MRI-based tractography using DTI, provides non-destructive,
3D, brain-wide connectivity maps, which are used in animal
and human studies too (Budde and Song, 2010),

(4) Resting state functional MRI (rs-fMRI), which provides
functional data on temporal correlation of spontaneous blood-
oxygenation level-dependent (BOLD) changes at rest that
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reflect regional interactions between two particular brain
regions in task-negative state. Functional connectivity derived
from rs-fMRI is used in preclinical and clinical studies
(Grefkes and Fink, 2014; Gorges et al., 2017).

MRI Data Acquisition
The MRI data was acquired at the Max Planck Institute for
Metabolism Research, Cologne, using a 94/20USR BioSpec
Bruker system (Bruker, BioSpin, Ettlingen, Germany)
equipped with a cryo-coil and operated with ParaVision
(v6.0.1). The mice were anesthetized initially with Isoflurane
(2%–3% in 70/30 N2/O2) and head-fixed in an animal
carrier using tooth and ear bars. Fixation and anesthesia
are necessary to minimize movement artifacts. Respiration,
and body temperature were noninvasively monitored using an
MR-compatible monitoring system (Small Animal Instruments
Inc., New York, NY, USA) and displayed and recorded using
a custom-made data acquisition system based on DASYLab
(measX, Mönchengladbach, Germany). To maintain body
temperature at 37◦C, a feedback-controlled water circulation
system (medres, Cologne, Germany) was used. T2-weighted,
rs-fMRI and DTI scans (Table 1) were sequentially acquired
using n = 22 C57BL6/J mice which received photothrombotic
stroke in contrast to sham surgery as described previously (Toda
et al., 2014). The animal experimental data were collected and
managed using a custom-made and cloud-based relational
animal database4 described in detail elsewhere (Pallast et al.,
2018). Also, NT = 40 test data sets linked to previously published
(Aswendt et al., 2012; Green et al., 2018) or unpublished
(provided by Mathias Hoehn) projects. The data sets were
acquired at different field strengths and with animals of
different strains.

The pipeline AIDAmri processes DTI and rs-fMRI data
independently, but it is necessary to acquire an anatomical
reference image in the same measurement, such as a
T2-weighted image.

Step 1–Data Conversion and Signal-to-Noise
Calculation
In the first step, Bruker raw data are converted to the commonly
used format of the Neuroimaging Informatics Technology
Initiative (NIfTI; Cox et al., 2004). Other imaging formats,
such as DICOM, need to be converted including all header
information (e.g., using the software MRIcron5 or the Python
package dicom2nifti6). The AIDAmri converter algorithm
automatically detects the type of performed measurement and
applies conversion in the correct order by reading the respective
image header. According to that information, the converted
NIfTI-files are sorted in related folders. The anatomical dataset
is used to calculate the nonlinear registration which is later
applied to the structural and functional data. AIDAmri not
only transforms T2-weighted images from the raw data but

4https://github.com/maswendt/AIDAdb
5https://www.nitrc.org/projects/mricron
6https://pypi.org/project/dicom2nifti/

also calculates the exponential decay over the echo time from
multi-echo sequences to calculate quantitative T2 maps.

Automated quality control is included based on SNR
calculations based on the automatic noise variance estimation
which was chosen proven to be more precise in human MRI
(Brummer et al., 1993). Furthermore, that method is less
error-prone as the common approach to calculate the SNR
(Henkelman, 1985), by placing a ROI inside anatomical regions
and another ROI in the noise, and calculate the ratio of the mean
signal and the standard-deviation as SNR (Levenberg, 1944).

Step 2–Pre-processing
Image Re-orientation
All subsequent steps, especially the atlas registration, depend on
a defined image orientation of the input data. According to the
common three-dimensional coordinate systemwith three planes,
we decided to implement the right-hand ‘‘neurological’’ RAS
system. In our setting, the mouse lies prone and is inserted with
the head-first into the scanner. Images were acquired selecting
‘‘head-supine’’ in ParaVision. Hence, a transformation f re(x)
is necessary to re-orientate the images in standard space. This
results in images viewed from feet-to-head direction and the right
side of the mouse is on the right side of the image.

Bias-Field Correction and Brain Extraction
In case of surface coils, there is a strong bias field on the MR
image (Figure 2A). AIDAmri contains an automated bias-field
correction f bc(x). We implemented the multiplicative intrinsic
component optimization (MICO) which was previously used
only in human MRI (Li et al., 2014). We compared MICO to
the widely-used N4 bias-field correction (Tustison et al., 2010).
A total of n = 22 T2-weighted (T2-w) data sets and 10 DTI
data sets were compared using the coefficient of variations
(CV) metric (see ‘‘Results’’ section) leading to full integration
of MICO. The corrected images (Figure 2B) are used to apply
the brain extraction (skull stripping). AIDAmri runs the FMRIB
Software Library (FSL) tool BET with the options -r set to the
brain radius in mm and -R for an ‘‘robust’’ iterative estimation of
the brain center. Thus,MR images with variable center-of-gravity
from animals positioned slightly different between scans will not
affect the skull stripping accuracy (Figure 2C; Smith, 2002). To
allow FSL to process the data, the data dimension of need to be
scaled by a factor of 10 to simulate human-similar voxel sizes.
In order to avoid image interpolation, up- and downscaling is
carried out automatically only for the related NIfTI header file,
whereas the voxel size of the raw image remains the same.

Region-of-Interest Segmentation
The user then has the option to define ROIs. We use that option
to delineate the ischemic stroke lesion on T2-weighted images
using the 3D snake evolution tool of ITK-SNAP7 (Yushkevich
et al., 2006). The resulting segmentation is used to evaluate
specific areas separately by generating a list of regions that are
overlaid with the segmented area of the brain, e.g., to proof
the position of an electrode. If several segmented ROIs are
provided, a color-coded incidence map can be created, e.g., to

7www.itksnap.org
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TABLE 1 | Characteristics of the performed 9.4 T MRT measurements.

Scan type TR
4 (ms) TE

5 (ms) Acq. time (s) Matrix size Resolution (mm) FOV6 (mm) Flip angle

T2w1 5,500 32.5 352 256 × 256 × 48 0.068 × 0.068 × 0.3 17.5 × 17.5 90◦

rs-fMRI2 1,420 18 149 128 × 128 × 20 0.141 × 0.141 × 0.4 18.0 × 18.0 90◦

DTI3 3,000 17.5 840 128 × 128 × 20 0.141 × 0.141 × 0.4 18.0 × 18.0 90◦

Over 100 data sets with the given properties were used to test AIDAmri. Abbreviations: 1T2-weighted MRI, 2resting-state functional MRI, 3Diffusion Tensor Imaging, 4repetition time,
5echo time, 6field of view.

FIGURE 2 | Visualization of step 2—pre-processing for a representative T2-weighted data set. The raw data set IT 2(x) (A) underwent a re-orientation f re(x) and bias
field correction using multiplicative intrinsic component optimization (MICO) fbc(x) to reduce inhomogeneities (B). The subsequent registration is done on a brain
extracted volume IT2

ex (x) (C) by deforming the MTPL IT(x) (D) with affine fA(x) and non-linear fNL(x) transformation.

highlight how many mice had a certain brain area affected
by the stroke.

Mouse Brain Atlas and MRI Template
We developed an in-house MRI template (MTPL) IT(x) with
strong correlation to the T2 raw images IT2 (see Supplementary
Figure S2) by using N = 30 randomly chosen data sets of
healthy C57BL6 mice of similar age. The mean of all voxels
described in the gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) were calculated over all N, and the
resulting template was associated with the original ARA (Allen
Brain Reference Atlas, CCF v3, 50 µm isotropic resolution;
Figures 3A,B). To obtain a complete overview of the ARA
label IDs, we transferred the available information about label
IDs, acronyms and names to a custom-made relational database
(https://github.com/maswendt/AIDAdb; to access the file, a
www.ninoxdb.de account is required). The database lists all brain
regions according to the atlas ontology and provides simple
access to associated parent and child labels. Using that database,
we selected hierarchical lower regions of interest and defined
the related parent labels (Figure 3C) to build a parental atlas

IA↑(x). This results in a reduction from >1,000 regions in
IA(x) to 49 regions in IA↑(x). In order to compare regions
of the left vs. right hemisphere, the original ARA and the
custom parental ARA were we splitted along the sagittal
plane (Figure 3D).

Registration
We decided to use a specific multi-step registration scheme
(Figure 4). The initial assumption of AIDAmri is that all given
information of the ARA IA(x) is represented in the reference
image space X. The assignment of this information to the
individual MRI measurements IT2(x), IDTI(x) and IfMRI(x) is
achieved by a suitable transformation f which transforms X in
the acquisition image space Y, such that

f : X→ Y

Each individual transformation f is a combination of an
affine f A(x) and non-linear fNL(x) transformation computed
using NiftyReg (Centre of Medical Image Computing, University
College London, UK). NiftyReg was chosen based on a direct
comparison (see Figure 2D and Supplementary Figure S2) of
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FIGURE 3 | 3D cut-outs of the (A) Allen Brain Reference Atlas (ARA) and (B) the in-house developed MRI template (MTPL). The annotations of the ARA IA(x) and the
related ARA template (A) are overlaid with the MTPL IT(x) consisting of N = 30 T2w. Parental ARA labels IA↑(x) (C) and detailed ARA labels with hemisphere split (D).

registration accuracy with the developed MTPL IT(x) to FSL
(Jenkinson et al., 2012), Advanced Normalization Tools (ANTs;
Avants et al., 2008) and elastiX (Klein et al., 2010). Consequently,
for linear affine registration the symmetric global blockmatching
approach was implemented [NiftyReg, reg_aladin (Modat et al.,
2014) with 6 degrees-of-freedom (DOF)]. To describe non-linear
deformations, landmark points are placed on the reference image
and iteratively deformed [NiftyReg, reg_f3d (Modat et al., 2010),
with 12 DOF]. The non-linear transformation fNL(x) describes
subcortical brain changes, such as a baseline shift. The multi-step
registration requires the different scans to be orientated the same,
which can be achieved by copying the orientation from the
first to the subsequent scan(s). In that scenario, the non-linear
deformations do not change significantly over different scans
of one imaging session. Hence, the quantification of fNL(x) is
only necessary once and the relative change can be applied
to all data sets that are acquired in one session (Figure 4).
The differences between each data set in one section can
be adequately described by an affine f A(x) transformation
which includes scaling, rotation, translation, compression and
shearing. The registration procedure exclusively serves the
purpose to transfer data of ARA to the related MRI data sets
and to correlate functional and structural data. The processing
steps to extract the connectivity information from DTI and
activity information from rs-fMRI are conducted with the
unmodified raw-data.

The deformation f between IT2(x) and IT(x) is quantified
minimizing the Kullback–Leibler divergence (Figure 4; Kullback
and Leibler, 1951). The combined transformation f of the
affine f A(x) and non-linear transformation fNL(x) are applied
to the MTPL IT(x) and subsequently the ARA IA(x) with the
pre-processed data set IT2(x). Both, the affine transformation
f A(x) and the non-linear transformation fNL(x) are stored
for each processed data set separately. As an important
factor influencing registration precision, we set the Jacobian
determinate penalty to 0.3 where the user can increase
the minimum deformation field from 1 mm to 5 mm
depending on the strength of the required deformation. The
affine transformation f A(x) is quantified by minimizing the
Kullback–Leibler divergence between the current DTI or fMRI
measurement and the related T2 measurement IT2(x). At this
processing step, we have an ARA for all assumed data sets
IT2(x), IDTI(x) and IfMRI(x), which lies in the same image
space and is completely superimposed with the respective data.
All subsequent fully automatic analysis steps of functional and
structural data are based on a quantification that are provided by
the anatomical regions of the associated ARA.

In order to validate the performance of the automated
registration, we compared the automatically transformed ARA
template ofNT = 40 test data sets (Table 2) with an ARA template
that was semi-automatically registered by two independent
observers O1 and O2 using a previously described landmark-

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2019 | Volume 13 | Article 42148149

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Pallast et al. AIDAmri

FIGURE 4 | Schematic overview of the multi-step registration procedure for the T2-weighted, DTI and rs-fMRI data [IT 2(x), IDTI (x) and IfMRI(x)]. The affine fA and
non-linear transformation fNL is applied to MRI template (MTPL) IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT 2(x). The non-linear
deformation fNL between MTPL and the T2w/T2m is calculated only once and then linked to the respective affine transformation to pre-processed data of DTI IDTI (x)
and rs-fMRI IfMRI(x).

TABLE 2 | Data overview of NT = 40 data used to validate the registration.

Name Scanner (T) Scans (Σ) Type Matrix size Resolution (mm) Animals

Data set 1 11.7 14 T2m 256 × 256 × 16 0.068 × 0.068 × 0.6 Nu/Nu Adult nude mice
Data set 2 11.7 5 T2m 256 × 256 × 12 0.068 × 0.068 × 0.6 DCX-Luc Adult transgenic DCX-Luc mice
Data set 3 9.4 10 T2w 256 × 256 × 48 0.068 × 0.068 × 0.6 C57BL6/N Adult wildtype mice
Data set 4 7.0 11 T2w 128 × 128 × 30 0.109 × 0.109 × 0.5 C57BL6/N Adult wildtype mice with stroke

All data were acquired on scanners with different characteristics or different image geometries. The registration of the listed data was compared with a manually slice-wise registration
performed by two independent observers.

based registration approach with the help of the software
3DSlicer8 (Kikinis et al., 2014; Ito et al., 2018). The error
range between the transformations of both observers was set
as a reference. We calculated the distance between IA(x) and
the ARA templates of both approaches to find out where a
high agreement exists. The Euclidian distance or L2-Norm were
used as one of the most common mathematical quantity of the
distance between two-dimensional image functions. However, a
slight shift or a rotation would hardly change the appearance
of the image and possibly not be detectable by the human
viewer at all. To avoid any dependency on changes in intensity
the normalized cross-correlation (CrC) has been established
(Avants et al., 2008). Since, the correlation between image fidelity
and image quality is in some cases insufficient (Silverstein and
Farrell, 1996), we also applied the Structural Similarity Index
(SSIM; Wang et al., 2004) to end up with a satisfactory quality
description. The idea of structural information is that pixels
have strong interdependencies especially if they are spatially
close. With these three metrices, we quantified the overall

8https://www.slicer.org/

characteristic of the human perception to detect distortion
between two images.

Step 3–DTI and rs-fMRI Processing
Pre-processing and Registration
To correlate all given information of the anatomical information
of the IT2(x) to its related DTI IDTI(x,t) or fMRI IfMRI(x,t)
measurements, some additional pre-processing steps are
necessary. First, the dimension of the data must be reduced
from 4D to 3D from I(x,t) to I(x). For this purpose and to
minimize the noise and reduce artifacts, a minimum filter is
applied over time and then the resulting three-dimensional
data set is filtered with a Gaussian kernel. These filters
preserve structures necessary for a sufficient registration
whereas image noise is suppressed. Based on the previously
mentioned assumption, for the registration of IDTI(x) or fMRI
IfMRI(x) only an affine transformation f A(x) is performed
and the non-linear transformation fNL(x) is applied from
the previous T2 calculation (Figure 4). Subsequent DTI
and rs-fMRI processing steps were implemented based
on established protocols, which led to valid results in
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FIGURE 5 | Quantitative and qualitative comparison of MICO and N4 bias-field correction. The calculation of the degree of homogeneity revealed lower coefficient
of variations (CV) for MICO compared to N4 for 22 T2w and 10 DTI measurements (A,B). Representative MR images comparing MICO (C,D) and N4 (E,F) bias-field
corrected images for T2w and DTI, respectively.

FIGURE 6 | Registration results. Representative transformed ARA annotations (A) that are registered on an T2w data set (B) with detailed views shown as
overlay (C).
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previous studies (Budde and Song, 2010; Kim et al., 2012;
Gorges et al., 2017).

DTI—Structural Connectivity
Motion artifacts in diffusion imaging mostly origin from subtle
head movements due to the fast breathing rhythm, which results
in repetitive voxel displacements in the x-y plane. To quantify
and spatially correct anatomical dissimilarities with 6 degrees of
freedom (DOF), we apply a slice-wise motion correction using
FSLMCFLIRT (Jenkinson et al., 2002). Unfortunately,MCFLIRT
co-registers every volume in a time series to the one volume in the
midst of the series to detect slow physical movement. By adapting
the correction from a volume based to a slice-based mode of
operation, AIDAmri splits each data set into slices, correcting
them separately and merging the motion corrected slice series
back into one 4D data set. The motion-corrected data are then
fed into DSI-Studio (Yeh et al., 2013). The non-brain tissue was
discarded by applying a binarymask of the brain extraction to the
original DTI data set IDTI(x, t). The data are reconstructed within
DSI-Studio, based on an electrostatically optimized protocol of
Jones30 (Skare et al., 2000) with 30 gradient directions. The
reconstructed diffusion images are used to perform fiber tracking
and analyze the data with respect to the associated regions of the
ARA. All reconstructed data sets, AD, radial (RD), MD and the
fraction anisotropy (FA) are being exported separately.

The whole brain tractography is conducted with the
deterministic streamline propagation using Euler’s methods
(Basser et al., 2000) and terminates if a total fiber number of
one million fibers is reached. The tracking starts from a random
voxel position and propagated with a step size of 0.5 mm.
All fibers shorter than 0.5 mm or longer than 12 mm were
discarded, whereas the tracking is terminated if the angle between
two consecutive directions exceeds 55◦. The fiber termination
criteria were previously tested on several data sets with healthy
animals for best parameter settings, concerning true and false
fiber generation. The analysis provides connectivity matrices, in
which the rows and columns of the matrices represent a region
of the ARA and the entries display the connectivity strength
between two particular regions.

rs-fMRI—Functional Connectivity
Before the regional characteristics can be evaluated by means
of rs-fMRI, some optimizations need to be implemented. The
mouse in our setup is fixed with ear bars and a tooth bar
minimizing head movements during acquisition. Nevertheless,
spontaneous excitement due to fluctuations in anesthesia phases
and respiratory motion may affect image stability. Therefore,
we recorded the breathing during the measurement to identify
regressors describing respiratory artifacts. The physiological
data were sampled during EPI data acquisition, indicated by
overlaid trigger pulses. The pre-processing of the breathing
signal included the detection of inspiration peaks and baseline
correction using the median values. Additionally, slice-wise
motion correction is applied to the raw rs-fMRI IfMRI(x,t) by
the same approach as for DTI. This additional correction is
necessary to detect additional displacement between slices or fast
respiratory rhythms. Since for many scientific applications, such
as event-triggered fMRI, a slice time correction is essential, it is

possible to switch on that function in AIDAmri and perform a
correction with FSL SliceTimer (Jenkinson et al., 2002).

Completed by the pre-processed physiological recording, all
of this data has been merged into a single multichannel file.
The following processing steps were implemented based on the
processing steps in FSL FEAT (Woolrich et al., 2001) with some
modifications. For example, the smoothing was adapted with a
spatial filter. Due to anisotropy of the voxels in z-direction, the
spatial filter is applied in the x- and y-plane and not over the
whole volume as in FSL FEAT. In our case, the spatial filter
smooths the data with FWHM of 3.0 mm and a high-pass filter
with a cut-off frequency of 0.01 Hz that reduces additional noise
sources. The registered ARA is used to extract the regions in
the functional domain generating a 4D file (x, y, slices, region
masks) in NIfTI format. That file includes all transformed ARA
regions, whereas each three-dimensional region is defined by a
binary mask. Among all repetitions of the resting state fMRI
data, the mean of the intensities of the voxels of a region is
calculated and this average constitutes the averaged time series
of the specific region.

RESULTS

Bias-Field Correction
Magnetic field inhomogeneities induced by insufficient
shimming, imperfect coil placement and susceptibility artifacts
at tissue borders directly relate to image quality. To measure
the bias-field, we tested the N4 against the MICO algorithm
(Figure 5). MICO has so far only been tested for human MRI.
The comparison was conducted on 22 T2w data sets and 10 DTI
data sets with the CV as metric. For both data sets, MICO-based
bias-field correction resulted in lower CV values compared
to the N4 algorithms (p < 0.001) and better corrections of
the bias-field.

Registration
The results of the multi-step registration for a representative
mouse brain with large stroke-related deformations are shown
in Figure 6. The stroke lesion is distinguishable in the anterior
slides of T2w data set as the hyperintense regions. Even
strong deformations of the anatomical structure are realistically
contoured by the algorithm, such that the ARA is precisely
overlaid with the T2w data set. In addition to the qualitative
assessment, we applied a quantitative quality control (Figure 7)
using a slice-wise comparison of NT = 40 MR images selected
from four different MRI datasets (Table 2). Two experienced
observers used a semi-manually landmark-based approach to
overlay the atlas.

For each data set the error range between the transformations
made by observer 1 and 2 I01/I02 was used as reference. Due
to the different imaging properties and the subjective landmark
placing there was a large variability in the median between
both observers. In comparison to the automatic registration of
AIDAmri the deviation to the ground truth defined by both
observers, minimal and not statistically significantly differences
for all quantitative measurements (L2, SSMI, CrC). For example,
for data set 3 in Figure 7, the median of the SSMI between both
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FIGURE 7 | Quantitative registration quality control using a slice-wise comparison of NT = 40 imaging data grouped in four sets with three metrics [L2-Norm,
Structural Similarity Index (SSIM), Cross-Correlation (CrC)] between AIDAmri IA and two observers I01 and I02. The different properties of each data sets are listed in
Table 2 and one example slice is shown above each evaluation. Whereas, the ground-truth was determined with the error range of I01/I02, the average error between
the automated approach of AIDAmri and the observer-dependent approach IA/I01 and IA/I02 showed no significant differences in all three metrices.

observers I01/I02 is 0.878. Compared to that reference value the
median of AIDAmri to both Observes is 0.870 for IA/I01 and
0.880 for IA/I02. In conclusion, the deviation varies only between
0.81 and 0.92 in the SSIM for all evaluated data sets and shows
comparable error values for the CrC.

After successful processing with AIDAmri, the results
offer various possibilities for further data analysis (Figure 8).
Depending on the field of research, users have the opportunity
to evaluate their data quantitatively and qualitatively. AIDAmri
includes plot functions to visualize structural and functional
information of DTI (Figure 8A) and rs-fMRI (Figure 8B) as
adjacency matrices. To achieve a more detailed quantitative
evaluation a variety of possibilities are freely available and can
be used regardless of the processing pipeline. For example,
predefined regions can be examined in regard of their structural
and functional properties9. Relationships between the ARA
regions can also be visualized in a circular Graph10. The
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) can

9https://de.mathworks.com/matlabcentral/fileexchange/27983-slicer
10https://github.com/paul-kassebaum-mathworks/circularGraph

be used for a quantitative evaluation of the DTI data based
on graph theory. Likewise, rs-fMRI data can be evaluated with
FSLNETS11. In each case, no further pre-processing steps are
necessary and the output of AIDAmri can be directly fed into
the established tools.

DISCUSSION

Currently, a variety of tools are available for human imaging
studies, offering either a full evaluation (Cui et al., 2013) and/or
step-by-step workflow (Rubinov and Sporns, 2010). In the
pre-clinical environment, standardization of MRI acquisition,
processing and sharing standards still need major development.
Therefore, the unique translational advantage of MRI, e.g., to
directly probe novel scan protocols and biomarker findings
from bench to bedside awaits exploitation (Jaiswal, 2015).
Here, we present a novel Atlas-based Imaging Data Analysis
Pipeline (AIDAmri) for structural and functional MRI of
the mouse brain. AIDAmri represents the first region-based

11www.fmrib.ox.ac.uk/fsl
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FIGURE 8 | AIDAmri output. Structural and functional information of DTI (A) and fMRI (B) can be represented as adjacency matrices by using the plot function. The
entries in the matrices represent the number of tracks passing or ending in the ARA regions of the DTI and activity pattern of rs-fMRI among all ARA regions to
evaluate the results using graph theoretical approaches. Other ways to visualize connectivity patterns (plot function not included in AIDAmri): the circular
representation of a row or column vector (C) where thicker lines relate to higher matrix values (C) and 3D visualization of connectivity in the anatomical context, here
the registered atlas (D).

processing pipeline, that extracts the structural and functional
information from T2w, DTI and rs-fMRI data, and which
enables a region-by-region analysis of preclinical MRI data
based on the Allen Brain Reference Atlas (ARA). Importantly,
the developed MRI template facilitates co-registration of MRI
data with the ARA, which would be impossible by a direct
registration. Since the template is co-registered with the ARA
in the original image space, research groups of other labs can
customize the ARA in higher hierarchical levels to map their
individual regions-of-interest without the need to downscale
the information. For example, we provide both a (hemisphere-
splitted) detailed as well as custom-made parental atlas. The
parental atlas is particularly useful for the analysis of DTI

and rs-fMRI with have intrinsically lower image resolution
and are stronger affected by susceptibility artifacts. Although
we carefully validated the registration, the striking differences
in original image size and resolution between the atlas and
the DTI/rs-fMRI can result in pixel interpolations and region-
mismatches, e.g for small thalamic nuclei or single cortical
layers. In that case, we recommend the parental atlas, with
larger brain regions, where interpolations have negligible effects.
In comparison to other atlases, the ARA provides not only
the most-detailed structural 3D atlas but also access to the
Allen Institute cell type, transcriptomics and brain connectivity
database (Lein et al., 2007; Oh et al., 2014). AIDAmri
was written in Python 3.6 using freely available algorithm
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tools. The modular structure enables efficient processing and
the possibility to modify or add modules. To enhance the
comparability to other fields of research and to ensure its
applicability to a variety of neurological questions, AIDAmri
has been comprehensively tested and optimized by following
steps. First, we implemented a novel SNR measurement,
which has been shown to outperform manual or other
semi-automatic measurements (Sijbers et al., 2007). Second, to
prepare the data for registration with the ARA, pre-processing
steps including re-orientation, bias-field correction, and brain
extraction were implemented. We successfully implemented
the MICO bias-field correction, which was applied before
only on human data (Li et al., 2014). We could show, that
MICO generates significantly better data even in the pre-clinical
environment than the well-known N4 algorithm. Finally, we
applied a quantitative quality control to verify that the developed
multi-step registration process works robustly. In a statistical
analysis, the results achieved by two-independent and trained
observers were found to be not different from the automated
registration for various mouse strains. Registration accuracy was
also valid for pathologies such as stroke with significant brain
deformation due to, e.g., oedema or necrosis. The AIDAmri
output contains functional and structural connectivity matrices
for all (selected) ARA regions. These matrices can be used
to analyze differences in the brain network between health
and disease. For the first time, AIDAmri provides in one
common processing pipeline and one common atlas system
quantitative structure-function relationships, which are known
to be crucial to understand the structural underpinnings of
brain function and brain plasticity (Straathof et al., 2019).
Future studies may focus on the integration of other imaging
modalities, e.g., single photon emission computed tomography
(SPECT) or positron emission tomography (PET), to the
ARA. AIDAmri contributes to the awareness-raising effort
of the scientific community to standardize diverse datatypes
and analyses across species (Sejnowski et al., 2014) and

will facilitate data processing in large cohorts and multi-
center studies.
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Alzheimer’s disease, and dementia, represent a common cause of disability and one of

the most relevant challenges in the health world. In addition, these conditions do not

have, at moment, a pharmacological treatment that can stop the pathological progress.

Mild cognitive impairment (MCI), defined as the borderline between normal aging and

early dementia, represents a meaningful field of study because, in the transition to

dementia, clinicians have defined a useful therapeutic window. Additionally, due to the

lack of effective pharmacological interventions, recent years have seen an increase

in research into new technological solutions to assess, stimulate, and assist patients

afflicted with Alzheimer’s disease. This review aims to outline the use of information

and communication technologies in the field studying MCI. Particularly, the goal is to

depict the framework and describe the most worthwhile research efforts, in order to

display the current technologies available, describe the research objectives, and delineate

prospective future researches. Regarding data sources, the research was conducted

within three databases, PubMed Central, Web of Science, and Scopus, between January

2009 and December 2017. A total of 646 articles were found in the initial search. Accurate

definition of the exclusion criteria and selection strategy allowed identification of the most

relevant papers to use for the study. Finally, 56 papers were fully evaluated and included in

this review. Three major clinical application areas have been portrayed, namely “Cognitive

Assessment,” “Treatment,” and “Assistance.” These have been combined with three

main technological solutions, specifically “Sensors,” “Personal Devices,” and “Robots.”

Furthermore, the study of the publications time series illustrates a steadily increasing

trend, characterized by the enrollment of small groups of subjects, and particularly

oriented to the subjects assistance using robots companion. In conclusion, despite the

new technological solutions for people with MCI have received much interest, particularly

regarding robots for assistance, nowadays it still owns vast room for improvement.

Keywords: mild cognitive impairment, ICT, cognitive stimulation, neuropsychological measures, cognitive support

technologies, social robotics/HRI, dementia-Alzheimer disease, assistive technologies
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1. INTRODUCTION

Worldwide, dementia represents one of the most important
causes of disability and reduced autonomy in the elderly
population. It is defined, in fact, as a syndrome, generally of a
chronic or progressive nature, in which is observed deterioration
in cognitive function. Alzheimer’s Disease (AD) is the most
common type of dementia, with a prevalence of 60–65% of
the cases (Alzheimer Association, 2017). According to the
statistics and the forecasts about AD, today people afflicted
by this condition number approximately 46.8 million. This
number is expected to steadily increase over the next few years,
reaching 74.7 million by 2030 and 100 million by 2050 (Prince
et al., 2016). The growth in dementia cases is resulting in an
increase in the associated global costs. Particularly, between
2010 and 2015, the expenditure is expected to increase by 35.5%.
Furthermore, projections indicate that the expense will reach
$1 trillion by the end of 2018 (Prince et al., 2016). Due to
the increase in the elderly population, with an increase in the
associated costs, the social impacts, and the apparent lack of
effective pharmacological treatments, AD and the others types of
dementia constitute a dramatic challenge for the public health
services. Furthermore, caregivers of patients with dementia
have a higher prevalence of mental health disorders, particularly
depression and anxiety (Sallim et al., 2015). For this reason, a
strong commitment has been made to find ways to exploit and
maximize the remaining cognitive resources of patients with
initial symptoms of dementia. These patients, in fact, maintain
the ability to learn new skills and strategies, and moreover
preserve a good awareness (Olazarán et al., 2004; Belleville et al.,
2016). Among all the medical labels developed to describe the
pre-dementia stage, Mild Cognitive Impairment (MCI) has been
recognized as one of the most useful clinical classifications,
and it is one that can represent a therapeutic window for early
treatment. This nosographic category defines those who are
showing the cognitive depletion which is the manifestation of an
intermediate stage between healthy aging with slight cognitive
changes and dementia, but able to perform the activities of
the daily living, and be essentially autonomous (Petersen et al.,
2009). For these reasons, in the last decade, a notable amount
of research has committed to the identification of signs and
symptoms that could be used as reliable predictive markers
of the disease. The MCI early identification, and afterward,
dementia identification, would allow the implementation
of non-pharmacological interventions that may change the
natural history of the disorder, slowing down its development
(Petersen et al., 2014).

1.1. Traditional Intervention on MCI
Cognitive training (CT) is the most widespread and effective type
of cognitive stimulation, among those commonly used in MCI
treatment. Particularly, CT protocols take into account bottom-
up, and modular tasks aimed at the stimulation of selective
cognitive functions, such as memory, language, or, for example,
attention (Belleville et al., 2016). Due to their flexibility, CTs
are reported as one of the most appropriated technique in
the field of MCI. In fact, thanks to their adaptability CTs are

particularly recommended with such variegate condition as MCI.
On the other hand, more modern stimulation protocols refer
to a more complex and holistic model of health that considers
physical, emotional, and cognitive aspects. That is due to the
high prevalence of Behavioral and Psychological Symptoms of
Dementia, namely: agitation, aberrant motor behavior, anxiety,
depression, irritability, and apathy, in subjects with dementia
(90%) and even in subject with MCI (35–80%) (Monastero et al.,
2009; Cerejeira et al., 2012). Particularly, in these cases, apart
from the use of CT, are generally adopted, among the others,
the music therapy, the multi-sensory behavioral therapy, and
the occupational activities (de Oliveira et al., 2015; Massimo
et al., 2018). Recently, the relationship between physical practice
and other health spheres has become a popular topic. It was
demonstrated, indeed, that exercise has a positive influence on
hippocampal functions. This effect might facilitate the regulation
of long-range cortical networks with a good effect on memory
and executive functions (Voss et al., 2010; Chirles et al., 2017).
On the other hand, a recent research branch is interested in
characterizing the effect of cognitive health on physical activity.
It seems that preserved cognitive abilities could allow MCI
subjects to perform physical tasks better (Montero-Odasso et al.,
2012). According to advanced guidelines, non-pharmacological
treatment should possess certain characteristics: they should be
performed with high frequency and high intensity; they should
provide for a combination of cognitive stimulation and physical
exercise; the training should be customized according to the
bio-psycho-social characteristics of each participant; and the
protocols should be designed in a more ecological fashion and
be more generalizable (Belleville et al., 2016).

1.2. The Role of ICT With MCI Subjects
In this framework, information and communication technologies
(ICT) are accumulating much interest, particularly concerning
the applications of these devices in the neuropsychological
field. ICTs have been used as assessment tools (Charchat-
Fichman et al., 2014; García-Casal et al., 2017) and also as
instruments for cognitive intervention (Charchat-Fichman et al.,
2014; Ballesteros et al., 2015; García-Betances et al., 2017),
enhancing, or, at least, maintaining AD patients’ cognitive skills.
Although ICTs are more related to patients with a severe grade of
impairment, they are now playing an important role as assistive
technologies and are serving to promote the independence
and the autonomy of individuals with MCI as well as healthy
elderly people (Eghdam et al., 2012; Teipel et al., 2016). In
light of the information presented in the previous paragraph,
technology should play a crucial role in assessment, treatment,
and monitoring of MCI patients, allowing the combination of
cognitive and physical treatments and melding of the stimulation
protocols with subjects’ daily activities (Maselli et al., 2018;
Fiorini et al., 2019). Moreover, these technologies should be
able to aid in gathering data about the changes in the subjects’
autonomy and in their physical and cognitive abilities, and give
feedback to patients themselves and to the stakeholders (Rebok
et al., 2007; Belleville et al., 2016). There remains a paucity of
technological interventions for caregivers who are living with
people with dementia (Zhang et al., 2016). In this perspective,
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the need to develop technologies that can be used in the patient’s
home, without the physical presence of the therapist, is crucial.
Moreover, these technologies should be embedded in the user
daily life and generate a coupled systemwith the user him/herself,
so to produce an enriched environment (Turchetti et al., 2011).

Although this field is rapidly increasing, ICT applications are
generally related to dementia. This study aims to review the
literature concerning the use of ICT for assessment, cognitive
intervention, and assistance of people who are suffering from
MCI, provide a comprehensive view of the current state of the
art, and highlight current limitations and future perspectives.

2. METHODS

2.1. Search Strategy
An electronic database search was performed for the period from
November 2017 until December 2017 using the U.S. National
Library of Medicine (PubMed R©), Web of Science (ISI R©), and
Scopus R© databases to identify and select articles concerning
the clinical applications of ICTs in the neuropsychological
field of MCI. Specifically, the search queries included the
following terms: [(Information and Communication Technology
OR ICT) OR (Internet of Things) OR (Assistive Technology)
OR (Cognitive Support Technology OR CST) OR (Robot)]
combined with terms to determine outcomes of interest: (Mild
Cognitive Impairment OR MCI) AND [(Cognitive Stimulation)
OR (Neuropsychological Assessment)].

The terms research was performed regarding titles and/or
abstracts. Only original, full-text articles published in English,
which addressed the clinical applications of ICTs on MCI,
were included in this review. The reference lists of included
papers were examined to identify relevant studies which the
electronic search might have missed. Duplicated documents were
eliminated; thereafter, the abstracts of the papers, retrieved by
the electronic search, were examined to identify which deserved
a full evaluation. Finally, similar studies published by the same
authors were compared to select the most suitable for our
purpose. Obtained in the research were 226 references from
PubMedCentral R©, 285 references from Web of Science R©, and
135 references from Scopus R©.

During the process, the identified papers were screened and
evaluated from three independent reviewers (i.e., the authors).
Meetings and discussions were held to resolve disagreements and
find solutions.

2.2. Selection Criteria
First, duplicated references were excluded. Then, during the
screening procedure, items were excluded if they (i) were an
abstract, a short communication, a review article, or a chapter
from a book; (ii) were not written in the English language; (iii)
were from years prior to 2009. One hundred and seventy-eight
references were fully assessed during the evaluation procedure,
and papers were excluded if (1) they did not use any type
of ICTs; (2) they did not appear appropriate for this review
after the reading of title and abstract; (3) they did not address
the mild cognitive impairment issue; and (4) they were not
full access. In addition, if multiple papers written by the same

author had similar content, papers published in journals were
selected instead of papers presented at conferences. Furthermore,
if multiple papers written by the same author with similar
content were presented at conferences, the most recent paper was
selected. Finally, 56 papers were fully evaluated and are included
in this review (Figure 1).

3. RESULTS

Fifty-six papers were selected according to the aforementioned
methods and classified on the basis of three major
clinical application areas: “Cognitive Assessment,”
“Treatment,” “Assistance.”

Among these applications, the majority of the papers (58%)
concern the “Assistance” of subjects with MCI (see Figure 2B).
In particular, these articles address the functional assessment,
monitoring, and assistance during the daily activities of MCI
subjects, in a prosthetic manner. Conversely, the studies labeled
as “Treatment” refer to the specific and unspecific cognitive
stimulation of MCI subjects, which results in a overall activation,
according to Engel’s bio-psycho-social model (Engel, 1978).
In conclusion, the articles encompassed in the “Cognitive
Assessment” category address the use of new technological
solutions for the evaluation and the measurement of subjects
cognitive performance. They represent, respectively, the 30.4%
(Treatment) and the 11.6% (Cognitive Assessment) of the studies
reviewed. Note that a certain percentage of the papers reviewed
(18.9%) deal with multiple topics (i.e., assistance and evaluation
or treatment and assistance) at the same time.

Regarding the technologies used in these works, most of
the studies (54.1%) display a scenario in which service robots,
both standalone and cloud networked, interact and support
people with MCI. The second most represented technologies are
sensors, both environmental and wearable, followed by personal
devices, including personal computers, smartphones, tablets, and
televisions (see Figure 2C). Regarding the sample size of these
studies, an ample amount of the research (35.7%) does not
include any subject with MCI, but rather healthy controls (HC),
caregivers, experts, or no subject at all. This outcome and the
general trend represented in Figure 2D can be explained by
the theoretical nature of the majority of these studies, or, in a
smaller portion, by the primary interest in the technical side.
Nevertheless, the growing interest and the technical advances
achieved seem to be able to reverse this trend, and lead the
scientific community toward more practical implementations,
although, nowadays, the clinical validation of the proposed
solutions is still a matter of debate. Of the 56 fully evaluated
papers, 14 (25%) were published in 2017, while 31 (55.4%)
were published over the past 3 years. This result confirms the
increasing interest for the ICTs application in subjects with
MCI (see Figure 2A).

Analyzing the journals for the fields of interest of published
articles, it can be observed that the leading research sector
is the clinical field–17 articles were published in pure clinical
journals, indeed. In contrast, only six articles were published
in pure technological journals. It is worth mentioning that 4
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FIGURE 1 | Research methodology for review process.

papers were published in mixed clinical-technological journals.
Regarding the clinical side, as summarized in Figure 2A, it can
be seen that the leading topic is represented by “Medicine,”
particularly concerning general medicine and geriatrics and
gerontology topics (see layer 3, Figure 3). The second most
sizable category present is, by far, “Neuroscience.” On the other
hand, regarding technological journals, it can be seen that
“Computer Science” is the technological leading area, followed
by the engineering field, equally represented by biomedical and
electronic, Figure 4. This analysis suggests a prominent interest
coming from the clinician side, with a wider arrangement of
objectives, models, and requirements. This interest seems to
be not completely matched with the technical community. It
could be explained by a high grade of complexity examined
by the clinicians, compared with the level of technological
advancement. Notwithstanding, the technological community
is approaching the topic in a shorter time frame. The average
of the publication year for technological journals, in fact,
is about 2016. In contrast, the average is about 2014 for
clinical journals as well as for mixed clinical-technological
journals.

In addition, Table 2 summarizes the data gathered from the
reviewed papers. This table reports some facts, among which are

the technology used in the different works, technology service
and domain, subjects’ clinical profiles, experimental design, and
research goal. All 56 papers are illustrated in detail in Table 2. In
addition, a brief summary of the data included in this paragraph
is included in Figure 2 and Table 1.

4. APPLICATION 1: COGNITIVE
ASSESSMENT

The category “Assessment” represents the smallest group of
papers among all the applications, with only 8 articles reviewed.
This category gather articles that aim at the appraisal of cognitive
state using both robotic platform, sensors, and personal devices.
More specifically, the articles that consider robots are 2, Kintsakis
et al. (2015) and Demetriadis et al. (2016); papers that regard
sensors and personal devices (in this case PCs) are 6, equally
distributed, Dougherty et al. (2010), Zuchella et al. (2014),
Manera et al. (2017) use PC, while (König et al., 2015b; Fiorini
et al., 2017; Maselli et al., 2017) study the use of sensors.

Below are described the purposes that have pushed the works
and the results obtained. A summary of the characteristics of
these studies is included in Table 2.
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FIGURE 2 | (A) Publication trend per year. (B) Paper distribution per service. (C) Paper distribution per technologies used; Robot (both stand alone and cloud robots),

Sensors (both environmental and wearable), Personal Devices (Personal Computer, Smart phones, and TV). (D) MCI patients involved in the studies.

4.1. PC Based Cognitive Assessment
One of the first contributions to the use of PC-based tests for
MCI cognitive assessment is the work of Dougherty et al. The
authors calculated correlations between subjects’ performance
in traditional cognitive tests (MMSE and Mini-Cong) and
a new PC-based neuropsychological battery called CST. The
study results indicate that the CST is a valid and sensitive
instrument for evaluating cognitive deficits; in fact, its accuracy in
distinguishing between controls and MCI subjects achieved 96%,
while the Mini-Mental Status Examination (MMSE) accurately
classified 71% and the Mini-Cog 69%. The authors state that
PC-based cognitive screening tools may aid in MCI early
detection in the primary care setting, and, moreover, due to
their ease of use and interpretation, may provide an accurate
baseline from which to monitor cognitive changes over time
(Dougherty et al., 2010).

Another article about computer-based assessment for people
with MCI is the work by Zucchella et al. In this paper, the
development and the usability test of a 3D Serious Game
(SG), using a virtual environment-based platform for the early
identification and characterization of MCI, is described. This
SG can record various parameters related to the subjects’
cognitive status, including number of correct actions, number
of errors, number of false recognitions, number of omissions,
and time needed to complete the task. Although the authors
claim that SGs could be used in the health domain, in

particular in the assessment and rehabilitation of psychiatric
and neuropsychological conditions, this usability test underlines
problems related to the high complexity of some tasks. For this
reason, especially with older people who have limited familiarity
with technologies, will need some assistance in the beginning
phase. Notwithstanding, SGs have the potential to be new and
effective tools in the management and treatment of cognitive
impairments (Zuchella et al., 2014).

According to Zucchella et al., a recent work by Manera et al.
proposes recommendations for the use of SGs with patients
with MCI. Results obtained report that SGs were rated between
very adapted and completely adapted for people with MCI.
Moreover, SGs are considered as more adapted to people with
initial cognitive decline than to people who are already losing
autonomy in the activities of daily living. Concerning the use of
SGs, participants reported that they found them to range between
very adapted and completely adapted for cognitive assessment,
as well as to train for physical and cognitive functions,
improve well-being, and teach contents. Moreover, concerning
the possibility to improve autonomy and social exchanges, they
were considered between adapted and very adapted. Importantly,
in this paper, the authors stress that the target of SGs, their
frequency of use, and the context in which they are played
depend on the typology of the SGs (e.g., Exergame, cognitive
game), and should be personalized with the help of a clinician
(Manera et al., 2017).
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FIGURE 3 | Graphical description of topics touched by articles published in clinical journals. Layer 1, number of general clinical topics; layer 2, main topic categories;

layer 3, subcategories of topics.

4.2. Sensors Based Cognitive Assessment
Different types of sensors have been used for MCI cognitive
assessment. One example is the work by König et al., in which
the authors aim to identify vocal markers correlated to subjects’
cognitive status. The classifier developed by the authors showed
an accuracy of 79% in discerning between HCs and people with
MCI, of 87% in discerning betweenHCs and people with AD, and
of 80% in discerning between people with MCI and people with
AD, demonstrating its assessment utility (König et al., 2015b).

Another work was presented by Fiorini et al. The authors
designed, and developed, a new tool called SmartWalk System,
which aims to assess the sustained auditory attention while
the subject walks and simultaneously stimulate the sustained
attention domain. The authors compared a traditional test
for auditory sustained attention with their SmartWalk system,
and the results suggest a good correlation between the two
approaches. The results, in fact, show a high significant (p
< 0.05) correlation for the “correct” and “omitted” scores of
the two protocols (r = 0.73 and r = 0.59, respectively). Also,
the “mean” and the “median” response times are significant
correlated (r = 0.59 and r = 0.70, respectively). The authors state
that a future research should be focused to increase the number
of participants to corroborate the study. Furthermore, a usability
study should be planned to estimate whether the SmartWalk
system could be used in a daily cognitive training at users’ homes
(Fiorini et al., 2017).

Similarly, Maselli et al. evaluated the sensitivity of their
SmartTapestry System to assess the episodic verbal memory.

FIGURE 4 | Graphical description of topic touched by articles published in

technological journals. Layer 1, number of general technological topics; layer

2, main topics categories; layer 3, subcategories of topics.

The results reported by the authors suggest a good correlation
between the two approaches. Such findings indicated that the
new system was substantially equivalent to the traditional test
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for the assessment of episodic memory. Furthermore, the results
showed a better performance in the consolidation-retrieval
process when assessed using SmartTapestry rather than the
traditional test. These results suggest that a facilitation in the
memory performance may be due to the multiple nature of
the mnemonic trace; in fact, the SmartTapestry task involves
auditory (the auditory track repeating the list of words), visual-
spatial (the position of the letters in the tapestry), and kinesthetic
information (the movements of the arms needed to press the
letters in the tapestry) that may help the consolidation-retrieval
process (Maselli et al., 2017).

4.3. Robot Based Cognitive Assessment
Concerning the use of robots inMCI cognitive assessment, it may
seem that the development of a robotic assistant, able to assess
patients autonomously, would be just a prospect for the future.
Nevertheless, Kintsakis et al. proposed the design of a cloud-
based NAO robot that aims to engage subjects suffering from
MCI during the cognitive test administration. The authors state
that use of the robot would increase the compliance and arouse
the interest of the subjects during the administration of tests to
work memory, arithmetic skills, reasoning, recall, and awareness.
Notwithstanding, in this paper, the robotic platform only was
presented; the system, in fact, has not yet been evaluated in a
real-world scenario (Kintsakis et al., 2015).

4.4. Recommendations and Trends
The research for technological solutions able to address the
cognitive assessment of subjects withMCI is a fast-growing niche,
as demonstrated by the high number of papers (62.5%) in the
field that have been published in the past two years. Although
the number of articles encompassed in this section does not
permit drawing of precise trends, it is possible to observe that
some tendencies are emerging in the three different groups of
papers. For example, among the articles that examined PC-based
technology, it can be seen that the last articles focused their
attention more on SGs and virtual reality (VR) than on self-
administered batteries of tests, perhaps because they assessed
the subjects’ performances in a more ecological way (Zuchella
et al., 2014; Manera et al., 2017). In a similar way, the use of
sensors aims at the detection of parameters that can provide the
clinicians with more direct information about subjects’ cognitive
status, using these parameters as a window on brain activity and
functioning. Through the use of a smart environment, it could
be possible to detect information about the patients while they
perform their activities of daily living (König et al., 2015b; Fiorini
et al., 2017; Maselli et al., 2017). In contrast, the introduction
of a robotic therapist, able to conduct a cognitive assessment
autonomously, which can increase subjects’ compliance and
arouse their interest, compared to PC-based technology, has,
until now, seemed only to be a future prospect and a target to
hit (Kintsakis et al., 2015).

5. APPLICATION 2: TREATMENT

This category, with 21 articles, is the second most sizable
category in this review. Robots represent the technology used

TABLE 1 | Numbers of paper regarding different technologies and their scopes.

Cognitive assessment Treatment Assistance Total

Robots 2 13 26 41

Sensors 3 2 11 16

Personal Devices 3 7 9 19

Total 8 22 46 76

most heavily for MCI treatment, with 13 out of 21 articles
(Tapus et al., 2009; Chan and Nejat, 2010; Wu et al., 2011,
2013, 2016; Tiberio et al., 2012; Granata et al., 2013; Yamaguchi
et al., 2014; Kintsakis et al., 2015; Demetriadis et al., 2016;
Reppou et al., 2016; Garcia-Sanjuan et al., 2017; Korchut et al.,
2017). On the other hand, papers that consider personal devices
and smart environment-based treatment make up 8 out 21:
(Zaccarelli et al., 2013; Zuchella et al., 2014; Muscio et al., 2015;
Segkouli et al., 2015; Fiorini et al., 2017; Kyriazakos et al., 2017;
Manera et al., 2017; Maselli et al., 2017).The articles, organized
on the basis of different types of technologies, are presented in
the following sections.

5.1. Robot Based Treatment
Although robots represent the most commonly used technology
in MCI non-pharmacological treatment, generally the purpose
of this technology is mixed. Only 5 papers, in fact, address
selectively this topic, the others (8 papers) concern also the
assistance (6 out 8 papers) and the assessment (2 out 8 papers)
of MCI subjects.

The first work related to the use of robots and cognitive
stimulation is an interesting paper by Tapus et al., which aims
to assess differences in preferences between the use of a robot
therapist, instead of an avatar therapist. Basically, with this
study they tried to quantify the “embodiment effect” related to
the submission of cognitive games through a robot therapist,
involving subjects in an 8 month-long stimulation trial. The
authors state that the service robot was able to improve or
maintain the cognitive attention of the patients with dementia
and/or cognitive impairments through its encouragements in
a specific music-based cognitive game. Moreover, the robot’s
ability to adapt maximized the positive effect of the intervention
(Tapus et al., 2009).

Chan and Nejat, similarly, proposed a work that aimed at the
possibility to develop a robotic therapist that could stimulate and
encourage MCI subjects during memory stimulation games. The
authors reported a success rate in identifying and recognizing
memory game cards between 96%. Moreover, the robot was
successful at selecting and executing appropriate emotion-based
behaviors throughout the interactions with the participants.
Success rate in providing correct behavioral feedback was about
74%. Concerning the participants feedback, 83% of them stated
that the robot helped them stay engaged and interested in the
memory game (Chan and Nejat, 2010).

As mentioned, emotion recognition and, more generally, the
effective channel could provide the robot with useful information
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TABLE 2 | Papers about evaluation.

Reference Technology Tech. domains Tech. services Research method Subjects Research goal

Agrigoroaie and Tapus (2016) Generic Robot Assistance Autonomy Proof of Concept None Present preliminary results from a focus

group

Agrigoroaie and Tapus (2017) Meka M1 Robot

Kompaï Robot

Assistance Emotion Experimental trial in

a HRI scenario

9 HC Propose a method for extracting and

analyzing physiological data

Batista et al. (2015) Smarphone Assistance Social Sphere Pilot Test in real life 16 MCI Describe the architecture of the SIMPATIC

system as well as its functionality

Bellotto et al. (2017) Kompaï Robot Assistance Autonomy Lab set test 1 HC Describe a distributed architecture for AAL

services; probabilistic solution for objects

localization based on RFID; vision-based

approach for estimating the level of activity

of a person; entropy-based system for

detecting anomalous motion patterns

Broughton et al. (2016) ENRICHME robot

(Kompaï platform)

Assistance Autonomy Lab set test None Provide the implementation of an library

application to detect RFID tags for

performing object localization with a

mobile robot

Bruno et al. (2013) Customized

Robot Prototype

Assistance Autonomy

Social Sphere

Global Cognition

Proof of Concept None Define principles and requirements for a

wearable SAR aimed at assisting MCI

subjects in the execution of everyday

activities

Chan and Nejat (2010) SAR

Brian 2.0

Treatment Memory (LTM; STM)

Social Sphere

Proof of Concept

laboratory

experiments

6 HC Develop new therapeutic protocols to

manage individuals suffering from

cognitive impairment by stimulating social

and cognitive functioning with a SAR

Darragh et al. (2017) Generic SAR Assistance Autonomy Questionnaire 7 MCI

2 MD (mild

dementia)

8 Caregivers

16 Experts

Gather information about how a robot in

the home could assist MCI subjects

Demetriadis et al. (2016) PROTEAS

Tangible Interface for

Lego NXT Robot

Cognitive Assessment

Treatment

Memory

Language

Attention

Emotion

Test/re-test

experiment

25 MCI Study the usability of a tangible

programming interface as a tool for

cognitive assessment and evaluate the

impact of this type of cognitive training on

the patient condition

Diaz-Orueta et al. (2014) TV Avatar Assistance Autonomy

Social Sphere

Experimental traial 10 MCI

10 AD

Evaluate what cognitive functions may be

involved in the correct interaction with the

avatar

(Continued)
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TABLE 2 | Continued

Reference Technology Tech. domains Tech. services Research method Subjects Research goal

Dougherty et al. (2010) PC-based test battery Cognitive Assessment Working Memory

Visual spatial

Executive

processing

Verbal Fluency

Attention

Orientation

Processing Speed

Experimental trial 27 MCI

84 AD

104 HC

Compare the accuracy in screening

between healthy and cognitive impaired

subjects between CST and paper and

pencil test

Fiorini et al. (2017) Inertial Sensor Cognitive Assessment

Treatment

Auditory Sustained

Attention

Feasibility Study 4 MCI

11 HC

Present a sensorized approach which

combines aerobic exercise and traditional

cognitive tools for daily training

Foukarakis et al. (2017) RAMCIP

Robot V1

Assistance Autonomy Pilot Study 8 MCI

10 HC

Describe the UI framework, its application

in RAMCIP and the initial experiences

regarding the use of the framework

gathered from the preliminary pilot trials of

the project with actual patients

Garcia-Sanjuan et al. (2017) Customized Tangible-Mediated

Robot

Treatment Working Memory

Prespective Memory

Episodic Memory

Attention

Executive Functions

Usability study 12 MCI

12 PWD

16 HC

Present a customized tangible-mediated

robot enabling more intuitive and

appealing interactions for MCI

Granata et al. (2010) Robot Kompaï Assistance Autonomy Usability test 5 MCI

6 HC

Study the concomitant use of voice and

graphical support to increase the usability

of a SAR for MCI support

Granata et al. (2013) Robot Kompaï Assistance

Treatment

Autonomy Usability test 11 MCI

11 HC

Present the results from usability testing of

grocery shopping list services and an

agenda application provided by a SAR for

MCI subjects

Gross et al. (2011) Customized

Robot Prototype

Assistance Autonomy

Social Sphere

Proof of Concept None

Gross et al. (2012) Customized

Robot Prototype

Assistance Autonomy

Social Sphere

Usability Study

Acceptance Study

4 MCI

4 CG

Describes the final implementation of the

companion robot and presents results of

functional user tests

Kintsakis et al. (2015) NAO supported by a Cloud System Cognitive Assessment

Treatment

Memory

Working Memory

Reasoning

Awareness

Proof of Concept None Present a novel system for performing

personalized, robot assisted cognitive

exercise and tracking the performance of

patients

(Continued)
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TABLE 2 | Continued

Reference Technology Tech. domains Tech. services Research method Subjects Research goal

König et al. (2015a) RGBD cameras Assistance ADL Lab based test 23 MCI

12 AD

14 HC

Investigate the use of video analyses

assessment of IADL

König et al. (2015b) Audio Technica AT2020

Condenser Microphone Sensors

Cognitive Assessment Backward Counting

Repeating Sentence

Describing images

Verbal Fluency Task

Experimental trial 23 MCI

26 AD

15HC

Determine the value of automatic analyses

of voice recordings during vocal tasks for

the early diagnosis of AD

Korchut et al. (2017) Generic SAR Assistance

Treatment

Global Cognition

ADL

Emotion

Social Sphere

Focus group

Surveys

83 MCI

81 CG

100 Experts

Find MCI’s needs

and preferences

toward SAR

Kyriazakos et al. (2017) Tablet

PC

Smart-phone

Kinect

Fitbit

Philips Hue

Plugwise

Pulse Oxi Meter

Omron

ThinkLabs

Assistance

Treatment

Memory

ADL

Exploratory study in

home environment

48 MCI Present an opens-source e-Health

platform for MCI

Lazarou et al. (2016) Jawbone UP24

Withings Aura

Wireless Tags

Plugwise Circles

Assistance Memory

Social Sphere

Emotion

Case study 2 MCI

2 AD

Propose a system for continuous and

objective remote monitoring of

problematic daily living activity areas and

design personalized interventions

Mainetti et al. (2016) Smartphone

BLE Beacon

GPS

Smart Plugs

Assistance ADL Proof of Concept None Describe the goal of City4Age project

Mainetti et al. (2017) Accelerometers

Gyroscopes

Inertial Modules

GPS

Smartphone

BLE Beacon,

Smart Appliance (TV)

Assistance ADL Proof of Concept None Describe the goal of City4Age project

Manera et al. (2017) Serious Game

Virtual Reality

Cognitive Assessment

Treatment

Global Cognition Web-Surveys

Workshop

23 Experts Present recommendations for the use of

SGs in assessment and stimulation of MCI

subjects

(Continued)
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TABLE 2 | Continued

Reference Technology Tech. domains Tech. services Research method Subjects Research goal

Martínez et al. (2011) Reed Switch

Pressure Sensors

Power Plug Sensor

Temperature Sensor

Smoke Sensor

Phone Sensors

Assistance ADL Questionnaires

Focus group

13 CG

10 Experts

Define MCI behavioral markers

Maselli et al. (2017) Smart Tissue Cognitive Assessment

Treatment

Episodic

Verbal Memory

Feasibility Study 4 MCI

11 HC

Understand system technical viability and

its level of sensitivity in measuring memory

Meiland et al. (2014) Movement Sensors

Cameras

Assistance Memory

Social Sphere

Workshops

Interviews

Expert Consultation

3 MCI

11 PWD

26 CG

Summarize the end users’ needs and

wishes regarding the development and

design of the Rosetta system

Mighali et al. (2017) Wearable devices

Smartphone

BLE devices

MPU-92509 9-axis MotionTracking

device

Digital Motion Processor (DMP)

ARM Cortex M3 Microcontroller

Assistance ADL Lab based test 10 HC Define a reliable system for controlling the

position and the body motility of the elderly

in unobtrusive, low-cost and low-power

way

Mitseva et al. (2009) Domestic Sensors

Mobile

Computer

Personal Digital Assistants

Assistance Autonomy Proof of concept None Describe the initial phases of initiative of

offering an intelligent and personalized

system for independent living and self-care

of seniors with MCI or mild dementia

Muscio et al. (2015) Serious Game Treatment Global Cognition Proof of concept None Define harmonized SGs parameters, and

to propose the implementation of

biomarkers as enrichment strategy and

outcome measures in SGs trial design for

MCI

Nakahara et al. (2016) Customized

Robot Prototype

Assistance ADL Preliminary study 3HC Propose a method for logging

micro-motion of daily activity based on the

skeleton recognition

Nishiura et al. (2014) PaPeRo Robot Assistance Autonomy Report Case 1 MCI Reveal how the robot should talk to an

older woman with dementia to convince

her to perform daily activities

Pahl and Varadarajan (2015) SCITOS G5 Robot Assistance Social Sphere Proof of Concept None Study the use of acoustic sensors utilized

for detecting affective haptic inputs

Pino et al. (2012) Kompaï equipped with a tablet PC Assistance ADL Usability test 11 MCI

11 HC

GUI test

(Continued)
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TABLE 2 | Continued

Reference Technology Tech. domains Tech. services Research method Subjects Research goal

Pino et al. (2015) RobuLAB10 equipped with a tablet

PC

Assistance ADL

Social Sphere

Questionnaire

Focus Groups

10 MCI

8 HC

7CG

Investigate SAR acceptance

Reppou et al. (2016) NAO supported by a smart

environment

Assistance

Treatment

Attention

Memory

Awareness

Social Sphere

Focus Groups

Interviews

6 HC

10 Experts

Describe an architecture system

Sacco et al. (2012) Cameras Assistance ADL Observational study 19 MCI

16 AD

29 HC

Propose DAS score that detects functional

impairment using ICTs in AD and MCI

compared with healthy subjects

Schroeter et al. (2013) SCITOS G3 Robot Assistance Autonomy Interview

Questionnaire

Observation

Robots testing

2 MCI

4 PWD

5 CG

Analyze the added value of a mobile robot

companion in a smart home environment,

and to evaluate users experience, proving

that the robot can act autonomously to

provide useful and enjoyable services

Seelye et al. (2012) VGo Robot System Assistance Autonomy

Social Sphere

Pilot Study 1 MCI

7 HC

Test the feasibility of use and acceptance

of the VGo Robot system

Segkouli et al. (2015) PC

Smart-phone

PDA

Tablet

Treatment Memory

Attention

Judgment

Communication

Ability

Simulation trial 10 MCI

26 HC

Introduce novel virtual user models with

enhanced predictive validity in mental

processes that will be utilized for accurate

simulation results in interface design

Stavropoulos et al. (2017) RGB-D Cameras Assistance Autonomy Preliminary study 15 HC Propose a novel computer vision-based

automatic action recognition to increase

robustness in realistic assistive robot

applications

Tapus et al. (2009) Custom-designed

humanoid torso

mounted on a

ActivMedia Pioneer 2DX

Treatment Attention Pilot Study 2 MCI

7 AD

Develop methods toward SAR therapist

for individuals suffering from cognitive

impairments through the use of

music-based cognitive games

Tiberio et al. (2012) Giraff Robot Treatment Memory

Language

Emotion

Wizard of

Oz experiment

8 MCI

9 HC

Describes a study related to the use of

such robots in the interaction with elderly

people affected by MCI

Tsardoulias et al. (2017) NAO robot Assistance Attention

Memory

Autonomy

Focus Group 8 MCI Propose a novel integrated robotics

architecture targeting the needs of

individual with MCI at risk for social

exclusion

(Continued)
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TABLE 2 | Continued

Reference Technology Tech. domains Tech. services Research method Subjects Research goal

Vasileiadis et al. (2016) PIR Sensors,

RGB-D cameras

Assistance ADL Pilot Study 4 MCI Evaluate a proposed infrastructure for

investigating activity monitoring needs

Wu et al. (2011) Generic SAR Assistance

Treatment

Memory

ADL

Interview

Questionnaire

30 MCI Find MCI’s needs and preferences toward

SAR

Wu et al. (2012) Generic SAR Assistance Autonomy

Social Sphere

Focus group 7 MCI

8 HC

Give recommendations about the design

of the robot appearance.

Wu et al. (2013) Nabaztag Robot

PC

Virtual Agent

Assistance

Treatment

Global Cognition

Autonomy

Social Sphere

Mixed-method:

qualitative and

experimental

15 MCI

43 HC

Examine the perception of the robot’s

expression and the role of agent

embodiment

Wu et al. (2014) Kompai Robot Assistance Autonomy

Social Sphere

Acceptance study 6 MCI

5 HC

Investigate acceptance of a SAR and the

effect of direct experience with it over a

1-month period on its acceptance

Wu et al. (2016) Kompai Robot Assistance

Treatment

Global Cognition

Autonomy

Social Sphere

Acceptance

Usability study

20 MCI Explore perceived difficulties and needs of

older adults with mild cognitive impairment

(MCI) and their attitudes toward a SAR to

develop appropriate robot functionality

Yamaguchi et al. (2014) Bono-01 Robot Treatment Social Sphere Experimental trial 10 HC Propose a robot that warms up group

conversations in which have been used

conversation technique called

“coimagination”, for preventing mild

cognitive impairments

Zaccarelli et al. (2013) SOCIABLE

computer battery

Treatment Reasoning

Memory

Praxis

Executive Functions

Attention

Social sphere

Efficacy study 106 MCI

118 AD

124 HC

Evaluate the effects of SOCIABLE on the

cognition and social sphere, and the

affection and the functional abilities of

cognitively intact elderly, patients with MCI

and patients with mild AD

Zuchella et al. (2014) Serious Game

Virtual Reality

Cognitive Assessment

Treatment

Working Memory

Prospective Memory

LTM

Spatial Orientation

Selective Attention

Executive Functions

Usability test 50 HC Describe the process used to create the

Smart Aging platform for the early

identification and characterization of MCI
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for it to model its behavior. A work proposed by Tiberio
et al. describes the assessment of tolerance indicators, heath
rate (HR), and hearth rate variability (HRV) in subjects who
were collaborating with a robot therapist during a cognitive
stimulation task. The authors did not find differences between
sympathetic activation during the tasks conducted by human or
robot. These results emphasize the sample tendency to tolerate
the presence of the robot (Tiberio et al., 2012).

Similarly, Yamaguchi et al. presented a robot designed to warm
up group conversations of older adults by a cognitive stimulation
technique called the “coimagination” method, which is used to
prevent the development of MCI and dementia. The authors
state that the robot successfully elicited more laughter, which is
seen as an enjoyment parameter, than did the human participants
(Yamaguchi et al., 2014).

Among the articles about robotic therapists, two, more recent
papers, propose an alternative way to administer cognitive
stimulation through the robots. Demetriadis et al. and Garcia-
Sanjuan et al., in fact, presented two works in which the robot
is not an agent that leads people in the cognitive stimulation
task performance, but, instead, the robot is the tool for the
cognitive stimulation process. In the first case, in fact, the
stimulation protocol provides for the use of a programmable
tangible interface. So, the stimulation program is made possible
through the use of the robot and not the robot assistance
(Demetriadis et al., 2016).

In the second example, instead, each participant was involved
in the therapeutic use of the robot. Particularly, each participant
was asked to perform three different tasks using a tangible-
mediated robot: control the orientation of the robot, move
the Tangibot from one location to another, and perform a
combination of the first two (Garcia-Sanjuan et al., 2017).
Contrary to the use of therapeutic robots, the use of a tangible
robotic interface is recommended more for people with no or
mild cognitive impairments. It seems to be too demanding for
those with severe cognitive impairments, but up to now this
research field has remained mostly unexplored.

5.2. Personal Devices and Smart
Environment-Based Treatment
Papers regarding the use of personal devices and smart
environment for cognitive non-pharmacological treatment are
numerically less represented compared with robotic articles.
Despite this, their level of development is, in most cases, higher
and better defined compared to the idea of robot therapists
or a fortiori the use of robots as assistance in the activities of
daily iliving.

The first article, here reviewed, about a computer-based
cognitive battery, is the work conducted by Zaccarelli et al. In this
paper, the authors aim to evaluate the impact of the three-month-
long SOCIABLE program on the different cognitive skills. The
analysis conducted at the end of the program revealed that MCI
patients experienced a positive effect in terms of global cognition,
memory, and executive functions. A follow-up examination
was conducted to establish the duration of the aftereffects.
Examination of follow-up results revealed that healthy elderly

individuals showed an increase in memory and language abilities
after the use of the program. However, subjects’ moods showed
an opposite trend and became worse after training, probably due
to the increase of self consciousness related to the improvement
of cognitive functioning. In conclusion, the authors state that
SOCIABLE is an effective intervention suitable for patients
suffering fromMCI and mild AD (Zaccarelli et al., 2013).

On the other hand, Muscio et al. addressed the topic of SGs
for cognitive and social stimulation of MCI subjects. The authors
claim that, due to the popularity of video games among the
baby-boomers, and a fortiori among millennials, video games
could be easily turned into enjoyable intervention for cognitive
stimulation. In their opinion paper, the authors highlighted the
importance of defining harmonized SG parameters and proposed
the implementation of bio-markers as enrichment strategy and
outcome measures in SG trial design (Muscio et al., 2015).

Another work concerning the use of PC-based technologies
is the study by Segkouli et al. The authors developed and tested,
a virtual user model (VUM) that simulated the performance of
a subject with MCI performing a cognitive task. The purpose
of the VUM was to identify and deal with common interface
accessibility issues that might occur when people with MCI use
PC-based tools for cognitive stimulation. The authors proposed
a four-step trial. During the first phase, MCIs and controls
were assessed using standard neuropsychological tests and a
computer-based battery. Then, during the second phase, the
VUM proposed was trained using real users’ performances. In
the third phase, the authors optimized the VUM and the virtual
user interface (VUI). In the last phase, the authors assessed again
differences between real and virtual MCIs using the optimized
VUI. The authors’ new system was able to deal with over 90% of
all common interface accessibility issues (Segkouli et al., 2015).

The last, and perhaps, more complete work about the MCI
cognitive stimulation, through the use of personal devices, is
the research conducted by Kyriazakos et al., also mentioned
in section 6. The authors presented the e-Health platform for
MCI, in which several personal devices and both environmental
and wearable sensors are connected together, via a cloud
environment. Among their applications, the e-Health system
provides for cognitive games, among which are memory games
and tests, attention games, and games using executive functions.
This system aims at the preservation of cognitive functions in
healthy subjects and especially in MCI subjects. Beyond the good
effect on cognition, this type of intervention should help MCI
subjects to maintain a good quality of life. This research is still
in the design phase, and no results have been reported to date
(Kyriazakos et al., 2017).

5.3. Recommendations and Trends
The literature about robots and cognitive stimulation is growing
faster, and it is becoming recognized by the academic world.
For example, about 66% of the papers presented during some
conferences address the topic. In this context, it is possible
to observe how the majority of the literature concerns the
development of a robotic therapist (Tapus et al., 2009; Chan
and Nejat, 2010; Tiberio et al., 2012; Yamaguchi et al., 2014).
Meanwhile, a small niche of papers concerns the use of robots
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as tools for cognitive stimulation, instead of as instruments that
administer and assist the patients during tasks. A couple of
articles reviewed here propose programming or steering a robot
to use it for stimulation protocols (Demetriadis et al., 2016;
Garcia-Sanjuan et al., 2017). Although the purpose, shared by all
the articles in this section, is the stimulation, just the work by
Tapus et al. provided for a long-lasting intervention. On the other
hand, other articles concern a preliminary study about usability
and acceptance. Notwithstanding this lack of experimental data,
the literature reviewed here confirms that, generally, elderly
people and subjects with MCI prefer robot therapists over virtual
therapists. However, generally, they prefer the use of a PC instead
of a robot. Despite this, research into the topic has not found
differences in perceived stress between the use of PC or robot,
neither from physiological signals nor questionnaires. Moreover,
research has shown that for robot therapists, along with the
ability to administer cognitive stimulation tasks, considering also
the emotional and the social spheres is crucial. The positive
aspects of using a robot therapist, in fact, is largely related to the
embodiment effect, but also to the perception of interacting with
a smart agent. For this reason, the ability to empathize with the
user cannot be ignored.

However, concerning the use of personal devices and smart
environments in cognitive stimulation, it can be observed that
this field is less addressed with respect to robotic solutions.
Nonetheless, as mentioned, their level of development is higher
and better defined compared to that for robot therapists. This
fact is also pointed out by the substantial presence of literature
published in scientific journals. In fact, just one research effort
was presented in a conference and is reported as a proceeding.
Generally, the studies of such systems, most of which are
PC-based battery, are quite sizable, such as in the case of
Zaccarelli et al. (2013). In addition, the time span in which
the experiments were conducted was more adequate. In fact, the
trials, generally, were scheduled over several weeks. Among the
different papers reviewed, as noted previously, the use of PC-
based batteries for cognitive stimulation represent the central
bulk of contributions. Particularly, different aspects of memory,
attention and executive functions were addressed. Moreover,
mood and self-awareness were also investigated. A significant
aspect of these studies provided for the use of serious games and
virtual reality environments to exploit the level of engagement
and the ecology of the treatments.

6. APPLICATION 3: ASSISTANCE

The category “Assistance” represent the largest group of articles
encompassed in this systematic literature review. This category
comprises 40 papers, gathering research from 2010 to 2017, and
also in this case the overwhelming majority of the study took into
consideration robots as the technology used: 26 out 40 papers
(Granata et al., 2010, 2013; Gross et al., 2011, 2012; Wu et al.,
2011, 2012, 2013, 2014, 2016; Pino et al., 2012, 2015; Seelye
et al., 2012; Bruno et al., 2013; Schroeter et al., 2013; Nishiura
et al., 2014; Pahl and Varadarajan, 2015; Agrigoroaie and Tapus,
2016, 2017; Broughton et al., 2016; Nakahara et al., 2016; Reppou

et al., 2016; Bellotto et al., 2017; Darragh et al., 2017; Foukarakis
et al., 2017; Korchut et al., 2017; Tsardoulias et al., 2017). The
remaining papers are shared between two types of technology:
namely, personal devices and wearable sensors, making up 14 out
40 papers (Mitseva et al., 2009; Martínez et al., 2011; Sacco et al.,
2012; Diaz-Orueta et al., 2014; Meiland et al., 2014; Batista et al.,
2015; König et al., 2015a; Lazarou et al., 2016;Mainetti et al., 2016,
2017; Vasileiadis et al., 2016; Kyriazakos et al., 2017; Mighali et al.,
2017; Stavropoulos et al., 2017).

The papers are summarized in the following sections.

6.1. Robot Based Assistance
The robotic application in the assistance of people with MCI
represent the majority of the papers reviewed. As already
stated, this is a complex research field because people with
Alzheimer’s disease require care throughout the day, in different
environments, and for varied needs. For these reasons, a
significant number of the articles about service robots for
assistance are completely theoretical, such as a study by Gross
et al., in which they tried to identify the most important
functionality for a service robot (Gross et al., 2011), or
the work by Agrigoroaie and Tapus, in which the authors
suggest that providing further information such as personality
attributes, cognitive disability level, emotional internal states,
and subjects’ preferences would be useful for the process of
robot behavior modeling (Agrigoroaie and Tapus, 2016). In an
article by Pahl and Varadarajan, the authors suggest the use of
unconventional channels to convey meaningful information to
the robot, such as haptic inputs for a socially/emotionally based
interaction between human and robots (Pahl and Varadarajan,
2015). Concerning theoretical study, an atypical work is the
research by Bruno et al., in which the authors proposed
the design of a wearable context-aware robot able to share
information with a person via speech recognition and production
(Bruno et al., 2013).

Another sizable group of papers report that the results came
from the clinical and technical experience after focus groups, or
were gained through the use of questionnaires and interviews.
The work ofWu et al. is an example of that. These authors studied
MCI subject’s preferences toward robot functionality (Wu et al.,
2011) and appearance (Wu et al., 2012). Through their studies
they extrapolated seminal insight concerning the embodiment
effect, and the interaction aspects between human and robot.
The authors state that a robot might offer opportunities for
interaction among all members of the elder community, and
allow the elders to experience the same power, control, and
agency as others.

Similarly, Pino et al. confirmed that learning to perform basic
actions using a graphical user interface (GUI) is possible for
elderly individuals, either cognitively healthy or impaired (Pino
et al., 2012), even though the interfaces should be customized on
the basis of the subject’s preference, cognitive status, and way of
thinking, according to Granata et al. (2010) and (Granata et al.,
2013) also investigated the assistive robot acceptance among
different groups of older adults living in a community. They
evaluated robot and user characteristics, potential applications,
feelings about technology, ethical issues, and barriers and
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facilitators for robot adoption. According to Wu et al. (2012),
subjects with MCI preferred robots with animal-like designs
instead of the machine-like robots that were preferred by HCs.
This study showed that participants with MCI and caregivers had
more positive perceptions of the usefulness of the robot than
HCs. Furthermore, they recognized the potential of robots for
supporting health and social care at home (Pino et al., 2015).

Differently, Schroeter et al. studied the acceptance of
robots after participants lived in a smart home for two days,
continuously. During this period, the subjects had the chance
to interact with the robotia and perform activities such as video
calls with short interviews, interviews on site, and also free robot
usage. At the end of the trial, information was gathered via
interviews and questionnaires. As observed also by Gross et al.
(2012), at the beginning of several trial sessions, participants were
a bit skeptic about the robot and had stereotypical ideas about
robots. After being introduced to the robotic system, all of them
expressed interest and appreciation and actually started to think
about ways in which the robot could better meet their needs.
Most of the users described the trials as an enjoyable experience.
Moreover, results also showed that robots were perceivedmore as
a pet (with personality) than as a passive device like a PC or TV,
increasing subjects’ acceptance (Schroeter et al., 2013).

Recently, Reppou et al. described a novel architectural design
for robotic platforms and reported that older adults did not worry
about robots and found them useful. Moreover, the authors stated
that new technologies and service robots could assist older adults
with cognitive impairment by informing them, ensuring their
safety with hazard detection, and practicing their cognitive skills
with games that stimulate attention and memory. According to
Pino et al. (2015), robots should also show emotion and feelings.
Reppou et al. (2016) also found that the ability to show emotions
is a key feature for a successful robot.

These findings are consistent with more recent studies by Wu
et al., who compared cognitive stimulation protocols conducted
by computer-based tools in one case a virtual therapist in
another case, and a robot in a third case. Although statistical
analysis did not show a significant difference among the different
methodologies, qualitative analysis revealed the participants’
preference for the laptop PC, followed by the robot, and then
the virtual agent. The authors stated that individuals with MCI
preferred the laptop PC condition mainly because it provided
less distracting interfaces compared with the task proposed by
the other conditions. Furthermore, the robot was preferred to the
virtual agent because of its physical presence, according to some
studies (Tapus et al., 2009; Wu et al., 2013). In another study,
Wu et al. invited people with MCI and HCs to their living lab
to interact with a Kompaï robot once a week for 4 weeks. The
study results suggest that both groups could learn and remember
how to use the robot, butMCI participantsmight encountermore
difficulties. Moreover, the subjects with MCI did not perceive the
robot as useful. However, they found it easy to use, amusing, and
unthreatening (Wu et al., 2014, 2016).

The most recent works about theoretical design of service
robots define more precisely the users’ needs and the robot’s
functionalities. They found that robots should be able to track
physical and psychological well-being, and deliver therapeutic

intervention, specifically for individuals with MCI. Two key
recommendations for developing a robot for robotic daily
assistance were identified. First, subjects with MCI need
particular help with daily challenges related to memory issues,
including confusion or uncertainty, and help filling the time.
Second, the robot should monitor different health indices, such
as cognitive skills, movement, and mood (Darragh et al., 2017).
Today, researchers studying technological solutions for people
with MCI take into account not only the assistance side, but
also the chance to stimulate these subjects’ cognitive repertoire.
The idea behind the latest works is that people with MCI should
be helped to communicate with friends and family, keeping
themselves informed about regional and international news and
weather conditions, but also practicing their cognitive skills
with games that exercise attention and memory and supporting
them in the rehabilitation process following, for example, a
hip fracture (Tsardoulias et al., 2017). The social acceptance
of robotic assistants was studied by Korchut et al., who saw
robots as a novel tool to improve cognitive functions and
prevent cognitive decline, and stressed that the socio-emotional
interaction represents a key requirements to create sustainable
relationships between elderly individuals and robots. This type
of interaction will enhance the users’ acceptance and encourage
the adoption of the assistive robotic system. For this reason,
the robots should be able to understand the psychological
state of the user and then provide for positive impact
(Korchut et al., 2017).

Even though researchers try to find more and more channels
to exploit the communication between humans and robots (e.g.,
GUI, social/emotional-based communication, and so on), human
communication is based on spoken language. The importance
to address this topic properly is seminal, taking into account
older people affected by cognitive impairment. An example is
offered by the work of Nishura et al. The authors presented results
from a report case study, in which a PaPeRo robot asked the
participants to perform some daily activities, including taking
medicines, measuring blood pressure, and cleaning up the room
in three different ways for each task. Study results showed that
the talking pattern changed the subjects’ performances of daily
activities (Nishiura et al., 2014). Another example is the study by
Foukarakis et al. in which the authors reported that, regarding
the robot speech synthesis system, the users had difficulties
understanding some phrases. This could be attributed to the
quality of the voice used, or maybe to the fact that some of
the users had hearing impairments or were old enough to have
lower than average hearing, but also the speaking rate setting of
the voice could be higher than the optimal setting, considering
the target user group (Foukarakis et al., 2017). Introducing
new technologies to those who have MCI could be problematic
under several aspects, both related with the subjects’ cognitive
condition, and with general old age issues. The authors found
that people with MCI had more difficulty with technology than
healthy older adults, and they were confused about the robot’s
purpose and function. For this reason, technology should be
introduced to them as early as possible to give them time to
become familiar with it, and to increase acceptance and long-
term use (Seelye et al., 2012).
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While the aforementioned group of papers comprises studies
focusing on the subjects’ attitudes toward the robots, another
branch of research is more interested in the ability of the robot
itself to understand and interact with the subjects, as well as
with the environment. Nakahara et al., in fact, did not work on
a robot’s service, but on the robot’s functionality. The authors
believed that, to enable the robot to help subjects in their
daily lives and to identify risky situations, the robot should
be able to recognize humans’ activities. The results showed
that the developed system was able to recognize correctly the
action performed with the following accuracy levels: eating 46%;
drinking 59%, calling 26%, walking 89%, writing 25%, reading
40%, cleaning 42%, cooking 43%. This type of technology could
be useful for the collection of micro-motion data, which can
be used to monitor subjects, but also for the early detection of
MCI (Nakahara et al., 2016). Another similar work is the paper
by Agrigoroaie and Tapus, in which the authors presented an
algorithm that should enable the robot to extract and analyze
physiological parameters such as respiration rate, blinking rate,
and temperature variation across different regions of the face,
to monitor and evaluate the users’ emotional states. Particularly,
among all the signals analyzed, during this experiment, the
authors affirmed that the thermal data represent the most precise
indicator of the subject’s internal state. In fact, an increased
temperature in the periorbital region is related to the growth
of anxiety level (Agrigoroaie and Tapus, 2017). Works by both
Korchut et al. and Agrigoroaie and Tapus address an important
topic: namely, the Human-Robot Interaction (HRI). In this field,
as mentioned in previous works, it is becoming crucial to study
several interaction channels, even the emotional channel, to
ensure a natural interaction between the robot and the users
(Agrigoroaie and Tapus, 2017; Korchut et al., 2017).

A last sub-field of research, which takes into account the use of
a robotic platform for MCI assistance, addresses the topic of how
a service robot should interact with the surroundings to exploit
its capability to assist older adults with MCI. A couple of articles
concerning this argument are reported below.

As reported by Darragh et al., subjects with MCI need help
particularly with daily challenges related to memory issues. For
this reason, Broughton et al. and Bellotto et al. focused their
attention on how the assistive robot could help the user in
practical problems, such as finding objects in the patient’s house.
At the moment, one of the main problems with robots is that they
still have difficulty in perceiving and making sense of the world
around them. For this reason, the authors proposed an RFID-
based technology that can localize objects (Broughton et al., 2016;
Bellotto et al., 2017).

6.2. Sensors and Personal Device-Based
Assistance
This section encompasses articles concerning assistance through
the use of new technological solutions. The independent
living of older adults is one of the main challenges linked
to the aging population, especially those living with MCI
and the consequent frailty. This type of patient needs more
support in everyday life and needs to be frequently monitored

by formal and informal caregivers. The new ICT solutions,
among which are sensors and personal devices, are providing
a crucial step forward in the assessment and treatment of
these subjects.

One of the first works about the assistance of MCI subjects
is the study presented by Mitseva et al., in which the authors
evaluated the initial phases of the development of an intelligent
system for independent living and self-care of MCI subjects.
The authors stated that the starting point is represented by the
definition of users’ needs, and the proposition of smart solutions
for them. They contemplated a three-bundle environment in
which users themselves, relatives, and caregivers are immersed
together (Mitseva et al., 2009). Similarly, Mainetti et al. discussed
the use of wearable and environmental sensors to monitor elderly
people with MCI. In their first work, the authors described
an unobtrusive system that enables clinicians and caregivers,
to monitor the MCI subjects by tracking them during indoor
and outdoor activities (Mainetti et al., 2016). In addition, after
the authors compared their architecture system with others,
they concluded that the key point of their system is its
ability to automatically recognize behavioral changes in elderly
people with an unobtrusive, low-cost, and low-power technique
(Mainetti et al., 2017).

Following the Mitseva et al. instructions, Martinez et al.
tried to define MCI needs to develop a smart assistance
system. The authors opted for focus group work and ad hoc
questionnaires to define typical symptoms and behaviors or
people with MCI. According to focus group results, the authors
determined that the main problems correlated with cognitive
decline are forgetfulness, reduction of attention, losing items,
forgetting medical appointments, repetitive behavior, difficulty
in coordination and organization, use of paspartout words, lack
of interest in things, and changes in personal hygiene (Martínez
et al., 2011). In contrast, Meiland et al. askedMCI subjects, people
with dementia, and caregivers to rank the proposed functionality
of a smart system in relation to their needs. Consistent
with the literature, the functionality most often mentioned as
relevant and useful by persons with MCI was “help in cases of
emergencies.” However, the functionalities most often preferred
by caregivers were support with navigation outdoors and the
calendar function. However, some functionalities proposed were
not considered useful, such as providing an overview of activities
that were performed during the day (Meiland et al., 2014).

As for the other services analyzed, also in this case, the
use of sensors and personal device applications is greater than
the robot applications. Although the overwhelming majority of
papers regarding robots and assistance is relegated to discussing
designing and development steps, in contrast, a notable part of
this paper encompasses concerns about the system testing step.
An example is the work of Sacco et al., which, following the
target set by Martinez et al., aims at the usability demonstration
of a video monitoring system to obtain a quantifiable assessment
of instrumental activities of daily living (IADLs) in subjects
suffering from MCI. Experimental protocol provides for specific
tasks concerning a daily activity scenario (DAS), performed by
subjects while they are recorded with cameras. The authors
report that a receiver operating characteristic (ROC) analysis,
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conducted on the results of the DAS score, showed 89%
sensitivity and 73% specificity for discriminating MCI from
HC participants. These authors developed an algorithm able
to recognize and assess the performance of subjects. Moreover,
the DAS score provided a pragmatic, ecological, and objective
measurement that might improve the prediction of future
dementia and help the clinician to lead an early intervention
(Sacco et al., 2012).

Similarly, a more recent paper by König et al. examines the use
of fixed cameras in the functional assessment of people suffering
from MCI. The authors conducted a two-step experiment in
which subjects, both controls and MCI, had to perform a set
of physical tasks before, and a set of typical IADLs after, the
assessment. All the experiment were recorded u a set of sensors.
Koönig et al. reported that the activities were correctly and
automatically detected, using an algorithm developed by the
authors themselves, with a sensitivity of 85.31% and a precision
of 75.90%. The authors noted that the proposed method for
monitoring and assessing ADL permits the gathering of objective
and accurate information about the functional decline of MCI
patients. Moreover, the use of such systems could facilitate and
support aging-in-place and improve medical care in general for
these patients (König et al., 2015a).

The use of cameras represents a mainstream solution for
monitoring of MCI at home Vasileiadis et al. used RGB-D
cameras to monitor the subjects’ performance in ADL. The
authors used cameras and infrared sensors in an eight-day-
long test. Then, using the SVM technique, the authors were
able to recognize the subjects’ activities with a precision and
recall rate above 80% using only sensor or tracking data, while
the precision rate was over 90% through the combination of
both data. Additionally, to test the activity detection potential
of a sensor-less infrastructure design, an HCRF-based approach
was employed, using only the vision-based features described
with data sequences extracted from the occupant’s movement,
body posture, and upper-body geometry, leading to a precision
rate of 90.5%. The authors assessed also the acceptance of the
infrastructure, and although participants were hesitant to have
guests during the experimental protocol, they showed a positive
attitude toward the installations of the sensors in their residences
(Vasileiadis et al., 2016).

A last, more recent, work that considers action recognition
through cameras is the work of Stavropoulos et al. The authors
concluded that a key prerequisite for the development of a
service robot, which aims to monitor and support MCI patients
at home, is the ability to assess the user’s behavior during
their daily activities. The authors, starting from the EigenJoints
descriptor, developed their own action recognitionmethod.More
specifically, they proposed novel features that take into account
further descriptive information of the user’s actions, such as the
traveled distance of the joints and how the user’s pose evolves
in subsequent frames from the reference frame. The obtained
results show that the authors’ proposed features improve action
recognition performance compared to the original EigenJoints
method (Stavropoulos et al., 2017).

The assistance of people with MCI goes beyond the use
of cameras—other studies address, in fact, different types of

technologies, such as smart phones, as in the case of the
paper of Battista et al., but also more complex systems, which
combine several wearable and environmental sensors with
personal devices.

Some examples of that are represented by the work of Lazarou
et al., Mighali et al., and Kyriazakos et al. The first paper is
the less complex work on the topic. It provides for a set of
sensors and personal devices, which encompass bracelets to
evaluate movement, cameras, and devices for sleep monitoring,
which provide all the necessary tools to clinicians for efficient
monitoring of the participants and promote their quality of life
via ICTs by focusing on practical aspects of everyday activities
(Lazarou et al., 2016).

The papers by Mighali et al. and Kyriazakos et al. propose a
similar concept. Both display a two-block structure, a cloud one
and a local one (Kyriazakos et al., 2017; Mighali et al., 2017).
Particularly, the first structure takes into account the need to
recognize and classify typical elderly activities, such as sitting,
standing still, lying down, or walking fast/normal. The authors
developed a classifier that showed the capacity to correctly
recognize the user’s body state with an accuracy level equal to 97%
(Mighali et al., 2017).

In conclusion, it is worth mentioning also the study by Diaz
et al., which aimed to clarify how some cognitive functions
might determine the interaction of MCI with technology. The
authors found that, first, some functional measures, such as
the Barthel ADL index, are related to the expected number
of trials needed by a person for the interaction—for example,
with an avatar on TV. Second, cognitive measures, especially
those related to attention, processing speed, and discrimination
between relevant and irrelevant information, can relate to the
latency of response that the subjects show when they respond to
the avatar. The authors concluded that cognitive and functional
measures may help to predict users’ expected response to the
avatar. Also, these measures may explain how much time that
the interaction will take. For these reasons, the authors noted that
cognitive and functional measures should be used for guidance to
result in a better adaptation of ICTs to elderly people with MCI
(Diaz-Orueta et al., 2014).

6.3. Recommendations and Trends
The literature concerning the research in service robots for
people with MCI is quite large. This fact can be explained by
the fact that, in the overwhelming majority of the cases, the
final aim of robots developed for elderly people and/or subjects
with MCI are the same they both encompass the design and
development of robotic companions for the activities of daily
life. For that reason, this section encompasses almost all of the
papers about robots, here reviewed. Despite this strong interest
in the design and development of robots able to help people with
MCI during their daily activities, the technological progress is
still in the study of individualization of needs, and in developing
usability or acceptability tests. Generally speaking, the sample
size of this study is limited, and, moreover, the experimental
trial period is a brief and not long enough to draw complete
conclusions. Notwithstanding, some results can be presented and
some recommendation can be offered. For instance, one of the
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possible future fields of interest should be the attempt to make
the robots more flexible and suitable, to better address subjects’
needs. Particularly, concerning MCI, also the stakeholders must
be considered. In fact, due to the subjects’ conditions, they are
not aware of some of their needs, and for this reason they do
not find it useful that the robot would be able to remember
them of their appointments or when to take their medicines
(Korchut et al., 2017).

Concerning the aspects of robots, generally elderly people find
that small size, in comparison to human-size, is more tolerated.
Furthermore, anthropomorphic or life-like features should be
carefully designed with the aim to make the interaction with
the robot more intuitive, pleasant, and easy (Wu et al., 2011).
Research specifically focused on individuals with MCI reveal that
they prefer animal-like shapes and that they like the possibility
to interact with the robot, not only via speaking, but also in a
more socially and emotionally based way (Pino et al., 2015). In
addition, elderly people seem to prefer a robot that looks like a
familiar object in a home setting. For this reason, robots might
offer opportunities for interaction among all members of the
elder community, and they should allow the older people with
MCI to experience the same power, control, and agency as others
(Wu et al., 2012).

A last thought goes to the tendency of people with MCI to
be unwilling to accept an assistive robot for use at home. This
observation seems to be a sort of watershed between healthy
elderly and people with cognitive impairment. Even if neither the
first nor the second are totally enthusiastic to the idea of living
with a companion robot, healthy subjects seems to have a more
positive attitude toward this kind of robots. For this reason, and
thinking to maximize the residual ability to learn how to use
robots, it is recommended to introduce elderly people, even those
with MCI, to the robots as early as possible (Pino et al., 2012;
Seelye et al., 2012). A last comment concerning the attitude of
elderly people and this type of technology is drawn to the fact that
in coming years we will begin to meet elderly individuals who are
increasingly confident and more expert with technologies. This
expected change in the way that older will behave should not
be neglected.

Concerning the use of personal devices and/or sensors, and
their differences with robot-based solutions, this branch of
research is not as advanced as in the other fields. This perhaps
explains why assistance represents the last step that can be
achieved concerning elderly people in general and subjects with
MCI, specifically. When comparing the act of assisting people
with the act of assessing or stimulating them, assistance is a
more complex task. Assistance should provide for monitoring
of the subjects, giving them practical assistance, and also giving
them social assistance; it requires a higher level of development
both in terms of knowledge about pathological condition and in
terms of level of technological progress. Overall, when comparing
robotic assistance with the idea of assisting people using personal
devices, we note that the sample size of the recent is slightly wider,
and its trial duration is more appropriate. Moreover, generally,
people seem to be more inclined to use assistive technology
during their daily activities (Batista et al., 2015). Furthermore,
the use of sensors, personal devices, and avatar displayed on

TV seem to be less obtrusive (especially regarding cameras),
but low-cost and low-power modes are crucial for all of the
solutions mentioned (Mainetti et al., 2017). Also, with the use of
personal devices, the act of gathering data seems to be simpler.
Notwithstanding, the research field appears less appealing and
less studied.

7. DISCUSSION AND CONCLUSIONS

Dementia, and particularly AD, is one of the principal causes of
disability and reduced autonomy among the elderly population
(Alzheimer Association, 2017). It represents one of the most
crucial challenging issues that the “health world” will face in
coming years, in terms of economic and social costs (Prince
et al., 2015, 2016). As mentioned previously, this disease
could evolve over as long as twenty years before subjects
meet the dementia criteria (Belleville et al., 2016). Due to
the minor level of impairment presented by subjects with
MCI, it constitutes a valuable therapeutic window for cognitive
stimulation (Olazarán et al., 2004; Belleville et al., 2016). From
this literature review, despite the limitation of having a research
window confined until 2017, it is possible to identify some key
points, such as the importance of frequent and intensive sessions
of training, the positive influence of a tailored treatment, and
furthermore, the value of using an interpretative model that
embraces biological, psychological, and social aspects together,
to maximize the treatment effect-size. The development of new
ICT solutions, usable at the patient’s home, without the need
for the physical presence of a therapist, allows us to combine
cognitive treatments with exercise and social activity (Belleville
et al., 2016; Chirles et al., 2017). Although the interest in applying
ICT in assessment, treatment, and assistance of people with MCI
is steadily increasing, its study is generally related to more severe
forms of impairment, such as dementia. However, through a
careful literature review, we can recognize several types of ICT
applications concerning MCI: “Evaluation,” “Treatment,” and
“Assistance.” It is relevant to observe that of the different studies
reviewed,most of them encompassedmore than application field.
In fact, even though the different research works focused their
attention on a different, related topic, such as monitoring, for
instance, rather than cognitive stimulation, the idea underlying
the overwhelming majority of the literature corpus generally
referred to a complex way to think about the final aim of the
technology: namely, the assistance of MCI subjects. In fact, even
though the specific papers debated on single topics, the final
purpose was to develop a modular, redundant, and synergistic
system to take care of the subjects’ needs and assist them.
Having said that, we encourage the reader to imagine the use
of these technologies as spread in a sort of continuum among
early diagnosis, stimulation, assistance, and monitoring. Even
though this field of research has been growing faster in recent
years (see Figure 2), some substantial limitations are experienced
because of the low number of participants in the different studies.
Another index, concerning the novelty of the field, is related to
the number of contributors that presented during conferences
almost half of the total number of papers. Nonetheless, it
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is possible to report some considerations and to draw some
recommendation for future works.

Concerning the “Assessment,” section, it was not possible
to find a dominant type of ICT used. However, SGs and VR
will likely be used in increasingly greater numbers. Interesting
insights can be drawn from the use of wearable sensors, which
would allow clinicians to assess patients during their activities of
daily life, increasing the ecology of the measurements. Moreover,
thanks to the flexibility of these technologies, they could
potentially be combined for assessment and stimulation, both
physical and cognitive. The development of robotic therapists
just for assessment has been, up to now, minimally studied and
used. This kind of solution seems that it will provide a better
fit for the stimulation of these patients. The literature regarding
stimulation, on the other hand, is more sizable. As just noted,
for this application, the development of a robotic therapist is
more common, and is one of the driving topics covered in
research papers. Notwithstanding the interest gathered by this
topic, the literature is lacking experimental data; several works
reviewed report usability and acceptance tests. However, some
steps forward have been taken. One research study on the topic
concluded that a robotic therapist should take into account not
only the administration of cognitive stimulation tasks, but also
be able to interact with the users in a more emotionally/socially
manner. Alternatively, regarding the use of personal devices and
smart environments in cognitive stimulation, it is possible to
observe a more mature field of research, with wider samples
and longer-lasting trials. As aforementioned, regarding the
Assessment section, SGs and the use of the VR environment
are growing faster and gathering significant interest. Finally,
concerning the Assistance section, it represents the widest group
of papers, and it is mainly composed of work that examines the
use of robots for assistance (Cavallo et al., 2011). Apart from the
impressive interest that this field is attracting, it seems to be more
a target for future development than a feasible reality, at least for
now. That is likely due to a couple of limitations: one, the current
state of development for companion robots that assist people,
compared to the actual amount of help, in terms of quantity and

quality, that the people need, and, two, the massive difficulties
in gathering reasonable data. These limitations are primarily
related to the complex nature of the service that we need to
deliver: assistance. In fact, the gap, present in the other two
sections, between the use of robots instead of other technological
solutions, is reduced here or, even partially erased. That testifies
to the inherent difficulty in assisting properly a human-being,
especially one with cognitive impairment.

In conclusion, in our opinion, the challenge should be to
address, in a systematical way, the act of steadily stepping up
the level of intervention, starting from assessment until complete
assistance is provided. Now that users’ needs are precisely
outlined, and the helpful technologies are identified, a modular,
suitable system should be developed that addresses the subjects’
strengths and weaknesses; features a smart environment and a
cloud architecture; and includes more powerful and intelligent
robots. The complexity of the intervention reflects, in fact, the
complexity of human beings.
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The LONI QC System: A
Semi-Automated, Web-Based and
Freely-Available Environment for the
Comprehensive Quality Control of
Neuroimaging Data
Hosung Kim1* , Andrei Irimia1,2* , Samuel M. Hobel1, Mher Pogosyan1, Haoteng Tang1,
Petros Petrosyan1, Rita Esquivel Castelo Blanco1, Ben A. Duffy1, Lu Zhao1,
Karen L. Crawford1, Sook-Lei Liew1, Kristi Clark1, Meng Law1, Pratik Mukherjee3,
Geoffrey T. Manley3, John D. Van Horn1 and Arthur W. Toga1

1 Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern
California, Los Angeles, CA, United States, 2 Department of Gerontology, University of Southern California, Los Angeles, CA,
United States, 3 Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA,
United States

Quantifying, controlling, and monitoring image quality is an essential prerequisite
for ensuring the validity and reproducibility of many types of neuroimaging data
analyses. Implementation of quality control (QC) procedures is the key to ensuring that
neuroimaging data are of high-quality and their validity in the subsequent analyses. We
introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based
system featuring a workflow for the assessment of various modality and contrast brain
imaging data. The design allows users to anonymously upload imaging data to the
LONI-QC system. It then computes an exhaustive set of QC metrics which aids users
to perform a standardized QC by generating a range of scalar and vector statistics.
These procedures are performed in parallel using a large compute cluster. Finally, the
system offers an automated QC procedure for structural MRI, which can flag each
QC metric as being ‘good’ or ‘bad.’ Validation using various sets of data acquired
from a single scanner and from multiple sites demonstrated the reproducibility of our
QC metrics, and the sensitivity and specificity of the proposed Auto QC to ‘bad’
quality images in comparison to visual inspection. To the best of our knowledge, LONI-
QC is the first online QC system that uniquely supports the variety of functionality
where we compute numerous QC metrics and perform visual/automated image QC
of multi-contrast and multi-modal brain imaging data. The LONI-QC system has
been used to assess the quality of large neuroimaging datasets acquired as part of
various multi-site studies such as the Transforming Research and Clinical Knowledge
in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer’s Disease Neuroimaging
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Initiative (ADNI). LONI-QC’s functionality is freely available to users worldwide and its
adoption by imaging researchers is likely to contribute substantially to upholding high
standards of brain image data quality and to implementing these standards across the
neuroimaging community.

Keywords: quality control, magnetic resonance imaging, diffusion tensor imaging, functional magnetic resonance
imaging, LONI Pipeline

INTRODUCTION

To ensure the highest standards of research quality, reliability,
validity, and reproducibility in brain imaging studies,
investigators who acquire and/or analyze neuroimaging data
are required to test and monitor all facets of image acquisition.
For this reason, image quality control (QC) is a prerequisite
to most single and multisite projects. Acquisition protocols
with relatively long scanning times, such as diffusion tensor
imaging (DTI) and functional magnetic resonance imaging
(fMRI), may be sensitive to substantial noise or artifacts during
scanning – for instance, artifacts related to subject motion during
relatively long duration acquisitions. Adherence to standardized
protocol compliance may be inconsistent. Such neuroimaging
challenges become more germane in imaging studies of children
(Yoshida et al., 2013) and adolescents (Satterthwaite et al., 2012);
the confounding influence of head motion on resting-state
functional connectivity and DTI structural connectivity (Lauzon
et al., 2013; Yoshida et al., 2013) have received substantial
attention (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk
et al., 2012). Similar effects (Reuter et al., 2015) are evident in 3D
acquisitions of structural MRI (sMRI).

In addition to head motion-induced artifacts, the common
classes of artifacts found in MRI include ringing artifacts driven
by aliasing, EPI distortions due to gradient effects, intensity
inhomogeneity across regions due to MR strength attenuation
and use of multiple channel coils, zero fill artifact, zipper
artifact related to blood flow, impulse noise that likely drops
the signal-to-noise ratio (SNR), magnetic susceptibility creating
image geometric distortion (Bastin et al., 1998; Skare et al.,
2000; Anderson, 2001), chemical shift due to the differences
between resonance frequencies of fat and water (Reiser et al.,
2008), and aliasing artifacts resulting from a field of view that
is smaller than the object (Heim et al., 2004; Owens et al.,
2012; Jones et al., 2013; Pizarro et al., 2016). Beyond the
aforementioned artifacts, the quality of DTI measurement is also
susceptible to eddy currents. These confounds likely contribute
to inaccuracies in segmentation of anatomical MRI images
(Pizarro et al., 2016; Keshavan et al., 2017), assessment of inter-
regional correlation of blood-oxygen-level dependent (BOLD)
time courses on resting state-fMRI (Power et al., 2012, 2014),
and the tensor fitting of DTI data (Le Bihan et al., 2006). Poorly
inspected data has the potential to obscure the presence of actual
biological changes and/or produce spurious associations with
study phenotypes. However, most neuroscientific and clinical
studies do not describe whether or not image QC was performed
in their research publications. Others rely solely upon a visual
inspection method of image QC and follow in-house QC

protocols, which may not be well documented. The use of visual
inspection methods which often rely on subjective interpretation
to identify ‘bad’ quality data are mainly due to the absence
of an existing standardized procedure for QC. Furthermore,
variations in QC approaches make data aggregation across
datasets even more difficult.

Development of quantitative QC metrics is imperative for
addressing the subjectivity in visual assessment and would serve
to facilitate an automated QC system of brain image data so
that methods of assessment can be reproduced across multisite
datasets. A survey of the literature (Supplementary Data 1)
presents studies performing systematic assessment of image
quality of MRI data using quantitative QC for typical MRI
modalities (sMRI: n = 9; fMRI: 5; DTI: 3). The types of QC
(i.e., manual or fully automated annotation of ‘bad’ images), the
number of QC metrics (n = 1–190) and the type of datasets (i.e.,
inclusion of patients or healthy subjects only, age range, sample
size, use of publicly open data or their own data) used in these
studies vary considerably. In particular, inclusion of pathologic
brains or inclusion of pediatric or elderly groups in some studies
may result in a different distribution of the QC metrics –
suggesting different interpretations of their relative image quality
since these are factors likely changing the degree of artifacts
or degrading the image preprocessing for the computation of
QC metrics. This may ultimately present confounds for the
users during their interpretation of the QC results. Recent work
shows more promising results and provides more advanced
features that improve the accessibility and reliability of the
QC system: The nine studies shown in Supplementary Data 1
focused on developing a QC system for structural MRI (sMRI).
Similarly, these studies derived a number of QC metrics that
characterize different aspects of imaging artifacts on sMRI and
used supervised classifiers to determine a decision boundary
by which the best agreement with visual inspection results was
obtained. One of these frameworks is not publicly available
(Pizarro et al., 2016). Roalf et al. (2016) recently developed a
publicly open script which calculates several QC metrics to assess
the image quality of DTI data. They performed a systematic
evaluation on a large DTI dataset showing sensitivity and
specificity of their proposed QC metrics to bad quality data. Oguz
et al. (2014) have also developed the DTIPrep tool, open-source
software featuring a graphical user interface (GUI), which can
perform QC on DTI images. This tool has two separate modules
including an automatic QC and artifact correction/removal as
well as a module enabling visual assessment. One fMRI study
using a QC metric of temporal variation in signal changes showed
that this metric is sensitive to motion artifacts and also related to
reductions in functional connectivity (Power et al., 2012). In their
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follow-up study, they expanded their findings by investigating
methods to remove the censored motion artifact (Power et al.,
2014). There have also been efforts made for the quality assurance
of post-image processing such as in the studies evaluating brain
structural segmentation on sMRI (Keshavan et al., 2017) and
fiber tractography extracted from DTI data (Sommer et al.,
2017). However, this type of QC processing may tend to be
computationally costly, requiring numerous stages of image
processing prior to the image quality evaluation.

Despite these recent efforts in various MRI modalities, several
challenges exist which potentially limit neuroimaging researchers’
and clinicians’ access to or familiarity with currently available
QC tools: First, There are no other comprehensive QC tools
covering sMRI, fMRI, computed tomography (CT) and DTI
simultaneously, even though there are other QC tools covering
part of these image modalities1,2 (Marcus et al., 2013; Esteban
et al., 2017). Second, most of the QC tools do not provide a
user-friendly GUI which can increase the accessibility of novice-
level users to these tools. Most tools also require preinstalled
software libraries such as FSL, SPM or AFNI in order to enable
their functionality on a local host computer. Furthermore, the
facility for automated QC is not routinely included in many
neuroimaging software packages, which potentially implies a
dependence on human efforts in the QC process. Lastly, running
a given QC tool on a personal computer or small size compute
clusters may limit QC efforts in large-scale data collections.

Here, we describe the LONI QC system (version 1.0) which
features a detailed scientific workflow for the objective review
and assessment of various modality and contrast imaging data
including sMRI, fMRI, DTI, and CT data. The current QC
system has two options to perform its functionality: (1) a
completely online system supported by various commonly-
used web-browsers and which requires no preinstalled software;
(2) a downloadable framework which runs on the user’s
local computing environment but does necessitate prerequisite
software. In the online system, the design allows users to
anonymously upload imaging data to the LONI QC system,
either through LONI Integrated Data Archive (IDA) or using
a direct uploading interface. It computes a comprehensive
set of standard QC metrics that have been described in the
literature and performs a standardized QC via an automated
pre-processing system specifically designed to generate a range
of scalar and vector statistics along with derived images. LONI
QC data processing workflows are implemented using the LONI
Pipeline3 that facilitates designing, modifying, and maintaining
the system, whilst the QC data processing is performed on
the LONI processing grid in the Mark and Mary Stevens
Neuroimaging and Informatics Institute at the University of
Southern California (USC) – a cluster of thousands of central
processing units (CPUs). LONI QC system also features a user-
friendly web GUI that is designed for those whose level of
expertise can range from novice to expert. Upon completion of
the QC process, the system provides the users a detailed report

1http://preprocessed-connectomes-project.org/quality-assessment-protocol/
2https://mriqc.readthedocs.io/en/stable/
3http://pipeline.loni.usc.edu

containing a range of quantitative metrics which can be used to
assess neuroimaging data quality. Finally, the LONI QC system
enables image evaluation based on flagging each QC metric as
‘good,’ ‘questionable,’ or ‘bad’ based on a statistical distribution
of prior results.

To provide an illustration of the LONI QC system, we evaluate
various datasets including imaging data scanned with different
imaging modalities (sMRI, fMRI, DTI), sequences (T1-weighted,
T2-weighed, FLAIR) and different acquisition parameters (e.g.,
repetition time, echo time, voxel size). We also evaluate the
QC metrics’ reproducibility (for a dataset collected from the
same scanner and collected from multiple scanners with different
acquisition parameters) as well as sensitivity and specificity
to the identification of ‘bad’ quality images in comparison
to visual inspection to assess the utility of the automated
QC rating process.

MATERIALS AND METHODS

The online LONI QC system consists of the following three
stages (Figure 1): (1) Initialization, including online account
creation and uploading data; (2) Computation of QC metrics for
various modality images; and (3) Image QC reporting including
automated QC rating and user’s visual inspection. The automated
QC feature provides a way for users to be informed about
whether the assessed image data is of good quality or needs
further careful inspection by a human expert. In the following
sections, the workflow and technical specifications of the system
are described. More details that explain how the GUI of the
current system interacts with the workflow and the proposed
features are provided in Figure 2 and Supplementary Data 2.

The offline version of the LONI QC framework may be
downloaded at http://qc.loni.usc.edu. This package includes the
related LONI pipeline workflow file, the scripts required by the
workflow, and a document instructing the installation and the list
of the packages to be preinstalled, such as FSL, AFNI, FreeSurfer,
and SPM.

Initialization (Figure 1-1)
Once users create their account on the LONI QC system
and login, they can submit image data from the existing
data collection to the QC processing workflow. To enable the
submission of image data by a user, the LONI QC system either
interacts with the LONI-Image Data Archive (IDA)4 or uses a
separate module that allows the user to directly upload their
data to the QC system. The IDA is a user-friendly environment
for archiving, searching, sharing, curating and disseminating
neuroimaging and related clinical data (Crawford et al., 2016).
It has been employed in a large number of neuroimaging
research projects across the globe and accommodates MRI,
MR angiography (MRA), magnetic resonance spectroscopy
(MRS), DTI, CT, positron emission tomography (PET) and
other imaging modalities. An engine for flexible data de-
identification and encrypted file transmission are then used to

4http://ida.loni.usc.edu
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FIGURE 1 | Overall workflow for the LONI QC system. The LONI QC system consists of the three main stages: (1) Initialization including the creation of an online
account and uploading data; (2) Computation of QC metrics for different image modalities. The system computes and generates various QC metrics, vectors and 3D
maps and renderings for user’s comprehensive evaluation of image quality; and (3) Image QC including automated QC and user’s visual evaluation. The automated
QC feature provides a way for users to be informed about whether the assessed image data is of good quality or needs further careful inspection by a human expert.
IDA, Integrated Data Archive; QC, quality assessment; QC, quality control; MSI, mean slice intensity; SNR, signal-to-noise ratio; CoM, Center of Mass; ADC,
apparent diffusion coefficient; DWI, diffusion-weighted imaging; FA, fractional anisotropy; SVNR, signal variance-to-noise variance ratio; TCTV, tissue
contrast-to-tissue variance ratio; DVARS, the root-mean-squared change in blood oxygenation level-dependent signal across time; FWHM, full width half maximum;
FD, frame-wise displacement; SD, standard deviation.

ensure compliance with patient-privacy regulations. Uploading
data through the IDA automatically archives the data in the IDA
securely, which requires no specialized hardware, software or
personnel. The IDA and the direct upload module automatically
extract relevant metadata from all de-identified image files. The
direct upload method implemented in the current system version
(v1.0) permits DICOM and Nifti formats as well as uploading
multiple files at a time (up to 2 gigabytes or up to 30 files).

Computation of QC Metrics for Various
Modality Images (Figure 1-2)
The users can initiate the system for computation of the QC
metrics by selecting data included in the existing data collection.

The LONI QC system uses a LONI Pipeline workflow (Rex
et al., 2003) to pre-process image data prior to the calculation
of QC metrics including correction for intensity inhomogeneity
(Sled et al., 1998) and eddy current correction for the geometric
distortion on DTI (Jezzard et al., 1998). Once the preprocessing
is done, the system then inspects all XML header information
and verifies that the data are suitable for analysis: e.g., whether
the modality of the image is within the category of sMRI,
fMRI, DTI or CT, and whether there is missing information
about the imaging parameters. The results of this inspection are
used as input to a module which either instructs the system to
proceed with the calculation of metrics or transmits information
to an error reporting module. We describe in the following
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FIGURE 2 | The web-based user-friendly GUI for LONI QC system. (a) Entering to http://qc.loni.usc.edu using any web-browser, users can register their accounts
and log in to LONI QC system. (b) After sign-in, users enter into the main page. In the left panel the user can first select a data collection. The user can select
image(s) in the selected collection in the middle panel. Finally, in the left panel, the user can select an Action related to the selected image(s): either run new QC,
evaluate QC result, create QC report, export QC data to a CSV file or refresh collection data. (c) The user can set or change the cutoff values/ranges in ‘auto QC
setting.’ The cutoff ranges are set per image modality by selecting it on the left-bottom panel. The ranges can be compared to the mean and SD of the previously
processed datasets. (d) Once QC metrics computation were completed and the user clicked “Evaluate scan quality” in the left panel of the main page, the user can
appreciate and evaluate the calculated QC metrics (d-1), vectors (d-2), and 3D maps and renderings (d-3,4,5) per image. If the auto QC was performed, they can
find the ‘good,’ ‘questionable’ or ‘bad’ flags and can revise the results if they do not agree. After the evaluation and revision of QC, users can submit the final
evaluation to the system and request to export the QC reports in various formats such as XML or PDF (e).
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sections how and what QC metrics are computed in each
imaging modality.

Workflow and QC Metrics for sMRI and CT
The following QC metrics are computed: (1) mean slice intensity
(MSI): AFNI software is used to calculate MSI, a vector
representing the mean intensities for all the slices. A quick
change in mean intensity at a slice compared to its previous one
may indicate a quality issue; (2) SNR: The lower 10% of the
intensity distribution is used to separate the image background
from the head. The SNR is, then, computed as mean signal
intensity of the head divided by the standard deviation (SD) of
the intensity in the background. The range of possible values is
between zero and infinity. Lower SNR indicates poorer image
quality; (3) signal variance-to-noise variance ratio (SVNR): Signal
intensity variance of the head is divided by the signal intensity
variance of the background. Here, the range of possible values
is between zero and infinity. Higher SVNR indicates bad image
quality; (4) contrast-to-noise ratio (CNR): Image is skull stripped
to label the brain using FSL-BET5. The FSL-BET is subject to
the generation of a poorly fitting brain mask. However, we
intend for the LONI QC system to use simple and minimum
image pre-processing steps rather than employing learning-
based approaches, per se, which often perform better or worse
depending on the training-set. Furthermore, the LONI QC
system has the functionality for users to visually check the quality
of the BET-generated mask, allowing for the finalization of the
QC more comprehensively. Segmentation of gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) is performed
on the skull-stripped brain using SPM86 package. The means of
GM and WM signal intensities are subtracted from one another.
Their absolute value is divided by the SD of the background signal
intensity. Possible values range from zero to infinity. Lower CNR
indicates poorer image quality; (5) Contrast of Variance-to-Noise
Ratio (CVNR): Instead of the means of GM and WM intensities,
their SDs are used; (6) brain tissue contrast-to-tissue intensity
variation (TCTV): The means of GM and WM signal intensities
are subtracted from one another. Their absolute value is divided
by the pooled SD of the GM and WM as

√
σ2

GM + σ2
WM where σ is

SD of the signal intensities for a given tissue type. Range of values
is zero to infinity. Smaller TCTV indicates poorer image quality.
This metric was used in a recent study (Pizarro et al., 2016) and
we observed this is sensitive to the motion artifact more than SNR
or CNR; (7) full-width-at-half-maximum (FWHM): This metric
that characterizes the smoothness of the image is determined
using the variance of derivatives method of Worsley et al. (1992):
The FWHM was computed within the brain area and calculated
separately for each axis in the image volume. Also, the number
of ‘resolvable elements’ is calculated by dividing the number of
voxels in the brain by the geometric mean of the FWHM of each
axis; (8) center of mass (CoM) of the volume in each dimension
(X, Y, and Z). The CoM is computed by dividing the sum of each
coordinate X, Y, or Z for the voxels inside the brain by the number
of these voxels (Fesl et al., 2008).

5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
6http://www.fil.ion.ucl.ac.uk/spm/

Workflow and Metrics for DTI
The module first ensures whether data for all gradient directions
are available or not by extracting B0 values and the diffusion
gradient direction matrix from DICOM headers. If this is not
the case, the workflow generates error messages to the user.
The following QC vectors are computed: (1) the SNR; (2) CoM
computed for each gradient direction volume; (3) histogram of
image intensities and its related descriptive statistics for each
volume are generated within the head mask; (4) the mean
signal intensity (MSI) and SNR for volumes associated with each
gradient direction; and (5) the displacement from the mean of
the CoM in each of the X, Y, and Z directions is calculated
for each gradient direction. Using TrackVis7, the following
features as volume maps are computed and visualized for users
to examine: B0, fractional anisotropy (FA), mean diffusivity
(MD) and apparent diffusion coefficient (ADC) volumes. The
3D rendering of WM fibers is generated using streamline
tractography methods (Mori et al., 1999; Lazar et al., 2003).
A detailed report containing information about the number of
voxels, mean intensity, standard deviation, and minimum and
maximum intensities for each slice is also generated.

Workflow and Metrics for fMRI
For each point in an fMRI time series, capabilities are provided
to calculate the following scalar metrics: (1) MSI per volume;
(2) the average temporal SNR; (3) the frame-wise displacement
(FD): the mean displacement of the head for each frame from
the first frame volume using the algorithm of Power et al. (2012).
The maximum FD and the number of the volume frames with
FD > 0.5 are also computed; and (4) DVARS: The algorithm
of Power et al. (2012) is also used to compute the root-mean-
squared change in blood oxygenation level-dependent (BOLD)
signal across time, which is known as the DVARS measure.
We used FSL tools called fsl_motion_outliers to compute FD
and DVARS. We further compute the maximum DVARS, the
number of frames with DVARS > 50. Plots across time (i.e.,
across the volume frames) are also provided for the following
quantities: (1) FD; (2) DVARS; (3) the volume mean of SNR;
(4) estimated head translations and rotations in each dimension;
(5) the volume mean of the signal intensity; (6) the volume mean
of the running difference (‘velocity’); (7) percentage of outlier
voxels [using the 3dToutcount function in the AFNI software
package (Cox, 1996)]; (8) the FWHM in each dimension; (9) the
CoM change in each dimension; (10) the mean and maximum
of the fMRI signal’s frequency spectrum over the brain-masked
volume; and (11) the image intensity variation per slice and the
signal-to-fluctuation noise ratio (SFNR) computed as described
by Friedman and Glover (2006). In the processes where the
alignment was required, we used FSL-FLIRT and MCFLIRT tools
with the cost function of the normalized correlation.

Workflow and Metrics for Phantoms
The LONI QC system accommodates data collected from MRI
phantoms as a separate category and all the metrics described
above for human data can be computed automatically for MRI

7http://www.trackvis.org
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phantoms as well. This process can be essential for helping
the user to decide on acceptable values and ranges for metrics
computed from human data. The QC protocol for phantoms is
similar to that for each type of imaging (sMRI/CT, DTI or fMRI),
with minor differences. The QC metrics reported for phantoms
are the MSI, odd-even slice intensity differences, the SFNR, the
CoM in each dimension, and to obtain plots of the raw fMRI
signal and Fourier spectrum magnitude.

Image QC (Figure 1-3)
User’s Qualitative and Quantitative QC of Image Data
Once the image data were processed and QC metrics have been
computed, the system awaits the users’ evaluation. The graphical
user interface (GUI) of LONI QC system then is provided for
users’ visual inspection of the quality of images as well as their
quantitative evaluation of QC metrics (Figure 2):

• Visual inspection: The GUI is fully integrated with the LONI
Viewer based on a web-enabled neuroimage viewing engine.
For sMRI volumes, the LONI viewer allows users to inspect
neuroimaging slices in the axial, sagittal and coronal planes.
For DTI volumes, a magnetic field gradient direction table
is provided in addition to FA, MD and ADC images. DTI
tractography files can be inspected using the LONI Viewer with
an online 3D visualization module.
• Quantitative evaluation: Using the GUI of the system, the

users can view and examine the resulting QC metrics as in
value for the following metrics [sMRI: SNR, CNR, SVNR,
CVNR, TCTV, COV, FHWM [x,y,z], CoM [x,y,z]; fMRI:
average temporal SNR, maximum FD, number of frames with
FD > 0.5, minimum DVARS, maximum DVARS, number of
frames with DVARS > 50; DTI: N/A], as in graph plotting
the vector of image arrays (sMRI), gradient volume series
(DTI), and time series profiles (fMRI) for the following
metrics: [sMRI: MSI; DTI: MSI per gradient volume, SNR
changes, CoM change in each dimension; fMRI: FD, DVARS,
volume mean of SNR, head translations, and rotations in each
dimension, volume mean of signal intensity, volume mean
of running difference (‘velocity’), percentage of outlier voxels,
FWHM in each dimension, CoM change in each dimension,
mean and maximum of the fMRI signal’s frequency spectrum
over the brain-masked volume, image intensity variation per
slice and signal-to-fluctuation noise ratio], and as in voxel-wise
volume map (sMRI: SNR; DTI: SNR, B0, FA, MD, ADC; FMRI:
SNR, temporal mean, temporal SD).

Automated QC and User’s Revision
It is almost impossible for users to perform image QC for all the
data in instances of the analysis of large or multisite datasets.
Even analyzing a smaller dataset, image QC for every single
subject is time-consuming. To facilitate, the LONI QC system
provides a user-friendly automated QC system that flags each
scan with ‘good,’ ‘questionable’ or ‘bad’ and suggests the user to
carry out an additional visual QC on those with ‘questionable’
or ‘bad’ flags. This feature is currently available for the sMRI
and fMRI data where we have single-value QC metrics whereas
the QC metrics for DTI are in a vector format. The system’s

GUI provides the users a way to set a range for each QC metric,
with which they can classify the resulting metric to the ‘good,’ or
‘bad’ category (note: ‘questionable’ is merged into either ‘good’
or ‘bad’ in autoQC, see Evaluation section). This is performed
by comparing the location of each metric value with a user-
defined cut-off range. Metrics whose values fall outside this
interval are then labeled automatically as ‘bad.’ In the current
study, the criteria for the classification of ‘good’ or ‘bad’ were
determined compared to the visual QC as the gold standard.
More specifically, the criteria were defined based on the cut-off
values which we determined at the best performance in terms
of (sensitivity + specificity)/2. More details and the best cut-off
values used for the current version of autoQC are found in the
Evaluation section. Finally, if more than a user-specified number
(system default: 3) of computed metrics are flagged as ‘bad,’ the
system flags the assessed case as ‘bad’ and suggests it to be more
closely checked.

To finalize a QC report review and submission, the user
provides an overall evaluation of the volume on the basis of the
result of the auto QC as well as that of their own qualitative
QC. The users can either accept the auto QC result or submit
their revised annotation. Once reviewed, the report can be saved
only, or saved and submitted to the QC database. If the report
is only saved, additional changes can still be made until its final
submission to the QC database. In each case, the users can
convert the report into either PDF or CSV format for further
download, distribution, or offline analysis. The entire QC process
can be completed within less than a minute for each scan by an
expert neuroimaging researcher who has been trained on how
to use the system.

QC Study Summaries
One feature being provided by the QC system is the ability
is to compile summaries of volume quality over a study or
multiple studies with hundreds to thousands of participants,
over particular acquisition types (sMRI, DTI, fMRI, etc.), over
distinct project sites and over user-defined date ranges when the
data were acquired.

Evaluation of the QC Metrics and the
Auto QC
To aid in a better understanding of the QC metrics used by
the system and provide a guideline to set up the cutoff ranges
for the auto QC, we performed the following evaluations with
various datasets:

Distribution of QC Metrics in Data Collected Using a
Single MRI Sequence
We computed the QC metrics on sMRI data (n = 642;
age = 74 ± 8 years, 25–75% = 68–78 years) that have been
collected in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) using the same imaging parameter setting (T1-weighted
Sagittal MP-RAGE; details found in Table 1). In the following
analyses, we used the magnitude of each CoM and FWHM by
computing

√
a2

x + a2
y + az

z , where a is either CoM or FWHM,
instead of analyzing each of x, y, z directional metrics separately.
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TABLE 1 | Acquisition parameters for structural MRI of the ADNI dataset.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Sequence Sagittal MP-RAGE/IR-SPGR

TR [ms] 7

TE [ms] 3

TI [ms] 400

Flip angle [degrees] 11

Matrix 256 × 256

Voxel size [mm3] 1 × 1 × 1

FOV [mm] (260 – 270) × (252 – 262)

Number of axial slices 176 – 196

Number of scans 642

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view; MP-
RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled
gradient recalled echo.

To assess the distribution of the QC metrics, we plotted the
histogram for each of them. The distributions characterized using
the histogram were used as the reference in the following analysis
of the data using the multi-sites multi-sequences. For fMRI, we
analyzed 657 scans that were selected also from the ADNI project
(age = 74 ± 7, 25–75% = 69–78), which were acquired using a
single set of imaging parameters (ADNI Axial resting state fMRI
protocol) shown in Table 2.

Reproducibility of QC Metrics on Data Collected
From Multi-Sites, From Different Scanners and Using
Multi-MRI Sequences
For sMRI, we used multisite datasets including data from
Parkinson’s Progression Markers Initiative (PPMI) (Kang et al.,
2016) and Transforming Research and Clinical Knowledge in
Traumatic Brain Injury (TRACK-TBI) projects while using the
ADNI data as the reference of the single sequence imaging
data. For TRACK-TBI data, we included only those with

TABLE 2 | Acquisition parameters for the two different resting state-fMRI dataset:
ADNI represents data acquired using a single set of imaging parameters whereas
Track-TBI represents dataset acquired using various parameters from multi-sites
for the cross-validation.

ADNI Track-TBI

Sequence ADNI2 Axial resting-
state fMRI

Axial Resting State fMRI

TR [ms] 3000 3000 – 3671

TE [ms] 30 30

TI [ms] N/A N/A

Flip angle [degrees] 80 80

Matrix 64 × 64 (60 – 480) × (64 – 512)

Voxel size [mm3] 3.3 × 3.3 × 3.3 (2.8 – 3.4) × (2.75 – 3.4) ×
(1 – 3.4)

FOV [mm] 212 × 206 (64 - 512) × (62 – 497)

Number of axial slices 48 39 – 52

Number of frames 140 140, 200

Number of scans 657 1555

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view.

non-visible injury on images in the analysis. As a result,
we analyzed 1196 T1-weighted imaging data from PPMI
(age = 62 ± 10, 25–75% = 56–69) and 1569 from TRACK-TBI
projects (age = 37± 17, 25–75% = 24–52). For fMRI, we analyzed
1555 from TRACK-TBI (age = 37 ± 16, 25–75% = 24–52). The
information of MRI acquisition parameters used in these sMRI
and fMRI datasets are presented in Tables 2, 3.

To assess the distribution of the QC metrics, we plotted the
histogram for each of them. For each modality of sMRI or
fMRI, we created the histogram separately for each of the two
datasets and compared the distribution of each metric between
the two datasets. To this end, we first computed the z-score per
QC metric using the pooled datasets of the two datasets. Then,
the histogram in each dataset was normalized using the same
number of the bins and by dividing the height of each bin by
the area of the histogram, resulting in an empirical probability
density map. Finally, to evaluate whether the manufacturer of the
scanner affect the distribution of the QC metrics, we compare
the histogram of the QC metrics measured in the subjects
scanned on the Siemens scanner which comprised the major
portion (n = 655; 42%; more information in Table 3) of the
TRACK-TBI dataset with those measured in the whole TRACK-
TBI dataset.

More subject motion is presumed to be involved in pediatric
samples. Furthermore, more CSF volume, less cortical GM
volume and smaller GM/WM tissue intensity contrast are
expected in elderly (Steen et al., 1995; Salat et al., 2009) and
dementia populations (Westlye et al., 2009; Salat et al., 2011).
These factors possibly influence the measurement of the QC
metrics. Thus, we correlated the age at scanning and each
QC metrics. Visual inspection of the shape for each dataset’s
probability density map and computing the Dice overlap index
between them assessed their similarity.

Finally, a user may expect one or a combination of QC
metrics to characterize a different aspect of the image artifacts.
To evaluate the independency of a given QC metric to others for
each modal image data, we constructed a matrix, each component
of which computed a Pearson’s correlation efficient between the
given metric and one of the rest of the metrics.

Reproducibility of QC Metrics for the Cases Scanned
on the Same Scanner With the Same MRI Protocol
Four healthy volunteers, as well as a BIRN MRI phantom
(Friedman and Glover, 2006), were scanned at 1-week intervals
for a month (four scans) using the ADNI3 (Weiner and
Veitch, 2015) neuroimaging protocol. This consisted of (A)
structural MRI scans, including (i) a magnetization-prepared
rapid acquisition gradient echo (MP-RAGE) T1-weighted scan,
(ii) a spoiled gradient-echo (SPGR) T2

∗-weighted scan and
(iii) a fluid-attenuated inversion recovery (FLAIR) scan, (B) a
126-direction DTI scan, and (C) an fMRI scan. The acquisition
parameters for each of these are listed in Table 4. These volumes
were acquired using the 3 T Siemens Prisma MRI scanner at the
Mark and Mary Stevens Neuroimaging and Informatics Institute.
All volunteers scanned in the single MRI machine provided
written informed consent and the study was undertaken with the
approval of the Institutional Review Board at the Keck School of
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TABLE 3 | Acquisition parameters for the multi-site datasets used for the cross-validation: structural MRI.

Track-TBI PPMI

Sequence Sagittal 3D T1 MPRAGE / 3D T1 IR-SPGR Sagittal 3D T1 MPRAGE or 3D T1 IR-SPGR

TR [ms] 4 – 35 1160 – 2530 5 – 11 1650 – 2400

TE [ms] 1 – 8 2 – 20 2 – 6 2 – 20

TI [ms] 400 – 750 500 – 1300 400 – 500 844 – 1100

Flip angle [degrees] 8 – 30 7 – 160 8 – 30 8 – 160

Matrix (224 – 512) × (256 – 512) (204 – 512) × (245 – 512) (256 – 512) × (160 – 512) (192 – 560) × (192 – 560)

Voxel size [mm3] (0.4 – 1.4) × (0.4 –
1.4) × (0.5 – 3)

(0.4 – 1) × (0.4 – 1) × (0.5 – 3) (0.4 – 1.2) × (0.4 – 1) ×
(0.7 – 2)

(0.4 – 1.3) × (0.4 – 1.3) ×
(0.5 – 3)

FOV [mm] (220 – 350) × (2134 – 340) (220 – 260) × (214 – 252) (160 – 266) × (155 – 258) (220 – 270) × (214 – 262)

Number of axial slices 60 – 336 64 – 208 72 – 256 72 – 240

Number of scans 800 769 286 910

Scanner name (n) Simens Triotrim (655)
Simems Skyra (145)

Philips Achiava (531) GE
Signa-HDXT (238)

N/A N/A

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view; MP-RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled gradient
recalled echo; N/A, not available.

Medicine of USC and according to the Declaration of Helsinki.
The ages of the volunteers were 24, 25, 25, and 35; all were right-
handed and healthy, with no history of a neurologic or psychiatric
disease. We expected a very small variability in the QC metrics
across these images which were acquired in the same scanner
relative to data collected from different scanners with different
image sequences. We thus performed an F-test of Variance on a
ratio as SD_multi_scanner2/SD_single_scanner2, by comparing
the variance of each metric for these four individual images
with the variance for the multi-site datasets mentioned above.
This sample was created by consisting of only subjects in
the same range of age as the four volunteers. The smaller
the ratio SD_within_scanner/SD_multi_scanner was, the more
reproducible the QC metrics were within a scanner.

Performance of Auto QC
We assessed the performance of the auto QC in comparison
to the result of the visual inspection. To find the best cutoff

values as well as compare these values with the human visual QC
results, we used the sMRI data of the TRACK-TBI dataset and
tested various cutoff values to identify the QC labels (‘good’ vs.
‘bad’) that best agreed with the labels created by systematically
performed expert’s visual inspection. Here, we tested only sMRI
data as visual inspection of sMRI was performed solely using the
evaluation of the original images without checking QC metrics.
Visual inspection of fMRI normally entails the examination of
the QC metrics as well, which could bias the inspection result.
Furthermore, no scalar QC metrics were calculated for DTI
data and thus the auto QC of DTI was not included in the
current system. For visual inspection, we used the following
categories of the artifact to identify ‘questionable (or moderate)’
and ‘bad’ quality images: ringing artifacts due to motion or
aliasing, zipper artifact related to blood flow, impulse noise that
likely drops the SNR, magnetic susceptibility creating image
geometric distortion, wrap around artifacts happening when the
size of the imaged object is larger than the field of view and

TABLE 4 | Acquisition parameters for the four healthy volunteers and 1 phantom scanned using the 3T Siemens Prisma MRI scanner at the Mark and Mary Stevens
Neuroimaging and Informatics Institute.

sMRI DTI fMRI

Weighting T1 T2
∗ FLAIR T2

∗ N/A

Sequence MP-RAGE SPGR SE EPI FSE EPI

TR [ms] 2300.00 650.00 4800.00 3400.00 607.00

TE [ms] 2.95 20.00 441.00 71.00 32.00

TI [ms] 900.00 N/A 1650.00 N/A N/A

Flip angle [degrees] 9 20 120 90 50

ETL 1 1 243 87 88

Acquisition type 3D 2D 3D 2D 2D

Matrix size 256 × 240 256 × 192 256 × 256 116 × 116 88 × 88

In-plain voxel size [mm] 1.05 × 1.05 0.86 × 0.86 1.00 × 1.00 1.00 × 1.00 2.50 × 2.50

Slice thickness [mm] 1.2 4.0 1.2 2.0 2.5

Phase FOV [%] 93.75 100.00 100 100 100

Bandwidth [Hz/pixel] 240 200 850 2270 2365

The imaging parameters used in this acquisition were chosen in accordance with ADNI3 protocol. sMRI, structural magnetic resonance imaging; DTI, diffusion tensor
imaging; fMRI, functional MRI; MP-RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled gradient recalled echo; SE, spin echo; EPI, echo planar
imaging; FSE, fast SE; TR, repetition time; TE, echo time; TI, inversion time; ETL, echo train length; FOV, field of view; 2D, two-dimensional; 3D, three-dimensional.
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small head coverage. The details of the visual inspection are
provided in Supplementary Data 3. Using this protocol and
being independent of the auto QC results, one rater (HT) labeled
1,569 individual t1-weighted sMRI data in the TRACK-TBI set
and another rater (RECB) did this for a randomly subsampled
100 cases to test their reproducibility. The ‘questionable’ quality
data in the visual assessment were either merged to ‘good’ or ‘bad.’

To assess the binary classification accuracy of each QC metric
with respect to various cutoff values, we first changed the cutoff
values per QC metric from z-score = −5 to z-score = 5 with
a very small step size (z-score = 0.05). To compute sensitivity
and specificity compared to expert labeling, we calculated
the receiver operating characteristics (ROCs) and the related
area under the curve (AUC). The logistic ROC analysis used
a threefold cross-validation approach to estimate AUC and
optimal cutoff score that resulted in the greatest accuracy as
‘(sensitivity + specificity)/2′. Larger AUC values indicated the
more accurate classification of participants.

In the Auto QC, more than a user-specified number of
computed metrics were flagged as ‘bad’ and the system flagged
the assessed case as ‘bad.’ Therefore, we assessed how many ‘bad’
flagged QC metrics should be used to best agree with the labels in
the visual inspection. Using the optimal cutoff values that were
determined previously, we flagged all the 7 QC metrics either
into ‘good’ or ‘bad’ and counted the number of the ‘bad’ labeled
metrics per image. At each threshold from 1 to 7, we computed
the specificity, sensitivity, and accuracy compared to the visual
inspection results.

All p-values were corrected using Bonferroni adjustment.

RESULTS

Processing Time
The processing times for the preprocessing (e.g., brain masking)
and calculation of QC metrics (mean ± SD) were approximately
7 min for sMRI, 6 min for CT, 8 min for fMRI and 4 min for
DTI on a single Intel i7 CPU. Including the queuing process and
possible network traffics, the average computational times were
22.8 ± 6.6 min for sMRI, 18.5 ± 5.9 min for CT, 16.0 ± 4.2 min
for fMRI and 7.6± 2.2 min for DTI.

Distribution of QC Metrics in Data
Collected Using a Single MRI Sequence
For sMRI, the histogram of each QC metric is shown in Figure 3.
Their mean and SD were: SNR = 21.4 ± 3.0; SVNR = 233 ± 56;
CNR = 7.45 ± 3.33; CVNR = 788 ± 1680; TCTV = 1.00 ± 0.58;
FWHM = 5.30 ± 0.3; CoM = 17.4 ± 3.8. A visual evaluation
found that the distribution of SNR, SVNR, CNR, and FWHM
was left-right symmetric and similar to the shape of a Gaussian
function whereas that of CVNR and CoM was skewed and close
to the shape of an F-distribution function. The distribution of
TCTV displayed with two modes and was like the function of a
bimodal Gaussian mixture function.

For fMRI, the histograms are shown in Figure 4. The
mean and SD of each QC metic were: maximum FD
(maxFD) = 1.60 ± 8.80; the number of frames with FD > 0.5

(FD > 0.5) = 17.4 ± 24.3; average temporal signal-to-
noise ratio (avgTSNR) = 126 ± 31; maximum DVARS
(maxDVARS = 83.4 ± 37.4; minimum DVARS (minDVARS) =
23.0 ± 6.1; the number of frames with DVARS > 50
(DVARS > 50) = 21.9 ± 28.4. The distribution of avgTSNR, and
minDVARS tended to be left-right symmetric and similar to the
shape of Gaussian function whereas that of maxDVARS, maxFD,
FD > 0.5 and DVARS > 50 was skewed. The estimated FWHM
along each of the x, y, and z axes for fMRI was included in the
system. However, because the resultant measurement is not a
scalar but a time series vector, we did not include this in the result
because of the complexity of the time-series vector metric.

Reproducibility of QC Metrics for Data
Acquired on a Scanner Using a Single
Imaging Sequence
sMRI
All the individual QC metrics computed for the four volunteers’
longitudinal scans are provided in Tables 5–7. The means of
all the QC metrics for the T1w MRI data were similar to those
computed using the ADNI dataset and the multi-site PPMI and
TRACK-TBI datasets whereas the variations for these single-
scanner-acquired data were significantly smaller than those
acquired from the multiple sites (F-test; F > 19; p < 0.00001).
The distribution of each metric did not differ among the four
individuals (ANOVA; F < 2.0; p > 0.3). The computation of the
QC metrics in T2∗ and FLAIR imaging data showed different
characteristics of their means and SDs compared to T1-weighted
data (paired t-tests; t > 3.7; p < 0.05), advising the choice
of different cutoff values in the auto QC setting depending on
the used acquisition sequence. As expected, the mean SNR for
the phantom was approximately 3–5 times higher for all three
sequences. Similar differences between human subjects and the
phantom were observed for the SVNR and FWHM.

fMRI
The computed QC metrics are shown in Table 8. As in sMRI,
their means were similar to those computed using TRACK-TBI
and ADNI datasets except minimum DVARS and maximum
DVARS (t > 4.2; p < 0.005). The variations for all the metrics
were significantly smaller (F-test; F > 15; p < 0.00001). Results
illustrated that, as expected, the temporal SNR was four times
higher in the phantom whereas the FD and DVARS values were
many times larger in human subjects (t > 21; p < 0.00001).
This was because both FD and DVARS reflect greater subject
motion, such that larger values are associated with more motion
during the scan.

Reproducibility of QC Metrics for
Multi-Site and Multi-Scanner Data
sMRI
All the distributions of the sMRI QC metrics are shown in
Figure 3. The overall shapes of the histogram for all the metrics
were similar between the PPMI and ADNI single sequence
datasets. The distributions in all the QA metrics of PPMI data
were well overlapped with those in the ADNI data, whereas the
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FIGURE 3 | Distribution of sMRI QC metrics for two different datasets that were acquired with multiple imaging parameter settings and collected from multi-sites.
The PPMI dataset is colored in blue and the TRACK-TBI in red while the ADNI dataset that was acquired using a single imaging parameter setting is used a reference
and shown with the black outline. All the images included in this analysis were based on T1-weighted acquisition (The image sequence parameters are described in
Table 3). The Dice similarity index was computed for each QC metric to evaluate the overlap between the distributions from the two multi-sites datasets. This was
used as a measure of reproducibility of the metrics. Dice index: 0.6–0.8 – good; 0.8–1.00 – excellent (Altman, 1999).

distributions of SNR and CNR in TRACK-TBI data displayed a
shift of the whole shape from the PPMI and ADNI data, driven
by their higher mean (SNR:+3.1; CNR =+4.2). Indeed, TRACK-
TBI data displayed significantly higher mean SNR (26.6± 6.0 vs.
27.8 ± 5.8; t = 4.6; p < 0.001), and higher mean CNR (27 ± 0.1
vs. 27 ± 0.1; t = 4.8; p < 0.001) than PPMI data. No other QC
metrics differed in their means (p> 0.2).

The overlap between PPMI and TRACK-TBI datasets
was generally very high across metrics (Dice index:
µ ± σ = 0.88 ± 0.03, range: 0.85–0.93) except SNR and
CNR (0.76 ± 0.04) that displayed relatively smaller overlap.
The largest overlap was observed in CoM (Dice index = 0.93),
followed by CVNR (0.89), FWHM (0.87), TCTV (0.86), SVNR

(0.85), SNR (0.78) and CNR (0.73), respectively. Despite the
high overlap of the main distribution between TRACK-TBI and
PPMI datasets, the FWHM displayed significant smaller peaks
unequally located in the right-hand tail for both data sets. We
found this was driven by a number of cases with artifacts.

The overlap between Siemens data of the TRACK-TBI
and the whole TRACK-TBI data was also high across all
the metrics (Dice index: µ ± σ = 0.90 ± 0.05, range:
0.73–0.93) except CoM (0.73) that displayed relatively smaller
overlap. The largest overlap was observed in CVNR (Dice
index = 0.95), followed by SVNR (0.89), CNR (0.87), TCTV
(0.86), SNR (0.85), FWHM (0.82) and CoM (0.73), respectively
(Supplementary Data 4).
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FIGURE 4 | Distribution of fMRI QC metrics for two different multi-site data. The ADNI set that was acquired using a single imaging parameter setting is colored in
blue while the TRACK-TBI set that was acquired using multiple imaging parameter settings is in red. All the images included in this analysis were based on Axial
Resting State fMRI sequence (details in Table 3). The Dice similarity index was computed for each QC metric to evaluate the overlap between the distributions from
the two datasets. This was used as a measure of reproducibility of the metrics.

TABLE 5 | QC metrics for T1-weighted sMRI scans.

SNR SVNR CNR CVNR TCTV FWHM CoM

S1 29.3 ± 0.5 251 ± 60 12.5 ± 0.1 83 ± 61 1.99 ± 0.34 10.7 ± 0.1 0.16 ± 0.00

S2 31.8 ± 3.4 316 ± 52 10.3 ± 6.0 148 ± 111 1.44 ± 0.55 11.0 ± 0.2 0.18 ± 0.01

S3 30.6 ± 0.8 260 ± 17 15.9 ± 6.8 374 ± 52 1.44 ± 1.06 10.4 ± 0.1 0.17 ± 0.01

S4 30.9 ± 1.8 259 ± 28 14.4 ± 0.6 140 ± 112 1.93 ± 0.91 11.2 ± 0.2 0.15 ± 0.01

All 30.7 ± 1.7 272 ± 26 13.3 ± 3.4 184 ± 83 1.70 ± 0.78 10.8 ± 0.1 0.17 ± 0.01

P 125.9 ± 2.5 569 ± 30 – – – 27.8 ± 0.4 0.13 ± 0.01

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.

TABLE 6 | QC metrics for T2
∗ sMRI scans.

SNR SVNR CNR CVNR TCTV FWHM CoM

S1 26.1 ± 0.3 214 ± 4 2.2 ± 0.9 343 ± 32 0.21 ± 0.09 21.3 ± 0.3 0.19 ± 0.01

S2 30.5 ± 0.2 285 ± 5 1.1 ± 0.9 335 ± 56 0.09 ± 0.08 21.2 ± 0.5 0.20 ± 0.00

S3 28.7 ± 1.5 252 ± 18 1.3 ± 0.6 235 ± 34 0.11 ± 0.05 22.7 ± 0.2 0.19 ± 0.01

S4 25.9 ± 0.7 243 ± 10 1.0 ± 0.5 475 ± 80 0.08 ± 0.04 20.9 ± 0.3 0.18 ± 0.01

All 27.8 ± 0.7 248 ± 9 1.4 ± 0.7 347 ± 51 0.12 ± 0.07 21.5 ± 0.3 0.19 ± 0.01

P 107.5 ± 2.1 582 ± 17 – – – 35.9 ± 0.5 0.19 ± 0.01

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.
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TABLE 7 | QC metrics for FLAIR sMRI scans.

SNR SVNR CNR CVNR TCTV FWHM CoM

S1 21.4 ± 0.5 154 ± 12 8.6 ± 2.2 43.5 ± 17.7 1.31 ± 0.40 8.81 ± 0.27 0.14 ± 0.01

S2 25.7 ± 0.9 212 ± 14 13.2 ± 0.3 34.1 ± 2.1 1.81 ± 0.04 9.59 ± 0.29 0.16 ± 0.01

S3 25.0 ± 0.8 199 ± 16 11.0 ± 0.4 19.4 ± 4.1 1.66 ± 0.08 9.81 ± 0.20 0.15 ± 0.00

S4 23.2 ± 1.2 196 ± 19 11.7 ± 0.9 34.3 ± 3.4 1.61 ± 0.20 9.73 ± 0.22 0.14 ± 0.01

All 23.8 ± 0.8 190 ± 15 11.1 ± 0.9 32.8 ± 6.8 1.60 ± 0.18 9.49 ± 0.24 0.15 ± 0.01

P 67.0 ± 3.9 186 ± 36 – – – 18.3 ± 0.6 0.13 ± 0.01

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.

TABLE 8 | QC metrics for fMRI.

max (FD) No. FD > 0.5 max (DVARS) min (DVARS) No. DVARS > 50 Temporal SNR

S1 0.868 ± 0.591 11.4 ± 14.0 104.2 ± 18.9 30.7 ± 0.8 20.2 ± 10.1 101.8 ± 7.6

S2 0.57 ± 0.318 6.2 ± 7.7 106.9 ± 64.3 29.4 ± 4.9 16.0 ± 11.3 128.9 ± 13.8

S3 0.505 ± 0.118 7.7 ± 7.2 76.7 ± 11.2 36.1 ± 1.7 11.3 ± 15.6 112.4 ± 5.9

S4 2.38 ± 0.648 14.0 ± 12.3 160.8 ± 31.2 33.9 ± 1.6 15.6 ± 17.6 88.5 ± 11.7

All 1.08 ± 0.419 11.1 ± 13.5 112.2 ± 31.4 32.6 ± 2.3 20.1 ± 18.5 108.0 ± 9.8

P 0.047 ± 0.011 0.05 ± 0.01 13.7 ± 0.9 13.1 ± 0.9 0.05 ± 0.01 438.5 ± 40.1

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). SNR averages are computed across time. FD
values are multiplied by 100 to facilitate comparison.

Analysis of the age at scanning showed no correlation of
any QC metric with aging in any dataset (Pearson’s correlation
coefficient: r < 0.2; p > 0.1). Subgrouping the TRACK-TBI data
into the pediatric (<20 years, n = 220) and adult (>20 years,
n = 1349) groups did not display a difference in any QC
metric (t < 1.0; p > 0.4) between these two groups. However,
subgrouping the TRACK-TBI data into the elderly (>60 years,
n = 260) and non-elderly (<60 years, n = 1309) showed a
significant drop-down in SNR and CNR in the elderly group
relative to the non-elderly (t > 4.7; p< 0.001). The mean of SNR
and CNR in the elderly group of TRACK-TBI did not differ from
those computed in PPMI or ADNI dataset (t < 1.3; p > 0.3).
A subsequent investigation found that the lower SNR in the
elderly than in the non-elderly group was driven by a significantly
lower mean signal intensity within the head (the numerator of
SNR; t = 6.1; p < 0.0001) while a variance of intensity in the
background (the denominator of SNR) did not differ between
the two age groups (F = 1.4; p > 0.1). The lower CNR in the
elderly was due to a lower mean tissue contrast (the numerator of
CNR; t = 10; p < 0.00001) while the variance of brain intensity
(the denominator) was not different between the elderly and
non-elderly group.

fMRI
All the distributions of the fMRI QC metrics are shown in
Figure 4. The overall shapes of the histogram for all the metrics
were also very similar between the TRACK-TBI dataset with
multiple settings of imaging parameters and ADNI dataset with a
single setting of imaging parameters. The overlaps between these
two datasets were very high (Dice index: µ ± σ = 0.86 ± 0.05,
range: 0.80–0.94). The largest overlap was observed in maxFD
(Dice index = 0.94), followed by DVARS > 50 (0.88), FD > 0.5

(0.87), avgTSNR (0.82), minDVARS (0.82), and maxDVARS
(0.80), respectively. The mean and the variance of each metric
did not significantly differ between ADNI data than TRACK-TBI
(p > 0.1). There was no correlation between any QC metric and
the age in either of the two groups (r < 0.2; p> 0.1).

Association of a Given QC Metric With
Other Metrics
sMRI (Figure 5A)
Analysis of the correlations between a given QC metric and
others in the pooled dataset of TRACK-TBI and PPMI sets
showed that most of metrics were not significantly associated
(r < 0.5; p > 0.1) whereas the following pairs were highly
correlated: SNR-SVNR, CNR-TCTV, and CoM-FWHM (r > 0.5;
p < 0.05). The reason for their significant correlation was likely
due to that SNR and SVNR used the same denominator; CNR
and TCTV used the same numerator and; CoM and FWHM
characterized similarly about the head shape: i.e., the position
and the blurriness.

fMRI (Figure 5B)
Analysis of the correlations between a given QC metric and
others in the pooled dataset of TRACK-TBI and ADNI sets
showed that the following pairs were highly correlated: maxFD-
FD> 0.5, maxFD-maxDVARS, FD> 0.5-maxDVARS, FD> 0.5-
minDVARS, DVARS > 50-FD > 50, DVARS > 50-maxDVARS,
and DVARS> 50-minDVARS, (r > 0.3; p< 0.05). The avgTSNR
did not correlate with any other metrics (r < 0.12; p> 0.2).

Evaluation of the Auto QC System
In the visual inspection of 1569 sMRI data in the TRACK-
TBI project, 1345 images (85.7%) were classified into ‘good,’
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FIGURE 5 | Correlation matrices. Each cell indicates the Pearson’s correlation coefficient computed between two indicated QC metrics. SNR, signal-to-noise ratio;
SVNR, signal variance-to-noise ratio; CNR, contrast-to-noise ratio; CVNR, Contrast variance-to-noise ratio; TCTV, tissue contrast-to-tissue (intensity) variance;
FWHM, full width-at-half maximum; CoM, center of mass; FD MAX, maximum Frame-wise displacement (FD); FD > 0.5, the number of frames with FD is larger than
0.5 mm; AVG TMP SNR, average temporal SNR; DVARS, the root-mean-squared change in blood oxygenation level-dependent signal across time; DVARS > 50,
the number of frames with DVARS > 50; DVARS MAX, maximum DVARS; DVARS MIN, minimum DVARS.
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TABLE 9 | ROC analysis QC metrics for fMRI.

Bad vs. Good and Bad and Questionable

Questionable vs. Good

SNR AUC 0.7235 0.6732

Sensitivity/Specificity 0.7090/0.7500 0.6465/0.6547

Cutoff (Z-score) 13.0972 (−2.5500) 14.2491 (−2.3500)

SVNR AUC 0.7369 0.5596

Sensitivity/Specificity 0.6870/0.7083 0.5685/0.4798

Cutoff (Z-score) 57.0564 (−1.6500) 77.4662 (−1.5000)

CNR AUC 0.9189 0.728

Sensitivity/Specificity 0.8171/0.8696 0.6744/0.6528

Cutoff (Z-score) 5.6558 (−0.9500) 9.5552 (−0.2000)

CVNR AUC 0.6169 0.5131

Sensitivity/Specificity 0.6047/0.5652 0.4465/0.5648

Cutoff (Z-score) 106.2423 (−0.400) 228.6781 (−0.300)

TCTV AUC 0.8689 0.696

Sensitivity/Specificity 0.7999/0.8261 0.5444/0.7963

Cutoff (Z-score) 0.4680 (−1.1000) 1.3580 (0.2500)

FWHM AUC 0.8447 0.5346

Sensitivity/Specificity 0.8935/0.8261 0.5667/0.4861

Cutoff (Z-score) 14.3189 (1.3000) 9.9080 (−0.3500)

CoM AUC 0.8774 0.5559

Sensitivity/Specificity 0.9446/0.7391 0.7428/0.3843

Cutoff (Z-score) 0.2877 (2.8500) 0.0615 (0)

For each QC metric, the area under the ROC curve (AUC), as well as the
sensitivity, specificity and cutoff value at the best performance are displayed. For
an easier choice of the cutoff values, we provide the readers the cutoff values
in the original metric and z-score. We tested two different classifications: (1) Bad
vs. Good and Questionable categories; (2) Bad and Questionable vs. Good. We
found that the classification of (1) is overall more accurate using the QC metrics
used in our system.

199 (12.8%) into ‘questionable’ and 25 (1.5%) into ‘bad’ quality.
The kappa statistic of the two raters (HT, RECB) was 92%,
indicating excellent agreements between the raters using the
protocol described in Supplementary Data 3. When merging
the ‘questionable’ cases to the ‘good’ group, the auto QC for all
QC metrics showed higher agreements with the visual inspection
results compared to when merging the ‘questionable’ cases to the
‘bad’ group (0.61–0.91 vs. 0.51–0.73). The QC metric yielding
the largest AUC was CNR (0.91 for good + questionable, 0.73
for bad + questionable), followed by CoM (0.88, 0.56), TCTV
(0.87, 0.70), FWHM (0.85, 0.54), SVNR (0.74, 0.56), and CVNR
(0.62, 0.51), respectively. At the best cutoff values, the auto QC
of FWHM showed the highest classification accuracy, which was
0.86, followed by the analyses of CNR (0.84), CoM (0.84), TCTV
(0.81), SNR (0.73), SVNR (0.70), and CVNR (0.58). The results
including the cutoff values used for the best performance of the
auto QC are summarized in Table 9 and Figure 6. We found that
3 or more QC metrics with ‘bad’ flags could be used to identify
an image as ‘bad’ and result in the best agreement with the visual
inspection (sensitivity = 85%, specificity = 87%, accuracy = 89%;
overall AUC = 0.93). This was 3, 0, and 2% higher in sensitivity,
specificity, and accuracy compared to the results using the CNR
only that yielded the best result among all the QC metrics.

DISCUSSION

Here, we have introduced the LONI QC system, a web-based
and expandable system which features a rigorous workflow for
the review and assessment of multimodal MRI including sMRI,
fMRI, and DTI as well as CT. We also detailed the features
of the user-friendly GUI that facilitates user’s execution of
data uploading, initiating new QC, executing Auto QC, setting
parameters for QC, visualizing the resulting QC metrics, vectors
and 3D maps, evaluating and revising the QC results, and
submitting the final QC. All these functionalities are found in
the LONI QC website8 through the GUI that interacts with the
various menus, or panels that were explained in the previous
sections. A newly added tutorial helps the users follow the testing
with demo data9 (yellow ‘tutorial’ button on the top-left corner),
which will potentially increase the accessibility of the current
functionalities in the system.

In a thorough evaluation of the system using various sets
of data acquired from a single scanner and multiple sites and
we found a strong degree of similarity among the datasets
as well as distinguishing the characteristics specific to each
dataset. The QA metrics are generally reproducible both within
as well as consistent across subjects. In addition, we found
that some data specific properties would be useful to be added
as potential covariates in the automated QC method. Notably,
anatomical changes due to normal patterns of aging may need
to be considered in the user’s analyses, especially for SNR
and CNR metrics.

Here, we extensively evaluated the utility of the auto QC
by analyzing sensitivity and specificity of the cutoff value per
sMRI QC metric to the identification of ‘bad’ quality images
in comparison to visual inspection. Our results can be used as
a guideline for the proper settings for the QC process and as
users’ interpretation on the QC in their own data. To the best of
our knowledge, the LONI QC is the first online QC system that
uniquely supports to perform the image QC of multi-contrast and
multimodal brain imaging data. The LONI QC system provides
users a various level of image QC from the first aid of the
user’s own image quality assessment to the high-end QC that
automatically flags bad quality images based on the user’s setting
of cutoff values. This service provides various options of MRI QC
(i.e., computation of QC metrics, auto QC, user’s own evaluation
on QC metrics and visual QC), depending what type of the QC
the users prefer to perform. LONI QC differs from the previously
developed tools that push the QC to correction of bad quality
images by de-noising or removing the voxels or volume frames
affected with artifacts (Zhou et al., 2011; Li et al., 2013; Liu et al.,
2015). These correction processes are computationally costly.

Pros and Cons of LONI QC Compared to
Other Extant QC Systems
Compared to previously developed QC tools, the current QC
system has the following new features: It is the first completely
online system which is supported by various web-browsers and

8http://qc.loni.usc.edu
9https://qc.loni.usc.edu/dashboard
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FIGURE 6 | Receiver–operator characteristic (ROC) curves based on using sMRI QC metrics for classification. (A) ROCs for differentiating bad data from acceptable
data (questionable and good). CNR best differentiated bad data from the acceptable data as it yielded the largest area under the curve (AUC = 0.92). (B) ROCs for
differentiating poor (bad + questionable) data from good data. CNR and TCTV showed the best performance with AUC = 0.7–0.73. SNR, signal-to-noise ratio;
SVNR, signal variance-to-noise ratio; CNR, contrast-to-noise ratio; CVNR, Contrast variance-to-noise ratio; TCTV, tissue contrast-to-tissue (intensity) variance;
FWHM, full width-at-half maximum; CoM, center of mass.

requires no preinstalled software. The online system allows users
to anonymously upload imaging data to the LONI QC system,
either through LONI Integrated Data Archive (IDA) or using a
direct uploading interface, thus having no issue of identity theft
in the processed data. The automated QC has been set with the
default parameters using those determined as in Table 9, which
can be adapted to the user’s data. It computes a standard set
of QC metrics that have been described in the literature and
performs a standardized QC via an automated pre-processing
system which is specifically designed to generate a range of scalar
and vector statistics along with derived images. The QC data
processing is performed on the LONI processing grid in the
USC Mark and Mary Stevens Neuroimaging and Informatics
Institute making possible parallel computing using a cluster
of thousands of central processing units (CPUs) whereas the
previously developed approaches were designed to work on a
single-core of the personal computer where the source code was
downloaded. LONI QC system also features a user-friendly web-
based GUI and a tutorial with demo data that help particularly
novice users get familiar with the QC system.

There are several important considerations that potentially
improve the LONI QC approach compared to the current
limitations of other approaches: First, it is freely accessible
through the Internet so that it is impossible to process offline
data while also provided as a downloadable framework which
runs on the user’s local computing environment – but which does
necessitate the independent installation of prerequisite software.
The LONI QC system is partly dependent on the data archiving

capacity of the IDA. Large size image datasets are preferably
collected and archived in the IDA prior to the QC execution.
The direct data uploading module has been tested with a small
set of data (n < 30 at one uploading) with a small number of
simultaneous network connections (number of users < 5). This
eventually prevents the users from keeping their image data in
our online storage after QC reports are generated. The capacity
of the network traffic and the data storage in our computing
cluster when using the direct uploading module is currently
being expanded and tested by our developer team, allowing the
affordability of more users who have difficulty or are reluctant to
access LONI QC system through the IDA. Second, the current
system has yet to support the auto QC of DTI data as no scalar
QC metrics for DTI are computed. Roalf and his colleagues
in their recent work (Roalf et al., 2016) devised a number of
DTI QC metrics and showed a high degree of sensitivity and
specificity. Indeed, it is particularly challenging for a human
rater to assess the quality of the time series volumes of fMRI
and the multidirectional volumes of DTI data. Therefore, we
plan to include the quantitative metrics discussed by Roalf et al.
(2016) or equivalent ones, to support the auto QC of DTI data
in future releases of LONI QC. Third, the optimal setting of
cutoff values for auto QC may vary depending on the image
sequence and weighting methods, as also shown in the current
study. In pediatric imaging data, a greater degree of motion
artifact can be involved compared to adult data. This may require
an adaptive setting regarding such confounding effects. The
current version of the system provides the default setting with
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the parameters achieved in our evaluation (see Table 9) with
a flexibility of scaling cutoff values by the users. Furthermore,
the current system only analyzes each QC metric separately
using a univariate fashion. A machine learning approach using
multivariate modeling of the QC metric’s distribution can classify
the quality of each image data with a higher accuracy as found
in Pizarro et al. (2016), Esteban et al. (2017), and Fonov et al.
(2018). Fourth, recent studies (Li et al., 2013; Oguz et al., 2014;
Power et al., 2014) developed and evaluated methods to reduce,
correct or remove some types of artifacts existing on DTI and
fMRI images. Such image reconstruction or enhancement, albeit
with the possibility of inducing a bias, may help to decrease the
chance of permanent exclusions of the cases with a bad image
quality from the subsequent biological or clinical analyses. Fifth,
a previous study (Mortamet et al., 2009) designed QC metrics
that are sensitive to the identification of machine-inherent noises
(e.g., Gaussian noise, aliasing, zipper pattern) by masking out the
head area in measurement whereas we included a more variety of
QC metrics that can capture the types of noise occurring inside
(e.g., head motion) and outside the brain region. Finally, a future
improvement of the study is to evaluate the effects of running
LONI-QC on the performance in subsequent image analysis. This
can be hinted by the attempts made for the quality assurance
of post-image processing such as in the studies evaluating brain
structural segmentation on sMRI (Keshavan et al., 2017) and fiber
tractography extracted from DTI data (Sommer et al., 2017).

Reproducibility of the QC Metrics
Adopted in LONI QC System
The choice of metrics when evaluating the quality of a
neuroimaging dataset has substantial implications for how data
processing steps are carried out subsequent to image acquisition.
In the current system, we included a broad range of QC metrics
modeling various aspects of the image artifacts possibly occurring
during image acquisition. Many of these metrics were also chosen
or developed by other studies in the literature (Friedman and
Glover, 2006; Power et al., 2012; Li et al., 2013; Marcus et al.,
2013; Pizarro et al., 2016). The histogram analysis of these metrics
showed their reproducibility in multiple datasets including those
acquired with a single setting of imaging acquisition parameters
or with multiple settings of imaging parameters used in multiple
scanners. The distributions of these metrics were not significantly
influenced by different parameter settings if the analyzed images
were acquired using the same sequence (e.g., T1-weighted) and
the same modality (sMRI, fMRI, DTI). On the other hand, results
in the analysis of T1-weighted sMRI suggest that the means of
SNR and CNR can differ when imaging elderly or a dementia
patient populations. In the analysis of the possible introduction
of larger motion artifacts in younger subjects, we did not observe
the influence of the age variation on the QC metrics measured
in the data tested here. While this finding shows the age would
not be a confounding factor in younger adult cohorts of TRACK-
TBI, it does not necessarily imply that the severity of motion
artifacts in pediatric data is as same as that in adult data. Previous
studies indeed showed that some obvious bad quality images
displayed a significant correlation between QC metrics and age

(Roalf et al., 2016) and prospective motion correction improved
diagnostic sensitivity in pediatric data (Kuperman et al., 2011).

When data are collected in a single machine with uniform
imaging parameters, the variance of the QC metrics becomes
significantly smaller, suggesting that the variance in the multi-
site data partly explains the machine characteristics and the
difference in imaging parameters. On the other hand, differences
in the image sequence (e.g., T1-weighted, T2-weighted, FLAIR),
even acquiring a same modality image appear to create a
significant difference in their distribution, suggesting that the
direct comparison of the QC metrics resulting from two datasets
acquired using different image sequences may not be suitable.
The users may need to consider the aforementioned factors
in setting the proper cutoff values in the auto QC to identify
bad quality images.

Correlational analyses illustrated that the major proportion of
the QC metrics in sMRI were not associated each other whereas
many in fMRI showed significant correlations each other. The
main reason why the many fMRI QC metrics were correlated
is likely that these metrics characterize temporal signal changes
or head displacements that can be driven by head motion.
The LONI QC system was designed with this in mind, and
one of its strengths is that it calculates for the users not only
standard—and occasionally correlated—metrics such as the CNR
and CVNR, but also more information-rich evaluations. In doing
so, the LONI QC system provides a platform for evaluating the
relationships between a wide variety of QC metrics and allows
the users to choose those metrics which may be more relevant
in their studies. Generating QC vectors and 3D maps, a greater
variety of choices is given for the users to perform image quality
assurance and control in depth. This idea is not different from
those adopted in the previously published works (Oguz et al.,
2014; Esteban et al., 2017). Eventually feature reconstruction
approaches such as principal component analysis (Tenenbaum
et al., 2000) or independent component analysis (Cao et al.,
2003) may reduce the number of QC metrics while keeping their
QC performance by projecting them on to the axes that explain
larger variations of the data or better explain the information
implied in the data.

Auto QC: Comparison to Visual
Inspection
Recent studies have made an unprecedented effort to acquire
an enormous size of MRI dataset in line with the emergence of
the new generation of the analysis in ‘BIG’ data. Nearly every
week, more than 1000 new scans of sMRI, fMRI or DTI data
are archived in the repository of the LONI-IDA. The tedious
and time-consuming visual inspection in the quality of such
massive datasets is not practical. Automated QC that quantifies
image QC metrics, and labels the degree of image quality is of
major interest and there have been recent attempts to substitute
the manual QC procedure. In the current paper, we introduced
such an automated procedure that used various QC metrics
and their cutoff values to flag bad quality images. The strength
of LONI QC and other similar methods that were proposed
recently (Oguz et al., 2014; Pizarro et al., 2016; Roalf et al., 2016;
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Esteban et al., 2017) lies on the use of multiple QC metrics
that characterize various aspects of image artifacts involved in
the brain image acquisition. Furthermore, these metrics have
an ability to differentiate the degree of the artifact severity
as they are continuous and not categorical or dichotomous
(i.e., good or bad).

However, the results from automated QC and similarly those
previously published (Pizarro et al., 2016; Roalf et al., 2016;
Esteban et al., 2017) do not always fully agree with the visual
inspection results. This is because the univariate analysis of each
metric may be able to detect one type of the image artifact whereas
the visual assessment performs a comprehensive evaluation
where the deterioration in image quality is multifaceted with
simultaneously occurring multiple noise types. The use of
thresholds along with the number of simultaneously occurring
‘bad’ QC metrics further improved the classification accuracy.
Another study (Pizarro et al., 2016) used a multivariate analysis
by employing a support-vector machine-based classifier and
showed the potential improvement against univariate analyses.
Interestingly, the QC metrics utilized in LONI QC were more
sensitive to the classification when merging the ‘questionable’
or ‘moderate’ quality images to ‘good’ images. We separately
performed the 3-class classification, but this showed a worse
result (AUC = 0.5–0.6) than 2 class classification. This suggests
that questionable cases would not be clustered as an independent
"moderate" group, but their characteristics would be closer to
that of the "good" group. However, it is not clear whether or
not the questionable quality images are potentially problematic
in the post-image processing or the subsequent biological/clinical
analyses. Further examination of quality clustering will form the
basis of ongoing activities for the LONI QC framework.

CONCLUSION

Quality control of neuroimaging data is an essential, though a
complex and challenging component of image processing and
analysis. Although many previous studies have aimed to identify
an ideal set of measures which can distinguish between images
of good and bad quality, it remains the case that different
researchers have different intuitive, qualitative and quantitative
standards of what image quality should be, and of how that
quality ought to be quantified. The LONI QC system was
specifically designed with these considerations in mind, and is
the first both web-based and freely-available QC system which
provides users with the ability to specify their own standard of
image quality, automatically apply that standard to their data,
and then download the results of their QC analysis in CSV
and/or PDF format for further post-processing using the tools

and methods of their choice. Because it accommodates a wide
variety of imaging modalities, the LONI QC system can appeal
to a substantial cross-section of researchers in the neuroimaging
community who are interested in applying and maintaining the
highest standards of image quality to their image analyses and, by
extension, to their research efforts. The streamlined integration
of the LONI QC system with the LONI IDA and with the
LONI Pipeline—both of which are widely used by neuroimaging
researchers—throws additional weight behind the argument that
this novel, state-of-the-art system can be easily adopted by a
large number of neuroimaging researchers worldwide, thereby
potentially leading to the formulation and adoption of a much-
needed standardized protocol for neuroimaging QC and analysis.
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The NEURON simulator has been developed over the past three decades and is

widely used by neuroscientists to model the electrical activity of neuronal networks.

Large network simulation projects using NEURON have supercomputer allocations that

individually measure in themillions of core hours. Supercomputer centers are transitioning

to next generation architectures and the work accomplished per core hour for these

simulations could be improved by an order of magnitude if NEURON was able to better

utilize those new hardware capabilities. In order to adapt NEURON to evolving computer

architectures, the compute engine of the NEURON simulator has been extracted and

has been optimized as a library called CoreNEURON. This paper presents the design,

implementation, and optimizations of CoreNEURON. We describe how CoreNEURON

can be used as a library with NEURON and then compare performance of different

network models on multiple architectures including IBM BlueGene/Q, Intel Skylake, Intel

MIC and NVIDIA GPU. We show how CoreNEURON can simulate existing NEURON

network models with 4–7x less memory usage and 2–7x less execution time while

maintaining binary result compatibility with NEURON.

Keywords: NEURON, simulation, neuronal networks, supercomputing, performance optimization

1. INTRODUCTION

Simulation in modern neuroscientific research has become a third pillar of the scientific method,
complementing the traditional pillars of experimentation and theory. Studying models of brain
components, brain tissue or even whole brains provides new ways to integrate anatomical and
physiological data and allow insights into causal mechanisms crossing scales and linking structure
to function. Early studies covered for example the levels from channels to cell behavior accounting
for detailed morphology (e.g., De Schutter and Bower, 1994; Mainen and Sejnowski, 1996) and
integrating this detail into models of networks (e.g., Davies, 1992). More recently, studies have been
accounting for increased electrophysiological detail and diversity in the tissuemodel (e.g., Markram
et al., 2015; Arkhipov et al., 2018), giving a glimpse at functional importance of the underlying
connectome (e.g., Gal et al., 2017; Reimann et al., 2017) allowing for example the reinterpretation of
aggregate brain signals such as LFP (e.g., Anastassiou et al., 2015). At the same time, computational
studies have strived to look even deeper into the biochemical workings of the cell, studying the
role of intracellular cascades in neuromodulation (e.g., Lindroos et al., 2018) or metabolism (e.g.,
Jolivet et al., 2015), and to abstract some of the detail while maintaining cell type diversity (e.g.,
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Izhikevich and Edelman, 2008; Potjans and Diesmann, 2012;
Dahmen et al., 2016), or tomove the integrated andmodeled data
all the way to fMRI (Deco et al., 2008).

As the biochemical and biophysical processes of the brain
span many orders of magnitudes in space and time, different
simulator engines have been established over time incorporating
the appropriate idioms, computational representations and
numerical methods (e.g., at the biochemical level—STEPS Wils
and De Schutter, 2009, at the detailed cellular level - NEURON
Migliore et al., 2006, using simplified neuron representations—
NEST Gewaltig and Diesmann, 2007, or even more abstract—
TVB Sanz-Leon et al., 2015 to name a few).

The more detail is included in these models and the larger the
models become, the larger are the computational requirements
of these simulation engines, making it necessary to embrace
advanced computational concepts and faster computers (Hines
et al., 2011; Hepburn et al., 2016; Ippen et al., 2017). Table 1
shows exemplarily five different network models used in this
paper for benchmarking and indicates their size and complexity.

A single-column thalamocortical network model (Traub et al.,
2005) is used to better understand population phenomena
in thalamocortical neuronal ensembles. It has 3,560 multi-
compartment neurons with soma, branching dendrites and a
portion of axon. It consists of 14 different neuron types, 3,500
gap junctions and 1.1 million connections. The neurons were
connected together by chemical synapses (using AMPA and
NMDA receptors) and gap junctions that were non-rectifying
and voltage-independent. This model uses standard repertoire
of 11 active conductances in all of the cells. A scaled-down
variant of the full-scale dentate gyrus model (Dyhrfjeld-Johnsen
et al., 2007) developed in the (Soltesz Lab, 2019) is used to
understand hippocampal spatial information processing and field
potential oscillations. It consists of 5,143 multi-compartment
neurons and 4,121 Poisson spike sources, and includes 6
different cell types, 1.2 million connections and about 600 gap
junctions. This model uses 9 classes of active conductance
mechanisms such as sodium, potassium, calcium channels, and
calcium-dependent potassium channels. A synthetic model with
specific computational characteristics is often needed to evaluate
target hardware based on number of cells, branching patterns,
compartments per branch etc. For this purpose, a multiple
ring network model of branching neurons and minimal spike
overhead is used (Hines, 2017a). The Blue Brain Project has
published a first-draft digital reconstruction of the microcircuitry
of somatosensory cortex in 2015 (Markram et al., 2015). This
model contains about 219,000 neurons, with 55 layer-specific

TABLE 1 | Summary of network models.

Model name Summary #Neurons #Compartments #Synapses

Traub A single column thalamocortical network model 3,560 465,740 1,099,820

Dentate Dentate Gyrus model including Granule cells with dendritic compartments 5,137 175,719 1,199,988

Ring Ring network of branching cells 32,768 9,535,488 33,280

Cortex + Plasticity Somatosensory cortex model with synaptic plasticity 219,422 99,581,138 872,922,040

Hippocampus Rat Hippocampus CA1 model 789,595 565,495,731 361,937,388

morphological and 207 morpho-electrical neuron subtypes. The
neurons in this model employ up to 13 different Hodgkin-
Huxley conductance classes, with up to 8 of those classes used
in the dendrites. Together with other partners in the European
Human Brain Project, this group is also working on a full-
scale model of a rat hippocampus CA1 (Human Brain project,
2018). A first draft of this model contains about 789,000 neurons
with 13 morphological types and 17 morpho-electrical types.
The neurons in this model employ up to 11 active conductance
classes, with up to 9 of those classes used in the dendrites.

The number of neurons and synapses, however, is not always
the best indicator of the computational complexity of a model. In
themodel ofMarkram et al. (2015) each neuron averages to about
20,000 differential equations to represent its electrophysiology
and connectivity. To simulate themicrocircuit of 31,000 neurons,
it is necessary to solve over 600 million equations every 25 ms of
biological time–a requirement far beyond the capabilities of any
standard workstation. It is necessary to utilize massively parallel
systems for such simulations but fully exploiting the capabilities
these systems is a challenging task for a large number of scientific
codes, including NEURON. Significant efforts are necessary to
prepare scientific applications to fully exploit themassive amount
of parallelism and hardware capabilities offered by these new
systems (Ábrahám et al., 2015).

In this paper we present our efforts to re-engineer the
internal computational engine of the NEURON simulator,
CoreNEURON, to adapt to emerging architectures while
maintaining compatibility with existing NEURON models
developed by the neuroscience community. Our work was guided
by the goal to leverage the largest available supercomputers for
neuroscientific exploration by scaling the simulator engine to
run on millions of threads. A key design goal was to reduce
the memory footprint compared to NEURON as total memory
and memory bandwidth are scarce and costly resources when
running at scale. Lastly, for this capability to be easily usable
by the normal NEURON community, we endeavored to tightly
integrate CoreNEURON with NEURON.

2. NEURON SIMULATION ENVIRONMENT

NEURON is a simulation environment developed over the last 35
years for modeling networks of neurons with complex branched
anatomy and biophysical membrane properties. This includes
extracellular potential near membranes, multiple channel types,
inhomogeneous channel distribution and ionic accumulation. It
can handle diffusion-reaction models and integrating diffusion
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functions into models of synapses and cellular networks.
Morphologically detailed models simulated using NEURON are
able to represent the spatial diversity of electrical and biophysical
properties of neurons.

Individual neurons are treated as a tree of unbranched
cables called sections. Each section can have its own set of
biophysical parameters, independently from other sections, and
is discretized as a set of adjacent compartments (see e.g., Hines,
1993). Compartmental models of neurons take into account not
only the connectivity between neurons but also the individual
morphologies and inhomogeneities of each neuron. The electrical
activity of neurons is modeled using the cable equation (see
e.g., Tuckwell, 2005) applied to each section, where the quantity
representing the state of a neuron at a given point in space and
instant in time is themembrane potential. The general form of the
cable equation for a section, in the case of constant parameters
and conductance based synapse modeling, is given by:

d

4Ra

∂2v

∂x2
= cm

∂v

∂t
+ Ipas + Iion + Isyn (1)

where

• d [µm] ,Ra [�cm] , cm

[

µF

cm2

]

, Ipas

[

mA

cm2

]

are biophysical

parameters contributing to the passive component of the
cable equation (unit conversion factors are not shown but
each term has the units ofmA/cm2).

• Iion

[

mA

cm2

]

is the active contribution arising from ion

channels along the section, whose conductances gi and
resting potentials ei might depend in a non-linear fashion
upon a set of state variables representing those channels.

• Isyn

[

mA

cm2

]

is the contribution from the synapses placed at

positions xj, whose conductances gj and resting potentials
ej might depend in a non-linear fashion upon a set
of state variables and which take effect in a strongly
localized manner. Individual synapses have units of nA
and conversion to mA/cm2 involves a Dirac delta function,
δ(x−xj), with units 1/µm, and the diameter; i.e., conversion
of absolute current to current per unit area implies division
by the compartment area where the synapse is located.

One needs to couple (1) to a set of additional differential
equations that describe the evolution of the states of ion channels
and synapses, thus giving rise to a system of PDEs/ODEs as
the final problem. Spatial discretization of the PDEs results in
a tree topology set of stiff coupled equations which is most
effectively solved by implicit integration methods. In particular,
direct Gaussian elimination with minimum degree ordering
is computationally optimum in the sense that the number of
arithmetic operations is identical to direct Gaussian elimination
of a non-branching cable with the same number of nodes
(Hines and Carnevale, 1997; Hines et al., 2008). The general
structure of a hybrid clock-event driven algorithm (Hines, 1993)
in NEURON can be divided into a set of operations that are

performed at every integration time step and an interprocess
spike exchange operation where a list of spike generation
times and identifiers are synchronized across all processors
every minimum spike delay interval. The per integration step
operations are:

• Event-driven spike delivery step where the callback function
of each synapse activated by a spike at a given timestep
is executed.

• Matrix assembly step where the Iion and Isyn contributions are
computed and included in the matrix.

• Matrix resolution step where the membrane potential for the
current step is obtained by solving a linear system.

• State variables update step where the evolution equations for
the states of ion channels and synapses are solved to advance
to the current timestep.

• Threshold detection step where each neuron is scanned to see
if it has met a particular firing condition, and if so a particular
list of events is updated.

Although the simulator has demonstrated scaling up to
64,000 cores on the IBM Blue Gene/P system (Hines
et al., 2011), with the emerging computing architectures
(like GPUs, many-core architectures) the key challenges
are numerical efficiency and scalability. The simulator
needs to : (1) expose fine grain parallelism to utilize the
massive number of hardware cores, (2) be optimized
for memory hierarchies and (3) fully utilize processor
capabilities such as vector units. To simulate models with
billions of neurons on a given computing resource, memory
capacity is another major challenge. In order to address
these challenges, the compute algorithm of the NEURON
simulator was extracted and optimized into a standalone library
called CoreNEURON.

3. CORENEURON DESIGN AND
IMPLEMENTATION

The integration interval operations (listed in section 2)
consume most of the simulation time (Kumbhar et al., 2016).
The goal of CoreNEURON is to efficiently implement these
operations considering different hardware architectures. This
section describes the integration of CoreNEURON with the
NEURON execution workflows, major data structure changes to
reduce memory footprint, memory transfer between NEURON-
CoreNEURON and a checkpoint-restore implementation to
facilitate long running simulations.

3.1. NEURON to CoreNEURON Workflow
One of the key design goal of CoreNEURON is to be compatible
with the existing NEURONmodels and user workflows.With the
integration of CoreNEURON library, the NEURON simulator
supports three different workflows depicted in Figure 1.

• NEURONmode
• CoreNEURON Online mode
• CoreNEURON Offline mode
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FIGURE 1 | Different execution workflows supported by NEURON simulator with CoreNEURON : (A) shows the existing simulation workflow where HOC/Python

interface is used for building a model which is then simulated by NEURON; (B) shows the new CoreNEURON based workflow where the in-memory model

constructed by NEURON is transferred using direct memory access and then simulated by CoreNEURON; (C) shows new CoreNEURON based workflow where

NEURON partitions a large network model into smaller chunks, iteratively instantiates each model piece in memory, and copies that subset of model information to

disk. CoreNEURON then loads the whole model in memory and simulates it.

Existing users are familiar with the default NEURON mode.
The model descriptions written in NMODL (Hines and
Carnevale, 2000) are used to build a dynamically loadable
shared library. The HOC/Python scripting interface is
used to build a network model in memory (Model Setup
phase). This in-memory model is then simulated using the
hybrid clock-event driven algorithm described in section 2
(Simulation phase). Users have full control over model structure
and can introspect or record all events, states, and model
parameters using the scripting or graphical user interface
(Result phase).

CoreNEURON Online Mode allows users to run their models
efficiently with minimal changes. After the Model Setup phase,
the in-memory representation is copied into CoreNEURON’s
memory space. CoreNEURON then re-organizes the memory
during Memory Setup phase for efficient execution (see section
4.2). The Simulation phase is executed in CoreNEURON
and spike results are written to disk. Note that the same
NMODL model descriptions are used both in NEURON as well
as CoreNEURON.

CoreNEURON Offline mode is intended for large network
models that cannot be simulated with NEURON due to memory
capacity constraints. In this mode, instead of loading the
entire model at once, the Model Setup phase builds a subset
of the model that fits into available memory. That subset
is written to disk, the memory used by the subset is freed,
and the Model Setup phase constructs another subset. After
all subsets are written by NEURON, CoreNEURON reads
the entire model from the disk and begins the Simulation
phase. Because CoreNEURON’s cell and network connection
representations are much lighter weight than NEURON’s, 4-
7x larger models than NEURON can be simulated with
CoreNEURON (see section 5).

Users can adapt existing models to the CoreNEURON Online
Modeworkflowwith the trivial replacement of the psolve function
call with nrncore_run of the (ParallelContext, 2019) class.

3.2. Data Structure Changes
NEURON is used as a general framework for designing
and experimenting with neural models of varying anatomical
detail and membrane complexity. Users can interactively
create cells with branches of varying diameters and lengths,
insert ionic channels, create synapses, and visualize different
properties using a GUI. In order to provide this introspection
capability, NEURON maintains a large number of complex
data structures. Typically, once the users are satisfied with
the behavior of the model, they run larger/longer simulations
on workstations or clusters where those interactivity or
detailed introspection capabilities are often no longer required.
In this type of batch execution, memory overhead from
many large, complex data structures with many mutual
pointers can be significantly reduced by replacing them
with fixed arrays of data structures in which the few
necessary pointers are replaced by integers. For example,
the network connection object (Netcon) and the common
synapse base class (Point_process), which are responsible for
a significant portion of memory usage in NEURON, were
reduced from 56 to 40 and 56 to 8 bytes respectively in
CoreNEURON. Table 2 lists the important data structures
and their memory usage comparison between NEURON and
CoreNEURON. CoreNEURON eliminates the Python/HOC
interpreter and so, datastructures like Node, Section, Object
are no longer needed. The memory usagemprovements from
these optimizations for different network models are discussed
in section 5.
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TABLE 2 | Memory footprint comparison for different data structures (in bytes).

Data structure Purpose NEURON CoreNEURON

Node Compartment of the

neuron

128 –

Section Unbranched cable of the

neuron

96 –

Object High level HOC object 64 –

Presyn Synapse object at origin 208 64

InputPresyn Similar to Presyn – 24

Point_process Synapse overhead 56 8

Prop Property object in

compartment

48 –

Netcon Connection between

neuron

56 40

Pointer Memory address 8 4

Memb_list List of mechanisms or

channels

56 64

NrnThreadMembList Mechanism list for group

of neurons

34 40

PreSynHelper Helper object for PreSyn – 4

Symbol Token parsed by HOC

interpreter

56 –

3.3. Pointer Semantics
NEURON users can define their own data structures and
allocate memory through the use of POINTER and VERBATIM
constructs of NMODL (Hines, 2019). Many internal data
structures of NEURON use pointer variables to manage various
dynamic properties, connections, event queues etc. As a model is
built incrementally using the scripting interface, various memory
pools are allocated during the Model Setup phase. As data
structures between NEURON and CoreNEURON are different,
serializing memory pools becomes one of the major memory
management challenges of the CoreNEURON implementation.
With serialization, pointer variables need to be augmented with
meta information to allow proper decoding by CoreNEURON.
This meta information indicates the pointer semantics. All data
variables which potentially are the target pointers are grouped
into a contiguous memory pool and pointer variables are
converted to an integer offset into the memory pool. When the
NEURON pointers are copied to CoreNEURON’s memory space,
the semantic type associated with the pointer variable is used
to compute the corresponding integer offset. Different semantic
types with their purpose are listed in Supplementary Material
(see Table S1).

3.4. Checkpoint-Restart Support
The network simulations for studying synaptic plasticity can
run from a week to a month. Enabling such simulations of
long biological time-scales is one of the important use cases
for CoreNEURON. Most of the cluster and supercomputing
resources have a maximum wall clock time limit for a single
job (e.g., up to 24 h). The checkpoint-restart (Schulz et al.,
2004) is commonly used technique to enable long running
simulations and has been implemented in CoreNEURON.

Since the checkpoint operation could take place at anytime
with varying degrees of cell firing activity, it was necessary
to account for generated yet undelivered synaptic events in
addition to saving the in-memory state of the simulator. When
a cell fires, it may have many connections to other cells with
different delivery delays. During the checkpoint operation, any
undelivered messages are collapsed back into the original event
of the firing cell so that a single event can be saved. Once
the network simulation is checkpointed, users have flexibility to
launch multiple simulations with different stimuli or random
number streams in order to explore network stability and
robustness. The execution workflow of such simulations is shown
in Figure 2.

3.5. Spike Communication
In CoreNEURON, the MPI communication and event queue
handling for spike delivery is inherited from NEURON and
remains on the CPU. Performance of those components is
discussed in Kumar et al. (2010), Hines et al. (2011). However,
when GPUs are in use, all the spikes within a time step that
are destined for a specific synapse type are copied to the GPU
to a type specific buffer and thereafter all NET_RECEIVE block
computations take place on the GPU. Conversely, threshold
detection takes place on the GPU as well and spike generation
is buffered until the end of the time step at which point the buffer
spikes are copied to the CPU for MPI transfer and enqueueing
onto the priority queue. The exception to this strategy is that
ARTIFICIAL_CELL instances, which compute and generate
spikes solely by their NET_RECEIVE block response to delivered
events, exist only on the CPU.

3.6. Portability Considerations
CoreNEURON can transparently handle all spiking network
simulations including gap junction coupling with the fixed
time step method. The model descriptions written in NMODL
need to be (THREADSAFE, 2019) to exploit vector units
of modern CPUs and GPUs. A model can be non thread-
safe if a MOD file contains GLOBAL variables which are
used for temporary storage by getting assigned a value in
one procedure and evaluated in another. Such variables need
to be converted from GLOBAL to RANGE. This can be
achieved with the help of NEURON’s mkthreadsafe tool or
the user can manually make the minor change to such MOD
files. New keywords like COREPOINTER and CONDUCTANCE
have been added to NMODL to facilitate serialization and
improve performance optimization respectively. These keywords
are also backported to NEURON so that the models remain
compatible for either NEURONor CoreNEURON execution. For
scalability and portability of random numbers on platforms like
GPUs, CoreNEURON supports the Random123 pseudo-random
generator (Salmon et al., 2011).

4. OPTIMIZATIONS

In order to improve the performance of CoreNEURON
on different architectures, different optimization schemes are
implemented for multi-threading, memory layout, vectorization,

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2019 | Volume 13 | Article 63204205

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kumbhar et al. CoreNEURON

FIGURE 2 | Simulation workflow with the checkpoint-restart feature : CoreNEURON loads the model from disk, simulate it and dumps in-memory state back to disk

(SaveState step). CoreNEURON can load checkpoint data (RestoreState step) and continue the simulation on a different machine using the checkpoint data. The user

has flexibility to launch multiple simulations with different stimuli or random number streams (Stim or RNG) in order to explore network stability and robustness.

FIGURE 3 | Dendritic structure and memory layout representation of a neuron: A schematic representation of dendritic structure of a neuron with different

mechanisms inserted into the compartment is shown on the left (A). On the right: (B) shows how NEURON and CoreNEURON groups the mechanism instances of

the same type; (C) shows how NEURON stores properties of individual mechanism in the AoS layout; (D) shows the new SoA layout in CoreNEURON for storing

mechanism properties.

and code generation. These optimizations are described in
this section.

4.1. Parallelism
Both NEURON and CoreNEURON use the Message Passing
Interface (MPI) to implement distributed memory parallelism.
Although NEURON supports multi-threading based on Pthread
(Nichols et al., 1996), users commonly use pure MPI execution
due to better scaling behavior. But, pure MPI execution will affect
scalability due to MPI communication and memory overhead
of internal MPI buffers when executing at scale (Lange et al.,
2013). To address this scalability and parallelism challenge,
CoreNEURON relies on three distinct levels of parallelism.
First, at the highest level, a set of neurons that have equivalent
computational cost are grouped together and assigned to each

MPI rank on the compute node. Second, within a node, an
individual neuron group is assigned to an OpenMP (Dagum
and Menon, 1998) thread executing on a core. This thread
simulates the given neuron group for the entire simulation
ensuring data locality. Finally, vector units of the core are utilized
for executing groups of channels in parallel. With respect to
MPI and OpenMP, simulations may benefit from fewer MPI
processes per compute node (down to a single process per node).
Based on target architecture, users can choose a number of MPI
ranks and corresponding OpenMP threads per rank to reduce
communication overhead.

4.2. Memory Layout and Vectorization
Processor memory bandwidth is one of the scarce resources
and often the major impediment to improve the performance

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2019 | Volume 13 | Article 63205206

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kumbhar et al. CoreNEURON

of many applications including NEURON. The compute kernels
of channels and synapses are bandwidth limited and can
reach close-to-peak memory bandwidth (Kumbhar et al., 2016).
The dendritic structures of a neuron are divided into small
compartments and different membrane channels or mechanisms
are inserted into different compartments (Figure 3A). For
memory locality, both NEURON and CoreNEURON groups the
channels by their type as shown in Figure 3B. But, NEURON
organizes properties of individual mechanisms (like m, h, ena)
in the Array of Structs (AoS) memory layout (Figure 3C). When
a specific property is accessed, for example, m, it results in
strided memory accesses with inefficient memory bandwidth
utilization and hence poor performance. To address this issue,
CoreNEURON organizes channel properties into the Structure of
Arrays (SoA) memory layout (Figure 3D). This allows efficient
vectorization and efficient memory bandwidth utilization for
all channel and synapse computations. For code vectorization,
CoreNEURON is dependent on the compiler’s auto-vectorization
capabilities. To assist the compiler in auto-vectorization, hints
like #pragma ivdep are used. The performance improvements
from this optimization is discussed in Kumbhar et al. (2016).

4.3. NMODL Source-to-Source Translator
NEURON has had support for code generation through the
model description language, NMODL, since version 2 released
in 1989 (Blundell et al., 2018). The code generation program
of NEURON has been modified into a standalone tool called
MOD2C (MOD2C GitHub Repository, 2019). This tool is used
by CoreNEURON to support all NEURON models written in
NMODL. Figure 4 shows the high level workflow of MOD2C.
The first step of source-to-source translator is lexical analysis
where lexical patterns in the NMODL code are detected and
tokens are generated. The syntax analysis step uses those tokens
and determine if the series of tokens are appropriate in the
language. The semantic analysis step make sure if syntactically
valid sentences are meaningful as part of the model description.
Code generation is the step in which a C++ file is created with
compiler hints for auto-vectorization (e.g., #pragma ivdep) and
GPU parallelization with the OpenACC programming model
(Wikipedia, 2012). MOD2C also takes care of code generation
for AoS and SoAmemory layouts. MOD2C uses open source flex
and bison tools (Levine and John, 2009) for this implementation.
More information about the NMODL code generation pipeline
can be found in Blundell et al. (2018).

4.4. GPU Porting
Prior to the CoreNEURON project, a substantial effort was
made to port NEURON to the GPU architecture using
the CUDA programming model (Wikipedia, 2006; NVIDIA
Corporation, 2006–2017). One of the two major components
of this implementation was the extension of the NMODL
source-to-source compiler to emit CUDA code. The other major
component managed an internal memory transformation from
NEURON’s thread efficient AoS memory layout to a more GPU
memory efficient SoA layout. For generating CUDA code, there
was a separate version of the NMODL source-to-source compiler.
NEURONmaintains complex data structures of section, segment

for interactive use. The memory management of these non-
POD type (Plain Old Data) data structures between CPU
and GPU was quite complex as memory allocations were not
contiguous. This experimental NEURON version (Hines, 2014)
was quite efficient for matrix setup and channel state integration
for cellular simulations but did not reach network simulation
capability. The project foundered on software administration
difficulties of maintaining two completely separate codebases, the
difficulty of understanding the data structure changes involved
for memory layout transformation from AoS to SoA, and
the difficulty of managing pointer updates in the absence of
pointer semantics information. It became clear that a more
general view was required that could not only alleviate these
problems for the GPU but had a chance of evolving to work on
future architectures. This view is embodied in CoreNEURON
development. As discussed in section 4.2, CoreNEURON data
structures and memory layout have been optimized for efficient
memory access. MOD2C supports code generation with the
OpenACC programming model that helps to target different
accelerator platforms. Users need to compile the CoreNEURON
library with a compiler that supports OpenACC. Figure 5

shows GPU enabled execution workflow where different stages
of the CoreNEURON simulator running on CPU and GPU
are described.

One of the performance challenges for a GPU implementation
is irregular memory accesses due to the non-homogeneous
tree structure of neurons. For example, Figure 6A shows three
different morphological types and their compartmental tree
connection topology in the simulator is shown in Figure 6B. The
GPU delivers better performance when consecutive threads (in
groups of 16 or 32) perform the same computations and load the
data from consecutive memory addresses. When there are a large
number of cells per morphological type, it is straightforward to
achieve optimal performance by interleaving the compartments
of identical cells. But, with few cells per morphological type,
Gaussian elimination suffers from non-contiguous layout of
parents relative to a group of nodes. This results in irregular,
strided memory accesses and hence poor performance (Valero-
Lara et al., 2017). To address this, two alternative node
orderings schemes, Interleaved layout and Constant Depth
layout, are implemented as illustrated in Figures 6D,E. All
cells have the same number of compartments but each has a
different branching pattern (Figure 6C). Nodes (representing
compartments) within a cell are numbered with successive
integers. In the case of Interleaved layout, a compartment from
each of N cells forms an adjacent group of N compartments.
The groups are in any root to leaf order but corresponding
compartments in identical cells are adjacent. As an example, for a
group of three threads the vertical square braces highlight parent
indices that have the same order as the nodes. This results in
either contiguous memory loads (CL) or strided memory load
(SL). For each Gaussian elimination operation the number of
threads that can compute in parallel is equal to the number of
cells and hence this scheme is referred as one cell per thread
layout. For Constant Depth layout, all nodes at the same depth
from the root are adjacent. For a given depth, corresponding
nodes of identical cells are adjacent. Children of branch nodes
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FIGURE 4 | Code generation workflow for CoreNEURON : different phases of the source-to-source compiler are shown in the middle that translates the input model

description file (hh.mod) to C++ code (hh.cpp). Compiler hints like ivdep and acc parallel loop are inserted to enable CPU vectorization/GPU parallelization.

FIGURE 5 | Timeline showing the workflow of GPU-enabled CoreNEURON execution. The Model Building and Memory Setup phases are executed on CPU by

NEURON and CoreNEURON respectively. The latter performs an in-place memory AoS to SoA transformation and node permutation to optimize Gaussian elimination.

The CoreNEURON in-memory model is then copied to GPU memory using OpenACC APIs. All time step integration phases including threshold detection for event

generation and event delivery to synapse models take place on the GPU. At the end of each timestep (dt), the generated spike events are transferred to the CPU.

Conversely, all the spike events to be delivered during a step are placed in a per-synapse type buffer and transferred at the beginning of each timestep to the GPU. At

the end of mindelay interval all spikes destined to other processes are transferred using MPI Communication.

in the same cell are kept as far apart as possible to minimize
contention while updating the same node from different threads.

To analyse the impact of node ordering schemes on the
execution time, we used a multiple Ring network model of
cells with random tree topology (Hines, 2017a). This test allows
to evaluate performance impact when parents of a contiguous
group of 32 nodes are not contiguous and executed in chunks
of 32 threads (a so-called warp). We used a multiple Ring
model with a total of 131,072 cells comprising 10,878,976
nodes running for 10 ms on NVIDIA K20X GPU (NVIDIA
Corporation, 2012). Every cell has the same number (83) of
nodes but different cell types have a different random branching
pattern of the 40 dendrites. The number of identical cells per
type ranges from 1 (131,072 distinct branching patterns) to 32
(4096 distinct branching patterns). Note that regardless of the
branching pattern, Gaussian elimination takes exactly the same
number of arithmetic operations. Figure 6D shows performance
of Interleaved Layout and Constant Depth Layout. For both
node ordering schemes, performance is optimal with regard to
parent ordering when there are at least 32 cells of each type
corresponding to the 32 threads operating in Single Instruction
Multiple Data (SIMD) mode. With fewer cells per type, parent
node ordering becomes less than optimal and the performance
of Interleaved layout suffers by up to a factor of two. Note
that the total runtime deteriorates more rapidly than Gaussian
elimination time due to the fact that the parent contiguity also

affects the performance of tree matrix setup during evaluation of
a node’s current balance equation. The execution time ofConstant
Depth layout shows that it is possible to permute node ordering
so that parent nodes are more likely to be in significant conti
guous order relative to their children. The constant ratio between
total runtime and Gaussian elimination is due to negligible time
contribution of passive dendrites to matrix setup in combination
with the significant role of parent ordering in computing the
effect of topologically adjacent nodes on matrix setup of the
current balance equations.

5. BENCHMARKS AND PERFORMANCE

Not all network models are compute intensive or benefit equally
from CoreNEURON optimizations. In order to evaluate the
performance improvements with the optimizations discussed in
the previous section we ran several published network models
listed in Table 1 on different computing architectures. This
section describes the benchmarking platforms and compares
performance between NEURON and CoreNEURON.

The benchmarking systems with hardware details, compiler
toolchains and network fabrics are summarized in Table 3.
The Blue Brain IV (BB4) and Blue Brain V (BB5) systems
are based on IBM BlueGene/Q (Haring et al., 2012) and
HPE SGI 8600 (Hewlett Packard Enterprise, 2019) platforms
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FIGURE 6 | The top row shows three different morphological types with their dendritic tree structure in (A) and dendrograms showing in-memory tree representation

of these types in CoreNEURON in (B). The bottom row shows different node ordering schemes to improve the memory access locality on GPUs : (C) Example

topologies of three cells with the same number of compartments; (D) Interleaved Layout where a compartment from each of N cells forms an adjacent group of N

compartments. For ith node, ni is node index and par[i] is its parent index. With three executor threads, square brace highlight parent indices that result into

contiguous memory load (CL) and strided memory load (SL); (E) Constant Depth Layout where all nodes at same depth from root are adjacent; (F) Comparison of two

node ordering schemes for Ring network model showing execution time of whole simulation and Gaussian Elimination step.

respectively, hosted at the Swiss National Computing Center
(CSCS) in Lugano, Switzerland. The BB4 system has 4,096
nodes comprising 65,536 PowerPC A2 cores. The BB5 system
has three different compute nodes: Intel KNLs with low
clock rate but high bandwidth MCDRAM, Intel Skylakes
with high clock rate, and NVIDIA Volta GPUs. Vendor
provided compilers and MPI libraries are used on both
systems. The BB4 system is used for strong scaling benchmarks
(see Figure 8) as it has a large core count compared to
the BB5 system. All benchmarks were executed in pure
MPI mode by pinning one MPI rank per core. During the
model building phase, NEURON divides model into n equal
chunks where n is total number of MPI ranks. CoreNEURON
continues execution with the same number of MPI ranks as

NEURON. For GPU executions we used one MPI rank per
GPU node.

We compared the memory footprint of different network
models listed in Table 1. Figure 7 on the left shows memory
usage reduction with CoreNEURON simulation compared to
NEURON simulation. The memory reduction factor depends
on various model properties (e.g., number of compartments,
sections, synapses, etc.) but one can expect 4-7x reduction with
the use of CoreNEURON. Note that CoreNEURON Online mode
will need 1

7x to 1
4x more memory during the Memory Setup

phase. But once the model is transferred to CoreNEURON for
simulation, NEURON can free allocated memory.

Figure 7 on the right shows the speedup achieved on a single
node for different models with CoreNEURON compared to
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NEURON. Note that the Cortex and Hippocampus models are
very large in terms of memory capacity requirement. For single
node performance analysis we used a smaller subset of these
two models.

The memory layout and code vectorization optimization
described in section 4.2 shows greatest improvement when
most of the computation time is spent in channel and synapse
computations. The Cortex, Cortex+Plasticity and Hippocampus

TABLE 3 | Details of benchmarking systems.

BlueGene/Q

(BB4)

Processor IBM PowerPC A2, 16 cores @

1.6 GHz, 16 GB DRAM

Compiler toolchain IBM XL 12.1 and IBM MPI

Network Integrated 5-D torus

Intel Skylake

(BB5)

Processor 2 Xeon 6140, 36 cores @ 2.3

GHz, 384 GB DRAM

Compiler toolchain Intel 2018.1 and HPE-MPI (MPT)

Network InfiniBand EDR

Intel KNL

(BB5)

Processor Xeon Phi (7230), 64 cores @ 1.3

GHz, 96 GB DRAM

Compiler toolchain Intel 2018.1 and HPE-MPI (MPT)

Network, InfiniBand EDR

NVIDIA GPU

(BB5)

Processor NVIDIA GPU V100 SXM2, 2

Xeon 6140, 36 cores @ 2.3 GHz

Compiler toolchain PGI 18.10, OpenMPI 2.0

Network InfiniBand EDR

models have cells with 200 to 800 compartments and 20 different
channel types. This makes these models compute intensive and
lets them benefit most by CoreNEURON. The Ring network
model has computations only from passive dendrites and
active soma.

Intel KNL has 512-bit SIMD vectors and high bandwidth
memory (MCDRAM). One needs to efficiently utilize these
hardware features to achieve best performance. In the case of
CoreNEURON, NMODL generated code is auto-vectorized by
the compiler and has SoA memory layout to provide uniform,
contiguous memory access. NEURON uses AoS memory layout
which results in strided memory accesses. Due to the lower
clock frequency of KNL cores, the performance impact of non-
vectorized code and strided memory accesses is high compared
to other architectures. Hence CoreNEURON delivers better
performance on KNL compared to NEURON. Note that the
Cortex+Plasticity and Hippocampus models have relatively less
improvement (2-4x) compared to the Cortex model (3-7x).
This is because some of the channel and synapse descriptions
explicitly request integration methods that present compilers
cannot efficiently vectorize. Alternative code generation for these
methods is being considered.

On the BlueGene/Q platform the speedup with most of the
models is limited to 2x. This is because the IBM XL compiler is
not able to vectorize most of the channel and synapse kernels.
Observed performance improvement on this platform is due to
more efficient memory accesses from the SoA layout discussed in
the section 4.2.

FIGURE 7 | Memory usage reduction and speedup using CoreNEURON : ratios of memory usage between NEURON and CoreNEURON for different models in

Table 1 are shown on the left (measured on BB4 system). Speedups of CoreNEURON simulations compared to NEURON on various architectures (using single node)

for the same models are shown on the right.
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GPU support has been recently added to CoreNEURON.
Two models used in this benchmark, Cortex+Plasticity and
Hippocampus, use legacy HOC based stimulus implementations
which are not adapted for GPU yet. The Ring network model has
large number of identical cells which suits SIMD computations
on GPU and hence shows significant performance improvement
compared to other architectures. The Traub model has a
small number of cells exposing limited parallelism and the
Dentate model has gap junctions which require copying of
voltages between CPU and GPU every timestep. This limits the
performance improvement on GPU.

The reduction in the memory footprint of models translates
directly into benefits for users of large-scale models. For example,
while models of the size of Cortex + Plasticity and Hippocampus
models had a memory requirement when using NEURON that
necessitated a minimum of 2,048 nodes on an IBM BlueGene/Q
system, can now run on the same system requiring only 128 or
256 nodes for the Cortex+Plasticity and Hippocampus model
respectively when using the CoreNEURON Offline Mode. This is
a significant usability improvement and translates directly into a
better use of a user’s compute allocation.

Finally, Figure 8 shows that CoreNEURON maintains good
strong scaling properties for large models, as illustrated on
the example of the Cortex+Plasticity and Hippocampus models
simulating one second of biological time on an IBM BlueGene/Q
system. As these models are compute intensive and a small
fraction of execution time is spent in spike communication,
the scaling behavior depends on how well a given number of
cells can be distributed across the available number of ranks
to yield good load balance. Both models show excellent strong
scaling behavior up to 2,048 nodes. Due to the large size
range of morpho-electrical neuron types, at least 7–10 cells per
MPI process are required to achieve good load balance. With
32,000 MPI processes (16 ranks per node) and about 219,000
cells of Cortex+Plasticity, the load balance is not as good as
with the Hippocampus model of about 789,000 cells. Hence,
the Cortex+Plasticity model exhibits poorer scaling behavior
compared to the Hippocampus model.

6. DISCUSSION

Modern compute architectures can significantly boost
application performance and the study of the brain in silico
is in dire need to embrace this capability and trend. Accordingly,
the widely used NEURON simulator that supports a large
variety of models has been over the years successfully adapted
to embrace massively parallel architectures, but its primary
design goals were to allow for a flexible definition of models
and interactive introspection thereof. It was neither designed
for ultimate memory efficiency nor maximal performance.
However, the larger and more detailed the models get, the
larger are the resource requirements to simulate those models.
Eventually, the costs of a system required for an un-optimized
simulator should be weighed against the effort of reworking the
simulator to make more efficient use of resources. In the context
of the Blue Brain Project we took the decision to contribute to
making the NEURON simulator more efficient for large models,
effectively leading to reduced resource requirements, faster

time-to-solution, or simply the capability to run bigger models
on a given resource.

6.1. Compatibility With Existing NEURON
Models
As the neuroscience community has developed and shared
thousands of models with NEURON, compatibility and
reproducibility has been one of the primary design goals.
To maintain maximal compatibility, we chose the path of
extracting the computational relevant parts of NEURON into
a library called CoreNEURON and adapting it to exploit the
computational features of modern compute architectures. This
is a different path as for example taken by the Arbor (Akar et al.,
2019) which started its developments from scratch. While such
a fresh start has its benefits in terms of designing for future
architectures from the start, we can show that the transformation
approach we took immediately gives compatibility with a
large number of existing NEURON models with minimal
modification. Currently, CoreNEURON does not handle non
thread-safe models and requires NMODL modifications if
constructs like POINTER are used. We are working on handling
such models transparently.

6.2. Flexibility for Model Building and
Efficiency for Model Simulation
Many modeling workflows related to detailed brain models
require flexibility for quickly inspecting and changing the
models. By extracting the compute engine from the NEURON
simulator environment and providing different methods of how
it can interact with the NEURON simulator, one maintains the
flexibility of NEURON for the construction of the models and
can more easily apply optimizations to the compute engine
for the costly simulation phase. The Offline execution mode
of CoreNEURON provides flexibility to build and simulate
large network models that cannot be simulated with NEURON.
Thanks to the use of MPI, and the OpenMP and OpenACC
programming models to achieve portability across different
architectures such as multi-core, many-core CPUs, and GPUs.

6.3. Reduced Memory and Faster
Time-to-Solution
The data structure changes allow CoreNEURON to use
significantly less memory compared to NEURON. The SoA
memory layout and code vectorization allow CoreNEURON
to simulate modelsí efficiently. We benchmarked five different
network models on different architectures showing 4-7x memory
usage reduction and 2-7x execution time improvement.

6.4. Future Work
We discussed the implementation of the most significant changes
and optimizations in NEURON and CoreNEURON. Although
CoreNEURON can be used transparently within NEURON,
users cannot currently access or modify model properties during
integration. Work is ongoing in regard to bidirectional data copy
routines activated by normal NEURON variable name evaluation
and assignment syntax ranging in granularity from the entire
model, to specific named arrays, down to individual variables.
On the numerical side, CoreNEURON today supports network
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FIGURE 8 | Strong scaling of CoreNEURON on the BB4 system for two large scale models listed in Table 1: the Cortex+Plasticity model with 219 k neurons (on the

left) and the Hippocampus CA1 model with 789 k neurons (on the right).

simulations using the fixed time step method but not the variable
time step integration method (CVODE) (Cohen and Hindmarsh,
1996). The latter is rarely used in network simulations because
state or parameter discontinuities in response to synaptic events
demand continuous re-initialization of variable step integrators.
Research is ongoing on how to improve the applicability of
variable time step schemes in network simulation and can be
considered for inclusion at a later stage. Currently, mapping
of multiple MPI ranks to GPUs is not optimal and this will
be addressed in future releases. Lastly, the NMODL source-to-
source translator will be improved to generate efficient code for
stiff, coupled, non-linear gating state complexes that require the
derivimplicit integration method as well as the generation of
optimal code for GPUs.

6.5. Availability
CoreNEURON and code generation program MOD2C are
open sourced and available on GitHub (CoreNEURON GitHub
Repository, 2019; MOD2C GitHub Repository, 2019).
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The electroencephalographic activity of particular brain areas during the decision making

process is still little known. This paper presents results of experiments on the group

of 30 patients with a wide range of psychiatric disorders and 41 members of the

control group. All subjects were performing the Iowa Gambling Task that is often

used for decision process investigations. The electroencephalographical activity of

participants was recorded using the dense array amplifier. The most frequently active

Brodmann Areas were estimated by means of the photogrammetry techniques and

source localization algorithms. The analysis was conducted in the full frequency as well

as in alpha, beta, gamma, delta, and theta bands. Next the mean electric charge flowing

through each of the most frequently active areas and for each frequency band was

calculated. The comparison of the results obtained for the subjects and the control

groups is presented. The difference in activity of the selected Brodmann Areas can

be observed in all variants of the task. The hyperactivity of amygdala is found in both

the patients and the control group. It is noted that the somatosensory association

cortex, dorsolateral prefrontal cortex, and primary visual cortex play an important role

in the decision-making process as well. Some of our results confirm the previous

findings in the fMRI experiments. In addition, the results of the electroencephalographic

analysis in the broadband as well as in specific frequency bands were used as inputs

to several machine learning classifiers built in Azure Machine Learning environment.

Comparison of classifiers’ efficiency is presented to some extent and finding the most

effective classifier may be important for planning research strategy toward finding

decision-making biomarkers in cortical activity for both healthy people and those suffering

from psychiatric disorders.

Keywords: electroencephalography, sLORETA, psychiatric disorders, frequency band analysis, machine learning,

Iowa Gambling Task, decision-making
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INTRODUCTION

Decision-making is an essential skill in everyday life but currently
there is little systematic knowledge about how decision-making
is affected in people with a diagnosis of psychiatric disorders.
Decision-making is a process in which many cognitive functions
are engaged. Probably that is why the IGT was often chosen as a
task for investigating the behavior of the people with psychiatric
disorders, however, there is relatively not much known about the

cortical activity of individuals while making decisions in both
healthy people and those with psychiatric disorders diagnosis.

Some research has been done on the patients with major

depressive disorder (Cella et al., 2010; Brevers et al., 2013).
Similarly, the cohort of subjects with borderline personality
disorder was investigated using IGT (Haaland and Landrø, 2007)
as well as bipolar disorder (Paulus, 2007). IGT applications for
a variety of research and different disorders are presented to
some extent in a review by Brevers et al. (2013) and originally
in Bechara (2007). With many applications in psychiatry, we
decided to choose the IGT out of many other tasks for this stage
of our research.

Quantitative electroencephalography is at its Renaissance
stage in last decades (Sand et al., 2013) and has developed toward
some forms of research in modern psychiatry (Kamarajan and
Porjesz, 2015; Martínez-Rodrigo et al., 2017).

The rapid increase in the number of publications concerning
Brain-Computer Interfaces (BCI) is observed (Mikołajewska
and Mikołajewski, 2012, 2013, 2014; Teruel et al., 2017; Ozga
et al., 2018; Wierzgała et al., 2018) and the EEG activity can
be recognized as one of possible solutions in BCI engineering
(Kotyra and Wojcik, 2017a,b). In addition, any ideas for finding
biomarkers of psychiatric disorders (Chapman and Bragdon,
1964; Sutton et al., 1965; Campanella, 2013; Golonka et al., 2017)
are in demand as the interview is still the most often used tool in
psychiatry to make the diagnosis.

The expansion of computational modeling techniques applied
to neuroscience makes it possible to simulate selected parts of
the brain tissues which we are familiar with (Wojcik et al., 2007;
Wojcik and Kaminski, 2008; Wojcik and Garcia-Lazaro, 2010) or
even investigate the influence of electrophysiological parameters
of single cells on the dynamics of the whole simulated system
(Wojcik and Kaminski, 2007; Wojcik, 2012). However, we are
still very far from explaining complex phenomena like psychiatric
disorders or syndromes e.g., burn-out (Chow et al., 2018). Higher
cognitive functions are sometimes a source of inspiration in
biomedical engineering (Kaminski andWojcik, 2004;Ważny and
Wojcik, 2014; Wojcik andWażny, 2015; Kufel andWojcik, 2018)
and artificial intelligence (Ogiela et al., 2008; Szaleniec et al., 2008,
2013) mixed with cognitive science methodology provides some
explanation or leads to the construction of classification tools.
Nevertheless, we are still in demand for verification theory in
the experiment.

There are different electroencephalographic methods
that allow visualization of recorded activity on the brain
model. One of them is the standardized low-resolution brain
electromagnetic tomography algorithm (sLORETA) (Pascual-
Marqui et al., 1994, 1999; Pascual-Marqui, 2002). This method

advantages come from the high temporal resolution of modern
electroencephalographs (Tohka and Ruotsalainen, 2012) and
makes possible to compute the subjects brain activity distributed
in time and put it on brain topography with the tomography-like
quality of detail. Applications of sLORETA were reported e.g.,
for the attention-deficit-hyperactivity disorder (ADHD) (Mann
et al., 1992) and neurodegenerative diseases (Wu et al., 2014).
The sLORETA can be also applied in the frequency band analysis
(Moretti et al., 2004; Saletu et al., 2010).

Using EEG based source localization techniques for the
measurement of subcortical activity can be controversial. We
are aware of the fact that for example in Krishnaswamy et al.
(2017) authors state that subcortical structures produce smaller
scalp EEG signals. This happens because they are farther from
the head surface than cortical structures. To make matters worse,
subcortical neurons can have a closed-field geometry that further
weakens the observed distant fields and subcortical structures
are surrounded by the cortical mantle. So measurements of
activity in deep brain structures can potentially be explained
by a surrogate distribution of currents on the cortex. That is
why it can be very difficult to measure subcortical activity when
cortical activity is occurring at the same time (Krishnaswamy
et al., 2017). However, there are various mathematical models
(Grech et al., 2008) that allow us to make some estimation
of such kind of activity. Our lab is equipped with the very
sophisticated and developed for 25 years GeoSource software1,
where such models are implemented and based on the results
given by it, having access to the photogrammetry station which
generates the head model with high accuracy, we are able to
draw some conclusions that are some extrapolated indicators
for subcortical areas increased activity. The GeoSource is not
the only software with subcortical areas activity algorithmic
detectors. We have done some comparative analysis with BESA
and its: ERP analysis and averaging2 and source analysis and
imaging3 packages getting the same quality of results.

The investigations of Event-Related Potentials are often
chosen by experimental psychologists as well as clinicians
and biomedical engineers. One of the best-recognized ERP
experiments in which decision-making is investigated was
proposed by Bechara et al. (1994). It is known as the Iowa
Gambling Task (IGT) and is described in detail in the Materials
and Methods section of this contribution.

IGT was used in many clinical experiments (Cui et al., 2013;
Mapelli et al., 2014; Tamburin et al., 2014). In Tamburin et al.
(2014) the patients with chronic low back pain were investigated
and the authors tried to find correlations between the ERP
responses and the cognitive measures taken on them. On the
other hand, in Cui et al. (2013) the students were investigated
during IGT and the amplitudes of P3 potential were observed
and discussed. Similar research is reported (Mapelli et al., 2014)

1GeoSource 3 electrical source imaging packages: https://www.egi.com/research-

division/electrical-source-imaging/geosource
2BESA: ERP analysis and averaging, http://www.besa.de/products/besa-research/

features/erp-analysis-and-averaging/
3BESA: Source analysis and imaging, http://www.besa.de/products/besa-research/

features/source-analysis-and-imaging/
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but in this case it was focused on the people with Parkinson’s
disease making decisions and after that their ERP potentials were
analyzed. The research mentioned above is concentrated on the
analysis of the shape of statistically averaged potential and there
are no source localization procedures applied to the analysis.

The aim of the research presented herein was to apply the
methodology proposed in Wojcik et al. (2018a) and Wojcik et al.
(2018b) to the quantitative electroencephalographic analysis of
cortical activity from the patients in different frequency bands
as well as in the full spectrum of the EEG signal. We used
source localization techniques and having measured the average
amperage in time for particular Brodmann Areas (BA) the mean
electric charge flowing through them during the experiment was
conducted for each patient andmember of the control group. For
this contribution, the brain activity of a group of patients with
selected psychiatric disorders was measured using dense array
EEG. These results were compared with those obtained from the
participants of the control group. Both groups performed IGT.

Additionally, the results gathered for both healthy and
disordered people in the broad and particular frequency EEG
bands were taken as inputs to seven different machine learning
classifiers in order to distinguish two types of responses in IGT,
basing only on BA activity. The efficiency of these classifiers was
compared and is presented to some extent.

MATERIALS AND METHODS

The Department of Neuroinformatics is equipped with the
dense array amplifier recording the cortical activity with up to
500 Hz frequency through 256 channels HydroCel GSN 130
Geodesic Sensor Nets provided by EGI4. In addition, in the EEG
Laboratory the Geodesic Photogrammetry System (GPS) was
used. Eleven cameras placed in the corners of GPS take a set of
subject’s photos and then it is possible to make a model of the
particular subject brain based on its calculated size, proportion
and shape. Next the software imposes all computed activity
results on this model with a very good accuracy. The amplifier
operates on the Net Station 4.5.4 software, GPS is under control
of the Net Local 1.00.00 and GeoSource 2.0. The eye blinks and
saccades elimination as well as gaze calibration are obtained
owing to the application of dedicated eye-tracker operated by
SmartEye 5.9.7. The Event-Related Potentials (ERP) experiments
are conducted in the PST e-Prime 2.0.8.90 environment5.

We investigated 30 patients, 9 females and 21 males (avg. age
28.1, s.d. 12.4). They have been diagnosed with a wide range
of psychiatric disorders. The disorders are classified in ICD-
10 as: 12 × F41 (Panic disorder), 5 × F32.1 (Major depressive
episode), 5 × F84.5 (Asperger syndrome), 3 × F40 (Social
anxiety disorders), 2 × F31 (Bipolar affective disorder), 2 × F42
(Obsessive-compulsive disorder co-occurrent with the patients
with F84.5), 2 × F51.1 (Non-organic hypersomnia), and 1× F20
(Schizophrenia). The control group of 30 healthy volunteers were

4Electrical Geodesic Systems, Inc., 500 East 4th Ave. Suite 200, Eugene, OR, 97401,

USA.
5Psychology Software Tools, Inc. PST, Sharpsburg Business Park, 311 23rd Street

Ext., Suite 200, Sharpsburg, PA, 15215-2821, USA.

also examined. The control group were only males (avg. age
22.4, s.d. 1.7). It is worth noting that about 30% more subjects
were investigated from both control and patients’ groups as the
signal of all those for whom the recordings were too noisy or
incomplete had to be eliminated. All participants were right-
handed and measured by a handedness questionnaire (Chapman
and Chapman, 1987).

The IGT was introduced by Bechara et al. (1994) and since
then it has become one of the favorite tasks given to the
subjects participating in a wide range of experimental psychology
experiments. Originating from the research first carried out
at the University of Iowa the IGT was intended to get hold
of mechanisms of decision-making process during the reward-
punishment oriented card game. The aim of the task is to choose
one card deck symbol out of four in each of 100 trials. The
participants are told to earn as much of virtual money as possible
starting with 0 dollars. In each set of four cards (or symbols)
there is a couple of so-called good cards for which there is
a reward and a couple of so-called bad cards for which there
is a punishment. The participants do not know which card
is good and which is bad but they can conclude it from the
game behavior. However, at the beginning all cards seem to be
good, but for two of them they make impression to be better
as the reward for choosing them is remarkably higher than for
choosing the others. After several choices of the better cards, the
punishments for choosing the next are extremely high. On the
other hand the punishment for choosing cards after the initial
selection of those worse at the beginning is very low which finally
gives the better financial results when compared to the other
case. The typical screens shown on the computer on which our
participants make decisions is shown in Figure 1.

The electroencephalographic signal was recorded. After the
test the photo of each participant was taken using the GPS.
Such a technique allows obtaining spatial resolutions comparable
to 1.5 T MRI without the necessity of MRI brain scanning for
each participant. Thus, the anatomical models of participants’
brains are generated using the GeoSource software and GPS
photogrammetry which allows us to estimate the activity of
particular BAs with satisfactory precision. Note, that in our
approach we do not use the default model of the head, which is
also possible. We make use of GPS to achieve the best possible
accuracy of source localization.

Such methodology allowed us to apply the source localization
algorithm with a satisfactory accuracy and estimate the most
active Brodmann Areas in each participant during the decision-
making process. The Net Station software along with the
GeoSource tool has implemented the most popular version of
the sLORETA algorithm which is described in the chapter titled
Brain Source Localization Using EEG Signals in Nidal and Malik
(2014). It is based on standardization of the current density
assumption. That means that both the variance of the noise in
the signal and the biological variance in the actual signal are
taken into account (Goldenholz et al., 2009; Nidal and Malik,
2014). Independent and uniform distribution of the biological
signal variance across the brain cortex is taken into consideration
and this results in a linear imaging localization technique having
exact, zero-localization error (Goldenholz et al., 2009; Nidal and
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FIGURE 1 | Typical screens shown to participants during the IGT experiment. Card decks—in the left and reward/punishment with account state in the right. The

screens are generated by the PST e-Prime 2.0.8.90 which is synchronized with Net Station 4.5.4 recordings.

FIGURE 2 | Typical results of GeoSource BA activity visualization on the brain cortex so-called Flat Map. The increase of activity in BA36 (Uncus Lobe, Limbic Lobe)

for good choice and BA37 (Fusiform Gyrus, Temporal Lobe) for bad choice are indicated.

Malik, 2014). For more details see the comparison of different
types of LORETA in Nidal and Malik (2014).

The literature reports a few bands that cover typical
rhythmical activity of the brain (Niedermeyer and da Silva, 2005)

described as follows: δ—delta band (<4 Hz), θ—theta (4–7 Hz),
α—alpha (8–15 Hz), β—beta (16–31 Hz), γ—gamma (more than
31 Hz), and sometimes µ—mu (8–12 Hz) bands. Sometimes the
frequency ranges that define each band are slightly different. In
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FIGURE 3 | Diagram of the IGT research protocol used in this paper. All scripts used for the preprocessing data in Net Station and post-processing in GeoSource are

listed. Participation of the subject in the experiment begins when the Sensor Net is put on and ends when it is taken off. All data is collected by the Mac Pro

workstation which is the central computational unit of the lab. Statistical analysis, finding the most active BAs in full or each of α, β, γ , δ, and θ frequency bands as

well as ι estimations can be conducted on other machines.

our lab by default the frequency bands are set as follow: δ—
delta band (0.1–3 Hz), θ—theta (4–7 Hz), α—alpha (7–12 Hz),
β—beta (12–30 Hz), γ—gamma (more than 32 Hz).

One of the most useful functions of the GeoSource software is
the possibility of estimation of the amperage of the most active
areas (Figure 2) varying in time using source localization. The

most active BA is indicated by the GeoSource as the BA with the
highest electric current flowing through it in time. The activity
of a particular BA could last at its maximum value for a longer
or shorter period and it could appear more than once during
each epoch. The signal was divided into epochs, as usual in ERP,
in this case, IGT experiments, then averaged giving amperage in

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2019 | Volume 13 | Article 73218219

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wojcik et al. Analysis of Decision Making

TABLE 1 | Most active BA in particular subjects of the patients’ group while

receiving a reward during the IGT experiment in the full and in the alpha, beta,

gamma, delta, and theta EEG bands.

No. Diag. Full band α β γ δ θ

1 F20 BA05 BA29 BA29 BA05 BA34 BA29

2 F31 BA09 Amygd. Amygd. BA09 Amygd. BA09

3 F31 BA05 Hipp. Amygd. BA17 Amygd. Amygd.

4 F32.1 BA36 BA17 Amygd. BA17 Amygd. Amygd.

5 F32.1 BA17 BA05 Amygd. BA17 Amygd. BA05

6 F32.1 BA05 Amygd. BA36 BA05 BA36 BA17

7 F32.1 BA17 Amygd. Amygd. BA17 BA36 Amygd.

8 F32.1 BA17 Amygd. BA09 BA09 BA34 BA09

9 F40 Amygd. Amygd. Amygd. Amygd. BA05 BA04

10 F40 BA09 BA29 BA29 BA09 BA08 BA34

11 F40 BA46 BA24 BA36 Amygd. BA05 BA46

12 F41 BA09 BA09 BA05 BA09 Amygd. BA09

13 F41 Amygd. Amygd. BA29 Amygd. BA29 Amygd.

14 F41 Amygd. Amygd. Amygd. Amygd. Amygd. BA17

15 F41 BA09 Amygd. Amygd. BA09 Amygd. BA04

16 F41 BA05 BA05 BA05 BA05 Amygd. BA09

17 F41 Amygd. Amygd. Amygd. Amygd. Amygd. BA17

18 F41 Amygd. BA45 BA45 BA17 BA45 BA45

19 F41 BA09 Amygd. Amygd. BA04 Amygd. BA09

20 F41 BA27 Amygd. Amygd. BA34 Amygd. Amygd.

21 F41 Amygd. Amygd. Amygd. Amygd. Amygd. BA04

22 F41 BA04 Amygd. Amygd. BA09 Amygd. BA09

23 F41 BA05 BA36 BA27 BA05 BA27 BA05

24 F51.1 Amygd. Amygd. Amygd. BA05 BA05 Amygd.

25 F51.1 BA17 BA05 BA36 BA17 BA36 BA17

26 F84.5 Amygd. Amygd. Amygd. BA04 Amygd. Amygd.

27 F84.5 BA09 BA17 BA17 BA09 BA17 BA09

28 F84.5 BA45 Hipp. Hipp. BA45 BA45 BA45

29 F84.5, F42 BA04 BA05 BA05 Amygd. Amygd. Amygd.

30 F84.5, F42 BA45 BA45 BA05 BA09 BA05 BA45

“Amygd.” indicates Amygdala, “Hipp.” for Hippocampus areas. For detail see Discussion

section in text.

the function of time. Based on the electrical current measured
by the EEG amplifier, most active BAs precisely indicated by
the photogrammetry station and having precisely estimated time
intervals owing to the perfect EEG time resolution, one of many
numerical methods for integration can be applied to calculate the
mean electric charge ι with good precision (Wojcik et al., 2018a)
by integrating the electrical current in time. The details of mean
electric charge estimation are described in detail in Wojcik et al.
(2018a).

The sLORETA can be run for the full EEG frequency band
above 0.1 Hz including the γ spectrum and for the selected
frequency band analysis. Besides the full band there were taken
into consideration each of the following: alpha, beta, gamma,
delta, and theta. For each band including the full band, the
varying in time value of amperage of particular BAs was obtained
from the GeoSource. Having the amperage in the function of
time one can calculate the mean electric charge ι flowing through

TABLE 2 | Most active BA in particular subjects of the patients’ group while

receiving a punishment during the IGT experiment in the full and in the alpha, beta,

gamma, delta, and theta EEG bands.

No. Diag. Full band α β γ δ θ

1 F20 BA05 BA34 BA29 BA05 BA34 BA29

2 F31 BA09 Amygd. Amygd. BA09 Amygd. Amygd.

3 F31 Amygd. Amygd. Amygd. BA17 Amygd. Amygd.

4 F32.1 BA17 BA05 Amygd. Amygd. Amygd. BA17

5 F32.1 BA05 Amygd. BA05 BA17 BA05 Amygd.

6 F32.1 BA36 Amygd. Amygd. BA17 BA36 BA17

7 F32.1 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

8 F32.1 BA17 BA09 BA09 BA09 BA34 BA09

9 F40 Amygd. BA05 BA04 Amygd. BA05 BA17

10 F40 BA09 BA29 BA29 BA09 BA29 BA17

11 F40 BA05 Amygd. BA36 Amygd. Amygd. BA17

12 F41 Amygd. Amygd. BA05 BA09 Amygd. BA05

13 F41 BA04 Amygd. BA29 BA05 BA29 Amygd.

14 F41 BA43 BA17 BA05 Amygd. BA36 BA17

15 F41 Amygd. BA05 Amygd. Amygd. Amygd. Amygd.

16 F41 Amygd. BA05 BA05 BA05 Amygd. BA09

17 F41 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

18 F41 Amygd. BA45 BA45 Amygd. BA45 BA45

19 F41 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

20 F41 BA27 Amygd. Amygd. BA23 Amygd. BA17

21 F41 BA04 Amygd. Amygd. BA09 Amygd. BA04

22 F41 BA04 Amygd. Amygd. Amygd. Amygd. Amygd.

23 F41 BA05 BA05 BA27 Amygd. BA41 BA05

24 F51.1 BA05 Amygd. Amygd. Amygd. Amygd. Amygd.

25 F51.1 BA05 BA05 BA34 BA17 Amygd. BA17

26 F84.5 Amygd. Amygd. Amygd. BA05 Amygd. BA05

27 F84.5 BA09 Amygd. BA17 BA09 BA17 BA09

28 F84.5 BA41 Hipp. Hipp. BA45 BA31 BA45

29 F84.5, F42 Amygd. BA05 Amygd. Amygd. Amygd. BA05

30 F84.5, F42 BA05 BA05 BA05 BA05 BA05 BA05

“Amygd.” indicates Amygdala, “Hipp.” for Hippocampus areas. For detail see Discussion

section in text.

the given BA as described in Wojcik et al. (2018a). The typical
visualization of the GeoSource application to the signal is shown
in the flat maps in Figure 2.

The time interval in which the BA activity was calculated was
set to 5 ms and there was chosen the 800 ms segmentation (each
segment starting with the stimuli) for signal averaging.

The BA1, BA2, and BA3 were eliminated from our analysis
as they are part of Primary Somatosensory Cortex (S1) which
was hyperactive owing to the subject’s fingertips contact with the
response pad during the experiment.

The scheme of the methodology and research protocol are
presented in Figure 3. The full band analysis protocol in the
case of P300 experiments was presented in Wojcik et al. (2018a)
and the frequency band analysis protocol was described in detail
in DIGITS related paper in Wojcik et al. (2018b). For this
contribution the mixture of both methods proposed in Wojcik
et al. (2018a,b) is applied.
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TABLE 3 | The ι for the most active BA in particular patients receiving a reward

during the IGT experiment obtained from the sLORETA quantitative analysis.

No. Diag. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 F20 25.45 8.60 7.49 30.96 9.47 7.12

2 F31 45.10 3.99 5.59 43.32 6.03 17.82

3 F31 11.77 2.82 3.54 14.82 5.55 5.60

4 F32.1 37.92 3.40 33.19 38.90 11.31 6.01

5 F32.1 77.11 20.28 7.56 38.91 9.94 15.80

6 F32.1 200.70 15.17 19.93 56.61 17.39 20.45

7 F32.1 55.50 11.87 12.61 30.02 13.26 6.03

8 F32.1 24.65 4.58 9.10 69.61 8.19 8.05

9 F40 19.24 18.92 14.47 23.05 9.04 6.61

10 F40 46.20 5.35 5.60 20.27 2.67 7.69

11 F40 20.49 2.88 3.81 16.15 3.55 6.82

12 F41 67.16 6.03 10.13 20.88 14.89 6.40

13 F41 48.25 6.29 25.76 45.79 22.14 6.50

14 F41 118.70 5.40 6.24 50.14 9.89 20.32

15 F41 55.71 4.41 3.95 32.42 4.74 6.36

16 F41 68.59 11.27 11.07 44.56 8.43 16.58

17 F41 81.21 14.93 20.20 53.17 19.26 14.13

18 F41 45.66 8.50 15.83 39.21 14.15 15.55

19 F41 40.30 3.68 3.75 44.72 4.55 11.12

20 F41 91.03 9.34 11.66 93.58 16.13 7.46

21 F41 67.74 5.46 8.14 45.63 8.99 10.91

22 F41 26.20 6.75 10.53 61.26 14.79 9.62

23 F41 29.25 4.96 8.02 20.15 11.23 6.23

24 F51.1 34.89 2.46 3.56 17.63 3.06 5.62

25 F51.1 28.82 2.14 3.22 20.67 3.49 4.06

26 F84.5 27.53 4.15 5.82 8.55 7.11 6.88

27 F84.5 44.27 2.05 6.32 28.75 7.86 5.04

28 F84.5 20.34 6.18 5.89 37.28 2.03 14.97

29 F84.5, F42 15.99 5.19 6.85 16.47 4.32 5.52

30 F84.5, F42 27.07 5.95 33.39 34.75 26.89 10.16

For detail see the Discussion section in the text.

The so-called Waveform Tools package from the Net
Station ecosystem was used and all scripts shown in Figure 3

originate from it. The description of algorithms used in the
preprocessing and post-processing stages of the research is
given in Electrical Geodesics (2003) and the procedures used
in the photogrammetry Net Local are described in the EGI Lab
documentation (Electrical Geodesics, 2009, 2011). There were
100 trials for each participant, duration of the experiment was
around 12 min. For the preprocessing we used the following
and suggested by EGI engineers rules: As an average reference
the average of all electrodes was taken. The artifact correction
parameters were set as follow: bad channels filtering—Max-Min
> 200 µV; eye-blinks—Max-Min > 140 µV, eye movements—
Max-Min > 140 µV—all performed in moving average of 80 ms.
Filtration settings were set to passband gain 99%, stopband gain
1% and rollof 2 Hz, The segmentation was performed from 100
ms before stimulus to 700 after stimulus with offset 13 ms. The

TABLE 4 | The ι for the most active BA in particular patients receiving a

punishment during the IGT experiment obtained from the sLORETA quantitative

analysis.

No. Diag. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 F20 58.78 8.41 11.80 19.74 14.19 13.74

2 F31 36.15 5.56 9.09 62.91 9.05 11.46

3 F31 19.13 3.33 10.09 16.76 10.48 5.27

4 F32.1 70.61 9.02 29.37 35.87 28.28 19.50

5 F32.1 44.21 39.90 13.93 44.60 20.02 25.72

6 F32.1 86.34 29.29 40.46 62.67 31.10 33.35

7 F32.1 70.96 14.87 17.38 39.71 19.95 25.57

8 F32.1 88.81 13.66 15.96 54.23 21.21 22.31

9 F40 33.17 26.94 25.38 22.23 20.06 6.64

10 F40 117.98 9.74 8.07 68.39 6.65 11.47

11 F40 30.50 5.26 7.00 22.34 8.58 8.03

12 F41 99.30 9.41 17.07 49.72 28.45 9.55

13 F41 49.64 6.88 43.05 37.35 46.80 12.43

14 F41 231.56 11.06 11.79 87.43 18.20 15.64

15 F41 103.02 8.47 8.90 91.82 12.95 15.18

16 F41 100.32 15.01 19.75 54.24 15.90 22.40

17 F41 84.65 20.36 26.41 64.05 37.07 47.20

18 F41 148.46 19.03 32.64 74.02 28.62 28.91

19 F41 57.55 6.54 5.95 39.59 9.03 18.25

20 F41 134.75 13.39 16.48 77.11 24.33 16.96

21 F41 117.67 9.80 12.43 87.12 18.07 10.34

22 F41 69.91 12.87 17.81 83.47 25.76 23.91

23 F41 77.93 10.15 12.17 48.43 18.50 15.37

24 F51.1 28.63 6.77 5.90 25.05 5.29 10.72

25 F51.1 22.51 4.22 6.80 25.58 8.54 7.28

26 F84.5 21.58 6.90 8.32 9.72 9.31 5.00

27 F84.5 76.76 5.10 12.97 92.33 16.31 21.26

28 F84.5 35.00 9.39 8.56 49.69 3.91 22.36

29 F84.5, F42 56.93 6.52 11.55 1.37 8.46 9.62

30 F84.5, F42 121.72 11.22 55.63 39.35 51.99 12.92

For detail see the Discussion section in the text.

baseline correction was set to 100 ms from portion of segment.
The rejection of trials took place when there were more than 10
bad channels.

The Holy Grail for the quantitative EEG based psychiatry
is finding the biomarkers of particular psychiatric disorders
based on the measured electrical activity of the brain. We
proposed some idea to find such biomarkers in Wojcik et al.
(2018b) by using the frequency band analysis and estimating
the most active BAs in an above-mentioned way. Some research
was also reported in Zolubak et al. (2019) where authors were
investigating low frequency markers in neurofeedback therapy.
But indicating the most active BAs can be not enough. In the
last decades, we can, however, observe the rapid growth of
data science methods applied to big datasets. One of the most
important of them are machine learning tools and our idea was
to check whether applying different classifiers to our results, both
in broadband and specific frequency band analysis, could shed
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TABLE 5 | The most active BA in particular subjects of the control group while

receiving a reward during the IGT experiment in the full and in the alpha, beta,

gamma, delta, and theta EEG bands.

No. Full band α β γ δ θ

1 Amygd. BA05 BA05 Amygd. BA05 BA05

2 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

3 BA17 BA05 BA17 BA09 Hipp. BA09

4 BA17 Amygd. BA36 BA17 BA36 BA17

5 BA09 BA05 BA05 BA09 BA27 BA09

6 BA17 Amygd. Amygd. BA17 Amygd. BA17

7 BA17 Amygd. Amygd. BA09 Amygd. BA09

8 BA05 Amygd. BA05 BA05 BA05 BA09

9 BA09 BA18 BA24 BA17 BA18 BA17

10 BA28 BA34 BA34 BA09 BA34 Amygd.

11 BA05 Amygd. BA05 BA05 BA05 BA05

12 BA09 BA46 BA05 BA09 Amygd. BA09

13 BA17 BA17 BA17 BA17 BA17 BA17

14 BA09 Amygd. Amygd. BA09 Amygd. BA17

15 BA09 Amygd. BA27 BA09 BA27 BA17

16 BA09 BA05 Amygd. BA09 Amygd. BA05

17 BA09 BA29 BA29 BA17 BA28 BA17

18 BA05 Amygd. BA34 BA09 Amygd. BA09

19 Amygd. BA04 BA04 Amygd. BA04 Amygd.

20 BA09 Amygd. Amygd. BA09 Amygd. Amygd.

21 BA17 Amygd. BA36 BA17 BA36 BA17

22 Amygd. Amygd. Amygd. Amygd. BA28 Amygd.

23 Hipp. BA17 BA27 BA17 BA27 BA17

24 BA41 Amygd. Amygd. BA17 BA05 Amygd.

25 BA17 BA42 BA42 BA17 BA27 BA17

26 BA09 BA09 Amygd. BA09 Amygd. BA17

27 BA05 BA09 Amygd. Amygd. Amygd. BA09

28 BA46 Amygd. Amygd. Amygd. BA05 BA46

29 Amygd. BA45 BA27 BA17 BA27 BA45

30 BA17 BA05 BA05 BA17 BA36 Amygd.

“Amygd.” indicates Amygdala, “Hipp.” the Hippocampus areas.

some light on solving diagnoses problems. If there is a secret
code of particular disorders to be found in EEG activity—the
application of machine learning tools, like classifiers, seems to be
the best way to decode this. As the input to classifiers, the activity
of BAs in the spectrum of the mean electric charge flowing
through them should be considered. Because our patients’ group
consisted of only 30 subjects and with a wide range of disorders
it was impossible to design classifiers that could distinguish the
particular disorder from the another. However, the possibility of
distinguishing the reward cortical states from the punishment
activity was investigated and the efficiency of selected classifiers
will be discussed in the following sections to some extent.

RESULTS

For each participant from both the patient and control groups,
we estimated the most active BAs in each EEG frequency

TABLE 6 | The most active BA in particular subjects of the control group while

receiving a punishment during the IGT experiment in the full and alpha, beta,

gamma, delta, and theta EEG bands.

No. Full band α β γ δ θ

1 Amygd. BA05 BA05 Amygd. BA05 BA05

2 BA05 Amygd. Amygd. Amygd. Amygd. Amygd.

3 BA45 BA09 BA41 BA17 BA17 BA09

4 BA05 BA45 Amygd. BA17 BA36 BA17

5 BA05 BA05 BA05 Amygd. BA27 BA09

6 BA09 BA17 Amygd. BA09 Amygd. BA17

7 BA09 Amygd. Amygd. Amygd. Amygd. BA09

8 Amygd. Amygd. Amygd. Amygd. Amygd. Amygd.

9 BA17 BA07 BA18 BA17 BA18 BA17

10 BA29 BA17 BA34 Amygd. BA34 BA17

11 BA05 Amygd. BA05 BA05 BA05 Amygd.

12 BA04 Amygd. BA05 BA09 Amygd. BA09

13 BA17 BA17 BA17 BA17 BA41 BA17

14 BA05 Amygd. BA27 BA05 BA41 Amygd.

15 BA09 Amygd. Amygd. BA17 BA28 BA09

16 Amygd. BA05 Amygd. BA09 Amygd. BA05

17 BA09 BA29 BA29 BA09 BA28 BA05

18 BA09 BA04 Amygd. BA09 BA34 BA09

19 BA05 BA04 BA29 Amygd. BA04 Amygd.

20 Amygd. Amygd. Amygd. BA17 Amygd. Amygd.

21 BA17 BA17 BA36 BA17 BA36 BA17

22 BA17 Amygd. BA28 BA17 BA28 BA17

23 BA17 BA17 BA05 BA17 BA27 BA17

24 BA41 Amygd. Amygd. BA17 Amygd. Amygd.

25 BA17 BA42 BA42 BA17 BA27 BA05

26 BA09 Amygd. BA09 BA09 Amygd. Amygd.

27 BA05 Amygd. BA05 Amygd. BA05 Amygd.

28 BA05 Amygd. Amygd. BA05 Amygd. BA05

29 BA09 BA05 BA27 BA09 Amygd. BA17

30 Amygd. BA05 BA05 BA17 BA36 Amygd.

“Amygd.” indicates Amygdala, “Hipp.” the Hippocampus areas.

band during the reward and punishment phases of the
IGT experiment.

Thus the most active BAs for the reward variant in the patient
group are presented inTable 1 and for the punishment inTable 2.
The mean electric charge ι flowing through particular BA when
receiving a reward by a patient is shown in Table 3 and for
punishment in Table 4.

In analogy for the control group the reward associated
most active BAs are presented in Table 5 and the
punishment responses in Table 6. Tables 7, 8 present
the values of ι calculated for each member of the
control group in the reward and punishment variants of
response, respectively.

As follows from Tables 1–8 in all cases the Amygdala is
hyperactive and the order of the value of ι tends to be similar for
reward and punishment in both the subject and control groups in
each frequency band.
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TABLE 7 | The ι for the most active BA in particular subjects of the control group

receiving a reward during the IGT experiment obtained from the sLORETA

quantitative analysis.

No. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 35.13 4.97 6.25 21.43 8.76 5.09

2 123.05 20.57 11.64 157.64 5.93 42.89

3 18.50 2.29 3.12 30.77 3.75 6.08

4 28.76 3.10 2.37 49.85 3.44 6.78

5 34.17 4.95 6.11 45.50 3.89 13.49

6 35.07 2.95 4.85 56.67 3.46 11.16

7 44.39 4.44 4.68 41.99 4.94 9.71

8 44.52 2.57 2.82 27.37 3.55 5.54

9 22.01 2.59 3.50 44.04 5.46 4.52

10 29.10 3.58 5.32 36.85 6.92 4.49

11 74.89 2.90 8.60 43.62 7.82 3.83

12 16.20 2.82 2.76 42.64 2.88 6.58

13 91.48 4.22 4.35 93.37 1.06 7.83

14 26.73 6.71 7.43 17.22 1.06 6.80

15 31.23 3.03 5.06 69.70 6.23 11.95

16 40.49 2.96 2.81 25.40 2.68 5.86

17 19.58 5.02 9.06 9.08 4.37 5.10

18 29.44 5.69 7.51 20.83 3.24 6.22

19 20.94 12.05 10.69 27.52 4.98 17.75

20 36.71 2.56 4.77 26.71 2.23 5.51

21 36.85 4.48 3.62 40.97 6.17 9.02

22 22.35 2.60 4.17 11.91 4.64 4.07

23 25.54 9.62 6.41 60.50 6.38 16.57

24 93.76 4.25 5.60 13.82 5.45 6.00

25 28.75 9.77 18.81 27.34 6.59 6.99

26 41.20 6.59 8.00 89.68 8.19 14.10

27 77.02 5.40 10.27 95.49 6.93 13.58

28 16.18 2.64 3.44 18.24 3.72 4.03

29 19.45 2.88 2.76 26.82 2.98 4.51

30 22.57 16.39 20.27 30.82 7.50 7.19

For detail see the Discussion section in the text.

However, the comparison shown in Figure 4 for the rewards
and in Figure 5 for the punishment can shed some light on the
main differences in cortical responses of people with psychiatric
disorders and members of the control group.

As far as the frequency of BA appearances in the IGT reward
cortical responses are concerned (Figure 4) one can note that:

• The one of the amygdala is significantly higher in the patients
compared to the control group when observed in the full, beta
and delta frequency bands.

• The one of BA17 is significantly higher in the control group
than in the patients when observed in the gamma and
theta bands.

• The one of BA09 is higher in the control compared to the
patients’ group in the full and gamma frequency bands.

When considering the frequency of BA appearance in the IGT
punishment responses one can observe that:

TABLE 8 | The ι for the most active BA in particular subjects of the control group

receiving a punishment during the IGT experiment obtained from the sLORETA

quantitative analysis.

No. Full band α β γ δ θ

ι [µC] ι [µC] ι [µC] ι [µC] ι [µC] ι [µC]

1 47.89 8.94 11.78 63.56 15.64 8.99

2 203.19 27.55 22.29 277.38 10.28 75.45

3 34.32 4.23 19.78 21.88 5.85 5.68

4 34.02 3.95 4.14 24.11 4.80 12.66

5 41.10 8.24 12.84 54.96 6.38 15.80

6 80.51 7.69 8.61 47.67 9.31 18.62

7 55.34 7.10 8.21 29.96 9.99 15.50

8 125.22 4.56 5.83 63.70 7.58 8.83

9 29.85 5.90 6.48 37.00 9.27 11.87

10 89.41 8.66 10.62 82.42 12.51 7.70

11 132.74 6.12 11.68 109.95 13.24 6.27

12 34.78 5.58 4.91 40.29 4.90 6.63

13 203.37 6.69 6.21 89.38 0.99 31.37

14 37.34 14.02 11.15 34.81 1.80 14.62

15 51.69 10.40 13.26 35.51 17.34 11.14

16 31.28 4.35 4.32 17.42 6.62 8.93

17 46.04 6.65 13.57 14.03 6.91 5.08

18 50.01 7.94 11.22 78.38 6.83 12.96

19 39.11 11.51 14.88 40.65 8.03 16.86

20 45.93 2.76 3.95 34.68 4.67 6.29

21 68.19 10.09 7.55 73.64 10.18 15.74

22 34.54 4.33 7.62 29.19 10.21 6.92

23 58.34 18.68 12.75 75.45 9.00 18.49

24 118.22 9.63 11.49 64.50 11.44 14.56

25 70.20 17.48 19.10 55.03 10.83 9.88

26 54.22 9.57 13.28 103.73 13.20 23.43

27 158.88 8.50 11.97 71.10 10.81 16.73

28 26.53 4.51 5.84 15.03 5.85 5.23

29 32.70 3.66 4.68 34.81 5.66 7.71

30 45.49 24.36 30.51 34.31 13.03 14.36

For detail see the Discussion section in the text.

• The one of the amygdala is significantly higher in the patients
than in the control groupmembers in the full, alpha, beta, delta
and gamma frequency bands.

• The one of BA17 is significantly higher in the control than in
the patients’ group in the full and gamma bands.

• The BA09 is significantly higher in the control group

members than in patients when looking at the full and theta

frequency bands.
• The BA05 in the control group is higher than in the patients

in the full and beta frequency bands while in the alpha band it

is lower.

The role of the amygdala during the decision-making process

was discussed before even by the authors of IGT (Bechara et al.,

2003). It is known that both the amygdala and orbitofrontal

cortex are parts of a neural circuit critical for judgement and

decision-making being under influence of “primary inducers”
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FIGURE 4 | The comparison of the most frequently active BAs in the patients and the control groups in the “reward” variant of IGT response for (A)—full, (B)—alpha,

(C)—beta, (D)—gamma, (E)—delta, (F)—theta frequency bands. The y-axis refers to the N—number of subjects with particular BA maximum activity noted.

defined as stimuli that unconditionally, or through learning
(e.g., conditioning and semantic knowledge), can (perceptually
or subliminally) produce states that are pleasurable or aversive
(Bechara et al., 2003).

In order to verify the somatic marker hypothesis which
proposes that decision-making is a process depending on
emotion, some research of the destroyed amygdala was carried
out (Bechara et al., 1999; Gupta et al., 2011). During some fMRI
studies it was shown that amygdala influences the decision-
making process in the risk-taking experiments involving
information ambiguity (Hsu et al., 2005).

Our experiments show that the people with psychiatric
disorders have the amygdala more frequently hyperactive when
compared to healthy participants from the control group.

The Azure Machine Learning Studio was used to construct
seven different classifiers and next to compare their efficiency
in the reward/punishment characteristic cortical activity
detection and classification tasks. Our classifiers were designed
in order to separate two classes (reward/punishment) and
were as follow: logistic regression, decision jungle, support
vector machine, boosted decision tree, averaged perceptron,
Bayes point machine, classic neural network and locally-
deep support vector algorithms. Each classifier had its
own characteristics which are shown in Table 10. The
registered activity of particular BAs manifesting itself by
the mean electric charge ι in all discussed EEG frequency
bands, including the broadband was taken as inputs to
the classifier.
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FIGURE 5 | The comparison of the most frequently active BAs in the patients and the control groups in the “punishment” variant of IGT response for (A)—full,

(B)—alpha, (C)—beta, (D)—gamma, (E)—delta, (F)—theta frequency bands. The y-axis refers to the N—number of subjects with particular BA maximum activity

noted.

Under ideal conditions, it would be expected to construct
effective classifiers for particular psychiatric disorders, but having
only 30 diagnosed subjects in our cohort with so many different
diagnoses is far from being enough to perform any statistics. For
the machine learning tasks, the control group was extended by
an additional 11 healthy males finally reaching 41 subjects. Thus,
the joined cohort consisted of 41 healthy males and 30males with
some disorders, in a total of 71 participants. Note that in typical
ERP experiments there are standard (STD) and target (TGT)
stimuli. In the case of IGT, the punishment is treated as STD and
the reward is TGT as practically everyone dares to win. For each
participant registered the reward and punishment states, finally
giving 2× 71 = 142 averaged responses to the investigated set.

The 5-fold Cross-Validation method was used to validate the
efficiency of all classifiers.

Then the values of classification accuracy, recall and precision
were calculated and results are presented in Table 9.

As one can see in Table 9 there is no ideal classifier that
could be applied to all of the EEG frequency bands, including
the broadband.

For the broadband, the best results were
achieved by the Locally-Deep Support Vector
(acc. 0.698) and the Average Perceptron Classifier
(acc. 0.684) methods.

In the α band the Logistic Regression (acc. 0.690) and Neural
Network (acc. 0.669) turned out to be the best classifiers
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TABLE 9 | Comparison of the discussed classifiers efficiency for all frequency bands, including the broadband in the STD (punishment) and TGT (reward) classification

tasks.

Broad-band Corr. TGT Inc. TGT Corr. STD Inc.STD Acc. Recall Prec.

Logistic regression 55 32 39 16 0.662 0.549 0.709

Decision jungle 42 31 40 29 0.577 0.563 0.580

Support vector machine 35 25 46 36 0.561 0.521 0.698

Avg. perceptron classifier 53 32 39 18 0.684 0.549 0.684

Bayes point machine 33 15 56 38 0.627 0.789 0.596

Neural network 55 41 30 16 0.652 0.423 0.652

Locally-deep support vector 55 34 37 16 0.698 0.648 0.561

α

Logistic regression 54 27 44 17 0.690 0.620 0.721

Decision jungle 48 27 44 23 0.648 0.620 0.657

Support vector machine 41 29 42 30 0.585 0.577 0.683

Avg. perceptron classifier 51 28 43 20 0.662 0.606 0.683

Bayes point machine 46 28 43 25 0.627 0.606 0.632

Neural network 61 37 34 10 0.669 0.479 0.773

Locally-deep support vector 41 29 42 30 0.585 0.592 0.583

β

Logistic regression 51 23 48 20 0.697 0.676 0.706

Decision jungle 51 24 47 20 0.690 0.662 0.701

Support vector machine 53 26 45 18 0.690 0.634 0.714

Avg. perceptron classifier 49 24 47 22 0.676 0.662 0.681

Bayes point machine 35 13 58 36 0.655 0.817 0.617

Neural network 58 36 35 13 0.655 0.493 0.729

Locally-deep support vector 46 29 42 25 0.620 0.592 0.627

γ

Logistic regression 52 33 38 19 0.634 0.535 0.667

Decision jungle 42 30 41 29 0.585 0.577 0.586

Support vector machine 52 29 42 19 0.662 0.592 0.689

Avg. perceptron classifier 49 32 39 22 0.620 0.549 0.639

Bayes point machine 34 17 54 37 0.620 0.761 0.593

Neural network 50 33 38 21 0.620 0.535 0.644

Locally-deep support vector 41 31 40 30 0.570 0.563 0.571

δ

Logistic regression 56 28 43 15 0.697 0.606 0.741

Decision jungle 49 23 48 22 0.683 0.775 0.743

Support vector machine 56 27 44 15 0.704 0.620 0.746

Avg. perceptron classifier 56 27 44 15 0.704 0.620 0.746

Bayes point machine 39 14 57 32 0.676 0.803 0.640

Neural network 62 37 34 9 0.676 0.479 0.791

Locally-deep support vector 50 28 43 21 0.655 0.606 0.672

θ

Logistic regression 53 24 47 18 0.704 0.662 0.723

Decision jungle 51 31 40 20 0.641 0.563 0.667

Support vector machine 50 26 45 21 0.669 0.521 0.569

Avg. perceptron classifier 45 27 44 26 0.627 0.620 0.629

Bayes point machine 29 14 57 42 0.606 0.803 0.576

Neural network 61 41 30 10 0.641 0.423 0.750

Locally-deep support vector 50 26 45 21 0.669 0.521 0.569

Note, that numbers in rows sum to 142—for detail see text.
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TABLE 10 | Characteristics of the Two-Class classifiers used in IGT analysis.

Two-class logistic regression

Optimization tolerance 0.0001

L1 weight 0.1

L2 weight 0.1

Memory size 11

Quiet True

Use threads True

Allow unknown levels True

Two-class decision jungle

Ensemble element count 8

Max. depth 32

Max. width 128

Optimization step count 2

Resampling method Bagging

Random number seed 5

Allow unknown levels True

Two-class support vector machine

Number of iterations 101

Lambda 1.0

Normalize features True

Perform projection False

Allow unknown levels True

Two-class average perceptron classifier

Batch size 256

Initial learning rate 0.1

Learning rate decay exponent 0.5

Averaging weight 0.5

Tolerance 1E-05

Maximum number of iterations 101

Allow unknown levels True

Two-class bayes point machine

Allow unknown levels True

Random number seed 2,342

Training iteration count 30

Add bias True

Two-class neural network

Loss function CrossEntropy

Is initialized from string False

Is classification False

Initial weights diameter 0.1

Learning rate 0.1

Momentum 0

Data normalizer type MinMax

Number of input features 88

Number of hidden nodes 100

Number of iterations 51

Shuffle True

Allow unknown levels True

Two-class locally-deep support vector

Tree depth 2

Lambda W 0.1

Lambda theta 0.1

Lambda theta prime 0.1

Sigma 1

Number of iterations 14,500

Normalizer type MinMax

Allow unknown levels True

When one looks at classifiers’ results in the β band he notes the
Logistic Regression (acc. 0.697), Decision Jungle (acc. 0.690) and
Support Vector Machine (0.690) as the best, however the Logistic
Regression has the highest recall value of 0.676, while the highest
precision of 0.714 is achieved by Support Vector Machine.

If one studies the activity in the γ band he finds the highest
efficiency for the Support Vector Machine (acc. 0.662) and again
Logistic Regression (acc. 0.634).

For the δ band the highest accuracy 0.704 was achieved by the
Support Vector Machine and Average Perceptron Classifier.

In case of the θ band, the best three ones were Logistic
Regression (acc. 0.704), Support Vector Machine (0.669), and
Locally Deep Support Vector (0.669), the Logistic Regression
with the highest precision 0.723.

Note that the Bayes PointMachine did not performwell in any
of EEG frequency bands.

DISCUSSION

In our experiment the relations between the decision-making
process and the emotional responses given by the soma under
such experimental conditions are also visible. Somatosensory
association cortex (SAC) is mentioned in some papers on
decisions making where it is even stated that somatosensory
pattern marks the scenario as good or bad (Bechara et al., 2000;
Donner et al., 2009). Our results also show that BA05 is one of
the fewmost frequently active BAs in the patients and the control
groups members., Moreover, the activity is qualitatively different
in different frequency bands.

As well the dorsolateral prefrontal cortex (BA09) is often
reported as engaged in decision-making processes. It was
even found that damage of this structure results in poor
performance in IGT (Fellows and Farah, 2004) and the
fMRI studies have shown that the dorsolateral prefrontal
cortex plays a role of negotiator establishing the link
among sensory evidence, decision, and action during the
decision making (Heekeren et al., 2006). Hyperactive BA09
is also reported to be found in other cognitive processes
(Elliott, 2003), like working memory (Barbey et al., 2013),
cognitive flexibility (Monsell, 2003), and planning (Chan
et al., 2008). In our experiments the BA09 seems to be
much more active in the control group when compared to
the patients.

The visual processing areas provide the sensory
evidence for a decision (Heekeren et al., 2004) and our
results confirmed that the primary visual cortex is one
of the most engaged areas in such processes, much more
active in the control than in the patients’ group. Some
experiments involve the visual motion detection in the
decision-making process among macaques (Huk and
Shadlen, 2005) and this can be an inspiration for our
future research.

The research protocol has been proposed to record the
electroencephalographical cortical activity of the human
brain during the decision making process. We chose
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the IGT as one of the tasks that are most often used
to investigate people making decisions. The sLORETA
was then applied to find the most frequently active
BA in the brain cortex both in the patients and the
control group.

Some attempts to find biomarkers in the quantitative
EEG signals were made for example by John et al. (1988).
The frequency band analysis is often used in real-time
computing of the engagement index (Lubar et al., 1995;
Pope et al., 1995; Chaouachi et al., 2010). Moreover, some
cognitive functions in patients with psychiatric disorders
are different from those in healthy members of control
groups (Trivedi, 2006).

Even though the cohorts were not large we could prove
some findings reported after performing such experiments
by means of much more sophisticated techniques including
fMRI. We had 30 subjects with several different diagnoses.
That is why it is hard to apply any more sophisticated
statistical analysis. Collecting neurophysiological data is a
real challenge for neuroinformatics (Bigdely-Shamlo et al.,
2016; Cavanagh et al., 2017). In future it would require
building separate cohorts for each particular disorder, for
all genders and age ranges. Then it would be possible
to make quantitative comparisons of cortical activity
which hopefully could even lead to building psychiatric
disorders classifiers.

The additional aim of this paper was to check whether it is
possible to assess without looking into logs the subject’s response
in the IGT experiments using only the brain cortical electric
activity as the input to the algorithm. The effectiveness of seven
different tools from the Azure Machine Learning environment
was investigated. The summary of the results is presented
in Table 9.

It was shown that there is no universal classifier for
each frequency band. However, for the future analysis
the Logistic Regression in the α, β , and θ bands should
be considered as well as the Support Vector Machine
in the β , γ , and δ. Very interesting behavior can be
observed for the Averaged Perceptron Classifier in the δ

band which together with the Support Vector Machine
has one the best recall and precision characteristics in the
discussed research.

It is expected that for the larger dataset the efficiency would
be much higher. This is the initial stage of our research but
one can take it for granted that tuning-up the parameters
would also improve the method performance. Now it is hard to
predict which methods would be best for additional improving
such classifiers. Probably the applications of sophisticated
tools offered by applied mathematics (Kakiashvili et al.,
2012; Koczkodaj and Szybowski, 2015) or even solutions
found for engineering applications in computer science
(Bolanowski and Paszkiewicz, 2015; Grabowski et al.,
2015) along with big data analysis in such case could add
some value.

At this stage, we had access to a limited number of patients.
In our methodology, we decided to choose only those who

had not taken any psychotropic medicines before. The aim
of the research presented in this paper was to show the
way in which the biomarkers can be searched. Putting the
representatives of several disorders into one group by some
readers can be recognized as controversial. On the other hand,
we did not intend to give the final answer and to satisfy the
definition of a biomarker in the full range of its properties.
This would require at least 30 cases for each disorder and
if one takes into consideration males and females, different
age ranges, handedness—we get the number of about 400
patients for one problem, not saying about the control group.
Consideration only the one disorder based on several patients
does not make much sense as it would be hard to do the
serious statistical analysis. But our results show that there
can be quantitative methods to start the hunt for psychiatric
disorders biomarkers.

Remembering that the interview is still the most important
tool used in current psychiatry we are aware of the fact
that developing tools and methods able to support the
psychiatrist in the process of diagnosing are in a great
demand and would improve the comfort of patients’ life in
the future.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Guidelines for Good Clinical Practice
(GCP). The protocol was approved by the Medical University
of Lublin Bioethical Commission. All subjects gave written
informed consent in accordance with the GCP. Permission No.
KE-0254/138/2015 and No. KE-0254/140/2015 given by the
Medical University of Lublin Bioethical Commission on May
28th, 2015.

AUTHOR CONTRIBUTIONS

GW: project idea and coordination, experiment design,
subjects’ recruitment, interpretation of results. JM: project idea,
experiment design, subjects’ recruitment, psychiatric diagnosis,
interpretation of results. AK: work in laboratory, cleaning signal,
computations, statistical analysis. PS, FP, and LK: statistical
analysis, writing scripts, work in laboratory, cleaning signal.
AG-B: work in laboratory.

ACKNOWLEDGMENTS

Special thanks to Mr. Slawomir Kotyra, M.Sc. from the Institute
of Computer Science, Maria Curie-Sklodowska University in
Lublin for solving the problem of electromagnetic noise in
our laboratory.

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2019 | Volume 13 | Article 73227228

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wojcik et al. Analysis of Decision Making

REFERENCES

Barbey, A. K., Koenigs, M., and Grafman, J. (2013). Dorsolateral prefrontal

contributions to human working memory. Cortex 49, 1195–1205.

doi: 10.1016/j.cortex.2012.05.022

Bechara, A. (2007). Iowa Gambling Task. Lutz, FL: Psychological Assessment

Resources.

Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W. (1994).

Insensitivity to future consequences following damage to human prefrontal

cortex. Cognition 50, 7–15.

Bechara, A., Damasio, H., and Damasio, A. R. (2000). Emotion, decision

making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307.

doi: 10.1093/cercor/10.3.295

Bechara, A., Damasio, H., and Damasio, A. R. (2003). Role of the

amygdala in decision-making. Ann. N. Y. Acad. Sci. 985, 356–369.

doi: 10.1111/j.1749-6632.2003.tb07094.x

Bechara, A., Damasio, H., Damasio, A. R., and Lee, G. P. (1999). Different

contributions of the human amygdala and ventromedial prefrontal cortex to

decision-making. J. Neurosci. 19, 5473–5481.

Bigdely-Shamlo, N., Makeig, S., and Robbins, K. A. (2016). Preparing laboratory

and real-world EEG data for large-scale analysis: a containerized approach.

Front. Neuroinform. 10:7. doi: 10.3389/fninf.2016.00007

Bolanowski, M., and Paszkiewicz, A. (2015). “The use of statistical signatures

to detect anomalies in computer network,” in L. Gołȩbiowski and M. Mazur
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Heterogeneous mental disorders such as Autism Spectrum Disorder (ASD) are

notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic

process is based purely on the behavioral observation of symptomology (DSM-5/ICD-10)

and may be prone to misdiagnosis. In order to move the field toward more quantitative

diagnosis, we need advanced and scalable machine learning infrastructure that will allow

us to identify reliable biomarkers of mental health disorders. In this paper, we propose a

framework called ASD-DiagNet for classifying subjects with ASD from healthy subjects

by using only fMRI data. We designed and implemented a joint learning procedure using

an autoencoder and a single layer perceptron (SLP) which results in improved quality of

extracted features and optimized parameters for the model. Further, we designed and

implemented a data augmentation strategy, based on linear interpolation on available

feature vectors, that allows us to produce synthetic datasets needed for training of

machine learning models. The proposed approach is evaluated on a public dataset

provided by Autism Brain Imaging Data Exchange including 1, 035 subjects coming from

17 different brain imaging centers. Our machine learning model outperforms other state

of the art methods from 10 imaging centers with increase in classification accuracy up

to 28% with maximum accuracy of 82%. The machine learning technique presented in

this paper, in addition to yielding better quality, gives enormous advantages in terms of

execution time (40 min vs. 7 h on other methods). The implemented code is available as

GPL license on GitHub portal of our lab (https://github.com/pcdslab/ASD-DiagNet).

Keywords: fMRI, ASD, SLP, autoencoder, ABIDE, classification, data augmentation

1. INTRODUCTION

Mental disorders such as Autism Spectrum Disorder (ASD) are heterogeneous disorders that
are notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic
process is based purely on behavioral observation of symptomology (DSM-5/ICD-10) and may
be prone to misdiagnosis (Nickel and Huang-Storms, 2017). There is no quantitative test that can
be prescribed to patients that may lead to definite diagnosis of a person. Such quantitative and
definitive tests are a regular practice for other diseases such as diabetes, HIV, and hepatitis-C.
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It is widely known that defining and diagnosing mental
health disorders is a difficult process due to overlapping
nature of symptoms, and lack of a biological test that can
serve as a definite and quantified gold standard (National
Collaborating Centre for Mental Health (UK), 2018). ASD is
a lifelong neuro-developmental brain disorder which causes
social impairments like repetitive behavior and communication
problems in children. More than 1% of children suffer from this
disorder and detecting it at early ages can be beneficial. Studies
show that some demographic attributes like gender and race
vary among ASD and healthy individuals such that males are
four times more prone to ASD than females (Baio et al., 2018).
Diagnosing ASD has been explored from different aspects, like
monitoring behavior, extracting discriminatory patterns from
the demographic information and analyzing the brain data.
Behavioral data such as eye movement and facial expression are
studied in Liu et al. (2016), Jaiswal et al. (2017), Zunino et al.
(2018). For instance, Zunino et al. classified ASD from healthy
subjects by applying recurrent neural network to the video clips
recorded from them (Zunino et al., 2018).

Quantitative analysis of brain imaging data can provide
valuable biomarkers that result in more accurate diagnosis of
brain diseases. Machine learning techniques using brain imaging
data [e.g., Magnetic Resonance Imaging (MRI) and functional
Magnetic Resonance Imaging (fMRI)] have been extensively used
by researchers for diagnosing brain disorders like Alzheimer’s,
ADHD, MCI, and Autism (Colby et al., 2012; Peng et al., 2013;
Yang et al., 2014; Deshpande et al., 2015; Hosseini-Asl et al., 2016;
Khazaee et al., 2017; Eslami and Saeed, 2018b, 2019).

In this paper, we focus on classifying subjects suffering
from ASD from healthy control subjects using fMRI data. We
propose a method called ASD-DiagNet which consists of an
autoencoder and a SLP. These networks are used for extracting
lower dimensional features in a hybrid manner and the trained
perceptron is used for the final round of classification. In order
to enlarge the size of the training set, we designed a data
augmentation technique which generates new data in feature
space by using available data in the training set.

Detecting ASD using fMRI data has recently gained a lot
of attention, thanks to Autism Brain Imaging Data Exchange
(ABIDE) initiative for providing functional and structural brain
imaging datasets collected from several brain imaging centers
around the world (Craddock et al., 2013). Many studies and
methods have been developed based on ABIDE data (Iidaka,
2015; Chen et al., 2016; Abraham et al., 2017; Heinsfeld et al.,
2018; Itani and Thanou, 2019). Some studies included a subset
of this dataset based on specific demographic information to
analyze their proposed method. For example, Iidaka (2015)
used probabilistic neural network for classifying resting state
fMRI (rs-fMRI) data of subjects under 20 years old. In another
work, Plitt et al. (2015) used two sets of rs-fMRI data, one
containing 118 male individuals (59 ASD; 59 TD) and the other
containing 178 age and IQ matched individuals (89 ASD; 89
TD) from ABIDE dataset and achieved 76.67% accuracy. Besides
using fMRI data, some studies also included structural and
demographic information of subjects for diagnosing ASD. For
example, Parisot et al. (2018) proposed a framework based on

Graph Convolutional Networks that achieved 70.4% accuracy. In
their work, they represented the population as a graph in which
nodes are defined based on imaging features and phenotypic
information describe the edge weights. In another study, Sen
et al. (2018) proposed a new algorithmwhich combines structural
and functional features from MRI and fMRI data and got 64.3%
accuracy by using 1111 total healthy and ASD subjects. Nielsen
et al. (2013) obtained 60% accuracy on a group of 964 healthy
and ASD subjects using the functional connectivity between
7266 regions and demographic information like age, gender,
and handedness attributes. In another study, Parikh et al.
(2019) tested the performance of different machine learning
methods on demographic information provided by ABIDE
dataset including age, gender, handedness, and three individual
measures of IQ.

Machine learning techniques such as Support Vector
Machines (SVM) and random forests are explored in multiple
studies (Abraham et al., 2017; Subbaraju et al., 2017; Bi
et al., 2018b; Fredo et al., 2018). For instance, Chen et al.
(2016) investigated the effect of different frequency bands for
constructing brain functional network, and obtained 79.17%
accuracy using SVM technique applied to 112 ASD and 128
healthy control subjects.

Recently, using neural networks and deep learning methods
such as autoencoders, Deep Neural Network (DNN), Long
Short Term Memory (LSTM), and Convolutional Neural
Network (CNN) have also become very popular for diagnosing
ASD (Dvornek et al., 2017; Guo et al., 2017; Bi et al., 2018a;
Brown et al., 2018; Khosla et al., 2018; Li et al., 2018). Brown
et al. (2018) obtained 68.7% classification accuracy on 1, 013
subjects composed of 539 healthy control and 474 with ASD, by
proposing an element-wise layer for DNNs which incorporated
the data-driven structural priors.

Most recently, Heinsfeld et al. (2018) used a deep learning
based approach and achieved 70% accuracy for classifying
1, 035 subjects (505 ASD and 530 controls). They claimed this
approach improved the state of the art technique. In their
technique, distinct pairwise Pearson’s correlation coefficients
were considered as features. Two stacked denoising autoencoders
were first pre-trained in order to extract lower dimensional data.
After training autoencoders, their weights were applied to a
multi-layer perceptron classifier (fine-tuning process) which was
used for the final classification. However, they also performed
classification for each of the 17 sites included in ABIDE dataset
separately, and the average accuracy is reported as 52%. The low
performance on individual sites was justified to be due to the lack
of enough training samples for intra-site training.

Generally, most related studies for ASD diagnosis using
machine learning techniques have only considered a subset of
ABIDE dataset, or they have incorporated other information
besides fMRI data in their model. There are few studies such
as Heinsfeld et al. (2018), which only used fMRI data without
any assumption on demographic information and analyzed
all the 1, 035 subjects in ABIDE dataset. To the best of our
knowledge (Heinsfeld et al., 2018) is currently state of the art
technique for ASD diagnosis on whole ABIDE dataset, which we
use as the baseline for evaluating our proposed method.
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Although employing other types of information like
anatomical features and demographic attributes of subjects could
provide more knowledge to the model and may increase its
accuracy, the goal of our study is to merely design a quantitative
model for ASD diagnosis based on the functional data of the
brain. This model can be used in conjunction with other tools
assisting clinicians to diagnose ASD with more precision.
Another aspect that we targeted in this study is the running
time of the model. Unfortunately, the running time required
for training the model or analyzing the data is not discussed
in most of research papers mentioned above. Achieving high
diagnosis accuracy in a shorter amount of time would be more
desirable in clinical studies. Deep learning models are time
consuming techniques due to the huge number of parameters
that should be optimized. Although utilizing GPUs has reduced
the running time needed for training the models tremendously,
it still depends on the architecture of the model and size of the
data. We considered the running time of the model as a factor
while designing the architecture of our model. Using our hybrid
learning strategy the model needs fewer number of iterations for
training, which reduces the running time of the model. We also
decreased the number of features by keeping anti-correlated and
highly correlated functional connections and removing the rest,
which reduces the size of the network significantly.

The structure of this paper is as follows: First, in section 2
we provide a brief introduction to fMRI data, the dataset we
used in this study and explain ASD-DiagNet method in detail.
In section 3, we describe the experiment setting and discuss the
results of ASD-DiagNet. Finally, in section 4, we conclude the
paper and discuss the future direction.

2. MATERIALS AND METHODS

2.1. Functional Magnetic Resonance
Imaging and ABIDE Dataset
Functional Magnetic Resonance Imaging (fMRI) is a brain
imaging technique that is used for studying brain activities
(Lindquist et al., 2008; Eslami and Saeed, 2018a). In fMRI data,
the brain volume is represented by a group of small cubic
elements called voxels. A time series is extracted from each voxel
by keeping track of its activity over time. Scanning the brain
using fMRI technology while the subject is resting is called resting
state fMRI (rs-fMRI), which is widely used for analyzing brain
disorders. In this study, we used preprocessed ABIDE-I dataset
that is provided by the ABIDE initiative. This dataset consists of
1112 rs-fMRI data including ASD and healthy subjects collected

from 17 different sites. We used fMRI data of the same group
of subjects which was used in Heinsfeld et al. (2018). This set
consists of 505 subjects with ASD and 530 healthy control from
all the 17 sites. Table 1 shows the class membership information
for each site. ABIDE-I provided the average time series extracted
from seven sets of regions of interest (ROIs) based on seven
different atlases which are preprocessed using four different
pipelines. The data used in our experiments is preprocessed using
C-PAC pipeline (Craddock et al., 2013) and is parcellated into
200 functionally homogeneous regions generated using spatially
constrained spectral clustering algorithm (Craddock et al., 2012)
(CC-200). The preprocessing steps include slice time correction,
motion correction, nuisance signal removal, low frequency drifts,
and voxel intensity normalization. It is worth mentioning that
each site used different parameters and protocols for scanning
the data. Parameters like repetition time (TR), echo time (TE),
number of voxels, number of volumes, openness or closeness of
the eyes while scanning are different among sites.

2.2. ASD-DiagNet: Feature Extraction and
Classification
Functional connectivity between brain regions is an important
concept in fMRI analysis and is shown to contain discriminatory
patterns for fMRI classification. Among correlation measures,
Pearson’s correlation is mostly used for approximating the
functional connectivity in fMRI data (Liang et al., 2012; Baggio
et al., 2014; Zhang et al., 2017). It shows the linear relationship
between the time series of two different regions. Given two times
series, u and v, each of length T, the Pearson’s correlation can be
computed using the following equation:

ρuv =

∑T
t=1(ut − ū)(vt − v̄)

√

∑T
t=1(ut − ū)2

√

∑T
t=1(vt − v̄)2

(1)

where ū and v̄ are the mean of times series u and v, respectively.
Computing all pairwise correlations results in a correlation
matrix Cm×m where m is the number of time series (or regions).
Due to the symmetric property of Pearson’s correlation, we only
considered the strictly upper triangle part of the correlation
matrix. Since we used CC-200 atlas in which the brain is
parcellated into m = 200 regions, there are m × (m − 1)/2 =
19, 900 distinct pairwise Pearson’s correlations. In this regard,
we selected half of the correlations comprising 1/4 largest and
1/4 smallest values and eliminated the rest. To do so, we
first compute the average of correlations among all subjects in

TABLE 1 | Class membership information of ABIDE-I dataset for each individual site.

Site Caltech CMU KKI Leuven MaxMun NYU OHSU OLIN PITT SBL SDSU Stanford Trinity UCLA UM USM Yale

ASD 19 14 20 29 24 75 12 19 29 15 14 19 22 54 66 46 28

Healthy control 18 13 28 34 28 100 14 15 27 15 22 20 25 44 74 25 28

Male count 29 21 36 55 48 139 26 29 48 30 29 31 47 86 113 71 40

Female count 8 6 12 8 4 36 0 5 8 0 7 8 0 12 27 0 16

Average age 27 26 10 18 25 15 10 16 18 34 14 9 16 13 14 22 12
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training set and then pick the indices of the largest positive
and negative values from averaged correlation array. We then
pick the correlations at those indices from each sample as our
feature vector. Keeping half of the correlations and eliminating
the rest reduces the size of input features by a factor of 2. There
is no limitation of the number of high- and anti-correlations
that should be kept. Removing more features results in higher
computational efficiency as well as reducing the chance of
overfitting, however removing too many features can also cause
losing important patterns.

In order to further reduce the size of features, we
used an autoencoder to extract a lower dimensional feature
representation. An autoencoder is a type of feed-forward neural
network model, which first encodes its input x to a lower
dimensional representation,

henc = φenc(x) = τ
(

Wencx+ benc
)

(2)

where τ is the hyperbolic tangent activation function (Tanh), and
Wenc and benc represent the weight matrix and the bias for the
encoder. Then, the decoder reconstructs the original input data

x′ = φdec(henc) =Wdechenc + bdec (3)

where Wdec and bdec are the weight matrix and bias for the
decoder. In this work, we have designed an autoencoder with
tied weights, which means Wdec = W⊤enc. An autoencoder can
be trained to minimize its reconstruction error, computed as the
Mean Squared Error (MSE) between x and its reconstruction,
x′. The choice of using autoencoder instead of other feature
extraction techniques like PCA is its ability to reduce the
dimensionality of features in a non-linear way. The structure of
an autoencoder is shown in Figure 1.

The lower dimensional data generated during the encoding
process contains useful patterns from the original input data with
smaller size, and can be used as new features for classification.
For the classification task, we used a single layer perceptron (SLP)

which uses the bottleneck layer of the autoencoder, henc, as input,
and computes the probability of a sample belonging to the ASD
patient class using a sigmoid activation function, σ ,

f (x) = σ
(

Wslphenc + bslp
)

= σ
(

Wslpτ (Wencx+ benc)+ bslp
) (4)

where Wslp and bslp are the weight matrix and the bias for the
SLP network. The SLP network can be trained by minimizing the
Binary Cross Entropy loss,H, using the ground-truth class label,
y, and the estimated ASD probability for each sample, f (x):

H(y, f (x)) = −
(

y× f (x)+ (1− y)× (1− f (x))
)

(5)

Finally, the predicted class label is determined by thresholding
the estimated probability

ŷ =

{

1, if f (x) ≥ 0.5,

0, otherwise.
(6)

Typically, an autoencoder is fully trained such that its
reconstruction error is minimized, then, the features from
bottleneck layer, henc, are used as input for training the SLP
classifier, separately. In contrast, here, we train the autoencoder
and the SLP classifier simultaneously. This can potentially result
in obtaining low dimensional features that have two properties

1. Useful for reconstructing the original data,
2. Contain discriminatory information for the classification task.

This is accomplished by adding the two loss functions, i.e.,
MSE loss for reconstruction, and Binary Cross Entropy for the
classification task, and training both networks jointly. After the
joint training process is completed, we further fine-tune the SLP
network for a few additional epochs.

FIGURE 1 | Structure of an autoencoder consisting of an encoder that receives the input data and encodes it into a lower dimensional representation at the

bottleneck layer, and a decoder that reconstructs the original input from the bottleneck layer.
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2.3. Data Augmentation Using Linear
Interpolation
Machine learning and especially deep learning techniques can
be advantageous if they are provided with enough training data.
Insufficient data causes overfitting and non-generalizability of
the model (Raschka and Mirjalili, 2017). Large training sets are
not always available and collecting new data might be costly like
in medical imaging field. In these situations, data augmentation
techniques can be used for generating synthetic data using the
available training set (Karpathy et al., 2014; Eitel et al., 2015;
Wong et al., 2016; Xu et al., 2016; Perez and Wang, 2017). There
are a few data augmentation methods proposed for different
applications, such as random translation/rotation/cropping (for
image data), adding random noise to the features (for general
type of data), extracting overlapping windows from the original
time series (for time series data), as well as more sophisticated
methods such as Generative Adversarial Networks. However,
these methods are not either applicable to our data due to
the structure of our features, not interpretable, or they may be
computationally more intensive than our proposed method.

The data augmentation technique that we propose in
this study is inspired by Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla et al., 2002). SMOTE is an effective
model which is used for oversampling the data in minority
class of imbalanced datasets. SMOTE generates synthetic data
in feature space by using the nearest neighbors of a sample.
After k-nearest neighbors of sample p are found ({q1, q2, ..., qk}), a
random neighbor is selected (qr) and the synthetic feature vector
is computed using the following equation:

p′ = α × p+ (1− α)× qr (7)

In this equation, α is a random number selected uniformly in
the range [0, 1]. Finding the nearest neighbors of a sample is
based on a distance or similarity metric. In our work, the samples
have feature vectors of size 9, 950 (half of the correlations).
One idea for computing nearest neighbors is to use Euclidean
distance, however, computing the pairwise Euclidean distances
with 9, 950 features is not efficient. In order to compute the
similarity between samples and finding the nearest neighbors, we
used a measure called Extended Frobenius Norm (EROS). This
measure computes the similarity between two multivariate time
series (MTS) (Yang and Shahabi, 2004). fMRI data consists of
several regions each having a time series so we can consider it as a
multivariate time series. Our previous study on ADHD disorder
has shown that EROS is an effective similarity measure for fMRI
data and using it along with k-Nearest-Neighbor achieves high
classification accuracy (Eslami and Saeed, 2018b). This motivated
us to utilize it as part of the data augmentation process. EROS
computes the similarity between two MTS items A and B based
on eigenvalues and eigenvectors of their covariance matrices
using the following equation:

EROS(A,B,w) =
∑n

i=1 wi

∣

∣〈ai, bi〉
∣

∣

=
∑n

i=1 wi |cosθi|
(8)

where, θi is the cosine of the angle between ith corresponding
eigenvectors of covariance matrices of multivariate time series A

and B. Furthermore, w is the weight vector which is computed
based on eigenvalues of all MTS items using Algorithm 1.
This algorithm computes the weight vector w by normalizing
eigenvalues of each MTS item followed by applying an aggregate
function f (here, we used mean) to all eigenvalues over the
entire training dataset and finally normalizing them so that
∑n

i=1 wi = 1.

Algorithm 1: Computing weight vector for EROS (Yang and
Shahabi, 2004)

Input: An n×N matrix S, where n is the number of variables for
the dataset and N is the number of MTS items in the dataset.
Each column vector si in S represents all the eigenvalues for ith
MTS item in the dataset. sij is a value at column i and row j in S.
s∗i is ith row in S. si∗ is ith column

1: for i = 1 to N do

2: si ← si/
∑n

j=1 sij
3: end for

4: for i = 1 to n do

5: wi ← f (s∗i)
6: end for

7: for i = 1 to n do

8: wi ← wi/
∑n

j=1 wj

9: end for

Algorithm 2:Data augmentation using EROS similarity measure

Input: Training dataset of size N

1: for i = 1 to N do

2: Find 5 nearest neighbors to i using EROS
3: j← A random sample among nearest neighbors
4: r← Random number in the range [0, 1]
5: x∗i+N ← α × xi + (1− α)× xj
6: end for

The dimension of each sample’s covariance matrix is m ×
m, where m is the number of brain regions. The covariance
matrix of each subject is pre-computed in the beginning and
is re-used when the sample is selected as a candidate. In order
to further reduce the time needed for computing the pairwise
similarities, we considered using the first two eigenvectors of each
sample. Our experiments showed that this simplification does not
affect the results while reducing the running time significantly
compared to using all eigenvectors and eigenvalues.

Now, using EROS as the similarity measure, our data
augmentation process is shown in Algorithm 2. After finding
k = 5 nearest neighbors of each sample i in the training set, one
of them is randomly selected, a new sample is generated using
linear interpolation between the selected neighbor and sample i.
Choosing k = 5 was based on the original implementation of
SMOTE algorithm (Chawla et al., 2002). Our experiments did
not show a significant change in the results when using different
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FIGURE 2 | Generating new artificial data: Step (1) Selecting a sample (p). Step (2) Find k-nearest neighbors of p from the same class, and pick one random neighbor

(qr ). Step (3) Generate new sample p′ using p and qr by linear interpolation.

values of k. Using this approach, one synthetic sample is created
for each training point which results in doubling the size of the
training set. Figure 2 shows the data augmentation process and
Figure 3 shows the overall process of ASD-DiagNet method.

3. EXPERIMENTS AND RESULTS

For all the experiments reported in this section, we used a Linux
server running Ubuntu Operating System. The server contains
two Intel Xeon E5-2620 Processors at 2.40 GHz with a total 48
GBs of RAM. The system contains an NVIDIA Tesla K-40c GPU
with 2, 880 CUDA cores and 12 GBs of RAM. CUDA version 8
and PyTorch library were used for conducting the experiments.

We evaluated ASD-DiagNet model in two phases by
performing k-fold cross validation. In the first phase, the model
was evaluated using the whole 1, 035 subjects from all sites
and in the second phase, the model was evaluated for each
site separately. As stated earlier, data centers may have used
different experimental parameters for scanning fMRI images,
so considering all of them in the same pool determines how
our model generalizes to data with heterogeneous scanning
parameters. On the other hand, by considering each data center
separately, fewer subjects are available for training the model and
the results indicate how it performs on small datasets. In each of
these experiments, the effect of data augmentation is evaluated.

The value of k in k-fold cross validation must be chosen such
that train/test partitions are representative of the whole dataset.
Since the whole dataset contains a lot more samples than each
individual site, using a large value of k like 10 in k-fold cross
validation provides more samples in the training process. This
helps the model to capture more information from the data while
leaving enough test samples to measure the ability of the model
in classifying unseen data. On the other hand, we are dealing
with a small number of samples in some of the sites, for example,
CMU which only contains 27 samples. Hence performing k-fold
cross validation with large values of k like 10 results in only
2–3 samples in test set and increases the variance of cross-
validation estimation, so we chose k = 5 when analyzing each
site separately. Other studies such as Heinsfeld et al. (2018) used
the same values of k for performing k-fold cross validation.

We report accuracy, sensitivity, and specificity of different
methods for evaluating their classification performance.

Accuracy measures the proportion of correctly classified subjects
(actual ASD classified as ASD and actual healthy classified as
healthy). Sensitivity represents the proportion of actual ASD
subjects which are correctly classified as ASD and specificity
measures the proportion of actual healthy subjects which are
classified as healthy. We also compared the performance of each
model’s diagnostic test by their Receiver Operating Characteristic
(ROC) curves. The area under ROC curves (AUC) shows the
capability of the model for distinguishing between ASD and
healthy subjects based on different thresholds. The higher AUC
value indicates that the model is better in distinguishing between
ASD and healthy subjects. We compared the performance
of ASD-DiagNet with three other baselines: SVM, random
forest and the method proposed by Heinsfeld et al. (2018).
Hyperparameter tuning for SVM and random forest classifiers
are performed by grid search technique. Hyperparameters such
as kernel type, regularization constant (C), kernel coefficient
(γ ) for SVM, and the number of trees as well as the function
to measure the quality of a split for random forest are tuned
using grid search. SVM and random forest were trained using
19, 900 pairwise Pearson’s correlations for each subject. The
implementations of the grid search, SVM, and random forest are
carried out using the built-in functions provided by scikit-learn
library. In order to speed up the grid search, it is parallelized on
10 cores.

The following subsections explain each experiment in
more details.

3.1. Phase 1: Experiments Using the Whole
Dataset
In this phase, we performed 10-fold cross-validation on the whole
1, 035 subjects using CC-200 atlas. Table 2 compares accuracy,
sensitivity, and specificity of our approach with Heinsfeld et al.
(2018), random forest, and SVM. As the results show, ASD-
DiagNet achieves 70.3% which outperforms other methods.1

The proposed data augmentation helps to improve the results by
around 1%. Based on Figure 4, ASD-DiagNet (with and without

1We like to mention that Heinsfeld et al. (2018) reported 70% accuracy in their

paper, however, the accuracy we reported here is the result of running their

method on our system using their default parameters and the code they provided

online. The different results observed here could be due to some missing details in

the implementation.
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FIGURE 3 | Workflow of ASD-DiagNet: (A) Pairwise Pearson’s correlations for each subject in the training set is computed. The average of all correlation arrays is

computed and the position of 1/4 largest and 1/4 smallest values in the average array is considered as a mask. Masked correlation array of each sample is

considered as its feature vectors. (B) A set of artificial samples is generated using the feature vectors of training samples. (C) Autoencoder and SLP are jointly trained

by adding up their training loss in each iteration. (D) For a test subject, the features are extracted using the mask generated in part A, followed by passing the features

through the encoder part of the autoencoder, and finally predicting its label using the trained SLP.

TABLE 2 | Classification performance using 10-fold cross-validation on the whole

dataset; Note that our proposed approach, ASD-DiagNet (with data

augmentation) achieves the highest accuracy among other methods.

Method Accuracy Sensitivity Specificity

ASD-DiagNet 70.3 68.3 72.2

ASD-DiagNet (no aug.) 69.4 69.6 69.2

SVM 68.3 64.4 72

Random forest 66.3 60.8 71.4

Heinsfeld et al., 2018 65.4 61 69.3

Bold values show the highest accuracy among all methods.

data augmentation) achieved higher area under comparing to
other methods.

3.2. Phase 2: Intra-Site Evaluation
In this phase, we performed 5-fold cross-validation on each site
separately using CC-200 atlas. The accuracy of each method
is provided in Table 3. Based on these results, our method
achieves the highest accuracy in most cases (10 out of 17 sites)
and outperforms other methods on average. In addition, note
that the proposed data augmentation helps improving the result
around 3% overall. Especially, for OHSU, the data augmentation
improves the accuracy significantly (10% increase). However, in

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2019 | Volume 13 | Article 70236237

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. ASD Diagnosis Using ASD-DiagNet Method

a couple of datasets no improvement is observed (e.g., MaxMun).
These datasets have shown low prediction accuracy by other
methods as well. In these cases, the artificial data generated
by data augmentation does not improve the results since the
functional connectivity of the original data does not carry enough
discriminatory information that can be used by the classifiers.

3.3. Running Time
We measured the running time of performing 10-fold cross
validation by different approaches. The training and evaluation

FIGURE 4 | ROC curves of different methods for classification of whole

dataset using CC-200 parcellation.

TABLE 3 | Classification accuracy using 5-fold cross-validation on individual data

centers using our proposed method, ASD-DiagNet (with and without data

augmentation), compared with other methods.

Site ASD-

DiagNet

ASD-

DiagNet

(no

aug.)

Heinsfeld

et al., 2018

SVM Random-

Forest

Caltech 52.8 49.9 52.3 46.9 54.2

CMU 68.5 67.4 45.3 66.6 62.4

KKI 69.5 68.6 58.2 66.4 66.6

Leuven 61.3 57 51.8 59.8 59.8

MaxMun 48.6 51.4 54.3 53.8 49.2

NYU 68 65.1 64.5 71.4 61.8

OHSU 82 71.9 74 79.4 54.3

Olin 65.1 58.8 44 59.5 52.2

Pitt 67.8 65.9 59.8 66.3 59.9

SBL 51.6 47.5 46.6 60 48.3

SDSU 63 61.3 63.6 58.7 62.7

Stanford 64.2 53 48.5 51.4 62.1

Trinity 54.1 51.2 61 53.1 54.5

UCLA 73.2 70.3 57.7 72.1 69.3

USM 68.2 65.1 62 73.2 58

UM 63.8 65.7 57.6 64.2 64.8

Yale 63.6 61.7 53 61.6 55.3

Average 63.8 60.7 56.1 62.6 58.6

Bold and color values corresponds to highest accuracy achieved among all datasets.

for all methods are performed on the same Linux system
(described in section 3). The running time needed by each
method is as follows: 41 min by ASD-DiagNet, 20 min by ASD-
DiagNet (no aug.), 7 h and 48 min by SVM, 17 min by random
forest and 6 h byHeinsfeld et al. (2018). As can be observed, ASD-
DiagNet performs significantly faster than SVM and Heinsfeld
et al. (2018). The data augmentation doubles the size of the
training set by generating one artificial sample per subject in
the training set. As a result, the data augmentation increases the
computation time by a factor of 2.

3.4. Experiment on Other Parcellations
We tested ASD-DiagNet on two other ROI atlases besides CC-
200: Automated Anatomical Labeling (AAL) and Talaraich and
Tournoux (TT) which parcellate the brain into 116 and 97
regions respectively. The data for these parcellations is provided
by ABIDE-I consortium. Similar to CC-200 atlas, for each
parcellation, half of the correlations (keeping the 1/4 largest and
1/4 smallest values, and removing the rest intermediate values)
are selected as input features to the model. The resulting average
accuracy, sensitivity, and specificity of performing 10-fold cross-
validation on the whole dataset using different approaches for
AAL and TT are shown in Tables 4, 5.

For AAL parcellation, ASD-DiagNet and SVM outperform
other techniques with the classification accuracy of 67.5%
and achieve competitive result for TT atlas. Note that the
classification accuracy obtained using these parcellations are
below the accuracy obtained using CC-200 atlas, which implies
that the pairwise correlations among CC-200 regions contain
more discriminatory patterns than AAL and TT atlases. Based on
Figures 5, 6, SVM and ASD-DiagNet achieved higher AUC than
other methods.

TABLE 4 | Classification accuracy using 10-fold cross-validation on the whole

dataset based on AAL atlas.

Method Accuracy Sensitivity Specificity

ASD-DiagNet 67.5 63.4 71.5

ASD-DiagNet (no aug.) 64.5 60.9 68

SVM 67.5 63.9 70.9

Random forest 65 56.8 72.7

Heinsfeld et al., 2018 63.3 58.6 67.8

Bold values show the highest accuracy among all methods.

TABLE 5 | Classification accuracy using 10-fold cross-validation on the whole

dataset based on TT atlas.

Method Accuracy Sensitivity Specificity

ASD-DiagNet 65.3 63.4 66.9

ASD-DiagNet (no aug.) 65.2 61.1 69

SVM 66.4 61.6 71

Random forest 65.1 60.3 69.7

Heinsfeld et al., 2018 63.2 59.8 66.4

Bold values show the highest accuracy among all methods.

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2019 | Volume 13 | Article 70237238

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. ASD Diagnosis Using ASD-DiagNet Method

FIGURE 5 | ROC curves of different methods for classification of whole

dataset using AAL parcellation.

FIGURE 6 | ROC curves of different methods for classification of whole

dataset using TT parcellation.

3.5. Experiments on Young Age Group
Diagnosing ASD at early ages and starting medical treatment can
have a positive effect on the patient’s life. In this experiment,
we evaluated our proposed method as well as other baselines
on subjects below the age of 15 (550 subjects in ABIDE
dataset containing 448 males and 102 females) using CC-
200 atlas. Considering this subset of subjects, the classification
performance, as well as ROC curves of performing 10-fold
cross-validation of different methods are provided in Table 6

and Figure 7.
As can be observed from the results, ASD-DiagNet achieves

higher accuracy as well as higher AUC value compared to other
methods. The overall accuracy is around 2% below the accuracy
achieved for classification of the whole dataset, which we believe
is due to the smaller training set.

4. CONCLUSION AND FUTURE WORK

In this paper, we targeted the problem of classifying subjects
with ASD disorder from healthy subjects. We used fMRI data
provided by ABIDE consortium, which has been collected from

TABLE 6 | Classification accuracy using 10-fold cross-validation on the subjects

below the age of 15.

Method Accuracy Sensitivity Specificity

ASD-DiagNet 68.2 66.7 69.4

ASD-DiagNet (no aug.) 66.9 59.2 74.3

SVM 66.9 64.5 69.2

Random forest 64.3 57.4 70.8

Heinsfeld et al., 2018 65.2 62.1 68.3

FIGURE 7 | ROC curves of different methods for classification of subjects

below the age of 15 using CC-200 parcellation.

different brain imaging centers. Our approach, called ASD-
DiagNet, is based on using the most correlated and anti-
correlated connections of the brain as feature vectors and using
an autoencoder to extract lower dimensional patterns from them.
The autoencoder and a SLP are trained in a joint approach for
performing feature selection and classification.We also proposed
a data augmentation method in order to increase the number of
samples using the available training set. We tested this method
by performing 10-fold cross-validation on the whole dataset and
achieved 70.3% accuracy in 40 min. The running time of our
approach is significantly shorter than 6 h needed by the state of
the art method while achieving higher classification accuracy. In
another experiment, we evaluated our method by performing 5-
fold cross-validation on each data center, separately. The average
result shows significant improvement in accuracy compared to
the state of the art method. In this case, data augmentation helps
to improve the accuracy by around 3%. A different range of
accuracies can be observed among sites, from low accuracies in
sites such as Caltech andMaxMun to higher accuracies for OHSU
and UCLA. The variable accuracy among different sites can also
be observed in other studies (Nielsen et al., 2013; Heinsfeld et al.,
2018). It should be noted that the protocols and parameters used
for scanning the subjects are heterogeneous among sites, which
can cause variability in the functional patterns among different
subjects. Also, the difference in demographic information among
the datasets, such as age, IQ, and gender, makes the data
distribution different among them. These differences could be
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the reason for variable accuracies. We will consider this issue in
our future works by involving the demographic information of
the samples in data augmentation and the learning process. This
will help the classifier to learn associations between functional
connectivity patterns and demographic features which decreases
the disparity among accuracies of different sites. We will
also analyze other parcellations such as Power-264 by Power
et al. (2011). The functional network constructed using this
parcellation has shown promising results in diagnosing brain
disorders (Greene et al., 2016; Khazaee et al., 2016).

Overall, experiments on different parcellations as well as
subjects below the age of 15 show higher accuracy and AUC value
for ASD-DiagNet comparing to other methods. These results
demonstrate that our approach can be used for both intra-site
brain imaging data, which are usually small sets generated in
research centers, and bigger multi-site datasets like ABIDE in a
reasonable amount of time.

While our model has shown promising results for diagnosing
ASD disorder, there is still room for improvement by fusing
structural and phenotypic information of the subjects to the
functional patterns and creating hybrid features. Combination
of discriminatory information provided by these three sources
could increase the prediction accuracy of ASD. We consider
this feature fusion as one of the future directions of our study.
Another direction that we will pursue is improving the data
augmentation strategy. Overall, the proposed data augmentation
has improved the accuracy by generating synthetic data, but in a
couple of cases low or no improvement is observed. Optimizing
the current data augmentation method and considering the
structural and phenotypic data for generating new samples could

potentially improve the data augmentation process, and as a
result, may lead to increase the diagnosis accuracy.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the ABIDE-I
repository (Craddock et al., 2013).

AUTHOR CONTRIBUTIONS

TE, VM, and FS conceived the study. TE pursued the
implementation of the method, conducted the experiments and
generated the results. TE and FS wrote the manuscript. AL and
AF provided critical feedback and suggestions for performing the
experiments. FS, AF, and VM provided valuable suggestions in
writing the manuscript.

FUNDING

This research was supported by National Institute of
General Medical Sciences (NIGMS), NIH Award Number
R15GM120820, and National Science Foundations (NSF) under
Award Numbers NSF OAC 1925960. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of governmental agencies.

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print
at Eslami et al. (2019).

REFERENCES

Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Samaras, D.,

Thirion, B., et al. (2017). Deriving reproducible biomarkers from multi-

site resting-state data: An autism-based example. Neuroimage 147, 736–745.

doi: 10.1016/j.neuroimage.2016.10.045

Baggio, H.-C., Sala-Llonch, R., Segura, B., Marti, M.-J., Valldeoriola, F., Compta,

Y., et al. (2014). Functional brain networks and cognitive deficits in parkinson’s

disease. Human Brain Mapp. 35, 4620–4634. doi: 10.1002/hbm.22499

Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J.,

Warren, Z., et al. (2018). Prevalence of autism spectrum disorder among

children aged 8 years—autism and developmental disabilities monitoring

network, 11 sites, united states, 2014. MMWR Surveill. Summar. 67:1.

doi: 10.15585/mmwr.ss6706a1

Bi, X.-A., Liu, Y., Jiang, Q., Shu, Q., Sun, Q., and Dai, J. (2018a). The diagnosis of

autism spectrum disorder based on the random neural network cluster. Front.

Human Neurosci. 12:257. doi: 10.3389/fnhum.2018.00257

Bi, X.-A., Wang, Y., Shu, Q., Sun, Q., and Xu, Q. (2018b). Classification of autism

spectrum disorder using random support vector machine cluster. Front. Genet.

9:18. doi: 10.3389/fgene.2018.00018

Brown, C. J., Kawahara, J., and Hamarneh, G. (2018). “Connectome priors in

deep neural networks to predict autism,” in 2018 IEEE 15th International

Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC: IEEE), 110–

113. doi: 10.1109/ISBI.2018.8363534

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:

synthetic minority over-sampling technique. J. Artif. Intell. Research 16, 321–

357. doi: 10.1613/jair.953

Chen, H., Duan, X., Liu, F., Lu, F., Ma, X., Zhang, Y., et al. (2016). Multivariate

classification of autism spectrum disorder using frequency-specific resting-state

functional connectivity—a multi-center study. Prog. Neuro Psychopharmacol.

Biol. Psychiatry 64, 1–9. doi: 10.1016/j.pnpbp.2015.06.014

Colby, J. B., Rudie, J. D., Brown, J. A., Douglas, P. K., Cohen, M. S., and Shehzad, Z.

(2012). Insights into multimodal imaging classification of ADHD. Front. Syst.

Neurosci. 6:59. doi: 10.3389/fnsys.2012.00059

Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A.,

et al. (2013). The neuro bureau preprocessing initiative: open sharing

of preprocessed neuroimaging data and derivatives. Neuroinformatics.

doi: 10.3389/conf.fninf.2013.09.00041

Craddock, R. C., James, G. A., Holtzheimer, P. E. III, Hu, X. P., and Mayberg,

H. S. (2012). A whole brain fMRI atlas generated via spatially constrained

spectral clustering. Human Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.

21333

Deshpande, G., Wang, P., Rangaprakash, D., and Wilamowski, B. (2015).

Fully connected cascade artificial neural network architecture for

attention deficit hyperactivity disorder classification from functional

magnetic resonance imaging data. IEEE Trans. Cybernet. 45, 2668–2679.

doi: 10.1109/TCYB.2014.2379621

Dvornek, N. C., Ventola, P., Pelphrey, K. A., and Duncan, J. S. (2017). “Identifying

autism from resting-state fMRI using long short-term memory networks,” in

InternationalWorkshop onMachine Learning inMedical Imaging (Quebec, QC:

Springer), 362–370. doi: 10.1007/978-3-319-67389-9_42

Eitel, A., Springenberg, J. T., Spinello, L., Riedmiller, M., and Burgard, W.

(2015). “Multimodal deep learning for robust RGB-D object recognition,”

in 2015 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Hamburg: IEEE), 681–687. doi: 10.1109/IROS.2015.73

53446

Eslami, T., Mirjalili, V., Fong, A., Laird, A., and Saeed, F. (2019). ASD-diagnet: a

hybrid learning approach for detection of autism spectrum disorder using fMRI

data. arXiv [preprint]. arXiv:1904.07577.

Eslami, T., and Saeed, F. (2018a). Fast-GPU-PCC: a GPU-based technique to

compute pairwise pearson’s correlation coefficients for time series data–fMRI

study. High Throughput 7:11. doi: 10.3390/ht7020011

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2019 | Volume 13 | Article 70239240

http://preprocessed-connectomes-project.org/abide/
https://doi.org/10.1016/j.neuroimage.2016.10.045
https://doi.org/10.1002/hbm.22499
https://doi.org/10.15585/mmwr.ss6706a1
https://doi.org/10.3389/fnhum.2018.00257
https://doi.org/10.3389/fgene.2018.00018
https://doi.org/10.1109/ISBI.2018.8363534
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.pnpbp.2015.06.014
https://doi.org/10.3389/fnsys.2012.00059
https://doi.org/10.3389/conf.fninf.2013.09.00041
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1109/TCYB.2014.2379621
https://doi.org/10.1007/978-3-319-67389-9_42
https://doi.org/10.1109/IROS.2015.7353446
https://doi.org/10.3390/ht7020011
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. ASD Diagnosis Using ASD-DiagNet Method

Eslami, T., and Saeed, F. (2018b). “Similarity based classification of ADHD

using singular value decomposition,” in Proceedings of the ACM International

Conference on Computing Frontiers 2018 (ACM), 19–25.

Eslami, T., and Saeed, F. (2019). “Auto-ASD-network: a technique based on

deep learning and support vector machines for diagnosing autism spectrum

disorder using fMRI data,” in Proceedings of ACMConference on Bioinformatics,

Computational Biology, and Health Informatics (Niagara Falls, NY: ACM).

Fredo, A. J., Jahedi, A., Reiter, M., and Müller, R.-A. (2018). Diagnostic

classification of autism using resting-state fMRI data and conditional random

forest. Age 12, 6–41.

Greene, D. J., Church, J. A., Dosenbach, N. U., Nielsen, A. N., Adeyemo,

B., Nardos, B., et al. (2016). Multivariate pattern classification of pediatric

tourette syndrome using functional connectivity MRI. Dev. Sci. 19, 581–598.

doi: 10.1111/desc.12407

Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., and Lu, L. J. (2017).

Diagnosing autism spectrum disorder from brain resting-state functional

connectivity patterns using a deep neural network with a novel feature selection

method. Front. Neurosci. 11:460. doi: 10.3389/fnins.2017.00460

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F.

(2018). Identification of autism spectrum disorder using deep learning and the

abide dataset. Neuroimage Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Hosseini-Asl, E., Gimel’farb, G., and El-Baz, A. (2016). Alzheimer’s disease

diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv

[preprint]. arXiv:1607.00556.

Iidaka, T. (2015). Resting state functional magnetic resonance imaging

and neural network classified autism and control. Cortex 63, 55–67.

doi: 10.1016/j.cortex.2014.08.011

Itani, S., and Thanou, D. (2019). Combining anatomical and functional networks

for neuropathology identification: a case study on autism spectrum disorder.

arXiv [preprint]. arXiv:1904.11296.

Jaiswal, S., Valstar, M. F., Gillott, A., and Daley, D. (2017). “Automatic detection of

ADHD and ASD from expressive behaviour in RGBD data,” in 2017 12th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2017)

(Washington, DC: IEEE), 762–769.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L.

(2014). “Large-scale video classification with convolutional neural networks,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(Columbus, OH), 1725–1732.

Khazaee, A., Ebrahimzadeh, A., and Babajani-Feremi, A. (2016). Application

of advanced machine learning methods on resting-state fMRI network

for identification of mild cognitive impairment and alzheimer’s

disease. Brain Imaging Behav. 10, 799–817. doi: 10.1007/s11682-015-

9448-7

Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A., Initiative, A. D. N., et al.

(2017). Classification of patients with MCI and AD from healthy controls using

directed graph measures of resting-state fMRI. Behav. Brain Res. 322, 339–350.

doi: 10.1016/j.bbr.2016.06.043

Khosla, M., Jamison, K., Kuceyeski, A., and Sabuncu, M. (2018). “3D convolutional

neural networks for classification of functional connectomes,” in Deep

Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support (Granada: Springer), 137–145. doi: 10.1007/978-3-030-

00889-5_16

Li, H., Parikh, N. A., and He, L. (2018). A novel transfer learning approach to

enhance deep neural network classification of brain functional connectomes.

Front. Neurosci. 12:491. doi: 10.3389/fnins.2018.00491

Liang, X., Wang, J., Yan, C., Shu, N., Xu, K., Gong, G., and He, Y. (2012). Effects

of different correlation metrics and preprocessing factors on small-world brain

functional networks: a resting-state functional MRI study. PLoS ONE 7:e32766.

doi: 10.1371/journal.pone.0032766

Lindquist, M. A. (2008). The statistical analysis of fMRI data. Stat. Sci. 23, 439–464.

doi: 10.1214/09-STS282

Liu, W., Li, M., and Yi, L. (2016). Identifying children with autism spectrum

disorder based on their face processing abnormality: a machine learning

framework. Autism Res. 9, 888–898. doi: 10.1002/aur.1615

National Collaborating Centre for Mental Health (UK) (2018). Attention Deficit

Hyperactivity Disorder: Diagnosis and Management of ADHD in Children,

Young People and Adults. Leicester: British Psychological Society.

Nickel, R. E., and Huang-Storms, L. (2017). Early identification of young

children with autism spectrum disorder. Indian J. Pediatr. 84, 53–60.

doi: 10.1007/s12098-015-1894-0

Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange,

N., Bigler, E. D., et al. (2013). Multisite functional connectivity MRI

classification of autism: Abide results. Front. Human Neurosci. 7:599.

doi: 10.3389/fnhum.2013.00599

Parikh, M. N., Li, H., and He, L. (2019). Enhancing diagnosis of autism with

optimized machine learning models and personal characteristic data. Front.

Comput. Neurosci. 13:9. doi: 10.3389/fncom.2019.00009

Parisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., and

Rueckert, D. (2018). Disease prediction using graph convolutional networks:

application to autism spectrum disorder and Alzheimer’s disease. Med. Image

Anal. 48, 117–130. doi: 10.1016/j.media.2018.06.001

Peng, X., Lin, P., Zhang, T., and Wang, J. (2013). Extreme learning machine-based

classification of ADHD using brain structural MRI data. PLoS ONE 8:e79476.

doi: 10.1371/journal.pone.0079476

Perez, L., and Wang, J. (2017). The effectiveness of data augmentation in image

classification using deep learning. arXiv [preprint]. arXiv:1712.04621.

Plitt, M., Barnes, K. A., and Martin, A. (2015). Functional connectivity

classification of autism identifies highly predictive brain features but

falls short of biomarker standards. Neuroimage Clin. 7, 359–366.

doi: 10.1016/j.nicl.2014.12.013

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,

et al. (2011). Functional network organization of the human brain. Neuron 72,

665–678. doi: 10.1016/j.neuron.2011.09.006

Raschka, S., andMirjalili, V. (2017). PythonMachine Learning. Birmingham: Packt

Publishing Ltd.

Sen, B., Borle, N. C., Greiner, R., and Brown, M. R. (2018). A general prediction

model for the detection of ADHD and autism using structural and functional

MRI. PLoS ONE 13:e0194856. doi: 10.1371/journal.pone.0194856

Subbaraju, V., Suresh, M. B., Sundaram, S., and Narasimhan, S. (2017).

Identifying differences in brain activities and an accurate detection of

autism spectrum disorder using resting state functional-magnetic resonance

imaging: a spatial filtering approach. Med. Image Anal. 35, 375–389.

doi: 10.1016/j.media.2016.08.003

Wong, S. C., Gatt, A., Stamatescu, V., and McDonnell, M. D. (2016).

“Understanding data augmentation for classification: when to warp?”

in 2016 International Conference on Digital Image Computing:

Techniques and Applications (DICTA) (Gold Coast, QLD: IEEE), 1–6.

doi: 10.1109/DICTA.2016.7797091

Xu, Y., Jia, R., Mou, L., Li, G., Chen, Y., Lu, Y., et al. (2016). “Improved relation

classification by deep recurrent neural networks with data augmentation,”

in Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers (Osaka: The COLING 2016

Organizing Committee), 1461–1470.

Yang, K., and Shahabi, C. (2004). “A PCA-based similarity measure formultivariate

time series,” in Proceedings of the 2nd ACM International Workshop on

Multimedia Databases (Washington, DC: ACM), 65–74.

Yang, Z., Zhong, S., Carass, A., Ying, S. H., and Prince, J. L. (2014). “Deep

learning for cerebellar ataxia classification and functional score regression,” in

International Workshop on Machine Learning in Medical Imaging (Springer),

68–76.

Zhang, Y., Zhang, H., Chen, X., Lee, S.-W., and Shen, D. (2017). Hybrid

high-order functional connectivity networks using resting-state functional

MRI for mild cognitive impairment diagnosis. Sci. Rep. 7:6530.

doi: 10.1038/s41598-017-06509-0

Zunino, A., Morerio, P., Cavallo, A., Ansuini, C., Podda, J., Battaglia, F., et al.

(2018). “Video gesture analysis for autism spectrum disorder detection,” in 2018

24th International Conference on Pattern Recognition (ICPR) (Beijing: IEEE),

3421–3426.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Eslami, Mirjalili, Fong, Laird and Saeed. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2019 | Volume 13 | Article 70240241

https://doi.org/10.1111/desc.12407
https://doi.org/10.3389/fnins.2017.00460
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1016/j.cortex.2014.08.011
https://doi.org/10.1007/s11682-015-9448-7
https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1007/978-3-030-00889-5_16
https://doi.org/10.3389/fnins.2018.00491
https://doi.org/10.1371/journal.pone.0032766
https://doi.org/10.1214/09-STS282
https://doi.org/10.1002/aur.1615
https://doi.org/10.1007/s12098-015-1894-0
https://doi.org/10.3389/fnhum.2013.00599
https://doi.org/10.3389/fncom.2019.00009
https://doi.org/10.1016/j.media.2018.06.001
https://doi.org/10.1371/journal.pone.0079476
https://doi.org/10.1016/j.nicl.2014.12.013
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1371/journal.pone.0194856
https://doi.org/10.1016/j.media.2016.08.003
https://doi.org/10.1109/DICTA.2016.7797091
https://doi.org/10.1038/s41598-017-06509-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


ORIGINAL RESEARCH
published: 04 February 2020

doi: 10.3389/fninf.2020.00003

Edited by:

Ludovico Minati,
Tokyo Institute of Technology, Japan

Reviewed by:
Harumasa Takano,

National Center of Neurology and
Psychiatry, Japan

Frithjof Kruggel,
University of California, Irvine,

United States

*Correspondence:
Tomi Karjalainen

tomi.karjalainen@utu.fi

Received: 18 November 2019
Accepted: 15 January 2020
Published: 04 February 2020

Citation:
Karjalainen T, Tuisku J, Santavirta S,

Kantonen T, Bucci M, Tuominen L,
Hirvonen J, Hietala J, Rinne JO and

Nummenmaa L (2020) Magia:
Robust Automated Image Processing
and Kinetic Modeling Toolbox for PET

Neuroinformatics.
Front. Neuroinform. 14:3.

doi: 10.3389/fninf.2020.00003

Magia: Robust Automated Image
Processing and Kinetic Modeling
Toolbox for PET Neuroinformatics
Tomi Karjalainen 1*, Jouni Tuisku 1, Severi Santavirta 1, Tatu Kantonen 1, Marco Bucci 1,
Lauri Tuominen 2, Jussi Hirvonen 1,3, Jarmo Hietala 1,4, Juha O. Rinne 1,5

and Lauri Nummenmaa 1,6

1Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland, 2The Royal’s Institute of Mental Health
Research, University of Ottawa, Ottawa, ON, Canada, 3Department of Radiology, University of Turku, Turku, Finland,
4Department of Psychiatry, Faculty of Medicine, University of Turku and Turku University Hospital, Turku, Finland, 5Division
of Clinical Neurosciences, Turku University Hospital, Turku, Finland, 6Department of Psychology, University of Turku,
Turku, Finland

Processing of positron emission tomography (PET) data typically involves manual work,
causing inter-operator variance. Here we introduce the Magia toolbox that enables
processing of brain PET data with minimal user intervention. We investigated the
accuracy of Magia with four tracers: [11C]carfentanil, [11C]raclopride, [11C]MADAM, and
[11C]PiB. We used data from 30 control subjects for each tracer. Five operators manually
delineated reference regions for each subject. The data were processed using Magia
using the manually and automatically generated reference regions. We first assessed
inter-operator variance resulting from the manual delineation of reference regions. We
then compared the differences between the manually and automatically produced
reference regions and the subsequently obtained binding potentials and standardized-
uptake-value-ratios. The results show that manually produced reference regions can be
remarkably different from each other, leading to substantial differences also in outcome
measures. While the Magia-derived reference regions were anatomically different from
the manual ones, Magia produced outcome measures highly consistent with the average
of the manually obtained estimates. For [11C]carfentanil and [11C]PiB there was no
bias, while for [11C]raclopride and [11C]MADAM Magia produced 3–5% higher binding
potentials. Based on these results and considering the high inter-operator variance of the
manual method, we conclude that Magia can be reliably used to process brain PET data.

Keywords: PET, neuroinformatics, modeling, reference region, carfentanil, raclopride, madam, pib

INTRODUCTION

The statistical power of neuroimaging studies has been widely questioned in recent years,
leading to calls for significantly larger samples to avoid false-positive and negative findings
(Yarkoni, 2009; Button et al., 2013; Cremers et al., 2017). Additionally, the role of researcher
degrees of freedom, i.e., the subjective choices made during the process from data collection to
its analysis, has been identified as an important reason for poor replicability of many findings
(Simmons et al., 2011). Consequently, the focus in neuroimaging has shifted towards standardized,
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large-scale neuroinformatics based approaches (Yarkoni et al.,
2011; Poldrack and Yarkoni, 2016). Today, several standardized
and highly automatized preprocessing pipelines are publicly
available for processing functional magnetic resonance images
(fMRI; Esteban et al., 2019). Such standardized methods are
not, however, currently widely used for the analysis of positron
emission tomography (PET) data, although recently some tools
have become available (Gunn et al., 2016; Funck et al., 2018).

Compared to fMRI preprocessing, preprocessing of PET
data is relatively straightforward because confounding temporal
signals are rarely regressed out of the data, and the preprocessing
thus only consists of spatial processes, such as frame-realignment
and coregistration. Yet, any all-inclusive PET processing
pipeline must be able to handle numerous kinetic models to
support as many radiotracers as possible. Thus, unlike fMRI
preprocessing tools, PET pipelines should handle both the
preprocessing as well as the kinetic modeling for numerous
tracers, making the development of a comprehensive PET
pipeline a challenging task.

A particularly sensitive task in PET analysis is the requirement
of the input function. Depending on tracer, the input function
can be obtained either from blood samples or directly from
the PET images, for example, if a reference region is available
for the tracer. The blood samples require manual processing
before the input function can be obtained from them. While
population-based atlases (Fischl et al., 2002; Tzourio-Mazoyer
et al., 2002; Eickhoff et al., 2005) provide an automatic way for
defining reference regions (Yasuno et al., 2002; Schain et al.,
2014; Tuszynski et al., 2016), they are suboptimal because the
process requires warping of either the atlases or the PET images.
Ideally, the reference region should be defined separately for each
individual before spatial normalization. Consequently, manual
delineation is still considered the gold standard for defining the
reference regions, thus prohibiting a fully automatic analysis
of PET data. Furthermore, manual reference region delineation
is time-consuming and relies on numerous subjective choices.
To minimize between-study variance resulting from operator-
dependent choices (White et al., 1999), a single individual should
delineate the reference regions for all studies within a project.
Thus, manual delineation is not suited for large-scale projects
where hundreds of scans are processed, or neuroinformatics
approaches where an even significantly larger number of scans
have to be processed.

To resolve these issues, we introduce Magia1 that enables
automatic modeling of brain PET data with minimal user
intervention The major advantages of this approach involve:

1. Flexible, parallelizable environment suitable for large-scale
standardized analysis.

2. Fully automated processing of brain PET data starting from
raw images.

3. Visual quality control of the processing steps.
4. Centralized management and storage of study metadata,

image processing methods and outputs for subsequent
reanalysis and quality control.

1https://github.com/tkkarjal/magia

In this study, we compared Magia-derived input functions
and the subsequent outcome measures against those obtained
using conventional manual techniques with four tracers
binding to different sites: [11C]carfentanil, [11C]raclopride,
[11C]MADAM, and [11C]PiB. We also assessed inter-rater
agreement in the reference region definition and uptake
estimates, and regional and voxel-level outcome measures.

MATERIALS AND METHODS

Overview of Magia
Magia1 is a freely available and fully automatic analysis pipeline
for brain PET data. Running on MATLAB (The MathWorks,
Inc., Natick, MA, USA), Magia combines methods from
SPM122 and FreeSurfer3—two freely available and widely used
tools–with in-house software developed for kinetic modeling.
Magia has been developed alongside a centralized database4

containing metadata about each study, facilitating data storage
and neuroinformatics-type large-scale PET analyses. While the
implementation of a similar database is highly recommended,
Magia can also be installed and used without such database as
long as the user can feed in the necessary information about
the studies. Magia runs only on Linux/Mac. The Optimization
Toolbox for MATLAB is required for fitting some of the models.
Magia has been developed using MATLAB R2016b. Magia
currently supports the simplified reference tissue model, Logan
(Logan, 2000) with both plasma input and reference tissue input,
Patlak (Patlak et al., 1983) with both plasma input and reference
tissue input, SUV-ratio (Chen and Nasrallah, 2017; standardized
uptake value), and fractional uptake ratio (FUR; Thie, 1995)
analysis for late scans with plasma input. Also, the two-tissue
compartmental model can be fitted to regional-level data.

A box-diagram describing the main steps in Magia processing
is shown in Figure 1. Magia starts by preprocessing the PET
images. The preprocessing consists of frame-alignment (motion-
correction) and coregistration with the MRI. The MRI is
processed with FreeSurfer to generate anatomical parcellations
for defining regions of interest (Schain et al., 2014), and the
reference region if one is required for the chosen kinetic model.
FreeSurfer assigns an anatomical label to each brain voxel, and
the regions of interest (ROIs) thus consist of all the voxels
with the same anatomical label. Magia performs a two-step
correction to the reference tissue mask (see below) before
obtaining the input function for modeling; the corrections make
the reference regions robust for many scanners and individuals.
TheMRI is also segmented into gray andwhitematter probability
maps for spatial normalization (Ashburner and Friston, 2000).
After modeling, the parametric images are spatially normalized
and smoothed. In addition to the parametric images, Magia
also calculates region-level parameter estimates for each study.
Finally, the results are stored in a centralized archive in a
standardized format along with visual quality control metrics,
facilitating future population-level analyses.

2www.fil.ion.ucl.ac.uk/spm/
3https://surfer.nmr.mgh.harvard.edu/
4http://aivo.utu.fi
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FIGURE 1 | The Magia pipeline combines FreeSurfer cortical mesh generation and parcellation, T1 MR image segmentation and normalization, automatic reference
region and region of interest generation, and kinetic modeling.

The above-mentioned steps are only used when applicable.
For example, for static PET-images, the frame alignment
is skipped, and if there is no related MRI available, then
a tracer-specific radioactivity template must be available
to normalize the images. For all of the tracers included
in this manuscript, such templates can be obtained from
https://github.com/tkkarjal/magia/tree/master/templates. Magia
also supports tracers that do not have a reference region.
For such studies, the preprocessed (e.g., decay-corrected,
metabolite-corrected, and possibly extrapolated) plasma input
must be available. Magia has default settings for preprocessing,
modeling, and post processing that have worked well during its
development. However, Magia is also flexible in the sense that
the user can override some of these options if needed.

Validation Data
To assess reliability of Magia we used historical control data
using four radioligands with different targets and spatial
distribution of binding sites: Dopamine D2R receptor antagonist
[11C]raclopride, µ-opioid receptor agonist [11C]carfentanil,
serotonin transporter ligand [11C]MADAM, and beta-amyloid
ligand [11C]PIB. For each radioligand we selected 30 studies
(Table 1). We generated reference regions for all the tracers using
traditional manual methods and the new automatic method and
compared the results. The study was conducted as a part of a
register-based study on brain imaging at Turku PET Centre.
Per applicable legislation in Finland, fully anonymized medical
register data (including PET and MRI scans) can be analyzed

in the context of a register study without obtaining an active
informed consent from the individuals included in the register,
if information identifying the individuals is not obtained. The
study protocol was approved by Turku University Hospital
Research Board and the legislative team.

Manual Reference Region Delineation
Five researchers with good knowledge of human neuroanatomy
delineated reference regions for every study according to written
and visual instructions (Figure 2A). Cerebellar cortex was used
as a reference region for [11C]raclopride (Gunn et al., 1997),
[11C]MADAM (Lundberg et al., 2005) and [11C]PiB (Lopresti
et al., 2005). For [11C]carfentanil, the occipital cortex was used
(Endres et al., 2003). The regions were drawn using CARIMAS5

on three consecutive transaxial slices of T1-weighted MR images,
which is the current standard manual method at Turku PET
Centre. Cerebellar reference was drawn in the cerebellar gray
matter within a gray zone in the peripheral part of cerebellum,
distal to the bright signal of white matter. The first cranial
slice was placed below the occipital cortex to avoid spill-in of
radioactivity. Typically, this is a slice where the temporal lobe
is clearly separated from the cerebellum by the petrosal part of
the temporal bone. The most caudal slice was typically located
in the most caudal part of the cerebellum. Laterally, venous
sinuses were avoided to avoid spill-in during the early phases
of the scans. Posteriorly, there was about a 5 mm distance from
the cerebellar surface to avoid spill-out effects. Anteriorly, the

5http://turkupetcentre.fi/carimas/
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TABLE 1 | Summary of the studies.

[11C]carfentanil [11C]raclopride [11C]MADAM [11C]PiB

N (female) 30 (12) 30 (23) 30 (17) 30 (18)
Age (mean, range) 32 (20–51) 39 (20–60) 42 (25–57) 71 (66–80)
Scanners HRRT GE Advance HRRT HRRT

PET/CT PET/CT
PET/MR HRRT

Data range (years) 2007–2016 1998–2014 2008–2015 2014–2016

Scanners: HRRT (HRRT, Siemens Medical Solutions); PET/CT (Discovery 690 PET/CT, GE Healthcare); PET/MR (Ingenuity TF PET/MR, Philips Healthcare); GE Advance (GE Advance,
GE Healthcare).

border of the reference region was drawn approximately 2 mm
distal to the border of cerebellar white and gray matter, except
in the most caudal slice, where the central white matter may no
longer be visible.

The occipital reference region was defined on three
consecutive transaxial slices, of which the most caudal slice
was the second-most caudal slice before the cerebellum. The
reference region was drawn J-shaped with medial and posterior
parts. The reference region was drawn to roughly follow the
shape of the cortical surface, but not individual gyri. The
reference region was drawn approximately 1 cm wide with about
2 mmmargin to the cortical surface to avoid spill-out effects. The
anterior border of the reference region was placed approximately
halfway between the posterior cortical surface and the splenium
of the corpus callosum. The posterolateral border of the reference
region approximated the medial-most part of the posterior horn
of the lateral ventricle.

Automatic Reference Region Generation
Figure 2B shows an overview of the automated reference-region-
generation process. First, T1-weighted MR images were fed
into FreeSurfer to provide subject-specific anatomical masks
for cerebellar and occipital cortices. Second, an anatomical
correction was applied to the FreeSurfer-generated reference
region mask to remove voxels that, based on their anatomical
location alone, are likely to suffer from spill-over effects. For
the cerebellar cortex, the most important sources of spill-over
effects are occipital cortex and venous sinuses. Thus, the most
outermost cerebellar voxels were excluded in the anatomical
reference region correction. For the occipital cortex, voxels that
were lateral to the lateral ventricles were excluded. This is because
the most lateral parts of the FreeSurfer-generated occipital
cortex extend to areas with specific binding for [11C]carfentanil,
and the lateral ventricles provide a reliable anatomical cut-off
point for thresholding. Finally, the radioactivity concentration
distribution within the anatomically corrected reference region
was estimated, and the tails of the distribution were excluded.
The lower and upper boundaries for the signal intensities
were defined by calculating the full width at half maximum
(FWHM) of the mean PET signal intensity distribution. This
step ensures that the reference region will not contain voxels
with atypically high or low radioactivity (e.g., signal from
outside the brain). The automatic reference region generation
process thus combines information from anatomical brain
scans and the PET images to get a reliable estimate of
nonspecific binding.

Quantifying Operator-Dependent Variability
We first investigated how subjective choices inmanual reference-
region delineation translate into differences in reference
region masks, reference-region time-activity curves (TACs), and
outcome measures. Anatomical differences in reference region
masks were assessed in two ways: first, we calculated within-
study spatial overlap between the manual reference regions. The
spatial overlap was calculated in two stages: it was first calculated
separately for all different manual reference region pairs, and
those numbers were then averaged over to obtain a summary
statistic for each study. Second, we investigated the differences
in volumes of the manually delineated reference regions using
the intra-class correlation coefficient (ICC). To estimate ICC, we
first estimated a random-effectsmodel y∼ 1 + (1 | operator) + (1 |
study), where, y is the variable of interest, and then calculated the
proportion of variance explained by the variance of the random-
effect-components (Nakagawa et al., 2017). Calculated this way,
ICC is restricted to between 0 and 1. The R package brms6 was
used to estimate themodels, and the R package performance7 was
used to estimate ICC.

Differences in reference region TACs were assessed by
calculating area under the curve (AUC) of them. Prior to
the ICC analysis, we standardized all the AUCs with the
mean radioactivity within the union of all manually delineated
reference regions. This standardization removes between-study
variance resulting from different scanners, body masses and
injected doses.

The Volumetric Similarity of the Manual
and Automatic Reference Regions
We compared the volumes of reference regions to assess whether
the two techniques generate reference regions of systematically
different sizes. For each study, we calculated the mean volume
from all manually delineated reference regions and compared
it to the volume of the Magia-derived reference region. We
also quantified the anatomical overlap between the manually
and the automatically derived reference regions. The overlap
was defined as the ratio between the number of common
voxels and the number of manual voxels. For each study,
the overlap was first calculated separately for every manually
delineated reference region after which the mean overlap
was calculated.

6https://cran.r-project.org/package=brms
7https://easystats.github.io/performance/index.html
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FIGURE 2 | (A) Visual instructions of the most cranial slice of manually delineated cerebellar (left) and occipital (right) reference regions. The reference regions were
delineated on three consecutive transaxial T1-weighted MR images. Cerebellar reference region is shown on the left and occipital reference region on the right.
(B) The diagram shows how a T1-weighted MR image of an individual’s brain is processed to produce the final reference region. The shown example is from the
[11C]carfentanil data set. The rectangles represent processing steps between inputs and outputs. The FreeSurfer step assigns an anatomical label to each voxel of
the subject’s T1 weighted MR image. The ROI extraction step extracts a prespecified ROI from FreeSurfer’s output. The anatomical correction removes voxels that
are most likely to suffer from spillover effects; for [11C]carfentanil data this means voxels lateral to the lateral ventricles. In the tail-exclusion step, radioactivity
distribution within the anatomically corrected reference region is estimated, and the voxels whose intensities are on the tail-ends of the distribution are excluded.

Similarity of the Reference Region
Radioactivity Concentrations
A functionally homogenous region should have approximately
Gaussian distribution of radioactivity measured with PET
(Teymurazyan et al., 2013). Functional homogeneousness was
assessed using radioactivity distributions within the reference
regions. The automatically and manually derived reference
region masks were used to extract radioactivity concentration

distribution within the reference regions. The study-specific
manual distributions were averaged over the manual drawers
to provide a single manual distribution for each study. The
radioactivity concentrations were converted into SUV, after
which the distributions were averaged over studies to provide
tracer-specific distributions. Mean, standard deviations, mode,
and skewness of the distributions were used to quantify the
differences in the distributions.
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Similarity of the Reference Region
Time-Activity Curves
We compared the similarity of the automatically and manually
delineated reference region TACs. For each study, the manual
reference region TAC was defined as the average across the
manual TACs to minimize the subjective bias in adhering to the
instructions for manual reference region delineation. Activities
were expressed as standardized uptake values (SUV, g/ml) which
were obtained by normalizing tissue radioactivity concentration
(kBq/ml) by total injected dose (MBq) and body mass (kg),
thus making the different images comparable to each other. To
assess the similarity of the shapes of reference region TACs,
we calculated Pearson correlations between the manually and
automatically delineated TACs for each tracer. Bias was assessed
using the area under the curve (AUC).

Assessing the Similarity of the Outcome
Measures
We used nondisplaceable binding potential (BPND) to
quantify uptakes of [11C]carfentanil, [11C]raclopride and
[11C]MADAM. It reflects the ratio between specific and
nondisplaceable binding in the brain. The binding potentials
were calculated using a simplified reference tissue model
whose use has been validated for these tracers (Gunn et al.,
1997; Endres et al., 2003; Lundberg et al., 2005). SUV-ratio
between 60 and 90 min was used to quantify [11C]PiB uptake
(Lopresti et al., 2005). All the studies were first processed
using Magia. To obtain the outcome measures resulting
from manually delineated reference regions the procedure
was repeated with the only exception of replacing the
automatically generated reference regions with a manually
generated reference region. Thus, the only differences observed
in the uptake estimates originate from differences in the
reference regions. We estimated the outcome measures in
one representative ROI for each tracer, and also calculated
parametric images. The ROIs were extracted from the
FreeSurfer parcellations.

RESULTS

Operator-Dependent Variation
The influence of different operators on reference region
volumes, reference region time-activity AUCs, and outcome
measures are presented for each tracer in Table 2. The spatial
overlap between the manually delineated masks was modest,
as the maximum overlap was 41% for [11C]raclopride studies,

while the overlap for the other tracers was 14–22%. The
ICC for reference region volumes were moderate to good
(0.74. . .0.83) for all tracers except [11C]MADAM (ICC = 0.46).
The reference region TAC AUCs varied substantially especially
for [11C]carfentanil and [11C]MADAM, while for [11C]PiB
operator had little influence on the AUCs (ICC = 0.95).
The operator had the most influence on outcome measures
for [11C]carfentanil and [11C]MADAM. For [11C]raclopride
and [11C]PiB operators had little influence on outcome
measures (ICC ≥ 0.95).

Differences Between Manually and
Automatically Produced Reference
Regions
Differences in Reference Region Masks
We first compared the anatomical similarities between the
automatically and manually delineated reference regions. For
each tracer, automatic reference regions were consistently
larger than manually derived reference regions (Figure 3 and
Supplementary Figure S1). In four [11C]carfentanil studies
at least one of the manually drawn reference regions was
larger than the automatic occipital reference region. Magia-
generated cerebellar reference regions were always larger than
mean manual cerebellar reference regions. The automatically
produced reference regions are naturally larger than the
manually delineated ones because manual delineation requires
mechanic work from highly trained individuals, thus providing
a cost to the size of the regions.

Next, we determined whether the Magia-derived reference
regions overlap with the manually drawn reference regions. The
automatic occipital reference region for [11C]carfentanil
overlapped only 14% with a manual occipital reference
region. The low overlap is explained by the substantial
difference between the sizes of the manually and automatically
generated occipital ROIs. Automatic cerebellar reference
regions overlapped with manual reference regions by
55%, 59% and 61% for [11C]raclopride, [11C]MADAM and
[11C]PiB, respectively.

Differences in Reference Region SUV Distributions
The overlap between the manual and automatic radioactivity
distributions was approximately 90% for all tracers
(Supplementary Figure S2). All distributions were unimodal
and highly symmetric for all tracers. The means of the
distributions were practically equal (maximum difference
of 0.07%). The standard deviations of the distributions differed

TABLE 2 | Operator-caused variation in basic characteristics derived from the reference region masks.

Intra-class correlation coefficient

Tracer Spatial overlap (%) Reference region volume Reference TAC AUC Outcome measure

[11C]carfentanil 22 83 61 75
[11C]raclopride 41 79 80 97
[11C]MADAM 18 46 58 76
[11C]PiB 14 74 95 95

TAC, time-activity curve; AUC, area under curve.
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FIGURE 3 | (A) Mean volumes of Magia-generated reference regions compared to mean volumes of manually delineated reference regions. (B) Visual examples of
Magia-generated and manual reference regions for one study.

by 14%, 11%, 12% and 18% for [11C]carfentanil, [11C]MADAM,
[11C]PIB and [11C]raclopride, respectively. The modes of the
automatically and manually derived distributions were 1.5 and
1.55 for [11C]carfentanil, 1.95 and 2.05 for [11C]MADAM,
1.65 and 1.70 for [11C]PIB, and 1.35 and 1.35 for [11C]raclopride.
Thus, the maximum difference was less than 5%. The skewnesses
of the Magia-derived and manually derived distributions were
1.2 and 0.9 for [11C]carfentanil, 1.3 and 1.2 for [11C]MADAM,
2.0 and 1.6 for [11C]PIB, and 2.4 and 2.0 for [11C]raclopride.

Differences in Reference Region Time-Activity
Curves
The Magia-produced TACs were on average very similar to
the average TACs calculated based on the manually delineated
reference regions (Figure 4). The Pearson correlation coefficients
were above 0.99 for all tracers. Supplementary Figure S3
shows how the Magia-derived reference region time-activity
curve AUCs compare against the manually obtained results.
For [11C]carfentanil, the between-study AUC means were
practically identical (<1%). The Magia-produced reference
regions had 2.6%, 1.1%, and 1.8% lower AUCs than the manual
reference regions for [11C]raclopride, [11C]MADAM, and
[11C]PiB, respectively.

Differences in Outcome Measures
Pearson correlation coefficients between the mean of
manual outcome measures and the Magia-derived outcome
measures were 0.79, 0.98, 0.84, and 0.99 for [11C]carfentanil,

[11C]raclopride, [11C]MADAM, and [11C]PiB, respectively.
The outcome measures derived using automatic and manual
methods are visualized in Figure 5 in one representative
ROI, the averaged outcome-measure-images are visualized
in Figure 6A and the relative bias in the whole brain
between them is visualized in Figure 6B. For [11C]carfentanil
and [11C]PiB Magia produced basically no bias (less than
1%). For [11C]MADAM, Magia produced up to 3–5%
higher binding potential estimates in regions with high
specific binding. In cortical regions with low specific
binding, the bias was over 10%. For [11C]raclopride, Magia
produced approximately 4–5% higher binding potential
estimates in striatum. In the thalamus, the bias was 8–10%.
Elsewhere in the brain the bias varied considerably between
13–20%. For both [11C]MADAM and [11C]raclopride, the
relative bias decreased significantly with increasing binding
potential (Figure 6C).

DISCUSSION

We established that the automated Magia pipeline produces
consistent estimates of radiotracer uptake for all the tested
ligands, with very little or even no bias in the outcome
measures. As expected, the manual delineation method suffered
from significant operator-dependent variability, highlighting the
importance of standardization of the process. The consistency
coupled with significant gains in processing speed suggests that
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FIGURE 4 | Between-subject mean time-activity curves. Blue = Magia; red = manual.

Magia is well suited for automated analysis of brain-PET data for
large-scale neuroimaging projects.

Outcome Measures Can Substantially
Depend on Who Delineated the Reference
Region
We estimated the amount of operator-dependent variation in
outcome measures. Despite all operators drawing the ROIs
using the same instructions (presented both verbally and
as visual/written instructions available for reference while
working) the ICC analyses show that for [11C]carfentanil and
[11C]MADAM, the variation produced by different operators is
significant, indicating that for these two tracers the subjective
variation in manual ROI delineation (e.g., which transaxial
slices to use, how to define ROI boundaries etc.) significantly
influences the magnitude of binding potential estimates. Out of
the tracers using the cerebellar cortex as the reference region,
[11C]MADAMhad the lowest ICCwith 76%. For [11C]raclopride
and [11C]PiB the ICCs were over 95%, indicating that for these
tracers manual delineation of reference regions may not be as
crucial source of variation.

These differences between tracers likely reflect differences
in the uniformity of the PET signal within the reference
regions. If the reference region were perfectly homogenous
with respect to the PET signal, it would not matter at all
which voxels to choose. In reality, however, the PET signal
is highly heterogenous. For example, the PET signal depends
on the transaxial slices used. Presumably, these heterogeneities
are substantial for [11C]carfentanil and, to a lesser extent, for
[11C]MADAM, while the PET signal from cerebellar cortex using
[11C]raclopride and [11C]PiB is significantly more homogenous.
Indeed, the spatial overlap between the manually delineated
reference region was higher for [11C]carfentanil (22%) than for
[11C]PiB (14%), suggesting that even small differences in spatial
overlap translate into substantial differences in binding potential
for [11C]carfentanil.

The influence of the operator on reference TAC AUCs
was even larger. For all the tracers, the ICC of outcome
measures was higher than the ICC for reference TAC AUCs.
For example, while [11C]raclopride BPND was barely influenced

by the individual manually delineating the reference region, the
ICC for [11C]raclopride reference TAC AUC was only 80%,
almost 20%-units less than for BPND. Thus, even the reference
region TACs for [11C]raclopride was not remarkably consistent
between the operators, further highlighting the sensitivity of
the delineation process despite detailed written and visual
instructions. These results highlight the need for reference-
region generation processes that do not suffer from subjectivity.

Reliability of Magia’s Uptake Estimates
Importantly, Magia produced parameter estimates consistent
with the averaged manual estimates (Pearson correlation
coefficients >0.78 for all tracers). This suggests that: (i) even
though individual operators yield different output metrics
these are sampled from the same true parameter space; which
(ii) is in turn accurately reflected by the Magia output. There
was no systematic bias for [11C]PiB SUVR and [11C]carfentanil
BPND. For [11C]PiB, the difference between the manual and
automatic SUVR estimates fluctuated randomly around zero.
Because SUVR was used to quantify [11C]PiB uptake, the
random fluctuation was independent of the brain region.
For [11C]carfentanil, the random fluctuation was slightly
greater in low-binding regions (but still within ±5%). In
contrast to [11C]PiB and [11C]carfentanil, there were systematic
differences between the manual and automatic binding potential
estimates for [11C]raclopride and [11C]MADAM. For both
tracers the bias decreased as a function of specific binding,
and in high-binding regions (BPND > 1.5) the bias was less
than 5%. Even if the bias increased sharply with decreasing
binding potential, the problematic regions are not typically
considered very interesting because of their poor signal-to-
noise ratio.

The systematic bias for [11C]MADAM and [11C]raclopride
is also reflected in the small differences in reference to tissue
TACs. For the tracers using cerebellar reference region, Magia-
derived reference tissue TACs had 2–3% lower AUCs. The
peaks of the TACs were also slightly lower. For [11C]PiB, the
bias did not propagate into outcome measures because the
SUV-ratio was calculated between 60 and 90 min when there
was no bias in TACs. Because binding potential reflects the ratio
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FIGURE 5 | Comparison of Magia-derived outcome measures against manually obtained ones.

between specific binding and unspecific binding (obtained from
reference tissue), the reference TAC AUCs directly propagate
into biases in binding potentials. Thus, these data indicate

that Magia may produce slightly higher binding potential
estimates than traditional methods at least if the cerebellar
cortex is used as the reference region. These data do not,

Frontiers in Neuroinformatics | www.frontiersin.org 9 February 2020 | Volume 14 | Article 3249250

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Karjalainen et al. Magia: A Brain PET Analysis Toolbox

FIGURE 6 | (A) Visualization of the outcome measure distributions for each tracer. (B) Maps visualizing the relative biases of the Magia-derived outcome measures
compared to the averages obtained by manual reference region delineation. The manual method is here presented as the ground truth, because the manual
outcome for each scan is an average over five individual estimates, while the Magia result relies on a single estimate. (C) Associations between the outcome measure
magnitude and relative bias.

however, imply that the bias should be regarded as error: in
fact, Magia produces significantly larger reference regions, and
consequently the reference tissue TACs are less noisy. This is
desirable because the noise in the input function influences
model fitting. However, the bias alsomeans thatMagia-produced
estimates should not be combined with estimates produced with
other methods.

Functional Homogeneity of the Reference
Regions
We tested whether the assumption of homogenous binding
within the reference regions holds for both automatic and
manual reference regions. A homogenous source region should
produce unimodal and approximately symmetric radioactivity
distributions 21. Between-study average distributions were
unimodal and symmetric for all tracers for both the manual
and automatic methods. The distribution means were practically
identical, but the modes were 1–2% higher for Magia. The
manual distributions were slightly wider (the standard deviations
were approximately 15% larger) because Magia cuts the
distribution tails. The manual distributions were also slightly

less skewed. Because averaging distributions tends to make
them more Gaussian, this difference probably arises from
the fact that the manual distributions that were used in
the comparison were defined as an average over the five
distributions delineated by the independent operators. The
distribution overlaps were approximately 90% for all tracers.
In sum, these results show that the Magia-generated reference
region radioactivity distributions satisfy the requirement of
functional uniformity.

Reference Tissue Time-Activity Curves
Despite their topographical differences, the automatically and
manually produced reference regions yielded very similar TACs.
For all tracers, the Pearson correlation coefficient between
average automatic and manual reference tissue TACs was
above 0.99. The TAC shapes were thus in excellent agreement.
For [11C]carfentanil, also the AUC of reference region TACs
were highly similar. The AUCs of cerebellar TACs were 2–3%
lower for Magia, indicating that the cerebellar automatic TACs
were slightly negatively biased compared to their manual
counterparts. The source of this difference unknown but
it could result e.g., from heterogenous nonspecific binding
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within cerebellar cortex or from spill-in or spill-over effects.
Whatever explains the small difference, these data do not
directly indicate which method produced more realistic TACs.
However, because the Magia-generated cerebellar reference
regions were without exception substantially larger than their
manual counterparts, the TACs of Magia presumably have
a higher signal-to-noise ratio, suggesting that the Magia-
derived metrics may compare favorably against the manually
obtained metrics.

Solving Time Constraints in the Processing
of PET Data
On average, drawing the reference region for a single subject took
around 15 min, and without any automatization the modeling
and spatial processing of the images standard tools (e.g., PMOD
or Turku PETCentremodeling software) take on average 45min.
In contrast, it takes less than 5 min to set Magia running for
a single study. Although the time advantage—roughly an hour
per study—gained from automatization is still modest in small-
scale studies (e.g., three 8-h working days for a study with
24 subjects) the effect scales up quickly, and manual modeling
of a database of just 400 studies would take already 50 days. This
is a significant investment of human resources, in particular, if
the analyses have to be redone later with, for example, different
modeling parameters requiring repeating of at least some parts of
the process.

Comparison of Magia to Existing Tools
Several tools already exist for processing brain PET data.
MIAKAT (Gunn et al., 2016) is another MATLAB-based tool
that combines preprocessing and kinetic modeling. Compared
to Magia, MIAKAT is missing support for the two-tissue
compartmental model, SUV-ratio, as well as FUR-analyses.
APPIAN (Funck et al., 2018) is another recent development
that, unlike Magia, includes partial volume correction. However,
APPIAN lacks motion-correction and also supports fewer kinetic
models than Magia, and like MIAKAT, APPIAN also uses
neuroanatomical atlases for ROI definition. Both of these tools, as
well as all the other existing tools, are restricted in the sense that
they require both MRI and PET data. Magia, in contrast, can also
process brain PET data without MRI if a tracer-specific template
is available. Magia also comes with default modeling options for
several tracers. Accordingly, Magia is currently the most flexible
open-source tool available for automated processing of brain
PET data.

Limitations
SMagia is currently fully automatic only for tracers for which
a reference region exists. However, even for blood-based
inputs, Magia requires minimal user intervention, as Magia
can read in the input function from the appropriate location.
Magia was originally developed with the assumption that
a T1-weighted MR image is available for each subject (for
reference region delineation and spatial normalization). Because
this assumption limited the applicability of the approach for
reanalysis of some historical data, Magia can now also use
neuroanatomical atlases for ROI definition and tracer-specific

radioactivity templates for spatial normalization. Templates
for each of the tracers used in this manuscript are available
in https://github.com/tkkarjal/magia/tree/master/templates,
and Magia can use whatever templates the user may have
available. Thus, the availability of MRI is not necessary,
but it is strongly recommended because most of the testing
has been done with MRI-based processing, and because the
ROIs as well as reference regions can then be generated
in the native space. The drawback of FreeSurfer-based
ROI-generation is that it is relatively slow (∼ 10 h). Partial
volume correction is not currently implemented in Magia,
yet this feature will be added in future releases. Finally,
Magia processes the studies independently of each other.
Within-subject designs would benefit from consideration
of multiple images per participant, but this is currently
not possible.

CONCLUSION

Magia is a standardized and fully automatic analysis pipeline for
processing brain PET data. By standardizing the reference region
generation process, Magia eliminates operator-dependency in
producing outcome-measures. For [11C]carfentanil that uses the
occipital cortex as the reference region, the reduced variance
comes with no cost for bias in BPND. The SUVR estimates were
also unbiased for [11C]PiB. [11C]raclopride and [11C]MADAM
BPND was slightly overestimated. However, compared to the
variance resulting from operator dependency, this bias was
negligible and may actually favor Magia. In any case, bias is
meaningless in most population-level analyses. Magia enables
standardized analysis of brain PET data, facilitating shift
towards larger samples and more convenient data sharing across
research sites.
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The main hypothesis of this work is that the time of delay in reaction to an unexpected

event can be predicted on the basis of the brain activity recorded prior to that event.

Such mental activity can be represented by electroencephalographic data. To test

this hypothesis, we conducted a novel experiment involving 19 participants that took

part in a 2-h long session of simulated aircraft flights. An EEG signal processing

pipeline is proposed that consists of signal preprocessing, extracting bandpass features,

and using regression to predict the reaction times. The prediction algorithms that are

used in this study are the Least Absolute Shrinkage Operator and its Least Angle

Regression modification, as well as Kernel Ridge and Radial Basis Support Vector

Machine regression. The average Mean Absolute Error obtained across the 19 subjects

was 114 ms. The present study demonstrates, for the first time, that it is possible to

predict reaction times on the basis of EEG data. The presented solution can serve as a

foundation for a system that can, in the future, increase the safety of air traffic.

Keywords: aircraft control human factors, cognitive workload, data mining, electroencephalography, reaction

time, safety, regression, prediction

1. INTRODUCTION

Safety is an important consideration in the modern airline industry. Although many factors have
an influence on the proper execution of flight processes, performance of the pilot is one of the most
crucial factors. In particular, multiple sources point out that fatigue has a significant adverse impact
on pilot performance (Lee and Kim, 2018; Bushmaker et al., 2019). The International Civil Aviation
Organization (2016) defines fatigue as:

A physiological state of reduced mental or physical performance capability resulting from sleep
loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that
can impair a crew member’s alertness and ability to safely operate an aircraft or perform safety
related duties.

Results of a survey published in 2002 demonstrate that fatigue is a significant issue among pilots,
and may be responsible for 4–8% of aviation mishaps (Caldwell and Gilreath, 2002). Moreover, a
survey conducted in a group of short-haul pilots points out that over 75% of pilots claimed that they
have experienced significant fatigue (Jackson and Earl, 2006). In addition, over 70% of corporate
pilots claimed that they have fallen into micro-sleep during various phases of the flight (Caldwell,
2005). Such micro-sleep states have been related to a reduced ability to respond to external stimuli
(Ogilvie and Simons, 1992), as well as, degradation of performance on cognitive tasks (Belyavin and
Wright, 1987).

Another large-scale study blames errors of the cockpit crew on 73% of the 456 aircraft crashes
between the years 1959 and 1996 (National Research Council, 1998). Importantly, this trend does
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not seem to decrease over time, as the same source suggests that
72% out of the 145 accidents between the years 1987 and 1996
can be attributed to the cockpit crew.

In 2003, the National Transportation Safety Board estimated
that fatigue contributes to around 20–30% of transportation
accidents (i.e., aircraft, marine, railway, road). Given that ∼70%
of commercial aircraft accidents can be attributed to human
errors, fatigue is thought to contribute to 15–20% of total aircraft
accidents (Akerstedt et al., 2003).

Recent research study (Bennett, 2019) demonstrate that,
on average, 7.3% of pilots who participated in this study
and completed the inbound Top-of-Climb-Top-of-Descent scale
were found to be either extremely tired or completely exhausted.
In addition, 9.3% of pilots who completed the inbound Top-
of-Descent-On-Blocks scale also claimed to be either extremely
tired or completely exhausted. Of note, the Top-of-Climb-
Top-of-Descent and Top-of-Descent-On-Blocks are phases of
a flight. According to Bennet, these numbers could be even
higher because there is a rule that pilots should not operate
when fatigued; thus some pilots may under-report their fatigue
level to avoid penalty. Exhaustion has been found to increase
with the time of flight and Powell et al. estimated a linear
relationship between tiredness and length of duty (Powell et al.,
2007). It is worth mentioning that problems related to the
workload and fatigue among pilots are important topics that
have sparked recent changes in laws. For example, the European
Aviation Safety Agency introduced new Flight Time Limitations
(European Union Regulation 83/2014).

Considering the substantial impact of human factors on flight
safety, there has been a rise of ideas and support for so-called,
pilotless aircraft, in recent years (Ross, 2011; Stevenson, 2017).
An approach that is most commonly postulated in this area is the
idea of ground-based human or artificial intelligence support for
a single pilot in an aircraft. However, a reduction in a number of
on-board pilots might not necessarily be the best option, because
the redundancy and support that two pilots provide to each other
may be extremely valuable. Therefore, instead of removing pilots
from cockpits, a more promising solution may be to support
pilots with systems that can increase their capabilities and
improve their performance during flights. The main hypothesis
that will be tested in this work is that the electroencephalographic
(EEG) signals recorded from a pilot’s scalp during flight can be
used in such performance-enhancing systems. In particular, we
will test for associations between mental activity of pilots (as
measured by EEG) and their ability to react quickly and make
correct decisions in face of unexpected events. In this study,
we also propose and test a basic pipeline that can be used for
processing such signals and extracting information that can be
used to predict a pilot’s delay in response to unexpected events.

Use of EEG data in the context of prediction is most
commonly associated with a seizure detection (Varsavsky et al.,
2016). In a prospective study of antiepileptic drug withdrawal,
a step-wise logistic regression analysis method was employed to
predict an outcome of either antiepileptic drug withdrawal or
seizure relapse (Overweg et al., 1987). However, an evaluation
of the multivariate model showed that none of the variables that
were related to the EEG signal contributed to the final score.

A recent study presents a use of Deep Convolutional Neural
Networks (CNN) for the automated detection and diagnosis of
seizures using EEG signals (Acharya et al., 2018). Although CNN-
based models are characterized by a high level of complexity,
the additional preprocessing used in the work was limited to
data standardization and normalization, and is thus fairly basic.
Additionally, the aforementioned problem can be considered as
more of a classification problem than a regression. EEG has
already been utilized to predict a single-trial reaction time in a
hand motor task (Meinel et al., 2015). The study by Meinel et al.
used EEG band power features that were enhanced by a spatial
filtering method called Source Power Comodulation. Alpha band
power was found to comodulate with reaction time measured
during an isometric hand force control task, which allowed for
an average correlation of 0.19, with the best feature explaining
up to 17% of the variation between single trials. Multiple studies
have been performed to examine the impact of mental activity—
as measured by EEG—on traffic safety. Most of these studies have
been focused on car transport and driving. For instance, Deep
Belief Networks (DBN) have been evaluated for their potential
use in feature extraction and dimension reduction in predicting
the cognitive state of drivers (Hajinoroozi et al., 2015). These
studies show that DBN can predict around 85% of the variation
in cognitive state. A subject-transfer framework for detecting
drowsiness during simulated driving task based on EEG was also
recently developed (Wei et al., 2018). In that study, response
time was measured from the onset of a lane deviation to the
onset of the response, which served as a behavioral assessment of
drowsiness during the lane-keeping task. One interesting study
associates periods of mind wandering during 20-min driving
sessions with increased power in the alpha band of the EEG
recording, as well as, a reduction in the magnitude of the
P3a component of the event related potential in response to
an auditory probe (Baldwin et al., 2017). Thus, these results
suggest that, mind wandering can be detected on the basis of
underlying brain physiology which has an impact on driving
performance and the associated change in the driver’s attentional
state. Prior studies have documented changes in EEG activity
that are present during the transition from normal drive to high
mental workload and ultimately mental fatigue and drowsiness
(Borghini et al., 2014). A review of the literature suggests that
a high mental workload can be associated with increased EEG
power in the theta band and a decreased power in alpha band.
Additionally, increased EEG power in the theta, as well as, delta
and alpha bands can be observed during the transition between
mental workload and mental fatigue. Relatively fewer studies
have explored the application of EEG data for the purpose of
enhancing aircraft operations (Borghini et al., 2014). A recent
study presented the idea of utilizing EEG signals in systems
designed to monitor and enhance the performance of aircraft
pilots (Binias et al., 2018). This work focuses on the problem
of discriminating between states of brain activity related to idle
but focused anticipation of a visual cue and the response to this
cue. In this study, almost 78% average classification accuracy
was obtained. This study can be regarded as a preamble to
the work presented in the present article. Accordingly, to the
best of our knowledge, no articles published to-date address the
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problem of predicting the delay in response time based on EEG
activity. Therefore, the ideas presented in this article can be
considered to be innovative and novel. In addition, the present
study used simulators of the Virtual Flight Laboratory; thus,
the experimental design used in this study is air-craft oriented.
This design is valuable, as it targets a very important, yet not
sufficiently explored field.

The remainder of this article is organized as follows. First,
we provide a description of the experimental set-up and
experimental protocol in section 2.1. Then, a steps of the EEG
data processing pipeline proposed in this research are described
in detail in section 2.3. Section 2.3.1 provides an overview of the
tuning procedure used to find the optimal settings of prediction
algorithms, and contains details about the algorithm validation
procedure. The obtained results are presented in section 3.
A general discussion about the results and the implemented
approach can be found in section 4. Appendix A presents a brief
theoretical background to all machine learning and statistical
methods used in this work.

2. MATERIALS AND METHODS

2.1. Study Population and Experiment
Description
The goal of this experiment was to obtain the brain’s bioelectrical
activity prior to the occurrence of a visual cue. Additionally, we
measured the time of delay in the participant’s reaction time to
that visual cue. To this end, we performed a series of experimental
sessions. Each session consisted of a 2-h long simulated flight
with activated auto pilot. Participants in this experiment were
instructed to stay focused and maintain awareness while waiting
for the appearance of the visual cue. Once the cue was observed,
participants were instructed to press the button as quickly as
possible. The location of the button was chosen to minimize
the time required to react to the visual cue by restraining any
additional movements of the pilots body, besides their fingers.
Additionally, participants were asked to behave as pilots during
regular flight, i.e., to observe cockpit instruments and scan the
surroundings of the plane. The experiments took place in the
Flight Navigational Procedure Training II class simulator and
portrayed a Cessna 172RG airplane. To maintain consistency
between successive experimental sessions, the simulated flight
was on the route between Frankfurt and London. The same
section of the flight was presented to each participant during the
experiment. Flights took place at an average altitude of 6000 ft.,
and to simulate flight with auto pilot activated, the take off and
landing were removed from the registered material. Moreover,
the entire flight that was presented to participants took place
over land. Importantly, sounds of engines were also generated in
the cockpit.

Visual cues were displayed randomly with a normal
distribution characterized by mean µ = 2.5 min, standard
deviation σ = 1 min. This variance was introduced to prevent
habituation of the human brain to regular patterns. The visual
cue was represented by a solid gray-colored box that overlapped
75% of the main simulator screen that was responsible for

displaying the terrain. Participants were between the ages of 20
and 65 years. Before start of the session, participants were asked
to complete a survey regarding the level of their fatigue. All
participants claimed that they were well rested before the session
and all provided consent to utilize the outcomes obtained of the
experiment for scientific research. During the experimentation
phase, 19 participants (3 females and 16 males) were examined.
Every experimental session started at the same time of the
day—around 12:00 (noon)—to minimize the potential effects of
external factors on the experiment.

This experiment was approved by the The Jerzy Kukuczka
Academy of Physical Education in Katowice Bioethical
committee (protocol number 2/1/2017).

2.2. Hardware Description
This study analyzed EEG signals to examine bioelectrical activity
of participants’ brains during the experiments. EEG signals were
recorded using the Emotiv EPOC+Headset. This device provides
a useful bandwidth in the range of 0.16–43 Hz, and is sequentially
sampled at a frequency of 128 Hz. The resolution of the data is
on the level of 14 bit (1LSB = 0.51 µV). To avoid interference
of the electrical network, a real-time, digital 5-th order Sinc
filter and notch filters at 50 and 60 Hz were built into EPOC+
(EMOTIV Systems, 2014). The placement of EPOC+ electrodes
follows the 10 − 10 configuration. Available channels are: AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. with
references in the P3/P4 locations. Emotiv headsets use active
electrode placed in P3 location as an absolute voltage reference
i.e., Common Mode Sense. The passive electrode located in P4
position serves as a feedback cancellation system to float the
reference level on the common mode body potential i.e., Driven
Right Leg (EMOTIV Systems, 2014). The position of electrodes is
presented in Figure 1 (Koessler et al., 2009).

Emotiv EPOC+ is a relatively inexpensive EEG recording
device that was designed for scientific research and other non-
medical applications. Due to it’s many advantages, EPOC+ is
regularly used in Brain-Computer Interface (BCI) and similar
solutions (Alrajhi et al., 2017; Setiono et al., 2018; Borisov
et al., 2019). EPOC+ has also proven to be useful in a study
concerning the classification of brain activity of pilots (Binias
et al., 2018). A study evaluating EPOC+ in tasks that measured
alpha brain activity and the Visual Steady-State Response showed
that EPOC+ is capable of performing at levels comparable to
research-grade EEG systems (Grummett et al., 2015). Due to
setup difficulties, however, the authors of that study were unable
to provide evidence to support the use of Emotiv in paradigms
that rely on time-locked events. However, some reports of Emotiv
EEG systems use in such tasks are available (Tahmasebzadeh
et al., 2013).

2.3. Data Processing and Analysis
2.3.1. Prediction of Response Delay
First, regression models were created to predict the delay in
participant’s response to the visual cue. The response delay is
calculated as the offset between the moment in time when the
cue was presented to the subject and the moment when subject’s
reaction to that cue was recorded. The prediction was made using
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FIGURE 1 | Positions of electrodes in the standard 10-10 electrode montage system. Highlighted locations reflect positioning of the Emotiv Epoc+ electrode with

respect to 10-10 system-based on Koessler et al. (2009).

only the segments of the recorded multichannel EEG signal that
immediately preceded the onset of the cue. Such defined EEG
segments will be referred to as the Temporal Segment of Interest
(TSI). In particular, the length of the TSI is defined as the number
of samples that will be considered when predicting the length of
used time window. An illustrative representation of the concept
of the TSI in the EEG signal and other defined names is presented
in Figure 2.

Analysis of the raw, unprocessed signals in the TSI would
not prove to be effective. Therefore, such data has to be
appropriately preprocessed. First, the raw data were carefully
examined to evaluate the significance of artifacts present in
the recordings. A detailed description of this phase can be
found in section 2.3.2. Next, the raw data from the TSI were
divided into multiple signals on the basis of their frequency
range, as described in section 2.3.3. From these signals, features
were subsequently extracted according to procedure described in
section 2.3.4. These features were used to train machine learning
algorithms to predict the measured delay in a given subject’s
response to the occurrence of the visual cue. In the proposed

FIGURE 2 | An illustrative representation of the EEG signal’s TSI. The delay of

response is calculated as the offset between the moment in time when the cue

was presented to the subject and the moment when the subject’s reaction to

that cue was recorded. The prediction was made using only the segments of

recorded EEG signal that immediately preceded the cue onset- or the

“Temporal Segment of Interest” (TSI).

approach, signal from each electrode is analyzed individually.
A general flow of the EEG processing pipeline is presented in
Figure 3.

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2020 | Volume 14 | Article 6257258

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Binias et al. Prediction of Pilot’s Reaction Time

FIGURE 3 | EEG signal processing pipeline (for single electrode).

Performance of machine learning models is dependent
on the values of the variables-or “hyperparameters.” These
hyperparameters differ based on different methods. The
problem of choosing the optimal hyperparameters for a learning
algorithm that minimizes a predefined loss function is called,
hyperparameter optimization or tuning. For hyperparameter
optimization, the present study used the Grid Search
method (Bergstra et al., 2011). This approach involves an
exhaustive searching through a manually specified subset of the
hyperparameter space of a learning algorithm. Performance of
various hyperparameter combinations was measured by 3-fold
cross-validation on the training set with Mean Absolute Error
(MAE) selected as the optimized performance metric.

For each subject, ∼48 events were obtained during the
experimental stage. Samples were then randomly divided so
that 75% of samples were used for the training and tuning of
prediction algorithms. The remaining 25% of the samples served
as an independent dataset on which the best model (i.e., selected
after hyperparameter optimization) was tested for each compared
algorithm. To reduce the impact of random data division on
the final score, datasets for each individual participant were
randomly split into train-test datasets 11 times. MAE values
obtained for each random repetition were then averaged for each
subject. Let us assume that ym is the real time of response delay for

sample m, and the predicted delay response time for that sample
is ŷm. If M denotes the number of samples in the training set,
then the final MAE value obtained from 11 cross-validations for
subject s can be calculated with the following formula:

MAEs =
1

11

11
∑

i = 1

(

M
∑

m = 1

|ŷm − ym|

M

)

(1)

A brief description of regression algorithms selected for the
comparison can be found in Appendix A. A list of used
hyperparameters and the searched space of their values for each
algorithm is presented in Appendix B. For a detailed description
of all hyperparameters, please refer to the documentation for the
Python-based machine learning library scikit-learn (Pedregosa
et al., 2011).

2.3.2. Correction and Removal of Ocular Artifacts
Raw, multichannel time series data was obtained from EPOC+
devices during the experiment. Bioelectrical recordings from the
brain are often contaminated with artifacts caused by muscle
tensions, which are primarily related to eye movements and facial
expressions. Given that these artifacts have a frequency spectrum
that overlaps with part of the EEG spectra, the analysis of those
signals is not only less effective, but in many cases, is impossible
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in their presence (Binias et al., 2015). Many approaches for
filtering out artifacts and retrieving the underlying neural
information have been proposed. Most commonly, regression
methods are performed either in time or frequency domains
(Binias et al., 2015). These artifact regression methods have
been found to be highly effective. However, a requirement of
providing at least one signal with a noise reference is a downfall
for solutions that favor a limited number of electrodes in the
configuration. This is particularly problematic for solutions that
are designed for use in aircraft, which is the case for the
system developed for the present study. On the other hand,
if artifact regression is applied in the time domain, methods
based on Adaptive Noise Cancelling (ANC) can be implemented
for real-time applications. Indeed, this is a benefit of ANC
approaches. There are various other techniques that can be used
for detecting and filtering muscle movement-related artifacts,
including blind source separation based algorithms (Jung et al.,
2000). These algorithms include Principal Component Analysis
(PCA) and Independent Component Analysis (ICA), which rely
on recorded EEG and noise signals for calibration (Makeig
et al., 1996). PCA and ICA approaches are particularly effective
when a large amount of data is recorded across many channels.
Similar to ANC-based approaches, the high data dimensionality
requirement forces an extended electrode set-up, which is an
inconvenience for practical solutions. Additionally, it must
be noted that these methods function best in semi-automatic
approaches, where supervision of an experienced user (i.e.,
expert) is required (Makeig et al., 1996). Although there are
many eye blink correction and filtering methods described in the
literature, proper validation of these methods a very demanding
matter. To address this would require an uncontaminated EEG
signal that can be used to compare the obtained corrected data,
to evaluate the quality of filtering. However, since EEG signals
are recorded with disturbances already additively mixed, there
is no precise way to extract an original, desired component.
Thus, it is impossible to recover the exact morphology of
the uncontaminated signal and consequently, no unambiguous
way of evaluating the accuracy of the reconstruction of the
filtered signal (Binias and Niezabitowski, 2017). In light of these
limitations, we decided to simply remove highly contaminated
TSIs from further analysis. This approach is commonly used in
clinical practice. EEG segments were therefore visually inspected
for the presence of artifacts that had an amplitude multiple times
greater than that of the surrounding data. Based on this criteria,
careful inspection of the data revealed that no EEG segments
were removed due to their contamination. Since the main goal
of this work was to provide an initial validation of the stated
thesis rather than to propose a production ready solution, an
automatic artifact removal method was not necessary. Additional
motivation behind this approach was that the solution described
in this work should serve as a baseline and reference for
future improvements.

2.3.3. Frequency Analysis
As developments in neuroscience suggest, neural oscillations
and their synchronization represent important mechanisms for
inter-neuronal communication and the binding of information

processed in distributed brain regions (Roach and Mathalon,
2008). Therefore, EEG signals are often analyzed based on
their frequency characteristics. Indeed, time-frequency analysis
of EEG signals can provide information on which frequencies
have the most power at specific points in time and in certain
location in the cortex. In the present study, the samples preceding
the occurrence of the visual cue i.e., the TSI, will represent
neural activity in the moment when performing of an action is
required. The information about the spatial nature of observed
processes will be obtained from the location of the EEG
electrodes. In the proposed pipeline, EEG signals are analyzed
in the following frequency bands, which correspond to specific
brainwaves (Nunez and Srinivasan, 2006):

• Delta (1–4 Hz) (Landolt et al., 1996; Amzica and Steriade,
1998),

• Theta (4–8 Hz) (Strijkstra et al., 2003),
• Alpha (8–12 Hz) (Beatty, 1971; Strijkstra et al., 2003),
• Low Beta (12–16 Hz) (Beatty, 1971; Ang et al., 2012),
• Middle Beta (16–20 Hz) (Beatty, 1971; Ang et al., 2012),
• Middle-High Beta (20–24 Hz) (Beatty, 1971; Ang et al., 2012),
• High Beta (24–28 Hz) (Beatty, 1971; Ang et al., 2012),
• Gamma 1 (32–36 Hz) (Teplan, 2002; Ang et al., 2012),
• Gamma 2 (36–40 Hz) (Teplan, 2002; Ang et al., 2012),
• Broad band range (8–30 Hz) that is commonly related to the

planning of motor movement (Blankertz et al., 2008).

Such bands have proven to be highly useful in a recent study that
focused primarily on the problem of EEG-based discrimination
between states of brain activity related to idle but focused
anticipation of a visual cue and the response to that cue (Binias
et al., 2018).

Since EEG is traditionally modeled as a series of sine waves
of different frequencies that overlap in time and have different
phase angles, the use of Fast Fourier Transform (FFT) for the
frequency decomposition of such signal seems to be the most
intuitive approach. To obtain bandpass filtered subsignals, each
TSI was first decomposed into frequency components using FFT,
for each channel separately. Then, the undesired frequencies
were removed by changing their Fourier amplitudes to 0. Finally,
the filtered signal was reconstructed using this modified Fourier
representation using Inverse Fourier Transform algorithm.
Although a detailed description of FFT is beyond the scope
of this article, one important aspect of this approach warrants
mention. That is, it is widely accepted that the larger the length
of time window used for the FFT, the greater the frequency
resolution of analysis. However, increasing the length of the
TSI comes at the cost of decreasing the temporal resolution.
This decrease in temporal resolution might cause a situation
where the analyzed signal no longer represents the bioelectrical
state of a subject’s brain prior to the action requirement. As a
result, these data might not be useful for predicting the delay in
response. This problem is captured in the Heisenberg uncertainty
principle (Folland and Sitaram, 1997). To address this problem,
the present study utilized the, zero-padding, approach (Marple
and Marple, 1987). In this method, the analyzed segment of a
signal is extended by a sequence of zeros. This extended sequence
is represented as a low frequency peak in the Fourier amplitude

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2020 | Volume 14 | Article 6259260

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Binias et al. Prediction of Pilot’s Reaction Time

spectrum. If such addition is correctly treated during the analysis
(i.e., discarded), it won’t negatively affect the outcome, but it
will increase the frequency resolution. Given that frequency
components lower than 1 Hz are not considered in the present
study, the zero padding approach could be implemented. For the
purpose of this research, 0.5 s time windows were used, which
corresponds to 64 samples of TSI length. Analyzed segments were
additionally padded with 192 zeros so that the total length of
signal to be decomposed with FFT was 256 samples.

2.3.4. Feature Extraction
A common assumption is that changes in EEG power reflect
changes in underlying neuronal activity (Roach and Mathalon,
2008). These power changes are typically referred to as Event-
Related Synchronization and Event-Related Desynchronization,
to describe the changes in EEG power that are related to the
occurrence of a specific event (Pfurtscheller and Da Silva, 1999).
Therefore, one of the most effective and widely used descriptors
of EEG data is the power of the signal calculated in a specific
frequency range (Blankertz et al., 2008). Since the mean value of
the bandpass filtered signal tends to zero, the variance of such
signal can be used to represent its bandpower. To improve the
performance of chosen classification algorithm, the distribution
of the extracted bandpower features is often normalized using a
natural logarithm function (Binias et al., 2016a). The logarithm
of variance feature, that will also be referred to as logvar, was
chosen as the descriptive statistics in the described pipeline. Since
the experimental set up consists of 14 electrodes and each signal
is further decomposed into 10 frequency subbands, a total of
140 logvar features were obtained for each trial i.e., appearance
of visual cue, in each experiment. Before tuning and training
of the prediction algorithms, all features were subjected to the
classical standardization and normalization procedures to obtain
a zero mean value and unitary standard deviation. Section 2.3.1
contains a detailed description of the implemented approach to
the problem of regression.

3. RESULTS

Summary statistics for delay times in response to the cue and a
total number of epochs registered for each subject, are presented
in Table 1. One of the initial hypotheses was that the delay
in reaction time will increase with an increase in the duration
of the experiment. To determine whether a relation between
the time in experiment when the event happened and response
delay, a Robust Linear Model (RLM) was fit to the data. The
RLM is estimated via iteratively reweighted least squares (Huber,
1973). The robust criterion function used for downweighting the
outliers was Hubers T for M estimation (Huber, 1973; Huber
et al., 2013). A more detailed description of this approach lies
beyond the scope of this article. The explanatory variable used for
the modeling was the timestamp of the event i.e., cue appearance.
The delay in response time was the explained variable. Table 1
shows observed slope coefficients of fitted lines, as well as, p-
values describing their statistical significance. Only for subjects
6, 7, 8, 9, 13, 14, 16, and 18, p-values of the slope coefficients
were lower than 0.03 and can therefore be considered statistically

TABLE 1 | Basic statistics of the response delay times summarized for each

subject.

Subject Min.

[s]

Median

[s]

Max. [s] σ [s] Slope

[s/s]

p-value No.

epochs

1 0.408 0.553 1.616 0.305 1.82E-12 0.161 50

2 0.468 0.659 1.129 0.154 7.26E-13 0.527 44

3 0.402 0.592 1.124 0.163 –3.61E-12 0.120 46

4 0.450 0.627 0.934 0.130 –2.35E-12 0.393 45

5 0.386 0.495 0.784 0.097 1.01E-12 0.106 50

6 0.304 0.408 0.704 0.087 –1.14E-12 0.016 48

7 0.443 0.616 1.498 0.234 2.76E-12 0.027 49

8 0.323 0.544 2.113 0.426 7.43E-12 0.020 48

9 0.381 0.487 1.086 0.128 2.26E-12 <1E-5 50

10 0.658 1.199 3.279 0.613 6.57E-12 0.468 48

11 0.412 0.541 0.743 0.093 –8.59E-13 0.250 47

12 0.421 0.560 0.994 0.129 –7.99E-13 0.208 49

13 0.414 0.759 2.610 0.432 5.47E-12 <1E-5 51

14 0.379 0.664 1.982 0.238 –1.90E-12 0.025 49

15 0.278 0.421 0.665 0.091 3.90E-14 0.956 47

16 0.436 1.009 3.192 0.749 1.48E-11 <1E-5 43

17 0.390 0.555 1.660 0.229 –8.87E-13 0.301 50

18 0.375 0.547 1.296 0.181 1.59E-12 0.017 53

19 0.362 0.533 1.947 0.297 –1.99E-12 0.078 51

significant. Slope coefficients for those subjects, as well as for
other subjects, are very close to 0. Given these observations, it can
be assumed that neither a linearly increasing nor decreasing trend
can be attributed to the changes in response delay over time.
Further analysis was conducted on the basic statistics of the data
presented in Table 1, especially the standard deviation σ and the
difference between minimal and maximal values for each subject
with respect to the median. These additional analyses suggest
high variability in response time values throughout each session.

Average MAE scores obtained for different prediction
algorithms are presented in Table 2. It can be observed that the
best average results were obtained with the SVMRBF algorithm
(114 ms). What is worth to notice is that MAE for subjects 10
and 16 is much higher than that of other subjects. However
considering that the average reaction delay was around 600 ms,
this is a relatively small error. Therefore, the obtained results can
be considered satisfactory. Additionally, the standard deviations
of absolute errors (AE) were taken into account and presented
in Table 3. Again, the SVMRBF results were characterized by
the lowest value of 68 ms. The maximal prediction AEs are
shown in Table 4. Given that the presented solution is meant
to be utilized for safety solutions in the future, this metric
is especially important. Failing to predict a single decrease in
performance (i.e., a drastic increase in response delay) might
lead to more serious consequences than averaging a relatively
higher mean error for all events. The average maximal prediction
absolute error exceeded 200 ms for all algorithms, with SVMRBF
outscoring other algorithms by at least 24 ms.

On average, all scores of both LASSO-based algorithms
and Kernel Ridge regression were off by a few milliseconds
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TABLE 2 | Comparison of prediction’s Mean Absolute Errors obtained for

each subject.

ID LASSO

[s]

LASSO-

LARS

[s]

KernelRidge

[s]

SVMRBF

[s]

Shuffled

SVM [s]

1 0.140 0.140 0.144 0.125 0.230

2 0.077 0.077 0.082 0.082 0.144

3 0.076 0.070 0.062 0.077 0.138

4 0.081 0.081 0.103 0.092 0.164

5 0.062 0.062 0.059 0.073 0.091

6 0.046 0.046 0.044 0.050 0.066

7 0.121 0.121 0.138 0.121 0.196

8 0.264 0.264 0.210 0.231 0.317

9 0.067 0.066 0.066 0.065 0.086

10 0.292 0.292 0.380 0.265 0.425

11 0.063 0.063 0.063 0.064 0.079

12 0.058 0.058 0.053 0.061 0.088

13 0.190 0.190 0.199 0.132 0.233

14 0.085 0.086 0.094 0.069 0.104

15 0.058 0.058 0.050 0.059 0.069

16 0.411 0.409 0.406 0.340 0.684

17 0.105 0.105 0.138 0.087 0.146

18 0.074 0.074 0.076 0.073 0.127

19 0.105 0.105 0.106 0.108 0.167

AVG 0.125 0.125 0.130 0.114 0.187

with respect to SVMRBF. In order to properly examine the
performance differences between compared algorithms a one-
way ANOVA test was performed, where all AEs of prediction
were used as observations and each of the regression algorithms
was representing an individual group. The computed F-value of
one-way ANOVA test was 2.246. The associated p-value from
the F-distribution was 0.081. Since the results of performed
ANOVA tests indicate the existence of statistically significant,
albeit subtle, differences between AE obtained within each group
post-hoc t-tests were performed to investigate this furthermore.
Table 5 presents p-values obtained from performed t-tests. The
results indicate that the SVMRBF algorithm allowed to obtain a
significantly (p < 0.05) values of AE.

An additional analysis was carried out in order to validate
the proposed solution further. For this purpose, the best
performing algorithm—the SVMRBF—was trained with shuffled
reaction times. The motivation behind that is to compare
how well does the prediction work against simply learning
to predict the average reaction time for each subject. Average
MAEs obtained for each subject with this approach are
presented in Table 2 under Shuffled SVM column. Insignificant
differences in MAE between properly trained algorithms and
this would indicate that proposed approach is not using EEG
information. F-value of performed one-way ANOVA (with
Shuffled SVM included as one of the groups) was 20.901
(associated p-value is less than 10−16). This indicates some
statistical differences between groups and justifies performing

TABLE 3 | Comparison of Absolute Errors Standard Deviations obtained for

each subject.

ID LASSO

[s]

LASSO-

LARS

[s]

KernelRidge

[s]

SVMRBF

[s]

Shuffled

SVM [s]

1 0.103 0.103 0.107 0.082 0.170

2 0.062 0.062 0.073 0.056 0.102

3 0.039 0.037 0.034 0.044 0.085

4 0.056 0.056 0.072 0.061 0.102

5 0.044 0.044 0.040 0.046 0.053

6 0.020 0.020 0.024 0.025 0.038

7 0.066 0.066 0.081 0.076 0.163

8 0.141 0.142 0.123 0.163 0.262

9 0.038 0.037 0.040 0.038 0.052

10 0.165 0.165 0.196 0.111 0.230

11 0.040 0.040 0.041 0.037 0.040

12 0.040 0.040 0.044 0.042 0.061

13 0.119 0.119 0.121 0.089 0.255

14 0.055 0.055 0.057 0.044 0.081

15 0.033 0.033 0.034 0.032 0.041

16 0.253 0.252 0.312 0.172 0.590

17 0.061 0.061 0.091 0.054 0.156

18 0.058 0.09 0.058 0.055 0.131

19 0.086 0.086 0.088 0.073 0.140

AVG 0.078 0.078 0.086 0.068 0.145

TABLE 4 | Comparison of Maximal Absolute Errors obtained for each subject.

ID LASSO

[s]

LASSO-

LARS

[s]

KernelRidge

[s]

SVMRBF

[s]

Shuffled

SVM [s]

1 0.305 0.304 0.313 0.261 0.476

2 0.180 0.180 0.213 0.168 0.311

3 0.119 0.113 0.103 0.132 0.240

4 0.144 0.144 0.188 0.164 0.282

5 0.129 0.129 0.120 0.143 0.172

6 0.076 0.076 0.083 0.090 0.129

7 0.211 0.211 0.262 0.236 0.485

8 0.446 0.448 0.380 0.467 0.706

9 0.122 0.119 0.124 0.120 0.169

10 0.505 0.505 0.628 0.399 0.719

11 0.131 0.131 0.132 0.126 0.140

12 0.124 0.124 0.131 0.129 0.188

13 0.389 0.389 0.398 0.284 0.719

14 0.167 0.171 0.176 0.139 0.249

15 0.110 0.110 0.103 0.115 0.136

16 0.814 0.911 0.873 0.605 1.666

17 0.201 0.201 0.274 0.161 0.439

18 0.168 0.176 0.177 0.168 0.390

19 0.250 0.250 0.257 0.243 0.442

AVG 0.242 0.242 0.260 0.218 0.424

additional post-hoc t-tests. Results presented in Table 5 prove
that all proposed algorithms perform significantly better than
fitting average.
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TABLE 5 | p-values of pairwise t-tests performed in order to compare absolute

errors of prediction obtained with different regression algorithms.

p-value LASSO LASSO-

LARS

KernelRidge SVMRBF Shuffled

SVM

LASSO 0.991 0.627 0.043 <1E-7

LASSO-

LARS

0.991 0.619 0.044 <1E-7

KernelRidge 0.627 0.619 0.014 <1E-6

SVMRBF 0.043 0.044 0.014 <1E-10

Shuffled

SVM

<1E-7 <1E-7 <1E-6 <1E-10

Since the best performing regression algorithm—SVMRBF—
requires initial feature ranking and selection, analysis of the
nature of top predictors could provide an interesting and
valuable information. Presented in Table 6 is a summary of
most commonly selected features, across all 11 cross-validation,
for each individual subject. Figure 4 presents a histogram of
top feature selections. It can be observed that optimal subset
of features varies highly between subjects with most frequently
selected features—Gamma 1 in AF3 electrode location and
Gamma 1 in F8 electrode location—being common only for 5
subjects each. Further features—Gamma 2 (AF3 electrode), High
Beta (AF3 electrode), Delta (T7 electrode) and Gamma 2 (AF4
electrode)—were common only for 4 subjects.

4. DISCUSSION

The present study provides a novel utilization of EEG to
predict delays in response time. Indeed, we demonstrated that
it is possible to obtain satisfactory results based solely on the
processed EEG signals. The average MAE value for SVMRBF
was 114 ms. This is a relatively small error, which indicates that
the achieved results are very promising. This is particularly true
given that this is the initial phase of this work and the first time
that this problem has been approached. For all subjects, the MAE
was at least a few times smaller than their lowest reaction delay.
The other tested regression algorithms performed significantly
worse than SVMRBF; however the gap between LASSO-LARS,
LASSO, and Kernel Ridge regression was only couple seconds.
With the lowest standard deviation of prediction’s AE, SVMRBF
was also the most precise algorithm. Additional tests proved
that proposed solution performs significantly better than simple
average fitting.

Errors obtained for 12 subjects did not exceed 100 ms. A
higher score for some of the subjects emphasizes the complexity
of the problem. Additionally, another important observation can
be made—that none of the algorithms resulted in the lowest
MAE for all subjects. Altogether, these findings might indicate
that subject-specific algorithm selection might improve the
performance of the proposed solution. However, the significantly
higher errors for few subjects could be related to the phenomena
known as BCI illiteracy (Allison andNeuper, 2010). Indeed, some
studies suggest that there is a group of people not capable of using

TABLE 6 | Summary of top features selected most commonly for individual

subjects, as well as, for all subjects combined for SVMRBF algorithm.

ID Top features

1

Delta (T7), Gamma 1 (FC5), Gamma 2 (F7), Gamma 2 (FC5),Gamma 2

(F7), High Beta (FC5), High Beta (T7), Low Beta (T7), Broad (T7), Mid

Beta (T7)

2
Alpha (AF3), Alpha (F4), Alpha (F7), Alpha (T8), Delta (T8), Gamma 1 (P8),

High Beta (T8), Broad (F7), Broad (T8), Mid Beta (P8)

3 Alpha (F3), Gamma 2 (AF3), Gamma 2 (F3), Low Beta (F3), Mid Beta (P8)

4
Alpha (O1), Alpha (T7), Delta (AF4), Delta (F3), Delta (F4), Delta (F7),

Delta (FC6), Delta (P7), Delta (T7), Low Beta (F3)

5 Delta (P7), Gamma 2 (P7),Gamma 2 (P7), Mid Beta (P7)

6 Gamma 1 (AF3), Broad (AF4), Broad (F8), Raw (AF3), Raw (AF4)

7
Alpha (O1), Alpha (O2), Gamma 1 (F8), Gamma 2 (AF4), Gamma 2 (F8),

Mid Beta (F3)

8

Gamma 1 (AF3), Gamma 1 (AF4), Gamma 1 (F7), Gamma 1 (F8),

Gamma 1 (T8), Gamma 2 (AF3), Gamma 2 (AF4), Gamma 2

(O2),Gamma 2 (F8),Gamma 2 (FC5)

9
Alpha (T7), Delta (T7), Gamma 2 (T7),Gamma 2 (T7), High Beta (T7),

Low Beta (T7), Mid Beta (T7), Theta (T7)

10
Alpha (AF3), Alpha (F3), Alpha (F4), Alpha (F7), Alpha (F8), Alpha (FC5),

Alpha (FC6), Alpha (T8),Gamma 2 (F3),Gamma 2 (F7)

11
Gamma 1 (P8), Gamma 2 (F7),Gamma 2 (T7), High Beta (FC5),

Low Beta (F4), Low Beta (P8)

12
Alpha (P7), Delta (F3), Gamma 2 (AF3),Gamma 2 (F4),Gamma 2 (FC6),

High Beta (AF3), High Beta (O2), High Beta (T7), Broad (P7), Raw (F3)

13
Gamma 1 (F8),Gamma 2 (F8), High Beta (F7), High Beta (F8), High Beta

(O2), Raw (F4)

14
Alpha (AF3), Gamma 1 (AF3), Gamma 2 (AF3),Gamma 2 (AF3), High

Beta (AF3), Low Beta (F3)

15

Alpha (P8), Delta (F4), Gamma 1 (AF4), Gamma 1 (F8), Gamma 1 (O1),

Gamma 1 (P8), Gamma 1 (T8), Gamma 2 (AF4), Gamma 2 (F8),

Gamma 2 (T8)

16
Alpha (FC5), Alpha (O1), Alpha (O2), Alpha (P8), Delta (T7), Gamma 1

(T7), Gamma 2 (T7), Gamma 2 (T7), High Beta (AF3), High Beta (FC5)

17 Gamma 1 (AF3),Gamma 2 (AF3), High Beta (AF3), Low Beta (AF3)

18

Gamma 1 (AF3), Gamma 1 (AF4), Gamma 1 (F3), Gamma 1 (F4),

Gamma 1 (F8), Gamma 1 (FC5), Gamma 1 (T7), Gamma 1 (T8),

Gamma 2 (AF4), Gamma 2 (F3)

19 Alpha (O2), Gamma 1 (T7), Gamma 2 (T7), Low Beta (AF4), Broad (O2)

Overall
Gamma 1 (AF3), Gamma 1 (F8), Gamma 2 (AF3), High Beta (AF3),

Delta (T7), Gamma 2 (AF4)

Frequency ranges correspond to those listed in section 2.3.3. Values in brackets

correspond to electrode locations. Features are sorted alphabetically.

EEG-based BCI systems (Allison and Neuper, 2010; Vidaurre
and Blankertz, 2010). While this possibility must be taken into
consideration in future work this conclusion should not be drawn
hastily to explain the poorer than expected performance of the
proposed solution for some subjects.

The statistics presented in Table 1 suggest no significant trend
i.e., neither increasing nor decreasing in the lengths of delay in
response times. Additionally, high values of standard deviations
(compared to the median) might indicate that the times are
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FIGURE 4 | Histogram of cumulative feature selections for all subjects for SVMRBF algorithms. Only features selected more than once were included.

random, or at least independent from obvious variables such
as timestamp of experiment. Such high variability in the data
is a good prognostic indicator of the experiment. In particular,
when designing machine learning algorithms, great care needs
to be taken to avoid tuning the model to strong correlations
that have no actual relation to the explained or explanatory
variables. If the data where instead aligned to any monotonic
function that is dependent upon the timestamp, then relatively
low regression errors could be obtained; however, EEG-related
variables would have a negligible impact on that score. Since that
is not a case, the obtained results can be considered satisfactory
with a greater confidence.

The analysis of selected features for—the most effective—
SVMRBF algorithm was additionally performed. A high
variability between the optimal subsets of features selected for
individual subjects was observed. In particular, the greatest
number of subjects for whom same features were common
(Gamma 1 in AF3 electrode location and Gamma 1 in F8
electrode location) was 5. This is merely over 25% of the
total number of subjects. Therefore, no detailed conclusions
about the mental processes underlying fast reaction related
actions can be drawn at this stage of the experiment. Such
differences can be explained by both, or either of individual
characteristics of neural activity related to the presented task
or overlapping of bioelectrical source activity caused by the
effects of volume conduction. It is a common knowledge that
due to this phenomena analysis of cortical activity may be less

precise. Additionally, some important spatiotemporal features of
the EEG signal might not be properly observed (Blankertz et al.,
2008). Therefore, among the most important future additions
to the pipeline is the implementation of a spatial filtering step
(Blankertz et al., 2008). The use of a spatial filtering algorithm
has proven to be highly beneficial in various EEG bandpower-
based solutions (Binias et al., 2016b, 2018). Authors believe
that such addition would no only allow to further decrease the
prediction MAE, but also make the analysis of most relevant
frequency bandwidths and cortical locations more accurate
and exhaustive.

Another feature that should be tested, that may have an
impact on prediction error is the removal and correction of
short-time, high-amplitude artifacts such as eye movement,
blinking, and muscle activity. Several approaches, including
Artifact Subspace Reconstruction (ASR) or rejecting the subspace
of ICA coefficients, may provide a potent solution to this
problem (Le et al., 2011; Akhtar et al., 2012; Mullen et al.,
2013). Due to its capability for real-time application, the ASR
method, in particular, should be considered for addition to
the pipeline.

The presented solution may serve as a starting point for
future concepts and improvements. The idea of predicting the
delay in response time to an unexpected event hides a much
broader concept than the one reflected in the present experiment.
The constant monitoring of predicted reaction time might shed
new light on how pilot’s capabilities change over the course
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of a flight. These changes over time might then be used to
trigger an alarm once a significant decrease in predicted reaction
time is expected. Such an approach to addressing the problem
would then provide an overview of the overall level of fatigue,
rather than being a temporally-limited metric. A future follow-
up experiment will be conducted that includes a larger sample
size, and a measurement device that provides greater coverage
of the brain’s cortical areas. This followup experiment will
validate the proposed approach and test the potential of the
implemented solution.
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Automatic alignment of brain anatomy in a standard space is a key step when
processing magnetic resonance imaging for group analyses. Such brain registration
is prone to failure, and the results are therefore typically reviewed visually to ensure
quality. There is however no standard, validated protocol available to perform this
visual quality control (QC). We propose here a standardized QC protocol for brain
registration, with minimal training overhead and no required knowledge of brain anatomy.
We validated the reliability of three-level QC ratings (OK, Maybe, Fail) across different
raters. Nine experts each rated N = 100 validation images, and reached moderate to
good agreement (kappa from 0.4 to 0.68, average of 0.54 ± 0.08), with the highest
agreement for “Fail” images (Dice from 0.67 to 0.93, average of 0.8 ± 0.06). We then
recruited volunteers through the Zooniverse crowdsourcing platform, and extracted a
consensus panel rating for both the Zooniverse raters (N = 41) and the expert raters.
The agreement between expert and Zooniverse panels was high (kappa = 0.76). Overall,
our protocol achieved a good reliability when performing a two level assessment (Fail
vs. OK/Maybe) by an individual rater, or aggregating multiple three-level ratings (OK,
Maybe, Fail) from a panel of experts (3 minimum) or non-experts (15 minimum). Our
brain registration QC protocol will help standardize QC practices across laboratories,
improve the consistency of reporting of QC in publications, and will open the way for
QC assessment of large datasets which could be used to train automated QC systems.

Keywords: quality control, fMRI, brain registration, crowdsourcing, visual inspection, inter-rater agreement

INTRODUCTION

Aligning individual anatomy across brains is a key step in the processing of structural magnetic
resonance imaging (MRI) for functional MRI (fMRI) studies. This brain registration process allows
for comparison of local brain measures and statistics across subjects. A visual quality control (QC)
of brain registration is crucial to minimize incorrect data in downstream analyses of fMRI studies.
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However, no standardized, validated protocol has yet been
developed to streamline this QC. Here, we present a standardized
procedure for visual QC of brain registration and describe
the reliability of QC ratings from both expert raters and a
large panel of non-experts recruited through an online citizen
science platform1.

Brain Registration
Magnetic resonance imaging is a non-invasive technique that
can be applied to study brain structure (sMRI) and function
(fMRI). Multiple steps are required to transform raw MRI
data to processed images ready for downstream statistical
analyses. One critical preprocessing step is brain registration;
this involves aligning 3D brain images to a standard stereotaxic
space, such as the MNI152/ICBM2009c template (Fonov et al.,
2009). State-of-the-art registration procedures use non-linear
optimization algorithms such as ANIMAL (Collins and Evans,
1997), DARTEL (Ashburner, 2007), or ANTS (Avants et al.,
2009). Dadar et al. (2018) compared five publicly available,
widely used brain registration algorithms in medical image
analysis and found a failure rate of 16.8 ± 3.13% on
their benchmarks. This lack of robustness is mainly due
to differences in image quality, shape and cortical topology
between individual brains. A visual QC of registered brain
images is thus required to ensure good data quality for
subsequent analyses.

Visual QC
The specific focus of the visual QC for sMRI registration
depends on the intended use of the data. Voxel-based analysis
of brain morphology typically calls for a highly accurate
registration, as this step can impact brain tissue segmentation.
In contrast, fMRI studies usually rely on larger voxel size and
spatial blurring, and are less likely to be affected by small
registration errors. To our knowledge, as of yet, there are no
standardized criteria for tolerable errors in sMRI registration
for fMRI processing pipelines. Many fMRI analytical software
packages present users with images to assess the quality of
T1 image registration. In one of the most recent packages
developed by the community, fMRIprep (Esteban et al., 2019),
the registered T1 image is presented across 21 brain slices, along
with images for three other processing steps (skull stripping,
tissue segmentation, and surface reconstruction), yielding a total
of 84 brain slices for visual inspection. Established processing
tools like FMRIB Software Library (Jenkinson et al., 2012) or
the Statistical Parametric Mapping MATLAB package (Wellcome
Centre for Human Neuroimaging, n.d.) also present users with
reports that often include more than ten brain slices for visual
inspection for each subject. This makes visual inspection tedious
and time-consuming. Critically, none of these packages offer
guidelines on how to assess the quality of structural brain
registration for fMRI studies. Without such guidelines and with
a large number of images to review, QC is likely to vary
significantly across raters.

1www.zooniverse.org

Inter-Rater Agreement
Quality control studies of preprocessed images rarely report
inter-rater reliability, and no such study examined brain
registration to our knowledge. Pizarro et al. (2016) applied a
support vector machine algorithm on visually rated (N = 1457
usable/unusable) sMRI data from 5 to 9 investigators who rated
the same 630 images, but did not report agreement metrics. White
et al. (2018) compared automated QC metrics and manual QC
from 6662 sMRI data from 4 different cohorts/sites, merging
visual inspection across sites, raters, protocols and scan quality
but without presenting agreement statistics. Studies that do
report inter-rater agreement mostly focus on issues related to raw
MRI images (e.g. signal-to-noise ratio or susceptibility artifacts),
head motion (e.g. ghosting or blurring), brain extraction, and
tissue segmentation. Inter-rater agreement in these studies is
found to vary considerably. For example, Backhausen et al. (2016)
reported high agreement for two trained raters who visually
inspected the same 88 sMRI, achieving an intra-class correlation
of 0.931 for two categories of quality (pass-fail) on issues related
to MRI acquisition and head motion. Esteban et al. (2017)
reported a kappa of 0.39 between two raters for three quality
categories (Exclude/Doubtful/Accept) on 100 images when
ratings were based on the quality of the MRI acquisition, head
motion, brain extraction and tissue segmentation. Table 1 shows
recent (2010 onward) studies reporting inter-rater agreements
on visual QC of sMRI for a variety of issues. Only one study,
Fonov et al. (2018), included brain registration for visual QC
assessment. These authors reported a test-retest Dice similarity
of 0.96% from one expert rater who evaluated as pass or fail 1000
images twice, but no inter-rater reliability estimate. Variability in
reliability across studies may be due to two types of factors: user-
and protocol-related factors. Protocol-related factors (e.g. clarity,
levels of rating or training set) can be addressed by multiple
iteration and refinement of the protocol. Factors related to the
rater (e.g. level of expertise, fatigue, motivation, etc.) are more
difficult to constrain or control. One solution to circumvent
individual rater variability is to aggregate multiple ratings from
a large pool of raters.

Crowdsourced QC
Crowdsourcing can be used to achieve multiple QC ratings
on large collections of images rapidly. Crowdsourcing, as first
defined by Howe in 2016, is “ the act of taking a job traditionally
performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of people in
the form of an open call” (Howe, 2006). Crowdsourcing can be
used in citizen science research projects where a large number
of non-specialists take part in the scientific workflow to help
researchers (Franzoni and Sauermann, 2014; Simpson et al.,
2014). Crowdsourcing labor-intensive tasks across hundreds or
thousands of individuals has proven to be effective in a number
of citizen science research projects, such as modeling complex
protein structures (Khatib et al., 2011), mapping the neural
circuitry of the mammalian retina (Kim et al., 2014), and
discovering new astronomical objects (Cardamone et al., 2009;
Lintott et al., 2009).
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TABLE 1 | Reported agreement in visual inspection of sMRI data on QC studies.

Reported visual inspection issue related to

Study QC agreement details MRI Aquisition Head motion Brain extraction Tissue segmentation Brain registration

Backhausen et al.,
2016

Nb. Images 88 Image sharpness,
ringing. Contrast to
noise ratio
(subcortical
structures and
gray/white matter)
and susceptibility
artifacts

Ghosting or blurring N.R N.R N.R

Nb. Raters 2

Rating scale Include/Exclude

QC Manual Supplementary Material

Agreement ICC = 0.93

Esteban et al.,
2017

Nb. Images 100 signal-to-noise
ratio. Image
contrast and
Ringing

Head motion
artifacts

Gray/white matter
and the pial
delineation

Gray–white matter
segmentation

N.R
Nb Raters 2

Rating scale Exclude/Doubtful/
Accept

QC Manual N.R

Agreement Cohen’s Kappa = 0 39

Rosen et al., 2018 Nb. Images Phasel = l00, Phase2 = 100 N.R N.R N.R N.R N.R

Nb. Raters Phase1 = 2, Phase2 = 3

Rating scale 0/1/2

QC Manual N.R

Agreement Phasel = 100%,
Phase2 = 85%

Fonov et al., 2018
(preprint)

Nb. Images 9693 (1000 rated twice) Effect of noise and
image intensity
non-uniformity

N.R N.R N.R Incorrect estimates
of, translation,
scaling in all
directions and
rotation.

Nb. Raters 1

Rating scale Accept/Fail

QC Manual Dadar et al., 2018 paper

Agreement intra-rater Dice
similarity = 0.96

Klapwijk et al.,
2019

Nb. Images 80 N.R Ringing Division between
gray/white matter
and pial surface

Gray–white matter
segmentation

N.R

Nb. Raters 5

Rating scale Excellent/Good/
Doubtful/Failed

QC Manual Supplementary Material

Agreement Reliability = 0.53

QC studies since 2010 that uses sMRI and reported their inter/intra-raters agreement (Pizarro et al., 2016; Esteban et al., 2017; Dadar et al., 2018; Fonov et al., 2018; Rosen et al., 2018; Klapwijk et al., 2019). N.R: Not
reported.
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In brain imaging, recent work by Keshavan et al. (2018)
showed the advantages of using citizen science to rate brain
images for issues related to head motion and scanner artifacts.
These authors were able to gather 80,000 ratings on slices drawn
from 722 brains using a simple web interface. A deep learning
algorithm was then trained to predict data quality, based on the
gathered rating from citizen science. The deep learning network
performed as well as a the specialized algorithm MRIQC (Esteban
et al., 2017) for quality control of T1-weighted images. QC
of large open access databases like HCP (Glasser et al., 2016),
UKbiobank (Alfaro-Almagro et al., 2018) or ABCD (Casey et al.,
2018) is challenging and time consuming task if done manually.
Using crowdsourced rating could be a key element to rate huge
databases and eventually use these ratings to efficiently train a
machine learning models to perform QC.

Here, we propose a novel, standardized visual QC protocol
for the registration of T1 images by non-experts. We formally
assessed protocol reliability, first with “expert” raters familiar
with visual inspection of brain registration, and second with a
large pool of “non-expert” raters with no specific background
in brain imaging. These citizen scientists contributed via the
world’s largest online citizen science platform, called Zooniverse
(Simpson et al., 2014). Zooniverse enabled the enrollment of
more than 2000 volunteers from around the globe, thus enabling
the evaluation of consensus between non-expert raters on a large
scale. Specific aims and hypotheses of the study were as follows:

1. To establish a QC procedure for MRI brain registration
that does not require extensive training or prior
knowledge of brain anatomy. Our hypothesis was
that such a procedure would help raters achieve more
reliable visual QC.

2. To quantify the agreement between a consensus panel
composed of non-expert raters and that of experts. Our
hypothesis was that the consensus of non-experts would
be consistent with experts’ assessments, since the protocol
requires no knowledge of brain anatomy.

METHOD

Quality Control Protocol Building
The QC protocol was developed iteratively over the past 5 years,
with several rounds of feedback from users. Initially, the protocol
was used internally in our laboratory (Yassine and Pierre, 2016),
and required a visual comparison of T1 slices against a template
using the Minctool register (Janke and Fonov, 2012). Although
the protocol achieved good consistency of ratings between two
expert users (kappa = 0.72), it was time consuming and hard
to teach. We then switched from an interactive brain viewer
to a static mosaic comprised of 9 different slices (3 axial, 3
sagittal, 3 coronal, see Figure 1B), and we highlighted anatomical
landmarks using a precomputed mask. These landmarks were
selected because we expected all of them to align well in the case
of a successful registration, and the precomputed mask served as
an objective measure to decide on the severity of a misalignment.
We established guidelines on how to rate a registered image

on a three-level scale (“OK,” “Maybe,” or “Fail”) using these
landmarks. The new protocol limited the need for extensive
training for new users and potentially reduced the subjectivity of
decision, notably for edge cases. The following sections describe
the details and the validation of the final protocol (brain slices,
landmarks and rating guidelines).

Brain Slices
A mosaic view of nine brain slices was extracted from each
registered brain. The x, y, and z coordinates, corresponding to
axial, coronal and sagittal views, were as follows:

x (sagitai) y (coronal) z (axial)

−50 −65 −6
−8 −20 13
30 54 58

Two images were generated: one using the individual T1 image
of a subject, after brain registration, and one using the MNI2009c
MRI T1 template averaged from 152 adults after iterative non-
linear registration (Fonov et al., 2011), see Figure 1A.

Anatomical Landmarks
Notable anatomical landmarks included the central sulcus,
cingulate sulcus, parieto-occipital fissure, calcarine fissure,
tentorium cerebelli, lateral ventricles, bilateral hippocampal
formation and the outline of the brain (see Figure 1B). To
highlight these landmarks, we hand-drew a red transparent
outline inside the brain with the MRIcron drawing tool (Rorden,
2014) using the MNI 2009 gray matter atlas as a reference. For
the outline of the brain, we substracted a 4-mm eroded brain
mask (MNI2009c release) from a 4-mm dilated brain mask. This
process resulted in a roughly 8-mm thick mask centered on the
outline of the brain in template space. The landmark boundaries
served as the “confidence interval” of acceptable registration.
The width of this confidence interval was somewhat arbitrary,
but critically helped raters to consistently assess what amount
of misregistration was acceptable. The scripts to generate the
mosaic brain images with highlighted landmarks have been made
available in the GitHub repository2.

Rating Guidelines
We instructed raters to focus on the brain structures within the
red anatomical landmarks, comparing the individual brain, after
registration, with the MNI 2009c template. The two images were
presented superimposed with each other, and raters were able to
flip manually or automatically between the individual and the
template brain. For a given anatomical landmark, raters were
asked to tag any part of the brain structure that fell outside of
the anatomical landmark for the individual brain. The template
acted as a reference for what the structure looked like, and where
it was supposed to be. Figure 1C provides examples of acceptable
and unacceptable registration of brain structures within the

2https://github.com/SIMEXP/brain_match
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FIGURE 1 | QC protocol for brain registration. (A) Brain slices. The rater is presented with two sets of brain slices (3 axial, 3 sagittal and 3 coronal), one of them
showing the template in stereotactic space and the other showing an individual T1 brain after registration. In the interface, the two images are superimposed and the
rater can flip between them to visually assess the registration. (B) Anatomical landmarks. The landmarks for QC included: the outline of the brain (A), tentorium
cerebelli (B), cingulate sulcus (C), parieto-cingulate sulcus occipital fissure (D), calcarine fissure (E), the lateral ventricles (F), central sulcus (G) and the hippocampal
formation (H) bilaterally. The landmarks were outlined in stereotaxic space. (C) Rating guidelines. The boundaries of red landmarks act as “confidence interval” for
registration: an area is tagged as a misregistration only if the target structure falls outside the boundaries. (D) Tags. Raters put tags on each misregistered brain
structure. (E) Final rating. A final decision is reached on the quality of registration: an image with no tags is rated OK, one or more non-adjacent tags are rated
Maybe, two or more adjacent tags are rated Fail. An image that is excessively blurry is also rated Fail.

landmarks. Raters were instructed to click all misregistered brain
structures, which resulted in a series of tag spheres with 4 mm
radius (Figure 1D). After an image was fully tagged, the overall
registration quality was evaluated by the rater as follows:

• “OK” if no tag was reported,
• “Maybe” if one or several regions were tagged, yet no tag

spheres overlapped (less than 8 mm apart),
• “Failed” if two tag spheres overlapped, meaning that

an extensive brain area (>8 mm) was misregistered.
Alternatively, a “Failed” rating was also issued if the entire

image was of poor quality due to motion or a ringing artifact
(Figure 1E).

Zooniverse Platform
We used the online citizen science platform Zooniverse (Simpson
et al., 2014) as an interface to perform the validation of our
QC protocol3. Zooniverse offers a web-based infrastructure
for researchers to build citizen science projects that require a
human visual inspection and possibly recruit a large number of
zooniverse volunteers, who are not familiar with neuroimaging

3https://www.zooniverse.org/projects/simexp/brain-match
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and have no formal requirements to participate (Franzoni
and Sauermann, 2014; Simpson et al., 2014). Our project,
called “Brain match” was developed with the support of the
Zooniverse team, to ensure compliance with Zooniverse policies
and appropriate task design for an online audience4, and the
project was also approved by our institutional review board.
Note that the raters were considered part of the research team,
and not participants of the research project, and thus they were
not required to sign an informed consent form. The project
underwent a “beta review” phase on zooniverse, where we
collected feedback on the clarity and difficulty level of the task.
Rating was performed by Zooniverse raters and expert raters. All
ratings were performed on the zooniverse platform through the
Brain Match dashboard5. The rating workflow was the same for
the two types of types raters. Note that individuals participating
in Zooniverse choose to voluntarily dedicate some of their time
to science and thus do not constitute a representative sample of
the general population.

Brain Images Validation and Training
Sets
We used a combination of two publicly available datasets,
COBRE (Mayer et al., 2013) and ADHD-200 (Bellec et al.,
2017), for both the beta and the full launch of the project.
These datasets have been made available after anonymization by
consortia of research team, each of which received ethics approval
at their local institutional review board, as well as informed
consent from all participants. Each individual sMRI scan was
first corrected for intensity non-uniformities (Sled et al., 1998)
and the brain extracted using a region growing algorithm (Park
and Lee, 2009). Individual scans were then linearly registered
(9 parameters) with the T1 MNI symmetric template (Fonov
et al., 2011). The sMRI scans were again corrected for intensity
non-uniformities in stereotaxic space, this time restricted to the
template brain mask. An individual brain mask was extracted a
second time on this improved image (Park and Lee, 2009) and
combined with template segmentation priors. An iterative non-
linear registration was estimated between the linearly registered
sMRI and the template space, restricted to the brain mask
(Collins et al., 1994). The processed data were finally converted
into mosaics and merged with a mask of anatomical landmarks
using in-house scripts. Two expert raters (PB,YB) rated each 954
preprocessed images in ADHD-200, achieving a kappa of 0.72
(substantial agreement) from a random subset of 260 images. The
COBRE dataset was rated by YB only.

On Zooniverse, raters were first invited to read a tutorial
(Supplementary Figure S2) explaining the protocol, and then
completed a QC training session, featuring 15 selected images
(5 rated OK, 5 rated Maybe and 5 rated Fail, as rated by YB).
Because the COBRE structural images were of higher quality, OK
images were selected from COBRE while Maybe and Fail were
selected from ADHD-200. For each training image, the rater was
first asked to assess the image, and was then able to see the tags
and the final ratings by an expert rater (YB).

4https://www.zooniverse.org/lab-policies
5https://www.zooniverse.org/projects/simexp/brain-match

After completing the training session, raters were presented a
series of 100 “open label” cases, and were free to rate as many of
these images as they wanted. We chose to present only 100 images
in order to ensure we would have many ratings by different raters
for each image, within a relatively short time frame. We arbitrary
selected a subset of 100 images with a ratio of 35 Fail, 35 Maybe,
and 30 OK images based on one expert rater (YB). Once again, the
OK images were drawn from COBRE, while the Fail and Maybe
were drawn from ADHD-200.

Raters
More than 2500 volunteers took part in our Brain Match project.
They performed approximately 21,600 ratings of individual
images over 2 beta-testing phases and two full workflows for a
total of 260 registered brain images (see Brain images section).
We used a retirement of 40 ratings, which means each image
was rated by 40 different Zooniverse raters before being removed
from the workflow. Only individuals who rated more than 15
images were kept in the final study. After data cleaning, 41
Zooniverse volunteer raters were kept. The distribution of rating
per image showed a mean number of ratings of 21.76± 2.75 (see
Supplementary Figure S1).

A group of 9 experts raters were also recruited for this study
and each asked to rate all of the 100 validation images using the
Brain Match interface. They were instructed to first start with the
training session and to carefully read the tutorial before starting
the main QC workflow. All raters had prior experience with QC
of brain registration in the past. Each rater was free to perform
the QC task at her pace without any specific direction on how to
do it. The process was completed once all ratings were submitted.

Finally, a radiologist was also recruited for the study. He
rated the same 100 images using Brain Match interface, also
undergoing the training session before the rating process.
Although the radiologist had no prior experience in QC of
brain registration, that participant had very extensive experience
in examining brain images following a standardized protocol,
and served as a gold standard about what to expect from a
fully compliant rater, trained on QC solely through available
online documentation.

Agreement Statistics
We used Cohen’s kappa (Cohen, 1960) to assess inter-rater
reliability across all nine experts (ratings R1–R9). The kappa
metric measures the agreement between two raters who rate the
same amount of items into N mutually exclusives categories. The
kappa is based on the difference between the observed agreement
(po, i.e. the proportion of rated images for which both raters
agreed on the category) and the probability of chance or expected
agreement (pe). Kappa (k) is computed as follows:

k =
po − pe

1− pe

In this work we used a weighted kappa metric, which assigns
less weight to agreement as categories are further apart
(Cohen, 1968). In our QC cases disagreements between OK
and Maybe, and between Maybe and Fail count as partial
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disagreements; disagreements between OK and Fail, however,
count as complete disagreements. We used the R package irr
(Gamer, 2012) to estimate the weighted kappa and Landis
and Koch’s (1977) interpretation of the strength of agreement
for κ ≤ 0 = poor, 0.01–0.20 = slight, 0.21–0.40 = fair,
0.41–0.60 = moderate, 0.61–0.80 = substantial, and 0.81–
1 = almost perfect.

We also used the Sørensen–Dice coefficient (Dice) to assess
the agreement within the rating categories of OK, Maybe and Fail
(Sørensen et al., 1948), as follows:

DSC =
2
∣∣X⋂Y

∣∣
|X| + |Y|

where X is the set of images rated “OK” by one rater and Y is the
set of images rated “OK” by a second rater,

⋂
is the intersection

between two sets, and |X| is the number of images. In plain
English, the Dice between two raters for the OK category is the
number of images that both raters rated “OK,” divided by the
average number of images rated “OK” across the two raters. The
same Dice measure was generated as well for “Maybe” and “Fail”
images. We interpreted Dice coefficients using the same range of
strength of agreement as for the Kappa coefficient (≤0 = poor,
0.01–0.20 = slight, 0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–
0.80 = substantial, and 0.81–1 = almost perfect).

Consensus Panels
We also evaluated the reliability of QC ratings after pooling
several raters into a consensus panel. The panel consensus was
generated by counting the number of OK, Maybe and Fail
attributed to an image from different raters (number of votes).
The category with the highest vote count was selected as the
consensus on that specific image for the panel. If there was a
tie between 2 or 3 categories, the worst category was selected
(Fail < Maybe < OK).

We tested different panel configurations, large and small,
for expert and Zooniverse raters separately. Large panels were
composed either by all 9 experts (panel Ec) or 41 Zooniverse
users (panel Zc). We compared the agreement between Ec and
Zc versus each individual expert rater (R1 to R9) as well as the
ratings from the radiologist (Ra). For small panel, experts were
arbitrarily split into three panels of three raters (panels Ec1, Ec2,
and Ec3). The Zooniverse users were also arbitrarily split into
two independent consensus panels of roughly equal size (Zc1 and
Zc2). We quantified the agreement between small panels, as well
as small vs. large panels.

RESULTS

Expert Raters Achieved Moderate
Agreement, With “Fail” Rating Being the
Most Reliable
Kappa agreement between expert raters across the three classes
(OK, Maybe, Fail) was moderate to substantial (range 0.4–0.68,
average of 0.54 ± 0.08), see Figure 2. However, there were
marked differences in agreement across the three rating classes.

The highest reliability was for “Fail,” with between-rater Dice
agreement ranging from substantial to almost perfect (0.67–0.93,
average of 0.8 ± 0.06). The second class in terms of reliability
was “OK,” with Dice ranging from fair to strong (0.38–0.76), and
the least reliable class was “Maybe,” with Dice agreements ranging
from slight to strong (0.23–0.72).

Large Panel of Experts or Zooniverse
Raters Give Convergent, Reliable QC
Ratings
We found that the kappa between Ec and individual expert
raters was, as expected, improved over comparison between
pairs of individual experts, with a range from moderate to
strong (0.56–0.82), see Figure 3. As observed before, the Dice
scores for Ec were highest in the “Fail” category (almost perfect
agreement, range of 0.76–0.98), followed by the “OK” category
(from substantial to almost perfect: range 0.66–0.85) and finally
“Maybe” (fair to almost perfect, ranging from 0.38 to 0.8). These
findings confirmed our previous expert inter-rater analysis, with
“Fail” being a reliable rating, “Maybe” being a noisy rating,
and “OK” being a moderately reliable rating. When comparing
the individual experts with the Zooniverse panel Zc, we only
observed a slight decrease in average Kappa compared with
the Expert panel (0.61 for Zc vs. 0.7 for Ec), mostly driven
by the “Fail” (0.82 for Zc vs. 0.88 for Ec) and “Maybe” (0.58
for Zc vs. 0.68 for Ec) ratings. When directly computing the
agreement between the two consensus ranels Ec and Zc, the
kappa was substantial (0.76), with almost perfect agreement for
“Fail” (Dice 0.9) and “OK” (0.82), and substantial agreement for
“Maybe” (0.77), see Figure 3. This comparison demonstrated that
aggregating multiple ratings improved the overall quality, and
that expert and zooniverse raters converged to similar ratings.
The radiologist achieved a level of agreement with panels similar
to what was observed with expert raters, and was substantially
lower than the agreement between panels. This shows that the QC
training material alone was enough for a radiologist to agree with
QC experts, but a single user can likely not achieve high quality
QC ratings by herself.

Small Consensus Panels of Expert
(N = 3) or Zooniverse (N = 20) Raters
Achieve Reliable QC Ratings
Once we established that large panels of raters lead to high levels
of agreements, our next question was to determine whether small
panels could also lead to reliable assessments. The small expert
panels Ec1-3 reached lower agreement with Zc than the full Ec.
Specifically, kappa was 0.64, 0.64, and 0.73 for Ec1 to Ec3 (with
respect to Zc), compared to kappa of 0.76 for Ec vs. Zc. Similar
observations were done when breaking down the comparison
per category with Dice, with a decrease of 5% to 10% in this
coefficient (see Figure 4). Comparing small zooniverse panels
Zc1-2 with the full expert panel Ec, a slight decrease in reliability
was observed, very similar in magnitude with comparisons
between Ec1-3 and Zc. The agreements Ec1-3 vs. Zc, as well as
Zc1-2 vs. Ec, remained substantial. This suggests that reliable
three-level QC assessments can be performed by small panels of
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FIGURE 2 | Between-expert agreement. (A) Matrix of Kappa agreement between raters (top). Note that R1 to R9 are identification codes for the different expert
raters. The distribution of agreement is also presented (bottom). For example, the boxplot for R1 shows the agreement between R1 and R2-R9. (B–D) Matrix and
distribution for the Dice agreement between raters in the OK (B), Maybe (C), and Fail (D) categories.

FIGURE 3 | Zooniverse, expert and radiologist agreements. (A) Matrix of Kappa agreement between consensus of experts (Ec), zooniverse users (Zc) and radiologist
(Ra) raters, in rows, vs. individual experts (R1–R9), in column (top). The distribution of agreement is also presented (bottom). (B–D) Matrix and distribution for the
Dice agreement in the OK (B), Maybe (C), and Fail (D) categories.

three experts (n = 3), or moderate panels of zooniverse users, with
roughly 20 assessments by image (see Supplementary Figure S1
for distribution).

DISCUSSION

This project proposes a standardized QC protocol with minimal
training overhead and no required knowledge of brain anatomy.
Our goal was to quantify the reliability of QC ratings between
expert raters, as well as panels of expert or Zooniverse raters.
Overall, our results demonstrated that our protocol leads to good
reliability across individual expert raters, in particular for “Fail”
images, and good reliability across panels of raters (both experts
and Zooniverse), even for panels featuring only three experts.

To our knowledge, this is the first quantitative assessment of
between-rater agreement on QC of brain registration.

Visual QC
Our protocol was designed to be simple enough that even a
rater without brain anatomy knowledge or prior QC experience
could generate meaningful ratings. The mosaic view of 9 slices
used in our protocol is similar to display images used in fMRI
preprocessing tools like MRIQC (Esteban et al., 2017), fMRIPrep
(Esteban et al., 2018) or CONN (Whitfield-Gabrieli and Nieto-
Castanon, 2012). These QC tools also use an overlay that
highlights brain borders or tissues segmentation. Differentiating
aspects of our protocol are (1) fewer number of brain slices
in the mosaic view, so that raters can more easily examine
all presented images and (2) the overlay provides an objective
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FIGURE 4 | Agreement between small panels of raters for both experts and Zooniverse panels. (A) Matrix of Kappa agreement between large panel consensus of
experts (Ec), zooniverse users (Zc) and a small panel of expert (Ec1 = 3 rater, Ec2 = 3 rater, Ec3 = 3 rater) and small panel of Zooniverse raters (Zc1 = 20 rater,
Zc2 = 21 rater) (top). The distribution of agreement is also presented (bottom). (B–D) Dice distribution between group consensus in the OK (B), Maybe (C), and Fail
(D) categories.

confidence interval to assess the severity of misregistration in
key anatomical landmarks. We believe that these two design
principles helped reduce the subjectivity of brain registration
QC, and increase between-rater agreement, although we did not
formally test these hypotheses.

Inter-Rater Agreement
Table 1 shows that the visual QC agreement reported in recent
studies ranged from 0.39 to 0.9. Interestingly, the studies which
reached high levels of agreement (0.93–0.96) used ratings with
only two levels (ex: pass, fail). Studies with three or more rating
levels reported lower agreement scores (0.39–0.85), which were
in line with our findings (average of 0.54 for experts). The most
challenging rating in our protocol appeared to be the “Maybe”
class, featuring mild, spatially limited registration errors. In
contrast, good and failed registrations were easily detectable by
expert raters. When working with three levels of ratings, the
reliability of our protocol is not high enough to work with a
single rater. We found that a consensus panel of three experts
was sufficient to reach a good level of agreement (average of
0.64), which appears as a minimum panel size to generate high
quality QC scores. Aggregating rating between expert or non-
expert is a good solution to overcome the variability among
human observers on the QC task.

Crowd Sourced QC
Crowdsourcing QC rating could be one solution to generate high
quality QC ratings in big datasets like the UK biobank (Alfaro-
Almagro et al., 2018). A recent work from Keshavan et al. (2018)
showed that crowdsourced QC ratings on raw brain images can
reach the performance of an automated state-of-the-art machine

learning QC tool (Esteban et al., 2017). This work relied on
a large pool (N = 261) of participants, many of whom had
prior experience in neuroimaging. We recruited more than 2000
zooniverse non-expert raters, and found that a consensus panel of
non-experts with adequate size (about 40 ratings per image) leads
to QC ratings of similar quality to a panel of three experts.

Limitations of the Study
Our study has a number of limitations. First, our protocol
is intended to be used with anatomical brain registration in
the context of fMRI analyses in volumetric space, rather than
surface. Structural brain imaging studies (i.e. cortical thickness)
or surface-based fMRI analyses need other protocols that
examine more closely fine anatomy and tissue segmentation.
Also, our primary use case is large-scale research studies, and
not clinical applications. Some clinical applications may require
more stringent standards being applied on brain registration. Our
protocol was validated with a specific brain registration tool, the
CIVET pipeline, and may not be well suited for other algorithms.

Second, we did not control for screen size, screen resolution
or fidelity of color representations in our validation, be it with
experts or zooniverse individuals. The main use case for our
protocol is the review of thousands of brain registration [e.g.
in the ABCD sample (Casey et al., 2018)] in a relatively short
span of time. The quality control procedure only examines
coarse anatomical landmarks, and the required precision of the
alignment is on the order of couple of millimeters. For that
reason, we think that the characteristics of the screen will not
affect significantly between-rater agreement. This is however a
potential source of variations which may have decreased the
observed agreement, both between experts and zooniverse raters.
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Third, The success rate of our registration tool varies widely
as a function of the imaging protocol. The Cobre dataset has
almost only OK registration, while the ADHD has a lot of Maybe
and some Fail. So we decided to mix two dataset, in order
to assemble representative examples of the three classes. This
may influence the results by increasing the potential agreement,
if subjects learned to recognize which datasets the examples
originated from.

Fourth, our choice on the number of rated images (N = 100)
was selected arbitrarily. We checked the appropriateness of that
choice by assessing the minimum number of rated cases with a
three-choice decision using the R package “irr” (Gamer, 2012),
that uses the minimum sample size estimation formula from
Flack et al. (1988). We estimated the minimum sample size under
the following scenario. The vector of marginal probability was
given by rates for the 3 categories, OK = 0.3, Maybe = 0.35
and Fail = 0.35. These marginal probabilities were decided by
our team when designing the dataset, based on an initial QC
assessment performed by YB and PB. The value of kappa under
the null hypothesis was set equal to 0.5 (k0 = 0.5) – i.e. we want
to demonstrate an improvement over a baseline κ of 0.5. The
true kappa statistic estimated between two expert was set equal
to 0.72 (k1 = 0.72), as was observed in our sample. The type I
error test was set equal to 0.05 (α = 0.05). The desired power to
detect the difference between the true kappa and the null kappa
was investigated at 0.8 and 0.9, separately. The required number
of ratings was estimated at N = 54 for a power of 0.8, and N = 72
for a power of 0.9. In our case, the number of images rated per
expert was N = 100, which is more than required by the power
analysis.

Fifth, We were unable to assess to what degree this protocol
improves or not over current best practices in the fMRI
community, in the absence of other standardized protocols
available for comparison. We still produced preliminary evidence
while developing the current protocol. During the beta phase
of our project, we tested the agreement between consensus of
Zooniverse raters and experts raters (on 29 images). The protocol
used during that phase was different from the actual one. In
particular, we did not instruct raters on how to take the final
decision on the quality of registration (Figures 1C–E), and we did
not offer a training set. The kappa measure between consensus
Zooniverse raters and an expert during phase 1 was 0.34, by
contrast with 0.61 using the current protocol. We regard these
results as preliminary evidence that our protocol improves over
our previous iteration. These results are to be interpreted with
caution, as the number of images rated was low and we used
only one expert rating. Note that the feedback received by beta
testers helped us identify the importance of steps described
in Figures 1C–E, and we suspect that protocols that do not
include such detailed explanation have poor reliability. But we
did not attempt to demonstrate this formally within the scope of
the present study.

Finally, our protocol is missing an evaluation of another
key registration step, i.e. alignment between functional images
and the structural scan (Calhoun et al., 2017). We are
currently working on an extension of our protocol for
functional registration.

Future Work: Impact of QC on
Downstream Analyses
Despite the ubiquity of visual brain registration QC in the
neuroimaging research community, the impact of visual QC
of brain registration on statistical analyses remains poorly
characterized. Gilmore et al. (2019) used a multi-site dataset of
structural MRI images with different age ranges to show how
automated image quality metrics impacted regional gray matter
volumes and their relationship with age. Ducharme et al. (2016)
showed a significant impact of visual QC on the estimation
of cortical trajectories. They demonstrated that, when omitting
to discard subjects that did not pass QC, the developmental
trajectory of cortical thickness followed a quadratic or cubic
trend. By contrast, after filtering those subjects, the trajectory
followed a linear trend. Standardizing the QC protocol will allow
different laboratories to join their effort of rating and open up
new opportunities to systematically investigate the impact of
visual QC on the relationship between the brain and various
phenotypes. This represents an important area of future work for
brain registration.

CONCLUSION

Our QC protocol is the first reliable visual protocol for
brain registration in fMRI studies. The protocol is easy to
implement and requires minimum training effort. This protocol
demonstrates a good reliability when performing a two level
assessment (Fail vs. OK/Maybe) by an individual rater, or
aggregating multiple three-level ratings (OK, Maybe, Fail) from
a panel of experts (3 minimum) or non-experts (15 minimum).
The images necessary to apply the protocol can be generated
using an open-source tool, called dashQC_fmri (Urchs et al.,
2018) and a live version can be tested on this link https://simexp.
github.io/dashQC_BrainMatch/index.html. We hope this new
protocol will help standardize the evaluation and reporting of
brain registration in the fMRI community. This standardization
effort will also enable the generation of high quality QC ratings on
large amounts of data, which will in turn allow to train machine
learning models to automatically perform brain registration QC,
alleviating the need for visual review.
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Monte-Carlo Diffusion Simulations (MCDS) have been used extensively as a ground truth

tool for the validation of microstructure models for Diffusion-Weighted MRI. However,

methodological pitfalls in the design of the biomimicking geometrical configurations

and the simulation parameters can lead to approximation biases. Such pitfalls affect

the reliability of the estimated signal, as well as its validity and reproducibility as

ground truth data. In this work, we first present a set of experiments in order to study

three critical pitfalls encountered in the design of MCDS in the literature, namely, the

number of simulated particles and time steps, simplifications in the intra-axonal substrate

representation, and the impact of the substrate’s size on the signal stemming from

the extra-axonal space. The results obtained show important changes in the simulated

signals and the recovered microstructure features when changes in those parameters

are introduced. Thereupon, driven by our findings from the first studies, we outline a

general framework able to generate complex substrates. We show the framework’s

capability to overcome the aforementioned simplifications by generating a complex

crossing substrate, which preserves the volume in the crossing area and achieves

a high packing density. The results presented in this work, along with the simulator

developed, pave the way towardmore realistic and reproducible Monte-Carlo simulations

for Diffusion-Weighted MRI.

Keywords: diffusion, MRI, Monte-Carlo, simulations, microstructure, white matter

1. INTRODUCTION

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive technique with
enormous potential for the study of the brain’s microstructure by measuring the diffusion
properties of biological tissue. For instance, state-of-the-art methods can use these measurements
to estimate tissue properties of the brain white matter, e.g., axonal diameter estimations (Assaf
et al., 2008), orientation and volume fraction of the axonal bundles (Zhang et al., 2011; Daducci
et al., 2015b) and neurite dispersion (Zhang et al., 2012). The previous information is valuable
to understand the brain’s maturation (Nilsson et al., 2012; Sexton et al., 2014) as well as the
degeneration process associated with neuronal diseases like axonal degeneration (Lovas et al., 2000)
and multiple sclerosis (Trapp et al., 1998).
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In DW-MRI, an attenuated signal is usually recovered via
a Pulsed Gradient Spin-Echo protocol (PGSE) (Stejskal and
Tanner, 1965) sensitive to the displacement of the water
molecules. Analytical solutions of the signal attenuation can
be derived for simple geometrical shapes such as impermeable
planes, cylinders, and spheres (Neuman, 1974). However, for
applications where the signal attenuation of complex cellular
structures or non-homogeneous media is needed, e.g., to
generate ground truth data, an analytical solution is no longer
feasible to pursue due to its inherent complexity. Because of
this, simplifications of the diffusion media have been used as
the backbone of most of the microstructure models in the
literature (Bammer, 2003; Panagiotaki et al., 2012; Zhang et al.,
2012; Ferizi et al., 2015).

Monte-Carlo Diffusion Simulations (MCDS) provide a
fundamental approach to study the diffusion phenomena in
scenarios where the analytical solutions cannot be computed
due to their complexity. In contrast with other numerical
methods, MCDS does not require an explicit model of the
diffusion signal for a given geometry. Instead, MCDS require an
accurate geometrical and physical representation of the diffusion
media (called the substrate), a large number of samples, and
an acquisition protocol like the classical Pulsed Gradient Spin-
Echo (PGSE). In general, an accurate approximation of the
diffusion signals, mimicking the ones obtained from the brain’s
white matter, can be computed if the substrate captures the
relevant white matter microstructure features and the simulation
parameters are tuned properly (number of samples and their
step sizes). Despite this, many simplifications are usually used
in order to decrease the computational burden. The most
common ones include the use of substrates of small size,
the use of a limited number of samples, the use of simple
geometries, and the restriction of the 3D diffusion to the 2D
case (Lipinski, 1990; Szafer et al., 1995; Fieremans et al., 2010;
Dyrby et al., 2013).

Lipinski (1990) presented the first work, to the best of our
knowledge, which employs MCDS to study the extracellular
diffusion in brain tissue. In this work, 2D histological data
was used to draw binary contours to be used as irregular
intracellular barriers. From this study on, most studies simplified
the representation of the extracellular space as a collection
of restricted corridors in the orthogonal plane of the axonal
direction and unrestricted parallel to them (Novikov et al., 2011;
Dyrby et al., 2013; Sanguinetti and Deriche, 2014; Lin et al.,
2016). In addition, the intracellular compartment is usually
idealized as a collection of parallel hollow cylinders with constant
radii or radii sampled from a distribution estimated from
histological data (Fieremans et al., 2008; Hall and Alexander,
2009; Alexander et al., 2010; Raffelt et al., 2012). Recent studies
have suggested that such simplification cannot capture the
complexity of the axonal structures of white matter, and thus
its diffusion characteristics (Nilsson et al., 2013; Ginsburger
et al., 2018). For instance, changes in the diffusion signal
and parameters derived from the diffusion tensor, such as the
fractional anisotropy (FA) and mean diffusivity (MD), were
obtained by introducing regular undulations in the intra-axonal
compartment (Nilsson et al., 2012).

Because of the aforementioned problems, a number of works
proposed experiments where non-trivial structures were used
as intracellular substrates, e.g., dispersed axons (Ginsburger
et al., 2018), the presence of abutting cylinders (Yeh et al.,
2013) and arbitrarily generated meshes (Panagiotaki et al., 2010).
However, to this day, such approaches have not been thoroughly
adopted by the DW-MRI community because of the high
computational burden they demand and the lack of available
tools. Because of this, more realistic diffusion simulations remain
virtually unexploited.

In this work, we study three important pitfalls encountered
in the design of MCDS in the literature used to reduce the
computational burden, namely the number of simulated particles
and the number of time steps, the intracellular geometrical
representation, and the generated extra-axonal space in terms of
the substrate’s size. Each experiment presented below illustrates
a possible bias induced in the computed signal when such
simplifications are not properly addressed, which affects its
reproducibility. Finally, driven by the results from the previous
experiments, we outline a general framework that can be used to
generate complex substrates in order to overcome the limitations
of previous studies.

2. THEORY

The obtained signal from a PGSE DW-MRI measurement, at a
time t, is given by (Price, 1997)

S(t = TE) = S0

∫

P(φ, t)e−iφdφ, (1)

where S0 denotes the signal obtained in the absence of a diffusion
gradient magnetic field, TE is the echo time, P(φ, t) is the phase
distribution function of the spin ensemble at time t = TE, and φ

is the accumulated phase shift of the spin.
The amount of attenuation of a single diffusing spin on the

measured PGSE signal is proportional to the dephasing due to the
effect of the time-dependent magnetic field G(t), and the spin’s
displacement. For a single spin and a given magnetic gradient
vector, the phase shift due to the applied gradient over time can
be numerically formulated as in Price (1997)

φ(t) = a(t)γG(t) · x(t), (2)

where γ is the gyromagnetic ratio, G(t) is the applied magnetic
diffusion gradient at time t, x(t) is the spin’s displacement from
the starting position, and a(t) is a function that shifts the sign of
the gradient vector due to the refocusing Radio Frequency (RF)
pulse. In a classic PGSE experiment: a(t) is equal to +1 for all
time t before the RF pulse and−1 after. The produced attenuated
signal is then the result of the accumulated phase shift of the full
assembly of spins at the TE, given by

S(t = TE)/S0 =
〈

e−i
∫ t=TE
0 φ(t)dt′

〉

. (3)
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2.1. Simulation Fundamentals
Equation (3) can be approximated using a finite number of spin
samples Ns over a discrete time lapse, following an approach as
in Szafer et al. (1995):

S/S0 =
1

Ns

Ns
∑

e−i
∑Nt

t φ(t)dt , (4)

where dt is the step duration, defined as the total diffusion time
divided by the number of steps taken (Nt). The value of dt
can be fixed as in Hall and Alexander (2009) and Yeh et al.
(2013) or normally distributed as in Balls and Frank (2009). In
our exploration, we made use of fixed step sizes derived from
Einstein’s equation: r =

√
(6Ddt), where D is the diffusion

coefficient and r is the expected mean displacement. A fixed step
size have been shown by Hall and Alexander (2009) to “reduce
the fluctuation in the mean-square displacement of the spins
and improve the convergence in the model.” Moreover, Barlett
et al. (2013) have shown the fixed step size to be better suited for
non-homogeneous systems.

The idea behind a Monte-Carlo Diffusion Simulator is to
compute Equation (4) by simulating the particles’ Brownian
motion and their interaction with respect to a defined substrate.
At the beginning of the simulation, the particles are uniformly
placed inside the defined substrate’s voxel, or substrate’s limits.
This way, the number of particles in all compartments is
proportional to the defined volume fractions. If necessary, the
local position of each particle can be tracked to separate the signal
contribution of each compartment by, for example, tracking if
the particle is inside a given compartment. Over the duration
of the simulation, the simulated particles collide and bounce
with the substrate’s barriers, depending on the barrier properties.
Finally, the accumulated phase shift is tracked depending on the
spin-echo protocol using Equation (4).

Overall, the formulation above presents an accurate numerical
approximation of the diffusion signal based solely in the phase
shift distribution. However, is worth noticing that many other
effects such as noise levels or the magnetization relaxation should
be considered in order to approximate a more realistic DWI-
MRI signal.

3. MATERIALS AND METHODS

All the simulated signals presented below were computed
using the sum of the accumulated phase shift approximation
showed in Equation (4) implemented in an in-house Monte-
Carlo simulator. The simulator employs a similar approach to
compute the diffusion signal as the ones presented in Hall and
Alexander (2009) and Yeh et al. (2013). The simulator uses
a hybrid GPU/Multi-CPU framework, implemented in C++11.
It includes routines to optimize the collision detection and
the memory consumption based on the complexity analysis of
Appendix A; making the software able to handle simulations of
3D meshed substrates with millions of triangles and particles.
The simulator was initially validated by verifying that the
generated signals from particles within impermeable planes,

cylinders, and spheres were equal to those obtained from their
corresponding analytical solutions. Moreover, results in more
complex domains including the extra-axonal space of brain
tissue, were comparable to those obtained from an alternative
and independent Finite Element Method approach described
in Rafael-Patino et al. (2017). The substrates’ data, meshes, and
the simulator are available from the corresponding author upon
request on the paper’s Git-Hub repository: (https://github.com/
jonhrafe/Robust-Monte-Carlo-Simulations).

3.1. Confidence Level Estimation
In Monte-Carlo based methods, the number of samples is
critical for the confidence level of the estimated results. However,
the number of particles has the most significant impact on
the computational burden. To highlight the importance of the
number of simulated spins, an experiment was performed in
order to quantify the variance of the estimated signal as a function
of the number of particles sampled in a substrate. To do this,
the errors of a set of simulated signals with different numbers
of samples were measured. The measured errors were compared
against the expected analytical solution in the intra-axonal space
and for a gold-standard estimation of the extracellular space. A
substrate with 10, 000 parallel cylinders with diameters sampled
from a Gamma distribution, Ŵ(κ , θ), with shape, κ = 4.0, and
scale, θ = 4.5 × 10−7, was used, resulting in a mean diameter
µ = 1.8µm with a standard deviation of σ = 0.9µm, using a
packing algorithm as the one described in Hall and Alexander
(2009), which results in a distribution of radii comparable to the
ones found in the literature (Zhang et al., 2011; Dyrby et al., 2013;
Benjamini et al., 2016).

This substrate was used since the analytical signal of the intra-
axonal space can be computed using the volume-weighted sum
of the individual signals:

Si =
v1Sci,1 + · · · + vnSci,n

∑

vj
, (5)

where Si is the ith acquisition, vj is the volume of the jth cylinder
and Sci,1 is the analytical signal of the cylinder obtained using
the Gaussian Phase Distribution (GPD) approximation of the
signal in cylinders for a given radius (Van Gelderen et al., 1994).
Figure 1 shows the resulting distribution of radii as well as the
computed ground-truth intra-axonal signal. For the extracellular
signal, as there is no analytical model, the gold-standard was
estimated using a very high number of particles: 20 × 106

particles, and time-steps: 2 × 104 steps. These parameters were
chosen based on previous results (Rafael-Patino et al., 2017)
and by studying the convergence properties for higher numbers
of particles and time-steps (Hall and Alexander, 2009). In fact,
we verified that the signal converges for even less demanding
simulation parameters (i.e., 1×106 particles, and 5×103 steps). In
order to keep results as accurate as possible, however, we decided
to use simulation parameters higher than the minimum required.

The estimated signals were computed varying the number
of particles from 1 × 103 to 1 × 106 particles, and the time-
steps from 1 × 102 to 2 × 104 steps. The diffusion coefficient
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FIGURE 1 | Gamma distributed radii and corresponding intra-axonal diffusion signal. (Left) The distribution of the sampled diameters, the dotted line marks the

sampled distribution mean. (Right) The computed ground-truth along with the simulated signal used for the intra-axonal space representation. A total of four curves

are plotted corresponding to each b-value = 1925, 1932, 3093, and 13191 s/mm2. The curves corresponding to a b-value = 1925 and 1932 s/mm2 are completely

overlapped and corresponds to the lowest decay. The signals of each shell are ordered by the normalized Z coefficient of the gradient direction.

was fixed to D = 0.6 × 10−3 mm2/s (corresponding to an ex-
vivo diffusivity), and TE = 0.054 s, for both, the simulations and
the ground-truth data. The original optimized ActiveAx PGSE
protocol (Alexander et al., 2010) was used, which consist of a
four shell HARDI acquisition with 90 orientations per shell, each
shell with the following parameters, respectively, (i) b = 1, 930
s/mm2, G = 140 mT/m, δ = 0.010 s, and 1 = 0.016 s;
(ii) b = 1, 930 s/mm2, G = 140 mT/m, δ = 0.010 s, and
1 = 0.016 s; (iii) b = 3, 090 s/mm2, G = 131 mT/m, δ =

0.007 s, and 1 = 0.045 s; (iv) b = 13, 190 s/mm2, G =

140 mT/m, δ = 0.017 s, and 1 = 0.035 s. Figure 1 shows the
plot of a diffusion signal obtained with this protocol separated by
shell and ordered with respect to the angle with the main fiber
axis (Z-axis).

A bootstrapping analysis was performed to evaluate the
variance of the error between the estimations with different
samples sizes: 1 × 103, 2 × 103, 5 × 103, 1 × 104, 2 × 104,
5 × 104, 1 × 105, 2 × 105, 1 × 106, and 2 × 106 samples; and
time-steps: 1 × 102, 5 × 102, 1 × 103, 5 × 103, 1 × 104, and
2×104. For each combination of the sample sized and time-steps,
the signals from 50 repetitions were generated. The error between
the ground-truth and each estimated signal was computed
using the Relative Mean Absolute Error (RMAE), expressed as
a percentage:

RMAE(Sgt , Sc) =
100

Ng

N
∑

i

|Sgt(i)− Sc(i)|

|Sgt(i)|
, (6)

where Sgt is the ground-truth signal, Sc is the estimated signal
and Ng is the number of acquisitions. The result is a total of 50
estimated error points for each sample size.

3.2. Intra-Axonal Space Representation
In our second study, we look into the effect of using curved or
angled geometries against straight cylinders as representations
of the intra-axonal space. Such effect is of special interest on
the computation of axonal diameter indexes when it is assumed
that straight cylinders capture the diffusion properties of the
intra-axonal compartment.

To understand this effect, an experiment extending the
previous work from Nilsson et al. (2012) was performed,
where the diffusion properties of undulating axonal
substrates is studied. In our experiment, we quantified
the difference on the diameter fitting estimation between
parallel cylinders of constant radius and undulating
cylindrical substrates.

To create curved cylindrical substrates for MCDS, a helical
undulation parametrization along z was used

U(z) =

(

Axcos(
2πz

L
),Aysin(

2πz

L
), z

)

, (7)

where L is the wavelength and Ax, Ay denote the amplitude in the
X and Y axis, respectively (Nilsson et al., 2012). The amplitudes
Ax and Ay were set to be equal to obtain helical undulations.
Using the formulation above, a set of substrates was created
by deforming cylinders with diameters 1, 2, and 3µm. The
wavelength and amplitude of the undulations ranged from 4 to
32µm and from 0.2 to 2.6µm, respectively; which covers a range
of values of interest in the literature (Haninec, 1986; Bain et al.,
2004; Nilsson et al., 2012). The resulting undulating cylindrical
shapes were triangulated to use them as mesh substrates suited
for MCDS. Figure 2 presents three different substrate examples.

To compute the diameter estimation error in the intra-
axonal signal, a fitting procedure was performed using an
exhaustive search approach. The exhaustive search computes the
RMAE between the resulting simulated signal of each undulating
substrate and the analytical signal of a range of cylinders with
different diameters, sampled between 0.4 and 8µm with a
step size of 0.01µm. The analytical signals were computed
using the GPD approximation for the signal in cylinders (Van
Gelderen et al., 1994). The fitting procedure returns the range
of plausible diameters such that the computed error between
them is below a given threshold. For each undulating substrate,
the threshold was fixed to a 1% difference from the minimum
fitting error, based on the results of the confidence study from
section 4.1.
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FIGURE 2 | Examples of the curved meshes used as intra-axonal substrates

in this study, for three different diameters and different undulation parameters.

Two different acquisition protocols were used to perform
the fitting procedure. First, the original ex-vivo ActiveAx PGSE
protocol (Alexander et al., 2010) explained in section 3.1 was
used. Second, we used an optimized PGSE protocol for ex-vivo
axonal diameter estimation presented in Dyrby et al. (2013). The
protocol consists of a three shell acquisition with 90 orientations
per shell, and a TE = 0.0359 s. The relevant parameters of each
shell are as follows, (i) b = 2081 s/mm2, G = 300 mT/m, δ =

0.0056 s, and1 = 0.0121 s; (ii) b = 3038 s/mm2,G = 219mT/m,
δ = 0.007 s, and 1 = 0.0204 s; and (iii) b = 9542 s/mm2,
G = 300mT/m, δ = 0.0105 s, and1 = 0.0169 s. Since the RMAE
difference between cylinders of similar diameter depends on the
protocol used an analysis of the sensitivity for each protocol was
carried out.

Finally, the MC simulation parameters were chosen using a
similar analysis as the one presented in section 3.1 (not shown).
The confidence estimation was computed ranging the number of
particles and time steps on the substrate with higher curvature
(higher amplitude and smaller wavelength) and choosing a the
parameters that shows almost no variance on the estimations. A
total of 5×104 particles and 5×104 steps were chosen to compute
the signal for each individual substrate separately.

3.3. Extra-Axonal Space Representation
In the case of macroscopically homogeneous substrates, e.g., with
randomly packed cylinders and in absence of bundle dispersion,
it has been shown that extra-axonal spins exhibit an effective
diffusivity that can be described by an axi-symmetric tensor, if

the volume size of the sample is high enough (Hrabe et al., 2004).
Models to estimate white matter microstructure from DW-MRI
therefore assume that the extra-axonal radial contribution does
not change for any direction aligned to the bundle’s perpendicular
plane (Assaf et al., 2008; Alexander et al., 2010; Zhang et al., 2011,
2012; Panagiotaki et al., 2012; Daducci et al., 2015a; Benjamini
et al., 2016).

Such an assumption seems to fit the validations. However,
the importance of the design of the extra-axonal space has
been underestimated in MCDS by assuming that substrates with
any hindered configuration would match the model. To show
the importance of the sample size, in terms of the number of
cylinders used to construct a substrate, an analysis of the extra-
axonal radial contribution in simulated signals was performed.

The radial extra-axonal DW-MRI signal was simulated for
a selection of voxels with different numbers of cylinders, and
a fixed distribution of diameters and intra-axonal volume
fractions. To do so, N diameters (N = 100, 1, 000, 10, 000,
50, 000 and 100, 000) were sampled from a gamma distribution
with parameters Ŵ(4.0, 4.5 × 10−7), as in our first study.
The corresponding cylinders were randomly positioned in
substrates with voxel size adapted such that the intra-axonal
volume fraction was 60% and ensuring periodicity at the voxel
boundaries as is described in Hall and Alexander (2009). The
extra-axonal signal was simulated with the following settings:
1 × 106 particles in the extra-axonal space with diffusivity of
0.6 × 10−4 mm2/s, TE = 0.075 s, and 1 × 103 steps. This
parameters where chooseng from the previous results showed
in section 3.1. The diffusion protocol was set to highlight the
radial contribution of the diffusion signal in different diffusion
time regimes as follows: G = 300 mT/m, δ = 0.010 s and
1 from 0.015 to 0.060 s, acquired in 180 directions evenly
distributed over the xy-plane. The anisotropy of the simulated
noiseless signal was quantified by computing the standard
deviation of the signal divided by its mean, giving an estimate
of how much the signal deviates from a perfectly radially
isotropic signal.

3.4. Framework for Complex Substrates
Generation
Driven by the results from the previous experiments, and based
on a previously published algorithm to generate tractography
phantoms (Close et al., 2009) the following section outlines a
general framework in order to generate complex substrates. We
show that such framework overcomes some of the simplifications
presented in the previous sections. To illustrate such capabilities,
a crossing of axons bundles was generated as a study case. A
qualitative evaluation was performed over the representation of
crossing fibers in terms of the resulting intra-axonal volume
fraction and diffusion properties in different resolutions.

The framework is a tailored extension of the work presented
in Close et al. (2009). The original framework is based in the
optimization of a objective function that penalizes the overlap,
curvature and length of a set of initial splines called as strands.
Each strand has a constant radius used to ensure no overlapping.
The optimization cost-function has the following form:
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FIGURE 3 | Optimization procedure of initial trajectories. (Left) initial

trajectories parametrized as a set of control points with constant radius.

(Right) the resulting trajectories after the optimization procedure which

ensures that there is no overlapping between the resulting strands.

E(∪S) =

#S
∑

i

woJo(Si)+ wcJc(Si)+ wlJl(Si), (8)

where the set ∪S of size #S, represents the set of all initialized
strands. Si represents the strand i for i = 1, · · · , #S. The
functions Jo(·), Jc(·), Jl(·) are the overlap, curvature, and length
penalization functions; and the coefficients wo,wc, and wl are
their, respectively, weights. Each strand Si is parametrized using
a discrete set of control points that define the backbone of the
strand i and constant given radius; the transversal area associated
with this radius is later subdivided to form sub-strands. Finally,
the DW-MRI signal is then simulated by assigning a symmetric
tensor along each sub-strand trajectory i.e., a simplistic local
model of the micro-environment (Daducci et al., 2015b). The
reader is referred to Close et al. (2009) for more details.

In our study, the aforementioned framework was modified
and used to map a gamma distributed set of diameters inside
the resulting strands’ trajectories. The 3D-overlapping algorithm
between strands implemented in the cost-function Jo, was also
modified to make it more suitable for creating 3D meshes. This
was done by computing the analytical intersection between two
strands’ control points, using the cylinder to cylinder collision
detection described in Verth and Bishop (2008).

The result is a gamma distributed crossing configuration of
deformed cylinders. The main advantage of this configuration
is that the bundles inside a common area do not overlap or
intersect, but interdigitate, which means that the volume is
preserved in the crossing region. In addition, the curvature and
length penalizations promotes a higher packing density. Finally,
the proposed framework computes the DW-MRI signal by a
Monte-Carlo simulation using a mesh substrate created from the
configuration obtained above, instead of assigning a symmetric
tensor along the sub-strands. Figure 3 shows the crossing
configuration before and after the optimization procedure.

In the presented study case, the diameters from a gamma
distribution with parameters Ŵ(1.2, 1.5 × 10−6) were sampled,
resulting in a mean diameter of µ = 1.8µm and standard
deviation σ = 1.6µm, which are in the range of anatomical

interest (Alexander et al., 2010). The resulting values were
truncated to avoid strands with diameters smaller than 0.2µm.
The dimensions of the resulting enclosing volume were 1,200 ×

240 × 480µm; the resulting 3D geometrical crossing is shown
in Figure 4. The 3D mesh model consists of 1,698,328 triangular
faces after a post-processing of decimation and smoothing to
reduce the triangle density. The total length end-to-end of
the most extended strand is 1.58 mm. The resulting diameter
distribution of the overall structure is displayed in the bottom
panel of Figure 4.

To compute the simulated MRI signal, the total volume was
divided in three voxel resolutions: 80× 16× 32, 40× 8× 16, and
20× 4× 8 voxels. A total of 105× 106 particles, and 5, 000 steps
were used to compute the signal for the three resolutions. The
original ActiveAx protocol (Alexander et al., 2010) from the first
study was used with a diffusivity coefficient equal to 0.6 × 10−3

mm2/s and a total diffusion time of 0.053 s.
To show qualitative results on the generated signals, the

Diffusion Tensor (DT) estimation and the corresponding FA
were computed using Dipy (Garyfallidis et al., 2014), as
well as the ICVF maps for each of the three resolutions.
Only the shell with b = 3, 080 s/mm2 was used to
compute the DT in each voxel. Given the lack of an analytic
representation of the substrate, the ICVF was approximated
by tracking the local position of the uniformly random
located particles and labeling them as inside or outside the
meshed substrate.

Finally, an evaluation of the axon diameter estimation within
the crossing area was performed for the three different voxel
resolutions. The axon diameter estimation was performed using
the same exhaustive search method described in section 3.2. Only
one single bundle orientation was used to compute the analytical
GPD approximation; which was selected from the DT estimation
at each voxel. The fitting procedure was performed using solely
the intra-axonal signal and in voxels with FA greater than 0.25, in
order to separate the effect of the extra-axonal space regarding the
diameter mis-estimation.

4. RESULTS

4.1. Confidence Level Estimation
The overall results of the bootstrapping analysis are summarized
in Figures 5, 6 for the intra- and extra-axonal space, and for both,
the number of samples, and the number of time-steps. Figure 5
shows the mean error of the 50 samples for each one of the
possible combination of the selected parameters, color-coded in a
heat-map. In Figure 5, we show the error of each repetition by (i)
fixing the number of steps to the maximum value (2 × 104) and
varying the number of particles (left column), and (ii) fixing the
number of particles to the maximum value (2× 106) and varying
the number of steps (right column). Each data point represents
one repetition of a given sample size. A total of 50 points are
plotted in each row, and the mean error for each sample is
highlighted with a red asterisk. The total simulation time for each
repetition ranged from few seconds for the simulation with a total
of 1 × 103 particles to 918 s for the simulation with 1 × 106
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FIGURE 4 | (Top panel) Shows a visualization of the resulting fiber crossing substrate after the strand refinement and the smoothing and decimation of the triangular

faces. (Left-bottom panel) Shows the resulting sub-strand configuration of one of the crossings bundles. (Right-bottom panel) Shows the overall diameter

distribution of the displayed bundle on the (left). A rendered video of the full crossing is included as Supplementary Material.

particles. Each simulation was performed in a single node of Fidis
EPFL’s cluster with 14 cores, 2.6 GHz, and 528 MB of RAM.

For the study regarding the number of particles in the intra-
axonal space, the mean RMAE between the analytical ground
truth and the set of repetitions with the biggest sample size of
2 × 106 particles was of 0.47%. For the extra-axonal space, the
mean RMAE between the computed gold-standard with 20×106

and the set with 1 × 106 particles was equal to 0.71%. For the
analysis varying the number of time-steps, the minimum mean
RMAE achieved was of 0.44% for the intra-axonal space and
0.38% for the extra-axonal. The difference between the mean
RMAE between 5× 103 and 2× 104 was less than 0.2% for both
the intra- and extra-axonal space.

4.2. Intra-Axonal Space Representation
The range of diameters, computed from our fitting procedure
on both protocols, are displayed in Figure 7. Each cell is colored
according to its minimum RMAE. An amplitude (amp) of 0µm
corresponds to a straight cylinder which presented the minimum
fitting error achievable for each diameter. Values with the highest
amplitude and lowest wavelength (wl) corresponds to the axons
with the highest undulation (amp = 2.6µm, wl = 4µm); on
the other hand, values with the lowest amplitude and highest

wavelength (amp = 0.2µm, wl = 32µm) corresponds to almost
straight axons.

The protocols’ sensitivity analysis is shown in Figure 8 which
presents a visualization of the RMAE between the analytical
signal of straight cylinders with different diameters. Regions with
homogeneous values are difficult to differentiate between each
other, e.g., the region with diameters between 0µm and 2.0µm.
The colored line shown in both plots marks the 1% level curve.
In this plot, the protocols’ contrast in function of the cylinder’s
diameter can be visualized, which correlates with the intervals
showed in Figure 7.

4.3. Extra-Axonal Space Representation
Three different substrates (with 100, 1, 000 and 10, 000 cylinders,
corresponding to voxel sizes of 23 × 23 µm, 71 × 71 µm,
and 230 × 230 µm, respectively) and their corresponding radial
DW-MRI signals, are shown in Figure 9. The shown voxel
sizes were chosen to highlight the radial anisotropy in three
representative sizes. The substrate with 10, 000 cylinders, i.e.,
with the biggest voxel size, had the most isotropic radial DW-
MRI signal. On the other hand, the most anisotropic signal
was observed for the substrate with the smallest number of
cylinders. Figure 10 shows the mean and standard deviation
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FIGURE 5 | RMAE for each repetition and sampled size for (Left) the number of samples and (Right) number of time-steps. The two panels on the top row

correspond to the intra-axonal results, and the bottom row to the extra-axonal. The X-axis shows each sample size, and the Y-Axis shows the RMAE of all the

repetition in same color. The mean RMAE of all the repetitions is depicted with a red marker.

FIGURE 6 | Heat map of the mean RMAE for all the combinations between the number of steps and the number of samples. Each cell corresponds to the mean

RMAE of the 50 repetitions.
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FIGURE 7 | Tables of the fitting results. Left column shows the fitted intervals of the original ex-vivo ActiveAx protocol (Alexander et al., 2010) and the right column of

the optimized ex-vivo protocol from Dyrby et al. (2013), for the three simulated diameters. The min and max diameters (µm) of the fitted range are listed between the

square brackets for each simulated amplitude and wavelength. The color of each cell is encoded with respect the minimum RMAE in the fitted range accordingly to

the color-bar on the right.

FIGURE 8 | The in-between RMAE of the analytical signal of a cylinder, obtained using the GPD approximation, for the range of diameters used in this study. The

original ex-vivo ActiveAx acquisition protocol (Alexander et al., 2010) is displayed on the left panel, and the optimized ex-vivo acquisition protocol from Dyrby et al.

(2013) on the right panel. Values of the diagonal correspond to the RMAE of two straight cylinders of the same diameter and therefore equals to 0. The colored line

shown in both plots marks the 1% difference level curve.

of the radial extra-axonal signal as a function of the voxel
size. The same experiment (not shown) was conducted using
cylinders with higher diameter. Results indicated that the
number of cylinders was the limiting factor. Indeed, the mean
of the radial extra-axonal signal also converged for 10,000
cylinders, but this time a voxel size of approximately 400
× 400µm was required to generate isotropic profiles instead

of the 230 × 230µm limit observed for a distribution with
smaller cylinders.

4.4. Framework for Complex Substrates
Generation
The resulting crossing with two fiber populations is outlined
in Figure 4. The total optimization time to create the substrate
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FIGURE 9 | Results for 3 substrates, with 100, 1,000, and 10,000 cylinders, respectively. First row: sampled diameter distributions for each voxel-size, getting closer

to the desired distribution law as the voxel-size increases. Second row: cylinder positions in each substrate. White scale bar corresponds to 10 µm. Third row: radial

DW-MRI signal simulated from the respective substrates. Each colored line corresponds to one different 1 duration. Dotted lines correspond to the mean radial signal

for each diffusion time.

was around 42 h, where most of the optimization time (about
35 h) was needed in the second optimization iteration, after
the subdivision on gamma distributed radii, that ensure that
no small overlaps were introduced due to the subdivision
and abrupt angular changes. The optimization was performed

using a single core 2.8 GHz CPU. On the other hand, the
total simulation time for the full geometry with 105 × 106

particles was less than 24 h using a total of 8 nodes with
28 cores on fidis EPFL’s cluster with 6GB of RAM per node
(48GB in total).
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FIGURE 10 | Mean and standard deviation of the radial DW-MRI signal as a function of substrate size. The signal is shown for each of the different 1.

The resulting diffusion tensor and FA maps are shown in
Figure 11 for the three different resolutions. Local diffusivity
changes, as well as signal alterations related to the curvature of
the individual axons, can be observed.

Figure 12 shows the intra-axonal volume fraction in all
resolutions. In the highest resolution, small water compartments
can be seen in the crossing sections; this is an effect of the
optimization procedure which ensures no overlapping fibers. In
the lowest resolution, such compartments are no longer visible,
but they are reflected in the decrease of the intra-axonal volume
fractions.

Figure 13 shows a visualization of one plane of the axon
diameter estimation maps of the volumetric region highlighted
in Figure 12, and the obtained diameter distribution for the three
resolutions. The higher resolution (80 × 16 × 32) estimation
includes a total of 2,848 voxels, while the lowest resolution
contains a total of 112 voxels. Figure 4 bottom-right panel
shows the resulting sampled diameters inside the crossing
configuration, which is noticeably skewed to smaller diameters;
this is an effect of the packing algorithm inside individual
circular strands which under-represent the tail of the distribution
because of the difficulty of packing strands with big diameters.
This effect will irremediably affect the effective apparent radius

reff ≈ (<r6>
<r2>

)1/4 (Burcaw et al., 2015) given by the intra-axonal
contribution of the signal. The resulting effective diameter of
the conjoint assemble of strands was 2 ∗ reff = 3.48µm, which
in average agrees with the estimated mean diameters shown in
Figure 13 on each resolution.

5. DISCUSSION

In the past two decades, the research community has usedMCDS
to generate and validate MR diffusion data and microstructure
models (Lipinski, 1990; Hall and Alexander, 2009; Fieremans
et al., 2010; Panagiotaki et al., 2010; Nilsson et al., 2012; Barlett
et al., 2013; Baxter and Frank, 2013; Plante and Cucinotta, 2013).
However, questions have been raised on the accuracy of the
simplified geometries used to create the diffusion substrates (Balls

and Frank, 2009; Panagiotaki et al., 2010; Nilsson et al.,
2012, 2013), emphasizing the need of highly-validated and
reproducible simulations. Such oversimplifications have been
proven not to capture the complexity of the axonal structures of
white matter, and thus its diffusion characteristics (Nilsson et al.,
2013). Moreover, it can be argued that the use of such elementary
geometries-used as backbone in the microstructure models-
as a ground-truth, not only introduce a systematic bias that
inherently supports the evaluated method, but also misapplies
the very purpose of using Monte-Carlo simulations. In this
work, we outlined pitfalls encountered in the design of such
simulations. Our experiments showed how the design of each
substrate compartment is likely to introduce an estimation bias
if it is not addressed appropriately.

Our first study specifically shows the effect of an inappropriate
selection of parameters on the reproducibility of a estimated
signal, which could also skew an analysis toward inaccurate
results. Differently to previous studies (Hall and Alexander,
2009), we compute the extra-axonal ground-truth from high-
quality simulations, avoiding the use of tortuosity models that
could introduce a bias because of their oversimplifications. The
error in the estimation presented in Figure 5 illustrates the
great amount of possible estimation variability for a relatively
simple substrate. We found that the signal on each compartment
showed a high variability for simulations with less than 5 × 105

particles and 1 × 104 steps. We can extrapolate from this that
any estimation from more complicated substrates, such as the
ones with undulation or crossings, or even higher diffusivity,
will likely entail even higher variability. In order to avoid such
uncertainty on the estimations for more complicated substrates a
similar analysis as the one presented should be procured.

In our second study, we explored the effect of breaking
the assumption of straight cylinders as the intra-axonal
representation in function of the apparent diameter estimation.
The helical representation used in this study, while reported
to appear in the nervous system, maybe not be an accurate
representation of the axonal angular variations along the
longitudinal direction in the brain white matter, specially in the
micro-scale. However, it gives us a convenient starting point
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FIGURE 11 | From the leftmost to the right: diffusion tensor map, the resulting fractional anisotropy and the two highlighted ROIs in each map, respectively. Each

image corresponds to the same volume slice in the XZ-plane. The ROI’s highlights one area where different compartments result from the optimization procedure.

to study the effect of angular variations in the intra-axonal
compartment over the diffusion signal, a theoretical analysis
on this type of structures can be found as well in Brabec
et al. (2019). From this study, we found a considerable mis-
estimation in the presence of undulation for both protocols and
in the three studied diameters. The relative fitting error for the
smaller diameter (1µm) was the higher among the three cases
(more than 300% for some cases). Previously, Nilsson et al.
(2017) proposed a formulation to compute the minimal diameter
of a parallel cylinder able to produce a signal attenuation
larger than that from a cylinder with a diameter of zero,
using standard single-shell PGSE sequences. According to this
formalism, the minimum differentiable diameter is dmin =

(768σD/7γ 2δ|G|2)1/4, where σ is the significance level, defined
as the minimum tolerated percentage of signal change. For a
fixed value σ = 1% change, the resolution limit predicted for
both protocols used in this study were dmin = 2.29µm for |G| =
140mT/m, and dmin = 1.76µm for |G| = 300mT/m. However,
such estimates are based on a number of assumptions which
does not hold in our experimental conditions. For example,
the formulation is valid for parallel and straight cylinders and
for acquisition protocols with a single shell with parameters
δ = 1. As in this experiment we are studying non-parallel
and curved cylinders with multi-shell protocols with 1 >> δ,
we performed a numerical sensitivity analysis to obtain more
accurate resolution limits. From the resulting plots showed in
Figure 8, it can be seen that the signal originated from cylinders
with diameters below 2.5µm for the first protocol, and 2.0µm
for the second, are virtually indistinguishable. On the other hand,
diameters above 3.0µm have more significant RMAE, which
make them easier to differentiate. We also observed that the
range of diameters from our fitting method did not follow a

simple trend between protocols; that is to say, increments on
the undulation parameters, which effect can be summarized
in terms of the tortuosity factor (Nilsson et al., 2012) λ =
√

(2πA/L)2 + 1, does not follow a simple relationship between
protocols (horizontal axis of the results in Figure 7). This is
likely to be an effect of the parameters of the acquisition
protocol (δ,1, and the TE), which vary between shells and
thus changing the effective diffusion time. From a comparison
of both protocols, we corroborated that the optimized protocol
showed better results in terms of the fitted diameter and range
of similar diameters. However, there was still a considerable mis-
estimation, especially for the undulation of 1µm diameters. We
consider this experiment to be of great interest for any future
protocol optimization or diameter estimation framework, since
it illustrates how sensible the estimation of the axon’s diameter
based on the cylindrical model are, even for regular and smooth
angular deviations.

Our third experiment showed that a sufficiently rich sampling
is required for the simulated signal to converge. Indeed, small
substrates have a limited number of cylinders, limiting the
variability of hindered micro-environments sampled by the spins
during the M.C. simulation—yielding anisotropic patterns in the
radial DW-MRI signal. The results also showed a bias in themean
amplitude, with small voxels having lower signal than bigger
voxels. Our results suggest that, for a given diameter distribution,
substrates with an area smaller than 200× 200µm will present
biased extra-axonal signals. Such results are in accordance with
previously results (Hall et al., 2017) in terms of the voxels’ size.
However, this lower bound probably depends on the distribution
of diameters and cylinder packing on one side, as well as the
typical diffusion length of the spins, given by their diffusivity and
the diffusion time of the experiment.
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FIGURE 12 | The ICVF maps of one volume slice in the XZ-plane in three

different resolutions. The highest achieved ICVF value for each resolution were:

0.8013, 0.5792, 0.4825, from top to bottom, respectively. The two green

areas highlighted in the two lowest resolutions were used to evaluate the axon

diameter estimation.

Finally, as part of our effort to create more realistic substrates,
we outlined a framework to tackle the challenging problem of
creating non-overlapping crossing configurations that preserves
the volume fractions between the non-crossing and crossing
area, while enforcing a high packing density. Configurations
which mimic better real tissue (Shacklock, 2007), are important
since they provide a more challenging environment to test and
validate microstructure models and even tractography methods,
in contrast with naive crossings which have been proven to
be indistinguishable from a simple superposition of individual
fascicles (Rensonnet et al., 2018). From the diffusion tensor and
FA maps shown in Figure 11 we can observe the presence of
multiple compartments as an effect of the volume preservation
condition. Also, Figure 12 shows how the intra-axonal volume
fraction changes as the resolution decreases. Such information
can be used to study the microstructure information in the
presence of several diffusion compartments and volume fractions
in different resolutions without using an explicit interpolation.
This decrease of the ICVF is an effect of the presence of dispersion
and deformation of the fiber bundles. However, even in the
lowest resolution, the intra-axonal volume fraction achieved was
over 48%, which is considerably higher than the icvf (of 20%)
of a previously presented framework for generating realistic
numerical phantoms for crossing fascicles (Ginsburger et al.,

2018). By optimizing the penalization term of the strands’
curvature in our framework, we expect to be able to achieve
even higher packing densities—closer to the expected ones from
the brain’s white matter tissue. On the other hand, the diameter
estimations computed over the merging area of the two fiber
populations, showed a overestimation in accordance with the
results of section 3.2. Such mis-estimation can be explained
by angular perturbations in the fiber trajectory in both the
micro- and meso- scale of the simulated fibers. In previous
studies, the axon diameters were overestimated by factors 3-5
in clinical scanners (Alexander et al., 2010; Zhang et al., 2011).
This bias was attributed to the insensitivity of the measurement
schemes to small axons (Dyrby et al., 2013), the noise, or the
commonly neglected time-dependence of diffusion in the extra-
axonal space (De Santis et al., 2016). The diameters reported in
this study were estimated by using only the intra-axonal signals,
thus the overestimation can be explained only by the dMRI signal
insensitivity to the smaller axons and by the signal changes due to
axon undulations and microscopic dispersion. This renders our
estimations as a best case scenario.

5.1. Considerations and Future Work
The generalisability of the results presented above is subject to
certain limitations. For instance, in-vivo diffusion and protocol
settings, the use of non-regular deformations in the intra-axonal
substrates, and the joint study of the intra- and extra- axonal
space, may affect the results toward higher variability or mis-
estimations of the axon diameters. In addition, a number of
structural features present in white matter tissue -such as the
axonal myelin sheath, Ranvier nodes, or diameter changes along
the axons trajectory-are missing. Because of this, the results
presented above should be taken as a type of lower bound in
terms of the minimum parameters needed (for the number of
samples and time-steps) and possible mis-estimations (in terms
of our axon diameters estimates).

Notwithstanding these limitations, we consider that the
aforementioned framework, complemented with the optimized
simulator developed, are able to overcome the simulations pitfalls
presented in this work. In addition, the parameter selection
analysis presented in this work provides a way to ensure the
reproducibly of the Monte-Carlo simulations. A thorough study
of the properties of more complex substrates generated with the
proposed framework is beyond the scope of this study. Future
research should therefore concentrate on the generation and
study of such configurations, which may help the DW-MRI
research community to generate more reliable ground-truth data.

6. CONCLUSIONS

The main contribution of this work can be summarized in
three main aspects. First, this paper outlines and investigates
a set of pitfalls encountered on the parameter selection and
substrates’ design for Monte-Carlo simulations. Our results over
the effect of the number of particles and time-steps, as well
as our quantification over the effect of the substrate’s size on
the extra-axonal space can be immediately taken to evaluate
the design of future experiments. In overall, we found that
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FIGURE 13 | Axon diameter estimation maps (Left column) of the regions highlighted in Figure 12, and diameter histograms (Right column) estimated on the full

volume enclosed by the highlighted regions. Top row shows the axon diameter map and the diameter estimation histogram for the 80× 16× 32 nominal resolution;

middle row shows the same maps for the 40× 8× 16 nominal resolution, and the bottom row shows the same maps for the 20× 4× 8 nominal resolution. The

dotted line indicates the histograms’ mean diameter within the regions, to be compared with the effective apparent diameter (2 ∗ reff ) of 3.48 um.

for experiments with parameters in the range used in this
study—which are in the range of interest in the literature—
simulations with less than 5 × 105 particles and 1 × 104

steps carried a significant variance between the computed
signals for both, the intra- and extra-axonal compartments.
In addition, we found that simulations substrates with less
than 10,000 sampled cylinders induced an important bias on
the directional symmetry of the diffusion signal in directions

transversal to the main fiber direction. Such parameters are
almost one order of magnitude bigger than previously used
on the literature, which inherently affects the reproducibility of
such results (Hall and Alexander, 2009; Alexander et al., 2010;
Rensonnet et al., 2018, 2019). Second, our evaluation over the
effect of introducing angular perturbations in the intra-axonal
space representation—by means of the estimated axon diameter
based on the cylindrical model—showed a considerable deviation
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from the expected results. This results are somehow in agreement
with previous findings and contributes additional evidence that
suggests that performing whole brain axon diameter estimation
is still far from being straightforward using simplified models,
such as the straight cylindrical diffusion model. Finally, this
paper presents a framework able to generate complex fiber
configurations with desired microstructure information based
on a previous algorithm used to create tractography phantoms.
We showed the framework’s capabilities to generate complex
fibers configurations which, along with the simulator developed
in this work, are able to generate more challenging and composite
Monte-Carlo simulations.

We consider that the results presented in this work, along with
the reported procedure to evaluate the estimations’ variability, the
substrate generation framework, and the simulator developed,
pave the way toward more realistic and reproducible Monte-
Carlo simulations for Diffusion-Weighted MRI.
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Accurately digitizing the brain at the micro-scale is crucial for investigating brain
structure-function relationships and documenting morphological alterations due to
neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for
the segmentation of single neurons in their intricate 3D arrangement within the brain.
Its Region Growing procedure is based on a homogeneity predicate determined by
describing the pixel intensity statistics of confocal acquisitions with a mixture model,
enabling an accurate reconstruction of complex 3D cellular structures from high-
resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical
values identifying the voxels belonging to the segmented structure, thus providing
additional useful volumetric information on neurons. To highlight the algorithm’s full
potential, we compared its performance in terms of accuracy, reproducibility, precision
and robustness of 3D neuron reconstructions based on microscopic data from
different brain locations and imaging protocols against both manual and state-of-the-art
reconstruction tools.

Keywords: neuron segmentation, confocal microscopy, 2 photon microscopy, expectation - maximization (EM)
algorithm, mixture models, CLARITY

INTRODUCTION

Digitizing a high-fidelity map of the neurons populating the brain is a central endeavor for
neuroscience research and a crucial step for the delineation of the full Connectome (Alivisatos
et al., 2012). Moreover, single-neuron reconstruction from empirical data can be used to generate
models and make predictions about higher-level brain organization, as well as to study the normal
development of dendritic and axonal arbors or document neuro-(patho)physiological changes
(Budd et al., 2015).

Confocal and two-photon microscopy are considered the best candidates to image defined
cellular populations in three-dimensional (3D) biological specimens (Wilt et al., 2009;
Ntziachristos, 2010). Their imaging depth, as well as the quality of the acquired datasets can be
further improved thanks to recent tissue-clearing solutions, which render brain tissue transparent
to photons by reducing the source of scattering, allowing confocal acquisitions with enhanced
Signal to Noise Ratios and Contrast to Noise Ratios while maintaining low laser power (Chung and
Deisseroth, 2013; Richardson and Lichtman, 2015; Magliaro et al., 2016). While these technologies
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and protocols, combined with fluorescence-based labeling
techniques, enable the imaging of the brain’s intricacies at the
microscale, single-cell segmentation algorithms able to deal with
these datasets are still lacking (Magliaro et al., 2019), despite
targeted initiatives such as the DIADEM (DIgital reconstructions
of Axonal and DEndrite Morphology) challenge in 2009–2010
(Gillette et al., 2011) and the BigNeuron project in 2015 (Peng
et al., 2015). In fact, different approaches have been implemented
for reaching the goal of segmentation of single cells (Acciai
et al., 2016). Most of these tools reconstruct the pathway of
neurite or neural processes, i.e., neuron tracing (Quan et al.,
2016; Kayasandik et al., 2018) using different approaches, ranging
from active contour methods (Kass et al., 1988; Wang et al.,
2009; Baswaraj et al., 2012) to hierarchical pruning (Peng et al.,
2011a; Xiao and Peng, 2013), in an attempt to face the a
number of key challenges: (i) noisy points causing over-tracing,
(ii) gaps between continuous arbors causing under-tracing, and
(iii) non-smooth surfaces of the arbors violating geometric
assumptions (Liu et al., 2016). Among them, machine learning
approaches are widely considered as robust for neural structure
segmentation in image stacks (Januszewski et al., 2018; Sakkos
et al., 2018). These methods mainly consist in building a classifier
able to discern between foreground and background, thanks
to prior information obtained through a training dataset of
manually-segmented neuron structures. However, building the
training dataset is very time consuming, in particular because
it needs to be fleshed out when dealing with different images
(e.g., neuron types with different morphology or stacks with
different background/foreground features). Finally, many tools
and algorithms for neuron segmentation primarily focus on
sparsely labeled data, such that their application to images
(or volumes) representing densely packed neurons, typical of
mammalian brains, is limited (Chothani et al., 2011; Wang et al.,
2011, 2017; Peng et al., 2014; Hernandez et al., 2018).

The outcomes of neuron reconstructions are traditionally
stored in a.swc file format, where spatial (i.e., x, y, and z
coordinates) and morphological (e.g., neurite thickness)
information about specific points of interest (e.g., neuron
nodes) are listed. This standard describes neuron morphology
with a number of structurally connected compartments (e.g.,
cylinders or spheres representing neuron arborization or
soma, respectively), thereby neglecting the morphological
and volumetric information along the neuron’s length
(Magliaro et al., 2019).

Confocal and 2-photon datasets are characterized by on-
plane and intra-plane pixel intensity heterogeneities, deriving
from optical phenomena and the non-uniform distribution of
fluorophores through the sample (Diaspro, 2001). Given these
intrinsic features, a valid procedure for accurately digitizing the
neural structures in the stack could be obtained by leveraging
on local approaches and methods enforcing spatial constraints,
such as region growing procedures (RG) (Brice and Fennema,
1970; Xiao and Peng, 2013; Acciai et al., 2016). RG is a
pixel intensity-based segmentation method that identifies the
foreground starting from a pixel, i.e., the seed, belonging
to the foreground itself. The neighboring pixels of the seed
are iteratively examined based on a predefined rule, usually

a homogeneity predicate, which can be estimated locally to
determine whether they should be added to the foreground or
not. The performance of the procedure may be influenced by
both the seed selection and the rule (Baswaraj et al., 2012). The
choice of the rule may be non-trivial, in particular in view of
delivering a general-purpose segmentation algorithm. Adaptive
strategies based on mixture models have been successfully used
in video foreground/background segmentation (Stauffer and
Grimson, 1999; Barnich and Van Droogenbroeck, 2010). Here,
we exploit a similar approach that takes into account the image
formation process. Here we propose a novel RG strategy based
on an estimation which considers the image formation process
(Calapez and Rosa, 2010) to define intrinsic properties of signal
distribution in the image in question.

Our rationale is that confocal and 2-photon microscopy are
based on sampling successive points in a focal plane to reproduce
the spatial distribution of fluorescent probes within a sample.
Hence, each pixel contains a discrete measure of the detected
fluorescence within a sample interval, represented by a photon
count, and certain amount of noise, deriving from different
sources (Pawley, 2006; Calapez and Rosa, 2010). Therefore,
statistical methods represent a natural way of describing confocal
or 2-photon datasets. Different models have been proposed
to depict confocal image properties (Calapez et al., 2002;
Pawley, 2006). Specifically, mixture models (MM) have been
suggested as the best descriptor of the sharp peaks and the long
tails typical of background and low fluorescence distributions
(Calapez and Rosa, 2010).

Given these considerations, we have developed a new Smart
Region Growing algorithm (SmRG), which couples the RG
procedure with a MM describing the signal statistics, to calculate
local homogeneity predicates (i.e., local thresholds) for iteratively
growing the structure to be segmented. Here, we describe
the SmRG workflow for single-neuron segmentation. Then, we
evaluate its performance in segmenting different neuron types
from confocal and 2-photon datasets, comparing the results with
those obtained with a gold standard manual reconstruction.
Furthermore, we compare our algorithm with state-of-the-art
(SoA) tools widely used in the field of neuron reconstruction.

THE SMART REGION GROWING (SmRG)
ALGORITHM

The Mixture Model
In its original version (Calapez and Rosa, 2010), the model is
supposed to describe K different fluorescence levels or classes; the
k-th class is described by the linear mixture model:

ψk
(
y
)
= αkψB

(
y− K0

)
+ (1− αk)ψSk

(
y− K0

)
(1)

where y, K0 and αk denote the pixel intensity level, the
system offset and the mixture parameter respectively. ψB is the
distribution for the background pixels and is modeled according
to a discrete normal distribution, with variance vB and mean
K0, and ψSk is the intensity distribution of the k-th class pixels,
described by a negative-binomial distribution with variance vSk
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and mean µSk. In accordance with (Calapez and Rosa, 2010) the
negative-binomial distribution is re-parameterized in terms of

pk =
µSk

vSk
(2)

and

rk =
µ2
Sk

vSk − µSk
(3)

For region growing purposes, it is reasonable to assume the
presence of a single class k of pixels, at least locally. In this case,
the complete model for a pixel yl is described by the 5-parameter
distribution:

ψ
(
yl;K0, vB, α, r, p

)
= α

1
Z (vB)

exp

(
−

(
yl − K0

)2

2vB

)

+ (1− α)
0
(
yl − K0 + r

)(
yl − K0

)
!0 (r)

pr
(
1− p

)yl−K0 (4)

where all the parameters are real values except for K0 which is an
integer and α ∈ [0, 1].

The model fitting is done by means of an Expectation-
Maximization (EM) algorithm in which:

1. p and r are obtained by the method of moments (eqs. 2, 3)
2. K0 and vB are given by the maximization of the log-

likelihood

L (2|Y,X) =
maxY∑

y=minY

ln (ψ) (5)

3. α is given by the posterior density

α =

∑maxY
y=minY αy

N
(6)

The Algorithm Outlined
The SmRG is an open-source algorithm developed in Matlab
(The Mathworks-Inc., United States). A package of the
functions needed for running the algorithm are available
at http://www.centropiaggio.unipi.it/smrg-algorithm-smart-
region-growing-3d-neuron-segmentation.

The SmRG is driven by a homogeneity predicate for
establishing a local threshold based on the intensity levels
of confocal datasets. Specifically, it exploits the statistics of
the background and the signal distributions of the confocal
acquisitions and a linear MM to determine the probability
with which a given pixel (voxel) can be considered as part of
the foreground or not, as described in section “The Mixture
Model.” The rule to grow regions is then designed from
these probabilities.

The workflow of the SmRG is sketched in Figure 1. It begins
by selecting a seed, either manually or automatically (Figure 1A).

In the first case, the user is asked to identify the seed position
by selecting a point on a focal plane (e.g., a pixel belonging
to the soma), while in the latter the Hough transform (Nixon
and Aguado, 2012) searches for spherical objects within the

FIGURE 1 | Workflow of the SmRG. (A) Manual or automatic seed selection.
(B) Dip test to test for unimodality against multimodality on a MxNx3 crop
centered on the seed. The threshold is determined with Otsu’s method or
through the Mixture Model according to whether the distribution is multimodal
or not. (C) 3D segmentation of a MxNx3 crop. (D) The regional maxima of the
distance transform of the segmented MxNx3 crop are chosen as new seeds.
(E) The procedure iterates until there are no more new seeds.

stack to identify the somata: the seed (or the seeds) is (or
are) chosen as the center of the detected sphere (or spheres).
Then, the homogeneity predicate is derived locally on an
image volume centered on the seed. The volume dimension
is a trade-off between the goodness-of-fit of the MM and
the localness of the segmentation and by default is set to
N
8 ×

M
8 × 3, where N and M are the on-plane size of the

image stack. To ensure enough data points for MM fitting,
the crop size is never smaller than 32×32×3. At this step a
Hartigan’s dip test (Hartigan and Hartigan, 1986) (p < 0.01)
is performed on the pixel intensity distribution of the crop to
test for unimodality against multimodality (Figure 1B). In the
case of multimodality the segmentation proceeds with Otsu’s
method (Otsu, 1979), a well-known thresholding technique for
multimodal distributions (Guo et al., 2012). Otherwise, a linear
MM, considering the background as a normal distribution and
the signal as a negative binomial, is fitted by means of an
Expectation Maximization (EM) algorithm on the crop pixel
intensity distribution. Indeed, mixture models combining normal
and negative binomial distributions have been observed to fully
characterize the signal associated with confocal images (Calapez
and Rosa, 2010). The homogeneity predicate is derived from
the posterior probability of the MM, α (or 1-α), denoting the
probability at which a given pixel can be considered as part of
the background (or the signal) distribution. The rule is thus
obtained as a user defined threshold for α (e.g., with 1-α > 0.999
all the seed’s neighboring pixels whose probability of belonging
to the signal exceeds 99.9% are segmented) (Figure 1C). Each
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FIGURE 2 | An example of SmRG outcome: (A) a Purkinje cell from clarified
murine cerebellum acquired using a Nikon A1 confocal microscope; (B) the
same Purkinje cells identified within its confocal dataset.

pixel that satisfies this rule and is spatially connected to the
seed within the crop is added to the object to be segmented.
At this point, new seeds are chosen from the points just
recognized as part of the neuron to be segmented. In particular,
for each segmented plane the regional maxima of the distance
transform (Maurer and Raghavan, 2003) are taken as new
seeds (Figure 1D). The algorithm iterates for each detected
seed and the process stops when there are no more pixels to
add (Figure 1E).

The result of the SmRG is a 3D matrix of logical values, whose
true values represent the voxels constituting an isolated neuron.
Figure 2 shows an example of a Purkinje cell segmented using the
SmRG from a confocal dataset representing a 1 mm-thick slice
from murine cerebellum, obtained after applying the CLARITY
protocol described in Magliaro et al. (2016).

MATERIALS AND METHODS

To evaluate the SmRG’s performance, we processed two different
sets of data. First, confocal acquisitions of 1 mm-thick slices
of clarified cerebellum from a L7GFP mouse were analyzed
to isolate Purkinje Cells (PCs) expressing Green Fluorescent
Protein (GFP). The aim was to demonstrate (i) the SmRG’s
accuracy with respect to a manual segmentation performed
by experts, as it is still considered the gold standard for
neuron segmentation (Al-Kofahi et al., 2003; Meijering, 2010),
(ii) the SmRG’s reproducibility, and (iii) its ability to handle
3D microscopic datasets representing dense-packed neurons
compared with other tools available in literature.

Then, Olfactory Projection (OP) Fibers dataset from the
DIADEM challenge was processed with the SmRG. The SmRG
reconstructions were quantitatively compared to the manually-
traced gold-standards provided by the DIADEM. Moreover,
3D neuron segmentation was performed using other SoA tools
evaluating the outputs against the DIADEM gold standards
through the metrics SD, SSD and SSD%. This allowed an
assessment of the SmRG’s ability to reconstruct 3D neuron
morphology with the same precision and accuracy as SoA
algorithms.

The tools used for both PC and OP datasets were the Vaa3D
(version 3.200) app2 (Xiao and Peng, 2013), MST-tracing (Basu
and Racoceanu, 2014), SIGEN (Ikeno et al., 2018) and MOST
(Ming et al., 2013) plug-ins. They have been extensively validated
in other reports and are widely used to compare reconstructions
provided by new segmentation algorithms (Peng et al., 2014; Liu
et al., 2016). A further quantitative comparative analysis with
NeuroGPS (Quan et al., 2016) was performed was performed on
the PC datasets.

Datasets Representing PCs
Accuracy Test: SmRG Algorithm Versus Manual
Segmentation
The confocal datasets representing dense-packed PCs from
1 mm-thick slices from clarified L7GFP murine cerebellum were
those already manually segmented in Magliaro et al. (2017).
They are available for download at http://www.centropiaggio.
unipi.it/mansegtool. Specifically, n = 3 Purkinje cells from
three different datasets were segmented automatically with
the SmRG algorithm and manually by 6 experts with the
ManSegTool, a tool purposely developed for facilitating the
manual segmentation of 3D stacks (Magliaro et al., 2017). The
matrix and voxel sizes for the three datasets are: (i) Dataset
1: 512 × 512 × 143, x = 0.62 µm/pixel, y = 0.62 µm/pixel,
z = 1.24 µm/pixel; (ii) Dataset 2: 1024 × 1024 × 389,
x = 0.31 µm/pixel, y = 0.31 µm/pixel, z = 0.62 µm/pixel (iii)
Datasets3: 512× 512× 139, x = 0.62 µm/pixel, y = 0.62 µm/pixel,
z = 1.24 µm/pixel.

The SmRG’s segmentation accuracy was evaluated by
comparing morphometric features extracted from the two
outputs. Briefly, we considered (i) the surface area, (ii) the
volume, and (iii) the Sholl analysis (Sholl, 1955; Magliaro et al.,
2017) of segmented structures. To compare Sholl profiles, we
calculated the total area under the curve (AUC) using the
trapezoidal rule thus obtaining a single measure for each profile
(Binley et al., 2014). Statistical differences between the features
in the manual segmented structures and those resulting from
the SmRG were evaluated by means of the Friedman’s test
with replicates. Friedman’s test allows testing treatments under
study (i.e., columns) after adjusting for nuisance effects (i.e.,
rows). Replicates refer to more than one observation for each
combination of factors. In our case, surface area, volume and
the AUC of Sholl profiles were blocking factors (i.e., rows)
with replicates represented by the three neurons, while users
and SmRG represented treatments (i.e., columns). Thus, we are
testing the null hypothesis of no difference between manual and
SmRG-based segmentation.

SmRG Reproducibility
Reproducibility tests were performed by segmenting the same
n = 3 PCs starting from different seeds. Specifically, we randomly
chose 10 pixels picked from different regions of the neuron.
Volume, surface area and AUC of Sholl profiles were obtained for
each seed and the reproducibility was quantified for each neuron
as the coefficient of variation of each measure (i.e., the standard
deviation normalized by the mean).
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SmRG vs. SoA Tools
In order to highlight the SmRG’s ability to segment single-
neurons from confocal datasets represented densely-packed cells,
we processed a 3D image stack with the App2, MST, SIGEN,
MOST Vaa3d plugins and with NeuroGPS.

The reconstructions provided by the Vaa3D plugins and by
SmRG were visually compared. On the other hand, n = 6
neurons were segmented with SmRG and NeuroGPS and
manually through ManSegTool. After translating the volumetric
information obtained with SmRG and ManSegTool in swc
format, the three reconstructions were quantitatively compared
by means of the following metrics: (i) the spatial distance (SD),
(ii) the substantial spatial distance (SSD), and (iii) the percentual
substantial spatial distance (%SSD). The spatial distance is
estimated as it follows:

SD =
∑

i dAB (i)
2 |nA|

+

∑
j dBA

(
j
)

2 |nB|
(7)

With

dAB(i) = argminj
∣∣nA (i)− nB

(
j
)∣∣ , j ∈ [1, |nB|] , i ∈ [1, |nA|]

(8)
and

dBA(j) = argmini
∣∣nB (j)− nA (i)

∣∣ , i ∈ [1, |nA|] , j ∈ [1, |nB|]
(9)

i.e., given two reconstructions, A and B, the spatial distance is
obtained by averaging the Euclidean distance between the nodes
of A and the nodes of B, i.e., dAB, with the reciprocal measure, i.e.,
dBA. Specifically, for each node belonging to A, dAB is obtained by
selecting the minimum distance between each node of B. dAB is
thus obtained by repeating this operation for every node of A and
averaging the results. The same operation is performed with the
nodes belonging to B, to obtain dBA.

The SSD is obtained by selecting the node pairs in A and
B with a minimal distance above a given threshold S and then
performing their average. Specifically, given:

DAB =
{
dAB (i) |dAB (i) > S

}
(10)

and
DBA =

{
dBA

(
j
)
|dBA

(
j
)
> S

}
(11)

Then, the SSD is defined as follows:

SSD =
DAB

2
+

DBA

2
(12)

Finally, the % SSD is obtained by estimating the ratio of nodes
contributing to SSD. These metrics express the similarity of
two different reconstructions (Peng et al., 2011b). Essentially,
SD is a measure of how different two reconstructions are,
while SSD and SSD% measure the extent of differences between
two reconstructions considering only points above a tolerance
threshold S. The tolerance threshold for the evaluation of the
SSD metric was 2 (i.e., S = 2) voxels, as suggested in Peng
et al. (2011a). Given that the SmRG’s output is a 3D logical
matrix constituting the whole neuron, while the DIADEM gold-
standard is a set of points of interest (i.e., a ∗.swc file), a thinning

procedure was necessary to reduce the volumetric information in
SmRG to a skeleton. To this end, we calculated the 3D skeleton
of the SmRG output via a 3-D Medial Surface Axis Thinning
Algorithm (Lee et al., 1994). From the points constituting
the skeleton we reconstructed the corresponding ∗.swc file,
ensuring a fair mapping between the DIADEM reference points
and the SmRG ones.

Moreover, the precision, recall and F-score of the SmRG
reconstructions were determined with respect to the gold-
standard, quantifying the spatial overlap between the closest
corresponding nodes of the two reconstructions (Powers,
2011) and varying the tolerance threshold from 0.5 to 5
voxels, to evaluate the SmRG’s sensitivity to this parameter
(Radojeviæ and Meijering, 2018).

DIADEM Datasets Representing OP
Fibers
The dataset representing OP Fibers is available at http://
diademchallenge.org/olfactory_projection_fibers_readme.html.
It contains 9 separate drosophila olfactory axonal projection
image stacks acquired with a two-photon microscope and
their respective gold standard reconstructions provided by
the DIADEM (Evers et al., 2005; Jefferis et al., 2007). We
segmented all the neurons except OP2, since it contains many
irrelevant structures (Liu et al., 2016). The SmRG and SoA
algorithm reconstructions were compared with the DIADEM
gold-standards. Comparisons between automatic tools were
made by means of the metrics described in section “SmRG vs.
SoA Tools.”

RESULTS

Purkinje Cell (PC) Segmentation
SmRG vs. Manual Segmentation
Figure 3 shows an example of the same PC segmented by
an expert and by the SmRG. The SmRG’s accuracy was
assessed by comparing volume, surface area and AUC of Sholl
profiles extracted from the segmented PCs with the results
obtained by manually segmented ones (Figure 4). The single-
neuron reconstructions provide quantitative information on
the morphology of individual neurons in their native context
where they are surrounded by neighboring cells. Clearly the
algorithm developed is able to follow neurite arborization,
segmenting smaller branches with similar performance to
manual segmentation. Furthermore, the structure obtained with
the SmRG is consistently characterized by a smooth volume,
compared with the manual segmentation. A typical example is
reported in Figure 5, showing a zoomed detail of manual and
SmRG segmentation results.

The Friedman’s test showed no significant differences between
the SmRG and the ManSegTool segmentation in terms of surface
area, volume and Sholl profiles of the segmented structures
(p = 0.8233); a detailed ANOVA table of the Friedman’s
test is reported in Table 1. In summary, the results in the
table demonstrate that the SmRG’s performance is comparable
to that obtained from manual segmentation performed by
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FIGURE 3 | SmRG versus Manual Segmentation. (A) Gold-standard manual
segmentation. (B) SmRG automatic segmentation. (C) Merge of manual
(green) and automatic (red) segmentation, common voxels are reported in
purple.

FIGURE 4 | Testing SmRG accuracy (A) Neuron volume. (B) Neuron surface.
(C) AUC (area under the curve) of Sholl profiles. Friedman’s test was
performed with Volume, Area and AUC as blocking factors (rows, nuisance
effects) with replicates (neurons #1, #2 and #3), and with users and SmRG as
treatments (column). No statistical differences were observed
(p-value = 0.8233).

experts in terms of the accuracy of the morphological
parameters considered.

SmRG’s Reproducibility
Table 2 reports the coefficients of variation of volume, surface
area and AUC of Sholl profiles for each segmented PC.
The maximum coefficient of variation was equal to 0.0258,
demonstrating the robustness of the SmRG to changes in
initial conditions (i.e., the position of a seed belonging to the
structure of interest).

SmRG vs. Other Tools
Figure 6 shows an example of the outputs obtained segmenting
the same confocal 3D stack with the App2, MST, SIGEN and
MOST routines and with the SmRG. We were only able to assess
the comparisons visually, since none of Vaa3D plugins was able
to handle such dense datasets.

Figure 7 reports the same dense packed PCs segmented
with both SmRG and NeuroGPS, showing that the performance
of the two tools is comparable. This is also evident from the
SD, SSD and SSD% metrics obtained with respect to the gold
standard provided by the manual segmentation for all the
neurons segmented except for PC2 (Figure 8). Moreover, the
average precision, recall and F-score in Figure 9 shows better
precision and accuracy for our tool with respect to NeuroGPS
for S = 2.

OP Fibers: SmRG vs. the DIADEM
Gold-Standard
Olfactory Projection fibers segmented with the SmRG are
reported in Figure 10, along with the manually-traced gold-
standard provided by the DIADEM.

One of the distinctive characteristics of the SmRG is its ability
to trace the axon topology of OP fibers while maintaining 3D
volumetric information on neurons and their arbors. Indeed, the
structure obtained with the SmRG is a smooth three-dimensional
volume with voxel-resolution details on neuron morphology; a
feature not available from swc structures. As a consequence, the
SmRG reconstructions in Figure 10 appear thicker than the 3D
rendering of ∗.swc gold-standards.

As evident from the figure, some terminal branches of OP
fibers are not comprised in the manually traced gold standard,
since they have no effect on DIADEM metrics (Brown et al., 2011;
Gillette et al., 2011). Nonetheless, the SD, SSD, and SSD% metrics
used in this work are naturally biased by these missing branches.
Thus, the comparison between automatic reconstructions and
gold standard were limited to those branches included in by the
DIADEM gold standard.

When evaluated against other SoA tools, the SmRG was
observed to be comparable in terms of SD. On the other hand,
our algorithm achieved the lowest values of SSD among all
tools considered (with the exception of segmentation of OP5).
It should be noted that the value of SSD% was higher for the
SmRG with respect to other algorithms, since the estimation of
the skeleton from the 3D output of SmRG produced a higher
number of nodes compared to the other methods (Figure 11).

In Figure 12 the average precision, recall and F-score across
OP fibers are reported for SmRG and SoA tools as a function of
the value of S. For S = 5, the SmRG outperforms other tools in
terms of F-score which highlights its ability to segment OP fibers
with high accuracy.

DISCUSSION

The SmRG for the automatic segmentation of microscopic data
exploits the signal statistics typical of confocal and 2-photon
images (Calapez and Rosa, 2010). Datasets representing neural
tissues from different species, processed using different protocols
(i.e., clarified murine cerebella and Drosophila brains fixed using
classical procedures) and acquired with different imaging tools
(i.e., confocal and two photon microscopy) were used to test
the algorithm. The goodness of the SmRG reconstruction was
compared with manually traced gold-standards as well as with
algorithms available in the SoA.

A quantitative analysis of the SmRG’s accuracy with PC
datasets was performed for three different neurons, whose
manually segmented counterpart was available in Magliaro et al.
(2017). Although a limited set of neurons were analyzed, the
reconstructions of the SmRG and the manually-segmented gold
standards were comparable; moreover, the seeding and RG
procedure was shown to be robust and independent of initial
conditions. The analysis performed on PCs from clarified tissues
highlighted the efficacy of the algorithm developed in isolating
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FIGURE 5 | A detail of the manual and SmRG neuron reconstruction. It is clear that the SmRG segmentation (red) leads to a smoother volume than the manual
(green) one.

single neurons from densely-packed data with respect to some of
the most widely used single neuron reconstruction tools available
in the SoA (i.e., app2, MOST, MST-tracing, SIGEN) (Ming
et al., 2013; Xiao and Peng, 2013; Basu and Racoceanu, 2014;
Ikeno et al., 2018). In particular, none of the Vaa3D plug-
ins allowed the reconstruction of 3D neuron morphology from
the confocal stacks representing neurons in their native 3D

TABLE 1 | Friedman’s ANOVA table.

Source SS Df MS Chi-sq p>Chi-sq

Columns 110.94 6 10.4907 2.08 0.8233

Interaction 64.89 12 5.4074

Error 2132.67 42 50.7778

Total 2308.5 62

SS = Sum of Squares due to each sources; Df = Degree of freedom associated with
each source; MS = Mean Squares, which is SS/Df; Chi-sq: Freedman Chi-square
statistic; p: p-value for the Chi-square statistic.

context, limiting the evaluation of the SmRG’s performance to
a visual comparison. Indeed, many SoA algorithms perform
extraordinarily well with low-quality images possessing noisy
points, large gaps between neurites and non-smooth surfaces
(Liu et al., 2016), since they were likely developed specifically for
such purposes. On the contrary, they may perform modestly or
even fail in reconstructing densely-packed neurons (Hernandez
et al., 2018), such as PCs in the murine cerebella because the

TABLE 2 | Results of SmRG’s reproducibility.

Neuron Volume Area AUC

#1 0.0015 0.0025 7.8e−04

#2 0.0176 0.0258 0.0138

#3 0.0017 6.1e−04 0.0026

Coefficients of variation for neuron volume, area and AUC for n different RG seeds.
*The coefficient of variation corresponds to the standard deviation divided by the
mean σ/µ.
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FIGURE 6 | An example of a confocal dataset representing PCs from a
clarified L7GFP murine cerebellum, segmented with MST, app2, MOST,
SIGEN, and SmRG. None of the SOA tools is able to deal with this dense
dataset, while the SmRG is able to isolate the PCs within the dataset. Different
colors refer to the different neurons recognized.

FIGURE 7 | PCs segmented with SmRG (green) and NeuronGPS (blue) and
compared with the manually segmented gold-standard (red).

images have very different properties (i.e., a large number of
pixels with high intensities). The quantitative analyses of SmRG
and NeuronGPS’ outcomes showed comparable performance of
the two tools in terms of reconstructed arbors. In particular,
SSD and SSD% values were similar for all PCs except for PC2,
in which SmRG performs drastically better than NeuronGPS.
Interestingly, SmRG reached a better precision (P) and accuracy
(F-score) for all used thresholds with respect to NeuronGPS.

Reconstructions of OP fibers from the DIADEM challenge
resulted in a comparable performance between the SmRG and
well-established tools for neuron reconstruction in terms of
SD, SSD, and SSD%. Specifically, the algorithm proposed here
outperformed other tools in terms of SSD, which quantifies
the discrepancy between two outcomes (Peng et al., 2011a),
in almost all reconstructions. On the other hand, the SmRG

FIGURE 8 | Accuracy of SmRG and NeuronGPS against the manually
segmented gold standard for different PCs. (A) SD (B) SSD, and (C)
percentage SSD.

exhibited higher values in the SSD% score. It should be noted
that the gold-standard OP reconstructions are available in.swc
format. Therefore, in order to compare the volumetric SmRG’s
outputs with the gold standards, firstly we were forced to
reduce the information by means of a thinning algorithm. The
thinning algorithm inevitably introduces mismatches, since it
depends on the 3D morphology of the neuron, thus biasing the
meaningfulness of the SSD% values when comparing SmrG and
SoA tools (Liu et al., 2016). The precision and recall of SmRG
outcomes with respect to the manually traced gold-standard
provided by the DIADEM highlighted the performance of our
tool with respect to SoA algorithms in the segmentation of
OP fibers). In particular, for the highest values of the tolerance
threshold considered, the SmRG’s average values of precision,
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FIGURE 9 | Precision, Recall and F-Score for varying thresholds of SSD
evaluation. SmRG has always better performance than NeuronGPS for
increasing values of the threshold.

recall and f-score were all above 95%. This suggests that,
although the algorithm was developed for segmenting neurons
from clarified cerebral tissue, segmentation procedures based on
local signal and noise statistics may be a successful strategy for
“single-neuron” settings, and thus for delivering an adaptive and
generalized algorithm, applicable to different contexts.

When two neurons naturally touch each other and
the signal intensity is high, SmRG may reconstruct the

FIGURE 10 | OP fibers segmented with SmRG and compared with the
DIADEM gold-standard (GS). Please note that for OP3, OP5, OP7, and OP8
the gold standard reconstruction misses some terminal branches (see
DIADEM FAQ at http://diademchallenge.org/faq.html).

FIGURE 11 | Accuracy of SmRG and SoA tools against the DIADEM gold
standard for different OP fibers. (A) SD (B) SSD, and (C) percentage SSD.
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FIGURE 12 | Precision, Recall and F-Score for varying thresholds of SSD
evaluation. SmRG and SoA tools have similar performance for increasing
values of the threshold. For thresholds greater than four voxels, SmRG has
the highest F-Score. For S = 5, we obtained P = 0.9538 ± 0.0350,
R = 0.9770 ± 0.0183 and F = 0.9651 ± 0.0248 (mean ± st. deviation) for the
SmRG.

two objects as one, thus requiring their post-splitting.
A watershed-based routine for separating neurons is
provided at http://www.centropiaggio.unipi.it/smrg-
algorithm-smart-region-growing-3d-neuron-segmentation.
Nevertheless, we also take advantage of the lower
intensity values of neuron boundaries with respect to
neuron bodies. This heterogeneity in pixel intensity
is exploited in SmRG and quantified by the mixture
parameter. As a result, neuron boundaries with lower
intensity values are not segmented, controlling for possible
false merge errors.

We would like to highlight that SmRG was not compared
with SoA segmentation approaches in terms of computational
times. Indeed, tools such as app2, MST, SIGEN, MOST
and NeuroGPS outperform our algorithm as they provide
faster segmentations. However, while the Vaa3D plugins
provide 3D neuron reconstructions with comparable accuracy
and precision (Figure 8) for sparsely labeled data, they fail
when performing segmentations of densely-packed neurons.
As regards the tool described by Quan et al. (2016), the
strength of SmRG lies in the amount of morphological
information it provides with respect to the NeuroGPS
neuron tracing.

CONCLUSION

Despite the numerous attempts addressed at 3D neuron
reconstruction, little attention has been paid to delivering
automatic and robust methods capable of dealing with the
large variability of datasets representing densely-packed
neurons, as well as for digitizing the morphology and
volumetric characteristics of the segmented structures. As
a result, the majority of algorithms are only able to handle
with sparsely labeled data, compelling neuroscientists to
manually segment images representing intricate neuronal
arborisations and to reducing 3D space-filling neurons to
skeletonized representations.

The SmRG, an open-source Matlab-based algorithm for the
segmentation of complex structures in 3D confocal or 2-photon
image stacks, overcome these setbacks. It provides an accurate
reconstruction of 3D neuronal morphology acquired using
confocal microscopy, which accounts for 80% of user needs in
imaging facilities. The SmRG can potentially be extended to other
imaging modalities (e.g., super-resolution microscopy) adopting
the same statistical framework for identifying the signal and noise
distribution from 3D images.

In addition, our tool allows the extraction of several
useful morphological features from the segmented neurons.
Preserving the volumetric information is an essential step for
deciphering the Connectome. Besides structural mapping, from
a biological perspective, digital 3D neuron reconstruction is
crucial for the quantitative characterization of cell type by
morphology and the correlation between morphometric features
and genes (e.g., between wild-type and model animals) or
patho-physiology (e.g., the detection of neuronal morphological
anomalies in diseased individuals compared to healthy ones)
(Acciai et al., 2016).

Future improvements could be obtained by coupling the
NeuroGPS method (Quan et al., 2016) which rely on human
strategies to separate individual neurons, with the SmRG’s one,
thus leveraging on both the geometric constraints of the former
and the statistical properties of the latter, taking the best from
both the approaches.

In conclusion, the SmRG can facilitate the identification
of the different neural types populating the brain, providing
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an unprecedented set of morphological information and new
impetus toward connectomic mapping.
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In recent years, deep learning (DL) has become more widespread in the fields
of cognitive and clinical neuroimaging. Using deep neural network models to
process neuroimaging data is an efficient method to classify brain disorders and
identify individuals who are at increased risk of age-related cognitive decline and
neurodegenerative disease. Here we investigated, for the first time, whether structural
brain imaging and DL can be used for predicting a physical trait that is of significant
clinical relevance—the body mass index (BMI) of the individual. We show that individual
BMI can be accurately predicted using a deep convolutional neural network (CNN)
and a single structural magnetic resonance imaging (MRI) brain scan along with
information about age and sex. Localization maps computed for the CNN highlighted
several brain structures that strongly contributed to BMI prediction, including the
caudate nucleus and the amygdala. Comparison to the results obtained via a standard
automatic brain segmentation method revealed that the CNN-based visualization
approach yielded complementary evidence regarding the relationship between brain
structure and BMI. Taken together, our results imply that predicting BMI from structural
brain scans using DL represents a promising approach to investigate the relationship
between brain morphological variability and individual differences in body weight and
provide a new scope for future investigations regarding the potential clinical utility of
brain-predicted BMI.

Keywords: deep learning, convolutional neural networks, magnetic resonance imaging, body mass index,
caudate nucleus, amygdala

INTRODUCTION

Over the last few years, the use of deep learning (DL) has become increasingly widespread in the
analysis of neuroimaging data in several different application domains (Arbabshirani et al., 2017;
Litjens et al., 2017; Shen et al., 2017; Zaharchuk et al., 2018; Davatzikos, 2019). DL is a branch
of machine learning that allows the construction of computational models that learn to represent
data at increasing levels of abstraction to solve specific tasks (LeCun et al., 2015; Goodfellow et al.,
2016). Among DL methods, deep convolutional neural networks (CNNs) (LeCun et al., 1990;
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Lecun et al., 1998), which are widely adopted in the computer
vision community due to their capability to achieve outstanding
object detection performance (Krizhevsky et al., 2012), represent
a promising approach to analyzing brain imaging data in studies
of psychiatric and neurological disorders (Vieira et al., 2017;
Durstewitz et al., 2019). The majority of studies employing CNNs
used structural and/or functional magnetic resonance imaging
(MRI) data to examine patients with Alzheimer’s disease and mild
cognitive impairment (Gupta et al., 2013; Payan and Montana,
2015; Sarraf and Tofighi, 2016; Farooq et al., 2017; Meszlényi
et al., 2017; Hosseini-Asl et al., 2018; Islam and Zhang, 2018;
Basaia et al., 2019); although there are examples of studies
classifying other mental disorders as well, such as attention-
deficit hyperactivity disorder (Zou et al., 2017) and alcoholism
(Wang et al., 2017).

The potential of these methods lies partly in that—in
contrast to conventional mass univariate analytical methods—
machine learning in general and DL in particular allow statistical
inferences at the individual level (Vieira et al., 2017). Besides the
diagnosis of brain disorders, machine learning can also be used
to identify individual differences in the brain aging process (Cole
and Franke, 2017; Cole et al., 2019). DL methods are increasingly
prevalent in this application area as well, as CNNs can be used
to predict the chronological age of individual subjects based on
structural brain MRI scans with a mean absolute error (MAE)
of 4.16 years (Cole et al., 2017). Comparable results can be
obtained with CNNs using whole-brain functional connectivity
patterns, derived from resting-state fMRI data, as input (Li et al.,
2018; Vakli et al., 2018). These findings bear significance for
two main reasons. First, they provide proof of concept that a
single MRI scan contains information that is strongly related to
chronological age (Cole and Franke, 2017). Second, they provide
a means to quantify the individual risk of age-related cognitive
decline and disease. In fact, several studies have shown that an
increase in brain-predicted age relative to chronological age is
associated with various neurological and psychiatric disorders,
poorer physical fitness, and increased risk of mortality (Franke
and Gaser, 2012; Koutsouleris et al., 2014; Cole et al., 2015, 2018;
Habes et al., 2016; Löwe et al., 2016; Pardoe et al., 2017).

The above findings demonstrate how computational models
aimed at predicting a certain biometric trait have potential
clinical applicability. Here we investigated whether structural
brain imaging and machine learning can be used for predicting
a physical trait that is of significant clinical relevance—the
body mass index (BMI) of the individual. The prevalence
and disease burden of excessive body weight is on the rise
globally (The GBD 2015 Obesity Collaborators, 2017), and
there is extensive evidence showing a relationship between
obesity—defined as a BMI greater than 30 kg/m2—and brain
health. In particular, a number of studies have shown that
obesity and associated cardiovascular disease and metabolic
disorders in midlife are related to cognitive impairment and
dementia in later life (Pedditizi et al., 2016; Dye et al., 2017;
Alford et al., 2018; Singh-Manoux et al., 2018). To date,
a large number of studies using conventional neuroimaging
methods have investigated the differences in brain structure
and function between obese/overweight and lean individuals.

Increased BMI has been associated with reduced gray matter
volume (Pannacciulli et al., 2006; Taki et al., 2008; Raji et al.,
2010; Brooks et al., 2013) and white matter integrity (Stanek et al.,
2011; Kullmann et al., 2015). Altered resting-state functional
connectivity (Avery et al., 2017) and activation to visual food cues
in brain regions involved in reward processing and inhibitory
control (Carnell et al., 2012; Pursey et al., 2014; Val-Laillet
et al., 2015) have also been described in obese individuals.
A recent study has investigated the associations between obesity,
regional gray matter volumes, and white matter microstructure,
as assessed by MRI, in a large sample of 12,087 participants
(Dekkers et al., 2019). The authors have found sex differences in
the relationship between total body fat percentage and the volume
of several subcortical regions of the brain reward system, and
contrary to previous findings, a positive association between total
body fat percentage and white matter microstructural coherence.

Training a machine learning algorithm to predict individual
BMI based on brain imaging data has several potential
applications. On the one hand, once sufficiently accurate
prediction performance is achieved, it is possible to investigate
which features (e.g., structural properties of the brain) contribute
significantly to the predicted value. This has the potential to
provide complementary information regarding the relationship
between brain structure and body weight, besides conventional
neuroimaging approaches. On the other hand, it can pave
the way for potential clinical applications, inasmuch as the
discrepancy between the true and the predicted BMI might be
related to individual differences in food intake regulation and
associated propensity for future weight gain. This would be
analogous to that how the difference between brain-predicted and
chronological age is used to quantify health risks.

Here we apply, for the first time to our knowledge, DL
to predict individual BMI based on brain imaging data. In
particular, we employ a CNN for BMI prediction based on T1-
weighted structural MR images, as well as information about the
participants’ age and sex. This approach has the advantage of
being able to use minimally preprocessed neuroimaging data as
input and automatically learn a hierarchical set of representations
suitable for solving the task at hand (LeCun et al., 2015), as
opposed to conventional neuroimaging and machine learning
methods that rely on a priori manual extraction of features from
raw data (Vieira et al., 2017). Based on the findings discussed
above, we hypothesized that BMI could be accurately predicted
based on a single MRI bran scan, and hence a CNN can be trained
to effectively perform this task on novel scans as well.

Once a well-performing model has been obtained and tested
on new data, a logical next step is to try to make sense of why
the model predicts what it predicts. While deep neural networks
are usually regarded as “black boxes,” it is possible to give
reasonable explanations for their predictions without elucidating
the underlying mechanisms (Lipton, 2016). Common approaches
include projecting hidden layer activations back to input space to
find patterns that excite feature maps the most (Zeiler and Fergus,
2014), examining the effect of occluding different parts of the
input image on model performance (e.g., Vakli et al., 2018), or
identifying those pixels in the input image that have the greatest
impact on the model’s predictions (e.g., Simonyan et al., 2013).
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With regard to the latter approach, a particular method that
has been used extensively in recent years to provide “visual
explanations” for CNNs’ decisions is Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). This
technique uses the gradient information flowing into the last
convolutional layer of the CNN to highlight image regions that
played an important role in predicting a certain target concept.
Here we adapted this method to the context of regression based
on 3D images to localize brain regions that made a significant
contribution to BMI prediction.

Since the present study represents one of the first attempts
to apply Grad-CAM for analyzing neuroimaging data, we
also intended to investigate the neural underpinnings of
individual differences in body weight using a more conventional
neuroimaging approach and compare the obtained results.
To this end, we performed automatic anatomical processing
using the FreeSurfer software and general linear modeling to
examine the relationship between brain morphology and BMI.
FreeSurfer implements the automatic reconstruction of the
cortical surface as well as subcortical structure segmentation
using a probabilistic atlas (Dale et al., 1999; Fischl et al.,
1999). The simultaneous application of the DL and automatic
segmentation methods was motivated by the possibility that,
as compared to this more conventional latter approach, using
minimally preprocessed anatomical images and representation
learning paired with gradient-based visualization would yield
complementary evidence regarding the relationship between
brain structure and body weight.

MATERIALS AND METHODS

Dataset
All analyses reported in this article include participants
from the UK Biobank population cohort1. UK Biobank is a
large prospective study comprising around 500,000 individuals
recruited between 2006 and 2010 from across Great Britain
who underwent physical and cognitive assessment, provided
biological samples and completed questionnaires examining
health and lifestyle (Allen et al., 2012). A subset of the participants
(N = 22,392) underwent additional MRI from May 2014 until the
data release in October 2018. Participants with a self-reported
history of cancer, stroke, heart attack, deep-vein thrombosis,
or pulmonary embolism diagnosed by a medical doctor (based
on data-fields 2453, 6150, and 6152) were omitted from the
current study. Additionally, only participants whose body mass
indices were reported at the time of the imaging visit (data-
field 21,001 instance 2) were included in the analyses. Finally,
participants with a raw T1-weighted structural image deemed
“unusable” by the UK Biobank team were also excluded. Image
quality control on behalf of UK Biobank consisted of the
rough manual review of T1 images supplemented by a beta-
version automated quality control pipeline (Alfaro-Almagro
et al., 2018). Eventually, 9518 females, aged between 45 and
80 years (mean± SD = 62.11± 7.30 years), and 8420 males, aged

1https://www.ukbiobank.ac.uk/

between 44 and 80 years (mean± SD = 63.21± 7.59 years), were
included in the present study. For females, BMI ranged between
13.39 and 58.70 kg/m2 (mean ± SD = 26.15 ± 4.72 kg/m2),
while for males, it ranged between 16.67 and 58.04 kg/m2

(mean± SD = 27.03± 3.99 kg/m2).
All participants provided informed consent to participate

in the UK Biobank study. The UK Biobank Research Ethics
Committee (REC) approval number is 11/NW/0382. Detailed
information on the consent procedure of UK Biobank are
available at the following URL: http://biobank.ctsu.ox.ac.uk/
crystal/field.cgi?id=200.

Data Acquisition and Preprocessing
Neuroimaging
Data were acquired on Siemens Skyra 3T MRI scanners (Siemens
Healthcare, Erlangen, Germany) at the UK Biobank imaging
centers in Cheadle, Newcastle, and Reading. A standard Siemens
32-channel RF receive head coil was applied. The brain imaging
protocol included a T1-weighted 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence for structural imaging,
using in-plane acceleration (iPAT = 2) and a field-of-view (FOV)
of 208× 256× 256 with isotropic 1 mm spatial resolution.

Raw T1-weighted images were preprocessed by the UK
Biobank team using an automated processing pipeline based on
FSL tools (Jenkinson et al., 2012). The preprocessing pipeline
included gradient distortion correction, cutting down the FOV,
skull stripping, and non-linear transformation to MNI152 space
(Alfaro-Almagro et al., 2018). In-house preprocessing was limited
to reducing the size of the images to ease the computational
burden of processing large 3D volumes. In particular, the “zoom”
function of the multi-dimensional image processing package
(scipy.ndimage) of the SciPy ecosystem2 was used to resample
each image by a factor of 0.5 using spline interpolation, resulting
in images of shape 91 × 109 × 91 with isotropic 2 mm
spatial resolution.

Body Mass Index
Data on weight were collected using a Tanita BC418MA body
composition analyzer (Tanita Corporation of America, Inc.,
Arlington Heights, IL, United States). A Seca 240 cm height
measure (Seca Deutschland, Hamburg, Germany) was used to
obtain standing height measurement from participants. Body
mass index was calculated as follows:

BMI = weight in kilograms/height in meters2

Further details on the anthropometric measurements can be
obtained from the following URL: http://biobank.ndph.ox.ac.uk/
showcase/refer.cgi?id=146620.

Age and Sex
The age of each participant was derived from the date of birth
(data-fields 34, 52) and the date of the imaging visit (data-field
21,003 instance 2) and was given in years with precision to the
month. Sex was self-reported (data-field 31) and coded as 0 for
female and 1 for male.

2https://scipy.org/
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Prediction of Body Mass Index
Neural Network Architecture
We used a CNN to predict BMI. The prediction of the model is
based on three inputs from each subject:

1. T1-weighted brain image in MNI152 space, encoded in a
Numpy3 array of shape 91× 109× 91.

2. Chronological age of the participant in years with
precision to the month.

3https://numpy.org/

3. Sex of the participant (0 for female and or 1 for male).

The output of the network is a single scalar corresponding to
the predicted BMI of the subject.

A schematic illustration of the network architecture is given in
Figure 1. The network comprises repeated blocks of 3D spatially
separable convolutional layers followed by batch normalization
(Ioffe and Szegedy, 2015) and rectified linear unit (ReLU)
activation function (Nair and Hinton, 2010). In 3D spatially
separable convolutional layers, instead of convolving the input

FIGURE 1 | Schematic illustration of the architecture of the convolutional neural network used for predicting body mass index. The network comprises repeated
blocks of 3D spatially separable convolutional layers followed by batch normalization and ReLU, with every other block followed by a pooling layer to subsample the
input. Global average pooling is used to map the feature maps of the last block to a vector (with a single scalar for each feature map) that is fed into a fully connected
hidden layer followed by a single output unit for BMI prediction. Dashed lines denote concatenation, S denotes stride.
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with filters of shape N × N × N, a cascade of three asymmetric
filters of shapes N × 1 × 1, 1 × N × 1, and 1 × 1 × N
is used. Such a factorization of convolution operations reduces
the computational cost by reducing the number of parameters
(Szegedy et al., 2016) and has been used effectively in 3D medical
image processing (Silva et al., 2018). Filter size is N = 5 (with a
stride of 1) for the first set of convolution operations and N = 3
afterward. The number of filters is eight in the first convolutional
layer and is doubled at regular intervals to enable the learning of
a rich set of feature representations of the input brain image. All
convolutional layers used SAME padding.

Every other batch normalization layer is followed by max
pooling (filter shape 3× 3× 3, stride = 2) to subsample the input
images, and global average pooling is implemented after the last
batch normalization layer to calculate the average intensity value
of each feature map computed by the last convolutional layer. The
output of this operation, along with the values representing age
and sex, is fed into a fully connected hidden layer with 128 units
and ReLU activation function. This hidden layer is connected to
a single output unit, the activation of which corresponds to the
predicted BMI value.

The CNN has 231,681 parameters overall, out of which
230,961 parameters are trainable. The model was implemented
in Python using TensorFlow 1.13.4 and the source code of the
model along with the learnt parameters is available on GitHub:
https://github.com/vaklip/cnn_3d_regression.

To examine whether information about age and sex was
crucial for BMI prediction we also trained a network that was
identical to the one described above, except that the values
representing age and sex were not concatenated to the output
of the global average pooling operation nor were they fed to the
network in any other way.

Model Training
The weights of the convolutional and fully connected layers were
initialized using Xavier initialization (Glorot and Bengio, 2010).
The shifting and scaling parameters of the batch normalization
layers were initialized to zeros and ones, respectively. The bias
terms of the fully connected layers were initialized to 0.01. To
train the network, we used mean squared error as the loss
function, Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0005 (momentum decay hyperparameter β1 = 0.9,
scaling decay hyperparameter β2 = 0.999) and a batch size of
eight. Dropout regularization (Wager et al., 2013; Srivastava et al.,
2014) with a dropout rate of 0.4 was applied to the fully connected
hidden layer during training.

The brain images of all participants were randomly assigned
to disjoint training (N = 13938), validation (N = 2000), and
test (N = 2000) sets. Only data in the training and validation
sets were used for training and hyperparameter selection. The
model was trained on the training set for a total of 50 epochs,
and its performance was evaluated on the validation set after
each epoch. A snapshot of the model parameters leading to
the best validation set performance was restored and the final
model was evaluated on the test set. Model performance is

4https://www.tensorflow.org

characterized by the MAE, standard deviation of the absolute
error (STDAE), coefficient of determination (R2), root mean
square error (RMSE), and Pearson’s correlation coefficient (r)
between the true and predicted BMI values.

A single NVIDIA Quadro M4000 GPU was used to train the
CNN, with a runtime of about 1 h per epoch.

Transfer Learning
We used transfer learning to investigate the generalizability of
our approach. Transfer learning refers to the method of training
a neural network on one dataset (the source domain) and
then adapting the model to a different dataset and/or task (the
target domain) by transfer and fine-tuning of the previously
learned model weights. In our case, the UK Biobank dataset
constituted the source domain and the Information eXtraction
from Images (IXI) dataset5 including brain MR images from
multiple sites in London constituted the target domain. We
included the T1-weighted MR images of 269 subjects from the
IXI dataset who fell into the age range corresponding to the
UK Biobank sample: 177 females aged between 44 and 78 years
(mean ± SD = 60.50 ± 8.32 years) and 115 males aged between
44 and 79 years (mean± SD = 59.48± 9.05 years). These images
were recorded using Philips Intera 3T (N = 96; Hammersmith
Hospital) and Philips Gyroscan Intera 1.5T (N = 173; Guy’s
Hospital) scanners and a FOV of 150 × 256 × 256 and
spatial resolution of 1.2 mm × 0.938 mm × 0.938 mm.
Images recorded at a third location (Institute of Psychiatry using
a GE 1.5T system) were omitted from the current analysis
due to the very low number of participants that matched
the given age range (N = 23). In-house image preprocessing
was limited to spatial normalization to MNI152 space and
skull-stripping using the SPM12 toolbox6 and custom-made
scripts running on MATLAB 2015a (MathWorks Inc., Natick,
MA, United States).

Images were randomly divided into disjoint training
(N = 197), validation (N = 36), and test sets (N = 36). The
weights of the network were initialized to those learnt on the
UK Biobank dataset and then trained on the IXI dataset for 50
epochs, using data augmentation (random rotations of maximum
5 degrees and translations of 10 voxels). The neural network
architecture and training hyperparameters were the same as
those used for training on UK Biobank data. A snapshot of the
model parameters leading to the best validation set performance
(evaluated at the end of each epoch) was restored and the final
model was evaluated on the test set.

Localizing Brain Regions Relevant for
BMI Prediction
In order to obtain localization maps highlighting brain regions
that are important for BMI prediction, we used a modified
version of the Grad-CAM (Selvaraju et al., 2017). The Grad-CAM
method aims to provide visual explanations for the decisions
made by a wide variety of CNNs. It uses the gradients of a
given target concept flowing into the final convolutional layer

5https://brain-development.org/ixi-dataset/
6http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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to produce a coarse localization map that highlights regions in
the input image that are important for predicting that concept.
We applied two modifications to the original method. First, we
adapted it for processing 3D images, similarly to (Wang et al.,
2019). We computed the gradient of the predicted BMI-score
y with respect to the feature maps An of the last convolutional
layer, and performed global average pooling on these gradients to
obtain an importance weight αn for each feature map:

αn =
1
Z

∑
i

∑
j

∑
k

∂y
∂An

ijk
(1)

where Z is the number of units in a feature map. Then, the
weighted combination of the features maps was calculated to
obtain the localization map L ∈ Ru×v×w:

L =
∑

n
αnAn (2)

In the original formulation of Grad-CAM, which was developed
to provide class-discriminative visualizations, a ReLU was applied
to L in order to highlight features that have a positive influence
on the class of interest, as negative values would likely belong
to other classes (Selvaraju et al., 2017). Here, since our CNN
performed a regression task with a single output unit, and hence
we were interested in features that have either positive or negative
influence on predicted BMI, we omitted this step.

Localization maps were computed for each individual in
the UK Biobank test set. They were upsampled to match the
size of the input images using spline interpolation (for details,
see section “Neuroimaging”). Intensity values were standardized
to have zero mean and unit variance. As all brain images
were registered to MNI152 space, a voxelwise grand average
localization map across all test subjects could be computed. The
resulting map was thresholded at two standard deviations from
the mean and superimposed on the ch2bet MRIcron7 template
to visualize regions in the brain that made a strong contribution
to BMI prediction. To investigate the robustness of the results,
a grand average localization map was also computed for the
training set. This localization map was visually indistinguishable
from the one obtained for the test set.

Examining the Relationship Between
BMI and Brain Volumetric and
Morphometric Variability
Based on the visualization provided by the modified Grad-CAM
method, we performed further exploratory analyses to investigate
the association between BMI and morphological variability in
the human brain using the UK Biobank data. To this end, we
randomly selected a subset of 200 participants from the test set,
with the only constraint being that the male–female ratio and
the distribution of chronological age and BMI remain similar
to those in the overall test set. We used FreeSurfer 6.08 to
automatically parcellate the cortical surface and segment the

7https://people.cas.sc.edu/rorden/mricron/index.html
8http://surfer.nmr.mgh.harvard.edu

subcortical structures in the anatomical images of these subjects
(Dale et al., 1999; Fischl et al., 1999). Then we investigated
the relationship between different measures of cortical and
subcortical anatomy—estimated by FreeSurfer—and the true
BMI of participants, as detailed below.

Subcortical Segmentation
The volume-based stream of FreeSurfer (Fischl et al., 2002,
2004) was used to quantify the volumes of left and right
hemisphere subcortical structures. Subcortical structures were
selected for volumetric analysis based on the regions highlighted
in the localization map produced by the modified Grad-CAM
method. We computed partial correlations to examine the
relationship between subcortical structure volume and BMI while
controlling for chronological age, sex, and overall subcortical
gray matter volume. We controlled for the former two variables
since they were added as covariates to the CNN model which
was therefore able to adjust for structural differences between
individuals of different age and sex. Partial correlations were
calculated using Statistica 13.4. (TIBCO Software Inc., Palo Alto,
CA, United States).

Cortical Parcellation
The surface-based stream of FreeSurfer (Dale et al., 1999; Fischl
et al., 1999) was used to construct models of the boundaries
between white matter and cortical gray matter (the white surface),
and between gray matter and the cerebrospinal fluid (the pial
surface). The triangular tessellation of these surfaces allows
for the calculation of several morphometric measures at each
location (vertex) of the cortex, including cortical thickness,
area, and curvature. We investigated the relationship between
these three measures and BMI using FreeSurfer’s Query, Design,
Estimate, Contrast (QDEC) tool. Specifically, after smoothing
individual subject data to the average surface with a 10-
mm full-width at half maximum Gaussian kernel, a general
linear model (GLM) with one of the morphometric measures
as dependent variable was applied at each vertex, accounting
for the effects of age, sex, and total cortical gray matter
volume. False discovery rate (FDR) correction (threshold at
0.05) was applied to reduce Type I. errors associated with
multiple comparisons.

Based on the grand average localization map, we directly
investigated the association between the morphology of the right
middle temporal gyrus and BMI. In particular, we computed
partial correlations to examine the relationship between BMI and
surface area, mean thickness and curvature while controlling for
age, sex, and total cortical gray matter volume.

RESULTS

BMI Prediction
Overall, results showed that our CNN model can be used
to predict BMI with high accuracy. Prediction error on
the validation set reached a minimum after 32 epochs
(MAE = 2.41 kg/m2, STDAE = 1.93 kg/m2). The model
generalized well to the brain images in the test set
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FIGURE 2 | BMI prediction accuracy on the UK Biobank dataset. The
scatterplot depicts the true (horizontal axis) and the CNN-predicted BMI
(vertical axis) on the test set (N = 2000). A least squares regression line
(continuous blue) is superimposed on the scatterplot.

FIGURE 3 | BMI prediction accuracy on the IXI dataset. The scatterplot
depicts the true (horizontal axis) and the CNN-predicted BMI (vertical axis) on
the test set (N = 36). A least squares regression line (continuous blue) is
superimposed on the scatterplot.

(Figure 2): MAE = 2.48 kg/m2; STDAE = 2.09 kg/m2;
RMSE = 3.24 kg/m2; Pearson r = 0.68; R2 = 0.44.

When training the network without feeding information
about age and sex to it, it took longer to reach a minimum

of prediction error on the validation set (after 41 epochs,
MAE = 2.36 kg/m2, STDAE = 2.09 kg/m2). Nevertheless, the
model generalized well to the test set images: MAE = 2.41 kg/m2;
STDAE = 2.11 kg/m2; RMSE = 3.20 kg/m2; Pearson
r = 0.7; R2 = 0.46.

When fine-tuning learned weights on the IXI dataset,
validation error reached a minimum after 44 epochs
(MAE = 2.53 kg/m2; STDAE = 2.00 kg/m2).We obtained
reasonable BMI prediction on the IXI test set (Figure 3;
MAE = 3.00 kg/m2; STDAE = 2.12 kg/m2; RMSE = 3.67 kg/m2;
Pearson r = 0.49; R2 = 0.21), albeit it was below the performance
obtained in the case of the UK Biobank dataset.

Localization Map
The grand average localization map across all the 2000 subjects’
images in the test set is depicted in Figure 4. The map highlights
several regions that, on average, have a strong influence on
predicted BMI. These regions include the left caudate, the left
medial temporal lobe in the vicinity of the amygdala, and the
lateral surface of the right temporal cortex, encompassing the
middle temporal gyrus.

Brain Volumetric and Morphometric
Analyses
Based on the localization map, two subcortical regions, the left
caudate and amygdala, were selected for volumetric analysis in
a subset of the test subjects (Figure 5). On the one hand, there
was no significant partial correlation between the volume of the
caudate and the true BMI of the subjects when controlling for
chronological age, sex, and overall subcortical gray matter volume
(r = 0.028, p = 0.7). This may be accounted for by sex differences
in the relationship between caudate volume and BMI (Figure 5,
left panel). On the other hand, a significant partial correlation
between the volume of the amygdala and BMI was observed
(r = 0.19, p = 0.008), showing that increased BMI is associated
with increased amygdalar volume.

Regarding the analysis of cortical morphometry, no significant
association between BMI and cortical thickness or curvature
was observed after correcting for multiple comparisons (FDR
threshold at 0.05). However, a positive relationship was observed
between BMI and the area of the isthmus cingulate in the right
hemisphere (Figure 6). The direct tests (partial correlations) of
the association between BMI and morphological measures of the
right middle temporal gyrus yielded no significant results.

DISCUSSION

In this proof-of-concept study, we established that a deep CNN
can be used to predict individual BMI with high accuracy,
based on a single structural MRI brain scan and information
about age and sex. This finding is in line with the results of
several previous studies showing gray and white matter structural
alterations in obese individuals (Brooks et al., 2013; Kullmann
et al., 2015; Dekkers et al., 2019). We also demonstrated that
gradient-based visualization can be used effectively to highlight
brain regions that play an important role in BMI prediction.
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FIGURE 4 | Grand average localization map highlighting brain regions that strongly contribute to predicted BMI. Activation values are z-scored and thresholded at |
Z| > 2. The localization map is superimposed on the ch2bet MRIcron template with MNI coordinates displayed below each slice.

FIGURE 5 | BMI and subcortical volumes. Scatterplots depict the volumes of the caudate (left panel) and amygdala (right panel) in the left hemisphere and the
true BMI values of male (N = 93) and female (N = 107) subjects in the test set.

More specifically, we used the Grad-CAM method, based on
the gradient information flowing into the last convolutional
layer of the CNN (Selvaraju et al., 2017), and adapted it to the
context of regression using 3D images to identify brain regions
that, on average, made a strong contribution to predicted BMI
values. Our results suggest that, in addition to conventional
neuroimaging methods and analytical techniques, the use of

DL along with visual explanations for model predictions is a
suitable approach for identifying the brain structural correlates
of individual variability in body weight.

In particular, the localization map produced by the Grad-
CAM method highlighted a set of brain regions including a
portion of the left medial temporal lobe in the vicinity of
the amygdala. The relationship between amygdalar volume and
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FIGURE 6 | Vertex-wise analysis of surface area using FreeSurfer. BMI is
significantly associated with surface area in a right hemisphere cluster
encompassing the isthmus cingulate cortex (when age, sex, and total cortical
gray matter volume are controlled for). The cluster survived false discovery
rate correction at threshold p < 0.05.

BMI was also confirmed by using FreeSurfer-based subcortical
segmentation and partial correlation correcting for age and
sex, which showed that higher BMI was associated with larger
amygdalar volume. Previous studies using voxel-based (Taki
et al., 2008) and tensor-based morphometry (Raji et al., 2010)
found a relationship between BMI and the volume of gray and
white matter in the medial temporal lobe. With regard to the
amygdala, a positive relationship between BMI and amygdalar
volume was already found in children and adolescents (Perlaki
et al., 2018), young adults (Orsi et al., 2011), and elderly
subjects (Widya et al., 2011); although a negative association
has also been described (Kharabian Masouleh et al., 2016).
Taken together, these results show that the DL approach
paired with gradient-based visualization and more conventional
neuroimaging methods provide converging evidence regarding
the link between body weight and amygdalar structure. This
is in accordance with the results of functional neuroimaging
studies providing evidence for the involvement of the amygdala
in processing visual food cues (van der Laan et al., 2011; Tang
et al., 2012; van Bloemendaal et al., 2014).

Besides the commonalities, several discrepancies have
been observed between the results of the Grad-CAM-based
localization and the vertex-wise analysis using FreeSurfer. On
the one hand, the vertex-wise analysis yielded a significant
association between BMI and the surface area in a region
corresponding to the isthmus cingulate in the right hemisphere.
While at least one previous study reported a relationship between
BMI and the morphology of the posterior cingulate cortex
(Kharabian Masouleh et al., 2016), this region did not light up
in the Grad-CAM-based localization map. On the other hand,
several other brain structures were deemed important based
on the localization map, in the case of which the conventional

automatic brain segmentation approach failed to confirm an
association with BMI, namely the lateral surface of the right
temporal cortex and a region encompassing the left caudate
nucleus. With regard to the latter, a previous study has shown
that the volume of the caudate heads bilaterally show a positive
association with BMI in men, after adjusting for age, lifetime
alcohol intake, history of hypertension, and diabetes mellitus
(Taki et al., 2008). Sex differences have also been shown to be
manifest regarding the relationship between total body fat and
caudate volume (Dekkers et al., 2019). Our results regarding
the association with BMI are also indicative of such differences
(Figure 5, left panel). In addition, the discrepancy between our
observations with DL and conventional approaches is likely to
stem from the differences in the applied methodologies as well.
In our study, we used FreeSurfer for the automated segmentation
of predefined subcortical structures and examined the linear
relationship between BMI and a single scalar estimate of the
volume of the caudate. FreeSurfer segmentation includes a series
of pre-processing steps applied to the MRI volumes, followed
by labeling the volumes based on a probabilistic atlas built
from a set of hand-labeled images, as well as subject-specific
measurements (Fischl et al., 2002, 2004). In contrast, the CNN
is fed with minimally preprocessed images and learns a series of
transformations to map those images to the corresponding BMI
values. Each of these transformations map the representation
of the input at one level into a representation at a slightly more
abstract level (LeCun et al., 2015). Compared to the conventional
automated brain segmentation methods, visualizations based
on these more abstract representations may provide additional
information with regard to the relationship between brain
architecture and body weight. Similarly, several recent studies
applied the Grad-CAM method to highlight brain regions that
made an important contribution to predicting depression and
epilepsy (Pominova et al., 2018), brain age (Bermudez et al.,
2019), and Alzheimer’s disease (Feng et al., 2018) based on
structural MRI data.

Besides being a promising tool for neuroscientific
investigation, brain-predicted BMI may also have practical
utility. We managed to adapt the CNN model to a novel dataset,
suggesting that our method is more generally applicable to
a variety of different MR scanner types. Coming back to the
relationship between the amygdala and body weight, this brain
structure has been shown to be involved in the evaluation of
food cues (Siep et al., 2009) and to constitute a part of a neural
circuitry involved in the regulation of food craving (Dietrich
et al., 2016). In a recent review, it has been argued that structures
of the medial temporal lobe, in particular the amygdala and the
hippocampus, may play an important role in the regulation of
body weight, and that the amygdala is crucial for the regulation
of feeding behavior based on environmental cues (Coppin, 2016).
Based on the localization map produced by the Grad-CAM
method, it is reasonable to hypothesize that brain-predicted
BMI may be related to individual differences in the processing
of food stimuli and cue-induced feeding. On this basis, one
intriguing possibility is that increased brain-predicted BMI
relative to the actual BMI might reflect a greater propensity
to weight gain. This mode of application is similar to how the
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difference between brain-predicted and chronological age might
have clinical utility (Cole and Franke, 2017). However, it is
important to note that brain structural alterations might not be
the cause but the consequence of obesity. In fact, obesity-driven
neuroinflammation has been shown to affect several brain regions
including the hippocampus and the amygdala (Guillemot-
Legris and Muccioli, 2017). Further research is necessary to
examine whether and how brain-predicted BMI is related to
pathophysiological processes and eating behavior.

CONCLUSION

Our findings provide proof of concept that individual BMI can
be predicted with high accuracy from a single MRI scan using DL
methods and suggest a relationship between the morphology of
subcortical structures and body weight.
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Applications based on electroencephalography (EEG) signals suffer from the mutual

contradiction of high classification performance vs. low cost. The nature of this

contradiction makes EEG signal reconstruction with high sampling rates and sensitivity

challenging. Conventional reconstruction algorithms lead to loss of the representative

details of brain activity and suffer from remaining artifacts because such algorithms only

aim to minimize the temporal mean-squared-error (MSE) under generic penalties. Instead

of using temporal MSE according to conventional mathematical models, this paper

introduces a novel reconstruction algorithm based on generative adversarial networks

with the Wasserstein distance (WGAN) and a temporal-spatial-frequency (TSF-MSE) loss

function. The carefully designed TSF-MSE-based loss function reconstructs signals by

computing the MSE from time-series features, common spatial pattern features, and

power spectral density features. Promising reconstruction and classification results are

obtained from three motor-related EEG signal datasets with different sampling rates and

sensitivities. Our proposed method significantly improves classification performances of

EEG signals reconstructions with the same sensitivity and the average classification

accuracy improvements of EEG signals reconstruction with different sensitivities. By

introducing the WGAN reconstruction model with TSF-MSE loss function, the proposed

method is beneficial for the requirements of high classification performance and low cost

and is convenient for the design of high-performance brain computer interface systems.

Keywords: EEG signals reconstruction, generative adversarial network, Wasserstein distance, sampling rate,

sensitivity

1. INTRODUCTION

Electroencephalography (EEG) (Cecotti and Graser, 2011; Narizzano et al., 2017; Freche et al.,
2018) is one of the most important non-invasive neuroimaging modalities used in cognitive
neuroscience research (Mullen et al., 2015; Mete et al., 2016; Luo et al., 2018b) and brain-computer
interface (BCI) development (Ahn and Jun, 2015; Arnulfo et al., 2015; Sargolzaei et al., 2015;
Kumar et al., 2017). However, EEG-based cognitive neuroscience and BCI fields currently face a
bottleneck in that high sampling rate and high-sensitivity EEG amplifier hardware are extremely
expensive and generally complicated to operate for collecting signals (Jiang et al., 2017). Ideally,
EEG amplifiers with high sampling rates and sensitivities are preferred to record high-resolution
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brain activities underlying different stimuli. Lowering the
sampling rate and sensitivity may influence the utility of
acquired signals (Wu et al., 2015). Therefore, extensive efforts
have been dedicated to reconstructing high-sampling-sensitivity
EEG (HSS-EEG) signals from low-sampling-sensitivity EEG
(LSS-EEG) signals to improve performance. The up-sampling
operation is one of the conventional time-series reconstruction
methods. By using an up-sampling operation, the reconstructed
signals are up-sampled and with different sensitivity. The
reconstruction methods can be divided into three categories:

1. Reconstruction by interpolation (Erkorkmaz, 2015).
2. Reconstruction by mathematical modeling (Naldi et al., 2017).
3. Reconstruction by deep neural networks (Jin et al., 2017).

Among the methods for reconstructing EEG signals by
interpolation algorithms, such as bilinear interpolation, nearest
neighbor interpolation, and spline interpolation, several are
based on the successive assumption of signal values (Marques
et al., 2016). Such an assumption does not consider the
complexity of signals, and, therefore, it is difficult to represent
brain activity from reconstructed signals. Reconstruction based
on mathematical models, such as compressive sensing, subspace
projection, and frequency transformation, optimizes an objective
function that incorporates mathematical models and prior
information in the different domains of the signals. These
algorithms greatly improve signal performance and quality;
however, they may still lose the details representing brain activity
and suffer from artifacts. In addition, reconstruction by a single
mathematical model and a single domain has simplified the range
of applications of reconstructed EEG signals. These algorithms
greatly improve signal performance and quality (Choudhary
et al., 2016); however, they may still lose the details representing
brain activity and suffer from artifacts. Additionally, the
high computational cost of constructing mathematical models
remains another potential risk in practical applications.

In contrast to interpolation and mathematical models, the
recent explosive development of deep neural networks (DNNs)
has shed light on novel opinions and promised potential in
the field of signal reconstruction. In recent years, most DNNs
studies have focused on image signal reconstruction from the
perspective of noise, super-resolution, and denoising (LeCun
et al., 2015). A state-of-the-art image reconstruction performance
was obtained by the new game theoretic generative model
of generative adversarial networks (GANs) (Goodfellow et al.,
2014). GANs are used to generate images from artificial data,
construct high-resolution (HR) images from low-resolution (LR)
copies (Ledig et al., 2017), and denoise CT images from noisy
images (Yang et al., 2018), and such models achieve the best

Abbreviations: EEG, electroencephalography; HSS-EEG, high sampling rate and

sensitivity EEG; LSS-EEG, low sam-pling rate and sensitivity EEG; DNNs, deep

neural networks; GAN, generative adversarial network; WGAN, GAN with

Wasserstein distance; HR, high resolution; LR, low resolution; FBCSP, filter bank

common spatial pattern; PSD, power spectral density; TSF-MSE, temporal-spatial-

frequency mean square error; AO, action observation; GAL, grasp and lift; MI,

motor imagery; ReLU, rectified linear unit; BN, batch normalization; SVM, support

vector machine; SVD, singular value decomposition; ERD/ERS, event-related

desynchronization/event-related synchronization.

performance in reconstruction tasks. Inspired by the applications
of GANs in the image reconstruction field, researchers have
focused on reconstructing EEG signals using GANs. Research
on “GANs conditioned by brain signals” (Kavasidis et al.,
2017) has used GANs to generate images seen by subjects
from recorded EEG signals. Another deep EEG super-resolution
study used GANs to produce HR EEG data from LR samples
by generating channel-wise up-sampled data to effectively
interpolate numerous missing channels (Hartmann et al., 2018).
Such an algorithm produced higher spatial resolution EEG
signals to improve performance.

Although GANs have been used to reconstruct images from
EEG signals with a visualized spatial feature space, the sampling
rate and sensitivity resolution in the temporal feature space are
still two key limitations of EEG signals. To counterbalance the
performance of EEG signals and the cost of EEG amplifiers, we
propose using a GAN with the Wasserstein distance (WGAN)
model as the discrepancy measure between different sampling
rates and sensitivities and a spatial-temporal-frequency loss
function that computes the difference between EEG signals in
an established feature space. The GAN/WGAN architecture is
used to encourage the reconstructed LSS-EEG signals to share
the same distribution as the HSS-EEG signals. Because EEG
signals are multi-channels time-series data, instead of using the
mean square error by temporal features as the loss function,
we propose a novel spatial-temporal-frequency loss function,
which is robust enough for the EEG signals, to extract the
spatial-temporal-frequency features for reconstruction. By using
the GAN/WGAN architecture and the carefully designed loss
function to reconstruct HSS-EEG signals from LSS-EEG signals,
this study has made two contributions:

1. The GAN/WGAN architectures are trained by EEG signals
of different sampling rates and different sensitivities to
compare the classification performances of the reconstructed
EEG signals.

2. The spatial-temporal-frequency loss is applied to maintain
robustness of GAN/WGAN architectures training, and the
loss function helps reconstruction signals to obtain more
discriminant patterns.

2. METHODS

2.1. EEG Signal Reconstruction Model
For the reconstruction of EEG signals, let z ∈ RN×T1×S denote
the LSS-EEG signals from distribution PL, and x ∈ RN×T2×S

denote the HSS-EEG signals from the real distribution PH . In
the definition, N denotes the number of channels, and T1 and T2

denote the samples of one trial for LSS-EEG signals andHSS-EEG
signals during recordings, respectively. S denotes the number
of trials for the motor-based tasks. The reconstruction goal is
to formulate a function f (z) that projects LSS-EEG signals z to
HSS-EEG signals x:

f (z) : z → x (1)

In fact, the reconstruction function maps the LSS-EEG samples
from PL into a certain distribution PC, and our goal is to adjust a
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certain distribution PC to make it close to the real distribution
PH by varying the function f (z). The reconstruction has two
procedures with GAN. In the generation procedure, the object is
to adjust EEG samples from distribution PL to distribution PC. In
the discriminator procedure, the object is to adjust EEG samples
from distribution PC to distribution PH . The reconstruction
procedure can ultimately be treated as a procedure to adjust EEG
samples from one distribution to another.

Typically, since EEG signals are nonlinear and non-
stationary, the noise model in such signals is complicated,
and the reconstruction mapping relationship is non-uniformly
distributed across the signals. Thus, there is no clear indication
of how the distributions of LSS-EEG and HSS-EEG signals are
related to each other. It is difficult to reconstruct LSS-EEG
signals using conventional methods. However, the uncertainties
in the noise model and the reconstruction mapping relationship
can be ignored by using deep neural networks (DNNs), as the
DNNs can efficiently learn high-level features from nonlinear and
non-stationary signals and reconstruct a representation of the
data distribution from modest-sized signal patches. Therefore,
the GAN framework based on DNN is suitable for EEG
signal reconstruction. In summary, a modified GAN framework
with the Wasserstein distance and temporal-spatial-frequency
(TSF) loss is introduced to reconstruct HSS-EEG signals from
LSS-EEG signals.

2.2. GAN With Wasserstein Distance
The GAN framework consists of two opposing neural networks,
a generator G, and a discriminator D, that are optimized to
minimize a two-player min-max problem (Goodfellow et al.,
2014). The discriminator is trained to distinguish the generated
samples from the real samples, while the generator is trained
to generate fake samples that are not determined as fake by the
discriminator. For the reconstruction of EEG signals, we further
defined the discriminator DθD and the generator GθG to solve the
min-max problem:

min
θG

max
θD

LGAN(DθD ,GθG ) = Ex∼PH

[

logDθD (x)
]

+ Ez∼PL

[

log
(

1− DθD

(

GθG (z)
))]

(2)

where E(·) denotes the expectation operator. When the
discriminator meets the real data, it will satisfy DθD (x) =

1 to discriminate the real data. Here, DθD (x) = 1 reaches
the expectation for logDθD (x). When the discriminator meets
the generated data, it will satisfy DθD

(

GθG (z)
)

= 0 to
discriminate the generated data. Here, DθD

(

GθG (z)
)

= 0
reaches the expectation for log

(

1− DθD

(

GθG (z)
))

. Therefore,
the minimax optimal function is designed by the expectation
operator. The general reconstruction idea is to train a generator
for the purpose of fooling a differentiable discriminator
that is trained to distinguish reconstructed HSS-EEG signals
from real HSS-EEG signals. In constructing EEG signals,
GANs suffer from remarkable training difficulty due to the
nonlinear and non-stationary characteristics of EEG signals.
To overcome the training problem of the original GAN
framework, instead of using Jensen–Shannon divergence, the

WGAN framework uses the Wasserstein distance to compare
sample distributions (Gulrajani et al., 2017). From the definition
of WGAN, the min-max problem optimized by DθD and GθG can
be written:

min
θG

max
θD

LWGAN(DθD ,GθG ) = −Ex∼PH

[

DθD (x)
]

+Ez∼PL

[

DθD

(

GθG (z)
)]

+ λẼx∼PR

[

(∥

∥∇x̃(D(̃x))
∥

∥

2
− 1

)2
]

(3)

In the min–max problem, the Wasserstein distance is estimated
by the first two terms. The last term is the gradient penalty
for network regularization. In the penalty term, PR denotes the
distribution of uniform samples x̃ along straight lines connecting
pairs of generated and real samples. ∇x̃(·) is the gradient
calculator, and the parameter λ is a constant weighting parameter
for the penalty term. In fact, the WGAN framework removes the
log function and drops the last sigmoid layer to keep the gradient
while training the min-max problem. The discriminator DθD and
the generatorGθG are trained alternatively by optimizing one and
updating the other.

2.3. TSF-MSE Loss Function
To allow the generator to transform the data distribution from
a low sampling rate and sensitivity to a high sampling rate
and sensitivity, another part of the loss function needs to be
added to the GAN/WGAN architecture to retain the detail and
information content of the EEG signals. A widely used loss
function for signal details and information contents is the mean
square error (MSE) loss function (Yang et al., 2018). Typically,
as the common MSE is computed by minimizing the point-
wise error in image processing, the temporal MSE is computed
by minimizing the time sampling point-wise error between a
LSS-EEG patch and a HSS-EEG patch by the time step:

LT−MSE(GθG ) = E(x,z)

[

1

T2

∥

∥G(z(t))− x(t)
∥

∥

2

F

]

(4)

where ‖·‖F denotes the Frobenius norm, LT−MSE denotes the
temporal MSE for the generator GθG , t is the time step of real
EEG signals and generated EEG signals, and T is the number
of time steps for each batch. In contrast to images, EEG signals
are multi-channel time-series data, and the spatial and frequency
features must be considered for reconstruction. Therefore, in
addition to the temporal MSE LT−MSE between time steps, the
spatial MSE LS−MSE between channels and the frequency MSE
LF−MSE between signal batches also need to be considered for
encouraging the GAN/WGAN architecture to construct more
accurate HSS-EEG signals. Recently, common spatial patterns
(CSP) have been widely used to extract spatial features from
EEG signals (Luo et al., 2018a), and power spectral density
(PSD) features are widely used to extract frequency features from
EEG signals (Petroff et al., 2016). The CSP algorithm is used to
compute the optimal projection vectors to project the original
EEG signal to a new space to obtain good spatial resolution
and discrimination between different classes of EEG signals. The
PSD algorithm is used to compute the power values on specific
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frequencies to compose a spectra. Using these two algorithms, the
spatial MSE LS−MSE and the frequency MSE LF−MSE are defined
for the generator:

LS−MSE(GθG ) = E(x,z)

[

1

C2

∥

∥G(CSP(z(c)))− CSP(x(c))
∥

∥

2

F

]

(5)

LF−MSE(GθG ) = E(x,z)

[

1

N2

∥

∥G(PSD(z(n)))− PSD(x(n))
∥

∥

2

F

]

(6)

where CSP(·) and PSD(·) are the CSP feature and PSD feature
extractor, respectively. c is the channel of real EEG signals and the
same of the generated EEG signals, C is the number of channels,
n is the batch of real EEG signals and the same as that of the
generated EEG signals, and N is the number of batches. For
convenience, the TSF loss is computed by weighting three such
MSE losses:

LTSF−MSE(GθG ) = λT · LT−MSE(GθG )+ λS · LS−MSE(GθG )

+ λF · LF−MSE(GθG ), (7)

where λT , λS, λF are the weights of three such different MSE
losses, respectively. Datasets with different sampling rates and
sensitivities will obtain different weights, and, thus, the values of
the weights will be determined by experiments.

In addition, to confirm that the EEG signals are temporally
and spatially coherent, a regularization loss LTV (GθG ) based on
total variation is used in the generator:

LTV (GθG ) =
1

CT

C
∑

c=1

T
∑

t=1

∥

∥∇zGθG (z)c,t
∥

∥ (8)

where ∇z(·) is the gradient calculator; the gradient regularization
loss will encourage temporal and spatial coherence of the
reconstruction. Combining Equations (3), (7), and (8), the overall
joint reconstruction loss function is expressed as

min
θG

max
θD

LTSF−MSE(GθG )+ λ1LWGAN(DθD ,GθG )+ λ2LTV (GθG ) (9)

where λ1 and λ2 are the weights for controlling the trade-off
among the WGAN adversarial loss, the TSF-MSE loss and the
TV loss.

2.4. Network Structures
The proposed WGAN-EEG reconstruction framework is
illustrated in Figure 1. The WGAN-EEG framework consists
of three parts to reconstruct HSS-EEG signals from LSS-EEG
signals. For the first part of the deep generator GθG , “B residual
blocks” with an identical layout that was proposed by “Kaiming
He” (He et al., 2016) are employed in the generator network.
To facilitate the high sensitivity of EEG signals, 16 “B residual
blocks” are applied to LSS-EEG signals to extract deep features for
the generator. In each “B residual block,” following the common
usage of the deep learning community, two convolutional
layers with small 3*3 kernels, 1 stride, and 64 feature maps
(k3n64s1) are followed by a batch-normalization layer (BN)
and the ReLU activation function (Ioffe and Szegedy, 2015). To
increase the sampling rate of the input EEG signals, the trained
deconvolutional layer (stride = 0.5) is followed by “B residual
blocks” to increase the sampling rate. In real-world application,
the WGAN-EEG architecture is trained well to fit HSS-EEG
signals before usage. In the usage scenario, the recorded LSS-EEG

FIGURE 1 | The architecture of the WGAN-EEG. The WGAN-EEG framework consists of three parts to reconstruct HSS-EEG signals from LSS-EEG signals. For the

first part of the deep generator, “B residual blocks” with an identical layout are employed in the generator network. The second part of the WGAN-EEG framework is

the TSF-MSE loss calculator. The third part of the WGAN-EEG is used to discriminate real HSS-EEG signals from generated HSS-EEG samples.
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FIGURE 2 | Details of the discriminator in the WGAN-EEG. We followed the architectural guidelines for the discriminator to use the LeakyReLU activation function and

avoid max-pooling along the network. The discriminator network contains eight convolutional layers with an increasing number of filter kernels by a factor of 2. After

eight convolutional layers, there are two FCN layers, of which the first layer has 1,024 outputs with the LeakyReLU activation function, and the second layer has a

single output. Following the instructions of the WGAN, the discriminator of the WGAN-EEG has no sigmoid cross entropy layer.

signals are incorporated into the well-trained architecture to
reconstruct HSS-EEG signals to improve the sensitivity.

The second part of the WGAN-EEG framework is the
TSF-MSE loss calculator, which is realized in Figure 1. The
reconstructed output HSS-EEG signalsGθG (z) from the generator
GθG and the ground truth HSS-EEG signals x are fed into the
calculator to extract the CSP features and the PSD features. Then,
using the extracted features, the TSF-MSE loss is computed by
Equations (4), (5), (6). The reconstruction error computed by
the loss function is then back-propagated to update the generator
network’s weights.

The third part of the WGAN-EEG used to discriminate
real HSS-EEG signals from generated HSS-EEG samples, the
discriminator network DθD , is shown in Figure 2. Here, we
followed the architectural guidelines for the discriminator to use
the LeakyReLU activation function and avoid max-pooling along
the network (Zhang et al., 2017). The discriminator network
contains eight convolutional layers with an increasing number
of filter kernels by a factor of 2. In fact, the convolutional
kernels are increased from 64 to 512 kernels, and the stride is
alternatively increased from 1 to 2 to reduce the EEG signal
sampling rate when the number of features is doubled. In
the discriminator, each convolutional layer is followed by a
LeakyReLU activation function and a batch-normalization layer.
After eight convolutional layers, there are two FCN layers, of
which the first layer has 1,024 outputs with the LeakyReLU
activation function, and the second layer has a single output.
Following the instructions of the WGAN (Gulrajani et al., 2017),
the discriminator of the WGAN-EEG has no sigmoid cross
entropy layer.

The WGAN-EEG framework is trained by using EEG signal
batches and applied on the entity of each signal trial. The details
of training the WGAN have been described in the experiments.

3. RESULTS

3.1. Experimental Datasets
To explore the feasibility and performance of the proposed
algorithm, three EEG signal datasets with different sampling rates

TABLE 1 | Details of the three different EEG datasets.

Datasets Action observation Grasp and lift Motor imagery

Sampling rate/s 250 500 250

Sensitivity/bit 0.024 µV/bit 0.1 µV/bit 100 µV/bit

Channels 64 32 22

Classification

categories

2 6 4

Subject number 6 12 9

Trials/Subject 384 576 1,560

Trial duration/s 5 s 0.5 s 4 s

Device NeuroScan SymAmp2 BrainAmp Unknown

and sensitivities are applied to train and evaluate the proposed
networks. Table 1 illustrates the details of these three different
EEG datasets.

(1) Action Observation (AO) dataset (Luo et al., 2018b): The
AO dataset1 was collected from our previous research on
different speed modes during AO. The EEG signals were
acquired from the “NeuroScan SymAmp2” device with 64
channels, and the sampling rate and sensitivity were 250 Hz
and 0.024 µV/bit, respectively. In this dataset, six subjects
were invited to observe a robot’s actions at four different
speeds. Thus, the dataset had 24 subsets for each subject
in each AO speed mode. Each subset contained 384 trials
with 192 trials of left leg movements and 192 trials of right
leg movements for a binary classification, and each trial
lasted 5 s. To train the GAN/WGAN, a “leave-one-rest”
strategy is used for training. In our pre-training experiments,
more signals caused a problem of over-fitting and a large
time complexity for GAN/WGAN training. Since 13 subsets
containing 4,992 trials were enough to obtain the best
performance, we left one subset and randomly selected 13
subsets from the remaining 23 subsets for training; the left
subset was reconstructed after obtaining the well-trained

1https://pan.baidu.com/s/4gap5N4.
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GAN/WGAN. Therefore, all 24 subsets were reconstructed
through 24 rounds of the above procedure. Because the AO
dataset was acquired at a sampling rate of 250 Hz, we down-
sampled all trials of EEG samples to the sampling rate of 125
Hz for the sake of sampling rate reconstruction.

(2) Grasp and Lift (GAL) dataset (Luciw et al., 2014): The GAL
dataset2 recorded EEG signals while the subjects grasped and
lifted an object. The EEG signals were acquired using the
“BrainAmp” device with 32 channels, and the sampling rate
and sensitivity were 500 Hz and 0.1 µV/bit, respectively. In
this dataset, 12 subjects executed six movements for 1,560
trials, and each trial lasted 0.5 s; thus, the classification
of EEG signals contained six categories. To train the
GAN/WGAN, a “leave-one-rest” strategy is used for training.
The 9,360 trials carried out by six subjects were enough
to train the GAN/WGAN, and we thus left one subject’s
signals and randomly selected six subjects’ signals from
the remaining 11 subjects’ signals for training; the left
subjects’ signals were reconstructed after obtaining the well-
trained GAN/WGAN. Therefore, all 12 subjects’ signals were
reconstructed through 12 rounds of the above procedure.
In the experiment, to validate the reconstruction of the
sampling rate, all signals were down-sampled to a sampling
rate of 250 Hz.

(3) Motor Imagery (MI) dataset (Tangermann et al., 2012): The
MI dataset3 was from the “BCI competition IV dataset 2a.”
Nine subjects participated in the MI experiment during
which EEG signals were recorded while the subject imagined
his/her own leg, foot, and tongue movements, and each trial
lasted for 4 s. There were 22 channels, and the sampling rate
and sensitivity were 250 Hz and 100 µV/bit, respectively.
In this dataset, nine subjects executed four motor imagery
tasks, and each subject had 576 trials of EEG signals for a
four categories for classification.To train the GAN/WGAN,
a “leave-one-rest” strategy is used for training. The 4,032
trials carried out by seven subjects were enough to train
the GAN/WGAN, and we thus left one subject’s signals
and randomly selected seven subjects’ signals from the
remaining eight subjects’ signals for training; the left subjects’
signals were reconstructed after obtaining the well-trained
GAN/WGAN. Therefore, all nine subsets were reconstructed
through nine rounds of the above procedure. For the same
purpose, all trials of EEG signals were down-sampled at a
sampling rate of 125 Hz.

3.2. Training Details
In the training procedure, we trained six models using
the GAN/WGAN framework within three different datasets.
All down-sampled training EEG samples were fed into the
generator, and the real training EEG samples were fed into the
discriminator. The generated EEG samples and the real EEG
samples were discriminated by the TSF-MSE loss function to
update the generator and the discriminator for solving the min-
max problem. Because the AO dataset and the GAL dataset have
high sampling rates and a high number of channels, models for

2https://www.kaggle.com/c/grasp-and-lift-eeg-detection/data.
3http://www.bbci.de/competition/iv/#datasets.

these two datasets were trained over 30 epochs. However, the
MI dataset has a lower sampling rate and fewer channels, and,
therefore, this dataset was trained over 20 epochs. Each epoch
traverses all the data in the corresponding dataset. According to
the different devices used to record EEG signals, the generators
of the GAN/WGAN frameworks were specified by different
scopes of generation for different datasets. We specified the
generation scopes of [−40, 40 µV], [−50, 50 µV], and [−100,
100 µV] for the AO dataset, the GAL dataset, and the MI
dataset, respectively.

In our experiments, we randomly extracted pairs of signal
patches from down-sampled EEG signals and real EEG signals
as our training inputs and labels. The patch size is N ∗ τ ,
where N is the channel number for different datasets, and
τ is the EEG samples from the temporal domain. Since the
limited trials of EEG signals (<500 trials for one subject) and
smaller values of τ will construct more accurate sequential
relationships for the EEG signals, following our previous research
(Luo et al., 2018a), we cropped a minimal length for the
training of the deep neural network. According to the pre-
experiment, we set τ = 12 to satisfy the minimal length
for the convolution in the GAN/WGAN architecture. In the
optimization of the generator and the discriminator, according
to current research (Basu et al., 2018), the GAN models were
optimized by the Adam algorithm (Basu et al., 2018), and the
WGAN models were optimized by the RMSprop algorithm
(Mukkamala and Hein, 2017). The optimization procedure for
the GAN/WGAN architectures is shown in Figure 3. The mini-
batch size was set to 32. Following the instructions of the
GAN/WGAN frameworks (Goodfellow et al., 2014; Gulrajani
et al., 2017), the Adam optimizer’s hyperparameters were set
as α = 10−5,β1 = 0.5,β2 = 0.9, and the RMSprop
optimizer’s hyperparameters were set as α = 10−5,β =

0.9. The hyperparameter for the gradient penalty of WGAN
framework was set as λ = 10 according to the suggestion in
the reference (Gulrajani et al., 2017). The hyperparameters for
the SRGAN/SRGAN frameworks in Equation (9) were set as
λ1 = 10−3 and λ2 = 2 ∗ 10−8 by the suggestions of reference
(Ledig et al., 2017). The hyperparameters in the TSF-MSE loss
function of Equation (7) and the joint reconstruction were set
of different values according to the experimental experience of
each reconstruction round, and the average values with standard
deviations of all parameters in three datasets are given in Table 2.
The optimization processes for the GAN framework and the
WGAN framework are similar; however, some places are changed
to the corresponding optimizer and the loss functions (see
Figure 3).

The GAN/WGAN frameworks were implemented in Python
2.7 with the Tensorflow 1.8 library. Two NVIDIA 1080Ti GPUs
were used in this study.

3.3. Network Convergence
To visualize the convergence of the GAN/WGAN frameworks,
the conventional temporal MSE, frequency MSE, spatial MSE,
the proposed TSF-MSE losses, and the Wasserstein distance for
validation of three different datasets were computed according
to Equations (2), (3), (4), and (5). Figure 4 shows the averaged
temporal MSE, frequency MSE, spatial MSE, and TSF-MSE
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FIGURE 3 | The optimization procedure for the GAN/WGAN. Following the instructions of the GAN/WGAN frameworks, the Adam optimizer’s hyperparameters are

set as α = 1e− 5,β1 = 0.5,β2 = 0.9, and the RMSprop optimizer’s hyperparameters are set as α = 1e− 5,β = 0.9. The hyperparameter for the gradient penalty is

set as λ = 10 according to the suggestion in the reference. The hyperparameters in the TSF-MSE loss function and the joint reconstruction are set as

λT = 0.5, λS = 0.25, λF = 0.25, λ1 = 0.1, λ2 = 0.1 according to our experimental experience. The optimization processes for the GAN and the WGAN are similar,

except some places are changed to the corresponding optimizer and the loss functions.

losses vs. the number of epochs for different datasets within the
GAN/WGAN frameworks.

From Figures 4A–D, for a given framework and dataset,
we have compared the variations and differences between the

conventional temporal MSE, frequency MSE, spatial MSE, and
our proposed TSF-MSE. In the four figures, all of the iterative
curves are shown to have decreased rapidly within the first
10 epochs (each epoch contains 10 error recordings), and the
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TABLE 2 | The hyperparamter λT , λS, λF tuning of the novel TSF-MSE loss

function for all experiments.

Reconstruction λT λS λF

AO− > AO 0.46 ± 0.12 0.23 ± 0.06 0.30 ± 0.09

GAL− > GAL 0.44 ± 0.13 0.21 ± 0.08 0.35 ± 0.06

MI− > MI 0.53 ± 0.16 0.20 ± 0.11 0.27 ± 0.03

GAL− > AO 0.47 ± 0.12 0.18 ± 0.09 0.31 ± 0.07

MI− > AO 0.41 ± 0.13 0.31 ± 0.08 0.27 ± 0.09

AO− > GAL 0.50 ± 0.14 0.22 ± 0.09 0.33 ± 0.06

MI− > GAL 0.52 ± 0.12 0.22 ± 0.08 0.25 ± 0.08

AO− > MI 0.60 ± 0.18 0.31 ± 0.09 0.07 ± 0.01

GAL− > MI 0.58 ± 0.17 0.33 ± 0.08 0.06 ± 0.01

initial decreases indicated that these two metrics are positively
correlated for the EEG signal reconstruction. However, for
each dataset or when using GAN/WGAN frameworks, the
loss results of TSF-MSE were lower than the loss results of
conventional temporal MSE, frequency MSE, and spatial MSE.
In addition, of these four losses, the WGAN frameworks
oscillated in the convergence process, while the GAN frameworks
smoothed in the convergence process. Comparing the oscillation
of losses, the TSF loss exhibited varied smoothing for the
WGAN framework compared to the GAN framework for each
dataset. These observations of network convergence suggested
that the conventional MSE losses and our proposed TSF-MSE
loss have different focuses within the GAN/WGAN frameworks.
By applying the generators, the difference between conventional
MSE losses and our proposed TSF-MSE loss will be further
revealed in the reconstructed EEG signals.

Figure 5 illustrates the Wasserstein distance estimation
vs. the number of epochs for three different datasets. The
plotted Wasserstein values were estimated by the definition of
−Ex∼PH

[

DθD (x)
]

+Ez∼PL

[

DθD

(

GθG (z)
)]

in Equation (3). From
the figure, we have found a reduction in theWasserstein distances
as the number of epochs increased, but different datasets have
different decay rates of the reducing Wasserstein distance. For
the curves of the three datasets, we noted that the Wasserstein
distance we computed is a surrogate that has not been normalized
by the total number of EEG signal samplings, and, therefore, the
curves would have decreased to close to zero after 100 epochs by
using the normalization for the EEG signals.

3.4. Reconstruction Results
To show the reconstruction effects of the GAN/WGAN
frameworks with our proposed TSF-MSE loss function, we
considered two different aspects of the reconstruction results.
The first one was the sampling rate reconstruction by the same
sensitivity signals’ GAN/WGAN frameworks, which is shown in
Figure 6. The second one was the sensitivity rate reconstruction
by the different sensitivity signals’ GAN/WGAN frameworks,
which is shown in Figure 7. Since the proposed reconstruction
method used a novel TSF-MSE loss function for the training of
GAN/WGAN architectures, the statistical temporal, frequency,
and spatial results were also compared between the original

signals and the reconstructed signals. Figures 8–10 illustrated
the mean temporal error, mean spectra difference, and brain
electrical activity mapping on 12 Hz of a single trial compared
with the original EEG signals and all reconstructed EEG signals.

To plot the reconstruction results of different models and
situations, we chose the same trial from each dataset for the
comparison experiments. Because the number of channels differs
for each dataset, we choose the “FPz” channel for the experiments
to plot the figures. In addition, as one trial over a long period
of time will hide some details of the reconstruction signals, we
chose the 50 ms range of (500 and 550 ms) for the AO and MI
datasets and the 50 ms range of (100 and 150 ms) for the GAL
dataset to plot the details of the reconstruction results. From the
reconstruction results by the same details shown in Figure 6, we
have found that the signals’ proximity between the reconstructed
data and the original data decreased in the following order for
the three datasets: AO > GAL > MI. The difference between the
GAN framework and the WGAN framework cannot be realized
at the signal level. In the figures shown in Figure 7, the high
sensitivity EEG signals’ GAN/WGAN frameworks reconstructed
the low sensitivity EEG signals well, such as the AO andGAL data
reconstructed by the MI GAN/WGAN frameworks. However,
the low sensitivity EEG signals’ GAN/WGAN models cannot
reconstruct accurate high sensitivity EEG signals, such asMI data
reconstructed by the AO and GAL GAN/WGAN frameworks.

For the statistical results in Figures 8–10, we have found that
excepting for the temporal errors, reconstructed EEG signals
show the same regulations on frequency and spatial features.
For the reconstructions of the same sensitivity, the mean spectra
results have shown that WGAN architectures outperform than
GAN architectures, so do the brain electrical activity mapping
(BEAM) results for reconstructions of the same sensitivity. As
for the reconstructions of different sensitivity, we have found
that higher sensitivity models bring lower spectra difference and
more distinct ERS/ERD phenomenon on BEAMs, while lower
sensitivitymodels bring higher spectra difference and less distinct
ERS/ERD phenomenon on BEAMs.

3.5. Classification Results
In fact, the qualitative analysis could not yield promising
insight regarding HSS-EEG signals reconstructed by LSS-
EEG signals. Hence, a quantitative analysis was applied to
explore the performance of reconstructed EEG signals. In
this paper, because the AO dataset corresponded to action
observation, the GAL dataset corresponded to action execution,
and the MI dataset corresponded to motor imagery, these three
datasets caused the same event-related desynchronization/event-
related synchronization (ERD/ERS) phenomenon, which can be
classified by filter bank common spatial patterns (FBCSP) and
a support vector machine (SVM) (Luo et al., 2018a,b). The
ERS/ERD phenomenon from EEG signals is common on three
motor-related datasets, and such phenomena are usually used for
the motor-based BCI. Therefore, the ERS/ERD phenomenon will
be the key index with which to measure the performance of BCI
system by EEG signals. This study thus selected the ERS/ERD
phenomenon from EEG signals as a quantitative measure, and
FBCSP features with an SVM classifier were applied to explore
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FIGURE 4 | The averaged MSE and Wasserstein distance estimations for training the GAN/WGAN. In the four figures, all of the iterative curves decreased rapidly

within the first 10 epochs (each epoch contains 10 errors recording), and the initial decreases indicated that these two metrics are positively correlated for the EEG

signal reconstruction. However, for each dataset or using GAN/WGAN frameworks, the loss results of TSF-MSE are lower than the loss results of conventional

temporal, frequency, and spatial MSE. In addition, of these four losses, the WGAN frameworks oscillate in the convergence process, while the GAN frameworks are

smoothed in the convergence process. (A) Temporal-spatial-frequency loss, (B) Temporal loss, (C) Frequency loss, (D) Spatial loss.

the performances of the original signals and the reconstructed

signals. For comparison with different models and different

sensitivities, there were several hyperparameters for the FBCSP

features, SVM classifier, and deep learning classifier:

(1) Because all three datasets contain the ERD/ERS

phenomenon, which is detected on the band of [8, 30

Hz], the filter bank strategy is used to divide the whole

band to obtain universality for different subjects. In this

study, the width and overlapping ratio were set to 4 and 2

Hz for the filter bank dividing, as shown in Table 3. After

the EEG signals are filtered by the optimal filter bank, the

CSP algorithm was included to extract FBCSP features (Ang
et al., 2012).

(2) The CSP algorithm (Ang et al., 2012) is presented to

every filter result to extract the optimal spatial features by
computing a problem of maximizing the power ratio for
different AO/AE/MI tasks. Then, the maximizing power

ratio is computed by the singular value decomposition
(SVD) algorithm to obtain eigenvalues and eigenvectors.
Because different datasets have EEG signals from different
channels, the number of eigenvalues used for constructing
the CSP spatial vector were set to m = 8,m = 4, and
m = 4 for the AO dataset, the GAL dataset, and the MI
dataset, respectively.

(3) In the classification, the SVM classifier was issued to
classify the extracted FBCSP features from three different
datasets. To overcome the non-stationary and nonlinear
characteristics of EEG signals, the linear kernel with
hyperparameters was set to c = 0.01 and g = 2 for
the classifiers for all datasets. To compare the classification
performance for both the original data and the reconstructed
data, an 8*8 cross-validation strategy was applied to each
dataset, and the average classification results were recorded.

(4) In order to validate the performance improvement of
reconstructed signals, a convolutional neural networks

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2020 | Volume 14 | Article 15327328

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Luo et al. EEG Reconstruction by WGAN-TSF-LOSS

FIGURE 5 | The Wasserstein distance estimation vs. the number of epochs for three different datasets. The plotted Wasserstein values are estimated by the definition

of −Ex∼PH [DθD (x)]+Ez∼PL
[

DθD

(

GθG (z)
)]

in Equation (3). For the curves of these three datasets, we note that the Wasserstein distance we computed is a surrogate

that has not been normalized by the total number of EEG signal samplings, and, therefore, the curves would have decreased to close to zero after 100 epochs by

using the normalization for the EEG signals.

based deep learning model “FBCSPNet” from reference
(Schirrmeister et al., 2017) was introduced to compare
the classification performance between original signals and
reconstructed signals. Experimental parameters were set as
the same from the reference for AO/GAL/MI datasets.

Classification results for the sampling rate reconstruction by

the same sensitivity signals’ GAN/WGAN frameworks are

shown in Tables 4–6 for AO dataset, GAL dataset, and MI

dataset, respectively. In addition, classification results for the

sensitivity rate reconstruction by the different sensitivity signals’

GAN/WGAN frameworks are shown in Tables 7–9 for AO

datset, GAL dataset, and MI dataset, respectively. In all tables,
the results are presented by classification accuracy forms, and
a paired t-test statistical technique was used to detect whether
the reconstructed EEG signals significantly outperform than the
original EEG signals. P-value of the t-test statistics are provided
in the tables, and ∗p < 0.05 and ∗∗p < 0.01 represent the results
compared among two columns are significantly different and
extremely significantly different.

Tables 4–6 illustrate the up-sampling classification results

compared with the original data, the spline reconstructed data,

the GAN reconstructed data, and the WGAN reconstructed

data. Among the three datasets, we have found that the

WGAN reconstructed data achieved the best classification
performance. In the AO dataset, the WGAN reconstructed

signals achieved the best classification accuracy (67.67%), which
was higher than those of the original data (63.57%), the
spline reconstructed data (60.91%), and the GAN reconstructed
data (65.41%). In the GAL dataset, the WGAN reconstructed
signals achieved the best classification accuracy (73.89%), which
was higher than those of the original data (69.78%), the
spline reconstructed data (68.25%), and the GAN reconstructed

data (73.63%). In the MI dataset, the WGAN reconstructed
signals achieved the best classification accuracy (64.01%), which
was higher than those of the original data (61.98%), the
spline reconstructed data (60.41%), and the GAN reconstructed
data (63.61%).

From the t-test statistical results that computed compared
signals, the reconstructed GAN/WGAN model signals exhibited
significant improvement of classification, producing a better
performance than the original signals, while spline reconstructed
signals exhibited significant reduction of classification
performance, lower that of the original signals. The significant
improvement and reduction are presented for all AO/GAL/MI
datasets (∗p < 0.05). Specifically for the WGAN model in AO
dataset and GAN/WGAN model in MI dataset, the classification
performances presented were extremely significant (∗∗p <

0.01). Therefore, we have concluded that the GAN/WGAN
models with proposed TSF-MSE loss function showed a
significant improvement for reconstructing EEG signals with the
same sensitivity.

Tables 7–9 give the classification results compared with the
GAN/WGAN models trained with different sensitivities. Table 7
gives the classification results of the AO data reconstructed by
the GAL/MI trained GAN/WGAN models. Table 8 gives the
classification results of the GAL data reconstructed by the AO/MI
trained GAN/WGAN models. Table 9 gives the classification
results of the MI data reconstructed by the AO/GAL trained
GAN/WGAN models. For the AO dataset, signals reconstructed
by the GAL-GAN model achieve the best average classification
accuracy (64.55%), which was higher than those of the original
data (63.51%) and the data reconstructed by the GAL-WGAN
(64.40%), the MI-WGAN (62.07%), and the MI-GAN (62/08%).
For the GAL dataset, signals reconstructed by the AO-GAN
model achieve the best average classification accuracy (70.60%),
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FIGURE 6 | Sampling rate reconstruction by the same sensitivity GAN/WGAN frameworks. Sampling rate and sensitivity reconstruction by the same sensitivity

GAN/WGAN frameworks. The reconstruction results of one trial for AO dataset, GAL dataset, and MI dataset. Meanwhile, the detailed reconstruction results in (500,

550 ms) of AO datasets and (100, 150 ms) of GAL and MI datasets are also given. (A) One trial of AO dataset, (B) Detailed in (500, 550 ms), (C) One trial of GAL

dataset, (D) Detailed in (100, 150 ms), (E) One trial of MI dataset, (F) Detailed in (100, 150 ms).

which is higher than those of the original data (69.78%) and the
data reconstructed by the AO-WGAN (70.34%), the MI-WGAN
(69.57%), and the MI-GAN (70.21%). For the MI dataset, signals
reconstructed by the AO-GAN model achieved the best average
classification accuracy (64.93%), which was higher than those of
the original data (61.98%) and the data reconstructed by the AO-
WGAN (63.29%), the MI-WGAN (63.66%), and the MI-GAN
(63.39%). The GAN model performed better than the WGAN
model for reconstructing EEG signals by different sensitivities,
and LSS-EEG signals reconstructed by HSS-EEG models will
increase the sampling rate and sensitivity of signals, which will
increase the classification performance.

From the t-test statistical results that computed between
compared signals, the AO dataset reconstructed signals by
GAL-WGAN and GAL-GAN, showing significant improvement
of classification performance than the original signals (*p <

0.05), while other datasets reconstructed signals showed no
significant performance compared to the original signals(*p >

0.05). In addition, AO dataset reconstructed signals by MI-GAN
a classification performance that was significantly worse than the
original signals (*p < 0.05). Therefore, we have concluded that
the GAN/WGAN models with proposed TSF-MSE loss function
showed significant performance improvement with enough data
and no significant performance improvement without enough
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FIGURE 7 | Sampling rate reconstruction by different sensitivity GAN/WGAN frameworks. Sampling rate and sensitivity reconstruction by different sensitivity

GAN/WGAN frameworks. The reconstruction results of one trial for AO dataset, GAL dataset, and MI dataset. Meanwhile, the detailed reconstruction results in (500,

550 ms) of AO datasets and (100, 150 ms) of GAL and MI datasets are also given. (A) One trial of AO dataset, (B) Detailed in (500, 550 ms), (C) One trial of GAL

dataset, (D) Detailed in (100, 150 ms), (E) One trial of MI dataset, (F) Detailed in (100, 150 ms).

data for reconstructing EEG signals with the same sensitivity.
Besides, if there is a large gap of sensitivity between two EEG
signals datasets, the lower sensitivity based GANmodel will cause
significant worse performance of reconstructing high sensitivity
signals to low sensitivity signals (such as MI-GAN applied to
AO dataset).

Since this study has proposed a novel loss function to
build the GAN/WGAN architectures for reconstructions, we
have also compared the mean classification accuracy between
temporal-MSE based GAN/WGAN architectures and TSF-
MSE based GAN/WGAN architectures. Due to the single
spatial-MSE and frequency-MSE cannot reconstruct signals,

these two losses were not included in the comparison.
Table 10 illustrates the comparison results for all reconstructions
and datasets. We have also used a paired t-test statistical
technique to detect whether the TSF-MSE based GAN/WGAN
architectures significantly outperform than the temporal-MSE
based GAN/WGAN architectures. In Table 10, AO− > AO
means AO dataset reconstructed by the same sensitivity AO
dataset, GAL− > AO/MI− > AO represents AO dataset
reconstructed by the different sensitivity GAL/MI datasets, and
so forth. Experimental results have shown that no matter GAN
architecture or WGAN architecture, TSF-MSE loss function
outperformed the conventional temporal-MSE loss function (*p
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FIGURE 8 | Statistical mean temporal error comparison between the same and different sensitivity GAN/WGAN frameworks.The high-sensitivity EEG signals’

GAN/WGAN frameworks reconstruct the low sensitivity EEG signals well, such as the AO and GAL data reconstructed by the MI GAN/WGAN frameworks. However,

the low sensitivity EEG signals’ GAN/WGAN models cannot reconstruct accurate high-sensitivity EEG signals, such as MI data reconstructed by the AO and GAL

GAN/WGAN frameworks. (A) Mean error of same sensitivity, (B) Mean temporal error of different sensitivity.

FIGURE 9 | Statistical mean spectra difference comparison between the same and different sensitivity GAN/WGAN frameworks. For the reconstructions of the same

sensitivity, the mean spectra results have shown that WGAN architectures outperform than GAN architectures. As for the reconstructions of different sensitivity, we

found that higher sensitivity models brought lower spectra difference, while lower sensitivity models brought higher spectra difference. (A) Mean spectra difference of

same sensitivity, (B) Mean spectra difference of different sensitivity.

< 0.05). Therefore, the novel loss function proposed by us
will significantly improve the performance of the reconstructed
EEG signals.

Classification of reconstructed signals between the
“FBCSP+SVM” classifier and “FBCSPNet” classifier
Schirrmeister et al. (2017) are illustrated in Table 11. The results
have shown average classification results of “FBCSP+SVM”
and “FBCSPNet” for both GAN and WGAN models on three
datasets. The improved ratios have shown that the GAN
model and WGAN model bring 3.75 and 5.25% improvement
on the average, respectively, to all three datasets for the
“FBCSP+SVM” classifier. In addition, the GAN model
and WGAN model bring 1.68 and 2.21% improvement on
average, respectively, for all three datasets for “FBCSPNet”
classifier. Therefore, we have concluded that EEG signals

reconstructions by GAN/WGAN model are advantageous
to the classification performance for different classifiers. If
the classifier exhibits the a better performance, it has the
ability to obtain more discriminant ERD patterns, so the
improvement of the deep learning classifier is less than the
conventional classifier.

In order to intuitively represent the differences between
EEG signals reconstruction by the same sensitivities or
different sensitivities of EEG signals, Figure 11 illustrates
the average results of these comparisons. In Figure 11,
the Figure 11A shows the average results of Tables 4–6
and Figure 11B shows the average results of Tables 7–9.
From the average figures, the disciplines of EEG signals
reconstruction by the GAN/WGAN models analyzed above can
be found.
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FIGURE 10 | A single reconstruction trial BEAM on 12 Hz comparison between the same and different sensitivity GAN/WGAN frameworks. For the reconstructions of

the same sensitivity, the BEAM results have shown that WGAN architectures outperform GAN architectures. As for the reconstructions of different sensitivity, we have

found that high-sensitivity models bring more distinct ERS/ERD phenomenon on brain electrical activity mappings (BEAMs), while low-sensitivity models bring less

distinct ERS/ERD phenomenon on BEAMs. (A) BEAMs of AO datasets with same and different sensitivity reconstruction. (B) BEAMs of GAL datasets with same and

different sensitivity reconstruction.
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TABLE 3 | The optimal division of bandpass filters.

Sub-bands fb1 fb2 fb3 fb4 fb5

Frequency (Hz) [8, 12] [10, 14] [12, 16] [14, 18] [16, 20]

Sub-bands fb6 fb7 fb8 fb9 fb10

Frequency (Hz) [18, 22] [20, 24] [22, 26] [24, 28] [26, 30]

TABLE 4 | Classification results of GAN/WGAN frameworks for the sampling rate

reconstruction of the same sensitivity signals in AO dataset.

Subjects Original

data (a)

Spline

data (b)

GAN

up-sampling (c)

WGAN

up-sampling (d)

AO-1 62.83 58.72 64.51 69.52

AO-2 53.12 51.67 52.83 55.61

AO-3 70.31 68.92 73.96 72.66

AO-4 75.26 71.78 73.96 80.99

AO-5 59.12 58.27 61.28 64.22

AO-6 74.22 70.30 73.96 76.82

AO-7 55.43 54.28 60.72 59.83

AO-8 58.27 55.42 59.82 59.73

AO-9 77.08 76.07 83.85 84.37

AO-10 68.49 68.78 75.26 70.57

AO-11 79.17 74.64 87.76 89.85

AO-12 73.44 66.15 66.67 75.53

AO-13 55.83 59.42 61.42 63.49

AO-14 61.82 55.23 63.83 65.72

AO-15 55.49 53.82 56.29 58.73

AO-16 62.42 57.59 63.86 65.82

AO-17 64.58 57.81 58.59 67.44

AO-18 53.28 53.28 55.87 57.89

AO-19 52.82 51.87 55.89 57.63

AO-20 63.83 62.57 68.59 67.83

AO-21 70.31 61.98 61.98 72.91

AO-22 57.55 55.73 57.29 59.37

AO-23 61.83 58.89 63.82 63.58

AO-24 59.27 58.73 62.82 63.93

AVG 63.57 60.91 65.41 67.67

T-test – a vs. b c vs. a d vs. a

p-value – **p < 0.01 *p < 0.05 **p < 0.01

The bold text is the best performance.

4. DISCUSSION

4.1. Reconstruction by Using GAN/WGAN
Frameworks and TFS-MSE Loss
The purpose of this paper is to reconstruct HSS-EEG signals
from LSS-EEG signals by using GAN/WGAN frameworks with
a carefully designed loss function. In this paper, among the
experiments of three different EEG datasets, we have compared
the performance of GAN/WGAN frameworks for up-sampling
with the same sensitivity and reconstruction with different
sensitivities. The classification performances show significant
improvement in terms of reconstructions of the same sensitivity.
For AO dataset, the classification performances also show

TABLE 5 | Classification results of GAN/WGAN frameworks for the sampling rate

reconstruction of the same sensitivity signals in GAL dataset.

Subjects Original

data (a)

Spline

data (b)

GAN

up-sampling (c)

WGAN

up-sampling (d)

GAL-1 69.23 68.71 72.81 75.63

GAL-2 65.06 65.42 68.93 68.72

GAL-3 74.04 71.69 79.83 80.54

GAL-4 59.17 58.66 62.82 61.93

GAL-5 79.94 74.48 83.61 82.83

GAL-6 69.04 69.76 74.63 75.59

GAL-7 74.33 68.79 68.67 68.27

GAL-8 79.81 77.62 79.82 80.42

GAL-9 64.04 63.48 72.24 72.68

GAL-10 65.38 65.48 74.81 75.61

GAL-11 63.21 62.52 72.60 72.07

GAL-12 74.10 72.42 72.85 72.36

AVG 69.78 68.25 73.63 73.89

T-test – a vs. b c vs. a d vs. a

p-value – *p < 0.05 *p < 0.05 *p < 0.05

The bold text is the best performance.

TABLE 6 | Classification results of GAN/WGAN frameworks for the sampling rate

reconstruction of the same sensitivity signals in the MI dataset.

Subjects Original

data (a)

Spline

data (b)

GAN

up-sampling (c)

WGAN

up-sampling (d)

MI-1 60.59 57.82 61.62 62.81

MI-2 70.31 68.58 71.18 73.35

MI-3 53.47 53.82 54.93 56.81

MI-4 59.38 56.71 61.83 60.62

MI-5 72.22 70.49 73.88 76.57

MI-6 67.36 65.73 68.72 68.81

MI-7 56.25 55.41 58.83 57.61

MI-8 57.81 56.43 58.81 57.69

MI-9 60.42 58.67 62.73 61.85

AVG 61.98 60.41 63.61 64.01

T-test – a vs. b c vs. a d vs. a

p-value – **p < 0.01 **p < 0.01 **p < 0.01

The bold text is the best performance.

significant improvement by reconstructions of GAL-WGAN
and GAL-GAN. However, other datasets reconstruction signals
with different sensitivity have no significant improvement than
original signals. There are two possible reasons for the statistical
results. One possible reason is that the AO dataset has enough
subsets (a total of 24) to compute the t-test index. However,
datasets GAL and MI with 12 subsets and nine subsets,
respectively, are not sufficient to compute the t-test index.
Another possible reason may be due to the signal amplitude
range for the GAN/WGAN reconstruction. In our experiments,
the reconstructed signals amplitude range was set as the same
as the original signals, and the amplitude range may have
prevented the variations of reconstructed signals brought by
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TABLE 7 | Classification results for the sensitivity rate reconstruction of AO

dataset by the different sensitivity signals’ GAN/WGAN frameworks.

Subjects Original

data (a)

GAL-WGAN

(b)

GAL-GAN

(c)

MI-WGAN

(d)

MI-GAN (e)

AO dataset reconstructed by the gal and mi models

AO-1 62.83 64.81 64.57 60.73 61.82

AO-2 53.12 55.82 56.18 53.27 52.63

AO-3 70.31 72.13 73.18 69.53 70.83

AO-4 75.26 73.44 75.78 67.71 69.53

AO-5 59.12 61.73 62.16 58.83 56.76

AO-6 74.22 76.56 77.87 76.82 75.26

AO-7 55.43 57.61 56.89 55.43 54.68

AO-8 58.27 59.46 58.83 56.27 56.29

AO-9 77.08 76.56 77.34 72.14 73.44

AO-10 68.49 72.66 70.57 75.26 71.09

AO-11 79.17 83.07 83.85 78.91 81.51

AO-12 73.44 71.62 72.57 70.57 66.93

AO-13 55.83 56.73 56.94 54.87 55.16

AO-14 61.82 62.73 63.81 60.57 60.81

AO-15 55.49 56.81 56.43 55.36 55.61

AO-16 62.42 63.55 64.31 61.28 61.37

AO-17 64.58 61.72 60.03 55.47 56.25

AO-18 53.28 53.89 53.61 52.13 52.28

AO-19 52.82 53.61 54.18 52.36 53.17

AO-20 63.83 64.81 63.76 62.67 62.89

AO-21 68.72 63.59 62.18 57.62 58.73

AO-22 57.55 59.11 59.55 60.42 61.46

AO-23 61.83 62.81 63.75 62.19 61.68

AO-24 59.27 60.73 60.81 59.36 59.81

AVG 63.51 64.40 64.55 62.07 62.08

T-test – b vs. a c vs. a d vs. a e vs. a

p-value – *p < 0.05 *p < 0.05 p =

0.0738

*p < 0.05

The bold text is the best performance.

the signals with different sensitivity. Therefore, in future works,
more experiments for different ranges are also needed for a same
dataset to confirm the relationship between signal amplitude
range and patterns classification performance. For the average
classification accuracy for all experiments, the up-sampled EEG
signals performed better than the original data, and we think
this might be due to the fact that the reconstruction procedure
obtains more discriminant signals. In addition, the original
temporal-MSE and the proposed TSF-MSE as loss functions
were also compared.

The up-sampling reconstruction with the same sensitivity
results have demonstrated that using the WGAN helps to
improve signal qualities and statistical properties. Comparing
the reconstruction HSS-EEG signals and the original real HSS-
EEG signals in Figures 6, 8A, 9A, 10A, we can see that the
WGAN framework helps to solve the problem of the over-
smoothing effect suffered by the conventional temporal-MSE
signal generators (Aydin et al., 2015). Although the reconstructed
HSS-EEG signals shared a similar result, as in Figures 6,

TABLE 8 | Classification results for the sensitivity rate reconstruction of GAL

dataset by the different sensitivity signals’ GAN/WGAN frameworks.

Subjects Original

data (a)

AO-WGAN

(b)

AO-GAN

(c)

MI-WGAN

(d)

MI-GAN (e)

GAL dataset reconstructed by the ao and mi models

GAL-1 69.23 73.53 72.76 72.56 70.19

GAL-2 65.06 63.21 62.88 61.86 61.03

GAL-3 74.04 59.74 66.03 61.99 58.59

GAL-4 59.17 59.74 66.03 61.99 58.59

GAL-5 79.94 76.28 80.96 76.15 77.18

GAL-6 69.04 73.33 72.56 73.21 76.35

GAL-7 74.33 69.77 66.25 64.82 66.91

GAL-8 79.81 78.53 74.17 81.92 79.49

GAL-9 64.04 65.58 65.58 64.30 67.63

GAL-10 65.38 62.76 62.24 60.64 67.50

GAL-11 63.21 85.13 85.00 85.51 85.38

GAL-12 74.10 76.47 72.76 69.94 73.72

AVG 69.78 70.34 70.60 69.57 70.21

T-test – b vs. a c vs. a d vs. a e vs. a

p-value – p = 0.821 p = 0.731 p = 0.937 p = 0.870

The bold text is the best performance.

TABLE 9 | Classification results for the sensitivity rate reconstruction of MI dataset

by the different sensitivity signals’ GAN/WGAN frameworks.

Subjects Original

data (a)

AO-WGAN

(b)

AO-GAN

(c)

GAL-WGAN

(d)

GAL-GAN

(e)

MI dataset reconstructed by the gal and ao

GAN/wgan models

MI-1 60.59 61.63 59.90 58.33 67.53

MI-2 70.31 71.70 69.10 75.00 73.26

MI-3 53.47 58.16 54.17 53.99 55.03

MI-4 59.38 68.58 68.58 64.41 66.67

MI-5 72.22 68.92 76.22 73.09 66.67

MI-6 67.36 70.49 70.49 69.62 68.75

MI-7 56.25 58.68 73.44 58.85 60.07

MI-8 57.81 54.34 54.51 63.54 56.60

MI-9 60.42 57.12 57.99 56.08 55.90

AVG 61.98 63.29 64.93 63.66 63.39

T-test – b vs. a c vs. a d vs. a e vs. a

p-value – p = 0.380 p = 0.215 p = 0.175 p = 0.215

The bold text is the best performance.

8A, 9A, and 10A,B, the quantitative analysis of classifying
signals by a machine learning model, as given in Tables 4–6,
Figure 11A, have shown that the WGAN framework yields a
higher classification accuracy and obtains more reliable statistical
properties due to more discriminant patterns. However, if
we use GAN/WGAN frameworks alone, the critical ERD/ERS
of brain activity characteristics in the EEG signals will be
reduced along with the single temporal loss. Theoretically, the
GAN/WGAN frameworks are based on generative models, and
such models generate naturally appearing HSS-EEG signals but
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FIGURE 11 | Reconstruction results comparison between the same and different sensitivity GAN/WGAN frameworks. In order to intuitively represent the differences

between EEG signals reconstruction by the same sensitivities or different sensitivities of EEG signals, the average results of such compared experiments are illustrated

to show the disciplines of EEG signals reconstruction by the GAN/WGAN models analyzed above. (A) Average results of the same sensitivities, (B) Average results of

different sensitivities.

TABLE 10 | The comparison results between Temporal-MSE and TSF-MSE of

constructing GAN/WGAN architectures for reconstruction.

Reconstruction Temporal-GAN

(a)

TSF-GAN

(b)

Temporal-WGAN

(c)

TSF-WGAN

(d)

AO− > AO 64.86 65.41 64.32 67.67

GAL− > GAL 71.43 74.64 72.68 73.89

MI− > MI 62.43 63.61 63.83 64.01

GAL− > AO 64.16 64.55 63.85 64.40

MI− > AO 62.31 62.07 61.84 62.08

AO− > GAL 68.84 70.60 68.73 70.34

MI− > GAL 68.93 70.21 69.29 69.57

AO− > MI 62.35 64.93 62.86 63.29

GAL− > MI 62.19 63.39 62.28 63.66

T-test – b vs. a – d vs. c

p-value – **p < 0.01 – *p < 0.05

The bold text is the best performance.

TABLE 11 | The comparison average results of three datasets between

FBCSP+SVM classifier and FBCSPNet classifier.

FBCSP+SVM FBCSPNet

Datasets Original

data

TSF-

GAN

TSF-

WGAN

Original

data

TSF-

GAN

TSF-

WGAN

AO dataset 63.57 65.41 67.67 67.29 68.41 68.84

GAL dataset 69.78 73.63 73.89 73.61 74.82 75.23

MI dataset 61.98 63.61 64.01 65.47 66.64 66.86

Average 65.11 67.55 68.52 68.79 69.95 70.31

Improved

Ratio

– 3.75% 5.25% – 1.68% 2.21%

cause severe distortion of the ERD/ERS characteristics in the EEG
signals (Choi et al., 2017). Therefore, an additive loss function
should be included to guarantee that the ERD/ERS characteristics
remain the same for the reconstruction.

Beyond the above analysis, the TSF-MSE loss function was
introduced to guarantee the ERD/ERS characteristics during the
training of the GAN/WGAN frameworks, and the classification
performance of ERD/ERS characteristics can be found in the
compared results in Table 10. As is well known, the temporal-
MSE loss was the basis of the time-series data, and such loss
will guarantee the reconstructed shape of the temporal domain.
However, EEG signals are multi-channel time-series data, and
the spatial domain is thus also important in the reconstruction.
In addition, most ERD/ERS characteristics are reflected in the
frequency domain, making the frequency domain also important
in the reconstruction. Therefore, the TSF-MSE constructed by
the original signals from the temporal domain, the FB-CSP
features from the spatial domain, and the PSD features from
the frequency domain have been introduced in this paper
to guarantee the EEG signals temporal characteristics, spatial
characteristics, and ERD/ERS characteristics (Strohmeier et al.,
2016). Additionally, the TSF-MSE-based GAN/WGAN models
cause lower losses than the temporal MSE, frequency MSE, and
spatial MSE-based GAN/WGAN models (see Figure 4). Our
proposed TSF-MSE-based WGAN framework outperformed the
other models in reconstructing up-sampled EEG signals with
the same sensitivity. These results demonstrate that we can use
this method to increase the sampling rate of EEG signals to
achieve higher performance in brain-computer interfaces (BCIs)
or EEG-based rehabilitation treatments.

4.2. EEG Signal Reconstruction With
Different Sensitivities
In this paper, in addition to reconstructing HSS-EEG signals
from the same sensitivity, we also reconstructed HSS-EEG
signals from different sensitivities. In fact, if EEG signals
with low sensitivity can be reconstructed into high-sensitivity
signals, the reconstructed HSS-EEG signals will contain more
details of the ERD/ERS characteristics, which will improve the
classification performance for many applications. Among the
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experimental results shown in Tables 4–9, we can conclude that
the average classification accuracies of WGAN framework are
higher than GAN framework for reconstruction with the same
sensitivity on all datasets, while the GAN framework obtained
better average classification accuracies for reconstruction with
different sensitivities on all datasets. In addition, a larger
gap in the sensitivity will significantly increase the average
classification accuracies of all datasets, while a smaller gap in
the sensitivity will result in a smaller difference in the average
classification accuracies of all datasets (see the comparison results
in Tables 7–9, Figure 11B). We can also find indicators for
different sensitivity gaps in Figure 7. For example, considering
the AO data reconstructed by the MI-GAN and MI-WGAN
models (see Figure 7B), a high-sensitivity signal reconstructed
by the low-sensitivity GAN/WGAN models caused the signals
to be overfitted and exceed the original data range. Hence, the
reconstructed results contained fewer ERD/ERS characteristics
to classify the EEG signals, and the classification accuracy was
lower than the results using the original data. Conversely,
for the MI data reconstructed by the AO-GAN and AO-
WGAN models (see Figure 7F), we can see that the low-
sensitivity MI data reconstructed by the high sensitivity models
presented more variations in the temporal domain. Because the
variations in the time-series represented detailed characteristics
of ERD/ERS, the reconstructed high sensitivity EEG signals
performed better in the classification of ERD/ERS characteristics.
Therefore, in practical applications, we can train a high-
sensitivity GAN model for EEG signal reconstruction. By
applying the GAN/WGAN models, the ERD/ERS characteristics
extracted from low sensitivity devices can be enhanced for use in
real-time and real-application BCI or rehabilitation treatment.

In contrast to the results of reconstructing HSS-EEG signals
with the same sensitivity, the GAN framework performed
better than the WGAN framework for reconstructing HSS-
EEG signals with different sensitivities. An approaching value
range caused a smaller difference between the GAN framework
and the WGAN framework (the AO dataset and the GAL
dataset), but a separated value range caused a large difference
between the GAN framework and the WGAN framework.
Therefore, the difference in the classification performance was
caused by the different value ranges of different sensitivities.
We suggest two reasons for this difference: first, the WGAN
framework contained a gradient penalty, and such a penalty
would be out of the value ranges for different value ranges.
The penalty then influenced the convergence of the WGAN
framework (Mescheder et al., 2018), and, thus, the results of
the WGAN framework were lower than the results of the GAN
framework. Second, the WGAN framework used an RMSprop
optimizer to train deep neural networks, but the GAN framework
used an Adam optimizer (Basu et al., 2018). In fact, the Adam
optimizer has a momentum gradient procedure, which will be
fitted for regressing different value ranges. Hence, the different
value ranges can be reconstructed by the Adam optimizer (Zou
et al., 2018). In all of these, if we have recorded the highest
sensitivity EEG signals, we must also record low-sensitivity
EEG signals. We can use the highest sensitivity EEG signals to
train a GAN/WGAN model to reconstruct the low sensitivity
EEG signals, and the reconstructed EEG signals can be used

to improve classification performance for the construction of
real-time and real-application BCIs or rehabilitation treatment.

4.3. The Application of Reconstructed EEG
Signals by GAN/WGAN Frameworks
Over the past decade, most EEG-based studies have been
focused on constructing BCIs or developing rehabilitation
treatments (Ang et al., 2015). However, there are two main
limitations to the application of EEG signals when constructing
such systems, namely, the cost and portability of EEG recording
devices. In fact, HSS-EEG signals will yield the best performance
in BCIs and rehabilitation treatments, although HSS-EEG
signals are usually recorded by expensive devices, posing an
inconvenience. For example, in the “NeuroScan SymAmp2”
device (Chu et al., 2016), the recording system consists of two
computers and one device to link them together. One computer is
used to present a stimulus for the BCI or rehabilitation treatment,
and the other computer is used to record and store the EEG
signals for computing the BCI or rehabilitation results. Subjects
must sit in a room to wear a “NeuroScan Quik Cap” to collect
data. The collection procedure is complex, and the resistance
must be maintained under 5 k� by using conductive paste on
each electrode (Agnew et al., 2012). Because the resistance is
kept low and the device has a high sensitivity, the recorded
EEG signals will have the ERD/ERS characteristics required for
classification in BCI and rehabilitation treatment.

In general, the “NeuroScan SymAmp2” device is expensive,
and the EEG signals must be recorded indoors in a limited
environment (e.g., a dimly lit, sound-attenuated room). Hence,
it is difficult to implement the results of the “NeuroScan
SymAmp2” device (the same sensitivity as signals in AO
dataset) in applications such as BCI and rehabilitation treatment.
Nevertheless, low-cost and portable devices, such as “Emotiv”
(the same sensitivity as signals in MI dataset), have high
electrode resistance and a low sampling rate and sensitivity for
recording EEG signals. The device only provides poor ERD/ERS
characteristics for classification in BCI and rehabilitation
treatment applications. The “Emotiv” device can be worn at
any time via a simple process without requiring the resistance
to be kept level (Neale et al., 2017). The energy supply
for the device is a battery, and the device uses WiFi or
Bluetooth communication. These advantages allow the device
to be inexpensive, portable, and convenient for constructing
BCIs and developing rehabilitation treatment. These mutual
contradictions for signal precision and signal cost and portability
inspire us to train a model to reconstruct HSS-EEG signals from
LSS-EEG signals. The trained model meets the requirements of
high precision and portability with low cost and can be used to
improve EEG-based applications.

In fact, signal reconstruction is a difficult problem in digital
signal processing, but an effective and feasible reconstruction
method could significantly promote the application of signals.
In this study, by using a GAN framework with Wasserstein
distance and the carefully designed TSF-MSE loss function,
well-trained reconstruction models have been shown to be
able to reconstruct HSS-EEG signals from LSS-EEG signals.
Experimental results reveal that LSS-EEG signals (just like
those recorded by “Emotiv”) reconstructed by the HSS-EEG
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signals (just like those recorded by “NeuroScan SymAmp2”)
trainedmodels and enhanced the average classification accuracies
of ERD/ERS characteristics for action observation, action
execution, and motor imagery. These results inspire new ways
to construct BCIs or develop novel rehabilitation treatments,
but more researches need to be done to explore significant
enhancement reconstruction methods across EEG signals with
different sensitivities.

Based on the method of this paper, the improvement of
sampling rate and sensitivity will improve the specific ERD/ERS
phenomenon of MI, AO, and AE, so as to improve the
performance of the BCI system. Although the CNN- based
GAN/WGAN architectures will take a significant amount of
time to build an available GAN/WGAN architecture, once the
reconstruction model is built, the use of such a model will
not take long, and the reconstructed EEG time series can be
obtained within a specific time (<1 s for a trial). In future
works, we can either reduce the complex of GAN architecture
or improve the computational efficiency to reduce the usage
time for reconstructing GAN/WGAN architecture. Then, the
GAN/WGAN architectures will be used for real-time inference.
In general, we used a low-cost, portable device to collect LSS-
EEG signals for use in BCI or rehabilitation treatment. Before
analyzing the collected data, the GAN/WGAN reconstruction
models were applied to reconstruct HSS-EEG signals. The
reconstructed HSS-EEG signals can significantly improve the
classification performance and information transfer rate for use
in BCIs or rehabilitation treatments.

5. CONCLUSION

In this paper, we have proposed a contemporary deep neural
network that uses a GAN/WGAN framework with a TSF-
MSE-based loss function for LSS-EEG signal reconstruction.
Instead of designing a complex GAN framework, this work
has been dedicated to designing a precise loss function that
guides the reconstruction process so that the reconstructed HSS-
EEG signals are as close to the ground truth as possible. Our
experimental results suggest that the GAN/WGAN frameworks
give a significant improvement on the classification performance
of EEG signals reconstruction with the same sensitivity, but
the classification performance improvements of EEG signal
reconstructions with different sensitivity were not significant,
which further exploration. The carefully designed TSF-MSE-
based loss function solves the well-known over-smoothing

problem and seems to result in more discriminant patterns than
the original EEG signals; this will improve the classification
performance of EEG signals. The reconstructed HSS-EEG signals
will be beneficial for use in BCI and rehabilitation treatment
applications. Future studies will focus on the reconstruction
signal amplitude ranges of EEG signals with different sensitivity
and selection of datasets to confirm the required number of
signals and to explore the significant performance improvement
of EEG signal reconstruction with different sensitivity. In
addition, the efficiency of EEG signal reconstruction by the
GAN/WGAN frameworks will be studied further in the future.
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The Tomographic Quantitative Electroencephalography (qEEGt) toolbox is integrated

with the Montreal Neurological Institute (MNI) Neuroinformatics Ecosystem as a docker

into the Canadian Brain Imaging Research Platform (CBRAIN). qEEGt produces

age-corrected normative Statistical Parametric Maps of EEG log source spectra testing

compliance to a normative database. This toolbox was developed at the Cuban

Neuroscience Center as part of the first wave of the Cuban Human Brain Mapping

Project (CHBMP) and has been validated and used in different health systems for several

decades. Incorporation into the MNI ecosystem now provides CBRAIN registered users

access to its full functionality and is accompanied by a public release of the source code

on GitHub and Zenodo repositories. Among other features are the calculation of EEG

scalp spectra, and the estimation of their source spectra using the Variable Resolution

Electrical Tomography (VARETA) source imaging. Crucially, this is completed by the

evaluation of z spectra by means of the built-in age regression equations obtained from

the CHBMP database (ages 5–87) to provide normative Statistical Parametric Mapping

of EEG log source spectra. Different scalp and source visualization tools are also provided

for evaluation of individual subjects prior to further post-processing. Openly releasing this

software in the CBRAIN platform will facilitate the use of standardized qEEGt methods in

different research and clinical settings. An updated precis of the methods is provided

in Appendix I as a reference for the toolbox. qEEGt/CBRAIN is the first installment

of instruments developed by the neuroinformatic platform of the Cuba-Canada-China

(CCC) project.

Keywords: Statistical Parametric Mapping, qEEGt, CBRAIN, EEG tomography, quantitative EEG, open science

339340

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00033
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00033&domain=pdf&date_stamp=2020-08-07
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alan@bic.mni.mcgill.ca
mailto:pedro.valdes@neuroinformatics-collaboratory.org
mailto:pedro.valdes@neuroinformatics-collaboratory.org
https://doi.org/10.3389/fninf.2020.00033
https://www.frontiersin.org/articles/10.3389/fninf.2020.00033/full
http://loop.frontiersin.org/people/152622/overview
http://loop.frontiersin.org/people/738188/overview
http://loop.frontiersin.org/people/392475/overview
http://loop.frontiersin.org/people/459910/overview
http://loop.frontiersin.org/people/156033/overview
http://loop.frontiersin.org/people/807639/overview
http://loop.frontiersin.org/people/507788/overview
http://loop.frontiersin.org/people/125027/overview
http://loop.frontiersin.org/people/602494/overview
http://loop.frontiersin.org/people/807683/overview
http://loop.frontiersin.org/people/35715/overview
http://loop.frontiersin.org/people/601151/overview
http://loop.frontiersin.org/people/346625/overview
http://loop.frontiersin.org/people/158755/overview
http://loop.frontiersin.org/people/54366/overview


Bosch-Bayard et al. qEEGt-VARETA Toolbox for CBRAIN

INTRODUCTION

Electroencephalography (EEG) is one of the oldest, most
useful, and widely deployable methods to study normal and
pathological brain function. It is characterized by its sensitivity
and exquisite temporal resolution (Niedermeyer et al., 2010).
Unfortunately, this type of physiological measurement fell out
of favor in research and clinical applications a few decades
ago, “eclipsed” by the new neuroimaging techniques (Single
Photon Emission Tomography—SPECT, Positron Emission
Tomography—PET, and Functional Magnetic Resonance
Imaging—fMRI) that were deemed to have true 3D spatial
resolution. In fact, it was affirmed that EEG was not even an
imaging modality, or in any case, was one with a very poor
spatial resolution. This neglect of EEG has been detrimental to
translational Neurotechnology.

The negative perception of electrophysiology is now being
reversed. Fundamental to this is the development of EEG Source
Imaging (ESI) that has achieved considerable maturity (Michel
et al., 2004) by leveraging Bayesian estimation prior information
about source localizations and connectivity (Wang et al., 2019).
As recently reviewed in Babiloni et al. (2019b) ESI is currently an
active area of clinical research.

A convergent, but separate, strand of EEG clinical research
has been known as “quantitative analysis of EEG” (qEEG)
(John et al., 1977; Pardoux, 2008). For a detailed history see
Hernandez-Gonzalez et al. (2011). In its most widely used form,
the Tomographic Quantitative Electroencephalography (qEEGt)
technique extracts frequency specific information about normal
and abnormal brain states via the EEG frequency spectrum at
scalp electrodes. It then tests for compliance of each electrode
and frequency bin (or band) to a normative, most commonly by
transformation of each log spectral value to a z transform with
respect to an age specific mean and standard deviation. This has
been shown to be a useful preprocessing step for either visual
inspection or to use multivariate methods to detect and classify
brain pathology (Fernández-Bouzas et al., 1995; Hernandez-
Gonzalez et al., 2011; Nunez et al., 2019). z values are displayed
as topographic maps on the scalp as statistical tests for deviations
from normative data. This “significance probability mapping”
(spm) inspired developments in Neuroimaging. In fact, SPM
(acronym in capitals, Statistical Parametric Mapping) (Friston
et al., 1995) owes its acronym to this type of spatial display
of statistical tests, but for 3D neuroimages from other imaging
modalities (PET, MRI, fMRI). The transition from EEG spm to
SPM required to provide a 3D extension of qEEG by means
of ESI.

This transformation of qEEG spm to SPM was originally
achieved in 2001 (Bosch-Bayard et al., 2001). In this work:

a) The Variable Resolution Electrical Tomography (VARETA)
electrophysiological source imaging method was used to
obtain source spectra and their log transforms over a defined
grid of voxels with high frequency resolution (Szava et al.,
1994).

b) Statistical Parametric maps of z-sores for the log source
spectra were obtained for each voxel and each frequency bin.

Each z score is obtained by subtracting an age-dependent
mean and dividing by the age-dependent standard deviation.

c) These age dependent means and standard deviations are
embodied in a set of age regression equations for each voxel
and each frequency bin.

This “normative SPM of EEG source spectra” is what we have
termed “quantitative EEG tomography” or qEEGt. It is essential
to note that the current qEEGt toolbox was based on the first
wave (1988–2003) of the Cuban Human Brain Mapping Project
(CHBMP) (Hernandez-Gonzalez et al., 2011), which acquired
the EEG of 211 subjects aged 5–87, randomly selected from the
general population. Due to the lack of an individual Magnetic
Resonance Image (iMRI) for each subject, an “average head
model” was used (Evans et al., 1993). The validity and accuracy
of this approach to calculate an approximate lead field has been
described elsewhere (Valdés-Hernández et al., 2009). Rather than
being a drawback, this use of an approximate head model for ESI
has proven to be a valuable instrument in settings which preclude
the use of iMRIs (Bosch-Bayard et al., 2012). qEEGt has thus been
acknowledged as the first application of Statistical Parametric
Mapping to electrophysiology (Friston, 2007, p. 8: “The MEG-
EEG years”). The full formal specification for qEEGt is provided
in Appendix I.

In view of these developments it is surprising that most of the
major brain initiatives such as the UK Biobank (www.ukbiobank.
ac.uk), ADNI (adni.loni.usc.edu), ABCD (https://abcdstudy.org)
have no electrophysiological component. Fortunately the Human
Connectome Project (http://www.humanconnectomeproject.
org/) and the CAMCAN (www.cam-can.org) project have at
least included MEG data collections, thus providing temporal
resolution equivalent to EEG. In Canada, the Brain-Code project
(https://braininstitute.ca/research-data-sharing/brain-code)
has been launched, which is an informatics platform that hosts
several biological EEG/MEG data across a growing list of brain
pathologies that is shared by over 20 institutions in Ontario,
and around 120 researchers. This initiative supports the EEG
working group of the Canadian Biomarker Integration Network
in Depression (CAN-BIND) that elaborates guidelines for EEG
recording and processing standardization (Farzan et al., 2017).

We believe that this situation is partly due to the lack
of open-access, structured pipelines, embedded in a major
neuroimaging Neuroinformatics platform.While there exist now
many different source imaging methods (Vega-Hernández et al.,
2008), current packages for this purpose do not provide SPM
for the comparison of spectral parameters against validated,
population based normative data. Those few packages which
in effect provide this functionality, do not make their high
dimensional set of regression equations publicly available but
rather keep them proprietary.

In this paper we provide an open-access pipeline integrating
the qEEGt analysis toolbox developed at the Cuban Neuroscience
Center (CNEURO) with a major processing portal for
deployment of advanced neuroimaging pipelines: the Canadian
Brain Imaging Research Platform (CBRAIN) (Sherif et al., 2014)
and the Longitudinal Online Research and Imaging System
(LORIS) (Das et al., 2012). Not only can this pipeline be accessed
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via CBRAIN but the exact version of the qEEGT toolbox,
which includes the VARETA source imaging method, the full
set of regression equations with regard to age, as well as the
procedures for calculation of z-spectra are also publicly available
in Github: https://github.com/CCC-members/QEEGT-Toolbox
(doi: https://doi.org/10.5281/zenodo.3745563). Making the code
available also facilitates its use by users who may want to merge
the qEEGT with their own tools or want to integrate it with other
tools like EEGLAB via plugins. This last choice may be attractive
for EEGLAB users since EEGLAB can read many different EEG
formats. In the future it would be possible creating text files from
different EEG formats loaded by EEGLAB to be used by the
qEEGT toolbox widening the scope of the present contribution.

For those interested in comparing the formulation described
in Appendix I for the frequency domain VARETA (FD-
VARETA), with the code provided in the github and Zenodo
repositories, the major part of its implementation can be found
among lines 1090–1230 and then from lines 1719–1804 of
the github/Zenodo code. In this version we only implemented
part of the FD-VARETA methodology. Some quantities were
pre-calculated and assumed constant since their calculation is
time-consuming. It is explained in Appendix I. A modern full
implementation of FD-VARETA, that fulfills the formulation
described in Appendix I can be found in https://github.com/
CCC-members/BC-VARETA_Toolbox. In that toolbox, the
equivalent version to the formulation of the present paper is the
ridge penalty. A more advanced methodology also included in
that toolbox is based on the graphical lasso penalty.

NORMATIVE DATABASE

A feature of this toolbox is that it includes normative data which
allows the calculation of univariate measurement of deviation
from normality of the log EEG spectra both at the scalp and at
the sources. To our knowledge, this is the first qeeg toolbox that
makes freely available this type of information.

The normative data provided with this toolbox were obtained
from the first wave Cuban Human Brain Mapping project
(CHBMP) (Hernandez-Gonzalez et al., 2011). They comprise age
regression coefficients for all scalp channels and sources in the
frequency range of 0.39–19.11Hz, with a sampling resolution
of 0.39Hz. The age range goes from 5 to 87 years old of
a sample of 211 normal subjects obtained from the normal
Havana population.

Age dependent regressions were calculated for the Eyes
Closed, Eyes Open, and Hyperventilation states. The sample
was selected from Havana population using a quasi-random
algorithm, to guarantee a balanced age representation. Strict
clinical criteria were followed to eliminate from the sample
subjects who were not functionally healthy.

The subjects were recorded during the morning to guarantee
the state of wakefulness. The following instructions were given
prior to the EEG recording and checked for just before the
session: (a) to go to bed before 11 pm the night before and
sleep for at least 8 h; (b) to abstain from alcohol, coffee, black
tea, chocolate or soda the day before; (c) to and to have

abnormal breakfast in the morning. Additionally, before starting
the recording at the clinic they were offered a snack to avoid
prolonged fasting period.

CBRAIN OVERVIEW

CBRAIN is a Montreal Neurological Institute (MNI) initiative
developed to address the storage and processing needs driven
by the unprecedented growth of neuroimaging data and
distributed computing infrastructure. It has been developed
as a collaborative high-performance computing (HPC) portal
enabling efficient processing of high volumes of data across
national networks such as the Compute Canada clusters. The
platform allows researchers to perform computationally intensive
analyses by connecting to a national or international network of
HPC facilities via a user-friendly web-based interface.

The CBRAIN platform provides many Neuroinformatics
tools and methods including those developed by the MNI-based
McGill Center for Integrative Neuroscience (MCIN) headed
by Dr. Alan Evans for the study of the different types of
anatomical and functional MRI techniques such as CIVET image
processing (http://www.bic.mni.mcgill.ca/ServicesSoftware/
CIVET-2-1-0-Introduction, MacDonald et al., 2000) and the
MINC toolkit (https://github.com/BIC-MNI/minc-toolkit-
v2). The platform also provides other neuroimaging pipelines
from third parties such as Freesurfer (https://surfer.nmr.mgh.
harvard.edu/), FSL (Smith et al., 2004; https://www.fmrib.ox.
ac.uk/fsl), SPM (https://www.fil.ion.ucl.ac.uk/spm/; Friston,
2007), and others. Deployment of pipelines throughout the
CBRAIN computational ecosystem automated through the use
of the Boutiques JSON standard and Singularity containers that
allow for machine-independent execution with no additional
software development (Glatard et al., 2018). Once deployed, any
user from any geographical region may benefit of the remote
resources offered within the CBRAIN ecosystem. The CBRAIN
computational ecosystem is comprised of multiple compute
and storage resources located in Canada and around the world.
At the time of writing this report, CBRAIN has a current
user base of over 600 users over 191 sites in 29 countries and
provides over 50 preconfigured tools for neuroscience and other
research domains. This platform has let to over 60 peer-reviewed
publications and has served over 100 million CPU hours of
computing and 100 TBs of data creating a collaborative research
network spanning the globe.

Traditionally, researchers are left to work with laborious
scripting and command line interfaces to run advanced analyses
on HPC resources, requiring extensive training and expertise
to accomplish science. Additionally, creating large sets of
experiments and aggregation and visualizing results are usually
done by hand or by customized software packages. CBRAIN
solves this problem by giving researchers a central location and
an easy-to-use interface for submitting complicated software
packages on computational resources, handling the logistics
of such large-scale work behind the scenes so that scientists
can concentrate on getting science done. After logging into the
platform, users can utilize CBRAIN’s web-based portal to upload
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and move data, set up and execute computational tasks, and
visualize and download results on any of the high-performance
computing and cloud resources registered in CBRAIN. An
open-source codebase and extensive documentation for
administrators enable new cloud resources or data centers
to be connected to CBRAIN in a clearly documented and
secure manner.

Users can have fine-grained permission control over all
resources, data and tools, enabling relevant and secure sharing,
and collaboration across geographically distant groups. New
toolkits are provided through containerized pipelines (i.e.,
software installed on a light-weight virtual machine) so that they
are highly portable and reproducible. Leveraging this platform
for deployment enables wide access to an easily executable and
live environment for the of the qEEGt toolbox, with security and
cloud connectivity for user-specific datasets.

The pipelines mounted on CBRAIN for data processing and
analysis facilitate the reproducibility of research and support
the transparency of provenance, i.e., documenting steps to
reach the same results in future and how to process other
datasets. All these concepts are in line with the goals of
open science.

CBRAIN is linked to the Longitudinal Online Research
and Imaging System (LORIS), which is an open-source, web-
based, data, and project management software aimed at
storing behavioral, clinical, neuroimaging, and genetics data.
LORIS is designed to gather longitudinal data from patients
and to facilitate its curation and further processing. It also
offers visualization tools and allows users to leverage external
tools. Features include project management and study design;
data collection supporting multiple modalities; workflows for
data management and quality control; 3D visualization tools;
and data querying and sharing tools. LORIS currently has
over 400 international projects and partner sites (Das et al.,
2016).

At present, CBRAIN and LORIS have developed the capability
to accommodate EEG data in a standardized format in LORIS
for further processing in CBRAIN. Additionally, our new
pipeline has been added to CBRAIN to perform Tomographic
Quantitative EEG analysis (qEEGt) of data stored either in LORIS
or loaded directly via CBRAIN-connected servers. The EEG
data is stored in LORIS in the newly defined BIDS-EEG format
(Madjar et al., 2018; Pernet et al., 2018) to address the challenges
of data exchange across projects.

THE qEEGt PLUGIN FOR CBRAIN

User Options
We provide tools in CBRAIN capable of running quantitative
analysis of EEG both at the sensors space (qEEG) and the sources
level (qEEGt).

The qEEGt tool assumes that the analysis windows (epochs)
have been previously selected by an expert neurophysiologist
using some other system and any necessary preprocessing steps
have already been performed. The selected EEG epochs are
passed to the plugin and the following options are available:

a. Changing the EEG reference to any of the leads included
in the recording montage or re-referencing the data to the
average reference;

b. Correcting the EEG by the Global Scale Factor (GSF)
(Hernández et al., 1994), which is a factor to account for
a high percent of variability present in the EEG related to
technical details and not to neurophysiological variability,
thus, this factor makes the recordings from different devices
and different persons more comparable;

c. Transforming the EEG signal to the frequency domain by
means of the FFT;

d. Calculating the cross-spectral matrices for the set of leads
recorded at the scalp, including the power spectra for the leads
for two models: the narrow band and the broad band models;

e. Calculating the coherence1 and phase differences between all
leads in the whole frequency range;

f. Estimating the power spectra at the sources by
means of solving the EEG inverse problem, using the
VARETA methodology;

g. Calculating the Z-probabilistic measurements for the spectra
of the currents at the sources, using the norms of the Cuban
population, in a range from 5 to 87 years old; and

h. Selecting different visualization tools.
i. A step by step guide of how to proceed to run the qEEGT

pipeline in CBRAIN is provided in Appendix II.

qEEGt Visualization
Once the qEEGT has been run (following the steps shown in
Appendix II), the user can select the option to visualize the
results. In that case, all the different measurements calculated
are loaded in a tabbed display for showing the results in the best
possible way, either as 2D topographic maps or 3D tomographic
images depending on the data type.

The CBRAIN visualization tool opens a graphical user
interface, in which all qEEGt results can be visualized: either raw
or Z spectra at the sensors space at each frequency, synchronized
with the corresponding 3D tomographic maps at the sources,
for the narrow band model (high resolution spectral model) (see
Figure 1).

A compact visualization of the Broad Band Model, both for
the raw spectra as well as for the normative data is also provided,
as topographical maps, for the calculated frequency bands (see
Figure 2). A bipolar color palette has been created for the Z-
scores, which allows to highlight the negative values (decrement)
in blue and positive values (excess) in red. In the case of the raw

1The coherence matrix has been included in this toolbox because of historical

reasons, although this is not a connectivity toolbox. The coherence is a

basic measurement that is included in most of the quantitative analysis. This

measurement is widely used in EEG research to assess electrical symmetry between

pairs of homologues channels (right-left hemispheres same position channels)

rather than for connectivity. This use is important to assess normal brain

functioning and it is of clinical importance. It is not intended to be a measurement

of connectivity. It is a well-known fact that any connectivity measurement at

the scalp is affected by the volume conduction effect. Therefore, none of the

recently defined methods to estimate brain coupling in the frequency domain can

provide a real estimation of the functional connections among the brain regions.

Additionally, Nolte et al. (2019) have shown that most of the phase coupling

measurement are in fact a function of the complex coherency.
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FIGURE 1 | CBRAIN qEEGt visualization tool. The results of a qEEGt session are shown: the raw EEG spectra at the scalp for each electrode. A cursor indicates the

specific frequency (0.78Hz), where the spectral topographic map for all electrodes are shown. Correspondingly, the 3D tomographic view is shown for the EEG

spectra at the sources for the same frequency. The red color of the topographic map at the electrodes shows an increased frontal activity, that extents to the temporal

in the right hemisphere. The three views of the tomographic map show that the maximum of the activity is in the temporal pole. A similar graph can be obtained for the

Z values, both at the sensors as well as at the sources.

values, the same color palette is used for simplicity. Otherwise
specified, the traditional bands are calculated: Delta, Theta, Beta,
Alpha, Beta, and Total for the Absolute Power (AP) and theMean
Frequency (MF). Meanwhile, the Relative Power (RP) does not
include the Total band.

It is also possible to visualize topographic maps of coherence,
frequency by frequency, showing the coherences between
one channel vs. the rest of the head, as it is shown
in Figure 3.

Example of Use: A Case Presentation
To illustrate the use of the qEEGt plugin in CBRAIN, we
present the processing of an EEG study of a male patient,
71 years old, who suffered thrombotic brain stroke in the
middle cerebral artery of the right hemisphere, 3 days before
the EEG study. The accident produced a facial paralysis and
dysarthria, visual impairment, and motor deficit in the left side of
the body.

The EEG was recorded with a MEDICID IV System, sampled
every 5ms, and was edited offline. The patient was seated in

a comfortable chair in a dimly lit room, with the eyes closed.
The EEG was recorded from 19 leads of the 10–20 International
System, using linked earlobes as a reference. A1–A2 reference
was used so that the measurements were taken under the same
conditions as the Cuban normative database, distributed with
the qEEGt software. The amplifier bandwidth was set from 0.5
and 30Hz. An expert electroencephalographer, visually edited the
recording, selecting 24 artifact-free epochs of 2.56 s each, for the
quantitative analysis.

With the qEEGt software, we first calculated the EEG spectra
at the 19 electrodes of the 10/20 system, for the Eyes Closed
(EC) condition. The Log of the spectra was compared against
the normative EEG database of the Cuban Neuroscience Center
and the probabilistic Z values were obtained for each lead
and frequency.

Figure 4 shows the results of the analysis for some selected
frequencies: 1.5Hz for Delta band; 3.5 and 5.85Hz for Theta
band; and 15Hz for Beta band. The significance thresholds have
been corrected for multiple comparisons using the Z maximum
statistic criterion (Galan et al., 1994) for a p value of 0.05.
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FIGURE 2 | Broad Band Model visualization of raw and Z spectra. The three upper rows show the raw Absolute Power (AP), Relative Power (RP), and Mean

Frequency (MF) of the individual’s spectra respectively. The three bottom lines show the corresponding Z scores, calculated against the Cuban Normative Database.

The red color in the raw Absolute Power maps (first row) show the same frontal and temporal higher slow activity (Delta and Theta) that was observed in Figure 1 in

the right hemisphere, while the Alpha activity is concentrated in the contrary part of the contrary hemisphere (O1). The blue colors show the leads where the amplitude

of the raw activity is smaller. In the case of the Z maps, the red colors indicate areas of excess of activity regarding the values of the normative database and blue

colors indicate decrements of activity compared to the normative database. For example, the red colors of the Delta Z Absolute Power in the 4th row show values

which are more than 6 standard deviations above the normative values. Meanwhile, in the same row, blue colors show values which are 4 standard deviations below

the normative values in the parietal leads of the right hemisphere.

However, in Theta band we show the significant areas also for
p = 0.01 (corrected by multiple comparisons) to better highlight
the more pathological areas.

Figures 4A,B show a pathological excess of Delta activity
at 1.5Hz in the right hemisphere, with a location coincident
with the lesion. Figure 4B shows the pathological areas at a
threshold of p = 0.01. The area is limited to the territory
of the middle cerebral artery. At the same time, Figure 4F

shows a defect of Beta activity in the same area as Figure 4A,

except that it extends to the occipital area of the contrary
hemisphere too.

At the limit between Delta and Theta (Figures 4C,D), the
excess of pathological activity is extended to almost the whole
right hemisphere and to the frontal part of the left hemisphere.
The threshold at p = 0.01 shown in Figure 4D is to stress the
point that at this frequency the most pathological areas does
not coincide with the exact location of the lesion but with
the surrounding area. This result is consistent with previous
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FIGURE 3 | Topographical maps of the coherences of one electrode against the rest, at a specific frequency (8.6Hz in the example). In each map, the blue dot refers

to the position of the target electrode, showing its coherence regarding the rest of the head. Values in these maps go from 0 (blue) to red (1). For example, the maps of

T5, P3, and O1 show a very high coherence between the parieto-occipital leads of the left hemisphere with the frontal and temporal leads of the contrary hemisphere.

In the case of Fp2, it has high coherence values both with the frontal and temporal leads of its same hemisphere and the parietal and occipital leads of the contrary

hemisphere.

results by Fernández-Bouzas et al. (2002) in a qEEGt study of
persons who suffered brain infarcts they found two major areas
of pathological excess of slow activity: one coincident with the
localization at the slower frequencies (Delta) and a second one
coincident with the localization of the ischemic penumbra, which
surrounds the lesion.

Note that from Figures 4A–F, the threshold value for the Z
activity is decreasing with the frequency (Z = 3.75 at 1.5Hz;
Z = 2.3 at 5.85Hz). It means that the slower the frequency
the more significant pathological values. This is also consistent
with the Gloor’s hypothesis (Gloor et al., 1977) about the origin
of the Delta waves in the brain produced by the neuronal
deafferentation in the brain cortex directly below the lesion.
Finally, in Figure 4E, at 5.85Hz the pathological activity was only
significant at the threshold of p = 0.05 but not for p = 0.01 after
correction for multiple comparisons. In the same way, there was
no significant pathological activity in Alpha band.

As an independent confirmation we show a morphometric
analysis of the T1 MRI of the same person (Figure 5). The

statistical parametric map was performed using the plugin
IBASPM (https://www.fil.ion.ucl.ac.uk/spm/ext/#IBASPM)
based on the regional volume of the MRI. The subject’s values
were compared with the normative values obtained from
the Cuban Normative database (Z values). The yellow color
identified the regions with brain damage: occipital damage
responsible of visual impairment; and the lesion in Broca’s area
may explain the language impairment, not detected by MRI.
These two abnormality patterns are in consonance with the
qEEGt findings shown in Figures 4C,F.

This case presentation of a clinical patient is only to
illustrate the use of the toolbox and its possibilities. This
section is not intended as a validation of the VARETA
methodology, which has been widely used and validated for
many years in different clinical and experimental settings.
A non-exhaustive list of about 200 citations retrieved from
Google Scholar in September 2019 (excluding auto citations) is
provided as a supplemental material (53 of them belong to the
period 2013–2019).
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FIGURE 4 | Summary of the qEEGt analysis of the 71 years old patient. The more significant results are shown for bands Delta, Theta, and Gamma at two thresholds

(p = 0.05 and p = 0.01). (A) (p =0.05) and (B) (p = 0.01) show a pathological excess of Delta activity in the right hemisphere. (C) (p = 0.05) and (D) (p = 0.01) show

the excess of pathological activity in the right hemisphere and frontal part of the left hemisphere. (D) Shows that the most pathological areas in Theta coincide with the

exact location of the surrounding area of the lesion. (E) Shows that no pathological activity was significant at 5.85 Hz for p = 0.01. (F) Shows a pathological decrease

of activity in the Beta band, related to the location of the lesion and the edema area. No significant differences were found in the Alpha band. The implications of these

results are discussed in the text.

FIGURE 5 | Morphometric analysis of the T1 MRI of the same case. Statistical

parametric mapping using the plugin IBASPM based on the regional volume of

the MRI in comparison with the normative data (Z values). The yellow area

identified the regions with brain damage, occipital damage responsible of

visual impairment, and lesion in Broca’s area which explained the language

impairment, not detected by MRI. The correspondence with Figure 4 is

striking.

It is also important to emphasize that in this toolbox we do
not include statistical tools for group analysis of neuroimages.
The z score is only an intermediate step, useful for visualization
purposes and classification. The true multivariate nature of the
data must be considered in further applications. Tools for group
statistics of neuroimages developed at the Cuban Neuroscience
Center will be added as CBRAIN plugins in the future, for
example, Mahalanobis maps (Galan et al., 1994) for visualization,
or stable biomarker identification (Bosch-Bayard et al., 2018)
among others.

IMPLEMENTATION DETAILS AND
CHALLENGES

The Matlab code of the qEEGt procedure was modified to
condense it in a single procedure, which performs all the analysis

and produces all the necessary outputs. This procedure was
compiled and use as the input for the CBRAIN plugin.

A Boutique JSON descriptor for qEEG
(doi: 10.5281/zenodo.1451003) was created to define the
format of the command line execution and the various options
that can be set. Then a Singularity container was created
to provide a machine independent installation of the qEEG
tool. Finally, CBRAIN can automatically import the Boutique
descriptor to create the tool and deploy it for users.

The highly interactive qEEGt visualization capability is built
in the highly modular ReactJS framework (which makes it
independent of the computer platforms) with any modern
internet browser. The application is designed as an SDI (Single
Document Interface) with a graphical user interface oriented to
provide themaximum amount of information with theminimum
amount of user input.

Note that there are facilities for the creation of data structures
for storing EEG information in the LORIS data platform
as well as the implementation within the CBRAIN high-
performance computing platform of a core of tools developed
at CNEURO.

DISCUSSION AND CONCLUSIONS

The present qEEGt plugin is the first step to introduce EEG
functionalities in CBRAIN, one of the most widely used
ecosystems for brain imaging analysis.Will facilitate the extended
use the qEEGt method and toolbox, which has proven to be a
useful tool for the quantitative EEG analysis, both at the electrode
and at the sources level.

This method introduced the concept of “normative SPM
of EEG source spectra” based on the use of EEG normative
databases. The resulting SPM “z maps” that compare individuals
to age appropriate norms is an essential pre-processing tool
which facilitates assessment of pathological states (or at least
deviation from normality). It is to be noted that the normative
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data encoded in the regression equations of the current qEEGt
toolbox are the first open source information of this type.
Importantly, they are not only for the usual brain states available
in most databases namely Eyes Closed and/or Eyes Open, but
also include other states that are clinically relevant such as
Hyperventilation. Although these tools are still mainly used
for research, they have a clinical usefulness, specifically the
assessment of deviation from normality (Nuwer et al., 1994, 1999;
Babiloni et al., 2019a).

The plugin resulted easy to operate for totally naive users
in a reasonable time for a single task. Familiarity with the tool
and batch processing of several EEG recordings will increase
productivity with the toolbox. Nevertheless we continue to
evaluate both the CBRAIN interface as well as the toolbox to
increase its user friendliness.

As mentioned in the introduction, our development of
qEEG was based on the Cuban Human Brain Mapping Project
(CHBMP), which was carried out in three waves: the first
one (1988–2003) acquired the EEG of 211 subjects aged 5–87,
randomly selected from the general population. At that time, only
EEG was recorded since there were no MRI systems available.
While useful in setting for which MRI is not feasible or costly,
future work must extend the methods to individualized brain
morphology. This is the more necessary since though there
has been work with EEG SPM in individualized source space
(Park et al., 2002), it yet has to be extended to age corrected
normative measures.

Fortunately two subsequent waves (2004–2014) and
(since 2018) of the CHBMP have been launched since then,
which now included individualized MRI, DWI as well as high
resolution EEG (more details in Hernandez-Gonzalez et al.,
2011). These projects have generated normative data that has
been used in different Public Health Systems (Hernandez-
Gonzalez et al., 2011; Valdés-Sosa et al., 2018) which will lead to
successive versions of qEEGt in CBRAIN, and whose results will
be described in further publications and will certainly address
individualized head models.

Among the additional facilities to be included to qEEGt
soon are:

d) Individualized head geometry for Human Connectome
compatible pipelines

e) Improved approximate head models (Valdés-Hernández
et al., 2009) for situations in which MRI is difficult to acquire.

f) Extension of EEG sources features to non-stationary and
nonlinear phenomena.

g) Inclusion of third generation methods for joint estimation
of EEG source activation and connectivity (Paz-Linares et al.,
2017, 2018).

h) A toolbox for biomarker selection from EEG source features
(Bosch-Bayard et al., 2018).

This step, of making our toolbox available in CBRAIN
(as well as the methods in Github) will allow us to place
in the public scrutiny the procedures and, we hope, to
increase the contributions and interactions with other
similar efforts.
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