Addition of nanoparticles into a fluid can improve the heat transfer performance of the base fluid in heat exchangers. In this work, the preparation method and process of nanofluids are introduced, and thermal properties of nanofluids, such as thermal conductivity and viscosity, are discussed deeply. This paper summarizes various theoretical models of thermal conductivity and viscosity of nanofluids. A comprehensive literature survey on applications and limitations of nanofluids has been compiled. This paper also aims to review the natural and forced convective heat transfer characteristics of nanofluids with and without magnetic fields. The discussion for the natural convective heat transfer of nanofluids focuses on the heat transfer performance of non-conventional enclosures and electric heaters. The effects on heat transfer due to variations of heated walls are also investigated. Specific applications of nanofluids in a tube with trapezoidal ribs, double-tube heat exchangers, and plate heat exchangers have been reviewed and presented in a discussion about forced convective heat transfer. The previous results show that the inlet temperature of nanofluids obviously affects the heat transfer characteristics of double-tube heat exchangers, whereas a multi-walled carbon nanotube–water nanofluid shows significant advantages in plate heat exchangers. Finally, this paper studies natural convective heat transfer of magnetic fluids in a square cavity and forced convection heat transfer in a straight tube and a corrugated structure under the action of magnetic fields. It is found that the heat transfer performance of an Fe3O4–water nanofluid is enhanced when a magnetic field is applied to the corrugated plate heat exchangers, and the pressure drop can be reduced by around 10%. It is recommended that natural convection of magnetic fluids needs to be investigated experimentally in a real cavity and a corrugated channel under the influence of a magnetic field. In addition, studies of alternating magnetic field are recommended to reveal any improvements of thermal performance of magnetic fluids in heat exchange devices. This review puts forward an effective solution for improvement of the thermal performance of heat transfer equipment and serves as a basic reference for applications of nanofluids in heat transfer fields.
It is well known that magnetic nanofluids are widely applied in various fields ranging from heat transfer to miniature cooling, and from damping to sealing, due to the mobility and magnetism under magnetic field. Herein, the PFPE-oil based magnetic nanofluids with superior magnetization and dispersion stability were obtained via regulating reaction temperature. The structures of particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The size effects of particles on the magnetism and coating effect of particles, and on the stability and saturation magnetization of the fluids were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM) and density instrument, respectively. The results indicate that the impurity phase FeOOH only appear in the sample prepared at 18°C and the average size of Fe3O4 nanoparticles reduces from 120 to 20 nm with raising reaction temperature. The saturation magnetization of Fe3O4 particles increases firstly and then reduces with increasing particle size, which is affected by the thickness of magnetic dead layer and impurity phase FeOOH. The Fe3O4 particles could be chemically coated by PFPE-acids, and the coated mass is a little affected by particle size. The stability of the nanofluids lowers while the saturation magnetization increases firstly and then decrease with increasing particle size. At reaction temperature of 60°C, Fe3O4 particles of 25 nm and the nanofluids with superior stability and saturation magnetization were obtained. Our results indicate that the control of nanoparticles size by regulating reaction temperature can be a useful strategy for preparing magnetic nanofluids with desirable properties for various potential applications.
This paper investigates the thermophysical properties and heat transfer performance of graphene nanoplatelet (GNP) and alumina hybrid nanofluids at different mixing ratios. The electrical conductivity and viscosity of the nanofluids were obtained at temperatures between 15–55°C. The thermal conductivity was measured at temperatures between 20–40°C. The natural convection properties, including Nusselt number, Rayleigh number, and heat transfer coefficient, were experimentally obtained at different temperature gradients (20, 25, 30, and 35°C) in a rectangular cavity. The Mouromtseff number was used to theoretically estimate all the nanofluids’ forced convective performance at temperatures between 20–40°C. The results indicated that the thermal conductivity and viscosity of water are increased with the hybrid nanomaterial. On the other hand, the viscosity and thermal conductivity of the hybrid nanofluids are lesser than that of mono-GNP nanofluids. Notwithstanding, of all the hybrid nanofluids, GNP-alumina hybrid nanofluid with a mixing ratio of 50:50 and 75:25 were found to have the highest thermal conductivity and viscosity, enhancing thermal conductivity by 4.23% and increasing viscosity by 15.79%, compared to water. Further, the addition of the hybrid nanomaterials improved the natural convective performance of water while it deteriorates with mono-GNP. The maximum augmentation of 6.44 and 10.48% were obtained for Nuaverage and haverage of GNP-Alumina (50:50) hybrid nanofluid compared to water, respectively. This study shows that hybrid nanofluids are more effective for heat transfer than water and mono-GNP nanofluid.
The high share of buildings in energy consumption and carbon dioxide emission has led researchers to seek techniques to reduce energy consumption in this sector. In this study, considering a hot and arid climate region, the wall’s heat gain was investigated. To reduce energy demand, three techniques of adding PCM, combining absorption chiller with a solar system and dispersing nanoparticles were used and the results were evaluated transiently. In July, the addition of PCM to the building's walls reduced the heat exchange between interior and exterior spaces up to 21%. To cool the interior spaces, the combination of absorption chiller + fan coil was used and several flat plate collectors were integrated with it to reduce energy demand. By collecting energy in solar collectors and using a stratified tank, energy consumption in the generator section was reduced by 450 kWh. Nanoparticles were used to improve the solar system performance and it was found that loading ZnO and Al2O3 nanoparticles is useful. Dispersing ZnO into water increased the energy-saving by 9.5% while the second nanoparticle improved it by 14.5%.