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Mechanics
Manuel A. Morales 1,2, Maaike van den Boomen 1,3,4, Christopher Nguyen 1,4,

Jayashree Kalpathy-Cramer 1, Bruce R. Rosen 1,2, Collin M. Stultz 2,5,6,

David Izquierdo-Garcia 1,2† and Ciprian Catana 1*†

1Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and

Harvard Medical School, Boston, MA, United States, 2Harvard-MIT Division of Health Sciences and Technology, Cambridge,

MA, United States, 3Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen,

Netherlands, 4Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA,

United States, 5Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, United States, 6Division of Cardiology, Massachusetts General Hospital, Boston, MA, United States

Myocardial strain analysis from cinematic magnetic resonance imaging (cine-MRI)

data provides a more thorough characterization of cardiac mechanics than volumetric

parameters such as left-ventricular ejection fraction, but sources of variation including

segmentation and motion estimation have limited its wider clinical use. We designed and

validated a fast, fully-automatic deep learning (DL) workflow to generate both volumetric

parameters and strain measures from cine-MRI data consisting of segmentation and

motion estimation convolutional neural networks. The final motion network design,

loss function, and associated hyperparameters are the result of a thorough ad hoc

implementation that we carefully planned specific for strain quantification, tested, and

compared to other potential alternatives. The optimal configuration was trained using

healthy and cardiovascular disease (CVD) subjects (n = 150). DL-based volumetric

parameters were correlated (>0.98) and without significant bias relative to parameters

derived from manual segmentations in 50 healthy and CVD test subjects. Compared to

landmarks manually-tracked on tagging-MRI images from 15 healthy subjects, landmark

deformation using DL-based motion estimates from paired cine-MRI data resulted in

an end-point-error of 2.9 ± 1.5mm. Measures of end-systolic global strain from these

cine-MRI data showed no significant biases relative to a tagging-MRI reference method.

On 10 healthy subjects, intraclass correlation coefficient for intra-scanner repeatability

was good to excellent (>0.75) for all global measures and most polar map segments. In

conclusion, we developed and evaluated the first end-to-end learning-based workflow

for automated strain analysis from cine-MRI data to quantitatively characterize cardiac

mechanics of healthy and CVD subjects.

Keywords: cine-MRI, deep learning, segmentation, motion estimation, myocardial strain
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INTRODUCTION

Cardiac mechanics reflects the precise interplay between
myocardial architecture and loading conditions that is essential
for sustaining the blood pumping function of the heart. The
ejection fraction (EF) is often used as a left-ventricular (LV)
functional index, but its value is limited when mechanical
impairment occurs without an EF reduction (1). Alternatively,
tissue tracking approaches for strain analysis provide a more
thorough characterization through non-invasive evaluation of
myocardial deformation from echocardiography or cinematic
magnetic resonance imaging (cine-MRI) data (2), and could
be used to identify dysfunction before EF is reduced (3).
Unfortunately, various sources of discrepancies have limited
the wider clinical applicability of these techniques, including
factors related to imaging modality, algorithm, and operator
(4). More accurate measures could be obtained from tagging-
MRI data widely regarded as the reference standard for strain
quantification (5, 6), but use of these data is less common partly
due to lack of available analysis tools, whereas echocardiography
and cine-MRI data are ubiquitously acquired and analyzed in
clinical practice.

Irrespective of algorithm or modality, e.g., speckle tracking
for echocardiography or feature tracking for cine-MRI, the
main challenge is to estimate motion within regions along
the myocardial wall (2). Operator-related discrepancies are
introduced when the myocardial wall borders are delineated
manually, a time-consuming process that requires considerable
expertise and results in significant inter- and intra-observer
variability (7, 8). Automatic delineation approaches have been
implemented within computational pipelines (9), but other
factors related to motion tracking algorithms also influence
strain assessment, including the appropriate selection of
tuneable parameters whose optimal values can differ between
patient cohorts and acquisition protocols [e.g., the size of
the search region in block-matching methods (10)]. Further,
these algorithms often make assumptions about the properties
of the myocardial tissue [e.g., incompressible and elastic (11,
12)], or use registration methods to drive the solution toward
an expected geometry. However, recent evidence has shown
the validity of these assumptions varies between healthy and
diseased myocardium (13, 14), suggesting these approaches
may not accurately reflect the underlying biomechanical
motion. Modality-related image quality could also complicate
interpretation of abnormal strain values since these could reflect
either real dysfunction or artifact-related inaccuracies, leading
to some degree of subjectivity or non-conclusive results (3).

Abbreviations: ACDC, automated cardiac diagnosis challenge; AHA, American

heart association; ARV, abnormal right ventricle; CCN, categorical cross-entropy;

CMAC, cardiac motion analysis challenge; CarMEN, cardiac motion estimation

network; CarSON, cardiac segmentation network; CNN, convolutional neural

network; DCM, dilated cardiomyopathy; DL, deep learning; ED, end-diastole; EF,

ejection fraction; EPE, end-point error; ES, end-systole; ESS, end-systolic strain;

HCM, hypertrophic cardiomyopathy; LV, left-ventricular; LVM, left-ventricular

myocardium; MDC, multi-class Dice coefficient; MI, myocardial infarction; MRI,

magnetic resonance imaging; MRXCAT, magnetic resonance-extended cardiac-

torso; RC, relative change; RV, right-ventricular; SR, strain rate; SRe, early-diastolic

strain rate; SRs, systolic strain rate; VCN, ventricular centering network.

Lastly, although automated segmentation and motion tracking
commercial software is available for cardiac cine imaging,
manual correction of delineated contours used for tracking
is often required, resulting in significant variations in strain
depending on segmentation procedure and type of commercial
software (15).

Deep Learning (DL) methods have demonstrated the
advantage of allowing real-world data guide learning of abstract
representations that can be used to accomplish pre-specified
tasks, and have been shown to be more robust to image artifacts
than non-learning techniques for some applications (16, 17).
DL segmentation methods have been proposed (18–21) and
implemented within strain computational pipelines (22, 23), and
recent studies have shown that cardiac motion estimation can
also be recast as a learnable problem (24–28). These methods
usually consist of an intensity-based loss function and a constrain
term (24, 27), the latter using common machine learning
techniques [e.g., L2 regularization of all learnable parameters
(25)] or direct regularization of the motion estimates [e.g.,
smoothness penalty (24), anatomy-aware (28)]. However, none of
these methods have considered the accuracy of myocardial strain
as a design factor or have been applied to strain analysis.

We have recently developed a learning-based method for
cardiac motion estimation that produces more accurate estimates
than various techniques, including B-spline, diffeomorphic, and
mass-preserving algorithms (29), and showed these estimates
could potentially be used to detect regional dysfunction.
Thus, incorporating our method within a strain analysis
framework could potentially enable accurate, user-independent,
and quantitative characterization of cardiac mechanics at a both
global and regional level. While this framework could be based
on echocardiography images (30), these data remain limited for
strain mapping tasks by their low reproducibility of acquisition
planes (4) and temporal stability of tracking patterns (31). In
contrast, cine-MRI offers the most accurate and reproducible
assessment of cardiac anatomy and function, thus providing a
more thorough set of data for learning-based motion models.

We propose DeepStrain, a fast, automated workflow that
derives global and regional strain measures from cine-MRI data
by decoupling motion estimation and segmentation tasks. With
decoupling, segmentations are not used for motion estimation
during inference but rather to derive clinical parameters and to
identify a cardiac coordinate system for strain analysis, further
reducing the variability in strain directly related to segmentation.
Although two-dimensional (2D) convolutional neural networks
(CNN) for cardiac motion estimation from cine-MRI have been
proposed (24, 26, 28, 32), DeepStrain is the first end-to-end
learning based workflow for myocardial strain analysis from
cine-MRI. In addition, motion predicted using 2D architectures
could be influenced by out-of-plane motion during the cardiac
cycle, resulting in overestimation of in-planemotion and reduced
reproducibility (33). Instead, this paper describes a carefully
designed strain quantification-specific 3D CNN that handles
challenges associated with the anisotropic resolution of cine-
MRI data. Our loss weighting strategy to find the optimal
balance between motion regularization terms also differs from
previous methods which have traditionally relied on registration
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techniques as indirect measures of motion accuracy (24, 26, 28,
32). Instead, we simulated cine-MRI data with corresponding
ground-truth cardiac motion to identify the hyperparameters
yielding accurate motion and strain estimates. The optimal
trained configuration is online at https://github.com/moralesq/
DeepStrain. Finally, this paper also provides a comprehensive
assessment of the accuracy and repeatability of DeepStrain
measures, a task that has beenmostly ignored in the deep learning
literature but is critical to clinical adoption (4).

METHODS

Myocardial Strain Definitions
Strain represents percent change in myocardial length per unit
length. The 3D analog for MRI is given by the Green-Lagrange
strain tensor

E (t) =
(

∇u (t) + (∇u (t)) T+ (∇u (t))T ∇u (t)
)

/2, (1)

where u (t) denotesmyocardial displacement from a fully-relaxed
end-diastolic (ED) phase at t = 0, to a contracted frame at t >0.
Radial and circumferential strain are the diagonal components
of the tensor E evaluated in cylindrical coordinates. Strain rate
(SR) is the time derivative of (1). The time of acquisition of
each frame was extracted from the DICOM and was used to
interpolate E(t), such that E(t) was defined at every millisecond.
The time derivative was then evaluated using central differences
and reported as change in strain per second with unit s−1.

Global strain is defined as the average of E over the whole
LV myocardium (LVM) volume. Regional strain is defined as the
average of E over the volume of specific LVM segments defined
by the American Heart Association (AHA) polar map (34),
which requires labels of the right ventricle to construct. Specific
parameters based on timing and magnitude are extracted from
the measures evaluated over a whole cardiac cycle: end-systolic
strain (ESS), defined as the global strain value at end-systole (ES);
systolic strain rate (SRs), defined as the peak (i.e., maximum)
absolute value of global SR during systole; early-diastolic strain
rate (SRe), defined as the peak absolute value of global SR during
diastole. Although only radial and circumferential strain were
analyzed in this study, DeepStrain is also capable of generating
shear (Supplementary Section 1). The code used to construct the
AHA polar maps is available in the repo online.

Centering, Segmentation, and Motion
Estimation
DeepStrain (Figure 1) consists of a series of CNNs that
perform three tasks: a ventricular centering network (VCN)
for automated centering and cropping, a cardiac segmentation
network (CarSON) to generate tissue labels, and a cardiac motion
estimation network (CarMEN) to generate u. Estimates of u are
used to calculate myocardial strain, and segmentations are used
to derive volumetric parameters, identify a cardiac coordinate
system for strain analysis, and generate tissue labels used for
anatomical regularization of motion estimates at training time.

All networks have a common encoder-decoder architecture
consisting primarily of convolution, batch normalization (35),

and PReLU (36) layers with residual connections (37). The
specific architecture formulation and losses are discussed below
and Supplementary Section 2.

VCN
Let Vt be a cine-MRI frame at time t defined over a n-D domain
� ⊂ R

n, and let v ∈ �. VCN uses a single-channel array
V with size 256 × 256 × 16 to generate a single-channel
array Gpred of equal size, where Gpred corresponds to a Gaussian
distribution with mean defined as the LVM center of mass.
This approach models the uncertainty associated with the center
location, specially in pathological cases, and enables automated
generation of ground-truth labels when manual segmentation of
uncropped images is available. VCN was trained using the mean
square error (MSE) loss function

LMSE

(

Ggt ,Gpred

)

=
1

|�|

∑

v∈�

(

G(v)− Gpred (v)
)2
, (2)

where Ggt is the ground-truth Gaussian distribution. At
inference, the input volume V is centered and cropped around
the voxel with the highest value in Gpred to generate a new
cropped array of size 128 × 128 × 16, which is then the input
to CarSON and CarMEN.

CarSON
CarSON is a 2D architecture that uses single-channel images
V of size 128 × 128 to generate a 4-channel segmentation
Mpred of equal size, each channel corresponding to a label.
We experimented with two different loss functions Lseg to
train CarSON using the manual segmentations Mms: the pixel-
wise categorical cross-entropy (CCE), and a multi-class Dice
coefficient (MDC) loss function

LMDC

(

Mms,Mpred

)

= −
1

K

3
∑

k=0

2

∣

∣

∣
vkms ∩ vk

pred

∣

∣

∣

∣

∣vkms

∣

∣ +

∣

∣

∣
vk
pred

∣

∣

∣

, (3)

where k ∈ [0, 3] represents each of the tissue labels (i.e.,
background, RV, LVM, and LV), and vk ∈ M denotes all the pixels
with label k.

CarMEN
CarMEN estimates the motion ut of the heart from V0 to Vt , i.e.,
for each voxel v ∈ �, ut (v) is an approximation of themyocardial
displacement during contraction such that V0(v) and (ut ◦Vt)(v)
correspond to similar cardiac regions. The operator ◦ refers to
application of a spatial transform to Vt using ut via trilinear
interpolation (38). Thus, CarMEN uses a 2-channel input volume
consisting of two concatenated arrays with size 128 × 128 ×

16 to generate a 3-channel array u of equal size, each channel
representing the x, y, and z components of motion.

Although the current formulation of CarMEN shares some
similarities with our previous work, we have made several design
modifications that were specific for accurate strain quantification.
Here a combination of three loss functions was used for
training: first, we used an unsupervised loss function Lintensity
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FIGURE 1 | Overview of proposed DeepStrain workflow. VCN centers and crops the input pair of cine-MRI frames. Tissue labels generated by CarSON are used to

build an anatomical model. Motion estimates derived from CarMEN are used to calculate strain measures, and these estimates are combined with the anatomical

model to enable global and regional strain analyses.

that trains CarMEN using the input volumes and generated
motion estimates

Lintensity (V0,Vt , ut) =
1

|�|

∑

v∈�

∣

∣

(

V0 (v) − (ut ◦ Vt

)

(v)
∣

∣ . (4)

Second, we used a supervised function Lanatomical that leverages
segmentations of the input volumes at training time to impose an
anatomical constrain on the estimates

Lanatomical (M0, Mt , ut) = Lseg (M0, ut ◦Mt) . (5)

Third, smooth estimates were encouraged by using a
diffusion regularizer

Lsmoothness(ut) =
∑

v∈�

∥

∥∇ut (v) · dr
∥

∥

2
(6)

where dr is the spatial resolution of V . Thus, the loss function for
CarMEN is a linear combination of (4), (5), and (6), weighted by
λi, λa, λs, accordingly.

Some design variations were exclusive to estimation of motion
from 3D cine-MRI frames. Convolution, pooling, and upscaling
was implemented with 3 × 3 × kz operations, where kz could
be set to either 1 or 3. For kz = 1, operations were carried
out only in the x-y-plane to account for the low and varying z-
resolution, different from 3D architectures for segmentation with
3× 3× 3 convolutions and in-plane-only pooling and upscaling
(39). Thus, context in the z-dimension is aggregated through

trilinear interpolation of Vt and Mt volumes in (4) and (5), and
through application of 3D spatial gradients to u in (6). The spatial
gradient in (6) also includes an additional term dr to account
for differences between in-plane and slice resolution which was
not used in (40). Lastly, we experimented with CCE and MDC
implementations as anatomical constrains in (5).

At inference, the entire cycle of a single subject can be analyzed
using sequential inputs

{(V0, Vt)}{t=0,1,...,T} to derive {ut}{t= 0,1,...,T} .

EXPERIMENTS

Datasets
For development we used the Automated Cardiac Diagnosis
Challenge (ACDC) dataset (41), consisting of cine-MRI data from
150 subjects evenly divided into five groups: healthy and patients
with hypertrophic cardiomyopathy (HCM), abnormal right
ventricle (ARV), myocardial infarction with reduced ejection
fraction (MI), and dilated cardiomyopathy (DCM). These data
were publicly available as train (n = 100) and test (n =

50) sets, with manual segmentations included for the train
set only. For validation of motion and strain measures we
used the Cardiac Motion Analysis Challenge (CMAC) dataset
(42), consisting of paired tagging- and cine-MRI data from
15 healthy subjects. To assess intra-scanner repeatability, 10
healthy volunteers were recruited to undergo repeated scans
on a 3T MRI scanner (Supplementary Section 3). All cine-MRI
frames and corresponding segmentations were resampled to a
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FIGURE 2 | Effect of anatomical regularization of motion estimates on strain on the ADCD dataset. Regularization with multiclass dice coefficient (MDC) and

categorical crossentropy (CCE) functions result in different strain values in healthy subjects, shown as mean and standard deviation.

256× 256× 16 volume grid with 1.25mm × 1.25mm in-plane
resolution and variable slice thickness (4–7 mm).

DeepStrain Implementation
For optimization experiments and final model training,
all networks were trained in TensorFlow ver. 2.0 with
Adam optimizer parameters beta 1, 2 = 0.9, 0.999,
random initialization, batchsize = 80 (5 for CarMEN), and
learning rate= 1e-4.

Design of a Strain Quantification-Specific CNN
Reported normal ranges of strain in healthy individuals
using non-learning methods vary largely between the different
deformation methodologies, limiting the clinical utility of strain
measures (4). We used this concept as a heuristic in updating
CarMEN, i.e., a useful design should minimize the variation
in strain values in healthy individuals. To assess the impact of
design choices on this heuristic, we separated the ACDC training
set into two group-balanced train and test subsets, each with
50 subjects. We trained CarMEN for 300 epochs using two
different layer operation sizes (i.e., 3 × 3 × kz with kz ∈ {1, 3}),
and two different implementations of (5) (i.e., MDC and CCE).
With kz = 3, comparison of losses showed that CCE leads to
increased standard deviation in radial ESS in healthy train (n
= 10) and test (n = 10) subjects, and large differences in the
average radial ESS between training and testing sets (Figure 2).
Multiple experiments with different regularization parameters
showed similar results, and showed that setting kz = 1 reduces
deviations in healthy strain (Supplementary Table 1). Thus, the
new CarMEN design used 3 × 3 × 1 operations and was
regularized using the MDC function.

Novel Loss Weighting Strategy for Accurate Motion

and Strain Estimation
Most proposed networks to-date have used registration terms
such as (4) and (5) to indirectly assess the accuracy of ut on
validation or test datasets. However, this approach is prone to

errors since inaccurate and even unrealistic ut solutions can
minimize these terms. To find an optimal balance between loss
terms, we simulated 10 cardiac cine-MRI frames at ED and
ES with known ground-truth motion using the MR-extended
cardiac-torso (MRXCAT) (43, 44), a software phantom used
extensively in imaging studies (45). The motion of the software
phantom was modeled using gated patient 4D tagging data,
producing highly realistic contracting and twisting motion of the
normal heart that can be parameterized to generate population-
wide characteristics, as previously described by us (29). We
trained CarMEN with various regularization parameters for 300
epochs using 100 subjects from the ACDC training set, and
tested the models on the MRXCAT data by evaluating the
end-point error between ground-truth and predicted motion
estimates within the LVM (Figure 3). Setting λs = 0 leads
to highly irregular motion vectors (e.g., off by more than 90
degrees) relative to ground-truth. Setting the smoothness and
anatomical weights to λs = λa = 0.1 leads to smoother
and better aligned vectors, albeit with a slightly decreased
magnitude. Increasing the anatomical weight to λa = 0.5
further improves the estimates by generating vectors with similar
magnitude and orientation to the ground-truth. Quantitative
measures of motion accuracy showed similar results across
various regularization values, and these changes in motion
estimation accuracy were reflected as bias changes in strain values
(Figure 4). We found the optimal parameters to be λi = 0.01,
λa = 0.5, λs = 0.1, which in addition resulted in low strain
deviation in healthy subjects as described in the previous section
(Supplementary Table 1). Thus, the optimal architecture and
hyperparameters were selected based on both the ACDC (i.e.,
to assess strain deviation in healthy subjects) and XCAT (i.e., to
assess motion and strain accuracy).

Final Model Training
Ground-truth distributions for VCN were created using the
manual segmentations. VCN and CarSONwere trained using the
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FIGURE 3 | Qualitative effects of smoothing and anatomical regularization on the accuracy of motion estimates on the MRXCAT dataset. First row shows the

predicted (black) motion estimates when the anatomical regularization is set to 0.5 and smoothing is set to 0. Relative to the ground-truth (red), these estimates are

highly irregular. Increasing (third column) the smoothness to 0.1 and setting anatomical to 0.1 improves the direction of the estimates, but the magnitude is reduced.

This is corrected by increasing anatomical regularization to 0.5 (fourth column).

ED and ES frames of the train set, as only these included ground-
truth segmentations. This provided 200 training samples for
VCN and 3200 for CarSON, the latter having more samples since
it is a 2D architecture and all frames were resampled to a volume
with 16 slices. VCN was tested by five-fold cross-validation,
whereas the accuracy of CarSON was assessed by submitting
the results to the challenge website. Once CarSON was trained,
we generated segmentations of the test set to train CarMEN
using the entire ACDC dataset, i.e., 100 subjects from the train
set with manual segmentations and 50 from the test set with
CarSON-predicted segmentations. Only the ED-ED and ED-ES
pairs were used for training. The former pair is useful for the
network to learn the identity transformation. Data augmentation
included random rotations and translations, random mirroring
along the x and y axes, and gamma contrast correction. All data
augmentation was performed only in the x-y plane.

Evaluation Metrics
Segmentation and Motion Estimation
The CarSON-predicted and manual segmentations were
compared using the Hausdorff distance (HD) and Dice Similarity

Coefficient (DSC) metrics at both ED and ES. Accuracy of LV
volumetric measures derived from segmentations, including ED
volume (EDV), EF, and LVM, was assessed using the correlation,
bias, and standard deviation metrics. The mean absolute error
(MAE) for the LV EDV and LVM were also computed for
comparison against the intra- and inter-observer variability
reported by (41). RV labels were not analyzed since they were not
used to assess cardiac function but rather to define the direction
of the septal wall, which is needed to construct the LV strain
polar maps with a normalize orientation between subjects. We
compared our results to top-3 ranked methods published for
the ACDC test set as these appear in the leader-board of the
challenge (18, 20, 21, 39).

CMAC organizers defined 12 landmarks at intersections of
gridded lines on tagging images at ED, one landmark p0 per
wall (septal, inferior, lateral, interior) per ventricular level (basal,
mid, septal). These landmarks were manually-tracked on tagging
images by two observers over the cardiac cycle, and each position
was transformed from tagging to cine coordinates using DICOM
header information. We used the CarMEN motion estimates ut
to automatically deform the landmarks at ED, and the accuracy
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FIGURE 4 | Quantitative effects of regularization on the accuracy of motion and myocardial strain. (A,B) End-point-error on MRXCAT test data with ground-truth

motion for CarMEN with varied (A) anatomical and (B) smoothing regularization parameters. (C,D) Bland-Altman plots of radial and circumferential end-systolic strain

for two different anatomical regularization parameters, and smoothing set to 0.1.

was assessed using the in-plane end-point error (EPE) between
deformed pt

′ = ut ◦ p0 and manually-tracked pt landmarks,
defined by

EPE
(

p, p′
)

=

√

(

px − px′
)2

+
(

py − py′
)2
. (7)

Due to temporal misalignment between the tagging and cine
acquisitions, EPE was evaluated only at ES (t = tES). Specifically,
let pij(t) denote the manually-tracked landmarks of subject i at
frame t by observer j. The accuracy of CarMEN was assessed
using the average EPE

AEPE =
1

2n

n
∑

i=1

2
∑

j=1

EPE(pij (tES) , ui(tES) ◦ p0). (8)

Our results were compared to those reported by the four groups
that responded to the challenge (42), MEVIS (46), IUCL (9), UPF
(11), and INRIA (12, 47). All groups submitted tagging-based
motion estimates, but only UPF and INRIA provided estimates
based on cine-MRI.

Strain Validation and Intra-Scanner Repeatability
The tagging-MRImethod with the lowest AEPE at ES was used as
the reference for strain analysis. The tagging-MRI-based motion
estimates were registered and resampled to the cine-MRI space.

Global strain and SR values throughout the entire cardiac cycle
were derived from the resampled estimates as described in (48).
Global- and regional-based analyses were performed to assess the
repeatability of measures from two acquisitions. Relative changes
(RC) and absolute relative changes (aRC) were calculated, taking
the first acquisition as the reference. ESS and SR were calculated
for the global-based analysis, and for region-based analyses, ESS
values were normalized using the AHA polar map, and both
RC and aRC were evaluated for each of the segments in the
polar map.

Statistics
For validation, Bland-Altman analysis was used to quantify
agreement between predicted and tagging strain measures. We
used the term bias to denote the mean difference and the term
precision to denote the standard deviation of the differences,
the latter computed with 1-degree of freedom. Differences were
also assessed using a paired t-test with Bonferroni correction for
multiple comparisons. For global- and regional-based analyses
of strain intra-scanner repeatability, ICC estimates and their
95% confidence intervals (CI) were calculated based on a single-
rating, absolute agreement, 2-way mixed-effects model. Analyses
were performed on Python v3.4 with the statistical pingouin
module (49).
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TABLE 1 | State-of-the-art methods for left-ventricular segmentation shown at end-diastole (ED) and end-systole (ES) on the ACDC test set compared to proposed

approach.

Left-ventricle label Dice similarity

coefficient

Hausdorff distance Ejection fraction End-diastolic volume

ED ES ED ES Corr. bias ± std Corr. bias ± std

val. val. mm mm val. % % val. mL mL

* CarSON 0.967 0.929 5.656 7.676 0.990 0.252 3.183 0.996 0.762 6.672

1 Dong et al. (17) 0.967 0.928 6.366 7.573 0.993 −0.360 2.689 0.998 2.032 4.611

2 Simantiris and Tziritas (18) 0.967 0.928 5.476 6.921 0.991 0.490 2.965 0.997 1.530 5.736

3 Isensee et al. (19) 0.964 0.912 6.180 8.386 0.990 −0.476 3.114 0.997 3.746 5.146

Myocardium label Dice similarity

coefficient

Hausdorff distance Left-ventricular mass End-systolic volume

ED ES ED ES Corr. bias ± std Corr. bias ± std

val. val. mm mm val. g g val. mL mL

* CarSON 0.898 0.913 8.128 9.189 0.981 1.405 10.32 0.985 1.152 9.391

1 Dong et al. (17) 0.904 0.923 7.014 7.328 0.987 −2.547 8.28 0.988 −1.984 8.335

2 Simantiris and Tziritas (18) 0.891 0.904 8.264 9.575 0.992 −2.904 6.46 0.983 −2.134 10.11

3 Zotti et al. (20) 0.873 0.895 8.197 8.318 0.989 −2.1 7.91 0.988 −1.79 8.575

Red are the best results for each metric. *Proposed segmentation method.

RESULTS

Segmentation and Motion Estimation
Centering, segmentation, and motion estimation for an entire
cardiac cycle (∼25 frames) was accomplished in<13 s on a 12GB
GPU and <2.2min on a 32 GB RAM CPU. VCN located the LV
center of mass with a median error of 1.3 mm.

Training with a MDC loss function resulted in
slightly more accurate segmentations compared to CCE
(Supplementary Table 2), therefore the MDC-trained model
was used for all remaining analyses. With this model, correlation
of CarSON and manual LV volumetric measures was >0.98
across all measures (Table 1), and biases in EF (+0.25 ± 3.2%),
ED (+0.76 ± 6.7mL), and ES (+0.19 ± 5.8mL) volumes, and
mass (+1.4 ± 10.3 g) were not significant. Further, these biases
were smaller than those obtained with other methods, which
were positive for LV EDV (1.5–3.7mL), negative for LVM (−2.1
to −2.9 g), and close to zero (±0.5%) for EF. Simantiris et al.
(18) obtained the best precision for LV EF (2.7 vs. 3.2% variance
with CarSON), EDV (4.6 vs. 6.7mm), and LVM (6.5 vs. 10.3 g).
Isensee et al. (39) obtained the best results on geometric metrics,
i.e., lower HD for the LV (ED 5.5 vs. 5.7mm; ES 6.9 vs. 7.7mm)
and LVM (7.0 vs. 8.1mm; 7.3 vs. 9.2mm), and higher DSC for
the LVM (0.904 vs. 0.898; 0.923 vs. 0.913). The DSC for the LV
was similar for all methods (∼0.967, ∼0.929). MAE for the LV
EDV and LVM were 5.3± 4.1mL and 6.8± 6.5 g.

Figure 5A illustrates a representative example of the tagging
and cine images from a CMAC subject. Landmarks defined
at ED were deformed to ES using the CarMEN estimates
and compared to manual tracking. Banding artifacts on
cine images showed no clear effect on derived motion
estimates or landmark deformation, as shown in ES (Figure 5A,

yellow arrow) or throughout the whole cardiac cycle (see
Supplementary Video 1). The manual tracking inter-observer
variability was 0.86mm (Figure 5B, dotted line). Within cine-
based techniques, CarMEN (2.89 ± 1.52mm) and UPF (2.94 ±

1.64mm) had lower (p < 0.001) AEPE relative to INRIA (3.78
± 2.08mm), but there was no significant difference between
CarMEN and UPF. All tagging-based methods had lower AEPE
compared to cine approaches, particularly MEVIS (1.58 ±

1.45mm). Finally, we evaluated the AEPE of the motion vectors
in 10 synthetic datasets to compare our results against our
previous CarMEN implementation. The AEPE was 1.6± 0.1mm
(1.1 ± 0.4 pixels) at ED, 2.1 ± 0.1mm (1.33 ± 0.03 pixels) at ES,
and 1.8± 0.2mm (1.20± 0.2 pixels) combined.

Strain Analysis
Table 2 shows the normal ranges (mean [95% CI]) of strain
derived from cine-MRI data for all healthy subjects, including
subjects from the training, validation, and repeatability cohorts.
Across datasets, DeepStrain generated values with narrow CI
of ESS (circumferential: 1.1%, radial: 2.5%), SRs (0.13 s−1, 0.19
s−1), and SRe (0.14 s−1, 0.26 s−1). Specifically, circumferential
and radial values across datasets were: −16.9% [−17.4 −16.3]
and 23.2% [22 24.4] for ESS, −1.1 s−1 [−1.2 −1.1] and
1.4 s−1 [1.3 1.5] for SRs, and 0.80 s−1 [0.73 0.86] and
−1.5 s−1 [−1.6 −1.3] for SRe, accordingly. These values
were similar to tagging-based ones, although circumferential
SRe from cine-MRI data was lower, mostly in the train
set (0.7± 0.2 s−1).

Comparison of tagging- and cine-based strain measures with
matched subjects showed an overall agreement in timing and
magnitude of strain and SR throughout the cardiac cycle,
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FIGURE 5 | Validation of motion and strain using the CMAC dataset. (A) Landmarks at end-diastole (unfilled green) are manually-tracked (green) and deformed with

CarMEN to end systole (red). Yellow arrow indicates a banding artifact. (B) Average end-point-error (AEPE) at end-systole between manual and CarMEN-deformed

landmarks was assessed and compared to other methods. (C) MEVIS- (green) and DeepStrain-based (red) strain (top) and strain rate (SR, bottom) measures are

compared.

TABLE 2 | Normal ranges of strain with DeepStrain in healthy subjects.

ACDC (n = 20) CMAC (n = 15) MARTINOS (n = 10) COMBINED (n = 45)

Cine Tagging vs. Cine Cine ACQ 1 vs. ACQ 2 Cine

End-systolic strain (%)

Circumferential −17.8 (1.6) −14.2 (2.2) −15.3 (1.5) −17.3 (0.7) −17.5 (0.9) −16.9 [−17.4 −16.3]

Radial 24.5 (2.9) 18.4 (5.1) 19.7 (3.4) 25.9 (3.4) 25.7 (4.1) 23.2 [22.0 24.4]

Systolic strain rate (s−1)

Circumferential −1.1 (0.2) −0.9 (0.1) −1.2 (0.2) −1.0 (0.2) −1.0 (0.2) −1.1 [−1.2 −1.1]

Radial 1.3 (0.4) 1.0 (0.2) 1.3 (0.2) 1.7 (0.3) 1.6 (0.3) 1.4 [1.3 1.5]

Early-diastolic strain rate (s−1)

Circumferential 0.7 (0.2) 1.2 (0.2) 0.8 (0.1) 1.0 (0.2) 1.0 (0.2) 0.80 [0.73 0.86]

Radial −1.4 (0.5) −1.2 (0.5) −1.4 (0.3) −1.8 (0.3) −1.7 (0.4) −1.5 [−1.6 −1.3]

Tagging-based measures are shown for the CMAC cohort. DeepStrain repeatability is shown for two acquisitions (ACQ). MEVIS was used to calculate tagging measures. Data are

presented as mean (standard deviation), and as mean [95% confidence interval] for all three datasets combined.

although there were visual differences in peak SR parameters
(Figure 5C). Visual inspection of image artifacts on cine
data showed no evidence that these artifacts affected strain
values derived with DeepStrain (Supplementary Figure 1).
Quantitative comparisons of tagging- and cine-based measures
showed biases in circumferential ESS (−14.2 ± 2.2 vs. −15.3
± 1.5%; bias −1.17 ± 2.93%), radial ESS (18.4 ± 5.1 vs. 19.7
± 3.4%; +1.26 ± 5.37%), and SRe (−1.2 ± 0.5 vs. −1.4 ±

0.3; −0.21 ± 0.52 s−1) were not significantly different from
zero (Supplementary Figure 2). However, there were larger
differences (p < 0.01) in radial SRs (1.0 ± 0.2 vs. 1.3 ± 0.2 s−1;

0.32 ± 0.34 s−1), and circumferential SRs (−0.9 ± 0.1 vs. −1.2
± 0.2 s−1; 0.30 ± 0.22 s−1) and SRe (1.2 ± 0.2 vs. 0.8 ± 0.1 s−1;
0.40± 0.23 s−1).

Global strain time series derived from repeated acquisitions
are shown in Figure 6A. The overall bias in circumferential
and radial ESS were 0.17 and −0.16%, accordantly. Average
RC between parameters was less than ±1% for ESS and less
than ±5% for peak SR (Table 3). Average aRC was ∼5% for
ESS (circumferential: 3.0 ± 2.0%; radial: 5.1 ± 5.8%), ∼8% for
SRs (8.0 ± 6.8%; 7.7 ± 4.0%), and ∼10% for SRe (10.2 ±

7.8%; 9.2 ± 8.6%). Mean ICC values showed repeatability was
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FIGURE 6 | Intra-scanner repeatability of global and regional myocardial strain measures on the MARTINOS dataset. (A) Circumferential (CIRC) and radial (RAD) strain

and strain rate (SR) curves across time derived from two different acquisitions (ACQ). Four representative healthy subjects are shown, including the correspond cine

images used for analyses. (B) Polar maps for all subjects were used to evaluate the relative change and absolute relative change across polar map segments. Circles

represent peak systolic and early-diastolic strain values. Stars represent peak late-diastolic strain values.

TABLE 3 | Intra-scanner repeatability of global circumferential and radial

end-systolic strain (ESS) measures.

Measure RC (%) aRC (%) ICC [95% CI] LoA

Circumferential ESS 1.0 (3.6) 3.0 (2.0) 0.75 [0.22–0.92] [−1.36 1.02%]

Radial ESS −0.9 (7.9) 5.1 (5.8) 0.90 [0.64–0.97] [−3.03 3.36%]

Circumferential SRs 0.8 (10.8) 8.0 (6.8) 0.77 [0.31–0.94] [−0.23 0.22 s−1]

Radial SRs −4.9 (7.4) 7.7 (4.0) 0.91 [0.67–0.98] [−0.15 0.34 s−1]

Circumferential SRe 2.5 (13.0) 10.2 (7.8) 0.83 [0.47–0.96] [−0.26 0.22 s−1]

Radial SRe −2.5 (12.7) 9.2 (8.6) 0.84 [0.50–0.96] [−0.32 0.41 s−1]

good to excellent for ESS (0.75; 0.90), SRs (0.77, 0.91), and SRe
(0.83, 0.84). The limits-of-agreement (LoA), which defines the
interval where to find the expected differences in 95% of the
cases assuming normally distributed data, were ∼2 and ∼6% for
circumferential and radial ESS, and ∼0.5 s−1 for SR measures.
Average RC and aRC across regional segments were within ±2%
for circumferential and ±5% for radial ESS, except in anterior
segments (±8%) radially (Figure 6B). Regional mean ICC values
showed good to excellent repeatability across all segments, except
circumferentially near inferoseptal, inferior, and inferolateral
walls were repeatability was moderate (Supplementary Table 3).
LoAs showed that 95% of differences occurred within ∼5 and
∼10% intervals for circumferential and radial ESS.

Evaluation in Patients With Cardiovascular
Disease
Regional measures of ESS averaged over patient population
(Supplementary Figure 3), as well as global values of strain and
SR across the cardiac cycle (Figure 7) for all 100 subjects in
the ACDC train set showed progressive decline in strain values

starting with HCM, followed by ARV, MI, and DCM. Specifically,
relative to the healthy group, radial ESS was reduced in all
patient populations. Radial systolic and early-diastolic SR were
also reduced in all patient groups, except for systolic SR in HCM.
Figure 8 shows both the cine-MRI image and the circumferential
ESS polar map of a healthy subject and two patients with MI.
Strain values in the healthy polar map have a homogeneous
distribution. In contrast, in one MI patient the map indicates
a diffused reduction, and inspection of the myocardium on the
cine-MRI image shows an anteroseptal infarct that coincides
in location with segments with more prominent decreases in
strain. In a different MI patient with an infarct located in a
similar septal region, strain changes are focal and localized to the
anteroseptal wall.

DISCUSSION

In this study we developed a fast DL framework for strain
analysis based on cine-MRI data that does not make assumptions
about the underlying physiology, and we benchmarked its
segmentation, motion, and strain estimation components against
the state-of-the-art. We compared our segmentations to other
DL methods, motion estimates to other non-learning techniques,
and strain measures to a reference tagging-MRI technique. We
also presented the intra-scanner repeatability of DeepStrain-
based global and regional strain measures, and showed that these
measures were robust to image artifacts in some cases. Global
and regional applications were also presented to demonstrate the
potential clinical utilization of our approach. Our work is the first
to report within a single study the characterization, validation,
and repeatability of a learning-based method for strain analysis.
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FIGURE 7 | Strain measures on the ACDC train set. Radial strain (Left) and strain rate (Right) across time is shown for healthy subjects and patients with

hypertrophic cardiomyopathy (HCM), abnormal right ventricle (ARV), myocardial infarction (MI), and dilated cardiomyopathy (DCM).

FIGURE 8 | Regional Strain: Diffused vs. focal abnormalities. Anatomical (top) and regional (bottom) circumferential end-systolic strain (ESS) for healthy and MI

subjects. (A) Healthy strain is homogenously distributed. (B) MI subject shows diffused strain reduction with an MI in the anteroseptal region. (C) Different MI subject

shows a focal decrease in the anteroseptal region co-localized with the infarcted region (red arrows). MI, myocardial infarction.

Volumetric Measures
Segmentation from MRI data is a task particularly well-suited
for CNNs given the excellent soft-tissue contrast, thus all top

performing methods on the ACDC test set were based on
DL approaches. Isensee et al. (39) had remarkable success
on geometric metrics, but this and other approaches result
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in a systematic overestimation of the LV EDV and thus
underestimation of LVM. In contrast, CarSON generated less
biased measures of LV volumes and mass, which were not
significant. Although Simantiris and Tziritas (18) obtained the
most precise measures, possibly due to their extensive use
of augmentation using image intensity transformations, across
methods the precision of EF was within the ∼3–5% (50) needed
when it is used as an index of LV function in clinical trials (51).
Lastly, we showed that the error in our measures of LV EDV
and LVM was almost half the inter-observer (∼10.6mL, 12.0 g),
and comparable to the intra-observer (∼4.6mL, 6.2 g) MAE
reported in (41), but further investigations are required to assess
the performance on more heterogeneous populations. Lastly,
CarSON tends to perform better on DSC metrics compared to
HD. This is mainly due to inclusion or exclusion of myocardium
labels in most basal slides as described by Bernard et al. (41).
However, the smoothing penalty used to train CarMEN reduces
the impact on strain estimates by promoting smooth motion
values across the myocardial tissue.

Strain Validation
The application of myocardial strain to quantify abnormal
deformation in disease requires accurate definition of normal
ranges. However, previously reported normal ranges vary largely
between modalities and techniques, particularly for radial ESS
(4). In this study we showed DeepStrain generated strain
measures with narrow CI in healthy subjects from across
three different datasets. Although direct comparison with the
literature is difficult due to differences in the datasets, overall our
strain measures agreed with several reported results. Specifically,
circumferential strain is in agreement with studies in healthy
participants based on tagging (−16.6%, n = 129) and speckle
tracking echocardiography (−18%, n = 265) datasets (52, 53), as
well a recently proposed (−16.7% basal, n = 386) tagging-based
DL method (48). Our radial strain values are in agreement with
some tagging-based studies (26.5%, n = 129; 23.8% basal, n =

386) (48, 52), but are lower than most reported values (4). This
is a result of smoothing regularization used during training to
prevent overfitting. However, lowering the regularization without
increasing the size of the training set would lead to increased EPE
and wider CI. SR measures derived with DeepStrain were also in
good agreement with previous tagging-based studies (52).

The CMAC dataset enabled us to compare our results to non-
learning methods using a common dataset. We found that AEPE
at ES was lower with tagging-based techniques, reflecting the
advantage of estimating cardiac motion from a grid of intrinsic
tissue markers (i.e., grid tagging lines). Further, the tagging
techniques also benefited from the fact that landmarks were
placed near the center of the myocardial wall borders, whereas
motion estimation from tagging data at the myocardial walls
and in thin-walled regions of the LV is less accurate due to the
spatial resolution of the tagging grid (4). In addition, some of
the tagging-MRI images did not enclose the whole myocardium
and some contained imaging artifacts, which resulted in strain
artifacts toward the end of the cardiac cycle. Nevertheless,
MEVIS-based motion estimates achieved the lowest AEPE at ES
and thus represent a reliable reference for end-systolic strain

measures. This performance could be a result of their image
term (4) that penalizes phase shifts in the Fourier domain
instead of intensity values, an approach that is less affected
by desaturation. The UPF approach also achieved a low AEPE
using multimodal integration and 4D tracking to leverage the
strengths of both modalities and improve temporal consistency
(11). Specific differences in motion and strain measures between
MEVIS and other techniques were thoroughly discussed by
Tobon-Gomez et al. (42).

Using MEVIS as the tagging reference standard, we found no
significant differences in measures of circumferential of radial
and ESS. Validation studies have shown similar [±1%, (54–56)]
or worse [±11% for radial, (55)] biases between cine feature
tracking and tagging strain. However, these methods required
manual contouring by an expert, whereas our method is fully-
automatic. We found significant differences in SR measures
between the two techniques that could be due to drift errors
in the MEVIS implementation, i.e., errors that accumulate in
sequential implementations in which motion is estimated frame-
by-frame (42).

The AEPE on the synthetic dataset of 1.20 pixels was lower
than our previously reported 1.7 pixels, which is expected as
our previous implementation was not anatomically constrained.
Although we did not observe considerable improvements in
AEPE compared to tagging- and cine-based methods, an
important advantage of our learning-based approach is the
reduced computational complexity (∼13 s in GPU) relative to
the proposed MEVIS (1–2 h), IUCL (3–6 h), UPF (6 h), and
INRIA (5 h) approaches (42). Specifically, because once trained
our network does not optimize for a specific test subject (i.e.,
it does not iterate on the cine-data to generate the desired
output), centering, segmentation, and motion estimation for the
entire cardiac cycle can be accomplished much faster (<2min in
CPU). In addition, DeepStrain was trained on a relatively small
dataset and was evaluated on data from different institutions and
vendors, therefore its accuracy relative to non-learning methods
could substantially improve through training with larger cohorts
or application of data shift correction strategies. Furthermore, a
joint optimization of segmentation andmotion estimation CNNs
could potentially improve the robustness of the workflow to
undersampled data (24).

Strain Repeatability
In this study we also evaluated the intra-scanner repeatability
of strain measures in 10 healthy subjects, an important aspect
to consider when assessing the potential clinical utility of
DeepStrain. Confidence intervals in circumferential and radial
ESS were 0 ± 1% and 0 ± 3%, better than the intra-observer
variability reported using feature tracking in 10 healthy adults
(57). A more recent study in 100 healthy individuals reported
intra- and inter-observer repeatability for circumferential (ICC
intra: 0.88, ICC inter: 0.88) and radial ESS (0.82, 0.79), which
were comparable to our results for circumferential ESS (0.75) and
radial ESS (0.90) using only 10 subjects. Finally, our repeatability
of SR measures was good to excellent, similar to that reported for
healthy (n = 20) and patient (n = 60) populations (58). Thus,
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without requiring expert operators, DeepStrain achieved better
or equal repeatability compared to feature tracking methods.

Potential Clinical Applications
DeepStrain could be applied in a wide range of clinical
applications, e.g., automated extraction of imaging phenotypes
from large-scale databases (59). Such phenotypes include global
and regional strain, which are important measures in the
setting of existing dysfunction with preserved EF (3). DeepStrain
generatedmeasures of global strain and SR over the entire cardiac
cycle from a cohort of 100 subjects in <2min. These results
showed that radial SRe was reduced in patients with HCM and
ARV, despite having a normal or increased LV EF. Decreased
SRe with normal EF is suggestive of subclinical LV diastolic
dysfunction, which is in agreement with previous findings (60,
61). Our results also showed DeepStrain-based maps could be
used to characterize regional differences between groups.

At an individual level, we showed that in MI patients,
polar segments with decreased circumferential strain matched
myocardial regions with infarcted tissue. Further, we showed that
the changes in regional strain due to MI can be both diffuse
and focal. These abnormalities could be used to discriminate
dysfunctional from functional myocardium (62), or as inputs
for downstream classification algorithms (63). More generally,
DeepStrain could be used to extract interpretable features
(e.g., strain and SR) for DL diagnostic algorithms (64), which
would make understanding of the pathophysiological basis of
classification more attainable (65).

Study Limitations
A limitation of our study was the absence of important
patient information (e.g., age), which would be needed for a
more complete interpretation of our strain analysis results, for
example to assess the differences in strain values found between
the healthy subjects from the ACDC and CMAC datasets.
Nevertheless, using publicly available data enables the scientific
community to more easily reproduce our findings, and compare
our results to other techniques. Another limitation was the
absence of longitudinal analyses, i.e., longitudinal strain was
not reported because it is normally derived from long-axis
cine-MRI data not available in the training dataset. The size
of the datasets is another potential limitation. The number of
patients used for training is much smaller than the number
of trainable parameters, potentially resulting in some degree of
overfitting. To correct this, the training set for motion estimation
could be expanded by validating the proposed segmentation
network on more heterogeneous populations. The use of strain
minimization deviation as a training heuristic also serves as
a learning constrain but has not been validated, and could
potentially prevent identification of subtle disease due to loss
of sensitivity to abnormal strain. While our repeatability results
were promising despite testing in only a small number of
subjects, repeatability in patient populations was not shown.
Further, reproducibility across sites and vendors was not assessed.
In addition, the accuracy of the motion estimates on patient
populations with regional dysfunction was not assessed, and we

did not quantify the effect of dataset shift errors that might occur
when applying our method to new datasets.

Conclusion
We developed an end-to-end learning-based workflow for
strain analysis that is fast, operator-independent, and leverages
real-world data instead of making explicit assumptions about
myocardial tissue properties or geometry. This approach enabled
us to derive strain measures from new data that were repeatable,
and comparable to those derive from dedicated tagging data.
These technical and practical attributes position DeepStrain as
an excellent candidate for use in routine clinical studies or data-
driven research.
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Background: T2 mapping is a magnetic resonance imaging technique that can be

used to detect myocardial edema and inflammation. However, the focal nature of

myocardial inflammation may render conventional 2D approaches suboptimal and make

whole-heart isotropic 3D mapping desirable. While self-navigated 3D radial T2 mapping

has been demonstrated to work well at a magnetic field strength of 3T, it results in

too noisy maps at 1.5T. We therefore implemented a novel respiratory motion-resolved

compressed-sensing reconstruction in order to improve the 3D T2 mapping precision

and accuracy at 1.5T, and tested this in a heterogeneous patient cohort.

Materials and Methods: Nine healthy volunteers and 25 consecutive patients

with suspected acute non-ischemic myocardial injury (sarcoidosis, n = 19; systemic

sclerosis, n = 2; acute graft rejection, n = 2, and myocarditis, n = 2) were included.

The free-breathing T2 maps were acquired as three ECG-triggered T2-prepared 3D

radial volumes. A respiratory motion-resolved reconstruction was followed by image

registration of the respiratory states and pixel-wise T2 mapping. The resulting 3D maps

were compared to routine 2D T2 maps. The T2 values of segments with and without late

gadolinium enhancement (LGE) were compared in patients.

Results: In the healthy volunteers, the myocardial T2 values obtained with the 2D and

3D techniques were similar (45.8 ± 1.8 vs. 46.8 ± 2.9ms, respectively; P = 0.33).

Conversely, in patients, T2 values did differ between 2D (46.7 ± 3.6ms) and 3D

techniques (50.1 ± 4.2ms, P = 0.004). Moreover, with the 2D technique, T2 values

of the LGE-positive segments were similar to those of the LGE-negative segments

(T2LGE− = 46.2± 3.7 vs. T2LGE+ = 47.6± 4.1ms; P = 0.49), whereas the 3D technique

did show a significant difference (T2LGE− = 49.3 ± 6.7 vs. T2LGE+ = 52.6 ± 8.7ms,

P = 0.006).

Conclusion: Respiratory motion-registered 3D radial imaging at 1.5T led to accurate

isotropic 3D whole-heart T2 maps, both in the healthy volunteers and in a small patient
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cohort with suspected non-ischemic myocardial injury. Significantly higher T2 values

were found in patients as compared to controls in 3D but not in 2D, suggestive of

the technique’s potential to increase the sensitivity of CMR at earlier stages of disease.

Further study will be needed to demonstrate its accuracy.

Keywords: cardiac magnetic resonance(CMR), acute non-ischemic myocardial injury, isotropic 3D imaging, T2

mapping, respiratory motion correction

BACKGROUND

The T2 relaxation time is one of the physiology-dependent
properties of a tissue in a magnetic field that governs the
image contrast in magnetic resonance imaging (MRI). In the
myocardium, it increases in the presence of edema, which makes
the T2 relaxation time a useful indicator of acute myocardial
injury irrespective of its etiology (e.g., inflammatory, toxic, or
ischemic) (1). T2 mapping, i.e., quantifying the T2 relaxation time
in every pixel, has therefore seen increased use for the diagnosis
of acute myocardial injury in recent years (2). T2 mapping
has been shown as to be an effective complementary tool in
inflammatory diseases such myocarditis (3), systemic sclerosis
(4), and sarcoidosis (5).

Most current T2 mapping techniques (6, 7) involve the
acquisition of several thick 2D slices of the left-ventricular
myocardium, which is largely adequate in the case of diseases that
affect the entire myocardium or that have a well-defined pattern,
such as acute ischemicmyocardial injury. However, in a spectrum
of inflammatory myocardial injuries such as viral myocarditis
and sarcoidosis, the inflammation pattern is essentially irregular
and unpredictable, despite typical patterns of segmental and
transmural distribution. This may render the standard 2D T2

mapping technique suboptimal, since the disease foci can be
missed due to insufficient coverage. Moreover, the thick slices
may mask the disease foci through partial volume effect by
including healthy and injured tissue in the same voxels. On the
other hand, scanning would need to be prolonged to a large
series of breath holds to cover the entire myocardium. To address
these challenges, free-breathing high-resolution 3D T2 mapping
techniques have been proposed in recent years (8–11), and have
for example been applied in patients with graft rejection (12) and
myocarditis (13).

Among these techniques, T2 mapping based on a self-
navigated 3D radial acquisition (14, 15) can make use of the
intrinsic robustness of 3D radial imaging against undersampling
and motion artifacts, but it faces a challenge in its low effective
signal-to-noise ratio (SNR), which leads to a loss in precision
of the T2 maps. This 3D radial T2 mapping has therefore
mostly been applied at a magnetic field strength of 3T (8,
12), and not at 1.5T, which may be more commonly used for
cardiac magnetic resonance (CMR). However, recently several
new techniques have been developed that can be used to increase
the precision of a 3D radial T2 mapping, including resolving
the motion instead of correcting it (16) in order to reduce
motion streaking artifacts, and using compressed sensing (17)
in order to reduce undersampling artifacts and to denoise the
source images.

In this study, we therefore aimed to enable 3D radial T2

mapping at 1.5T by improving the image reconstruction,
and to demonstrate the efficacy of this reconstruction
method in healthy volunteers as well as in a small cohort
of patients with suspected acute non-ischemic myocardial
injury. To this end, the T2 maps were generated by first
reconstructing respiratory motion-resolved source images,
which were then registered to one another to decrease
noise and motion artifacts, and thus to improve 3D T2

mapping precision and accuracy at 1.5T. These 3D T2 maps
were then compared to routine 2D maps acquired in the
same subjects.

MATERIALS AND METHODS

Study Participants
This study was approved by the Institutional Review Board
of the Medical University of Gdansk (#NKBBN/72/2019).
All participants provided written informed consent prior
to the procedure and none of them had contraindications
for MRI.

TABLE 1 | Subject characteristics.

Healthy volunteers Patients

(n = 9) (n = 25)

Age, mean (SD) [years] 43(7) 49(11)

Gender, F n(%) 5 (56%) 9 (36%)

Heart rate, mean (SD) [bpm] 68 (11) 67 (13)

BMI, mean (SD) [kg/m2 ] 24.7 (1.0) 27.2 (4.2)

Hypertension, n(%) 0 15(60)

Diabetes, n(%) 0 3(12)

Hyperlipidemia, n(%) 0 6(24)

CAD, n(%) 0 3(12)

LV end-diastolic volume index, mean (SD) [ml/m2 ] 71(10) 85(30)

LV end-systolic volume index, mean (SD) [ml/m2 ] 26(7) 39(23)

LV ejection fraction, mean (SD) [%] 65(5) 55(9)

LV mass index, mean (SD) [g/m2 ] 59(6) 72(18)

Referral diagnosis, n(%)

Sarcoidosis NA 19(76)

Systemic sclerosis NA 2(8)

Acute graft rejection NA 2(8)

Myocarditis NA 2(8)

BMI, body mass index; CAD, coronary artery disease; LV, left ventricular; SD,

standard deviation.
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To study the baseline relaxation times, healthy volunteers (n=
9, age = 43 ± 7 y, 5(56%) women, Table 1) without any history
or symptoms of cardiovascular disease were recruited.

Consecutive patients with suspected acute non-ischemic
myocardial injury (n = 25, 19 cardiac sarcoidosis, 2 acute graft
rejection, 2 systemic sclerosis, 2 myocarditis; 9 (36%) women, age
49± 10 y; Table 1) were recruited.

MR Acquisition
All MR scanning was performed on a 1.5T clinical scanner
(MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany).
All participants underwent routine bSSFP cine imaging to assess
cardiac function (18), routine breath-held 2D T2 mapping (19),
and the prototype free-breathing 3DT2 mapping. In addition, the
patients underwent routine late gadolinium enhancement (LGE)

FIGURE 1 | Motion-registered 3D T2 maps of the heart of a healthy volunteer. (A) Routine T2-prepared 2D bSSFP SAX T2 map. (B) Matching single slice from the

motion-registered 3D T2 map; T2 values closely match those of the routine map. (C,D) Perpendicular long-axis (LAX) maps from the same 3D datasets as in (B).

(E–G) Three orthogonal slices from a self-navigated reconstruction at approximately the same locations as (B–D). There is a slight orientation mismatch due to manual

rotation of the volumes. The color bar shows the T2 relaxation time in ms.
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imaging 7–15min after injection of 0.1 mmol/kg of gadobutrol
(Gadovist, Bayer AG, Leverkusen, Germany).

The routine T2 maps were acquired as ECG-triggered
Cartesian 2D T2-prepared bSSFP images (6) with repetition time
TR = 2.5ms, echo time TE = 1.1ms, flip angle = 70◦, pixel
bandwidth = 1,184 Hz/px, field of view = 360 × 288 mm2,
slice thickness = 8mm, acquired pixel size 2.49 × 1.88 mm2

interpolated to 1.88× 1.88 mm2, T2 prep duration= 0/25/55ms,
breath-hold duration nine heartbeats (data acquired every three
heartbeats), and GRAPPA acceleration factor 2. Images were
acquired in a short-axis (SAX) orientation at the basal and
mid-ventricular level. Since the reconstructed 2D maps were
immediately available on the scanner, visibly corrupted maps
were re-acquired as per routine protocol.

The free-breathing T2 maps were acquired as three ECG-
triggered 3D radial bSSFP volumes with a phyllotaxis trajectory
(14), TR= 2.6ms, TE= 1.3ms, flip angle= 35◦, pixel bandwidth
= 908 Hz/px, field of view = (220mm)3, isotropic voxel size
1.6 mm3, T2 prep duration = 0/30/60ms, and interleaves of
49 k-space lines acquired every other heartbeat preceded by a
superior-inferior line that could be used for self-navigation (15).
This resulted in a total acquisition time of 112 interleaves × 3
T2preps × 2 heartbeats/interleave = 672 heartbeats, or 11.2min
at 60 bpm.

Bloch equation simulations of the abovementioned proposed
pulse sequence were performed for a heart rate range from 40 to
90 bpm with an assumed myocardial T1 relaxation of 1,050ms
and a true T2 of 50ms to assess the influence of the heart rate on
the estimated T2 relaxation time.

T2 Map Reconstruction
The routine 2D T2 maps were reconstructed on the scanner
(Siemens IDEA, Erlangen, Germany): the source images were
non-rigidly registered (20) and a pixel-wise T2 fit was performed
with the standard two-parameter exponential decay without
offset, which resulted in maps in the DICOM format.

The respiratory motion-resolved reconstruction of 3D radial
volumes (Supplementary Figure 1) was performed in MATLAB
(the Mathworks, Natick, USA) on a workstation equipped with
two Intel Xeon CPUs, 512 GB of RAM, and an NVIDIA
Tesla K40 GPU. Here, a principal component analysis (PCA)
was performed on the superior-inferior profiles in order to
partition the dataset into four different respiratory states. 4D
(x-y-z-respiratory dimensions) images were then reconstructed
with a parallel imaging and compressed sensing algorithm that
exploits sparsity along the respiratory dimension (16, 21, 22),
resulting in separate images for all T2 preparation times and
respiratory states. The compressed sensing optimization problem
was solved with the conjugate gradient technique (17) using
the finite difference operator as a sparsifying transform over
the respiratory dimension with a weight λ. All respiratory bins
were translationally and then non-rigidly registered to the end-
expiration bin with Elastix (23), and were subsequently averaged
in order to increase the SNR of each T2-prepared volume. After
a second, similar, registration of the resulting three averaged
T2-prepared volumes, voxel-wise T2 mapping with an offset
factor to account for T1 recovery (24–26) was performed. Since

FIGURE 2 | Myocardial T2 relaxation times obtained with the 2D and 3D T2
mapping techniques in the left ventricle of healthy controls (Contr) and patients

(Pats). There was a small but significant difference between the two groups as

quantified with the 3D technique, but not with the 2D technique. Within the

patient group, the 3D technique also resulted in a small difference compared

to the 2D technique. *indicates p < 0.05, **indicates p < 0.01.

the motion is no longer resolved after these registrations, we
named the resulting 3D maps “motion-registered” T2 maps.
The total reconstruction time from raw data to T2 map
was recorded.

The regularization weight was optimized by comparing T2

map sharpness in maps reconstructed with λ = 0.01, λ = 0.05
(the commonly used value at this spatial resolution), andλ= 0.25
in a subgroup of n = 6 patients. T2 map sharpness was assessed
by fitting a line from the middle of the septal myocardium
to the left-ventricular blood pool with a parametrized sigmoid
function (T2 (x) = a/(1+e−k(b+x))+c), where a, b, and c are
scaling variables and k is the sharpness (in px−1 or mm−1;
higher is better) (27). The sharpness assessment was repeated
for a total of five adjacent lines and the average sharpness k
was reported. To ascertain that there is no significant difference
between the proposed map reconstruction and alternatively first
mapping the T2 relaxation time in each respiratory-resolved bin
and then averaging these four bins, the T2 map sharpness was
also quantified in this alternative reconstruction in these n =

6 patients.
In order to visually demonstrate that a self-navigated

reconstruction (15) results in non-diagnostic maps at 1.5T due
to too low SNR, a self-navigated reconstruction was performed
in a single healthy volunteer, since the resulting maps were
often too noisy for segmentation and quantitative analysis. This
reconstruction wasmade with the same 3D radial datamentioned
above. Here, the 1D displacement of the left-ventricular blood
pool along the superior-inferior readouts acquired at the start of
each interleave was used to correct each interleave for respiratory
motion in k-space prior to image reconstruction (15, 28). The
resulting three 3D images were translationally and then non-
rigidly registered with Elastix, and voxel-wise T2 mapping (8)
was performed.
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FIGURE 3 | Segmental analysis of the myocardial T2 values in the healthy volunteers. Basal and mid-ventricular segmental T2 values and CoVs are shown according

to the standard AHA segmentation. (A,B) The segmental T2 values obtained with the 2D and 3D techniques are highly similar. (C,D) The CoV is consistently lower for

the 2D technique than for the 3D technique. Significantly different CoV values between the respective segments are marked in red.

Map Analysis and Statistics
The visible myocardium in the routine 2D maps and their
matching single slices in the 3D volumes were segmented in
MATLAB. The T2 values of the entire visible myocardium
and the regional segments defined by the American Heart
Association (AHA) (29) were then measured in all volunteers
and patients by two independent observers (JF and AS, with
7 and 10 years of experience with cardiac MRI, respectively).
For the whole myocardium and 12 out of 16 AHA segments
of each subject (2D apical segments were not included as they
are generally considered prone to partial volume effects that

may compromise the measurement accuracy) the T2 values,
coefficients of variation (CoV, the standard deviation divided by
the average), and the inter-subject standard deviation obtained
with the two techniques were calculated. Since segmental values
can strongly vary both due to difference in local disease
patterns and precision of the technique, segmental T2 values
were only directly compared in the healthy volunteers. In the
patients, the segments that were LGE-positive were grouped
for comparison with the LGE-negative segments. These values
were then compared between the 2D and 3D techniques
with paired Student’s t-tests with a Bonferroni correction
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FIGURE 4 | Motion-registered 3D T2 maps of the heart of three patients. (A–C) Routine T2-prepared 2D bSSFP short-axis (SAX) T2 maps. (D–F) Matching single

slices from the motion-registered 3D T2 maps; T2 values closely match those of the routine maps. (G–L) Perpendicular long-axis (LAX) maps from the same 3D

datasets as in (D–F). Patient 1 (female, 37 y.o.) and patient 2 (male, 44 y.o.) had myocarditis, while patient 3 (male, 65 y.o.) had sarcoidosis. Local minor T2 fluctuation

can be observed in all three orientations of the 3D T2 maps and all three patients, and might be caused by small misregistrations, as well as by local T2 variations that

show up in the 1.6 mm-thick 3D slice, but are averaged out in the 8 mm-thick 2D slice. However, global T2 values did not significantly differ in any of the patients. The

color bar shows the T2 relaxation time in ms.

when appropriate, with P < 0.05 considered statistically
significant when two quantities were compared. When multiple
quantities were compared to one another a one-way ANOVA
with a post-hoc Tukey correction for multiple comparisons
was used.

The total number of segments that was not considered of
diagnostic quality (i.e., not clearly defined or too thin for
segmentation) by an experienced reader (KD) was counted for
the 3D technique; this analysis could not be performed for the
2D technique, since visually corrupted maps were re-acquired,
resulting in analyzable 2D T2 maps in all study subjects. The
visual quality of the maps was assessed by two experienced CMR
specialists (KD, AG) on a continuous scale from 1 to 10 with a
visual analogue (30).

Bland-Altman analyses were performed to assess the
T2 differences between the 2D and 3D techniques in
the patients, as well as to assess the inter- and intra-
observer agreement for the 3D technique. Trends in these

Bland-Altman plots were tested for significance with Spearman’s
rank correlation.

RESULTS

The respiratory motion-resolved reconstruction resulted in
visibly well-separated motion states in the source images
(Supplementary Animated Figure 1), while motion-registered
isotropic 3D T2 maps of the heart were successfully obtained in
all subjects (Figure 1). Several features in these 3D maps were
visually more blurred than their equivalents in the 2D maps. The
self-navigated reconstruction of the source images did not lead to
diagnostic maps (Figures 1E–G). The total reconstruction time
from raw data to T2 map was 1 h 19± 2min.

The sharpness measurements in the patient subgroup
resulted in k = 1.56±0.22 mm−1 for the proposed
technique, i.e., respiratory-registered T2 maps with λ =
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FIGURE 5 | Bland-Altman analyses of the 2D vs. the 3D T2 mapping technique in the patients. The bias is indicated with a solid line, while the upper and lower limits

of the 95% confidence interval are indicated with a dotted line. (A) The comparison of the 2D and 3D techniques shows a small bias, but no significant trend (P = 0.11

for a linear correlation). (B) The interobserver comparison for the routine 2D technique indicates a very small bias and small confidence interval. (C) The interobserver

comparison of the 3D technique has a similarly small bias and a slightly larger confidence interval than the 2D technique. Neither interobserver plot shows a significant

trend (P > 0.21). The intra-observer analysis performed in a subset of patients (n = 15) showed no bias or trend for the 2D (D) and 3D (E) techniques, although the

confidence interval for the 3D technique was twice as large as that of the 2D technique.

0.05 (Supplementary Figure 2). The motion-registered mapping
with λ = 0.01 and λ = 0.25 resulted in k = 1.67 ± 0.34 mm−1

(P = 0.32) and k = 1.49 ± 0.29 mm−1 (P = 0.34), respectively.

Mapping each respiratory-resolved bin first and then averaging
these maps as an alternative reconstruction resulted in k = 1.63
± 0.29 mm−1 (P = 0.40) for the motion-registered T2 mapping.
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Conversely, the entire patient group resulted in k = 1.71 ± 0.29
mm−1 and k = 1.89 ± 0.40 mm−1 (P = 0.038) for the 3D and
2D techniques respectively, demonstrating the higher sharpness
in the 2D technique despite the larger pixel size. This also held
true in the healthy volunteers at k = 1.71 ± 0.31 vs. k = 1.98 ±

0.38 mm−1 (P = 0.037).
In the healthy volunteers, the myocardial T2 values obtained

with the 2D and 3D techniques were highly similar at 45.8 ±

1.8 and 46.8 ± 2.9ms (P = 0.33, Figure 2), respectively, while
the CoV was lower in the 2D technique at 4.5 ± 0.8 vs. 8.2 ±

1.5% for the 3D technique (P ≤ 0.001). The segmental T2 values
did not significantly differ between the two techniques (P ≥ 0.09
for all, Figures 3A,B), while the CoV differed in 4 out of 12
segments (Figures 3C,D). Out of 108 analyzed segments in the
3D T2 maps in healthy volunteers, 6 (5.6%, of which 4 [3.7%]
in one subject) were deemed non-diagnostic due to inaccurately
registered thin myocardium.

In the patients, the average myocardial T2 relaxation times did
differ between the 2D (46.7 ± 3.6ms) and 3D techniques (50.1
± 4.2ms, P = 0.004, Figures 2, 4). The CoV was again lower
in the 2D technique than in the 3D technique at 6.8 ± 1.5 vs.
10.4 ± 1.8% (P < 0.001). When the myocardium was segmented
according to the AHA guidelines, the two techniques resulted
in significantly different T2 values in the basal-anterior, basal-
inferior, mid-inferoseptal and mid-inferior segments (segment
numbers 1, 4, 9, and 10; P ≤ 0.001). Conversely, the segmental
CoV in the patients was significantly lower for the 2D technique
in all segments (P ≤ 0.001) except in the mid-anteroseptal
segment. Out of the 300 myocardial segments analyzed in the
patients, 14 (4.6%, of which 8 (2.6%) in one patient) were deemed
non-diagnostic. A Bland-Altman analysis of the 2D vs. the 3D
technique demonstrated that there was a small bias of −3.0ms
(Figure 5A). Although a slight trend can be observed for the
difference to become more negative as the average increases, this
trend was not significant (ρ = −0.33, P = 0.11). The patient T2

values as measured with the 2D technique were not significantly
different from those in healthy volunteers (P = 0.50), while the
difference was significant when measured with the 3D technique
(P = 0.04).

Inter-observer analyses of the 2D and 3D techniques showed
very small biases between the observers, no visible or significant
trends (ρ ≤ 0.27, P ≥ 0.20), and similar confidence intervals
(Figures 5B,C). The intra-observer analyses of a subset of
patients (n = 15) showed a higher confidence interval for the
3D technique (Figures 5D,E) and no significant trend for either
technique (ρ < 0.35, P > 0.2). The visual quality score was higher
for the 2D maps than for the 3D maps at 9.6 ± 0.4 vs. 7.2 ± 2.1
(P < 0.001, Supplementary Figure 3).

The LGE-positive segments did not have a significantly higher
T2 relaxation when compared to their LGE-negative counterparts
as quantified with the 2D technique (T2LGE− = 46.2 ± 3.7 vs.
T2LGE+ = 47.6 ± 4.1ms, P = 0.49, Figures 6, 7). Conversely,
the 3D technique did result in a significant difference (T2LGE−

= 49.3 ± 6.7 vs. T2LGE+ = 52.6 ± 8.7ms, P = 0.006) despite its
larger spread in individual T2 values. Both 2D segment groupings
were also significantly different from their 3D equivalents (P
< 0.001). The Bloch equation simulations indicated that the

FIGURE 6 | T2 relaxation times in myocardial segments with and without late

gadolinium enhancement (LGE). The myocardium of the patients in the LGE

images and T2 maps was segmented according to the AHA guidelines, and all

segments of all patients that were LGE-positive (LGE+) were grouped, as were

all LGE-negative (LGE–) segments. While there was no difference between the

LGE– and LGE+ segments as quantified with the routine 2D technique, a

small but significant difference was detected with the proposed 3D T2
mapping technique. **indicates p < 0.01, ***indicates p < 0.001.

proposed 3D mapping technique will moderately underestimate
(<5%) the T2 relaxation times for high heart rates (80–90 bpm,
Supplementary Figure 4).

DISCUSSION

In this study, we proposed a novel method to obtain high-
resolution respiratory motion-corrected 3D T2 maps of the
heart at 1.5T by extracting, resolving, and then registering the
respiratory motion states, and tested this technique in patients
and healthy volunteers. The respiratory motion was detected and
visually resolved well in all subjects, and the resulting isotropic
3D T2 values matched their routine 2D counterparts while also
enabling the visualization of other views of the heart.

The T2 CoV (i.e., the inverse of precision) agreed well with
that obtained in previous 3D T2 mapping studies (8, 12), but
was higher than commonly reported for 2D T2 mapping (31,
32). The main two causes of this are most likely the (1.9 ×

1.9 × 8)/1.63 = 7 times smaller voxel size and the radial
acquisition itself, although this is partially compensated by
the denoising effect of the compressed-sensing reconstruction
and the 3D nature of the acquisition. The higher CoV values
that are seen in some segments might result from these
particular segments being more prone to small misregistrations
due to the neighboring epicardial fat or small myocardial
thickness. If a higher precision is desired, it can most likely be
achieved by increasing the voxel size, the acquisition time, or
the regularization parameters of the reconstruction. Similarly,
the observed residual blurring in the short-axis plane could
for example be caused by incorrect motion extraction or
misregistration. The slightly (but not significantly) different T2

averages in the healthy volunteers with the 2D and 3D techniques
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FIGURE 7 | A comparison of the 2D and 3D T2 mapping techniques in slices with lesions detected with LGE imaging. (A) LGE shows intramyocardial areas of

irreversible damage in several basal regions of the LV in a 56 y.o. male patient with suspected cardiac sarcoidosis. (B) No T2 elevation is visually apparent on the 2D T2
map. As an example, the measured segmental ROI average T2 in the basal inferolateral segment was 46ms. (C) Conversely, local increases of the T2 relaxation time

can be spotted on the 3D T2 map in areas corresponding to the LGE regions (white arrows). The measured segmental ROI average T2 in the respective inferolateral

segment was 56ms, suggestive of an area of acute injury or ongoing inflammation. (D) An intramyocardial area of irreversible damage as shown by LGE (left, white

arrow) in the basal inferoseptal segment of the LV in a 66 y.o. male patient with suspected cardiac sarcoidosis. The pink arrowhead indicates an ischemic scar in the

anterior wall. (E) Again, no T2 elevation was visually apparent on the 2D T2 map in the respective segment with the segmental ROI average T2 = 47ms. (F) Local

(white arrow) increase of the T2 relaxation time (segmental ROI average T2 = 55ms) can be spotted in this region on the 3D T2 map, suggestive of an area of acute

injury. White arrowhead points to another area of elevated T2 that does not correspond to any LGE in (D). The institutional reference range for 2D T2 mapping is 44

(2.4) ms, i.e., 39–49ms. LGE, late gadolinium enhancement; LV, left ventricle; ROI, region of interest.

most likely also have several origins, such as a different
interplay with the T1 relaxation time during the acquisition
(24), and a residual noise floor that promotes increased T2

relaxation time measurements (25). The observed map sharpness
agrees well with previous map sharpness quantifications (33),
while the minor (and non-significant) differences between the
reconstructions with different regularization weights suggest a
relatively broad optimum for the regularization parameter. The
alternative reconstruction where T2 maps were obtained for the
four respiratory motion bins, followed by averaging of these bins,
also led to similar map sharpness, though at the cost of 4-fold
longer map fitting time.

It is well-known that T2 reference values in healthy subjects
may vary and that they are therefore not easily comparable
between studies (34–36). In addition to magnetic field strength,
pulse sequence type, and specific parameters (32), other factors
play a role, including gender and cardiac physiology (34).
Therefore, the assessment of institution-specific reference ranges
with established scanner- and sequence-specific T2 values in
healthy volunteers are strongly recommended (2). With scanner-

and sequence-specific reference values as a prerequisite, it was
demonstrated that T2 values in studies of specific inflammatory
conditions such as myocarditis (3), systemic sclerosis (37), and
sarcoidosis (35) can unequivocally be used to identify myocardial
injury. Therefore, the significant difference in T2 relaxation time
that was found in patients using the 3D but not the 2D T2

mapping merits special attention, as this might suggest better
sensitivity to detect tissue alterations with the proposed high-
resolution motion-registered radial 3D T2 mapping technique
at 1.5T. However, confounders such as the observed blurring,
SNR, irregular breathing patterns of the patients, and the heart-
rate dependence of the pulse sequence should also be taken
into consideration. Of note, the patient population in our
study was a fairly “healthy” patient population that included
consecutive patients with suspected myocardial inflammation,
where no large elevation of T2 was observed by conventional
protocol. Therefore, the significantly higher T2 values in 3D
maps in patients that were not seen in conventional 2D maps
and were higher than 3D T2 values in controls suggest potential
for the detection of more subtle changes or earlier stages of
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disease. Further study will be required in a broader spectrum
of disease severity to shed more light on these findings. The
proposed 3D technique indicated a small but significant T2

difference between the LGE+ and LGE– myocardial segments,
while the routine 2D technique did not. This may again have
a technical origin such as the smaller voxels in the 3D maps
having less partial volume effect (especially through the much
thinner slices) with healthy tissue that blunts the signal change
and therefore reduces the sensitivity. Even though LGE presence
by itself does not directly indicate edema or inflammation, it
potentially colocalizes with patches of active disease in patients
with an ongoing disease process. Thus, the slightly increased
T2 value in LGE+ segments suggests that smaller and isotropic
voxels may be more appropriate in patients with potentially
focal non-ischemic injury. Nevertheless, a higher sensitivity of
3D T2 mapping would need to be confirmed with a clinical
standard method such as positron emission tomography (38).
While we did not evaluate short-axis apical segments in this
study, it may be of interest to include these in future studies to
take advantage of a reduced partial volume effect consistent with
smaller voxel sizes.

The acquisition itself could be improved in several ways in
future studies. By using a different radial k-space trajectory for
each T2-prepared volume (39), the sparsity in the relaxation
time dimension could also be exploited for a compressed sensing
reconstruction (11), which should result in a higher precision.
Calculating the T2 in each pixel based on an individually patient-
specific simulated dictionary (40, 41) could also be used to
remove the constraint of acquiring every other heartbeat, which
would significantly accelerate the acquisition, and would remove
the heart-rate dependence of the T2 relaxation time.

The higher variation in quality of the 3D maps as compared
to the 2D maps is not surprising, as the 2D T2 maps were
immediately re-acquired during the scanning sessions if they
were visually of unsatisfactory quality, which was not feasible
for 3D T2 maps because of time constraints. Of note, most of
the segments that were termed non-diagnostic belonged to a
single patient and a single volunteer, which suggests that there
might have been a subject-specific challenge involved, such as
particularly thin myocardium or a sub-optimal ECG triggering.
Therefore, considering the inherent complexity of the isotropic
3D sequence and multiple reconstruction steps required in the
proposed technique, the observed quality score scatter is an
expected trade-off, especially with the improvement potential
outlined above. Studies with a combination of pseudo-spiral
Cartesian trajectory (instead of the 3D radial used here), a 2D
respiratory motion correction (instead of the 1D correction),
and the addition of patch-based denoising (which improves the
apparent SNR) did result in consistent T2 precision (11, 13). The
patch-based denoising (42) in particular could improve the 3D
T2 mapping presented here, since it might improve the apparent
SNR of the source images, resulting in better image registration
as well as improved map precision.

In conclusion, respiratory motion-registered 3D radial
imaging at 1.5T led to accurate isotropic 3D whole-heart T2

maps, both in the healthy volunteers and in a small patient cohort
with suspected inflammatory myocardial injury. With the 3D
technique, significantly higher T2 values were found in patients
as compared to controls, as well as in LGE-positive as compared
to LGE-negative segments, both of which were not observed
with the routine 2D technique. These findings are suggestive of
the technique’s potential to increase the sensitivity of CMR for
localized inflammatory myocardial injury. Further study will be
needed in a broader spectrum of disease severity to demonstrate
its clinical utility.
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Supplementary Figure 1 | A flowchart of the proposed 3D T2 mapping method.

Data are indicated in colored boxes, while manipulations are mentioned as

unboxed text.

Supplementary Figure 2 | Sharpness measurement and various reconstructions

of a 3D T2 map. (A) A T2 map in grayscale with a display range from 0 to 300ms

to better visualize the blood pool, with red crosses indicating the start- and

end-points of the assessed transition. Four horizontal pixel lines below it were also

assessed. (B) Normalized T2 values in the pixel (blue circles) and the parametrized

sigmoid fit (red curve). The sharpness of the transition was characterized by k =

2.6 px−1, which at the 1.6mm spatial resolution translated to k = 1.6 mm−1. This

value was averaged with those obtained from the lines below it. (C) The proposed

3D T2 mapping method in another patient. (D) An alternative reconstruction

method in which the individual respiratory bins are all mapped first, and these bin

maps are then averaged. While the papillary muscle appears to resolve better, the

sharpness of the blood-myocardium interface remains constant. (E,F) The

proposed reconstruction method, but with λ = 0.01 and 0.25. The

blood-myocardium interfaces appear marginally sharper and more blurred,

respectively, but this is balanced by respectively increased and decreased T2
variation in the myocardium.

Supplementary Figure 3 | A paired comparison of the visual quality scores as

agreed by two experienced readers. The 3D T2 maps have a much higher

variation in quality than the 2D T2 maps (7.2 ± 2.1 vs. 9.6 ± 0.4, P < 0.001),

although it should be noted that the 2D T2 maps were immediately re-acquired

during the scanning sessions if they were visually of unsatisfactory quality.

Supplementary Figure 4 | A Bloch equation simulation of the influence of the

patient’s heart rate on the estimated T2 value. Since sampling occurs every other

heartbeat, T1 relaxation will cause a gradual underestimation of the T2 value with

the increase of the heart rate.

Supplementary Animated Figure 1 | An animation of the respiratory-resolved

reconstruction of a source image with T2prep duration of 30ms in a patient. The

breathing motion is well-resolved, and results in a non-rigid translation of the heart.
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MD, United States, 4 Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States

Aims: Inflammation plays a critical role in the pathogenesis of coronary artery disease

(CAD), however the impact of anti-inflammatory therapies to reduce those processes

which promote atherosclerosis in CAD patients is unknown. We aimed to test the

hypothesis that anti-inflammatory approaches improve impaired coronary endothelial

function (CEF), a driver of coronary atherosclerosis, in stable CAD patients.

Methods and Results: We performed a single-center, randomized, placebo-controlled,

double-blinded trial to assess whether low dose methotrexate (MTX), low dose colchicine

(LDC), and/or their combination (MTX+LDC), improves CEF using non-invasive MRI

measures in patients with stable CAD (N = 94). The primary endpoint was the

MRI-detected change in coronary cross-sectional area from rest to isometric handgrip

exercise (IHE), a predominantly nitric oxide-dependent endothelial dependent stressor.

Coronary and systemic endothelial endpoints, and serum inflammatory markers, were

collected at baseline, 8 and 24weeks. Anti-inflammatory study drugs were well-tolerated.

There were no significant differences in any of the CEF parameters among the four groups

(MTX, LDC, MTX+LDC, placebo) at 8 or 24 weeks. Serum markers of inflammation

and systemic endothelial function measures were also not significantly different among

the groups.

Conclusion: This is the first study to examine the effects of the anti-inflammatory

approaches using MTX, LDC, and/or the combination in stable CAD patients on

CEF, a marker of vascular health and the primary endpoint of the study. Although

these anti-inflammatory approaches were relatively well-tolerated, they did not improve

coronary endothelial function in patients with stable CAD.

Clinical Trial Registration: www.clinicaltrials.gov, identifier: NCT02366091.

Keywords: inflammation, coronary artery disease, coronary endothelial function, magnetic resonance imaging,

flow mediated dilatation
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INTRODUCTION

Despite advances in contemporary preventive and treatment
strategies, coronary atherosclerosis remains prevalent and its
manifestations have a high personal and societal toll. Because
coronary atherosclerosis is an inflammatory disease (1), there
is renewed interest in inflammation as a treatment target (2–4).
Endothelial cell injury occurs at the earliest stages of coronary
atherosclerosis and inflammatory cells, cytokines, and mediators
are involved in all stages of CAD (1, 5). Although coronary
atherosclerosis is recognized as an inflammatory process, this
important concept is still not applied in the management of
patients with, or at risk for, the disease. One important reason
is the lack of an established and easily obtained measure of
the effect of inflammation on the processes which result in
coronary atherosclerosis. Inflammation undoubtedly enhances
the development and progression of coronary atherosclerosis via
several mechanisms, but endothelial dysfunction is believed to
be one common result of these mechanisms (6) and is thus a
potential target for medical interventions (6, 7).

One of the principal manifestations of impaired coronary
endothelial function is decreased elaboration of nitric oxide
(NO) in response to interventions which stimulate endothelial-
dependent NO release. NO-mediated changes in coronary cross
sectional area and blood flow were historically measured by
conventional coronary catheterization-based techniques which
are not well-suited to clinical trials in stable patients. Fortunately,
non-invasive CEFmeasures were developed that use 3Tmagnetic
resonance imaging (MRI) to assess endothelial-dependent
coronary vasomotor function and these MRI-CEF measures
were shown to be reproducible, primarily NO-mediated, and
to improve within weeks following LDL lowering with PCSK9
inhibition (8, 9).

Although statins have anti-inflammatory properties (10),
cardiovascular event rates remain high in statin treated
CAD patients (11), and statins alone do not fully suppress
inflammation in many patients (4). Several very recent trials
of anti-inflammatory strategies (canakinumab, methotrexate,
colchicine) in CAD or myocardial infarction patients reported
varied results from reduced events to no benefit (3, 4, 12). It is not
clear whether the discrepancies are due to differences in the anti-
inflammatory agents or to the populations studied. To date there
are no head-to-head comparisons of anti-inflammatory agents
in patients with CV disease in a single trial. Likewise, there are
no studies of the direct effects of anti-inflammatory strategies
on the endothelial processes that contribute directly to coronary
atherosclerosis or its progression.

In this study, we performed a randomized double-blinded,
placebo-controlled trial to test the hypothesis that anti-
inflammatory approaches, namely low dose methotrexate
(MTX), low dose colchicine (LDC), and/or their combination,

Abbreviations: CAD, coronary artery disease; CEF, coronary endothelial function;

CSA, cross-sectional area; CBV, coronary blood velocity; CBF, coronary blood

flow; FMD, flow mediated dilatation; LDC, low dose colchicine; MRI, magnetic

resonance imaging; MTX, methotrexate; NO, nitric oxide; PCSK9, proprotein

convertase subtilisin/kexin type 9.

improve impaired local CEF compared to placebo in patients
with stable CAD and either elevated markers of inflammation
or diabetes/metabolic syndrome, both inflammatory states. We
chose these agents because methotrexate and colchicine have
been used in clinical practice for decades to treat inflammatory
diseases, they are less expensive that canakinumab and, in
observational studies are associated with reduced cardiovascular
risk (13). The combination of MTX and LDC (MTX+LDC) is
used to treat primary biliary sclerosis and its incorporation in
one of the study arms is an additional novel aspect of this trial.
In addition, to test whether anti-inflammatory strategies have a
rapid, direct vascular effect akin to that previously demonstrated
by statins (14), we assessed coronary artery endothelial function
by MRI and systemic endothelial function by flow mediated
dilation (FMD) in the brachial artery after 8 weeks and again after
24 weeks.

METHODS

This was a single-center, randomized, double-blinded, placebo-
controlled trial with a 2 × 2 factorial design conducted at the
Johns Hopkins Hospital and funded by the National Institutes
of Health. The purpose was to test the hypothesis that anti-
inflammatory strategies improve coronary and systemic arterial
endothelial function. Stable CAD patients were recruited from
the outpatient clinics at Johns Hopkins Medicine who were on
conventional medical therapy (Table 1) and who had either (a)
hsCRP>2mg/L or (b) either themetabolic syndrome or diabetes.
Potential participants underwent screening MRI to measure CEF
and those with at least one coronary segment qualifying as
“abnormal CEF” [defined as no change or a decrease in coronary
cross-sectional area (CSA) during isometric handgrip exercise,
i.e., a change of ≤0% of the resting value (8, 15, 16)] underwent
additional screening procedures (Figure 1).

After completing all screening procedures, qualifying subjects
were randomly assigned to one of the following groups by the
Johns Hopkins Investigational Pharmacy:

1) MTX: methotrexate (15mg weekly) + placebo for colchicine
(daily)+ folate (1mg daily);

2) LDC: colchicine (0.6mg daily) + placebo for methotrexate
(weekly)+ folate (1mg daily);

3) MTX+LDC: methotrexate (15mg weekly) + colchicine
(0.6mg daily)+ folate (1mg daily); or

4) Placebo: placebo for methotrexate (weekly) + placebo for
colchicine (daily)+ folate (1mg daily).

Folate was administered to reduce potential side effects of
MTX and was given to all groups to avoid confounding. The
investigators and participants were blinded to the study drug
assignment. The study protocol was approved by the Institutional
Review Board at The Johns Hopkins Hospital and University
School of Medicine and complies with the Declaration of
Helsinki. All participants provided written informed consent.
Enrollment began April 2015 and the trial ended December 2018.
Additional details appear in the Supplementary Material and the
trial was registered at www.clinicaltrials.gov (NCT02366091).
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TABLE 1 | Demographic characteristics of trial population.

Baseline characteristics of trial participants Both MTX and

colchicine

(n = 24)

Colchicine and

placebo for MTX

(n = 23)

MTX and placebo for

colchicine

(n = 24)

Placebo for both

MTX and colchicine

(n = 23)

Median age (IQR)—year 63.4 (56.9–70.7) 66.8 (56.2–67.9) 61.6 (56.7–68.7) 63.9 (55.9–69.5)

Male sex—no. (%) 21 (87.5) 21 (91.3) 18 (75.0) 21 (91.3)

Caucasian—no. (%) 21 (87.5) 19 (82.6) 20 (83.3) 20 (87.0)

Black—no. (%) 2 (8.3) 3 (13.0) 2 (8.3) 2 (8.7)

Asian—no. (%) 0 1 (4.3) 1 (4.2) 1 (4.3)

Native American—no. (%) 0 0 0 1 (4.3)

Other race—no. (%) 1 (4.2) 0 1 (4.2) 0

Not Hispanic ethnic group—no. /group number (%) 23 (95.8) 22 (91.7) 23 (95.8) 22 (91.7)

Current smoker—no. (%) 4 (16.7) 2 (8.7) 2 (8.3) 2 (8.7)

Ex-Smoker—no. (%) 16 (66.7) 12 (52.2) 10 (41.7) 12 (52.2)

Never smoked—no. (%) 4 (16.7) 9 (39.1) 12 (50.0) 9 (39.1)

Currently consumes alcohol—no. (%) 20 (83.3) 16 (69.6) 18 (75.0) 20 (87.0)

Ex- Drinker of alcohol—no. (%) 2 (8.3) 5 (21.7) 4 (16.7) 3 (13.0)

Never consumes alcohol—no. (%) 2 (8.3) 2 (8.7) 2 (8.3) 0

Median body-mass index (IQR) 29.6 (28.0–34.0) 29.2 (26.4–32.6) 30.0 (27.1–32.5) 29.5 (27.7–32.9)

Hypertension—no. (%) 20 (83.3) 21 (91.3) 20 (83.3) 19 (82.6)

Myocardial infarction—no. (%) 10 (41.7) 12 (52.2) 12 (50.0) 14 (60.9)

History of percutaneous coronary intervention—no. (%) 20 (83.3) 15 (65.2) 17 (70.8) 19 (82.6)

History of coronary-artery bypass grafting—no. (%) 0 3 (13.0) 3 (12.5) 5 (21.7)

History of hyperlipidemia—no. (%) 22 (91.7) 23 (100.0) 21 (87.5) 23 (100.0)

History of congestive heart failure—no. (%) 1 (4.2) 0 0 1 (4.3)

Diabetes—no. (%) 8 (33.3) 11 (47.8) 12 (50.0) 8 (34.8)

Metabolic syndrome—no. (%) 23 (95.8) 22 (95.7) 22 (91.7) 22 (95.7)

Diabetes and metabolic syndrome—no. (%) 8 (33.3) 10 (43.5) 10 (41.7) 8 (34.8)

Use of ACE inhibitor or ARB—no. (%) 21 (87.5) 18 (78.3) 17 (70.8) 15 (65.2)

Use of statin—no. (%) 24 (100.0) 23 (100.0) 24 (100.0) 23 (100.0)

Use of beta-blocker—no. (%) 11 (45.8) 17 (73.9) 17 (70.8) 15 (65.2)

Use of antiplatelet or antithrombotic agent—no. (%) 14 (58.3) 9 (39.1) 13 (54.2) 9 (39.1)

Median high-sensitivity C-reactive protein level (IQR) 1.70 (0.80–3.03) 1.00 (0.80–2.20) 1.05 (0.60–2.48) 0.70 (0.40–1.15)

One participant in the placebo arm self-identified with more than one race.

Study Procedures
Initial evaluation at baseline consisted of history, physical exam,
and blood draw. Patients underwent MRI for CEF measures
and brachial ultrasound for FMD at baseline, prior to study
drug administration and after 8 and 24 weeks of study-
drug administration. Study drug compliance was assessed by
questionnaire and pill count at the 8, 16, and 24 week follow-
up visits.

MRI Methods for Coronary Endothelial
Function (CEF)
Patients underwent MRI studies of CEF in the fasting state
at baseline, 8- and 24-weeks using MRI methodology at rest
and during continuous IHE as previously described (8, 15, 16).
Detailed MRI parameters were previously published (15, 16),
and further details are available in the Supplementary Material.
Images were analyzed blinded to study-drug assignment and
clinical information for CEF, as measured by change in cross-
sectional area (CSA), coronary flow velocity (CFV), and coronary

blood flow (CBF), as previously validated and described (15, 17).
Our prior studies using this methodology demonstrated low
intra- or inter-observer variability with good reproducility over
8 weeks (8).

Systemic Endothelial Function and
Inflammatory Biomarkers
Brachial flow mediated dilatation (FMD) and velocity
were measured in the fasting state using standard
techniques and analyzed in blinded fashion. Inflammatory
biomarkers were measured at the University of Vermont
(Supplementary Table 1).

Sample Size
To test whether any of the anti-inflammatory strategies (i.e.,
LDC, MTX, and/or their combination) improves CEF in stable
CAD patients with increased inflammation and abnormal CEF
as compared to that of patients receiving placebo, this 2 × 2
factorial trial was designed with the primary endpoint of change
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FIGURE 1 | Trial flow chart.

in coronary cross-sectional area (CSA) from rest to that during
IHE at 8 weeks. We chose this parameter because it reflects
NO-dependent CEF and was shown to be reproducible over 8
weeks (8). CSA increases during IHE in healthy subjects and
is unchanged or declines in patients with CAD (15, 18) and
so the sample size was powered on the assumption that an
anti-inflammatory medication would improve the CSA change
to values midway between those of CAD patients and healthy
subjects, in line with methotrexate-induced changes in FMD
in patients (19) and the improvement in coronary endothelial
function observed with statins (20). With a sample of 88 (22 in
each cell), the power was 0.83 (alpha = 0.05, two-sided test) to
detect a difference between the response in the placebo group
and the response in each of the anti-inflammatory groups (8, 16).
In November 2018, the CIRT trial was published showing no
cardiovascular benefit of MTX (3). With guidance from the
DSMB, this trial was stopped at a time when∼90% of the planned
population had been enrolled (remaining power 0.8). Details of
sample size calculations appear in the Supplementary Material.

Statistical Approach
Demographic and baseline characteristics (e.g., age, race, sex,
height, weight, etc.) were summarized using descriptive statistics

for all participants. The primary analysis used an intent-to-
treat approach. The primary efficacy endpoint was the % change
in CSA from rest to IHE at the end of 8 weeks of the anti-
inflammatory or placebo administration periods. The secondary
efficacy endpoints included stress-induced change in CBF after 8
weeks of treatment, and change in CSA and CBF with IHE after
24 weeks of treatment. Further statistical details and methods are
in the Supplementary Material.

RESULTS

There were no significant differences in baseline clinical and
demographic characteristics among subjects randomized to the
four study groups (Table 1). The median age was 63 years
and 14% were women. Fifty-nine percent of the participants
had metabolic syndrome with a median BMI of 29.5 kg/m2.
Participants were clinically stable with a prior history of PCI
in 75% and of prior myocardial infarction in 51%. Most
patients were receiving guideline-recommended medical therapy
for heart disease and all were on statin therapy. The median
baseline hsCRP level for the entire cohort was 1.00 mg/L and
the median low-density lipoprotein cholesterol level (LDL) was
74 mg/dL with no significant differences among the groups.
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FIGURE 2 | Representative coronary artery MRI images for CEF. (A) A scout MRI obtained parallel to the right coronary artery (RCA) is shown with the location for

subsequent cross-sectional imaging (yellow outline). (B) Image acquired along the yellow-outlined region in (A) with RCA in cross-section (white arrow). The dotted

rectangle in (B) is magnified in subsequent panels and shows the region analyzed for cross-sectional area at rest (C) and during exercise (D). Flow velocity images of

the same segment at rest (E) and during IHE (F) using a phase contrast technique wherein signal darkness increases only slightly during IHE, indicating an impaired

velocity response. (G,H) Relative changes (%) in coronary artery cross sectional area (CSA), and coronary blood-flow (CBF) detected by MRI during isometric handgrip

exercise at 8 weeks (G) and 24 weeks (H) for those on methotrexate (MTX, black), colchicine (gray), MTX and colchicine (red), and placebo (blue). Error bars indicate

standard error of the mean. There were no significant differences in coronary endothelial function parameters between the placebo and anti-inflammatory treatments

at the 8 week (primary) end point. % CSA change was lower in colchicine than placebo (*p = 0.02) at 24 weeks. Ao, aorta; LV, left ventricle; RV, right ventricle.

FIGURE 3 | Bar graphs showing the effects of low-dose methotrexate (MTX, dotted bar), colchicine (LDC, striped bar), the combination of MTX and LDC (gray bar),

and placebo (white bar) on (A). interleukin-6, (B) low-density lipoprotein [LDL] cholesterol, (C) hsCRP, (D) interleukin-1β, hepatic enzyme levels (E) alanine

aminotransferase [ALT] and (F) aspartate aminotransferase [AST], and hematologic measures (G) hematocrit level, (H) white-cell count. Data shown are the changes

from study enrollment to 8 weeks after randomization. The horizontal line in each box represents the median, the top and bottom of the boxes represent the

interquartile range, and the whiskers represent 1.5 times the interquartile range. *Statistically significant difference (P ≤ 0.05) compared to placebo.
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Nine subjects qualified by hsCRP >2 mg/L criteria alone, 67
by diabetes/metabolic syndrome criteria, and 18 participants by
both hsCRP and diabetes/metabolic syndrome. The disposition
of subjects during the trial is shown in Figure 1.

Primary and Secondary End Points,
Coronary Endothelial Function
Representative images are shown in Figure 2. At baseline, the
mean percent change in coronary cross sectional area (CSA)
change with IHE for qualifying coronary segments was −11.8%
± 1.1% and for all coronary segments was +0.06% ± 1.1%. The
percent change at baseline in the endpoint coronary blood flow
(CBF) with IHE for qualifying coronary segments was +1.6% ±

3.9% and +14.3% ± 2.9% for all coronary segments, consistent
with previously published studies in patients with CAD with
endothelial dysfunction (15, 16).

The primary endpoint for the study, the change in CSA
with IHE following 8 weeks of the anti-inflammatory treatments
(MTX, LDC, or MTX + LDC) vs. placebo, did not differ among
the study groups (Figure 2). Following 8 weeks of MTX, the
mean IHE-induced percentage change in CSA for all segments
was −1.7% ± 2.9%, following LDC: +2.7% ± 3.7%, following
MTX+LDC: −0.4% ± 2.2%, and following 8 weeks of placebo
was +2.0% ± 2.1% (p = NS, Figure 2G). Similarly, there were
no significant differences in % CBF change with IHE at 8 weeks
between groups (Figure 2G). Similarly, there were no differences
among the groups in CEF at 8 weeks if only qualifying coronary
segments were included in the analysis. In terms of other
secondary endpoints such as CEF at 24 weeks, the % CSA change
in the placebo armwas higher than that with colchicine (p= 0.02)
but no significant differences in % CBF change among treatment

groups were observed at 24 weeks (Figure 2H). Detailed CEF
results are presented in Supplementary Tables 3, 4.

Secondary Endpoints, Systemic
Endothelial Function, and Inflammatory
Markers
At 8 weeks, administration of MTX, LDC, the combination or
placebo did not result in significant changes in the inflammatory
biomarkers of hsCRP, interleukin-6 (IL-6) or interleukin-1B from
baseline values (Figure 3). At baseline, brachial FMDwas 3.7%±

0.3% (mean ± standard error) for all study participants with no
significant differences among groups (Supplementary Table 3).
There were also no differences in brachial FMD among groups
after either 8 or 24 weeks of study drug administration
(Supplementary Tables 3, 4).

Safety
Overall, study treatment was relatively well-tolerated (Table 2).
The most common adverse events were gastrointestinal
disorders, minor infections and joint and muscle aches. There
were very few serious AEs during the course of the study
and no difference among study groups (Table 2). The reasons
for premature withdrawal due to an AE are presented in
Supplementary Table 2, with the most common reason being
gastrointestinal complaints (3 in LDC group and 3 in MTX
group). There were no significant changes in AST, ALT, white
blood cell count, or LDL cholesterol at 8 weeks as compared to
baseline. At 8 weeks, there were small but significant differences
in AST level (between the placebo and MTX + LDC groups)
and hematocrit (placebo vs. MTX) (Figure 3), as well as in

TABLE 2 | Adverse events are shown in each study group.

Adverse event or laboratory value (No. of patients) Methotrexate

(n = 24)

Colchicine

(n = 23)

Methotrexate + Colchicine

(n = 24)

Placebo

(n = 23)

Adverse events 41 38 46 33

Infection (respiratory or other) 8 8 9 6

Gastrointestinal disorder 9 9 7 2

Joint/Muscle soreness/Stiffness 5 2 7 7

Chest pain 1 1 1 1

Extremity swelling 1 2 0 1

Dental pain/Infection 0 1 2 1

Rash 2 2 1 0

Palpitations 1 1 1 0

Physical injury 4 2 1 2

Anxiety/Depression 0 1 3 0

Increased aspartate amino trans >3X the normal range 0 0 1 0

Increased alanine amino trans >3X the normal range 0 0 1 0

Decreased white blood cell count 1 2 1 3

Decreased hematocrit 4 6 8 6

Decreased Est GFR 5 1 3 4

Serious adverse event 3 2 0 1

There were no significant differences in each adverse event among groups by Cox analysis.
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thrombomodulin (placebo vs. colchicine) and sICAM3 (placebo
vs. MTX+ LDC) (Supplementary Table 3).

DISCUSSION

We believe this to be the first trial comparing different
anti-inflammatory strategies in patients with CAD. In this
randomized, double-blinded, placebo-controlled clinical trial, an
anti-inflammatory approach withMTX, LDC or the combination
of the two did not improve coronary endothelial dysfunction in
stable CAD patients on statin therapy. Treatment with MTX,
LDC, and the combination did not result in significantly more
adverse events or serious adverse events compared to placebo
(Table 2). Moreover, we observed that treatment with these
anti-inflammatory agents did not result in reductions of serum
markers of inflammation or improvements in systemic brachial
endothelial function in patients with stable CAD.

Endothelial-dependent coronary vasoreactivity is an
important index of vascular health and predicts cardiovascular
events (6, 21). CEF is impaired early in the atherosclerotic
process and can now be measured using novel non-invasive MRI
methods (15). Recent studies demonstrate that MRI measures
of CEF performed during IHE quantify nitric oxide-mediated
coronary endothelial vasoreactivity with excellent short- and
longer-term reproducibility (8, 15). Primary and secondary
prevention medications such as statins and ACE-inhibitors
improve CEF (7, 22). We measured endothelial function at 8
and 24 weeks because prior studies showed that statins rapidly
improve endothelial function in the short term (days to weeks)
(20, 23, 24) and in the longer term (5–6 months) (7). More
recently, we observed that the PCSK9 inhibitor evolocumab
improves CEF measured with these MRI techniques in just 6
weeks in patients with dyslipidemia and people living with HIV
(9), indicating that the MRI-handgrip technique is sensitive
enough to detect relatively rapid improvements in CEF in
response to treatment more rapidly and in smaller cohorts than
studied here.

A growing body of evidence suggests that inflammation plays
an important role in coronary atherosclerosis and endothelial
dysfunction, and there is heightened interest in using therapies
that target inflammatory pathways to treat atherosclerosis and its
complications (25). Recently, several large randomized clinical
trials reported varying results using different anti-inflammatory
approaches in CAD patients. The CANTOS (Canakinumab Anti-
inflammatory Thrombosis Outcome Study) trial showed that
the monoclonal antibody canakinumab directed against IL-1B
was effective in reducing recurrent cardiovascular events in
patients with prior MI and elevated CRP (4). Canakinumab
reduced systemic biomarkers of inflammation and vascular
events, but was associated with an increased risk of fatal sepsis
compared to placebo (4). The more recent CIRT (Cardiovascular
Inflammation Reduction Trial) study evaluated the effect of
low dose MTX vs. placebo in CAD patients with metabolic
syndrome or diabetes and residual increased inflammation, and
found that MTX did not reduce inflammatory markers or
events compared to placebo and was stopped prematurely due

to futility (3). In the present study, we used a similar dose
of MTX and many similar entry criteria and also observed
that MTX did not lower markers of inflammation compared
to placebo, and show here for the first time that MTX
does not improve endothelial dysfunction at 8 and 24 weeks
of administration.

Several recent trials evaluated the utility of colchicine to
reduce cardiovascular events in patients with CAD (12, 26).
While a higher dose of colchicine (0.5mg twice daily) lowered
CRP levels, a lower dose (0.5mg daily) was used in subsequent
endpoint trials (27). The LoDoCo-MI evaluated the acute effects
of colchicine vs. placebo in patients following acute MI and with
persistently elevated CRP (>2 mg/L), and found that colchicine
did not reduce CRP levels 30 days after MI (28). The very recent
and much larger COLCOT trial randomized acute MI patients
to low does colchicine vs. placebo and reported a reduction
in a composite endpoint of cardiovascular events driven by a
lower incidence of stroke and hospitalization for angina in the
colchicine group (12). However the inflammatory states in the
setting of acute MI as studied in COLCOT compared to stable
CAD as studied in the present trial are likely different (12).
Moreover, CRP levels declined after MI on both study drugs in
COLCOT and there was no difference in CRP decline between
colchicine and placebo. Importantly, there was no significant
difference in cardiac events (acute infarct and ACS) and the
composite event difference was driven by a stroke benefit with
colchicine compared to placebo. The most recent LoDoCo2
trial in patients with chronic CAD showed that colchicine
reduced a composite primary end-point of cardiovascular death,
spontaneous myocardial infarction, ischemic stroke, or ischemia-
driven coronary revascularization events but increased the risk
of death from non-cardiovascular causes (29). Inflammatory
biomarkers were not reported in LoDoCo2 so it is unclear if the
effects of colchicine on clinical endpoints were due to suppressing
inflammation, duration of treatment or patient specific factors.
However, a proteomic sub-study of LoDoCo2 reported that
hsCRP and other inflammatory biomarkers were significantly
reduced in the colchicine group after 30 days of treatment (30).
Other studies have reported that colchicine favorably improves
coronary plaque morphology (31) and may play a role in
reducing local cardiac inflammatory cytokine production (32).
Our study is the first to compare multiple anti-inflammatory
medications in the same trial (LDC, MTX, LDC + MTX)
and we observe that colchicine alone or in combination with
methotrexate does not improve coronary endothelial dysfunction
over the short and intermediate term in stable CAD patients on
statins. The finding that our anti-inflammatory approach with
MTX, LDC or the combination did not reduce inflammatory
markers such as CRP is also consistent with the findings in other
randomized clinical trials (CIRT, LODOCO-MI, and COLCOT)
that reported a neutral effect of similar anti-inflammatory
strategies on CRP and other inflammatory markers.

Adverse Events
There were no significant differences in serious adverse events
experienced during treatment with anti-inflammatory agents
compared to placebo. All reported AEs were only mild-moderate
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in severity, and these findings confirm prior studies of the relative
safety and tolerability of MTX and LDC. There are limited
data using the combination of MTX and LDC which was not
studied previously in CAD patients. A previous study in patients
with primary biliary cirrhosis using the combination of LDC
and MTX reported few side effects over a 3.4 year period (33).
This is consistent with the results of our study, which provides
important safety data for their combined use over a 24 week
period in patients with stable CAD.

Limitations
Our study was not powered for clinical outcomes but instead
exploited powerful imaging approaches to directly evaluate
coronary vascular health in response to the inflammatory
interventions in a relatively modest sample size. The cohort size
was justified with sample size estimates using prior published
data of MRI measures of CE (8, 34). In addition, a prior
study showed that this MRI-CEF approach can detect earlier
improvements in CEF with PCSK9 inhibition in a smaller-sized
cohort (9). The lack of trending differences for benefit among
the study groups indicates that a considerably larger sample size
is unlikely to have resulted in any significant group differences
as well. It may be of interest in future trials to evaluate only
subjects with biomarker evidence residual inflammatory risk, as
done in the CANTOS trial (4). The MRI-CEF approach can
safely detect coronary functional abnormalities in children and
adolescents with type I diabetes (35) and thus can be applied to
study vascular health and the impact of potential interventions
across the lifespan.

Conclusion
In summary, our study is the first to examine and compare the
effects of anti-inflammatory approaches using MTX, LDC or
the combination of the two on coronary endothelial dysfunction
in patients with stable CAD and either elevated hsCRP or
diabetes/metabolic syndrome on stable statin therapy. The
anti-inflammatory agents MTX and LDC were generally well-
tolerated; however, they did not improve coronary endothelial
function, a well-established “barometer” of vascular health.
Although MTX and LDC are commonly available, relatively
inexpensive anti-inflammatory medications with well-known
safety profiles, prior large trials suggest the benefits for
cardiovascular disease are difficult to detect (MTX) or possibly
limited to mostly cerebrovascular events in selected populations
(colchicine). Although prior studies after CABG or post-MI
suggested rapid effects of some of these agents to reduce
inflammatory biomarkers (28), the current study demonstrates
that these agents at these dosages do not reduce systemic
markers of inflammation over 2 months in stable CAD patients.

These findings suggest that the short-term and intermediate-
term use of these anti-inflammatory approaches in stable CAD
patients do not significantly improve either coronary artery or
systemic endothelial function, both well-established predictors of
cardiovascular outcomes and measures of vascular health.
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Background: Acute myocardial damage is common in severe COVID-19. Post-mortem

studies have implicated microvascular thrombosis, with cardiovascular magnetic

resonance (CMR) demonstrating a high prevalence of myocardial infarction and

myocarditis-like scar. The microcirculatory sequelae are incompletely characterized.

Perfusion CMR can quantify the stress myocardial blood flow (MBF) and identify its

association with infarction and myocarditis.

Objectives: To determine the impact of the severe hospitalized COVID-19 on global

and regional myocardial perfusion in recovered patients.

Methods: A case-control study of previously hospitalized, troponin-positive COVID-19

patients was undertaken. The results were compared with a propensity-matched,

pre-COVID chest pain cohort (referred for clinical CMR; angiography subsequently

demonstrating unobstructed coronary arteries) and 27 healthy volunteers (HV). The

analysis used visual assessment for the regional perfusion defects and AI-based

segmentation to derive the global and regional stress and rest MBF.

Results: Ninety recovered post-COVID patients {median age 64 [interquartile range

(IQR) 54–71] years, 83% male, 44% requiring the intensive care unit (ICU)} underwent

adenosine-stress perfusion CMR at a median of 61 (IQR 29–146) days post-discharge.

The mean left ventricular ejection fraction (LVEF) was 67 ± 10%; 10 (11%) with impaired

LVEF. Fifty patients (56%) had late gadolinium enhancement (LGE); 15 (17%) had

infarct-pattern, 31 (34%) had non-ischemic, and 4 (4.4%) had mixed pattern LGE.

Thirty-two patients (36%) had adenosine-induced regional perfusion defects, 26 out of

43
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32 with at least one segment without prior infarction. The global stress MBF in

post-COVID patients was similar to the age-, sex- and co-morbidities of the matched

controls (2.53 ± 0.77 vs. 2.52 ± 0.79 ml/g/min, p = 0.10), though lower than HV (3.00

± 0.76 ml/g/min, p < 0.01).

Conclusions: After severe hospitalized COVID-19 infection, patients who attended

clinical ischemia testing had little evidence of significant microvascular disease

at 2 months post-discharge. The high prevalence of regional inducible ischemia

and/or infarction (nearly 40%) may suggest that occult coronary disease is an

important putative mechanism for troponin elevation in this cohort. This should be

considered hypothesis-generating for future studies which combine ischemia and

anatomical assessment.

Keywords: cardiac MRI, perfusion, COVID-19, microvascular dysfunction, myocardial blood flow

INTRODUCTION

Coronavirus disease 2019 caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), disproportionally
affects patients with cardiovascular risk factors. Myocardial
injury, particularly seen in severe and hospitalized COVID-
19 and evidenced by raised cardiac troponin, heralds worse
outcomes (1, 2). However, the mechanisms of injury remain only
partially understood, and the potential coronarymicrocirculatory
sequelae remain incompletely characterized (3). Several ischemic
and non-ischemic mechanisms have been proposed, including
supply-demand mismatch (type-2 myocardial infarction) and
microangiopathic thrombosis (4). Accumulating evidence
suggests that the vascular endothelium plays a critical role
in the pathogenesis of severe COVID-19 as a nidus for both
pro-coagulant and inflammatory dysregulation and may offer
a unifying pathway through which all these sequelae may
occur (5, 6). Autopsy results have shown microthrombi to
be associated with myocyte necrosis (7). The implications
for survivors and the potential long-term effects on coronary
microcirculation remain unknown. Cardiovascular magnetic
resonance can determine not only myocardial function,
remodeling, and scar burden, but also quantify the stress
myocardial blood flow (MBF), which has been validated
invasively and against 13N–NH3 PET (8–10). A recent pilot
study of n = 22 recovered COVID-19 patients used coronary
sinus flow by cardiovascular magnetic resonance (CMR) to
evaluate the myocardial perfusion found with significantly
lower myocardial perfusion reserve (MPR) compared with an
unmatched cohort of health controls and values similar to a
cohort with hypertrophic cardiomyopathy (HCM) (11). We
aimed to further evaluate the pattern of stress MBF in recovered
COVID-19 patients.

Abbreviations: CMR, cardiovascular magnetic resonance; COVID-19,

coronavirus disease 2019; ICU, intensive care unit; LGE, late gadolinium

enhancement; sMBF, stress myocardial blood flow; LV, left ventricular; MI,

myocardial infarction; MOLLI, modified look-locker inversion recovery;

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

METHODS

Patient Population
COVID Cohort
Patients clinically referred for adenosine stress CMR following
their admission for COVID-19 to three CMR centers (Royal
Free London NHS Foundation Trust [RFH], Imperial College
Healthcare NHS Trust [Imperial], and University College
London Hospital [UCLH] NHS Foundation Trust) were
recruited for the study at the time of their CMR. We included
patients with stress perfusion imaging from our recently
published multicenter study (12) to the overall cohort and
performed dedicated quantitation of MBF. The patients had a
diagnosis of COVID-19 made either by (i) a positive combined
oro/nasopharyngeal throat swab or tracheal aspirate for SARS-
CoV-2 by reverse-transcriptase-polymerase-chain-reaction (RT-
PCR), or (ii) a negative swab for SARS-CoV-2 but with a
triad of symptoms of viral illness (such as one or more of
cough, fever, and myalgia), typical blood biomarkers (such as
new lymphopenia, high d-dimer, high ferritin, and elevated
liver transaminases), and reported findings of at least probable
likelihood of COVID-19 infection on chest radiograph or CT
(12). Indications for CMR included positive troponin during
hospital admission (n= 85; hsTnT>14ng/L for RFH and UCLH;
hsTnI >14ng/L for females and >34ng/L for males for Imperial)
or persistent symptoms (n= 5; chest pain or shortness of breath)
in COVID-19 recovery. The exclusion criteria included patient
refusal, severe renal impairment (estimated glomerular filtration
rate (eGFR) <30 mL/min/m2, if local hospital policy excluded
these patients), pregnancy, medical unsuitability assessed by the
referring clinician (including severe co-morbid disease and/or
frailty in which it was felt that the information acquired
would be unlikely to alter clinical management), and standard
CMR contraindications. Ethical approval was obtained from the
West Midlands—Edgbaston Research Ethics Committee for the
use of the clinical data of the patients for research purposes
(RFH and Imperial sites; REC reference 20/WM/0208) and
from the Joint University College London/University College
London Hospitals Research Ethics Committee (UCLH site; REC
reference 07/H0715/101).
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Control Cohort and Healthy Volunteers
Control Cohort
Patients referred for clinical adenosine stress CMR with
contemporaneous invasive or CT coronary angiography (CTCA)
without obstructive coronary disease between May 2016 and
December 2019 (Pre-COVID) were recruited at two centers:
Barts Heart Center (BHC) and Royal Free Hospital (RFH).
Patients with significant coronary artery disease (diameter
stenosis on coronary angiography >30%), previous coronary
revascularization, infarct pattern scar, non-ischemic scar,
or cardiomyopathy (hypertrophic, arrhythmogenic, dilated,
amyloid) were excluded. The control cohort was propensity-
matched to the COVID-19 patient cohort. A control group
of known unobstructed coronary arteries was selected as the
cleanest possible control, as the coronary status of the majority
of the COVID cohort was unknown and thus could not be
adjusted for.

Healthy Volunteers
Twenty-seven healthy volunteers {median age 33 [interquartile
range (IQR) 30-42] years, 14[52%] male} were prospectively
recruited and underwent adenosine stress CMR. These were
individuals with no risk factors for coronary artery disease
and were not taking any medication. The participants gave
their written informed consent according to the local ethics
applications. The control and healthy volunteer studies were
approved by the National Health Service Research Ethics
Committee (NHS REC) and Health Research Authority (HRA)
and were conducted in accordance with the Declaration of
Helsinki (Barts Bioresource - REC ID 14/EE/0007, Royal Free
Hospital – REC ID 07/H0715/101).

CMR Study Protocol
The CMR was performed in accordance with the local
institutional and international infection control guidelines
(13) on 1.5T scanners (Magnetom Aera, Siemens Healthcare,
Erlangen, Germany). A standard CMR protocol including
parametric mapping, adenosine stress perfusion, and post-
contrast imaging was used (Supplementary Figure 1): standard
long- (4-, 2-, 3-chamber) and short-axis cine images were
performed with breath-hold or real-time imaging, as needed.
Native T1 and T2 mapping were performed in at least one
long axis and one mid-ventricular short-axis view. The T1
mapping used the modified Look-Locker inversion recovery
(MOLLI) sequence after regional shimming with 5s(3s)3s
sampling (14). The T2 mapping used single-shot T2-prepared
images acquired at multiple echo times (TE) (15). Following
the application of 0.1 mmol/kg gadoterate meglumine (Royal
Free and UCLH) or gadobutrol (Imperial), bright-blood late
gadolinium enhancement (LGE) images were acquired using
respiratory motion-corrected sequences with magnitude and
phase-sensitive inversion recovery reconstructions (16). The
patients underwent adenosine stress perfusion after refraining
from caffeine for at least 24 h. Three short-axis views were
acquired during the adenosine hyperemia (140 mcg/kg/min
adenosine for 4min with two further minutes at 175 mcg/kg/min
if needed). The acquisition was for 60 heartbeats using a 0.05
mmol/kg gadolinium bolus administered at 4 mL/s followed

by a 20-mL 0.9% saline flush. Perfusion maps (three short-axis
slices per patient) were generated automatically and inline at
the time of the scan as described by Kellman et al. (8). The
perfusion is quantified for each pixel of the myocardium, each
pixel encoding the MBF. The automated segmentation of the left
ventricle (LV) using artificial intelligence (AI) techniques enables
the calculation of global and segmental mean blood flow (in
ml/g/min) as previously described (17).

CMR Post-processing
The CMR studies were analyzed offline using CVI42 5.12.1
(Circle Cardiovascular Imaging, Calgary, Canada). All the
cines, maps, first-pass perfusion images/maps, and early/late
gadolinium enhancement images were analyzed by experienced
observers blinded to the coronary data. When calculating the
ventricular volumes and mass, the trabeculations and papillary
muscles were included in the myocardial mass. For the patients
with visual evidence of LGE, the endo and epicardial contours
(10% offset) were drawn and automatically divided into six
segments, a 3 SD approach was taken, and those without
visual LGE were marked as zero. Limited right ventricular (RV)
insertion point LGE was not included as an abnormal LGE
finding. The native T1 and T2 relaxation times were measured
within the myocardial septum in the basal inferoseptum on
motion-corrected quantitative maps and away from any areas of
LGE (remote myocardium). Where a non-infarct pattern LGE
was seen, the native T1 and T2 in the same region weremeasured.
Phantom quality assurance was performed to ensure the stability
and inter-site comparability of T1 as reported previously (12).
The perfusion defects were determined upon visual inspection
of the first-pass perfusion images and corroborated with a visual
inspection of the quantitative perfusion maps. The perfusion
defects were compared against LGE imaging to match the
perfusion defects to the areas of infarct-pattern LGE. The
perfusion defects were defined as “unmatched” if it occurs in the
absence of infarct-pattern LGE or if extending beyond the area of
late enhancement. Quantitative myocardial perfusion maps were
generated automatically, in-line without user input, however,
all the studies were visually inspected for motion correction
(MOCO) quality, artifact and graphically (review of the arterial
input function), see Supplementary Figure 2. Where significant
issues were identified, the maps were reviewed and reconstructed
where possible.

Statistical Analysis
Statistical analysis was performed using R Studio version 1.3
(R Studio, Boston, Massachusetts, Unites States). The data is
presented as mean± SD and were normally distributed and
median (25th−75th quartile) otherwise. The categorical variables
are presented as absolute values and percentages. Comparison of
data was performed using an unpaired t-test (two groups) or one-
way ANOVA (three groups), and non-normally distributed the
data using Mann–Whitney/Kruskal–Wallis tests as appropriate.
The categorical data were compared using the Chi-Squared
test or Fisher’s Exact test, where appropriate. Propensity score
matching was used to adjust for the imbalance in the COVID and
control cohorts as follows. Logistic regression was used to predict
the propensity score for either the control or the COVID cohort.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 December 2021 | Volume 8 | Article 76459945

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Thornton et al. Myocardial Perfusion Post-COVID

Themodel was selected based on the characteristics of the patient
that felt to be most clinically relevant to the study hypothesis,
i.e. risk factors for cardiovascular/coronary artery disease. The
balance of prognostic factors was inspected via standardized
mean differences. Matching was performed without replacement
using a “greedy” algorithm (nearest neighbor). Linear regression
was performed to identify the multivariable predictors of global
stressMBF in the COVID and control cohorts. Clinically relevant
variables and those found to have a significant univariable
association with global stress MBF were included. The model was
then pruned using the backward stepwise selection by Akaike
Information Criterion (AIC). All values with p < 0.05 were
considered statistically significant.

RESULTS

Clinical Characteristics
COVID Cohort
In this study, 90 patients were included (49 RFH, 37 UCLH,
4 Imperial)—see Supplementary Figure 3. Out of the 90
patients, 82 (91%) patients had a positive COVID-19 PCR test.

The median age was 64 (IQR 54–71) years, 75(83%) male.
Comorbidities were diabetes mellitus 29 (32%), hypertension 43
(48%), dyslipidemia 34 (38%), smoking history 25 (28%), and
previous coronary revascularization 5 (5.6%). The median stay
was 12 days (IQR 7-28), of which 40 out of 90 (44%) had been
admitted to the intensive care unit (ICU). The median time from
the discharge to CMR was 61 days (IQR 29-146). The median
peak troponin T concentration (excluding Imperial patients [n
= 4] who had troponin I assay) was 27 ng/ml (IQR 19–70), the
peak NT-proBNP was 314 pg/ml (IQR 102–878), and the peak
D-dimer was 3,444 ng/ml (IQR 1,217–10,092).

Controls
The control cohort was propensity-matched for age, sex,
hypertension, type-2 diabetes, and smoking history (p for all
>0.05). The mean standardized differences before and after
matching are presented in Supplementary Table 1.

Cardiovascular Magnetic Resonance
The patient characteristics and CMR findings are summarized in
Table 1, the case examples are shown in Figure 1.

TABLE 1 | Baseline characteristics.

Characteristic COVID

n = 90a
Controls

n = 90a
HV

n = 27a
p-value (COVID

vs control)b
p-value

(All groups)b

Age 64 (54, 71) 60 (49, 68) 33 (30, 42) 0.074 <0.001

Sex 0.85 0.002

Female 15 (17%) 17 (19%) 13 (48%)

Male 75 (83%) 73 (81%) 14 (52%)

Type 2 diabetes 29 (32%) 26 (29%) 0 0.75 0.003

Hypertension 43 (48%) 48 (53%) 0 0.55 <0.001

Dyslipidemia 34 (38%) 45 (50%) 0 0.13 <0.001

Prior history of CAD 23 (26%) 0 0 <0.001 <0.001

PCI/CABG 5 (5.6%) 0 0 >0.99 >0.99

Smoker 25 (28%) 27 (30%) 0 0.87 0.005

ICU Admission 40 (44%) – –

Troponin (ng/L)* 27 (19, 70) – –

NT-proBNP (pg/ml) 314 (102, 878) – –

D-dimer (ng/ml) 3,444

(1,217, 10,092)

– –

CRP (mg/L) 223 (141, 344) – –

LV EDV (ml) 130 (112, 147) 142 (119, 164) 147 (127, 156) 0.075 0.063

LV mass (g) 126 (109, 144) 110 (94, 132) 97 (86, 114) <0.001 <0.001

LVEF (%) 67 (10) 67 (8) 65 (4) 0.91 0.81

RVEF (%) 59 (8) – –

Native T1 (ms) 1,032

(1,008, 1,061)

– –

T2 (ms) 46 (45, 47) – –

ECV (%) 26 (23, 29) – –

LGE Present 50 (56%) 0 0 <0.001 <0.001

Infarct pattern LGE 15 (17%) 0 0 <0.001 <0.001

Non-ischemic LGE 31 (34%) 0 0 <0.001 <0.001

Mixed Pattern LGE 4 (4.4%) 0 0 0.12 0.11

aMean (SD); n (%); Median (IQR), bOne-way ANOVA; chi-square test of independence; Fisher’s exact test; Kruskal-Wallis test.

*Including patients with troponin T only (excluding four patients from Imperial College Healthcare NHS Trust (Imperial) who had troponin I assay). p-values reaching statistical significance

(p < 0.05) are highlighted in bold.
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FIGURE 1 | Stress perfusion and scar in recovered COVID-19 patients. The spectrum of perfusion abnormalities. From left to right we show the first-pass perfusion

images, quantitative stress perfusion maps, and free breathing-phase sensitive inversion recovery and motion corrected late gadolinium enhancement images (PSIR

MOCO LGE). Patient 1: Normal. Patient 2: Regional ischemia without LGE. Patient 3: Regional ischemia with infarct late gadolinium enhancement (LGE). Patient 4:

Global hypoperfusion without visual perfusion defects and no significant LGE.
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FIGURE 2 | Cardiovascular magnetic resonance (CMR) findings and diagnosis by perfusion CMR. The CMR scar patterns, prevalence of ischemia, and diagnosis

across the COVID-19 cohort.

Cardiac Function and Myocardial Tissue

Characterization
In the COVID cohort, the LV ejection fraction (EF) was 67 ±

10% and the RV EF was 59 ± 8% with 10 (11%) patients with
LV systolic impairment and 6 (7%) patients with RV impairment.
There was no difference in LVEF compared with the propensity-
matched cohort or healthy volunteers (p= 0.81).

In the post-COVID cohort, 50 (56%) patients had evidence
of myocardial scar wherein 15 out of 90 (17%) patients had an
infarct pattern, 31 out of 90 (34%) had a non-infarct pattern
LGE, and four out of 90 (4.4%) patients had a dual/mixed pattern
LGE. There was sub-epicardial myocarditis-like LGE in 26 out of
the 90 (29%) patients, mid-wall LGE in 5, and four patients had
both infarct and non-infarct pattern LGE. The control cohort was
specifically selected for the absence of LGE; none of the healthy
volunteers had LGE. For the breakdown of the scar patterns and
CMR findings, see Figure 2.

The median T1 was 1,032ms (IQR 1,008–1,061ms) and the
median T2 was 46 (IQR 45-47ms) in the basal inferoseptum,
remote to the LGE. Thirteen patients had evidence of ongoing
myocardial edema (T2 >50ms) in the regions coinciding with
LGE. The normal ranges for T1 and T2 were from the data from
the healthy volunteers from our recent phantom controlled work
(native T1 1008+/− 35ms, T2 48+/− 2ms)(12).

Quantitative Stress MBF

Global Perfusion
There was no difference in global stress MBF (2.53 ± 0.77 vs.
2.52 ± 0.79 ml/g/min, p = 0.10) in the COVID patients vs.

propensity-matched controls. The healthy volunteers had higher
stress MBF than either the COVID or control volunteers (sMBF
3.0 ± 0.76 ml/g/min, p = 0.01) (Table 2, Figure 3). The patients
with infarct-pattern scar had a significantly lower global stress
MBF than those with non-ischemic scar only or no scar (infarct
vs. non-ischemic vs. no LGE; 2.04 ± 0.48 vs. 2.54 ± 0.65 vs. 2.75
± 0.87 ml/g/min, p = 0.003; Figure 4). There was no difference
in the global blood flow between patients with a non-ischemic
scar and no scar (p = 0.26). The MPR was lower in the COVID
cohort than in the matched controls (2.67 ± 0.87 vs. 2.95 ± 1.03
ml/g/min, p = 0.049) driven by the higher resting MBF in the
COVID cohort (0.99 ± 0.34 vs.0.89 ± 0.24 ml/g/min, p = 0.02),
but the values were in line with the normal values in the studies
using the same quantitative perfusion methodology (9).

Predictors of Global Stress MBF
The multivariable predictors of low global stress MBF were age
(OR.90, 95%CI 0.82–0.98, p =0.02), male sex (OR 0.60, 95%
CI 0.46–0.78, p = <0.001), and history of hypertension (OR
1.52, 95%CI 1.23–1.89, p = <0.001). Prior COVID-19 illness
was not associated with lower global stress MBF (OR 1.1, 95%CI
0.89–1.35, p= 0.4) (Table 3).

Regional Stress Perfusion
Thirty-two patients had localized segmental stress perfusion
defects (median 3 [IQR 3-7] segments). Of those with perfusion
defects, only six out of 32 had perfusion defects solely matched
to a region of infarct-pattern LGE, whereas 26 out of 32 patients
had unmatched perfusion defects (Figures 2, 4).
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TABLE 2 | Results.

Characteristic COVID

n = 90a
Control

n = 90a
HV

n = 27a
p-valueb (COVID

vs. control)

p-valueb

(All groups)

Global Stress MBF (ml/g/min) 2.53 (0.77) 2.52 (0.79) 3.00 (0.76) 0.93 0.012

Global Rest MBF (ml/g/min) 0.99 (0.34) 0.89 (0.24) 0.86 (0.26) 0.018 0.022

MPR 2.67 (0.87) 2.95 (1.03) 3.63 (0.75) 0.049 <0.001

aStatistics presented: Mean (SD); n (%).
bStatistical tests performed: One-way ANOVA; Fisher’s exact test. p-values reaching statistical significance (p < 0.05) are highlighted in bold.

FIGURE 3 | Global stress myocardial blood flow (MBF) in recovered post-COVID19 patients vs. propensity-matched controls and healthy volunteers. The dot plot of

global stress myocardial blood flow for the COVID-19, control, and healthy volunteer cohorts. The data are presented with accompanying box plots.

DISCUSSION

In this multicenter study of COVID-19 survivors, we

demonstrated that at 2 months after severe, hospitalized

infection, the global stress MBF is comparable to the propensity-
matched controls with proven unobstructed coronaries and no

scar. However, over half of the COVID patients have evidence
of either infarct or myocarditis-like scar, and almost a third had
evidence of regional ischemia, suggestive of occult coronary

artery disease, including a quarter of those with an otherwise
normal CMR. While microvascular thrombosis may also play a
role, there is little evidence here to suggest a significant impact
on the global myocardial perfusion in surviving patients.

Myocardial damage during acute COVID-19 illness predicts
the severity (18) and outcomes of acute infection, with

CMR scans demonstrating infarction and inflammation in
convalescent patients (12). In accordance with previous
publications, the prevalence of LGE in this cohort was high,
but the overall burden and functional impact were relatively
low (19). However, the effects of COVID-19 on myocardial
perfusion have so far remained incompletely characterized.
We demonstrated that stress myocardial blood flow after
severe COVID-19 shows no difference to risk factor matched
controls; importantly stress blood flow was not predicted
by COVID status but by common risk factors for coronary
artery disease.

While MPR was found to be slightly reduced in the COVID
cohort compared with the controls, this was driven primarily
by a higher resting MBF. In a recent study by Drakos et al.,
there was a significant reduction in MPR in n = 22 patients
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FIGURE 4 | Global stress MBF in recovered post-COVID-19 patients by late gadolinium enhancement (LGE) pattern. The dot plot of global stress MBF by perfusion

pattern. Each dot represents a patient. The pink dots represent the patients with unmatched regional perfusion defects by visual assessment. The green dots

represent the patients with no regional perfusion defects.

TABLE 3 | Multivariable analysis of global stress myocardial blood flow in the COVID and propensity-matched control cohorts.

Full model Final model

Characteristic OR 95% CIa p-value OR 95% CIa p-value

COVID status 1.10 0.85, 1.41 0.5 1.10 0.89, 1.35 0.4

Age* 0.90 0.82, 0.99 0.027 0.90 0.82, 0.98 0.019

Male Sex 0.60 0.47, 0.79 <0.001 0.60 0.46, 0.78 <0.001

Type 2 Diabetes 0.81 0.64, 1.02 0.071 0.80 0.64, 1.00 0.057

Hypertension 1.50 1.20, 1.87 <0.001 1.52 1.23, 1.89 <0.001

Hypercholesterolemia 1.09 0.88, 1.35 0.4

Infarct pattern LGE 0.70 0.47, 1.06 0.091 0.71 0.48, 1.03 0.074

Non-ischemic LGE 0.97 0.71, 1.33 0.9

aCI, Confidence Interval.

*Scaled by epochs of 10 years. p-values reaching statistical significance (p < 0.05) are highlighted in bold.

with persistent symptoms post-COVID-19 when assessed by
coronary sinus flow, driven by both a lower stress MBF and
higher resting MBF (11). This study had several methodological
and technological differences to this study (assessment of
MBF by coronary sinus flow, unmatched cohorts, inclusion
of patients with persistent symptoms only, and exclusion
of severe COVID-19). There are alternative explanations for
higher resting MBF in our cohort compared with the controls

(which may include differences in heart rate and medications
between cohorts), thus we do not believe that these small
borderline significant differences provide convincing evidence of
microvascular dysfunction.

The finding of inducible ischemia in almost a third of the
patients suggests that the putative mechanism of troponin
elevation reflected a supply-demand-mismatch, whether
epicardial or microvascular (20), representing “a COVID stress

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 December 2021 | Volume 8 | Article 76459950

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Thornton et al. Myocardial Perfusion Post-COVID

test”. It is important, however, to acknowledge the multiple
mechanisms of troponin elevation in the context of severe illness
(21). We hypothesize that the high burden of infarct-pattern
LGE was pre-existing, and driven more by the demographics
of included patients (older, high incidence of cardiovascular
risk factors), than by the COVID-19 illness, especially given
the relatively modest troponin rise seen. This is particularly
relevant as our sample reflects a relatively sick group of patients
(all admitted, 44% to ICU; 85 out of 90 with elevated troponin).
The prevalence of the infarct pattern scar is similar to the
previous studies which cited a rate of 17% of occult MI by
CMR in a cohort with a similar cardiovascular risk profile. Our
group has previously shown the rate of infarct pattern scar in a
contemporary chest pain cohort referred for adenosine-stress
CMR to be as high as 29.5% (22, 23). Cardiovascular magnetic
resonance is the most suited non-invasive modality for the
assessment of unexplained troponin rise, as it can confirm the
presence, type, and extent of myocardial injury. Interestingly,
nearly half of the troponin-positive patients (39/85) had no
evidence of scar on CMR. This suggests that while troponin
leak is associated with poor prognosis in acute illnesses, in
many cases it is not followed by medium-term structural or
functional effects, including sensitive LGE imaging or global
MBF quantification.

Autopsy studies of COVID-19 patients have demonstrated
microvascular thrombosis in the lungs and heart (7, 24, 25).
In the cardiac studies, microthrombi were identified as the
cause of myocyte necrosis in 64% of patients after COVID-
19 related death. Other studies have also identified these in
intra-myocardial small vessels (26, 27). Many of these thrombi
were not associated with any significant myocardial injury. It
is plausible that microthrombisis may lead to exceptionally
localized myocyte injury. Although this study was designed
specifically to take advantage of identical scanner platforms and
access to state-of-the-art quantitative myocardial perfusion and
myocardial tissue characterization CMR technology [supported
by MRI phantom quality controlled analysis (22)], very localized
myocyte injury may be undetectable by the current CMR
technologies (LGE or T1/T2/ECV/MBF mapping) or may have
resolved without detectable damage in convalescent patients.
This entity is potentially somewhat distinct from what would
conventionally be referred to as a “microvascular disease”, which
is commonly perceived as a global phenomenon in response to
a systemic disease process (type 2 diabetes, for example), without
demonstrable inducible perfusion defects or regional wall motion
abnormalities (28).

Microvascular disease has also been shown to have regionality
and may have a subendocardial distribution (29). The regional
perfusion defects found in our study could be due to regional
microvascular disease if the epicardial coronaries are found
unobstructed. A normal global stress MBF in troponin-positive
or persistently symptomatic individuals is reassuring to an
extent but may not have the sensitivity to resolve regional
microvascular complications.

Overall, multi-parametric stress perfusion CMR in
convalescent post-COVID-19 patients identified previously
unsuspected inducible ischemia, myocardial infarction, and

myocarditis-pattern non-ischemic scar. The addition of stress
perfusion imaging offers incremental information by the
detection of regional ischemia in the absence of a scar. There
is little evidence of a reduction in global perfusion after severe
COVID-19 compared to matched controls, which may reflect
the limited impact of microvascular thrombosis on overall
perfusion in surviving patients even if it causes persistent
regional differences in myocardial blood flow.

LIMITATIONS

This study reports findings in a group of patients who survived
COVID-19 infection and is therefore affected by survivor bias.
Patients with contraindications to CMR were excluded, though
this is a small minority of the patients. We have characterized
the spectrum ofmyocardial injury and perfusion abnormalities in
recovered, predominantly severe, COVID-19 illness that persists
to a median of 2 months after the infection (community and
mild disease were not investigated). This study does not offer
insights into myocardial blood flow, structure or function during
the infection or in the immediate post-infective period, nor
can it, without longitudinal data, determine if abnormalities
detected evolve or regress over time. The wide time interval
between the admission episode and CMR further compounds
this. Data on persistent symptoms at the time of CMR was
not available for the majority of patients, thus we cannot draw
conclusions pertaining to the association of these with MBF.
Furthermore, without anatomical data, we cannot confirm the
presence and cause (epicardial vs. microvascular) of perfusion
abnormalities. However, this study yields pertinent preliminary
data which may have important clinical implications for patients.
Further granularity will be determined with future ongoing
United Kingdom and international studies, some of which will
acquire or capture coronary anatomical data [COVID-HEART
[ISRCTN58667920]; CISCO-19 (30)].

CONCLUSION

This multicenter cohort of severe hospitalized COVID-19
infection identified no difference in the global stress MBF in
COVID-19 survivors compared with the risk factor matched
controls, but regional perfusion defects are common. Overall,
the findings are reassuring that COVID-19 is unlikely to result
in gross and persistent global microvascular phenomena. The
high burden of regional ischemia may be due to regional
microvascular disease but is more likely due to pre-existing
coronary disease, but neither can be proven in the absence
of anatomical imaging. This should therefore be considered
hypothesis-generating for future studies.
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Driven by recent innovations and technological progress, the increasing quality and

amount of biomedical data coupled with the advances in computing power allowed

for much progress in artificial intelligence (AI) approaches for health and biomedical

research. In interventional cardiology, the hope is for AI to provide automated analysis

and deeper interpretation of data from electrocardiography, computed tomography,

magnetic resonance imaging, and electronic health records, among others. Furthermore,

high-performance predictive models supporting decision-making hold the potential to

improve safety, diagnostic and prognostic prediction in patients undergoing interventional

cardiology procedures. These applications include robotic-assisted percutaneous

coronary intervention procedures and automatic assessment of coronary stenosis

during diagnostic coronary angiograms. Machine learning (ML) has been used in these

innovations that have improved the field of interventional cardiology, and more recently,

deep Learning (DL) has emerged as one of the most successful branches of ML in many

applications. It remains to be seen if DL approaches will have a major impact on current

and future practice. DL-based predictive systems also have several limitations, including

lack of interpretability and lack of generalizability due to cohort heterogeneity and low

sample sizes. There are also challenges for the clinical implementation of these systems,

such as ethical limits and data privacy. This review is intended to bring the attention of

health practitioners and interventional cardiologists to the broad and helpful applications

of ML and DL algorithms to date in the field. Their implementation challenges in daily

practice and future applications in the field of interventional cardiology are also discussed.
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INTRODUCTION

In recent years, the field of interventional cardiology has
been characterized by innovation and technological progress as
clinicians, in partnership with specialists in molecular biology,
biomedical engineering, biophysics and imaging technology,
have raised interventional cardiology to a vibrant and dynamic
subspecialty in mainstream medical practice. As this field
matures, the range of opportunities and applications continues
to broaden, and there is an increasing need to focus not only
on the effectiveness of treatments but also on safety issues.
Novel advancements in the field of artificial intelligence (AI) can
facilitate, accelerate, and improve this ongoing progress.

Fluoroscopy has been for long the pillar of interventional
cardiology, and recent technological advances shake
interventionists’ habits by proposing multiple novel solutions
to the setbacks of the X ray-based 2-dimensional fluoroscopy
imaging. Human-controlled assistant robots and cardiovascular
image processing are technological advancements applied
to catheterization laboratories and hybrid rooms (1–4).
Additionally, among a large number of percutaneous coronary
intervention (PCI) operators worldwide, there exists an
experiential learning curve for procedural success as it’s
been shown that the adjusted risk of in-hospital mortality
has been higher for PCI procedures performed by low- and
intermediate-volume operators compared with those performed
by high-volume operators (5, 6). While an operator’s success
probability can be formulated as a statistical problem itself,
deep learning assisted augmented reality could help with
improving the learning curve associated with operator PCI
success. Although autonomous and semi-autonomous robots
used in interventional cardiology are probably still a few years
of development and universal deployment away from routine
clinical use, the vision of the operating room of the future,
implementing decision-support algorithms for procedure
planning and operator guidance, progressively takes shape (7).
In structural heart procedures and interventional cardiology
this is in particular of significant importance as, for example,
studies have shown that robotic-assisted PCI (R-PCI) compared
with manual PCI reduces radiation exposure to the cath lab
staff, which could also improve precision (8, 9). The concept
of “surgical data science” has recently been proposed, a data-
driven surgical healthcare approach enhanced by decision
support algorithms, context-aware automated assistants,
and improvement of surgical training by digital assistance
(10). As cardiac disease treatment tends to be transferred
from operating theaters to hybrid rooms and catheterization
laboratories, such concepts could be adapted to the cardiac
interventional community.

The ability to effectively extract and store health data, powered
by increasing computation power and the ability to efficiently
process it yielded an explosion of AI applications aiming at
improving care and reducing costs (11). More recently, deep
learning (DL) has emerged as one of the most successful
branches of machine learning (ML) and artificial intelligence
and implements diverse architectures of deeper neural networks
(DNN) (12). Additionally to electrocardiogram (ECG) data and

image/video processing, automated electronic health records
(EHR), biological or genetic data mining to yield prognostic
estimation of the probability of adverse outcomes, mortality
included, have also been proposed for cardiology and general
healthcare (13–17). And, there are signs that the implementation
of AI into the catheterization laboratory has already started.
For example, modeling in real-time the coronary fractional
flow reverse (FFR) values from CT-angiography of the coronary
vasculature using AI (instead of invasively using the dedicated
wire) is feasible and if applied to coronary angiographies, it
could accelerate the procedure, to reduce irradiation and to avoid
possible complications associated with the wire (18, 19).

Despite the notable improvements in medical care that
can be achieved using cutting edge analytical methods and
algorithms in image and video processing, clinical decision
support, robotic assistance, and advanced clinical database
analysis, the current state of AI in interventional cardiology is
in its very infancy. Yet, if practitioners and cardiologists in the
field are aware and open to embracing these changes positively, it
can foreseeably revolutionize interventional cardiology practice
in the near future. Drawing the attention of researchers
and practitioners in the field to this opportunity is the aim
of this review. We first provide an overview of machine
learning applications in interventional cardiology; subsequently,
we discuss the demand for future improvements considering
machine learning implementation challenges in daily practice
and future applications in the field of interventional cardiology.

MACHINE AND DEEP LEARNING
OVERVIEW

In contrast to traditional static rule-based AI systems which
are equipped with algorithms developed based on fact sheets
and documented and approved clinical research subsequently
validated to produce expected results, data-driven AI utilizes
large datasets and complex statistical methodologies to discover
new relationships between inputs, actions, and outcomes.
These systems are not explicitly programmed to provide pre-
determined outputs, but are heuristic, with the ability to learn
and make judgements to yield improved decision making with
minimal human intervention. Even though there is a large
overlap between statistical modeling and ML techniques, a
common understanding is that statistical models mainly refer to
analysis and reporting over data, while ML is more concerned
with prediction by being able to exploit and possibly improve
data representation for the task of interest. In general, MLmodels
developed for data-driven AI systems can be categorized into
supervised, unsupervised, semi-supervised, or reinforcement
learning (Table 1).

Supervised machine learning uses the independent features or
variables to align and predict the known numerical or categorical
validated outcome in the training dataset. Once properly trained,
these models can then be used to predict outcomes when
evaluating out-of-training samples (e.g., live patient cases). In
the cardiovascular research, for example, supervised learning
algorithms can identify and predict patterns inmassive quantities
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TABLE 1 | Type of learning methods.

Method Mechanism Implementation

Supervised Uses labeled outcome data. The labels are typically assigned

by experts in the field prior to model training (20, 21).

Involves tasks such as regression, classification,

predictive modeling, survival analysis (22, 23).

Unsupervised No labeled outcome data. We observe similarities,

relationships, and if possible causality among groups and

variables (20, 21).

Used for tasks such as dimensionality reduction,

clustering, feature extraction (24).

Semi-supervised The input data contains both labeled and unlabeled outcome

data (20, 21).

Labeled data is used to identify specific groups in data

and their parameters. These data are then inputted to

the algorithm along unlabeled data to explore the

boundaries of the parameters (22, 23).

Reinforcement Based on behavioral psychology. The learning agent interacts

with the environment to maximize a reward, and updates its

parameters based on the feedback it receives from the

choices it makes. The learning stops when the “reward”

criteria are met to handle a decision-making function (25).

Can be used in medical imaging analytics and

personalized prescription selection. Popular in

automated robotics (26).

of records, which are usually labeled by experts, and indicate
the presence or absence of decreased systolic function on an
echocardiogram or atrial fibrillation (AF) on an ECG (27).
Regarding the model training, appropriate data preprocessing is
typically done prior to separating data into distinct partitions
of training, validation, and testing. This separation ensures fair
and scientific evaluation and implementation of the model; while
the validation partition would be employed for hyper-parameter
selection of the model (e.g., numbers of layers in a DL network
or how long model training should go on), test data must be used
for final result reporting only.

Unsupervised learning, on the other hand, analyzes large
amounts of typically unlabeled samples (e.g., EHR) to discover
hidden patterns or innate structure which govern the existence of
that data in order to substantially improve experts’ understanding
of that data including their involved representing features (28).
In cardiology, for example, it has been shown that advanced

unsupervised models such as causal networks can evaluate causal
relationships among variables beyond partial correlations and
thus play a fundamental step in risk prediction of cardiovascular
disease (CVD) (29).

Semi-supervised models work with datasets that are partially
labeled. The labeling process of the unlabeled portion is
done with the available training portion or with the help of
unsupervised methods to do clustering first and then assign
labels based on the characteristics of the recognized clusters
(22). Generally, overfitting occurs when a supervised ML model
approximates the system by available data correctly (Figure 1),
but it is not able to produce proper results for verification or test
data. It is especially a major problem in tasks for which enough
labeled data is not available. Hence, semi-supervised learning can
be a very useful technique for (semi-)automatically annotating
lots of cases, e.g., to create a gold standard outcome label for
all patients, without which it could be very expensive (22).
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FIGURE 1 | Graphical representation of the decision boundary (red line) in an

optimal fitting (A) and overfitting model (B) overfitting describes a state of

model which has poor generalizability due to excessive fitting of noise data

presented in a training dataset.

Closely related to semi-supervised learning, transfer learning
is also another strategy to address overfitting. It is an ML
technique where a model developed for one task is reused as the
starting point for a model on a second task. For proper transfer
learning, however, the studied tasks should be conceptually
related [e.g., catheter segmentation in X-ray fluoroscopy using
synthetic data (30)].

Finally, reinforcement learning algorithms aim at maximizing
a “reward” function (26). Reinforcement learning algorithms
consist of an agent at a particular time interacting with an
environment. An action is selected for each time point according
to some selection policy. Transitions to the next state are then
performed, and a reward is received depending on the result of
the transition. The restricted learning model aims to maximize
the expectation of long-term rewards from each state visited.
In interventional cardiology, reinforcement learning can provide
tools to optimize sequences of decisions for long-term outcomes
such as improving ST-segment elevation myocardial infarction
outcomes or reducing errors in ECG diagnosis. Optimization of

treatment policies, real-time decisions and robot navigation are
some other applications of reinforcement learning (31, 32).

Deep learning is applicable to any of the above-mentionedML
categories. It refers to the use of deep artificial neural networks
to perform learning tasks. These networks are specific types of
ML models where the learning happens in successive layers in
such a way that each layer adds to the knowledge of the previous
layer (33). DL models are capable of selecting and representing
the right features on their own, thus eliminating the need
for human intervention for manual definition of classification
rules. For example, instead of defining that a ST elevation of
≥1mm corresponds to a STEMI, DL models could automatically
identify that the ST segment is the important feature, without
any human input, and use that to predict the STEMI diagnosis.
This revolutionary advancement in learning algorithms not only
saves human time and labor but also minimizes the possibility of
decision errors. For example, DL provided considerable advances
in computer vision, a subfield in ML that matured first around
2012 and became highly popular in health and medicine, as
they provide computers with the ability to learn visual features
automatically from image or video content to produce diagnostic
and prognostic information (34). It allowed automated analysis
and interpretation of images such as computed tomography
(CT), magnetic resonance imaging (MRI), electrocardiogram and
echocardiography (35–38).

For instance, assessment of coronary stenosis during
diagnostic coronary angiograms, one of the most commonly
performed interventional cardiology procedures worldwide, is
typically done using visual assessment. Thus, this method suffers
from high inter-observer variability, operator bias and poor
reproducibility (39–43). This variability in stenosis assessment
has significant clinical implications, and likely contributes to
inappropriate use of coronary artery bypass surgery in 17% of
patients and of stents in 10% patients (40). While quantitative
coronary angiography (QCA) using projection is able to validated
quantitative measurements in coronary angiograms (44, 45),
and is accepted as a gold standard for stenosis assessment, a
study assessing 10 different QCA systems against a phantom
stenosis gold-standard found absolute percentage differences
of −26% to +29% in coronary stenosis assessments between
systems and are semi-automatic, as they allow vessel contour
modification by the human expert, which can bias the results.
Deep learning algorithms can currently perform all tasks
required for automatic interpretation of coronary angiograms,
such as identification of left/right coronary arteries, anatomy
description, vessel segmentation, stenosis localization and
stenosis severity prediction leading to reduced variability and
higher standardization of diagnostic angiograms (46, 47).

MACHINE AND DEEP LEARNING FOR
CARDIOVASCULAR APPLICATIONS

Rather than a comprehensive review of all studies at the
intersection of interventional cardiology and AI, this section
aims at giving practitioners and researchers in interventional
cardiology an overview of the past and recent state-of-the-art
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of ML algorithms and DL architectures, as well as examples of
their cardiovascular applications (Table 2). For an all-embracing
review of ML and DL approaches applied to cardiology, an
avid reader may refer to more exhaustive review papers by
Krittanawong et al. (38), Sardar et al. (7), Savakula et al. (82),
Bizopoulos and Koutsouris (83), Cuocolo et al. (64), Siegersma
et al. (84), Ribeiro et al. (85), and Quer et al. (86).

Decision Trees (DT) are interpretable supervised learning
techniques that can be used for classification or regression (87).
They are tree-structured models, where internal nodes represent
the features of a dataset, branches represent the learned decision
rules, and each leaf node represents the outcome. Random
Forests (RF) are an ensemble learning method that operates by
constructing a multitude of decision trees at training time to
correct for overfitting. Other ensembles of trees such as gradient
boosted trees, including LogitBoost (88) and XGBoost (89),
address the same drawback.

Ambale-Venkatesh et al. tested the ability of RF, to predict
several cardiovascular outcomes, including coronary heart
and atherosclerotic cardiovascular diseases, in comparison
to standard cardiovascular risk scores from clinical, ECG,
imaging, and biomarker data (15). They showed the RF
technique performed better than established risk scores with
high prediction accuracy. Mortazavi et al. and Frizzell et al.
worked with clinical data from the index admission, and showed
RF methods improved the prediction of readmission after
hospitalization for heart failure when compared with logistic
regression (LR) and provided the greatest predictive range in
observed readmission rates (49, 50). In another application,
Motwani et al. investigated the feasibility and accuracy
of iterative LogitBoost to predict 5-year all-cause mortality
(ACM) in patients undergoing coronary computed tomographic
angiography (CCTA) and compared the performance to existing
clinical or CCTA metrics (48). They showed combining clinical
and CCTA data was found to predict 5-year ACM significantly
better than existing clinical or CCTA metrics alone.

Risk stratification and prognosis prediction are critical in
identifying high-risk patients and decision making for the
treatment of patients with acute myocardial infarction (AMI).
Long-existing MI risk scoring systems including TIMI (90),
GRACE (91), and ACTION (92) are based on conventional
statistical methods, so there is a possibility of a loss of important
information. Hence, Khera et al. with the help of the XGBoost
model showed an accurate prediction of risk of death following
AMI can guide the triage of care services and shared decision-
making (51). They studied patients in the Cardiology Chest Pain-
MI Registry hospitalized with AMI and discussed contemporary
ML may improve risk prediction by identifying complex
relationships between predictors and outcomes. The employed
registry data included patient demographics, presentation
information, pre-hospital vital signs, selected laboratory data
from the hospital course, procedures, timing of procedures, and
select in-hospital outcomes. Using the XGBoost model also,
Rosendael et al. demonstrated an ML-based risk score that
utilized standard 16 coronary segment stenosis and composition
information derived from detailed CCTA reading had greater
prognostic accuracy than current CCTA integrated risk scores

(52). They suggested ML-based algorithms can improve the
integration of CCTA derived plaque information to improve risk
stratification. Similarly, machine learning has been used in small
datasets to improve in-stent restenosis over conventional risk
scores such as PRESTO-1, PRESTO-2, EVENt and GRACIA-3
(93, 94).

Support Vector Machines (SVM) are popular supervised
learning algorithms, which are used for classification and
regression problems (95). The goal of the SVM algorithm is to
create the best line or decision boundary (or hyperplane) that
can segregate high-dimensional space into classes so that we can
easily put the new data point in the correct category in the future.
SVM chooses the extreme points, i.e., support vectors, that help
in creating the hyperplane. Moghaddasi and Nourian have used
SVM in the context of Mitral Regurgitation (MR), a common
heart disease that does not cause symptoms until its end-stage
(53). Early diagnosis of MR is however of crucial importance in
the treatment process, and their SVMmodel with the radial basis
function (RBF) kernel function can differentiate between the
four groups of Normal, Mild MR, Moderate MR and Severe MR
subjects among echocardiography videos. Transcatheter aortic
valve implantation (TAVI) has become a commonly applied
procedure for high-risk aortic valve stenosis patients. However,
for some patients, this procedure does not result in the expected
benefits. Lopes et al. demonstrated the accuracy of various
traditional ML algorithms, including SVM, RF and XGBoost, in
the prediction of TAVI outcomes (54).

Regularized Regression is a type of linear regression where
the high-magnitude coefficient estimates are penalized (or
regularized) to be small. The regularization methods provide
a mean to control the regression coefficients (or weights) in
datasets containing a large number of features; this can reduce
the variance and decrease the out-of-sample error. Therefore,
by appropriate choice of penalizing weights the model prevents
overfitting to the training data. Two commonly used types
of regularized regression methods are ridge regression (96)
and lasso regression (97). Buccheri et al. developed a lasso-
penalized Cox-proportional hazard regression model to identify
independent predictors of 1-year all-cause mortality, in patients
who undergo MitraClip implantation (55). In another study,
Wang et al. proposed new variable selection methods for
Poisson and naive Bayes regression and used plasma and urine
biomarkers to help with early identification and prediction
of adverse clinical outcomes after pediatric cardiac surgery
(56). They discovered that early postoperative urine biomarkers
independently predict prolonged hospital length of stay (LOS).

K-Means Clustering is an unsupervised learning algorithm
that groups the unlabeled dataset into different clusters (98). A
point is considered to be in a particular cluster if it is closer to
that cluster’s centroid than any other centroid. K-Means finds
the best centroids by alternating between assigning data points
to clusters based on the current centroids and choosing centroids
based on the current assignment of data points to clusters.
Mehta et al. proposed clustering algorithms could be used for the
detection of QRS-complexes, the prominent feature of the ECG
(57). In their study, the K-Means algorithm was used to separate
QRS and non-QRS-region in the ECG signal. The onsets and
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TABLE 2 | Algorithmic overview with prominent examples of implementation in cardiology.

Type of algorithm Functioning Advantages Drawbacks Implementation

SUPERVISED lEARNING

Decision trees, random forest, boosting Decision trees are

flowchart-type algorithms.

Each variable is a

condition on which the

tree splits into branches,

until the outcome “leaf.”

Random forest and

boosting are it’s

derivatives.

Interpretability. Integrated feature

selection. No preprocessing.

Handles non-linear relationships.

Requires less data than

neural networks.

Computationally expensive. Can overfit or

create biased trees in case of unbalanced

outcome classes.

Long-term cardiovascular outcomes prediction

from clinical, ECG, imaging, biomarker data (15)

5-year mortality prediction from clinical and

coronary CT data (48)

30-day readmission after heart failure

hospitalization (49, 50)

In-hospital mortality prediction after acute

myocardial infarction (51)

Long-term death or myocardial infarction

prediction from coronary CT data (52)

Support vector machine Builds a hyperplane in a

high-dimensional space to

separate the data into 2

outcome categories with

the maximum margin.

Can integrate many sparse features,

limits overfitting and is

computationally effective

Needs preprocessing. Limited interpretability Automated echocardiographic assessment of

mitral regurgitation (53)

Mortality prediction of TAVI outcomes (54)

Regularized regression Type of regression where

coefficient estimates are

constrained by penalty

terms (ex: LASSO, ridge)

Familiar interpretations for

association of variables to outcomes

applied to high-dimensional data

Variable pre-selection is often advisable.

Performance stalls for very

high-dimensional data

1-year mortality predictors after MitraClip

implantation (55)

Identification and prediction of adverse clinical

outcomes after pediatric cardiac surgery (56)

(Continued)
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TABLE 2 | Continued

Type of algorithm Functioning Advantages Drawbacks Implementation

UNSUPERVISED LEARNING

K-mean clustering Assigns each data point

to a cluster (group; with k

the number of groups)

based on its distance from

the other points

Easy to implementent.

Computationally fast.

Number of groups must be known or

assigned.

Separate QRS and non-QRS-region in the ECG

signal (57)

Principal component analysis Uses orthogonal

transformation to convert

possibly correlated

variables into a set of

linearly uncorrelated

principal components.

Can be used for dimensionality

reduction.

Only captures linear relationships. Limited

interpretability

MACE prediction from clinical and biomarker

data representing metabolic syndrome (58)

Evaluating 3D aortic shape and

hemodynamics (59)

SHALLOW NEURAL NETWORKS AND DEEP LEARNING (MAINLY USED FOR SUPERVISED LEARNING)

Shallow neural networks A set of nodes (“neurons”)

is arranged in layers

connected by edges

(weights). The network

connects input data to the

outcome to predict

through a paralleled set of

parameterized non-

linear transformations.

Can explore non-linear relationships

(often encountered in real-life

datasets) as well as linear ones. NN

can handle heteroskedasticity, have

been praised for the generalizability

of the trained models, and are

computationally effective. Flexible.

Variable pre-selection is often advisable.

Needs variable pre-processing.

Diagnosis of coronary artery disease from

myocardial perfusion scintigraphy (60)

(Continued)
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TABLE 2 | Continued

Type of algorithm Functioning Advantages Drawbacks Implementation

Deep fully connected neural network An extension of the

shallow NN architecture,

but that uses many hidden

layers (layers between

input and output). Weights

and biases of the NN are

trained via

back-propagation.

Performance increases with the

quantity of data. Surpass other

machine learning methods for very

high-dimensional data. Flexible

architecture and basis of CNN, RNN

Requires a high quantity of data. Can easily

overfit. Low interpretability Sensible to

changes in input data.

Mortality, readmission, LOS and diagnosis

prediction from EHR (13)

Mid-term mortality prediction from EHR (14)

Computation of Fractional Flow Reserve (FFR)

from Coronary Computed Tomography (18, 19)

Risk stratification for mortality of AMI patients (61)

Convolutional neural network Type of NN which learns

multiple levels of feature

sets at different levels of

abstraction.

One of the most popular deep

learning architectures. Flexible.

Optimal for image classification.

Requires a high quantity of data. Can easily

overfit. Low interpretability

3D aortic valve annulus planimetry in TAVI (62)

TTE view identification from images (63)

Popular for automated heart chamber

segmentation and measurement (64)

Early Detection of STEMI (65)

Recurrent neural network Type of NN which

encodes sequential data

by capturing context into

memory.

Adapted for natural language

processing, text or video, genetic

sequences or any other temporal

data (66–69).

Computationally expensive. Limited quantity

of encodable data.

EHR text data extraction for mortality prediction

in congenital heart disease (70)

Diabetes, high cholesterol, high BP, and sleep

apnoea prediction using sensor data (71)

Automated selection of myocardial inversion

time (72)

UNSUPERVISED DEEP LEARNING

Autoencoder Encodes the most

valuable unlabeled inputs

into short codes, then

uses those to reconstruct

the original input as

output.

Dimensionality reduction. Optimal for

denoising filtering, image

segmentation (73).

Low interpretability MRI-extracted cardiac motion model denoising

for survival prediction (74)

U-Net for the segmentation of major vessels in

X-ray coronary angiography (75)

(Continued)
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TABLE 2 | Continued

Type of algorithm Functioning Advantages Drawbacks Implementation

Deep generative models Model a distribution that is

as similar as possible to

the true data distribution

with the help of GANs or

VAEs

Data augmentation and preserving

data privacy with the help of

synthetic data samples. Domain

translation and domain adaptation.

Content and style matching using

adversarial inference (76, 77).

Could be computationally expensive. The

models are still in the stage of getting mature

for high-fidelity data sample generation. Lack

of stability at training time.

Noise reduction in low-dose CT (78)

GANs for multiphase coronary CT angiography

(25)

Synthetic electrocardiogram generation (79)

REINFORCEMENT LEARNING

Deep reinforcement learning RL learns how to

maximize a reward

function by exploring the

actions available from

certain states. A deep RL

agent tests an action to

see what reward will be

returned by the

environment in which it

acts.

Besides robotic assistance, potential

applications include: microbots that

can travel through blood vessels to

deliver medications; interventional

training simulator and

tele-intervention (7).

Still in the state of infancy. Complexity and

cost. Not preferable to use for solving simple

problems. Huge training data demand.

The control of an electrophysiology catheter by

robots (32)

Robotic-PCI reducing contact with COVID-19

patients undergoing PCI (80, 81)

AMI, acute myocardial infarction; EHR, electronic healthcare records; LASSO, least absolute shrinkage and selection operator; MACE, major adverse cardiovascular event; NN, neural network; CV, cardiovascular; MRI, magnetic

resonance imaging; ECG, electrocardiogram; BP, blood pressure; CT, computed tomography; TAVI, transcatheter aortic valve implantation; PCI, percutaneous coronary intervention; VAE, variational autoencoders; GAN, generative

adversarial networks; RL, reinforcement learning; STEMI, ST-segment elevation myocardial infarction.
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offsets of the detected QRS-complexes were found well within the
tolerance limits.

Principal Component Analysis (PCA) is another popular
unsupervised learning algorithm that is used for dimensionality
reduction, exploratory data analysis and predictive modeling
(99). Agarwal et al. used PCA to derive a continuous measure
of metabolic syndrome-based on the multiple interrelated risk
factors (58). This metabolic syndrome score was a better
predictor of CVD events in multiethnic cohorts than the
National Cholesterol Education Program (NCEP) definition,
derived predominantly from populations of European ancestry.
Quail et al. in their studies evaluated 3D aortic shape and
hemodynamics using principal PCA, proposed as an important
determinant of adverse hemodynamics following coarctation
repair (59). They concluded that shape is not the major
determinant of vascular load following coarctation repair, and
that caliber is more important than curvature.

Artificial neural networks are ML models that consist of
an architecture of intertwined nodes (“neurons”) and edges
regrouped in hidden layers connecting the input data and
the outputted prediction. Whenever several hidden layers of
neurons are used, the model can be described as a deep neural
network (DNN), in which millions of connections can be trained
in parallel. These algorithms can learn complex non-linear
functions to minimize the classification error. We will detail the
different DNNmodel architectures below.

Shallow Neural Networks are predecessors of DL. In contrast
to deep neural networks, shallow neural networks generally
use predefined features, a characteristic that they share with
traditional ML algorithms. A study by Guner et al. developed
and analyzed an open-source artificial intelligence program built
on shallow artificial neural networks that can participate in and
support the decision making of nuclear medicine physicians
in detecting coronary artery disease (CAD) from myocardial
perfusion SPECT (MPS) (60).

Deep Fully Connected Neural Networks (FNN) are networks
that consist of multiple perceptrons (i.e., linear binary classifiers)
stacked in width and depth. In FNN, every unit in each layer
is connected to every unit in the layers immediately before and
after. Rajkomar et al. proposed a representation of patients’ entire
raw EHR records based on the Fast Healthcare Interoperability
Resources (FHIR) format (13). They demonstrated that FNN
models using this EHR representation were capable of accurately
predicting multiple medical events frommultiple centers without
site-specific data harmonization. Their models achieved high
accuracy for tasks such as predicting in-hospital mortality, 30-day
unplanned readmission, LOS, and all of a patient’s final discharge
diagnoses. In the context of palliative care services, Avati et al.
proposed an interpretable FNN model trained on the EHR data
from previous years, to predict all-cause 3–12 month mortality of
patients, as a proxy for patients that could benefit from palliative
care (14). Their predictions enabled a palliative care team to take
a proactive approach in reaching out to such patients, rather
than relying on referrals from treating physicians or conducting
time-consuming chart reviews of all patients.

Recently, physics-based models such as computational fluid
dynamics (CFD) have shown great promise in being able to

non-invasively estimate FFR from patient-specific anatomical
information, e.g., obtained from computed tomography scans of
the heart and the coronary arteries (100, 101). However, these
models have high computational demand, limiting their clinical
adoption. Itu et al. developed a FNN for predicting FFR, speeding
up physics-based approaches (18). Themodel is trained on a large
database of synthetically generated coronary anatomies, using the
physics-based model. They showed that the correlation between
ML and physics-based predictions was significant and without
systematic bias. Coronary computed tomographic angiography
is another reliable modality to detect coronary artery disease.
In their study, Coenen et al. showed that on-site CT-fractional
flow reserve (CT-FFR) improves the performance of CCTA by
correctly reclassifying hemodynamically nonsignificant stenosis
(19). Their DNN model performs equally well as computational
fluid dynamics-based CT-FFR. Kwon et al. developed an FNN
risk stratification model that predicted the in-hospital mortality
and 12-month mortality of AMI patients more accurately than
the existing risk scores and other ML methods including RF
(61). In their model, they used the demographic information and
laboratory data of AMI patients as the predictor variables. Such
models could be improved by adding more modalities to the
input data (e.g., text in EHR and images of CT) as discussed in
a study by Myers et al. (102).

Convolutional Neural Networks (CNN), widely used in
computer vision, consist of a convolutional and pooling part,
where hierarchical feature extraction takes place, and a fully
connected part for classification or regression. The models can
recognize low-level features, such as edges and corners, and high-
level features such as parts of objects thanks to convolutional
layers that are much better feature optimizers, while fully
connected layers are good classifiers. In TAVI procedures, the
sizing of devices is done from ECG-gated CT angiographic
image volumes. The most crucial step of the analysis is the
determination of the aortic valve annular plane. Theriault-
Lauzier et al. developed an expert-level CNN to infer the
location and orientation of the aortic valve annular plane
(62). Madani et al. investigated the application of CNNs to
echocardiography view classification that classified 15 major
transthoracic echocardiograms (TTE) views with expert-level
quality (63). They used a training set that reflected a wide
range of clinical and physiological variations, demonstrating
applicability to real-world data. They found that the model
used some of the same features in echocardiograms that human
experts use to make their decisions. CNNs were also used to fully
interpret echocardiograms and diagnose certain diseases with a
high level of accuracies such as hypertrophic cardiomyopathy or
pulmonary hypertension. Thesemodels usually use a single frame
to predict the corresponding view or measurement. Recently,
video-based AI was used for analyzing a whole echocardiogram
video to better predict cardiac function (103). CNNs were also
employed for the segmentation of the heart chamber in a work by
Cuocolo et al. (64). Segmentation of heart regions in advance can
help the subsequent problems in hand. For example, as discussed
in their study, segmentation of the epicardium and endocardium
from the left ventricle can be important for the assessment of
the cardiovascular system function (e.g., hypertrophy vs. normal
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cases). Most importantly, CNNs can also be used to predict new
diseases that were previously not possible. Recently, a CNN was
used to derive a digital biomarker that can detect diabetes using
a photoplethysmography signal, which is traditionally used for
pulse oximetry or for heart rate measurements (104). Such novel
digital biomarkers could be derived using data readily available
in interventional cardiology, such as coronary angiograms, to
predict device failures or certain conditions such as spontaneous
coronary artery dissection.

Recurrent Neural Networks (RNN) are ideal for time-series
or sequential data. These networks consist of feedback loops, so
they can use their internal state to process the input. To estimate
prognosis in a large cohort of patients with adult congenital
heart disease (ACHD) or pulmonary hypertension, Diller et al.
designed an RNNs model that categorized diagnosis and disease
stages with high accuracies (70). Ballinger et al., proposed a semi-
supervised sequence learning for cardiovascular risk prediction,
the DeepHeart model (71). They demonstrated their multi-task
RNN model outperforms hand-engineered biomarkers from the
medical literature.Working with off-the-shelf wearable heart rate
sensors, they suggested that methods such as theirs could help
with patient risk stratification based on cardiovascular risk scores
derived from popular wearables such as Fitbit, Apple Watch, or
Android Wear.

Delayed myocardial enhancement imaging is an essential
component of cardiac MRI, which is used widely for the
evaluation of myocardial scar and viability (105). The selection
of optimal inversion time or null point to suppress the
background myocardial signal is required. In their study,
Bahrami et al. showed that merging the spatial and temporal
characteristics of CNN and LSTM was capable of automated
prediction of myocardial inversion time from an inversion-
recovery experiment (72). In clinical practice, early ST-segment
elevation myocardial infarction (STEMI) detection is of great
clinical significance because the very early stages of STEMI are
the most vulnerable periods during which most sudden cardiac
deaths occur (106); hence, an accurate and efficient warning
system based on an ECG can help with patient delay. Zhao
et al. proposed a CNN trained on 12-lead ECG that outperforms
clinicians in early detection of STEMI (65). They also argue ML-
based algorithms have the potential to empower a wide range
of physicians to more accurately diagnose STEMI on ECG and
reduce the inappropriate activation of catheter labs.

Autoencoders (AE) are neural networks that are trained
with the objective to reconstruct the output from the input by
encoding useful properties of the data. It usually consists of an
encoding part that downsamples the input down to a linear
feature and a decoding part that up-samples this representation
back to the original dimensions. In a human survival prediction
study, Bello et al. used image sequences of the heart acquired
using cardiac MRI, to create time-resolved three-dimensional
segmentation using a network trained on anatomical shape priors
(74). This dense motion model formed the input to a supervised
denoising autoencoder, a special AE that randomly turns some
input values to zero to prevent overfitting.

U-Net is a modification of the convolutional autoencoders,
i.e., encoder-decoder, architecture, first introduced by

Ronneberger et al. for medical image segmentation (107).
U-Net incorporates additional links between the encoder layers
and the decoder layers of the network, resulting in a U-shape
structure (107). Although quantitative coronary angiography
(QCA) provides morphological information of coronary arteries
with objective quantitative measures, considerable training is
required to identify the target vessels and understand the tree
structure of coronary arteries. Yang et al. proposed a robust
method for major vessel segmentation using an adjusted U-Net
network (75). Even though the model is evaluated intrinsically
with the help of segmentation labels, the same model could
be extrinsically used and evaluated by replacing traditional
segmentation methods in coronary catheterization for prediction
of FFR in intermediate coronary artery lesions (108).

Deep Reinforcement Learning (DRL) uses deep learning and
reinforcement learning principles to create efficient algorithms
applied to areas such as robotics, natural language processing,
computer vision and healthcare. Implementing deep learning
architectures with reinforcement learning algorithms is capable
of scaling to previously unsolvable problems (25). In a recent
work by You et al., a robot was developed to reduce the
radiation exposure of personnel during an interventional
procedure for arrhythmia (32). Experiments on the control of
an electrophysiology catheter by robots were conducted. Using
the DRL, they showed that such a robot learned to manipulate
a catheter to reach a target in a simulated environment and
subsequently control a catheter in an actual environment.
Additionally, several studies evaluated the feasibility and
technical success of reinforcement learning-based R-PCI for the
treatment of CAD in clinical practice when compared with
manual PCI (8, 109). As a vivid recent example, to minimize
the risk of exposure to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and reduce personal protective
equipment needed by the procedural team during the COVID-
19 pandemic, studies by Tabaza et al. and Virk et al. showed
R-PCI could help to reduce contact with COVID-19 patients
undergoing PCI (80, 81).

Deep Generative Models (DGM) are powerful ways of
learning any kind of data distribution using unsupervised
learning. Since it is not always possible to learn the exact
distribution of the data, DGMs try to model a distribution that
is as similar as possible to the true data distribution. Two of
the most commonly used and relatively efficient approaches
are Variational Autoencoders (110) (VAE) and Generative
Adversarial Networks (111) (GAN). Considering that advanced
image reconstruction from low-dose CT data is needed to
improve the diagnostic performance, which is a challenging
problem due to its ill-posed nature, Wolterink et al. used a
GAN to transform low-dose cardiac CT images into routine-
dose CT images (78). In another study, Kang et al. trained a
GAN to reduce noise in CCTA images (112). Their proposed
unsupervised network learns the image distributions from the
routine-dose cardiac phases by eliminating the need to exactly
matched low- and routine- dose CT images. A hybrid DL
architecture developed by Zhu et al. showed that an LSTM-
CNN GAN could generate ECG data with high morphological
similarity to real ECG recordings (79). This is of interest, as
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such an approach could be used to generate a large dataset of
ST segment elevation ECGs for training an algorithm that would
identified STEMIs due to obstructive CAD vs. non-obstructive
disease (pericarditis, for example).

IMPLEMENTATION OF MACHINE
LEARNING AND ITS CHALLENGES

AI in the Real World
Since data-driven AI is different from traditional rule-based
systems and medical devices it demands adequate control to
ensure its safety and effectiveness. Also, because these differences
will not be the same for the full range of systems, it is important
to identify what aspects of AI are of concern (113). The
safety and effectiveness of medical devices entering the market
today are governed by regulations and private-sector consensus
standards.Whereas, inmost cases, they were developed alongside
current technologies and are based on an extensive, shared
understanding of how and howwell they work.With an emergent
technology like AI, real-world experience is limited, which can
hinder regulators and practitioners’ ability to fully assess its
effectiveness. Similarly, a lack of real-world experience with AI
limits the understanding of its associated risks. AI-related risks
are harder to quantify and mitigate as there may be unforeseeable
and unpredictable hazards arising from the unique nature or
function of AI. This is particularly important in raw health
data that generally lack maintenance and validation and raise
important interoperability problems (113, 114). AI may became
untrustworthy also because data was not representative or not
fit for the task to which it was applied. The availability of data
is essential as a source of information for training AI systems,
but it is also a source of noise, especially when data quality is
poor, labeling is inconsistent, or sampling is biased. Iterative
preprocessing of data must be done before it is considered to
be of adequate quality for downstream ML tasks, such that
quality management of data is understood as an important
issue by AI practitioners. Recently, there is a push toward a
more data-centric approach to ML to increase accuracy based
on improving the datasets (115), in contrast to the widespread
model-centric approach that focuses on changing the model to
improve performance. Improving the quality of a dataset does
not necessarily mean increasing dataset size, it can be achieved by
fixing incorrect labels, adding examples that represent edge cases,
or apply data augmentation.

Furthermore, the nature of the application either rule-based,
data-driven locked (i.e., non-adaptive through time), or data-
driven while continuously learning (i.e., life-long learning), as
well as the context of application which can be informative
or provide decision support with or without a human in the
loop play major roles (113). Given that AI or data has the
ability to change over time, the processes of verification and
validation cannot be a onetime premarket activity, but instead
must continue over the life cycle of an AI system from the
initial design and clinical substantiation, across its post market
use, until decommissioning. Such life cycle consists of data
quality assurance, pre-market risk management and assurance

of effectiveness, pre-specification and algorithm change, and
real-word performance monitoring. Continual assurance of the
AI-based device’s safety and performance across its life cycle
will help regulators, clinicians, and patients gain trust in data-
driven AI. To this end, a recent initiative by a group of
medical device regulators from several countries, including Food
and Drug Administration (FDA) from USA, has established
International Medical Device Regulators Forum (IMDRF) to
harmonize the regulatory requirements for medical products
under a notion named Software as a Medical Device (SaMD)
(116). The FDA’s Center for Devices and Radiological Health
(CDRH) is also considering a total product life-cycle-based
regulatory framework for these technologies that would allow
for modifications to be made from real-world learning and
adaptation, while ensuring that the safety and effectiveness of the
software as a medical device are maintained (117). As further
advancements are made in AI technology, regulators will need
to consider additional approaches for addressing the safety and
effectiveness of AI in healthcare, including how international
standards and other best practices are currently used to support
the regulation of medical software, along with differences and
gaps that will need to be addressed for AI solutions. One
key aspect will be the need to generate real-world clinical
evidence for AI systems throughout their life cycles, and the
potential for additional clinical evidence to support adaptive
systems. Next to AI systems themselves, regulators must also
consider that there are ethical, social and political challenges
comprising issues regarding trust, liability, privacy and risk
(118). These complexities of applications of AI require further
reflection, proof of their medical utility, economic valuing,
and development of interdisciplinary strategies for their wider
application (119).

Last but not least, the capacity of complex decision-making
in interventional cardiology or in performing a procedure
independently would be very challenging for current AI and ML
algorithms. Understandably, by considering the speed of progress
and development, AI technologies could not completely replace
human interventional cardiologists in the foreseeable future. It
can be easily anticipated, however, that AI will widely assist
rather than replace the human operator in the catheterization
laboratory. Hence, the reception and integration of AI in a
specialty which needs quick decision-making by the operator
should be discussed and practiced prior to the actual deployment
of innovations brought by ML and DL models.

Domain Expertise
Beyond AI algorithm development, several additional issues
should be tackled before implementing AI into clinical
practice (86). First, domain-experts, such as cardiologists should
collaborate with data scientists an AI engineers in order to jointly
develop AI algorithms that is as bias free as possible, respects
the regulatory framework for development and addresses a
clinically relevant need (86, 120). By addressing accurate and
reliable implementation of ML and DL algorithms in cardiology,
the Proposed Requirements for Cardiovascular Imaging-Related
Machine Learning Evaluation (PRIME) checklist provided by
Sengupta et al. lays down seven items to be reported for reducing
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algorithmic errors and biases aiming to standardize reporting
on model design, data, selection, assessment, evaluation,
replicability, and limitations (121). Next, clinical trials need to
be conducted to demonstrate that such algorithms are positively
influencing morbidity, mortality or healthcare delivery. The
SPIRIT-AI and CONSORT-AI working groups have put forward
guidelines for clinical trials for interventions involving AI and
represent a framework by which to conduct and report such
trials (122, 123). It is crucial to perform extensive external
validation on multiple datasets to demonstrate the algorithm’s
robustness. Finally, once the algorithm is found to positively
influence healthcare, further real-world quality control must be
conducted to assure that the algorithm is providing accurate
predictions and that its performance does not deteriorate over
time. This could be done by routinely collecting feedback on
the predictions from the domain-experts. Further, continuous
learning of AI Algorithms, post-commercialization, to improve
predictions on reported errors and to adapt to new data, remains
an area of active research.

Large electronic healthcare databases (LEHD) are being
built from electronic health records and already used by
several countries to implement AI in healthcare (124, 125).
Some prominent examples of such databases are the UK
Biobank (UK), Million Veterans Initiative (USA), NIH precision
medicine initiative (USA), large Scandinavian national registries
in Denmark, Sweden, and Norway. If dispersed big data
are to disrupt current research models then there is a need
for searchable catalogs of data, metadata, feasibility counts
(and ideally sample data) and access arrangements. The
creation of public, standards-driven metadata and data portals
can assist researchers in locating the right dataset for their
research question and obtaining up to date details on data
availability and accessibility. Moreover, contemporary LEHD
often contain multi-omics data (transcriptomics, genomics,
proteomics, metabolomics, microbiomics, radiomics) intended
for deep phenotyping of patients (126, 127). However, the size
does not always ensure the precision of the model built, nor
that the intent of improving care for all people is met. What
is more, further progress in automation of data harvesting and
inter-database harmonization (e.g., EHR and national statistical
organisms which record vital status) would facilitate the
construction of high-quality high-dimensional databases (128).

Underspecification
As stated above, the quality of the training samples provided
to an ML algorithm is of central importance in data-driven
AI. This is because ML models often exhibit unexpectedly
poor behavior when they are deployed in real-world domains
due to underspecification (129). An ML or DL pipeline
could be underspecified when it returns many predictors (e.g.,
several predictive models with distinct and dissimilar weights)
with equivalently strong held-out performance in the training
domain yet these models perform significantly different when
generalized, therefore questioning the credibility of the predictors
in practice. For many medical applications, a key challenge
is the robustness of the ML model under the distribution
shift of data in the deployment domain, and as a result,

several studies confirm the need for explicitly testing and
monitoring ML models in settings that accurately represent the
deployment domain (122, 123, 130). In addition, heterogeneity
in the representation of different ethnicities, gender inequalities,
socioeconomic status, geography in datasets could generate
biased estimations and automate inequalities (131). Therefore,
to address underspecification, next to improving the training
and testing process, and also considering multiple ML models
as alternatives at deployment time, limiting model complexity
as well as designing stress tests to probe stratified performance
evaluations, shifted evaluations, and contrastive evaluations
should be considered (129).

Despite their performance, expecting to achieve perfect
prediction with DL models is probably vain. The chaos theory
states that even with a deterministic (non-random) process, even
simple non-linear systems cannot be precisely predicted into the
distant future (11, 132). Conventional statistical approaches often
use a standardized stepwise approach. After univariate feature
analysis, a model is selected and uses cohorts with manually
entered structured databases. This differs from the machine
learning approach which tends to avoid model selection and uses
“fuzzier” emerging sources of data that are more prone to contain
some quantity of bias (11, 70). Without appropriate oversight,
ML models can easily overfit in noisy datasets, impairing their
capacity to generalize to new data due to over-interpretation
of noise (Figure 1). This is particularly true when the number
of examples (patients) are limited compared to the number of
variables measured for each patient or when the outcome of
interest is of rare occurrence, which is often the case in some
present-day medical applications. Besides, building predictive
models is inherently based on past events, and the future will not
necessarily resemble the past, nor will they necessarily perform
well on a population different from the one represented in
the training cohort (11). Numerous teams have successfully
applied DL algorithms to yield high-performance predictive
models through the mining of EHR with the idea of assisting
doctors through decision-support algorithms by combining all
the available information, irrespective of their time of occurrence
(11, 13, 14, 35). However, for decision-support algorithms to
be implemented in clinical practice, we would expect them to
be accurate and pertinent at the time the decision is taken,
without assuming to know everything in advance (Figure 2) as
developed by Diller et al. to guide therapy in adult congenital
heart disease (70).

Overfitting and Interpretability
Despite ML models being theoretically superior to usual
statistical models in terms of predictive power (15, 133), their
practical use must also be rigorous along with its reporting and
reviewing (134). Furthermore, the computationally demanding
DL algorithms also require efficient programming libraries (such
as PyTorch and TensorFlow), and specific hardware (such as
Graphics or Tensor Processing Unit instead of the usual Central
Processing Unit). Additionally, all ML and DL models may
suffer from overfitting if data is limited and/or algorithms are
complex. Indeed, in clinical studies, DL provided similar results
to statistical models (e.g., logistic regression) (38). Transfer
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FIGURE 2 | Domains of implementation of machine learning tools to cardiology.

learning, data augmentation with the help of deep generative
models, as well as integration of different data sources can
be solutions to overfitting problems, but in some cases the
curse of dimensionality will prevent some types of analyses on
small datasets. Future studies may integrate DL with statistical
classification. Furthermore, doctors and patients would also need
to understand the exact reasons that led to a medical decision.
However, evaluating ML model decisions can be a very difficult
task. Once a model is trained, it requires additional approaches
to understand the reason behind a particular prediction to a set
of data inputs (135). In particular, the numerous intertwined
relationships captured by the layers of a DNN are only partially
understood, leading to being frequently labeled as “black boxes,”
and the observed trade-off between accuracy and interpretability
of machine learning models (136). Explaining single predictions
or the entire model behavior of DNNs is important to correct
their malfunctions, bias, and susceptibility to slight modifications
of analyzed data (137). Interpretability may be enabled by
capsule based networks or strategies that systematically censor
inputs to define those that most affect classification. Meta-
analyses of several DL algorithms applied to the same data may
increase confidence in results. A number of techniques may
enable “model-agnostic” metrics for interpretability of complex
models (138). Marblestone et al. (139) hypothesized analogies
between DL and human cognitive functioning, proposing that
integrating heterogeneous “cost functions” over time may

simplify learning. Thus, speculatively, insights into human
cognition may ultimately provide insights to interpret DL
models. Encouragingly, much research is ongoing aiming at
improving our understanding of ML and DL models (140).

Missing Data
Similar to statistical tasks, the performance of DL can be highly
sensitive to missing data as well. Missing data is a common
problem in routine medical records, hence, measures of data
management and pre-processing should be addressed in line
with the extra complexity they impose on the robustness ML
(141, 142). Decisions on how to treat missing data can be made
by evaluating if the presence or absence of specific elements
correlates with desired outcomes or predictors. Those data that
are correlated are “non-ignorable,” those that are not correlated
may be “ignorable” (i.e., no relationship to any variables) (143).
Additionally, instead of omitting patients with missing data, it
is ideal to impute missing data points to obtain more patients
for training process and ML analysis. Using k-nearest neighbor
(k-NN) to fill in missing values of a data point with the closest
known ones, or simply relying on mean or most frequent
values of variables to fill in missing positions are standard
approaches. Another popular method for imputing missing
values is called “multiple imputation using chained equations”
(MICE) (144). MICE statistically measures the uncertainty of
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the missing values and is able to impute different variable
types (i.e., continuous, unordered and ordered categorical, etc.)
that may reside in the medical records while each variable is
imputed by its own model. Another frequently used imputation
technique in mixed data is the “factor analysis of mixed data”
(FAMD) algorithm (145). FAMD is a principal component
method which balances the influence of all the variables that
are continuous and categorical in the construction phase of the
dimensions. MICE and FAMD, however, are computationally
intensive making them suboptimal for pre-processing steps in
DL models. Hence, designing strategies, developing imputation
algorithms, and their suitable evaluation for realistic settings of
medical domain are of great importance. While still an active
area of research, many studies have already shown desirable
imputation results obtained by autoencoders models such as
denoising autoencoders (146, 147).

ETHICAL ISSUES: PATIENT DATA MISUSE
MUST BE AVOIDED

A current worrying tendency to exploit patient data for
financial purposes must be acknowledged, discussed, and
acted upon. A Dutch startup CathSuite aims to automatically
extract patient information from various catheterization
laboratory report sources and hospitals, and store it in
a standardized form, notably on mobile phones. Among
their intended purposes of data use is research, but also
monetization through contracts with insurance companies
(148). It is appropriate that patient data is extracted with
their consent for research purposes that will aim at improving
healthcare. However, it is hardly conceivable that patient
data could be exploited for private company financial gains,
at the detriment of the patient, by sharing their data with
insurance companies or other private actors that could use it
against patients.

Data privacy has been the subject of the European General
Data Protection Regulation (149). A legislative context is lacking
for the specific context of patient data protection, although
protecting patient data could be even more important than the
data of healthy individuals. De-identification should not be seen
as inviolable protection since the power of ML algorithms could
allow the data extraction and storing of the path to be reversed
and traced back to the patient. Reports of EHR data breaches are
not infrequent (150). The Hippocratic Oath states “Whatever I
see or hear in the lives of my patients, whether in connection with
my professional practice or not, which ought not to be spoken of
outside, I will keep secret, as considering all such things to be
private.” Information and Technology (IT) professionals, private
companies wishing to exploit patient data, let alone insurance
companies, do not abide by the medical secret, the main guardian
of the patient-physician relationship of care. More than ever,
physicians must protect their patients’ data, verify that its use is
intended at improving care, and guard against monetization at
the detriment of patients. Regulators and international medical

associations must address the gap in the guidelines of patient data
exploitation and provide limitations of possible applications to
research. Companies and researchers must be held responsible
for the data they are entrusted with, their use of it and the tools
they create to exploit it, including data misuse.

Furthermore, letting private industry companies shaping the
future of AI is not the only path toward progress in medicine
through technology. An industrial profit-maximizing approach
is likely to diverge from public interest (23). Independent
quality research is important. Hospitals should employ data
scientists and IT professionals under hospital authority to ensure
patient data protection and appropriate exploitation directed at
improving healthcare. An upgrade of cyber protection of hospital
informatics systems storing EHRs should be considered.

Final Comments
Once the hype of AI is passed, a backlash against this very
promising field of research remains possible. Reticence from
patients toward the use of their data, and physicians’ reluctance
to the use of technology as an intermediate between them
and patients could fuel discontent. Patient misuse must not
be tolerated. Recent progress in the field of AI interpretability
suggests that this setback can be overcome (136) and the
focus should be on developing approaches that are human-
interpretable, to allow reliable strategies to be deployed to
assist clinicians in their medical practice. Several trials are
ongoing to develop algorithms predicting procedural success,
in-hospital mortality, and 1-year mortality after transcatheter
aortic valve replacement. This is of big interest, especially
in the era of expanding indications to lower risk and
younger population, to help heart teams in the decision-
making process and in the selection of optimal candidates
and devices.
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Artificial intelligence (AI) refers to the area of knowledge that develops computerised

models to perform tasks that typically require human intelligence. These algorithms

are programmed to learn and identify patterns from “training data,” that can be

subsequently applied to new datasets, without being explicitly programmed to do so.

AI is revolutionising the field of medical imaging and in particular of Cardiovascular

Magnetic Resonance (CMR) by providing deep learning solutions for image acquisition,

reconstruction and analysis, ultimately supporting the clinical decisionmaking. Numerous

methods have been developed over recent years to enhance and expedite CMR

data acquisition, image reconstruction, post-processing and analysis; along with the

development of promising AI-based biomarkers for a wide spectrum of cardiac

conditions. The exponential rise in the availability and complexity of CMR data has

fostered the development of different AI models. Integration in clinical routine in a

meaningful way remains a challenge. Currently, innovations in this field are still mostly

presented in proof-of-concept studies with emphasis on the engineering solutions;

often recruiting small patient cohorts or relying on standardised databases such as

Multi-ethnic Study on atherosclerosis (MESA), UK Biobank and others. The wider

incorporation of clinically valid endpoints such as symptoms, survival, need and response

to treatment remains to be seen. This review briefly summarises the current principles

of AI employed in CMR and explores the relevant prospective observational studies

in cardiology patient cohorts. It provides an overview of clinical studies employing

undersampled reconstruction techniques to speed up the scan encompassing cine

imaging, whole-heart imaging, multi-parametric mapping and magnetic resonance

fingerprinting along with the clinical utility of AI applications in image post-processing, and

analysis. Specific focus is given to studies that have incorporated CMR-derived prediction

models for prognostication in cardiac disease. It also discusses current limitations and

proposes potential developments to enable multi-disciplinary collaboration for improved

evidence-based medicine. AI is an extremely promising field and the timely integration

of clinician’s input in the ingenious technical investigator’s paradigm holds promise for a

bright future in the medical field.

Keywords: cardiac MRI, artificial intelligence, clinical integration, neural network, machine learning
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INTRODUCTION

Artificial Intelligence
(AI) is an academic discipline founded in the early 1950’s
and is considered as any method that allows computers to
accomplish functions, that require human intelligence. AI
introduces speed in performing tedious and time-consuming
tasks, precision in tasks requiring analysis and can draw
sophisticated interconnections/ deep interpretation of digital
data. It is already widely adopted in various scientific fields
including space craftmanship, navigation, meteorology and
every-day tasks including social media, banking, digital voice
assistants (1–3). The clinical uptake of the advances made
by computer scientists and engineers has been progressive
but slow.

Cardiovascular Magnetic Resonance imaging (CMR) is
already an established tool for routine clinical decision-making
including diagnosis, follow-up, pre-procedural planning and
real-time procedures. It is ideally suited for various AI techniques
due to the digitalisation of the MRI signal and the diversity in the
contrast and parametric information that can be obtained from
the images.

This review article explores the basic AI concepts that
are currently adopted in CMR along with relevant clinical
applications.We have only included studies that are prospectively
designed and applied. The aim is to familiarise clinicians with the
basics in AI, demonstrate the feasibility of relevant applications
and discuss current shortcomings that could be addressed in
future work.

AI Basics
Machine learning (ML) is a subcategory of AI that teaches
computers to do what humans and animals naturally do: learn
from experience. ML uses algorithms to find patterns and make
extrapolations from large amounts of data. The algorithms
adaptively enhance their performance as the amount of datasets
for learning expands. In the workflow of ML, feature extraction
is the first step, and this is followed by the development of the
model. The accuracy of the MLmodel is highly dependent on the
features extracted.

ML is further divided into supervised learning, unsupervised
learning and reinforcement learning. The differentiation lies
on the extent and type of supervision that is provided to the
algorithms during training. Supervised learning uses datasets,
annotated by a knowledgeable supervisor, to create models
that predict or categorise future events or identify the most
appropriate patterns to the outcome (4). The progress of
the predictive model is dependent on the diversity of the
data used in training along with the underlying algorithm.
In unsupervised learning the computer programme is able

Abbreviations: AI, Artificial Intelligence; CHD, Congenital Heart Disease; CMR,

Cardiovascular Magnetic Resonance; CNN, Convolutional Neural Network; DL,

Deep-learning; HCM, Hypertrophic Cardiomyopathy; LGE, Late-gadolinium

enhancement; LV, Left ventricle; ML,Machine-learning;MRI,Magnetic Resonance

Imaging; RV, Right ventricle; TA, Texture analysis; TRIPOD, Transparent

Reporting of a multivariable prediction model for Individual Prognosis Or

Diagnosis; 3D, Three-dimensional; 4D, Four-dimensional.

to identify hidden structures in collections of databases,
without previous labelling. The software can potentially
determine novel relationships and clusters inside the data.
Reinforcement learning constitutes a computational path to
learn through interactions with the environment. It is a reward-
based learning model, where positive and negative feedback
contribute to the creation of effective predictive models (see
Figure 1 for a schematic approach to the different types of
ML categories).

Deep learning (DL) is a subset of ML that applies neural
networks with hidden layers to correlate between the given
input and the correct output, so that feature extraction
and model development are performed simultaneously. DL
algorithms are inspired from the network and the connections
of the biological neurons in the brain that enable cognitive
tasks. The nodes in a neural network mimic the neuronal
function, i.e., they receive input signals, that can be excitatory
or inhibitory, causing them to fire or withhold an output
respectively. In mathematical terms, a neuron in the AI field
is a placeholder for a numerical expression, which creates an
output by applying the function on the given inputs. The data are
progressively processed and fine-tuned through this hierarchy to
extract high level features from simplified data. The predictive
properties of the algorithm are learnt through a sequence
of iterations.

Convolutional neural network (CNN) is a popular subgroup
of DL networks, widely applied in CMR, as it is designed to
work with imaging data (Figure 2). Several characteristics have
made this technique more adaptive compared to conventional
ML methods. While in ML methods the learned weights are
manually engineered, after sufficient training, CNN can extract
features automatically (i.e., learn filters), enabling the enhanced
feature extraction to be a section of the classification learning
process. CNN learns multiple features in parallel for a given
input. Therefore, the data-mining needed in a CNN is lower,
in contrast to other algorithms and it requires minimal human
intervention (5). The architecture of CNN consists of three layers:
(1) convolutional (feature extraction), (2) pooling (reduction
in the number of input variables), and (3) fully-connected
layer (connects neurons between layers). The convolutional
layer, being the first layer, applies the mathematical operation
of convolution, that is several filters to the input variable in
order to recognise a large number of relevant features. The
pooling layer minimises the size of the convolved feature map,
thereby reducing the overall computational demands and costs
of the network. The fully-connected layer connects the neurons
between different layers. Based on the type of the data and the
required accuracy, the network is optimised by iterating the
convolution-pooling series numerous times. In any DL method,
evaluating the loss function is a significant process, in order to
warrant that the algorithm will model the data in the expected
way. From a simplified viewpoint, the loss function can be
formulated as a function which determines the relation between
two variables, namely the deviation of the predicted output from
the ground truth output. The training of the convolutional neural
networks comprises multiple iterations (known as epochs),
which compare the performance of the training set against the
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FIGURE 1 | Simplified graph describing the three principal machine-learning methods. Supervised learning utilises hand-labelled datasets to design algorithms that

predict future events, classify data into defined categories or distinguish the most relevant variables to the output. The predictive model learns through data training

and improves over time. In unsupervised learning the software accomplishes the processing of raw data, finding hidden structures in datasets, without prior

annotation, identifying meaningful relationships and clusters within the data. Reinforcement learning is a reward-based learning. Its foundation lies in the interactions

with an environment, in which positive and negative feedback (reinforcements) contribute to the optimisation of the model.

FIGURE 2 | Pipeline of a convolutional neural network (CNN). A CMR image functions as input to the CNN. The CNN identifies and classifies the various attributes

(features) of the image for analysis in a procedure named Feature Extraction, including a stack of convolutions and pooling operations. In the convolution operation

different-level features, such as edges, colour, gradient orientation are extracted from the input image. The pooling layer reduces the dimensionality of the convolved

features, in order to decrease the computational requirements. The nodes in the fully-connected layer are connected directly to all nodes in the previous layer. This

layer compiles the data extracted by previous layers and applies various filters to form the final output.

validation one, diminishing the loss function. One epoch means
that a new input sample from the training dataset will be assigned
to the network, thus the weights of each convolutional layer
will be optimised (6). Learning curves, which depict loss vs.
epochs and accuracy vs. epochs, are utilised to optimally train
the network.

Present Clinical Motivation
CMR offers comprehensive assessment of cardiovascular disease
and is a rapidly expanding imaging modality. A recent study
showed a 10-year increase of 573% in the number of scans

performed in UK (7). This rise comes with an exponential
increase in the resources required to support this, including
availability and time of experts for image acquisition, post-
processing and reporting, along with scan-time cost. Novel
developments in CMR, including high resolution, contrast- free
coronary artery and congenital heart disease (CHD) imaging,
quantitative multi-parametric and perfusion MRI and MRI-
derived biomarkers necessitate a cost-effective and time-efficient
strategy for their successful integration in clinical routine
(8). AI can have a significant role in this, in view of its
potential to accelerate MRI scanning, image post-processing and
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reporting, introduce novel biomarkers and incorporate those
in decision-making and prognostication models. Acceleration
in image acquisition can have additional benefits for patients
with claustrophobia, anxiety and inability to follow breath-
holding commands.

Furthermore, recent data illustrate disparities with regards to
the access to CMR services around the globe. Scan and post-
processing acceleration along with automated analysis through
AI can facilitate wider availability of sustainable, faster and
cheaper CMR, resulting in improvement in patient care in less
privileged areas (9).

Clinical Applications
ML algorithms have been optimised and introduced in all aspects
of the imaging workflow and implemented prospectively
in diverse patient cohorts (10). Extensive applications
have been investigated in undersampled image-acquisition,
automated analysis and post-processing and development of
predictive models.

Time-Efficiency
Acquisition and Reconstruction
AI applications in CMR have contributed significantly to
the acceleration of image acquisition and analysis. Neural
networks have been applied to reconstruct data from rapidly
acquired undersampled MRI images across different sequences.
A deep-learning based, super-resolution CMR Angiography
framework has enabled reconstruction of low resolution 1.2 x 4.8

x 4.8mm3 data acquired in 50 s scan time (11). The proposed
method showed similar quantitative and perceivable image
quality of the high resolution 1.2 mm3 images, achieving 16 x
acceleration in acquisition time (Figure 3). Similar results have
been attained with a Multi-Scale Variational Neural Network
undersampled reconstruction (12), achieving 9x acceleration,
in CMR Angiography 1.2 mm3 acquisition outperforming
compressed sensing (CS) reconstruction. Steeden et al. (13) has
successfully employed a subset of convolutional neural network,
specifically the 3D residual U-net to perform super-resolution
reconstruction on low-resolution three-dimensional whole heart
balanced Steady State Free Precession (bSSFP) datasets, achieving
similar diagnostic confidence and accuracy with high-resolution
whole heart bSSFP in patients with CHD, Figure 4. Besides
acquisition speed, AI has the potential to reduce breath-holds.
Kuestner et al. (14) has introduced 9–15x acceleration in 3D
cine images in a single 10–15 s breath hold utilising a DL-
based approach. For a more detailed technical review of these
methods, we refer the reader to a recent review by Alzubaidi
et al. (15). Zhang et al. (16) developed an AI-based virtual
native enhancement (VNE) imaging technology, using streams
of CNN to employ and optimise the acquired signal from native
T1 mapping and cine imaging sequences, depicting them as
LGE-analogous images. This technology allows for contrast-free
and efficient tissue characterisation, achieving high agreement in
the quantification of tissue burden and superior image quality
compared to the late gadolinium enhancement (LGE) images (see
Figure 5) (16).

FIGURE 3 | Prospective super-resolution reconstruction: coronal and coronary reformat of low-resolution acquisition (1.2 × 4.8 × 4.8 mm3 ) acquired in ∼50 s

compared to high-resolution acquisition (1.2 mm3 ) acquired in ∼7min. Bicubic interpolation (1.2 mm3 ) and proposed super-resolution reconstruction (1.2 mm3 ) in a

patient with suspected CAD for a prospective acquired low-resolution scan (prospective cohort). Magnified image of RCA shows comparable image quality to the

high-resolution acquisition in significantly shorter scan time. Küstner et al. (11). The article is published Open Access under a CC BY licence (https://

creativecommons.org/licences/by/4.0/).
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FIGURE 4 | Representative image quality of the coronaries from a prospective, clinically integrated study, that utilised a residual U-Net network to facilitate

super-resolution reconstruction of rapidly acquired low-resolution three-dimensional whole-heart balanced Steady State Free Precession datasets. Multi-planar

reformats of the coronary artery from the respective conventional high-resolution acquisition, low-resolution acquisition, and the corresponding super-resolution

reconstruction dataset. Sharpness of vascular borders is enhanced and image distortion is attenuated in the super-resolution reconstruction dataset vs. the

low-resolution volume. This is particularly beneficial in the delineation of small vessels, such as the coronary arteries. Qualitative image quality analysis demonstrated

no statistically significant differences between the super-resolution and the high-resolution data. Steeden et al. (13). The article is published Open Access under a CC

BY licence (https://creativecommons.org/licenses/by/4.0/).

Segmentation
Manual delineation of image contours by experts is currently
the standard clinical practise in CMR. However, this is laborious
and prone to intra- and inter-observer variability. Various
AI models have been proposed and clinically validated to
accelerate the segmentation of right and left ventricles in

adult populations (17–19). Limitations include the training
in homogenous datasets like the UK Biobank (20) or cardiac
atlas project, that include adult patients, the majority being
with structurally normal hearts. Winther et al. (21) performed
experiments utilising datasets from four independent sources
for training and for validation of the network. The network
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FIGURE 5 | Examples to demonstrate the image quality and opticospatial correlation between VNE and conventional LGE images. T1 colormaps (top row) were

adjusted to show the T1 signals that pair with the VNE signals. The bottom 2 rows visualise myocardial lesion regions by VNE and LGE using progressive thresholding

(full width, at half, a quarter, and eighth maximum) displayed with different colours. In (A–F), high visuospatial agreement was noted between VNE and LGE. White

arrows point to the lesions. Yellow arrows point to slightly different depiction of the right ventricular wall in VNE and LGE, suggesting patient movement between

acquisitions. (G), An example of VNE displaying subtle changes in the distribution and quantification of the lesion clearer than LGE. LGE, late gadolinium enhancement;

VNE, virtual native enhancement. Zhang et al. (16). The article is published Open Access under a CC BY licence (https://creativecommons.org/licenses/by/4.0/).

proved to be capable of reliably producing high quality
segmentations, independent of aspects such as different
image acquisition techniques, and diverse MRI protocols
and vendors. The neuronal network performed equally or
outperformed the human cardiac expert in all parts of left
ventricle (LV) and right ventricle (RV) volumetry and mass
measurements. Bidhendi et al. (22) expanded the approach
and created a fully convolutional network that was applied
successfully in paediatric patients with CHD and proved to be
superior to the algorithms clinically used in a commercially

available platform. An extensive review on these techniques
is presented in Chen et al. (23). In a recent study, employing
deep fully convolutional neural network, an automated
segmentation for the quantification of tissue characterisation
for native T1 mapping in patients diagnosed with hypertrophic
cardiomyopathy (HCM) has been developed; showing robustness
in inter-observer variability and minimising analysis time to
under a second (24). A similar approach was employed for
automatic quantification of LV mass and scar volume on
LGE images and has been successfully applied in patients
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FIGURE 6 | DL-based computation of global and segmental circumferential strain is compared to the clinician-assisted DENSE analysis. The AI-based end-systolic

circumferential strain (Ecc) maps (left column), segmental (middle column) and global (right column) circumferential strain–time curves for a healthy subject (A) and a

heart failure patient (B) demonstrate very close agreement with the conventional segmentation in the depicted mid-ventricular slices. Ghadimi et al. (26). The article is

published Open Access under a CC BY licence (https://creativecommons.org/licenses/by/4.0/).

post myocardial infarction (25). Additional applications of
convolutional neural networks include automated phase velocity
estimation and four-dimensional flow dataset segmentation
along with the estimation of global and segmental myocardial
strain in Displacement Encoding with stimulated echoes
(DENSE) images, Figure 6 (26, 27). Significant benefits include
efficient CMR reporting and high levels of reproducibility in
the measurements.

Novel Imaging Biomarkers
Texture Analysis/Radiomics
A recently applied technique, called texture analysis (TA),
employs various ML algorithms, to quantify the spatial
heterogeneity and relationship of adjacent pixels, in order to
compute sophisticated imaging metrics. Texture features derived
from CMR, have demonstrated potential for further research
and clinical integration. It is assumed that the distribution
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of pixel grey-level values constitutes significant information
beyond the measured mean signal. For instance, although
global T1 and extra-cellular volume can differentiate HCM
and Hypertensive Heart Disease from normal hearts but not
between the two, as values overlap; TA features, generated
though supervised ML models, have been shown to distinguish
and quantitatively evaluate the subtle discrepancies between
the two entities (28). A study, by Wang et al. (29) utilising
similar supervised technique, is going one step further and found
that TA could differentiate between patients with MYH7(b-
myosin heavy chain) gene mutation from those with MYBPC3
(B-myosin binding protein C). A different approach has been
investigated by other groups, who introduced motion features
as a biomarker. Mancio et al. (30) exploited routine cine images

from high dimensional data to objectively characterise and

quantify subtle tissue alterations of the ventricular myocardium

beyond the typical CMR indices in a cohort of HCMpatients. The

proposed method, that exploits a supervised-learning algorithm,

can potentially serve as screening tool identifying HCM patients

with low probability of scar, who constitute around one third

of the total cohort, for whom LGE imaging would not be

necessary (30). Hence, texture feature analysis could contribute to
reducing patient exposure to contrast-agents and the associated
service costs.

New Insights in Predictive Models
Various predictive models, incorporating different clinical and
imaging parameters, have been introduced in cardiovascular
medicine over the last decades to estimate the personalised
risk for an individual patient to develop a certain outcome.
A major challenge for CMR is to incorporate imaging
biomarkers in clinically relevant predictive models. For the
effective characterisation of cardiac disease phenotype, the use of

conventional parameters of cardiac output like ejection fraction
might be insufficient (31). Refined ventricular shape and motion
analysis could potentially accomplish profound evaluation of
cardiac motion and the extraction of its spatiotemporal patterns,
which are attributed to specific diseases. Dawes et al. (32)
performed computational analysis of RV 3D longitudinal,
circumferential and radial motion, relative to its long-axis
(defined from the tricuspid orifice and RV apex) between end-
diastole and end-systole. The derived data, which represented
the systolic displacement of the right ventricle and septum,
were then analysed by a supervised ML algorithm, with the
aim, to identify those 3D cardiac motion patterns in this
high-dimensional dataset, which were more closely linked to
survival. The ML survival model showed that altered contraction
pattern in distinct segments of the RV free wall and septum is
associated with poor prognosis and has incremental predictive
performance when added to conventional biomarkers (32). In
a similar direction, a fully convolutional neural network was
trained to perform cardiac segmentation from hand-labelled
CMR images, computing smooth time-resolved 3D renderings
of the cardiac motion. Those 3D representations were employed
as input data to a supervised denoising autoencoder prediction
network, designed to capture robust discriminative features for
survival prediction in patients with pulmonary hypertension
(33). The predictive accuracy for the deep-leaning based survival
model outperformed benchmarkmodels of volumetricmanually-
derived CMR parameters. In a different patient group, a U-
net algorithm, based on CNN architecture, was designed to
automatically trace the endocardial border and calculate right
atrial area and feature-tracking based strain measurements from
CMR cine images in the four-chamber view and short-axis view
at the papillary muscles level. Those indices, computed directly
from raw medical images, correlated significantly with prognosis

FIGURE 7 | An illustrative overview of the explainable MRI concept. The user has insight in the features that influence the decision of the model.
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in a cohort of patients with repaired Tetralogy of Fallot (34).
Knott et al. (35) applied a convolutional- neural network for
automated quantitative myocardial perfusion analysis, in the
first prospective two-centre outcome study, evaluating global
mean stress myocardial blood flow and myocardial perfusion
reserve with AI-based techniques. Cox hazard regression
analysis demonstrated that stress myocardial blood flow and
myocardial perfusion reserve were associated with events after
adjusting for potential confounders and concluded that those
parameters are predictive of adverse outcomes surpassing
the performance of conventional cardiovascular risk factors
(35). A differentiated approach was adopted by MacGregor
et al. (36) who in addition to incorporating ML-derived
measurements in predictive models, proposed a deep-learning
based predictive clinical algorithm, advancing previously applied
statistical predictive models. This preliminary investigation
showed that the regional distribution patterns of machine-
detected, CMR-derived, regional contractile injury could have
predictive value with regards to clinical endpoints in Idiopathic
Dilated Cardiomyopathy Heart Failure patients. The regional
strain measurements were the input variables in a deep
neural network algorithm, that could differentiate patients who
responded to medical therapy from those with no response,
with an area under the curve of 0.94 and 85% accuracy (36).
Kotu et al. (37) incorporated CMR image-based texture features
from post myocardial infarction patients, which delineate the
extent, distribution, and heterogeneity of the myocardial scar
in a combination of supervised ML-based algorithms and other
classification methods, to distinguish between high and low
arrhythmic risk group of patients.

Current Challenges
Despite the large volume research that has been performed in
CMR, real world clinical deployment of AI in clinical practise is
still rare.

While AI can extract novel insights from existing data, it is
often difficult to justify why the network reached a certain output;
the so-called “black-box problem” (38). Furthermore, regulations
such as the European General Data Protection Regulation
(GDPR) is enforcing the retraceability of the decision outcomes,
calling into question the use of black-box models in healthcare.
This calls for an approach that supports the interpretability of
the machine decision-making process and the reproduction and
comprehension of both the learning and knowledge extraction
process. Ongoing efforts to face this challenge have resulted in
the design of explainable AI models, that constitute a selection
of procedures and techniques that enable human subjects to
perceive and trust the outcome and the prediction derived by ML
methods. In explainable AI, the expected impact and potential
biases of the AImodel are described. Holzinger et al. (39) presents
a very helpful overview of current research topics in explainable
AI. Neural network models with incorporated quality control
layers are proposed. A schematic representation of the network
is shown in Figure 7. Puyol-Antón et al. (40) demonstrated a
novel framework to predict response to cardiac resychronisation
therapy of patients with cardiomyopathy from cine cardiac
imaging. The proposed model allows the extraction of visual

features in the image domain of the secondary categorisation
task so that the reviewer can appraise whether the learned
features correlate with the clinical domain knowledge. In this
method, a weakly supervised network was taught the concept
of septal flash, which corresponds to a favourable response to
cardiac resychronisation therapy and was able to illustrate this,
by disentangling the latent space. An additional study, utilising
CNNs in cardiac cine image segmentation, incorporated robust
Quality Control in two distinct phases; an initial pre-analysis
assessment of image quality, employing two additional CNNs,
was followed by the image segmentation and computation of
cardiac functional parameters. The final step was a post analysis
qualitative evaluation of the output, thus allowing automated
processing of considerable numbers of CMR studies, obviating
the requirement for clinician’s input (19).

A different approach to this problem employs the use of
predictive uncertainty estimates of the segmentation model (41).
The key idea is that the model generates confidence intervals
of the predictions, giving insight into why the network has

FIGURE 8 | Schematic representation of three proposed strategies to

introduce fairness in AI algorithms. First, pre-processing modifications in the

training dataset can eliminate bias before training. In each training dataset, the

data are initially classified by the protected attribute(s) (such as sex, race,

ethnic origin, religious and political beliefs, age, socioeconomic background

and so forth). Samples are stratified to establish equitable representation of all

protected groups in the training. Alternatively, alterations in the AI algorithm

can train a model to overcome discrimination and optimise the performance

both in the prevalent and unprivileged group(s). The third approach attempts

to train distinct models for each protected group.
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decided the output. Segmentation outputs with low uncertainty
are likely correct while outputs with high uncertainty are
likely problematic. This may improve workflow efficiency
and accuracy by guiding the reviewer to focus mainly on
problematic segmentations.

Limitations Paving the Steps Forward
The greater part of AI research has utilised retrospectively
acquired data. The term “AI chasm” has been introduced
to express the case that the predictive accuracy of an AI
model does not epitomise clinical effectiveness (42). This
is because, despite the favourable results, outlining excellent
network performance in preliminary, single institutional, proof-
of concept studies, the adoption in clinical practise is limited and
the generalisability has not been proven. Fewmulti-centre, multi-
vendor studies have been attempted with good results that were
retrospective in nature showing the feasibility of the design and
encouraging the execution of similar prospective studies (43). To
enhance the validity and clinical acceptance of AI applications,
multi-institutional prospective studies across different clinical
teams and vendors should be designed, ultimately followed by
randomised controlled trials. To the best of our knowledge,
in clinical CMR there is currently no prospective randomised
control trial published demonstrating the clinical benefit that
AI applications could potentially accomplish. Challenges that

need to be faced include the lack of standardisation in image
acquisition, reconstruction and analysis along with optimisation,
transparency and adherence to reporting standards on trial
design and methodology. Few randomised controlled trials have
been conducted for different clinical applications, showing that
incorporation of AI systems did not have superior outcomes
when compared to the current clinical practise or decisions made
the by senior clinicians (44). Lin et al. (45) showed that AI
achieved high patient satisfaction due to shorter examination
times, however further research is warranted as to investigate
whether AI solutions can be an alternative triage tool, when
a senior consultant is not available. The critical appraisal of
the current studies has raised additional confounding factors
influencing the methodological approaches in AI randomised
control trials that could be considered for improvement in
future work (46). Future directions to minimise bias would
include methods to warrant effective blinding for the clinicians,
inclusion of adequate number of clinicians with different levels of
experience and expertise and the design of long-running studies
to allow for clinicians to comprehend, adapt and utilise the AI
systems effectively.

Recent studies have introduced the significance of “fairness” in
DL models (47), demonstrating that training data imbalance, can
lead to statistically significant differences in the performance of
the proposed models between different racial groups, potentially

FIGURE 9 | Brief chart on the framework of “clinician in the loop.” Clinicians are provided with action choices. Data labelled from clinicians contribute to the training of

the network.
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exacerbating disparities in healthcare (47). DL algorithms can be
optimised to address this issue. Potential strategies to minimise
bias include the modification of the training dataset to mitigate
discrimination (pre-processing strategies), modifications
of the learning algorithm to diminish bias (in-processing
strategies) or lastly correcting the output of the applied
algorithm to meet the fairness prerequisites (post-processing
strategies). Figure 8 shows an example of the different bias
mitigation strategies.

Meticulous clinical reporting of studies, that adopt AI
methods, is critical to adequately evaluate image quality, interpret
the results and assess the potential usefulness of prediction
models, in order for them to be embraced in clinical routine.
Forthcoming studies should include patients from diverse
backgrounds and report performance per gender and race to
minimise bias. It has been often stressed that the area under
the curve of a receiver operating characteristic curve is not
the optimal metric to assess clinical performance and is not
readily comprehensible by many clinicians, although it is widely
used in AI studies (48). Sensitivity and specificity should be
determined at the defined model operating point (required to
transform the continuous model outcome variables into discrete
decision groups) and positive and negative predictive values
should be reported. Published papers should include information
on several measures, summarising the performance of a model,
as no single measure captures all the necessary and clinically
relevant properties. In addition to the extensive analysis of the
results, significant attention should be paid to the practical
implementation of the model and whether this achieves a
favourable shift in the current patient care pathway. Hence, this
is ultimately reflective of the clinical relevance of the study.
For instance, various ML–based algorithms have been developed
to predict hospital readmissions, showing superior predictive
accuracy to conventional parameters, including initial diagnosis
and demographic factors. Nevertheless, their clinical uptake is
currently limited, because they fail to incorporate and measure
competing parameters like clinician’s time, staff availability,
socio-economic background and so on (49). To progress the
comprehension and clinical integration of ML research studies,
researchers are asked to adhere to best practise guidance, such as
the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD), developed
to support the thorough and transparent reporting of studies
that design, validate or update a prediction model (50). An
additional version of the TRIPOD statement that is tailored to
ML prediction algorithms (TRIPOD-ML) is in progress. This
will be intended for the development of a robust framework to
provide methodological and reporting guidance for ML studies
in healthcare (51).

A recently introduced concept, that is promising and, as
far as we know, has not yet been adopted in cardiac MRI
is the so-called clinician in-the-loop (52). This is a type of
reinforcement learning, where the model keeps learning based on
the input of the clinician (Figure 9). Further studies are required
to investigate whether this method can improve the quality
of AI applications in different tasks, including segmentation

and development of predictive models along with gaining
clinicians’ trust.

Clinician Engagement
At present, clinician’s input is mandatory not only in labelling
the data and appraising the developed frameworks, but more
importantly in the decision-making process. Most clinicians are
currently far away from entrusting computers to match the
comprehensive skills of a radiologist. While it is important to
encourage the adoption of an AI curriculum for medical students
and practising clinicians to allow them to critically review,
evaluate and apply AI tools safely in clinical routine, excessive
confidence in AI technology is not yet topical. Clinical skills,
starting from elaborate history taking, to physical examination
along with the enriching and therapeutic patient-physician
relationship have been the mainstay of medicine for centuries
and should constantly be fostered and harnessed in the parallel
development and application of AI tools.

In the years to come, a dedicated collaboration between
computer scientists, medical imaging physicists and clinicians in
CMR is promising exciting strides in this field. Explainable AI
techniques are expected to enable faster integration of AI models
into the clinical practise, and will aid in fostering the necessary
integrity and trust with their users.

CONCLUSION

AI is envisaged as a useful tool to accelerate CMR imaging
acquisition, analysis and reporting, while introducing new
diagnostic and prognostic biomarkers. Careful design and
assessment of future studies alongside improved interpretability
of the algorithms and enhanced clinician’s input will accelerate
potential clinical adoption.
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INTRODUCTION

Despite advances in the pharmacologic and interventional treatment of ischemic, myocardial,
and valvular heart diseases, heart failure is estimated to affect ∼60 million individuals worldwide
being associated with high morbidity and mortality rates. In a recent report by Anker and
colleagues published in the New England Journal of Medicine, the authors demonstrated that
SGLT2 inhibition with empagliflozin leads to relevant clinical outcome improvements, by reducing
the relative risk for cardiovascular death and hospitalization for patients with symptomatic heart
failure NYHA II-IV and preserved ejection fraction (HFpEF). The results were mainly driven
by a reduction in hospitalization rates (1). We congratulate the authors for this article, which
is to our knowledge the first randomized study, highlighting the ability of SGLT2 inhibition to
improve clinical outcomes inHFpEF. Based on prespecified left ventricular ejection fraction (LVEF)
subgroups, however, patients with LVEF ∼40–49% mostly benefited from treatment, whereas
positive effects were attenuated in patients with LVEF between 50 and 59% and were not statistically
significant with LVEF ≥ 60%.

PREVIOUS STUDIES WITH SGLT2 INHIBITORS AND
UNDERLYING MECHANISMS

Several studies demonstrated the ability of SGLT2 inhibition to reduce cardiovascular endpoints in
patients with heart failure and reduced ejection fraction regardless of the presence or absence of
type 2 diabetes mellitus (2, 3). Hereby, the exact mechanism of action is still a subject of ongoing
research. It has been previously proposed, that SGLT2 inhibition may exert beneficial effects
by reducing inflammation, oxidative stress, and blood pressure due to diuresis and natriuresis,
resulting in improvement of vascular and kidney function. In addition, beneficial effects in
terms of cardiac energy metabolism have been described. Thus, SGLT2 inhibition may improve
cardiac energetics and cardiac efficiency, by increasing circulating ketone levels and cardiac ketone
oxidation rates, which can act as a thrifty fuel for the undersupplied “starving” failing heart (4).
This may improve energy supply of the heart muscle, translating into lower rates of hospitalization
due to heart failure symptoms, thus improving clinical outcomes.
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TECHNICAL CONSIDERATIONS AND
DISCUSSION

From a pathophysiologic point of view, LVEF is a crude
and load-dependent marker for cardiac efficiency (5, 6),
whereas myocardial strain by echocardiography and advanced
quantitative CMR, recently exhibited important value for the
non-invasive assessment of myocardial fibrosis and incremental
prognostic value beyond LVEF in heart failure patients (6–
8). Thus, global longitudinal strain (GLS) was associated
with clinical heart failure status, the level of neurohormonal
activation and with long-term cardiac mortality in patients
with asymptomatic and symptomatic heart failure (6). In
addition, the presence of “normal” myocardium (defined as
percentage of myocardial segments exhibiting a strain value
≤ −17%) by advanced quantitative CMR using Fast Strain-
encoded Cardiac Magnetic Resonance (fast-SENC), recently
demonstrated incremental value for the prediction of clinical
outcomes beyond LVEF in an all-comer cohort of heart
failure patients (7). In this study, more than one third of
individuals who were classified just at risk for heart failure by

FIGURE 1 | “Normal” myocardium is defined as the percentage of myocardial segments, which exhibit strain values ≤ −17% by advanced quantitative CMR using

Fast Strain-encoded Cardiac Magnetic Resonance (fast-SENC). “Normal myocardium” < 80% is present in 89% patients with LVEF∼40–49%, which are probably

excellent candidates for SGLT2 inhibition (green arrow). Only 61% of patients with LVEF ≥ 60%, on the other hand exhibit “normal myocardium” < 80%. Patients

which LVEF ≥ 60% and “normal myocardium” > 80% have rather another underlying disease mimicking heart failure and will not necessarily profit from SGLT2

inhibition (blue arrow).

conventional imaging markers including LVEF, were reclassified
to patients with subclinical LV-dysfunction, exhibiting “normal”

myocardium < 80% (7). Such individuals with “normal”
myocardium < 80%, who were in most cases asymptomatic

at baseline, showed higher rates for all-cause death and
hospitalization due heart failure and for new onset of heart failure
medications during follow-up (7). Since “normal myocardium”
may represent a more valid surrogate marker of impaired
myocardial energetics compared to LVEF, it is conceivable
that patients with “normal myocardium” < 80% are likely
to exhibit unfavorable myocardial energetics and benefit from
SGTL2 inhibition. In fact, impaired “normal myocardium” <

80% was present in 89% patients with LVEF ∼40–49% in our
recent study, which are probably excellent candidates for SGLT2
inhibition but only in 61% patients with LVEF ≥ 60%, where
SGLT2 inhibitionmay not necessarily translate to clinical benefits
(Figure 1). Although GLS and normal myocardium have not
been systematically analyzed in the EMPEROR preserved trial,
these load independent metrics may aid in a more precise
identification of appropriate candidates for SGLT2 inhibition
with preserved LVEF in future trials.
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In the same direction, CMR T1 mapping techniques allow
for the assessment of interstitial space characteristics and
extracellular volume size, which are related to collagen content
and interstitial infiltration of myocardial tissue by fibrotic
tissue or other molecules, such as amyloid. The ability of such
measures for the risk stratification of patients with heart failure,
cardiomyopathies or amyloidosis has already been demonstrated
(8–11). In addition, recent studies highlighted the ability of
such techniques to accurately assess longitudinal changes of
myocardial extracellular volume in patients treated with SGLT2
inhibitors (12, 13).

Importantly, metrics such as strain or T1 values can be
acquired serially during non-contrast CMR scans, thus without
the need for gadolinium administration and without radiation
exposure for the patients. Thus, such a direct measure of
treatment response in terms of increases in strain and “normal

myocardium” would be feasible in patients receiving SGLT2
inhibitors possibly a couple of weeks after the treatment
initiation. Due to the quantitative nature of these parameters
smaller populations than the one presented in the EMPEROR
preserved trial would be necessary to investigate the direct
effects of such drugs on myocardial strain in heart failure
patients. Such advanced metrics like “normal myocardium”
would therefore decrease trials costs and speed-up transfer of
knowledge into clinical use, aiding individualized treatment of
heart failure patients or even of asymptomatic individuals with
subclinical LV-dysfunction.
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Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality,

causing over 17. 9 million deaths worldwide per year with associated costs of over

$800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a

global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically

important technique for the assessment of cardiovascular anatomy, function, perfusion,

and viability. However, diversity and complexity of imaging, reconstruction and analysis

methods pose some limitations to the widespread use of CMR. Especially in view of

recent developments in the field of machine learning that provide novel solutions to

address existing problems, it is necessary to bridge the gap between the clinical and

scientific communities. This review covers five essential aspects of CMR to provide a

comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition

protocols, motion handling, image reconstruction and quantitative analysis of the

obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence

building blocks that are commonly used in CMR imaging are presented. Sequences

containing these building blocks are formed for parametric mapping and functional

imaging techniques. Commonly perceived artifacts and potential countermeasures are

discussed for these methods. (2) CMRmethods for identifying CVDs are illustrated. Basic

anatomy and functional processes are described to understand the cardiac pathologies

and how they can be captured by CMR imaging. (3) The planning and conduct of a

complete CMR exam which is targeted for the respective pathology is shown. Building

blocks are illustrated to create an efficient and patient-centered workflow. Further

strategies to cope with challenging patients are discussed. (4) Imaging acceleration and

reconstruction techniques are presented that enable acquisition of spatial, temporal, and

parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion

strategies as well as their integration into the reconstruction processes is showcased.

(5) Recent advances on deep learning-based reconstructions for this purpose are

summarized. Furthermore, an overview of novel deep learning image segmentation and

analysis methods is provided with a focus on automatic, fast and reliable extraction of

biomarkers and parameters of clinical relevance.

Keywords: cardiovascular MR, deep learning, CMR protocol, quantitative imaging, image reconstruction,

sequence design, imaging acceleration, image processing

90

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.826283
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.826283&domain=pdf&date_stamp=2022-03-03
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:teresa.correia@kcl.ac.uk
mailto:thomas.kuestner@med.uni-tuebingen.de
mailto:thomas.kuestner@med.uni-tuebingen.de
https://doi.org/10.3389/fcvm.2022.826283
https://www.frontiersin.org/articles/10.3389/fcvm.2022.826283/full


Ismail et al. CMR QI and AI

INTRODUCTION

Over the past 40 years, cardiovascular magnetic resonance
(CMR) has evolved from an esoteric research tool found in
the confines of large academic supraregional tertiary referral
centers to being an indispensable clinical tool that routinely
changes patient management across the breadth of modern
cardiovascular practice (1). Increasing clinical recognition of
the transformative role this technology can play in patient care
has led to its growing availability in secondary care settings
too, although significant barriers remain to its greater adoption
world-wide, particularly in Africa.

CMR is a versatile non-invasive and radiation-free imaging
modality that provides a comprehensive assessment of multiple
parameters of cardiac function and anatomy in a single
examination. CMR plays a major role in the diagnosis and
management of cardiovascular disease. However, aside from
cost, there remain major obstacles for the widespread usage
of this technique like: (i) complex underlying physics and
technology, (ii) data analysis and interpretation, (iii) large
number of pulse sequences and parameters to choose from,
(iv) challenges from the inherent cardiac and respiratory
motion, and (v) duration of examination. The recent
hype around artificial intelligence algorithms designed to
overcome these hurdles has raised new questions around
the reliability, accuracy, and stability of this technology.
Therefore, to help shape the future of CMR, it is essential
to bridge the gap between theory and practice, and thus, to
promote a bridge of scientific knowledge between the research
and clinical communities by improving (maintaining or
updating) their knowledge of CMR technical principles and
clinical applications.

This review provides an overview of five essential aspects
of CMR which have been covered separately in-depth in
other review papers (2–11). We address: (1) data acquisition
sequences and common artifacts, (2) clinical applications,
(3) clinical examination protocols, (4) image acceleration,
reconstruction, and motion handling, (5) artificial intelligence-
assisted reconstruction and analysis. In addition, this review
provides hands-on tutorials and videos that can be found
at ismrm-mit-cmr.github.io. More specifically, Section The
Physics Behind Cardiovascular MR describes the key physical
principles of CMR, most common pulse sequences and
preparation pulses, and the physics behind the most common
artifacts. Section Clinical Cardiovascular MR: What do we
See and Why do we Need it? covers the clinical application
of CMR in the diagnosis of a spectrum of cardiovascular
diseases. Section Clinical Cardiovascular MR: How Should
we Perform the Examination describes how to complete
a comprehensive examination and deal with challenging
patients. Section CMR Image Quality: No Free Lunch provides
an overview of scan acceleration acquisition and image
reconstruction methods while also describing current solutions
to overcome challenges from cardiac and respiratory motion.
Finally, Section Artificial Intelligence for Cardiovascular MR
describes machine learning methods used for automated
quantitative analysis of CMR data.

THE PHYSICS BEHIND CARDIOVASCULAR
MR

In this section we aim to provide a brief overview of the
physical principles and basic mathematical concepts behind
magnetic resonance imaging (MRI) targeted to create the
necessary background to understand modern CMR methods.
This section will give an overview of the physics of nuclear
magnetic resonance and relaxation, essential for describing the
concepts behind image formation and the k-space formalism.
Furthermore, basic building blocks of MRI are introduced, and
common cardiac MR sequences are described.

Magnetization Formation and Dynamics
MRI is based on a magnetic property that is intrinsic to certain
nuclei, some of which can be found all throughout the human
body. Nuclei [and (sub)atomic particles] possess an intrinsic
quantum mechanical property called spin. Mathematically the
spin can be described as the angular momentum of a spinning
sphere. As a quantummechanical quantity, however, the spin can
only have a discrete set of states. By convention, the number of
spin states are described according to the spin quantum number
Swith integer or half-integer values, giving rise to 2S+1 different
spin states. In MRI, the nucleus of greatest importance can be
found in hydrogen atoms (1H): It comprises only a single proton
with S = 1

2 and, thus, two spin states. These are commonly
denoted as +½ (“spin-up”) and –½ (“spin-down”). Due to the
classical relationship between angular momentum and magnetic
moment of a rotating charged particle, the spin S is always
associated with a magnetic moment µ via the particle-specific
gyromagnetic ratio γ ([rad/sT]):

µ = γ S. (1)

In a proton ensemble the magnetic moments of the nuclei
are randomly orientated unless an external magnetic field B0
is applied. In this case, all particles will align depending on
their magneticmoment either parallel (“spin-up”) or anti-parallel
(“spin-down”) to the applied field. Now, spins parallel to the
magnetic field are in a lower energy state compared with those
in the opposite direction. Hence, the energy levels of the spin
states are separated by 1E = γℏB0, with reduced Planck
constant ℏ. This is also known as the Zeeman effect. Due to
the angular momentum, the magnetic moment is also associated

with a precession around
−→
B 0. The rotational frequency of this

precession is called the Larmor frequency ωL:

ωL = γ B0 (2)

For clinical MRI field strengths (0.5T−7T), this frequency is
usually found in the radio frequency (RF) range. At thermal
equilibrium, there is a slight excess of protons in the “spin-up”

state due to its lower energy. Thus, the net magnetization
−→
M

averaged over all protons will be oriented along and precess

around
−→
B 0. Following the correspondence principle, this net

magnetization
−→
M and its precession motion can be described

with classical mechanics, where the precession dynamics
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resemble those of a spinning top. The net magnetization
−→
M can

be perturbed if protons are excited from the thermal equilibrium.
In the analogy of the spinning top, this would mean tilting its
rotation axis to the side. To achieve this, a so-called RF pulse that

produces a resonant magnetic field
−→
B 1 oscillating at ωL needs to

be applied. During this RF pulse, energy will be deposited in the
spin system and some of the protons will flip to the “spin-down”
state. Depending on the duration and strength of the RF pulse,

the direction of
−→
M progressively tips away from

−→
B 0 leading

to a transverse component perpendicular to
−→
B 0. Thereby, the

polar angle α between
−→
M and

−→
B 0 is referred to as flip angle.

Assuming that the initial magnetic field
−→
B 0 is along the z-axis,

then the transverse and longitudinal parts of
−→
M are denoted as

−→
M xy and

−→
M z , respectively. The above-described phenomenon

is called nuclear magnetic resonance and gives MR imaging its
name as the underlying physical principle.

MR Signal and Relaxation: Time to Relax
The precession of

−→
M leads to an oscillating magnetic field. We

can picture the precessingmagnetization as a rotating bar magnet
in classical mechanics. This can be detected using a nearby
coil where the time-varying magnetic flux induces a measurable
electric current via the Faraday-Lenz principle. After the RF
pulse has been turned off, the net magnetization continues to

precess around
−→
B 0. However, over time, the energy transferred

to the system dissipates and the magnetization recovers to

the thermal equilibrium state
−→
M 0. This process is known as

longitudinal relaxation and can be described by an exponential
growth function with characteristic time constant T1:

Mz (t) = Mz (0) −
(

Mz (0) −Mz,0

)

e
− t

T1 . (3)

Here, Mz(0) = Mz(t = 0) is the flip angle dependent
initial magnetization, andMz,0 the longitudinal magnetization at
thermal equilibrium.

Besides the regrowth of
−→
M z , the transverse magnetization

is subject to an additional relaxation process: the transverse

component
−→
M xy is only preserved if all spins precess with

the same frequency, i.e., point to the same direction. But,
due to differences in the microscopic environment, each spin
experiences slightly different magnetic fields. As a result,
individual spins precess with slightly different frequencies. Over
time, this leads to a dephasing of the spins and to a decrease

of
−→
M xy. This is referred to as transverse relaxation and can

be modeled by an exponential decay with characteristic decay
time T2:

Mxy (t) = Mxy,0e
− t

T2 , (4)

where Mxy,0 describes the transverse magnetization after
excitation. In addition, inhomogeneity of the main magnetic field
(1B0,i) accelerates dephasing and leads to an effective decay time
denoted as T∗

2 :
1
T∗
2
= 1

T2
+ γ1B0,i. Thus, the actually observed

decay time T∗
2 is always equal to or shorter than T2 and usually

shorter than T1. Both relaxation processes are influenced by the

atomic and molecular environment of the proton spins, such as
type, size, and motion of the particles. Consequently, different
tissue types or pathological tissue changes characteristically
influence T1 and T2 times. In CMR, for example, the T1/T2 times
of myocardium and native blood at 3T are∼1,550/45ms (12, 13)
and 2,000/250ms (12, 14), respectively. Together with the proton
density, this contributes to the image contrast in MRI.

The above set of equations was first proposed by Felix Bloch

to describe the temporal dynamics of
−→
M , and has accordingly

been named Bloch equations (15, 16). For the evolution of signal
intensities, however, this model is less suitable as it requires
solving the individual Bloch equations for all magnetization
vectors. Instead, the so-called Extended Phase Graph (EPG)
model has been proposed (8, 17–19), where signal dynamics can
be expressed efficiently based on a rotation matrix formalism in
the Fourier domain (see Sections k-space and View Planning and
Image Acquisition).

Image Acquisition: What Is the Position?
Having established the nuclear origin of the MR signal and how
it can be manipulated by RF pulses, the next necessary step for
image formation is to spatially localize the signal. This is achieved
through spatially varying magnetic fields, the so-called gradients.
As described in Equation (2), the precession frequency ωL of a
spin is a function of the magnetic field. Thus, by making the
magnetic field a function of the location, spins at different spatial
locations will have different resonance frequencies. Although
various gradient forms can be applied, linear gradients have
proven to be the most useful and, thus, will be assumed in the
following description. While a linear gradient field is turned on,
ωL becomes a function of the spin position −→r and the field

gradient
−→
G = ∇

−→
B :

ωL

(−→r
)

= γ
−→
G · −→r . (5)

This principle can be used both to select imaging slices within
the body as well as to encode positions in-plane within the slice.
For simplicity, we will further assume that the imaging slice is in
the transverse xy-plane. Note, however, that arbitrary acquisition
angles can be achieved by using a combination of the x-, y-, and
z-gradients for the encoding described below.

Slice Selection (SS)
In slice selection, an additional spatially varying magnetic field

gradient
−→
G z can be applied such that the field strength varies

along the z-axis. Thus, the Larmor frequencies of spins will vary
along this axis too: ωL = γ (B0 + Gzz). While the additional
gradient field is turned on, spins in different xy-planes precess
with different frequencies, while spins within the same plane all
precess with frequency ωL. If the excitation RF pulse is chosen
to have just the right frequency bandwidth, only spins in the
corresponding xy-plane are excited. Accordingly, a transverse
magnetization will only be created in those.

In-plane Phase Encoding (PE)
After selecting a two-dimensional (2D) slice, the signal needs

to be located within the slice. A phase encoding gradient
−→
G y

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 82628392

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ismail et al. CMR QI and AI

along the y-axis is temporarily applied before the readout. During

the presence of
−→
G y, spins along the gradient axis precess with

different frequencies. After
−→
G y has been turned off, the spins

will have accumulated different phases, pointing in different
directions, but continue to precess with the same frequency. For
one gradient strength, only one phase shift can be achieved.
Therefore, multiple PE steps are necessary, which primarily
determines the overall scan time. In order to acquire a three-
dimensional (3D) volume, a second PE gradient along the slice-
selection axis can be applied in the same stepwise manner.

In-plane Frequency Encoding (FE)

To account for the remaining spatial direction, a gradient
−→
G x

is applied, such that spins along the x-axis will precess with
linearly increasing frequencies. Upon Fourier transforming the
signal, each obtained frequency can thereby be connected to a
position/pixel on the selected axis, usually the x-axis.

K-Space
In the presence of linear gradient fields, the MR signal can be
conveniently expressed with the so-called k-space formalism. If

we consider the precession of
−→
M xy in the transverse plane, it can

be described as:

Mxy

(

t,−→r
)

= e−iωtMxy,0

(−→r
)

(6)

with precession frequency ω = γ B
(−→r

)

= γ (B0+
−→
G

(−→r
)

·−→r )
[Equations (2, 5)]. Given that the acquired signal is the sum of
the magnetization of all spins in the imaging volume, it can be
described as follows:

S (t) ∝ e−iγB0t

∫

e−iγ
−→
G (−→r )·−→r tMxy,0

(−→r
)−→
dr . (7)

The gradient related frequency contribution can be written in
terms of the gradient strengths Gx,Gy and Gz :

γ
−→
G

(−→r
)

· −→r t = γ
(

Gxx+ Gyy+ Gzz
)

t

= kxx+ kyy+ kzz (8)

with the spatial frequencies kx, ky, and kz . If motion is
considered, −→r (spin position) becomes a function of time −→r (t).
Furthermore, each receiving coil j, i.e., each receiving channel,
has a specific sensitivity cj(

−→r ) signal from different spatial points.
Combining these with the previous equation yields

Sj (t) ∝ e−iγB0t

∫∫∫

e−i(kxx+kyy+kzz)cj
(−→r

)

Mxy,0

(−→r
)

dx dy dz (9)

Equation (9) shows that the measured signal in time domain
and the magnetization in spatial domain are connected via
Fourier transformation. As a consequence of this relation, the
spatial frequency (kxy) and distance (1kxy) of k-space points are
associated with image resolution and size (field-of-view, FOV):

FOVx/y =
1

1kx/y
and

1x

y
=

1

kx/y
. (10)

Image acquisition methods can be distinguished by the
proportion of the k-space acquired at once: In so-called single-
shot sequences all k-space points are sampled in one acquisition,
while in segmented methods the k-space is acquired in subsets
during multiple repetitions. The overall scan time is, thus,
primarily determined by the number of acquired points in the
k-space. In this regard, subsampling techniques offer ways to
accelerate image acquisition as described in Section Fast CMR:
Speeding up Imaging by Acquiring Less Data.

So far, theMR signal has been treated as a continuous function
in both space and time. Actual image acquisition, however, is a
discretized process characterized by the data sampling rate and
image resolution. Hence, the signal/forward model in Equation
(9) can be discretized as:

σj = Ej
−→ρ +−→η , (11)

with encodingmatrix Ej for coil j, initial transversemagnetization
−→ρ , and thermal noise −→η (20). At time point κ and grid point λ,

Ej is given by Ej,κ ,λ = cj
(−→r

)

ei8(−→r λ ,tκ). Neglecting relaxation,
the phase factor8

(−→r λ, tκ
)

accounts for phase accumulation due
to time-varying magnetic fields (see Sections Handling motion
and Motion Correction).

Sequence Building Blocks: Time and Order
Are Key
By manipulating the timing and strength of RF-pulses and
gradients, a plethora of MR sequences can be constructed.
Different pulse sequences differ in their acquisition speed,
encoded image information, or to which degree image contrast
is affected by differences in proton density, T1, or T∗

2 , or
other properties. CMR sequences are typically described by
components for actual image acquisition and components for
preparing the magnetization. These elements can be understood
as building blocks of MRI sequences. The schematic design of the
most common building blocks is shown in Figure 1.

Image Acquisition Methods: Get What You Want

Spin Echo
As described in the previous section, after RF excitation the net
magnetization is subject to T∗

2 relaxation. Fortunately, part of the
dephasing of the transverse magnetization can be recovered with
a so-called spin-echo (SE) sequence. In this sequence a second
RF pulse is applied, where the simplest form comprises a 90◦

excitation and 180◦ refocusing pulse. After the first excitation, the
spins dephase and fan out in the transverse xy-plane. Dephasing
caused by temporally invariant field inhomogeneities, however,
can be reversed via the second refocusing pulse (21). Its effect is
often described as a pancake-flip: The fan of spins is flipped by
180◦ around the x- or y-axis, such that the faster spins now move
toward instead of away from the slower rotating spins. After a
so-called echo time TE, corresponding to twice the time between
the two RF pulses, all dephasing caused by static inhomogeneities
is rephased and an echo of the signal is created, as depicted in
Figure 1. This gives the name to the SE sequence. Consequently,
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FIGURE 1 | MR sequence building blocks. One or more preparatory pulses (left) can be combined with different acquisition sequences (right) to encode the desired

information into the imaging data and achieve different image contrasts.

the contrast in SE, is driven by the T2 time, which captures the
residual dephasing caused by temporally variable factors, such as
spin-spin interaction.

Spoiled Gradient Echo
As opposed to SE, the so-called gradient echo (GRE) sequences
retain not the transverse but the longitudinal magnetization.
They typically require only one RF excitation pulse after which
the frequency encoding gradient is applied (see Figure 1). In
GRE, however, the positive FE gradient lobe is preceded by an
additional negative lobe.

When the areas of the positive and negative lobe are equal,
the initially evoked dephasing of spins is reverted—except
for T∗

2 decay. This creates a signal which is referred to as
a gradient echo and gives name to the GRE sequence (22).
In the so-called spoiled GRE (spGRE), remaining transverse
magnetization is destroyed at the end of each TR cycle.
This can be achieved with strong gradients at the end of
the TR and results in T1 weighted imaging (23). As no
additional RF pulses are required, shorter TE and TRs can
be achieved in GRE compared to SE allowing for faster
image acquisition. In GRE, the echo signal is subject to T∗

2
decay as no rephasing of field inhomogeneities is achieved.
Therefore, GRE sequences are less robust in the presence of
field inhomogeneities.

Balanced Steady-State Free Precession
A third common image acquisition sequence in CMR is the so-
called Balanced Steady-State Free Precession (bSSFP). It can be
understood as a hybrid between SE and GRE. Starting from a
GRE sequence, a train of RF pulses is applied with very short TR
(≪T2) such that the magnetization never fully recovers between
two consecutive RF pulses and a non-zero net magnetization
is present at the next RF pulse. This residual magnetization
contributes to the signal of the following TR. Characteristically
for bSSFP, the flip angles are alternated every TR between +α

and −α causing the net magnetization to flip around the z-
axis between TRs (24, 25). This further means that each RF
pulse has both an excitation and refocusing effect on the spins
and explains the SE nature of bSSFP sequences. For effective
refocusing of the magnetization, the gradient moments on all
three axes (SS, FE, PE) need to be zero at each TR. This means
that the areas of positive and negative gradient lobes on each
axis must be equal, as shown in Figure 1, which is referred to
as balanced gradients. The alternating magnetization progresses
through a transient state and after a certain number of TR

cycles
−→
M reaches a steady state, that is a stationary amplitude.

For TR≪T2 the contrast in bSSFP sequences is determined by
the T2/T1 ratio (24). The main advantage of bSSFP lies in the
improved signal to noise ratio (SNR) compared with spGRE, due
to the recycled transverse magnetization. However, the scheme is
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highly sensitive to off-resonances making it a less common choice
for high field strength and rarely useful for ultra-high fields (25).

Preparation Pulses: Be Prepared for the
Changes
Inversion Pulses
So-called inversion pulses, are 180◦ RF pulses which can be
applied before image acquisition in order to flip the initial
magnetization along the B0 axis (26). During the time between
inversion and the first imaging RF pulse (inversion time, TI), the
longitudinal magnetization recovers along the B0 axis toward its
equilibrium state as depicted in Figure 1. At image acquisition,

the degree to which
−→
M has recovered determines the image

contrast and, thus, induces T1 weighting. This enhances the
image contrast based on T1 properties, which is of interest in
many imaging applications. By adjusting TI, imaging can also
be timed to the point when the magnetization of specific tissues
is crossing the zero point, leading to effective signal suppression
(26). For instance, in double inversion black blood imaging (27), a
global and slice-selective inversion pulse are applied immediately
one after the other such that only the blood outside of the imaging
slice is inverted. With an appropriate TI, the signal of blood
flowing into the slice can be nulled at image acquisition.

Saturation Pulses
Intentionally suppressing tissue signal can also be achieved
through so-called saturation pulses. These RF pulses flip the
magnetization to the transversal plane. Subsequent spoiler
gradients dephase the magnetization, thereby nulling the
signal from the “saturated” spins. The subsequent recovery of
longitudinal magnetization is shown in Figure 1. Saturation
pulses can be made spatially selective, such that regions
in or outside of the image are canceled out. For instance,
artifacts due to through-slice flow can be reduced by applying
a saturation pulse upstream, parallel to the imaging slice.
Furthermore, saturation pulses can be made selective to specific
chemical species by adjusting the resonance frequency. The
most common example is fat saturation, where RF pulses with
carrier frequencies specific to ωL of fat are applied close to the
imaging sequence such that only fat but not water signal is
nulled. Creating uniform saturation with common rectangular
RF pulses is hindered by their high sensitivity to B0 and B1
inhomogeneities. To overcome this limit, adiabatic saturation
modules—such as composite (28) or B1 insensitive rotation (BIR)
pulses (29)—have been proposed.

T2 Preparation
T2 contrast can be induced using the so-called T2 preparation
pulses (30, 31). In a T2 preparation, a first 90

◦ excitation pulse is
followed by a series of refocusing pulses and, finally, by a 90◦ flip-
back pulse. To induce robust refocusing, the refocusing pulses
are separated by a 2τ interval, whereas the interval between the
90◦ pulses and the refocusing pulses is equal to τ . The total
T2 preparation time is varied to achieve different echo times.
During this time, the refocusing pulses compensate for T∗

2 -
decay, resulting in a transverse magnetization decay effectively
characterized by the T2. The final 90

◦ flip-back pulse brings the

remaining transverse magnetization back to the z-axis, encoding
T2 contrast in the longitudinal magnetization, which is then
imaged during acquisition. Several strategies, such as phase
cycling following Malcolm Levitt (MLEV) schemes or using
composite pulses, are employed in order to make T2 preparations
more robust to field inhomogeneities (32, 33).

T1ρ

The relaxation constant in the rotating frame of reference, T1ρ ,
is an additional property of tissues, besides T1 and T2 times.
T1ρ contrast can be achieved through spin-lock preparations.
A spin-lock module consists of a 90◦ tip-down pulse followed
by a continuous wave RF pulse applied for a certain time τSL.
During this time the magnetization is locked on the spin-lock
axis, and it relaxes back to its equilibrium value following an
exponential T1ρ decay. Finally, a 90◦ tip-up pulse is applied after
the spin-lock to restore longitudinal magnetization. Spin-lock
pulses show high susceptibility to field inhomogeneities. Several
compensated schemes, as well as adiabatic spin-lock modules,
have been proposed to make T1ρ preparation more robust to B0
and B+1 variability (34–36).

Common CMR Sequences: What Are They
Made of
The sequence building blocks introduced in the previous
sub-sections can be combined to design tailored sequences
to assess, for example, cardiac function and viability. These
sequences represent powerful tools for the non-invasive
characterization of congenital or acquired cardiovascular
diseases, including ischemia, valvular diseases and ischemic and
non-ischemic cardiomyopathies, as described in Section Clinical
Cardiovascular MR: What do we See and Why do we Need it?.
Here, we will discuss the physics principles governing the main
CMR sequences and introduce some emerging techniques.

Cine bSSFP
Cardiac function is commonly assessed using bSSFP sequences
in cine mode. The structure of bSSFP sequences, described in
Section Sequence Building Blocks: Time and Order are Key,
allows very short TR values to be achieved and increasing
the number of k-space lines acquired in a single heartbeat.
At the same time, bSSFP sequences maintain high intrinsic
myocardial/blood contrast (37). These characteristics enable the
fast acquisition of a single slice across multiple cardiac phases
(typically 10–30 phases, also referred to as frames). This allows
the reconstruction of movies of the beating heart. To achieve
good spatial resolution for every frame, the acquisition of each
frame is divided among different cardiac cycles, using the so-
called segmented acquisition (see Section Handling Motion).
During each heartbeat, in fact, only a limited number of k-
space lines (or a segment) is acquired for each cardiac phase.
Therefore, several heartbeats are necessary to acquire all the
k-space segments. The acquired images are then assigned to
the corresponding heart phases using retrospective gating (see
Section Handling Motion). Full heart coverage is achieved by
repeating the acquisition of each cine image set for different
locations and orientations.
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Late Gadolinium Enhancement CMR
Cardiac viability studies traditionally rely on the use of
gadolinium-based contrast agents (see Section Ischemic Heart
Disease). These cause enhancement of tissue contrast, with
respect to native T1 contrast. Gadolinium-based contrast agents
have the effect of shortening the T1 of both healthy and diseased
myocardium, resulting in their enhancement right after injection.
However, healthy and diseased tissues are characterized by
different contrast wash-out times: at a certain time point after
injection, gadolinium has largely washed out of healthy tissues
but is still retained in pathological areas where the extracellular
space is expanded.

Late gadolinium enhancement (LGE) imaging is most
commonly performed with an inversion-prepared segmented
GRE sequence, where the inversion time (TI) is chosen so
as to null the signal from healthy myocardium and maximize
the contrast. This technique, however, shows high sensitivity
to a correctly chosen TI, which is often based on a quick
scout acquisition (38). Alternatively, Phase-Sensitive Inversion-
Recovery (PSIR) sequences can be used to mitigate the effects
of an incorrect TI on the resulting image contrast (39). Unlike
traditional IR sequences, PSIR retains the information on the
longitudinal magnetization polarity by incorporating the signal
phase in the image reconstruction. The reconstructed PSIR
images exhibit enhanced contrast between healthy and diseased
myocardium. PSIR sequences, however, require the acquisition
of a reference image, in addition to the inversion-recovery image,
to extract the signal polarity. Nevertheless, the total scan time
can be kept constant by acquiring the reference scans during the
T1-recovery heartbeats.

First Pass Perfusion CMR
First pass perfusion CMR is becoming essential for measuring
myocardial blood flow (MBF) and detecting myocardial ischemia
(40), as described in Section Ischemic Heart Disease. In this
technique, images are acquired during the first passing of a
bolus of contrast agent, which increases the blood signal as
described above. To this end, saturation prepared single-shot
GRE (1.5T/3T) or bSSFP (1.5T) sequences in multiple slices are
usually performed. In consequence, myocardial regions with low
perfusion and, hence, low gadolinium concentration, will exhibit
lower signal intensities. Moreover, if perfusion data is acquired
under stress conditions, myocardial perfusion reserve can be
obtained as the ratio of MBF at stress and at rest. Recent first
pass perfusion methods can even yield quantitative MBF values
by taking the temporal dynamics of the signal into account (41).
In clinical practice, first pass and LGE images are often evaluated
alongside each other. This provides additional information on
cardiac viability.

Quantitative CMR Techniques
The methods described in the previous section offer powerful
tools for the qualitative assessment of cardiac function and
viability. Nevertheless, new quantitative MRI biomarkers have
recently been introduced, significantly enhancing the diagnostic
capabilities of CMR. Here, we provide a general overview of
these techniques.

T1 Mapping
While T1-weighted LGE images provide good qualitative
characterization of focal myocardial infarction, it becomes less
sensitive in the presence of diffuse fibrosis. An emerging
alternative is the pixel-by-pixel quantification of T1 relaxation
times (42). By obtaining a healthy reference range, several
pathologies can be characterized without the need for healthy
reference areas within the image. T1-mapping can be performed
with or without contrast injection. In the latter case, it is
referred to as native T1-mapping, as opposed to post-contrast
T1-mapping. T1-mapping sequences are traditionally based on
the Look-Locker technique, which consists in measuring the
signal at multiple time points following an inversion preparation
pulse (43) (see Figure 2). The collected data points, sampling
the longitudinal magnetization recovery, are then fit to an
exponential curve to derive the T1 estimates for each pixel. The
most commonly used method for myocardial T1-mapping is the
Modified Look Locker Inversion recovery (MOLLI) sequence.
Single-shot bSSFP images are each acquired in the end-diastole
phase of consecutive heart beats following the application of
an inversion pulse (44). A typical MOLLI pattern is the 5(3s)3
scheme (45), where the first inversion preparation is followed by
5 bSSFP acquisitions in separate heart beats, then 3 s of rest are
inserted to allow for T1 recovery and, finally, a second inversion
pulse is followed by the last 3 bSSFP measurements. MOLLI
enables precise T1-mapping in a single breath-hold.

Saturation recovery has been proposed as an alternative
to inversion-recovery techniques. The SAturation recovery
single-SHot Acquisition (SASHA) sequence (46) acquires nine
consecutive saturation-prepared single-shot bSSFP images, with
variable saturation recovery times, in consecutive hearth beats.
Saturation recovery-based sequences have the advantages of
not requiring rest periods and of acquiring each image
independently. As a result, the T1-mapping will be less
susceptible to biases introduced by T2, magnetization transfer,
inversion pulse efficiency and magnetic field inhomogeneities,
however at the expense of a reduced dynamic range and,
thus, reduced precision. Hybrid inversion, saturation recovery
sequences have also been proposed to mitigate some loss in
precision (47).

T2/T
∗

2 Mapping
T2 relaxation time in the myocardium can be used as a marker
for the presence of edema, as mentioned in Section Myocardial
Inflammation. T2-mapping is most often performed using a T2-
prepared bSSFP sequence (32), as shown in Figure 2. Commonly,
the acquisition of each image is interleaved with rest periods to
allow for T1 recovery. Alternatively, T1 recovery periods can be
omitted introducing a saturation pulse at the end of the R wave
in every heartbeat (48). The signal is sampled at different TEs by
varying the echo time of the T2-preparation. Acquired data are
then fit to an exponential decay curve to estimate T2 values.

T∗
2 -mapping can also be performed and is used for the

identification of iron accumulation (33, 49). T∗
2 -mapping is

commonly achieved with multi-echo GRE sequences, with a
number of equally-spaced echo times. The resulting signal is then
fit to an exponential decay curve to estimate T∗

2 values.
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FIGURE 2 | Acquisition schemes for quantitative CMR techniques: T1-mapping, Arterial Spin Labeling (ASL), T2-mapping, and T1ρ -mapping. For each technique, the

sequence scheme is represented along with the data sampling and reconstruction strategies.

T1ρ Mapping
Myocardial T1ρ-mapping has been recently introduced as a
promising method for assessment of myocardial fibrosis without
the need for exogenous contrast agents (50). T1ρ-mapping
is performed through spin-lock-prepared bSSFP sequences
acquired for different spin-lock times and interleaved with T1

recovery periods (Figure 2). The sampled signal is then fit to an
exponential decay curve to estimate the relaxation constant T1ρ .
The in-vivo applicability of T1ρ-mapping, however, is hindered
by the susceptibility to field inhomogeneities, especially at high
field strengths.

Cardiac Magnetic Resonance Fingerprinting
Obtaining T1/T2 values with the techniques described above
requires the acquisition and subsequent fit of multiple high-
resolution images to exponential decay models. Unfortunately,
high-resolution scans can be impractically long, particularly if
multiple parameters need to be estimated. On the other hand,
magnetic resonance fingerprinting (MRF) offers the possibility
to simultaneously quantify multiple tissue parameters in a single
scan (51). By varying sequence parameters such as TR and
FA throughout the acquisition of highly undersampled images,
information on tissue parameters is encoded in the temporal
signal of each pixel. These so-called fingerprints are unique
to the underlying tissue parameter configuration and can be
compared to previously generated dictionaries to infer the
model parameters of interest. The dictionary contains simulated

time signals for the chosen sequence parameters for a range
of model parameter values. While MRF is well established
for studies of the brain, non-static organs such as the heart
pose challenges due to high respiratory and cardiac motion
(52, 53). Therefore, cardiac MRF is performed in breath-held
acquisitions which are ECG triggered to the quiescent, end-
diastolic phase of the cardiac cycle (54). More recently, free-
breathing cardiac MRF sequences have also been proposed
(55). However, since the heart rate varies over time, multiple
dictionaries which are simulated with the actual heart rate, are
required. To further increase sensitivity to T1/T2, inversion
or saturation pulses can be added (54). Although clinical
validation is still in its early stages due to complex acquisition
and reconstruction as well as relatively long breath-holds,
cardiac MRF remains a promising technique for fast multi-
parametric mapping.

Blood Flow
Cardiovascular flow is typically measured through phase contrast
methods that are sensitized to through-plane velocities (56). Flow
velocity values are obtained by adding bipolar flow-encoding
gradients in the slice-selection direction, after the excitation
but before read-out. Flow encoding is based on the principle
that moving spins, contrary to stationary spins, accumulate a
net phase shift proportional to their velocity when subject to
bipolar gradients. By toggling the bipolar gradients, the other
contributions to the phase shift, such as those cause by field
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inhomogeneities, can be neutralized and the blood flow velocity
can be quantified.

2D-phase contrast imaging only resolves though-plane flow in
2 spatial dimensions. However, more recently, 4D-flow imaging
has been proposed, which combines 3D spatial encoding with
3D directional velocity encoding (57, 58). As a result, 4D-flow
MRI offers the possibility to visualize the temporal evolution of
complex flow patterns in a 3D volume.

Arterial Spin Labeling
CMR allows the assessment of myocardial perfusion (40).
However, current techniques are based on first pass perfusion
imaging which requires the use of contrast agents and, thus, limits
the repeatability and clinical applicability. Arterial spin labeling
(ASL), on the other hand, relies on endogenous contrast in the
form of magnetically labeled blood. The general idea behind ASL
is to acquire two images, one with and one without labeled blood.
Subsequently, these images are subtracted to obtain the perfusion
related signal only. For cardiac applications of ASL, the most
commonly used tagging method is Flow-Alternating Inversion
Recovery ASL (FAIR-ASL) (59, 60), depicted in Figure 2. In
FAIR-ASL, spatially selective and non-selective inversion pulses
are applied alternately: The selective pulse serves as a preparation
for the control image. During image acquisition after the
non-selective pulse, however, in-flowing inverted spins reduce
the longitudinal magnetization proportionally to the perfusion
rate. During reconstruction, the subtracted images are first
normalized to the baseline intensity, i.e., an image without any
preparation pulse. This difference is then multiplied with the
inversion efficiency, the blood water-tissue partition coefficient,
and an exponential factor accounting for T1-decay to obtain the
MBF (61).

Common CMR Artifacts: Obscured Reality
The complexity of cardiac anatomy, as well as the presence of
respiratory motion, cardiac motion, and blood flow, constitute a
unique set of challenges for CMR examinations. In this section we
recount the most common artifacts in cardiac MR (Figure 3) and
strategies for mitigating them (see Section CMR Image Quality:
No Free Lunch). A comprehensive guide to cardiac MR artifacts
can be found in Ferreira et al. (62).

Respiratory motion can cause inconsistencies between
different segments of the acquisition. As a result, ghosting
artifacts may appear on the reconstructed images. Two
approaches are commonly used to avoid breathing-related
artifacts: breath-holding and respiratory navigators (both will
be described in Section Handling Motion). On the other hand,
cardiac motion can cause blurring for long imaging blocks, when
the acquisition window includes phases of rapid motion. This
effect is commonly tackled by introducing cardiac triggering,
which synchronizes the acquisition with the cardiac cycles.
Choosing relatively long trigger delays from the R peak of the
electrocardiogram (ECG) signal enables acquisition during
quiescent cardiac phases, such as mid-diastole.

Blood flow can also be a cause of artifacts in CMR. As
already discussed in the blood flow imaging paragraph of
Section Quantitative CMR Techniques, motion-induced phase

shifts occur in presence of blood flow, corrupting the spatial
phase encoding. Flow-compensated gradients can be employed to
minimize these alterations, by nulling the higher-order gradient
moments. For instance, 1st order flow compensation consists of
nulling the gradients’ 1st order moment, minimizing constant
flow velocities contributions.

Aliasing artifacts are very common in MRI and specifically
in CMR, where the strict time constraints often limit the
FOV dimensions. These artifacts manifest as wrap-around
ghosts, which can overlap to the anatomical structures under
investigation. While aliasing in the frequency-encoding direction
can be avoided through oversampling, this is not feasible in
the phase encoding direction without increasing scan time.
In this case, the FOV must be enlarged at the expense of
lower resolution.

Finally, chemical shift artifacts can manifest in the presence
of pericardial fat. These arise because of the different molecular
environment of protons in fat and water, whose resonant
frequencies differ by approximately 420Hz (at 3T) as a result.
This difference results in a misregistration of fat and water tissues
along the frequency encoding direction. Chemical shift artifacts
becomemore evident, for example, when changing the frequency
encoding direction. They can be reduced by increasing the signal
bandwidth, albeit at the cost of lower SNR.

CLINICAL CARDIOVASCULAR MR: WHAT
DO WE SEE AND WHY DO WE NEED IT?

This section will outline the contributions CMR can make
within each of the major cardiovascular subspecialties and
set the scene for the remaining sections in this manuscript
which focus on image acquisition, reconstruction, and the
burgeoning impact of artificial intelligence on all these areas.
Where relevant, reference is made to international diagnosis
and treatment guidelines and the levels of supporting evidence
underpinning recommendations.

Basic Principles and Advantages of CMR:
What You See and What You Get
CMR is widely recognized as the gold-standard for the non-
invasive quantification of left ventricular (LV) ejection fraction
which remains a cornerstone parameter that guides decision
making in various scenarios ranging from the diagnosis of
heart failure to determining the need for primary prevention
implantable cardioverter defibrillators (ICDs) and the timing of
surgical intervention in patients with valvular heart disease (63,
64). For many of these applications, echocardiography remains
a first-line investigation, but CMR is particularly valuable for
evaluating cardiac structure and function in patients with poor
acoustic windows. This is recognized in the recent European
society of cardiology (ESC) heart failure guidelines as a class I
indication for CMR (Class I: evidence and/or general agreement
that a given treatment or procedure is beneficial, useful, or
effective) with level of evidence C (consensus opinion of
experts and/or small studies, retrospective studies, registries)
(63). The ability to non-invasively acquire high spatial and
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FIGURE 3 | Experienced CMR image artifacts of (A) respiratory motion, (B) cardiac motion, (C) chemical shift, and (D) wrap-around.

temporal resolution images in any plane using bSSFP sequences
which have high intrinsic T1 and T2 contrast affords high
endocardial definition enabling chamber volumes and function
to be quantified with high accuracy and precision (65). This is
achieved by acquiring a contiguous short axis stack parallel to the
atrioventricular groove and planned with two and four chamber
cine sequences (5, 66), see Section Plan Imaging Accurately and
Avoid Common Mistakes.

A key feature of CMR is its ability to non-invasively
characterize tissue by exploiting intrinsic differences in
nuclear magnetic relaxation characteristics of hydrogen
nuclei which are found in abundance in the human body in
different chemical environments in the form of water but
also bound in large macromolecules such as triglycerides and
proteins (Supplementary Figure 1). This enables different
anatomical structures and pathology to be readily appreciated
and differentiated without the need for exogenous contrast.
However, the administration of the latter, in the form of
large macromolecular chelates of the paramagnetic element
gadolinium, augments our ability to detect pathology even
further by highlighting the presence of myocardial fibrosis,
infiltration, or areas of infarction (67). Gadolinium contrast
agents shorten T1 relaxation times in proportion to their local

concentration. As large positively charged macromolecules,
they are unable to penetrate the intact cell membrane and
so remain entirely extracellular. As such, in tissues where
the extracellular space has been expanded by the presence
of fibrosis or infiltrated by exogenous proteins such as for
instance in cardiac amyloidosis, gadolinium can accumulate to
higher local concentrations. If imaged ∼10min after contrast
administration using an appropriate inversion recovery prepared
T1-weighted sequence with an inversion time set to null the
signal from healthy myocardium, such areas are illuminated as
gadolinium washes out of healthy tissue but remains at higher
concentrations in diseased areas, causing faster recovery of
signal. Infarcted or non-viable areas of myocardium can be
similarly delineated as they are rich in extracellular matrix
and proteins, but cell-poor or in the case of acute myocardial
injury, may be populated by necrotic cells with disrupted cell
membranes (68). The LGE imaging technique (see Section
Common CMR Sequences: What are They Made of) plays
a pivotal role in phenotyping patients with heart failure,
particularly differentiating patients with ischemic from non-
ischemic heart failure (Class IIa: conflicting evidence and/or
divergence of opinion about the usefulness/efficacy of the
given treatment or procedure but weight of evidence/opinion
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is in favor of usefulness or efficacy) with level of evidence
C (63).

Ischemic Heart Disease
In patients with ischemic heart disease, occlusion of an epicardial
coronary artery tends to cause injury and necrosis of endocardial
cells first as these are furthest away from the blood supply,
evolving to a wavefront of necrosis that gradually spreads
centrifugally toward the epicardium (Figure 4A). Areas of
LGE extending from the sub-endocardium, particularly if they
are regional or in a coronary distribution, denote areas of
ischemic infarction. In contrast, non-ischemic pathologies such
as dilated cardiomyopathy or myocarditis tend to be associated
with LGE in an epicardial or mid-wall distribution, allowing
ischemic and non-ischemic etiologies of heart failure to be
readily distinguished (Figure 4B). CMR is regarded as a class I
indication for evaluating acute chest pain or myocardial injury
in patients with unobstructed coronary arteries (level of evidence
B: moderate quality evidence from one or more well-designed,
well-executed non-randomized studies, observational studies or
registry studies or meta-analyses of such studies) (69). As well as
being diagnostically valuable, it is increasingly being recognized
that the presence and/or extent or pattern of LGE may have
prognostic significance (70–74).

In patients with ischemic heart disease, the distribution
of LGE can localize infarcts to specific coronary territories
(Figure 4A), and the transmural extent can determine the
likelihood of underlyingmyocardial viability (75). By imaging the
first pass of contrast through the myocardium under conditions
of vasodilator stress (typically achieved with adenosine or
regadenoson), myocardial perfusion abnormalities may be
identified which may signify myocardial ischemia (76). When
the epicardial coronary arteries are unobstructed, contrast arrives
synchronously and homogeneously in all supplied myocardial
segments. However, where there is a hemodynamically significant
stenosis in a given coronary artery, that vessel will already
be maximally vasodilated at baseline. The administration of
a vasodilator will thereby augment blood flow (and so the
arrival of contrast) to unobstructed coronary arteries, allowing
areas of hypoperfusion to be delineated by the delayed and
reduced arrival of contrast to the already maximally dilated
stenosed vessel (76). This technique can therefore be used to
diagnose the presence of coronary disease (77) or where this is
already known, determine the functional significance of a given
stenosis identified using an anatomical imaging technique such
as invasive coronary angiography or CT coronary angiography.
As mentioned previously, this technique is frequently used in
tandem with LGE imaging to assess for myocardial ischemia
and viability and thereby determine the need for or to guide
revascularization (76). Recent US chest pain guidelines now
regard this as a class I indication for stress CMR (level of evidence
B) (69). Advances in sequence design, image processing, and
quantification techniques now enable myocardial blood flow
to be measured at the voxel level with high in-plane spatial
resolution (78–83). The latter allows microvascular dysfunction
to be elucidated non-invasively (79, 84, 85) (Figures 4C,D),
and for ischemic burden to be accurately calculated (81, 86).

FIGURE 4 | Ischaemic and non-ischaemic heart disease. (A) Late gadolinium

enhancement sequence in the 3-chamber view. There is near transmural

sub-endocardial enhancement of the mid-apical septum and apex (short

arrow, mid-left anterior descending coronary artery territory). A signal void

focus is also seen adherent to the apex (arrowhead). This represents a left

ventricular thrombus. In addition, there is focal partial thickness

sub-endocardial enhancement of basal inferolateral wall (long arrow, circumflex

coronary artery territory), which spares the sub-epicardium (denoting an

ischaemic etiology). The presence of infarcts in two different coronary

territories alludes to the potential presence of multivessel coronary disease. (B)

Late gadolinium enhancement sequence demonstrating a ring or

circumferential pattern of non-ischaemic enhancement. The areas of

enhancement involve the mid-wall or sub-epicardium, sparing the

sub-endocardium. (C,D) Stress perfusion scan from a patient with

hypertrophic cardiomyopathy. There is widespread circumferential

sub-endocardial delayed arrival of contrast (hypoperfusion) at mid-ventricular

level (C) and apex (D), typical of microvascular dysfunction. (E,F) Bright blood

axis scout at upper abdominal level (E). The normal liver should have signal

characteristics similar to the spleen (marked). However, in this patient with

hepatic iron overload, the spleen appears almost black due to accelerated

dephasing of spins brought about by the increasing field inhomogeneity

generated by intrahepatic iron stores. This T*2 effect can be used to quantify

liver iron levels (F). Here, the liver T*2 is ∼1.9ms, denoting moderate hepatic

iron overload (normal > 6.3ms) equivalent to ∼5–10mg iron/g dry weight.

Quantification techniques also appear to improve the ability to
correctly identify multivessel coronary disease (87).

Non-ischemic Cardiomyopathies
The ability to quantify tissue characteristics has enabled various
MR relaxation parameters to be used as biomarkers for diagnosis
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FIGURE 5 | Multiparametric evaluation of a patient with acute myocarditis. (A)

Depicts increased T2 signal in the mid-inferior and lateral walls in an epicardial

to mid-wall distribution. The absolute T2 time in the inflamed area is increased

to ∼70ms (B) whereas the remote myocardium in the septum has a normal T2
time of 45ms (normal < 55ms). (C) depicts increased native T1, another

marker of tissue injury. This is raised at 1,347ms in the epicardium of the

mid-inferior and lateral walls (normal range: 890–1,035ms on this platform at

1.5T). (D) illustrates epicardial to mid-wall enhancement of the mid-inferior and

lateral walls, which spares the sub-endocardium (typical of myocarditis).

and to guide therapy (42, 88). The seminal example of this is the
development of T∗

2 imaging (Figures 4E,F), which has enabled
non-invasive hepatic and myocardial iron quantification (49). By
allowing the early diagnosis of iron overload cardiomyopathy and
timely initiation and titration of chelation therapy, this has been
credited with significantly reducing the risk of death from heart
failure in patients with thalassemia (89). The development of T1

mapping techniques (see Section Quantitative CMR Techniques)
has found applications in detecting interstitial fibrosis, and by
measuring post-contrast T1 together with the knowledge of
the patient’s hematocrit, the estimation of extracellular volume
fraction (ECV) has made it possible to track pathologies such as
cardiac amyloidosis (42). This is of growing relevance as these
conditions are increasingly amenable to novel therapeutics which
can stabilize or even potentially partially reverse cardiac amyloid
deposition (90). Thus, CMR is regarded as a class I indication for
the evaluation of infiltrative disease and suspected iron overload
(level of evidence C) (63).

CMR also plays a vital role in the evaluation of patients with
heart failure or suspected non-ischemic heart muscle disease.
It can be used as a gatekeeper for invasive coronary evaluation
(91) but also to accurately evaluate areas of the heart that
are difficult to clearly visualize by echocardiography such the
LV apex or the right ventricle. This can be invaluable for the

diagnosis of particularly the apical variants of hypertrophic
cardiomyopathy (92) and arrhythmogenic right ventricular (RV)
cardiomyopathy (93).

Myocardial Inflammation
The ESC guidelines regard CMR as a class I indication
(level of evidence C) for the evaluation of patients with
suspected myocardial inflammation (63). Acute inflammatory
processes and tissue injury can increase tissue water content
and increase the mobility of tissue water protons (94). This
can be exploited with T2-weighted imaging techniques
and quantitative mapping methodologies (see Section
Quantitative CMR Techniques) to diagnose the presence
and distribution of myocardial inflammation (Figure 5)
(88, 94, 95). Myocarditis can be diagnosed when in the
appropriate clinical context, there is evidence of tissue oedema
and inflammation/injury on one T2-based (T2-weighted-
imaging or T2-maps) and one T1-based criterion (native T1 map,
LGE imaging, or ECV maps), respectively, in a non-ischemic
distribution (96).

Cardiac Electrophysiology
Within the sphere of cardiac electrophysiology, not only is CMR
playing a vital role in the identification of patients at increased
risk of arrhythmia (70, 72–74), but it is increasingly being used
to plan invasive arrhythmia ablation procedures (97). Atrial
fibrillation is the commonest sustained cardiac arrhythmia and
an important cause of morbidity and mortality (98). In most
patients, the arrhythmia is triggered by electrical activity from
the pulmonary veins which can be treated by electrically isolating
these through ablation (98). 3D-anatomical and fibrosis imaging
sequences can help to define the number of pulmonary veins
and the degree of fibrotic remodeling of the atrium which may
influence procedural success (Figure 6) (99). For patients with
malignant ventricular arrhythmias, identifying the precise origin
of arrhythmic foci often requires prolonged and tedious pace-
mapping of the electrical substrate increasing procedure times
and thereby risk to patients (100). This can be considerably
facilitated by pre-procedural CMR which can identify areas of
scar tissue and help target electrical interrogation of the diseased
myocardium (100).

Congenital Heart Disease
CMR has also revolutionized the care of patients with congenital
heart disease, which occurs at a frequency of 6–8 per 1,000 live
births (101). Advances in care now mean that more patients
are surviving to adulthood and so are forming an important
cohort of patients who require regular clinical and imaging
evaluation (101–103). The complexity of disease can range from
minor anomalies such as a small restrictive ventricular septal
defect through to patients with complex cyanotic heart disease
with cardiac malformations that require often multiple complex
surgeries to correct or palliate. The imaging assessment of
such patients requires the ability to image in multiple planes,
in 3D, and to quantify blood flow, particularly to diagnose
the presence and severity of any intracardiac shunts (101,
103). Importantly, this is achieved without the need for any
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FIGURE 6 | 3D-segmentation of the left atrium depicting left atrial anatomy

and four pulmonary veins and their tributaries (A). There is extensive fibrosis of

the left atrial wall (B) on 3D late enhancement sequences which may reduce

the likelihood of successful ablation.

ionizing radiation (which would have a greater impact on this
younger cohort of patients who need frequent serial imaging)
and unfettered by limitations imposed by acoustic windows as
echocardiography often is. This is particularly true for structures
such as the right ventricle that are more challenging to image
with echocardiography (104). The high accuracy and precision
of the measurements of ventricular size and function as well
as blood flow enable these parameters to be used to guide the
timing for surgical intervention, for instance, pulmonary valve
interventions in patients with repaired tetralogy of Fallot (103,
105). The broad utility of CMR in congenital heart disease has
been recognized in recent international guidelines (106). The
presence of RV scar detected by LGE-CMR has been highlighted
as a risk factor for sudden cardiac death and its use for risk
stratification is recommended as a class IIa indication (level of
evidence C). These guidelines also recognize CMR with physical
stress as a class I indication (level of evidence C) for the
evaluation patients with coronary anomalies to confirm/exclude
myocardial ischemia (106).

Valvular Heart Disease
While Doppler echocardiography is rightly considered the
modality of choice for the evaluation of patients with
valvular heart disease, phase-contrast velocity mapping is
particularly adept at quantifying regurgitant lesions such as
aortic and pulmonary regurgitation (107). It can play a
role in corroborating echo findings or in providing accurate

FIGURE 7 | Cardiovascular time resolved 3D-angiography. The bolus of

contrast is imaged progressively as it passes from the right side of the heart

(A) into the pulmonary arteries (B), left atrium/ventricle (C), and thoracic aorta

(D). This obviates the need to precisely time the contrast volume and enables

the rapid visualization of different parts of the circulation with a single bolus of

contrast.

quantification where unfavorable echo windows preclude this,
or jet eccentricity can result in underestimation of jet severity
(Supplementary Figures 2, 3) (64, 108). As in many other
spheres of cardiovascular medicine, an accurate quantification
of ventricular ejection fraction may be vital in determining the
timing of any intervention (109).

Angiography and Vascular Disease
CMR also has the added advantage of enabling visualization of
the aorta and great vessels which can often need intervention
in patients with aortic valve disease, particularly if this is
associated with aortopathy such as patients with bicuspid aortic
valves. This can be achieved using time-resolved angiographic
approaches (110), as well as with 3D-sequences acquired in free-
breathing that can increasingly be combined with multiple tissue
contrasts (111–113). The former can enable the visualization
of multiple vascular beds and structures (systemic venous,
pulmonary arterial and venous, and systemic arterial) with a
single dose of contrast (Figure 7) (110). This has a range of
applications from the evaluation of vascular disease itself to
planning interventions.

Advances in rapid imaging techniques, catheter technology,
and the development of interventional imaging suites now allows
actual invasive procedures to be performed under MR-guidance
(114, 115). This brings the principal benefit of minimizing the
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need for X-ray fluoroscopy particularly in younger patients who
require frequent serial evaluation.

There is also growing interest in leveraging the tissue
characterization capabilities of CMR to evaluate coronary plaque
characteristics (116, 117). Specifically, T1-weighted non-contrast
coronary imaging can be used to delineate the presence of
methemoglobin, a marker of coronary thrombosis or intraplaque
hemorrhage, which has been associated with vulnerable plaque
morphology and angina severity (118).

Cardiac Tumors
Another area where CMR has made significant indispensable
contributions to patient care is the evaluation of cardiac
tumors (119). While these are thankfully rare, the ability of
CMR to provide full-spectrum non-invasive characterization
can help to refine the diagnosis and, in many instances,
can type specific lesions. Anatomical and cine sequences can
localize a lesion and define its geometry and relationship
with surrounding structures (119). Sequences with different
T1 and T2 weighting with and without fat-saturation can be
used to delineate tissue characteristics. Imaging of the tumor
during the first pass of contrast can depict its vascularity
and perfusion (120). Imaging in the early phase after contrast
administration can differentiate thrombus from neoplasia or
reveal the presence of superadded thrombosis. Imaging in the
late phase can provide information on the contrast uptake
characteristics of the lesion which again can be valuable in
differential diagnosis (119, 120). Such data can increasingly
be combined with fluorodeoxyglucose (FDG)-positron emission
tomography (PET) and other radiotracer uptake data in hybrid
CMR-PET imaging platforms to provide truly multimodal
comprehensive evaluation that encompasses tumor metabolic
activity (121).

In summary, CMR has found applications within every
sphere of cardiovascular medicine and has often had a positive
disruptive effect—improving diagnosis and in many cases,
changing patient outcomes. In a single comprehensive study, it
is now possible to assess and reliably quantify cardiovascular
anatomy, function, tissue T1, T2, T

∗
2 , ECV, perfusion at stress

and rest, late gadolinium enhancement, and blood flow. While
many of the necessary sequences are ECG-gated and have
been done with breath holding, recent advances now make it
possible to acquire most data using free-breathing techniques
making CMR more accessible and tolerable for patients with
cardiovascular disease who often suffer from breathlessness (see
Section Handling Motion). However, although the ability to
acquire more and more data has grown over the years, the
time available to scan patients (typically 1 h) and report the
voluminous imaging data sets that are generated has not. This
requires careful protocolling and efficient image acquisition
to harness the true benefits of this technology in a value-
conscious and efficient way (see Section Clinical Cardiovascular
MR: How Should we Perform the Examination). Advances
in the application of artificial intelligence to both image
reconstruction and interpretation may help offset some of these
challenges and are addressed in Section Artificial Intelligence for
Cardiovascular MR.

CLINICAL CARDIOVASCULAR MR: HOW
SHOULD WE PERFORM THE
EXAMINATION

As new imaging techniques are developed and the clinical
applications of CMR expand, implementing efficient workflow
practices has become increasingly important in clinical practice.
To complete a comprehensive examination in a clinically
acceptable timeframe with high quality imaging requires
considerable forethought and planning.

Developing and applying a systematic approach to all aspects
of the examination can save considerable scanner time, even if
the operator is proficient in the placement of imaging planes.
In this section, key areas essential to developing an efficient and
structured approach to a CMR examination are outlined.

Clinically-Tailored Protocols: Make It Right
for Patients
The vast array of CMR imaging sequences now available has
the potential to considerably extend the CMR examination
to clinically unrealistic lengths. Therefore, it is important to
approach CMR as a modality with a suite of standardized,
clinically-targeted protocols rather than a single one-size-fits-
all examination. Protocols should be developed to answer the
clinical question with a focus on adding value. Resources
are available (5) to guide the development of in-house
clinical protocols, which can then be modified to suit patient-
specific requirements. It is essential to review each patient’s
clinical history and previous imaging and tailor the protocol
to answer the clinical question, focusing on providing the
information only CMR can provide. Even reasonably fit patients
can become fatigued from multiple breath holds. Removing
any sequences from the examination that do not assist in
making the diagnosis will increase efficiency and improve
patient compliance.

Template Protocols: Have Them Ready
Before creating comprehensive CMR protocols on the scanner,
build a high quality clinically-appropriate template protocol
for each of the basic pulse sequence types, e.g., cine bSSFP;
phase contrast (PC) flow quantification imaging; dark blood T2

weighted fast spin echo imaging; and LGE imaging (see Sections
Preparation Pulses: Be Prepared for the Changes and Common
CMR Sequences: What Are They Made of).

In accordance with field strength and scanner capabilities,
each template protocol should be created ensuring the scan times
are as short as possible whilst maintaining appropriate spatial
and temporal resolution, and without introducing artifacts from
undersampling or cutting corners (see Section Common CMR
Artifacts: Obscured Reality).

Once created, each pulse sequence template protocol can be
used and modified to build plane-specific image acquisitions, for
example, the 4-chamber or LV vertical long axis views.

This approach ensures consistency and standardization
of image quality across the entire examination and
clinical service.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 March 2022 | Volume 9 | Article 826283103

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ismail et al. CMR QI and AI

The Building Blocks of a Successful CMR
Exam
Almost all CMR examinations will require the basic building
blocks of LV and often RV function. All the basic cardiac
planes are aligned relative to the heart and are specific to the
patient’s anatomy. Each plane is prescribed building on prior
knowledge from previous acquisitions. Scanning efficiency can be
significantly improved by giving careful thought to the order of
acquisition of these basic building block sequences. The sequence
order below has been planned to ensure that there is no downtime
between acquisitions. All image planes required for planning
have been acquired at least one acquisition ahead.

Imaging Protocol for LV and RV Function
1. Three plane (axial, sagittal, coronal) localizer—centered on

heart in three planes.
2. Axial non-cine bSSFP localizer—cover from aortic arch to the

inferior border of the heart.
3. LV Vertical Long Axis (VLA) cine bSSFP localizer—use the

axial bSSFP localizer to prescribe a single slice through the
middle of the mitral valve to the LV apex.

4. Sagittal oblique Main Pulmonary Artery (MPA) cine bSSFP—
prescribe one slice through the middle of the MPA and the RV
outflow tract (RV OT) using the axial localizer.

5. LV short axis (SAX) single heartbeat multislice localizer—use
the axial localizer and LV VLA localizer to prescribe a stack
through the atrio-ventricular valve.

6. Coronal oblique MPA cine bSSFP—use Sagittal Oblique MPA
to prescribe one slice through middle of MPA, Pulmonary
Valve (PV) and RV OT.

7. 4-chamber cine bSSFP—use the basal slice of the LV SAX stack
localizer to prescribe one slice through the center of the mitral
and tricuspid valves. Cross reference to the LV VLA localizer
to ensure the slice is through the center of the mitral valve and
the LV apex.

8. LV 2-chamber cine bSSFP—use the 4-chamber to prescribe
one slice through the middle of the mitral valve to the LV apex.

9. RVVLA cine bSSFP—use the 4-chamber to prescribe one slice
through the middle of tricuspid valve to the RV apex. Cross-
reference to LV SAX stack localizer to ensure RV OT and PV
are in the plane of the slice.

10. LV SAX cine bSSFP-−8 or 6mm slice thickness with 2 or
4mm gap, respectively, to make total 10mm; use both the 2-
chamber and 4-chamber diastolic phase images to prescribe a
series of slices from the mitral valve annulus to the LV apex.
See Section Plan Imaging Accurately and Avoid Common
Mistakes for extra positioning tips.

11. Three chamber cine bSSFP—use the basal slice of the LV SAX
series and prescribe one slice through the middle of the aortic
valve and the left atrium.

12. LV Outflow Tract (LV OT) cine bSSFP—use the 3-chamber
to prescribe one slice through the middle of the aorta and
the LV OT.

13. RV SAX cine bSSFP—(8/2 or 6/4mm); use both the sagittal
MPA and the RV VLA diastolic phase images to prescribe a
series of slices in a plane perpendicular to a line from the

pulmonary valve to the apex of the RV. The first slice should be
placed at the level of the PV in diastole (122). See Section Plan
imaging Accurately and Avoid Common Mistakes for extra
positioning tips.

14. Phase Contrast (PC) Flow Aorta—use both the 3-chamber
and LV OT diastolic phase images to prescribe a slice
perpendicular to the aorta in both planes, at the level of
the sino-tubular junction.

15. PC Flow Aortic Valve—use both 3-chamber and LV OT
diastolic phase images to prescribe a slice perpendicular to the
aorta in both planes, at the level of the aortic valve annulus.

16. PC Flow MPA—use both sagittal and coronal MPA diastolic
phase images to prescribe a slice perpendicular to the MPA
in both planes, just distal to the valve, through the tubular
portion of the MPA, avoiding bifurcation.

Plan Imaging Accurately and Avoid
Common Mistakes
Due to the variability of cardiac morphology and body shape
between patients, it can take considerable time to become
proficient at localizing cardiac imaging planes. The heart does not
lie in an orthogonal plane to the thorax and therefore more than
one localizer plane is necessary for accurate and reproducible
positioning. Learning to avoid common positioning errors can
improve scanning efficiency and diagnostic quality.

The 4-Chamber View
The 4-chamber view affords an overall visual assessment
of cardiac function. A well-positioned view (Figure 8A) will
demonstrate the mitral and tricuspid valves and the right and
left atria and ventricles. However, frequently the four cardiac
chambers and the atrio-ventricular valve planes are not well-
visualized due the slice plane being prescribed incorrectly.
Figure 8B is an example of a poorly positioned 4-chamber with
the slice plane prescribed through the LV OT. To successfully
position the 4-chamber view requires the use of three views. On
the LV VLA view (Figure 8C), the operator should ensure the
slice plane is prescribed through the center of themitral valve and
the LV apex. On a mid-ventricular LV SAX slice (Figure 8D), the
plane is tilted down to the RV apex. Finally, the position is cross-
checked on a basal LV SAX view (Figure 8E) to ensure the slice
positioning avoids the LV OT and aortic root.

Left Ventricular Short Axis—Accurate Positioning of

the Basal Slice
Correct positioning of the basal slice of the LV SAX stack
can significantly improve the accuracy and reproducibility of
volumetric analysis. A consistent and reproducible method of
positioning this slice is critical. As outlined in Section Clinical
Cardiovascular MR: What do we See and why do we Need it?,
both the LV VLA (Figure 9A) and 4-chamber (Figure 9B) views
must be used to ensure the basal diastolic phase slice is positioned
parallel to the mitral valve annulus, avoiding atrium and with an
even amount of myocardium around the blood pool (Figure 9C).

If the image position is not correct, simple corrections are
shown in Figure 10 (top row). If the basal diastolic phase slice
includes atrium (Figure 10A), the slice must be repositioned
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FIGURE 8 | Well-positioned 4-chamber view (A) demonstrating mitral and tricuspid valves, right and left atria, and ventricles. Incorrect prescription (B) with the slice

plane prescribed through the LV OT. Accurate positioning of the 4-chamber view requires the use of three views, the LV VLA view (C), mid-ventricular LV SAX slice (D),

and the basal LV SAX slice (E).

FIGURE 9 | Accurate positioning of the basal slice of the LV SAX series requires the use of both the LV VLA (A) and the 4-chamber (B) views to ensure the basal

diastolic phase slice is positioned parallel to the mitral valve annulus, avoiding atrium and with an even amount of myocardium around the blood pool (C).

toward the apex (Figure 10B). If there is an inconsistent amount
of myocardium (Figure 10C), the slice angle is tilted on the LV
VLA view (Figure 10D).

Right Ventricular Vertical Long Axis View
The non-geometric shape of the RV increases the complexity
of positioning. A well-positioned RV VLA (Figure 10E) will
enable visualization of the pulmonary and tricuspid valves, the
RVOT and the RV apex in one plane. After positioning the slice

on the 4-chamber view (Figure 10F) through the RV apex and
avoiding the septum, the slice plane is tilted up to the RV OT and
pulmonary valve using the basal LV SAX slice (Figure 10G).

Right Ventricular Short Axis
The modified RV short axis series (122) enables more accurate
and reproducible planimetry of the ventricular borders making
analysis less prone to operator error. A well-positioned RV VLA
is key to ensuring correct positioning of the RV SAX.
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FIGURE 10 | Top row: Positioning corrections for the LV SAX series include repositioning the slice more apically (B) if the basal diastolic phase slice includes atrium (A).

If there is an inconsistent amount of myocardium around the blood pool (C), the slice angle is tilted on the LV VLA view (D). Bottom row: A well-positioned RV VLA (E)

is achieved by positioning the slice on the 4-chamber view (F) through the RV apex and avoiding the septum, then tilting the slice plane up to the RVOT and pulmonary

valve on the basal LV SAX slice (G). The RV SAX series can then be planned on this view to transect the tricuspid valve at an angle between 45◦ and 90◦ (H).

Figure 10H shows the prescription of the RV SAX slices on
the RV VLA. The slices should transect the tricuspid valve at an
angle between 45◦ and 90◦ to ensure the slices are not prescribed
too close to parallel to the valve.

Building Blocks to a Comprehensive CMR
Protocol
As mentioned earlier, the order of image acquisition is important
for scanning efficiently. The operator should start by creating
scan protocols of the building blocks outlined in Section
The Building Blocks of a Successful CMR Exam. Using the
template pulse sequence protocol created as per the facility
requirements, each individual acquisition can then be built and
named accordingly.

This foundation protocol then forms the basis of all the clinical
protocols to be built on the scanner.

A general cardiomyopathy protocol can be used for the
majority of clinical presentations. Options tailored to specific
presentations, such as oedema-weighted imaging and T2-
mapping for acute presentations, can be selected as required.
Advanced imaging techniques, such as T1-mapping, should
be added as appropriate (see Section Quantitative CMR
Techniques). LGE imaging acquisitions should be built with
plane specific labels, e.g., LV SAX LGE series, to assist in
quickly identifying series when viewing images during reporting.
Supplementary Table 1 is an example of a clinical protocol
for the assessment of acute cardiomyopathic diseases such as
acute myocarditis.

The next step is to build further indication-specific protocols
matched to the facility clinical protocols, such as Hypertrophic
Cardiomyopathy, Arrhythmogenic Cardiomyopathy or
Tetralogy of Fallot where very specific clinical questions
need to be addressed.

Using this method to build a comprehensive CMR protocol
library will enhance efficiency, improve patient compliance, and
ensure that all required imaging sequences are performed.

Get Your Patient Ready
Performing an efficient CMR examination is highly dependent on
patient cooperation. To optimize scanner time, the patient should
be prepared outside the scan room. It is useful for patients to
understand the important role they play in the quality of their
examination, particularly the importance of consistent breath
holding. Coaching breath hold procedures, checking breath hold
capacity, and assessing likely compliance with instructions prior
to commencing the examination will save valuable scanner time.

A good ECG trace is essential and is achieved by preparing
the skin with abrasive gel, shaving if necessary and using low-
impedance MRI safe electrodes. The use of an impedance meter
to check electrode-to-skin contact and ensure strong lead voltage
enables the operator to reposition using new electrodes prior
to the patient entering the scan room. Once the patient is in
the scanner and connected to the scanner gating system, the
ECG trace should be assessed to ensure there is adequate voltage
in each lead. If necessary, electrodes should be replaced and
repositioned until a reliable ECG trace is obtained. If the poor
ECG trace is due to the patient’s irregular rhythm, acquisition
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strategies must be planned accordingly (see Sections Managing
Challenging Patients and Handling Motion).

Plan, Review, and Correct
Examination time can be reduced by attention to detail during
scan preparation. With most CMR sequences requiring one
breath hold per slice, it is important to limit the acquisition of
any unnecessary slices. When acquiring a multi-slice series, each
series should be prescribed carefully to cover only the anatomy
needed. Images should be reviewed as they are acquired so that
the series can be stopped if the anatomy is covered, rather than
completing the full prescribed series.

Equally important is to observe the patient during each
acquisition. Display the ECG and respiratory pulse on the console
and be alert to patient movement; failure to hold breath for the
full length of the scan; ectopic beats or irregular rhythms. It
may be necessary to repeat slices with artifact, particularly if the
images are part of a series used for quantitative analysis.

As a rule, the use of manual breath hold instructions improves
patient compliance with breathing instructions and reduces the
need to repeat slices due to breathing artifact.

Managing Challenging Patients
Irregular Rhythms
Learning how to deal with irregular heart rhythms is one of
the most important components of becoming a proficient CMR
operator. Significant time can be lost if there is no management
strategy in place. It is possible to achieve diagnostic images still
within a reasonable timeframe by building protocols in advance
with appropriate options for each pulse sequence type.

For each clinical protocol in the library, three
acquisition strategies should be built: Sinus Rhythm,
Mildly Irregular Rhythm, and Severely Irregular Rhythm
(Supplementary Figure 4). Operators must learn when it is
appropriate to change strategies and which strategy is required.

Retrospective gating should only be used for sinus rhythm
or where there is a very occasional ectopic beat. The average
heart rate range (RR interval) displayed on cine bSSFP images
can be used to determine which strategy to use. Generally, if
the variability is < ±40ms, retrospective gating can be used
(Sinus Rhythm strategy).Where the variability is greater, it will be
necessary to change to prospective triggering for cine bSSFP and
PC flow imaging (Mildly Irregular Rhythm strategy). Caution
should be used when acquiring images used for quantitative
analysis (such as parametric tissue mapping) to ensure the
integrity and reliability of the data.

In the presence of a severely irregular rhythm, real-time and
highly accelerated options will need to be employed (see Section
Fast CMR: Speeding up Imaging by Acquiring Less Data).

Non-compliant Patients
For extremely unwell or claustrophobic patients, a plan
for a short, high-value examination is required. Prior to
commencing the examination, the clinical history and any
previous imaging should be reviewed to determine the most
critical clinical question. Generally, this will be information that
no other diagnostic imaging test can provide such as tissue

characterization. The imaging protocol is then planned to obtain
this information as a priority in case it is necessary to terminate
the examination prematurely. Protocols should be trimmed of
any unnecessary sequences. For example, if the main question
is the presence of myocardial fibrosis, an option would be to
inject the contrast prior to moving the patient into the scanner,
obtain the LGE first, then acquire any other imaging possible in
the remaining time.

Quantitative CMR: It Is Your Responsibility
CMR is highly operator and patient dependent and the quality
of images obtained directly affects the accuracy and reliability of
quantitative data. Surgical, therapeutic, or prognostic decisions
are made on this data and attention to detail at every stage of
the CMR examination is necessary to ensure the integrity of the
results. It is incumbent upon the operator to recognize and report
the limitations of the data if necessary.

CMR IMAGE QUALITY: NO FREE LUNCH

When setting up and optimizing a clinical CMR protocol to
obtain the best images possible, the inherent trade-off between
spatial and temporal resolution, scan time and signal-to-noise
ratio (SNR) must be taken into consideration. For example,
imaging at higher spatial resolution will result in lower SNR or
longer scan times. Thus, a compromise in this triangle needs to be
found in terms of image quality and acquisition time. Moreover,
CMR can be impacted from image degradation due to cardiac
and respiratory motion. Physiological motion induces aliasing
along the phase-encoding direction and/or blurring of the image
content (see Section Image Acquisition: What is the Position?),
where the appearance depends on the imaging trajectory.
Therefore, CMR acquisitions generally require synchronization
or handling of the cardiac and respiratory cycles as depicted
in Figure 11. In CMR, to avoid artifacts related to cardiac
motion, it is usually desirable to freeze the heart motion, using
gated/triggered acquisitions with <100ms temporal resolution.
Unfortunately, this comes at the expense of spatial resolution
and/or coverage adding further constraints to CMR.

Handling Motion
Motion artifacts can be mitigated by (a) avoiding motion,
i.e., training the patient to perform breath-holds or applying
anesthesia and sedation to freeze respiratory motion; (b)
reducing motion, i.e., signal averaging to smooth out motion,
performing fast imaging to become less sensitive to motion
(123–127) or suppressing motion outside the field of view using
saturation bands; (c) triggering or gating motion, i.e., monitoring
the motion cycle [using, for e.g., MR navigators (128–132),
cameras (133), field probes (134), pilot tone (135), respiratory
belts or electrocardiogram (136)] and either prospectively trigger
on the respective motion (137, 138), meaning only acquiring
within a small portion of the motion cycle, or retrospectively
gate the motion (139–142), meaning sorting the data into
distinct motion states for reconstruction. Motion avoidance
[case (a)] requires, however, patient compliance and reduces
patient comfort. For highly non-compliant patients (for e.g.,
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FIGURE 11 | Cardiac and respiratory motion monitoring. Motion can either be suppressed (e.g., breath-holding) or monitored with MR navigators or external devices

like electrocardiogram (ECG). From the monitored signal, one can extract the respiratory, and cardiac cycles which are needed for triggering (prospective) or gating

(retrospective).

pediatric patients), moderate sedation or general anesthesia can
be given which does however require the use of a lung respirator,
increasing scan time and costs, and could have potential side
effects and complications. Motion reduction [case (b)] can
require longer scan times, increases induced radio frequency
energy on patient (i.e., tissue heating) and residual motion
artifacts can remain in the image. Motion triggering and gating
[case (c)] capture only a fraction of the entire dynamic respiratory
and cardiac cycle or periodic assumptions of the dynamic cycle
are made which may not hold in practice. Thus, a varied range of
strategies has been proposed to avoid CMR image degradation
due to cardiac and/or respiratory motion, some of which are
summarized in Figure 12.

Respiratory Motion: You Can Breathe Normally
Breath-holding techniques are commonly used to reduce
respiratory motion artifacts. If the patient complies with the
breathing instructions this provides a 10–15 s window where
artifact-free images can be obtained. A CMR examination
requires multiple breath holds (143), which can lead to
patient discomfort and fatigue, resulting in poor breath-
holding and, consequently, motion artifacts that can impact
the downstream analysis (144, 145). In addition, breath-holding
can be challenging or impossible for pediatric, critically ill, or
uncooperative patients (146). Moreover, some CMR protocols,

such as CMRA and other 3D CMR applications, require
acquisition times that are too long for a breath-hold. Free-
breathing alternatives that use respiratory triggering or gating
based on diaphragmatic navigators (that monitor the superior-
inferior motion of the diaphragm) are available on most CMR
scanners (147–149). Unfortunately, this approach has low scan
efficiency, since only data within a small predefined respiratory
gating window is used to generate an image, which leads to
long and unpredictable scan times (due to irregular breathing
patterns). External respiratory monitoring devices, such as
bellows around the chest or abdomen, are also often used.
More recently, novel tracking devices like pilot tone (135, 150)
are being investigated for the usage of a sequence-independent
motion monitoring solution.

Free-breathing CMR techniques based on self-navigation
(151–155) or image navigators (130, 156–159) have been
proposed to achieve 100% respiratory scan efficiency (no data
rejection), by correcting all data for respiratory motion. Thus,
allowing for shorter andmore predictable scan times. Respiratory
self-navigation techniques derive the respiratory-inducedmotion
of the heart directly from the imaging data. Self-navigation is
achieved by periodically imaging the central points in k-space
and thus do not require any additional interleaving of navigators
into the sequence. Typically, self-navigation approaches extract
the respiratory signal from 1D projections of the field of
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FIGURE 12 | Cardiac and respiratory motion handling. Motion can either be suppressed (left column), handled prospectively or retrospectively (middle columns) or

corrected/compensated (right column). Different strategies exist to deal with respiratory-only (top), cardiac-only (bottom left), and respiratory and cardiac (bottom right)

motion. Prospective triggering: motion can be triggered to shorten the acquisition window to a specific motion state. Retrospective gating: motion is resolved by

gating which can be performed exclusively on either respiratory/cardiac motion or on the joint respiratory and cardiac motion (central gating matrix) to yield

respiratory/cardiac motion-resolved data. Data between individual gates/motion states can furthermore be compensated by registering them with a rigid or non-rigid

motion field along the respiratory or cardiac motion direction.

view (in one or more directions). However, signal from static
structures, such as chest wall, is also included in 1D self-
navigators, which can lead to motion estimation and correction
errors. Image-based navigators, which allow separation of static
structures from the moving heart, have been proposed as an
alternative to 1D self-navigation to reduce motion estimation
errors. These methods use low spatial resolution images acquired
with sequence interleaved imaging blocks at periodic intervals,
prior to the CMR data acquisition, to estimate and correct for
2D or 3D respiratory motion. Free-breathing single shot CMR
sequences often rely on retrospective motion correction using
image registration methods to correct for respiratory motion
between time frames.

Once the respiratory signal has been estimated, image
degradation caused by respiratory motion can be reduced

by: (a) correcting for translational motion (directly in k-
space) (55, 130, 150, 158, 160–163), (b) separating (or
binning) the data into multiple respiratory states to generate
respiratory motion-resolved images (164–183), and (c) (using
the latter for) correcting for more complex non-rigid motion
(113, 157, 184–201).

Cardiac Motion: Stop Being Triggered
CMR acquisitions are usually synchronized with heart motion
though an ECG (with electrodes attached to the chest) to
minimize imaging artifacts caused by cardiac motion. Two
approaches are typically used: prospective ECG triggering and
retrospective ECG gating. Prospective triggering uses the R
wave from the ECG signal to trigger the data acquisition (and
“freeze” the heart) at a specific phase or certain number of
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phases of the cardiac cycle (149, 161, 202–206). In retrospective
gating, data are acquired continuously throughout the cardiac
cycle and the ECG signal is recorded simultaneously (140,
143, 144, 207–213). Subsequently, data are reordered and
grouped into different cardiac phases according to the ECG
signal. However, the ECG can be unreliable in CMR (as
described in Sections Clinical Cardiovascular MR: What do
we See and why do we Need it? and Clinical Cardiovascular
MR: How Should we Perform the Examination), particularly
in the case of arrhythmias and ectopic hearts. Finger pulse
oximetry can be used as an alternative to ECG, but its signal
is delayed relative to the ECG R wave. To overcome these
challenges, cardiac self-gating approaches have been proposed
to estimate an ECG-like signal directly from the acquired
data (141, 142, 167, 171). The signal is then used for cardiac
gating. More recently, contactless external sensors like pilot
tone have also been used to track motion during CMR
exams (214).

Cardiac and Respiratory Motion: No Stopping Now
Several solutions have been developed to eliminate the need
for ECG synchronization and breath-holding altogether. This
allows continuous acquisition of CMR data, known as free-
running CMR (55, 167, 169, 170, 179, 197, 215). After
acquisition, data is then sorted into multiple cardiac phases
(with the desired temporal resolution) and multiple respiratory
motion phases based on the cardiac (ECG, self-navigation,
pilot tone, etc.) and respiratory (self-navigation, belt, etc.)
motion signals to generate a multidimensional dataset for
reconstruction. Moreover, the (self-navigation) respiratory signal
or, for each cardiac phase, the bin-to-bin (affine) respiratory
motion can be estimated and used to correct for respiratory
motion directly in k-space (by applying the corresponding
phase-shifts in k-space), before the image reconstruction, to
generate respiratory motion-corrected cardiac phase-resolved
CMR images (170, 182). In addition, these images can be used
to generate cardiac motion-corrected images by selecting the
cardiac phases with the smallest intra- and interphase motion
and then correcting for non-rigid motion (200). The obtained
respiratory and/or cardiac motion-gated k-spaces are usually
sparsely sampled. During reconstruction, the spatio-temporal
information can be exploited by either regularizing the motion
dimensions (171, 179), correcting for the motion (216–218) or
exploring the low-rankness (see Section CMR Reconstruction:
From k-space to image space) of the dynamic processes (219,
220).

Retrospective gating assumes a periodicity of the temporal
motion evolution which is however not a given for patients with
arrhythmias or irregular breathing patterns (221, 222). In these
cases, real-time CMR which is based on fast imaging sequences,
like spGRE or bSSFP, can provide a viable solution (154, 157, 185,
222–228). Imaging with high (sub-second) temporal resolution
makes acquisitions robust to motion, and thus, images can be
obtained without gating or binning (220). In combination with
efficient sampling trajectories and reconstruction techniques,
2D and 3D imaging with high spatio-temporal resolution can
be performed.

Fast CMR: Speeding up Imaging by
Acquiring Less Data
Several approaches have been proposed to speed up CMR
acquisitions by reducing the amount of data required for
accurate reconstruction, including parallel imaging (125, 126),
k-t accelerated imaging (173, 174, 229, 230), or pseudo-random
sub-Nyquist sampling (123, 124, 231). Besides more efficient
sampling trajectories, fast imaging sequences like fast low angle
shot magnetic resonance imaging (FLASH) (232), bSSFP (24),
fast spin-echo imaging (RARE) (233), echo planar imaging (EPI)
(234) have enabled fast CMR imaging. Accelerated scans can
be used to shorten the imaging time, to shorten breath-holds
and improve patient comfort, but can also be used to collect
more information (within the same imaging time), to increase
temporal or spatial resolution and/or volumetric coverage.

Parallel imaging methods, such as (the image-based)
SENSitivity Encoding (SENSE) (126) and (k-space-based)
GeneRalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) (125), are used worldwide for CMR applications,
but are limited by the number of receiver coils (see Section
k-space) and in practice typically to 2- to 3-fold acceleration.
K-t accelerated imaging (173, 174, 229, 230) extends these
concepts along the dynamic temporal direction. It uses a regular
undersampling pattern that is shifted over time. Images are
reconstructed using a linear reconstruction approach, which
relies on information extracted from low spatial resolution
calibration data (with high temporal resolution) to minimize
fold-over artifacts.

Simultaneous multi-slice (SMS) imaging (235–240) has the
potential to acquire multiple slices, i.e., increasing cardiac
coverage without sacrificing in-plane spatial resolution. However,
pre-calibration scans are required to calibrate the unfolding
during reconstruction which increase overall scan time.

On the other hand, reduced spatial coverage but increased
dynamic resolution can be obtained with real-time CMR (154,
157, 185, 222–228). It relies on fast imaging sequences and
trajectories to provide respiratory and cardiac motion-resolved
images. Data acquisition is performed under free-breathing with
sufficiently fast enough trajectories to capture whole field of view
with minimal motion impact.

High acceleration factors can be achieved if the
compressibility (or sparsity in a transform domain) of images
is exploited as proposed in Compressed Sensing (CS) (124) or
Low-Rankmethods (178, 231). In these cases, we seek a (pseudo-)
random sub-Nyquist sampling (i.e., undersampling) of the data.
The applied sampling induces incoherent noise-like aliasing
artifacts in the sparse domain. Thus, to satisfy the incoherence
criterion (pseudo-) random Cartesian or non-Cartesian
undersampling schemes are used to accelerate scans.

CMR Trajectories: It Is That Sample
The k-space undersampling patterns to accelerate CMR
acquisitions in combination with the selected reconstruction
method determine the obtainable image quality. A few exemplar
trajectories are shown in Figure 13. In parallel imaging, the
number of k-space lines is usually reduced using regular
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Cartesian undersampling (i.e., sampling below the Nyquist-
Shannon sampling limit) (125, 126). In dynamic CMR, the
Cartesian sampling patterns can be extended along the dynamic
motion direction as used in k-t imaging (173, 174, 229, 230). A
different k-space undersampling should be used for each time
frame to introduce incoherence along the temporal dimension,
and to thus enable exploitation of both spatial and temporal
sparsity, as for example performed with a variable-density
incoherent spatiotemporal acquisition (VISTA) sampling (241).

Non-Cartesian sampling schemes may be preferred because
they are less sensitive to motion (123, 151, 163, 169, 171, 172,
181, 198, 202, 210, 224, 230, 237, 242–253), due to a densely
sampled low-frequency range and the repeated sampling of the
k-space center enables the extraction of motion signals (self-
navigation). Unfortunately, non-Cartesian sampling requires
resampling of the acquired data onto a Cartesian grid, which is
computationally expensive.

Several Cartesian trajectories that acquire data using a radial
or spiral-like pattern on a Cartesian grid have been proposed
to overcome the computational complexity of non-Cartesian
trajectories, such as Variable-Density sampling and Radial view
ordering (VDRad) (254), CIRcular Cartesian UnderSampling
(CIRCUS) (255), (Variable-Density) Cartesian acquisition with
Spiral Profile ordering (VD-CASPR, CASPR) (201, 207, 256),
GOlden-angle CArtesian Randomized Time-resolved
(GOCART) (257), rotating Cartesian k-space (ROCK) (146),
centric reordering (211) or Enhancing Sharpness by Partially
Reduced Subsampling Set (ESPReSSo) (258, 259) sampling.

For 3D CMR imaging, non-Cartesian trajectories can be
combined with Cartesian sampling, as in, for example, radial
stack-of-stars (123, 175, 212, 260, 261) or stack-of-spiral (262)
sampling schemes. Alternatively, 3D whole-heart CMR can be
achieved using 3D Cartesian trajectories (167, 208, 254, 255),
or 3D non-Cartesian sampling patterns, such as radial “koosh-
ball” (169, 182, 209) or spiral phyllotaxis (170, 181). Moreover,
acquisitions often use a golden-angle ordering scheme for which
consecutive k-space spokes are incremented by the golden
angle (θ ≈ 111.25◦) (263, 264), to achieve nearly uniform k-
space coverage (also optimal for retrospective binning) and
incoherence along both spatial and temporal dimensions.

CMR Reconstruction: From K-Space to
Image Space
The undersampled data requires appropriate reconstruction
techniques to recover an aliasing-free image, as illustrated in
Figure 13. The raw data is linked with the image via the forward
model as stated in Equation (11). CS relies on non-linear
reconstruction algorithms to reconstruct images from randomly
(or pseudo-randomly) undersampled data (124). In CS, the
undersampling trajectory should lead to incoherent, noise-like
aliasing artifacts which can be corrected for if images can be
sparsely represented in a set transform domain (e.g., wavelets).
In contrast to fixing the transform domain, dictionary learning
techniques (265) seek to find the sparsest image representation
by learning the sparsifying transform specific to each type of
application. CS has the advantage that it does not require any

training data and can achieve high accelerations. It can also be
combined with parallel imaging methods (266, 267). However,
it depends on application specific hyperparameter optimization,
and the iterative algorithms result in long reconstruction times.

Low-rank matrix completion methods have extended the
idea of CS to matrices (178, 231). These explore the global
or local (patches) correlations within CMR images e.g., along
the temporal or multi-contrast dimensions (113, 178, 179, 189,
207, 231, 268–278). For dynamic CMR, low-rank methods
can act as an implicit motion compensation for any residual
motion (after prior triggering/gating) (177, 207). Some methods
simultaneously enforce low-rank and sparsity constraints to
separate the temporally correlated background and dynamic
information in various CMR applications, such as dynamic
contrast-enhanced CMR (231, 274, 277). Moreover, low-rank
tensor imaging has been proposed for multi-dimensional
CMR imaging (169, 195, 197, 219, 220, 272, 279–281).
These methods explore the spatio-temporal correlations in
all dimensions (spatial, contrast, cardiac, and respiratory
motion) to generate multi-parameteric and motion-resolved
CMR images, e.g., cardiac- and respiratory-resolved T1 and
T2 maps. In addition, motion can be handled implicitly in
the low-rank decomposition instead of performing a prior
motion gating.

Model-based reconstruction approaches have also been
proposed to accelerate quantitative CMR imaging (248, 249, 282–
285). These methods incorporate the physics of the MR
signal into the image reconstruction problem allowing for
the direct reconstruction of quantitative maps from the
undersampled CMR data, bypassing the intermediate steps of
image reconstruction and pixel-wise model fitting. Furthermore,
in model-based reconstructions the underlying respiratory and
cardiac motion model can be accounted for. Explicit motion
compensation can be performed by mapping image data along
the temporal direction with the underlying motion model
extracted from image registration (187, 216, 217, 284).

Fast reconstruction is essential in a clinical setting. However,
non-standard and iterative reconstruction methods often suffer
from high computational demands, long computational times
and require careful tuning of the algorithm (regularization)
parameters. Recently, deep learning-based solutions have been
proposed to address some of these shortcomings and which will
be covered in more detail in Section Image Reconstruction.

ARTIFICIAL INTELLIGENCE FOR
CARDIOVASCULAR MR

Artificial Intelligence (AI) and Machine Learning (ML), a sub-
class of AI, have led to a break-through in the last years
and have the potential to transform the clinical workflow
substantially. CMR imaging leverages a high potential to enhance
each individual step of the imaging pipeline (Figure 14), from
complex CMR acquisition processes, the highly varying imaging
protocols, to automated diagnosis. Despite the success of ML and
AI, these new techniques should not replace clinicians, but aid
clinicians in decision making, facilitate cardiac view-planning, or
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FIGURE 13 | Fast cardiovascular MR techniques to enable high spatial and/or temporal resolved data acquisition. Cartesian or non-Cartesian undersampling

trajectories (left column) can be used to accelerate acquisitions. Depending on the CMR application and acquired trajectory, various image reconstruction techniques

(right column) like parallel imaging, compressed sensing, dictionary learning, low-rank, model-based, or more recently deep learning methods can be used. These

reconstructions handle and exploit the spatial, temporal, and/or parametric dimensions. In CMR, the forward model, commonly given by k = Ex, maps the unknown

(MR signal intensity) image series x to the k-space data k. The forward operator E contains the coil sensitivity maps C (enabling parallel imaging), Fourier operator F

and sampling pattern A. If data are undersampled, dynamic images can be estimated using, for e.g., compressed sensing, by minimizing an objective function with a

data consistency term (to enforce consistency between the measured data and model prediction) and a regularization term, with sparsifying transform 8 (e.g., spatial

wavelet or total variation) and regularization parameter λ. Alternatively, a dictionary learning-based method can learn the sparsifying transform (dictionary, D), and

reconstruct the image simultaneously from undersampled k-space data. The low-rank plus sparse (L + S) decomposition model enables the reconstruction of

undersampled dynamic k-space data. In this case, the low-rank (L) component captures the temporally correlated background, and the sparse (S) component

captures the dynamic information. Model-based reconstruction methods include the physics model in the forward model to directly estimate quantitative parameter

maps from fully-sampled or undersampled k-space data.

support in the tedious task of image segmentation to simplify and
speed up quantification of functional cardiac parameters.

In this section, we first provide an overview of the common
terminology and building blocks in ML, without the usage
of complex mathematical notations. In the second part, we
provide an overview on how ML can be used at each individual
stage of the imaging pipeline, i.e., cardiac view-planning,
image acquisition, image reconstruction, shape analysis, image
segmentation, and quantification of biomarkers. Finally, we
provide insights into potential pitfalls in using ML in CMR, and
an outlook into the future of ML for CMR.

Breaking Down the Terminology
The terms AI, ML and more recently deep learning (DL)
are often used interchangeably. However, there is a huge
difference between these terms. AI leverages the potential
of machines to mimic the human mind’s ability to solve

problems or make decisions. As a sub-branch of AI, ML uses
algorithms to learn patterns from data and make predication
about a certain task. Pre-defined features are extracted from
the input data and are then fed into the (statistical) model.
The parameters of this model are then trained using data
to make correct predictions for a specific task without
human assistance. After model training, predictions from
new unseen data can be made using the trained model
parameters. While ML in its classic formulation depends on
defining hand-crafted discriminative features which are tedious
and time-consuming to extract, a further sub-branch of ML
called DL directly learns feature representations from data
using neural networks (NNs). Although the concept of NNs
was established in the late 1980’s, DL has flourished since
2015. The break-through of DL came with the availability
of Graphics Processing Units (GPUs), large datasets, and
advanced architectures.
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FIGURE 14 | Schematic overview of the five areas in which Artificial Intelligence (AI)/Machine Learning (ML)/Deep Learning (DL) assisted operations can support the

clinical workflow.

ML has the ability to support in various challenging tasks.
In image classification, the model takes the input image or
already extracted features as input, and outputs a classification
label, to predict, e.g., a certain heart disease. The task of
assigning an individual label to each input pixel is called
segmentation. Typical application of image segmentation in the
field of cardiac imaging is the segmentation of the heart into
four chambers and myocardium. Image-to-image or sensor-to-
image translation describe regression tasks that form the third
group of important ML tasks. Regression tasks can be found
in MR image reconstruction from undersampled k-space data,
super-resolution, or image enhancement.

Types of AI: Does It Need Supervision?
Machine Learning can be categorized in three major types:
supervised learning, self-supervised learning, and un-supervised
learning. Supervised learning methods require a training
database with a set of input data and annotated output labels
for training. The model tries to make predictions, which are
then compared to the correct output labels using a cost function.
The error in the cost function then gives an idea how the
models’ parameters have to be updated in the training loop. In
contrast, neither labeled data nor any other prior knowledge
on the data is available in unsupervised learning. Hence, the
model learns itself how to identify patterns in the data, as in
clustering (variational) autoencoders, or Generative Adversarial

Networks. Self-supervised learning is a form of unsupervised
learning, where the data provides the supervision.

Training, Validation, and Testing: Getting It
to Work
To update the parameters of the model, the network needs to be
trained with respective training data. A training database consists
of a number of training samples. For each update of the model
parameters, a batch is drawn from the training samples and
passed through the network. This is repeated until all training
samples have been processed, defining one epoch of training. The
network itself is trained for several epochs until convergence. The
number of training epochs depends on the selected dataset, the
number of training samples, and the selected task. A separate
validation data set is used to monitor the training process and
to tune hyper-parameters (learning rate, architecture parameters
etc.). This allows for, e.g., identification of model overfitting.
However, the validation data set is not used to update the model
parameters of the network. In the testing stage, themodel is tested
on further unseen data and used for the final model evaluation.
It is important to note that training data, validation data, and test
data are mutually exclusive.

However, in medical imaging, and especially in the context of
CMR, only small databases are often available. This requires a
thorough study of the robustness of the model to avoid a bias
toward selected validation samples. Cross validation provides
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a way to study the robustness of models if small datasets are
available. For k-fold cross validation, the database is split into a
number of k subsets and the networks are trained for training
data in k-1 folds, and the data in the remaining fold is used
for validation/test. This is repeated such that k networks are
trained, with every fold being used for validation. Deviations in
evaluation metrics indicate reduced robustness of the models.

In medical imaging, we often observe another danger when
creating our own training databases. In CMR, we often acquire
several slices from a single subject. Hence, in case training
samples are drawn frommultiple subjects with several slices each,
we need to make sure that data from the same patient does not
appear in training and validation simultaneously to avoid any
bias of the models toward specific anatomies or pathologies.

Database: Does Size Really Matter?
The availability of large training databases is one of the most
challenging aspects in ML for CMR. In the context of image
reconstruction, publicly available datasets are very rare. In
CMR, for example, we found that some data for radial image
reconstruction of dynamic cardiac MRI are available (286). For
other ML tasks like image classification and image segmentation,
tens of thousands of annotated CMR datasets are available in, e.g.,
UK Biobank (287), M&M (288), or ACDC (289). However, the
availability of both raw k-space data for image reconstruction and
annotations of the same data for image segmentation or cardiac
disease classifications are still limited. Hence, in the context of
multi-task models, special focus must be given on the datasets, as
k-space data for image reconstruction tasks are often simulated
or only retrospectively undersampled, limiting the application of
proposed approaches to clinical workflow.

Neural Networks and Their Building
Blocks: How to Build Your CMR Network
From Scratch
The recent success of neural networks not only depends on
the availability of training data, but also on the availability of
expressive network architectures. The idea of neural networks
goes back to the 1957, where an artificial neuron was modeled
similar to the neurons in the brain (290). An input signal arrives
at the neuron (layer) and is processed by the layer weights. An
activation function decides if the neuron should be fired or not. A
typical deep neural network consists of several layers, which can
be related to modeling the complex wired structures in the brain.

Convolutional layers are powerful local feature extractors. The
spatially-dependent features are generated by convolving the
underlying image with a set of trainable filter kernels, optimized
during model training. To extract global features, fully connected
layers are used, connecting each input pixel with each output
pixel. Global features are necessary in, e.g., image classification
and segmentation. To emphasize the extracted features, non-
linear activation functions are applied. Common activation
functions for image regression are ReLU and its various
variants, e.g., LeakyReLU, PreLU, while for image segmentation
and classification tasks bounded activation functions such as
tanh, sigmoid, or softmax are used. Pooling layers or strided

convolution layers are used to downsample the spatial features,
to increase the receptive field. To increase the resolution, strided
transposed convolution layers or upsampling layers that perform
interpolation are common choices. In-between convolution and
activation layers, often normalization layers are used that are
reported to stabilize training and improve training convergence.
These are the basic elements to build a deep neural network,
however, more detailed building blocks are out of scope of this
review paper.

It should be noted that the nature of MR data is complex-
valued, but in the core literature only real-valued building blocks
are reported. Hence, the real and imaginary plane are handled
as a real-valued image with two feature channels. Recent works
also focused on the implementation and correct utilization of
complex-valued versions of the aforementioned building blocks,
and correct network training following Wirtinger calculus (291).

CMR Applications
The presented layers and building blocks can be used to form
a full network. For CMR, convolutional neural networks are
most used, however, no unique network definition exists, and
numerous variants have been proposed for various tasks. The
targeted application, dimensionality and data availability mainly
determine the task definitions and subsequently architectural
choices. An exemplary scenario for AI applications for cardiac
cine MRI over the various CMR processing steps (Figure 14) is
depicted in Figure 15.

View Planning and Image Acquisition
A comprehensive CMR exam requires complex and time-
consuming scan planning and optimization of acquisition
protocols. Thus, the effectiveness and image quality of a CMR
scan highly depends on the experience and ability of the operator
to adequately prepare patients, tune acquisition parameters,
plan cardiac views and shimming, all in a timely fashion (see
Section Clinical Cardiovascular MR: How Should we Perform
the Examination). Currently, highly trained operators manually
plan and conduct clinical CMR exams. Recently, ML methods
have been proposed to automate or shorten the scanning process,
standardize image acquisition and quality across patients (292–
296). Major CMR vendors are now introducing ML solutions
to help or automatically optimize and plan exam protocols.
Other ML methods have been proposed for assessing image
quality, replacing the usually subjective visual inspection, which
can detect artifacts, correct acquisition parameters, and trigger a
rescan if deemed necessary (297–299). Moreover, ML methods
can also be used to learn the optimal sampling pattern for
reducing the acquisition time while maximizing image quality
(300). Thus, ML-assisted CMR examinations can help operators
solve complex decision-making tasks under time pressure.

Image Reconstruction
InMR image reconstruction, we aim at recovering an image from
(undersampled) k-space which is corrupted by measurement
noise. The acquisition process is thereby approximated and
formalized in a linear forward operator, see Equation (11).
Depending on the imaging application and signal modeling, the
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FIGURE 15 | Exemplary AI-assisted applications performed on cardiac CINE MRI ranging from acquisition over image reconstruction, analysis, motion to diagnosis.

The respective inputs and output data is illustrated.

operator involves Fourier transforms, sampling trajectories, and
coil sensitivity maps. Field inhomogeneities, relaxation effects,
motion, and diffusion can also be considered.

In ML frameworks, the objective is to learn the sensor-
to-image mapping function having learnable parameters. The
mapping function can be stated as NNs and can be used in
different ways to reconstruct an image from the measured k-
space data. All tasks have an image and/or k-space as input but
differ in how data is processed and how further MR specific
information (meta parameters or other tensors like trajectories
and coil sensitivity maps) are handled for the targeted application
output. These reconstruction tasks are further described hereafter
and depicted in Figure 13.

Image Enhancement Learning
Certain types of undersampling introduce incoherent noise-
like aliasing in the zero-filled reconstructed images. Thus, an
image enhancement task can be used to reduce the noise-
like aliasing in the images. The network performs an image-
to-image regression by predicting the output value based
on the corrupted input image. The input to the denoising
task can be the zero-filled (and noise-affected) MR images
or reconstructed MR images that present remaining aliasing
or noise amplification for high undersamplings (e.g., images
reconstructed with parallel imaging). Instead of learning the
denoised image, some approaches learn the residual noise to be
removed from the noisy input (301–303). The mapping only acts
on the image and does not consider any further information from
the acquired k-space. Hence, data consistency to the measured
k-space signal cannot be guaranteed. Approaches exist that add
additional k-space consistency to the cost function (304) or
enforce k-space consistency after image denoising (305, 306).

K-Space to Image Learning
A different DL-based approach is to reconstruct the MR image
directly from the acquired k-space data. With the so-called direct

k-space to image mapping, the k-space data are directly used as
the input. Consequently, the network approximates the forward
model (see Section CMR Reconstruction: From K-space to Image
Space). Learning a direct mapping is especially useful if the
forward model or parts of the forward model are not exactly
known. In the case of fully sampled MRI under ideal conditions,
the learned mapping approximates the Fourier transform (307).
However, this becomes computationally very demanding due to
fully connected layers which are involved here. Furthermore,
consistency with the acquired k-space data cannot be guaranteed.

Physics-Based Unrolled Learning
Another family of DL-based MR reconstruction methods is
referred to as physics-based reconstruction. These approaches
integrate the traditional physics-based modeling of the MR
encoding (see Section K-space) with DL, ensuring consistency
with the acquired data. We can distinguish two classes of
problems: (a) learning in k-space domain and (b) iterative
optimization in image domain with interleaved data consistency
steps. The first approaches are referred as k-space learning
whereas the latter one is known as unrolled optimization. These
two approaches can be combined to hybrid approaches that learn
both a neural network in k-space and image domain.

K-Space Learning
A prominent approach for physics-based learning in k-space
domain (308) can be viewed as extension of the linear kernel
estimation in GRAPPA. A non-linear kernel modeled by the
network is learned from the ACS. The missing k-space lines can
then be filled using this estimated, non-linear kernel and the data
is then transformed to the image space using an Inverse Fourier
transform. The final image is obtained by root-sum-of-squares
reconstruction of the individual coil images.

Hybrid Learning
Hybrid approaches (309–311) combine the advantages of
learning in k-space and image domain. These networks
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are applied in an alternating manner to obtain the final
reconstruction. When designing hybrid approaches, it is
important to keep the basic theorems of the Fourier transform
in mind: local changes in image domain result in global changes
in k-space domain and vice versa, to avoid unexpected behavior.

Plug-and-Play Priors
Trained image denoisers can be also combined with physics-
based learning or conventional iterative reconstructions and thus
serve as an advanced regularization for a traditional optimization
problem. Iterative, image-wise, or patch-wise denoising is
performed followed by a subsequent data consistency step, as
involved in plug-and-play priors (302, 312–314), regularization
by denoising (315) or image restoration (316).

Unrolled Optimization
Physics-based learning, which is modeled as iterative
optimization, can be viewed as generalization of iterative
SENSE (126, 317) with a learned regularization in image
domain. It contains a data-consistency term and a regularization
term which imposes prior knowledge on the reconstruction.
A gradient descent (318), proximal gradient (319), variable
splitting (320), or primal-dual optimization (321) can be used
for algorithm unrolling. The iterative optimization scheme
is unrolled for a fixed number of iterations. Neural networks
replace the gradient of the hand-crafted regularizer by a learned
data-driven mapping. Various regularization networks can be
used, e.g., variational networks (322) or cascade of convolutional
networks (319). In CMR, the dynamic or quantitative dimensions
can be incorporated into network architecture design [e.g.,
recurrent networks (311, 323)], building blocks [e.g., 2D+t
(324), 3D+t convolutions (325)], data priors (326), or loss
modeling (327). Training several iterations with alternating
mapping functions and intermittent data consistencies reflect
thus unrolled optimizations (328).

Super Resolution
An alternative approach for accelerating the image acquisition
while simultaneously increasing spatial resolution is the usage of
DL-based super resolution (SR). Images are acquired at a low-
resolution (with or without undersampling) and retrospectively
reconstructed to the high-resolution target. This has been studied
for cardiac cine (329, 330) and whole-heart CMR (331–336).

Image Analysis
CMR image segmentation and quantitative evaluation can
be a challenging, time-consuming and operator intensive
task. However, quantitative analysis of myocardial function,
perfusion, pathological tissues, provides important diagnostic
and prognostic information (66). In recent years, a large number
of ML-based methods have been proposed to automatically
perform CMR image segmentation and analysis, thereby
significantly reducing the time required for CMR image
assessment (337). Considerable efforts have been directed toward
cine imaging, as it is considered the gold standard for the
assessment of cardiac chamber volumes and function (338–
341). In this case, DL-based methods automatically segment the

myocardium and cardiac chambers from MRI images, replacing
manual approaches that are time-consuming and prone to
observer variability, to enable the extraction of quantitative
indices, such as LV and RV volumes, mass, and EF. Some
frameworks additionally provide myocardial strain measures
(299, 342). Automated segmentation methods have also been
proposed to quantitatively derive other important markers of
cardiovascular disease such as volume of pericardial adipose
tissue (343), and scarred tissue areas (from LGE images) (344–
348). Moreover, few DL-based methods have proposed to
automatically quantify myocardial tissue from native T1 mapping
(349, 350) and myocardial blood flow from contrast-enhanced
perfusion CMR (351, 352).

Motion Correction
Motion artifacts due to physiological motion or caused by mis-
triggering in the ECG or movements during the examination are
a potential source of image degradation. Several approaches using
DL exist to correct for motion artifacts in the area of CMR.

Adversarial training strategies as proposed in Zhang et al.
(353) aim to correct for the motion in the image domain.
A database of motion-corrected and motion-degraded images
serve as training database. A generator network predicts motion-
corrected images. The discriminator network tries to distinguish
if the generated motion-corrected image is from the manifold
of real motion-corrected or generated motion-corrected images.
The goal of the generator network is to fool the discriminator
network to generate images that look like real motion-corrected
images. Another method of retrospective motion correction in
CMR with adversarial training is proposed in Ghodrati et al.
(354). Here, a Variational Autoencoders is trained on healthy
subjects and patients with suspected cardiovascular disease to
remove respiratory motion.

Instead of addressing MR motion correction in the image
domain, Oksuz et al. (355), apply motion correction directly
in k-space. Their method uses a generator network that is
motivated by Automap (307) to transform the k-space directly to
a reconstructed image. Pairs of synthetically motion-corrupted k-
space data and artifact-free reconstructed CMR images serve as
training database for the proposed adversarial training strategy.
Beyond image reconstruction, Oksuz et al. (356) introduced a
joint framework for motion artifact detection and correction in
k-space and image segmentation. The motion artifact network
detects motion-affected lines in k-space, influencing the data
consistency term. The motion-corrected image is obtained from
a subsequent bi-directional recurrent CNN. The segmentation
network is based on a standard UNet architecture (357). Their
work showed that end-to-end training outperforms sequential
training substantially when trained on UK Biobank data (287),
with synthetical motion corruption and synthetically added
phase information.

Retrospective motion-correction of reconstructed CMR
images is proposed in Huang et al. (358). First, CMR
reconstruction is performed with a Convolutional Gated
Recurrent Units and a subsequent data consistency layer. Motion
fields are then estimated from the reconstructed images using
a FlowNet architecture. The estimated motion fields are then
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used in a post-processing motion-correction step to improve the
final reconstruction.

Large non-rigid motion across multiple temporal frames can
occur and in the case of 2D imaging, the existence of through-
plane motion complicates the motion estimation process. A
fast and reliable motion estimation is therefore required that
correlates these short- and long-term correspondences, as
proposed by Pan et al. (359) and Küstner et al. (360), and either
operates on the image domain (359) or on the accelerated raw
data (360).

Joint motion estimation and reconstruction is
proposed by Seegolam et al. (361). Here, a motion-
estimation UNet is embedded directly in the data
consistency term of a dynamic reconstruction network.
This approach allows for exploiting the whole temporal
information in each cardiac phase, resulting in high-
quality reconstruction of extremely undersampled
CMR data.

Multi-Task Networks
Sun et al. (362) proposed a unified deep network architecture
for joint image reconstruction and segmentation. Image
reconstruction is formulated as a cascaded encoder-decoder
network with intermittent data consistency layers to facilitate
learning and making use of the acquired k-space data. The
reconstruction and segmentation networks share the same
encoder, acting as a regularizer for the two tasks, while the
decoder is different, and hence, task specific. Their results
suggest that training a joint network is beneficial for high-
quality segmentation of undersampled k-space data, however,
the evaluation was performed on simulated k-space data of
the MRBrainS segmentation challenge dataset (363). Similar
observations were made in Huang et al. (364) where FR-
Net for image reconstruction (inspired by the fast iterative
shrinkage-thresholding algorithm), was combined with a UNet
for myocardial segmentation. However, this approach was
evaluated only on simulated k-space data. While these multi-
task networks aim for a reconstructed intermediate image,
Schlemper et al. (365) bypassed this step and directly predicted
segmentation maps from highly undersampled dynamic CMR
images of the UK Biobank data (287). Their results indicate that
clinical parameters can be computed within an error of 10%
if at least 10 lines are acquired for each cardiac phase, using
Cartesian sampling.

Joint learning of motion estimation and segmentation from
fully-sampled data was proposed byQin et al. (366). An extension
to undersampled data has been proposed in Qin et al. (367),
where the network training is guided by fully-sampled data. The
results suggested that an efficient motion estimation network
can bypass the need for high-quality reconstructions in order to
achieve accurate image segmentation.

The surveyed approaches achieve promising results for end-
to-end training. However, to date, none of these approaches
have been tested on real k-space data and evaluated for clinical
applicability. Furthermore, evaluation of these k-space data also
requires the availability of proper training databases with both
real k-space data and manual segmentations.

CHALLENGES AND CONCLUSION

The plethora of CMR sequences available and information
offered makes the technique attractive, but also very challenging,
particularly for a beginner. This review has provided an
overview of the main CMR concepts and techniques, including
recent technical advances, which should be useful for anyone
wanting to improve, update, or maintain their knowledge and
understanding of CMR. Ultimately, the dialogue between the
scientific and clinical communities should improve if all users
understand CMR terms and use a common language. This review
has described the key physical principles underlying the most
commonly used (quantitative) CMR sequences and preparation
pulses and causes of common image artifacts. This review has
explained how and why CMR can (and should) be used for
diagnosis and guiding clinical decision making in a range of
cardiovascular disease scenarios, such as ischemic heart disease,
myocarditis, atrial fibrillation, valvular heart disease, vascular
disease, congenital heart disease, and cardiac tumors. This review
has also outlined the building blocks of a CMR examination,
explained how to perform a comprehensive patient-tailored
examination based on these building blocks in a clinically
acceptable timeframe and avoid common scanning mistakes.
The challenges of CMR associated with acquisition time, SNR,
spatial and temporal resolution, cardiac and respiratory motion
have been discussed. In addition, popular and recently developed
methods of suppressing and handling motion have been
described. This review has explained how to speed up CMR scans
by acquiring less data (than needed by conventional methods)
using (pseudo-)random sampling trajectories and non-linear
reconstruction algorithms, such as compressed sensing and low-
rank completion, model-based or DL reconstruction approaches.
Finally, this review has discussed how DL approaches can
potentially help overcome challenges such as time-consuming
reconstructions and quantitative analysis.
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Supplementary Figure 1 | Still from a balanced steady-state free precession

4-chamber cine. This sequence has high intrinsic T1 and T2 contrast enabling

cardiac chambers and anatomy to be visualized with exquisite clarity. The blood

pool appears bright. Fat also appears high signal. Areas where fat and water

protons interface appear black in outline due to chemical shift artifact. This allows

fibrofatty change (arrows) to be readily visualized in the septum (arrows) and

epicardial lateral wall, enabling a diagnosis of arrhythmogenic cardiomyopathy to

be made without the need for contrast.

Supplementary Figure 2 | Balanced steady-state free precession cine

demonstrating a jet of aortic regurgitation (arrow). This cannot be reliably

quantified by visual assessment of the jet and once detected should be further

evaluated using phase-contrast velocity mapping.

Supplementary Figure 3 | Quantification of aortic regurgitation in the patient

depicted in Figure 9 using phase-contrast velocity mapping. The magnitude

image on the top right is used to contour a region of interest in the aorta. The

phase image on the top left is used to determine flow and plot this against time

(bottom). The flow drops below the baseline for the whole of systole. The

regurgitant volume is ∼67ml which amounts to a regurgitant fraction of 60%,

denoting severe regurgitation.

Supplementary Figure 4 | An example of a clinical imaging protocol library built

with three acquisition strategies for managing irregular rhythms: Sinus Rhythm;

Mildly Irregular Rhythm; Severely Irregular Rhythm.

Supplementary Table 1 | A general cardiomyopathy protocol can be modified to

assess acute presentations by the addition of imaging sequences sensitive to

oedema (highlighted).
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Secundum atrial septal defect (ASD) is one of the most common congenital heart
diseases (CHDs). This study aims to evaluate the feasibility and accuracy of automatic
detection of ASD in children based on color Doppler echocardiographic images using
convolutional neural networks. In this study, we propose a fully automatic detection
system for ASD, which includes three stages. The first stage is used to identify four
target echocardiographic views (that is, the subcostal view focusing on the atrium
septum, the apical four-chamber view, the low parasternal four-chamber view, and the
parasternal short-axis view). These four echocardiographic views are most useful for
the diagnosis of ASD clinically. The second stage aims to segment the target cardiac
structure and detect candidates for ASD. The third stage is to infer the final detection by
utilizing the segmentation and detection results of the second stage. The proposed
ASD detection system was developed and validated using a training set of 4,031
cases containing 370,057 echocardiographic images and an independent test set of
229 cases containing 203,619 images, of which 105 cases with ASD and 124 cases
with intact atrial septum. Experimental results showed that the proposed ASD detection
system achieved accuracy, recall, precision, specificity, and F1 score of 0.8833, 0.8545,
0.8577, 0.9136, and 0.8546, respectively on the image-level averages of the four most
clinically useful echocardiographic views. The proposed system can automatically and
accurately identify ASD, laying a good foundation for the subsequent artificial intelligence
diagnosis of CHDs.

Keywords: artificial intelligence, convolutional neural networks, automatic detection, secundum atrial septal
defect, echocardiogram
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INTRODUCTION

Congenital heart diseases (CHDs) are one of the most common
congenital birth defects. The incidence of CHD is about 0.9%
among the newborns born in China (1). Atrial septal defect
(ASD) is considered to be one of the most common CHDs,
and the estimated prevalence of ASD is 0.88 per 1,000 patients.
The most common type of ASD is the secundum ASD, which
accounts for approximately 80% of ASD (2).Echocardiography is
noninvasive, nonradioactive, and can comprehensively evaluate
the structure and function of the heart and blood vessels, and
is widely used in the diagnosis and treatment of cardiovascular
malformations. In China, because of the large pediatric
population, there is a huge demand for echocardiography
specialists for CHD diagnosis. Echocardiographic diagnosis
relies on the operator to collect video streams from different
perspectives and observe the morphology of organs and tissues
from multiple views. Accurate diagnosis is largely affected by
the operator’s personal technical skills. However, due to the long
training time to be an echocardiography expert, it is difficult to
diagnose CHDs accurately for most of primary hospitals lacking
experienced echocardiography experts. Therefore, there is an
urgent need to develop an automatic diagnostic system based
on echocardiographic analysis that can quickly and accurately
diagnose CHDs and assist echocardiography operators to reduce
misdiagnosis caused by artificial factors.

In recent years, with the development of artificial intelligence
(AI) technology, deep learning methods based on convolutional
neural networks (CNNs) have been applied to various medical
image analysis tasks, including lesion detection, organ
segmentation, and disease diagnosis. Recent studies have
shown that object detection technology can be used to detect
lesions of knee joint (3), thyroid (4), breast (5), pancreas (6), and
other diseases. However, there are very few reports on detection
of abnormal cardiac structures. The U-Net based architecture
has also been widely applied in many segmentation tasks, such as
liver (7, 8), lung (9), tumor segmentation (10, 11), and prostate
(12, 13). U-Net has also attracted many attentions in the field of
ultrasonic images such as segmentation of ovary (14), fetal head
(15), and breast (16). As for CHD diagnosis, it has also been
reported that AI-based automatic auscultation may improve the
accuracy of CHD screening (17). However, the application of
automatic auscultation in the diagnosis of CHD is limited since
it cannot accurately diagnose the type of CHDs, measure the
size of the defect, and, further evaluate hemodynamics (such as
shunt direction).

Advances in the digitization, standardization, and storage of
echocardiograms have led to recent interest in the automatic
interpretation of echocardiograms based on deep learning.
Current research on echocardiographic analysis focused on
detecting abnormal ventricular function and locating ventricular
wall motion (18–20). Nevertheless, existing work of ventricular
segmentation (21), cardiac phase detection (22), ejection fraction
assessment (23), and other tasks still cannot meet the needs of
accurate diagnosis of CHDs. Standard view recognition based on
echocardiography is a prerequisite for clinical diagnosis of heart
diseases. Baumgartner et al. (24) proposed a two-dimensional

CNN containing six convolutional modules, which can recognize
12 standard views of fetal ultrasound with an average accuracy
of 0.69 and an average recall rate of 0.80. Sridar et al. (25)
used the pre-trained AlexNet to identify 14 views of fetuses and
achieved a precision of 0.76 and a recall of 0.75 on average.
Madani et al. (26) and Howard et al. (27) also trained CNN-based
models to classify 15 standard echocardiographic views with
reasonable results. However, these tasks used large networks with
high computational complexity to achieve high performance and
require high-standard hardware configurations, which may not
meet the real-time requirements of CHD diagnosis in practice.
Recent advances on CNNs have also led to rapid progress in
multiple standard view recognition for echocardiography (26,
28, 29), with an overall accuracy of 97 or 98%. However,
these works were for adults and may not be suitable for ASD
detection in children.

In this study, we proposed an automatic ASD detection
system which can perform image-level ASD detection based
on color Doppler echocardiographic images using CNNs. The
proposed automatic ASD detection system consists of four
modules, namely the standard view identification module, the
cardiac anatomy segmentation module, the ASD candidate
detection module and the detection refinement module. In
clinical diagnosis, due to the complexity of the heart structure and
the limitations of two-dimensional echocardiographic scanning
of ASDs, especially posterior inferior border defect detection,
clinicians need to examine the heart from different views.
In addition, some clinical signs can only be observed from
certain views. We used multiple sites (subxiphoid, apical, and
parasternal) and multiple views to simulate the diagnosis by
sonographers in real clinical scenarios instead of using a single
view. The standard view identification module is designed to
identify four clinical meaningful echocardiographic views (that
is, the subcostal view focusing on the atrium septum, the apical
four-chamber view, the low parasternal four-chamber view,
and the parasternal short-axis view) that are most useful for
diagnosing ASD. The cardiac anatomy segmentation module
aims to segment the left atrium (LA) and the right atrium
(RA) from the images of the four target standard views, since
ASD occurs in the septal area between LA and RA. The
ASD candidate detection module finds all ASD candidates, and
finally the detection refinement module applies deterministic
spatial analysis to further refine the ASD detection results
based on the information derived from the output of the
cardiac anatomy segmentation. The proposed ASD detection
system was developed and validated using a training set
of 4,031 cases containing 370,057 echocardiographic images
and an independent test set of 229 cases containing 203,619
images. Experimental results show the proposed system can
automatically and accurately detect ASD, paving the way for the
automatic diagnosis of CHD.

The main contributions of this study include: firstly, to
our knowledge, a fully automatic CNN-based ASD detection
system was proposed for the first time; secondly, we established
a data set consists of a training set of 370,057 images of
4,031 cases and a test set of 203,619 images of 229 cases,
that meets the requirements of ASD clinical diagnosis and is
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the largest dataset reported so far; thirdly, our standard view
identification model has achieved the state of the art recognition
performance with an the average accuracy of 0.9942 and F1
score of 0.9377 for the four target views of ASD diagnosis while
using a small network through knowledge distillation which
meet the real-time requirements of CHD diagnosis in practice;
fourthly, the newly introduced dense dual attention mechanism
in the cardiac anatomy segmentation can improve segmentation
performance by simultaneously aggregating context and location
information; and finally experimental results proved that the
proposed detection refinement module can effectively improve
the detection precision while keep the recall rate basically
unchanged.

MATERIALS AND METHODS

Participants
The subject of this retrospective study is color Doppler
echocardiographic images of pediatric patients undergoing ASD
examination at Shanghai Children’s Medical Center. The time
period for these examinations is from September 2018 to April
2021. These cases include patients diagnosed as positive and
negative. Among them, positive cases were diagnosed as ASD
with a diameter greater than 5 mm, and negative cases were
diagnosed as intact atrial septum.

Data Collection
The study has been approved by the Institutional Review Board of
Shanghai Children’s Medical Center (Approval No. SCMCIRB-
W2021058) and a patient exemption has been applied for. All
patients were examined with echocardiography using Philips
iE33, EPIQ 7C, and GE Vivid E95 ultrasound systems with S5-
1, S8-3, M5Sc, and 6S transducers. Standard imaging techniques
were used for two-dimensional, M-mode, and Color Doppler
echocardiography in accordance with the recommendations of
the American Society of Echocardiography (30). All data used in
this study were randomly selected cases from Shanghai Children’s
Medical Center’s PACS database and these cases were collected
by different doctors on different ultrasound machines. All data
were strictly desensitized to protect patient privacy. The original
data format of echocardiography was DICOM video stored in
the PACS database. In order to facilitate program processing,
DICOM video was divided frame-by-frame into a series of JPEG
images. The human heart is not a static organ, it is constantly
contracting and expanding. ASD size and shunts also vary
with the cardiac cycle. Therefore, we dynamically sample and
collect a series of image frames from different cardiac cycles.
Five junior clinicians were recruited to manually label the data,
including view types, outlines of cardiac structures, and ASD
diagnostic annotations. Diagnosis was made by analyzing the
heart using image segments from different views ( subcostal-,
apex-, parasternal-, and suprasternal views, etc.). All manually
annotated data were further reviewed and confirmed as the gold
standard by two senior clinicians. During systole, diastole, and
torsion of the heartbeat, the position of the atrial septum changes
to some extent. The atrial septum may be blurred (especially in

TABLE 1 | Summary of the training and validation data sets.

Training set Validation set

Number Number Number Number

of cases of images of cases of images

Standard view identification 3,409 247,750 96 102,904

Cardiac anatomy segmentation 237 7,500 101 2,185

Atrial septal defect detection 150 8,355 38 1,363

the subxiphoid view) due to motion artifacts. In this study, images
with motion blur were excluded after expert review.

Training/Validation Dataset
A total of 4,031 cases (370,057 images) were used as the training
set of the standard view recognition module, the cardiac anatomy
segmentation module and the ASD detection module. Since our
training set is large enough to adequately represent the data
distribution, we sample and collect image frames using fewer
cardiac cycles for each case. The dataset was randomly divided
into training and validation sets and selectively annotated as
shown in Table 1. Since the data are collected from a real
clinical practice, the view distribution is basically the same as the
daily diagnosis.

Test Dataset
Additional 105 ASD patients (32 male, median age of 1.80 years)
and 124 normal controls with intact atrial septum (45 male,
median age of 2.09 years) were enrolled as an independent test
data set for the final ASD detection evaluation (Table 2). In order
to thoroughly test the performance of the model, we sampled
and collected image frames with more cardiac cycles for each
case. As a result, a total of 203,619 echocardiography images
were included (92,616 images in the ASD group and 111,003
images in the normal group). Table 2 shows the view distribution
as well as clinical characteristics of the two groups of the test
dataset. According to the recognition results of the standard view
identification module, the data of the four target standard views
were used to evaluate the performance of ASD detection. As
shown in Table 2, there are a total of 40,264 images, including
18,338 images from ASD patients and 21,926 images from a
normal control groups.

Proposed Method
We propose a three-stage ASD detection system, which includes
four modules, namely, standard view identification, cardiac
anatomy segmentation, ASD detection, and detection refinement,
as shown in Figure 1. The first stage is the identification of
standard view module, aiming to extract four target standard
views, namely, the subcostal view focusing on the atrium septum
(subAS), the apical four-chamber view (A4C), the low parasternal
four-chamber view (LPS4C), and the sax-basal view, from frames
of dynamic videos. The second stage includes cardiac anatomy
segmentation and ASD detection modules. The former is to
segment the target cardiac anatomy, and the latter is to detect
candidate ASDs. The input of these two modules is the image
of the target standard view extracted in the first stage. The third
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TABLE 2 | Clinical characteristic and view distribution comparisons between the ASD group and the normal group of the test data set.

ASD group (n = 105) Normal group (n = 124) p-Value/total

Age (years) 1.80 (0.04–14.46) 2.09 (0.11–14.61) p = 0.25

Female/male 73/32 79/45 p = 0.40

Weight (kg) 11.00 (3.45–52.00) 12.50 (4.30–50.00) p = 0.082

Height (cm) 80.00 (45.00–162.00) 90.00 (51.00–152.00) p = 0.073

Size of ASD (mm) 12.1 ± 5.2 /

Associated cardiac conditions PDA (n = 2) Small PDA (n = 3)

VSD (n = 11) VSD (n = 6)

PS (n = 4) Post PDA occlusion (n = 4)

subAS (ASD detection/total) (n) 7,503/8,079 8,498/8,790 16,001/16,869

A4C (ASD detection/total) (n) 2,942/3,078 3,840/4,003 6,782/7,081

LPS4C (ASD detection/total) (n) 4,410/4,798 4,714/5,159 9,124/9,957

Sax-basal (ASD detection/total) (n) 3,483/4,245 4,874/5,689 8,357/9,934

Other (n) 72,416 87,362 159,778

Total (n) 92,616 111,003 203,619

ASD, atrial septal defect; VSD, ventricular septal defect; PDA, patent ductus arteriosus; PS, pulmonary stenosis; subAS, subcostal atrium septum; A4C, apical four-
chamber; LPS4C, low parasternal four-chamber.

FIGURE 1 | The pipeline of the proposed automatic ASD detection system. In practice, the two stages of cardiac anatomy segmentation and atrial septal defect
candidate detection can be run in parallel.

stage is the detection refinement module, which combines the
results of the second stage to obtain refined detection results.

Standard View Identification
Standard echocardiographic view recognition is a prerequisite
for clinical diagnosis of heart disease. Our standard view
identification model is based on our previous work (31), where
we recognized 24 classes of standard views with high accuracy.
Since the purpose of this study is to detect ASD, we only focus
on four target views (i.e., subAS, A4C, LPS4C, and sax-basal)
and refer to all other views as “other.” As shown in Figure 2,
a knowledge distillation (32) method was applied to train the
standard view identification model, in which we applied ResNet-
34 (33) as the student model and ResNeSt-200 (34) as the teacher
model. We first trained a ResNeSt-200 network with a large
amount of parameters, and then transferred the “knowledge” to
a ResNet-34 network with a small amount of parameters through
knowledge distillation. By minimizing the Kullback–Leibler
divergence between the probability distributions of teacher
and student models, knowledge transfer was achieved through
joint training. During the training process, data augmentation
methods were also applied, including horizontal random flip,
vertical random flip, and polar coordinate rotation. It needs

to be noted that the teacher model was only used during the
training phase, and the small student model ResNet34 was
used for inference.

Cardiac Anatomy Segmentation
This module is designed to segment the LA and the RA
from the images of the four target standard views. As shown
in Figure 3, a new encoder-decoder network called Dense
Dual Attention U-Net is proposed as the atrium segmentor.
The encoder gradually extracts features from the input image
to obtain a high-dimensional representation of the image.
The decoder reconstructs the image according to the high
dimensional feature representation, and then outputs the
segmentation mask. Jumping out of the tradition of U-Net
(35), the hierarchical output features of the encoder are input
to the decoder one by one through the “skip connection”
mechanism for feature fusion. The convolutional layers of Dense
Dual Attention U-Net adopts “dense connection” (36), and
the encoder also uses “dual attention” (37), which are spatial-
based and channel-based attentions, respectively. The dense
dual attention mechanism introduced in the U-Net architecture
can improve segmentation performance by simultaneously
aggregating context and location information.
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FIGURE 2 | Standard view identification through knowledge distillation. The pre-training teacher–student based on KL (Kullback–Leibler) loss realizes knowledge
transfer through joint training. Then the student is fine-tuned on training data based on CE (cross entropy) loss to complete the training process of knowledge
distillation.

FIGURE 3 | Dense Dual Attention U-Net based segmentor for cardiac anatomy segmentation. The second, third, and fourth layers of the encoder apply the dense
blocks, containing 2, 4, and 8 dense layers, respectively, with a growth rate of 32. The dual attention module includes a position attention module and a channel
attention module, respectively. The two modules process the input in parallel, and the two outputs are fused by addition.

Atrial Septal Defect Candidate Detection
This module aims to detect ASD candidates from the images
of the four target standard views and mark the detected
ASD candidates with confidence values. In this study, a fully
convolutional single-stage object detector, known as FCOS (38)
is applied as the ASD detector. As shown in Figure 4, FCOS
has two output heads. The classification head outputs the class

probability of the detected ASD candidate, i.e., the confidence
of the detected ASD candidate, and the regression head outputs
the coordinates of the candidate ASD area. The size of ASD
varies greatly. The detection of large ASD relies on a large
receptive field while the detection of small ASD relies on a high-
resolution feature map. The feature pyramid network (FPN) (39)
module in FCOS can handle this problem. In addition, FCOS
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FIGURE 4 | FCOS detector for atrial septal defects. FCOS consists of three parts, including the backbone (CNN), neck (FPN), task-special heads (classification,
centerness, and regression).

has achieved a good balance between detection accuracy and
computational complexity, meeting the real-time requirements of
the proposed system.

Detection Refinement
The basic rule of ASD diagnosis is that ASD occurs in the septum
area between LA and RA. Theoretically, the ASD candidates
detected by the FCOS detector may appear in any area of the
image. Therefore, detection refinement is necessary to filtered
out false positives detected. Based on the outputs of the cardiac
anatomy segmentation, the septum area can be extracted through
deterministic spatial analysis. More specifically, we first need
to find the smallest convex hull of LA and RA, and then the
difference between the convex hull and the area of LA and RA is
the septum area. As shown in Figure 5, considering the decision
margin, morphological dilation techniques can be used to expand
the septum area. Finally, ASD candidates detected outside the
septum area are regarded as false positives and filtered, as shown
in Figure 6.

Environment Configuration
All codes were implemented using Python 3.7 and Pytorch 1.4.0.
The experiment was conducted on a workstation platform with
8 NVIDIA TITANRTX GPUs, 24 GB GPU memory, 256 G
RAM, and 80 Intel(R) Xeon(R) Gold 6248 CPU @ 2.50 GHz,
using Ubuntu 16.04.

RESULTS

Performance Evaluation
We use Accuracy, Recall, Precision, Specificity, and F1 Score
to evaluate the performance of view identification and ASD

detection and apply Dice Similarity Coefficient (DSC) as
the performance evaluation metric for cardiac anatomical
segmentation. They are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall = Sensitivity =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Specificity =
TN

TN + FP
(4)

F1 Score = 2 ×
Precision × Recall
Precision+ Recall

(5)

DSC =
2 × |A ∩ B|
|A| + |B|

(6)

Among them, TP, FP, TN, and FN are the counts of true positive,
false positive, true negative, and false negative, respectively.
TP and TN represent the positives and negatives of correct
predictions with respect to the ground truth. FP and FN represent
positives and negatives of incorrect predictions with respect to
the ground truth. F1 score is the harmonic average of Precision
and Recall with a value ranged in (0–1). The higher value, the
better the model performance. A is defined as the ground truth
area, and B is defined as the segmented area.

The receiver operating characteristic (ROC) curve is plotted
by using 1-Specificity as the X-axis and Sensitivity as the Y-axis.
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FIGURE 5 | Atrial septal region extraction. (A) Segmented left and right atria, (B) convex hull embracing segmented left and right atria, (C) region differences
between (A) and (B), (D) morphologically dilated atrial septum.

FIGURE 6 | Atrial septal defect detection refinement. (A) Input image with a target view, (B) detected ASD candidates, (C) segmentation result of cardiac anatomy,
(D) extraction of atrial septal region based on (C), (E) final refined result of ASD detection.
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TABLE 3 | Performance results of standard view identification.

View Accuracy Recall Precision Specificity F1 score

subAS (95% CI) 0.9965 (0.9962–0.9969) 0.9485 (0.9452–0.9519) 0.9985 (0.9979–0.9991) 0.9999 (0.9998–0.9999) 0.9729 (0.9729–0.9729)

A4C (95% CI) 0.9975 (0.9972–0.9978) 0.9444 (0.9391–0.9497) 0.9788 (0.9754–0.9822) 0.9993 (0.9991–0.9994) 0.9613 (0.9613–0.9613)

LPS4C (95% CI) 0.9908 (0.9902–0.9914) 0.9163 (0.9109–0.9218) 0.8971 (0.8912–0.9031) 0.9946 (0.9943–0.9949) 0.9066 (0.9066–0.9067)

Sax-basal (95% CI) 0.9919 (0.9913–0.9924) 0.8413 (0.8341–0.8484) 0.9908 (0.9887–0.9928) 0.9996 (0.9995–0.9997) 0.9099 (0.9099–0.9099)

Mean 0.9942 0.9126 0.9663 0.9983 0.9377

subAS, subcostal atrium septum; A4C, apical four-chamber; LPS4C, low parasternal four-chamber.

The area under the curve (AUC) is calculated based on the
trapezoidal method to measure the detection performance. The
best confidence cut-off point is determined according to the
Youden Index defined as follows:

Youden Index = Sensitivity + Specificit − 1 (7)

Performance of Standard View
Identification
The performance of the standard view recognition was evaluated
on 203,619 echocardiographic images in the test data set. As
shown in Table 3, our standard view identification model
achieved excellent performance. For the four target views (i.e.,
subAS, A4C, LPS4C, and PSAX), the averages of accuracy, recall,
precision, specificity, and F1 score were 0.9942, 0.9126, 0.9663,
0.9983, and 0.9377, respectively. The parameters of our model
are about 21.3 M, which is less than 1/3 of the parameters
of the teacher ResNeSt-200 model (approximately 70.2 M). In
terms of computational complexity, the FLOPs of our model is
about 3.7 G, which is only 1/5 of the FLOPs of ResNeSt-200
(about 13.48 G). Through knowledge distillation, it significantly
reduced the computational cost while maintained the precision
of network classification.

Performance of Cardiac Anatomy
Segmentation
The performance of the cardiac anatomical segmentation was
evaluated on 101 cases with 2,185 echocardiographic images
in the validation data set. In this study, we categorized the
verification data into four groups. More specifically, data
containing only LA and RA was considered as A2C; data
containing LA, RA, left ventricle, and right ventricle was regarded
as A2C-V2C; data containing atrium and left ventricle was
classified as A2C-LV; and data containing LA, RA, and right
ventricle was categorized as A2C-RV. The number distribution
of each group and the corresponding segmentation results were
shown in Table 4, where we only focused on the segmentation
results of the LA and the RA. Table 5 also demonstrated
the ablation experimental results of the proposed Dense Dual
Attention U-Net, which incorporated two additional modules,
namely the Dense block and the Dual Attention modules. As
shown in Table 5, both the Dense block and the Dual Attention
had positive impacts on the segmentation performance of the
U-Net. Figure 7 also demonstrated some of the example results
of cardiac anatomical segmentation with high, medium and
low performance.

Performance of Atrial Septal Defect
Detection
The ROC Curve of the ASD detection model on the four target
echocardiographic views was illustrated in Figure 8. The AUC
of subAS was the highest, reaching 0.8965, and the AUCs of
the other three views were roughly at the same level, indicating
that the model had a stronger ASD detection ability in the view
of subAS. In this study, the optimal cut-point was determined
by calculating the maximum value of Youden Index. According
to the analysis of AUC curves, the optimal cut-point was 0.95.
Therefore, cases that are not detected or have a confidence level
lower than 0.95 were considered as negatives and cases with
a confidence level greater than or equal to 0.95 were regarded
as positives. Figure 9 also showed example successful and
failure cases of ASD detection. The ASD detection performances
of before and after the detection refinement were compared
in Table 6. The average values of Accuracy, Recall, Precision,
Specificity, and F1 Score for image-level ASD detection before

TABLE 4 | Performance results of cardiac anatomy segmentation.

Number of
images

Left atrium
(DSC)

Right atrium
(DSC)

Mean
(DSC)

A2C 993 0.8960 0.9089 0.9025

A2C-V2C 731 0.8987 0.9239 0.9113

A2C-LV 31 0.8908 0.8816 0.8862

A2C-RV 430 0.8638 0.9171 0.8905

Total/mean 2,185 0.8873 0.9079 0.8976

A2C, image containing left and right atria only; A2C-V2C, image containing left
and right atria and left and right ventricles; A2C-LV, image containing left and right
atria and only left ventricle; A2C-RV, image containing left and right atria and only
right ventricle.

TABLE 5 | Performance of U-Net with different modules.

U-Net U-Net w/dense
block

U-Net w/dual
attention

Dense dual
attention U-Net

A2C 0.8860 0.8969 0.8973 0.9025

A2C-V2C 0.8889 0.9044 0.9018 0.9113

A2C-LV 0.8814 0.8837 0.8716 0.8862

A2C-RV 0.8548 0.8932 0.8705 0.8905

Mean 0.8778 0.8945 0.8853 0.8976

A2C, image containing left and right atria only; A2C-V2C, image containing left and
right atria and left and right ventricles; A2C-LV, image containing left and right atria
and only left ventricle; A2C-RV, image containing left and right atria and only right
ventricle.
Numbers in bold font indicate better performance in each category.
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FIGURE 7 | Example segmentation results of cardiac anatomy. (A) High precision segmentation of DSC 0.9517; (B) medium precision segmentation of DSC 0.9115;
(C) poor segmentation performance of DSC 0.7347.

FIGURE 8 | Receiver operating characteristic curves of ASD detection on four target echocardiographic views.

the detection refinement were 0.8699, 0.8608, 0.8208, 0.8744,
and 0.8397, respectively, while the average values of Accuracy,
Recall, Precision, Specificity, and F1 Score for image-level ASD
detection after the detection refinement were 0.8833, 0.8545,
0.8577, 0.9136, and 0.8546, respectively. It can be seen that
Accuracy, Precision, Specificity, and F1 Score have increased by
1.34, 3.69, 3.92, and 1.49%, respectively, while the recall rate

has been reduced by only 0.63%. The p-values of the t-test
indicated statistically significant differences in ASD detection
before and after the refinement module for all performance
metrics in all other views except the LPS4C view. As for view
LPS4C, the differences in ASD detection before and after the
refinement module were statistically significant in terms of recall,
precision, and specificity, but not in terms of accuracy and F1

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 834285137

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-834285 March 31, 2022 Time: 16:40 # 10

Hong et al. Automatic ASD Detection in Children

FIGURE 9 | Examples of success and failure cases. (A) ASD detected in the subAS view: bright red shows the transeptal flow with left-to-right shunt, (B) ASD
detected in the A4C view: dark red in the center of the atrial septum indicates the occurrence of left-to-right shunt flow, (C) ASD detected in the LPS4C view: blue
regions represent the transeptal flow with right-to-left shunt, (D) ASD detected in the PSAX view: bright red shows the transeptal flow with left-to-right shunt.
(E) ASD detection of false positive, due to the confusion of similar structures and the failure of the cardiac anatomy segmentation stage; (F) ASD detection of true
negative, due to the low confidence (0.9432 < 0.95).

score. In addition, a preliminary case-level study has also been
conducted where a threshold of 0.6 was used based on a prior
from experienced physicians. As shown in Table 6, the average
values of Accuracy, Recall, Precision, Specificity, and F1 Score
for case-level ASD detection before the detection refinement were
0.9888, 0.8381, 0.8786, 0.9214, and 0.9072, respectively, while the
average values of Accuracy, Recall, Precision, Specificity, and F1
Score for case-level ASD detection after the detection refinement
were 0.9897, 0.9143, 0.9318, 0.9563, and 0.9505, respectively.
A thorough grid-search based approach can be performed to
find the optimal threshold in future studies when larger test
sets are available.

DISCUSSION

In this study, we proposed a CNN-based ASD detection system,
which consists of three stages. In the first stage, four target
standard views are extracted from the echocardiographic video
frames. In the second stage, the cardiac anatomy and ASD
candidates are obtained, separately. Finally, the third stage
combines the two results of the second stage to refine and obtain
the final ASD detection result. In practice, the cardiac anatomy
segmentation and ASD candidate detection in the second stage
can be run in parallel to meet the real-time requirements of CHD
diagnosis. In our study, the floating point operations per second
(FLOPs) of the ResNet-34 standard view identification module,
the Dense Dual Attention U-Net, and the FCOS ASD detector
were about 3.7 G, 130.28, and 219.25 G, respectively.

The proposed ASD detection system was developed using a
training set of 4,031 cases containing 370,057 echocardiograms.
The experimental results on an independent test set of 229 cases
showed that the proposed system can accurately identify ASD in
color Doppler echocardiographic images, which provides a good
preparation for subsequent AI-based CHD diagnosis. Ideally, we
should conduct additional ablation studies on the impact of each
module on the final ASD detection. However, currently, due to
the huge cost of data labeling, currently, our independent test
data only has ASD labels for each image without segmentation
ground truth. Therefore, we take this as one of the limitations
and future work. As for the standard view identification module,
since the overall accuracy of 0.9942 is high enough, the impact of
failure cases of this module should be negligible.

Based on our clinical experience, small defects may close
spontaneously in childhood, while large defects may cause
hemodynamic abnormalities and clinical symptoms if they are
not repaired in time. In addition, the hemodynamics of long-
term left-to-right shunt significantly increase the possibility of
late clinical complications, including functional decline, atrial
arrhythmia, and pulmonary hypertension. Therefore, in this
study, we have selected cases with a defect size of more than
5 mm as our research object. Theses cases may have abnormal
hemodynamics and require surgery or transcatheter closure.

The F1 Score of ASD detection for images of the A4C
view is relatively low compared to images of the other three
views. Atrial septum is a relatively thin structure, especially in
the fossa ovalis area. According to clinical expertise, subcostal,
and the parasternal views are particularly useful for ASD
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diagnosis, because in these views, the septum is aligned almost
perpendicular to the ultrasound beam. The thin area of the
atrial septum and the color shunt flow can be particularly well
resolved in these views. On the other hand, because the atrial
septum is aligned parallel to the ultrasound beam in the A4C
view, it is challenging to diagnose ASD with certainty in this
view. Therefore, our experimental results are consistent with
clinical practice.

Our model was trained and tested based on the Asian children.
Although there is no literature evidence for differences in ASD by
ethnicity, we may evaluate our model performance of different
ethnic groups as one of the possible future studies. The acoustic
window degenerates with age, especially in the subcostal view. It
is not clear whether the proposed method can detect small ASD
in adults, which will be further explored in future studies.

In our study, we found that ASD shunt blood flow was
not present in every frame of the cardiac cycle due to the
contraction, relaxation and torsion of the heartbeat. Image-level
detection is the basis for case-level diagnosis. This research was
the first attempt to identify ASD in children at the image level.
A preliminary case-level study has also been conducted where
a threshold of 0.6 was used based on a prior from experienced
physicians. A thorough grid-search based approach can be
performed to find the optimal threshold value in future studies
when larger test sets are available. In addition, future research
may also be to discover hidden patterns embedded in the cardiac
cycle and to design case-level diagnostic models for ASD. It is well
known that echocardiography cannot avoid the influence of color
noise and the system performance largely depends on the quality
of the original images. How to integrate the proposed system into
the actual clinical diagnosis of ASD will be another direction of
future research.
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Endothelial dysfunction is a key early mechanism in a variety of cardiovascular
diseases and can be observed in larger conduit arteries as well as smaller resistance
vessels (microvascular dysfunction). The presence of endothelial dysfunction is a
strong prognosticator for cardiovascular events and mortality, and assessment of
endothelial function can aid in selecting therapies and testing their response. While
the gold standard method of measuring coronary endothelial function remains invasive
angiography, several non-invasive imaging techniques have emerged for investigating
both coronary and peripheral endothelial function. In this review, we will explore and
summarize the current invasive and non-invasive modalities available for endothelial
function assessment for clinical and research use, and discuss the strengths, limitations
and future applications of each technique.

Keywords: coronary MRI, endothelial function, CAD, CMR, vascular disease

INTRODUCTION

Despite declines in cardiovascular disease (CVD) mortality rates over the past few decades, CVD
still remains the leading cause of morbidity and mortality in the United States (1). Endothelial
dysfunction contributes to atherosclerosis development and progression, which may ultimately
lead to plaque rupture and cardiovascular events. Although the vascular endothelium serves many
important functions including maintaining vasomotor tone and barrier functions, the most readily
detectable means to define endothelial pathology or dysfunction in humans is by quantifying
vasomotor responses to endothelial dependent stressors. The development in recent years of
imaging strategies to measure endothelial function of the coronary and peripheral vessels has
provided insights into important contributors of coronary artery disease (CAD) and the vascular
response to therapeutic intervention. In this review, we will briefly examine mechanisms relating
endothelial function and atherosclerosis, review imaging strategies, both invasive and non-invasive,
to quantify endothelial function of the coronary and peripheral circulation, and discuss recent
insights from human endothelial function studies.

OVERVIEW: THE VASCULAR ENDOTHELIUM

Dysfunction of the vascular endothelium is increasingly recognized as serving a prominent role
in CVD pathology. The endothelium regulates vascular tone, smooth muscle cell proliferation,
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thrombosis, and leukocyte adhesion and platelet aggregation
(2). Endothelial dysfunction, or alteration in normal function,
often precedes the development of anatomic atherosclerotic
disease progression and clinical manifestation. Examination of
endothelial function can enhance risk stratification, improve
early detection of disease and be used to assess the vascular
response to therapeutic intervention (3).

Healthy endothelial cells respond to local and systemic
factors by producing and releasing vasoactive molecules to
maintain vascular tone, a balance between vasodilation and
vasoconstriction (4). A defining feature of endothelium-
dependent relaxation is the release of nitric oxide (NO),
which diffuses to vascular smooth muscle cells and
results in cGMP-mediated vasodilation (4). NO is released
in response to a variety of signals, such as adenosine,
serotonin, catecholamines, ischemia, and shear stress
(5). Conversely, systemic inflammation and increased
reactive oxygen species (ROS) tend to counter the effects
of NO, and can result in chronic endothelial dysfunction
(6). Cardiovascular risk factors such as hyperlipidemia,
hypertension, and diabetes may result in dysregulation
of endothelial nitric oxide synthase (eNOS) and ROS (7),
leading to endothelial dysfunction, one of the earliest
steps in the atherosclerotic disease process (8). Although
dysfunctional endothelium is characterized by increased vascular
inflammation, permeability and thrombosis, it is impaired
vasodilation in response to stressors that increase NO that
is the most readily measurable response in humans and
detectable by imaging.

In the peripheral conduit vessels, endothelial function
is typically evaluated in the brachial artery due to its
accessibility, and measures can be performed invasively
(forearm plethysmography) or non-invasively (brachial
ultrasound for flow mediated dilation) by evaluating the
vasomotor response to endothelial dependent stressors (9).
Measuring endothelial function of the coronary arteries is more
challenging but important as the clinical impact of coronary
endothelial dysfunction is greater than other vascular beds.
Coronary endothelial function (CEF) is typically examined
through invasive measures during coronary angiography.
Coronary arteries are prone to atherosclerosis and studying
CEF provides new information about the heterogeneity of
endothelial function and contributors to plaque formation in
patients with, or at risk for coronary artery disease. However,
the invasive measurement of CEF carries procedural risk and
preclude studies in lower risk patients over time. Newer non-
invasive measures of CEF including with magnetic resonance
imaging (MRI) and positron emission tomography (PET)
promise new insights into the pathophysiology of CVD in
low risk and other populations not undergoing invasive
angiography and can assess response to therapy. Finally,
microcirculatory assessment of smaller vessels, comprised of
pre-arterioles, arterioles, capillaries and venules, investigates
endothelial function in vascular resistance, which mediates
blood pressure and blood flow. The measure of endothelial
function of the larger (conduit) or smaller (microvessels)
provides important and complementary information which can

help gauge CV risk and provide prognostic information for
patients (10).

TECHNIQUES TO MEASURE
ENDOTHELIAL FUNCTION IN HUMANS:
INVASIVE CORONARY ENDOTHELIAL
FUNCTION ASSESSMENT

The measurement of human endothelial function primarily
focuses on vasoreactivity testing, as this is the most clinically
demonstrable function of the vascular endothelium (11).
Coronary endothelial dysfunction predicts cardiovascular events
and remains the most important vascular bed studied in
vasoreactivity (10, 12, 13). The gold standard for coronary
endothelial functional assessment is via invasive quantitative
angiography to detect luminal changes in response to vasoactive
stimuli, either pharmacologic or physiologic, that increase the
endothelial release of NO (Figure 1) (14, 15).

Coronary angiography for epicardial arterial dimension
measurement is often performed with intracoronary infusion
of acetylcholine. Acetylcholine is an endothelial-dependent
vasodilator that is suitable for intracoronary infusion and is
the most commonly used drug for the purposes of invasive
vasomotor testing. Healthy endothelium should result in
coronary arterial vasodilation and increased blood flow (by
>50%) in response to low dose acetylcholine, while dysfunctional
endothelium may lead to diminished blood flow response
and even to paradoxical vasoconstriction. At higher doses,
acetylcholine can result in constriction of small arteries via
direct effect on smooth muscle cells, and may be used to
evaluate microvascular function (16). Less commonly, other
agents used in endothelial-dependent vasomotor testing have

FIGURE 1 | Coronary angiography for endothelial function assessment.
Coronary angiography can be used for both epicardial and microvascular
function assessment. Typically, acetylcholine is used as the endothelium
dependent vasodilator for epicardial coronaries and adenosine is used for
microcirculation assessment.
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included bradykinin, papaverine and Substance P (17). In
addition, adenosine has partial endothelial dependent effects
(18). These vasoactive agents act on coronary microvasculature
through vasodilation and increased flow, resulting in NO release
and proximal coronary artery vasodilation, or flow-mediated
dilation (FMD) (19, 20), permitting the study of epicardial
endothelial function.

Coronary microvascular function can be studied invasively by
measuring coronary blood flow changes and thereby coronary
flow reserve using a Doppler wire. Generally, this is accomplished
by placement of a Doppler-tipped guide wire into the coronary
artery of interest, whereby continuous blood flow velocity is
measured both at baseline and during intracoronary infusion of
vasoactive substances (acetylcholine, adenosine, or papaverine)
through the guiding catheter (17, 21, 22).

Further, invasive CEF assessment can also be performed by
cold pressor testing (CPT) or exercise testing, both endothelial-
dependent stressors (23). Exercise stress testing can be performed
while supine using a bicycle ergometer with concurrent
hemodynamic monitoring (24). Healthy coronary arteries dilate
in response to these stressors, while paradoxical vasoconstriction
occurs in diseased coronary arteries, suggesting underlying
endothelial dysfunction.

Endothelial dysfunction diagnosed by invasive methods has
been reported in several cardiometabolic disease states and
is associated with future atherosclerosis and other adverse
outcomes (13, 25–27). These techniques have also been used in
the assessment of endothelial dysfunction reversal with treatment
therapies (28). The advantages of catheter-based methods of
coronary endothelial assessment include the precision and
accuracy of results obtained using this gold standard of testing,
particularly in comparison to techniques that rely on surrogate
measures of coronary arterial function (17). With this approach,
however, come the limitations of an invasive procedure with
intra-arterial injection of vasoactive medications that can have
systemic adverse effects, along with exposure to radiation and
contrast. Given these risks, repeat evaluation is often not
performed. Invasive techniques are therefore largely limited to
patients undergoing coronary angiography for clinical reasons.
Additionally, in patients with CAD, vessel area measurements
may be limited in coronary segments with atherosclerosis.

NON-INVASIVE EVALUATION OF
EPICARDIAL CORONARY ENDOTHELIAL
FUNCTION

Magnetic Resonance Imaging for
Assessment of Coronary Endothelial
Function
Magnetic resonance imaging provides a reproducible and safe
means to measure CEF non-invasively without contrast and
with high spatial resolution. In addition, MRI offers the ability
to quantify coronary blood flow velocity and determine blood
flow, important in the assessment of microvascular endothelial
vasoreactivity, as well as measures of vessel wall remodeling,

important in the detection of early atherosclerosis. MR measures
of coronary area and blood flow velocity have been validated
and compared to invasive measures using quantitative coronary
angiography with Doppler techniques in response to stress
(29–31). However, MRI has not been exploited to investigate
coronary endothelial-dependent vasomotor responses in healthy
and diseased states until more recently.

To measure CEF non-invasively, coronary MRI has been
combined with isometric handgrip exercise (IHE), a known
endothelial-dependent stressor to quantify IHE-induced
coronary cross sectional area and blood flow change as
quantitative measures of CEF (32). Using these MRI-IHE
methods, initial studies showed impaired CEF in patients
with CAD (32, 33) and separately in people living with HIV
compared to risk factor matched control participants (34–
36). MR images were taken perpendicular to a proximal or
middle straight segment of the coronary artery best identified
on scout images (Figure 2) and all quantifications were
performed during a period of least cardiac motion as previously
described (32, 37, 38). Both anatomical (cross sectional area)
and velocity-encoded (for coronary velocity and flow) images
were quantified at baseline and during approximately 5 min
of continuous isometric handgrip exercise while under direct
supervision to ensure compliance. In addition, endothelial
independent coronary vasoreactivity was assessed in a subset
of healthy volunteers and CAD patients who additionally
received sublingual nitroglycerin, and imaging was repeated
(32). Moreover, the degree of coronary artery luminal stenosis
in a given CAD patient was compared to local CEF within the
same segment. In this initial study, normal, physiologic coronary
vasodilation and increased coronary velocity and blood flow
were observed in healthy subjects in response to handgrip, but
not in CAD patients. Nitroglycerin, an endothelial- independent
stressor induced normal vasodilation in patients with CAD,
indicating preservation of vascular smooth muscle relaxation
in the same segments where endothelial function was abnormal
(32). Importantly, local CEF was more severely impaired in
areas with significant luminal stenosis and early coronary wall
thickening than that in minimally diseased vessels (32, 33).
Furthermore, reproducibility (including intra-interobserver
and interscan) on the same day and over time (8 weeks) was
robust, important for designing future intervention studies
using this technique (32, 39). Therefore, these MRI methods
to non-invasively and reproducibly characterize CEF provide
an opportunity to allow the monitoring of inventions aimed
at an early stage of coronary disease. The main limitation of
the technique is lack of widespread availability and that the
2D approach does not permit CEF measurements of the entire
coronary tree. Finally, because the protocol involves serial
breath holds, the study may be difficult in sicker patients with
respiratory problems.

Vascular Insights of Coronary
Endothelial Function Studies
Important for any new study measuring endothelial function is
to demonstrate that the vasoreactive response being measured
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FIGURE 2 | Example of coronary endothelial function (CEF) testing using non-contrast MRI with isometric handgrip exercise (IHE). Scout MRI (A) and cross-sectional
cine (B–D) and phase-contrast images (E,F) in a healthy subject showing RCA in cross-section (red arrow). In the expanded inset sections, coronary area increases
from rest (C) to IHE (D) and velocity and flow increase from rest (E) to stress (F) (note that increased darkness represents increased signal and thus velocity down
through the imaging plane). (G) Stress MRI protocol for CEF measures for endpoints: change in coronary cross sectional area and blood flow velocity (%) from
baseline to stress (continuous IHE for 5–8 min). (H) Example coronary flow velocity curve of RCA.

truly reflects NO-mediated endothelial function. The normal
coronary vasoreactive response to IHE detected by MRI was
quantified before and during the infusion of the NO synthase
inhibitor, NG-monomethyl-L-arginine (L-NMMA), to determine
if the coronary response to IHE is NO-mediated, the defining
feature of endothelial function (39). In this study, L-NMMA
infusion blocked the normal coronary vasodilatory response and
coronary blood flow increase with IHE in healthy participants,
demonstrating that IHE is a primarily NO-dependent endothelial
coronary stressor that can be combined with MRI to measure
CEF. In addition, similar approaches were employed to quantify
endothelial function of the internal mammary artery (IMA), a
systemic vessel that rarely develops atherosclerosis, is often used
as a coronary artery bypass graft, and has been previously used
to study systemic endothelial function (38). These initial studies
showed that the IMA response to IHE was NO-dependent and
reproducible, was impaired in patients with CAD compared to
healthy subjects and differed from the endothelial response of the
coronary arteries in a given patient. In summary, MRI promises a
non-invasive assessment of coronary vascular health that can be
safely applied to low- and medium risk populations without the
risks of invasive angiography.

POSITRON EMISSION
TOMOGRAPHY/COMPUTED
TOMOGRAPHY FOR ASSESSMENT OF
CORONARY ENDOTHELIAL FUNCTION

Nuclear imaging methods can be used to evaluate myocardial
blood flow and response to endothelial-dependent stressors.

PET can be used to estimate coronary flow reserve and
myocardial regional perfusion using intravenously injected
tracers (15Oxygen-labeled water, 13Nitrogen-ammonia,
and 82Rubidium), and studies have revealed abnormalities
in endothelial function prior to visible atherosclerosis on
angiography (40, 41). These techniques have been successfully
combined with CPT to assess CEF. CPT protocols typically
involve immersion of the subject’s hand or foot into an ice bath
at 2◦C for at least 1 min prior to radioactive tracer injection
and PET scan (42). CPT functions to increase myocardial
oxygen demand via sympathetic activation, which should cause
vasodilation and an endothelial-dependent increase in coronary
blood flow in healthy subjects (43). Using these principles,
cardiac PET during CPT has been shown to reflect epicardial
vasomotor dysfunction in subjects at high risk for CAD (44).
Abnormalities in myocardial blood flow on PET, regardless
of concurrent CAD, appear to confer an increased relative
risk of death and heart failure (42, 45). It is important to
recognize that myocardial blood flow is affected by epicardial
coronary vasomotor tone and microvascular function, making it
challenging by PET imaging alone to determine whether changes
in flow are related to conduit or resistance vessels (41).

The addition of computed tomography (CT) to PET can
further enhance the sensitivity for atherosclerosis detection (46).
A hybrid PET/CT approach has the ability to quantify changes
in coronary cross-sectional area in response to stress, global,
and relative myocardial perfusion, left ventricular functional
performance, and coronary calcium score. This non-invasive tool
for assessing coronary vascular health may represent a clinically
relevant evaluation that can be performed in early disease or
to predict downstream risk, however, its use has been primarily
research-related (47).
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NON-INVASIVE EVALUATION OF
MYOCARDIAL BLOOD FLOW RESERVE
AS A MEASURE OF CORONARY
MICROVASCULAR FUNCTION

Positron Emission Tomography
Among the currently available non-invasive methods for
measuring myocardial blood flow and myocardial flow reserve
with stress, PET is the most well studied and validated test
(48). Images are obtained at rest and vasodilator-induced stress
following injection of a radiotracer. Post-processing of images
is then performed to quantify regional and global myocardial
blood flow (ml/min/g of myocardium) (45, 49). Myocardial
flow reserve (MFR) is calculated as the ratio of stress to rest
myocardial blood flow (MBF). MBF is affected by myocardial
oxygen demand, contractility, heart rate, blood pressure and
preload, resulting in a reported resting MBF ranging from 0.4 to
1.4 ml/g/min (50). Typically, MFR < 2.0 is considered abnormal
and consistent with microvascular dysfunction in the absence
of significance epicardial disease as changes in MFR can be due
to epicardial and/or microvascular changes in blood flow (50).
A representative image is provided showing rest and stress images
with PET in a patient with microvascular dysfunction and no
CAD on invasive angiography (Figure 3).

Multiple studies have evaluated the prognostic implications
of MFR by PET. Studies have demonstrated that dysfunction

seen on PET can identify individuals at high risk for major
adverse cardiac events and cardiovascular death in those
with and without obstructive CAD (51–53). Moreover, PET
has been shown to reclassify risk in about one third of
patients when compared to only traditional cardiovascular
risk factors (54). The benefits of PET in prognosticating
cardiac death may be particularly evident in specific groups
such as those with cardiometabolic diseases (55, 56). Notably,
abnormal MFR on PET has also been shown to be predictive
of hospitalizations for heart failure in patients with heart
failure with preserved ejection fraction (57). Despite several
studies enhancing risk assessment using PET, there are
limited studies using PET measures to evaluate therapeutic
interventions and response, likely due to concerns about
radiation exposure. Prior studies using PET imaging have
examined the therapeutic response to statins and bariatric
surgery (45, 58, 59).

Ultimately, the advantages of dynamic PET myocardial
imaging include validation by microsphere blood flow
studies in preclinical animal models and human studies
(60, 61). PET also offers better spatial resolution and
lower radiation exposure compared to single-photon-
emission-computed-tomography (SPECT) perfusion
(60). However, PET imaging is associated with high
cost, limited radiotracer availability and advanced
equipment, which can be a limitation to routine and
widespread use.

FIGURE 3 | PET rest/stress images and coronary angiography in a patient with microvascular dysfunction. (A) Perfusion images demonstrate no evidence of stress
(regadenoson)-induced myocardial ischemia. (B) Provides quantitative myocardial perfusion analysis with an overall reduced coronary flow reserve of 1.89, indicative
of mild diffuse microvascular disease. The functional analysis for this patient showed normal wall motion. No obstructive coronary artery disease was seen on
angiography of the left anterior descending (C), left circumflex (C) and right coronary (D) arteries.
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CARDIOVASCULAR MAGNETIC
RESONANCE PERFUSION IMAGING

Non-invasive assessment of impaired myocardial blood flow,
which contributes to ischemia in patients with CAD and
cardiomyopathy, can be performed using stress perfusion
cardiovascular magnetic resonance (CMR), which may be
especially helpful for serial examinations evaluating treatment
success (62). Stress perfusion CMR, distinct from coronary
vasoreactivity approaches mentioned above, typically uses
vasodilator stress (i.e., adenosine) to detect macrovascular
(i.e., coronary stenosis) and microvascular differences in
myocardial blood flow in response to stress. Recently, studies
have employed fully quantitative stress myocardial perfusion
techniques in patients with no obstructive CAD and detected
reduced myocardial perfusion reserve, not explained by cardiac
hypertrophy or fibrosis (63). The ability of CMR to study
ventricular function/structure and fibrosis make it well-suited
to be used in combination with stress perfusion techniques,
especially in patients with left ventricular hypertrophy.

Stress perfusion CMR techniques have also been employed to
evaluate patients at risk for microvascular dysfunction. Clinical
guidelines have recently added microvascular dysfunction to
epicardial stenosis and epicardial coronary spasm as one of
the mechanisms of myocardial ischemia in patients with CAD
(64). One study used stress CMR techniques and showed that
myocardial perfusion reserve index was impaired in women
with no obstructive CAD on coronary angiography, reflecting
microvascular dysfunction compared to reference controls (65).
A randomized trial in this setting showed that medical therapy
with ranolazine improved angina and reduced ischemic burden
in woman with myocardial ischemia detected by stress CMR in
the absence of obstructive CAD, suggesting a possible use of
MRI for therapeutic assessment (66). Additionally, in patients
with infiltrative heart disease such as amyloidosis, it has been
demonstrated that impaired myocardial perfusion is related to
abnormalities in myocardial structure and function not only at
stress, but also at rest (67). Taken together, studies support the
use of stress perfusion CMR to investigate myocardial perfusion
reserve, which reflects microvascular dysfunction in the absence
of CAD. In addition, stress CMR has already demonstrated
high prognostic value and cost-effectiveness compared to
invasive strategies (68, 69). While classically, limitations of this
technique included the need for highly specialized equipment and
providers, recent technical developments now allow quantitative
and fully automated assessment of myocardial ischemia using
stress CMR, which may enable the broad use of this modality
outside of specialized centers (70).

COMPUTED TOMOGRAPHY
ANGIOGRAPHY

The homogeneity of myocardial perfusion can be readily assessed
by its uptake of iodine contrast medium and its associated
X-ray attenuation. George et al. demonstrated that myocardial
perfusion can be quantified using CT and that reversible
perfusion defects can be identified after vasodilator challenge

analogous to nuclear imaging techniques (71). CT scanning is
performed using injection of an iodinated contrast agent with
prospective electrocardiographic gating. Microvascular function
may be assessed by determining MBF at rest and after vasodilator
challenge with abnormal flow reserve typically defined as a ratio
of <2.0 (60). In the absence of obstructive CAD and local
myocardial perfusion defects, reduced MFR can be attributed to
microvascular dysfunction. Figure 4 shows an imaging example
of a patient with a severe myocardial perfusion defect in the
lateral and posterolateral walls post infarct.

Advantages of CT include faster image acquisition than with
nuclear techniques and markedly superior spatial resolution.
Directly compared to nuclear myocardial perfusion imaging
using exercise or vasodilator challenge, CT myocardial perfusion
yields at least equivalent accuracy for identifying patients
with CAD (72). Another major advantage of cardiac CT
is the assessment of both coronary arterial anatomy and
myocardium. Using contemporary technology, rest-vasodilator
CT for coronary angiography and myocardial perfusion imaging
can be performed with radiation doses lower than standard
nuclear perfusion imaging using SPECT, though requiring
two contrast applications of approximately 60 ml each (72).
Determining MBF and coronary flow reserve by CT myocardial
perfusion imaging is possible using dynamic imaging, i.e.,
continued imaging over several cardiac cycles (73).

Application of dynamic CT imaging had been hindered
by high associated radiation exposure to the patient but
new protocols have been developed using lower tube settings
which have reduced radiation to levels similar to that by
conventional rest-vasodilator myocardial perfusion protocols
(73). Comparison to PET revealed high accuracy of dynamic
CT for detecting abnormal MBF using a mean radiation dose of
8.4 mSv (74). Further radiation dose reductions are feasible using
intermittent instead of continuous scanning, thus overcoming
one of the major limitations of dynamic CT perfusion imaging
and opening the possibility of comprehensive coronary arterial
and myocardial assessment.

PERIPHERAL ENDOTHELIAL FUNCTION
ASSESSMENT

Brachial Artery Flow Mediated Dilatation
In the early 1990s, high-resolution B-mode ultrasound and
Doppler emerged as a non-invasive tool to measure brachial
artery diameter and flow changes in response to vasomotor
stimuli in research investigations of endothelial function, and
remain as such currently (9, 75). Specifically, flow-mediated
vasodilatation (FMD) of the brachial artery (or forearm radial
artery) measures a focal segment of the artery to dilate in
response to NO release induced by a 5 min blood pressure cuff
occlusion and release (hyperemic stimulus). Oral nitroglycerin
is typically used as the non-endothelium dependent vasoactive
stimulus. Calculation of the % FMD is the percent change
in arterial diameter post-stimulus compared to the baseline
diameter, measured manually or with edge-detection software
(76). Doppler velocity of the artery is also acquired at baseline,
and upon immediate and 2 min post cuff release. Baseline and
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FIGURE 4 | Representative CT perfusion images and polar plots. Images demonstrate severe myocardial perfusion abnormalities in the lateral and posterolateral
walls in a patient with history of myocardial infarction. (A) Depicts a cardiac four-chamber view with arrows pointing to hypodense areas in the subendocardial and
mid myocardial levels, representing perfusion defects. In addition, thinning of the myocardium is consistent with prior infarct. (B) Provides a cross-sectional
assessment of the same case. (C) (Polar plot) shows the corresponding perfusion indices, with the affected myocardial segments provided in (D).

hyperemic blood flow are calculated from the time-averaged
pulsed Doppler spectral trace time-velocity integral (NOVA
Medical School) from the onset of one waveform to the beginning
of the next waveform. A representative image is shown in
Figure 5 (9). Over the course of time, there have been some
modifications of the technical method and exam protocol, but
studies relying on this technique provide insight into endothelial
function at the imaging site, the time course of diameter
changes and flow, and the role of distal microvascular physiology
(75, 77).

Advantages of the FMD technique include relative cost-
effectiveness, easy access, availability, and validated digital

software for more automated analyses. In addition there is robust
reproducibility in experienced labs and importantly, strong
evidence that endothelial dysfunction measured with FMD
predicts cardiovascular events (78). However, optimal acquisition
of the vessel images and Doppler in a time-sensitive manner
is technically challenging, with a significant learning curve
to achieve and maintain high-quality, consistent performance
and reproducibility in data acquisition and interpretation.
Differences in methodological technique and exam protocols also
limit the comparability, accuracy, validity, and reproducibility.
Nevertheless, brachial FMD methods provide a validated non-
invasive assessment of endothelial function.
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FIGURE 5 | Ultrasound Images Demonstrating Brachial Flow-Mediated Dilatation. (A) Shows the brachial artery at rest with arterial diameter of 3.88 mm. (B) Shows
the artery 1 min after hyperemic stimulus with arterial diameter of 4.09 mm. Figure reproduced with permission from Corretti et al. (9) copyright JACC (Elsevier).

TABLE 1 | Comparison of the invasive and non-invasive methods for assessing endothelial function.

Modality Strengths Limitations

Coronary angiography • Gold standard method
• Direct visualization and quantitation of endothelial
function
• Able to assess dose-response
• Precise and accurate results

• Invasive
• Expensive
• Vasoactive medications can have systemic effects
• Largely limited to clinical studies

Brachial artery flow mediated dilatation • Non-invasive
• Cost-effective
• Validated software for automated analyses
• Well correlated with coronary endothelial function

• Operator dependent
• Technically challenging to obtain optimal images
• Variable measurements, which limit comparability
and reproducibility

Forearm plethysmography/Applanation tonometry • Minimal training required
• Inexpensive
• Portable
• Well tolerated
• Can provide indirect information on the structure of
small resistance arteries

• No clear cutoff values
• Used mostly for mechanistic research studies
• Limited reproducibility
• Requires specialized training for standardization
• Findings may not reflect endothelial function only

Venous occlusion plethysmography • Validated technique
• Reproducible
• Easier to access than coronary arteries

• Invasive
• Limited ability to compare application between
individuals or groups

Positron emission tomography • Well-validated in animal and human studies
• Automated software for quantitative analysis

• Radiation exposure
• Expensive
• Lack of easy access

Computed tomography • Good spatial resolution
• Relatively cost-effective
• Fast image acquisition

• Radiation exposure
• Image may be compromised by increased heart rate
• Calcium related beam hardening may result in
artifacts

Magnetic resonance imaging • High spatial and temporal resolution
• No ionizing radiation
• Cardiac structure and function assessment included

• Limited availability
• Expensive
• Long study length
• Limited use in patients with arrhythmias,
claustrophobia or implanted devices

Venous and Arterial Plethysmography
Venous occlusion plethysmography is an invasive, extensively
used research technique to study human vascular physiology
and pharmacology in vivo. The technique indirectly measures
microvascular function as forearm blood flow in response
to an intra-arterial infusion of a vasoactive substance such

as acetylcholine, adenosine, or nitroglycerin into either the
brachial or radial artery, or alternatively to reactive hyperemia
induced by increased shear stress. The contralateral arm
is used as the control, and the results are expressed as
the ratio of the changes in flow measured in both arms
(79). Training is essential to ensure standardization and
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quality control. The technique is validated, reliable, and
highly reproducible (79). However, its invasive nature
precludes application for routine clinical use. Additionally,
the various anatomic, physiologic and technical factors
involved with venous plethysmography limit its application
to study changes between individuals, groups or in
large populations. A limitation to plethysmography and
applanation tomography include lack of standardization.
Nonetheless, it remains a valuable research tool to evaluate the
pathologic mechanisms underlying endothelial dysfunction,
the effect of various therapeutic interventions and risk
factor modifications.

Similarly, finger plethysmography (peripheral
arterial/amplitude tonometry) can be used to assess peripheral
endothelial function in the digital microvasculature (75,
80). Pulse amplitude tonometry (commercially available as
Endo-PAT2000 (Pulse Arterial Tone), Itamar Medical) is an FDA
approved product that records pulse amplitude in the individual’s
fingertip at rest and during reactive hyperemia (81). Hyperemia
is induced by occluding blood flow through the brachial artery
for 5 min using an inflatable cuff. Hyperemia in the fingertip
increases the pulse amplitude. Proprietary software is applied to
obtain the net response is expressed as the reactive hyperemia
pulse amplitude tonometry index (RHI), considered a marker
of endothelial function. The endothelium-mediated change in
the PAT signal, elicited by the downstream hyperemic response,
is calculated automatically by the system. A PAT ratio is then
created using the post and pre occlusion values normalized to
measurements from the contralateral arm (control). Importantly,
studies have shown that peripheral microvascular dysfunction
predicts future cardiovascular events (82, 83).

Endothelial Function in the Coronary vs.
Peripheral Circulation
Although abnormal systemic and coronary endothelial function
are predictors of cardiovascular events, vasoreactivity across
different vascular beds are not always closely associated. Studies
comparing to coronary systemic endothelial function have shown
that the correlation between the two may be modest (38, 84).
Further, other studies have shown that endothelial dysfunction
is not always uniform across vascular regions or even within the
coronary tree of the same individual (32, 38). These regional
differences in endothelial function may be due differences in local
shear, downstream resistance vessels, neurohormonal regulation
or propensity to develop atherosclerosis and plaque rupture.
Taken together, endothelial function measures of different
vascular beds may provide complementary information, each
with unique strengths and limitations (Table 1). However, further
studies are need to elucidate the relative role of endothelial
measures in different vessels.

CLINICAL STUDIES AND APPLICATIONS

Both established and newer cardiovascular risk factors can
adversely affect endothelial function, including obesity, diabetes,
smoking, and inflammation/oxidative stress (7, 8). To this end,

the measurement of endothelial vasoreactivity serves as an index
of the sum total effects of environmental and genetic factors
on the vasculature. Furthermore endothelial dysfunction is a
marker for subclinical disease, an independent predictor of
adverse cardiovascular events, and a potential target for medical
interventions (78, 82). One study using PET showed that cigarette
smokers have reduced MFR, with improvement seen with
smoking cessation (85). Similarly, initiation of antihypertensives
can result in improved endothelial function in patients with
hypertension (86). Obese patients were reported to demonstrate
impaired MBF with improvement after bariatric surgery (59). In
addition, MFR is reduced in patients with diabetes, with some
suggestion that endothelial function (measured by FMD) may
improve with dapagliflozin (55, 87).

Recently, coronary microvascular dysfunction has been
implicated in multiple disease processes including microvascular
angina, a common encountered disorder which can lead to
ischemia or myocardial infarction, even in the absence of
obstructive coronary artery disease (60). Microvascular angina
due to ischemia with non-obstructive coronary arteries (INOCA)
can be challenging to diagnose, with a heterogenous approach to
patients and many knowledge gaps with regards to treatment.
The CorMicA trial showed that guiding therapy by invasive
provocative coronary testing in patients with INOCA identified
to have microvascular dysfunction may be of clinical benefit
(88). Recent methods using stress perfusion CMR are being
employed in the CorCMR study to evaluate whether a non-
invasive approach to assess coronary microvascular dysfunction
in INOCA patients improves cardiovascular risk and anginal
symptoms (89). The results of study may have important

TABLE 2 | Range of normal values for coronary flow reserve (invasive) and
myocardial flow or perfusion reserve (non-invasive) with different
imaging modalities.

Modality Values used to diagnose CMD

Invasive methods

Angiography + adenosine CFR: abnormal <2.0 (94)

Angiography + acetylcholine CFR: abnormal <1.5 (95)

Non-invasive methods

CMR + adenosine MFR: definite CMD <1.5, borderline CMD 1.5–2.6
(96)
MPRI: abnormal <1.84 (97), ≤1.47 predicts MACE
(98)
Global stress MBF without visual perfusion defects:
abnormal ≤2.25 ml/g/min (70)

PET + adenosine MFR: definite CMD <1.5, borderline CMD 1.5–2.6
(96)

CT-perfusion MFR: abnormal <2 (60)

Forearm plethysmography No established cutoff

Finger plethysmography RHI: <1.6–1.75 portends high risk for
cardiovascular events (99)

CMD, coronary microvascular disease; CFR, coronary flow reserve; MFR,
myocardial flow reserve; MPRI, myocardial perfusion reserve index; MACE,
major adverse cardiac events; MBF, myocardial blood flow; RHI, reactive
hyperemic index. Non-invasive measures of MFR reflect CMD if significant
contribution of reduced from epicardial coronaries has been ruled out.
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clinical implications in this patient population, where there
is less evidence in terms of diagnostic testing and treatment.
Furthermore, using these approaches to quantify coronary
microvascular function may provide clinically meaningful
information beyond what is possible using standard anatomic
and ischemia assessment with the ultimate goal of improving
patient outcomes. It is important to note that many of the
techniques described in this review (PET, specialized CMR, and
CT perfusion) are not yet widely available clinically, however,
may play an important role in the evaluation of patients with
INOCA and to test early therapies to justify larger clinical trials
with hard end points.

Both coronary and systemic endothelial function measures
have been used as endpoints in clinical intervention trials
after the techniques were shown to be reproducible in the
short and intermediate term (90). Studies using endothelial
function as an endpoint enable the assessment of the vascular
impact of emerging treatment strategies and can guide novel
drug development, such as approaches to target oxidative stress
or inflammation. Studies targeting the xanthine oxidase (XO)
system, a significant source of vascular oxidative stress, or
systemic inflammation using colchicine have used CEF testing as
a surrogate imaging endpoint over time in randomized placebo-
controlled clinical trials (90, 91). Recently, impaired CEF in
people with HIV and dyslipidemia improved with short term
treatment with the PCSK9 inhibitor, evolocumab, indicating that
the MRI-CEF technique can detect rapid improvements in CEF
in response to treatment (92). Therefore, this approach enables
future studies focused on repeated CEF measures in healthy and
lower risk populations over time.

CONCLUSION

Endothelial dysfunction is now a well-established gauge of
cardiovascular risk and predicts future adverse events. Recently,
endothelial dysfunction has been implicated as a contributor
to a variety of cardiovascular diseases including INOCA, stress
cardiomyopathy, preeclampsia and heart failure with preserved
ejection fraction among others (26, 93). We have summarized
multiple methods that are available for probing coronary
and peripheral endothelial, each with specific strengths and
weaknesses, and different values for defining pathology (Table 2).

Currently available endothelial testing methods are helpful for
mechanistic understanding of disease and for risk stratification
and prognostication. It is important to recognize, though, that
using a pharmacological stressor for imaging to assess endothelial
function will often detect function in response to a combination
of endothelial and non-endothelial dependent mechanisms,
and depending on the stressor and imaging modality, this
should be considered. Increasingly endothelial function testing
is being explored for clinical management and evaluation of
therapeutic response, although there are currently no guidelines
recommending use of endothelial function in routine patient
management. Nonetheless, evidence continues to grow in the
role of the vascular endothelium in disease pathophysiology and
ongoing large-scale studies are essential for the evaluation of
therapies targeting endothelial function.
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Objective: Obesity is a prominent public health problem that has increased

cardiovascular mortality risks. However, the specific effects of obesity, independent of

comorbidities, on cardiac structure and function have not been well clarified, especially

those effects on the right ventricle (RV). Cardiovascular magnetic resonance (CMR) tissue

tracking can assess detailed RV mechanical features. This study aimed to evaluate RV

strain using CMR in uncomplicated obese adults and assess its association with fat

distributions.

Methods: A total of 49 obese patients and 30 healthy controls were included. The RV

global systolic function and strain parameters based on CMR were assessed. Body fat

distributions were measured with dual X-ray absorptiometry. RV function indices of obese

patients were compared with those of healthy controls. Correlations among related body

fat distribution parameters and RV function indices were conducted with multivariable

linear regression.

Results: Compared with healthy controls, the obese group had impaired RV strain with

lower global longitudinal peak strain (PS), longitudinal peak systolic strain rate (PSSR),

circumferential and longitudinal peak diastolic strain rates (PDSR) (all P < 0.05), while

LV and RV ejection fractions were not significantly different between the two groups

(P > 0.05). Multivariable linear regression analysis demonstrated that android fat%

was independently associated with longitudinal PS (β = −0.468, model R2 = 0.219),

longitudinal PDSR (β = −0.487, model R2 = 0.237), and circumferential PSSR

(β = −0.293, model R2 = 0.086). Trunk fat% was independently associated with

longitudinal PSSR (β = −0.457, model R2 = 0.209). In addition, the strongest

correlations of circumferential PDSR were BMI and gynoid fat% (β = −0.278, β = 0.369,

model R2 = 0.324).

Conclusions: Extensive subclinical RV dysfunction is found in uncomplicated obese

adults. BMI, as an index of overall obesity, is independently associated with subclinical

RV dysfunction. In addition, central obesity (android fat and trunk fat distributions) has
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a negative effect on subclinical RV function, while peripheral obesity (gynoid fat

distribution) may have a positive effect on it.

Clinical Trials Registration: Effect of lifestyle intervention on metabolism of obese

patients based on smart phone software (ChiCTR1900026476).

Keywords: regional fat distributions, cardiovascular magnetic resonance, right ventricular, obesity, strain

INTRODUCTION

Overweight and obesity have rapidly increased global disease
burden over the last decades. To date, no country has successfully
reversed this obesity epidemic (1, 2). Since the beginning of the
21st century, obesity has become an epidemic in China caused by
rapid economic growth with an estimated increase in prevalence
of obesity of 0.32% per year (3). Obesity-related comorbidities,
such as diabetes, hypertension, and coronary heart disease, are
major risk factors that contribute to heart failure. However, in
obese subjects with no clinically apparent cardiovascular risk
factors, subclinical structural and functional changes can also
be noted, which predisposes these individuals to heart failure at
some point (4, 5). Previous studies examining cardiac function
and the cardiovascular system have mainly focused on obese
patients with comorbidities, while only few researches have
focused on obese subjects without clinical signs or comorbidities.
Specific right ventricular (RV) functional changes on CMR have
not been studied in this subset of obese patients.

RV function assessment has been known to provide a
prognostic role in several cardiac diseases (6). Previous
echocardiographic studies evaluated RV functional strain in
obese adults (4, 5, 7, 8). However, a review compared cardiac
strain evaluations using cardiac magnetic resonance (CMR) and
speckle tracking echocardiography (STE) and found that the STE
technique had a major limitation, which greatly depended on
image quality. Indeed, compared with CMR, echocardiographic
images had lower signal-to-noise ratio (SNR) and inadequate
imaging of some myocardial segments, especially in the distal
part of the ultrasound sector (9). In obese subjects, signal
interference due to excessive adiposity makes echocardiography
more challenging. The advantages of CMR include larger
fields of view, higher SNR, and 3-dimensional imaging of
the heart, enabling the assessment of ventricular geometry
and function with high accuracy and reproducibility (10). In
clinical practice, ejection fraction (EF) is most widely used
in evaluating global ventricular function; however, EF might
not be a sensitive indicator of early RV dysfunction in obese
subjects (7). Currently, the CMR tissue tracking technique is
widely used as a subclinical myocardial dysfunction indicator
for its high sensitivity when measuring global and regional
cardiac mechanics through tracking myocardial motion (11).
According to our literature search, only one article on children
with uncomplicated obesity using CMR was identified. That
article indicated that obese/overweight children had greater RV
mass indices and lower RV free wall longitudinal strain (12).
Until now, no studies have documented RV strain changes in
obese adults with no clinical signs or comorbidities using CMR
tissue tracking.

Body mass index (BMI) is the most widely used index
of general obesity and is associated with other cardiovascular
disease risks. Previous studies have found that different regions
of fat deposition have various effects on the heart. For example,
one study showed that visceral fat rather than subcutaneous fat
was significantly associated with decreased RV strain (13). Dual
X-ray absorptiometry (DXA) has also been extensively applied
as it allows to accurately assess regional fat distributions, such as
fat of the android, gynoid, trunk, upper and lower extremities,
and visceral regions. A study examining the relationship between
regional body fat and LV subendocardial viability ratios indicated
that subjects with abdominal fat distribution (android-to-gynoid
fat mass ratio) had poorer LV function (14). To our knowledge,
no studies have focused on the association between regional fat
distributions on RV function in obese individuals with no clinical
signs or comorbidities. We aimed to evaluate RV functional
changes seen on CMR in obese adults with no clinical signs
or comorbidities and the association between RV strain and fat
distributions.

METHODS AND MATERIALS

Study Population
We prospectively recruited 49 obese subjects defined by a BMI
≥ 27.5 kg/m2 (ranging from 27.5 to 34.9 kg/m2) and 30 healthy
volunteers (18.5 ≤ BMI ≤ 23.0 kg/m2) between 18 and 60
years old from September 2019 to September 2021. Subjects
were excluded if they had any of the following conditions:
hypertension or diabetes measured by oral glucose tolerance;
history of cardiovascular diseases or history of any cardiovascular
procedures; major systemic diseases that could affect the
myocardium, such as connective tissue diseases and sarcoidosis;
endocrine disease, such as hyperthyroidism and hypothyroidism;
metabolic diseases, such as a history of alcohol abuse or
amyloidosis; obstructive sleep apnea; any contraindication to
CMR imaging. The study complied with the Declaration of
Helsinki and was approved by the Institutional Review Board
of the West China Hospital in Sichuan University. Written
informed consent was obtained from all study participants.

Baseline Data Collection
Baseline data of the participants were collected, including
medical history, anthropometric measurements (weight and
height), heart rate, and blood pressure. Fasting blood glucose
and serum lipid profiles, including triglycerides, total cholesterol,
high-density lipoprotein (HDL), and low-density lipoprotein
(LDL), were also measured.
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Assessment of Obesity
Waist circumference (WC) was measured at the midway between
the last rib and the iliac crest, and hip circumference (HC)
was measured at the largest diameter of the hip. WC and HC
were measured to the nearest 0.5 cm. The waist-to-hip ratio and
waist-to-height ratio were calculated. Body mass index (BMI)
(kg/m2) was calculated as weight (kg) divided by height squared
(m2). According to the Chinese criteria, BMI was categorized
into the following three groups: healthy weight (18.5-23.0
kg/m2), overweight (23.0-27.5kg/m2), and obese (≥27.5kg/m2)
(15). Total fat, android fat, gynoid fat, trunk fat, upper and
lower extremities fat, and visceral fat mass (g) were measured
using DXA (Lunar iDXA, GE Medical Systems Lunar, Madison,
USA). Specifically, the region of interest (ROI) of android fat
distribution was defined from the pelvic cut (lower boundary)
to above the pelvis cut by 20% of the distance between the iliac
crest and chin (upper boundary). The gynoid fat distribution
ROI upper boundary was 1.5 times the height of the android
ROI below the iliac crest to a line equal to twice the height
of the android fat distribution ROI (lower boundary) (16).
Percentage of fat mass in android, gynoid, trunk, peripheral,
upper extremities and lower extremities, and visceral regions
reflect fat deposition in the corresponding regions, relative to
total fat mass. Peripheral fat mass was calculated as the sum of
upper and lower extremities fat mass. Percentage of fat mass in
trunk, android, and visceral regions (also expressed as trunk fat%,
android fat%, and visceral fat%) were indices predictive of central
obesity.While Percentage of fat mass in gynoid, peripheral, upper
extremities and lower extremities regions ( also expressed as
gynoid fat%, peripheral fat%, upper extremities fat%, and lower
extremities fat%) were indices predictive of peripheral obesity.

CMR Protocol
CMR examinations were performed using a 3 Tesla whole-body
scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen,
Germany) with an 18-channel phased-array body coil on patients
in a supine position. With a standard ECG-triggering device,
data was acquired during the end-expiratory breath-hold period.
A segmented breath-hold balanced steady-state free precession
(bSSFP) sequence was used to obtain 8–14 contiguous cine
images from the base to the apex in the short-axis view and
the two- and four-chamber cine images in the long-axis view.
The bSSFP parameters are as follows TR/TE = 3.3/1.22ms,
flip angle = 41◦, slice thickness = 8mm, field of view = 360
× 320 mm2, matrix size = 208 × 166, and a temporal
resolution= 39.34 ms.

CMR Image Analysis
All CMR data was imported to commercially available software
(CVI 42 version 5.11.3, Circle Cardiovascular Imaging Inc.,
Calgary, Canada). Two radiologists with more than 3 years of
CMR experience analyzed the measurements and were blinded
to the subject status (obesity vs. control).

Epicardial Adipose Tissue Quantification
Epicardial adipose tissue (EAT) represents high-signal intensity
region between the myoepicardium and parietal pericardium.

The EAT volume was measured on the short-axis cine
slices during the end-diastolic phase. The myoepicardial and
parietal pericardial contours were manually delineated per slice,
extending from the mitral valve hinge down to the ventricular
apex. High-signal intensity regions between the myoepicardium
and parietal pericardium were semi-automatically traced and
calculated, excluding blood vessels.

Global Ventricular Geometry and Function
The endocardial and epicardial contours of the right ventricle
(RV) and left ventricle (LV) myocardium on the short-axis
cine images were manually traced during the end-diastolic and
end-systolic phases of the CVI42 short-3D module software.
The global conventional functional parameters, namely EF, end-
diastolic volume (EDV), end-systolic volume (ESV), and LVmass
at end-diastole, were automatically computed. In addition, the
average LV regional values for 16myocardial segment thicknesses
(American Heart Association standard segmentation model)
were also automatically computed. Finally, the LV thickness and
interventricular septal (IVS) thickness averages were calculated.

RV and LV Strain
The long-axis 4-chamber, 2-chamber and short-axis cine slices
were transferred to the three-dimensional tissue tracking module
for RV and LV myocardial strain analysis. The endocardial
and epicardial contours were manually delineated per slice
during the end-diastolic phase in all series, and the papillary
muscles and moderator bands were excluded (Figure 1). Strain is
defined as the degree of myocardial deformation from its initial
length (L0, in end-diastole) to its maximum length (L, in end-
systole): myocardial strain = (L− L0)/L0. Strain rate represents
the rate of length shortening (17). For different directions of
myocardial deformation, the RV and LV global myocardial
strain parameters, including the radial, circumferential, and
longitudinal peak strains (PS), peak systolic strain rates (PSSR),
and peak diastolic strain rates (PDSR) can be calculated. Since
RV radial deformation values had low reproducibility and
high variability due to the complex morphologic structure and
relatively thin ventricular wall, the related parameters (radial PS,
PSSR, and PDSR) were excluded.

Reproducibility
Intra- and inter-observer variabilities for the EAT and RV
myocardial strain indices were analyzed in 20 random subjects,
including 12 obese patients and 8 healthy controls. To determine
intra-observer variability, one radiologist measured the same
image within a 1-month interval. To evaluate the inter-observer
variability, the second radiologist, who was blinded to the first
observer’s results, re-analyzed the measurements.

Statistical Analysis
All statistical analyses were performed using SPSS software
(version 23, IBM, Armonk, Armonk, New York, USA).
Continuous data with normal distributions were compared
between the obese and healthy groups with the student’s t-
test and were expressed as the mean ± SD. Binary variables
were analyzed using the cross tabs Chi-square test. Correlations
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FIGURE 1 | Right ventricular tissue tracking using cardiac magnetic resonance imaging. Right ventricular (RV) contours are delineated on the short-axis SSFP image

(A) and the four-chamber image (B), shown for the end-diastolic phase. Yellow and blue lines represent RV endocardial and epicardial borders, and yellow dots

between the borders represent myocardial points. (C,D) demonstrate myocardial points motion from the end-diastolic phase to the end-systolic phase using tissue

tracking. (E,F) show strain curve and strain rate curve. The peak strain (PS) and strain rates (PSSR and PDSR) can be acquired in the curves. 3D models of the RV in

the end-diastolic phase (G) and the end-systolic phase (H). SSFP, steady-state free precession; PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak diastolic

strain rate; 3D, three-dimensional.

between RV functional parameters and LVEF and LV geometry
(mass and thickness) and IVS thickness were assessed in
obese patients. Pearson’s correlation coefficient was used to
determine the correlations between regional fat, blood lipids, and
RV functional parameters (global function and strain indices)
in whole population. Stepwise multivariable linear regression
was used to estimate the associations between regional fat
distributions and RV functional parameters in whole population.
Related fat distribution, including android fat%, gynoid fat%,
trunk fat%, peripheral fat%, visceral fat%, EAT were entered
in univariable analyses. Variables with statistical significance
in the univariable analyses were then included in a stepwise
multivariable analysis. In order to determine the association
between obesity and RV function independent of growth
differences, age and sex were added in multivariable analyses.
The intraclass correlation coefficient (ICC) was used to evaluate
both inter-and intra-observer variabilities. A P < 0.05 indicated
statistical significance.

RESULTS

Baseline Characteristics
This study included 49 obese subjects (BMI 29.9 ± 2.0 kg/m2)
and 30 healthy controls (19.7 ± 1.1 kg/m2), and the baseline
characteristics of the patients are shown in Table 1. Mean age,
height, male proportion, and heart rate were compared and
the differences between the two groups were not statistically
significant. Compared with healthy controls, obese subjects had

higher blood pressure, although it was within the normal range.
For blood parameters, the obese group had higher fasting blood
glucose, triglycerides, total cholesterol, and LDL, and lower
HDL compared with the healthy group. The obese group had
greater conventional fat indexes, including WC, HC, waist-to-
hip ratio, and waist-to-height ratio compared to healthy group.
Additionally, the obese group had greater DXA-related central
fat deposition indexes, including trunk fat%, visceral fat%, and
android fat% compare those of healthy group. In contrast,
they had lower DXA-related peripheral fat deposition indexes
including gynoid fat%, peripheral fat%, and lower extremities
fat% compared with healthy individuals. The obese group had
greater EAT than those of healthy group.

Comparison of CMR Findings Between the
Obese Subjects and Healthy Controls
The RVEF and LVEFwere within the normal range (RVEF> 40%
and LVEF > 50%) for all obese patients and neither were
statistically different between the two groups (51.2 ± 4.3%
vs. 50.9 ± 4.6%, P = 0.087; 60.9 ± 4.5% vs. 62.7 ± 4.6 %,
P = 0.091, respectively) compared with the controls. Compared
with the healthy controls, obese patients exhibited greater RV
sizes (RVEDV, RVESV), LV sizes (LVEDV, LVESV), LV geometric
parameters (LV mass and LV average thickness), and IVS average
thickness. For RV strain, the obese group showed lower global
longitudinal PS, PSSR and PDSR, circumferential PDSR, and
preserved circumferential PS and PSSR compared with the
control group (Figure 2). For LV strain, the obese group showed
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TABLE 1 | Baseline characteristics of the study cohort.

Variables Controls

(n = 30)

Obese

patients

(n = 49)

P-value

Demographics

Male, n (%) 10 (33.3) 27 (55.1) 0.06

Age (years) 28.8 ± 7.1 32.6 ± 8.8 0.05

Height (cm) 164.4 ± 8.1 167.6 ± 9.4 0.130

Weight (kg) 53.2 ± 5.3 84 ± 11 <0.001*

BMI (kg/m2 ) 19.7 ± 1.1 29.9 ± 2.0 <0.001*

Hemodynamic variables

Heart rate (bpm) 73.4 ± 8.1 73.7 ± 9.6 0.860

SBP (mmHg) 104 ± 12 123.5 ± 9.9 <0.001*

DBP (mmHg) 70.4 ± 8.1 78.9 ± 6.5 <0.001*

Laboratory data

Fasting blood glucose (mmol/L) 4.7 ± 0.3 5.4 ± 0.7 <0.001*

Plasma triglycerides (mmol/L) 0.6 ± 0.2 1.9 ± 1.4 <0.001*

Total cholesterol (mmol/L) 3.9 ± 0.7 4.9 ± 1.1 <0.001*

HDL (mmol/L) 1.6 ± 0.3 1.3 ± 0.3 <0.001*

LDL (mmol/L) 2.1 ± 0.6 2.7 ± 0.8 <0.001*

Fat distribution

EAT (cm3) 20.6 ± 7.9 48 ± 14 <0.001*

Total fat (kg) 12.0 ± 3.0 29.3 ± 5.7 <0.001*

Android fat% 5.7 ± 1.1 9.8 ± 1.5 <0.001*

Gynoid fat% 18.4 ± 2.9 14.9 ± 2.0 <0.001*

Trunk fat% 44.9 ± 4.6 57.7 ± 4.7 <0.001*

Peripheral fat% 47.5 ± 5.1 38.5 ± 5.0

Upper extremities fat% 11.1 ± 0.2 10.5 ± 0.2 0.08

Lower extremities fat% 36.4 ± 4.9 28.0 ± 4.2 <0.001*

Visceral fat% 2.0 ± 1.4 4.9 ± 2.5 <0.001*

Waist circumference (cm) 72.1 ± 4.7 100 ± 11 <0.001*

Hip circumference (cm) 92.1 ± 3.9 107.3 ± 4.1 <0.001*

Waist-to-height ratio 0.78 ± 0.05 0.93 ± 0.09 <0.001*

Waist-to-hip ratio 0.4 ± 0.2 0.60 ± 0.06 <0.001*

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL,

high-density lipoprotein; LDL, low-density lipoprotein; EAT, epicardial adipose tissue.

*P < 0.05.

lower global longitudinal and circumferential PS and preserved
radial PS compared with the control group (Table 2).

Associations Between RV Strain
Parameters, Biventricular Geometries, and
Global Systolic Function in Obese
Individuals
Among obese subjects, the RVEF had a positive correlation
with the circumferential PS and longitudinal PS (r = 0.419
and r = 0.328); whereas RV size (RVEDV and RVESV), LV
size (LVEDV and LVESV), LV mass, LV average thickness,
and ISV average thickness showed weak-moderate negative
correlations with RV strain indices (r = −0.3 to −0.5). Among
them, LV average thickness was strongest for the longitudinal
PS (r = −0.504). In addition, LVEF was positively correlated
with RV longitudinal PS, PSSR, and PDSR (r = 0.3 to 0.4);

LV longitudinal, circumferential, and radial PS had positive
correlations with the RV strain parameters (r = 0.3 to 0.4)
(Table 3).

Association Between Regional Fat
Distributions and Cardiovascular Risk
Factors in Whole Population
BMI, EAT, android fat%, and trunk fat% were positively
correlated with fasting blood glucose, triglycerides, total
cholesterol, and LDL (r = 0.3 to 0.6), while were negatively
correlated with HDL (r=−0.4 to−0.6). In contrast, gynoid fat%
had negative associations with triglycerides, total cholesterol, and
LDL (−0.2 to −0.5), while had a positive association with HDL
(r= 0.484); peripheral fat% was negatively associated with fasting
blood glucose and total cholesterol (r = −0.236; r = −0.232)
(Table 4).

Association Between Adiposity and RV
Functional Parameter in Whole Population
Univariable analysis showed that BMI, android fat% and
trunk fat% were negatively associated with longitudinal PS,
longitudinal and circumferential strain rate (PSSR and PDSR)
(r = −0.3 to −0.5). Visceral fat% and EAT were negatively
associated with circumferential PDSR and longitudinal PS, PSSR
and PDSR (r = −0.3 to −0.4). In contrast, gynoid fat% and
peripheral fat% were positively associated with circumferential
PDSR, and longitudinal PS, PSSR and PDSR (r = 0.4 to 0.5);
gynoid fat% was positively associated with RVEF (r = 0.264)
(Table 5 and Figure 3).

Multivariable linear regression analysis demonstrated that
android fat% was independently associated with longitudinal PS
(β = −0.468, P < 0.001, model R2 = 0.219), longitudinal PDSR
(β = −0.487, P < 0.001, model R2 = 0.237), and circumferential
PSSR (β=−0.293, P= 0.009, model R2 = 0.086). Trunk fat%was
independently associated with longitudinal PSSR (β = −0.457;
P < 0.001, model R2 = 0.209). In addition, the strongest
correlates of circumferential PDSR were BMI and gynoid fat%
(β =−0.278, P= 0.016; β = 0.369, P= 0.002; model R2 = 0.324)
(Table 6).

Intra-observer and Inter-observer
Variability
The intra- and inter-observer variability for EAT quantifications
and strain parameters are summarized in Table 7. The ICCs for
intra- and inter-observer variability were 0.833 and 0.790 for
EAT, respectively. There were good intra- and inter-observer
agreements for the RV strain parameters (ICC= 0.794-0.921 and
0.773-0.920, respectively), and circumferential and longitudinal
strains had better repeatability than the strain rates.

DISCUSSION

In this study, we compared RV functional parameters in adults
with uncomplicated obesity with those in normal controls using
CMR and assessed associations between fat distributions and RV
function in whole population. The main findings were as follows:
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FIGURE 2 | Dot plots comparing the right ventricular strain parameters of patients with obesity and normal controls. (A) Longitudinal PS, (B) longitudinal PSSR,

(C) longitudinal PDSR, (D) circumferential PS, (E) circumferential PSSR, and (F) circumferential PDSR. PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak

diastolic strain rate.

(1) although the RVEF was within the normal range in both
groups, the subjects with obesity had impaired RV myocardial
contractility manifestied by lower longitudinal PS, longitudinal
PSSR, and circumferential and longitudinal PDSR; (2) Decreased
LV longitudinal and circumferential PS and preserved LVEF in
obese group compared with healthy group. (3) the individuals
with obesity had cardiac remodeling with greater RV size, LV
size, LV myocardial mass, and LV wall thickness compared with
controls; (4) the impaired subclinical RV function was associated
with cardiac remodeling; (5) BMI, as an index of overall obesity,
was independently associated with subclinical RV dysfunction.
In addition, central fat distribution indicators (android fat%
and trunk fat%) were negatively correlated with subclinical RV
function, whereas peripheral fat distribution indicator (gynoid
fat%) was positively correlated with it. Until now, no studies
have documented RV strain changes in obese adults with no
clinical signs or comorbidities using CMR tissue tracking and
the associations between DXA-related fat distributions and
RV function.

Obesity and RV Dysfunction
Our study revealed no statistical differences for RVEFs between
the two groups, indicating a lack of global right ventricular
systolic functional impairment. This result is consistent with that
of previous echocardiographic studies of obese adults without
known cardiovascular diseases (4, 7). Nevertheless, a CMR
study exhibited lower RVEF in obese group compared with the

control group, in which partial anticipants were diagnosed with
hypertension or diabetes (18). The difference between two CMR
studies may be attributed to the multi-ethnic participants that
were older in age (ranging from 45 to 84 years old) and had
obesity-related complications in previous study. Furthermore,
our study showed decreased RV longitudinal PS and strain rates
(PSSR and PDSR) of obese participants compared with those of
normal controls. These results are similar with those of several
other echocardiographic studies in obese adults (4, 5, 7, 8).
There are only subendocardial and subepicardial layers in the
RV myocardium. Longitudinal deformation is primarily caused
by the shortening of longitudinal myocardial fibers located in
the subendocardial layer (17). Obesity can alter myocardial
perfusion, resulting in myocardial ischemia, and meanwhile the
subendocardial layer is vulnerable to microvascular ischemia
(19). Moreover, our study also revealed impaired circumferential
RV mechanics, represented by decreased circumferential PDSR
in obese group compared with those in healthy group, which
has not been previously reported. Notably, the differences
in circumferential PS and PSSR between two groups were
not statistically significant, confirming that PDSR is more
sensitive to subclinical myocardial dysfunction than either PS
or PSSR in obesity. Circumferential strain largely reflects the
circumferentially oriented myofibers in the subepicardial layer
(20) which might indicate that the myocardial injury is not only
in the subendocardial layer but also in the subepicardial layer of
the RV myocardium in obese patients. In summary, subclinical
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TABLE 2 | Comparison of cardiac magnetic resonance parameters between two

groups.

Variables Controls

(n = 30)

Obese

patients

(n = 49)

P-value

RV global function

RVEF 51.2 ± 4.3 50.9 ± 4.6 0.087

RVEDV (ml) 136 ± 30 163 ± 38 <0.001*

RVESV (ml) 67 ± 18 81 ± 24 <0.001*

RV strain

Circumferential PS (%) −10.6 ± 3.0 −11.7 ± 3.0 0.117

Circumferential PSSR (1/s) −0.8 ± 0.2 −0.7 ± 0.2 0.067

Circumferential PDSR (1/s) 1.0 ± 0.3 0.7 ± 0.3 <0.001*

Longitudinal PS (%) −17.2 ± 2.4 −15.1 ± 2.8 0.001*

Longitudinal PSSR (1/s) −1 ± 0.4 −0.8 ± 0.2 <0.001*

Longitudinal PDSR (1/s) 1.1 ± 0.2 0.9 ± 0.2 <0.001*

LV global function

LVEF 60.9 ± 4.5 62.7 ± 4.6 0.091

LVEDV (ml) 120 ± 24 158 ± 28 <0.001*

LVESV (ml) 49.1 ± 9.6 60 ± 14 <0.001*

LV mass (g) 73 ± 16 91 ± 20 <0.001*

LV average thickness (mm) 5.6 ± 0.7 6.0 ± 0.8 0.016*

IVS average thickness (mm) 5.7 ± 0.4 6.7 ± 0.9 <0.001*

LV strain

Longitudinal PS (%) −15.8 ± 1.9 −13.5 ± 2.9 <0.001*

Circumferential PS (%) −20.7 ± 1.9 −19.6 ± 2.0 0.018*

Radial PS (%) 34.6 ± 5.5 32.1 ± 5.5 0.057

RV, right ventricular; EF, ejection fraction; EDV, end diastolic volume; ESV, end systolic

volume; PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak diastolic strain rate;

LV, left ventricular; IVS, interventricular septum.

*P < 0.05.

RV functional impairment occurred before decrease in RVEF in
obese participants.

In addition, obese participants had greater RV volumes
(RVESV and RVEDV) compared with those of the normal
subjects in our study. A echocardiographic study demonstrated
that RV volumes significantly increased only in the severely
obese group (BMI = 46.8 ± 11 kg/cm2), but not in mild-to-
moderate obesity (7). Another echocardiographic study showed
no changes in RV volumes in mild obese group (4). The results
indicate that CMR is more sensitive than echocardiography to
measure RV volume. In fact, echocardiography with limited
acoustic window, low spatial resolutions, and compromised
geometric assumptions, is inaccurate for RV geometric parameter
evaluations (21). Meanwhile, RV volumes were negatively
associated with RV strain and strain rates in our study. RV
dilation is caused by increased total blood volume and cardiac
output due to the high metabolic activity of obesity (22). RV
dilation can result in contractility impairments due to increased
ventricular wall stress (23).

Our study might find ventricular-ventricular interactions in
obese individuals. LV myocardial remodeling (greater chamber
size, wall thickness, and mass occurred) in obese adults. LV

TABLE 3 | Association (correlation coefficients) between cardiac geometry,

function, and RV strains in obese patients.

RV Circumferential RV Longitudinal

PS PSSR PDSR PS PSSR PDSR

RVEF 0.419** 0.252 0.154 0.328* 0.136 0.249

RVEDV −0.439** −0.395** −0.398** −0.365* −0.178 −0.319*

RVESV −0.472** −0.401** −0.362* −0.381** −0.190 −0.339*

LVEF 0.130 0.112 0.007 0.311* 0.323* 0.366**

LVEDV −0.315* −0.232 −0.313* −0.213 −0.295* −0.248

LVESV −0.319* −0.281 −0.251 −0.351* −0.397** −0.417**

LV mass −0.292* −0.223 −0.333* −0.412** −0.311* −0.185

LV thickness −0.362* −0.228 −0.369** −0.504** −0.266 −0.198

IVS thickness −0.295* −0.147 −0.289* −0.444** −0.201 −0.192

LV longitudinal PS 0.303* 0.326* 0.286* 0.186 0.270 0.257

LV circumferential PS 0.301* 0.357* 0.154 0.217 0.271 0.310*

LV radial PS 0.438** 0.440** 0.224 0.375** 0.423** 0.348*

Longitudinal/circumferential PS and PSSR are calculated as absolute values. RV, right

ventricular; EF, ejection fraction; EDV, end diastolic volume; ESV, end systolic volume; LV,

left ventricular; IVS, interventricular septum; PS, peak strain; PSSR, peak systolic strain

rate; PDSR, peak diastolic strain rate.

*P < 0.05 and **P < 0.01.

TABLE 4 | Association between regional fat distributions and cardiovascular risk

factors in whole population.

Fasting

blood

glucose

Plasma

triglycerides

Total

cholesterol

HDL LDL

BMI 0.445** 0.548** 0.403** −0.509** 0.296**

EAT 0.446** 0.457** 0.359** −0.387** 0.335**

Android fat% 0.415** 0.637** 0.429** −0.549** 0.336**

Gynoid fat% −0.209 −0.530** −0.305** 0.484** −0.227*

Trunk fat% 0.354** 0.644** 0.444** −0.554** 0.334**

Peripheral fat% −0.236* −0.204 −0.232* 0.076 −0.178

Visceral fat% 0.202 0.531** 0.372** −0.474** 0.301**

LDL, low-density lipoprotein; HDL, high-density lipoprotein; BMI, body mass index; EAT,

epicardial adipose tissue.
*P < 0.05 and *P < 0.01.

myocardial remodeling was negatively associated with the RV
strain parameters, which indicated that RV function could be
impacted by LV myocardial remodeling through ventricular-
ventricular interactions. Similar results were also reported
in a CMR study with uncomplicated obese children (12).
In an experimental study of dogs, the RV free wall was
electrically isolated and showed that despite stopping the
RV free wall pacing in diastole, more than half of the RV
systolic pressure and pulmonary flow were obtained in the
subsequent heart beat (24). Another study demonstrated that LV
shortening contributed to RV stroke exertion when the RV free
wall was replaced with a non-contractile patch (25). In other
words, LV contraction directly impacts RV function. In our study,
LV global longitudinal and circumferential PS decreased in obese
group compared with healthy group, indicating LV contraction
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TABLE 5 | Association between regional fat distributions and RVEF and strain parameters in whole population.

RVEF RV Circumferential RV Longitudinal

PS PSSR PDSR PS PSSR PDSR

BMI −0.045 0.118 −0.287* −0.478** −0.380** −0.428** −0.464**

EAT 0.040 0.235 −0.088 −0.335** −0.370** −0.327** −0.442**

Android fat% −0.090 0.041 −0.300** −0.485** −0.480** −0.476** −0.499**

Gynoid fat% 0.264* 0.060 0.174 0.509** 0.394** 0.367** 0.391**

Trunk fat% −0.130 0.037 −0.279* −0.450** −0.455** −0.455** −0.462**

Peripheral fat% 0.216 0.016 0.216 0.431** 0.451** 0.440** 0.446**

Visceral fat% −0.139 0.083 −0.044 −0.271* −0.362** −0.340** −0.372**

Longitudinal/circumferential PS and PSSR are calculated as absolute values. RV, right ventricular; EF, ejection fraction; PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak

diastolic strain rate; BMI, body mass index; EAT, epicardial adipose tissue.

*P < 0.05 and **P < 0.01.

FIGURE 3 | Correlations between fat distributions and right ventricular strain parameters. (A-C) Show negative correlations between android fat% and longitudinal

PS, longitudinal PDSR and circumferential PSSR; (D) shows a negative correlation between trunk fat% and longitudinal PSSR; (E) shows a positive correlation

between gynoid fat% and circumferential PDSR; (F) shows a negative correlation between body mass index and circumferential PDSR. PS, peak strain; PSSR, peak

systolic strain rate; PDSR, peak diastolic strain rate. Longitudinal PS and longitudinal/circumferential PSSR are showed as absolute values.

impairment. In general, our results showed that LV myocardial
remodeling and contraction impairment in obese patients were
responsible for RV subclinical dysfunction.

Regional Fat Distributions and RV
Dysfunction
Our study described the linear relationships between regional
fat distributions and RV functional assessments, and the
results showed that central fat distribution indicators
(android fat% and trunk fat%) had deleterious effects on
subclinical RV function, whereas peripheral fat distribution
indicator (gynoid fat%) had a positive effect on it. Notably,

our result showed that visceral fat and EAT volume were
negatively associated with RV strain in univariate analysis,
while no linear relationship with RV strain parameter in
multivariate analysis. Previous CMR studies on obesity
with no complications have reported that visceral fat, EAT
volume or area had linear relationships with LV subclinical
dysfunction in multivariate analysis (26, 27). However,
whether EAT could predict RV subclinical dysfunction in
these patients is still unclear. Additionally, different from
the previous studies, we added DXA-related regional fat
distributions (android fat, gynoid fat, trunk fat, peripheral
fat) into multivariate analysis and they may attenuate
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TABLE 6 | Multivariable linear regression analysis of association between regional fat distributions and RV strains in whole population.

Independent

variables

Factors in models R square Adjusted R

square

B β P-value

Longitudinal PS Android fat% 0.219 0.209 −0.549 −0.468 <0.001

Longitudinal PSSR Trunk fat% 0.209 0.199 −0.013 −0.457 <0.001

Longitudinal PDSR Android fat% 0.237 0.227 −0.048 −0.487 <0.001

Circumferential PSSR Android fat% 0.086 0.074 −0.022 −0.293 0.009

Circumferential PDSR BMI 0.324 0.306 −0.017 −0.278 0.016

Gynoid fat% 0.042 0.369 0.002

Longitudinal PS and longitudinal/circumferential PSSR are showed as absolute values. RV, right ventricular; PS, peak strain; PSSR, peak systolic strain rate; PDSR, peak diastolic strain

rate; BMI, body mass index.

TABLE 7 | Comparison of inter- and intra-observer variability among epicardial

adipose tissue and RV peak strain parameters.

Intra-observer (n = 20) Inter-observer (n = 20)

ICC 95% CI ICC 95% CI

EAT 0.883 0.705-0.957 0.790 0.577-0.923

Circumferential PS 0.921 0.864-0.955 0.920 0.862-0.976

Longitudinal PS 0.906 0.839-0.946 0.891 0.808-0.939

Circumferential PSSR 0.840 0.609-0.941 0.782 0.490-0.917

Longitudinal PSSR 0.794 0.513-0.922 0.773 0.468-0.914

Circumferential PDSR 0.851 0.627-0.945 0.819 0.555-0.933

Longitudinal PDSR 0.889 0.711-0.960 0.774 0.474-0.914

EAT, epicardial adipose tissue; PS, peak strain; PSSR, peak systolic strain rate; PDSR,

peak diastolic strain rate; ICC, intraclass correlation coefficient; CI, confidence interval.

All P < 0.001.

the effects of EAT and visceral fat on the RV function.
In other words, instead of EAT and visceral fat, trunk
fat, android fat or gynoid fat were better predictors of RV
subclinical function.

One explanation for the different effects of regional fat
distributions on RV function was dyslipidemia. Our study
revealed that central obesity parameters (android fat and trunk
fat) were positively correlated with triglycerides, total cholesterol,
and LDL, while were negatively correlated with HDL. The
result is consistent with previous researches which demonstrated
that central obesity parameters (android fat or trunk fat
distributions) had positive associations with triglycerides and
LDL levels, while they had negative associations with HDL
levels (28–30). In contrast, we found that gynoid fat distribution
had negative associations with triglycerides, total cholesterol,
and LDL, while had a positive association with HDL. A
previous study has also indicated that gynoid fat% had a
negative association with hypertriglyceridemia (31, 32). It is well
known that high HDL levels are considered as cardiovascular
protective factors, while triglycerides, cholesterol, and LDL
levels are considered cardiovascular risk factors. Obesity has
also been shown to be associated with increased oxidized
lipid levels (33), and oxidized LDL levels and oxidized lipid

derivatives were shown to cause myocardial dysfunction and
cardiomyopathy by inducing inflammation, apoptosis, and
endoplasmic reticulum stress (34). Anti-oxidation proteins, such
as platelet activating factor acetyl hydrolase and paraoxonase,
are primarily included in HDL and might mitigate LDL
oxidation and remove lipid oxidation products (35). Android
fat and trunk fat have also been shown to be important
risk factors for insulin resistance (30, 36). A previous study
reported that insulin resistance was only found in the women
with android obesity, rather than those with gynoid obesity
(37). A study on sucrose-fed rats suggested that insulin
resistance directly induced cardiac contractile impairments
(38), and a clinical study in obese female subjects showed
that its link with myocardial fatty acid metabolism could
reduce myocardial contractile function (39). Adipokines and
chronic inflammatory factors have also been implicated in
obesity. Trunk fat and android fat were inversely correlated
with adiponectin (40, 41), whereas correlated with increased
leptin (42, 43). The leg fat was positively correlated with
adiponectin (44). Adiponectin and leptin are proteins secreted
by adipose tissue. Adiponectin is associated with antidiabetic and
antiatherogenic properties, which mediates insulin-sensitizing
effects and reduce hyperlipidemia (45, 46). It is well known
that the leptin has beneficial effects on the inhibition of
food intake and insulin sensitivity enhancements. However,
high circulating leptin levels in obese individuals were mainly
caused by leptin resistance, which was associated with increased
insulin resistance (47, 48). The individuals with android obesity
had elevated necrosis factor alpha-a (TNF-α) (49). The trunk
fat% or android fat% was positively associated with TNF-
α, while lower-body fat% or gynoid fat% was negatively
associated with it (50). Leg fat was negatively associated with
inflammatory markers including interleukin-6 (IL-6), C-reactive
protein (CRP), and TNF-α (44, 51). CRP and TNF-α are
associated with insulin resistance and atherosclerosis (45, 46, 52).
IL-6 has been shown to have a critical role in aldosterone-
induced macrophage recruitment and infiltration of myocardial
macrophages, which play an important role in myocardial
fibrosis (53).

In addition, android fat was correlated with higher
blood pressure (29, 41), while the leg fat mass was
negatively correlated with SBP (44). A study observing
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the relationship between blood pressure and RV function
using STE demonstrated that subclinical RV function,
assessed by strain, was impaired by increased blood
pressure even though blood pressure was within the normal
range (54).

Limitations
There are several limitations in this study. First, this was
a cross-sectional study, and we could not determine
whether subtle RV contractile impairments cause heart
failure with obesity progression and whether these
changes can be reversed. Therefore, longitudinal studies
are needed to examine dynamic cardiac changes and
explore the underlying factors that reverse these changes.
Second, past studies have indicated that multiple key
inflammatory mediators and insulin resistance are consistently
associated with obesity and obesity-related comorbidities.
However, we did not examine inflammatory markers
and insulin resistence in this study. These laboratory
data should be measured and discussed in subsequent
studies to clarify the mechanisms of myocardial damage in
obese patients.

CONCLUSIONS

Extensive subclinical RV dysfunction is found in uncomplicated
obese adults. BMI, as an index of overall obesity, is independently
associated with subclinical RV dysfunction. In addition, central
obesity (android fat and trunk fat distributions) has a negative
effect on subclinical RV function, while peripheral obesity
(gynoid fat distribution) may have a positive effect on it.
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Left Heart Chamber Volumetric
Assessment by Automated
Three-Dimensional
Echocardiography in Heart
Transplant Recipients
Yiwei Zhang1,2†, Chun Wu1,2†, Wei Sun1,2†, Shuangshuang Zhu1,2†, Yanting Zhang1,2,
Yuji Xie1,2, Ye Zhu1,2, Zisang Zhang1,2, Yang Zhao1,2, Yuman Li1,2, Mingxing Xie1,2* and
Li Zhang1,2*

1 Department of Ultrasound Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 2 Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China

Background: Recently, a new automated software (Heart Model) was developed
to obtain three-dimensional (3D) left heart chamber volumes. The aim of this study
was to verify the feasibility and accuracy of the automated 3D echocardiographic
algorithm in heart transplant (HTx) patients. Conventional manual 3D transthoracic
echocardiographic (TTE) tracings and cardiac magnetic resonance (CMR) images were
used as a reference for comparison.

Methods: This study enrolled 103 healthy HTx patients prospectively. In protocol 1,
left ventricular end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), left atrial
max volume (LAVmax), LA minimum volume (LAVmin) and LV ejection fraction (LVEF)
were obtained using the automated 3D echocardiography (3DE) and compared with
corresponding values obtained through the manual 3DE. In protocol 2, 28 patients’
automated 3DE measurements were compared with CMR reference values. The
impacts of contour edit and surgical technique were also tested.

Results: Heart Model was feasible in 97.1% of the data sets. In protocol 1, there
was strong correlation between 3DE and manual 3DE for all the parameters (r = 0.77
to 0.96, p<0.01). Compared to values obtained through manual measurements, LV
volumes and LVEF were overestimated by the automated algorithm and LA volumes
were underestimated. All the biases were small except for that of LAVmin. After contour
adjustment, the biases reduced and all the limits of agreement were clinically acceptable.
In protocol 2, the correlations for LV and LA volumes were strong between automated
3DE with contour edit and CMR (r = 0.74 to 0.93, p<0.01) but correlation for LVEF
remained moderate (r = 0.65, p < 0.01). Automated 3DE overestimated LV volumes but
underestimated LVEF and LA volumes compared with CMR. The limits of agreement
were clinically acceptable only for LVEDV and LAVmax.
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Conclusion: Simultaneous quantification of left heart volumes and LVEF with the
automated Heart Model program is rapid, feasible and to a great degree it is accurate
in HTx recipients. Nevertheless, only LVEDV and LAVmax measured by automated
3DE with contour edit seem applicable for clinical practice when compared with CMR.
Automated 3DE for HTx recipients is a worthy attempt, though further verification and
optimization are needed.

Keywords: 3D echocardiography, heart transplant, heart model, left atrial volume, left ventricular function, left
ventricular volume

INTRODUCTION

Orthotopic heart transplantation (HTx) is one of the most
effective treatments for patients with end-stage heart disease.
With improvement in operative techniques and postoperative
surveillance and therapy, the median survival after adult
heart transplants has increased to 12.5 years (1–4). Previous
studies have shown that the volume of left ventricular (LV)
and left atrial(LA) are crucially related to overall left heart
function (5–7), which is of great importance for the assessment
of transplanted heart. Echocardiography has become post-
transplantation annual routine follow-up for its convenience
and accuracy and usually used for the assessment of heart
volumes. 3-dimensional (3D) transthoracic echocardiographic
(TTE) measurements of cardiac chamber volumes are proved
superior to 2-dimensional (2D) techniques in accuracy and
reproducibility, due to avoidance of geometric assumptions and
foreshortened views (5–7). However, widespread use of 3D
TTE for LA and LV volume assessments has not become a
clinical reality, as time and training are required to obtain
accurate and reproducible 3DE volumetric measurements (5,
8, 9).

Heart Model is a novel automated 3DE software with
the ability of simultaneous quantification of heart chamber
volumes and LV ejection fraction (LVEF) within few
seconds. Previous studies have shown the feasibility and
accuracy of Heart Model in measuring left heart volumes
and LVEF in multiple cohorts (10–12). Nevertheless, this
automated adaptive analytics algorithm relies on the 3DE
database comprised of morphologies derived from a ‘training’
population, which may not adequately encompass the HTx
recipients cohort, whose heart geometry is usually grossly
distorted (13).

Thus, the aim of this study was to explore the accuracy
and reproducibility of the Heart Model program for automated
measurement of LV, LA volumes and LVEF from 3DE datasets
in the HTx recipients, using expert manual 3DE and cardiac
magnetic resonance (CMR) as references.

MATERIALS AND METHODS

Study Population
A total of 103 HTx patients at Union Hospital in Wuhan, China,
were prospectively enrolled in this study between January 2018
and January 2020.

In Protocol 1, we prospectively included 103 HTx patients
referred to the echocardiography laboratory for their routine
follow-up examination. All of them presented as clinically
well and underwent 2D and 3D TTE. 3 of the 103 patients
were excluded for poor 3D-echocardiographic image quality
unsuitable for automated analysis. LV end-diastolic volume
(LVEDV), LV end-systolic volume (LVESV), LVEF, LA max
volume (LAV max) and LA minimum volume (LAV min) derived
from automated 3DE were compared with the manual 3DE and
2D biplane Simpson method measurements.

In Protocol 2, 28 of the 103 HTx recipients who agreed
to undergo CMR examination within the following 24 h after
echocardiographic examination were enrolled. The automated
3D echocardiographic measurements of LVEDV, LVESV, LVEF,
and LAV were compared with the CMR values. 28 participants
were divided into biatrial group and bicaval group according to
the surgical technique and the correlation coefficients between
automated 3DE measurements and CMR measurements of the
two groups were compared.

Weight, height, heart rate, primary diagnosis, surgical
technique and time since HTx of every patients were recorded.
The study was approved by the Ethics Committee of Tongji
Medical College, Huazhong University of Science and
Technology. Written informed consent of all participants
have been obtained.

Echocardiographic Image Acquisition
All echocardiographic examinations were performed by an
experienced echocardiographic doctor using EPIQ 7C (Philips
Medical Systems) and an X5-1 matrix probe (Philips Medical
Systems) with the patient breath-holding. 2D echocardiographic
(2DE) images were acquired from the parasternal short-axis
view at the apical four-, three-, and two- chamber views.
Foreshortening of the left ventricle and left atrium has been
avoided. 3D echocardiographic acquisitions were recorded from
the four-chamber apical view in heart model mode, and were
gathered over four cardiac cycles, during a breath-hold lasting
for a few seconds (14). The volume rate was adjusted above
18 Hz when 3D echocardiographic acquisition was performed.
Imaging settings were optimized for visualizing endocardium
before every acquisition.

Two-Dimensional Echocardiography
Analysis
LV end-diastolic volume (LVEDV), LV end-systolic volume
(LVESV), LVEF, LA max volume (LAV max) and LA minimum
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volume (LAV min) were calculated using the biplane Simpson
method, by means of a commercially available software
(QLAB-2DQ, Philips Healthcare). The papillary muscles were
included in the LV cavity when tracking the endocardial contours.

Manual (Semiautomated)
Three-Dimensional Echocardiography
Analysis
For manual 3D echocardiographic analysis, a semi-automatically
derived 3D echocardiographic method was used. Operators
used commercially available software (QLAB-3DQadv, Philips
Healthcare) to measure LVEDV, LVESV, LVEF, LAVmax and
LAVmin. Firstly, the multiplanar views were adjusted to
optimize the horizontal and vertical lines in the middle
of LV chamber. Then the operator placed reference points
at the end-diastolic and end-systolic frames: two points to
identify the mitral valve annulus and the apex in four-
and two- chamber view. For LA, this included two points
to identify the mitral valve annulus in each of the two
apical views, and one point to identify the center of the
posterior wall in either view. Finally, the software automatically
identified LV and LA endocardial border and created a
3D model of left cardiac chamber to calculate LV, LA
volumes and LVEF.

Automated Three-Dimensional
Echocardiography Analysis
3D echocardiographic acquisitions were also analyzed by the
HeartModel software. This algorithm is able to automatically
detect LV and LA endocardial borders at end-diastole and
end-systole and measure LVEDV, LVESV, LVEF, LAVmax
and LAVmin (Figure 1). Observers can freely move the
adjustable slider to optimize cardiac chamber border
identification according to their preference, including global and
regional editing.

Cardiac Magnetic Resonance Imaging
Cardiac magnetic resonance was performed in 28 of 103
patients within 24 hours of the echocardiography by 1.5-Tesla
system (MAGNETOM Aera, Siemens Healthineers, Erlangen,
Germany). In each patient, the long axis of the heart was
identified by retrospective electrocardiogram-gated localizing
spin-echo sequences. Steady state free-precession dynamic
gradient echo cine loops of the left ventricle and left atrium were
then acquired during 10- to 15-second breath-holds. The cine
image parameters in our study were obtained as follows: slice
thickness of 8 mm, matrix of 205 × 256 pixels, and flip angle
of 80◦.

Cardiac Magnetic Resonance Analysis
Cardiac magnetic resonance images were analyzed using
commercial software (Argus, Siemens Healthineers). Left
cardiac volumetric and functional parameters were derived
by manual delineation of the endocardial contours on
the continuous LV and LA short-axis cine images at
the end-diastolic frame and end-systolic frame. Papillary

muscles and trabeculations were included in the LV cavity,
while pulmonary veins and LA appendage were excluded
from the LA cavity.

Reproducibility
Of the 100 participants in protocol 1, 20 participants were
selected randomly for the evaluation of the reproducibility of
manual 3DE and automated 3DE. For test-retest variability,
the same observer analyzed 3D echocardiographic data sets of
each patient. For intraobserver variability, the same observer
analyzed the 3D echocardiographic data set 2 weeks later after
the first analysis, blinded to the previous measurements. For
interobserver variability, two blinded and independent observers
analyzed the 3D echocardiographic data set.

Statistical Analysis
Continuous variables were presented as mean ± SD. and
nominal variables as percentages. 2D and 3D echocardiographic
images were analyzed offline by a single investigator who
was blind to the values of echocardiographic and CMR
measurements. CMR measurements were performed by an
observer experienced in CMR analysis, who was not allowed
to view the echocardiographic results. Pearson’s or Spearman’s
correlation coefficient and Bland-Altman analysis were used
to test the correlation and agreement between two sets of
measurements by calculating the bias (mean difference) and the
limits of agreement (LOA; 1.96 SDs around the mean difference).
The descriptions of the strength of correlations were based on the
following standard: r value between 0.7 and 0.9 was considered
strong correlation; r value between 0.5 and 0.69 was considered
moderate correlation; and r value between 0.3 and 0.5 was
considered weak correlation. For LV and LA volumes, the relative
bias and the percentage error of the LOA were also calculated.
The reference method in protocol 1 and protocol 2 was manual
3DE and CMR, respectively. The LOA is used to estimate the
precision or random error of the measurements around the
bias. A percentage error of the LOA below 30% was considered
clinically acceptable.

For 3D echocardiographic measurements, intraobserver,
and interobserver variability was examined and expressed as
coefficient of variation (the absolute difference between two
measurements in percentage of their mean in each patient and
then averaged over the entire study group). Comparisons of
correlation coefficients were performed on MedCalc version
18.2.1 (MedCalc Software, Ostend, Belgium). All statistical
analyses were performed on SPSS version 22.0 (Statistical
Package for the Social Sciences, Chicago, Illinois), GraphPad
Prism version 8.0.1 and MedCalc version 18.2.1 (MedCalc
Software, Ostend, Belgium). A P-value <0.05 was considered
statistically significant.

RESULTS

Study Population
103 HTx recipients (80 male, 23 female) were included in
protocol 1. 3 of them were excluded from analysis because
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FIGURE 1 | Representative case of automated 3D echocardiographic analysis for left heart chamber quantification. Left heart chambers’ endocardial borders were
automatically detected by the Heart Model software at end-diastole (ED) and end-systole (ES) in apical four-, three-, and two chamber sections.

of failure to be analyzed by automated 3D echocardiographic
system, with the remaining 100 participants included in the
final analysis. The feasibility of automated 3D echocardiographic
system in protocol 1 was 97.1%, and feasibility of 2D
echocardiographic analysis and manual 3D echocardiographic
analysis were both 100.0%. 28 HTx recipients (20 male, 8 female)
were enrolled in protocol 2. The feasibility of both automated
3D echocardiographic system and CMR in protocol 2 were
100.0%. The baseline clinical characteristics of all participants,
including those in protocol 1 and protocol 2, are summarized
in Table 1. The mean values of LVEDV, LVESV, LVEF, LAVmax
and LAVmin measured by different methods are presented in
Table 2.

Automated Three-Dimensional
Echocardiography Versus Manual
Three-Dimensional Echocardiography
There were strong correlations for LVEDV, LVESV, LAVmax and
LAVmin between automated 3DE and manual 3DE (r = 0.87,
r = 0.84, r = 0.90 and r = 0.83, respectively, P < 0.01 for all). The
automated 3DE measurements of LVEF correlated moderately
with the reference value measured by manual 3DE (r = 0.79,
P < 0.01). After contour edit, the correlations for volumes and
LVEF were all excellent (r = 0.95 for LVEDV, r = 0.92 for LVESV,
r = 0.77 for LVEF, r = 0.96 for LAVmax, and r = 0.94 for LAVmin,
P < 0.01 for all). Results are presented in Table 3.

Compared with the manual 3DE reference values, LVEDV,
LVESV, LVEF, and LAVmax, without contour edit, were
overestimated by the automated 3DE, with tolerable biases
(10.1 mL for LVEDV, 1.3 ml for LVESV, 2.9% for LVEF, and
0.0 ml for LAVmax) between the two methods (Figure 2).
Automated 3DE without contour adjustment underestimated

TABLE 1 | Clinical characteristics of the study subjects.

Variable Protocol 1 Protocol 2

Number of patients 100 28

Gender, male 79 (79) 20 (71)

Age, years 47.3 ± 12.7 45.6 ± 13.5

BSA, m2 1.69 ± 0.17 1.64 ± 0.17

Heart rate, bpm 87 ± 9 88 ± 7

Primary diagnosis

DCM 56 (56) 13 (46)

CAD 15 (15) 5 (18)

VHD 8 (8) 1 (4)

Others 21 (21) 9 (32)

Surgical technique

Biatrial 39 (39) 12 (43)

Bicaval 61 (61) 16 (57)

Time since transplantation, months 22.2 ± 24.1 19.3 ± 28.1

%HM feasibility 97.1 100.0

DCM, dilated cardiomyopathy; CAD, coronary artery disease; VHD, valvular heart
disease; HM, automated 3DE by Heart Model.

LAVmin compared with manual 3DE, with small bias
(−5.3 ml). When there was no contour adjustment, the
automated 3DE measurements of LVEDV were on average
12.1% higher than values derived by manual 3DE, while
automated 3DE-derived LAVmax was on average 0.7% lower
than values obtained by manual 3DE (relative biases). The
LOA for both were clinically acceptable (percentage error
of the LOA<30%), while that of LVESV and LAVmin were
not (Table 3).

After contour edit, the biases and LOA for LVEDV,
LVESV, LVEF and LAVmin between automated 3DE and
manual 3DE were reduced (Figure 3). The automated 3DE
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TABLE 2 | Mean of LV volumes, LVEF and LA volumes obtained by the different methods.

Method n LVEDV (mL) LVESV (mL) LVEF (%) LAVmax (mL) LAVmin (mL)

Protocol 1

2DE 103 86.9 ± 20.8 34.3 ± 9.4 60.5 ± 5.1 88.0 ± 24.3 53.3 ± 19.6

Automated 3DE

Without contour edit 100 100.1 ± 23.3 37.4 ± 11.6 62.9 ± 5.8 84.0 ± 28.6 51.7 ± 23.1

With contour edit 100 94.9 ± 21.9 37.0 ± 10.4 61.0 ± 5.1 85.6 ± 25.0 56.5 ± 20.8

Manual 3DE 103 90.0 ± 21.2 36.1 ± 10.2 60.0 ± 5.0 83.9 ± 23.6 57.0 ± 20.0

Protocol 2

Automated 3DE

Without contour edit 28 97.8 ± 23.6 39.0 ± 13.1 60.8 ± 5.6 75.3 ± 23.8 46.1 ± 15.3

With contour edit 28 88.4 ± 20.8 35.5 ± 11.8 60.0 ± 6.2 84.5 ± 22.6 57.2 ± 17.4

CMR 28 85.2 ± 21.0 33.9 ± 12.0 60.8 ± 6.3 89.3 ± 23.6 76.7 ± 22.4

TABLE 3 | Comparison of LV volumes, LVEF, and LA volumes measured by 2DE, automated 3DE against manual 3D echocardiographic measurements.

Method Parameter r P Bias ± LOA Relative bias (%) Percentage error (%)

2DE

LVEDV (mL) 0.88 <0.01 −3.1 ± 17.8 −3.0 20.1

LVESV (mL) 0.82 <0.01 −1.9 ± 10.7 3.9 30.4

LVEF (%) 0.67 <0.01 0.5 ± 7.9 − –

LAVmax (mL) 0.91 <0.01 4.0 ± 19.8 5.5 23.0

LAVmin (mL) 0.88 <0.01 −3.8 ± 18.9 5.1 34.3

Automated 3DE

Without contour edit LVEDV (mL) 0.87 <0.01 10.1 ± 21.9 12.1 23.0

LVESV (mL) 0.84 <0.01 1.3 ± 11.1 3.9 30.2

LVEF (%) 0.79 <0.01 2.9 ± 6.5 − –

LAVmax (mL) 0.90 <0.01 0.0 ± 24.0 0.7 28.6

LAVmin (mL) 0.83 <0.01 −5.3 ± 24.6 −9.8 45.3

With contour edit LVEDV (mL) 0.95* <0.01 4.8 ± 11.7 5.7 12.7

LVESV (mL) 0.92* <0.01 0.9 ± 7.2 3.1 19.7

LVEF (%) 0.77 <0.01 1.0 ± 5.6 − –

LAVmax (mL) 0.96* <0.01 1.7 ± 14.2 1.9 16.7

LAVmin (mL) 0.94* <0.01 −0.6 ± 14.1 −0.7 24.8

Relative bias = (parameter method-parametermanual 3DE )/parameter manual 3DE . Percentage error = LOA/mean value of parameter measured by studied method and manual
3DE. *, p < 0.05 compared with 2DE.

measurements of LV volumes and LVEF were overestimated
compared with those of manual 3DE, with small biases
(biases, 4.8 ml for LVEDV, 0.9 ml for LVESV, and 1.0%
for LVEF; relative bias, 5.7% for LVEDV, 3.1% for LVESV
of manual 3DE values). LAVmin obtained by automated
3DE was underestimated, with negligible bias (bias, −0.6 ml,
relative bias, −0.7% of manual 3D echocardiographic values).
However, bias for LAVmax compared with manual 3DE
increased when contour edit was performed. LAVmax obtained
by automated 3DE with contour adjustment was slightly
overestimated with small bias (1.7 ml). All the LOA were
clinically acceptable (Table 3).

Two-Dimensional Echocardiography
Versus Manual Three-Dimensional
Echocardiography
Detailed results are presented in Table 3. The correlations for
LV, LA volumes between 2DE and manual 3DE were both

strong with no significant difference between automated
3DE measurements and manual 3DE ones (P > 0.05).
However, when contour adjustments were performed,
the correlations for left cardiac chamber volumes between
automated 3DE and manual 3DE were significantly stronger
than those between 2DE and manual 3DE. 2DE measured
LVEF correlated moderately with values derived from manual
3DE, while the correlations for LVEF between automated
3DE and manual 3DE, with or without contour adjustment,
were strong. There was no significant difference between
those correlations.

Compared with manual 3DE, 2DE underestimated LVEDV,
LVESV, and LAVmin but overestimated LVEF and LAVmax. In
general, the biases in measurements of LVESV, LAVmax were
smaller for automated 3DE than 2DE. For automated 3DE with
contour edit, the biases in measurements of all parameters were
smaller than 2DE, except for LVEDV and LVEF. The LOA
of automated 3DE with contour edit were tighter than those
derived from 2DE.
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FIGURE 2 | Comparison between automated 3DE without contour adjustment and manual 3DE of left heart volumes and ejection fraction: correlation and
Bland-Altman analysis. HM: Automated 3DE by Heart Model without contour adjustment.
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FIGURE 3 | Comparison between automated 3DE with contour adjustment and manual 3DE of left heart volumes and ejection fraction: correlation and
Bland-Altman analysis. HMadj: Automated 3DE by Heart Model with contour adjustment.
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TABLE 4 | Comparison of LV volumes, LVEF, and LAV measured by automated 3DE against CMR measurments.

Method Parameter r P Bias ± LOA Relative bias (%) Percentage error (%)

Automated 3DE

Without contour edit LVEDV (mL) 0.68 <0.01 12.6 ± 30.4 17.0 33.2

LVESV (mL) 0.63 <0.01 5.1 ± 18.5 19.9 54.7

LVEF (%) 0.62 <0.01 0.0 ± 10.2 − –

LAVmax (mL) 0.77 <0.01 −14.1 ± 31.6 −15.4 38.4

LAVmin (mL) 0.64 <0.01 −30.6 ± 33.9 −38.9 55.1

With contour edit LVEDV (mL) 0.92* <0.01 3.2 ± 13.7 4.5 15.8

LVESV (mL) 0.74 <0.01 1.6 ± 12.7 8.0 36.7

LVEF (%) 0.65 <0.01 −0.8 ± 10.2 − –

LAVmax (mL) 0.93* <0.01 −4.8 ± 17.0 −5.0 19.5

LAVmin (mL) 0.79 <0.01 −19.5 ± 27.1 −24.7 40.5

Relative bias = (parameter method-parameter CMR)/parameter CMR. Percentage error = LOA/mean value of parameter measured by studied method and CMR. *p < 0.05
compared with without contour edit group.

Automated Three-Dimensional
Echocardiography Versus Cardiac
Magnetic Resonance
Table 4 represents the details of the comparisons between
the automated 3DE echocardiographic measurements and the
corresponding values obtained by CMR. There was strong
correlation for LAVmax and modest correlations for LVEDV,
LVESV, LVEF, and LAVmin between automated 3DE without
contour edit and CMR (r = 0.77, r = 0.68, r = 0.63, r = 0.62,
and r = 0.64, respectively, P < 0.01 for all). The correlations
for LV and LA volumes were strong between automated 3DE
with contour edit and CMR (r = 0.92 for LVEDV, r = 0.74 for
LVESV, r = 0.93 for LAVmax, r = 0.79 for LAVmin, P < 0.01
for all), while correlation for LVEF remained moderate (r = 0.65,
P < 0.01).

The LVEDV and LVESV derived by automated 3DE
without contour edit were overestimated compared with
CMR reference values, with small bias. The LAVmax and
LAVmin obtained by automated 3DE without contour edit were
underestimated with big bias (Figure 4). The LOA were wide for
all (Table 4).

With contour adjustment of automated 3DE values, the
bias for LV and LA volumes compared with CMR were
reduced (Figure 5). Automated 3DE with contour edit
slightly overestimated LVEDV and LVESV (biases, 3.2 ml
for LVEDV, 1.6 ml for LVESV; relative bias, 4.5% for LVEDV,
8.0% for LVESV of CMR values). The LAVmax and LAVmin
were underestimated by automated 3DE with contour edit
(biases, −4.8 ml for LAVmax, −19.5 ml for LAVmin;
relative bias, −5.0% for LAVmax, −24.7% for LAVmin of
CMR values). The LOA for LV and LA volumes were also
reduced but were clinically acceptable only for LVEDV and
LAVmax (Table 4).

When the impact of surgical technique was assessed,
the biatrial group’s correlations of LVESV and LVEF
derived from automated 3DE with CMR reference
values were stronger than those of bicaval group
with contour edit, and the difference was statistically
significant (Table 5).

Reproducibility of Three-Dimensional
Echocardiographic Measurements
Intraobserver and interobserver (with or without contour
edit) variability for 3D echocardiographic measurements
of LV, LA volumes and LVEF is summarized in
Table 6.

Intraobserver and interobserver reproducibility of automated
3DE was high without contour edit (variability value <10%).
When contour adjustment was performed, the variability
values increased, however, those of LVEDV and LVEF
remained low. As for manual 3DE, variability values of
intraobserver and interobserver were higher than that of
automated 3DE, no matter whether the contour adjustment was
performed or not.

DISCUSSION

To the best of our knowledge, this is the first study to
assess the automated 3D echocardiographic algorithm
(Heart Model) for quantification of left cardiac chamber
volumes and LVEF in HTx recipients. Previous studies have
demonstrated feasibility and reproducibility of automated
3DE in measuring left heart chamber and its function. In
these studies, automated 3DE measurements have shown
strong correlations with values derived from 2DE, manual
3DE, and CMR (11, 15, 16). These results were widely verified
in adults, children, healthy population, and patients with
specific diseases, including mitral regurgitation or atrial
fibrillation (10, 17, 18). However, a transplanted heart is
different from a normal one in cardiac anatomy, including
its special location and structure after the orthotopic
transplantation. Therefore, we tested the feasibility and
accuracy of the automated 3DE technique, HeartModel,
in HTx recipients.

Our major findings are as follows: in HTx recipients, (1)
the correlations for LV and LA volumes between automated
3DE and manual 3DE were strong, while the correlation
of LVEF between the two was moderate. After contour
adjustment, all the values derived from automated 3DE
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FIGURE 4 | Comparison between automated 3DE without contour adjustment and CMR of left heart volumes and ejection fraction: correlation and Bland-Altman
analysis. HM: Automated 3DE by Heart Model without contour adjustment.
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FIGURE 5 | Comparison between automated 3DE with contour adjustment and CMR of left heart volumes and ejection fraction: correlation and Bland-Altman
analysis. HMadj: Automated 3DE by Heart Model with contour adjustment.
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TABLE 5 | Effect of surgical technique on measurements from the automated 3DE compared with CMR measurements.

n Automated 3DE CMR r Bias ± LOA

LVEDV (mL)

Without contour edit

Biatrial 12 94.5 ± 19.1 85.9 ± 15.5 0.75 −8.6 ± 24.9

Bicaval 16 100.3 ± 26.9 84.7 ± 24.8 0.78 −15.6 ± 33.7

With contour edit

Biatrial 12 86.6 ± 15.4 85.9 ± 15.5 0.98 −0.7 ± 6.0

Bicaval 16 89.8 ± 24.5 84.7 ± 24.8 0.94 −5.1 ± 16.6

LVESV (mL)

Without contour edit

Biatrial 12 37.3 ± 11.2 33.7 ± 11.2 0.82 −3.6 ± 13.6

Bicaval 16 40.3 ± 14.6 34.0 ± 12.9 0.68 −6.2 ± 21.7

With contour edit

Biatrial 12 34.3 ± 11.1 33.7 ± 11.2 0.95*
−0.6 ± 6.4

Bicaval 16 36.4 ± 12.6 34.0 ± 12.9 0.66 −2.4 ± 16.0

LVEF (%)

Without contour edit

Biatrial 12 61.3 ± 5.6 61.2 ± 7.8 0.74 −0.1 ± 10.3

Bicaval 16 60.5 ± 5.7 60.5 ± 5.1 0.52 −0.0 ± 10.4

With contour edit

Biatrial 12 60.5 ± 7.1 61.2 ± 7.8 0.93* 0.7 ± 5.6

Bicaval 16 59.6 ± 5.7 60.5 ± 5.1 0.28 0.9 ± 12.8

LAVmax (mL)

Without contour edit

Biatrial 12 89.1 ± 22.5 99.7 ± 19.6 0.82 10.6 ± 25.1

Bicaval 16 64.9 ± 19.4 81.5 ± 23.9 0.67 16.6 ± 35.6

With contour edit

Biatrial 12 96.5 ± 20.2 99.7 ± 19.6 0.97 3.2 ± 9.6

Bicaval 16 75.6 ± 20.5 81.5 ± 23.9 0.90 5.9 ± 20.9

LAVmin (mL)

Without contour edit

Biatrial 12 49.1 ± 12.9 85.8 ± 19.2 0.60 36.7 ± 25.6

Bicaval 16 43.9 ± 16.9 69.9 ± 22.7 0.64 26.0 ± 34.6

With contour edit

Biatrial 12 60.0 ± 13.7 85.8 ± 19.2 0.72 25.8 ± 25.9

Bicaval 16 55.1 ± 19.9 69.9 ± 22.7 0.83 14.78 ± 24.9

*p < 0.05 compared with bicaval group.

TABLE 6 | Test-retest, intraobserver, interobserver variability (coefficients of variation) for the automated and manual 3D echocardiographic masurements of LV volumes,
LVEF and LA volumes.

Automated 3DE Manual 3DE

Test-retest without
contour edit (%)

Test-retest with
contour edit (%)

Interobserver without
contour edit (%)

Interobserver with
contour edit (%)

Intraobserver (%) Interobserver (%)

LVEDV 4.0 ± 5.3 9.4 ± 7.9 4.9 ± 5.6 8.0 ± 8.9 10.9 ± 11.3 10.3 ± 13.6

LVESV 8.5 ± 11.3 12.7 ± 8.8 6.2 ± 9.0 11.7 ± 10.4 13.9 ± 14.5 17.1 ± 13.9

LVEF 3.6 ± 5.7 5.6 ± 4.6 4.1 ± 3.9 5.6 ± 4.5 8.4 ± 7.0 7.9 ± 5.6

LAVmax 8.3 ± 10.1 11.5 ± 9.4 8.3 ± 9.9 9.8 ± 10.0 13.1 ± 12.0 14.8 ± 13.7

LAVmin 7.1 ± 9.0 13.5 ± 12.5 6.4 ± 8.8 15.8 ± 10.2 13.4 ± 11.6 15.6 ± 9.8

showed strong correlations with manual 3DE reference
values; (2) All the automated 3DE measurements had
stronger correlations with manual 3DE reference values

than 2DE-derived values except for LVEF; (3) LV volumes,
LAVmin, and LVEF derived from automated 3DE were
moderately correlated with CMR reference values, but
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the automated 3DE measurements of LAVmax correlated
strongly with CMR reference values. When contour
edit was performed, all the correlations became strong
except for LVEF; and (4) surgical techniques had no
impact on the correlations for most left cardiac chamber
volumes between automated 3DE and CMR whether or
not contour edit was performed. Only the biatrial group’s
correlations for LVESV and LVEF between automated
3DE and CMR were stronger than those of bicaval group
after contour edit.

In our study, automated 3DE presented a high degree of
feasibility in HTx recipients, which was in line with previous
studies performed in unselected patients. Although the position
of the transplanted heart is more or less different from that of
the normal heart, HeartModel can overcome this barrier in its
automatic analysis.

However, the correlations between automated 3DE
measurements and manual 3DE measurements for left heart
chamber and LVEF in our cohort were lower than those obtained
in previous studies. Contour adjustment can improve the
correlations but it is hard to reach the level found in patients
without HTx. Nevertheless, the correlations for left cardiac
chamber volumes between automated 3DE and manual 3DE
were stronger than those between 2DE and manual 3DE.
3DE is independent of geometric assumptions, which makes
it more reliable than 2DE, and this can explain the stronger
correlations between automated 3DE measurements and
manual 3DE ones.

When automated 3DE was compared with the gold standard,
CMR, only the accuracy of automated 3DE measurements
of LVEDV and LAVmax was similar to that of previous
studies after the contour edit (11). We believe this poor
precision could be explained by the workflow of Heart Model
and the distorted anatomy of transplanted hearts. The first
step of Heart Model’s automated analysis is knowledge-based
identification, which is trained to use approximately 1000
echo images from a wide variety of heart shapes and sizes.
The software screens the cardiac chamber shapes, including
the overall morphological size, shape, curvature, and volume
of the 3DE data, to select the best “matching” shapes (11).
However, a transplanted heart was made up of the donor’s
and part of the recipient heart. It is hard to find an
appropriate “matching” shape in the database. The moderate
precision of automated 3DE for LVESV measurements can
explain the moderate correlation for LVEF between automated
3DE and CMR. This was also reported in some previous
publications (15, 17). In our cohort, LA volumes were
underestimated by automated 3DE, which was consistent
with previous studies (11). Contrary to what was found in
previous publications (11, 19), automated 3DE overestimated
LV volumes compared with CMR. As is mentioned above,
the automated analysis software will select a best “matching”
shape for the analyzed heart in its database, which is made
up of various heart shapes. The surgical techniques used in
our study entailed anastomoses at the mid-level of the left
and right atria or at the base of the left atrial appendage
(13), which makes the atria of transplanted heart bigger

than the normal one. To match the big atria, the software
had to choose a bigger shape than the best matching for
ventricle. The biatrial group demonstrated stronger correlations
for LVESV and LVEF than bicaval group after contour edit.
Bicaval anastomosis technique results in varying degrees of
enlargement of the two atriums, and thus the transplanted
heart of the bicaval group was more twisty than the biatrial
group. Therefore, it is more difficult for the software to
match a suitable model and make appropriate adaption for
the heart to be analyzed. We believe the difference between
correlations for LVEF can be explained by the different
correlations for LVESV. However, it cannot explain the
similarity of the correlations for LVEDV and LA volumes
between the two groups.

Our study demonstrated intraobserver and interobserver
variability for LV and LA indices’ manual 3D echocardiographic
measurements, which was consist with previous studies. For
automated 3DE in patients without HTx, test-retest with or
without contour edit, intraobserver, and interobserver variability
values were similar to or slightly higher than those in previous
studies (10–12, 19–21).

LIMITATIONS

First, this was a single-center study performed in clinically
well HTx recipients, and the sample size was small. Though
the number of patients was enough in comparisons with the
reference techniques to reach statistical significance, multi-
centered studies with larger sample size are desirable to
further validate the findings. In addition, the HeartModel
algorithm we used was based on heart contours of patients
without heart transplantation, which would inevitably hamper
the accuracy of our results. We hope the database of the
algorithm could add a 3DE data set of cardiac chamber images
from a large cohort of HTx recipients, which could improve
its feasibility and accuracy. Furthermore, lower spatial and
temporal resolution in 3DE may explain in part some of
the discrepancies in our results. But the mean 3DE volume
rate which was 20 Hz is acceptable for the analysis of
chamber morphologies.

CONCLUSION

In HTx recipients, automated 3DE is feasible to a great
degree. It is both reproducible and faster can be achieved
than manual 3DE. Meanwhile, it is comparable with manual
3DE for measurements of left heart volumes, along with
slight overestimation of LVEDV and underestimation
of LAVmax, a large overestimation of LVESV and
underestimation of LAVmin. But the inaccuracies for
LVESV and LAVmin can be improved with manual
contour edit. Although there is a good correlation
between CMR and automated 3DE in LV and LA volumes
from the echocardiograms of HTx recipients using the
HeartModel, only LVEDV and LAVmax measured by
automated 3DE with contour edit seems sufficiently
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accurate for clinical practice. There was slight overestimation
of LVEDV and underestimation of LAVmax, but with clinically
acceptable precision.
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Introduction: To develop and test the feasibility of free-breathing (FB), high-resolution

quantitative first-pass perfusion cardiac MR (FPP-CMR) using dual-echo Dixon

(FOSTERS; Fat-water separation for mOtion-corrected Spatio-TEmporally accelerated

myocardial peRfuSion).

Materials and Methods: FOSTERS was performed in FB using a dual-saturation

single-bolus acquisition with dual-echo Dixon and a dynamically variable Cartesian k-t

undersampling (8-fold) approach, with low-rank and sparsity constrained reconstruction,

to achieve high-resolution FPP-CMR images. FOSTERS also included automatic in-plane

motion estimation and T∗2 correction to obtain quantitative myocardial blood flow (MBF)

maps. High-resolution (1.6 x 1.6 mm2) FB FOSTERS was evaluated in eleven patients,

during rest, against standard-resolution (2.6 x 2.6 mm2) 2-fold SENSE-accelerated

breath-hold (BH) FPP-CMR. In addition, MBF was computed for FOSTERS and spatial

wavelet-based compressed sensing (CS) reconstruction. Two cardiologists scored the

image quality (IQ) of FOSTERS, CS, and standard BH FPP-CMR images using a 4-point

scale (1–4, non-diagnostic – fully diagnostic).

Results: FOSTERS produced high-quality images without dark-rim and with reduced

motion-related artifacts, using an 8x accelerated FB acquisition. FOSTERS and standard

BH FPP-CMR exhibited excellent IQ with an average score of 3.5 ± 0.6 and 3.4 ± 0.6

(no statistical difference, p > 0.05), respectively. CS images exhibited severe artifacts

and high levels of noise, resulting in an average IQ score of 2.9 ± 0.5. MBF values

obtained with FOSTERS presented a lower variance than those obtained with CS.
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Discussion: FOSTERS enabled high-resolution FB FPP-CMR with MBF quantification.

Combining motion correction with a low-rank and sparsity-constrained reconstruction

results in excellent image quality.

Keywords: myocardial perfusion, high-resolution, free-breathing, quantitative myocardial blood flow, Dixon,

motion correction

INTRODUCTION

First-pass perfusion cardiac MR (FPP-CMR) enables non-
invasive detection of ischemic heart disease (1–3). Typically,
assessment is based on visual comparison of relative contrast
enhancement in different myocardial segments, which requires
highly trained readers (4). Quantitative FPP-CMR (QFPP-
CMR) provides an objective assessment by estimating pixel-wise
myocardial blood flow (MBF) (5) and has high diagnostic and
prognostic value (6–10). However, there are several technical
challenges that can negatively impact the image quality and the
diagnostic yield. Since MBF quantification is based on modeling
the signal intensity during the first pass of a contrast agent bolus,
sources of motion must be minimized to ensure that the same
anatomy is depicted for a given pixel across time. In particular,
the duration of the first pass, approximately 30–50 s, does not
fit into a breath-hold and therefore, respiratory motion poses
a significant challenge (11). Free-breathing QFPP-CMR can
be performed with retrospective respiratory motion correction
using image registration, yet the localized strong image contrast
changes can hamper the performance of conventional signal
intensity-based registration algorithms (12, 13). FPP-CMR
images are also commonly affected by the dark-rim artifact which
mimics perfusion defects and is exacerbated by a low spatial
resolution (14, 15). The signal from subcutaneous, epicardial,
or intramyocardial fat may also adversely impact quantification
and image quality. While fat-selective saturation prepulses can be
employed, in practice they are limited to centric phase encoding
sampling which can cause blurring and reduced contrast. Finally,
MBF quantification may be biased by signal nonlinearities at
very high contrast agent concentrations due to T1 saturation and
T∗
2-related signal loss (5, 16–18).
Recently, a dual-bolus multi-echo Dixon QFPP-CMR

framework has been proposed to address in-plane respiratory
motion, T∗

2-related signal loss, and fat suppression (19). This
method provides fat-only images, which were used to estimate
respiratory motion, while motion-corrected water-only images
were used for visual assessment and MBF quantification. In this
work, a framework titled “Fat-water separatiOn for motion-
corrected Spatio-TEmporally accelerated myocardial peRfuSion”
(FOSTERS) is proposed. FOSTERS extends the previous work
by combining a dynamic variable undersampled dual-echo
Dixon acquisition with a motion-corrected reconstruction with
low-rank and sparsity constraints to achieve high-resolution
FPP-CMR images. Additionally, the high-resolution acquisition
is interleaved with a low-resolution image with a low T1

sensitivity for estimating the arterial input function (AIF) (20).
As before, echo images were used for correcting the AIF for T∗

2-
related signal losses to further improve MBF quantification. The

performance of FOSTERS is compared to a standard compressed
sensing reconstruction as well as the corresponding clinical
standard-resolution breath-hold FPP-CMR. This comparison
assessed the variability of MBF, the image sharpness, and the
image quality scores of expert readers.

MATERIALS AND METHODS

FOSTERS Framework
Pulse Sequence
The FOSTERS pipeline (shown in Figure 1) comprises an
electrocardiogram-triggered multi-slice dual-saturation (21)
single-bolus acquisition with dual-echo gradient-echo imaging
to allow for water-fat separation and T∗

2 correction. In each
cardiac cycle, to measure the AIF, the dual-echo acquisition
is preceded by a low-resolution image with a short saturation
time (20). A variable density Poisson distribution undersampled
Cartesian acquisition was employed (22), where the center of
k-space is more densely sampled than the periphery, to achieve
an incoherent artifact distribution. In addition, the ky pattern
was pseudo-randomly varied individually for each time point
(k-t acceleration).

Image Reconstruction and Motion Correction
The FOSTERS image reconstruction and motion correction
were implemented in the Recon 2.0 environment (Philips,
Best, The Netherlands) to allow for inline scanner integration.
First, a Dixon reconstruction with compressed sensing (CS)
using low-rank (time-domain) and sparsity (spatial domain)
constraints (23) was performed with 10 iterations (empirically
determined), which generates water- and fat-only images from
k-t undersampled data with sufficient quality for in-plane
respiratory motion estimation using image registration.

Thresholding, followed by dilation, was then employed to
create a binary mask from the water images. From this binary
mask, a bounding box was automatically placed around the
epicardial fat and was used to estimate rigid respiratory motion
using the Fast Elastic Image Registration (FEIR) toolbox (24)
with normalized gradient fields as an image similarity measure.
Fat images were used as a stable reference for the anatomy
because they do not show contrast uptake-related image intensity
changes, as proposed by Scannell et al. (19). A reference time
frame, with superior-inferior (SI) motion displacement closest
to the mean SI position, was selected. This translational motion
information was used to correct rigidly the dual-echo data by
applying a linear phase shift in k-space. Rigid motion only was
estimated in this step due to the sparse signal of the fat images
being unsuitable for non-rigid motion estimation. A non-rigid
refinement step is performed at a later stage.
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FIGURE 1 | FOSTERS framework: (A) A dual-saturation dual-echo Dixon FPP-CMR sequence was used to acquire low-resolution arterial input function (AIF) and

high-resolution myocardial images. (B) Water- and fat-only images were obtained from k-t undersampled data using a fast low-rank and sparsity constrained

reconstruction method with 10 iterations. Fat-only images were used to estimate in-plane respiratory motion. Then, rigidly motion-corrected images were generated

using the same fast low-rank and sparsity regularized reconstruction method with 50 iterations. (C) The rigidly motion-corrected water-only images were fine-tuned

using non-rigid registration and were automatically segmented to an AHA 16-segment model. (D) AIF echoes were used to correct for T2* decay and quantitative

myocardial blood flow (MBF) maps were automatically obtained.

Finally, motion-corrected water-only images were generated
using a CS reconstruction with low-rank and sparsity constraints
after 50 iterations. Images were reconstructed using a fast sparsity
and nuclear norm regularization method (23), which solved the
following minimization problem:

x̂ = argmin
x

{1

2

∥

∥Ex− k
∥

∥

2

2
+ α ‖x‖∗ + β ‖9x‖1

}

,

where x are the dynamic images, k is the dynamic time-series data
(after translational motion correction), E is the SENSE encoding
operator, 9 is the spatial anisotropic total variation operator,
α and β are regularization parameters, ‖ • ‖∗ is the nuclear
norm (sum of singular values) and ‖ • ‖1 is the L1-norm. The
regularization parameters were selected empirically and set at
α = 1 and β = 0.005 for all subjects.

Post-processing: T∗

2 Correction and Quantification of

Myocardial Blood Flow
The rigidly motion-corrected dynamic water-only images were
fine-tuned using non-rigid registration to a corresponding
motionless synthetic image series, generated with principal
component analysis (12). FPP-CMR images were automatically
segmented to an AHA 16-segment model using a deep
learning-based method, as previously published (25). This
model comprises four neural networks applied sequentially:
a convolutional neural network (CNN) to detect the time-
frame with peak left ventricle (LV) enhancement, a CNN to
select a bounding box that encompasses the LV cavity and
myocardium, a U-Net to segment the myocardium, and a U-
Net to detect the right ventricle insertion points that define
the 16 AHA-segments. In addition, the dual-echo images were
used for estimating the AIF and T∗

2-related signal loss by
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fitting the mean signal magnitude to an exponential decay
model (19). Quantitative MBF values were estimated on a
pixel-wise level by fitting the observed AIF and myocardial
tissue curves to a two-compartment exchange model, using
Bayesian inference (26). MBF quantification was performed
using only the dynamic contrast-enhanced data corresponding
to the first pass of the contrast bolus (approximately 20 sec
of data).

In vivo Experiments
All acquisitions reported in this study were performed on a
3.0T Achieva scanner (Philips, Best, The Netherlands) using
a 32-channel cardiac coil. The study was approved by the
National Research Ethics Service (15/NS/0030) and written
informed consent was obtained from each participant according
to institutional guidelines. All the patients enrolled in this
study underwent a CMR examination for clinical nonstress
function and viability assessment with known or suspected heart
disease. Patients were required to be ≥18 years of age and have
no contraindications to gadolinium contrast, inclusive of an
estimated glomerular filtration rate ≤ 60 ml/min/1.73 m2.

Eleven patients (baseline characteristics in
Supplementary Table 1) with suspected cardiovascular disease
were scanned during rest with 8-fold k-t accelerated FOSTERS
during the first pass of a contrast bolus injection (0.075 mmol/kg
of Gadobutrol at 4 ml/s followed by 25ml saline flush). Three
short-axis slices (basal, mid, and apical) were acquired with the
following parameters: FOV = 320 × 300 mm2, matrix size =

200 × 186, acquired/reconstructed in-plane resolution = 1.6 ×

1.6 / 1.43 x 1.43 mm2, slice thickness = 10mm, TR/TE1/TE2
= 2.8/1.1/1.9ms, acceleration factor (R) = 8, saturation time
(short TS / long TS) = 23.5/100ms, flip angle = 15◦, acquisition
window = 65.4ms, temporal resolution = 145ms, bandwidth =

2,083.3Hz, 54–87 dynamic frames, and scan time = 60 s. Apart
from the previously mentioned saturation time and acquired
in-plane resolution, all imaging parameters were kept constant
between the AIF and the dual-echo images. The dual-echo
FPP-CMR datasets were also reconstructed with the vendor’s
commercially available inline CS wavelet-based reconstruction
(only spatial sparsity constraints with the default parameters)
(27) and non-rigid motion correction. A BH standard-resolution
2D FPP-CMR acquisition (referred here as standard BH)
(20) was acquired for the same eleven subjects with identical
imaging parameters to FOSTERS except for in-plane resolution
= 2.6 × 2.6 mm2, TR/TE = 2.2/1ms, temporal resolution =

160ms, SENSE = 2 and partial Fourier = 0.75. The standard
BH and FOSTERS scans were performed with individual
contrast injections and were separated by 5–7min to allow for
contrast washout.

To assess the motion correction performance of FOSTERS in
different circumstances, one patient (baseline characteristics in
Supplementary Table 1) was scanned separately with FOSTERS
both in free-breathing (FB) and breath-hold (BH) during the
same CMR examination. The scan parameters were kept identical
for both acquisitions, and the BH-FOSTERS was acquired 11min
after the FB-FOSTERS.

Image Evaluation and Statistical Analysis
FOSTERS, CS, and standard BH were processed, including
the non-rigid motion compensation, following the procedure
described in section 2.1.3. The MBF values estimated with
FOSTERS were compared to those obtained with CS. The
FOSTERS MBF values were not compared directly with the
standard BH MBF values as the standard BH acquisition was
the second contrast injection and the MBF values are biased
by the residual contrast from the first injection. The presence
of dark-rim artifacts and the image quality (IQ) of the three
slices acquired with FOSTERS, CS, and standard BH were
assessed jointly by two experienced cardiologists in a randomized
setup, blinded to the patient information and imaging. IQ was
graded on a scale of 1 to 4, in consensus: where (1) was non-
diagnostic IQ; (2) was diagnostic IQ with major artifacts; (3)
diagnostic IQ with minor artifacts; and (4) was fully diagnostic
IQ with no artifacts. For each dataset (FOSTERS, CS, and
standard BH) the total combined IQ score was calculated as the
average score of the three slices. Quantitative image sharpness
was calculated for FOSTERS, CS, and standard BH. For each
patient, the three acquired slices were selected for sharpness
analysis. In each image, a profile was manually selected between
the left ventricle blood pool and the endocardium, as shown
in Supplementary Figure 1. The sharpness was defined as the
distance in pixels between 20% and 80% of the pixel intensity
range of the profile, and a lower pixel distance indicates a sharper
border (28). For FOSTERS, CS, and standard BH, the total image
sharpness was calculated as the average of the three slices. For all
statistical comparisons a p-value cut-off level of 0.05 was chosen
to indicate significance and was performed using the Wilcoxon
signed-rank test (IQ) and the Mann-Whitney U-test (sharpness).

RESULTS

Figure 2 shows the comparison of FB and BH FOSTERS on a
single patient. Three-time frames are displayed for each slice
together with 16-segment bullseye plots. Good image quality was
achieved with both approaches, with FB-FOSTERS exhibiting
overall sharper image features, while BH-FOSTERS presented
some residual ghosting artifacts in some timeframes. In addition,
FB-FOSTERS (0.7 ± 0.1 mL/min/g) yielded MBF values with 4-
fold lower variation when compared to BH-FOSTERS (0.8 ± 0.4
mL/min/g).

All 11 patient scans were completed, reconstructed, and the
in-plane motion was estimated successfully for all slices. Figure 3
displays a comparison between the water-only images (middle
slice) obtained with FB-FOSTERS, spatial wavelet-based CS,
and standard BH for two representative patients (patients 5
and 7). Supplementary Videos 1, 2 contain animations of these
datasets for all approaches.Three different FOSTERS timeframes
are displayed, demonstrating high image quality with no visible
motion artifacts and clear myocardial depiction. Conversely,
CS exhibited degraded image quality with high levels of noise.
These differences between FOSTERS and CS are also visible
in the fat-only images and the temporal profile as shown in
Supplementary Figure 2 and Supplementary Video 3. Standard
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FIGURE 2 | Single patient (diagnosed with dilated cardiomyopathy) comparison between breath-hold (BH) and free-breathing (FB) FOSTERS. Right ventricle (RV), left

ventricle (LV), myocardial enhancement timeframes, and a temporal profile (blue dashed line) are displayed for the acquired three short-axis slices (basal, mid, and

apical). FB-FOSTERS images exhibit excellent quality with no visible motion artifacts, despite some visible motion in the final part of the acquisition, as shown in the

temporal profile. In some timeframes, BH-FOSTERS displays residual ghosting artifacts, due to unsuccessful motion correction. This can be explained by the more

regular respiratory motion during FB which is easier to correct than the large amplitude motion that may occur due to incomplete breath-holding. The 16-segment

bullseye plot shows that the myocardial blood flow (MBF) values were more uniform for FB- than for BH-FOSTERS (average ± SD for the 16 segments of 0.7 ± 0.1

and 0.8 ± 0.4 mL/min/g, respectively). The reconstruction parameters were kept identical for both approaches.

FIGURE 3 | A single short-axis view at mid-ventricular level is displayed during right ventricle (RV), left ventricle (LV), and myocardial enhancement for two

representative patients (middle slice for (A) patient 5 and (B) 7). High-resolution free-breathing water-only FPP-CMR FOSTERS and spatial wavelet-based

compressed sensing (CS) reconstruction in addition to standard-resolution FPP-CMR (Standard BH) are displayed. Overall, CS FPP-CMR exhibits a higher level of

noise and artifacts compared to FOSTERS and standard BH. (C) In the zoom-in region (red rectangle), a dark-rim artifact can be seen in the standard BH images

(arrow), which were not visible in the FOSTERS and CS images. Supplementary Videos 1, 2 contains an animation of these datasets for all approaches.
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BH FPP-CMR achieved excellent image sharpness (Figure 3), but
dark-rim artifacts were still present in 7 out of the 33 cases (3
acquired slices for 11 patients). These were not visible in the
FOSTERS and CS images.

Figure 4 shows the image quality score for all the patients, as
an average score for the three slices, using FB-FOSTERS, CS, and
standard BH. FOSTERS scored the highest (3.5 ± 0.6), followed
by standard BH (3.4 ± 0.6) and CS (2.9 ± 0.5). The differences
between FOSTERS and CS and between standard BH and CS
were statistically significant (p = 0.004 and 0.02, respectively).
There was no significant difference between the FOSTERS and
standard BH images (p = 0.72). The mean blood-myocardium
sharpness ± standard deviation was 4.8 ± 1.8 for FOSTERS, 3.2
± 2.1 for CS, and 4.9 ± 2.4 for standard BH. For the blood-
myocardium sharpness measurements, no statistically significant
differences were found between FOSTERS and CS (p = 0.08),
between FOSTERS and standard BH (p = 0.68), and between CS
and standard BH (p= 0.25).

The 16-segment MBF plots for the FB-FOSTERS and CS
approaches for all eleven patients are displayed in Figure 5.
FOSTERS provides uniform MBF maps whereas CS results in
MBF values with higher variation, which could be attributed
to residual artifacts unresolved by the reconstruction algorithm
and high levels of noise. These artifacts will affect the motion
estimation performance, T∗

2 correction of the AIF, and accuracy
of theMBF estimation. ThemeanMBF (± SD) values were 1.0 (±
0.3) and 1.3 (± 0.6) mL/min/g for FOSTERS and CS, respectively.
FOSTERS also resulted in a lower SD (0.4 mL/min/g) when
compared to CS (0.6 mL/min/g). Significant differences (p =

0.01) in MBF were found between the two methods. Figure 6
shows representative slices of the pixel-wise MBF maps acquired
with Standard BH, CS, and FOSTERS in three subjects. When
compared to FOSTERS, the MBF maps obtained with Standard
BH and CS exhibited a higher level of noise, resulting in a
larger variation in the MBF values. MBF values obtained with
the standard BH are higher due to the residual contrast from the
FOSTERS acquisition, this is visible in the first row of Figure 6.

DISCUSSION

Here, the feasibility of high-resolution QFPP-CMR imaging
during FB was demonstrated by using a dual-saturation
dual-echo Dixon water-fat separation, a compressed sensing
reconstruction with low-rank and sparsity constraints, and
respiratory motion correction. The dynamically varying 8-fold
Cartesian k-t undersampling allowed to obtain a short temporal
resolution (< 150ms) while maintaining the desired high in-
plane resolution (1.6 × 1.6 mm2), making FOSTERS suitable
for patients with heart rates up to 110 bpm. High-spatial
resolution imaging is beneficial for minimizing dark-rim artifacts
and detecting subtle sub-endocardial ischemia associated with
coronary microvascular dysfunction (29) and is likely to improve
the diagnostic yield of the modality.

As a proof-of-principle, to assess the performance
of FOSTERS respiratory motion correction and MBF
quantification, a comparison between FB- and BH-FOSTERS
was performed in one patient (Figure 2). Fat-only images
produced by the dual-echo Dixon acquisition allowed for

FIGURE 4 | Image quality (IQ) scores for the eleven patients. The three

acquired slices were independently scored in terms of image quality for the

high-resolution FPP-CMR (FOSTERS and CS) and the standard resolution

(Standard BH), and the values were averaged for each patient. Statistically

significant differences (p < 0.05) are indicated by *.

accurate in-plane motion estimation during free-breathing.
Moreover, FB-FOSTERS resulted in FPP-CMR images with
excellent sharpness of the cardiac structures and more uniform
MBF maps compared to BH-FOSTERS. This can be explained by
an incomplete BH, which resulted in high MBF values observed
in the anterior and lateral walls of the basal slices.

In the image quality evaluation, FB-FOSTERS was ranked
the highest. In the representative cases displayed in Figure 3,
FOSTERS presented an excellent depiction of the myocardium
with minimal residual motion-related artifacts in the FPP-CMR
images. Standard BH also exhibited excellent image quality, but
the need for the BH significantly impacted the subject’s comfort,
which can lead to images with insufficient diagnostic quality.
In addition, dark-rim artifacts were observed in standard BH
images but were not visible in FOSTERS water-only FPP-CMR
images because of the higher image resolution of FOSTERS
compared to standard BH (1.6 × 1.6 and 2.6 × 2.6 mm2,
respectively). The image quality using spatial wavelet-based CS
was scored the lowest due to the high level of image artifacts
and noise. On the other hand, image quality of k-t undersampled
reconstruction is known to be sensitive to respiratory motion,
which negatively affects the spatio-temporal correlations. The
addition of a rigid motion correction step (translational motion)
in combination with a non-rigid motion correction results in
robust FB acquisitions, as previously demonstrated by Scannell
et al. (19).

Overall, FOSTERS provided more homogenous MBF maps
compared to CS for the eleven patients included in this work.
Thismay be due to the higher respiratorymotion artifacts present
in the CS images, which result in higher values and variance in the
measured MBF.

Compared to the multi-echo Dixon QFPP-CMR introduced
by Scannell et al. (19), FB-FOSTERS is substantially accelerated
using k-t undersampling and acquiring two, rather than
three, echo images. Shortening the acquisition time window
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FIGURE 5 | 16-segment myocardial blood flow (MBF) plots for the high-resolution FB FOSTERS and compressed sensing (CS) reconstruction approaches for all

eleven patients. Mean MBF ± SD for all segments is displayed below each plot. Overall, FOSTERS provides more homogenous MBF maps compared to CS, which

can be explained by the lower residual respiratory motion artifacts present in the FOSTERS images.

is necessary to allow the acquisition of three high-resolution
slices in the short RR intervals associated with (stress) FPP-
CMR imaging and allows higher in-plane spatial resolution. In
addition, a dual-saturation strategy was employed, rather than a
dual-bolus, allowing for the acquisition of AIF and myocardial
tissue information in the same cardiac cycle and after injection of
a single bolus.

Several other approaches have been proposed to accelerate
FPP-CMR acquisitions to increase the in-plane spatial resolution
(30–35), minimize dark-rim artifacts, improve the detection of
subendocardial ischemia, and/or increase cardiac coverage and
slice resolution [e.g., simultaneous multi-slice, SMS (36–40), or
3D whole-heart acquisitions (41–47)]. To minimize respiratory
motion artifacts, motion compensation strategies (22, 48–51)
and non-Cartesian sampling schemes (43, 44, 52–54) have been
proposed. However, FB-FOSTERS offers several advantages.
FOSTERS estimates rigid in-plane respiratory motion from the
fat-only image, while most methods use the dynamic contrast-
enhanced time series, which is prone to image registration
errors due to changes in image intensity during contrast passage
(13, 16, 22, 55, 56). Moreover, FOSTERS also eliminates signal
contributions from the chest and body fat that have detrimental
effects on motion estimation and MBF quantification (19).
Incomplete fat suppression can lead to partial volume effects
at the myocardial-epicardial border, which affects the MBF
quantification accuracy. FOSTERS corrects for in-plane rigid
motion during the inline reconstruction, thus avoiding geometric
distortions and blurring caused by non-rigid methods in the
presence of large respiratory displacements. The reconstructed
FB-FOSTERS images show very small residual motion such that
non-rigid motion registration can be successfully and efficiently
applied before MBF quantification (12). A further benefit of
FOSTERS is the inclusion of a low-resolution, low-saturation-
time slice to measure the AIF for accurate MBF quantification
(20). The low-saturation-time slice was used to account for T1

and T∗
2-related signal loss in the AIF, in addition to the high-

resolution dual-echo images. Furthermore, FOSTERS can be
combined with non-Cartesian sampling, SMS, and 3D whole-
heart acquisitions, which will be the focus of future work.

FOSTERS shows promise for future clinical stress/rest
perfusion studies due to its robustness to in-plane motion, high
IQ, as well as inline reconstruction implementation. The short

FIGURE 6 | Pixel-wise myocardial blood flow (MBF) maps of a single slice (mid

position) for three representative patients were obtained with Standard BH,

CS, and FOSTERS. FOSTERS resulted in more homogenous MBF values,

while CS and Standard BH exhibited a higher variance.

acquisition window, together with the removal of breath-holding,
can enable acquisition in patients with short RR intervals. In
this study, only rest FFP-CMR scans were performed, but future
studies will aim to validate FOSTERS in a larger cohort of patients
with coronary artery disease during stress and rest FPP-CMR.

This study has several limitations that warrant discussion.
First, 2D imaging was used and no through-plane motion
correction was performed, which may influence the estimated
MBF values. However, in this patient group, no severe through-
plane motion was identified in FB-FOSTERS acquisitions, likely
associated with the regularity of shallower breathing - reducing
the risk of motion that can occur at the start or end of a long
BH. In addition, in this patient group, sufficient fat content was
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present in the fat-only images, but more studies are warranted to
assess the performance of the motion estimation in patients with
low levels of fat around the heart. Additionally in future work,
FOSTERS should be tested in a heterogeneous patient cohort
that includes different patient profiles, to assess the impact of
subcutaneous, epicardial, or intramyocardial fat content. Due
to practical reasons, FOSTERS and standard BH scans were
acquired with a relatively short pause between scans (5–7min), so
baseline contrast contamination was observed in some standard
BH datasets. In addition, a randomized order of sequences was
not performed, with FOSTERS always preceding the standard BH
FPP-CMR images. Finally, myocardial coverage was limited to
three slices, but whole-heart coverage could be of high diagnostic
utility (46).

CONCLUSION

FOSTERS, a k-t accelerated dual-saturation dual-echo Dixon
FPP-CMR framework, enables free-breathing and high-
resolution quantitative FPP-CMR and improved MBF
quantification, with automatic in-plane respiratory motion
correction and T∗

2 correction. When compared to standard-
resolution breath-hold FPP-CMR, no statistical differences were
found in the image quality score, and substantially reduced
dark-rim artifacts were observed in the FOSTERS FPP-CMR
images. Future studies will aim to test FOSTERS in patients with
coronary artery disease during stress.
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Background: Delayed enhancement CT (CT-DE) has been evaluated as a tool for the

detection of myocardial scar and compares well to the gold standard of MRI with late

gadolinium enhancement (MRI-LGE). Prior work has established that high performance

can be achieved with manual reading; however, few studies have looked at quantitative

measures to differentiate scar and healthy myocardium on CT-DE or automated analysis.

Methods: Eighteen patients with clinically indicated MRI-LGE were recruited for CT-DE

at multiple 80 and 100 kV post contrast imaging. Left ventricle segmentation was

performed on both imaging modalities, along with scar segmentation on MRI-LGE.

Segmentations were registered together and scar regions were estimated on CT-DE. 93

radiomic features were calculated and analysed for their ability to differentiate between

scarred and non-scarred myocardium regions. Machine learning (ML) classifiers were

trained using the strongest set of radiomic features to classify segments containing

scar on CT-DE. Features and classifiers were compared across both tube voltages and

combined-energy images.

Results: There were 59 and 51 statistically significant features in the 80 and 100 kV

images respectively. Combined-energy imaging increased this to 63 with more features

having area under the curve (AUC) above 0.9. The 10 highest AUC features for each

image were used in the ML classifiers. The 100 kV images produced the best ML

classifier, a support vector machine with an AUC of 0.88 (95%CI 0.87–0.90). Comparable

performance was achieved with both the 80 kV and combined-energy images.

Conclusions: CT-DE can be quantitatively analyzed using radiomic feature calculations.

These features may be suitable for ML classification techniques to prospectively identify

AHA segments with performance comparable to previously reported manual reading.

Future work on larger CT-DE datasets is warranted to establish optimum imaging

parameters and features.

Keywords: radiomics analysis, machine learning, delayed enhancement cardiac computed tomography, scar

imaging, computed tomography

INTRODUCTION

Imaging of myocardial fibrosis is routinely used for patient diagnosis, prognosis and procedure
planning. The clinical gold standard is cardiac magnetic resonance imaging (MRI) with late
gadolinium enhancement (LGE) (1). As an alternative to MRI-LGE, delayed enhancement CT
(CT-DE) has been proposed in those patients who are unable to undergo MRI scanning owing to
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availability, cost, claustrophobia, the presence of metallic
implants or body size. CT is both cheaper and more widely
available than MRI. Even with a delayed enhancement protocol,
a cardiac CT scan is much shorter to perform than MRI-LGE,
while also providing a higher spatial resolution.

Previous research studies have established that CT-DE can
identify myocardial scar using MRI-LGE as a reference standard,
in both animal models (2) and patients (3–5). Expert delineated
myocardial scar on CT-DE also has a good agreement with
invasive electro-mapping of scar (6). Previous studies have shown
that visual assessment by expert readers can identify segments
containing scar on CT-DE, with accuracy as high as 90% (3).
However, there remain questions about the optimal acquisition
parameters for CT-DE, and whether using combined-energy
imaging can improve scar detection.

Quantitative analysis and the potential for automated analysis
of CT-DE has been less well-explored. Radiomic features have
been shown to be useful in other quantitative evaluations of CT,
such as coronary plaque vulnerability (7) and identification of
myocardial infarction (8). One previous study has attempted to
assess radiomic features of scar on CT-DE (9), but only used
first order parameters and did not use scar confirmation with a
reference modality.

The aim of this study was therefore to extract radiomic
features which indicate myocardial scar on CT-DE, as
determined by the clinical gold standard of MRI-LGE, and
to investigate their potential to identify regions with myocardial
scar. We also compare multiple energy levels for their suitability
for CT-DE scar radiomic analysis.

METHODS

Study Design
In a single center study we recruited 18 patients who had
MRI proven late gadolinium enhancement on MRI imaging
performed for clinical indications. The study was approved
by the local ethics committee and patients provided written
informed consent.

Image Acquisition
Magnetic resonance imaging was performed as part of the
patient’s clinical care on a 1.5 Tesla scanner (Siemens
Healthineers) at the Edinburgh Heart Center. Sequences were
acquired according to the clinical indication, but included
localisers, axial HASTE images, and standard breath-held and
electrocardiogram-gated CINE sequences. Delayed enhancement
images (gradient echo inversion recovery sequences) were
performed 10min after injection of gadolinium contrast agent
(0.2 mmol/kg).

Patients underwent cardiac CT imaging using a 320
multidetector scanner (Aquillion One, Canon Medical Systems)
at Edinburgh Imaging, University of Edinburgh. Participants
with a heart rate of greater than 60 beats/min received
intravenous beta blockade prior to CT imaging. Sublingual
glyceryl trinitrate was administered prior to CT imaging, unless
contraindicated. Electrocardiogram-gated CT was performed
4min after injection of 100ml of iodinated contrast (Iomeron

400). Patients underwent CT using four tube voltages in rapid
succession (80, 100, 120, and 135 kV). Only the 80 and 100 kV
images were used in this study. Tube current was automatically
set based on scout image attenuation. Mean radiation dose of
80 kV images was 1.6± 0.4 millisievert (mSv) and 100 kV images
was 2.6± 1.2 mSv (conversion factor 0.028 mSv/mGy.cm).

Myocardial Scar Region Estimation
The MRI-LGE scans were used to generate image masks for
scar regions on the CT-DE scans. Images from both modalities
were segmented separately using Siemens Healthineers prototype
software, which was previously described by Behar et al. (10). CT-
DE segmentation for both 80 and 100 kV as well as MRI CINE
segmentation was automatic for the left ventricle. The MRI-LGE
scar region segmentation was performed using the same tool.
Scar was segmented initially using the full width at half maximum
method, with manual corrections by an operator with 3 years
experience at this task.

The resulting left ventricle meshes were registered using
iterative closest point (ICP) registration performed in custom
software using the VTK C++ library (11). Registration was
performed in three steps. First the major axis of each mesh is
calculated and then registered together. Then the right ventricle
insertion points, which are outputted by the segmentation tool,
are registered to correctly rotate the LVs from the two modalities.
Finally, the whole endocardiummeshes are registered to fine tune
the registration. The resulting registration transform is applied to
the MRI-LGE scar mesh to generate a scar mesh registered to the
CT anatomy.

Registrations were assessed manually for correctness by
matching the aortic valves and apex in both meshes. 60 short-
axis slices were then obtained across the CT left ventricle,
with myocardium and scar masks calculated from the meshes
(Figure 1). The mesh registration and slicing software can
be made available on request. All scar regions, regardless of
their transmurality, were labeled as transmural to account for
differences in phase between the MRI and CT.

Radiomic Analysis
Radiomic features were calculated using the open-source
PyRadiomics package (12) (version 3.0.1). 93 features were
calculated for both 80 and 100 kV images. A full list can be found
in Supplementary Table S1. These were 18 first order statistics,
24 gray level co-occurrence matrix (GLCM) features, 14 gray
level dependence matrix (GLDM) features, 16 gray level size
zone matrix (GLSZM) features, 16 gray level run length matrix
(GLRLM) features and 5 neighboring gray tone difference matrix
(NGTDM) features. Details of the parameters used are included
in the Supplementary Methods.

Each feature was tested for discrimination ability using two
methods. Statistical difference between scar and non-scar region
feature values was determined using a two-sided Student’s t-test.
Linear regression was performed using patient-wise stratified 5-
fold cross validation. From this receiver operating characteristic
metrics were calculated, with confidence intervals calculated
using bootstrapping on 1,000 samples with replacement.
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FIGURE 1 | Segmentation and registration. (A) Magnetic resonance imaging (MRI) segmentation using CINE MRI for anatomical 3D mesh and MRI late gadolinium

enhancement (LGE) for scar mesh. Endocardial (red) and scar meshes (white) shown (B) Delayed enhancement computed tomography (CT-DE) segmentation to

generate a 3D mesh of left ventricle from CT. CT endocardial mesh is shown in blue. (C) CT scar mesh generated by iterative closest point (ICP) registration from the

MRI to CT left ventricle anatomical meshes. Applying the resulting transform to the MRI-LGE mesh produces a CT aligned scar mesh. This provides locations to mask

for scar on the CT-DE.

Combined-Energy Radiomic Analysis
Features were also calculated on combined-energy images, by
combining the 100 kV and 80 kV images. Three combinations
were considered, with the 100 kV images contributing 40, 50, and
60% to the final image.

Combined-energy images were generated by registering the
100 kV images to the 80 kV using the open source Medical Image
Registration Toolkit (MIRTK). The resulting registered 100 kV
image was added to corresponding 80 kV images at the three
contribution levels to generate the final images.

Features were calculated using the 80 kV segmentation and
registered scar meshes from themain analysis. Comparisons with
the single-energy images were made by comparing area under
receiver operator characteristic curves (AUC) across significant
features, which were determined using the same method.

Per Segment Scar Classification
To demonstrate possible clinical usage of these radiomic features

we trained classifiers to identify myocardial segments as scar
or non-scar. Myocardial segments were defined according to

the American Heart Association (AHA) 16 segment model.

Myocardial scar ground truths were determined by the

percentage of the total segment volume which had scar present.

Scar thresholds of 10, 20, and 30% total volume were compared as
ground truths. This was determined by theMRI-LGE registration
and as a proportion of the total region size (Figure 2). This was
considered important as a low threshold could produce radiomic
features too close to normal myocardium and a higher threshold
would miss substantial scar regions. While the previous radiomic
analysis compared the whole scar region to healthy myocardium,
these classification experiments aim to assess the ability to predict
scar using known radiomic features on a meaningful region for
evaluating scar burden. Classifiers were compared also across 80
kV, 100 kV, and the best combined-energy level image.

We compared support vector machine (SVM), logistic
regression and random forest classifiers implemented with the
open source Scikit-learn (13) Python library (version 1.0.1).
Parameters were optimized with grid search and 5-fold cross-
validation was used. The 10 radiomic features which showed
the largest difference between healthy and scared myocardium
from the radiomic analysis were used as input features
to the classifiers after being scaled to unit length. Feature
importance was calculated using the Scikit-learn implementation
of permutation importance, which determines the importance
of each input feature by re-calculating accuracy metrics after
removing each feature.
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FIGURE 2 | (A) Pipeline and results of classification methods using the top 10 radiomic features per myocardial segment. (B) Receiver operating characteristics (ROC)

curves for classifiers on the 100 kV images in the segmental analysis. (C) Permutation feature importance across the 10 features used in the support vector machine

(SVM) for the 100 kV segmental classification. GLDM, Gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix.

RESULTS

Study Population
Of the 18 available cases, 16 cases had good MRI-LGE
segmentation and were suitable for registration. Exclusions were
due to a missing or unsuitable short-axis sequence in MRI. 15
cases were used for the 80 kV analysis, with one being excluded
due to low contrast between the left ventricle myocardium and
the blood pool resulting in a poor wall segmentation. 14 were
used for the 100 kV analysis, with poor segmentation results
meaning two cases were excluded.

Mean age of the included patients was 62 ± 8.8 and 90%
were male. 11 patients had a history of previous myocardial
infarction (8 ST elevation and three non-ST elevation myocardial
infarction). One patient had previously undergone coronary
artery bypass graft surgery.

Radiomic Analysis
For the 80 kv analysis there were 15 patients with 431 valid
slices to perform radiomic analysis and for the 100 kv analysis
there were 14 patients with 388 valid slices. The combined-energy
analysis included 13 patients with 321 slices.

For the 80 kV images, 59 out of the 93 (63%) features were
statistically significant predictors of the presence of myocardial
scar, whereas 51 (54%) were statistically significant for the 100
kV images. Many of these had low AUCs below 0.7. Above an

AUC of 0.7 there were 16 (17%) and 29 (31%) features for the
80 and 100 kV images, respectively. Above 0.8 this was 11 and
10, respectively. There was a clear overlap in features which
presented a significant difference between energy levels. Figure 3
displays the AUC values across all features per energy level. The
best five AUC values are shown in Figures 4, 5.

The best metric for both 80 and 100 kv was gray level
dependence matrix (GLDM) gray level non-uniformity, where
the scar region metric was significantly lower than the normal
myocardium, indicating greater similarity within scar regions.
Other highly significant metrics which were used for the classifier
inputs were GLDM dependence non-uniformity, gray level run
length matrix (GLRLM) gray level non-uniformity, gray level
size zone matrix (GLSZM) size zone non-uniformity, gray level
run length matrix (GLRLM) run-length non-uniformity, total
energy, energy, GLSZM gray level non-uniformity, GLSZM zone
entropy and GLRLM run entropy. Full results for each metric
are listed in the Supplementary Methods. These results support
a measurable difference in texture in scar overlap regions as
compared to normal myocardium.

Combined-Energy Image Analysis
For the segmental classification analysis there were 1,922
segments (628 with scar) at 80 kv, 1,806 (659 with scar) at 100
kv, and 1,766 (522 with scar) for the combined-energy images.
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FIGURE 3 | Area under the ROC curves for all features across both energy levels and the 50% combined image. GLDM, Gray level dependence matrix; GLCM, gray

Level Co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone difference matrix.

The 50% 100 kV combined-energy image had the highest
number of statistically significant radiomic features to predict
scar with 63 significant features (68%). Compared to the other
energy levels and combined-energy combinations it also had the
highest AUC features, with five above anAUCof 0.9, against three
for 80 kV, 2 for 100 kV, and two for both other combined-energy
settings. Across high AUC features, the 50% combined-energy
images outperformed the other proposed combinations. The top
features matched the single-energy images except for NGTDM
coarseness, which measures the average difference between a
center pixel and its neighborhood. This was significant for all
the combined-energy image variations with high AUCs (>0.9);
whereas it was only significant for the 100 kV single-energy
images with a relatively low AUC (0.6).

Classification of Scar Using Radiomic
Features
Based on radiomic analysis the 10 best features were calculated
to identify, per segment, CT-DE scar for the 100 kV, 80 kV, and
combined-energy 50% images.

The best performing classifier across all images was the
SVM. Table 1 shows the AUCs and sensitivities for the SVM
at each image level and scar threshold. The 20% scar threshold
performed the best for all combinations. The results were similar
across image types with slightly higher results for the 100 kV

images. SVM was the best performing classification method with
a best AUC of 0.88 (95% CI 0.87–0.90) with a sensitivity of 0.79
and specificity of 0.83. The random forest had a comparable AUC
with the best being of 0.88 (CI 0.87–0.9) but a worse sensitivity
of 0.59 and specificity of 0.92. The logistic regression had a poor
AUC with the best being on the 80 kV images at 0.65 (CI 0.62–
0.67) with a sensitivity of 0.57 and specificity of 0.61. On this
small sample size, these results serve as a proof of concept for
the potential to automatically identify scar areas from CT-DE.

Figure 2C displays the feature permutation importance for
100 kV images at a 20% threshold, which displays a strong
importance across 7 of the 10 included features in terms of
changes to balanced accuracy, with the most important feature
being first order total energy.

DISCUSSION

In this study we have demonstrated the ability of radiomic
features extracted fromCT-DE to predict myocardial scar regions
compared to the gold standard assessment of MRI-LGE. Similar
features were identified as predictors of myocardial scar and non-
scar regions in all examined single-energy and combined-energy
images. Good performance was obtained using machine learning
methods to classify myocardial segments as scar or non-scar
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FIGURE 4 | ROC curves for the best 5 AUC values on the 80 kV images. GLDM,Gray level dependence matrix; GLRLM, gray level run length matrix.

FIGURE 5 | ROC curves for the best 5 AUC values on the 100 kV images. GLDM, Gray level dependence matrix; GLSZM, gray level size zone matrix.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 May 2022 | Volume 9 | Article 847825196

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


O’Brien et al. Radiomics for CT Delayed Enhancement

TABLE 1 | Area under ROC curve, sensitivity and specificity for the classifiers at all three energy levels and three scar thresholds.

10% Threshold 20% Threshold 30% Threshold

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

SVM

80 kV 0.86 0.74 0.82 0.87 0.76 0.82 0.85 0.74 0.85

100 kV 0.88 0.77 0.82 0.88 0.79 0.83 0.88 0.77 0.78

50% combined Image 0.85 0.73 0.85 0.86 0.73 0.86 0.85 0.72 0.88

Random forest

80 kV 0.88 0.61 0.9 0.88 0.57 0.94 0.88 0.51 0.94

100 kV 0.87 0.66 0.89 0.88 0.59 0.92 0.88 0.63 0.91

50% combined image 0.88 0.63 0.92 0.87 0.56 0.94 0.87 0.52 0.95

Logistic regression

80 kV 0.62 0.54 0.6 0.64 0.57 0.61 0.63 0.54 0.61

100 kV 0.57 0.57 0.5 0.55 0.52 0.53 0.56 0.52 0.54

50% combined image 0.67 0.61 0.62 0.68 0.62 0.63 0.67 0.61 0.63

based on three thresholds of scar coverage, with a slightly better
performance for the 100 k images.

The ability of visual assessment of CT-DE to act as
an alternative to MRI-LGE for expert readers has been
established (2, 3, 5). However, quantitative analysis of CT-
DE could improve accuracy and repeatability of assessments
and reduce the time to report CT-DE. Here we show a
path forward for future standardization and automation of
scar detection using CT-DE. Our results correspond well-
with those of Antunes et al. (9), who found that energy,
a first order radiomic statistic, was a statistically significant
predictor to identify myocardial scar on CT-DE. However,
we have assessed a larger number of radiomic features, and
have established the top 10 best radiomic features that can
identify scared compared to non-scared myocardium. In future,
it may be possible to use these features to prospectively identify
scar on CT-DE.

Scar in this study was determined using a 3Dmesh registration
between MRI-LGE and CT-DE. This provides us with a more
accurate delimitation of the scar region compared to previous
studies, which used per segment classification (2–4). This means
that in our radiomic analysis we have calculated the most
important features without the overlap of healthy tissue within
a segment. This also means that we were able to perform the
segmental classification with assessment of different levels of
scar volume.

The performance of our method is in line with previously
shown manual reading (3). We did not find any clear advantage
of combined-energy images or large differences between energy
levels in the single-energy images. Previous studies have used
either 80 kV or 100 kV images for CT-DE assessment. Visually
80 kV images provides a higher difference between areas of
contrast enhancement and non-enhancement compared to 100
kV images, but this is at the expense of image noise. Interestingly
we found that the 80 and 100 kV images share similar radiomic
features in areas of myocardial scar. However, we showed that
there may be a small advantage of 100 kV when using radiomic
features. Thus, the choice of 80 or 100 kV for CT-DE images

should be made based on the whether visual or quantitative
assessment will be performed.

Study Limitations
This was a single center study with a small number of cases and
larger cohort studies with external validation would be required.
Our study did not differentiate between ischaemic and non-
ischaemic scar or determine the transmurality of myocardial scar.

We used an automated segmentation tool with some user
corrections to establish areas of myocardial scar. As we were
working with large regions of myocardial scar and radiomic
features calculated across them, small segmentation errors would
not have greatly affected the results. Nevertheless, more accurate
automatic or manual segmentations may produce stronger
radiomic features and resulting classifiers. While segmental
analyses are clinically useful, with additional datasets it may be
possible to produce a more specific classification of scar regions.
Convolutional neural networks have been shown capable of this
task for MRI with LGE (14) and could be applied here instead of
calculating radiomic features.

CONCLUSION

This study showed that CT-DE can identify myocardial scar using
radiomic features and machine learning methods, with good
accuracy compared to the gold standard of MRI-LGE. Further
large prospective studies are required to evaluate the use of this
technique in clinical practice.
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Deep Learning for Detection of
Exercise-Induced Pulmonary
Hypertension Using Chest X-Ray
Images
Kenya Kusunose1* , Yukina Hirata2, Natsumi Yamaguchi2, Yoshitaka Kosaka1,
Takumasa Tsuji3, Jun’ichi Kotoku3 and Masataka Sata1

1 Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan, 2 Ultrasound Examination
Center, Tokushima University Hospital, Tokushima, Japan, 3 Department of Radiological Technology, Graduate School
of Medical Care and Technology, Teikyo University, Tokyo, Japan

Background: Stress echocardiography is an emerging tool used to detect exercise-
induced pulmonary hypertension (EIPH). However, facilities that can perform stress
echocardiography are limited by issues such as cost and equipment.

Objective: We evaluated the usefulness of a deep learning (DL) approach based on a
chest X-ray (CXR) to predict EIPH in 6-min walk stress echocardiography.

Methods: The study enrolled 142 patients with scleroderma or mixed connective
tissue disease with scleroderma features who performed a 6-min walk stress
echocardiographic test. EIPH was defined by abnormal cardiac output (CO) responses
that involved an increase in mean pulmonary artery pressure (mPAP). We used the
previously developed AI model to predict PH and calculated PH probability in this cohort.

Results: EIPH defined as 1mPAP/1CO >3.3 and exercise mPAP >25 mmHg was
observed in 52 patients, while non-EIPH was observed in 90 patients. The patients with
EIPH had a higher mPAP at rest than those without EIPH. The probability of PH based
on the DL model was significantly higher in patients with EIPH than in those without
EIPH. Multivariate analysis showed that gender, mean PAP at rest, and the probability
of PH based on the DL model were independent predictors of EIPH. A model based
on baseline parameters (age, gender, and mPAP at rest) was improved by adding the
probability of PH predicted by the DL model (AUC: from 0.65 to 0.74; p = 0.046).

Conclusion: Applying the DL model based on a CXR may have a potential for detection
of EIPH in the clinical setting.

Keywords: artificial intelligence, connective tissue disease, echocardiography, exercise pulmonary hypertension,
scleroderma (SSc)
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GRAPHICAL ABSTRACT | Potential approach to exercise hemodynamics in scleroderma. Although the findings of this study support the selection of treatment
based on the findings of imaging surveillance, definitive multicenter prospective evaluation is required. mPAP, mean pulmonary artery pressure; CO, cardiac output;
EIPH, exercise-induced pulmonary hypertension.

INTRODUCTION

Pulmonary hypertension (PH) is a major cause of mortality
in patients with scleroderma. Early detection of PH remains a
clinical challenge despite several diagnostic tools developed.
Because the elevated mean pulmonary artery pressure
(mPAP) during exercise can be a cause of dyspnea and
fatigue, the exercise-induced PH (EIPH) has been promised
as a potential useful status for the early identification at
the risk of developing resting PH (1). Right heart catheter
(RHC) is the gold standard for defining the mPAP during
exercise. However, RHC is an invasive procedure and we
need the non-invasive tests to screen PH in the clinical
setting. Exercise stress echocardiography has been used
to screen scleroderma patients in an attempt to identify
those with EIPH as an indicator of early-stage PH (2).
Several recent studies have suggested that abnormal cardiac
output (CO) responses to increments in mPAP have the
potential to assess the state of disease and functional class of
patients (3, 4). We have shown previously that the pressure-
flow relationship between mPAP and CO measurement

predicted future development of overt PH and was helpful for
making treatment decisions regarding pulmonary arterial
hypertension (PAH)-specific medications (5, 6). EIPH
defined by 1mPAP/1CO indicates an abnormal pulmonary
vascular response to exercise due to impaired pulmonary
vascular capacity. This index is important for detecting early
pulmonary vascular disease in at-risk patients, such as those with
scleroderma.

However, the use of exercise echocardiography to diagnose
EIPH may be limited by issues of cost and equipment in
health care facilities. Identifying resting parameters that can
predict EIPH therefore has important clinical implications.
Recently, artificial intelligence (AI) including deep learning (DL)
has been applied to sophisticated recognition of understated

Abbreviations: PH, pulmonary hypertension; mPAP, mean pulmonary artery
pressure; EIPH, exercise-induced pulmonary hypertension; RHC, right heart
catheter; CO, cardiac output; PAH, pulmonary arterial hypertension; AI, artificial
intelligence; DL, deep learning; CXR, chest x-ray; SSc, scleroderma; MCTD, mixed
connective tissue disease; LV, left ventricular; GLS, Global longitudinal strain; RV,
right ventricular; 6MW, Six-minute walk; AUC, area under the curve; PAWP,
pulmonary artery wedge pressure.
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patterns in medical images (7, 8). We reported that a DL
model based on chest X-ray (CXR) analysis, predicted elevated
pulmonary artery pressure in patients who underwent right-
sided heart catheterization (9). We suspected the DL model
can detect the known pathological effects of PH at early stage
on the CXR images. Thus, we hypothesized that a previously
developed application of the CXR-based DL algorithm could
also be used to predict EIPH in patients with scleroderma (SSc)
or mixed connective tissue disease (MCTD) with scleroderma
features. The objectives of the current study were (1) to assess
the baseline clinical and echocardiographic predictors at rest
of EIPH in at-risk patients, and (2) to evaluate whether the
predictive value for the presence of EIPH is increased when an
AI model for PH is added to clinical and echocardiographic
parameters at rest.

MATERIALS AND METHODS

Study Population
The study enrolled patients with SSc or MCTD with scleroderma
features treated at our hospital. The definitions of these two
diseases were based on the American College of Rheumatology
diagnostic criteria (10). Patients who underwent a 6-min walk
stress echocardiographic study and had a normal range of
mean PAP (<25 mmHg) at rest were recruited consecutively
from patients referred to our echocardiographic examination
center between January 2013 and December 2017. Patients with
moderate or severe valvular disease, atrial fibrillation/flutter,
left ventricular (LV) ejection fraction <50%, significant shunts,
significant interstitial lung disease, known coronary artery
disease, or thromboembolism were excluded from the study.
Eight patients at rest and four patients during stress were
excluded due to lack of a measurable tricuspid regurgitant jet.
The study was approved by the local ethics committee and
Institutional Review Board of the University of Tokushima
(protocol: 1095-2).

Echocardiographic Assessment
Transthoracic echocardiography was performed by experienced
sonographers/doctors using a commercially-available ultrasound
machine (Vivid 9, GE Vingmed, Horten, Norway). The
measurements and recordings were obtained according to the
recommendations of the American Society of Echocardiography
(11). Systolic PAP was measured from the maximal continuous-
wave Doppler velocity of the tricuspid regurgitant jet using
the systolic trans-tricuspid pressure gradient calculated by the
modified Bernoulli equation. Right atrial pressure was estimated
from the inferior vena cava diameter and collapsibility (12).
Mean PAP was calculated as 0.6× systolic PAP + 2 (13). Peak
systolic longitudinal strain measurements were obtained from
gray-scale images recorded in the apical four-chamber, two-
chamber, and long-axis views. The frame rate was maintained
at >40 frame/s. All the measurements of strain were analyzed
offline using speckle tracking vendor-independent software
(EchoInsight, Epsilon Imaging, Ann Arbor, MI, United States).
Global longitudinal strain (GLS) was calculated by averaging

all the segmental strain values from the apical four-chamber,
two-chamber, and long-axis views. In the right ventricular (RV)
longitudinal strain analysis of the RV focused apical four-
chamber view, the interventricular septum was included in the
region-of-interest for speckle-tracking echocardiography. Only
the free wall strain values were included and the septal strain
values were discarded to avoid LV interaction.

Six-Min Walk Stress Echocardiography
Six-min walk (6MW) tests were performed according to the
American Thoracic Society guidelines (14). Transcutaneous
arterial oxygen saturation was determined by pulse oximetry. The
peak tricuspid regurgitation jet observed by echocardiography
was obtained immediately after the 6MW test (i.e., within
10 s). CO was also determined at the same time using electric
cardiometry (Aesculon Electrical Velocimetry, Osypka Medical
GmbH, Berlin, Germany). We calculated the PAP—cardiac
output relationship as mPAP divided by CO (mPAP/CO),
and calculated the slope of mPAP/CO in individual patients
(1mPAP/1CO). Patients with EIPH were diagnosed based on
our previous work that used a 1mPAP/1CO >3.3 and exercise
mPAP >25 mmHg (5). The reproducibility of 1mPAP/1CO
obtained by echocardiography, expressed as the coefficient of
variation, has been reported by our group as 5.6 ± 3.8% and
7.2 ± 5.1% for intra-observer and inter-observer variation,
respectively (5).

Right heart catheter was performed using a Swan-Ganz
catheter. Pressure measurements were obtained at rest and
during supine bicycle ergometry. Thermodilution CO was
analyzed after averaging the sum of three measurements collected
at rest and during exercise. Pulmonary vascular resistance was
calculated as (mPAP-PAWP)/CO. In our cohort using invasive
data (n = 29) we showed that there was a good correlation
between invasive and non-invasive (electric cardiometry and
echocardiography) values of 1mPAP/1CO (r = 0.61; p < 0.001)
(Supplementary Figure 1).

Artificial Intelligence Model for Detection
of Pulmonary Hypertension
We used the previously developed AI model to predict PH in
this study (9). We defined PH using the AI model using the
mean PAP >20 mmHg because we need an early detection of
pulmonary vascular dysfunction for screening purposes. The
area under the curve (AUC) of the AI model for prediction of
elevated PAP was 0.71 in the test cohort (9). We briefly describe
the model as follows. Data were divided into 10 groups, 9 of
the groups were used as a training and validation to create a
model, and the rest were used to test the model so that the
900 total cases were split with 90 cases × 10 groups. Also, the
images of the training dataset were augmented by using gamma
correction, horizontal flipping, rotation, and pixel shift. Then, we
have done nested-cross validation (Supplementary Figure 2) and
tuned hyperparameters using grid-search. A capsule-network-
based model was constructed with the addition of some residual
blocks to detect PH (15). Each residual block contained two
convolution layers, two batch normalizations, a rectified linear
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unit (ReLU), and a skip connection. Details are shown in
Supplementary Figure 3. The network consisted of six residual
blocks, six convolution layers, and six batch normalizations. All
activation functions were set to ReLU functions. The highest
elements in the likelihood vector were defined as the output label
(mean PAP > 20 mmHg). The proposed network architecture
is presented in Supplementary Figure 4. We pre-trained the
model using a CXR dataset, which is published by RSNA
Pneumonia Detection Challenge in Kaggle.1 Then, we performed
fine-tuning with the pre-trained model and nested 10-fold cross-
validation. The batch size was set to 16 and an Adam optimizer
used for training. We constructed the proposed network model
on a computer (Xeon CPUs; Intel Corp. and Tesla P100
16GB GPU; NVIDIA Corp.) using a Chainer (ver. 7.2.0) deep
learning framework. We also performed gradient-weighted class
activation mapping (Grad-CAM) to visualize how our model
detected abnormalities from a CXR of each case. The averaged
analysis time is 2 ± 1 min for each case.

Statistical Analysis
The continuous variables were expressed as mean ± SD of the
normal distribution, while the non-normal continuous variables
were expressed as median (interquartile range). Wilcoxon W test
or Kruskal Wallis test was used to assess the differences among
groups. We performed a univariate logistic regression analysis
to evaluate the correlation between EIPH and clinical variables,
laboratory data, echocardiographic data, and probability of
PH calculated by the AI model. The independence of the
association between the variables was tested using multiple
logistic regression analysis. The predictive performance was
evaluated using receiver operating characteristic (ROC) analysis
and pairwise comparisons of the AUC according to the DeLong
method (16). To evaluate the effectiveness of the AI model to
predict EIPH, two models were constructed and compared using
ROC curve analysis. Model 1, the basic model, consisted of age,
gender, blood pressure and mean PAP at rest, while Model 2
included the variables in model 1 plus the probability of PH
calculated using the AI algorithm. The statistical analyses were
performed using standard statistical software packages (SPSS

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

software 21.0; SPSS Inc., Chicago, IL, United States and MedCalc
Software 17; Mariakerke, Belgium). Statistical significance was
defined as a p-value < 0.05.

RESULTS

Patient Characteristics
The baseline characteristics of the study group are shown
in Table 1. The study population consisted of 142 patients
[58 ± 13 years; 17 (12%) male] who underwent 6-min stress
echocardiography. Of the 142 patients, 90 (63%) had non-
EIPH and 52 (37%) had EIPH (Figure 1). Patients with
EIPH had higher diastolic blood pressure, lower SpO2 post-
6MW, higher mPAP, higher exercise mPAP, and lower exercise
cardiac output than that observed in patients with non-
EIPH. Table 2 shows the invasive hemodynamic data in the
patients with EIPH (1mPAP/1CO > 3.3 mmHg/L/min and
exercise mPAP ≥ 25 mmHg by echocardiography) who received
explanations for exercise RHC. We obtained informed consent
for exercise RHC in 29 patients with EIPH and referred them
to our catheter laboratory for assessment of exercise pulmonary
hemodynamics. Twenty-three patients refused exercise RHC due
to the risk of RHC. In the 29 patients who underwent exercise
RHC, 28 fulfilled the catheter criteria of EIPH described in
a previous report (17). Based on this finding we considered
that diagnosing EIPH using 6-min stress echocardiography was
acceptable in the clinical setting.

The Value of Clinical Parameters and the
AI Model for Predicting EIPH
The results of the univariate and multivariate logistic analyses
are shown in Table 3. In univariate analyses, the presence of
EIPH was associated with diastolic blood pressure, mean PAP,
and PH probability by the AI model. After adjustment for age,
gender, diastolic blood pressure, and mean PAP at baseline,
EIPH was also associated with the probability of PH predicted
by the AI model.

The results of the ROC analysis for detection of EIPH are
summarized in Figure 2. In this cohort, the AUC of the AI
model was 0.71 (95% CI: 0.62–0.78). For mPAP at rest measured

FIGURE 1 | Patient selection. Patients who underwent a 6-min walk stress echocardiographic study were recruited consecutively between January 2013 and
December 2017.
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TABLE 1 | Clinical characteristics in the entire study cohort: of the 142 patients, 90 (63%) had non-EIPH and 52 (37%) had EIPH.

All Non-EIPH EIPH p-value

Number 142 90 52

Age, year 58 ± 13 57 ± 13 60 ± 14 0.30

Male, % 17 (12) 8 (9) 9 (17) 0.17

Body surface area, m2 1.52 ± 0.14 1.53 ± 0.14 1.51 ± 0.15 0.30

WHO Class I or II/III or IV 125/17 82/8 43/9 0.17

History

SSc, % 110 (77) 69 (77) 41 (79) 0.76

MCTD with SSc features, % 32 (23) 21 (23) 11 (21) 0.76

Medication

Antihypertensive drugs, % 1 (1) 1 (1) 0 (0) 0.33

Diuretic, % 3 (2) 1 (1) 2 (4) 0.35

Anticoagulants, % 0 (0) 0 (0) 0 (0) –

Respiratory function

%EFV1, % 82 ± 21 86 ± 16 80 ± 24 0.42

%FVC, % 102 ± 22 103 ± 27 102 ± 21 0.91

%DLCO 76 ± 22 77 ± 22 75 ± 23 0.79

Baseline hemodynamics

HR, bpm 71 ± 12 71 ± 13 71 ± 12 0.81

Systolic BP, mmHg 122 ± 20 120 ± 21 125 ± 18 0.14

Diastolic BP, mmHg 70 ± 16 68 ± 15 74 ± 17 0.06

SpO2, % 97 ± 2 98 ± 1 97 ± 2 0.13

Post 6-min walk hemodynamics

HR, bpm 94 ± 18 95 ± 18 92 ± 19 0.50

Systolic BP, mmHg 129 ± 25 128 ± 25 130 ± 27 0.67

Diastolic BP, mmHg 72 ± 11 71 ± 12 74 ± 10 0.10

SpO2, % 96 ± 3 96 ± 3 95 ± 4 0.05

6MW distance, meter 450 (400–500) 425 (385–499) 451 (400–501) 0.48

Echocardiographic variables

LVEDVi, ml/m2 49 ± 12 48 ± 10 50 ± 14 0.59

LVESVi, ml/m2 17 ± 5 17 ± 4 17 ± 5 0.52

LVEF, % 65 ± 3 65 ± 3 65 ± 3 0.47

LV-GLS, % 20 ± 2 19 ± 2 20 ± 3 0.65

LVMi, g/m2 77 ± 17 76 ± 16 79 ± 19 0.41

LAVi, ml/m2 26 ± 8 26 ± 6 27 ± 10 0.61

E/e’ 7.0 ± 2.5 6.7 ± 2.1 7.4 ± 3.0 0.15

RVFAC, % 41 ± 12 41 ± 12 41 ± 12 0.81

TAPSE, mm 22 ± 4 21 ± 3 22 ± 4 0.83

RV-GLS, % 22 ± 4 22 ± 4 21 ± 5 0.62

Pulmonary hemodynamics

Mean PAP, mmHg 18 ± 3 17 ± 3 19 ± 3 0.003

CO, l/min 4.0 ± 1.3 4.1 ± 1.2 3.9 ± 1.4 0.39

Exercise mean PAP, mmHg 24 ± 5 22 ± 3 29 ± 5 –

Exercise cardiac output, l/min 6.3 ± 2.3 6.8 ± 2.4 5.5 ± 1.7 <0.001

1mPAP/1CO, mmHg/l/min 2.9 (1.6–5.3) 1.8 (1.2–2.7) 6.4 (4.4–8.3) –

AI model

PH probability (%) 20 (5–58) 11 (3–35) 37 (21–76) <0.001

Data are expressed as the number of patients (percentage) and mean ± SD or median (interquartile range).
EIPH, exercise-induced pulmonary hypertension; SSc, scleroderma; MCTD, mixed connective tissue disease; %FEV1, percent forced expiratory volume in 1 s;%FVC,
percent forced vital capacity; %DLCO, diffusing capacity for carbon monoxide; HR, heart rate; BP, blood pressure; SpO2, percutaneous oxygen saturation, LVEDVi,
left ventricular end-diastolic volume index; LVESVi, left ventricular end-systolic volume index; LVEF, left ventricular ejection fraction; GLS, global longitudinal strain; LVMi,
left ventricular mass index; LAVi, left atrial volume index; E, early diastolic transmitral flow velocity; e’, early diastolic mitral annular motion; RVEA, right ventricular end-
diastolic area; RVESA, right ventricular end-systolic area; RVFAC, right ventricular functional area change; TAPSE, tricuspid annular plane systolic excursion; mPAP, mean
pulmonary artery pressure; CO, cardiac output.
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TABLE 2 | Invasive hemodynamic data in the patients with EIPH by exercise
stress echocardiography who received exercise RHC.

Invasive hemodynamic data

Number 29

Baseline

Heart rate, bpm 70 ± 13

Systolic blood pressure, mmHg 132 ± 21

Mean pulmonary artery pressure, mmHg 20 ± 4

Mean pulmonary arterial wedge pressure, mmHg 9 ± 3

Mean right atrial pressure, mmHg 6 ± 4

Pulmonary vascular resistance, wood unit 2.1 ± 1.1

CO, l/min 5.5 ± 1.9

Peak exercise

Heart rate, bpm 107 ± 26

Systolic blood pressure, mmHg 162 ± 30

Mean pulmonary arterial pressure, mmHg 40 ± 9

Mean pulmonary artery wedge pressure, mmHg 18 ± 4

Mean right atrial pressure, mmHg 6 ± 2

Pulmonary vascular resistance, wood unit 2.6 ± 1.2

CO, l/min 9.2 ± 2.6

1mPAP/1CO, mmHg/l/min 6.2 ± 3.0

EIPH, exercise-induced pulmonary hypertension; RHC, right heart catherther; CO,
cardiac output; mPAP, mean pulmonary artery pressure.

by echocardiography, the AUC was 0.64 (95% CI: 0.56–0.72).
Figure 3 shows the ROC analysis of the combination of clinical
variables (age, gender, blood pressure and mean PAP at rest)
and the AI model. Importantly, the predictive potential of the
model based on these variables (age, gender, blood pressure
and mean PAP at rest) was improved by adding the DL model
(increase in AUC from 0.65 to 0.74, p = 0.046). We checked
the precision, recall, f-score values, and confusion matrix for
performance evaluation of the AI model. Importantly, the recall
of AI algorithm for detecting EIPH was 94.5% using the cut
off value of 21% for AI estimated probability (Supplementary
Table 1). AI assessment may be considered an option to check
the need of RHC in patients with suspected EIPH.

Assessment of Gradient-Weighted Class
Activation Mapping
To help explain the AI assessment, we analyzed the images to
determine where AI was focused (Figure 4). In many cases, Grad-
CAM showed that our model focused on the cardiac area in
patients with EIPH. Interestingly, in patients without EIPH, the
focus was on the area in the right middle lung field. The resulting
AI model may provide new insights to appropriately discern
differences using CXR images.

DISCUSSION

We demonstrated that 52 of 142 patients (37%) with high-risk
PAH (SSc or MCTD with SSc features) and normal resting
echocardiographic findings had EIPH based on an elevated
1mPAP/1CO measured by 6MW stress echocardiography.
Mean PAP at rest was a significant predictor of EIPH after

TABLE 3 | Univariate and multivariate associations of EIPH.

Univariate model Multivariate model

OR 95% CI p-value OR 95% CI p-value

Clinical variables

Age, year 1.04 0.99–1.04 0.29 1.02 0.98–1.05 0.33

Male,% 2.15 0.77–5.96 0.14 3.27 1.01–10.55 0.05

Diastolic BP, mmHg 1.03 0.99–1.06 0.05 1.02 0.98–1.05 0.38

Echocardiography

Mean PAP, mmHg 1.22 1.06–1.41 0.002 1.02 1.00–1.39 0.04

AI model

PH probability (per 1%) 1.02 1.01–1.03 <0.001 1.02 1.01–1.04 0.002

After adjustment for clinical variables, EIPH was associated significantly with the
probability of PH calculated by the AI model.
BP, blood pressure; PAP, pulmonary artery pressure; PH, pulmonary hypertension.

FIGURE 2 | Diagnostic ability to predict EIPH using a single variable. The area
under the curve by AI model for detection of EIPH was similar to the AUC by
measurement of mPAP at rest.

adjustment for age and gender, whereas parameters of respiratory
function were not. Furthermore, the combination of the DL
model significantly improved the ability to predict EIPH
compared to that achieved by combining clinical parameters. To
our knowledge, this is the first study to demonstrate the clinical
utility of a DL algorithm based on standard CXRs to estimate
EIPH in at risk patients.

Prognostic Importance of
Exercise-Induced Pulmonary
Hypertension
The management of the PAH high risk cohort remains a matter
of debate because of limited data on prognosis. The pathological
findings in the pulmonary vasculature that characterize PAH
include initial proliferation and fibrosis, medial hypertrophy, and
thrombosis (18). The large capacity of the pulmonary circulation
results in PH usually being diagnosed late in its course, with
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FIGURE 3 | Diagnostic ability to predict EIPH using multiple variables. The
predictive potential of the model based on these variables was improved by
adding the DL model (increase in AUC from 0.65 to 0.74, p = 0.046). Model
1 = age, gender, blood pressure and mean PAP at rest; Model 2 = Model 1
plus DL model.

an asymptomatic stage preceding onset (19). Therefore, patients
with early PH may present with an almost normal resting
mPAP, but have an abnormal exercise mPAP as a result of
increased pulmonary blood flow. From the perspective of the
pulmonary circulation during exercise, the clinical utility of
mPAP-CO assessment has been described in several previous
studies (3–5). Several investigators have also reported that the
benefit of treatment for EIPH was an improvement in pulmonary
vascular response to exercise within 1 year (6, 20–23). Therefore,
EIPH is an important clinical condition in patients with a high
risk of developing PAH. However, cardiovascular institutes that
can perform stress echocardiography may be limited by issues
related to cost and equipment. The detection of EIPH using
minimally invasive or non-invasive approaches at rest therefore
has important clinical implications.

Exercise-Induced Pulmonary
Hypertension and Artificial Intelligence
Model
Chest x-ray is a simple and economical screening method for
assessing PH. The American College of Chest Physicians has
recommended obtaining a CXR in patients who are suspected
of having PH in order to reveal features supportive of this
diagnosis (24). Recently, we developed an AI application for
CXRs to identify the patients with a high-risk of developing
PH. In the current study, we tested the ability of this model
to predict EIPH in the study cohort. The results showed
that the DL model provided an additive value for predicting
EIPH compared to that achieved by clinical parameters. During
the 6th World Symposium on Pulmonary Hypertension in
2018, a working group proposed revising the hemodynamic
definition of PH by lowering the threshold from ≥25 mmHg
to >20 mmHg in order to identify patients in the early stage
of PH (2). EIPH is a similar concept for detecting early
stage PH. In our previous study on a large patient cohort
(n = 243), mean PAP was higher in patients with EIPH
(19 ± 3 mmHg, around 20 mmHg) than in those with non-
EIPH (17 ± 3 mmHg). One possible reason why the model
performed well in this cohort is that the AI model had been
trained using a cut-off mean PAP value of 20 mmHg. There
is a problem of DL regarding the “black box” algorithm. To
understand our model’s recognition of CXR, we adopted Grad-
CAM. According to the results of the heat map analysis,
our model focused on structures in the cardiac area in
patients with EIPH. These findings may help to understand the
images of EIPH on CXR.

Exercise-Induced Pulmonary
Hypertension and Clinical Variables
In our analysis, most of the resting echocardiographic
measurements were similar in the EIPH and non-EIPH

FIGURE 4 | Examples of gradient-weighted class activation mapping visualizations (grad-CAM). Chest X-rays were visualized using grad-CAM, with the yellow and
red areas showing regions that the deep learning model considered important for detecting EIPH.
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groups. This result emphasizes the importance of stress
echocardiography to identify EIPH. In our cohort, only a higher
mean PAP at rest was found to be associated with a higher risk
of EIPH. This increase in mean PAP at rest can be considered as
an indicator for EIPH in stress echocardiography. Several studies
have reported a correlation between respiratory parameters and
EIPH (25, 26). In the present study, no respiratory parameter was
a significant predictor of EIPH. We speculate that the respiratory
parameters in the patients may not have decreased at the time of
the study because many were in the early stage of PH. Moreover,
PH related to SSc can sometimes be associated with occult left-
side diastolic dysfunction (27). The spectrum of PH is therefore
wide and includes several etiologies (28). For example, during the
development of PAH and heart failure with PH, some patients
may have pulmonary vascular disease and some elements of
occult left-sided heart failure. In our cohort, there were small
differences in E/e’ between the EIPH and non-EIPH groups
(p = 0.15). All patients had an E/e’ < 15 (surrogate of left
ventricular end-diastolic pressure by echocardiography, mean,
7 ± 3) at baseline, while 29 patients on RHC had a pulmonary
artery wedge pressure (PAWP) ≤15 mmHg (mean, 9 ± 3) and
exercise PAWP <25 mmHg (mean, 17 ± 3). Therefore, we could
exclude patients with secondary PH due to left heart involvement
from our patient cohort.

One major concern in the present study was that not
all patients had been confirmed as having EIPH by exercise
RHC, although 97% of the cases of EIPH diagnosed by 6MW
stress echocardiography were identified by exercise RHC. We
gathered a high-risk EIPH cohort including SSc or MCTD with
scleroderma features. Thus, there were smaller sample for the
male population. There was a significant bias and we should
apply this model to the high-risk cohort for EIPH in the further
study. Natriuretic peptides were not measured consistently in our
study cohort. Some cases of unobtainable tricuspid regurgitation
may be problematic. The specific X-ray parameters used by the
convolutional neural network to classify patients with PH are not
well-described because of a “black box” algorithm. Because of
these limitations, these data should be considered as hypothesis-
generating and we consider that larger prospective multicenter
studies are warranted to validate our findings.

Summary Points and Clinical
Implications
EIPH should be diagnosed by stress echocardiography to improve
the prognosis of patients with PH. On the other hand, many
institutes are unable to easily perform stress echocardiography
due to cost and equipment limitations. Therefore, developing
a tool to predict EIPH in advance is clinically important. Our

DL algorithm based on standard CXRs can estimate EIPH in
at risk patients. Graphical Abstract shows a potential pathway
for detecting EIPH in patients with scleroderma. In the high-
risk cohort detected by the AI algorithm, the use of 6MW
stress echocardiography might be considered to assess pulmonary
vascular function and act as a guide for treatment in this high-
risk cohort.

CONCLUSION

Applying the DL model based on a CXR may have a potential for
detection of EIPH in the clinical setting.
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Background: Automatic coronary angiography (CAG) assessment may help in faster

screening and diagnosis of stenosis in patients with atherosclerotic disease. We

aimed to provide an end-to-end workflow that separates cases with normal or mild

stenoses from those with higher stenosis severities to facilitate safety screening of a

large volume of the CAG images.

Methods: A deep learning-based end-to-end workflow was employed as follows: (1)

Candidate frame selection from CAG videograms with Convolutional Neural Network

(CNN) + Long Short Term Memory (LSTM) network, (2) Stenosis classification with

Inception-v3 using 2 or 3 categories (<25%, >25%, and/or total occlusion) with and

without redundancy training, and (3) Stenosis localization with two methods of class

activation map (CAM) and anchor-based feature pyramid network (FPN). Overall

13,744 frames from 230 studies were used for the stenosis classification training

and fourfold cross-validation for image-, artery-, and per-patient-level. For the

stenosis localization training and fourfold cross-validation, 690 images with > 25%

stenosis were used.

Results: Our model achieved an accuracy of 0.85, sensitivity of 0.96, and AUC of

0.86 in per-patient level stenosis classification. Redundancy training was effective to

improve classification performance. Stenosis position localization was adequate with

better quantitative results in anchor-based FPN model, achieving global-sensitivity

for left coronary artery (LCA) and right coronary artery (RCA) of 0.68 and 0.70.

Conclusion: We demonstrated a fully automatic end-to-end deep learning-based

workflow that eliminates the vessel extraction and segmentation step in coronary

artery stenosis classification and localization on CAG images. This tool may be useful

to facilitate safety screening in high-volume centers and in clinical trial settings.

KEYWORDS

stenosis localization, stenosis classification, catheter coronary angiography, end-to-end
workflow, deep learning, redundancy training
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Introduction

Coronary artery disease (CAD) is the leading cause of morbidity
and mortality worldwide (1). X-ray coronary angiography (CAG)
is the current gold standard imaging technique for CAD diagnosis.
Expert CAG interpretation requires considerable “hands-on” training
both visually and cognitively. In clinical practice and also for
quality control purposes in research settings, screening CAG studies
visually to distinguish cases with normal or mild stenosis from those
with higher stenosis severity is a time-consuming process even for
experienced readers. Developing an automatic CAG assessment tool
to exclude normal or mild stenosis cases would facilitate diagnosis
and treatment and enable the screening of large data sets for quality
control purposes.

Recent studies confirmed the feasibility of using deep learning
methods for CAG stenosis detection. Generally, the method consists
of multiple steps. The most widely used vessel-based workflow starts
from the visual or automatic selection of candidate frames (2–4)
or regions (5, 6) from a CAG video. This is followed by the artery
extraction using image segmentation algorithms (7) like center-
tracking (8, 9), model-based (10), or Convolutional Neural Network
(CNN) (11–15). Finally, individual stenotic lesion localization and
classification is performed in two ways: patch-wise (16–18) and
image-wise (2, 3, 6).

However, there are limitations in previous CAG stenosis
classification and detection methods. One of the main drawbacks
is that the vessel shape and characterization (19, 20) were not well
exploited from a multi-view CAG study, causing a relatively low
accuracy in detecting the stenotic lesions, especially in curved or
bifurcation regions in the vascular tree (21, 22). Another limitation
is that there are numerous pre-processing stages (manually or
automatically) in some methods (15, 18, 23), such as detecting
keyframes/region/views from a CAG sequence, or annotating
segmentation for vessels, or preparing patches and labels for training
procedure. The need for extensive human interaction during image
data and training label preparation, in addition to addressing
problems of sampling imbalance during supervised-learning, has led
to algorithms that are commonly evaluated on small datasets prone
to overfitting (7). Clinically speaking, those studies generally aimed
to differentiate significant stenosis from non-significant stenosis in
CAG images while developing a tool to facilitate safety screening of
a large volume of CAG images by separating cases with normal or
mild stenoses from those with higher stenosis severities have not been
targeted (24).

In this study, we propose a fully automatic, deep learning-based
end-to-end CAG stenosis detection method to achieve efficient safety
screening and precise localization of stenoses. Our method consists
of following unique steps that (1) it eliminates the vessel extraction
and segmentation step for supervised learning; (2) the CNN + LSTM
structure is designed for automatic detection of candidate frames
from CAG sequences to improve training efficiency and reduce
overfitting; (3) a multi-view analyzing architecture is established
to train CNNs for different angle-views and generate classification
results in artery-level and patient-level; (4) the redundancy training
strategy is proposed to eliminate the negative effect of background
and unnecessary features in training; and (5) the unsupervised- and
supervised-learning methods are explored to localize the coronary
stenoses in CAG images, which includes an anchor-based feature
pyramid network (FPN).

Materials and methods

Study population

This research was retrospectively performed on 230 participants
with available data from a “Combined Non-invasive Coronary
Angiography and Myocardial Perfusion Imaging Using 320 Detector
Computed Tomography (CORE320)” study (NCT00934037),1

a prospective, multicenter, international study that assessed the
performance of combined 320-row CTA and myocardial CT
perfusion imaging (CTP) in comparison with the combination of
invasive CAG and single-photon emission computed tomography
myocardial perfusion imaging (SPECT-MPI) for detecting
myocardial perfusion defects and luminal stenosis in patients
with suspected CAD (25, 26). For the stenosis classification, 36
studies out of 230 were excluded from the training due to the low
image quality or contrasting condition. These images, however,
were included for evaluation. The original CORE320 study was
approved by central and local institutional review boards, and
written informed consent was obtained from all participants (25, 26).
Given the retrospective and ancillary nature of the data, the current
study is covered by the original CORE320 study IRB.

Candidate frame selection

The entire study workflow is summarized in Figure 1. All the
CAG studies were saved in the universal DICOM format with a
resolution of 512× 512, 15 fps, typically 60–200 frames per view. The
detailed imaging parameters were summarized in Supplementary
Table 1. Coronary type (left and right coronary artery, LCA, and
RCA) was classified initially by experts in a small subset (19 patients).
This was then leveraged by training an inception-V3 classifier (27)
for automated coronary selection (100% classification accuracy was
obtained). To identify the angle views of the CAG images, DICOM
tags were used. Overall 4 angles for LCA [left anterior oblique
(LAO) Cranial, LAO Caudal, right anterior oblique (RAO) Cranial,
and RAO Caudal] and 3 angles for RCA (LAO, straight RAO, and
shallow LAO/RAO Cranial) were used based on the optimal view
map (OVM) (20).

A CNN + Long Short Term Memory (LSTM) network was
implemented for the candidate frame selection from 19 patients (146
videos in total, and 18,688 frames overall). A candidate frame was
defined as an image with good quality, full contrasting, clear vessel
border, and anatomical significance of stenosis (if it had stenosis)
in a video frame. Inception-v3 was employed as a basic classifier
to recognize full-contrasting frames and non-contrasting frames as
candidates or redundancy frames. Then, the fully connection layer
of inception-v3 was output to a bi-directional LSTM with 32 time-
steps (units), and also concatenated with the output of forward and
backward LSTM units. The concatenation result was connected with
a multi-layer perception (MLP, with one hidden layer) and a binary
activation layer (sigmoid). The detailed structure of inception-v3
and LSTM is provided in Supplementary Figure 1. The inception
model was initialized by ImageNet weights and then pre-trained for
200 epochs with the initial learning rate (LR) of 1e−4 with the loss

1 https://clinicaltrials.gov/ct2/show/NCT00934037
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FIGURE 1

Dataset and algorithm workflow. Three steps of data preparation, stenosis classification, and stenosis positioning were presented. The steps of image and
training label preparation including coronary artery selection, viewing angle selection, and contrasting frame detection were designed in a fully
automatic manner. Stenosis severity classification training was performed on image-level, artery-level, and patient-level. Stenosis positioning was
performed in two methods of CAM-based and anchor-based methods. CAM, class activation map; QCA, quantitative coronary angiography.

function as binary entropy. The LSTM was initialized using Xavier
uniform method for kernels and orthogonal matrix for recurrent
weights, then trained for 100 epochs with LR = 4e−5 with the loss
function of convolutional F1 score. Typically, this strategy selected
5–10 candidate frames per video.

The performance of candidate frame detection was tested with
582 videos from 175 patients using mean error and standard

deviations of beginning contrasting frame (BCF) and ending
contrasting frame (ECF) between ground-truth and prediction.
The acceptance and error rates were also calculated with average
differences of BCF and ECF in a pre-defined range (2), in which
accept rate with the error ≤3 frames and error rate with the
error ≥10 frames. Performance was reported using classification
accuracy, F1, and Kappa.
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FIGURE 2

The architecture of the output of the stenosis classification inception model. A max-pooling layer was added to the output of inception to evaluate the
artery-level stenosis prediction and the patient-level stenosis prediction. LCA, left coronary artery; LAO, left anterior oblique; RAO, right anterior oblique;
RCA, right coronary artery; QCA, quantitative coronary angiography.

Stenosis classification

For the stenosis classification, the quantitative coronary
angiography (QCA) results previously documented per segmental
level in the CORE320 study were utilized as a reference (25, 26, 28).
In the current study, in order to accommodate with our study goals
(separating cases with normal coronary arteries or mild stenoses
from that with higher stenosis severities), coronary stenosis severities
were re-categorized into the per-coronary artery, i.e., per LCA or
RCA, and grouped into three categories of < 25%, 25–99%, and total
occlusion in 3-categories (CAT), or two groups of < 25 and ≥ 25%
in 2-CAT. It is known that there is a mismatch between the coronary
stenosis severity and functional significance. Even the intermediate
stenosis lesion can present functionally significant stenosis by
fractional flow reserve (29, 30). Since we aimed to develop a safety
screening tool for a large volume of the CAG images, we selected a
stenosis threshold with high specificity to correctly separate cases
that does and does not need further functional stenosis assessment.

Different CNN architectures of ResNet-50, ResNet-101,
Inception-v3 and InceptionResNet-v2 were employed for the
image-level stenosis classification training and prediction. And
the inception-v3 was employed finally in image-level, artery- and
patient-level stenosis prediction, since it has a good balance in
transfer timing, parameter size and performance. The training was
performed on 4 models of LCA for each angle view and one model
of RCA combining the three angle views due to the complicated
features of LCA when compared to the RCA (31).

The classification prediction of artery-level and patient-level was
implemented by a multi-view analyzing architecture, as described in
Figure 2. For artery-level prediction, CNN scores from 4, or, 3 angle-
views were combined and fed into a max pooling layer to generate
LCA/RCA classification results, respectively. Similarly, the patient-
level prediction scores were generated by feeding LCA and RCA
scores into another max pooling layer (Figure 2). For the image-
level labeling, 2 or 3-CAT stenosis categories were assigned in each

angle view. For the artery-level labeling, 2-CAT stenosis categories
were assigned in each coronary artery, i.e., in the LCA and the RCA.
Overall 10,872 frames from 194 studies were used for image-level
stenosis classification training and 13,744 frames from 230 studies
were used for the fourfold cross-validation. The distribution of the
cases in the image-, artery-, and patient-levels are summarized in
Table 1. Performance of image-level classification on 3- CAT and
2- CAT with and without redundancy training was reported using
accuracy, sensitivity, F1, Kappa, and area under the curve (AUC).
Performance of artery-level and per-patient level classification was
assessed on the 2-CAT with redundancy training image-level results
and reported using accuracy, sensitivity, and AUC.

Redundancy training

In the image-level stenosis classification training, the redundancy
frames were accessorily added to the training dataset but not in the
validation set. A redundancy frame was defined as a background
frame without any contrasting agent in arteries. Thereafter, the
redundancy categories were comprised of background frames with
the roughly same amount of samples as the target categories in
training dataset. Subsequently, there are 12,351 redundancy frames
combined with 10,872 candidate frames in 3- and 2- CAT image-
level training, namely redundancy training, as the similar methods
used before (3, 32). It is expected that the use of redundancy
frames can hedge against the invalid feature learning and reduce the
train/test overfitting.

Stenosis localization

For the stenosis positioning, two methods were investigated: (1)
class activation map (CAM) (33) based on the back-propagation from
the stenosis classification decision and (2) anchor-based FPN. The
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anchor-based FPN model is developed from RetinaNet (34) and FPNs
(35), using the pre-trained inception-V3 as backbone. The network
structure is demonstrated as Supplementary Figure 2. The 1st, 2nd,
and 3rd feature map in the pyramid were derived from the output
of the concatenate feature before the 1st, 2nd, and 3rd pooling layer,
respectively. The 4th and 5th feature maps were down sampled from
the previous layers. For FPN inputs, 1,588 positioning boxes with a
minimal size of 35 × 35 pixels were annotated by two independent
expert cardiologists. The shapes of anchor were preset by K-Means
clustering method with seven different groups of height and width.
The anchor-based model was trained with Learning Rate = 1e−4

over 500 epochs. Then FPN was built on the feature maps of pre-
trained classification models. The same reader-annotated bounding
boxes were also used for the evaluation of the CAM-based localization
technique. For the positioning training and fourfold evaluation, 690
frames with > 25% stenosis were used (Figure 1).

The performances of the two stenosis localization methods were
assessed by the metrics of global-sensitivity, per-stenosis-sensitivity
(Sens_s), per-stenosis-specificity (Spec_s), and mean square error
(MSE). Global-sensitivity was defined as the recall of localization
for the most significant stenosis in the images, which is similar to
AR∧(max = 1) in COCO benchmark (21). Sens_s and Spec_s were
defined as the recall rate of all stenosis localizations in the images.
MSE was assessed in 512 × 512 images for the CAM-based model
and the anchor-based models. Due to the lower resolution, metrics for
the CAM-based model were calculated with Intersection over Union
(IoU) > 0.2 in the CAM-based model whereas IoU > 0.5 for the
anchor-based model.

TABLE 2 Clinical characteristics of the study participants.

Characteristic Included (n = 230)

Age (years) 62 (55, 69)

Age ≥ 60 years 134 (58%)

Male sex 160 (70%)

Race

White 103 (45%)

Black 18 (8%)

Asian 105 (46%)

Other 4 (2%)

Body mass index (BMI, kg/m2) 26 (24, 29)

Obesity (BMI ≥ 30 kg/m2) 51 (22%)

Hypertension 188 (82%)

Diabetes mellitus 80 (35%)

Dyslipidemia 159 (71%)

Current smoker 35 (16%)

Family history of CAD 88 (41%)

Diamond-forrester risk score

Low 4 (2%)

Intermediate 164 (71%)

High 62 (27%)

Previous cerebrovascular accident 9 (4%)

A total of 230 individuals were included in our analysis. The median age was 62 years (IQR 55,
69), 70% were men, 45% were white, 82% had hypertension, 71% had dyslipidemia, 16% were
current smokers, and 27% had a high pretest probability of obstructive coronary artery disease.
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Statistical analysis

All the statistical evaluation was performed in Python (version
3.6; Python Software Foundation, Wilmington, Del).2 In this study,
the calculation for diagnostic performance was based on a per-patient
approach, including image-level severity classification. Accuracy, f1-
score, and Cohen’s Kappa were calculated for image-level stenosis
classification; receiver operating characteristic (ROC) analysis and
areas under the curves (AUC) were used to further evaluate
the image-/artery-/patient-level diagnostic performance. Stenosis
positioning was evaluated by sensitivity, specificity, and MSE as
described above. The CNN, LSTM, CAM, and anchor-based models
were performed on TensorFlow (version 2.4.0), Python (version
3.6), and the Ubuntu system (version 20.04). All metrics were
computed using Scikit-learn, version 0.19.1. Continuous variables
that were normally distributed were summarized and reported as
means± standard deviations.

Results

Patient characteristics

The study participants’ characteristics are given in Table 2. A total
of 230 individuals were included in our analysis. The median age
was 62 years (IQR 55, 69), 70% were men, 45% were white, 82% had
hypertension, 71% had dyslipidemia, 16% were current smokers, and
27% had a high pretest probability of obstructive CAD.

Candidate frame selection

The automatic model achieved a mean error of 2.05 and 2.27 in
BCF and ECF detection, respectively. The acceptance and error rates
were 83% and 5.0%. A common feature of misclassified cases was a
relatively short contrast duration in the video (typically < 5 frames
with adequate vessel-to-background contrast). The network did not
adequately handle this type of condition because the training dataset
had very few instances of short-duration contrasting frames.

Stenosis classification

The stenosis classification results in 3-CAT and 2-CAT with and
without redundancy training models are summarized in Table 3 and
Figure 3. In brief, the image-level classification performance was
better in 2-CAT than 3-CAT for the LCA while not significantly
different for the RCA. The redundancy training improved the AUC
values for both 2-CAT and 3-CAT, as well as the accuracy, F1-score,
and kappa score in 2-CAT. Based on the better performance in 2-
CAT as well as our aim to separate normal coronary/mild stenoses
from higher severity of stenosis, 2-CAT evaluation was performed
for artery-level (LCA and RCA) and patient-level classification. The
accuracies were 0.83, 0.81, 0.85, the sensitivities were 0.94, 0.90, and
0.96 and AUCs were 0.87, 0.88, and 0.86 at the artery-level; LCA and
RCA, and at the per-patient level, respectively. A representative image

2 https://www.python.org
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FIGURE 3

Performance of coronary stenosis classifications in image, coronary artery, and patient levels. (A,B) ROC curves of image-level classification on 3-CAT
and 2-CAT with and without redundancy training on LCA and RCA. (C,D) ROC curves of coronary artery level classification on LCA and RCA. (E) ROC
curve of patient-level classification. The AUC values are summarized in Table 3. RCA, right coronary artery; LCA, left coronary artery; AUC, area under the
curve.

illustrating the effect of the redundancy training is demonstrated
in Figure 4 with visualization aided by a heatmap. The overfitting
caused by background structures is markedly reduced, likely resulting
in the improvement in classification performance.

Additionally, the image-level classification performances of
different CNN models of ResNet-50, ResNet-101, Inception-v3 and
InceptionResNet-v2 were compared in Table 4. The comparative
result suggests that Inception-v3 is the most suitable one among all
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FIGURE 4

A representative image of the effect of the redundancy training demonstrated in a heatmap style. In the original training, the model had mid-to-high
level attention on background regions. The redundancy training reduced the overfitting caused by background structures and improved the
performance of stenosis classification.

four models, because of its fast inference speed, small size, and high
accuracy in many tasks.

Stenosis localization

Quantitative results were summarized in Table 5. In brief, the
anchor-based FPN method showed better performance than the
CAM-based method by all the metrics studied. Both the localization
techniques performed better for RCA images than for LCA images.
In both methods, Sensitivity was low due to the many annotations
that highlighted small lesions that had ambiguous feature patterns in
the arteries. Performance was also lower when there were multiple
stenoses in distal coronary arteries or branches (see Figure 5 for
illustration).

Discussion

In this study, we developed a CAG stenosis detection and
localization tool to facilitate safety screening of a large volume
of the CAG images. The main findings from the present study
are summarized as follows: (1) the fully automatic, end-to-end
workflow, which eliminated the vessel extraction and segmentation
step for supervised-learning was developed; (2) the multi-view
CAG analyzing architecture for artery- and patient-level stenosis
classification, achieving an accuracy of 0.85, a sensitivity of 0.96 and
an AUC of 0.86 at the per-patient level; (3) redundancy training
improved classification performance, hedged against the invalid
feature learning and reduced the error between the training and
validation sets; (4) stenosis localization was investigated with two
methods of CAM-based and anchor-based models, with superior
quantitative results with the anchor-based models.

End-to-end workflow is advantageous in reducing human
interaction steps. In our proposed workflow, once applied to the CAG
videos, the model automatically selects the optimal frames, performs
stenosis classification and localizes stenosis positions, providing
robust results at both the artery and patient levels. Our workflow
is advantageous in a large volume clinical setting or quality control
purposes because the timely screening of many CAG videos to
identify cases with normal or only mild stenoses consequences
to secure more time on the cases with higher stenosis severities,
which can translate into improved productivity and facilitated safety
screening. Additionally, by providing stenosis classification and
localization, the reader/physician can quickly focus on the lesion and
perform quantitative CAG in an efficient manner.

The candidate frame selection performance presented here was
better than previous publication by another group (4), likely due to
the use of the bi-directional CNN + LSTM network to effectively
extract high dimensional features of contrast flows from images, so
that the network can effectively detect the changing trend in temporal
sequences and find the contrast frames with higher accuracy than
the RNN-only method (4). The stenosis classification results in the
current study are encouraging that are comparable and sometimes
outperforming when compared to the methods reported in previous
studies; in which the image-based stenosis classification methods (5,
36) presented patient-level 2-CAT sensitivity of 0.80, 0.87; other three
vessel- and patch-based studies (6, 9, 17) presented accuracies of
0.94, 0.97, and 0.92, respectively. We attribute our favorable results to
addressing different aspects of a typical CAG study such as multiple
angle views, background frames, and visually insignificant features of
vessel stenoses through redundancy training to reduce overfitting in
classification training.

Redundancy training is an effective tool for improving
classification accuracy and reducing the error between the training
and validation sets. In the original training, CNNs may be activated
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by invalid features such as image background and artifacts, which can
be visualized from CAM heatmap. Comparatively, the redundancy
frames were introduced as new categories in redundancy training,
therefore the stenosis features were more activated on effective
features such as vessel morphology, intensity change and narrow
characteristics.

The comparison between 2-CAT and 3-CAT classification implies
extra characteristics in stenoses analyzing. From the experimental
result, the image-level classification performance is better in 2-
CAT than 3-CAT for the LCA (accuracy = 0.77 vs. 0.71) while
not significantly different for the RCA (accuracy = 0.84 vs. 0.83).
One possible reason is that LCA anatomy presents itself with
more variation than RCA (31), causing adverse factors against
the CNN models to detect vascular blockage and occlusion in 3-
CAT classification. Another explanation is that there are slightly
imbalanced category distributions in 3-CAT classification than in 2-
CAT, resulting in reduced accuracy (in LCA) and sensitivities (both
in LCA and RCA).

Our study also explores a solution to the stenosis localization
problem via an object detection framework. Two different stenosis
localization methods of CAM and FPN were compared. The CAM-
based model has the strength of employing a simple derivation
that uses stenosis classification as a backbone model. However,
as the activation map should be calculated by feature maps in
deep layers from CNNs, CAM method is unfavorable for fine-
grained and multiple object detection, such as small blood vessel
stenoses in the same CAG image. In contrast, anchor-based
model showed a better performance for stenosis positioning, since
the different scales of features can be well exploited by feature
pyramid structure. The trade-off is that the additional annotations
and supervised-learning procedure were necessary for training the
anchor-based model. Additionally, the comparison of the stenosis
localization performances between RCA and LCA also support
our viewpoint that the complexity of morphology and structure
of angiographic vessels may be a severely adverse factor to the
accuracy of the algorithms (classification and localization). In LCA
angle views, two main arteries (LAD and LCX) may interlap on
the 2-dimensional CAG image and twist with each other, raising
difficulties in stenosis visualization. In some cases, there are multiple
lesions in separate vessels or segments in LCA (such as second
diagonal, second obtuse marginal or posterolateral), with vague
and insignificant visual characteristics. By comparison, RCA has
clearer vessel shapes and simpler morphologic characteristics so that
more significant stenosis features. Therefore, all the above factors
lead to better localization performances with both methods for
RCA than for LCA.

Future work will aim at the following aspects. (1) We could
perform an external validation in different studies as a means to
generalize our technique and further improve performance. We
believe that the proposed method will achieve good results with
new images. Considering that the new dataset may have different
imaging parameters (angle views, phase intervals, and FOVs),
we may have to adjust the image pre-processing algorithm to
accommodate the new images. Furthermore, transfer learning in
a small subset could also improve performance. (2) Application
in a variety of clinical or investigative scenarios beyond safety
screening with different clinical goals such as fine-grained stenosis
classification/localization.

Our study had a few important limitations. Training and
evaluation were performed in the same cohort. A validation
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TABLE 5 Performance of the stenosis localization algorithms for the LCA and RCA.

CAM-based Anchor-based

Global-
sensitivity

Senss Specs MSE
(deviation)

Global-
sensitivity

Senss Specs MSE
(deviation)

LCA 0.59 0.25 0.43 103.3 (71.18) 0.68 0.44 0.68 39.3 (40.00)

RCA 0.61 0.17 0.51 79.5 (47.21) 0.70 0.51 0.77 37.6 (51.63)

Results are presented as the global sensitivity, sensitivity, specificity, and MSE for the two techniques presented—the CAM-based model and the anchor-based model. Global-sensitivity was defined
as the sensitivity of one most severe stenosis localization per image. Due to the low resolution, metrics (Sens, Sens_s, Spec_s) for the CAM-based model were calculated with IoU > 0.2 whereas the
metrics for the anchor-based model were calculated with IoU > 0.5.
LCA, left coronary artery; RCA, right coronary artery; Sens_s, per-stenosis sensitivity; Spec_s, per-stenosis specificity; MSE, mean square error; CAM, class activation map; IoU,
intersection over union.

FIGURE 5

Representative images of stenosis position localization experiments. Predicted boxes from the anchor-based model produced more accurate boxes
when compared to the CAM-based model. Multiple stenoses in distal coronary arteries or branches were difficult for correct localization, which was the
main reason for the failed cases.

study using an external cohort is needed to accurately assess the
performance of our techniques. Stenosis classification was simply
categorized into three groups of < 25, 25–99%, and total occlusion
for 3-CAT while < 25 and 25–100% stenosis for 2-CAT. Our aim
was to develop a tool that identifies normal and mild stenosis cases
within a large cohort. In this regard, more granular categories for
mild to moderate stenosis may be considered for different clinical or
investigational purposes, such as the detection of hemodynamically
significant stenosis.

Conclusion

In conclusion, a fully automatic end-to-end deep learning-based
workflow for CAG images that eliminates the vessel extraction
and segmentation step was accomplished. Our redundancy-based
algorithm showed high accuracy for stenosis classification, and
accurate localization was achieved by an anchor-based model. This
end-to-end approach may facilitate safety screening in high-volume
centers and in clinical trial settings.
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SUPPLEMENTARY FIGURE 1

The detailed structure of inception-v3 and LSTM. Inception-v3 was employed
as a basic classifier to recognize full-contrasting frames and non-contrasting
frames as candidates or redundancy frames. Then, the fully connection layer
of inception-v3 was output to a bi-directional LSTM with 32 time-steps
(units), and also concatenated with the output of forward and backward LSTM
units. The concatenation result was connected with a multi-layer perception
(MLP, with one hidden layer) and a binary activation layer (sigmoid).

SUPPLEMENTARY FIGURE 2

The architecture of the anchor-based feature pyramid network for stenosis
localization. The 1st, 2nd, and 3rd feature map in the pyramid were derived
from the output of the concatenate feature before the 1st, 2nd, and 3rd
pooling layer, respectively. The 4th and 5th feature maps were down sampled
from the previous layers. The shapes of anchor were preset by K-Means
clustering method with seven different groups of height and width.
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