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In 2011, the National Institutes of Health 
(NIH), in collaboration with leaders from the 
pharmaceutical industry and the academic 
community, published a white paper describ-
ing the emerging discipline of Quantitative 
Systems Pharmacology (QSP), and recom-
mended the establishment of NIH-supported 
interdisciplinary research and training pro-
grams for QSP. QSP is still in its infancy, but 
has tremendous potential to change the way 
we approach biomedical research. QSP is 
really the integration of two disciplines that 
have been increasingly useful in biomedical 
research; “Systems Biology” and “Quantitative 
Pharmacology”. Systems Biology is the field of 
biomedical research that seeks to understand 
the relationships between genes and biolog-
ically active molecules to develop qualitative 
models of these systems; and Quantitative 
Pharmacology is the field of biomedical 
research that seeks to use computer aided 
modeling and simulation to increase our 

understanding of the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, and to 
aid in the design of pre-clinical and clinical experiments. The purpose of QSP modeling is to 
develop quantitative computer models of biological systems and disease processes, and the 
effects of drug PK and PD on those systems. QSP models allow testing of numerous potential 
experiments “in-silico” to eliminate those associated with a low probability of success, avoiding 
the potential costs of evaluating all of those failed experiments in the real world. At the same 
time, QSP models allow us to develop our understanding of the interaction between drugs and 
biological systems in a more systematic and rigorous manner. As the need to be more cost-ef-
ficient in the use of research funding increases, biomedical researchers will be required to gain 
the maximum insight from each experiment that is conducted. This need is even more acute 
in the pharmaceutical industry, where there is tremendous competition to develop innovative 
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therapies in a highly regulated environment, combined with very high research and development 
(R&D) costs for bringing new drugs to market (~$1.3 billion/drug). Analogous modeling & 
simulation approaches have been successfully integrated into other disciplines to improve the 
fundamental understanding of the science and to improve the efficiency of R&D (e.g., physics, 
engineering, economics, etc.). The biomedical research community has been slow to integrate 
computer aided modeling & simulation for many reasons: including the perception that biology 
and pharmacology are “too complex” and “too variable” to be modeled with mathematical equa-
tions; a lack of adequate graduate training programs; and the lack of support from government 
agencies that fund biomedical research. However, there is an active community of researchers in 
the pharmaceutical industry, the academic community, and government agencies that develop 
QSP and quantitative systems biology models and apply them both to better characterize and 
predict drug pharmacology and disease processes; as well as to improve efficiency and produc-
tivity in pharmaceutical R&D.
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Quantitative Systems Pharmacology (QSP) has emerged recently as an approach that integrates
knowledge coming from multiple disciplines including drug pharmacology, systems biology,
physiology, mathematics and biochemistry. QSP was formally defined as a discipline and endorsed
in the NIH White Paper (Sorger et al., 2011) in 2011. It has emerged at a time when the
pharmaceutical industry is facing growing challenges in efficiency and productivity in R&D. QSP
has the potential to help overcome some of these challenges. QSP models allow researchers to
evaluate multiple hypotheses in-silico that would otherwise need to be evaluated experimentally.
There is an expectation that the use of QSP will reduce the cost of R&D and the risks associated
with uncertainties and gaps in our knowledge while bringing new therapies to patients.

QSPmodels are typically perceived as a research tool for hypothesis generation in drug discovery
and exploratory clinical development; however, recently the US FDA used a QSP model to
evaluate a proposed drug regimen for a new biologic therapy (Peterson and Riggs, 2015). In their
communication with NPS Pharma, the FDA’s Clinical Pharmacology division used a published
QSP model of the calcium homeostasis system (Peterson and Riggs, 2010) to recommend an
alternate dosing regimen for NATPARA, an injectable parathyroid hormone replacement drug used
to control low blood calcium in patients with hypoparathyroidism. The use of a QSP model by the
FDA to recommend an alternate dosing regimen to a sponsor highlights one of the important future
applications of QSP models in regulatory interactions, and also represents an important milestone
for the field. It is the first public instance of a QSPmodel being used by a regulatory agency to make
a clinical recommendation to a sponsor. In the future, it is anticipated that it will be sponsors that
leverage the utility of QSP models to support their own clinical decision making with regulatory
agencies.

In the present research topic entitled, “The Emerging Discipline of Quantitative Systems
Pharmacology,” we provide an introduction to the developing field of QSP with a series of articles
that describe models in different disease areas; showing how these models can be used to evaluate
important research questions in pharmaceutical R&D. The research topic starts with a perspective
article by Leil and Bertz (2014) that describes the history of how modeling tools where used
in pharmacology and in drug development. The authors point out two major reasons for the
growing importance of the QSP approach, (i) difficulty in finding new targets for therapies, and
(ii) increasing cost and time required for developing a successful drug. Integrated into the drug
development process, QSP modeling could become an effective tool to facilitate R&D; for example
to translate knowledge between experimental systems (e.g., animal to human), and to predict
the effects of multiple therapeutic interventions in combination; a task that would be inefficient
using only clinical experimentation. The other articles in the research topic go on to demonstrate
applications of QSP models to influence decision making in biomedical research.

One of the important applications of QSP modeling in pharmaceutical R&D is optimization
of clinical dose and schedule. Oncology is one of the disease areas where the narrow therapeutic
window of most therapeutics demands fine tuning of dose and schedule. Utilization of high doses
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of anti-angiogenesis therapy can result in rapid suppression
of angiogenesis and hypoxia leading to tumor shrinkage.
Paradoxically, this can subsequently lead to reduced drug delivery
to the tumor and resumption in tumor angiogenesis, followed
by progression of tumor growth. The paper by Sharan and Woo
(2015) discusses how to delay or prevent this from happening
by optimizing the dose and regimen of the anti-angiogenesis
therapies with a QSP model of angiogenesis.

Another important application of QSP models is to provide
mechanistic explanations for clinical data that are often
counterintuitive to the perceived mechanism of action (MoA) of
a drug. Despite the fact that two SGLT2 inhibitors are already
approved for use in patients, questions remain regarding their
MoA and why efficacy is lower than expected based on their high
potency and selectivity for SGLT2. The papers by Demin et al.
(2014) and Lu et al. (2014) explored this issue using mechanistic
models of renal tubular filtration and transport, incorporating
the PK and MoA of SGLT2 inhibitors. Lu et al. (2014) proposed
two possible explanations for the lower than expected efficacy;
the residual activity of SGLT2 following inhibition in the renal
tubules, and the compensatory effect of SGLT1. Demin et al.
(2014) supported this hypothesis, but also offered an alternative
in which the sites of action of SGLT2 inhibitors are located
not in the lumen of the kidney’s proximal tubules where the
concentration of SGLT2 inhibitor is high, but perhaps in the
proximal tubule where the concentration of inhibitor is lower.
Complex dose-response dependencies are often encountered in
many disease areas, for instance, in treatments of schizophrenia
as investigated by Spiros et al (Spiros et al., 2014). With the
use of a sophisticated QSP model of cognitive impairment in
schizophrenia, the authors predicted an inverse U-shape dose-
response with glycine that is a consequence of the shifting balance
between excitation and inhibition in the cortical network.

The application of mechanistic models for prediction of
target dependent or independent toxicity in secondary tissues
has been the focus of QSP for many years, as this is the
most common reason for termination of the development of
otherwise efficacious therapies. In order to predict toxicity using
a mechanistic model, it is useful to incorporate a physiologically
based PK (PBPK) model to predict drug concentrations in the
target organ. Woodhead et al. (2014) described the use of a
PBPK/toxicity model of drug induced liver injury (DILI) to
evaluate the impact of bile salt export pump (BSEP) inhibition
on hepatotoxicity in rats and humans. The DILI model was
used to predict the responses to BSEP inhibitors with and
without clinical hepatotoxicity. In accordance with the observed

clinical data, the model predicted that bosentan, but not
telmisartan, will cause mild hepatocellular ATP decline and
serum ALT elevation. Similar to the research by Woodhead
et al. (2014), Chetty et al. also relied on PBPK to predict drug
concentrations in tissue, linking these concentrations to target-
mediated pharmacodynamic (PD) effects (Chetty et al., 2014).
They did so using the Simcyp PBPK simulator, a tool that has
a built-in PBPK model and allows users to input drug specific
parameters that have been measured in-vitro to predict in-vivo
plasma and tissue PK. Simcyp has become an important tool
for pharmaceutical R&D and for communicating with regulatory

agencies regarding the PK of investigational drugs and their
potential PK-related drug-interactions. Chetty et al. described
the use of Simcyp to predict the tissue concentrations of four
different drugs, metoprolol, nifedipine, triazolam, and zolpidem
(Chetty et al., 2014). They demonstrated how polymorphisms
in drug metabolizing enzymes would have an effect on the
concentration of drugs in the target tissue and the subsequent
impact on pharmacodynamics.

One of the technical issues that potentially limit more
widespread use of QSP in biomedical research is the lack
of an accepted standard modeling tool to facilitate sharing
of models between researchers. The tool should permit
evaluation of experimental scenarios of interest in a flexible
computational environment for conducting efficient high
throughput simulation. A potential solution was implemented
in the web-based virtual systems pharmacology (ViSP) platform
described in the article by Ermakov et al. (2014). The salient
feature of ViSP is the use of a model in the form of an executable
file. Matched with a full set of model parameters this executable
becomes independent of the model structure and the software
that were used to develop themodel while preserving flexibility in
the input parameters. These characteristics could be useful in the
future when the utilization and sharing of QSP models becomes
more widespread.

In conclusion, we would like to emphasize the emerging
potential that QSP holds for biomedical research and in particular
to improve decision making in pharmaceutical R&D. In order
for this to occur, QSP will need to present more examples of the
value that it can bring to the process of hypothesis generation and
testing; examples like those included in this research topic.
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The empirical hypothesis generation and testing approach to pharmaceutical research
and development (R&D), and biomedical research has proven very effective over the last
half-century; resulting in tremendous increases productivity and the rates of approval for
new drug applications at the Food and Drug Administration (FDA). However, as discovery
of new therapeutic approaches for diseases with unmet medical need becomes more
challenging, the productivity and efficiency of the traditional approach to drug discovery
and development is diminishing. Innovative approaches are needed, such as those offered
by Quantitative Systems Pharmacology (QSP) modeling and simulation. This “systems”
approach to modeling and simulation can be used to guide the hypothesis generation
and testing process in pharmaceutical R&D, in a manner similar to its adoption in other
industries in the past. Embedding QSP into the existing processes within pharmaceutical
discovery and development will be required in order to realize the full beneficial impact of
this innovative approach.

Keywords: Quantitative Systems Pharmacology, pharmaceutical R&D, modeling and simulation, Systems Biology,
pharmacometrics, drug discovery and development

INTRODUCTION
One of the oldest documents recording the process of drug
discovery is the Ancient Egyptian “materia medica” dating to the
sixteenth century B.C. This approach to drug discovery, based on
empirical evidence from the natural world, is known as Pharma-
cognosy (de Pasquale, 1984), and was the primary means of drug
discovery until the middle of the twentieth century. Advances
in biochemistry, molecular and cellular biology, and medicinal
chemistry during middle of the twentieth century resulted in a
shift to a more hypothesis driven, mechanism-based approach
to drug discovery (Drews, 2000). This approach includes mining
of data from human epidemiology studies, combined with non-
clinical in vitro and in vivo experiments to demonstrate the
validity of a therapeutic target. The addition of high through-
put chemical synthesis and screening permits identification of
target selective, high affinity compounds. This hypothesis driven
approach to pharmaceutical research and development (R&D)
has been a tremendous advance relative to the ancient methods
of Pharmacognosy, and resulted in a dramatic increase in the per-
centage of new drug applications (NDAs) approved by the Food
and Drug Administration (FDA) since the early 1960s (Figure 1A;
U.S. Food and Drug Administration, 2013b). However, there
appears to be a decrease in the productivity (Figure 1B) of this
approach that appears to be due to at least two major factors.
One being the increasing difficulty in finding novel therapeu-
tic targets, either for diseases with well established standards
of care or those with unmet medical need (Pammolli et al.,
2011; Scannell et al., 2012), and the other being the increasing

cost associated with discovery and drug development of new
drugs. The current average cost to bring a drug to market is
$1.5 billion, over 10 times higher than the cost in the 1970s
(DiMasi and Grabowski, 2007; Scannell et al., 2012). The need for
improved productivity in the pharmaceutical industry has been
recognized by the FDA, with the establishment of its “Critical
Path Initiative” in 2004. This initiative was intended to improve
the drug and medical device development processes, the quality
of evidence generated during development, as well as the out-
comes of clinical use of these products (Woodcock and Woosley,
2008).

COMPUTER MODELING AND SIMULATION AS TOOLS TO
IMPROVE PRODUCTIVITY
A decline in productivity is to be expected for any industry
as it matures, and the competition from established products
increases. This decline in productivity is typically associated
with increasing development costs, partly due to the difficulty
in differentiating one product from another in the marketplace.
Industries must find innovative ways to increase the probability
of commercial success while at the same time decreasing devel-
opment costs. Most industries eventually realize the value of
computer aided modeling and simulation as one of the means
for achieving both of these objectives. Computer aided modeling
and simulation allows testing of numerous potential scenarios
“in silico” to eliminate those associated with a low probability of
success, avoiding the tremendous costs of evaluating all of those
failed scenarios in the real world. Today, aerospace, automotive,
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FIGURE 1 | (A) Rate of approval for NDAs since 1960 (U.S. Food and Drug Administration, 2013b). (B) Number of approved drugs for every billion US dollars
spent on R&D (adjusted for inflation; Scannell et al., 2012).

electronics, and other industries routinely incorporate modeling
and simulation into their R&D processes (Woltosz, 2012). The
pharmaceutical industry has been slow to integrate computer
aided modeling and simulation for many reasons: including the
perception that biology and pharmacology are “too complex”
to be modeled with mathematical equations; a lack of adequate
graduate training programs for pharmaceutical modeling and
simulation scientists; and the lack of support from government
funding agencies for academic research in computer aided mod-
eling and simulation approaches for biomedical research. How-
ever, in the last decade, both the FDA and National Institutes
of Health (NIH) have recognized the value of modeling and
simulation in increasing productivity in biomedical research and
pharmaceutical R&D. The FDA established its Pharmacometrics
Division in 2009 to promote and evaluate the use of modeling and
simulation approaches in regulatory submissions to the agency
(U.S. Food and Drug Administration, 2013a). In 2011, the NIH
published a white paper describing the emerging discipline of
Quantitative Systems Pharmacology (QSP) modeling, and rec-
ommended the establishment of NIH-supported interdisciplinary
research and training programs for QSP (Sorger et al., 2011).
QSP modeling and simulation is a new term to describe the
integration of two disciplines that have been increasingly useful in
biomedical research and pharmaceutical R&D; “Systems Biology”
and “Quantitative Pharmacology.” Systems Biology is the field of
biomedical research that seeks to characterize biological networks
of interactions, including those between genes and biologically
active molecules to develop models of these systems that are
usually qualitative in nature. Quantitative Pharmacology (a.k.a.
Pharmacometrics) is the field of biomedical research that seeks
to use computer aided modeling and simulation to increase our
understanding of the pharmacokinetics (PK) and pharmacody-
namics (PD) of drugs, and to aid in the design of pre-clinical and
clinical experiments. The purpose of QSP modeling is to develop
quantitative computer models of biological systems and disease
processes; as well as the effects of drug PK and PD on those
systems.

PHARMACEUTICAL R&D AND QUANTITATIVE SYSTEMS
PHARMACOLOGY
Pharmaceutical R&D is a stepwise process where investment in
further characterizing the pharmacology of a candidate molecule
is incrementally increased as confidence in the molecule’s proba-
bility of regulatory and commercial success increases. Investment
initially starts with in vitro biochemical and pharmacology stud-
ies; then moves to animal pharmacology and toxicology studies,
then to human healthy volunteer pharmacology and toxicol-
ogy studies; and finally to large and expensive patient efficacy
and safety studies. QSP models are based on the fundamental
understanding of biological pathways, disease processes, and drug
mechanisms of action. Therefore, they are very effective tools for
integration of prior collected biological/pharmacological knowl-
edge, formulation of pharmacological hypotheses, and for effi-
cient translation between the various experimental models within
pharmaceutical R&D. Key milestones in R&D where QSP models
will be critical to increasing the probability of success will be in the
target identification stage, the transition from pre-clinical to first
in man studies, the transition from healthy volunteer to patient
studies, and the transition from adult to pediatric (Figure 2A).
These milestones represent the point where knowledge from one
set of experimental models (e.g., animal) must be effectively
translated to another set (e.g., human). QSP can facilitate this
translation by formal integration of the knowledge from the
original experimental model and generation of hypotheses for
potential outcomes in the next experimental model. Computer
aided simulations to guide the design of experiments intended to
test those hypotheses.

In addition to their utility in translation between experimental
models, QSP allows prediction of the effects of multiple ther-
apeutic interventions in combination. As it becomes clear in
many therapeutic areas that modulation of single drug targets is
less effective (e.g., oncology, virology), the cost of testing all of
the potential combinations in the clinic is prohibitive. QSP can
provide a framework in which to evaluate these potential combi-
nations prior to testing in the clinic, by providing a fundamental
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FIGURE 2 | Continued
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FIGURE 2 | Continued
(A) Incorporation of Quantitative Systems Pharmacology modeling and
simulation in pharmaceutical R&D. Drug discovery and development is a
long and complex process with numerous transition periods where
effective translation from one experimental model to the next is a
challenge. Major transitions occur when moving to first in man studies
and first in pediatric studies. The cycles of application of QSP modeling
and simulation are defined by (1) integration of experimental data and
biological knowledge to develop QSP models; (2) generation of
hypotheses for potential outcomes in future experiments; (3) testing of

those hypotheses with experiments that have been designed via
simulation from QSP models. (B) Integration of QSP models in
pharmaceutical R&D process. The model development team should be a
sub-team of existing drug discovery and development teams. The goals
of the model development team are to develop QSP models for their
particular disease area and/or to apply existing QSP models to facilitate
key milestones in discovery and development. The model development
process should be rigorous and stepwise, so that models that are
developed can used broadly in the disease area and can be used to
communicate with regulatory agencies.

systems and quantitative understanding of how these different
mechanisms will interact.

PHARMACEUTICAL R&D AND QUANTITATIVE SYSTEMS
PHARMACOLOGY
Published examples describing the use of QSP modeling and sim-
ulation to facilitate biomedical research and pharmaceutical R&D
have been increasing in recent years. Most of these publications
have been focused on PK, since the processes that govern drug
absorption, distribution, metabolism, and excretion are better
established compared to those that govern disease biology and
PD (Edginton et al., 2008). Strougo et al. (2012) demonstrated
the use of these physiologically based PK (PBPK) models for
prediction of PK in children prior to the conduct of the first
pediatric clinical studies. There are software packages that can be
licensed with PBPK models incorporated that allow prediction of
in vivo drug PK based on the in vitro properties of the molecule
(Kuentz et al., 2006; Jamei et al., 2009). QSP models that predict
both PK and PD are much more complex, and tend to be disease
area specific. Vega-Villa et al. (2013) published a QSP model of
the nitric oxide metabolic pathways and demonstrated the models
ability to predict toxic methemoglobin levels in humans treated
with nitric oxide. Geerts et al. (2013a) published a QSP model
of cognitive deficit in schizophrenia and were able to simulate
the enhancement of cognition with clozapine and risperidone,
as well as the worsening of cognition with γ -aminobutyric acid
(GABA) modulators lorazepam and flumazenil. There are soft-
ware packages that can be licensed that allow prediction of both
PK and PD for a variety of drugs and mechanisms of action, but
at much greater expense compared with those used for PBPK
alone (Shoda et al., 2010; Eissing et al., 2011). Agoram and Demin
(2011) reported on the development and application of a QSP
model of the PD of the 5-lipoxygenase (5-LO) pathway. This QSP
model has been used to explain the complex PK–PD relationship
of zileuton, a marketed 5-LO inhibitor (Karelina et al., 2010).
The model was able to demonstrate the mechanism behind the
longer duration, but similar magnitude, of action with the 600
vs. 400 mg dose of zileuton. More important for its utility in
drug discovery, this QSP model could be used to predict the
PK and PD of a new molecule or combination of molecules
intended to modulate another component of the 5-LO pathway
based solely on the biophysical properties of the molecule and
its potency at the target. One could then design a series of in
vivo experiments to validate the hypotheses generated from these
predictions.

Quantitative Systems Pharmacology holds great promise
in being able to uncover innovative therapeutic paradigms
for complex multi-factorial diseases such as Alzheimer’s and
diabetes. Because these diseases involve multiple physiologi-
cal processes and can affect multiple organs, QSP can pro-
vide an integrated understanding of the pathology as well as
the possible complex counter-intuitive results of therapeutic
intervention.

INTEGRATION OF QUANTITATIVE SYSTEMS
PHARMACOLOGY INTO PHARMACEUTICAL R&D
In order to leverage QSP to accomplish this, it must be properly
integrated into the decision making process in pharmaceutical
R&D. As mentioned above, it is possible to license PBPK and
QSP models to facilitate decision making in pharmaceutical
discovery and development. However, since licensing is often
limited to a few specialized functions, this approach decreases
the flexibility and utility of QSP across the different functions
within R&D. QSP models should be integrated into the processes
of discovery and development within pharmaceutical compa-
nies in order to maximize their potential benefit on R&D effi-
ciency and productivity. To better integrate these models into
the existing processes, they can be developed internally within
the drug discovery and development teams. In addition, the
teams must be organized and educated to support this inte-
gration. Figure 2B shows the integration of the QSP model
development team with the drug discovery and development
team. Development of a QSP model for prediction of clinical PK
and PD should be a rigorous and stepwise process, with three
main steps:

(1) Model Scope: Development of the scope of the model, with
delivery of a physiological pathway map representing all of
the biological/pharmacological processes that will be incor-
porated in the model;

(2) Model Development: Prior models, relevant non-clinical and
clinical data are collected to inform the incorporation of
the mathematical equations that describe the processes and
compartment volumes in the model;

(3) Model Qualification: The model is calibrated to relevant data
from the target patient populations.

In addition to the modeling engineer, who will incorporate
the equations into the model based on the agreed upon scope,
critical individuals on the model development team include the
following:
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• Biologist and Clinician: Guide the scope of the model and
inform the integration of relevant biology/pharmacology into
the model, as well as identifying non-clinical and clinical data
to be used in model development and qualification;

• Data Programmer: Curates and maintains the clinical/non-
clinical databases that serve as inputs to the model;

• Statistician: Guide analysis of the simulation outputs and how
they are used to inform the design of future clinical trials; the
modeling engineer will incorporate the mathematical equa-
tions in the model and calibrate the model to relevant clinical
data;

• Information Technologist: Maintain the software interface to
the model and develop software for simulation;

• PK/PD Scientist: Provide broad expertise on the PK and PD
aspects of the model and will serve as the primary mediator
between the model development team and drug discovery and
development team.

Once a QSP model is developed, it should be regularly updated
with relevant internal and external research. In addition, it should
be made available to all scientists in R&D that work in that
particular disease area. The QSP model can be made flexible such
that it can be readily adapted to other species that may be of
interest in drug discovery (e.g., rat, monkey, rabbit, etc.). This
would facilitate translation of experiments between these species
and human.

OUTLOOK FOR QUANTITATIVE SYSTEMS PHARMACOLOGY
IN PHARMACEUTICAL R&D
Quantitative Systems Pharmacology holds great promise in being
able to uncover innovative therapeutic paradigms for complex
multi-factorial diseases such as Alzheimer’s and multiple sclerosis.
Because these diseases involve multiple physiological processes
and can affect multiple organs, QSP can provide an integrated
understanding of the pathology as well as the possible complex
results of therapeutic intervention. QSP thus offers pharmaceu-
tical R&D an innovative way to conduct at drug discovery and
development, particularly in diseases that are poorly translated
from animal disease models. Geerts et al. (2013b) recently pub-
lished an article on how QSP, when combined with pheno-
typic screening and preclinical animal models, could be used to
address the bottleneck in both cognitive and neuropsychiatric
drug discovery and development for Alzheimer’s disease. For such
complex diseases that are poorly translated from animal disease
models, target-focused drug discovery holds little promise for
finding successful therapies. However, pharmaceutical companies
are large and bureaucratic, and dramatic changes to the direction
in which R&D is conducted may be adopted rather slowly.

There are smaller pharmaceutical and biotech companies that
are fully integrating QSP into their biomedical R&D processes.
One example is Merrimack Pharmaceuticals in Cambridge, MA,
USA; founded by MIT professor of Biology and Biological Engi-
neering Michael Yaffe. Merrimack states on their website, “We
are a Systems Biology company. We believe that improving can-
cer care requires a systems-based understanding of the dynamic
interactions within a cancer cell and its environment” (Merrimack
Pharmaceuticals Inc., 2014). The scientific and financial com-

munities will be watching these small companies, and if their
model for a systems-based approach to R&D is successful, the
pressure will be increased for “large pharma” to more fully adopt
such innovative approaches into their discovery and development
processes.
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Targeted therapies have become an important therapeutic paradigm for multiple
malignancies. The rapid development of resistance to these therapies impedes the
successful management of advanced cancer. Due to the redundancy in angiogenic
signaling, alternative proangiogenic factors are activated upon treatment with anti-
VEGF agents. Higher doses of the agents lead to greater stimulation of compensatory
proangiogenic pathways that limit the therapeutic efficacy of VEGF-targeted drugs and
produce escape mechanisms for tumor. Evidence suggests that dose intensity and
schedules affect the dynamics of the development of this resistance. Thus, an optimal
dosing regimen is crucial to maximizing the therapeutic benefit of antiangiogenic agents
and limiting treatment resistance. A systems pharmacology approach using multiscale
computational modeling can facilitate a mechanistic understanding of these dynamics
of angiogenic biomarkers and their impacts on tumor reduction and resistance. Herein,
we discuss a systems pharmacology approach integrating the biology of VEGF-targeted
therapy resistance, including circulating biomarkers, and pharmacodynamics to enable the
optimization of antiangiogenic therapy for therapeutic gains.

Keywords: systems pharmacology, biomarkers, dose selection, antiangiogenic therapy, resistance, targeted
therapies, biologically effective dose, bed

INTRODUCTION
Therapeutic intervention in diseases takes place within a milieu
of factors, including drug pharmacokinetics, signaling pathways,
mechanisms of drug action, and compensatory processes. Study-
ing any single pathway, mechanism of action, or interactive
process in isolation has limited value in improving our under-
standing of the complexity of disease physiology. This is evident
in the redundancy of signaling networks, feedback, and cross
talk between multiple regulatory processes (Moriya et al., 1996;
Pawson and Warner, 2007; Logue and Morrison, 2012). A systems
approach is required to quantitatively integrate underlying disease
and information contributing to treatment response and resis-
tance. Systems pharmacology combines large scale experimen-
tal studies, pharmacokinetics, mechanisms of action, signaling
pathways, adaptation mechanisms, biomarker, and pharmacody-
namic data in a quantitative framework utilizing computational
methods. This approach can facilitate understanding of disease
systems, their mechanisms of action and pathways, and hypothe-
sis development (Agoram, 2014). Systems pharmacology further
offers a tool for translational considerations from non-clinical
models to patients, realizing the bench to bedside paradigm
(Allerheiligen, 2010; Kreeger and Lauffenburger, 2010; van der
Graaf and Benson, 2011; Demin et al., 2013; Rogers et al., 2013;
Vicini and van der Graaf, 2013; Visser et al., 2014). Herein we
discuss systems pharmacology approaches to achieve a mechanis-
tic understanding of the dynamics of circulatory biomarkers for
antiangiogenic agents, thereby guiding selection of doses that can
maximize the therapeutic benefits.

CHALLENGES IN ANTIANGIOGENIC THERAPIES
Angiogenesis is critical for tumor growth and metastasis. VEGF
signaling is an extensively studied pathway for blocking tumor
angiogenesis. Several antiangiogenic agents targeting the VEGF-
pathways have been approved and are important modalities in
the management of advanced cancers. Bevacizumab, a therapeutic
antibody targeting VEGF and various VEGF receptor tyrosine
kinase inhibitors (TKIs), have shown clinical benefit in solid
tumors. However, the benefits of VEGF-targeted agents are short-
lived and resistance to anti-VEGF agents rapidly emerges after
an initial response phase, leading to restored tumor growth and
progression. This rapid development of resistance to therapy con-
stitutes a major clinical obstacle to providing extended therapeu-
tic benefits with this class of drugs. Thus, effective strategies are
needed to delay or prevent resistance to VEGF antiangiogenics.

Resistance to antiangiogenic agents arises through multiple
mechanisms, including the activation of compensatory responses
that are mediated by malignant cells and stroma cells within the
microenvironment. Angiogenesis is a highly adaptive biological
process. Tumors can resume angiogenesis and progress using
diverse angiogenic signaling, including VEGF, FGF, HGF, PDGF,
PlGF, and several proangiogenic cytokines. Numerous compen-
satory angiogenic factors are upregulated upon anti-VEGF ther-
apy in a dose-dependent manner (Ebos et al., 2007), suggesting
that dose intensity and frequency influence the development of
therapy resistance. Higher doses of anti-VEGF therapy can create
favorable conditions for metastasis by upregulating these growth
factors (Ebos et al., 2009a). This emphasizes the importance of
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finding optimal dosing schedules for anti-VEGF therapy. The cur-
rent dosing approach does not consider the best way to delay or
prevent resistance to VEGF-targeted therapy, and thereby improve
patient survival beyond a few months (Jubb et al., 2006; Azad
et al., 2008; Cannistra, 2008).

BIOLOGICALLY EFFECTIVE DOSES OF ANTI-VEGF THERAPY
Oncology drug development often involves the maximum-
tolerated dose (MTD)-based paradigm, even when data suggest
that a drug maximally inhibits its target at lower doses. The recent
analysis by the U.S. Food and Drug Administration (FDA) showed
that inappropriate dose selection was the major cause of post-
marketing requirements for oncology drugs approved between
2011 and 2013 (Prowell, 2014). Clinically recommended doses
are often derived based on their safety profiles. Toxicity has been
the primary end point for conventional dose-finding strategies
(Parulekar and Eisenhauer, 2004; Le Tourneau et al., 2009). Since
antiangiogenic therapies are mostly cytostatic in nature, they do
not always conform to the concept that MTD produces maximum
benefits (Sleijfer and Wiemer, 2008). Studies have revealed better
therapeutic benefits when lower doses of antiangiogenic therapies
were used in combination with other treatments (Kabbinavar
et al., 2003; Huang et al., 2012). Similar results were observed with
other targeted therapies, such as mammalian target of rapamycin
kinase inhibitor, in which a lower dose of 25 mg was selected as
the recommended dose for treatment after testing 25, 75, and
250 mg doses (Atkins et al., 2004). Likewise, in a study of 24
consecutive Phase I clinical trials, in which 97.7% of participants
received targeted agents, patients receiving lower (≤25% MTD)
doses responded as well as those patients receiving medium (25–
75% MTD) or high (≥75% MTD) doses (Jain et al., 2010). These
findings support the concept that higher doses are not necessarily
the most effective.

Higher doses of anti-VEGF therapies can lead to pronounced
anti-vascular effects and, subsequently, hypoxia in the tumor, e.g.,
treatment-induced hypoxia. Treatment-induced hypoxia stimu-
lates several compensatory biological processes to circumvent
continued VEGF inhibition, leading to resistance to therapy (Har-
ris, 2002; Casanovas et al., 2005; Drevs et al., 2005; Kerbel, 2005;
Mizukami et al., 2005; Hendriksen et al., 2009; Casanovas, 2011).
This excessive pruning also leads to reduced delivery of therapies
into the tumor (Jain, 2005; Van der Veldt et al., 2012; Van der Veldt
and Lammertsma, 2014). Tumors have abnormal vasculature,
which leads to an abnormal blood supply that produces hypoxic
regions in the tumor. Hypoxia has been also implicated in tumor
progression by increasing genomic instability (Nelson et al.,
2004) and selection of more malignant cancer stem cells with
increased metastatic potential (Bottaro and Liotta, 2003; Conley
et al., 2012). Therefore, antiangiogenic therapy can produce more
challenges than benefits, if it is inappropriately administered
(Huang et al., 2013b; Jain, 2013, 2014). This is consistent with
RK Jain’s vascular normalization concept, in which the judicious
use of antiangiogenic drugs can lead to more efficient delivery of
drugs and oxygen to the tumor cells (Jain, 2005). Utilization of
the vascular normalization strategy has been shown to improve
cancer immunotherapy (Huang et al., 2012, 2013a) and survival
in glioblastoma patients (Sorensen et al., 2012; Emblem et al.,

2013). Therefore, there is a critical need to find the biologically
effective dose (BED) that balances between normalization and
excessive anti-vascular effects from antiangiogenic agents, since
suboptimal and higher doses can fail to alleviate hypoxia. Further,
the BED can minimize stimulation of alternative, compensatory
proangiogenic signals in response to treatment-induced hypoxia,
and thus limit the rapid development of treatment resistance,
extending the therapeutic benefits of antiangiogenic agents (Jubb
et al., 2006; Azad et al., 2008; Cannistra, 2008).

DYNAMICS OF CIRCULATING ANGIOGENIC BIOMARKERS
The transient effects of antiangiogenic therapy predominantly
result from a redundancy in the angiogenesis signaling that
mediates tumor escape from anti-VEGF therapy. Many of the
signaling molecules (circulating angiogenic factors, or CAF)
within these compensatory pathways can be detected systemically
in patients treated with VEGF-targeting agents. For example,
increases in VEGF and PlGF, and decreases in VEGFR2 can be
observed. These changes are considered a “class” effect of VEGF-
targeted therapies (Jain et al., 2009). Many of these observed
CAF changes are recapitulated in tumor-bearing mice in a dose-
dependent manner, and are correlated with antitumor activity
(Ebos et al., 2007). Thus, CAF are increasingly recognized as
important pharmacodynamic biomarkers for better understand-
ing the treatment response and aiding in the identification of
the optimal dosing schedules for VEGF-targeted therapy (Huang
et al., 2013b). Understanding the molecular interactions between
therapy-induced CAFs and resistance to VEGF-targeted agents
can inform the development of strategies to delay or overcome
resistance to antiangiogenic therapy (Jain et al., 2009; Clarke and
Hurwitz, 2013).

These circulating biomarkers are dynamic, altered over the
course of treatment by variables including in vivo drug con-
centrations (PK), changes in the tumors (e.g., antitumor effect
and disease progression), the biological turnover of signaling
molecules, compensatory mechanisms, tumor-independent CAF
induction by normal cells in the host body, and the development
of resistance. These diverse contributing factors create uncertainty
when attempting to use dynamic biomarkers. Mathematical mod-
eling can play an important role in understanding and utilizing
the biomarkers to find the optimum biological dose and schedule
which can delay the onset of therapy resistance (Duda et al., 2013).
A recent study showcased the utility of computational models
in identifying dosing schedules to manipulate the dynamics of
the development of resistance to EGFR-targeted therapy (Foo
et al., 2012; Dolgin, 2014). A systems pharmacology approach
using multiscale computational modeling offers a tool to inte-
grate the biology of response and resistance to VEGF-targeted
therapy, including circulatory biomarkers and the pharmacoki-
netics/pharmacodynamics of antiangiogenic drugs (Figure 1), to
optimize therapeutic gains.

SYSTEMS PHARMACOLOGY APPROACH TO
ANTIANGIOGENIC THERAPY
The major challenge in developing a systems pharmacology
model is how to integrate the dynamics outside the cell (phar
macokinetics) with their downstream effects in terms of protein
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FIGURE 1 | Key components of the systems pharmacology model for
anti-VEGF therapy. The model integrates the pharmacokinetics of the drug,
antitumor activity, circulating angiogenic biomarkers emanated from host and

tumor cells, and therapeutic endpoints based on the drug’s response and
compensatory mechanisms within a quantitative framework, to realize a
bench to bedside paradigm.

formation or pharmacodynamic effects. PK/PD modeling has
been used to explain the relationship between pharmacokinetics
and the end downstream effects. What is missing is the mech-
anistic information in between. Limiting our investigation to
antiangiogenic therapy, we anticipate three major challenges to
filling this gap: (1) determining the interaction of ligands to their
receptors and perturbation by drug molecules, (2) integrating
the ensuing signal from these receptors with the downstream
protein production machinery, and (3) accounting for interaction
between various cell types, that produces pharmacodynamics
responses and resistance.

DRUG-TARGET INTERACTION
Receptor occupancy theory is well-developed and can be readily
utilized to integrate this process (Black and Leff, 1983; Black
et al., 1985; Mager and Jusko, 2008; Chen et al., 2009; Goodman
and Redberg, 2014). We must be mindful that biology is com-
plex and there are many subtypes of ligands, receptors, and co-
receptors which have varying degrees of affinity and modulatory
functions. Ligand-receptor interaction for angiogenesis involves
the VEGF family of ligands (VEGF-A, B, C, D, and PlGF), three
main receptors (VEGFR-1, -2, and -3), co-receptors NRP-1 and
NRP-2, and heparan sulfate proteoglycans. NRP- and, -2 and
proteoglycans play modulatory roles in ligand-receptor interac-
tion; even VEGF-A is alternatively spliced to form VEGFA121,
VEGFA145, VEGFA165, and VEGFA189 (Hoeben et al., 2004;
Koch et al., 2011; Tugues et al., 2011). Popel and colleagues have
contributed extensively to our understanding of the kinetics and
interaction of VEGF ligands and receptors (Stefanini et al., 2010;
Finley et al., 2011, 2013; Finley and Popel, 2012, 2013; Tan et al.,
2013). Although a potential contribution of other ligand and
receptor isoforms and families may be recognized, several studies
have simplified these interactions by accounting for the most

important VEGF ligand, VEGF-A (165), and receptor VEGFR-
2 interaction as the major players in angiogenesis (Sharan and
Woo, 2014; Zhang et al., 2014). The combination of competitive
ligand receptor binding and an inhibitory Hill function model
can be used to explain the VEGF-induced VEGFR activation and
inhibitor-induced VEGFR inactivation (Sharan and Woo, 2014).

SIGNAL TRANSDUCTION
Signaling pathways are an important component of a systems
pharmacology model, which links receptor-ligand interaction to
pharmacodynamic outputs (Iyengar et al., 2012). VEGF binding
to its receptors led to the phosphorylation of the tyrosine kinase
domain, which in turn initiated the canonical downstream sig-
naling cascades involved in proliferation, migration, survival, and
permeability (Tugues et al., 2011). Ordinary differential equa-
tion (ODE)-based models, also termed mechanistic or physic-
ochemical models (Birtwistle et al., 2013; Zhang et al., 2014),
are often used to describe the canonical signaling cascades. The
advantage of this approach being more mechanistic can help
a personalized medicine paradigm by incorporating informa-
tion related to genomic variation and mutation (Iyengar et al.,
2012). The limitation of this approach is the currently incomplete
mechanistic knowledge of several mediators, signaling processes,
and parameter identifiability. Given the incomplete mechanistic
knowledge of several mediators and signaling processes, or in
the absence of measurement of mediator signaling molecules,
a more empirical quantitative logic (QL; Kirouac et al., 2013;
Kirouac and Onsum, 2013) or transduction model (Mager and
Jusko, 2001) can be utilized to characterize signal transduction.
The QL approach has been elegantly explained by Kirouac and
Onsum (2013) in building multiscale models which capture the
features of oncogenic signaling networks. The transduction model
has the flexibility of handling multiscale events with different
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transit time parameters to account for time needed for signal
transduction from receptor-ligand interaction to nucleus, time
for cell machinery to form proteins, and to show the pharmaco-
dynamic effects on tumor growth. It is vital to take a balanced
approach between mechanistic representation of the signaling
pathway and the model’s predictive power (Sharan and Woo,
2014).

THERAPEUTIC AND COMPENSATORY RESPONSES TO ANTI-VEGF
THERAPY
Ideally, signaling events are linked to tumor growth kinetics.
Tumor inhibitory effects of anti-VEGF agents can be described
by adapting well-established models (Simeoni et al., 2004, 2013;
Ribba et al., 2014). In addition to tumor growth inhibition,
systemically quantifiable biomarkers such as CAFs can serve as
an important measurement to identify disease progression, make
dose selections, or stratify patients. Indirect response models
can be effectively used to capture inhibition, stimulation, and
turnover rates of biomarkers modulation (Mager et al., 2003).
We can use non-linear feedback regulation to account for com-
pensatory increases in circulatory biomarkers in response to
treatment-induced hypoxia by anti-VEGF agents.

The contributions of host cells and stroma cells within the
tumor microenvironment have been increasingly recognized to
play an important role in cancer progression and treatment
(Ebos et al., 2007, 2009b; Kerbel and Ebos, 2010; Jain, 2013;
Stroh et al., 2014). This should be explored using a systems
pharmacology model. Antiangiogenic therapies have been shown
to upregulate various growth factors in healthy cells and are dose-
dependent in non-tumor-bearing mice (Ebos et al., 2007). This
dose-dependency is also observed in healthy human volunteers
(Lindauer et al., 2010). Thus, it is important to characterize
tumor and host cell contributions to CAF modulation and to
provide mechanistic information for interpreting biomarker data
in respect to antiangiogenic treatments.

APPLICATION OF A SYSTEMS PHARMACOLOGY MODEL
OF CAFs FOR DOSE OPTIMIZATION
We have recently developed a systems pharmacology model that
uses sunitinib as the test drug to quantify the link between in vivo
drug concentrations (PK), target–drug interactions, the biological
target pathway, antitumor activity, and compensatory signals
leading to treatment resistance (Figure 1). We used the most
frequently studied CAFs, including VEGF, PlGF, and sVEGFR2.
Our model predictions were consistent with the time- and dose-
dependent changes in these hypoxia-derived CAFs following suni-
tinib given to mice at various dosages (Ebos et al., 2007). We
then tested our model within a clinical setting to explain VEGF
changes in patients with cancer who experience different treat-
ment outcomes; we found that our predictions were consistent
with the observed VEGF changes in patients receiving sunitinib
for the treatment of metastatic renal cancer (Kontovinis et al.,
2009). The stimulation/inhibition capacity and the hill coeffi-
cients of VEGF, PlGF, and sVEGFR2 in mice were similar to those
reported in humans, indicating that system-specific parameters
for conserved physiological processes such as angiogenesis are
comparable across species (Sharan and Woo, 2014).

FIGURE 2 | (A) Relationships of therapeutic efficacy and modulation of
VEGF and PlGF biomarkers to sunitinib doses. Percentage reduction in
tumor volume (•) and fold change in PlGF (N) and VEGF (�) are shown at
various doses of sunitinib at the end of study. At the dose of 40 mg/kg/day,
∼75% of tumor volume was reduced, with minimal upregulation of
hypoxia-dependent CAF. Further dose escalation resulted in marginal
therapeutic gain (<5%), but significant upregulation of CAF, which may
indicate excessive anti-vascular effects. (B) Utilization of CAF biomarkers in
the selection of biological dose of antiangiogenic drugs. The fold change in
VEGF and PlGF may serve as a surrogate marker for excessive anti-vascular
effects and, in turn, potential for emerging resistance. This illustrates how
the biologically effective dose may be selected in a manner which does not
invoke significant hypoxia and involves little stimulation of
hypoxia-dependent CAF. Monitoring multiple CAFs will be advantageous, as
each factor has a different dynamic range. PlGF has a wider dynamic range
than VEGF, and results in higher fold change at the same dose. This
provides an advantage over VEGF, because PlGF changes are more likely
detectable even at lower doses.

Our model allows us to delineate CAF changes in the tumor
microenvironment and host body during VEGF-targeted therapy
and to assess their impacts on tumor response and resistance to
therapy. This provided insight into the possible ways to utilize the
CAF for better dose guidance of these therapies, either alone or
in combination. We found a relationship of tumor reduction and
compensatory increase in VEGF and PlGF with increasing suni-
tinib doses in xenograft mice (Figure 2A). The increase in proan-
giogenic factors was directly related to the dose, suggesting that
these CAF can be used as biomarkers to determine the optimal
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dose for antiangiogenic drugs. For example, in an A431 xenograft
mouse model, the maximum benefit from sunitinib treatment
may be achieved at a dose of 20–40 mg/kg/day of sunitinib, as such
doses produce no significant changes in VEGF or PlGF levels. Fur-
ther dose escalation resulted in marginal therapeutic gain (<5%),
but significant upregulation of hypoxia-dependent CAF, which
may indicate excessive anti-vascular effects. As such, these CAF
could be used to construct a therapeutic index for antiangiogenic
agents. Figure 2B illustrates this CAF biomarker-based paradigm
for dose selections in particular, balancing between antitumor
effects and CAF changes. The CAF modulation may serve as a
surrogate marker reflecting the anti-vascular effects of antiangio-
genic treatment. Ligands of tyrosine kinase receptors have been
found to confer resistance by engaging survival signals redundant
to those of targeted kinase (Wilson et al., 2012). If we assume that
higher changes in compensatory signals are associated with higher
likelihood of early onset of resistance, antiangiogenic doses may
be increased up to the level at which the CAF increase from their
baseline is minimal (e.g., <2-fold for VEGF).

Increasing sunitinib doses also led to VEGF and PlGF stim-
ulation with different magnitudes (Figure 2B). This differential
stimulation of pro-angiogenic factors can be exploited to facili-
tate dose finding. Given the inter-individual variability and het-
erogeneity in tumor response, monitoring multiple biomarkers,
rather than relying on a single marker, would be advantageous.
We found that PlGF changes were ∼2-fold higher than VEGF
changes at the same dose (Sharan and Woo, 2014). This finding
suggests that PlGF has a wider dynamic range than VEGF, and can
ensure better detection of its change even at lower doses. Thus,
monitoring PlGF and VEGF can aid in ensuring that the therapy
does not fall below the minimum effective dose nor go above the
excessive anti-vasculature dose. This finding is consistent with the
recent study in which increased PlGF, but not VEGF, was associ-
ated with patients responding to cediranib (Batchelor et al., 2013).
While we illustrated the CAF-based dose-finding strategy using
VEGF and PlGF, other CAF could be used, as different tumor
types and drug targets can invoke different CAF dynamics. Many
concepts and the mathematical framework are broadly applicable
among several tumor types and different antiangiogenic agents,
and could serve as a paradigm for determining the optimal dose
of targeted therapies.

Antiangiogenic therapies are often administered in combi-
nation with chemotherapy. There is increasing interest in com-
bining antiangiogenics with other targeted therapies in order to
improve therapeutic outcomes. However, since the clinical doses
of many targeted therapies are determined based on MTD rather
than BED, we cannot easily deduce the dosage and schedules
of combinations from single agent studies. When antiangiogenic
therapies are combined with drugs of same class, excessive over-
lapping toxicities have resulted (Azad et al., 2008, 2009). In
addition, antiangiogenic therapies at higher doses could reduce
the efficacy of concomitant cytotoxic agents, most likely due
to reduced drug delivery by excessive vessel pruning (Van der
Veldt et al., 2012). The CAF biomarker-based approach could
also be useful for determining the optimal dose of combination
therapy. In combination therapy, the role of antiangiogenic drugs
may be focused on vascular normalization. Other therapeutics

can be targeted toward killing tumor cells. In such cases, it is
desirable for antiangiogenic drugs to be administered at lower
doses at which the stimulation of compensatory signaling is
minimal.

CONCLUSION
Therapy-induced CAF can be effectively utilized as pharmacody-
namic biomarkers to find the optimal biological dose for antian-
giogenic drugs. This will ensure that the therapy maintains mini-
mum effective dose levels, without invoking much compensatory
response from the system. Routine incorporation of biomarkers
into future clinical trials will be critical for the optimization
of anti-VEGF agents and development of next generation of
antiangiogenic regimens. Biomarker studies can be augmented by
imaging studies, such as dynamic contrast-enhanced MRI (DCE-
MRI), or other imaging techniques to monitor vessel integrity,
permeability of blood vessels, and tumor perfusion (Murukesh
et al., 2010). Thus, future strategies will require circulating
biomarkers and imaging with an integrated multi-scale compu-
tational tool to guide optimal dose selection for antiangiogenic
agents. As more data become available in the future, with the
advance of high throughput methods like genomic data, the main
challenge will be vertically integrating those data. Systems phar-
macology will offer a tool to vertically integrate knowledge from
pharmacokinetics, mechanisms of action, genomics, biomark-
ers, toxicokinetics, and pharmacodynamics. This approach yields
an informed perspective from which we can streamline drug
discovery and development. The knowledge gained from this
approach can provide an in-depth understanding and, hence, a
better approach for achieving enduring therapeutic benefits from
antiangiogenic therapy.
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The Renal sodium-dependent glucose co-transporter 2 (SGLT2) is one of the most
promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin,
and canagliflozin, have already been approved for use in USA and Europe; several additional
compounds are also being developed for this purpose. Based on the in vitro IC50 values
and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage
of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose
reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50%
inhibition of reabsorption. This study was aimed at investigating the mechanism underlying
the discrepancy between the expected and observed levels of glucose reabsorption. To
this end, systems pharmacology models were developed to analyze the time profile of
dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and
urine; their filtration and active secretion from the blood to the renal proximal tubules;
reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model
shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher
than levels of other inhibitors following administration of marketed SGLT2 inhibitors at
labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase
2/3 studies). All the compounds exhibited almost 100% inhibition of SGLT2. Based on the
results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors
were supported: (1) the site of action of SGLT2 inhibitors is not in the lumen of the kidney’s
proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells); and (2) there are
other transporters that could facilitate glucose reabsorption under the conditions of SGLT2
inhibition (e.g., other transporters of SGLT family).

Keywords: SGLT-2, systems pharmacology modeling, Type 2 diabetes mellitus (T2DM), dapagliflozin

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that is
characterized by hyperglycemia resulting from insulin resistance
and relative lack of insulin. Current therapies for T2DM pri-
marily address endocrine pathogenesis of insulin resistance and
b-cell dysfunction. Consequently, many patients receive multi-
ple glucose-lowering therapies and eventually require exogenous
insulin administration. However, in clinical practice patients
often fail to meet the targets for glycemic control (Ali et al.,
2013), most frequently because of adverse effects–including
hypoglycemia and weight gain–caused by therapeutic agents
(Neumiller, 2014). Therefore, in order to avoid direct influence
on insulin resistance and b-cell dysfunction, T2DM can be treated
with inhibition of glucose reabsorption.

Glucose is reabsorbed to blood in the proximal tubules of
the kidneys during the formation of primary urine. Where the
reabsorption process is inhibited, glucose is excreted in urine
and blood glucose concentration is reduced. Patients treated
with inhibition of glucose reabsorption have a low risk of hypo-
glycemia because the mechanism of the treatment is independent

of insulin release or endogenous glucose production (Misra,
2013). In the kidneys, families of glucose transporters and
sodium-dependent glucose co-transporters are involved in glu-
cose reabsorption. For example, sodium-dependent glucose co-
transporter 2 (SGLT2) is thought to contribute to 90% of glucose
reabsorption in kidneys (Liu et al., 2012), which makes it a
promising target in T2DM therapy.

Currently, two SGLT2 inhibitors are marketed (dapagliflozin,
canagliflozin) and several more are in development (e.g.,
empagliflozin, tofogliflozin). Based on inhibitory concentra-
tion 50% (IC50) values measured in vitro (Ohtake et al.,
2012) and plasma concentrations measured in clinical tri-
als (Yang et al., 2013), the marketed dosage of dapagliflozin
was predicted to inhibit SGLT2 almost completely and thereby
reduce glucose reabsorption by 90%. However, clinical tri-
als demonstrated that dapagliflozin induced 50–80 g of uri-
nary glucose excretion per day, which corresponded to only
30–50% inhibition of reabsorption (Komoroski et al., 2009a;
Kasichayanula et al., 2011a). To explain these findings, several
hypotheses were published (Liu et al., 2012). The following
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hypotheses explain the lower than predicted efficacy of SGLT2
inhibitors:

(1) The concentration of the compound in the lumen of the kid-
ney’s proximal tubules (the potential site of inhibition) is
low.

(2) The site of action of the SGLT2 inhibitors is in the proximal
tubule cells of the kidney, but not in the lumen.

(3) Other transporters facilitate glucose reabsorption under con-
ditions of SGLT2 inhibition.

To explore these hypotheses further, it is possible to adopt a
systems pharmacology modeling (SPM) approach.

Many mathematical models that describe development and
treatment of T2DM appear in the literature, and Ajmera et al.
(2013) present a detailed review of these models. Several math-
ematical models describing SGLT2 inhibitors are also presented.
For example, three models describe the pharmacokinetics (PK)
and pharmacodynamics (PD) of SGLT2 inhibitors in animals
(Yamaguchi et al., 2011, 2012, 2013), two population PK mod-
els exist for empagliflozin (Riggs et al., 2013) and dapagliflozin
(van der Walt et al., 2013), and Maurer et al. (2011) describes a
PK/PD model for dapagliflozin in rats and humans. However, a
model that describes the concentration of SGLT2 inhibitors at the
potential site of action (i.e., the lumen of proximal tubule in the
kidneys) is yet to be published. The level of a compound in plasma
may differ significantly from that in the kidneys; therefore, pre-
diction of the concentration of SGLT2 inhibitors in the lumen of
the kidney’s proximal tubules is important for understanding the
PD effect of the drug.

The aim of this study was to construct a model that describes
the active secretion of SGLT2 inhibitors from plasma into the
lumen of the proximal tubules, reverse reabsorption, and urinary
excretion. Using an SPM approach, our objective was to test the
hypotheses used to explain the discrepancy between expected and
observed levels of glucose reabsorption following administrations
of SGLT2 inhibitors (see above). We also aimed to compare the
efficacies of different SGLT2 inhibitors by simulating their con-
centration level in the lumen of the kidney’s proximal tubules and
estimating the level of inhibition produced during treatment in
humans.

METHODS
A family of semi-mechanistic PK/PD models was developed
to describe administration, degradation, transport, glomerular

filtration, active secretion, reverse reabsorption, and urinary
excretion of 5 SGLT2 inhibitors (dapagliflozin, canagliflozin,
ipragliflozin, empagliflozin, tofogliflozin). The assumptions used
for model development are presented in Table 1. The models
describe the PK of the drugs, inhibition of glucose reabsorp-
tion mediated by SGLT2, and levels of inhibition in transporters
of the SGLT family. The models for dapagliflozin, ipragliflozin,
and tofogliflozin, which have identical structures, include 4 com-
partments: plasma, peripheral compartment (tissues, organs),
lumen of the kidney’s proximal tubules, and urine. The models
for canagliflozin and empagliflozin have the same structure and
include 3 compartments: plasma, lumen of the kidney’s proximal
tubules, and urine. The rate equations for each model are similar,
but many of the parameter values are specific to a particular drug.
We chose to add the peripheral compartment, and a rate equation
describing transport between plasma and peripheral compart-
ment, to models describing activity of dapagliflozin, ipragliflozin,
and tofogliflozin in order to achieve a better description of
plasma PK data (see “Models verification strategy” Section in
Supplementary Materials). The effects of compounds on SGLT2
and other transporters are described as functions of inhibitor con-
centration in the lumen of the kidney’s proximal tubules. Schemes
of the models are presented in Figure 1. Using the family of
models, we were able to quantify, analyze, and compare PK and
PD characteristics of the drugs. A system of ordinary differen-
tial equations, rate equations, and explicit functions are presented
in Table 2. Model development and fitting procedures were per-
formed using the DBSolve Optimum package (Gizzatkulov et al.,
2010).

IDENTIFICATION OF MODEL PARAMETERS
The strategy of model verification is presented in the
Supplementary Materials. The dapagliflozin, ipragliflozin,
and tofogliflozin models include 19 parameters: 4 physiological,
9 drug specific PK, and 6 drug specific PD. In the right hand
side of canagliflozin or empagliflozin models, 17 parameters are
included: 4 physiological, 7 drug specific PK, and 6 drug specific
PD. The parameter values are specific to each SGLT2 inhibitor
model, with the exception of 4 physiological parameters (Vplasma,
Vlumen, GFR, and Qurine) that have equal values in each model.
The physiological parameter values were taken (or calculated)
from the literature, as were those for 2 PK parameters (F and
fup) and 6 PD parameters (IC50 for SGLT1–6). The remaining 7
or 5 parameters were fitted against PK data on the dynamics of
compounds in plasma and urine. The 95% confidence intervals

Table 1 | Assumptions for models development.

# Assumption

1 There is active secretion of compounds from blood to the lumen of the kidney’s proximal tubules and reverse reabsorption (Liu et al., 2012)
2 Only an unbound drug could be filtrated or secreted from plasma to the lumen of the kidneys
3 The urinary excretion (Qurine) is similar for all compounds
4 Delay (lag) in absorption (Nerella et al., 1993; van der Walt et al., 2013) is included in all models to create a more precise description of plasma PK

data
5 The site of action for SGLT2 inhibitors is in the lumen of the kidney’s proximal tubules
6 The maximal inhibition level of SGLT2 (Imax) induced by compounds is equal to 1 (100%) (Grempler et al., 2012)
7 All rate equations are to be described as mass action law
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FIGURE 1 | Model Scheme. The model describes oral drug
administration, degradation, transport between plasma and
peripheral compartment (for dapagliflozin, ipragliflozin, and

tofogliflozin), glomerular filtration, secretion from plasma to the
lumen of the kidney’s proximal tubules, reverse reabsorption, and
urinary excretion.

were calculated for fitted parameters. Parameter values, 95% con-
fidence intervals, and the source of data for their identification
are presented in Supplementary Table 1.

COMPARTMENT VOLUMES
Volume of blood plasma was taken from the literature. The
volume of the lumen of the kidney’s proximal tubules was cal-
culated using experimental data (see Supplementary Materials).
In the models that described dapagliflozin, ipragliflozin, and
tofogliflozin, distribution volume in peripheral compartments
was fitted against PK data. Compartment volumes and the source
of identification are presented in Supplementary Table 1.

SIMULATIONS
Model simulations are presented as curves (simulated with opti-
mal parameters values) with shadows (95% confidence bands) or
as bars (simulated with optimal parameters values) with error
bars (95% confidence bands). The description of simulating
the 95% confidence bands is presented in the Supplementary
Materials.

RESULTS
All data available in the literature was used for model verification
and validation (Table 3). Models were calibrated against clinical
data obtained in trials where a single dose of SGLT2 inhibitor
was administered. By applying the verification strategy described
in the Supplementary Materials, we found that: (i) the active

secretion of dapagliflozin, canagliflozin, and ipragliflozin from
plasma to kidney lumen was equal to zero; (ii) the reabsorption
of empagliflozin was equal to zero; and (iii) both active secre-
tion and reabsorption of tofogliflozin were equal to zero. The
appropriate choice of model parameters was validated against
data obtained from single and multiple dose administration.
Figures 2, 3 represent examples of dapagliflozin model calibra-
tion using plasma PK and urine recovery data respectively, where
data was obtained from single dose trials. Figures 4, 5 also rep-
resent examples of dapagliflozin model validation against plasma
PK and urine recovery data respectively, but data was obtained
from multiple dose trials. The 95% confidence bands captured the
variability in clinical data (Figures 4, 5); therefore, we concluded
that model validation was of satisfactory quality. Several addi-
tional figures demonstrating the quality of verification and vali-
dation in dapagliflozin, canagliflozin, ipragliflozin, empagliflozin,
and tofogliflozin models are presented in the Supplementary
Materials (Supplementary Figures 1–16). These figures demon-
strate that the models enable a satisfactory description of plasma
PK and recovery of SGLT2 inhibitors in urine.

CONCENTRATION OF SGLT2 INHIBITORS IN THE LUMEN OF THE
KIDNEY’S PROXIMAL TUBULES
To analyze and compare the concentration of drugs in the
lumen of the kidney’s proximal tubules–the predicted site of
inhibition–we simulated time profiles of the drugs resulting
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Table 2 | Differential equations, rate equations and explicit functions.

# Equation Description

DIFFERENTIAL EQUATIONS

D1 d (drugint )
dt

= −Rabs

Drug amount (mg) in intestine (drugint ).
There is a fixed delay in absorption (lagabs) implemented in the model
explicitly in accordance with method proposed by (Nerella et al., 1993).
Initial conditions:

drugint
(
0 < t < lagabs

) = 0,

drugint
(
t = lagabs

) = F*Dose
where F and Dose are bioavailability of a drug and dose administered

D2
d

(
Drugpls

)

dt
= (Rabs − Rdeg − Rpls_to_ prf − Rgfr

− Rsecretion + Rreabsorption)/Vplasma

Drug concentration (mg/L) in plasma (Drugpls). Initial conditions:
Drugpls (0) = 0

D3
d

(
Drugprf

)

dt
= (Rpls_to_prf )/Vdprf

Drug concentration (mg/L) in peripheral compartment (Drugprf ). The
variable and rate equation Vpls_to_prf are included in dapagliflozin,
ipragliflozin and tofogliflozin models only. Initial conditions:

Drugprf (0) = 0

D4
d

(
Druglum

)

dt
= (Rgfr + Rsecretion

− Rreabsorption − Rurine)/Vlumen

Drug concentration (mg/L) in kidneys proximal tubules lumen (Druglum).
Initial conditions:

Druglum (0) = 0

D5
d

(
drugurine

)

dt
= Rurine

Drug amount (mg) in urine (drugurine). Value of the variable is set equal to
zero each 24 h to calculate amount of compound recovered in urine during
24 h. Initial conditions:

drugurine (0) = 0
RATE EQUATIONS

R1 Rabs = kabs*drugint Drug absorption from gastrointestinal tract

R2 Rdeg = Vplasma*kdeg*fup*Drugpls Drug degradation / metabolism in plasma

R3 Rpls_to_prf = Qprf *(fup*Drugpls − Drugprf ) Drug transport between plasma and peripheral compartment

R4 Rgfr = GFR*fup*Drugpls Drug glomerular filtration

R5 Rsecretion = Vplasma*ksec*fup*Drugpls Drug secretion from plasma to kidneys proximal tubules lumen

R6 Rreabsorption = Vlumen*kreab*Druglum Drug reabsorption from kidneys proximal tubules lumen into plasma

R7 Rurine = Qurine*Druglum Drug urinary excretion
EXPLICIT FUNCTIONS

E1 Drugng/ml
plasma_total = Drugpls*103 Drug concentration in plasma (ng/ml)

E2 DrugnM
lumen = Druglum

Mr
*106 Drug concentration in kidneys proximal tubules lumen (nM). Mr – molecular

weight of compound

E3 Inhibition of glucose reabsorption mediated by SGLT2
= SGLT 2%

inhibition_level =
= DrugnM

lumen

IC50sglt2 + DrugnM
lumen

*100

Inhibition of glucose reabsorption mediated by SGLT2. SGLT2 inhibition
level. Similar expressions are true for description of inhibition level of other
transporters with corresponding IC50 values

E4 SGLT 2%
average_inhibition_level =

∫ t2
t1 SGLT 2%

inhibition_level

t2 − t1
Average inhibition level of SGLT2 during some period of time (from t1 to t2)

from oral administration at various dosages. Figure 6 demon-
strates that concentration levels of tofogliflozin, ipragliflozin, and
empagliflozin are higher than levels of other inhibitors following
administration of marketed SGLT2 inhibitors at labeled doses and
non-marketed SGLT2 inhibitors at maximal doses (approved for
phase 2/3 studies).

In order to investigate which of five compounds is most likely
to accumulate at the potential site of action, we also simulated
concentration levels of SGLT2 inhibitors in the lumen of the kid-
ney’s proximal tubules following a standardized dosage of the
compounds equal to 20 mg. In this scenario, the model predicted
that concentrations of empagliflozin and tofogliflozin were higher
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Table 3 | Amount of data used for model verification and validation.

Compound Verification Validation

Number of Number of Number of Number of

experimental articles experimental articles

points points

Dapagliflozin 127 9 315 5

Canagliflozin 45 1 79 2

Empagliflozin 158 7 240 5

Ipragliflozin 45 2 210 1

Tofogliflozin 24 2 – –

FIGURE 2 | Example of verification of the dapagliflozin model using

plasma data. Total level of dapagliflozin in plasma following simulation of a
single administration of 50 mg. Curve represents model simulation and dots
represent experimental data. Colors of dots correspond to different data
sources: black—Kasichayanula et al. (2011b), blue—Obermeier et al. (2010).

than the levels of dapagliflozin, canagliflozin, and ipragliflozin
(Supplementary Figure 17).

We also simulated and compared time profiles of SGLT2
inhibitor concentrations in plasma and lumen of the kidney. For
all SGLT2 inhibitors, our model predicted that the concentra-
tion in the lumen of the kidneys was higher than in plasma
(Figures 7, 8, Supplementary Figures 18–20).

LEVELS OF SGLT2 INHIBITION DURING TREATMENT WITH SGLT2
INHIBITORS
We simulated the average level of inhibition of glucose
reabsorption mediated by SGLT2 and compared our
findings with experimentally measured levels of glucose
reabsorption inhibition following treatment with com-
pounds (Figures 9, 10, Supplementary Figures 21–23). In
model simulations, the average level of inhibition of glu-
cose reabsorption mediated by SGLT2 was higher than the

FIGURE 3 | Example of verification of the dapagliflozin model using

urine data. Cumulative amount of dapagliflozin recovered in urine following
simulation of a single administration of 50 mg. Curve represents model
simulation and dots represent experimental data. Colors of dots
correspond to different data sources: black—Obermeier et al. (2010); blue—
Kasichayanula et al. (2011a); red—Kasichayanula et al. (2013).

FIGURE 4 | Example of validation of the dapagliflozin model using

plasma data. Total level of dapagliflozin in plasma following simulation of a
single administration, but at different doses (Yang et al., 2013). Curve
represents model simulations and dots represent experimental data. Colors
of curves and dots correspond to the different doses: black—5 mg,
blue—10 mg. Model simulations are presented with 95% confidence bands.

level of total glucose reabsorption inhibition, and almost
equal to 100%, following treatment with all experimental
doses of SGLT2 inhibitors (Figures 9, 10, Supplementary
Figures 21–23).
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FIGURE 5 | Example of validation of the dapagliflozin model using

urine data. Amount of dapagliflozin recovered in urine every 24 h following
simulation of multiple administrations of 10 mg QD. Curve represents
model simulation and dots represent experimental data. Colors of dots
correspond to the different data sources: black—Kasichayanula et al.
(2011a), blue—Yang et al. (2013). Model simulation is presented with 95%
confidence bands.

To compare the efficacies of each compound, the level of
SGLT2 inhibition was simulated after administration of equal
doses (20 mg) (Supplementary Figure 24), labeled doses of mar-
keted inhibitors, and maximal doses of other inhibitors approved
for phase 2/3 studies (Figure 11). For all compounds, adminis-
tration of equal or labeled/maximal approved doses resulted in
almost 100% inhibition of SGLT2. Therefore, the difference in
efficacy of the tested SGLT2 inhibitors was not significant.

EFFECT OF SGLT2 INHIBITORS ON OTHER TRANSPORTERS FROM THE
SGLT FAMILY
To predict the effect of dapagliflozin, canagliflozin, ipragliflozin,
empagliflozin, and tofogliflozin on other members of the SGLT
family, the inhibition level of these transporters in the lumen of
the kidney’s proximal tubules was simulated following admin-
istration of labeled doses of marketed inhibitors and maxi-
mal doses of other inhibitors approved for phase 2/3 studies.
We found that the influence of the inhibitors on other trans-
porters was substantial–approximately 50% or above for par-
ticular compounds (Supplementary Figure 25–29). The most
effective inhibitor of SGLT1 was canagliflozin (Supplementary
Figure 25), while ipragliflozin and tofogliflozin produced the
strongest inhibition of SGLT3 (Supplementary Figure 26).
While all other SGLT2 inhibitors have a similar effect on
SGLT4, dapagliflozin is a weak inhibitor of this co-transporter
(Supplementary Figure 27). Ipragliflozin and empagliflozin are
the strongest SGLT5 inhibitors (Supplementary Figure 28), while
canagliflozin has the strongest effect on SGLT6 (Supplementary
Figure 29).

FIGURE 6 | Concentration of SGLT2 inhibitors in the lumen of the

kidney’s proximal tubules. Level of SGLT2 inhibitors in the lumen of the
kidney’s proximal tubules following simulation of multiple administrations of
labeled doses of marketed SGLT2 inhibitors and maximal doses of other
SGLT2 inhibitors approved for phase 2/3 studies. Colors of curves
correspond to different compounds: black—10 mg QD dapagliflozin;
blue—300 mg QD canagliflozin; red—25 mg QD empagliflozin;
green—300 mg QD ipragliflozin; pink—40 mg QD tofogliflozin. Model
simulations are presented with 95% confidence bands.

FIGURE 7 | Concentration of dapagliflozin in plasma and the lumen

of the kidney’s proximal tubules. Dapagliflozin levels found in different
compartments following simulation of a single administration of 10 mg.
Colors of curves correspond to various compartments. Black—total
plasma concentration; blue—unbound plasma concentration;
red—concentration in lumen. Model simulations are presented with 95%
confidence bands.
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DISCUSSION
SGLT2 is a promising target for the treatment of T2DM because
its inhibition could lower glucose levels without directly influ-
encing insulin resistance or b-cell function. However, in a

FIGURE 8 | Concentration of tofogliflozin in plasma and the lumen of

the kidney’s proximal tubules. Tofogliflozin levels found in different
compartments following simulation of a single administration of 40 mg.
Colors of curves correspond to various compartments. Black—total plasma
concentration; blue—unbound plasma concentration; red—concentration in
lumen. Model simulations are presented with 95% confidence bands.

previous study, administration of SGLT2 inhibitors resulted in
only 30–50% inhibition of glucose reabsorption in human sub-
jects even at high doses, which was in contrast to the expected
inhibition of 90% based on in vitro potency and plasma levels
(Liu et al., 2012). In our study, we applied a systems pharmacol-
ogy modeling approach to test several hypotheses that attempt to
explain the discrepancy between the expected and observed lev-
els of glucose reabsorption following administration of SGLT2
inhibitors. We developed models, simulated concentrations of
SGLT2 inhibitors in the lumen of the kidney’s proximal tubules,
and compared the efficacy of these compounds in terms of levels
of in vivo SGLT2 inhibition.

Models for SGLT2 inhibitors were verified and validated
against all available clinical data describing the PK of the com-
pounds in plasma and urine. Similar to the model of Maurer
et al. (2011), we introduced a peripheral compartment into
our model of dapagliflozin. We also included this compartment
for ipragliflozin and tofogliflozin models. Despite the inclusion
of a peripheral compartment in a previously published model
of empagliflozin (Riggs et al., 2013), we chose a model with-
out peripheral compartment for empagliflozin based on Akaike
Information Criterion (AIC) (Akaike, 1974). The AIC we cal-
culated for the empagliflozin model without a peripheral com-
partment was lower than that of the model with peripheral
compartment (343 vs. 345, respectively). Our canagliflozin model
was also developed on the basis of one compartmental PK model.

Applying a verification strategy described in the
Supplementary Materials, we were able to estimate the models’
parameter values for active secretion of the drugs from plasma
to urine and reabsorption from urine to plasma. Indeed, we
found that the active secretion from plasma to the lumen of the

FIGURE 9 | Comparison of simulated average inhibition of glucose

reabsorption mediated by SGLT2 and clinically measured glucose

reabsorption inhibition levels during treatment with dapagliflozin.

Comparison of the average inhibition of glucose reabsorption mediated by

SGLT2 (simulated in the model) and levels of glucose reabsorption inhibition
(measured in experiment) on the 14th day following multiple administrations
of different doses of dapagliflozin (Komoroski et al., 2009a). Model
simulations are presented with 95% confidence bands.
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FIGURE 10 | Comparison of simulated average inhibition of glucose

reabsorption mediated by SGLT2 and clinically measured glucose

reabsorption inhibition levels during treatment with empagliflozin.

Comparison of the average inhibition of glucose reabsorption mediated by

SGLT2 (simulated in the model) and levels of glucose reabsorption inhibition
(measured in experiment) on the 1st day after multiple administrations of
different doses of empagliflozin (Heise et al., 2013a). Model simulations are
presented with 95% confidence bands.

kidneys was equal to zero for dapagliflozin, canagliflozin, and
ipragliflozin, but non-zero reabsorption should be taken into
account to describe available clinical data. The reabsorption
of empagliflozin was equal to zero, but non-zero secretion
contributes substantially to the balance of the drug between
plasma and urine. Both active secretion and reabsorption of
tofogliflozin were equal to zero. Plasma and urine PK data
are not sufficient to evaluate the unique values of the rate
constants that are responsible for reabsorption and secretion
simultaneously. These two parameters are correlated with each
other. For tofogliflozin, there is lack of clinical data available
to evaluate at least one of these parameters. To understand
whether the uncertainty in these parameter values affects the
description of clearance in the model, the total systemic and
renal clearances measured in clinical trials were compared with
those calculated in the model. The total systemic clearance of
dapagliflozin was 265 mL/min in the model and 207 mL/min
in clinical trials (Boulton et al., 2013). The renal clearance of
dapagliflozin was 3.95 mL/min in the model and 3–5 mL/min
in clinical trials (Komoroski et al., 2009a,b; Kasichayanula et al.,
2011a). The renal clearances of empagliflozin and ipragliflozin
in the model were 35 and 1.88 mL/min respectively, while they
were 30–37 mL/min for empagliflozin (Heise et al., 2013a,b) and
1–3 mL/min for ipragliflozin (Veltkamp et al., 2011; Zhang et al.,
2013) in clinical data. The total systemic clearance of tofogliflozin
was equal to 9.9 L/h in the model and 10 L/h in clinical tri-
als (Schwab et al., 2013). The renal clearance of tofogliflozin
was equal to 20 mL/min in the model and 25.7 mL/min in
clinical trials (Schwab et al., 2013). Therefore, the values pro-
duced by our models are similar to experimentally measured
values.

FIGURE 11 | Levels of SGLT2 inhibition after drug administration.

Levels of SGLT2 inhibition following simulation of multiple administrations
of labeled doses of marketed SGLT2 inhibitors and maximal doses of other
SGLT2 inhibitors approved for phase 2/3 studies. Colors of curves
correspond to different compounds: black—10 mg QD dapagliflozin;
blue—300 mg QD canagliflozin; red—25 mg QD empagliflozin;
green—300 mg QD ipragliflozin; pink—40 mg QD tofogliflozin. Model
simulations are presented with 95% confidence bands.

One hypothesis proposed by Liu et al. (2012) states that the
low efficacy of SGLT2 inhibitors could be explained by the low
concentration of compounds at the potential site of action–the
lumen of kidney’s proximal tubules. Our model suggests that
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concentrations of SGLT2 inhibitors in the lumen are higher than
the corresponding unbound and total concentrations in plasma.
This can be explained in terms of reabsorption of water in kid-
ney’s proximal tubules (Panchapakesan et al., 2009). A decrease in
water volume in the lumen leads to an increase in the concentra-
tion of the compounds in lumen than in the plasma. In the model,
this is reflected by the ratio of glomerular filtration and urine
excretion (urine formation) rates. Thus, we conclude that the
concentration of compounds in the lumen of the kidney’s proxi-
mal tubules is actually relatively high, and we reject the hypothesis
that the low efficacy of SGLT2 inhibitors is caused by their low
concentration at the site of action. Our model predicts that con-
centrations of empagliflozin and tofogliflozin in kidney lumen
are higher than concentrations of dapagliflozin, canagliflozin,
and ipragliflozin following administration of equal doses. This
prediction is supported by data obtained from clinical trials,
which indicates that approximately 20% of the empagliflozin and
tofogliflozin dose is recovered in urine (Brand et al., 2012; Zell
et al., 2013) in comparison to about 1% for the other SGLT2
inhibitors (Kasichayanula et al., 2011a; Devineni et al., 2013;
Zhang et al., 2013).

The model shows that administration of labeled doses of mar-
keted inhibitors (dapagliflozin and canagliflozin) and of maximal
doses approved for phase 2/3 studies of tofogliflozin, ipragliflozin,
and empagliflozin leads to almost complete inhibition of SGLT2
in vivo. The average inhibition level of glucose reabsorption medi-
ated by SGLT2 (the average SGLT2 inhibition level) predicted by
the model is higher than glucose reabsorption inhibition level
measured in clinical trials, and almost equal to 100%. Thus, if
the lumen of the kidney’s proximal tubules is indeed the site of
action of SGLT2 inhibitors, and SGLT2 is the main transporter
that facilitates reabsorption of glucose, then there is a contra-
diction between the simulations produced by the model and the
clinical data. This contradiction leads us to support two hypothe-
ses proposed by Liu et al. (2012). Firstly, that the potential site
of action of SGLT2 inhibitors is not in the lumen of the kidney’s
proximal tubules, but in the proximal tubule cells. Secondly, that
there are other transporters that could facilitate glucose reabsorp-
tion under the conditions of SGLT2 inhibition. Both hypotheses
appear reasonable within the framework of our current model.
To determine which of these two hypotheses is true, further
modeling supported by additional experimental data is required.

The model was applied to compare the efficacy of different
SGLT2 inhibitors in respect of inhibiting other transporters in the
SGLT family that are expressed in kidneys. Simulating the admin-
istration of equal doses of compounds (20 mg), labeled doses
of marketed inhibitors, and maximal doses of other inhibitors
approved for phase 2/3 studies showed that levels of SGLT2 inhi-
bition are similar for all compounds and almost equal to 100%.
This is caused by high concentrations of SGLT2 inhibitors in
the lumen of the kidneys and low in vitro IC50 values. The
effect of SGLT2 inhibitors on other transporters is also rather
strong because of its high concentration in kidney’s lumen.
Canagliflozin is the strongest SGLT1 and SGLT6 inhibitor, and
this is caused by canagliflozin’s low IC50 (the lowest of all the
SGLT2 inhibitors considered here). The most effective SGLT3
inhibitors are ipragliflozin and tofogliflozin because of their high

in vitro potencies. All compounds have similar effects on SGLT4,
except dapagliflozin. Dapagliflozin has the weakest influence on
SGLT4 because of its low concentration in the kidney’s lumen.
Ipragliflozin and empagliflozin are the strongest SGLT5 inhibitors
because of their low IC50 of for SGLT5, and the high concentra-
tion of ipragliflozin in the lumen.

In conclusions, we have developed a systems pharmacology
model for SGLT2 inhibitors that enables the estimation of its con-
centration in the lumen of the kidney’s proximal tubules (the
potential site of SGLT2 action) and the prediction of SGLT2 inhi-
bition levels during treatment in humans. We have shown that
the concentration of SGLT2 inhibitors in the lumen of the proxi-
mal tubules is high, and that the level of SGLT2 inhibition during
treatment in humans is almost 100%. Based on the results of
our model, two explanations for the observed low efficacy of
SGLT2 inhibitors were supported: (1) the site of action of SGLT2
inhibitors is not in the lumen of the kidney’s proximal tubules, but
elsewhere (e.g., the kidneys proximal tubule cells); and (2) there
are other transporters that could facilitate glucose reabsorption
under the conditions of SGLT2 inhibition (e.g., other transporters
of SGLT family). It was found that all SGLT2 inhibitors have
similar efficacy.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fphar.
2014.00218/abstract
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In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose
cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been
characterized as a high capacity, low affinity pathway responsible for reabsorption of the
majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs
the residual glucose in the distal part. Inhibition of SGLT2 is a viable mechanism for
removing glucose from the body and improving glycemic control in patients with diabetes.
Despite demonstrating high levels (in excess of 80%) of inhibition of glucose transport by
SGLT2 in vitro, potent SGLT2 inhibitors, e.g., dapagliflozin and canagliflozin, inhibit renal
glucose reabsorption by only 30–50% in clinical studies. Hypotheses for this apparent
paradox are mostly focused on the compensatory effect of SGLT1. The paradox has
been explained and the role of SGLT1 demonstrated in the mouse, but direct data in
humans are lacking. To further explore the roles of SGLT1/2 in renal glucose reabsorption
in humans, we developed a systems pharmacology model with emphasis on SGLT1/2
mediated glucose reabsorption and the effects of SGLT2 inhibition. The model was
calibrated using robust clinical data in the absence or presence of dapagliflozin (DeFronzo
et al., 2013), and evaluated against clinical data from the literature (Mogensen, 1971;
Wolf et al., 2009; Polidori et al., 2013). The model adequately described all four data
sets. Simulations using the model clarified the operating characteristics of SGLT1/2 in
humans in the healthy and diabetic state with or without SGLT2 inhibition. The modeling
and simulations support our proposition that the apparent moderate, 30–50% inhibition
of renal glucose reabsorption observed with potent SGLT2 inhibitors is a combined result
of two physiological determinants: SGLT1 compensation and residual SGLT2 activity. This
model will enable in silico inferences and predictions related to SGLT1/2 modulation.

Keywords: systems pharmacology model, SGLT, dapagliflozin, renal glucose reabsorption, glucosuria, diabetes

mellitus

INTRODUCTION
In the kidney, plasma glucose is continuously filtered by glomeruli
and reabsorbed along the proximal tubules. Under normal
physiological conditions, the reabsorption is almost complete.
The reabsorption is mediated primarily by two sodium-glucose
cotransporters (SGLTs), SGLT1 and SGLT2. In the kidney, SGLT2
is located in the early part (S1/S2 segments) of the proximal
tubules, and is recognized as a low affinity, high capacity path-
way for renal glucose reabsorption. SGLT1, on the other hand, is
located in the distal part (S3 segment) of the proximal tubules,
and is characterized as a high affinity, low capacity pathway
(Wright, 2001; Mather and Pollock, 2011). SGLT2 is believed
responsible for 80–90% of renal glucose reabsorption, and SGLT1
for the rest (10–20%) in healthy humans under normal physiolog-
ical conditions (DeFronzo et al., 2012). SGLT2 has been identified
as a viable target for improving glycemic control in diabetes.

Two potent and selective SGLT2 inhibitors, dapagliflozin and
canagliflozin, have been approved by many regulatory agencies
for treating type 2 diabetes mellitus (T2DM).

Given the overwhelming contribution (>80%) of SGLT2 to
renal glucose reabsorption, it has been expected that SGLT2
inhibitors, at sufficient exposures, would reduce renal glu-
cose reabsorption by over 80%. This expectation, however,
appeared to be contradicted by the clinical observations that
only 30–50% of inhibition in glucose reabsorption was achieved
with dapagliflozin and canagliflozin (Komoroski et al., 2009a;
Devineni et al., 2013; Washburn and Poucher, 2013). To explain
this apparent contradiction, several hypotheses, from peculiar
pharmacokinetics of an inhibitor in the kidney (Liu et al., 2012)
to SGLT1 compensation (Haddish-Berhane et al., 2010; Maurer
et al., 2011; Abdul-Ghani et al., 2013), have been proposed. These
hypotheses are yet to be tested.
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Recently, Hummel et al. (2011) used a quantitative in vitro
electrophysiological study to generate hypotheses about the rela-
tive contributions of human SGLTs to renal glucose reabsorption.
Hummel et al. found that the two human transporters have sim-
ilar apparent affinity for D-glucose (5 mM for hSGLT2 vs. 2 mM
for hSGLT1), and inferred that the capacity of hSGLT1 for renal
glucose reabsorption may be over 50% of hSGLT2 under normal
conditions in humans. As such, the difference in the contribution
to renal glucose reabsorption between the two cotransporters may
be less profound than previously perceived.

Despite a large body of research in SGLTs and renal glucose
reabsorption, the quantitative understanding of the characteris-
tics of these cotransporters in humans remains limited (Vallon,
2011). Assessments in this regard have largely relied on frag-
ments of data, insufficient to account for all key variables (e.g.,
SGLTs activities, plasma glucose levels, pharmacokinetic profiles
of SGLTs inhibitors), and empirical, static mathematical models
that do not account for the dynamic processes of renal glucose fil-
tration, reabsorption, and transfer along tubular lumen over time.
Consequently, a quantitative, holistic characterization has not yet
been formulated.

Systems pharmacology modeling is a powerful tool for data
and knowledge integration and hypothesis testing, and for pro-
viding quantitative understanding of a pharmacological target or
pathway and insights into “what-if” scenarios that may not be
feasibly obtained experimentally. For SGLTs-mediated renal glu-
cose reabsorption, Yamaguchi et al. reported simplified systems
pharmacology models in mice (Yamaguchi et al., 2012) and rats
(Yamaguchi et al., 2011), and Haddish-Berhane et al. (2010) pre-
sented a conference poster on a minimal systems pharmacology
model in humans with limited evaluation against clinical data on
dapagliflozin (Komoroski et al., 2009a).

This report presents a systems pharmacology model that was
developed based on renal physiology and a robust clinical data
set, with emphasis on SGLTs-mediated glucose reabsorption in
the proximal tubules. The model was evaluated against several
external clinical data sets. It is anticipated that the model will be
valuable in:

(1) Quantitatively evaluating the relative contributions of SGLT1
and SGLT2 to renal glucose reabsorption under various glu-
cose load conditions in humans;

(2) Explaining the apparently contradictory clinical observation
that potent SGLT2 inhibitors only inhibit 30–50% of renal
glucose reabsorption;

(3) Mapping genetic mutations of renal SGLT2 to its in vivo
activity and urinary glucose excretion (UGE); and

(4) Predicting the effect of SGLT2 inhibition on glycemic con-
trol in diabetes mellitus where clinical data remain scarce,
e.g., elderly and pediatric patients, and patients with type 1
diabetes mellitus (Lu et al., 2014).

MATERIALS AND METHODS
STUDIES AND DATA SETS
The studies and data sets used for model calibration and evalua-
tion are listed in Table 1. For more details, the reader is referred
to the original reports.

The DeFronzo et al. (2013), Polidori et al. (2013) and Wolf
et al. (2009) studies employed stepped hyperglycemic clamp
(SHC) procedures, and the Mogensen study (1971) was con-
ducted at fixed, elevated plasma glucose levels. The clinical
approach of artificially maintaining a constant plasma glucose
concentration allowed us to ignore the potential impacts of renal
glucose reabsorption on plasma glucose concentration, hence
simplifying the process of model development. Simulations using
the systems pharmacology model with fixed glucose levels will
provide “clean” illustrations of SGLTs operating characteristics. A
more comprehensive model integrating renal glucose reabsorp-
tion and glucose-insulin homeostasis will be reported elsewhere
(Lu et al., 2014).

The mean data from each study were used for model cali-
bration or evaluation. The data in DeFronzo et al. (2013) were
available from an internal database owned by Bristol-Myers
Squibb/AstraZeneca. We excluded from analysis those data points
where the actual plasma glucose level deviated 25% or more from
the corresponding group means. These data points appeared at
the steps with target glucose level ≥450 mg/dL, and represented
only 17% of total data points at those steps. This exclusion should
abolish potential undue influences of excessive variability in the
data on parameter estimation.

MODEL STRUCTURE
The model structure, shown in Figure 1, was developed based
on the renal physiology and pharmacological understanding of
SGLTs inhibition. The model describes the disposition of glu-
cose as well as SGLTs inhibitors, if applicable, with emphasis
on glomerular filtration and tubular reabsorption. The proximal
convoluted tubules (PCT) were divided equally into six sequen-
tial sub-segments (PCT1-6), and the proximal straight tubules
(PST) were divided equally into three sub-segments (PST1-3).
The division allowed a more accurate description of the luminal
glucose concentration as the filtrate progresses through tubular
segments and the amount of UGE over time. The number of
sub-segments was chosen to achieve an approximate agreement
between predicted and observed UGE in a healthy subject under
normal conditions. The distal tubules were not included due to
their irrelevance to glucose reabsorption. The glomerular filtrate
flowed from PCT1 through PST3 and drained into the urinary
bladder. A urine compartment was added for collecting urine and
urinary glucose.

Along the proximal tubules, filtered glucose was continuously
reabsorbed. It was assumed that the absorption was mediated
by SGLT2 in the PCT (PCT1-6) and by SGLT1 in the PST
(PST1-3). The maximum reabsorption rate of SGLT2 (Vmax2)
was uniformly distributed among the PCT1-6 sub-segments, and
likewise for the Vmax of SGLT1 (Vmax1) among the PST1-3 sub-
segments. In each sub-segment, glucose was reabsorbed via a
Michaelis-Menten process as Equation (1):

Rj = Vmax,j × Cglu,j

Km + Cglu,j
(1)

where the subscript j is an index for a tubular sub-segment,
and for a given sub-segment, R is the glucose reabsorption rate
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Table 1 | Studies and data sets used for model calibration and evaluation.

Study Subjects Study procedure Data pertinent to modeling Use

DeFronzo et al., 2013 Healthy (N = 12),
T2DM (N = 12)

SHC at baseline and after 7 daily doses of
10 mg dapagliflozin treatment; target
plasma glucose level 100, 150, 200, 250,
300, 350, 400, 450, 500, and 550 mg/dL.

Dapagliflozin plasma concentration time
course after the last dose; actual plasma
glucose and iohexol concentrations, urine
volume, urine glucose and iohexol
concentrations at each step.
Raw data available from BMS internal
database.

Model calibration

Polidori et al., 2013 T2DM (N = 28) SHC at baseline and after 8 daily doses of
100 mg canagliflozin treatment; target
blood glucose level 126, 171, 216, 261,
and 306 mg/dL at baseline and 72, 117,
162, 207, and 252 mg/dL after treatment.

Canagliflozin plasma concentration time
course in Devineni et al. (2013); Creatinine
clearance, actual blood glucose, and UGE
rate in Polidori et al. (2013).

Model evaluation

Mogensen, 1971 Healthy (N = 9),
Diabetics (N = 10)

Plasma glucose escalated to over
650 mg/dL via glucose infusion.

GFR, plasma glucose concentration, and
UGE rate in Mogensen (1971).

Model evaluation

Wolf et al., 2009 T2DM (N = 22) SHC; target blood glucose level 140, 160,
180, 200, 220, 240 mg/dL.

GFR, actual blood glucose level, and
tubular glucose reabsorption rate in Wolf
et al. (2009).

Model evaluation

FIGURE 1 | Structure of the systems pharmacology model for describing renal glucose reabsorption and the inhibitory effect of an SGLTs inhibitor.

PCT1-6: sub-segments 1–6 of proximal convoluted tubules; PST1-3: sub-segments 1–3 of proximal straight tubules; UB, urinary bladder.

(mass/time), Km denotes glucose affinity for SGLT1 or SGLT2,
and Cglu represents luminal glucose concentration.

The mass of reabsorbed glucose was directed to another com-
partment (glucose reabsorbed) instead of the plasma glucose
compartment. This approach is appropriate for scenarios where
renal glucose recovery does not affect plasma glucose level, such
as: (1) experimental procedures that fix plasma glucose levels

(Mogensen, 1971; Wolf et al., 2009; DeFronzo et al., 2013; Polidori
et al., 2013), and (2) subjects with normal glucose tolerance who
can efficiently dispose the absorbed mass to maintain plasma
glucose constant at the fasting state.

In the case where an SGLTs inhibitor, e.g., dapagliflozin or
canagliflozin, was administered, the unbound portion of the
inhibitor in plasma was freely filtered via glomeruli. The inhibitor
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then traveled through the tubular sub-segments and the urinary
bladder, and was excreted to the urine compartment, similar
to glucose but without tubular reabsorption. Within each sub-
segment, the inhibitor competed with glucose for SGLT1/2, and
hence competitively inhibited glucose reabsorption. The reab-
sorption rate (R∗

j ), with competitive inhibition of an inhibitor,
in a given sub-segment became:

R∗
j = Vmax,j × Cglu,j

Km ×
(

1 + Cdrug,j

Ki

)
+ Cglu,j

(2)

where Cdrug denotes luminal SGLTs inhibitor concentration, and
Ki is the affinity of the inhibitor to SGLTs. [See Supplementary
Materials for further expansion of Equations (1) and (2)].

To obtain a similar time course of plasma concentration of
canagliflozin with the dosing regimen (100 mg QD for 8 days)
described in Polidori et al. (2013), a two-compartment pharma-
cokinetic (PK) model was developed based on the mean PK data
reported (Devineni et al., 2013). For dapagliflozin, observed mean
PK after 10 mg, QD, for 7 days was reported in DeFronzo et al.
(2013). Interpolation of the observed dapagliflozin PK provided
an input into the plasma inhibitor compartment (Figure 1) to
allow description of dapagliflozin inhibition of tubular glucose
reabsorption.

MODEL PARAMETERS AND CALIBRATION
The physiological parameters, such as volumes, flow rates, glu-
cose affinity for SGLTs (Km), and glucose reabsorption capacities
(Vmax) are listed in Table 2, and SGLT2 inhibitor physicochemi-
cal parameters and binding affinity for SGLTs (Ki) are in Table 3.
Most of the parameters were from the literature, measured in each
of the respective studies, or based on reasonable assumptions,
except for Vmax, Km, and Ki, whose values were calibrated. For
parameter calibration, literature values were taken as the starting
points (see Tables 2, 3), and then fine-tuned to allow the model
predictions to be consistent with the mean UGE data in DeFronzo
et al. (2013). Because a satisfactory agreement between the pre-
dictions and the observations of UGE could not be achieved over
the entire plasma glucose range of 100–550 mg/dL, the calibra-
tion was focused on the data in the clinically relevant range,
100–400 mg/dL. In the end, only the set of calibrated values
were considered physiologically plausible and accepted if it ade-
quately described the DeFronzo et al. (2013) as well as the other
three data sets (Mogensen, 1971; Wolf et al., 2009; Polidori et al.,
2013).

The potential influences of diabetes and SGLT2 inhibition on
the parameters to be calibrated were considered during param-
eterization. Renal SGLTs expression and activity may change
in response to SGLT2 inhibition and/or diabetes. In the wild-
type mouse, SGLT2 protein expression was enhanced with the
treatment of empagliflozin, a selective SGLT2 inhibitor, with-
out upregulation of mRNA (Vallon et al., 2014). In the diabetic
state, the expressions of SGLT2 mRNA and protein have been
found upregulated significantly relative to the respective con-
trols in genetically modified mice (Vallon et al., 2014), diabetic
rats, (Freitas et al., 2008; Tabatabai et al., 2009), and humans
(Rahmoune et al., 2005). For renal SGLT1, however, the response

is more diverse, with increased, unchanged, or reduced expression
and/or activity observed in animals (Vallon and Thomson, 2012;
Vallon et al., 2014). It is challenging to incorporate these potential
changes in SGLT activity in the model for two reasons: (i) limited
quantitative understanding in humans regarding these changes,
and (ii) adequate calibration of parameters for these changes is
not supported by available data. For simplification, therefore, the
Vmax1, Km, and Ki values were assumed consistent between the
healthy and diabetics, and Vmax2 was allowed to adjust between
the healthy and disease state. The Vmax2 in healthy subjects was
estimated as a proportion of that in diabetics, and the value of the
proportion was calibrated using the DeFronzo et al. (2013). The
potential impact of SGLT2 inhibition on Vmax, Km, and Ki values
was ignored.

Although Vmax in humans has generally been reported as the
sum of Vmax1 and Vmax2, with difficulty in separating the two
components, it is worth pointing out that in our study, quan-
titative separation of Vmax1 and Vmax2 was feasible without an
assumption of the value of Vmax1/Vmax2 ratio, because the cali-
bration data set (DeFronzo et al., 2013) encompassed scenarios
with and without perturbation of SGLT2 activity. Such a separa-
tion was achieved previously in rats with the aid of mathematical
modeling (Yamaguchi et al., 2011).

MODEL EVALUATION
Once it was calibrated using the DeFronzo et al. (2013), the model
was evaluated for its predictivity against three data sets from
different sources (Mogensen, 1971; Wolf et al., 2009; Polidori
et al., 2013). The parameters were held constant for the evalu-
ation unless they were study specific, in which case they were
adjusted per the study conditions as listed in Tables 1, 2. The Ki

values of canagliflozin, necessary for simulating the Polidori et al.,
conditions (Polidori et al., 2013), are listed in Table 3.

SIMULATIONS AND EXPLORATIONS
Renal glucose reabsorption and UGE vs. loss-of-function mutation
of SGLTs
Numerous mutations in SGLT1 (Martin et al., 1996; Lam et al.,
1999) and SGLT2 have been identified in humans (Santer et al.,
2003; Kleta et al., 2004; Calado et al., 2008; Yu et al., 2011).
The mutations in SGLT1 disrupt the trafficking of SGLT1 from
the endoplasmic reticulum to the plasma membrane (Lam et al.,
1999), and the mutations in SGLT2 reduce SGLT2 expression
in the apical side of PCT (Yu et al., 2011). These mutations
are likely to reduce the Vmax of these cotransporters. It is yet
to be clarified to what extent the function of SGLTs in the
kidney is affected by a given mutation. Simulations using our
systems pharmacology model can provide theoretical, quanti-
tative relationships between a reduction in Vmax and glucose
reabsorption or UGE in an otherwise healthy person. To enable
these simulations, the mean daily plasma glucose profile in the
healthy subjects from Freckmann et al. (2007) was used as an
input to the plasma glucose compartment of our model. The
quantitative SGLTs function-UGE relationships will be instru-
mental to mapping renal SGLTs genotypes to their apparent
functions.
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Table 2 | Physiological parameters.

Parameter Symbol (unit) Value Rationale and/or Reference

VOLUMES

Renal cortex volume VCTX (L) 0.216 Thelwall et al., 2011

Proximal tubules (PT) volume as a fraction of
renal cortex

VPTC 0.3 Moller and Skriver, 1985

PCT volume as a fraction of PT VPCTC 0.7 Assumed

PST volume as a fraction of PT VPSTC 1–VPCTC

Urinary bladder volume VX (L) 0.2 Brown et al., 2011

FLOW RATES

Glomerular filtration rate (GFR) GFR (L/h)

DeFronzo et al., healthy baseline 5.66–7.38 Measured using iohexol as a marker,
raw data from an internal database
owned by Bristol-Myers
Squibb/AstraZeneca

DeFronzo et al., healthy after dapagliflozin 5.19–7.41

DeFronzo et al., T2DM baseline 6.52–7.62

DeFronzo et al., T2DM after dapagliflozin 5.07–7.53

Healthy and diabetic subjects in other
studies

Various Mogensen, 1971; Wolf et al., 2009;
Polidori et al., 2013

Filtrate flow rate in tubular lumen KPCi (L/h) for PCT, where
i = 1–6;
KPSj (L/h) for PST, where
j = 1–3

From 0.926 × GFR to
0.333 × GFR with
decrements of 0.074 ×
GFR for PCT1 to PST3

Calculated based on (1) 2/3 of filtered
water is reabsorbed by the end of PT
(Koeppen and Stanton, 2013), and (2)
the assumption that the water
reabsorption rate is identical in all
proximal tubular sub-segments.

Rate of flow out of urinary bladder KX (L/h)

DeFronzo et al., healthy baseline 0.63–1.20 Measured, raw data from an internal
database owned by Bristol-Myers
Squibb/AstraZeneca

DeFronzo et al., healthy after dapagliflozin 0.78–1.40

DeFronzo et al., T2DM baseline 0.54–1.24

DeFronzo et al., T2DM after dapagliflozin 0.80–1.20

Polidori et al., T2DM,
Mogensen healthy and diabetics

0.60 Assumed based on observations in
the DeFronzo et al., 2013

Wolf et al., diabetics 0.28 Wolf et al., 2009

GLUCOSE REABSORPTION

SGLT1 maximum reabsorption rate Vmax1 (mmol/h) 20.0 Model calibration (10% of 140 mmol/h
in T2DM patients DeFronzo et al.,
2013 as starting point)

SGLT2 maximum reabsorption rate in diabetics Vmax2 (mmol/h) 110.0 Model calibration (90% of 140 mmol/h
in T2DM patients DeFronzo et al.,
2013 as starting point)

SGLT2 maximum reabsorption rate in healthy Vmax2 (mmol/h) 93.5 Model calibration (100% of Vmax2 in
diabetes as starting point)

Glucose affinity for SGLT1 Km1 (mM) 0.5 Model calibration (1.8 mM from
Hummel et al., 2011 as starting point)

Glucose affinity for SGLT2 Km2 (mM) 4.0 Model calibration (4.9 mM from
Hummel et al., 2011 as starting point)

Sensitivity of renal glucose reabsorption and UGE to SGLT1 kinetics
(Vmax 1 and Ki 1)
The analysis of sensitivity of renal glucose reabsorption and UGE
to SGLT1 kinetics will help clarify these questions: (1) How strong
is the influence of an alteration of SGLT1 kinetics on renal glu-
cose reabsorption and UGE in the healthy state? (2) How strong
is the influence in the diabetic state? (3) From drug discovery per-
spective, without consideration of its effect on intestinal SGLT1,
will an SGLT1/2 dual inhibitor induce stronger glucosuria than a
highly selective SGLT2 inhibitor, e.g., dapagliflozin? The analysis
was conducted with simulations in a naive healthy subject and a

T2DM subject with or without SGLT2 inhibition under the SHC
procedure used by DeFronzo et al. (2013) with a target plasma
glucose range of 100–350 mg/dL. With all other parameters held
constant, we first evaluated how a decrease in Vmax1 would affect
renal glucose reabsorption and UGE; and likewise, we then eval-
uated how changes in Km1, or Ki1 with the presence of SGLTs
inhibition, would affect renal glucose reabsorption and UGE.

SOFTWARE
Processing of the raw data from the DeFronzo et al. study (2013)
was conducted using S-PLUS 8.1 version 3.4 (TIBCO, Palo Alto,
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Table 3 | SGLT2 inhibitor-specific parameters.

Parameter Dapagliflozin Canagliflozin

Molecular weight
(MW, g/mole)

409 454

Free fraction in
plasma (fup)

0.07* 0.01 Devineni et al., 2013

Affinity for SGLT1
(Ki1, nM)

400 Hummel et al.,
2011

200 (half of dapagliflozin
Ki1 as per Grempler
et al., 2012)

Affinity for SGLT2
(Ki2, nM)

0.3 (model calibration,
6 nM from Hummel
et al., 2011 as starting
point)

0.6 (2-fold of dapagliflozin
Ki2 as per Grempler
et al., 2012)

*Reference: Bristol-Myers Squibb/AstraZeneca report (2010): Summary of clini-

cal pharmacology studies: Dapagliflozin (BMS-512148). BMS Document Control

Number 930047848.

CA) on a UNIX platform. Model development and simulations
were performed using Berkeley Madonna version 8.3.18 (Berkeley
Madonna Inc., Berkeley, CA).

RESULTS
MODEL CALIBRATION USING DeFronzo et al. (2013)
The UGE data from DeFronzo et al. (2013) allowed estima-
tion of Vmax, glucose Km, and dapagliflozin Ki values for SGLTs
in the healthy subjects and T2DM patients. In the model, the
healthy and T2DM subjects were differentiated by their Vmax2
for describing the DeFronzo et al. conditions. The parame-
ter estimates are presented in Tables 2, 3. The model per-
formance is demonstrated in Figure 2. The model adequately
described the cumulative (Figures 2A,B) and step-wise UGE
data (Figures 2C,D) at baseline and in the first 4 h (where
the target plasma glucose escalated from 100 to 350 mg/dL)
after dapagliflozin treatment. From 4.67 h onward (where the
target plasma glucose increased from 400 to 550 mg/dL), the
model prediction of UGE in the dapagliflozin treated groups
was slightly lower than the observed. The glucose concentra-
tions in the tubular sub-segments PCT1-6 and PST1-3 in T2DM
patients at baseline and treated with dapagliflozin are illus-
trated in Figure S1. At baseline, the tubular glucose concen-
tration tapers along the proximal tubules with plasma glucose
level up to 23 mM. With further increase in plasma glucose,
the tubular glucose level becomes more uniform as the reab-
sorption approaches saturation. After dapagliflozin treatment,
however, glucose is increasingly concentrated along the proximal
tubules.

MODEL EVALUATION
The calibrated model was evaluated for its predictive performance
relative to three separate clinical data sets (Mogensen, 1971; Wolf
et al., 2009; Polidori et al., 2013). The predictions are overlaid with
corresponding observations in Figure 3. The predictions agreed
well with the observed data, indicating that the model is plausi-
ble, has reasonable accuracy, and can be used for inference and
prediction.

SGLTs OPERATING CHARACTERISTICS FOR THE DeFronzo et al. (2013)
CONDITIONS
SGLTs relative contributions to renal glucose reabsorption
The model derived step-wise amount of glucose reabsorbed by
renal SGLT1 and SGLT2 in the healthy subjects at baseline and
after dapagliflozin treatment is shown in Figures 4A,B, and the
relative contributions of the two pathways at each step are in
Figures 4C,D. At near normal glycemic levels (∼100 mg/dL) at
baseline (without SGLT2 inhibition), SGLT2 contributed to 90%
of total reabsorption and SGLT1 10%. The 90%/10% split became
80%/20% with plasma glucose escalated to over 200 mg/dL. With
the presence of dapagliflozin, the contribution of SGLT2 declined
and SGLT1 became the more predominant reabsorption path-
way; the relative contributions varied with plasma dapagliflozin
concentration over time. Similar results were obtained in the
T2DM patients, for whom the relative contributions of SGLT1
and SGLT2 before and after dapagliflozin treatment are illustrated
in Figures 4E,F.

SGLTs operation efficiency
The calculated operation efficiency (defined as reabsorption
rate/Vmax × 100% for either SGLT1 or SGLT2) for both SGLTs
in the healthy subjects is plotted in Figure 5A. At the plasma
glucose level of ∼100 mg/dL, SGLT2 and SGLT1 were operat-
ing at ∼40 and 20% of their respective Vmax. The operation
efficiency increased with plasma glucose (and thereby filtered glu-
cose load) for both SGLTs, with the slope for SGLT1 being much
steeper than for SGLT2. The operation efficiency at plasma glu-
cose ≥400 mg/dL reached 97% for SGLT1 and 81% for SGLT2.
Even with plasma glucose as high as 550 mg/dL, SGLT2 operated
at just 89% of its capacity. Dapagliflozin treatment lowered SGLT2
operation efficacy to as low as 10%, and drove SGLT1 operation to
over 90% of its capacity. Similar results were found in the T2DM
patients (Figure 5B).

SIMULATIONS AND EXPLORATIONS
Renal glucose reabsorption and UGE vs. loss-of-function mutation
of SGLTs
Simulations were conducted to establish quantitative relation-
ships between loss of function (i.e., reduction in Vmax) of SGLT2
or SGLT1 and renal glucose reabsorption as well as UGE in an
otherwise healthy subject with normoglycemia (plasma glucose
ranging from 80 to 125 mg/dL with a time-weighted average of
90 mg/dL). The simulation results for SGLT2 are in Figure 6A and
SGLT1 in Figure 6B. A 50% loss of function for SGLT2 caused
UGE of 4.5 g per day, and 100% of loss of function resulted in
79 g UGE per day. The total glucose reabsorption was lowered by
17, 32, and 49% for a 75, 87.5, and 100% loss of SGLT2 func-
tion, respectively. Loss of SGLT1 function caused much less severe
glucosuria, 1.2 g at 50% and 16 g at 100% of loss of function.
The total glucose reabsorption was reduced by only 10% with
complete loss of SGLT1 activity.

Sensitivity of renal glucose reabsorption and UGE to SGLT1 kinetics
In a naive healthy subject with a plasma glucose level
of ∼100 mg/dL, the elimination of SGLT1 activity, either through
driving Vmax1 to zero or Km1 to infinity, inhibited renal glucose
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FIGURE 2 | Model description of cumulative (A,B) and step-wise (C,D)

urinary glucose excretion (UGE) in the healthy (A,C) and T2DM (B,D)

subjects at baseline and after 7 daily doses of 10 mg dapagliflozin in the

DeFronzo et al. study (2013), where an stepwise hyperglycemic clamp

procedure was employed. The symbols represent observations and the
curves are model predictions. Pglu, plasma glucose concentration.

reabsorption by only 10%. This was consistent with the result
above for SGLT1 loss-of-function mutation (Figure 6B). In the
diabetic state with a mean plasma glucose level up to 250 mg/dL,
simulations suggested a slightly stronger influence (up to 20%
lowering) on renal glucose reabsorption.

For simulations in the diabetic state with the presence
of SGLT2 inhibition, the inhibitor was assumed identical to
dapagliflozin, except that its Ki1 was allowed to change. The
sensitivity of UGE to Vmax1 at 10, 14, 17, and 20 mmol/h (corre-
sponding to a 50, 30, 15, and 0% reduction in SGLT1 capacity)
is illustrated in Figure 7A. A mild to moderate, depending on
the glucose level, increase in UGE was expected with reduc-
tion in Vmax1. At the plasma glucose level of 150–250 mg/dL,
roughly equivalent to the range of average levels in real-life T2DM
patients, a 30% reduction in Vmax1, presumed to be clinically well
tolerated (Abdul-Ghani et al., 2013), augmented glucosuria by up
to 30%. The sensitivity of UGE to Ki1 is depicted in Figure 7B.
The tested Ki1 values ranged from 6 to 10,000 nM. The 6 nM rep-
resented a 20× selectivity (similar to the SGLT1/2 dual inhibitor
LX4211 Zambrowicz et al., 2013) for SGLT2 (0.3 nM) vs. SGLT1
(6 nM) for an SGLTs inhibitor which is otherwise identical to
dapagliflozin. UGE was found to be insensitive to Ki1.

DISCUSSION
Highly selective and potent SGLT2 inhibitors, such as
dapagliflozin and canagliflozin, have demonstrated significant

and clinically meaningful effects on glycemic control in T2DM
patients. It has been puzzling that SGLT2 inhibitors inhibit
renal glucose reabsorption by only 30–50% clinically, despite
the overwhelming contribution of SGLT2 to renal glucose reab-
sorption (80–90%) under normal conditions. Several hypotheses
have been proposed for this apparently discrepant observation
(Haddish-Berhane et al., 2010; Maurer et al., 2011; Pfister et al.,
2011; Liu et al., 2012; Abdul-Ghani et al., 2013), and most of
them are focused on the compensatory effect of SGLT1. The
hypothesis of SGLT1 compensation has recently been confirmed
in mice (Rieg et al., 2014). However, due to the differences in
the experimental conditions in mice (Rieg et al., 2014) and in
clinical trials (Komoroski et al., 2009a; Devineni et al., 2013;
Heise et al., 2013; Washburn and Poucher, 2013) (see Table S1),
extrapolation of the Rieg et al. (2014) finding to the clinic is
not straightforward. As a whole, this situation indicates that,
despite tremendous advances in the basic biology of SGLTs and
pharmaceutical development targeting SGLT2, the roles of these
transporters in renal glucose reabsorption, especially in humans,
have yet to be clarified in a quantitative, mechanistic manner.
To this end, we developed a systems pharmacology model for
SGLT-mediated renal glucose reabsorption in humans with
or without pharmacological modulation of SGLT2 activity. In
general, this model adequately described four separate data sets
from different study settings (Mogensen, 1971; Wolf et al., 2009;
DeFronzo et al., 2013; Polidori et al., 2013) and replicated severe
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FIGURE 3 | Evaluation of model predictivity against three separate

clinical data sets. (A) Polidori et al. (2013) urinary glucose excretion (UGE)
data in T2DM subjects at baseline and after 8 daily doses of 100 mg
canagliflozin. The symbols represent the observed data and the curves are

model predictions. (B) Wolf et al. (2009) renal glucose reabsorption rate in
T2DM patients who were subjected to a stepwise hyperglycemic clamp
procedure. (C) Mogensen (1971) renal glucose reabsorption rate in healthy
and diabetic subjects with plasma glucose levels elevated to over 650 mg/dL.

glucosuria (79 g/day) in normoglycemic human subjects with
homozygous SLGT2 mutations (Santer et al., 2003).

The prediction of UGE at the plasma glucose level of
400 mg/dL and higher in the subjects treated with dapagliflozin
was lower than the observed data from DeFronzo et al.,
(Figure 2). This possibly results from compensatory effects in
the renal tubules when glucose concentrations are drastically ele-
vated. Bank and Aynedjian (1990) proposed that high glucose
concentration in the proximal tubules would stimulate water
reabsorption in the proximal portion and enhance compensatory
water excretion in the more distal portion. In the DeFronzo et al.
study (2013), an increase in urine volume was observed with
escalation of plasma glucose level. This hydrodynamic change
in response to glucose level may interfere with tubular glucose
reabsorption. These processes, however, were not included in the
model. Nevertheless, the unsatisfactory performance at high glu-
cose levels (over 400 mg/dL) is unlikely to hamper the utility of
the model because those glucose levels are irrelevant to most of
normal or even diabetic conditions. Overall, the performance of
the model suggests that the model is useful for mechanistically
evaluating the roles of SGLT1 and SGLT2 in renal glucose reab-
sorption, and for predicting clinical pharmacodynamics of SGLT2
inhibitors.

CHARACTERIZATION OF SGLTs OPERATION WITHOUT THE PRESENCE
OF SGLT2 INHIBITION
The Vmax values of SGLT1 and SGLT2 were estimated to be
20 mmol/h and 94 (healthy)/110 (diabetic) mmol/h, respectively,
and the glucose Km values for SGLT1 and SGLT2 were estimated
to be 0.5 and 4 mM, respectively. The sum of the Vmax val-
ues (i.e., total reabsorption capacity) and the two Km estimates
are similar to previously reported estimates (Mogensen, 1971;
Diez-Sampedro et al., 2001; Chao and Henry, 2010; Hummel
et al., 2011; DeFronzo et al., 2013). The Vmax2/Vmax1 ratio in
the healthy subject (4.7) is consistent with that in the rat (5.4)
(Yamaguchi et al., 2011). These estimates reinforce the concept of
SGLT1 being a high affinity, low capacity transporter and SGLT2
being a low affinity, high capacity transporter for renal glucose
reabsorption.

Under near normoglycemic conditions (average plasma glu-
cose ∼80–120 mg/dL) in both healthy and diabetic subjects,
SGLT2 and SGLT1 are operating at about 40 and 20% of
their respective capacities, and contributing to 90 and 10%
of total glucose reabsorption, respectively. With the increase
in plasma glucose concentration, SGLT2 operation efficiency
steadily increases to near 90% of its capacity, whereas SGLT1
operation efficiency jumps sharply to over 80% of its capacity
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FIGURE 4 | Model calculated step-wise amount of glucose

reabsorbed (A,B) and relative contributions to the reabsorption

(C–F) by renal SGLT1 and SGLT2 at baseline and after

dapagliflozin treatment in healthy subjects and patients with

diabetes under the SHC procedure in DeFronzo et al. (2013).

(A,C) healthy, baseline; (B,D) healthy, after treatment; (E) patient,
baseline; and (F) patient, after treatment. Cp,dapa, total plasma
concentration of dapagliflozin.

and then steadily approaches to the maximum. The relative
contributions of 90%/10% gradually becomes 80%/20% for
SGLT2 and SGLT1 as plasma glucose rises. These results solidify
the current characterization of the relative contributions of the
two transporters to renal glucose reabsorptoin without the pres-
ence of SGLT2 inhibition (Chao and Henry, 2010; DeFronzo et al.,
2012).

CHARACTERIZATION OF SGLT’s OPERATION IN THE PRESENCE OF
SGLT2 INHIBITION
With the treatment of dapagliflozin at its clinical dose (10 mg
QD), the majority of SGLT2 is occupied by dapagliflozin

molecules (occupancy up to 98% at the peak exposure). The total
activity of SGLT2 in a healthy or T2DM subject is suppressed
considerably, from ∼40% of operation efficiency without SGLT2
inhibition to only 10% with the treatment of dapagliflozin.
Consequently, the contribution of SGLT2 to renal glucose reab-
sorption declines from 80 to 90% at baseline to less than 50%
with SGLT2 inhibition. Meanwhile, the importance of SGLT1 to
renal glucose reabsorption jumps sharply. The operation effi-
ciency of SGLT1 reaches over 90%, up from 20% at baseline.
As a result, SGLT1 accounts for over 50% of renal reabsorption
when SGLT2 is inhibited, much higher than the 10–20% at
baseline.
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FIGURE 5 | Model derived operation efficiency (defined as

glucose reabsorption rate/Vmax × 100% for either SGLT1 or

SGLT2) for both SGLTs at baseline and after dapagliflozin

treatment in the healthy subjects (A) and patients with

diabetes (B) under the stepwise hyperglycemic clamp procedure

in DeFronzo et al. (2013).

FIGURE 6 | Simulation of the relationships between loss of function (i.e., reduction in Vmax) and renal glucose reabsorption (% filtered) as well as

urinary glucose excretion (UGE) for SGLT2 (A) and SGLT1 (B) in an otherwise healthy subject with normoglycemia.

THEORETICAL MAXIMUM INHIBITION OF RENAL GLUCOSE
REABSORPTION
The simulations of loss of function of SGLTs (reduction in Vmax)
vs. renal glucose reabsorption provide a clean relationship for
assessing the theoretical maximum inhibition of the reabsorption.
In a healthy subject under physiological conditions, an 87.5–
100% loss of SGLT2 function results in a 32–49% of inhibition of
renal glucose reabsorption. In a diabetic patient, the glucose reab-
sorption vs. loss of SGLT2 activity curve shifts downwards, i.e.,
somewhat greater inhibition of reabsorption. With a daily aver-
age plasma glucose level of 150 mg/dL, a complete loss of SGLT2
activity lowers the reabsorption by 70%. This greater extent of
inhibition in diabetics is due to the up-regulated activity of SGLT2
in the disease state (Rahmoune et al., 2005).

The loss of SGLT1 function has only mild inhibitory effect on
renal glucose reabsorption. An entire loss of SGLT1 function leads
to only 10% of inhibition of glucose reabsorption in a normo-
glycemic healthy subject and up to 15% of inhibition in a diabetic
patient with a daily average plasma glucose level of 150 mg/dL.

Our results of theoretical maximum inhibition of renal glu-
cose reabsorption due to loss of activity of SGLT1 or SGLT2 are in

general agreement with the findings in Sglt1/2 knock-out mice.
In Sglt2−/− mice the renal glucose reabsorption is reduced to
∼50% of that in wild-type mice at euglycemia, and is further
reduced with increase in filtered glucose load (Vallon et al., 2011).
The knock-out of Sglt1−/− in mice causes a 2–3% decrease in
total renal glucose reabsorption (Gorboulev et al., 2012; Powell
et al., 2013). The numerical discrepancy in the maximum influ-
ence of SGLT1 loss (2–3% in mice vs. 10% in humans) is yet to
be understood. It may reflect a real inter-species difference in the
contribution of SGLT1, a result secondary to inter-species differ-
ences in other physiological factors, or an inter-study variation as
well as random errors. Extension of our systems pharmacology
model to mice with appropriate physiological parameters could
shed light on this issue.

EXPLANATION TO THE PUZZLING MODERATE INHIBITION OF RENAL
GLUCOSE REABSORPTION BY POTENT SGLT2 INHIBITORS
Based on the modeling and simulations, it is likely that the
apparently moderate inhibition of renal glucose reabsorption
induced by potent SGLT2 inhibitors is a combined result of two
physiological determinants:
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FIGURE 7 | Sensitivity of urinary glucose excretion (UGE) to SGLT1

capacity (Vmax1) (A) and inhibitor affinity to SGLT1 (Ki1) (B) in a T2DM

patient subjected to the same study procedure as in DeFronzo et al.

(2013) with target plasma glucose from 100 to 350 mg/dL with

increments of 50 mg/dL. For the analysis on Vmax1, all other parameters

were held constant and Vmax1 was varied to 10, 14, 17, or 20 mmole/h
(corresponding to a 50, 30, 15%, or 0% reduction of SGLT1 capacity). For the
analysis on Ki1, the Ki1 value of an SGLT2 inhibitor which was otherwise
identical to dapagliflozin was varied from 6 to 10,000 nM, representing a
selectivity for SGLT2 from 20× to 33,333×.

(1) SGLT1 compensation: Based on the localization and physio-
logical characteristics of SGLT1 and SGLT2 in the kidney, it
has been suspected that, with the buildup of glucose along
the proximal tubules, SGLT1 will operate more intensely,
and hence offset to certain degree the effect of SGLT2 inhi-
bition (Haddish-Berhane et al., 2010; Maurer et al., 2011;
Abdul-Ghani et al., 2013). This concept is supported by
the modeling and simulation results discussed above. After
dapagliflozin treatment in humans, SGLT1 operates at its
near maximum capacity and becomes the predominant path-
way for glucose reabsorption. Nevertheless, the theoretical
maximum inhibition of renal glucose reabsorption is 50–
70% in the healthy and T2DM subjects, higher than the
observed 30–50%. This disagreement suggests that, besides
SGLT1 compensation, there should be additional explana-
tion(s).

(2) Residual activity of SGLT2: The modeling identified the resid-
ual SGLT2 activity to be an additional explanation. Although
SGLT2 inhibitors, such as dapagliflozin, canagliflozin, at clin-
ical doses do occupy the majority of SGLT2 and severely sup-
press SGLT2 activity, they do not completely eliminate SGLT2
activity. This is readily deduced from Equation 2: when the
luminal glucose level in PCT rises to several fold higher
than Km2 resulting from SGLT2 inhibition, the inhibitor
exposure has to be several hundred fold of Ki2, beyond
the clinically feasible range, in order to drive the SGLT2-
mediated reabsorption rate to near zero. After a treatment
with dapagliflozin at 10 mg, there remains at least ∼8–10%
of residual SGLT2 activity, i.e., 7–11 mmol/h of reabsorption
rate, in the healthy and diabetics. This residual activity is still
sizeable compared with SGLT1 capacity of 20 mmol/h.

Rieg et al. (2014) recently observed a 56% of lowering of renal
glucose reabsorption in mice with complete SGLT2 inhibition,
and an entire demolition of reabsorption in mice lacking both
SGLT1 and SGLT2. This result confirms the hypothesis of SGLT1
compensation. The extrapolation of this finding to the clinic,
however, is complicated by the differences in the experimental
conditions in the Rieg et al. (2014) and clinical trials (Komoroski

et al., 2009a,b; Devineni et al., 2013; Heise et al., 2013) (see Table
S1). While a complete blockage of SGLT2 is likely in the Rieg
et al. (2014) with drastically elevated concentration (free plasma
concentration at least 10–15-fold higher than in vitro IC50) of
empagliflozin over the duration of 30 min for UGE collection, in
the clinical trials with once daily dosing, it is unlikely to maintain
a 100% blockage of SGLT2 throughout a day over which luminal
drug concentrations decline and 24 h UGE is collected. Thus, to
explain the apparently moderate inhibition of renal glucose reab-
sorption by potent SGLT2 inhibitors in the clinic, the residual
activity of SGLT2 should not be overlooked.

It is worth pointing out that dapagliflozin does severely sup-
press SGLT2 activity at its approved dose of 10 mg/day, as demon-
strated by the simulations (Figure S2) at steady state in a hypo-
thetical healthy subject with a constant plasma glucose level of
100 mg/dL treated with dapagliflozin at various doses. The SGLT2
activity decreases with increase in dose; from 20 mg onward, there
is mild further decrease in SGLT2 activity. For SGLT1, its activity
is nearly saturated at 10 mg. These results seem to be consis-
tent with previous clinical observations that the UGE effect of
dapagliflozin saturates at 20 mg (Komoroski et al., 2009a).

EFFECT OF AN SGLT1/2 DUAL INHIBITOR ON GLUCOSURIA IN
COMPARISON WITH A SELECTIVE SGLT2 INHIBITOR
It has been a question whether or not an SGLT1/2 dual inhibitor
would induce greater glucosuria than a highly selective SGLT2
inhibitor (Chao and Henry, 2010; Abdul-Ghani et al., 2013).
Abdul-Ghani et al. (2013) hypothesized that glucosuria induced
by an SGLT2 inhibitor with a moderate selectivity over SGLT1
(e.g., capable of inhibiting SGLT1 activity by 30%) may be sub-
stantially greater than with a highly selective SGLT2 inhibitor.
Using our model, we examined the sensitivity of UGE to Vmax1
and Ki1 in humans. We found that UGE was mildly to moder-
ately sensitive to Vmax1 but not Ki1 in the presumably clinically
tolerable ranges. The insensitivity to Ki1 is implied by Equation
(2). With a treatment of 10 mg dapagliflozin, the glucose con-
centration in the PST rises to at least 20-fold of Km1. In order
to moderately suppress SGLT1-mediated reabsorption through
competitive inhibition, the luminal inhibitor exposure has to

www.frontiersin.org December 2014 | Volume 5 | Article 274 | 41

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Lu et al. Characterize SGLTs in renal glucose reabsorption

reach tens of fold of Ki1, a level that cannot be safely achieved
in humans.

Therefore, without the consideration of its effect on intesti-
nal SGLT1, whether or not a dual inhibitor will induce stronger
glucosuria than a selective SGLT2 inhibitor is dependent on
the mode of interaction between the dual inhibitor and SGLT1.
A competitive inhibition of SGLT1 is unlikely to afford the
dual inhibitor augmented effect on glucosuria. Other modes of
inhibitions (non-competitive or uncompetitive) that attenuate
Vmax1 may augment glucosuria mildly to moderately with a dual
inhibitor.

In summary, to clarify mechanistically and quantitatively the
operating characteristics of SGLT1 and SGLT2 in renal glucose
reabsorption, we developed a systems pharmacology model with
emphasis on renal glucose filtration, reabsorption, and transfer
along the proximal tubules with or without SGLT1/2 inhibition.
The model was calibrated using DeFronzo et al. (2013) and eval-
uated against three other data sets (Mogensen, 1971; Wolf et al.,
2009; Polidori et al., 2013). Simulations using this model pro-
vided insights into the operating characteristics of SGLTs under
normo- and hyperglycemic conditions in the healthy and diabetic
state with or without SGLT2 inhibition. The simulations solidi-
fied the current concept of the relative contributions of SGLT1/2
to renal glucose reabsorption without the presence of SGLT2
inhibition. Moreover, the simulations elucidated quantitatively
the operating characteristics of SGLTs when SGLT2 is inhibited.
Further simulations clarified the relationships between SGLT1/2
capacity and renal glucose reabsorption in humans. Based on our
modeling and simulations, we propose that the apparent mod-
erate inhibition of renal glucose reabsorption observed clinically
with SGLT2 inhibitors is a combined result of two physiological
determinants, SGLT1 compensation and residual SGLT2 activ-
ity. This model will be valuable in mapping SGLT2 genotype
to its functionality, and in predicting, through the incorpora-
tion of a plasma glucose-insulin model, the efficacy of an SGLT2
inhibitor in patients with diabetes, especially pediatric patients
and patients with type 1 diabetes, for whom clinical data remain
scarce.
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Although many antipsychotics can reasonably control positive symptoms in schizophrenia,
patients’ return to society is often hindered by negative symptoms and cognitive deficits.
As an alternative to animal rodent models that are often not very predictive for the clinical
situation, we developed a new computer-based mechanistic modeling approach. This
Quantitative Systems Pharmacology approach combines preclinical basic neurophysiology
of a biophysically realistic neuronal ventromedial cortical-ventral striatal network identified
from human imaging studies that are associated with negative symptoms. Calibration
of a few biological coupling parameters using a retrospective clinical database of 34
drug-dose combinations resulted in correlation coefficients greater than 0.60, while a
robust quantitative prediction of a number of independent trials was observed. We then
simulated the effect of glycine modulation on the anticipated clinical outcomes. The
quantitative biochemistry of glycine interaction with the different NMDA-NR2 subunits,
neurodevelopmental trajectory of the NMDA-NR2B in the human schizophrenia pathology,
their specific localization on excitatory vs. inhibitory interneurons and the electrogenic
nature of the glycine transporter resulted in an inverse U-shape dose-response with an
optimum in the low micromolar glycine concentration. Quantitative systems pharmacology
based computer modeling of complex humanized brain circuits is a powerful alternative
approach to explain the non-monotonic dose-response observed in past clinical trial
outcomes with sarcosine, D-cycloserine, glycine, or D-serine or with glycine transporter
inhibitors. In general it can be helpful to better understand the human neurophysiology of
negative symptoms, especially with targets that show non-monotonic dose-responses.

Keywords: schizophrenia, negative symptoms, glycine, computer model, dose-response relationship, drug

INTRODUCTION
Negative symptoms in schizophrenia are a major cause of func-
tional deficit for patients wanting to return to professional life.
While many of the approved antipsychotics can control the
positive symptoms, negative symptom dysfunction is often not
addressed properly by drug therapy alone (Rosenbaum et al.,
2012). In addition, there are species differences for animal
models that have large ramifications for drug development in

Abbreviations: ASL-fMRI, Arterial Spin Labeling functional Magnetic Resonance
Imaging; BOLD-fMRI, Blood Oxygen Level Dependent functional Magnetic
Resonance Imaging; CBF, Cerebral Blood flow; DA, Dopamine; dlPFC, dorso-
lateral Prefrontal Cortex; EC50, concentration at which 50% of maximal effect is
reached; Enk, encephalin; ER, endoplasmic reticulum; GlyT1, Glycine Transporter
subtype 1; mAChR, muscarinic acetylcholine receptor; mGluR, metabotropic glu-
tamate receptor; MSN, Medium Spiny Neuron (major cell type in striatum);
NMDA, N-methyl-D-aspartate (glutamate receptor subtype); PANSS, Positive and
Negative Symptoms Scale in schizophrenia; PDSP, Psycho-active Drug Screening
Program; PET, Positron Emission Tomography; PFC, Prefrontal Cortex; PSD-
95, postsynaptic density complex; QSP, Quantitative Systems Pharmacology; SP,
Substance P; vmPFC, ventro-medial Prefrontal Cortex.

schizophrenia (Peleg-Raibstein et al., 2012) and consequently
psychiatric disorders have one of the lowest probabilities of
clinical success, close to 7% (Hay et al., 2014). Because of
these limitations, companies are de-emphasizing psychiatric dis-
eases (Hyman, 2014), suggesting a need for completely novel
technologies.

Negative symptoms can be divided in two moderately cor-
related factors (Horan et al., 2011): experiential impairments
(diminished motivation and enjoyment of social, vocational, and
recreational activities) and expressive impairments (diminished
non-verbal and verbal communication). Experiential impair-
ments are best represented by avolition and anhedonia, while
expressive impairments are related to flat affect. Both these
dimensions play an important role in the clinical phenotype.

Glutamate modulation through increased glycine mediated
stimulation of the NMDA-R has been proposed as a strategy for
addressing negative symptoms in schizophrenia. Consequently,
a number of glycine modulators have been studied in clinical
trials. In humans, the GlyT1 inhibitor ORG25935 reduced
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the ketamine-induced increases in measures of psychosis and
perceptual alterations with an effect size of 0.71 and 0.98,
respectively, but worsened some aspects of learning and delayed
recall (D’Souza et al., 2012). Studies with the GlyT1 inhibitor
GSK1018921 suggested that target engagements up to 80% were
well tolerated (Ouellet et al., 2011). The Janssen GlyT1 inhibitor
R213129 enhanced scopolamine-induced finger tapping impair-
ment in healthy volunteers, while electroencephalography alpha
power was increased and scopolamine-induced impairment
of the Stroop test was partly reversed (Liem-Moolenaar et al.,
2010). The Pfizer GlyT1 inhibitor PF03463275 was ineffective
at the highest dose (NIH NCATS website http://www.ncats.nih.

gov/research/reengineering/rescue-repurpose/therapeuticuses/
directory.html).

In a meta-analysis with 800 subjects from 26 studies, glycine,
D-serine, and sarcosine had effect sizes ranging from 0.40 in
negative symptoms to 0.28 for cognitive and 0.26 for positive
symptoms, whereas D-cycloserine did not improve any symptom
domain. Interestingly, patients on risperidone or olanzapine, but
not clozapine, improved (Tsai et al., 2004).

Glycine directly activates the glycineB site on the NMDA-R,
but needs to be given in large quantities; D-serine is another
endogenous activator of the NMDA-R on a different binding site
and sarcosine was found to be a GlyT1 inhibitor (Wolkenberg and
Sur, 2010). The absence of target engagement data in these clinical
trials makes it difficult to interpret the clinical outcome.

Preclinical data on cognitive effects together with target
engagement studies in non-human primates for two GlyT1
inhibitors strongly suggest an inverse U-shape dose-response
(Eddins et al., 2014); in this study the highest doses consistently
failed to improve cognition and bitopertin was found to be effec-
tive only at the lowest and medium doses, but not at the highest
dose. An inverse U-shape dose-response is a difficult property for
any clinical trial development; although such a dose-response is
often observed in preclinical animal models, it is often difficult to
relate this to actual human target engagement levels. Therefore,
exploring the neurophysiology of such complex dose-responses
in a humanized translational model is of crucial importance to
drug development. In this report we will use an in silico quan-
titative systems pharmacology model (Geerts et al., 2013b) that
integrates preclinical information with clinical neuropathology,
imaging, and clinical data and that has been successful for cog-
nitive enhancements in schizophrenia (Geerts et al., 2013a) and
Alzheimer’s disease (Roberts et al., 2012; Nicholas et al., 2013) and
for motor side-effects of new antipsychotics (Geerts et al., 2012).

The remainder of the introduction will be devoted to the
biological rationale for identifying the brain regions and neuro-
physiological processes that play a role in the clinical phenotype
of negative symptoms. Unlike preclinical animal models, we
will use predominantly imaging studies from patients and their
relationship to clinical scales.

BIOLOGICAL RATIONALE FOR COMPUTER MODEL OF NEGATIVE
SYMPTOMS
Brain regions/neurophysiology involved in negative symptoms
The prefrontal cortex and ventral striatum are key brain regions
involved in the processing of negative symptoms. From ASL-fMRI

imaging studies to measure cerebral blood flow (CBF) in
schizophrenic patients on antipsychotics medications (Pinkham
et al., 2011), hypofrontality was most prominent in individu-
als with more severe negative symptoms. A large meta-analysis
of 25 imaging studies (Goghari et al., 2010) suggests an inverse
correlation between BOLD-fMRI activity of the ventromedial
cortex and the degree of negative symptoms. Metabolic activ-
ity, measured by PET imaging, is reduced as negative symp-
toms increase in patients without antipsychotics (Wolkin et al.,
1992) and physical anhedonia scale scores were negatively
correlated with the hypoactive dorsomedial PFC metabolism
(Park et al., 2009).

Another study suggests that activity of R. orbitofrontal cor-
tex, but not anterior cingulate correlates with the self-reported
Chapman Physical Anhedonia Scale (Harvey et al., 2010). As
anhedonia together with avolition and apathy form the more
“experiental” factor in negative symptoms, as opposed to flat
affect that is more “expressive” (Horan et al., 2011); this sug-
gests that lower activity of the R. orbitofrontal dysfunction might
play a role in negative symptoms. Moreover, an inverse correlation
of negative symptoms with R. anterior prefrontal cortex activity
at rest (Mingoia et al., 2012) suggests that basal cortical activity
is proportionally lower in patients with predominantly negative
symptoms but the identity of the cortical region depends upon
the task involved or the measurement condition.

This overview suggests that the cortical activity especially
of the vmPFC and the right orbitofrontal cortex is lower
in schizophrenia patients, and that increased activation might
correspond to improved symptoms.

Imaging studies of ventral striatum pathology in schizophrenia
(Menon et al., 2001; Harvey et al., 2010) suggest a profound and
proportional dysfunction, with more negative symptoms asso-
ciated with decreased activation level. In patients, lower ventral
striatum activation in patients is proportional to the severity of
negative symptoms, an effect that is independent of medication
(whether medication-free, on typical or atypical antipsychotics)
(Juckel et al., 2006a,b). In schizophrenia patients in psychotic
remission (Sorg et al., 2013) basal activity of the ventral striatum
is increased and this increase is correlated with improvements of
negative symptoms such as emotional withdrawal and blunted
affect.

Cellular localization of NMDA-NR2 subunits
The activity of the cortical region is driven by pyramidal cell
firing in general and by glutamatergic action in particular.
Therefore, NMDA-R is an interesting target for negative symp-
toms. However, because the cortical activity is defined by the
balance of excitation over inhibition, it is of interest to take into
account the differential localization of NMDA-R on pyramidal
cells and interneurons in cortical circuits. mRNA localization
studies of different NMDA-NR2 subunits in the rat and mice
hippocampus, suggest that NR2C/2D are localized on inhibitory
interneurons while NR2A/NR2B seem to be more concentrated on
pyramidal cells (Monyer et al., 1994). Functional evidence was
provided by elimination of NR2C subunit having no effect on
the strongly rectifying NMDA current in pyramidal cells of the
prefrontal cortex (Zhang et al., 2012).
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Reelin deficient heterozygous mice showed significantly
enhanced MK-801-induced locomotor hyperactivity and startle,
which was associated with significant up-regulation of NR1 sub-
units, but down-regulation of NR2C subunits in the frontal cortex
(van den Buuse et al., 2012), suggesting that loss of activity on
inhibitory neurons through reduced NMDA-NR2C synapses leads
to a lower GABA tone, a functional disinhibition, and a higher
locomotor activity. These and other preclinical data strongly
suggests that while NR2A and NR2B are expressed on pyrami-
dal excitatory cells, the NR2C subunit is localized on inhibitory
neurons.

Change of NMDA subunits with schizophrenia pathology
The NR2B subunit is upregulated during neurodevelopment
of the brain and is likely to play a relatively larger role in
schizophrenia, in line with the neurodevelopmental hypothesis
of schizophrenia pathology. Indeed in postmortem dorso-lateral
prefrontal cortex samples of schizophrenia patients vs. healthy
control, increased phosphorylation of NR2B at Y1336 is found
(Funk et al., 2012), probably leading to a higher functional activ-
ity by reducing endocytosis (Jiang et al., 2011; Li et al., 2011).
In patients with schizophrenia, a significant effect of GRIN2B
(human NMDA receptor 2B subunit gene, NR2B) genotype on
habituation (Hokyo et al., 2010) suggests a bigger role for NR2B

mediated processes.
Altered expression of mRNA for proteins involved in in

microtubule-associated tracking complex of NR2B such as
KIF17, APBA1, CASK, mLin7A, and mLin7C in cortical lay-
ers III and IV of schizophrenia patients, which overlapped
with NR2B but not NR2A transcripts suggests that NR2B-
containing NMDA receptor transport could be selectively com-
promised in schizophrenia (Kristiansen et al., 2010a,b). In
a subcellular endoplasmic reticulum (ER)-enriched fraction
from postmortem brain, ER expression of NR2B and PSD-95
was decreased in dorsolateral prefrontal cortex in schizophre-
nia. The data suggest that changes in NR2B processing in
schizophrenia involve increased ER exit of NR2B containing
NMDA receptors suggesting a higher membrane expression level
(Kristiansen et al., 2010b).

Furthermore, a cross-sectional study of over 900 human
brains from the publicly available BrainCloud website (http://
braincloud.jhmi.edu/) suggests an increase in cortical mRNA for
the NR2B subunit during the adolescent period (10–20 years) that
reverts for older brains. This suggests that during neurodevelop-
ment the NR2B subunit is upregulated in the human brain but its
expression tends to decrease with age.

In summary these data suggest that the NMDA- NR2B subunit
is upregulated in schizophrenia patients.

GLYCINE TRANSPORTER PHYSIOLOGY
In order to estimate the range of free glycine level that can be
readily achieved in the living human brain, we need to consider
the neurophysiology of the glycine transporter T1, found mostly
on astrocytes but also on neuronal cells and is a co-transporter
system driven by the electrogenic movement of 2 Na+ and 1 Cl−
over the cell membrane at a slow turnover rate of 10/s (Cherubino
et al., 2010). Kinetics follow Michaelis-Menten dynamics with Km

in the range of 10–20 uM (Okamoto et al., 2009; Cherubino et al.,
2010).

The astrocyte membrane potential is in the range of −75 mV
(Ma et al., 2014) and does not share the same temporal dynam-
ics as neuronal cells. The membrane can depolarize substantially
in the case of ischemic and traumatic brain injury (Strong and
Dardis, 2005), but we assume that the astrocyte membrane poten-
tial is close to the equilibirum value in schizophrenia.

METHODS
RECEPTOR COMPETITION MODEL
Many antipsychotic drugs on the market have different affinities
for multiple receptors, therefore calculating the receptor change
for a given exposure level of the drug at each of these receptors is
important, because they will affect the membrane potential of key
neuronal circuits and their emergent properties.

The receptor model simulates the competition between
endogenous neurotransmitter and up to four agents, (for instance
two drugs with their metabolites or a drug and radioactive tracer)
at postsynaptic receptors with full presynaptic autoreceptor cou-
pling to neurotransmitter release based on the affinities of the
drug for all receptors in the synaptic cleft (Spiros et al., 2010).
This is performed using a set of ordinary differential equations
that takes into account different neurotransmitter release patterns
and modulated by presynaptic autoreceptors, including presy-
naptic facilitation and depression processes. The dopaminergic
synapse is further calibrated (Spiros et al., 2010) using data on
dopamine dynamics measured with fast cyclic-voltammetry in
monkey slices (Cragg et al., 2000) and human cortical imag-
ing data (Slifstein et al., 2008), while the serotonin synapse with
5-HT1B as a presynaptic autoreceptor is calibrated using a com-
bination of preclinical fast cyclic voltammetry constrained by
human imaging data (Roberts et al., 2012).

The affinity parameters for each antipsychotic and neurotrans-
mitter for human receptors were derived from the in vitro exper-
iments performed at the Psychoactive Drug Screening Program
(PDSP) and reported in the PDSP database (http://pdsp.med.

unc.edu/indexR.html) with the advantage that the affinity val-
ues are derived under the same standardized assay conditions. For
different values of target engagement (e.g., D2R occupancy), we
then calculated the change of postsynaptic receptor activation for
all the receptors involved in the computer model based on the
affinities of the drug for different receptors.

CORTICAL-STRIATAL MODEL FOR NEGATIVE SYMPTOMS
Based on the human imaging studies, we developed a dual
cortical-striatal model for the neurobiology of negative symp-
toms (Figure 1). The cortical neuronal network consists of 20
excitatory neurons and 10 inhibitory interneurons and has been
described before (Geerts et al., 2013a). This model has been cal-
ibrated from in vivo single-unit recordings in primates during a
working memory task and reduces some of the problems associ-
ated with species difference in inhibitory tone. Synchronous firing
of the target pyramidal cells is initiated by injecting a transient
current at t = 2000 ms. The network then fires in a synchro-
nized pattern before it gets degraded by the background noise
and the interference of the distractor neurons. The simulated
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FIGURE 1 | Schematic description of the two-part quantitative systems

pharmacology model for negative symptoms of schizophrenia. The
BOLD-fMRI signal of a neuronal cortical circuit (top) is calculated after
implementing a representation of the schizophrenia pathology and the
effect of glycine modulation. This is combined with the glycine BOLDfMRI
effect through the afferent NMDA-dependent projections of the cortical
input in a model of the ventral striatum medium spiny neuron (bottom).
Combining the output of these two models results in a weighted readout
that is a human imaging based proxy for the clinical phenotype of

negative symptoms. While currently marketed antipsychotics exert their
effects on PANSS negative mainly through the ventral striatum part,
glycine modulation acts mostly through the cortical network. The
simulation of historical trials with the appropriate drug-dose relationship of
currently marketed antipsychotics in this model and comparison with the
reported clinical changes on the PANSS negative subscale provides a
calibration relation where the anticipated clinical effect of new therapeutic
interventions can be predicted from the outcome in the computer
model.

neural activity represents the right orbitofrontal cortex or the
vmPFC.

Functional representations, driven by preclinical experiments
on the coupling between receptor activation and changes in
voltage-gated ion channel conductance, of the dopamine (D1,
D2, D3, D4, DAT, COMT), serotonin (5HT1A, 5HT1B, 5HT2A,
5HT2C, 5HT3, 5HT4, 5HT6, SERT), norepinephrine (alpha1A,
alpha2A, NET), cholinergic (M1 mAChR, M2 mAChR, α7

nAChR, α4β2 nAChR, and AChE), glutamate NMDA (different
subunits NR2A-NR2B-NR2C), AMPA, mGluR2, mGluR5, GlyT1,
GABA-A α1 and GABA-A α2, histamine H3 and PDE-10 targets
are currently implemented in the model.

Although the intracellular pathways activated by receptor
modulation are not modeled in full detail, we implement the
effects as a transfer function on ion channel permeability or

transporter functionality. For instance a change in dopamine
D1R activation on cortical neurons is implemented by changing
the slow K+ channel Iks conductance (Yang and Seamans, 1996)
and the High-voltage activated (Hva) Ca++ -channel, based on
preclinical electrophysiological measurements (Law-Tho et al.,
1994).

Schizophrenia pathology in the cortical network is intro-
duced as a reduction in glutamate tone (Coyle, 2006), decreased
dopamine tone (Meyer-Lindenberg et al., 2002; Weinberger,
2007) in the cortex, impaired GABA physiology through a
decrease in GAD67 activity resulting in lower GABA release
(Gonzalez-Burgos et al., 2010) and increased background noise
level (Winterer et al., 2000). Such a pathology when implemented
in the computer model leads to a deterioration of a marker for
cognitive outcome of about 1.5 standard deviations (Geerts et al.,
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2013a). In this case, rather than the length of time a certain fir-
ing pattern can be independently held, the cortical readouts of
the model for negative symptoms of schizophrenia is the average
firing rate and BOLD-fMRI.

The ventral striatum model has been described in detail
as part of the quantitative systems pharmacology platform for
schizophrenia (Geerts et al., 2012; Spiros et al., 2012). Briefly,
the model calculates the excitability of the medium spiny neuron
(MSN), the major GABA-ergic cell type in the nucleus accum-
bens, when driven by afferent cortical projections and gated by
both hippocampal and amygdala projections. Changes in mem-
brane potential are calculated using partial differential equations
that are solved in NEURON (Hines and Carnevale, 1997). If
C is the membrane capacitance, then the time course of the
membrane potential V can be determined from the following
equation:

C
∂V

∂t
= IKsi + IKA + .ICl + ICa + . . . (1)

where IX is the current associated with channel X.
We simulate three types of neuronal MSN cells: SP+ = D1R+

cells that project to the direct pathway; Enk+ = D2R+ cells that
project to the indirect pathway; and a small number of D+

1 D+
2

cells that project to both pathways. In the SP+ cells the D1R
mostly affects the Kir2 channel and increases the L-type Ca++
current (Hernandez-Lopez et al., 2000), while in Enk+ cells, D2R
activation affects the A-type K+ current (Falk et al., 2006). In
addition, D2R activity modulates the presynaptic Glu release on
the afferent cortical fibers (O’Donnell and Grace, 1994; Bamford
et al., 2004).

For instance, the inward rectifying potassium current, Kir2,
is modified by the dopamine D1R activation u (Kuzhikandathil
and Oxford, 2002; Falk et al., 2008) so that the total current,
I = u · IKir2. With a conductance, gK , and a reversal potential,
EK = −90 mV, the current is given by IKir2 = gK (V − EK) with
a voltage dependent form

gK = ḡK
1

1 + exp

(
−V−VK

h
VK

c

) (2)

where ḡK = 1.2 mS/cm2 is the maximum conductance,
Vh = −111 mV is the value of the membrane potential that
causes half activation and Vc = −11 mV describes the sensitivity
of the change (Mermelstein et al., 1998; Gruber et al., 2003).

The amount of DA released in the striatal dopaminergic
synapse is increased by 5-HT2C receptor inhibition (Abdallah
et al., 2009), while 5-HT3R antagonism decreases striatal DA
(De Deurwaerdere et al., 1998; Porras et al., 2003). Cholinergic
modulation affects the excitability of MSN through an effect on
Cl- channel (Shen et al., 2005, 2007) through postsynaptic M1R
mAChR. In addition, M2 mAChR located on corticostriatal ter-
minals (Hersch et al., 1994) inhibit the glutamatergic input to
MSNs (Malenka and Kocsis, 1988; Sugita et al., 1991; Calabresi
et al., 1998; Hernandez-Echeagaray et al., 1998). Adrenergic
alpha1A-R block decreases gating signal stimulation of the GABA

spiny neuron (Braga et al., 2004; Aroniadou-Anderjaska et al.,
2007). All these processes are implemented using the appropri-
ate differential equations with a linear relationship between the
increase of DA and normalized activation level.

IMPLEMENTATION OF THE BOLD-fMRI READOUT
In order to calculate a measure of the BOLD-fMRI outcome from
the computer model, we implemented a series of biophysical
relations between excitatory and inhibitory neuronal activity as
determined by experimental studies (Sotero and Trujillo-Barreto,
2007, 2008). The relevant equations are implemented describ-
ing the relationships between excitatory and inhibitory neuronal
activity, glucose consumed, oxygen consumed, and CBF changes
to obtain a measure of the BOLD signal with the Balloon model
(Buxton et al., 2004; Buxton, 2012) with the parameters provided
from a review study (Sotero and Trujillo-Barreto, 2008).

With v(t) the normalized cerebral blood volume, f (t) the
normalized CBF and q(t) the doxyhemoglobin content, the
BOLDfMRI signal y(t) is described by

y (t) = V0(a1
(
1 − q

) − a2(1 − v) (3)

With
dv (t)

dt
= 1

t0
(f (t) − fout (v, t) ) (4)

dq (t)

dt
= 1

t0
(m (t) − fout (v, t)

q (t)

v (t)
) (5)

fout (v, t) = v exp

(
1

a

)
+ τdv(t)/dt (6)

Furthermore, with me(t) and mi(t) the metabolic rate of oxygen
consumption from excitatory and inhibitory cells, respectively

m (t) = (γ me (t) + mi (t) )/(γ + 1); (7)

mi (t) = gi(t) and me (t) = ge(t)(2 − x (t) )/(2 − xo) (8)

And g (t) = (2γ ge (t) + (2 − xo) gi (t) )/(2γ + 2 − xo) (9)

With ue(t) and ui(t) the excitatory and inhibitory neuronal activ-
ity, both ge(t) and gi(t), the glucose level normalized to baseline
consumption, are further defined by

dge (t)

dt
= se (t) (10)

and
dgi (t)

dt
= si(t) with

dse (t)

dt
= ae (ue (t − δe) − 1)

τe
− 2se (t)

τe
− ge (t) − 1

τe ∗ τe
(11)

With an identical equation for si(t) with all indexes referring to
inhibitory interneuron activity ui(t).

The CBF f(t) is defined by df (t)
dt = s(t).

Where ds(t)
dt = ε

(
ee

(
t − δf

) − 1
) − s(t)

τs
− (f (t) − 1/τf .

Values for the different constants are given in Table 3 of Sotero
and Trujillo-Barreto (2008). For instance, ae is the efficacy of glu-
cose consumption response to excitation (1.2); c the steepness of
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the sigmoid function (2.5) and d the position of the threshold
for the sigmoid function (1.6), τ the time constant that controls
how fast Cerebral Blood volume adjusts to changes in CBF (10 s),
a1 weight for deoxyhemoglobin change (3.4) and a2 weight for
blood volume change (Rosenbaum et al., 2012).

IMPLEMENTATION OF THE GLYCINE NEUROPHYSIOLOGY IN THE
MODEL
The ratio of NR2A/NR2B subunit on pyramidal excitatory
synapses vs. NR2C/NR2D subunit on inhibitory cells is an impor-
tant driver of glycine modulation. Glycine interacts differently
with different NMDA-NR2 subtypes even if the binding site is on
the NR1 subunit. The potentiation of NMDA current by glycine
has been measured experimentally and can be described by a
Hill equation. The NMDA-R conductance g can be described as
follows.

g = gmax
[Gly]n

[Gly]n + [EC50]n
(12)

With gmax a maximal conductance value, [Gly] the concentra-
tion of extracellular glycine and with numerical values for EC50

and Hill slope determined from a number of experimental studies
(Kutsuwada et al., 1992; Laurie and Seeburg, 1994; Matsui et al.,
1995; Woodward et al., 1995; Chen et al., 2008).

The EC50 (concentration at which effect is 50% of maximum)
and Hill slopes (n) for different experimental conditions are given
in Table 1. It will be clear that with different values for the Hill
equation and EC50 we get rich dynamics in terms of the ratio of
the NMDA currents on pyramidal-pyramidal synapses (mostly
NR2A-NR2B) vs. the NMDA currents on pyramidal-inhibitory
synapses driven by the NR2C-NR2D subunits (see Figure 3 for
example).

Table 1 | Experimentally determined values for EC50 and Hill slopes

for glycine-glycine site interaction on the NMDA-NR2 subunit from

different experimental conditions.

Parameter NR2A NR2B NR2C NR2D References

EC50 (uM) 0.97 0.84 0.75 0.56 Matsui et al., 1995

Hill slope 1.5 2 2 1

EC50 (uM) 2.1 0.3 0.2 Kutsuwada et al., 1992

Hill slope 1.5 1.5 1.5

EC50 (uM) 0.84 0.19 0.15 0.096 Woodward et al., 1995

Hill slope 1.5 2 1.5 1

EC50 (uM) 3.7 2.1 0.36 2.3 Laurie and Seeburg, 1994

Hill slope 1. 1.5 1.5 1.5

EC50 (uM) 1.31 0.72 0.34 0.13 Chen et al., 2008

Hill slope 1.66 1.84 1.81 1.32

Average EC50 (uM) 1.78 0.83 0.36 0.77

Average Hill slope 1.43 1.77 1.66 1.21

EC50 values are definitely higher and there is a trend for higher Hill slope for

excitatory-excitatory NR2A/B subunits (especially when considering the NR2B

subunits) over the excitatory-inhibitory NR2C/D subunits.

CALIBRATION OF THE MODEL WITH CLINICAL DATA ON NEGATIVE
SYMPTOMS
The model is subsequently calibrated using historical clinical
trials. Historical clinical data in schizophrenia patients were col-
lected by querying PubMed with the keywords “drug X” and
“schizophrenia” and trial” in the period since 1986. Restricting
the data to clinical double-blind placebo-controlled studies on
drug monotherapy using stable schizophrenia patients for a short
duration (4–12 weeks), resulted in 91 papers and 71 drug-dose
combinations. For each drug dose combination, we calculated
the change in postsynaptic receptor activation using the recep-
tor competition model using the appropriate affinities of the
neurotransmitter, the drug and its metabolite.

We assume a linear normalized relationship between receptor
activation and biological effect on physiological responses such

as X
eff
Y = XA

Y −XC
Y

XC
Y

; (Equation 13) where XA
Y and XC

Y are the actual

activation levels of receptor X subtype Y (for instance D1) after
treatment (A) and the untreated (placebo) control levels (C).

Such short clinical studies are common in the clinical test-
ing of antipsychotics and motor side effects can arise very early
with treatment. For each study, the average outcome of a patient
group on the reported clinical trial was entered into a database.
In the case of multiply reported results for the same drug-dose,
the weighted average outcome based on number of patients was
calculated. The list of clinical studies can be requested from the
corresponding author.

RESULTS
CALIBRATION OF THE MODEL FOR NEGATIVE SYMPTOMS OUTCOME
Extraction of the relevant information from the clinical database
results in 34 drug-dose combinations of short-term clinical trials

FIGURE 2 | Correlation between model outcome and changes on

PANSS negative clinical scale for 34 drug-dose combinations derived

from the literature since 1988 on pivotal Phase III or head-to-head

comparison trials. For each drug dose-combination, the appropriate target
engagement (derived from PET radiotracer displacement studies) and
pharmacology against human receptors was used to calculate the impact
on changes in all postsynaptic receptors in the model, leading to changes in
BOLDfMRI readout of the cortical part of the computer model and activity
in the ventral striatum computer model. A weighted sum of these two
parameters (40% cortical input and 60% ventral input) was defined as a
proxy for negative symptoms. In addition, a few biological coupling
parameters in the ventral striatum model were adjusted to achieve a robust
correlation between model results and clinically reported outcomes.
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FIGURE 3 | (A) Relative currents through NMDA- NR2C/D subunits in
pyramidal-inhibitory glutamatergic synapses (e-i) over NMDA currents and
NMDA- NR2A/B subunits in pyramidal-pyramidal glutamatergic synapses
(e-e) and the ratio of NR2C/D over NR2A/B currents as a function of glycine
concentration. This particular graph corresponds to a value of 0.35 and
0.25 uM for EC50 of NR2A/B and NR2C/D respectively and a Hill coefficient
of 1.84 and 1.1 for NR2A/B and NR2C/D respectively. This particular case
shows a minimum of 0.93 on the ratio of NR2C/D over NR2A/B at a glycine
concentration of 1.1 uM. For certain combinations of the EC50 and Hill
coefficients of the interaction between glycine and its binding site on
NMDA receptors, the ratio shows a U-shape dose-response. For glycine
concentrations where the e-i over e-e ratio drops below 1 (in this case
between 0.5 and 30 uM), this leads to a relative dominance of the
excitatory tone over the inhibitory tone and a greater firing and BOLD-fMRI
outcome. (B) Dose-response of the model outcome for negative symptoms
as a function of glycine concentration for different combinations of
parameters for glycine-NR2C/D vs. glycine-NR2A/B interactions after
calibration with clinical data. The parameter settings are EC50 for NR2C/D,
Hill coefficient for NR2C/D, EC50 for NR2A/B, Hill coefficient for NR2A/B,
respectively so that the conditions shown are A (0.2 uM, 0.7, 0.3 uM, 1.7); B
(0.2 uM, 1, 0.22 uM, 1.5); C (0.21 uM, 1, 0.25 uM, 2); D (0.2 uM, 1, 0.35 uM,
2); and E (0.20 uM, 1.46, 0.35 uM, 1.78). In a clinical trial, glycine
concentration can be altered using either a glycine transporter inhibitor or
substitution with glycine. Note the inverse U-shape dose-response that
parallels the ratio of current through the NMDA-NR2 subunits located at the
excitatory-excitatory synapses over the current through the NMDA-NR2

subunits located at the excitatory-inhibitory synapses. Maximal effect is in
the two-point range but is only obtainable if the typical glycine
concentration is around 1 uM. With higher glycine concentration, in many
cases the effect decreases, with a worsening of negative symptoms in
some cases for glycine concentrations greater than 5 uM.

(4–12 weeks) with outcomes on the PANSS negative subscale.
Each of these drug-dose combinations was then first simu-
lated with the appropriate PET tracer displacement (with 11C-
raclopride) studies in the dopamine receptor competition model
to yield the functional intrasynaptic drug concentration that

corresponded to the observed tracer displacement. These func-
tional drug doses were then applied to the receptor competition
model for all postsynaptic receptors (other dopamine recep-
tors, in addition to serotonergic, cholinergic, and norepinephrine
receptors) in the computer model using the appropriate pharma-
cological interaction between that particular drug and the human
receptor subtype. With the resulting changes in postsynaptic
receptor activation for all synapses in the negative symptoms
QSP computer model, in silico computer model results were
obtained for each drug-dose combination, in particular changes
in BOLDfMRI readout of the cortical part of the computer model
and activity in the ventral striatum computer model. A weighted
combination of these two parameters was then defined as a proxy
for negative symptoms.

Those results were then compared to the corresponding actual
clinical readouts on PANSS Negative. Figure 2 shows the corre-
lation between the model outcome of these drug-dose combina-
tions and the actual reported changes in PANSS Negative. A few
biological coupling parameters in the ventral striatum model were
adjusted to achieve a robust correlation. The observed correla-
tion suggests that the model captures a substantial part of the
variance.

DOSE-RESPONSE OF GLYCINE MODULATION
In order to simulate the effect of modulating glycine concentra-
tion on the network outcome, we proceeded by calculating the
Hill equations for the interaction between glycine and the NR2

subunit on the excitatory-excitatory (e-e) glutamatergic synapses
with NMDA subunits (NR2A-NR2B) and the excitatory-inhibitory
(e-i) glutamatergic synapses with NMDA subunits NR2C-NR2D.
Figure 3A shows the currents through the two synapse types
and their ratios as a function of glycine concentration. Due to
the complex non-linear effects, for a number of EC50 and Hill
coefficient parameter settings, the ratio of inhibitory to excita-
tory NMDA response decreases, reaches a minimum and then
increases again, allowing for a complex non-monotonic dose-
response. The range of EC50 and Hill coefficient parameters for
which this can be observed is examined in the following section.

When entering these changes for the effect of glycine on e-
e and e-i glutamatergic synapses as corresponding changes in
NMDA maximum conductances on the respective synapses, the
impact on the output of the network can be calculated. Figure 3B
shows the anticipated clinical outcome on the PANSS negative
scale based on the calibration (Figure 2) for a number of com-
binations of the interaction parameters between glycine and its
binding site on the NMDA receptor. The clinical benefit fol-
lows an inverse U-shape dose-response relationship with the free
glycine concentration provided that the typical glycine concentra-
tions are less than 0.5 uM, very similar to the dose-response of the
ratio of the currents, NR2C/2D to NR2A/2B NMDA subtypes. In
fact using a number of different values for the EC50 and Hill coef-
ficient parameters, we can confirm the correspondence between
these two dose-responses (data not shown).

Although the dose-responses in general are similar for the dif-
ferent glycine interaction parameters, the glycine concentration
for which there is a clinical benefit varies substantially. As no
experimental data are available for the interaction of glycine with
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the glycine binding site in the living human brain, in principle
accordance between the model outcome and the clinical results
will help to narrow down the range of likely parameters. In the
following section we will address these issues in more detail.

SENSITIVITY OF THE MODEL TO BIOLOGICAL COUPLING AND
PHYSIOLOGY PARAMETERS
We then studied the sensitivity of the model outcome as a func-
tion of small changes on all possible parameters, including the
changes that reflect the implementation of the schizophrenia
pathology. This could be envisaged as the intrinsic variability
in a large set of patients possibly driven by the appearance of
genotypic changes in neurophysiological and neuropathological
pathways. For this we allowed the parameter to change by a cer-
tain fraction around their calibrated value. A general effect size is
calculated by dividing the difference between the maximum and
minimum relative effects by the fractional range in parameter set-
tings. From the outcomes reported in Table 2, it is clear that the
changes in pathology implementation at the level of the cortical
network lead to the largest changes in the results. The effect of
the parameters on the Hill equations for the interaction between
glycine and its binding site on the NMDA-R will be explored in
detail in the following section.

SENSITIVITY ANALYSIS ON GLYCINE HILL EQUATION
A crucial set of parameters is the relative values of the EC50 and
Hill coefficients for the glycine-NMDA current effect through the

Table 2 | Sensitivity of the model outcome for different parameters

and coupling constants that are changed between 20 and 50% in

both directions for the glycine dose-response.

Sensitivity Minimal Maximal Effect

range (%) effect (%) effect (%) size

INTERACTION GLYCINE

EC50 on inhibitory
neurons

−50 to +50 −18.6 20.7 0.393

Hill slope on inhibitory
neurons

+50 to −50 −22.1 13.4 0.355

EC50 on excitatory
neurons

+50 to −50 −14.1 38.9 0.530

Hill slope on excitatory
neurons

−50 to +50 −18.4 14.3 0.327

CORTICAL SZ PATHOLOGY

NMDA reduction +20 to −20 −37.7 18.2 1.398

GABA reduction −10 to +10 −32.4 20.8 1.620

DA deficit −41 to + 41 −7.9 2.8 0.130

Noise increase +24 to −24 −13.9 18.5 0.675

STRIATAL PHYSIOLOGY

DA receptors +20 to −20 −9.3 10.1 0.485

Muscarinic receptors −20 to +20 −3.5 15.6 0.478

Maximal and minimal effect on the dose-response are derived. The general

effect size is calculated as the difference between maximal and minimal out-

come divided by the input range. The data suggest that GABA and NMDA

reduction have a big impact on the outcome, likely because they are driving

the baseline excitation-inhibition balance upon which glycine modulation will act.

different NR2 subunits. As shown in the previous section, the
inverse U-shape dose-response in the cortical network outcome
corresponding to a clinical benefit on PANSS negative is asso-
ciated with a U-shape dose-response of the ratio of inhibitory
over excitatory effect (compare Figure 3A with Figure 3B). Note
that the glycine concentration for maximal effect on the network
corresponds to the glycine concentration of the minimum in the
ratio of NR2C/D over NR2A/B.

Because the experimentally determined values reported in
Table 1 for the interaction of glycine with the human NMDA NR2

subunits were performed in an artificial in vitro system and could
be quite different from the actual human in vivo situation, we sys-
tematically studied the effect of changing the values for EC50 on
the network outcome.

Figure 4 shows the sensitivity analysis when probing different
parameter ranges for EC50 and Hill coefficients of the interac-
tion between glycine and the NMDA-NR2 subunits. It is clear
that higher Hill coefficients for the NR2A/B subunits compared
to the NR2C/D subunits is necessary for a beneficial effect on
the network outcome with the range increasing with larger dif-
ferences between the Hill coefficients for NR2A/2B vs. NR2C/2D

subunits.

PHYSIOLOGICAL RANGE OF GLYCINE CONCENTRATION
The free glycine concentration in the human brain is regu-
lated by a 2Na+-Cl−-Gly co-transporter system and its value
is constrained by the Nernst-Goldman equation. Therefore, the
functional free glycine concentrations in steady-state equilib-
rium conditions is dependent upon the range of concentrations
for intracellular and extracellular Na+ and Cl−. Assuming the
glycine transporter is located on astrocytes, all calculations are
done for astrocyte membrane potential and intracellular ion
concentrations. Astrocyte membrane potential, while not chang-
ing on the same time scale as neuronal membrane potential is
supposed to be in the −50 to −70 mV range for steady state
conditions.

With the exception of extreme pathological situations such as
in stroke or neurotrauma, Na+ and Cl− ion concentrations in the
human brain are tightly regulated. Figure 5 shows a number of
solutions to the Nernst-Goldman equation for different ranges of
intracellular Na+ and intracellular glycine concentrations. All fig-
ures are derived for constant values of intracellular Cl− of 6 mM
and extracellular Cl− concentration of 120 mM. It is clear that in
the absence of extreme pathology, the range of free extracellular
glycine is limited and is unlikely to exceed 10 uM.

INTERNALIZATION OF NMDA-R AT HIGH GLYCINE CONCENTRATIONS
High glycine exposure in principle could overstimulate the
NMDA-R and lead to epileptic seizures. In preclinical slice work,
NMDA-R internalization has been observed at very high glycine
concentrations, typically with an EC50 value in the range of
40 uM (Nong et al., 2003). While the Nernst-Goldman equations
that regulate the free glycine concentration as a function of free
Na and Cl strongly suggest that glycine concentrations beyond
5 uM are highly unlikely (see Figure 5), we nevertheless simulated
the effect of NMDA-NR2 subunit internalization on the computer
model outcome.
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FIGURE 4 | Sensitivity analysis of the inverse U-shape dose-response

for glycine-dependent outcome of the computer model as a function

of the Hill slope and the EC50 values for both classes of NMDA-NR2

subunits. The x-axis represents EC50 values for the e-i NR2C/D subunits
and the y-axis represents the EC50 values for the NR2A/B subunits. Shown
are ratios of different Hill coefficients on NR2A/Bvs. NR2C/D subunits:
(A) 1:1, (B) 1.25:1, (C) 1.5:1, (D) 1.75:1, and (E) 2:1. Combinations of values
in green color are associated with a U-shape dose-response for NMDA
effects of e-i over e-e with a minimum between 0.5 and 10 uM of glycine

concentration and therefore a beneficial effect on the network outcome.
Combinations in yellow are associated with values resulting in monotonic
decrease of the ratio and combinations in blue are associated with a
non-biological minimum much smaller than 0.5 uM. The results indicate
that a beneficial inverse U-shape dose-response on negative symptoms is
associated with large differences between the Hill coefficients for NR2A/2B

vs. NR2C/2D subunits. In addition, in most cases, a beneficial inverse
U-shape dose-response is associated with greater EC50 values for NR2A/2B

than for NR2C/2D.

We simulated two conditions of internalization (Figure 6).
The first condition assumes the same EC50 value (40 uM) for both
NR2A/B subunits as for NR2C/D subunits. As expected, for very
low levels of glycine where the internalization process has a very

limited effect, the dose-response shows a peak for glycine levels in
the low uM range. The results further suggest that internalization
of the NMDA-R assuming the same EC50 values for the two types
of NR2 subunits leads to a substantial decrease (corresponding
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FIGURE 5 | Relationship between Na+-concentration,

Cl−-concentration and glycine concentration based on the

Nernst-Goldman equation that constrains the 2Na+-Cl−-Gly

co-transporter system. (A) Extracellular glycine concentration as a
function of membrane potential for different values of intracellular Na+
keeping Glyi fixed at 2 mM; (B) extracellular glycine concentration as a
function of membrane potential for different values of intracellular glycine
keeping Na+

i fixed at 15mM. All figures are derived for constant values of
intracellular Cl− of 12 mM and extracellular Cl− concentration of 120 mM.
With values of Na+

i in the range of 10–20 mM and membrane potential
between −70 and −40 mV, this analysis suggests that extracellular glycine
concentrations are limited to a range between 0.5 and 2–3 uM.

to a collapse of network activity at glycine levels beyond 20 uM).
The second assumption assumes that the internalization process
would have the same affinity as glycine itself, i.e., an EC50 of
32 uM for the NR2A/B subunits and an EC50 of 50 uM for the
NR2C/D subunits. In that case, the simulations suggest that the
model outcome first improves beyond the no internalization case
before collapsing at glycine levels beyond 40 uM.

DISCUSSION
This report describes a quantitative systems pharmacology com-
puter model based on physiologically realistic interactions in
models of a cortical network and the ventral striatum. The major
result of this simulation is the prediction of an inverse U-shape
dose-response with glycine that is a consequence of the shifting
balance between excitation and inhibition in the cortical net-
work, secondary to an interesting difference in pharmacological
properties of glycine for the different NMDA subunits regulating
excitatory and inhibitory tone.

The sensitivity analysis suggests that there are a substantial
number of parameter combinations that result in such an inverse

FIGURE 6 | Effect of NMDA-R internalization under the hypothesis that

high levels of glycine are possible and using the experimental data

from (Nong et al., 2003). Two conditions of internalization are simulated:
INT-1–EC50 (40-40) assumes the same EC50 for internalization of NR2A/B

subunits as for NR2C/D subunits (40 uM); INT-2–EC50 (50-32) assumes the
EC50 for internalization of the NR2C/D is lower (32 uM) than for the NR2A/B

subunit (50 uM) in accordance with the relative difference in EC50 for
glycine to the glycine binding site. INT-1 is similar to the situation without
internalization reaching a peak for glycine levels in the low uM until the
network starts to collapse around a value of 20 uM. With INT-2, the model
outcome reaches a similar early peak for glycine levels in the low uM that
drops off before it begins to improve (at 10 uM) before collapsing at a
glycine level beyond 40 uM.

U-shape dose-response with glycine. The exact values for the
interaction in the human brain is unknown and probably is
different for each subject, but in general an inverse U-shape
dose-response can be achieved when both the EC50 and the Hill
coefficient for the glycine effect on the NR2C/D subunit is lower
than for the NR2A/B subunit. It is of interest to note from different
experimental data that on average the interaction of glycine with
the NMDA-NR2B subunit indeed suggests a higher value for the
Hill coefficient. As noted in the Biological Introduction, the neu-
rodevelopmental trajectory of schizophrenia tends to delay the
appearance of the mature NMDA-NR2A subunit, so that there is a
relatively higher contribution of the NMDA-NR2B subunit to the
excitatory tone in schizophrenics. This allows the interaction of
glycine with the e-e NMDA receptor to have a higher Hill slope
in combination with a lower EC50 concentration, promoting an
inverse U-shape dose-response.

The clinical Phase II data with the glycine inhibitor bitopertin
suggest indeed that the clinical outcome follows such as dose-
response. Some studies with D-serine, D-sarcosine or glycine
have often reported mixed effects (Singh and Singh, 2011), with
some but not all showing a clinical benefit and the interpretation
is hampered by the lack of data on proper target engagement.
It is conceivable that this could be a consequence of the non-
linear dose-response with patients on different points of the
dose-response. It is also of interest to note that negative symp-
toms seem to be most improved when glycine or D-serine levels
are increased (Singh and Singh, 2011). The QSP platform when
calibrated suggests a rather limited effect of glycine modulation
on clinical changes in PANSS negative in the range of 2–2.5
points. Note that the patient population used for calibration was
not selected for extremely high negative symptomatology, result-
ing in a baseline PANSS negative between 18 and 24. Although
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this observed change is in line with published data on gluta-
matergic modulation (Singh and Singh, 2011), it suggests that
such a limited effect might be difficult to be detected in clinical
situations.

These results also lead to the important observation that
because of the different contribution of the NMDA-NR2 sub-
units, the interaction between glycine and the NMDA recep-
tors likely is different in healthy volunteers as compared with
schizophrenia patients. Such a difference is extremely difficult to
achieve in preclinical animal models. Therefore, great care needs
to be taken to extrapolate positive or negative findings from a
Phase I proof-of-concept study in healthy volunteers to actual
schizophrenia patients.

Similarly, rodent models often lack the right mix of NMDA
receptor subtypes to simulate very well the actual pathology
mediated and often do not show the inverse U-shape dose-
response (Alberati et al., 2011). Not realizing this could substan-
tially hamper the clinical development and often can lead to failed
clinical trials. In addition, clinical trials have been performed
as augmentation strategy, i.e., the glycine modulator interven-
tion is given to patients on stable antipsychotic medication. Such
comedications can have a direct effect through affecting the
metabolism of the active compound which is dependent upon
the genotype of the specific Cytochrome P450 enzyme but can
also be modified by other comedications such as nicotine (Tsuda
et al., 2014). The comedications can also have an indirect effect on
the dose-response of glycine level modulation through non-linear
interactions on the excitation-inhibition balance that affect the
emergent properties such as the BOLD-fMRI signal. This paper
does not address the issue of comedication, but we are planning
to perform such an in-depth analysis in a follow-up paper.

LIMITATIONS OF THE MODEL
Firstly, different reports suggest that D-serine plays a more impor-
tant role as co-agonist on the NMDA-R in the cortex (Fossat et al.,
2012) while other studies suggest a role for both D-serine and
glycine in regulating neuronal morphology in rodent somatosen-
sory cortex (Balu et al., 2012). To a certain extent, the interaction
of D-serine with the co-agonist site on the NMDA-R is quite sim-
ilar to glycine’s interaction (Chen et al., 2008), but the level of
free D-serine is regulated by serine racemase localized in neurons
(Balu et al., 2014) and by a Na+-independent alanine-cysteine-
serine transporter system (Maucler et al., 2013). This suggests
that most of the conclusions for glycine, with the exception of
the limited range of glycine driven by its specific Na+-dependent
co-transporter system can be applied to the modulation of
D-serine.

There is also some discussion about the nature of the NMDA
NR2 subunits on the inhibitory cell types in cortical networks.
mRNA studies in the human brain localize the NR2C subunit
predominantly to the cerebellum (Monyer et al., 1992) although
there are lower levels present in the cortex (Allen Brain institute
data http://human.brain-map.org/). However, NR2D subunits are
likely present in cortical areas on excitatory-inhibitory synapses
and could play a predominant role in the generation of the
inhibitory tone. The exact interaction parameters between glycine
and its co-agonist binding site on the NMDA receptor in the

human brain are unknown, but the computer model suggests
a range of interaction parameters that would correspond to an
inverse U-shape dose-response. Although adding a greater con-
tribution of NR2D to the inhibitory tone will increase the EC50

of the e-i interaction, it will also decrease the Hill coefficient
as compared to the interaction of glycine with the e-e synapses,
which has been shown to be favorable for an inverse U-shape
dose-response.

The model presented here does not address the other mod-
ulatory agents such as extracellular proteins, zinc, polyamines,
and neurosteroids. All these molecules can influence the dynam-
ics of glycine-mediated amplification of NMDA-currents and we
assumed that these modulators do not change in schizophrenia.
In principle, if new data become available suggesting a change in
these neuromodulators as a consequence of schizophrenia pathol-
ogy, detailed biochemical data could be incorporated in this
platform to estimate their impact.

In summary, this report simulates the anticipated dose-
response of glycine level modulation on an emergent property
(BOLD-fMRI) of a computer-based neuronal circuit that has
been calibrated against clinical outcomes for negative symptoms.
It provides a physiological explanation for the appearance of
an inverse U-shape dose-response based on a biologically con-
strained set of interaction parameters between glycine and the
co-agonist site on different types of NMDA-NR2 subunits and
the electrogenic character of the Gly/2Na/Cl co-transport sys-
tem. A notable limitation is that this study deals with the effect
of glycine modulation in the absence of any antipsychotic med-
ication and therefore does not reflect the real clinical study
design.
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Inhibition of the bile salt export pump (BSEP) has been linked to incidence of drug-induced
liver injury (DILI), presumably by the accumulation of toxic bile acids in the liver. We have
previously constructed and validated a model of bile acid disposition within DILIsym®, a
mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response
of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic
BSEP inhibitor telmisartan in humans in order to explore whether we can predict that
hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels. We also
simulate bosentan in rats in order to illuminate potential reasons behind the lack of toxicity
in rats compared to the toxicity observed in humans. DILIsym® predicts that bosentan,
but not telmisartan, will cause mild hepatocellular ATP decline and serum ALT elevation
in a simulated population of humans. The difference in hepatotoxic potential between
bosentan and telmisartan is consistent with clinical observations. However, DILIsym®

underpredicts the incidence of bosentan toxicity. DILIsym® also predicts that bosentan
will not cause toxicity in a simulated population of rats, and that the difference between
the response to bosentan in rats and in humans is primarily due to the less toxic bile
acid pool in rats. Our simulations also suggest a potential synergistic role for bile acid
accumulation and mitochondrial electron transport chain (ETC) inhibition in producing the
observed toxicity in CP-724,714, and suggest that CP-724,714 metabolites may also play
a role in the observed toxicity. Our work also compares the impact of competitive and
noncompetitive BSEP inhibition for CP-724,714 and demonstrates that noncompetitive
inhibition leads to much greater bile acid accumulation and potential toxicity. Our research
demonstrates the potential for mechanistic modeling to contribute to the understanding
of how bile acid transport inhibitors cause DILI.

Keywords: BSEP inhibition, bile acids and salts, drug-induced liver injury, mechanistic modeling, bosentan,

CP-724,714, population variability

INTRODUCTION
Inhibition of the bile salt export pump (BSEP) by a drug has
been implicated as a risk factor for the drug’s potential to
cause drug-induced liver injury (DILI) (Dawson et al., 2011;
Morgan et al., 2013). Several high-profile DILI-causing drugs,
for example troglitazone (Funk et al., 2001; Smith, 2003), bosen-
tan (Fattinger et al., 2001; Eriksson et al., 2011), and nefazodone
(Kostrubsky et al., 2006), have been shown to be BSEP inhibitors.
Furthermore, prediction of toxicity by these molecules has been
uneven; for example, neither bosentan nor troglitazone displayed
toxicity in animal models (Leslie et al., 2007; Lauer et al., 2009).
Predictions involving hepatobiliary transporter IC50 values in
in vitro assays have shown better predictive ability (Dawson et al.,
2011; Morgan et al., 2013). Improving the ability to predict the
frequency and severity of DILI with BSEP inhibitors will allow
those involved in drug development to better judge the risk
involved with moving a drug in development into the clinic or
beyond early-stage clinical trials.

DILIsym® is a multi-scale mechanistic model incorporating
numerous functions of the liver and disruptions of the function
with the goal of predicting the DILI potential of drugs at vari-
ous stages in the development process (Howell et al., 2012, 2014;
Woodhead et al., 2012; Shoda et al., 2014). Previously, we have
constructed and validated a model of bile acid homeostasis and
transporter inhibition within DILIsym® (Woodhead et al., 2014).
We found that inhibiting BSEP could lead to significant increases
in bile acid concentrations in the liver, and that the effects of
bile acid transporter inhibitors should be considered on a sim-
ulated population as well as on a single baseline individual. We
have expanded that model to include a representation of bile acid-
mediated toxicity based on experiments performed by Yang et al.
(2013). In that work, we constructed a relationship between intra-
cellular bile acid concentration and cellular ATP. We used this
relationship to predict cellular necrosis using the existing rela-
tionship between ATP and cell death in DILIsym®. This model
has been used previously to effectively predict the frequency and
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timing of ALT elevations observed with troglitazone in clinical tri-
als, and has predicted the difference between troglitazone and the
similar non-toxic drug pioglitazone (Yang et al., 2014).

In the present work, we use this model of bile acid-mediated
cytotoxicity to model the observed hepatotoxicity of bosentan,
telmisartan, and CP-724,714. Bosentan is a currently marketed
medication for pulmonary arterial hypertension that carries a
black-box warning for hepatotoxicity. In clinical trials a dose of
1000 mg/day of bosentan caused between 8 and 18% of indi-
viduals to experience increases in serum ALT greater than 3-fold
(Fattinger et al., 2001). Bosentan has also been shown to be a
relatively potent BSEP inhibitor. Telmisartan, an angiotensin II
receptor agonist used in hypertension treatment, is also a rela-
tively potent BSEP inhibitor, but has not been reported to cause
hepatotoxicity in humans (Morgan et al., 2013). CP-724,714 is
an anti-cancer drug that was terminated from development after
Phase II clinical trials revealed liver signals (Guo et al., 2008).
CP-724,714 has been shown to inhibit multiple transporters,
including BSEP, in addition to being a mitochondrial toxin (Feng
et al., 2009). In this report we explore the DILIsym® software’s
(version 2C) predictions for the toxicity of bosentan in humans,
and the lack of toxicity of bosentan in rats and telmisartan in
humans. We will also test several theories about the toxicity of
CP-724,714 in order to suggest potential viable explanations for
the observed toxicity in early clinical trials.

METHODS
The construction and validation of the bile acid homeostasis
model in DILIsym® is described in a previous paper (Woodhead
et al., 2014). DILIsym® models the synthesis and enterohepatic
recirculation of two main potentially toxic bile acids, chenodeoxy-
cholic acid (CDCA) and lithocholic acid (LCA), and their amide
(and sulfate in the case of LCA) conjugates. DILIsym® describes
the intrahepatic accumulation of these toxic bile acids as well as
the concentrations in the gallbladder, portal blood, gut lumen,
and systemic blood. Concentrations of bile acid transporter
inhibitors are modeled using a physiologically-based pharma-
cokinetic model (PBPK) described in depth in previous papers
(Howell et al., 2012; Woodhead et al., 2012). The bile acid con-
centrations are linked to ATP decline as described below; the
effect of ATP decline on eventual hepatocyte necrosis is described
by a model of the hepatocyte life cycle also described in previ-
ous papers (Howell et al., 2012; Woodhead et al., 2012; Shoda
et al., 2014). A diagram of the interaction between the various
submodels of DILIsym® employed in this paper can be seen in
Figure 1.

The DILIsym® model of bile acid toxicity is based on in vitro
experiments comparing the intracellular level of LCA and CDCA
to cellular ATP levels (Yang et al., 2013). In order to construct the
connection between bile acid accumulation and toxicity, a small
model of the DILIsym® ATP turnover model was constructed
(Yang et al., 2013); a diagram of this model is shown in Figure 2.
The relationship between intracellular ATP and intracellular bile
acids was modeled by the following equation:

d[ATP]
dt

= kusage − ksynthS

where kusage is the rate of ATP usage in the cell, ksynth is the rate
of ATP synthesis in the cell, and S is the signal for ATP synthesis
inhibition by bile acids. S has Hill type behavior and is given by
the following equation:

S = 1

1 + Vmax,S[BA]H
delay

KH
m,S + [BA]H

delay

where Vmax,S is the maximum denominator for the signal, Km,S

is the Michaelis constant for the signal, and H is the Hill coeffi-
cient for the signal. [BA]delay is the delayed intracellular bile acid
concentration, given by the standard delay equation:

d[BA]delay

dt
= τ

([BA] − [BA]delay
)

The delay constant τ , Vmax,S, Km,S, and H were the parameters
that were fitted to the ATP time course from the experiment.
These parameters were then applied to the intracellular bile acid
concentrations modeled in DILIsym®. We applied the parame-
ters for the unconjugated bile acids measured in the experiments
to the conjugated bile acids in DILIsym®; for example, we used
the unconjugated LCA parameters to describe the toxicity of LCA
amide and sulfate conjugates. While some data exist describ-
ing the relationship between intracellular amide- and sulfate-
conjugated bile acids and toxicity (Chatterjee et al., 2013), these
are not enough to justify using different toxicity parameters for
conjugated and unconjugated bile acids; this is an area of potential
refinement for DILIsym®.

Physiologically-based pharmacokinetic (PBPK) models were
constructed for bosentan, telmisartan, and CP-724,714 in
humans using available in vivo time course data (Weber et al.,
1996; Stangier et al., 2000; Munster et al., 2007). For simula-
tions where bosentan metabolism was impaired, the Vmax for the
metabolism of both metabolites was represented as 10% of their
baseline value. Both bosentan and telmisartan are active trans-
port substrates; the active transport parameters for both were
adapted for use in DILIsym® from Ménochet et al. (2012). The
bosentan PBPK model includes the major and minor metabo-
lite, with metabolism parameters based on published in vitro
metabolism data (Ubeaud et al., 1995); these were included
because the minor metabolite of bosentan also inhibits BSEP
(Fattinger et al., 2001). The major metabolite of telmisartan, a
glucuronide, has not been shown to inhibit BSEP and so was not
included in the PBPK model. CP-724,714’s complex metabolism
was not modeled explicitly; however, a single metabolite com-
partment in the liver was included in order to test the hypothesis
of whether metabolite accumulation could explain CP-724,714
toxicity. PBPK model results for human bosentan are shown in
Figure 3; those for human telmisartan are shown in Figure 4; and
those for human CP-724,714 in Figure 5. For bosentan in rats,
data did not exist in the literature. Data provided to us from
Amgen, Inc. (Thousand Oaks, CA) were used to parameterize the
bosentan rat PBPK model shown in Figure 6.

Inhibition constants for bosentan were taken from published
research that found Ki values for both bosentan (12 µM) and the
minor metabolite of bosentan (8.5 µM) (Fattinger et al., 2001).
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FIGURE 1 | Partial diagram of the portions of DILIsym® used for this paper, including the PBPK representation, representation of bile acid

homeostasis and accumulation, link between bile acid concentrations and toxicity, and the hepatocyte life cycle.
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FIGURE 2 | Diagram of the model of ATP turnover used to parameterize

the hepatocellular toxic response to accumulation of bile acids. The
model was set up to accept the experimentally measured intracellular
concentration of each bile acid, and parameters were fit to the model in
order to fit the experimentally observed intracellular ATP levels for each bile
acid exposure.

FIGURE 3 | Simulated plasma concentration of bosentan in humans

and its two metabolites after a 500 mg oral dose compared to data

from Weber et al. (1996).

The inhibition of BSEP by bosentan and its metabolite were mod-
eled as noncompetitive in agreement with the data. These data
are from rat Bsep vesicles; we assigned the same Ki value to
humans, as there is evidence suggesting that rat Bsep and human
BSEP are inhibited with similar potency by bosentan (Mano et al.,
2007). Bile acid uptake inhibition constants for bosentan were
taken from work done by Leslie et al. (2007). The telmisartan Ki

was approximated using the IC50 value reported in the literature
(Morgan et al., 2013). A list of Ki values used in our simulations
is included in Table 1. In addition, bosentan is a potent inducer
of its own uptake into the liver and metabolism (Dingemanse and
van Giersbergen, 2004); these effects are included in our PBPK
model. It is important to note that for each drug, only the param-
eters related to drug pharmacokinetics and transporter inhibition

FIGURE 4 | Simulated plasma telmisartan concentration in humans

after a single 80 mg oral dose compared to data from Stangier et al.

(2000).

were changed; all other remaining parameters were not changed
from drug to drug.

For CP-724,714 IC50 values, experiments were run in rat Bsep,
dog Bsep, and human BSEP-expressing vesicles. CP-724,714 was
synthesized by Pfizer, Inc. (Groton, CT), while radiochemicals
were purchased from Perkin Elmer (Perkin Elmer, Waltham MA).
Other chemicals were purchased from Sigma-Aldrich (Sigma-
Aldrich, St Louis, MO) or were of analytical grade. Membrane
vesicles were obtained from Sf9 cells not expressing and express-
ing human BSEP (Solvo Biotechnology, Szeged, Hungary), rat
Bsep (AB Life Technologies, Waltham, MA), or dog Bsep (AB Life
Technologies).

CP-724,714 was incubated (2 or 5 min) with membrane vesicle
preparations (total protein: 50 µg/well) and the probe substrate,
taurocholate (2 µM). Serial dilutions of CP-724,714 (30 mM
stock, 10 mM, 3.16 mM, 1 mM, 316 µM, 100 µM, 31.6 µM,
10 µM) were prepared in DMSO. Incubations in duplicate were
carried out in the absence or presence of 4 mM ATP to dis-
tinguish between transporter mediated uptake and passive dif-
fusion into the vesicles. CP-724,714 was added to the reaction
mixture in 0.75 µl of solvent (1% of the final incubation vol-
ume). Glyburide (100 – 0.1 µM) was used as the positive control
inhibitor. Reaction mixtures were pre-incubated for 10 min at
37◦C. Reactions were started by the addition of 25 µl of 12 mM
MgATP (or AMP, as disodium salt, for background controls), pre-
incubated separately. Reactions were stopped by the addition of
200 µl of ice-cold washing buffer and immediate filtration via
glass fiber filters mounted to a 96-well plate (filter plate). The
filters were washed, dried and the amount of substrate inside
the filtered vesicles determined by liquid scintillation. Maximal
observed inhibition ranged between 94.8 and 99.8% for CP-
724,714. Further information on this method can be found in the
literature (Kis et al., 2009).

Bosentan dosing in humans was simulated as a 500-mg twice-
daily dose for 30 days. The doses were given once every 12 h; this is
one of the dosing regimens in the clinical trials that demonstrated
toxicity as reported by Fattinger et al. (2001). Telmisartan dosing
was simulated as a 50, 3000, or 12,000-mg dose once daily for 30
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FIGURE 5 | Simulated plasma human concentrations of CP-724,714 after an oral dose of 250 mg (A) and 400 mg (B) compared to data from Munster

et al. (2007). The 250 mg dose data represented in this figure are a compilation of the results from the first dose of several different dosing protocols.

FIGURE 6 | Simulated plasma bosentan concentrations in rats after an intravenous oral dose of 10 mg (A), 30 mg (B), and 100 mg (C) compared to

data provided by Amgen, Inc. (Thousand Oaks, CA).

days; common clinical dosing regimens range from 40 to 80 mg
per day (Meredith, 1999). CP-724,714 was dosed three times daily,
or once every 8 h. A range of CP-724,714 doses were simulated
in order to cover the range of exposure levels reported by Guo
et al. (2008). Three simulated meals per day were included in all
human simulations, and simulated to occur concurrent with drug
dosing. Bosentan dosing in rats was simulated as a 50 mg/kg dose
once daily.

DILIsym® contains simulated populations, or SimPops™, that
represent a plausible range of variability in key model parameters.

The human SimPops™ and rat SimPops™ used in the course of
these simulations contain variability in several bile acid transport
parameters and are described in our previous work (Woodhead
et al., 2014; Yang et al., 2014). There are 331 individuals in the
human SimPops™ and 191 individuals in the rat SimPops™;
although the numbers of individuals are different, both the
human and the rat SimPops™ are designed to account for the
entire plausible range in variability in bile acid transport param-
eters and bile acid profiles observed in a sample population
(Woodhead et al., 2014). Pharmacokinetic variability in bosentan
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disposition was also included in one SimPops™ simulation; for
this population, a normal distribution around four variables (oral
absorption coefficient, liver uptake Vmax, and major and minor
metabolite formation Vmax) was superimposed upon the exist-
ing small human SimPops™. The range of these parameter values
was based on a known range of variability for hepatobiliary trans-
porters (Meier et al., 2006) and upon previous simulations where
pharmacokinetic variability was considered (Woodhead et al.,
2012).

RESULTS
Results from the SimPops™ analysis with bosentan are presented
in Table 2. When we simulated bosentan in the human SimPops™
using the baseline assumptions (noncompetitive inhibition, no
basolateral inhibition, normal metabolism), 1 individual out of
331 developed ALT elevations greater than 3-fold above the base-
line value. When potential variability in pharmacokinetics was
incorporated into the SimPops™, the predicted incidence rate
rose to 3 out of 331. While this successfully predicts the potential
toxicity of bosentan, the incidence rate is well below the incidence
rate of 8–18% observed during the clinical trials (Fattinger et al.,
2001).

A genetic polymorphism that limits CYP metabolism has been
shown to correlate with an increased rate of toxicity from bosen-
tan exposure (Markova et al., 2013). We have simulated this
case using the human SimPops™ by decreasing the bosentan
metabolism Vmax values for both minor and major metabolites by
10-fold. This change led to eight simulated individuals out of 331
(2.42%) developing ALT elevations. DILIsym® correctly predicts
the increased risk of toxicity due to this potential genetic poly-
morphism, though the predicted incidence rate is still less than
the overall rate in the general population from the clinical study.

When bosentan was also simulated in the rat SimPops™, zero
individual rats out of 191 developed ALT elevations. This is
consistent with preclinical observations which have reported no
toxicity in the rat (Leslie et al., 2007). It has been suggested that
the difference in bile acid uptake inhibition by bosentan between
rats and humans contributes to the species difference in hepato-
toxicity (Ansede et al., 2010). In order to test this theory, we ran
a simulation in the rat SimPops™ with uptake inhibition elimi-
nated (Ki set to 1 × 1010); though bile acid accumulation in the
liver was predicted (results not shown), no toxicity was observed.
This suggests that the difference in the bile acid pool between
humans and rats is likely a more significant contributor to the
species difference in toxicity.

In order to ensure that the model can differentiate non-toxic
BSEP inhibitors from toxic BSEP inhibitors, we modeled telmis-
artan in the human SimPops™. No toxicity was predicted in the
human SimPops™, which is consistent with clinical observations.
This was true whether telmisartan was modeled as a competitive
or a noncompetitive inhibitor.

While there is scant difference between predicting one individ-
ual developing toxicity and predicting zero individuals developing
toxicity (out of 331), a fuller understanding of the risk of a given
compound can be gained by investigating more mechanistic data
within DILIsym®. Figure 7 displays the minimum hepatic ATP
for each individual in the human and rat SimPops™ for bosen-
tan and the human SimPops™ for telmisartan (modeled as both a
competitive and non-competitive inhibitor of BSEP). We can see
that while only one simulated individual in the human SimPops™
had an ATP decline after bosentan dosing that ultimately led to
toxicity, many more had ATP reductions visibly below the baseline
value. This was not true of the rat, or of telmisartan in either case;
the simulated individuals all have hepatic ATP values very close
to the baseline value. This places the difference between bosen-
tan and telmisartan, and the difference between rat and human,
in sharper relief and demonstrates the potential of the model
for predicting species differences in toxicity and differentiating
between toxic and non-toxic BSEP inhibitors.

The simulation results for CP-724,714 in the baseline human
individual, and a comparison of these results to the clinical obser-
vations in Guo et al. (2008), are shown in Figure 8. The graph
compares the normalized liver function test (LFT) elevation

Table 2 | SimPops™ simulation results for simulated ALT elevations

caused by bosentan and telmisartan.

SimPops simulation Number of Percentage

ALT > 3×

Bosentan – baseline 1 0.302%

Bosentan – PK/toxicity variability 3 0.906%

Bosentan – 10× lower metabolism 8 2.42%

Bosentan – basolateral transporter inhibition 4 1.21%

Bosentan – rat 0 0

Telmisartan – competitive 0 0

Telmisartan – noncompetitive, 50 mg/day 0 0

Telmisartan – noncompetitive, 3000 mg/day 0 0

Telmisartan – noncompetitive, 12,000 mg/day 1 0.302%

Table 1 | Inhibition constants used for the compounds in the simulations conducted for this paper.

Compound Species Transporter Ki Mode References

Bosentan Rat BSEP 12 µM Noncompetitive Fattinger et al., 2001

Bosentan minor metabolite Rat BSEP 8.5 µM Noncompetitive Fattinger et al., 2001

Bosentan Rat NTCP 0.23 µM Noncompetitive Leslie et al., 2007

Bosentan Human NTCP 18 µM Competitive Leslie et al., 2007

Telmisartan Human BSEP 16 µM* N/A Morgan et al., 2013

CP-724,714 Human BSEP 7.45 µM* N/A Novel data

*Denotes that the Ki was approximated using the listed IC50 value for which mode of inhibition was not determined.
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FIGURE 7 | ATP levels in individuals after simulated dosing of bosentan to

the human SimPops™ (A) and the rat SimPops™ (B); and with simulated

telmisartan dosing to the human SimPops™ when represented as a

competitive (C) and noncompetitive (D) inhibitor. Each point represents an
individual within the human SimPops™; the baseline ATP concentration in
humans is 4.2 mM, while in rats the baseline ATP concentration is 2.0 mM.

FIGURE 8 | Normalized LFT elevation at increasing exposure as

measured by AUC0-24 on Day 1 of Cycle 2 (Day 22 overall) in the

baseline human in DILIsym® and the clinical trial patients from Guo

et al. (2008). The lines refer to the dose response simulated in DILIsym®

under various assumed conditions listed in the table legend. “Baseline
assumptions” refers to the case where only the parent CP-724,714 inhibits
BSEP competitively and does not inhibit the electron transport chain (ETC).
“Metabolite inhibition” refers to the case where the metabolite of

CP-724,714 inhibits BSEP with the same Ki as the parent compound.
“Poor clearance” refers to the case where the metabolite biliary clearance
value is set to a value 10-fold lower than the parent biliary clearance value.
“Noncompetitive” refers to the case where all BSEP inhibition is modeled
as noncompetitive. “Added ETC inhibition” refers to the case where
inhibition of the electron transport chain was simulated for both parent and
metabolite. The points are individual patients from Guo et al. (2008). The
purple dashes are the individuals in a human SimPops™.

against the AUC of the drug in the patient’s bloodstream on Day
22 (Day 1 of Cycle 2) of drug dosing, a measure of steady-state
drug exposure. The normalized LFT elevation used by the Guo
et al. (2008) paper to which our simulations are compared is given
by the following expression (Guo et al., 2008):

max

(
ALT fold increase

5
,

bilirubin fold increase

3

)

The simulation results are the maximum normalized LFT eleva-
tion at each dose simulated for each individual case. The graph
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shows that bile acid inhibition alone cannot explain the clinical
toxicity, as liver function tests did not elevate in the simulations
when bile acid inhibition alone was simulated. This was true for
both competitive and noncompetitive inhibition. However, the
inclusion of mitochondrial toxicity did, in fact, lead to a toxic
response that was augmented when bile acid accumulation also
occurred. The data are best described here by this combination
of competitive inhibition and electron transport chain (ETC)
inhibition.

The simulations also predict that both BSEP and mitochon-
drial ETC inhibition by CP-724,714’s major metabolite are nec-
essary to explain the toxicity, since CP-724,714 is rather rapidly
metabolized by the liver and so parent residence time within
the liver is somewhat limited. When the potential activity of
the metabolite is not included, no toxicity is shown no mat-
ter the mechanism or combination of mechanisms selected. The
accumulation of this metabolite is also necessary to explain
the toxicity; a biliary clearance of 10% of the value for the
parent compound was used in order to reproduce the clinical
toxicity.

SimPops™ results for CP-724,714 in humans are also shown
in Figure 8, with each individual in the SimPops™ represented by
a purple dash. We found that while the simulated baseline indi-
vidual did not display the toxicity that would have been expected
from the clinical data, the population sample did contain several
individuals who developed clinically-relevant ALT elevations, but
only if the BSEP inhibition was noncompetitive. Furthermore,
the range of injury in the SimPops™ is far wider than the range
reported in the clinical study; the most severe normalized LFT
elevation in our simulated population was 6.5, while the largest
clinical normalized LFT in that exposure range was about 2.
Twelve individuals in our 331-individual SimPops™, or 3.62%,
developed toxicity; this is lower than the 36% of individuals in the
exposure range near the simulated dose who developed LFT ele-
vations. No individuals in the SimPops™ developed toxicity if the
inhibition was competitive, demonstrating the importance of dif-
ferentiating between modes of inhibition when determining BSEP
inhibition constants.

Uncertainty about the biliary clearance of the CP-724,714
metabolite has an impact on simulated ALT elevations. Figure 9
shows simulated ALT elevations at a constant dose of CP-724,714
when the biliary clearance of the metabolite is modulated. This
variable does not affect the plasma pharmacokinetics of parent
CP-724,714; it is thus a degree of freedom in DILIsym®. However,
as Figure 9 shows, it has a significant effect on the predicted toxic-
ity of CP-724,714; DILIsym® suggests, therefore, that experiments
clarifying the amount of hepatic accumulation and clearance of
CP-724,714’s major metabolite should be conducted in order to
fully elucidate the molecule’s toxicity.

DISCUSSION
We have used DILIsym® to model bosentan and found that,
using the mechanistic simulation results calculating ATP decline,
DILIsym® suggests that the potential for toxicity in a human pop-
ulation is greater than that in a rat population. Furthermore,
the same ATP decline simulation results show a clear differ-
ence between the human population response to bosentan and

FIGURE 9 | ALT elevations at different values of metabolite biliary

clearance given competitive BSEP inhibition and ETC inhibition. The
“poor clearance” cases explored in Figure 8 are represented here by the
biliary clearance value of 5 mL/h/kg0.75.

to telmisartan. While the prediction of the toxic potential of
bosentan was well below the actual clinical incidence rate, these
results nevertheless show promise for the ability to use a mech-
anistic mathematical model of DILI, rather than small-animal
models, to predict the human toxicity of a BSEP inhibitor. More
revealingly, the modeling exercise suggested a potential reason for
this discrepancy in toxicity between rats and humans. Previous
work in this area demonstrated the difference in uptake trans-
porter inhibition between rats and humans (Leslie et al., 2007;
Ansede et al., 2010) and proposed that this was a contributing
factor to the species difference. However, our simulations suggest
that removing the uptake inhibition from the rat model altogether
does not lead to liver toxicity in the rat. This suggests that the dif-
ference in bile acid pools and metabolic pathways are most likely
the strongest contributor to the species difference in toxicity. The
rat bile acid pool has more non-toxic bile acids, such as cholic
acid and muricholic acid, and less of the toxic bile acids CDCA
and LCA than the human (Hofmann, 2009; García-Cañaveras
et al., 2012). Furthermore, the rat can hydroxylate LCA into the
less-toxic hyodeoxycholic acid, which is a pathway that does not
occur in the human (Hofmann, 2004). Because of these species
differences in bile acid metabolism, our modeling questions the
utility of current small-animal models in the prediction of BSEP
inhibitor-mediated toxicity in humans.

Our results comparing the ATP decrement in the liver caused
by bosentan and telmisartan demonstrate that DILIsym® can dif-
ferentiate between a toxic and a non-toxic compound with a
similar IC50. In the case of bosentan and telmisartan, the dif-
ference is mostly a pharmacokinetic one; telmisartan is dosed
at a far lower dose than is bosentan. However, our results with
increasing telmisartan dose suggest that a much higher dose of
telmisartan, compared to bosentan, is necessary to cause toxi-
city in a human SimPops™. The suggestion is that dose is not
necessarily predictive on its own; differences in metabolism and
in liver uptake transporter affinity and capacity both are likely
contributors to the differences in toxicity between bosentan and
telmisartan.
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While we qualitatively predict the species difference in bosen-
tan toxicity and the toxicity of bosentan compared with the safety
of telmisartan, we substantially underpredict the incidence rate of
the toxicity of bosentan in the general population. Clinical trials
predict 8–18% toxicity at the 1000 mg/day dosing level; DILIsym®
predicted a much lower incidence rate even when individuals with
metabolic polymorphisms were considered.

There are several possible reasons for this discrepancy, mostly
related to the possibility of other mechanisms of toxicity not
currently included in the DILIsym® model of bosentan. First,
we do not represent the inhibition of basolateral bile acid
transport by bosentan; this could prevent a potential clearance
pathway for toxic bile acid species and lead to more toxicity.
Recent research has shown that bosentan has the potential to
inhibit MRP4, a basolateral bile acid transporter (Morgan et al.,
2013). Exploratory simulations representing bosentan as a baso-
lateral transporter inhibitor (reported in Table 2) suggest that
this explanation is likely only part of the problem; if the bosen-
tan basolateral transporter Ki is particularly low, however, this
could account for some of the discrepancy in predicted incidence
rates.

Second, DILIsym® does not represent bile acid toxicity in a
mechanistic manner. Recent research suggests that the bile acids
affect the mitochondria and potentially lead to the mitochondrial
membrane permeability transition (Schulz et al., 2013); repre-
senting this effect in DILIsym® could introduce extra sources of
variability and could lead to a higher predicted toxicity incidence
rate. Indeed, work is underway in this area for DILIsym® and
preliminary results suggest that the mechanistic model increases
the predicted rate of bosentan toxicity without predicting tox-
icity in the rat; this work will be the focus of a subsequent
paper.

Third, bosentan could cause toxicity through mechanisms
not currently included in the model for bosentan or not cur-
rently represented in DILIsym®. Bosentan has been shown to
inhibit phospholipid transport in rodents (Fouassier et al., 2002).
Phospholipids protect the bile duct from the cytotoxic effect of
bile acids; inhibition of phospholipid transport has been shown to
lead to liver toxicity in the case of itraconazole (Yoshikado et al.,
2011). While bosentan’s mechanism of action is dissimilar to that
of itraconazole, this shows that the ability of bosentan to interfere
with phospholipid transport could be at least partially responsi-
ble for the observed toxicity of bosentan. Phospholipid transport
and the toxic effect of its inhibition are not currently represented
in DILIsym®; this is an area for potential future research and
refinement.

Also, bosentan’s effects on the mitochondria have not been
elucidated. Previous research has shown that there is a corre-
lation between the ability to inhibit BSEP and toxic effects on
the mitochondria, and that this combined effect is itself cor-
related with DILI risk (Aleo et al., 2014). Furthermore, our
simulations with CP-724,714 demonstrated that the toxicity seen
in the clinic could not be explained without representing the
drug’s mitochondrial effects; while our research suggests that it
is plausible that a compound could cause toxicity through bile
acid transporter inhibition alone, it is also plausible that the
toxicity of bosentan is due to a combined mitochondria/bile

acid toxicity mechanism. Indeed, our modeling showed that
this was most likely the case with CP-724,714. Research in this
area is underway in our group and will focus on potential syn-
ergy between mitochondrial toxicity and bile acid buildup in
the liver.

Fourth, DILIsym® does not represent the intracellular traffick-
ing and potential localization of the drug within the hepatocyte.
Further research in this area could help us improve DILIsym® and
thus our prediction of toxicity incidence rates.

Our simulations with CP-724,714 demonstrate the abil-
ity of mechanistic modeling to consider and prioritize mul-
tiple hypotheses when modeling compounds where the cause
of toxicity is not fully established. Potential variability in the
degree of hepatic accumulation of a compound that inhibits
BSEP is particularly important, as shown by Figure 9. This is
an especially salient point to consider given that the toxicity
of compounds such as troglitazone are suspected to be due
to the hepatic accumulation of a BSEP-inhibiting metabolite
(Masubuchi, 2006). Furthermore, the difference between compet-
itive and non-competitive inhibition, the potential contribution
of ETC inhibition to the observed toxicity, and the toxic poten-
tial of CP-724,714’s metabolites are all sources of uncertainty that
required a hypothesis-based approach to modeling. While this is
of limited value for predicting toxicity on its own, the hypothesis-
based modeling approach is potentially valuable in determin-
ing which experiments would be most impactful in using the
model to properly predict toxicity. In the case of CP-724,714,
these experiments include hepatic accumulation studies, BSEP
inhibition studies, and ETC inhibition studies on CP-724,714’s
metabolites.
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This study aimed to demonstrate the added value of integrating prior in vitro data and
knowledge-rich physiologically based pharmacokinetic (PBPK) models with pharmacody-
namics (PDs) models. Four distinct applications that were developed and tested are
presented here. PBPK models were developed for metoprolol using different CYP2D6
genotypes based on in vitro data. Application of the models for prediction of phenotypic
differences in the pharmacokinetics (PKs) and PD compared favorably with clinical data,
demonstrating that these differences can be predicted prior to the availability of such
data from clinical trials. In the second case, PK and PD data for an immediate release
formulation of nifedipine together with in vitro dissolution data for a controlled release (CR)
formulation were used to predict the PK and PD of the CR. This approach can be useful
to pharmaceutical scientists during formulation development. The operational model of
agonism was used in the third application to describe the hypnotic effects of triazolam,
and this was successfully extrapolated to zolpidem by changing only the drug related
parameters from in vitro experiments. This PBPK modeling approach can be useful to
developmental scientists who which to compare several drug candidates in the same
therapeutic class. Finally, differences in QTc prolongation due to quinidine in Caucasian and
Korean females were successfully predicted by the model using free heart concentrations
as an input to the PD models. This PBPK linked PD model was used to demonstrate a
higher sensitivity to free heart concentrations of quinidine in Caucasian females, thereby
providing a mechanistic understanding of a clinical observation. In general, permutations
of certain conditions which potentially change PK and hence PD may not be amenable to
the conduct of clinical studies but linking PBPK with PD provides an alternative method of
investigating the potential impact of PK changes on PD.

Keywords: PBPK linked PD models, CYP P450 genotypes and response, heart drug concentration and QTc,

formulation effects on drug response, target site concentrations and response

INTRODUCTION
Physiologically based pharmacokinetic (PBPK) modeling provides
a mechanistic platform for the integration of the concentration-
time profile of the drug with realistic physiological and biological
processes in the body. This modeling approach offers an advan-
tage over traditional compartmental modeling approaches since it
potentially allows for extrapolation and further investigation into
conditions for which pharmacokinetic (PK) studies have not been
conducted, thereby informing and accelerating the drug develop-
ment process. Predictions on drug–drug interactions, first in man
dosing, optimal clinical study designs, dosage requirements for
drugs that are metabolized by polymorphic enzymes and dosage
adjustments in disease states are some of the PBPK applications
that could potentially be used during the drug development and
regulatory submission processes (Chen et al., 2012; Huang and

Rowland, 2012; Rostami-Hodjegan, 2012; Sinha et al., 2012; Zhao
et al., 2012; Rowland, 2013; Vieira et al., 2014).

Since the primary concern in drug development is the effi-
cacy and safety of the drug, PBPK linked pharmacodynamic (PD)
models can be very valuable, offering a platform for exploring
the effect of variability in various physiological, biochemical, and
formulation factors on the response to the drug, especially where
clinical studies have not or cannot be conducted. An important
advantage of PBPK linked PD models is the ability to link the
drug concentration at the probable site of action with toxicologi-
cal and/or therapeutic effect. This is especially important when the
plasma concentration is not a good surrogate for the concentration
at the site of drug action (Rostami-Hodjegan, 2013), as demon-
strated in a recent study with rosuvastatin, a cholesterol lowering
drug which is a substrate of the OATP1B1 influx transporter (Rose
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et al., 2014). A PBPK/PD model that used liver concentrations of
rosuvastatin demonstrated improved ability to capture the effect
of the OATP1B1 c.521T > C single nucleotide polymorphism on
the change in cholesterol synthesis rate in response to rosuvas-
tatin, compared to a model using plasma concentrations of the
drug. Based on significant plasma concentration differences, a
dosage adjustment in rosuvastatin may have been considered in
patients with the OATP1B1 c.521T > C polymorphism, but a clin-
ical study had shown no significant differences in response in the
two OATP1B1 phenotypes. However, using PBPK modeling with
a PD model driven by free liver concentrations of rosuvastatin, no
net difference in liver concentrations of the drug in patients with
the polymorphism was observed and their clinical response was
similar, suggesting that dosage adjustments were unnecessary.

Many other scenarios in drug development and clinical practice
can benefit from incorporating the prior systems knowledge into
PBPK models when these are linked to PD modeling. Four such
examples from distinct areas are presented in this paper to demon-
strate the wide range of applications of this approach. The first case
study considers CYP genotypes which can have a significant effect
on drug PK. This case study is a quantitative prediction of the vari-
ation in the clinical response (measured as heart rate) to standard
doses of metoprolol in ultrarapid metabolizers (UMs), extensive
metabolizers (EMs), and poor metabolizers (PMs) of CYP2D6.
The PBPK model used differences in CYP2D6 abundance obtained
from in vitro studies to simulate phenotypic differences in meto-
prolol PK. The second case study explores the potential for the
application of PBPK/PD modeling to predict the response to a
controlled release (CR) formulation using in vitro data for the
CR formulation. A PBPK/PD model was developed and verified
for a nifedipine immediate release (IR) formulation. It was then
used for prediction of the PK and PD profiles of the CR formu-
lation using only the dissolution profile of the CR formulation.
The third case study investigates the application of a PBPK model
linked to a semi-mechanistic PD model developed for one drug
to predict the response to a second drug based on clinical data
for the first drug that acts on the same target. A PBPK/PD model
was developed and verified for triazolam using an operational
agonism PD model. A zolpidem specific target binding parame-
ter obtained by in vitro studies was then used with the triazolam
model to predict response to zolpidem. Such models are useful
for comparing several potential drug compounds that belong to
the same therapeutic class, when clinical data is available for just
one of the compounds. In the fourth case study, the PD model is
driven by target site drug concentrations and used to gain a mech-
anistic understanding of a clinical observation. The differences in
the potential for QT prolongation by drugs such as quinidine in
Caucasian and Asian females are well known, although the reason
for this difference has not been established. Using PBPK models
with heart concentrations of quinidine as the input to PD mod-
els, a higher sensitivity to heart concentrations of quinidine was
demonstrated in Caucasian females.

MATERIALS AND METHODS
The Simcyp population-based simulator (V12 www.simcyp.com;
Jamei et al., 2009) was used in the development of the PBPK/PD
models and the simulations. Simcyp compound files (parameters

listed in Tables 1–4) that were validated previously (Howgate et al.,
2004; McGinnity et al., 2008; Polasek et al., 2010; Rowland Yeo
et al., 2004; Patel et al., 2014) and population data (Jamei et al.,
2014) available in Simcyp (V12) were used. Clinical data used
in the case studies were digitized from published clinical stud-
ies using the Getdata software. Simulations using the developed
models were verified by comparison with clinical data prior to
further predictive applications. Simulations were found to be
acceptable if the predicted parameters were within two fold of
the observed data (Guest et al., 2011) and visual predictive checks
showed observed data within the 5 and 95% percentiles of the pre-
dicted data. Methodological details relevant to the individual case
studies are described below.

CASE STUDY 1: ASSESSING THE IMPACT OF GENOTYPICALLY
CONTROLLED ELIMINATION
Although plasma concentrations of metoprolol and effects on
heart rate have been shown to correlate significantly with CYP2D6
metabolic phenotype in clinical studies (Kirchheiner et al., 2004;

Table 1 | Parameters used for the Metoprolol PBPK model (Simcyp

V12).

Parameter Value Unit

Molecular weight 267.4 g/mol

LogP 1.88

Compound type Monoprotic base

pKa 9.75

Blood:plasma 1.15

Fu plasma 0.88

Main binding protein albumin

Absorption First order absorption

fa 1

ka 1.43

Distribution Minimal PBPK model

Vss 3 L/kg

Elimination

CYP2D6:o-demethylation CLint 39.33 pmol/min/mg

microsomal protein

CYP2D6:alpha-OH CLint 8.7 pmol/min/mg

microsomal protein

CYP3A4:o-demethylation CLint 3.18 pmol/min/mg

microsomal protein

CYP3A4:alpha-OH CLint 0.39 pmol/min/mg

microsomal protein

CLR 5.23 L/h

PD model Simple Emax model

Emax –43.2 Beats/min

EC50 0.13 μM

Baseline 143 Beats/min
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Table 2 | Parameters used for the Nifedipine PBPK model (SimcypV12).

Parameter Value Unit

Molecular weight 346.3 g/mol

LogP 2.69

Compound type Monoprotic base

pKa 2.82

Blood:plasma 0.685

Fu plasma 0.039

Main binding protein albumin

Absorption First order absorption

for IR nifedipine

Mechanistic absorption

model (ADAM) for the

CR formulation

fa 1

ka 3.67 1/h

Distribution Minimal PBPK model

Vss 0.57 L/kg

Elimination

CYP3A4:oxidation Km 10.5 μM

CYP3A4:oxidation Vmax 22 pmol/min/mg

microsomal protein

CYP3A5:oxidation Km 31.9 μM

CYP3A5:oxidation Vmax 3.5 pmol/min/mg

microsomal protein

CLR (renal clearance) 0 L/h

PD model Dynamic binding

model with empirical

transduction

kon (rate constant for binding

of drug to receptor)

19 μM−1h−1

koff (first order rate constant

for dissociation of

drug-receptor complex)

0.15 1/h

Baseline 0

slope –33 mmHg

Sharma et al., 2005), the prevalence of some phenotypes may
not be adequately high in a study population to discern the
differences in PK and PD. Therefore, it would be of value to
use the prior in vitro information on metabolism together with
PK and PD information in prevalent phenotypes of CYP2D6
to conduct virtual clinical studies with a view to assess the
potential pharmacological differences in various less frequent phe-
notypes, prior to the conduct of clinical studies or in lieu of
such studies when the studies are not feasible and yet providing

Table 3 | Parameters used for the triazolam PBPK model (Simcyp V12).

Parameter Value Unit

Molecular weight 343.2 g/mol

LogP 2.42

Compound type Ampholyte

pKa 1 10.52

pKa 2 2.91

Blood:plasma 0.625

Fu plasma 0.179

Main binding protein albumin

Absorption First order absorption

fa 1

ka 1.175 1/h

Distribution Minimal PBPK model

Vss 0.54 L/kg

Elimination

CYP3A4:1-OH metabolite: Km 15.6 μM

CYP3A4: 1-OH metabolite: Vmax 4.35 pmol/min/mg

microsomal protein

CYP3A5: 1-OH metabolite: Km 23.8 μM

CYP3A5: 1-OH metabolite: Vmax 8.18 pmol/min/mg

microsomal protein

CYP3A4:4-OH metabolite: Km 176.0 μM

CYP3A4: 4-OH metabolite: Vmax 11.5 pmol/min/mg

microsomal protein

CYP3A5: 4-OH metabolite: Km 142.0 μM

CYP3A5: 4-OH metabolite: Vmax 12.5 pmol/min/mg

microsomal protein

CLR (renal clearance) 0.274 L/h

PD model Operational

transduction model

Unit 1:

Emax 1.00

Dissociation constant 0.001

Baseline 0

Unit 2:

Maximum effect achievable in

the system (Em)

Slope of the occupancy effect

relationship (n)

Transducer ratio (τ)

2.08

1.81

1.76

a recommendation is more prudent than leaving a void in
prescribing information.

The reduction in heart rate due to a standard 100 mg dose
of metoprolol in virtual healthy Caucasian populations was
simulated and stratified for their CYP2D6 phenotypes. The
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Table 4 | Parameters used for the zolpidem PBPK model (Simcyp V12).

Parameter Value Unit

Molecular weight 307.39 g/mol

LogP 2.42

Compound type Monoprotic base

pKa 1 6.16

Blood:plasma 0.76

Fu plasma 0.08

Main binding protein albumin

Absorption First order absorption

fa 1

ka 2.25 1/h

Distribution Minimal PBPK model

Vss 0.68 L/kg

Elimination

CYP3A4:Metabolite 4: Km 340 μM

CYP3A4: Metabolite 4: Vmax 1.41 pmol/min/mg

microsomal protein

CYP3A4: Metabolite 11: Km 399 μM

CYP3A4: Metabolite 11: Vmax 6.86 pmol/min/mg

microsomal protein

CYP1A2:Metabolite 4: Km 40 μM

CYP1A2: Metabolite 4: Vmax 0.777 pmol/min/mg

microsomal protein

CYP2D6:Metabolite 4: Km 214 μM

CYP2D6: Metabolite 4: Vmax 4.68 pmol/min/mg

microsomal protein

CYP2C9:Metabolite 4: Km 81 μM

CYP2C9: Metabolite 4: Vmax 0.888 pmol/min/mg

microsomal protein

CLR (renal clearance) 0.18 L/h

PD model Operational

transduction model

Unit 1:

Emax 1.00

Dissociation constant 0.053

Baseline 0

Unit 2:

Maximum effect achievable in

the system (Em)

2.08

Slope of the occupancy effect

relationship (n)

1.81

Transducer ratio (τ) 1.76

Simcyp metoprolol compound file (Table 1) was used with a
minimal PBPK model, first order absorption and elimination
by enzyme kinetics. The study design was matched to that of

Table 5 | Parameters used for the Quinidine PBPK model (Simcyp V12).

Parameter Value Unit

Molecular weight 324.4 g/mol

LogP 2.88

Compound type Diprotic base

pKa 1 4.2

pKa 2 8.8

Blood:plasma 0.88

Fu plasma 0.203

Main binding protein albumin

Absorption First order absorption

fa 1

ka 3 1/h

Distribution Full PBPK model

Vss 1.16 L/kg

Elimination

CLiv 19.4 Caucasians

18.16 Chinese (Korean)

L/h

CLR 1.95 L/h

PD model Simple Emax model

Emax Parameter estimation used for

fitting to clinical data

ms

EC50 Parameter estimation used for

fitting to clinical data

μM

Baseline 443 Korean

445 Caucasian

ms

Kirchheiner et al. (2004). Simulated contribution of the CYP2D6
phenotypes (EM, PM, and UM) to metoprolol PK within Simcyp
is based on the propagation of the differences in CYP2D6 abun-
dance, obtained from in vitro data. Concentration-time profiles
published by Kirchheiner et al. (2004) and Sharma et al. (2005)
were compared with the predicted profiles and PK parameters.
PD differences in the different phenotypes were assessed by an
Emax model published by Kirchheiner et al. (2004) and assumed
to be the same regardless of CYP2D6 genotype. Based on this
direct effects PD model, response was propagated via changes in
the plasma concentration profile. PD simulations were compared
with clinical observations from the above two studies, to verify
that the model predicted the PD corresponding to the different
phenotypes adequately.

CASE STUDY 2: ASSESSING THE CONSEQUENCES OF MODIFYING THE
DRUG FORMULATION
Nifedipine is a dihydropyridine calcium channel blocker com-
monly used in the treatment of hypertension and exerts its
hypotensive effect primarily through arterial dilation. CR formu-
lations are now recommended in the treatment of hypertension as
they have been shown to offer a number of clinical benefits over
IR nifedipine (Reitberg et al., 1987; Schug et al., 2002; Meredith
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and Elliott, 2004; Wonnemann et al., 2006). This study aimed to
integrate the PBPK models describing the plasma profile of IR and
that for the CR nifedipine (Shimada et al., 1996; Brown and Toal,
2008) with the PD model available for IR nifedipine (Shimada
et al., 1996), to identify whether it could be extrapolated to predict
the response to nifedipine GITS, a CR formulation that is reported
to achieve a zero order release rate sustained over 24 h, through an
osmotic release mechanism (Brown and Toal, 2008).

The PK and PD profiles for nifedipine in the treatment of
hypertension were simulated using the Simcyp nifedipine com-
pound file (Table 2), a minimal PBPK distribution model and
elimination by enzyme kinetics. To simulate the PK profile of
IR nifedipine the first order absorption model was used, while
for the nifedipine GITS [a CR formulation reported to achieve a
zero order release rate sustained over 24 h through an osmotic
release mechanism (Brown and Toal, 2008)] formulation effects
were described by a mechanistic absorption model within Simcyp
(ADAM) using in vitro data (dissolution data) for the CR profile
and intrinsic solubility of nifedipine (Janssen Therapeutics, 2013).
The PD model relating the nifedipine plasma concentration to the
change in systolic blood pressure was a dynamic binding PKPD
model, as described by Shimada et al. (1996). Parameters used
in the PD model are shown in Table 2. Simulated study design
was matched to that reported for clinical studies, including age,
proportion of females and fasted or fed state dosing. Ethnicity
was also matched to the clinical study using the built in Simcyp
Japanese and North European Caucasian populations. Where eth-
nicity of study subjects was not reported it was assumed based
on the location of the approved study site or the country of resi-
dence of the study authors. Using the developed PBPK/PD models,
concentration and response profiles were simulated for two differ-
ent doses of the GITS formulation and compared with clinical
data.

CASE STUDY 3: IN VITRO IN VIVO EXTRAPOLATION OF
DIFFERENCES IN PD
The third case study investigates the application of PBPK linked
to a semi-mechanistic PD model to predict the response to a drug
based on clinical data for a different drug that acts on the same
target. Such models are useful for comparing several compounds
that belong to the same therapeutic class. Semi-mechanistic PD
models combine mechanistic aspects of the PD relationship with
empirical features and are commonly used where the mecha-
nism of drug action is not fully understood or when there is
insufficient data available to develop a fully mechanistic model.
The operational model of agonism (equation 1) was developed
from receptor theory to describe in vitro pharmacology (Black
and Leff, 1983) and has also previously been applied in PKPD
modeling (Van der Graaf et al., 1997, 1999; Cox et al., 1998; Cle-
ton et al., 1999, 2000; Zuideveld et al., 2004; Jonker et al., 2005).

E = Em · τn · [A]n

(KA + [A])n + τn · [A]n
(1)

Mechanistic features are incorporated in terms of drug bind-
ing affinity (KA− which represents the binding affinity of drug
A to the receptor) and intrinsic efficacy (ε; proportional to
the transducer ratio τ), both drug-dependent parameters for

which information can be measured in vitro. The conver-
sion of receptor activation to the PD response is described
empirically by the system-dependent parameters Em, the max-
imum effect achievable in the system, n, the slope of the
occupancy effect relationship and τ, which is related to the
receptor concentration transduction properties of the tissue.
System-dependent parameters are shared for drugs with the
same mechanism of action in the same system. The operational
model of agonism has previously been used to describe the PD
effect of benzodiazepines in animal models (Cleton et al., 1999,
2000).

In this example, the operational model of agonism was used
to describe the hypnotic effects of triazolam, as measured by
change in beta-EEG amplitude, and to extrapolate the model
to zolpidem by changing only the drug related parameters of
the PBPK-PD model. The hypnotic effects of both zolpidem
and triazolam are mediated via the same binding site on α1
subunit containing GABAA receptors. Triazolam and zolpidem
were selected for two reasons. Firstly, the PD effect is related
to the concentration of the parent compound only; zolpidem
has no active metabolites, while, the active metabolite of tri-
azolam is rapidly metabolized and thus does not contribute
significantly to activity. Garzone and Kroboth (1989) Secondly,
several clinical PK and PD studies have been reported for both
compounds by the same group, which is important for the PD
response since there is no standardization of the measurement
and analysis of EEG recordings used as the PD effect mea-
sure, making it difficult to pool and compare data collected by
different research groups. In this example, clinical data is used to
establish the model for triazolam only, thus zolpidem is treated as
a compound in pre-clinical development, with published clin-
ical data used only to confirm the accuracy of the modeling
approach.

Simulations of triazolam and zolpidem PK and PD were per-
formed in virtual Caucasian healthy volunteers (HVs) and the
Simcyp Triazolam (Table 3) and Zolpidem (Table 4) compound
files with the first order absorption model, minimal PBPK dis-
tribution model and clearance described by enzyme kinetics.
Unbound plasma concentration was used as the input to the PD
model.

Equilibrium dissociation constant (KA) values for triazolam
(1 nM) and zolpidem (53 nM) and relative intrinsic efficacy
of the two compounds (Equation 1) were identified from pub-
lished in vitro data (Garzone and Kroboth, 1989; Hadingham
et al., 1993; Van der Graaf et al., 1999; Zuideveld et al., 2004).
Since triazolam and zolpidem have comparable efficacy, the
transduction ratio (τ) was assumed to be the same for both com-
pounds. Simcyp Parameter Estimation module (using weighted
least square objective function and Nelder–Mead optimization
methods) was used to determine the values of τ, Em and n
in addition to the effect compartment elimination rate (keo)
to account for hysteresis in the response, using published data
(Smith et al., 2001; Sancar et al., 2007). The weighted mean
of the estimated values of each parameter was used in the
simulations.

The quality of these parameter estimates to predict the PD
response to triazolam was tested by the ability of the model to
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predict the PD response following interaction with the CYP3A
inhibitor ketoconazole (von Moltke et al., 1996; Greenblatt et al.,
1998). Thereafter, the dose of zolpidem predicted to produce
the equivalent response to 0.25 mg oral triazolam (based on the
maximal response and the area under the effect curve between 0
and 12 h) using the PBPK-PD model developed for triazolam
and the KA and intrinsic efficacy for zolpidem, was identified
using the Simcyp automated sensitivity analysis module for the
dose range 0.01–1000 mg oral zolpidem. This was then compared
with the clinically applicable dose for verification of the PBPK/PD
model.

CASE STUDY 4: UNDERSTANDING THE COVARIATES DETERMINING PD
VARIABILITY
The fourth case study explores the ethnic differences in the QTc
prolongation by quinidine using the target tissue (heart) drug
concentrations. It has been suggested that in specific situations,
PBPK/PD models are more likely to allow a better understanding
of true PD variability versus variability resulting from drug dispo-
sition alone (Rostami-Hodjegan, 2013), which is usually reflected
by plasma concentrations. Quinidine is known to cause lengthen-
ing of the QT interval in the electrocardiogram (ECG), with greater
potential for QT prolongation in females (Benton et al., 2000; El-
Eraky and Thomas, 2003; Shin et al., 2007). Ethnic differences in
QT prolongation have also been demonstrated (Shin et al., 2007),
with greater QT prolongation observed in Caucasian females than
in Korean females, despite no significant differences in plasma
concentrations. These differences in QT prolongation may be of
significance clinically since lengthening of the QT interval cor-
rected for heart rate (QTc) that is >500 ms is believed to be a
contributory factor to the life-threatening side effect of Torsades
de pointes observed with some drugs (Bednar et al., 2001).

Traditional PK/PD models linking plasma concentrations
to QT changes in Caucasians and Koreans have reported a
higher Emax (the maximum value of QTc changes) values in
Caucasian females with similar EC50 (concentration of quini-
dine required to produce 50% of the maximum response)
values in both ethnic groups, suggesting similar sensitivity
to quinidine concentrations in the two groups (Shin et al.,
2007). PBPK/PD modeling using free heart concentrations of
quinidine that may be more relevant to the QT prolongation
effect of the drug may have a greater potential to provide an
understanding of the ethnic differences in the observed QTc
changes.

Data from the study by Shin et al. (2007) were used to develop
the PBPK/PD model, with virtual Caucasian HV and virtual Chi-
nese HV (to represent Korean). The Simcyp compound file for
quinidine (Table 5), a full PBPK distribution model with first
order absorption and clearance of quinidine of 19.4 (CV 38%)
L/h in Caucasians and 18.16L/h (34%) in Koreans was used. This
PBPK model was verified by comparison of the plasma concen-
tration versus time profile with clinical data. The Emax model
used the measured mean baseline QTc of 443 ms for Koreans and
445 ms for Caucasians (Shin et al., 2007). Input to the PD model
was predicted free heart concentrations and parameter estimation
was used to estimate �Emax and EC50. EC50 was used as a marker
of sensitivity and compared in the two groups of virtual subjects.

RESULTS
CASE STUDY 1
In general both PK and PD profiles were predicted successfully,
as is evident from Table 6 that summarizes the PK and PD
parameters and Figure 1 where the simulated data has been super-
imposed on observed data (Shimada et al., 1996; Kirchheiner et al.,
2004). These models successfully simulated PK and PD profiles of
metoprolol and support the potential for prediction of genetic
differences in PD once the PKPD relationship is established in
wild-type genotypes.

The simulated CL (Dose/AUC) of the UM group was found to
be 16- and 2-fold higher than that of PM and EM groups, respec-
tively, suggesting that UMs may not achieve adequate therapeutic
response on a standard dose of 100 mg metoprolol. Simulated
mean PD profiles showed that the area under the effect curve in
PMs was 4-fold higher than that in UMs, and 2-fold higher than
that in EMs. The simulated/observed ratios for the maximum
reduction in heart rate and absolute area under effect curve are
0.94 and 1.2 for PMs, 1.0 and 0.94 for EMs, and 0.96 and 0.73 for
UMs groups, respectively.

It is clear from these results that the status of CYP2D6 phe-
notype has an impact on the reduction in heart rate. PMs are of
particular interest as the PD effect is higher and takes longer to
return to the initial point. In comparison with EMs, and UMs, the
longer action of metoprolol in PMs is a result of residence of drug
in the body (see plasma concentration profile for PMs), which is
caused by the lower clearance of metoprolol in PMs group. These
differences indicate significant effects on metoprolol dosing in the
corresponding groups of patients which could have been predicted
a priori.

Simulation results showed consistency with clinical observa-
tions in terms of significant differences of metoprolol PK/PD pro-
files between PMs and UMs with a marginal change between EMs
and UMs. UMs may not achieve optimal target concentrations of
metoprolol, which can lead to a lower benefit from the standard
100 mg dose of the drug compared with PMs.

CASE STUDY 2
Predicted PK and PD profiles for IR nifedipine in Japanese
hypertensive subjects suggested that the model was successful in
recovering the clinical data (Kikuchi et al., 1982). Comparison
of the PK and PD parameters (Cmax and Rmax respectively)
showed that the predicted Cmax/observed Cmax and predicted
Rmax/observed Rmax are within the 2-fold acceptability criteria
(Table 7).

Both the magnitude and sustained plateau (>24 h) of the
PK and PD profiles were well captured for 60 mg nifedip-
ine GITS formulation, with mean clinical data falling within
the range of the mean values of simulated trials (Figure 2).
The comparative PK and PD ratios in Table 7 also confirm
the successful prediction of the PK/PD profile of the 60 mg
GITS formulation, for which a rich in vitro data set was
available.

However, for a 30 mg multi-dose study of nifedipine GITS,
visual inspection suggests that PK and PD is overpredicted
(Figure 2), although the majority of observed values are within
the 5 and 95% percentiles of the predicted profiles. Based on
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Table 6 | Observed vs. predicted “PRED” Metoprolol PK/PD parameters in healthy volunteers by CYP 2D6 metabolizer status.

PM EM UM

PRED Observed Ratio PRED Observed Ratio PRED Observed Ratio

PK parameters

AUC (ug/L/h) 4,938 3,921 1.26 586 839 0.70 304 273 1.1

Tmax (h) 1.82 1.63 1.12 1.18 1.35 0.88 1 1 1.1

Cmax (ug/L) 305 363 0.84 112 178 0.63 69 67 1.0

CL/F (L/h) 20 24 0.85 171 139 1.22 329 367 0.9

PD parameters

Rmax (beat/min) 142 151 0.9 142 149 1.0 142 148 1.0

Rmin (beat/min) 103 109 0.9 109 116 0.9 113 119 0.9

t(Rmin) (h) 1.9 2 1.0 1.2 2 0.6 1.2 2 0.6

AUC (beat.h/min) 831 685 1.2 328 363 0.9 223 308 0.7

FIGURE 1 | Predicted and observed metoprolol plasma concentration

profile in EMs (A), PMs (C), UMs (E), PD response in EMs (B), PMs (D),

and UMs (F). Simulations are presented as the mean of 10 trials (bold black

line) and 95% confidence interval (dashed line). Solid circles indicate
observed values reported by Kirchheiner et al. (2004) and squares represent
values reported by Sharma et al. (2005).
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Table 7 | Comparison of the predicted and observed Cmax and maximum reduction in systolic blood pressure (Rmax) for the different nifedipine

formulations and doses.

10 mg IR nifedipine 60 mg nifedipine GITs 30 mg nifedipine GITS

first dose

30 mg nifedipine GITS

final dose

Pred Obsa Ratio

Pred/

Obs

Pred Obsb Ratio

Pred/

Obs

Pred Obsc Ratio

Pred/

Obs

Pred Obsc Ratio

Pred/

Obs

Cmax

(ng/ml)

127.8 ± 53.6 132.5 ± 23.7 0.96 44.3 ± 22.6 31.0 1.42 38.1 ± 31.5 16.9 ± 10.2 2.25 56.6 ± 51.1 30.7 1.84

Rmax

(mmHg)

–30.9 ± 3.6 –32.9 ± 9.9 0.94 –25.1 ± 5.5 –23.0 1.09 –24.3 ± 7.8 –13.7 ± 15.6 1.77 –26.0 ± 5.1 –19 1.37

Data are reported as the mean ± SD (where reported). Observed values are from (a) Shimada et al. (1996), (b) Meredith and Elliott (2004), and (c) Brown and Toal
(2008).

FIGURE 2 | Predicted and observed (A) plasma concentration profile

and (B) change in systolic blood pressure after a single dose of

nifedipine 60 mg GITS in North European hypertensive subjects

(Meredith and Elliott, 2004). Predicted and observed (C) plasma

concentration profile and (D) change in systolic blood pressure after
the initial dose and daily dosing of nifedipine 30 mg GITS for
15 days in North European hypertensive subjects (Brown and Toal,
2008).
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comparative ratios (Table 7) Cmax was marginally overestimated
after the first dose, with a Cmax (predicted)/Cmax (observed) ratio
of 2.25 and the other parameters within 2-fold of the observations.

It is notable that in this study no parameter fitting based on
clinical data was used, with the aim of mimicking a situation in
which prediction of the formulation effect is based on the use of

in vitro data for propagation and the prediction of the PK and PD
profiles.

CASE STUDY 3
Fitted values of Em, τ, n, and keo were 20.6, 1.0, 0.93, and
2.0 respectively. The resulting model was able to predict the

FIGURE 3 | Predicted and observed (A,C) triazolam plasma

concentration profile and (B,D) pharmacodynamic response to (A,B)

0.125 mg or (C,D) 0.25 mg oral triazolam in the absence (closed

circles and blue lines) or presence (open circles and green lines) of

ketoconazole. Observed data are from (A,B) von Moltke et al. (1996) and
(C,D) Greenblatt et al. (2000) and the simulated study designs were
matched to these studies. Predicted maximal observed response (PD

Rmax; E) and area under the response curve (AUCR0−12; F) for a range
of doses of oral zolpidem. The mean value of the response measure for
0.25 mg oral triazolam is indicated by the horizontal black line and was
used to estimate the dose of zolpidem resulting in the equivalent
measure of PD response. (G) Predicted mean PD response to 10 mg oral
zolpidem. Observed data points are from Greenblatt et al. (2000; closed
circles) and Greenblatt et al. (2006; open circles).
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PD response to 0.125 and 0.25 mg triazolam with and without
ketoconazole DDI reasonably well as seen in Figure 3, although
the PD response was underestimated at the highest plasma
concentrations of triazolam (Figure 3D).

A dose of ∼10–13 mg zolpidem was predicted to result in the
same maximal response (Rmax) and area under the effect curve
as a 0.25 mg dose of triazolam (Figures 3E,F). Visual inspection
of the concentration – effect curve shows a good prediction of
the maximum effect of zolpidem but the duration of the effect
is overestimated (Figure 3G) compared with the clinical data
(Greenblatt et al., 2000, 2006).

CASE STUDY 4
The PBPK model predicted clinically observed plasma PK profiles
of quinidine in Caucasian and Korean (represented by Chinese
HVs) females (Shin et al., 2007) adequately as verified by visual
predictive checks (Figures 4A,B). Simulations of free heart
concentrations of quinidine over time for both groups are shown
in Figures 4C,D.

Estimated Emax and EC50 values were 190.0 ms and 1.53 μM
respectively in Caucasian females and 175.19 ms and 1.80 μM
respectively in Korean females. Visual predictive checks of the
simulations suggested that these PD models recovered the greater
QTc prolongation observed clinically (Kim et al., 2007; Shin et al.,
2007) in Caucasian females adequately (Figure 5).

The estimated sensitivity parameters (EC50) showed a Cau-
casian:Korean ratio of 0.85, indicating a greater sensitivity to heart
quinidine concentrations in Caucasian females. This suggests that
a standard dose of quinidine has the potential to produce QTc in
more Caucasian females than in Korean females because of this
difference in sensitivity.

DISCUSSION
Recent advances in IVIVE coupled PBPK models have facilitated
informed covariate recognition of the observed PK variability.
Further, these models allow connecting response to the unbound
drug concentrations at the site of action which in turn improves
our ability to link the concentration-response relationships

FIGURE 4 | Simulated plasma concentrations in Asian females (A) and

Caucasian females (B). Solid lines represent mean values; dotted lines
represent the upper and lower confidence intervals and solid circles represent

observed data (Shin et al., 2007). Predicted free heart concentrations in Asian
females (C) and Caucasian females (D). Solid lines represent mean values;
dotted lines represent the upper and lower confidence intervals.
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FIGURE 5 | Predicted QTc changes in Asian females (A) and Caucasian

females (B). Solid lines represent profiles in virtual individuals. Solid circles
represent observed data (Shin et al., 2007) in Caucasians and Asians. Solid
squares represent observed data (Kim et al., 2007) in Asians.

beyond merely relying on the plasma concentration as the
response’s driving force. Connecting PD models, even empirical or
semi-mechanistic ones, to PBPK models is the natural progression
after developing predictive PK models.

To illustrate the added value in utilizing PBPK/PD models
four case studies are presented here. These have demonstrated
that linking a PD model to a PBPK model allows the prediction
of the effects of a change in metabolizing enzyme phenotype,
drug formulation, drug receptor binding, or ethnic differences
in sensitivity to the drug on the PD response through propa-
gation of the change in PK. Such models may assume that the

concentration-response relationship remains unchanged when
the PK changes occur. It is recognized that this is not always
the case, and any mismatch between predictions and obser-
vations may provide additional information about the mech-
anism of action of a drug and covariates relevant to the PD
responses. Such factors can then be investigated and built into the
models.

The first case study illustrates the potential for prediction of
genetic differences in PD once the PKPD relationship is established
in wild-type genotypes. Although population pharmacokinetic
(POPPK) studies have been valuable in informing investigators
of PKPD differences associated with different phenotypes, these
studies need to be powered adequately to recognize such differ-
ences. Clinical trial simulations similar to the one shown in this
case study can also be used to investigate the design of studies and
their power to ensure that less frequently occurring phenotypes
that are predicted to be relevant to dose evaluation are included. It
is noteworthy that such simulations can be used in lieu of clinical
studies to inform drug labels. (Janssen Therapeutics, 2013).

The second case study demonstrates that integration of a PBPK
model that accounts for differences in formulation effects with a
dynamic PKPD binding model predicts differences in clinical PD
observations reasonably well, a feature that is very challenging
to implement in classical compartmental approach. Prediction of
the formulation effect based on in vitro data is propagated to the
prediction of the PK and PD profiles, without the use of param-
eter fitting to observed data. The marginal over-prediction of the
plasma profile can, in a large part, explain the over-prediction
of the PD response that was observed in the study by Brown
and Toal (2008). Overestimation of the plasma profile and PD
response to 30 mg nifedipine GITS in this study may relate to
differences in the dissolution profile of the batch of 30 mg GITS
tablets used in the clinical study (which was not reported), com-
pared to the dissolution profile used for simulation. In the absence
of a published dissolution profile for the 30 mg GITS tablets, a
dissolution profile proportional to the 60 mg GITS tablets were
assumed for the simulations. It might have been expected that
a PD model for the hypotensive response to nifedipine devel-
oped for and IR would underestimate the response to CR of
nifedipine. Rate of increase in the plasma nifedipine concentra-
tion has been shown to influence the haemodynamic response,
with a more rapid increase associated with increased sympathetic
nervous system activation, increased heart rate and a diminished
reduction in blood pressure response (Kleinbloesem et al., 1987;
Meredith and Elliott, 2004; Brown and Toal, 2008). This may
not have been the case since no increase in heart rate in hyper-
tensive subjects was observed in the study from which Shimada
et al. (1996) took the nifedipine PK and PD data to develop the
PKPD model that was used in this case study (Kikuchi et al.,
1982).

In the third example, by changing only the PBPK model input
and the KA value for zolpidem, a good estimate of the dose require-
ment of zolpidem was obtained in HVs. The dose estimated using
this PBPK/PD model is in agreement with the recommended dose
of 10 mg zolpidem in adults. However, when compared to clin-
ical data (Greenblatt et al., 2000, 2006), although the maximal
response to zolpidem was predicted reasonably well, the duration
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of the response was overestimated. A possible explanation could be
the clockwise hysteresis observed in the clinical data for zolpidem,
suggesting acute tolerance effects to zolpidem, as has previously
been proposed (de Haas et al., 2010). However, clockwise hystere-
sis is not observed for triazolam, suggesting that differences in
the mechanism of action between zolpidem and triazolam may
not be fully accommodated by the model. This example demon-
strates the application of a combined PBPK and semi-mechanistic
PD model in predicting the response to a compound based on
clinical data for a different compound that acts at the same
target.

Results in the fourth example demonstrate that the PBPK/PD
model that used unbound heart concentrations of quinidine to
drive the changes in QTc prolongation was effective in recover-
ing the clinically observed ethnic difference in QTc prolongation.
This model, which was of greater physiological relevance than
previously published models, enabled us to gain a plausible mech-
anistic explanation for the observed ethnic differences in QTc
prolongation, despite the similarities in the measured plasma con-
centrations in the two population groups. The higher EC50 in
Asian females illustrate that this group is less sensitive to the
QTc prolongation effects of quinidine and require higher free
concentrations of quinidine at the target site to produce an equiv-
alent change in QTc prolongation. Further studies to elucidate
the mechanistic basis for the differences in sensitivities and also
to investigate the potential contribution of 3-hydroxy quinidine
(a primary metabolite that may contribute to pharmacological
activity) are warranted.

Knowledge of inter-patient variability in response to drugs
is crucial during drug development and clinical practice.
PBPK/PD models such as the ones presented above pro-
vide a seamless framework to assess the propagation of key
PK variables resulting from differences in physiology, genet-
ics, demographics, concurrent medications, different formula-
tions, etc. through to PD effects. Predicting such variability
using the ‘bottom up’ approach prior to planning clinical tri-
als enables researchers to optimize study design and predict
results that are likely to be more reflective of the general pop-
ulation using the drug. Furthermore, when measured plasma
concentrations cannot be reliably correlated with PD effects,
PBPK/PD offer a valuable alternative to traditional compartmental
modeling.
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Multiple software programs are available for designing and running large scale
system-level pharmacology models used in the drug development process. Depending on
the problem, scientists may be forced to use several modeling tools that could increase
model development time, IT costs and so on. Therefore, it is desirable to have a single
platform that allows setting up and running large-scale simulations for the models that have
been developed with different modeling tools. We developed a workflow and a software
platform in which a model file is compiled into a self-contained executable that is no longer
dependent on the software that was used to create the model. At the same time the full
model specifics is preserved by presenting all model parameters as input parameters
for the executable. This platform was implemented as a model agnostic, therapeutic
area agnostic and web-based application with a database back-end that can be used to
configure, manage and execute large-scale simulations for multiple models by multiple
users. The user interface is designed to be easily configurable to reflect the specifics of the
model and the user’s particular needs and the back-end database has been implemented
to store and manage all aspects of the systems, such as Models, Virtual Patients, User
Interface Settings, and Results. The platform can be adapted and deployed on an existing
cluster or cloud computing environment. Its use was demonstrated with a metabolic
disease systems pharmacology model that simulates the effects of two antidiabetic drugs,
metformin and fasiglifam, in type 2 diabetes mellitus patients.

Keywords: quantitative systems pharmacology, system-level mechanistic models, virtual patient, model

development software, simulation experiment, metabolic diseases model

INTRODUCTION
In recent years pharmaceutical R&D has seen an increase in the
development and application of mechanistic, systems-level mod-
els to inform decision making. These models are better at describ-
ing the disease biology and drug pharmacology than the more
traditional and empirical pharmacokinetic/pharmacodynamic
(PK/PD) models (Lalonde et al., 2007; Milligan et al., 2013; Visser
et al., 2013). They are typically called quantitative systems phar-
macology (QSP) models to distinguish them from other systems
biology models that do not incorporate drug pharmacology or
pharmacokinetics and often do not account for the biology of
disease and its progression. With a detailed representation of
physiology and pharmacology QSP models include a significantly
larger number of equations and parameters compared to what is

Abbreviations: ER, extended release; FFA, free fatty acids; G6-P, glucose-6 phos-
phate; GI, gastrointestinal; GNG, gluconeogenesis; GIP, gastric inhibitory peptide;
GLP-1, glucagon like peptide 1; GPR40, G-protein coupled receptor 40; IIGU,
insulin independent glucose utilization; MDSP, metabolic diseases systems phar-
macology; PD, Pharmacodynamic; PK, pharmacokinetic; RE, rapidly equilibrating;
RR, readily releasable; SE, slowly equilibrating; TAG, triacylglycerol; UI, User
Interface; ViSP, virtual systems pharmacology.

normally seen in traditional PK/PD models (Mager et al., 2003;
Danhof et al., 2007). Despite the challenges of accurately deter-
mining all of the model parameters, QSP models can nevertheless
be very informative by allowing the generation of quantitative
hypotheses about the efficacy and/or safety of drugs prior to
testing them in humans, or when testing in new patient pop-
ulations (De Graaf et al., 2009; Kuepfer et al., 2012). Examples
of mechanistic system-level models include, the first attempt to
mathematically model the circulatory system in the human body
(Guyton et al., 1972) and more recently, the HumMod model
(Hester et al., 2011), and models of glucose homeostasis (Schaller
et al., 2013), rheumatoid arthritis (Rullmann et al., 2005), hyper-
tension (Hallow et al., 2014), and drug induced liver injury (DILI)
(Shoda et al., 2014). A recent review by Schmidt et al. (2013)
describes the process of how these models can be built and used.

With our incomplete knowledge of disease biology, QSP mod-
els can be used to make and test assumptions about the intrinsic
variability in biological pathways. Because of the deterministic
nature of the current approaches to the development of QSP
models, it is expected that one set of initial conditions will nor-
mally produce a single set of outcomes with a unique solution
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trajectory from its initial state to the final one. In order to
represent variability observed in a given population, multiple
simulations with different initial conditions must be generated,
each simulation implementing a virtual experiment or a virtual
patient. Combined, the results from a sufficient number of simu-
lations will provide estimates on the expected degree of variability
in a population of patients. However, this comes at a price, by
involving a large number of simulations and a large number
of varied parameters the modeling process becomes computa-
tionally intensive. This challenge can be efficiently tackled only
by employing the state of the art high-performance computing
technology.

Likewise, the creation of large QSP models is not a trivial
task; it requires the use of sophisticated and specialized soft-
ware applications. Available tools range from complex sets of
distributed software packages connected through a common por-
tal to smaller yet versatile software programs capable of producing
detailed mechanistic models. Examples of the former include
the Garuda Alliance (Ghosh et al., 2011) and Physiome project
(Thomas et al., 2008; Randall Thomas, 2009), while examples
of the latter are JDesigner (Vallabhajosyula and Sauro, 2007),
Entelos PhysioLab (Shoda et al., 2010), Mathworks SimBiology
(MathWorks)1, Bayer’s PK-Sim and MoBi (Eissing et al., 2011),
and ISB’s DBSolve Optimum (Gizzatkulov et al., 2010). For a
given problem the choice of a proper modeling tool could become
a difficult task by itself. In addition to purely scientific consider-
ations dictated by the scope of the model, the software should
meet multiple criteria to be considered optimal: an intuitive
user interface, numerous differential equation solvers and library
functions, a convenient way of storing and handling large num-
ber of parameters, ease of setting up multiple simulations and
executing them in parallel, multiple-format import-export capa-
bilities, reasonable cost and technical support, and an existing
base of trained users. In this paper we present a simple and user-
friendly Virtual Systems Pharmacology (ViSP) platform designed
to quickly set up, run, and handle multiple simulation tasks
in a flexible and scalable hardware/software environment. The
platform is neither model nor software specific and can utilize
existing cluster or cloud computing infrastructure for large-scale
simulations. The ViSP platform was successfully used with a
Metabolic Diseases Systems Pharmacology (MDSP) model to
simulate multiple antidiabetic therapies in healthy and Type 2
diabetes mellitus (T2DM) patients.

METHODS
In order to create flexible and versatile QSP software for setting up
and running large scale simulations the following requirements
were formulated:

(1) Handle diverse systems pharmacology models designed by
different software packages.

(2) Be independent of the specifics of any given model and place
as few general requirements as possible on the model (e.g.,
not depend on the number of parameters, actual parameter
values or their names, etc.).

1http://www.mathworks.com/products/simbiology/.

(3) Enable a flexible computational environment/hardware
choice to run simulations (cluster, cloud, or desktop).

(4) Provide an intuitive user interface (UI) that is easily config-
urable without updating the software code to accommodate
specifics of a particular model and the input parameters.

(5) Should serve as collaboration software accessible throughout
the company network. Offer differentiated access to models
and projects, based on set user privileges.

(6) Provide means of storing and handling large modeling
projects.

(7) Have low deployment and maintenance costs.

The main innovation that enables the first three requirements is
to separate the process of constructing a QSP model from the pro-
cess of running simulations originated by that model. During the
design step the model is created and then saved in what could
be software proprietary file format. Afterwards it is the operating
system (OS) that runs simulations, a process that could be imple-
mented as software independent. One way to achieve this is to
compile the model file(s) and convert into an executable code in
which high-level model instructions are translated into low-level
machine commands. Features proprietary to the modeling soft-
ware will be removed during this translation and the executable
will rely only on OS instructions. In order to keep the simula-
tion process maximally flexible all model parameters need to be
external to the executable file (i.e., their values not being hard-
coded into the model). This means all model parameters should
be presented as input parameters. Once input values are provided,
together with the executable they will define a unique simulation
task. Multiple simulation instances can be created by combining
different input parameter values with executables, which can be
run on a grid of processors in a cluster, in a cloud, or in a mixed
environment (see Figure 1). As soon as the executable is compiled
for the OS which runs the hardware, all computational resources
integrated by the grid management software will be available for
simulations.

Another important concept of the QSP software architecture is
making it a web-based client-server application with a relational
database back-end. With many advantages emphasized below it
helps to address the requirements formulated in points 4 through
7. For example, a web-based platform is inexpensive to deploy and
maintain, since it does not require installing software on every
computer and web browsers are now omnipresent. Modifications
and upgrades to the software could be done on the server side
with no user intervention, thus reducing IT cost and time. Web-
based software is easily accessible over networks inside or outside
the company by multiple users whose access privileges can be
regulated by IT departments. More advantages offered by web-
based architecture come from the rich selection of software tools
available for UI, front, and back end programming. Additionally,
the database allows for a robust, reliable, dynamic, structured
and complex relational data model where items such as models,
users, virtual patients, project information, UI configuration set-
tings, simulation inputs and results can be stored, managed and
displayed by the UI components or other server-side modules.

Since QSP software is required to be capable of handling mul-
tiple models, its UI needs to be dynamic and configurable. This
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FIGURE 1 | Components of a simulation: compiled model file

(executable) together with input data (e.g., virtual patients,

therapies, simulation time) represent a unique simulation

instance that can be dispatched to either cluster computer or

to a cloud. Input data provide a mechanism of customizing each
particular simulation. Executable file should be compiled for a target
operating system (Linux, Unix, Windows) that runs on cluster nodes
or a cloud.

means the UI should expose model parameters in the way specific
to each particular model. Also, some parameters should be imme-
diately available via UI while other should be hidden. The latter
could be necessary because physiological models often have hun-
dreds of parameters, of which only a relatively small subset may
be of interest for performing simulations. Such flexibility could
be achieved by dividing all model parameters into meaningful
groups, e.g., parameters that describe caloric value and compo-
sition of meals consumed by patients, or parameters specifying
drug regimen, and so on (see Figure 1). Then, only the groups
that are of interest will be selected during the UI configuration
process; they will show up as sub-sections in the UI with specific
parameters inside. An example of such an interface is given in the
Results section.

Grouping provides additional benefits for handling and stor-
ing parameter values in a structured way. For instance, the same
parameter group may get assigned different value sets corre-
sponding to different individuals, here called virtual patients.
Similar manipulations can be done with groups describing ther-
apies, meals, and so on. Each set of values can be given a name
and stored in the database with options for search and reuse.
Once a sufficient number of such value sets is accumulated in
the database, the end user’s task of setting up simulations will
be reduced to simply finding and selecting appropriate value
sets. Again, the use of relational database enables and empow-
ers this process, making it another key concept implemented in
the QSP software architecture. In addition to parameter value
sets, practically all other information about the model, UI con-
figuration, and simulation results is stored in the database that
is searchable and that preserves the relationships between these
pieces of information.

The software architecture with the features discussed above
was implemented in the ViSP platform, a flexible tool for set-
ting up and running large-scale QSP simulation tasks. Together
with attempts to make simulation process less dependent on spe-
cific modeling tools and proprietary model formats we tried to
establish a more universal workflow for simulations (Figure 2).
In this article we describe the implementation of this simulation
workflow using the MDSP model designed to study the effects of
anti-diabetic drugs. The MDSP model itself was generated using
JDesigner software (Sauro et al., 2003) and then exported as an
m-file used by Matlab® software by Mathworks (MathWorks)
(Figure 2). Afterwards, the “main” program controlling the simu-
lation process was added to the model, and the code was modified
such that all model parameters became input parameters as per
the requirements described above. Using the Matlab Compiler
Toolkit®, the code was then compiled into a standalone exe-
cutable. The executable was subsequently uploaded into the ViSP
database while a designated Power User (experienced user with
highest privileges) configured the user interface (UI) to reflect the
specifics of the model. Once the UI is in place all users may set up,
submit and run simulations on any number of nodes, for instance
via Amazon Web Services™. When simulations are complete the
results are saved to the database in a text format for further pro-
cessing. The same process can be repeated with any model as soon
as it can be converted into an executable file.

ViSP specific details along with its application to the MDSP
model are illustrated in the Results section. The MDSP model
high-level organization is outlined in the next sub-section, how-
ever a complete description is out of this paper’s scope. The
mathematical basis of the MDSP model is provided in the
Appendix.
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FIGURE 2 | ViSP architecture and operational diagram. Mathematical
model is implemented as a computer model by the Power User using
model development software. It is then converted into an executable file
with the help of 3-d party software. The Power User also configures the
user interface (UI) that is specific to the model by using ViSP. Executable,
text file with full set of parameter baseline values, and Virtual Patients are
uploaded by ViSP into the database (DB). Power and Regular Users can

then setup simulations through the UI and send them for execution.
Dispatching software will distribute the simulations over the computational
grid (cluster, cloud) and retrieve the results after simulations are
completed. The latter will be available for analysis to users through the
ViSP UI. The section of the workflow that deals with model conversion
into an executable file (inside gray rectangle) is currently implemented
outside of ViSP.

MDSP MODEL
The MDSP mathematical model was developed to mechanis-
tically describe the basic physiological and pathophysiological
processes involved in T2DM. It represents essential systems
and mechanisms regulating glucose and lipid metabolism and
describes pathophysiological changes related to T2DM together
with the PKPD effects for several classes of antidiabetic drugs
(for recent review of mathematical models of diabetes please see
Ajmera et al., 2013). The core of the model simulates intake and

processing of nutrients, and their distribution and utilization by
different body tissues and organs as schematically represented by
a block diagram on Figure 3. The nutrients enter in the form
of meals (up to three per day) with a specific percentage of car-
bohydrates, fats and proteins and with a given caloric content
(all these can be modified through the ViSP UI). From the GI
tract the nutrients are absorbed into the bloodstream and the
model further tracks glucose and lipid metabolism by the brain,
liver, muscle and adipose tissues (Figure 3A) (Zierler, 1999). In
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FIGURE 3 | MDSP model block diagram describing nutrients’ dynamics

(A) regulated by metabolic hormones (B). Blocks stand for dynamic
quantities represented by state variables. Same name blocks with dash-line
border are aliases of the blocks with solid boundaries; they are shown
separately to make the diagram more readable. Arrows between the blocks
point in the direction of the positive flux (reaction rate), bi-directional

connectors denote either reversible flux (reaction) or two different reactions
running in opposite directions. The sink element is used to remove the
matter from the system that is no longer tracked, e.g., when describing
glucose utilization by the muscle. For the sake of clarity not all the model
details are shown on the diagram. For abbreviations used in the figure refer
to the List of Abbreviations.

the liver, glucose is phosphorylated to become glucose-6 phos-
phate (G6-P) to be afterwards converted into glycogen (Agius,
2008). Both reactions have their counterparts working in the
opposite direction such that the net glucose flux into/out of the

liver maintains plasma glucose concentration within a specific
range depending on the feeding condition. The liver produces
glucose from the three-carbon substrates through the process of
gluconeogenesis (Radziuk and Pye, 2001). The above processes
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are subject to insulin and glucagon regulation, and are disrupted
in T2DM, resulting in increased hepatic glucose output in the
postprandial and fasting states compared to healthy subjects.

Muscle also stores glucose in the form of glycogen but unlike
the liver it does not use glycogen to release glucose back into
circulation (Laurent et al., 2000). Insulin regulates muscle glu-
cose uptake, storage and utilization, and T2DM have decreased
sensitivity to these insulin effects. In regard to the other tissues
involved in glucose metabolism, adipose tissue uptakes glucose
for either storage or oxidation (Figure 3A), brain consumes glu-
cose in a constant, insulin independent fashion, while kidneys
normally reabsorb all filtered glucose unless its concentration
exceeds a threshold value (Rave et al., 2006; Marsenic, 2009).
Lipids in the model are represented as pools of triacylglycerols
(TAGs) and free fatty acids (FFA) stored and transported between
several compartments (Figure 3A).

As mentioned earlier, nutrient disposal by tissues is tightly
regulated by multiple hormones, insulin being the most impor-
tant one. In the MDSP model the secretion and action of insulin
is described by a multistep process (Figure 3B) that is coupled
to plasma glucose concentration. Other factors included in the
model that affect levels of insulin are beta-cell mass and beta-
cell function (Bouwens and Rooman, 2005), activation of cAMP
pathways (Fridlyand et al., 2007) and activation of Ca+ path-
ways (Bertuzzi et al., 2007). Insulin is degraded primarily by the
liver and partially by peripheral tissues, with C-peptide being an
important by-product and biomarker of insulin secretion tracked
by the model. Insulin’s counterpart glucagon is described by a
simpler two-compartment dynamic model (Figure 3B). Its reg-
ulatory effects are implemented as stimulating gluconeogenesis
and glycogenolysis in the liver. Two other metabolic incretin hor-
mones, glucagon like peptide-1 (GLP-1) and gastric inhibitory
peptide (GIP) are also implemented in the model (Figure 3B),
since they represent potential targets for therapies. GLP-1 affects
glucose uptake and oxidation by adipose tissue and both hor-
mones influence insulin and glucagon secretion in response to
glucose.

The ViSP platform was used to calibrate (see Appendix) and
then run the MDSP model to simulate the effects of meals, glu-
cose and meal tolerance tests, and several antidiabetic drugs in
different patient phenotypes. Examples of simulation results for
two of such drugs are presented in the following Results sections.
The first example illustrates the simulated effects of metformin,
considered by many as a standard of care for T2DM patients,
compared to literature data. The other example presents results
with a relatively new class of drugs, GPR40 agonists (GPR40a),
with simulations reproducing the effects of fasiglifam (TAK-875).
The last example presents simulation results for metformin +
TAK-875 combination therapy.

RESULTS
ViSP PLATFORM
The ViSP software features several primary user-interface compo-
nents, the first of which is the Explorer (see Figure 4, left side). It
organizes user’s models and data in a tree-like hierarchical struc-
ture in which top elements are projects. A ViSP project typically
comprises all information related to simulation tasks that pertain

to the specific research topic. Each project can contain one or sev-
eral models, for instance, different versions created in the course
of the model development. The model is represented by an exe-
cutable file which is uploaded into the ViSP databases every time a
new model is created. The executable is accompanied by a text file
which contains a list of model input parameters and their base-
line values. Every model can be associated with one or several user
interfaces (UI) that are configured to fit particular project needs
or user preferences. The next level down in the hierarchy com-
prises groups of parameters that are subsets of input parameters
in the sense explained in the Methods. Each group may further
contain multiple value sets, reflecting, for instance, settings for
different drug regimens (Figure 4). All elements of the structure
are stored in a database that facilitates handling of the model,
data, and results.

Another important feature in ViSP is the Simulation Manager.
It provides a means to customize the UI to the content of the
model and then prepare and launch simulation tasks. The model
UI can be configured by a Power User in a simple setup by cre-
ating sections that deal with particular aspects of the model.
For example, in the section of the MDSP model specifying meal
regimen, out of all parameters related to meals only the param-
eters defining the regimen are selected (see Figure 4, right side).
Consequently, only these parameters will be presented in the UI
through a series of controls. The Power User assigns meaning-
ful text labels to these controls and specifies how they should be
displayed in the UI, as a check box to turn a parameter on/off,
as a text entry field, or as a dropdown selection. The configu-
ration table helps to arrange the controls in a simple grid by
specifying row and column numbers (see Figure 5). By creating
various sections in this manner, the Power User has full control
over which of the hundreds of parameters of the model to display,
and how. The Power User can create several UIs targeting differ-
ent groups of users which require particular aspects of the model
to be exposed.

Once the sections of the UI have been configured, the
Simulation Manager presents an option of selecting some or all of
the Virtual Patients (VPs) known to the system for this model (see
Figure 6). For convenience VPs are classified according to their
phenotypes, thus facilitating proper VP selection required for
simulations. Even though VPs come with all parameters defined,
there is an option to change some of them if a user finds that nec-
essary. After VP selection is complete, the Simulation Manager
will create a set of single simulations for every combination of
the settings and VPs. For example, if three VPs were selected and
the parameters were set to apply one therapy, then three sim-
ulations will be generated and submitted, one for each patient.
However, if two therapies were selected (the same drug with dif-
ferent dose, or two different drugs, etc.), then the Simulation
Manager will generate six simulations accordingly. Simulation
Manager also allows the therapies (dropdown selections) to be
applied as “Combination” treatments, which in the above exam-
ple means both therapies get applied to each patient, resulting in
three simulations (see Figure 6).

The final settings that are specified through an additional UI
window (not shown) are duration of simulation, output variables
and time intervals between outputs. Once those are provided the
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FIGURE 4 | Explorer (left side) helps to navigate through users’ projects,

models, and model parameters that are shown as folders. Parameters
can be organized into meaningful groups, for instance, parameters that
describe a drug’s regimen. The same group can be saved with different
values that correspond e.g., to different doses as shown here for GPR40

agonist and can later be used for setting up simulations. Right side presents
an example of defining UI section “Meals.” Circled on the left is the list box
with all the parameters defined in the model that are associated with the key
word “meal” provided by the user in the filter box. Outlined on the right are
parameters selected to be shown on UI section “Meals.”

simulations are fully defined and can be submitted to the com-
putational grid. The user will get notified by e-mail upon task
submission and when simulations are completed. The results that
are saved in a series of text files can be retrieved afterwards via the
Results Manager for further analysis and graphical visualizations.
ViSP itself is capable of generating graphical plots which can be
viewed directly as part of the results.

ViSP’s Administrator tool provides means to register and grant
access only to users who are authorized to use the software and
its data, thus preventing any proprietary information from dis-
closure. Additionally all users are divided into Power Users and
Regular Users based on their privileges. As was described above
Power Users are allowed to create and modify projects, configure
model UIs, and set up and run simulations, while Regular Users
can perform only the last two functions.

SIMULATIONS METFORMIN
The pharmacokinetics of metformin was simulated by using
a three-compartment model (Figure 7A) derived from the
Pentikainen et al. (1979). The model was calibrated to fit PK char-
acteristics for a 500 mg single dose (Pentikainen et al., 1979) and
multiple 500 mg twice daily doses (Graham et al., 2011) obtained

with healthy individuals. An adequate fit has been achieved for
both data sets as evidenced by Figure 8. It was deemed acceptable
to apply the same calibration for simulating metformin pharma-
codynamic (PD) effects in T2DM patients. This assumption is
supported by the data from the Tucker et al. (1981), which found
little difference in metformin PK between healthy and T2DM
individuals.

Metformin has multiple sites of action, including liver, muscle,
adipose tissue, GI tract, and pancreas. Despite the fact that met-
formin is perhaps the most widely used antidiabetic therapy its
exact mechanism of action remains unclear (Kirpichnikov et al.,
2002). Among its reported primary PD effects are decreased hep-
atic glucose production (Stumvoll et al., 1995; Campbell et al.,
1996), increased peripheral tissue sensitivity to insulin (Bailey
and Turner, 1996), and increased glucose utilization. Other less
commonly described effects include lowering FFA levels and
increasing lipid oxidation (Perriello et al., 1994), increased glu-
cose utilization by the GI tract, and a delayed, more distal GI
glucose absorption (Bailey et al., 2008). There are different opin-
ions on whether metformin directly affects β-cells (DeFronzo,
1999), however some evidence exists that it improves the function
of β-cells (Patane et al., 2000; Bi et al., 2013) and their response
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FIGURE 5 | UI layout, as shown here for the “Meals” section, is

defined by filling the configuration table (background). Each
parameter is associated with a particular control type (e.g., TEXTBOX)
that is supplied with a text label. Each control location is defined by UI

Group line (row) and a UI Position within the line. A parameter is also
assigned a category (DOSE, TIME) in order to perform unit conversion
if necessary. With the above configuration the section will look like on
the inset (front).

to glucose. In the MDSP model the above mentioned metformin
PD effects were implemented as multipliers in the rate equations.
Functionally they are expressed as Hill equations (Appendix,
Equation A3) representing either metformin-mediated activation
or inhibition.

A study on the short-term effects of metformin in T2DM
patients (Eriksson et al., 2007) was selected for simulations
demonstrating the model’s ability to reproduce metformin ther-
apeutic outcomes. In this study an escalating metformin dose
(500 mg qd for 7 days followed by 500 mg bid for 7 days and then
by 1000 mg bid for 14 days) was applied to a group of T2DM
patients with fasting plasma glucose concentration between 7 and
12 mM. At the beginning of each subsequent dose an oral glu-
cose tolerance test (OGTT) was performed to check the effects
of the previous dose on glucose and other metabolic character-
istics, (for further details see paper by Eriksson et al., 2007). In
simulations the same treatment regimen was reproduced for a
representative virtual patient that matched the study enrollment
criteria including body weight, fasting plasma glucose (FPG), age,
etc. Table 1 provides a comparison between clinical and simu-
lation data for key parameters, including FPG, area under the
glucose concentration curve for OGTT, and percent change in
fasting plasma insulin (FPI) concentration from day 0 before
treatment and after 7, 14, and 28 days of metformin. Overall there
is good agreement between simulations and data, with simula-
tions slightly under-predicting the decrease in FPG especially at
higher doses.

GPR40 AGONIST (TAK-875)
TAK-875 is a selective GPR40 agonist that improves glycemic
control in T2DM patients by potentiating postprandial insulin
secretion in a glucose dependent manner with a minimal risk
for hypoglycemia (Kaku, 2013; Yabuki et al., 2013). A single
dose TAK-875 PK study with healthy volunteers (Naik et al.,
2012) and a multiple dose study with T2DM patients (Leifke
et al., 2012) were used to establish and calibrate the PK section
of the MDSP model (Figure 7B). An enterohepatic recirculation
(EHRC) was included in order to better fit the TAK-875 clinical
data (Figure 9).

The mechanism by which TAK-875 potentiates insulin secre-
tion involves activation of GPR40 in pancreatic β-cells followed
by a cascade of reactions increasing the levels of secondary intra-
cellular messengers. This eventually results in increased Ca2+
release that enhances the movement of insulin granules and
their fusion with the plasma membrane, leading to subsequent
insulin release (Burant, 2013). In the MDSP model all these
events are simplified into one mechanism representing the net
TAK-875 amplification of the Ca2+ effect on insulin secretion.
GPR40 is also expressed in enteroendocrine cells of the intes-
tine, and it has been hypothesized that GPR40 activation may
potentially lead to increased secretion of GLP-1 and GIP hor-
mones (Luo et al., 2012; Mancini and Poitout, 2013). These
pathways are represented in the model as hypotheses, so that
their potential impact on efficacy could be evaluated. However,
the results of the TAK-875 clinical study in T2DM patients did
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FIGURE 6 | Selecting Virtual Patients (VPs) and using parameter

sections. All available VPs are presented in the left list box inside the
section “Virtual Patients” grouped according to their phenotype. By
checking a box the selected phenotype will be displayed in the right
list box from which a user can choose a few or all corresponding VPs
to be run in simulations. Parameters for selected VPs can be modified,

if necessary, by clicking the “Change Individual Patient Parameters”
button that will bring up a dialog window allowing to do this (not
shown). The selection of VPs belonging to multiple phenotypes could
be further refined by checking and applying “AND” logic. The “Drugs”
section provides an example of setting up Metformin-GPR40a
combination therapy.

not demonstrate increases in GIP or GLP-1 following an OGTT
(Leifke et al., 2012). Therefore, the secretion of GIP and GLP-
1 via the intestine was disabled for simulations with TAK-875.
In choosing a representative VP for simulations, as in the case
of metformin, we selected one with steady-state characteristics
comparable to the mean values found in the study enrollment
criteria.

Figure 10 compares simulation results with clinical data from
a multiple ascending dose study of TAK-875 in T2DM subjects
that received either placebo or one of the 25, 50, 100, 200 mg daily
doses (Leifke et al., 2012). Data shown in the figure illustrate the
short-term TAK-875 effects on steady state responses (FPG con-
centration, Figure 10A), and dynamic responses (2 h post-OGTT
glucose concentration Figure 10B) after 14 days with different
levels of drug exposure. Simulations provide adequate predictions

in both occasions although simulated glucose post-OGTT values
seem to follow clinical data more closely.

METFORMIN—TAK875 COMBO
Since metformin is used as the standard of care for treat-
ing hyperglycemia in T2DM patients, we repeated the above
simulation of TAK-875 in combination with 500 mg met-
formin twice daily as a background therapy. Simulation
results suggest that additional therapeutic benefits could
be achieved by combination therapy by further lowering
FPG and post-prandial glucose excursions (Figure 11).
Interestingly, the effect on post-prandial glucose appears to
be more pronounced, with the response at TAK-875 doses
of 50 mg and higher approaching a plateau (Figure 11B).
In contrast the decline in FPG over the same dose range
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FIGURE 7 | Pharmacokinetic sub-models for Metformin (A) and GPR40 agonist TAK-875 (B).

FIGURE 8 | Metformin simulated steady-state concentration profile

(line) is plotted against clinical data (diamonds) (Graham et al., 2011)

for 500 mg bid dose regimen. On the inset single 500 mg dose simulation
results are compared with data from Pentikainen et al. (1979) (mean ± SE)
for metformin peak concentration Cmax, time to peak Tmax, and area under
the curve (AUC).

(Figure 11A) did not appear to have reached saturation.Without
metformin (Figure 10) this plateau in OGTT response is observed
in both clinical and simulation data but at higher (>100 mg)
doses than with combination therapy.

DISCUSSION
QSP models bring new insights into our understanding of the
mechanism of action of drugs and they help in optimizing deci-
sion making in pharmaceutical R&D (Schmidt et al., 2013).
However, multiple obstacles need to be overcome in order to
increase recognition of the value of QSP within the pharmaceuti-
cal industry. Two challenges are worth mentioning in the context
of this article. First, QSP models rely on large-scale simulations
requiring high-performance parallel computing infrastructure
that is expensive to run and maintain. Second, there is no indus-
try standard software, such as NONMEM® for non-linear mixed
effects PK/PD modeling that satisfies the diverse needs of the
modeling community. Utilizing multiple tools increases the cost
of model development and limits the exchange of models between
scientists, thus creating additional barriers for model acceptance
and application. A solution for the first challenge could be cloud-
based computing, as the burden of creating and maintaining an
up to date computational environment is outsourced to ven-
dors of high-performance computing clusters (e.g., Amazon). By
developing the ViSP platform we attempted to address the sec-
ond challenge, i.e., making the simulation process less dependent
on the modeling tools and creating a more universal workflow
for simulations (Figure 2). The central idea behind the ViSP plat-
form is to work with the model file once it satisfies two conditions;
first, it is compiled into an executable file, and second, all model
parameters are presented as input parameters. Combination of
an executable binary file with an input text file fully defines a sin-
gle simulation task that has the following benefits. On the one
hand, it is no longer dependent on the file format or the specifics
of the modeling tool that created the model. On the other hand,
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Table 1 | Effects of metformin in 28 day study in T2DM patients, comparison between clinical data by Eriksson et al. (geometric mean ± 95%

conf. interval) and simulation.

Days of treatment 0 7 14 28

Data metric Eriksson et al. Sim. Eriksson et al. Sim. Eriksson et al. Sim. Eriksson et al. Sim.

FPG (mM) 9.54 (8.6, 10.6) 10.1 9.15 (8.24, 10.15) 10.1 8.26 (7.55, 9.46) 9.6 7.59 (6.74, 8.54) 8.6

AUC glucose (mM·h) 29.6 (27.1, 32.4) 29.9 26.4 (24.2, 28.7) 24.9 23.4 (21.5, 25.5) 20.5 21.7 (19.9, 23.6) 19.9

FPI (% change from day 0) 0 (–29, 41) 0 5 (–23, 43) 2 16 (–42, 23) 16.0 1 (–24, 29) 8.0

FIGURE 9 | TAK-875 concentration profiles for 25, 50, 100, and

200 mg once daily doses administered to T2DM patients. Clinical
data points are mean values ±SD (Leifke et al., 2012) shown by black

color markers connected with lines overlaid with simulated data shown
by gray color markers only. Panel (A) presents results at day 1, panel
(B) at day 14.

FIGURE 10 | Change in fasting plasma glucose concentration (A) and 2 h post-OGTT glucose values (B) from baseline after 14 days of placebo or 25,

50, 100, and 200 mg daily dose of TAK-875. Panels (A,B) show clinical data (Leifke et al., 2012), and simulation results for TAK-875 monotherapy.

the model preserves all possibilities for its customization since all
its parameters are available through the input file. Additionally,
when launched it runs as a single computer process that pro-
vides flexibility in choosing the hardware (multicore processors,
cluster, or cloud) that can be used for computations. The only

requirement here is to use the proper compiler when creating the
executable file.

Large-scale simulation tasks in which ViSP could be useful
originate from numerous applications. We employed ViSP for cal-
ibrating the MDSP model and for simulating clinical studies. In
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FIGURE 11 | Simulated change in fasting plasma glucose

concentration (A) and 2 h post-OGTT glucose values (B) from

baseline after 14 days of placebo or 25, 50, 100, and 200 mg

daily dose of TAK-875. Panels (A,B) compare simulation results
for TAK-875 monotherapy with TAK-875 + 500 mg bid metformin
combo.

the first case, multiple virtual patients (VPs) have been created in
which only the parameters of interest were changed. Then a series
of simulations equal to the number of virtual patients has been
run and the process was repeated until the desired model behav-
ior was achieved. The latter meant checking that sets of output
parameters lay within the observed ranges derived from clinical
or preclinical data. A similar procedure was used to create new
VPs representing different phenotypes. In the future we are plan-
ning to automate this process, when parameter variations and
model response analysis will be done without user intervention.
The process just described could be applied to perform sensitiv-
ity analysis, for instance, to search for the pathway that responds
the most (or the least) to the drug, or to characterize the drug
response based on patient phenotype. This process could also be
used to model a clinical trial, when different cohorts of VPs that
satisfy the enrollment criteria are simulated and their responses
are analyzed to provide suggestions for patient stratification.

One aspect of simulation workflow that remains outside
the capabilities of the ViSP platform is how to convert model
files saved in proprietary formats into an executable code (see
Figure 2). Currently there is no universal mechanism inside ViSP
allowing this to be done with an arbitrary file format. The pro-
prietary nature of the model files prevents seeing model details,
such as equations and parameters, making compiling such files
into an executable impossible. Normally the modeling software
itself does not offer this option either. The solution, however,
exists if the modeling tool allows the export of models into
a file format that can be read by other software. One such
format is Systems Biology Markup Language (SBML), a com-
puter language that is gaining ground inside the Systems Biology
community for saving and exchanging models between users.
Currently several model development tools offer SBML export
capabilities, among them JDesigner (part of the Systems Biology
Workbench, SBW) (Sauro et al., 2003), SimBiology by Mathworks
(MathWorks), CellDesigner by the Garuda Alliance (Kitano et al.,

2005), DBSolve Optimum by ISB (Gizzatkulov et al., 2010) and
others. Once saved in SBML format, a model file can be trans-
lated into a different computer language that afterwards can be
compiled into an executable (see Figure 2). We utilized SBW
capabilities to export an SBML file into a MathWorks Matlab®
file that later was compiled into a binary executable file using
the MathWorks compiler. Since the MDSP model was originally
developed in JDesigner, which “natively” saves models in SBML
(XML) format, there were no issues in exporting it to a Matlab
file. However, if the SBML model file is produced by a differ-
ent modeling tool, for example PhysioLab®, it may require some
editing before saving it as Matlab code. Such modifications may
be necessary since the level of SBML support varies in different
modeling tools.

In conclusion, we developed a versatile web based software
platform that provides capabilities for setting up and running
massive simulation tasks originating from system-level mechanis-
tic models. It is designed to conveniently handle diverse modeling
projects with large number of parameters while being flexible
with respect to model structure. Its utility was demonstrated with
metabolic diseases model by simulating pharmacological effects
of antidiabetic drugs, metformin and fasiglifam in healthy and
diabetic individuals.
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APPENDIX
BASIC EQUATIONS
Mathematically the MDSP model is organized as follows.
Individual blocks i (i = 1, . . . , n) shown on Figure 3 correspond
to quantities of a material Qi (e.g., amount of nutrient, num-
ber of cells, etc.) distributed within a particular compartment.
Blocks may also stand for a state or a signal attributed to an
organ or body system, like e.g., vagal stimulation of the stomach.
The quantities are expressed as time-dependent state variables
described by ordinary differential equations (ODEs) (Equation
A1) where the right side term Fi,j signifies the flux of Qj to com-
partment i (shown by arrows on the diagram). These fluxes may
depend on multiple variables, for instance, concentration of hor-
mones and/or drugs. Most of them follow similar functional form
(Equation A2) in which basal rate ki,j is modified by activation,
represented by the term αi,j and/or by inhibition, represented by
the term βi,j. Activation and inhibition terms are given by either
the Hill-type equation (Equation A3) or by a sigmoid shape func-
tion (Equation A4) where coefficients γi,j and σi,j regulate the
slope and the shift of the curve. Here functions are shown for
activation term αi,j, they are identical for βi,j. Parameters αmax

i,j
may assume only non-negative values. In the case of inhibition,
βmax

i,j are further restricted to be no greater than 1. The variable
Pj may stand for either the quantity Qj or its concentration Cj in
case when Qj represents the amount of substance. Parameters ni,j,
γi,j, σi,j are constant values. In each particular instance the choice
of the function, either Equation A3 or Equation A4, is dictated by
a prior knowledge about the mechanism of action. Alternatively
it is selected based on which function provides better fitting to
available data. For details refer also to Figure 3.

dQi

dt
=

∑

j

Fi,j (A1)

Fi,j = ki,j · Qj · (
1 + αi,j

) (
1−βi,j

)
(A2)

αi,j = αmax
i,j ·

P
ni,j

j

P
ni,j

j + K
ni,j

j

(A3)

ai,j = αmax · 1

2

(
1 + tanh

(
γi,j

(
Pj − σi,j

)))
(A4)

In addition to ODEs, the MDSP model contains a num-
ber of algebraic equations that calculate additional quantities

and parameters, for instance, insulin sensitivity index QUICKI
(Katz et al., 2000), homeostatic model assessment index HOMA
(Wallace et al., 2004) and others. Overall the model comprises
more than 100 ODEs and more than 50 algebraic equations
resulting in a large number of parameters (more than 800)
associated with them.

MODEL CALIBRATION
As explained in the Methods section, parameters in the model
could be approximately divided into those describing the char-
acteristics of an individual subject [virtual patient (VP)], param-
eters that represent drugs, parameters for clinical interventions,
e.g., OGTT, parameters that describe meal regimen, and the
like. All of them are input data defining a particular simulation.
Whenever possible the values for parameters are taken from the
literature, however, when the values are not available they are
estimated by matching model behavior to known clinical and
preclinical data. For a valid VP, values for plasma concentration
of glucose, insulin, C-protein, glucagon, GLP-1, GIP, FFA, TAG
obtained after simulated overnight fast are required to match
clinical data characteristic of the phenotype this VP represents
(healthy or T2DM). In addition a valid VP should correctly repro-
duce simulated interventions such as a standard OGTT and meal
tolerance test (MTT) with glucose and insulin concentration
profiles being similar to the ones observed clinically. Since mul-
tiple sets of parameters could potentially match the same data,
these sets constitute alternative VPs that reflect clinical variability.
Parameters defining VPs can be varied intentionally to produce
subjects representing different behaviors (phenotypes). For the
MDSP model we have created a number of VPs that we classi-
fied as belonging to the following 5 phenotypes: normal healthy,
obese non-diabetic, type 2 diabetic patients with mild, moderate,
and severe degree of the disease. Each VP is defined by more than
800 parameters and ViSP provides the convenience of storing and
handling them in a structured way.

In general the simulations were performed as follows. At first
all VPs are simulated for a period of time until they reach a
steady state with a meal regimen that matches VP energy expen-
diture. The latter is calculated based on VP age, height, body
weight, and activity level. After the steady state is achieved the
simulation of interest is initiated by applying additional sets of
parameters corresponding to drugs and interventions that repro-
duce the conditions of the clinical trial or other experiments of
interest.
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