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Editorial on the Research Topic

Imaging in the Visual System Disorders

More than 80% of the information we need to perceive the world is delivered by vision. According
to the World Health Organization World Report on Vision 2019, there are at least 2.2 billion
visually impaired people worldwide, with at least 1 billion possessing a vision impairment that
should have been prevented or that is yet to be tackled (World Health Organization, 2019). Visual
disorders place significant economic burdens on the patients, their families, and the healthcare
system. The diseases of the eye, optic nerve, and brainmay cause vision impairment. Early detection
and diagnosis of these pathologies would enable clinicians to forestall visual loss.

Imaging is an important technique for diagnosing these diseases (Chen et al., 2019). In the past
decades, advances in imaging techniques have provided us tools to improve our understanding
of visual system disorders, and facilitate the diagnosis and management of patients with visual
system disorders. However, there are still considerable challenges in the field of imaging in visual
system disorders, such as precise segmentation of lesions on images, lack of sizeable labeled datasets,
correlation of novel imaging biomarkers with clinical diagnosis or management, and correlation of
ocular imaging biomarkers with central nervous system disorders or parameters.

An interdisciplinary Research Topic was hosted by the Perception Science section of Frontiers in
Neuroscience to cover recent advances in various imaging techniques in diagnosis andmanagement
of visual system disorders. In this issue, we aim to address some of these issues surrounding
different imaging modalities in visual disorders.

Classification and segmentation of structures and lesions remain challenging for ocular
imaging. Recently, artificial intelligence (AI) has dramatically advanced various medical research
fields, including imaging segmentation and classification. Numerous deep learning-based
ophthalmological image processing algorithms have been proposed to analyze optical coherence
tomography (OCT) images, optical coherence tomography angiography (OCTA) images, fundus
photographs, and fluorescein staining slit-lamp images. Wang, L. et al. proposed a dynamic
multi-hierarchical weighting segmentation network (DW-Net) for the simultaneous segmentation
of retinal layers and choroid neovascularization in retinal OCT images. The proposed network
was composed of a residual aggregation encoder path to select informative features, a multi-
hierarchical weighting connection for the fusion of detailed information and abstract information,
and a dynamic decoder path. Their method achieved DICE scores of 0.9484 and 0.9538 for the
segmentation of choroidal neovascularization and seven retinal layers, respectively. Wan et al.
proposed an optimized Unet to segment parapapillary atrophy in color fundus photos. An edge
attention module and a reverse attention module were fused into the UNet (Ronneberger et al.,
2015), such that their method achieved a high area under curve (AUC) of 0.9235 over the original
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UNet of 0.7917. The proposed method worked better for large
parapapillary atrophy than small parapapillary atrophy. Xu et al.
implemented and investigated the application of a deep learning
system based on EfficientNet-B6 in diagnosing pterygium using
anterior segment photographs. Their system can judge the
presence of pterygium and classify the severity of pterygium. The
accuracy of the system was 0.9468.

In the AI-based medical image processing field, it is expensive
and time-consuming to obtain the labels of medical data.
Therefore, it is advisable to utilize unlabeled data to improve
the performance of the algorithms. Meng et al. proposed a
multi-scale information fusion network (MF-Net) to segment
choroidal neovascularization in retinal OCT images. Their
method was evaluated with 1,522 labeled OCT images with
choroidal neovascularization and the DICE score was 0.9290.
Furthermore, they used a semi-supervised MF-Net with pseudo
labels for unlabeled data which improved the DICE score to
0.9307. Wang, T. et al. proposed a semi-supervised multi-
scale self-transformer generative adversarial network (Semi-
MsST-GAN), which can improve corneal ulcer segmentation
in fluorescein staining slit-lamp images by leveraging unlabeled
images. Their method achieved a DICE of 0.9093 in evaluating
the public SUSTech-SYSU dataset.

This special issue also highlighted a few novel parameters in
ocular imaging. Dong et al. used a deep learning-based algorithm
for the segmentation of corneal and epithelial thickness on
anterior segment-OCT with 1,430 images and characterized the
epithelial and corneal thickness changes at different stages of the
keratoconus progression. They identified that both epithelial and
corneal thickness decreased with the progression of keratoconus,
except the epithelial thickness in the scarring stage, which had
irregular fluctuation. Ye et al. found that on OCTA, radial
peripapillary capillary density, but not peripapillary retinal
nerve fiber layer thickness, decreased in pathological myopia
compared to simple myopia. Peripapillary capillary density
showed the highest AUC for pathological myopia (AUC= 0.962).
Furthermore, the best-corrected visual acuity was affected by
peripapillary capillary density, axial length, and their interaction.

The eye is a window for the brain and vascular system.
Many systemic diseases such as diabetes, cerebral vascular

diseases, cardiovascular diseases, and Parkinson’s disease may
be investigated from ocular parameters (Abràmoff et al., 2010).
Zhang et al. used retinal photography and cerebral magnetic
resonance imaging (MRI) to evaluate the correlation between
retinal microvascular abnormalities in patients with type 2
diabetes and the presence of cerebral small vessel lesions.
They found that the degree of diabetic retinopathy and retinal
arteriole and venule calibers were associated with MRI burden of
cerebral small vessel disease. Zhao et al. used a context encoder
network to segment outer retinal layers on OCT images and
found that subjects with white matter hyperintensities had a
thinner Henle fiber layer, outer nuclear layers, and photoreceptor
outer segments, while Parkinson’s disease patients had a thicker
interdigitation zone and retinal pigment epithelium. Zhou et al.
used OCTA and visual evoked potential to study the retinal
changes in Parkinson’s disease. They found that macular vessel
density, but not ganglion cell-inner plexiform layer thickness
or the retinal nerve fiber layer decreased in Parkinson’s disease.
Macular vessel density was also correlated with visual evoked
potential. They suggested that retinal microvasculature change
may be a biomarker for early diagnosis of Parkinson’s disease.

With the development of imaging engineering techniques and
the collaboration between clinicians and engineering scientists,
we would be able to develop more automatic and precise
techniques, which can help clinicians to diagnose and manage
patients with visual system disorders, and benefit the patients.
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Visual Impairments Are Associated
With Retinal Microvascular Density in
Patients With Parkinson’s Disease
Min Zhou1†, Lei Wu2†, Qinyuan Hu1, Congyao Wang1, Jiacheng Ye1, Tingting Chen1 and
Pengxia Wan1*

1 Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 2 Department
of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Objective: This study aimed to evaluate retinal microvascular density in patients with
Parkinson’s disease (PD) and its correlation with visual impairment.

Methods: This cross-sectional study included 24 eyes of 24 patients with PD and
23 eyes of 23 healthy controls. All participants underwent ophthalmic examination,
visual evoked potential (VEP) test, 25-item National Eye Institute Visual Function
Questionnaire (NEI VFQ-25), and optical coherence tomography angiography (OCTA)
examination. The correlation between retinal microvascular density and visual parameter
was evaluated using Spearman correlation analysis, and the area under receiver
operating characteristic curve (AUROC) was calculated.

Results: Parkinson’s disease patients had prolonged P100 latency (P = 0.041), worse
vision-related quality of life (composite score and 3 of 12 subscales in NEI VFQ-25),
and decreased vessel density (VD) in all sectors of 3-mm-diameter region (all P < 0.05)
compared with healthy controls. There were no statistical differences in the ganglion
cell-inner plexiform layer (GCIPL) thickness and retinal nerve fiber layer (RNFL) thickness
between the two groups. A negative correlation was found between P100 latency and
nasal and superior sectors of macular VD in a 3-mm-diameter region (r = −0.328,
P = 0.030; r = −0.302, and P = 0.047, respectively). Macular VD in a 3-mm-diameter
region showed diagnostic capacities to distinguish PD patients from healthy controls
(AUROCs, ranging from 0.655 to 0.723).

Conclusion: This study demonstrated that decreased retinal microvascular density was
correlated with visual impairment in PD patients. Retinal microvasculature change may
occur earlier than visual decline and retinal structure change and has the potential to be
a promising diagnostic marker for early PD.

Keywords: visual impairment, retinal microvascular density, Parkinson’s disease, optical coherence tomography
angiography, visual evoked potential

Abbreviations: PD, Parkinson’s disease; CNS, central nervous system; OCTA, optical coherence tomography angiography;
OCT, optical coherence tomography; VEP, visual evoked potential; MMSE, Mini-Mental State Examination; UPDRS III,
Unified Parkinson’s Disease Rating Scale III; H&Y, Hoehn and Yahr; BCVA, best-corrected visual acuity; IOP, intraocular
pressure; NEI VFQ-25, 25-item National Eye Institute Visual Function Questionnaire; ONH, optic nerve head; VD, vessel
density; SCP, superficial capillary plexus; FAZ, foveal avascular zone; CST, central subfield thickness; GCIPL, ganglion cell-
inner plexiform layer; RNFL, retinal nerve fiber layer; SD, standard deviation; IQR, interquartile range; AUROC, the area
under receiver operating characteristic curve; LogMAR, logarithm of the minimum angle of resolution.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease characterized by a wide range of
motor and non-motor symptoms (Lee and Gilbert, 2016). Visual
symptoms together with other non-motor disorders such as
cognitive deficits, hyposmia, and gastrointestinal dysfunctions
were widely recognized to affect the life quality of PD patients
and may occur several years before the onset of cardinal
motor signs (Berg et al., 2015; Mahlknecht et al., 2015). Studies
have reported as high as 78% of PD patients had at least one
visual symptom, such as reading difficulties, double vision,
and misjudgment of objects and distances (Archibald et al.,
2011; Urwyler et al., 2014). The impact of visual disorders is
particularly annoying for patients with PD, because they have
impairments in control of movement and postural stability,
and which could be compensated through visual guidance
(Azulay et al., 1999; Davidsdottir et al., 2005).

The underlying pathogenesis of these visual disorders is
regarded as relevant with α-synuclein deposition (Bodis-Wollner
et al., 2014) and dopamine deficiency (Harnois and Di Paolo,
1990) in the retina, and similar to the pathological features of PD
in the brain. Recently, vessel degeneration has been considered to
be an additional factor contributing to the progression of PD. In
postmortem brain tissue of PD patients, capillaries were shorter
in average length, were less in number, and had fewer branches
those in age-matched controls (Guan et al., 2013). And decreased
cerebral blood flow has also been found in non-demented
patients with PD, suggesting that perfusion abnormality may
be a potential predictor upstream of cognitive impairment and
neurodegeneration (Syrimi et al., 2017). However, the detections
for brain vasculature are expensive and time-consuming. As
a constituent of the central nervous system (CNS), the retina
shows a striking resemblance to the brain and spinal cord.
The cellular and molecular mechanisms implicated in retinal
neurodegenerative processes are similar to those in the CNS
(London et al., 2013; Maresca et al., 2013).

Therefore, the retina can serve as a window to observe
microcirculation in the brain. Optical coherence tomography
angiography (OCTA) is a functional extension of optical
coherence tomography (OCT) imaging that facilitates the
visualization of microvascular and morphological structure non-
invasively in the retina (Spaide et al., 2018). Recently, several
research findings described the decreased retinal microvascular
density in patients with PD, which can serve as a surrogate
biomarker for the diagnosis of PD (Kwapong et al., 2018; Zou
et al., 2020). However, studies focusing on whether altered retinal
microvasculature affects visual function were scarce.

Thus, the aim of our study was to determine the
microvasculature alterations in the retina and its relationship
with visual function in patients with PD.

MATERIALS AND METHODS

Participants
The protocol of this study was approved by the Ethics
Committee of the First Affiliated Hospital of Sun Yat-sen

University. Participants provided informed written consent,
and the tenets of the Declaration of Helsinki were followed
throughout. Consecutive patients were recruited from the
neurology outpatient clinic of the First Affiliated Hospital of Sun
Yat-sen University, and healthy subjects were recruited from the
patients’ non-consanguineous families or friends via asking for
their willingness to participate. Idiopathic PD was defined by
an experienced neurologist based on the United Kingdom Brain
Bank criteria (Reichmann, 2010), and medical records including
the duration of disease and treatment were carefully collected.
Eligible patients were aged 40 years or older and only received
drug treatment without any surgical intervention (e.g., deep brain
stimulation treatment). The exclusion criteria were as follows:
patients with psychiatric or neurological diseases other than PD,
such as dementia or multiple sclerosis; diabetes, uncontrolled
hypertension, or other systemic diseases which could affect the
visual system; history of ocular trauma or surgery; family history
of glaucoma; high refractive error (± 6.00D spherical equivalent);
intraocular pressure (IOP) > 21 mmHg; media opacifications;
concomitant ocular diseases such as corneal disease, glaucoma, or
retinal disease. After preliminary screening, patients were asked
to refrain from drug administration the night before, and on the
day of examination. Each participant was first scored clinically
and neuropsychologically by the neurologist and subsequently
examined by the ophthalmologists using visual evoked potential
(VEP), and OCTA. Clinicians were blind to each other’s results
during the assessment.

Neuropsychological and Clinical
Assessments
All patients were evaluated for cognitive function and disease
severity by the same experienced neurologist (LW). Cognitive
function was assessed using the Mini-Mental State Examination
(MMSE). MMSE is a 30-point questionnaire that assesses
orientation, memory, attention, language, and visuospatial
ability, and scores < 27 points are indicative of likely cognitive
impairment (Folstein et al., 1975). Disease severity was evaluated
using the Unified Parkinson’s Disease Rating Scale III (UPDRS
III) (Goetz et al., 2008) and Hoehn and Yahr (1967) [H&Y]
stage. Patients were assessed in the “off” state before the regular
dose of the drug.

Ophthalmologic Examination
All participants received a complete ophthalmic examination,
including best-corrected visual acuity (BCVA), IOP, and
examination of the anterior segment, and fundus by an
experienced ophthalmologist. Vision-related quality of life
was assessed using the 25-item National Eye Institute Visual
Function Questionnaire (NEI VFQ-25). After the NEI VFQ-
25 was administered, scores were recorded according to the
guideline provided. Scores range from 0 to 100, with higher
scores indicating better visual function (Mangione et al., 2001).
All subjects were evaluated with VEP (MKWHAMD, CN-V1.4,
Huzhou Medconova Medical Technology Co., Ltd., Huzhou,
China) in a dark and quiet room. Stimulation was monocular
after covering the other eye, and visual stimuli followed a
checkerboard pattern.
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Optical Coherence Tomography
Angiography
The imaging of all subjects was performed using the Zeiss Cirrus
HD-OCT 5000 with an AngioPlex OCTA instrument (Cirrus;
Zeiss, Dublin, CA, United States). A standard 3 × 3 mm scan
was performed centered on the fovea, while the 6 × 6 mm
scan was performed centered on the optic nerve head (ONH)
as well as fovea. Vessel density (VD) (defined as the total
length of the perfused vasculature per unit area in the
region of measurement) of the superficial capillary plexus
(SCP) (from the layer of the inner limiting membrane to
the inner plexiform layer) was measured automatically in all
3 × 3 mm and 6 × 6 mm scans. Images of VD were
calculated separately at various distances from the fovea:
central (1-mm-diameter region), inner ring (1–3-mm-diameter
region), outer ring (3–6-mm-diameter region), and full area (6-
mm-diameter region). Furthermore, inner-ring and outer-ring
regions were divided into four quadrants. The foveal avascular
zone (FAZ) was assessed automatically in the 3 × 3 mm
scan. The central subfield thickness (CST) (from the layer
of the inner limiting membrane to the retinal pigment
epithelium at the fovea) and ganglion cell-inner plexiform
layer (GCIPL) thickness were measured using a macular
cube 512 × 128 scan. Peripapillary retinal nerve fiber layer
(RNFL) thickness was measured using an optic disk cube
200 × 200 scan. All scans were performed by the same
experienced examiner (MZ). All of the scan images were
reviewed by an experienced ophthalmologist (CW) for further
quality control with the following exclusion criteria: (1) poor
scan quality (less than 7/10 signal strength index); (2) motion
artifacts; (3) inaccurate segmentation; (4) focal signal loss; and
(5) blurred images.

Images were analyzed automatically using the AngioPlex
OCTA software (version 10.0.0.14618, Carl Zeiss Meditec).
Moreover, the FAZ boundaries were carefully reviewed
and manually corrected if an obvious error of automated
segmentation is observed.

Data Analysis
One eye with a higher-quality image on the 3 × 3 mm OCTA
scan from each subject was selected for the analyses. All data were
analyzed using the SPSS 22.0 statistical software package (SPSS,
Armonk, NY, United States).

Quantitative variables were described as mean (SD, standard
deviation) or median (IOR, interquartile range), while categorical
variables were described using frequencies and percentages.
The t-test was used to evaluate normally distributed data. For
non-normally distributed data, we used the Mann–Whitney
U-test. Correlations between OCTA parameters and other
clinical features were evaluated using Spearman correlation
analysis. P < 0.05 was accepted as statistically different. The
area under the receiver operating characteristic curve (AUROC)
was calculated to determine the diagnostic accuracy of the
analyzed parameters discriminating between PD patients and
healthy controls.

RESULTS

Clinical Characteristics of Enrolled
Patients and Healthy Controls
A total of 39 patients with a definite diagnosis of idiopathic
PD and 30 healthy controls were recruited from the Neurology
Department of the First Affiliated Hospital of Sun Yat-sen
University between October 2019 and November 2020. After
the ophthalmic assessment, seven PD patients and four controls
expired, due to concomitant ocular diseases or non-cooperation.
Eight patients and three controls were excluded because of
insufficient image quality. Figure 1 details the reasons for
exclusion from statistical analyses. Ultimately, 24 patients (24
eyes) and 23 controls (23 eyes) were included in the analyses.
The PD patients had a mean age of 65.88 years, and 75.0% were
male. The healthy controls had a mean age of 63.43 years, and
47.8% were male. There was no significant difference between
PD patients and controls with regard to age, and sex. The mean
disease duration of PD patients was 5.3 years, and the mean score
of UPDRS III was 26.5. The demographics of PD patients and
controls are summarized in Table 1.

Visual Function of Enrolled Patients and
Healthy Controls
There were no significant differences in BCVA and IOP between
PD patients and healthy controls. Compared with healthy
controls, P100 latency was significantly longer in patients with
PD (113.3 ± 14.7 ms vs. 107.6 ± 12.6 ms, P = 0.041), whereas
P100 amplitude was not significantly different between the two
groups (Table 2). The NEI VFQ-25 scores were significantly
worse in PD patients for the composite score (80 ± 10 vs.
84 ± 13, P = 0.031) and 3 of 12 subscales, including general
health (29 ± 16 vs. 52 ± 20, P < 0.001), near vision (71 ± 17
vs. 80 ± 22, P = 0.037), and role limitations (68 ± 27 vs. 87 ± 19,
P = 0.008) (Figure 2). The correlations between the general health
subscale and other subscales of NEI VFQ-25 were undertaken
in order to analyze whether the general health status of PD had
an impact on the vision-related quality-of-life assessments. No
correlation was found between the general health subscale and
other subscales in NEI VFQ-25.

Macular and Peripapillary Microvascular
Density Parameters
Parkinson’s disease patients had significantly lower macular VD
than healthy controls in the inner superior sector (13.6 ± 4.1 mm
vs. 15.6 ± 3.9 mm−1, P = 0.030) of the 6-mm-diameter region
(Figures 3A,C and Supplementary Table 1). Health controls had
higher signal strength than PD patients in the 6 × 6 mm scan
centered on the macular (8.7 ± 1.0 vs. 7.7 ± 1.1, P = 0.008).
In the 6-mm-diameter region centered on the ONH, the
peripapillary VD in the outer superior sector (16.9 ± 2.2 mm−1

vs. 18.6 ± 1.4 mm−1, P = 0.003) of PD patients was significantly
lower than those of controls, while the differences in other regions
were not statistically significant (Supplementary Table 2). In the
3-mm-diameter region, macular VD was significantly decreased
in all sectors in PD patients compared with healthy controls
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FIGURE 1 | Flow diagram of excluded subjects prior to analysis. aPatients were excluded if one eye had concomitant ocular diseases. bPatients were included if one
eye’s images met the inclusion criteria.

(full area: 16.0 ± 3.0 mm−1 vs. 18.0 ± 2.0 mm−1, P = 0.010)
(Figures 3B,D and Table 3). The signal strength between the
two groups was not significantly different in the 3 × 3 mm
scan centered on the macular or the 6 × 6 mm scan centered
on the ONH (all P > 0.05). No significant difference was seen
in the FAZ area between the two groups (0.31 ± 0.10 mm2 vs.
0.28 ± 0.10 mm2, P = 0.464).

CST, RNFL, and GCIPL Thicknesses
The differences between the RNFL thickness (average:
93.4 ± 10.7 µm vs. 98.0 ± 9.4 µm, P = 0.128) and CST
(average: 272.8 ± 10.3 µm vs. 274.7 ± 11.0 µm, P = 0.534) of
the two groups were not statistically significant (Supplementary
Tables 3, 4). No significant thinning was shown in the GCIPL
thickness of PD patients when compared with the healthy

TABLE 1 | Demographic characteristics of all enrolled participants.

Variable Mean (SD)

PD HC P

N = 24 N = 23

Age (year) 65.88 (6.50) 63.43 (7.11) 0.225

Male sex, No. (%) 18/24 (75.0) 11/23 (47.8) 0.055

PD history (year) 5.3 (4.2) / /

UPDRS III rating 26.5 (12.3) / /

H&Y rating 2.0 (0.3) / /

MMSE 28.5 (1.6) / /

PD, Parkinson’s disease; HC, healthy controls; UPDRS III, Unified Parkinson’s
Disease Rating Scale III; H&Y, Hoehn and Yahr; MMSE, Mini-Mental
State Examination.

controls (average: 80.5 ± 5.6 µm vs. 82.3 ± 6.2 µm, P = 0.303)
(Supplementary Table 5).

Correlations Among Visual Function and
Disease Duration, Severity, and
Cognition in PD Patients
A significant negative correlation was shown between disease
severity using the UPDRS III and composite scores of NEI VFQ-
25 (r = −0.587, P = 0.005). The BCVA, VEP P100 latency, and
amplitude were not statistically associated with disease duration,
severity, and MMSE scores. Spearman correlation coefficients
and their corresponding P-values are listed in Table 4.

Correlations Between Microvascular
Density and Clinical Data in PD Patients
The nasal sector and inner ring of macular VD were negatively
correlated with disease duration (r = −0.442, P = 0.035;
r = −0.431, and P = 0.040; respectively), while no significant
correlation between disease severity and cognitive function
and macular VD of 3-mm-diameter region in PD group
(Supplementary Table 6). P100 latency was negatively correlated
with the nasal and superior sectors of macular VD in 3-mm-
diameter region (r = −0.328, P = 0.030; r = −0.302, and P = 0.047,
respectively). There was no significant correlation between visual
function parameters and other regions of macular VD in the
3-mm-diameter region (Table 5).

Diagnostic Abilities of Macular
Microvascular Density Indices
The AUROCs of macular VD in the 3-mm-diameter region
for discriminating PD patients from healthy controls were
highest for the temporal sector (0.723), followed by the full
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TABLE 2 | Ophthalmologic and VEP information of all enrolled participants.

Variable PD (N = 24) HC (N = 23) P

Mean (SD) Median (range) Mean (SD) Median (range)

BCVA (LogMAR) 0.088 (0.122) 0.000 (0.000–0.191) 0.097 (0.117) 0.097 (0.000–0.097) 0.591

IOP (mmHg) 14.7 (2.4) 14 (13–16) 15.6 (2.8) 16 (13–17) 0.287

P100 latency (ms) 113.3 (14.7) 113.0 (106.0–116.5) 107.6 (12.6) 105.0 (101.5–110.5) 0.041a

P100 amplitude (µV) 6.6 (5.1) 5.5 (3.4–8.6) 5.6 (3.9) 4.7 (3.1–7.7) 0.597

NEI VFQ-25 composite score 80 (10) 79 (76–88) 84 (13) 89 (81–93) 0.031a

VEP, visual evoked potential; PD, Parkinson’s disease; HC, healthy controls; BCVA, best-corrected visual acuity; LogMAR, logarithm of the minimum angle of resolution;
IOP, intraocular pressure; NEI VFQ-25, 25-item National Eye Institute Visual Function Questionnaire.
aP < 0.05.

FIGURE 2 | Radar graph representing the mean scores for the various scales in the NEI VFQ-25. The red line represents the patients with PD, and the blue line
represents the healthy controls.

area (0.720), inner ring (0.716), nasal sector (0.678), superior
sector (0.668), inferior sector (0.668), and central sector
(0.655) (Figure 4).

DISCUSSION

In this study, we observed that PD patients had no significant
visual decline compared with healthy controls but experienced
a worse vision-related quality of life, which implied that visual
impairment existed in PD patients. Compared with those in
healthy controls, prolonged P100 latency and decreased VD
in both the macula and ONH were observed in PD patients,
but there were no differences in retinal structure between the
two groups. In addition, there was a significant correlation
between visual impairment and retinal VD. Therefore, our results
indicated that the macular microvascular alterations may occur

earlier than the changes in retinal structure and may associate
with visual impairment.

Symptoms of visual dysfunction have been widely reported
and may contribute to the overall disabilities in PD patients
(Uc et al., 2005). NEI VFQ-25 is a questionnaire developed by
the National Eye Institute used for measuring the self-reported,
vision-targeted health status of people with chronic eye
diseases (Mangione et al., 2001). Although there was no
significant difference in BCVA between the two groups, PD
patients had significantly lower near vision, role limitations,
and overall composite scores of NEI VFQ-25 compared with
healthy controls. Furthermore, the composite score was strongly
inversely related to disease severity. These outcomes suggested
that PD patients had substantial problems and restrictions in
everyday activities due to vision impairment, and worsen along
disease progression. It is worth mentioning that the MMSE
scores of the PD group were all within the normal range,
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FIGURE 3 | Representative OCTA images in patients with PD and healthy controls. Macular microvascular density of healthy controls (A) and PD patients (C) in the
6-mm-diameter region. Macular microvascular density of healthy controls (B) and PD patients (D) in the 3-mm-diameter region.

TABLE 3 | Comparison of macular microvascular density and FAZ area between the PD patients and healthy controls in the 3-mm-diameter region.

Variable PD (N = 24) HC (N = 23) P

Mean (SD) Median (range) Mean (SD) Median (range)

Nasal (mm−1) 17.4 (3.5) 17.8 (15.0–19.3) 19.4 (2.6) 19.5 (17.6–21.3) 0.029a

Temporal (mm−1) 17.2 (3.6) 17.8 (16.0–20.0) 19.7 (1.9) 19.5 (18.6–21.5) 0.009a

Superior (mm−1) 17.1 (4.1) 18.1 (14.5–20.3) 19.4 (2.6) 19.8 (17.6–21.8) 0.049a

Inferior (mm−1) 17.1 (3.1) 17.9 (14.9–19.4) 18.8 (2.5) 19.1 (17.1–20.9) 0.049a

Central (mm−1) 6.6 (2.6) 6.7 (4.9–8.6) 8.2 (2.3) 7.9 (6.5–9.9) 0.032a

Inner ring (mm−1) 17.2 (3.2) 17.3 (15.9–19.4) 19.3 (2.1) 19.4 (17.9–21.1) 0.011a

Full area (mm−1) 16.0 (3.0) 16.1 (14.5–18.2) 18.0 (2.0) 18.4 (16.5–19.7) 0.010a

FAZ area (mm2) 0.31 (0.10) 0.31 (0.22–0.37) 0.28 (0.10) 0.28 (0.23–0.37) 0.464

FAZ, foveal avascular zone; PD, Parkinson’s disease; HC, healthy controls.
aP < 0.05.

and the general health score did not correlate with any other
subscales. Therefore, it is reasonable to assume that NEI VFQ-
25 scores were reliable and not affected by cognitive function,
and health status of PD patients. Almer et al. (2012) found
that most subscales in NEI VFQ-25 were worse in PD patients
than in controls and that near activities seemed to be more
greatly affected by disease severity. They suggested that the
decline in vision-targeted life quality of PD patients was probably
ascribed to the ocular motor function because acuity, color vision,
and contrast sensitivity did not vary significantly from those
of controls. Compared with those in our study, PD patients

in their group had a worse vision-related quality of life. This
discrepancy might be ascribed to the difference in the disease
course in which the subjects of Almer et al. (2012) had longer
disease duration (10.9 ± 6.8 years). A better understanding
of the vision-related life quality is important for the optimal
care of PD patients, and we strongly encourage PD patients
to undergo the assessment of NEI VFQ-25, which is simple,
fast, and convenient.

Abnormal VEP in our study also reflected functional
impairment in the visual pathway of PD patients. VEP was used
as a non-invasive technique to evaluate bioelectrical function of
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TABLE 4 | Correlations between visual function and clinical data in PD patients.

BCVA
(LogMAR)

P100 latency P100
amplitude

Composite
score

PD history
(year)

−0.188 (0.391) 0.243 (0.288) 0.418 (0.060) 0.051 (0.816)

UPDRS III
rating

−0.085 (0.715) −0.253 (0.282) −0.267 (0.255) −0.587 (0.005a)

MMSE −0.048 (0.828) −0.098 (0.673) −0.089 (0.701) −0.023 (0.919)

PD, Parkinson’s disease; UPDRS III, Unified Parkinson’s Disease Rating Scale
III; MMSE, Mini-Mental State Examination; BCVA, best-corrected visual acuity;
LogMAR, logarithm of the minimum angle of resolution.
aP < 0.05.

the entire visual pathway from the retina to higher cortical visual
pathways. VEP latency was considered to be a more sensitive
measure of foveal electrical activity than amplitude and less
likely to be affected by dopaminergic drugs. Due to the relatively
small individual difference, the P100 latency was commonly
used to confirm the abnormalities of the visual pathway. In
our study, the P100 latency of VEP was prolonged in patients
with PD than in controls, and whereas the difference in P100
amplitude was not significant. This result was consistent with a
meta−analysis that contained 20 case–control studies (He et al.,
2018). The possible mechanism of VEP abnormalities is that
dopaminergic neuron degeneration and decrease in dopamine
production and secretion in PD patients may affect the function
of the inner plexiform cells and horizontal cells in the retina,
disrupting the transmission of visual signals (Büttner et al.,
1996). The thinning of intraretinal layers in PD patients as
shown by OCT also supports this conclusion to some extent
(Garcia-Martin et al., 2014). However, we did not observe such
a decrease in the retinal structure, and no significant thinning
was shown in RNFL, CST, and GCIPL thicknesses between PD
patients and controls in our study. Instead, we found altered
retinal microvasculature in PD patients, and microvascular
density was lower in PD patients than in controls, particularly
in the macular area. As retinal vasculature has embryologic
origins similar to cerebral vasculature, it might be postulated that
these two shared a common vascular pathophysiology (Gariano
and Gardner, 2005; Nadal et al., 2020). Cerebral small-vessel
disease was proven to be associated with incident parkinsonism
and may be an underlying etiology (Bohnen and Muller, 2016).
A recent study has demonstrated that α-synuclein was deposited
in the retinal ganglion cell layer as well as the vessel wall
of retina arteries in transgenic animal models of PD (Price
et al., 2016). Few studies have investigated the relationship
between visual function and OCTA in PD. Intriguingly, we
found a negative correlation between P100 latency and nasal,
and superior sectors of macular VD in the 3-mm-diameter
region. It can be speculated that the deposition of α-synuclein
in intraretinal layers and retinal vessels, leading to abnormal
VEP and microvasculature alterations, and ultimately results in
visual dysfunction in PD patients. Likely, the nasal and superior
sectors of retinal vessels might be the most affected site, leading
to a potential change in the visual pathway at an early stage in
PD patients. However, this conjecture must be corroborated by
further research.

We also found that PD patients had decreased macular VD in
all sectors of the 3-mm-diameter region compared with healthy
subjects through the 3 × 3 mm scan without significant difference
in signal strength. However, within the same matching area in
the 6 × 6 mm scan, macular VD decreased only in the superior
sector. We suspect that the discrepancy might be derived from
the different scan protocols. In the 6 × 6 mm scan pattern,
a total number of 350 B-scans were sampled and repeated
twice in the vertical dimension, with each B-scan having 350
A-scans in the horizontal dimension. As for the 3 × 3 mm
scan, there were 245 A-scans in each B-scan along the horizontal
dimension, and 245 B-scans were repeated four times at each
location. Therefore, the 3 × 3 mm scan pattern provides a
denser sampling spacing (12.2 µm) than the 6 × 6 mm scanning
pattern (17.1 µm), as well as better lateral resolution (Rosenfeld
et al., 2016). This enables the 3 × 3 mm scan pattern to acquire
more detailed information of the microvasculature and has a
greater ability to discriminate the capillaries. Furthermore, a
previous study has proved that a direct comparison between
the two is not possible, given the different resolutions (Xiao
et al., 2020). Considering that capillary deficits could be the
earliest change of retinal vessels in PD patients, the 3 × 3 mm
scan may more accurately reflect the foveal microvasculature in
PD patients. Several studies have adopted OCTA as the main
evaluation method to quantify the retinal microvasculature in
PD patients. Decreased macular VD and perfusion density, as
well as choroidal structural changes, were found in patients with
PD in a recent study with a large sample size of 137 healthy
controls, and 69 patients. Likewise, no significant difference
was found in the retinal structure (Robbins et al., 2020).
Furthermore, decreased retinal microvascular density was found
only in the SCP but not in the deep capillary plexus in a
study by Kwapong et al. (2018). However, in contrast to our
results, they detected retinal thinning in PD patients, which was
correlated with SCP, and suggesting that retinal microvascular
abnormalities may contribute to the neurodegeneration in PD
patients (Kwapong et al., 2018). Shi et al. (2020) used three
different algorithms to quantify the retinal capillaries based
on the OCTA images. They found that the retinal capillary
skeleton and perfusion densities and capillary complexity of
SCP were significantly lower in PD patients than in healthy
controls (Shi et al., 2020). Unlike our results, in the study by
Rascunà et al. (2020) no significant difference in microvascular
density was observed between PD patients and healthy controls.
These results were variable and inconsistent, possibly due to
the study design, and patient selection. Furthermore, a prior
study showed that different OCTA devices had different effects
on VD measurements in subjects with media opacity, possibly
due to different OCTA flow algorithms (Zhang et al., 2020). In
addition, VD measurements and the OCTA repeatability were
significantly affected by the signal strength (Lee et al., 2019;
Yu et al., 2019). Therefore, the type of OCTA devices and the
signal strength of OCTA images need to be taken into account
when interpreting the results. Although results from these studies
differed, most of them supported the notion that macular VD was
decreased in PD patients. The details of different studies and their
findings are elucidated in Supplementary Table 7. Our results
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TABLE 5 | Correlations between visual function and macular microvascular density in the 3-mm-diameter region.

Nasal Temporal Superior Inferior Central Inner ring Full area

BCVA (LogMAR) 0.004 (0.979) −0.109 (0.466) −0.060 (0.689) −0.009 (0.952) 0.066 (0.658) −0.074 (0.620) −0.046 (0.761)

P100 latency (ms) −0.328 (0.030a) −0.113 (0.465) −0.302 (0.047a) −0.154 (0.318) −0.176 (0.253) −0.257 (0.092) −0.288 (0.058)

P100 amplitude (µV) 0.022 (0.888) 0.243 (0.112) 0.168 (0.275) 0.271 (0.075) 0.169 (0.273) 0.154 (0.319) 0.193 (0.209)

Composite score 0.256 (0.082) 0.175 (0.240) 0.247 (0.094) 0.024 (0.872) −0.028 (0.849) 0.226 (0.127) 0.194 (0.191)

BCVA, best-corrected visual acuity; LogMAR, logarithm of the minimum angle of resolution.
aP < 0.05.

FIGURE 4 | The AUROCs for discriminating PD patients from healthy controls. (A) Macular microvascular density of the 3-mm-diameter region: temporal sector
(0.723), nasal sector (0.678), superior sector (0.668), and inferior sector (0.668). (B) Macular microvascular density of the 3-mm-diameter region: central sector
(0.655), inner ring (0.716), and full area (0.720).

suggested that retinal microvascular changes might precede
vision decline and be detected earlier than retinal structure
changes in PD patients. Furthermore, macular microvascular
density showed diagnostic capacities to distinguish PD patients
from healthy controls (AUROCs, ranged from 0.655 to 0.723).
Within our study, PD patients were at a mean H&Y stage of
2, which indicated that our patients were in a relatively early
stage of the disease. Thus, retinal microvasculature changes
show promise as biomarkers for the diagnosis of PD in
the early stage.

The present study had several notable advantages. First, we
assessed the PD patients’ UPDRS III and H&Y stage in the
“off” state, which could more accurately reflect the severity of
the disease without the impact of medications. Second, NEI
VFQ-25 was used to evaluate vision-related quality of life,
which could more closely mirror the actual practice of visual
function. Third, different from prior studies, we analyzed the
correlation between VEP parameters and retinal microvascular
density. Of note is that both of these are objective measurements
without subjective bias. However, there are some limitations
of this study that merit considerations. The current sample
size was small, so the results must be carefully interpreted
because some of the detected correlations could be statistical
anomalies. Although we assessed the BCVA, one of the primary
indices of visual impairment, we did not evaluate specific visual
symptoms, such as ocular motor function, contrast sensitivity,
color perception, and illusions, which are reported commonly
in PD and may also contribute to the lower life quality. Even
we excluded the poor quality of images, the healthy group
had higher-quality OCTA images than the PD group in the

6 × 6 mm scan centered on the macular, which may cause bias
when interpreting these results. Another noteworthy point is
that PD patients in the severe stage have difficulty cooperating
with the OCTA examination, so we could not acquire the data
from this group. However, on the basis of our results, we
remain convinced that retinal microvascular density might be
valuable in the diagnosing and monitoring for early PD. Future
studies are needed to further investigate clinical implications
of our findings.

CONCLUSION

Our study showed that retinal microvascular density decreased
in PD patients and correlated with visual impairment. Retinal
microvasculature was altered early even when the visual decline
and retinal structure changes are not detectable, and may be a
promising diagnostic marker for PD patients.
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Purpose: To investigate the thickness changes of outer retinal layers in subjects with

white matter hyperintensities (WMH) and Parkinson’s Disease (PD).

Methods: 56 eyes from 31 patients with WMH, 11 eyes from 6 PD patients, and 58 eyes

from 32 healthy controls (HC) were enrolled in this study. A macular-centered scan was

conducted on each participant using a spectral-domain optical coherence tomography

(SD-OCT) device. After speckle noise reduction, a state-of-the-art deep learning method

(i.e., a context encoder network) was employed to segment the outer retinal layers from

OCT B-scans. Thickness quantification of the outer retinal layers was conducted on the

basis of the segmentation results.

Results: WMH patients had significantly thinner Henle fiber layers, outer nuclear

layers (HFL+ONL) and photoreceptor outer segments (OS) than HC (p = 0.031, and

p = 0.005), while PD patients showed a significant increase of mean thickness in the

interdigitation zone and the retinal pigment epithelium/Bruch complex (IZ+RPE) (19.619

± 4.626) compared to HC (17.434 ± 1.664). There were no significant differences in the

thickness of the outer plexiform layer (OPL), the myoid and ellipsoid zone (MEZ), and

the IZ+RPE layer between WMH and HC subjects. Similarly, there were also no obvious

differences in the thickness of the OPL, HFL+ONL, MEZ and the OS layer between PD

and HC subjects.

Conclusion: Thickness changes in HFL+ONL, OS, and IZ+RPE layers may correlate

with brain-related diseases such as WMH and PD. Further longitudinal study is needed

to confirm HFL+ONL/OS/IZ+RPE layer thickness as potential biomarkers for detecting

certain brain-related diseases.

Keywords: white matter hyperintensities, Parkinson’s disease, outer retinal layers, OCT images, deep learning
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1. INTRODUCTION

White matter, gray matter and substantia nigra are three
important components of the central nervous system. There
exists strong evidence showing that white matter hyperintensities
(WMH) is an important clinical markers of several brain diseases,
such as stroke, dementia, in both cross-sectional and longitudinal
studies (Balakrishnan et al., 2021; Song et al., 2021). Degeneration
of the nigra cells leads to a decrease in dopamine neurons, which
causes Parkinson’s disease (PD). Therefore, efficient detection of
hyperintense lesions in cerebral whitematter and substantia nigra
damage is of potential importance in the further study of diseases
of the brain.

White matter hyperintensities (WMH) is the area of brain
tissue that show up as increased brightness in T2-weighted
magnetic resonance imaging (MRI) (Wardlaw et al., 2013). In
clinical practice, a structural MRI (Zhuang et al., 2017) can be
used for quantitative calculation of the volume of brain tissue
for the diagnosis of WMH, while diffusion tensor imaging (DTI)
(Etherton et al., 2017, 2019) is used to detect early micro-
structural changes in white matter. The arterial spin labeling
(ASL) (Van Dalen et al., 2016) method employed blood as an
endogenous tracer for 3D flair scanning, in which the WMH
volume was inversely proportional to the regional perfusion
level. In addition, carotid ultrasound, cerebral angiogram, and
echocardiogram have also been used to identify WMH.

PD is a neurodegenerative disorder, mainly affected by
dopaminergic neurons in a specific area of the brain called the
substantia nigra (Shen et al., 2021). Currently, PD is usually
diagnosed based on motor symptoms (Oh et al., 2018). Common
lab tests from blood, urine, or cerebrospinal fluid (CSF) can be
used to detect PD. Meanwhile, brain imaging techniques [e.g.,
MRI, and Positron Emission Tomography (PET)] have also been
proved as highly sensitive tools for identifying PD. However,
most detection methods for WMH and PD are cost-intensive
and invasive (usually involving the injection of a dye into the
patient to make blood vessels stand out more prominently).
It’s necessary to explore a cheap and non-invasive alternative
detection method.

It is commonly accepted that there are various relationships
between eye and brain (Baker et al., 2008). The retina develops
from the diencephalon in the embryonic period. Retinal vessels
possess similar anatomic and physiological characteristics to
cerebral vessels. There is also a blood-retinal barrier analogous
to blood-brain barrier. In many chronic diseases, changes
in retinal vessels may reflect, or even precede changes in
cerebral vessels. Furthermore, the retina is the only organ
whose vascular imaging can be acquired noninvasively in vivo.
Therefore, considerable efforts have been made to investigate
the progression of brain-related disorders based on retinal signs.
Lindley et al. (2009) found that, lacunar stroke was more likely
to produce retinal micro-vessel signs, such as focal arteriolar
narrowing, arteriovenous nipping, generalized retinal arteriolar
narrowing, small retinal arteriole to venule ratio, and retinal
venular widening, compared with other stroke subtypes. Optical
coherence tomography (OCT) is an efficient cross-sectional
bioimaging modality that has become indispensable to retinal

examination. Wang et al. (2014) employed spectral-domain OCT
to detect localized retinal nerve fiber layer defects (RNFLDs) and
confirmed that they were strongly associated with acute ischemic
stroke, or prior cerebral stroke. Moreno-Ramos et al. (2013)
revealed a significant decrease in the thickness of the retinal
nerve fiber layer (RNFL) in AD, PD, and Lewy body dementia
compared to normal controls, but the thickness changes were not
statistically significant between these three diseases. Thomson
et al. (2015) conducted a meta-analysis of RNFL change in
dementia and concluded that the RNFL thickness had the
potential to distinguish AD, or mild cognitive impairment (MCI)
from healthy controls (HC). Thinning of the ganglion cell-
inner plexiform layer (GC-IPL) may be found at the preclinical
stage of AD (Fyfe, 2018; Cheung et al., 2019; Ma et al., 2021).
Bulut et al. (2018) analyzed retinal vascular density (RVD), the
foveal avascular zone (FAZ), choroidal thickness (CT), and outer
retinal and choroidal flow rate in AD patients and HC via OCT
angiography (OCTA) imaging, and highlighted the potential role
of those metrics in the early diagnosis of AD. Ma et al. (2018)
studied potential correlations between PD and retinal changes
using OCT, finding that the average RNFL thickness, total
macular thickness and MV were significantly decreased in PD
patients compared to HC. Matlach et al. (2018) carried out some
correlation analysis, but ruled out macular inner retinal thickness
and peripapillary RNFL thickness to be effective biomarkers of
PD patients. Chrysou et al. (2019) performed a relatively detailed
meta-analysis of retinal changes in PD, and confirmed significant
thinning of peripapillary RNFL and combined GC-IPL in PD.

For retinal structural changes associated with
AD/PD/dementia, most prior work focused on the thickness
of the RNFL, GCL, and/or GC-IPL. However, the retina is
usually composed of inner layers and outer layers, as shown
in Figure 1. The inner retinal layers include the RNFL, GCL,
inner plexiform layer (IPL), and inner nuclear layer (INL),
while the outer retinal layers comprise the outer plexiform
layer (OPL), the Henle fiber layer and outer nuclear layer
(HFL+ONL), the myoid and ellipsoid zone (MEZ), the
photoreceptor outer segments (OS), the interdigitation zone
and the retinal pigment epithelium/Bruch complex (IZ+RPE).
On one hand, RPE layer in the outer retina may produce
levodopa, a precursor to dopamine (McKay et al., 2006). The
degeneration of dopaminergic neurons is an important feature
of Parkinson’s Disease. On the other hand, the INL+HFL and
OS layers in the outer retina contain axons and dendrites
of photoreceptor cells, respectively (Lujan et al., 2011). The
NFL containing ganglion cell axons, and the IPL containing
ganglion cell dendrites were confirmed to be thinner in WMH
patients. To the best of our knowledge, the study of associations
between thickening in any of the outer retinal layers and
brain-related diseases has remained relatively unexplored. In
this study, we use a deep learning model to segment the outer
retinal layer automatically from OCT images, and measure
the thickness of each layer. We then utilize these thickness
indicators to investigate outer retinal layer alterations within
the PD, WMH and HC groups, respectively, in order to find
a potential retina-related index for the auxiliary diagnosis of
these diseases.
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2. EXPERIMENTS

Ethical approval for all experiments was provided by the
institutional ethics committees, and written informed
consent was obtained from each individual in accordance
with Declaration of Helsinki.

2.1. Data Collection
2.1.1. Healthy Controls
There were 32 participants of similar age and sex to the
WMH and PD patients. HC were subjects without cognitive
impairment. Any subject with any of certain ocular diseases (such
as glaucoma, macular degeneration, cataract, or high myopia)
or with a systematic/neurological disease (such as diabetes,
hypertension or multiple sclerosis) or prior ocular surgery was
excluded from this study.

2.1.2. WMH and PD Participants
In total 56 eyes from 31 WMH patients and 11 eyes from 6 PD
patients were enrolled in this study. Demographic data (age and
sex) of WMH and PD participants were obtained through self-
reporting questionnaires. WMH cases were evaluated by MRI
technique, using a spin density image to estimate the total volume
of subcortical white matter signal abnormalities. Participants
were divided into WMH and HC groups by their total Fazekas
scores, according to the reference standards of the presence of
white matter abnormalities (Fazekas et al., 1987).

PD patients were diagnosed according to the UK Parkinson’s
Disease Society Brain Bank Clinical Diagnostic Criteria (Hughes
et al., 1992). To satisfy the diagnosis of bradykinesia, a patient
should have at least one of the following symptoms: muscular
rigidity, 4–6 Hz rest tremor, and postural instability that
are not caused by primary visual, vestibular, cerebellar, or
proprioceptive dysfunction.

FIGURE 1 | Illustration of the outer retina layered structure, from top to

bottom: outer plexiform layer (OPL), Henle fiber layer and outer nuclear layer

(HFL+ONL), myoid and ellipsoid zone (MEZ), photoreceptor outer segments

(OS), interdigitation zone and retinal pigment epithelium/Bruch complex

(IZ+RPE).

2.2. OCT Image Acquisition
The RTVue XR Avanti SD-OCT system (Optovue Inc., Fremont,
California, USA) was employed to perform a macular-centered
OCT scan for each participant. Each scanned volume comprised
400 B-scans with a resolution of 400 × 400 × 640 pixels, and
covered a field of view of 6.00× 6.00× 1.99mm3.

2.3. Methods
A senior ophthalmologist manually annotated 160 OCT images
for our validation. The labeled mask containing 5 layers of
outer retinal sublayer based on our internally developed labeling
software. Due to the characteristics of coherent light imaging,
OCT is susceptible to coherent/speckle noise, resulting in
significant degradation in spatial resolution and image quality.
In order to overcome these quality defects, a multi-frame fusion-
based super-resolution reconstruction algorithm (Yan et al.,
2020) was adopted as a preprocessing step before segmentation
to improve the resolution of the OCT images. A deep learning-
based algorithm (i.e., context encoder network namely CE-Net
Gu et al., 2019) was then employed to segment the outer retinal
layers from the volumetric images (Please see Appendix in
Supplementary Material and Figure 5 for more details). CE-
Net was originally proposed for medical image segmentation
specifically to overcome feature resolution reduction caused by
consecutive pooling or convolution striding, and it has been
proven to be effective in retinal OCT layer segmentation.

In the training stage, we input the super-resolution
reconstructed OCT image which were cropped to 512 ×

400 pixels automatically to the CE-Net, and calculate the Dice
loss function (Crum et al., 2006) for the predicted map of the
network output with the paired label. During the training,
batch size was set to 4 and we adopt the SGD optimizer with a
weight decay of 5e-4 to train the entire network end-to-end. The
learning rate we set to 2e-4.

In this work, we first employed the CE-Net to detect the
outer retinal layer boundaries, then we asked an ophthalmologist
to review the automated detection results. The boundaries with
poor segmentation performance were manual adjusted by using
open source software ImageJ (https://imagej.nih.gov/ij/). Finally,
thickness quantification of the outer retinal layers was performed
on the basis of previous segmentation results. By calculating
the thickness of the outer retinal layer for each B-scan of the
same subject, the global thickness indicator of the corresponding
person was obtained.

TABLE 1 | Basic characteristics of WMH, PD, and HC groups.

Characteristics
WMH PD HC

P1 P2
(n = 31) (n = 6) (n = 32)

Eyes (OD), n 56 (28) 11 (5) 58 (28) N/A N/A

Age, years 63.58 ± 7.12 62.67 ± 11.48 60.56 ± 5.72 0.239⋄ 0.492⋄

Female, n 12 4 20 0.059‡ 0.846‡

OD represents the right eyes.

P1 and P2 denote the significance between WMH and HC, and PD and HC, respectively.

P⋄ value was obtained by Student’s t-test and P‡ value was obtained by chi-square test.
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FIGURE 2 | The qualitative comparison of outer retinal layer thickness. (A) The thickness of the HFL+ONL and OS layers in a WMH case is obviously reduced

compared with a healthy subject from the HC group, (B) The thickness of the IZ+RPE layer in a PD case is obviously greater than in a HC case.

2.4. Statistical Analysis
The statistical analysis was performed using IBM SPSS Statistics
v22.0 software (IBM Inc., Armonk, NY, USA). To compare
the characteristics of subjects among groups, Student’s t-tests
and chi-square tests were performed for continuous variables
and categorical ones, respectively. If the samples across each
group meet the hypothesis of homogeneity of variance, the
One-way ANOVA models is applied to analyze the thickness
difference among three groups. Otherwise, the KruskalWallis test
for independent samples was applied for continuous variables,
and the chi-square test for cateforical variables. Furthermore,
associations between incidence of disease and the thickness
information of the retinal layers were assessed using multivariate
logistic regression analysis, in which the models of the WMH
and PD groups were adjusted for age and gender. p < 0.05
was regarded as statistically significant. The basic demographics
of the subjects are shown in Table 1. There was no significant
difference in either age or sex between groups.

2.5. Results
2.5.1. Descriptive Statistics
The visual comparison results of outer retinal layer segmentation
of 3 example images from different groups are shown in Figure 2.
The box plots in Figure 3 illustrate median, 1st/3rd quartile
and lower/upper values within 1.5 interquartile ranges of 5
outer retinal layers. To quantitatively evaluate disease correlation,
thickness comparisons between the WMH, PD and HC groups
are summarized in Table 2. In the joint thickness of HFL and
OPL, there is a significant difference (p = 0.031) between the
WMH, PD and HC groups, while the MEZ thickness also shows
a significant difference between the three groups (p = 0.042).
The OS thickness of the WMH group exhibits an obvious
decrease compared with the PD and HC groups (p = 0.008).
Moreover, it is worth mentioning that the mean thickness of
IZ+RPE in the PD group was significantly thicker than that
in the other two groups. However, due to small sample size,
the variance is non-homogeneous, and there is no obvious
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FIGURE 3 | (A–E) illustrate thickness differences in the outer retina sublayers between the WMH, PD, and HC groups.

significance in the nonparametric test. In Figure 4, we present
the thickness differences between outer retinal layers of 3 cases
from different groups.

2.5.2. Logistic Regression Analysis
Some studies concluded that the outer retinal thickness was
significantly correlated with age and sex. However, in our
study we could not find a significant collinear relationship
between these variables. Therefore, we took age, gender and
thickness as independent variables, and took the HC group
as the reference group for multiple logistic regression analysis
with the PD and WMH groups, respectively. Considering the
reliability of multivariate logistic regression over a small sample
size, the demographic data was selected before enrolled as
independent variables. Demographic variables with p < 0.2 in
the univariate logistic regression were selected for adjustment
in the multivariate logistic regression if the number of variables
was more than one-tenth of the sample size. The results are
shown in Table 3. Excluding the interference of age and gender,
the thickness of the HFL+OPL and the OS layers in WMH
patients were significantly reduced when compared to the HC
group (p = 0.031 and p = 0.005, respectively). However, there
was no significant difference in the thickness of the OPL, MEZ
and IZ+RPE layer between these two groups. For the PD and
HC groups, there was no statistically significant difference (p

TABLE 2 | Thickness comparison among WMH, PD, and HC (µm).

Outer retinal layer WMH (n = 56) PD (n = 11) HC (n = 58) p

OPL 25.542 ± 1.479 25.179 ± 1.578 25.553 ± 1.031 0.669

HFL+ONL 49.282 ± 4.689 48.474 ± 2.425 51.178 ± 4.213 0.031

MEZ 27.575 ± 2.224 29.607 ± 2.884 28.091 ± 1.116 0.042

OS 22.354 ± 4.059 24.096 ± 4.580 24.550 ± 3.190 0.008

IZ+RPE 17.290 ± 2.228 19.619 ± 4.626 17.434 ± 1.664 0.268∗

p-value was obtained by ANOVA, and P∗ represents the result of a nonparametric test

(Kruskal Wallis test) applied when the sample variance was non-homogeneous. Bold

values indicate statistical significance of P < 0.05.

> 0.05) between PD patients and healthy people in the outer
retinal layers.

3. DISCUSSION

The retina is an extension of the brain and central nervous
system. Some lesions in the brain will produce corresponding
changes in some areas of the retina. Therefore, the retina is an
ideal place to study Parkinson’s Disease, Alzheimer’s Disease,
stroke and other brain diseases. Identifying early, non-invasive
and inexpensive biomarkers for proxy outcomemeasurement has
important clinical significance for the diagnosis of brain diseases.
We evaluated the thickness of the outer retina in different groups,
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FIGURE 4 | The en-face retinal layer thickness maps of four cases from the WMH, PD and HC groups, respectively. (A,B) show the thickness distribution difference of

the OS layer between the HC and WMH groups. (C,D) show the thickness distribution difference of the IZ+RPE layer between the HC and PD groups.

and found some sublayer thickness differences in the PD and
WMH groups when compared with the HC group.

3.1. Parkinson’s Disease and the IZ+RPE
Layer of the Retina
Degeneration of dopaminergic neurons in substantia nigra is an
important feature of Parkinson’s Disease, and dopamine is the
key neurotransmitter of motor function. Earlier studies showed
that dopamine-containing neurons are found in the retina,
particularly in the interamacrine cell of the inner plexiform
layer and in the flexor cells of the inner and outer plexiform
layers (Frederick et al., 1982). Almost all types of retinal neurons
have dopamine receptors, whether in synaptic contact or not
(Djamgoz et al., 1997). Most patients with PD experience
symptoms of impaired vision during the course of their illness
(Bodis-Wollner, 2013). In addition, dopamine was reported
to induce axial eye elongation, which suggests that dopamine
can prevent myopia (Papastergiou et al., 1998). These studies

indicated that PD may contribute to structural and functional
retinal changes on account of abnormalities in retinal dopamine.

Some prior studies have focused on changes in outer retinal
layer thickness in brain-related diseases. Spund et al. (2013)
found that there was no statistical difference in photoreceptor
thickness in the central fovea between PD and HC groups. Roth
et al. (2014) concluded that combined ONL and photoreceptor
layer thickness were significantly decreased in PD patients
compared to HC. Altintaş et al. (2008) reported that, compared
with the control group, the mean retinal nerve fiber layer
(RNFL) thickness was significantly reduced in Parkinson’s
disease patients.

In our study, however, some of the obtained results were
inconsistent with previous studies. For instance, we found that
the thickness of the IZ+RPE layer increases in the PD group
(p = 0.052), while the thickness of the HFL+ONL/MEZ/OS
layer shows no statistical difference between the PD and HC
groups. On one hand, a relatively small number of samples is
one of the major issues for inconsistency. On the other hand,
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FIGURE 5 | Overview of the context encoder network (CE-Net) (Gu et al., 2019).

TABLE 3 | Results of multivariate logistic regression for demographic data.

Outer retinal layer
WMH PD

OR 95% CI P1 OR 95% CI P2

OPL 1.022 0.758–1.380 0.885 0.791 0.452–1.385 0.412

HFL+ONL 0.897 0.813–0.990 0.031 0.868 0.738–1.020 0.085

MEZ 0.847 0.668–1.073 0.169 1.229 0.912–1.657 0.176

OS 0.851 0.759–0.953 0.005 0.964 0.791–1.175 0.715

IZ+RPE 0.921 0.753–1.126 0.422 1.681 1.149–2.461 0.052

P1 and P2 were calculated by multivariate logistic regression analysis between WMH and

HC, PD and HC groups, respectively.

OR represents the odd ratio and 95% CI denotes the 95% confidence interval.

and we also consider the differences in the instruments and
embedded software used may cause inconsistencies between
different studies. For example, The data used in study (Roth
et al., 2014) was captured by spectral domain OCT (Cirrus
HD-OCT Version 5.0, Carl Zeiss Meditec, Dublin, CA, USA),
and the retinal thickness measured by commercially available
OCT Model 3000 unit (Model 3000, software version A1.1,
Carl Zeiss Meditec, Inc., Dublin, California, USA) in study
(Altintaş et al., 2008), while the data we studied was acquired
by RTVue XR Avanti SD-OCT system (Optovue Inc., Fremont,
California, USA), and different imaging devices may lead to the
heterogeneity in imaging retinal tissue and image quality.

RPE is the outermost cell layer of the retina whose function
is to nourish the retinal visual cells. As it is reported that the
RPE layer can produce levodopa, a precursor to dopamine. The

RPE transplantation into the striatum might be a promising
prospect in clinical treatment of PD (McKay et al., 2006; Ming
et al., 2009). The increasing of RPE layer in PD is likely to
be a kind of compensation mechanism in response to the
shortage of dopamine. Nevertheless, further study is required
for confirmation.

3.2. White Matter Hyperintensities and the
ONL+HFL/OS Layer of the Retina
White matter hyperintensity, one of the imaging features of
Cerebral Small Vessel Disease (CVD), is a clinically important
marker of several common brain diseases, such as dementia and
stroke. White matter is the site where nerve fibers gather in the
brain, and is mainly composed of the dendrites and axons of
brain neurons. Previous studies have explored the relationship
between ganglion cells and white matter (Ong et al., 2015; Mutlu
et al., 2017; Tak et al., 2018). Ganglion cells are located in the
inner layer of the retina: nerve fiber layer (NFL), ganglion cell
layer (GCL) and inner plexiform layer (IPL) together forming the
ganglion cell complex. The NFL and IPL are composed of axons
and dendrites respectively, and they are more likely to reflect the
condition of the white matter as a whole. The GCL is composed
of cell bodies, and it is more likely to be related to gray matter
(Mutlu et al., 2017). Qu et al. (2020) has also recently reported
that the thickness of the NFL and GCL+IPL were associated with
WMH, and deteriorate with the severity of lesions.

To the best of our knowledge, no effort has been made
to unveil any correlation between outer retinal layer thickness
measurements between WMH and HC groups. In our study, we
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found that the INL+HFL and OS thickness of the WMH group
was significantly thinner than in the HC group. Interestingly,
the INL+HFL contains bundles of unmyelinated cone and rod
photoreceptor axons (Lujan et al., 2011), whereas the OS is
equivalent to the dendritic part of a photoreceptor cell. The
decrease of the thickness of these two layers is consistent with the
findings of a prior study of ganglion cells, in which the sublayer
of axons and dendrites became thinner (Qu et al., 2020). This
provides new evidence for a correlation between the neurites of
retinal cells and white matter.

We speculate that the concentration of amyloid beta
protein(Aβ) may lead to changes in the neurite layer of retinal
neurons. Aβ is one of the important causes of Alzheimer’s
disease, and it is also related to WMH (Osborn et al., 2018).
Animal experiments have shown that the concentration of Aβ

is positively related to synaptic activity. Thus, it is reasonable to
speculate that Aβ deposition may lead to the degeneration of
different nerve cells in the retina, resulting in the thinning of
the related sublayers. Unfortunately, our data did not record the
amyloid beta protein content of patients and the control group,
but this provides a specific idea for follow-up research.

3.3. Limitations
Our study still has some limitations. On one hand, this study
lacks longitudinal follow-up. Our WMH group might contain a
mixture of AD patients, dementia subjects with Lewy bodies, and
stroke participants. It should be split up into several subgroups to
better understand the different clinical relationship. On the other
hand, our present study is also limited by the relatively small
sample size of the PD group. Hence, expansion of the dataset pool
is desirable.

4. CONCLUSION

In conclusion, we used a state-of-the-art deep learning-based
method to segment the outer retinal layers, and further measure
the thickness of the sublayers.We found that retinal degeneration
in the ONL+HFL and OS were independently associated with
the WMH, and that the thickness of the IZ+RPE in the PD
group was significantly greater than in the HC group, providing
new evidence that some brain diseases may cause changes in
the retina. Finally, we recommend that future studies should
expand the sample size and employ longitudinal designs to

further elucidate the relationship between the WMH/PD and
outer retinal thickness.
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hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform

layer, and choroidal layer in migraine patients. Neurol. Sci. 39, 489–496.

doi: 10.1007/s10072-017-3234-9

Thomson, K. L., Yeo, J. M., Waddell, B., Cameron, J. R., and Pal, S. (2015).

A systematic review and meta-analysis of retinal nerve fiber layer change

in dementia, using optical coherence tomography. Alzheimers Dementia 1,

136–143. doi: 10.1016/j.dadm.2015.03.001

Van Dalen, J., Mutsaerts, H., Nederveen, A., Vrenken, H., Steenwijk,

M., Caan, M., et al. (2016). White matter hyperintensity volume and

cerebral perfusion in older individuals with hypertension using arterial

spin-labeling. Am. J. Neuroradiol. 37, 1824–1830. doi: 10.3174/ajnr.

A4828

Wang, D., Li, Y., Wang, C., Xu, L., You, Q. S., Wang, Y. X., et al. (2014).

Localized retinal nerve fiber layer defects and stroke. Stroke 45, 1651–1656.

doi: 10.1161/STROKEAHA.113.004629

Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R.,

et al. (2013). Neuroimaging standards for research into small vessel disease and

its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838.

doi: 10.1016/S1474-4422(13)70124-8

Yan, Q., Chen, B., Hu, Y., Cheng, J., Gong, Y., Yang, J., et al. (2020).

Speckle reduction of oct via super resolution reconstruction and its

application on retinal layer segmentation. Artif. Intell. Med. 106, 101871.

doi: 10.1016/j.artmed.2020.101871

Zhuang, Y., Zeng, X., Wang, B., Huang, M., Gong, H., and Zhou, F. (2017).

Cortical surface thickness in the middle-aged brain with white matter

hyperintense lesions. Front. Aging Neurosci. 9:225. doi: 10.3389/fnagi.2017.

00225

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Zhao, Zhao, Gu, Chen, Guo, Xie, Yan, Ma, Wu, Zhang, Lu

and Liu. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 74165124

https://doi.org/10.1109/TMI.2006.880587
https://doi.org/10.1016/S0042-6989(97)00129-6
https://doi.org/10.1212/WNL.0000000000003890
https://doi.org/10.1007/s12975-019-0689-4
https://doi.org/10.2214/ajr.149.2.351
https://doi.org/10.1002/cne.902100108
https://doi.org/10.1038/s41582-018-0044-5
https://doi.org/10.1109/TMI.2019.2903562
https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1016/S1474-4422(09)70131-0
https://doi.org/10.1167/iovs.10-5946
https://doi.org/10.3233/JPD-171184
https://doi.org/10.1109/TMI.2020.3042802
https://doi.org/10.1016/j.parkreldis.2018.06.016
https://doi.org/10.1016/j.expneurol.2006.04.016
https://doi.org/10.1186/1479-5876-7-53
https://doi.org/10.3233/JAD-121975
https://doi.org/10.1016/j.neurobiolaging.2017.09.003
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1016/j.neulet.2014.10.010
https://doi.org/10.1016/j.neurobiolaging.2018.03.028
https://doi.org/10.1016/S0042-6989(97)00347-7
https://doi.org/10.1002/brb3.1521
https://doi.org/10.1002/mds.25896
https://doi.org/10.1038/s41531-021-00155-0
https://doi.org/10.1007/s10072-020-04958-6
https://doi.org/10.1007/s00702-012-0909-5
https://doi.org/10.1007/s10072-017-3234-9
https://doi.org/10.1016/j.dadm.2015.03.001
https://doi.org/10.3174/ajnr.A4828
https://doi.org/10.1161/STROKEAHA.113.004629
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1016/j.artmed.2020.101871
https://doi.org/10.3389/fnagi.2017.00225
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 08 October 2021

doi: 10.3389/fnins.2021.743769

Frontiers in Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 743769

Edited by:

Jian Zheng,

Suzhou Institute of Biomedical

Engineering and Technology (CAS),

China

Reviewed by:

Lingjiao Pan,

Jiangsu University of Technology,

China

Yakang Dai,

Suzhou Institute of Biomedical

Engineering and Technology (CAS),

China

*Correspondence:

Xinjian Chen

xjchen@suda.edu.cn

Specialty section:

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Neuroscience

Received: 19 July 2021

Accepted: 23 August 2021

Published: 08 October 2021

Citation:

Meng Q, Wang L, Wang T, Wang M,

Zhu W, Shi F, Chen Z and Chen X

(2021) MF-Net: Multi-Scale

Information Fusion Network for CNV

Segmentation in Retinal OCT Images.

Front. Neurosci. 15:743769.

doi: 10.3389/fnins.2021.743769

MF-Net: Multi-Scale Information
Fusion Network for CNV
Segmentation in Retinal OCT Images
Qingquan Meng, Lianyu Wang, Tingting Wang, Meng Wang, Weifang Zhu, Fei Shi,

Zhongyue Chen and Xinjian Chen*

School of Electronics and Information Engineering, Soochow University, Jiangsu, China

Choroid neovascularization (CNV) is one of the blinding ophthalmologic diseases.

It is mainly caused by new blood vessels growing in choroid and penetrating

Bruch’s membrane. Accurate segmentation of CNV is essential for ophthalmologists

to analyze the condition of the patient and specify treatment plan. Although many

deep learning-based methods have achieved promising results in many medical image

segmentation tasks, CNV segmentation in retinal optical coherence tomography (OCT)

images is still very challenging as the blur boundary of CNV, large morphological

differences, speckle noise, and other similar diseases interference. In addition, the lack of

pixel-level annotation data is also one of the factors that affect the further improvement

of CNV segmentation accuracy. To improve the accuracy of CNV segmentation, a

novel multi-scale information fusion network (MF-Net) based on U-Shape architecture

is proposed for CNV segmentation in retinal OCT images. A novel multi-scale

adaptive-aware deformation module (MAD) is designed and inserted into the top of the

encoder path, aiming at guiding the model to focus on multi-scale deformation of the

targets, and aggregates the contextual information. Meanwhile, to improve the ability of

the network to learn to supplement low-level local high-resolution semantic information to

high-level feature maps, a novel semantics-details aggregation module (SDA) between

encoder and decoder is proposed. In addition, to leverage unlabeled data to further

improve the CNV segmentation, a semi-supervised version of MF-Net is designed based

on pseudo-label data augmentation strategy, which can leverage unlabeled data to

further improve CNV segmentation accuracy. Finally, comprehensive experiments are

conducted to validate the performance of the proposed MF-Net and SemiMF-Net. The

experiment results show that both proposedMF-Net and SemiMF-Net outperforms other

state-of-the-art algorithms.

Keywords: choroid neovascularization, OCT images, multi-scale information fusion network, segmentation,

convolutional neural networks

INTRODUCTION

Choroidal neovascularization (CNV), also known as subretinal neovascularization, is a basic
pathological change of various intraocular diseases such as age-related macular degeneration,
central exudative chorioretinopathy, idiopathic choroidal neovascularization, pathological myopic
macular degeneration, and ocular histoplasmosis syndrome (DeWan et al., 2006; Abdelmoula et al.,
2013; Jia et al., 2014; Liu et al., 2015; Zhu et al., 2017). It often involves the macula, causing
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serious damage to the central vision. In the early stage of
CNV, there are usually no abnormal symptoms. Along with
the gradual expansion of neovascular leakage and rupture, it
may cause vision loss, visual distortion, or central scotoma
(Freund et al., 1993; Grossniklaus and Green, 2004). CNV
can persist for months or years and then gradually become
steady (Zhu et al., 2017). The macula of the patients with
recurrent symptoms are seriously damaged, which may cause
permanent visual impairment. Optical coherence tomography
(OCT) is a non-invasive imaging technology proposed by Huang
et al. (1991), which can capture high-resolution cross-sectional
retinal structure. It plays an important role in the diagnosis and
monitoring of retinal diseases (Shi et al., 2014; Chen et al., 2015;
Wang et al., 2021a). In addition, fluorescence angiography (FA)
and indocyanine green angiography (ICGA) are also important
diagnostic imaging modalities for the detection of retinal diseases
in clinical practice, and there are many works to analyze CNV
based on FA and ICGA (Talisa et al., 2015; Gao et al., 2016;
Corvi et al., 2020). However, FA and ICGA can only capture
one 2D fundus image, which may cause the loss of internal
structure information of CNV (Zhang et al., 2019). Besides, FA
and ICGA are invasive and may cause nausea and other allergic
reactions due to intravenous injection of dye (Jia et al., 2014).
Instead, OCT is non-invasive and can obtain high-resolution
cross-sectional images of the retina with a high speed (Talisa
et al., 2015; Corvi et al., 2020). Therefore, accurate segmentation
of CNV in OCT images is essential for ophthalmologists to
analyze the condition of the patient and specify treatment plan.
There are also previous studies that have been proposed for
CNV segmentation in retinal OCT images (Xi et al., 2019;
Zhang et al., 2019). Zhang et al. (2019) designed a multi-scale
parallel branch CNN to improve the performance of CNV
segmentation in OCT images. Xi et al. (2019) proposed an
automated segmentation method for CNV in OCT images using
multi-scale CNN with structure prior, in which a structure
learning method was innovatively proposed based on sparse
representation classification and the local potential function to
capture the global spatial structure and local similarity structure
prior. However, CNV segmentation in retinal OCT images is still
very challenging as the complicated pathological characteristics
of CNV, such as blur boundary, large morphological differences,
speckle noise, and other similar disease interference. Multi-
scale global pyramid feature aggregation module and multi-scale
adaptive-aware deformation module are proposed to segment
corneal ulcer in slit-lamp image in our previous study (Wang
et al., 2021b). Therefore, to tackle these challenges and improve
the CNV segmentation accuracy, a novel multi-scale information
fusion network (MF-Net) is proposed for CNV segmentation in
retinal OCT images. Our main contributions are summarized
as follows,

1) A multi-scale adaptive-aware deformation module (MAD) is
used and inserted at the top of encoder path to guide the
model to focus on multi-scale deformation of the targets and
aggregates the contextual information.

2) To improve the ability of the network to learn to supplement
low-level local high-resolution semantic information to

high-level feature maps, a novel semantics-details aggregation
module (SDA) between encoder and decoder is designed.

3) Based on a U-shape architecture, a novel MF-Net integrated
MAD module and SDA module are proposed and applied for
CNV segmentation tasks. In addition, to leverage unlabeled
data to further improve the CNV segmentation accuracy, a
semi-supervised version of MF-Net is proposed by combining
pseudo-data augmentation strategy named as SemiMF-Net.

4) Extensive experiments are conducted to evaluate the
effectiveness of the proposed method. The experimental
results show that, compared to state-of-the-art CNN-
based methods, the proposed MF-Net achieves higher
segmentation accuracy.

RELATED WORK

Recently, deep learning-based method has been proposed for
image segmentation and achieved remarkable results. Long
et al. (2015) proposed a fully convolutional networks (FCN)
for semantic segmentation, which removed the full connection
layer and could adapt to any input size. Although FCN has
achieved satisfactory performance in semantic segmentation,
the capacity of FCN to capture contextual information still
needs to be improved as the limitation of convolutional layers.
To tackle these problems, there are many methods that use
pyramid-based modules or global pooling to aggregate regional
or global contextual information (Chen et al., 2017; Zhao et al.,
2017). Zhao et al. (2017) proposed a pyramid scene parsing
network (PSPNet) based on pyramid pool modules, which
aggregated context information from different regions to learn
global context information. Chen et al. (2017) further proposed
DeepLab v3 for semantic segmentation by introducing atrous
convolution and atrous spatial pyramid pooling (ASPP). In
addition, many attention mechanism-based methods have been
explored to aggregate heterogeneous contextual information (Li
et al., 2018; Oktay et al., 2018; Fu et al., 2019). However,
these methods are mainly applied to the segmentation tasks
with obvious features. In additional, there are also many deep
learning-based methods have been proposed for medical image
segmentation (Ronneberger et al., 2015; Gu et al., 2019; Feng
et al., 2020). Although these methods have achieved impressive
results, their performance of CNV segmentation in OCT images
with large morphological differences, speckle noise, and other
similar disease interference features has been reduced. Therefore,
to improve the segmentation accuracy and tackle the challenges
of CNV segmentation in retinal OCT images, a novel multi-
scale information fusion network (MF-Net) is proposed for CNV
segmentation in retinal OCT images.

METHOD

As shown in Figure 1, the proposed encoder-decoder structure-
based multi-scale information fusion network (MF-Net) consists
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FIGURE 1 | Architecture of the proposed MF-Net.

of three parts: encoder-decoder network, multi-scale adaptive-
aware deformation module (MAD), and semantics-details
aggregation module (SDA). Specifically, the encoder-decoder
network is used as our backbone network. MAD is inserted at the
top of the encoder to guide the model to focus on the multi-scale
deformation maps and aggregate the contextual information,
while SDA is applied as a variant of skip connection of the whole
network to fuse multi-level semantic information.

Backbone
Recently, the encoder-decoder structure is proved to be an
efficient architecture for pixel-wised semantic segmentation.
Most of the state-of-the-art segmentation networks are based
on encoder-decoder structures, including AttUNet (Oktay et al.,
2018), CE-Net (Gu et al., 2019), and PSPNet (Zhao et al., 2017)
that have achieved remarkable performances in medical image
segmentation. The encoder-path is mainly used to extract rich
semantic information and global features from the input image
and down sample the feature maps layer by layer, while the
decoder-path aims to up sample the feature maps with strong
semantic information from higher level stage, and restore the
spatial resolution layer by layer.

To maximize the use of the information provided by the
original image, the same encoder-decoder path is used as our
backbone network. Unlike CE-Net, which send, the output of
the encoder-path to dense atrous convolution (DAC) followed by
residual multi-kernel pooling (RMP), the output is directly sent
to the decoder-path. In addition, the skip-connection between
the same level of encoder and decoder in CE-Net is also deleted
in our backbone network.

Multi-Scale Adaptive-Aware Deformation
Module (MAD)
It has been demonstrated that themulti-scale feature can improve
the CNV segmentation accuracy in Zhang et al. (2019) and
Xi et al. (2019). Therefore, to tackle the problems of large
morphological differences of CNV in retinal OCT images, aMAD
module is embedded at the top of the encoder-path to guide
the model to focus on multi-scale deformation of the targets
and aggregate the contextual information. As can be seen from
Figure 2 that the MAD module contains four parts: parallel and
deformable convolutionmodule, multiple global spatial attention
module, multiple global channel attention module, and adaptive
residual module as shown in Figure 2.

Parallel and Deformable Convolution Module
After features are encoded by Encoder 4 (E4), they are fed into
parallel and deformable convolution module to augment the
spatial sampling locations in the modules by additional offsets
of kernel size in horizontal and vertical direction. As shown in
Figure 2, the output of Encoder 4 (E4) is simultaneously fed into
four 1×1 convolutional layers. Four dilation convolutions with
rate 1, 3, 5, and 7 are, respectively, further used after the four
parallel layers to squeeze the channel and to extract global context
information from different levels of feature maps, and then,
the feature maps are concatenated and fed into a deformable
convolution to compute B ∈ Rc×h×w. Finally, B ∈ Rc×h×w are fed
into the parallel-linked multiple global spatial attention module,
multiple global channel attention module, and adaptive residual
module, respectively. The parallel and deformable convolution
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FIGURE 2 | Architecture of the proposed multi-scale adaptive-aware deformation module (MAD).

module can be summarized as

B = Convdeformconcat
4
k=1

(

convdilation@2k−1

(

Ak
))

, (1)

where Ak
∈ Rc×h×w denotes the output of 1×1 convolutional

layers in k-th parallel branch, and @2k−1 represents the
convolution with a dilation rate of 2k− 1.

Multiple Global Spatial Attention Module
Max-pooling and average pooling are commonly used operations
in convolutional neural networks, since they can reduce the sizes
of feature maps and keep significant spatial response information
in each channel; nevertheless, noise may also be kept due to the
different sizes and shapes of the lesion. To reduce the influence
of the irrelevant significant spatial response information in all
channels, average pooling can be used to compute the mean
value of all channels in the corresponding position in the input
feature maps. Therefore, 2D average-pooling and max-pooling
are performed simultaneously in our multiple global spatial
attention module to get the most significant spatial response
information in all channels and suppress noise interference. B are
fed to the maximum map branch and the mean map branch in
parallel to generate attentionmap S1 ∈ R1×h×w and S2 ∈ R1×h×w,
respectively, and then are concatenated in channel dimension.
Then, a convolutional operation is applied to squeeze the channel
of concatenated maps. Finally, a sigmoid function is used to
generate the final attention feature map S ∈ R1×h×w,

S = sigmoid
(

conv
(

concat
(

S1, S2
)))

. (2)

This module can get the response of each feature map in all
channels and suppress noise interference.

Multiple Global Channel Attention Module
Two parallel branches with global pooling are also constructed.
The featuremaps B are fed into a global max-pooling operation to
obtain global channel maximum value maps C1

∈ Rc×1×1, while
B are also fed into a global average-pooling operation to obtain
global channel mean value maps C2

∈ Rc×1×1. Then, C1 and C2

are concatenated and fed into a convolution layer to smooth and
squeeze the feature maps. Finally, the results are reshaped and
fed into a fully connected layer followed by a sigmoid function to
obtain the final feature map C ∈ Rc×1×1,

C = sigmoid
(

FC
(

conv
(

concat
(

C1,C2
))))

. (3)

This module can get the response of each feature map in all
channels and suppress noise interference.

Adaptive Residual Module
The output of parallel and deformable convolution module B ∈

Rc×h×w is multiplied by feature maps frommultiple global spatial
attention module S ∈ R1×h×w spatial-wisely and feature maps
from multiple global channel attention module C ∈ Rc×1×1

channel-wisely, respectively. Then, pixel-wise addition operation
followed by a convolutional layer is applied as

O = B⊕ conv
((

λB⊗spatial (S)
)

⊕ (γB⊗channel (C))
)

, (4)

where ⊗spatial and ⊗channel denote spatial-wise and channel-wise

multiple, respectively. O ∈ Rc×h×w represents the output of the
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adaptive residualmodule.⊕ represents pixel-wise addition. λ and
γ are learnable parameters and are initialized as a non-zero value
(1.0 in this study). Finally, pixel-wise addition is used to add the
original feature maps to the smoothed feature maps to get the
final output of multi-scale adaptive-aware deformation module
O ∈ Rc×h×w to the decoder-path.

Semantics-Details Aggregation Module
(SDA)
Skip-connection can fuse the strong semantic information of the
decoder-path with the high-resolution feature of the encoder-
path. It is a commonly used structure in encoder-decoder-based
network and further promotes the applications of the encoder-
decoder structure. However, directly sending the high-resolution
features of the encoder to the decoder will introduce irrelevant
clutters and result in incorrect segmentation. Therefore, a novel
semantics-details aggregation module (SDA) has been proposed
as a variant of skip-connection to enhance the information that is
conducive to segmentation and suppress invalid information. As
can be seen in Figure 1, two SDA modules have been introduced
between encoders and decoders. The structure of the proposed
SDA module is shown in Figure 3. In the SDA module, the
skip-connection is reconstructed by combining the feature map
of encoder, decoder, and upper-level decoder. For example, the
left of Figure 3 shows the structure of SDA 1. First, output
feature maps of the Decoder 3 are upsampled followed by 3
× 3 convolutional layers to squeeze the channel. Then, the
obtained feature maps and the output of the Encoder 2 are
multiplied pixel-wisely to filter the detailed information that is
conducive to segmentation. Finally, the filtered feature maps and
the output of theDecoder 2 are added pixel-wisely to fuse detailed
information and high-level semantic information. Above all, each
SDA module in different stages can be summarized as

Sk = Conv
(

Fk@2

)

⊗ E3−k
⊕ D3−k, k = 1, 2, (5)

where Sk denotes the output of the k-th SDA module, and @2

represents the upsampling operation with rate of 2. Ek and Dk

denote the output feature maps of the k-th Encoder and Decoder.
F1 and F2 represent the output feature maps of the Decoder 3

and SDA 1, respectively. Sk denotes the output of the k-th SDA
module. It is worth noting that no skip-connection is introduced
after Encoder 3 and Encoder 4, because the detailed information
may be gradually weakened when transmitted to the deeper
layers, and also, it can save computing resources.

Loss Function
Image segmentation tasks can be analogized to pixel-level
classification problems. Therefore, the binary cross-entropy loss
LBCE, commonly used in classification tasks, is adopted to guide
the optimization of our proposed method. However, LBCE only
be adopted to optimize segmentation performance in pixel level,
ignoring the integrity of the image level. Therefore, to tackle
this problem, the dice loss also be introduced to optimize our
proposed method. The joint loss function as

LReal = LDice + LBCE, (6)

LDice = 1−
∑

h,w

2 |X × Y|

|X| + |Y|
, (7)

LBCE = −

∑

h,w

(

Y logX + (1− Y) log (1− X)
)

, (8)

where X and Y denote the segmentation results and the
corresponding ground truth, and h and w represent the
coordinates of the pixel in X and Y .

SemiMF-Net
In medical image segmentation tasks, the lack of pixel-level
annotation data has always been one of the important factors
that hinder the further improvement of segmentation accuracy,
and it is expensive and time-consuming to obtain these label
data. Therefore, it has always been an urgent problem in the field
of medical image segmentation to use unlabeled data combined
with limited labeled data to further improve segmentation
performance. To this end, based on the newly proposed MF-
Net, a novel SemiMF-Net is further proposed by combining the
pseudo-label augmentation strategy to leverage unlabeled data
to further improve the CNV segmentation accuracy, as shown
in Figure 4. It can be seen from Figure 4 that our proposed

FIGURE 3 | Architecture of the proposed semantics-details aggregation module (SDA).
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FIGURE 4 | Architecture of the proposed SemiMF-Net.

semi-supervised framework of SemiMF-Net mainly consists of
three steps: (1) Limited labeled data are adopted to pre-train
MF-Net to segment unlabeled, and these segmentation results
are employed as pseudo-labels for unlabeled data. (2) Unlabeled
data with pseudo labels and labeled data are mixed to re-train
the MF-Net based on the objective function LPseudo + βLReal in
a semi-supervised way, where LPseudo and LReal are the joint loss
function as Equation (6), and β is a weight paramter (1.0 in this
study). (3) Finally, the SemiMF-Net that can accurately segment
CNV in retinal OCT images is obtained.

EXPERIMENTS

Dataset
In order to accurately segment CNV and evaluate the
performance of the proposed method, experienced
ophthalmologists annotate pixel-level ground truth for the
1,522 OCT images with CNV collected from the UCSD public
dataset (Kermany et al., 2018), which collected by the Shiley
Eye Institute of the University of California San Diego (UCSD)
and all of the images (Spectralis OCT, Heidelberg Engineering,
Germany) were selected from retrospective cohorts of adult
patients without exclusion criteria based on age, gender, or race.
In addition, to evaluate the performance of the proposed method
and all comparison algorithms comprehensively and objectively,
four-fold cross-validation is performed in all experiments, in
which each fold contained 380 OCT images except the fourth
fold that had 382 OCT images. In addition, 2,560 retinal OCT
images from the remaining 35,683 OCT images are randomly
selected as unlabeled data to participate in SemiMF-Net training.
The details for data strategies are listed in Table 1.

TABLE 1 | The details of data strategies.

Supervised Semi-supervised

Training Retinal OCT images with ground

truth from three folds.

Retinal OCT images with

ground truth from three

folds+2,560 retinal OCT

images with pseudo labels.

Testing Retinal OCT images with ground

truth from the remaining one fold.

Retinal OCT images with

ground truth from the

remaining one fold.

Implementation Details
Binary cross-entropy loss and dice loss are jointly used as the loss
function to train the proposed network. The implementation of
our proposed MF-Net is based on the public platform Pytorch
and NVIDIA Tesla K40 GPU with 12GB memory. Adam is used
as the optimizer. Initial learning rate is set to 0.0005, and weight
decay is set to 0.0001. The batch size is set as 4 and epoch is 50.
To be fair, all experiments adopt the same data preprocessing and
training strategy.

Evaluation Metrics
To comprehensively and fairly evaluate the segmentation
performance of different methods, three indicators including
dice similarity coefficients (DSC), sensitivity (SEN), and Jaccard
similarity coefficient (JSC) are adopted to quantitatively analyze
the experimental results, among which JSC and DSC are the
most commonly used indices in validating the performance
of segmentation algorithms (CE-Net, CPFNet, PSPNet, and
DeepLabV3). In addition, the SEN is always adopted to evaluate
the recall rate of abnormal conditions, which is essential for

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 74376930

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Meng et al. MF-Net

accurate screening of abnormal subjects and has been applied
in many medical segmentation tasks (CE-Net, CPFNet, and
AttUNet). The formulas of the three evaluation metrics are
as follows

Dice =
2TP

FP + 2TP + FN
, (9)

SEN =
TP

TP + FN
, (10)

JSC =
TP

FP + TP + FN
, (11)

where TP represents the number of true positives, FP represents
the number of false positives, and FN represents the number of
false negatives.

Results
The proposed MF-Net and SemiMF-Net are compared with
state-of-the-art methods, including UNet (Ronneberger et al.,
2015), CE-Net (Gu et al., 2019), CPFNet (Feng et al., 2020),
AttUNet (Oktay et al., 2018), DeepLab v3 (Li et al., 2018), and
PSPNet (Chen et al., 2017), as shown in Table 2. Compared to
the backbone, CE-Net achieves an increase of 0.21% for the main
evaluation metric DSC, due to the combination of dense atrous
convolution (DAC) and residual multi-kernel pooling (RMP).
The performance of CPFNet is comparable with the proposed
MF-Net as for the insertion of global pyramid guidance (GPG)
module, which combines multi-stage global context information
to reconstruct skip-connection and provide global information
guidance flow for the decoder.

It is worth noting that both proposed MF-Net and SemiMF-
Net achieves better performance than all of the above methods.
As shown in Table 2, the DSC, SEN, and JSC of MF-Net achieves
92.90, 93.01, and 86.80%, respectively. Compared to MF-Net,
the average values of DSC, SEN, and JSC of the proposed
SemiMF-Net have been improved to 93.07, 93.26, and 87.07%,
respectively. These experimental results show that our proposed
SemiMF-Net can leverage unlabeled data to further improve the
segmentation performance.

It can be seen from Table 2 that our proposed method takes
slightly longer time than backbone due to the introduction
of MAD and SDA in MF-Net. However, it can still meet
the requirement of real-time processing. These experimental
results show that compared with other CNN-based methods,
our proposed MF-Net and SemiMF-Net can achieve better
segmentation performance with similar efficiency.

Furthermore, to demonstrate the effectiveness of the proposed
method, the qualitative segmentation results are also given in
Figure 5. The proposed SemiMF-Net is more accurate and has
better robustness in the CNV segmentation task.

Statistical Significance Assessment
We further investigate the statistical significance of the
performance improvement for the proposed MF-Net and
SemiMF-Net by the paired t-test, and these p-values are listed in
Tables 3, 4, respectively.

TABLE 2 | The result of comparison experiments and ablation studies

(mean ± SD).

Methods DSC SEN JSC Time (s)

UNet 92.38 ± 0.31 92.44 ± 0.97 85.92 ± 0.53 0.1158

CE-Net 92.73 ± 0.23 92.82 ± 0.81 86.52 ± 0.41 0.0921

CPFNet 92.77 ± 0.22 92.96 ± 0.52 86.58 ± 0.38 0.1053

AttUNet 92.31 ± 0.14 92.22 ± 0.37 85.81 ± 0.25 0.1289

DeepLabV3 92.73 ± 0.19 92.75 ± 0.25 86.55 ± 0.35 0.1316

PSPNet 92.62 ± 0.37 92.79 ± 0.29 86.32 ± 0.62 0.2237

Backbone 92.46 ± 0.29 92.56 ± 0.44 86.05 ± 0.50 0.0789

Backbone+MAD 92.71 ± 0.28 92.81 ± 0.39 86.48 ± 0.48 0.0842

Backbone+SDA 92.76 ± 0.18 92.69±0.68 86.57 ± 0.33 0.0711

MF-Net 92.90 ± 0.21 93.01 ± 0.50 86.80 ± 0.37 0.0895

SemiMF-Net 93.07 ± 0.18 93.26 ± 0.45 87.07 ± 0.31 0.0895

As shown in Table 3 that compared with other CNN-based
methods, except for the significance compared with PSPNet and
DeepLab v3 is not obvious, all the improvements for JSC andDSC
of MF-Net are statistically significant with p < 0.05. The results
further prove the effectiveness of the proposed MF-Net. Table 4
lists the p-values of the proposed SemiMF-Net compared with
MF-Net and other CNN-based methods. All the improvements
for JSC and DSC of SemiMF-Net are statistically significant with
p < 0.05. The results further prove that the proposed SemiMF-
Net can leverage unlabeled data to further improve the CNV
performance significantly.

Ablation Study
To verify the validity of the proposed MAD module and SDA
module, we also conduct ablation experiments. As shown in
Table 2, the embedding of MAD module (Baseline + MAD)
achieves substantial improvement over the backbone in terms
of all metric, which proves that multi-scale deformation features
and adaptively aggregate contextual information are conducive
for segmentation.

Furthermore, numerical results show that, the embedding
of SDA (baseline + SDA) also contributes to the performance
improvement, suggesting that well-designed skip connections
can extract detailed information that is more conducive to
segmentation, thereby improving the accuracy of segmentation.
Especially, our proposed MAD module and SDA module can
be easily introduced into other encoder-decoder network, which
is our near future work. Furthermore, the proposed MF-Net
achieves the highest DSC, and these results further demonstrate
the effectiveness of our proposed method.

CONCLUSION

Choroid neovascularization segmentation is a fundamental task
in medical image analysis. In this study, we propose a novel
encoder-decoder based multi-scale information fusion network
named MF-Net. A multi-scale adaptive-aware deformation
module (MAD) and a semantics-details aggregation module
(SDA) are integrated to the encoder-decoder structure to fuse
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FIGURE 5 | Examples of CNV segmentation. From left to right are original image, CE-Net, CPFNet, DeepLab v3, PSPNet, backbone, and our proposed method

SemiMF-Net. Yellow represents the correctly segmented region, while red and blue are the results of false-positive segmentation and false-negative

segmentation, respectively.

TABLE 3 | Statistical analysis (p-value) of the proposed MF-Net compared with

other CNN-based methods.

Method JSC DSC

MF-Net-UNet (Ronneberger et al., 2015) 0.015 0.018

MF-Net-AttUNet (Oktay et al., 2018) 0.001 0.001

MF-Net-CE-Net (Gu et al., 2019) 0.001 <5E-4

MF-Net-PSPNet (Chen et al., 2017) 0.069 0.069

MF-Net-CPFNet (Feng et al., 2020) 0.004 0.003

MF-Net-DeepLab v3 (Li et al., 2018) 0.122 0.118

MF-Net-Backbone 0.002 0.002

multi-scale contextual information and multi-level semantic
information that is conducive to segmentation and further
improve the segmentation performance. Furthermore, to solve
the problem of insufficient pixel-level annotation data, based
on the newly proposed MF-Net, SemiMF-Net is proposed by
introducing semi-supervised learning to leverage unlabeled

TABLE 4 | Statistical analysis (p-value) of the proposed SemiMF-Net compared

with other CNN-based methods.

Method JSC DSC

SemiMF-Net-UNet (Ronneberger et al., 2015) 0.013 0.014

SemiMF-Net-AttUNet (Oktay et al., 2018) <5E-4 <5E-4

SemiMF-Net-CE-Net (Gu et al., 2019) 0.011 0.009

SemiMF-Net-PSPNet (Chen et al., 2017) 0.042 0.040

SemiMF-Net-CPFNet (Feng et al., 2020) 0.005 0.004

SemiMF-Net-DeepLab v3 (Li et al., 2018) 0.051 0.041

SemiMF-Net-Backbone 0.007 0.007

SemiMF-Net- MF-Net 0.046 0.038

data to further improve the CNV segmentation accuracy. The
comprehensive experimental results show that the segmentation
performance of the proposed MF-Net and SemiMF-Net
outperforms other state-of-the-art algorithms.
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There is still a limitation on this study that the proposed MF-
Net is designed based on the encoder-decoder structure, and
cannot effectively prove its generalization on different backbone
networks. In future work, we will extend the proposed MAD
and SDA to various backbones to further prove its stability and
versatility, and strive to reduce the number of parameters.
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In recent years, an increasing number of people have myopia in China, especially the
younger generation. Common myopia may develop into high myopia. High myopia
causes visual impairment and blindness. Parapapillary atrophy (PPA) is a typical retinal
pathology related to high myopia, which is also a basic clue for diagnosing high myopia.
Therefore, accurate segmentation of the PPA is essential for high myopia diagnosis
and treatment. In this study, we propose an optimized Unet (OT-Unet) to solve this
important task. OT-Unet uses one of the pre-trained models: Visual Geometry Group
(VGG), ResNet, and Res2Net, as a backbone and is combined with edge attention,
parallel partial decoder, and reverse attention modules to improve the segmentation
accuracy. In general, using the pre-trained models can improve the accuracy with fewer
samples. The edge attention module extracts contour information, the parallel partial
decoder module combines the multi-scale features, and the reverse attention module
integrates high- and low-level features. We also propose an augmented loss function to
increase the weight of complex pixels to enable the network to segment more complex
lesion areas. Based on a dataset containing 360 images (Including 26 pictures provided
by PALM), the proposed OT-Unet achieves a high AUC (Area Under Curve) of 0.9235,
indicating a significant improvement over the original Unet (0.7917).

Keywords: medical image segmentation, high myopia, parapapillary atrophy, convolutional neural network,
fundus image

INTRODUCTION

Myopia is a common eye disease, which refers to the blur of vision when light enters the eye
and gathers in front of the human retina (Saw et al., 1996). Some patients experience symptoms
such as headache and eye fatigue. Myopia is the main cause of vision loss worldwide (Fredrick,
2002). Vision can be corrected using glasses, contact lenses, and refractive surgery; however,
they do not solve the potential defects (Morgan et al., 2012; Dolgin, 2015). In recent years, the
global proportion of patients with myopia has been increasing (Holden et al., 2016). Adolescent
myopia has become a common phenomenon in East and Southeast Asia (Morgan et al., 2018).
The degree of myopia is usually divided by the size of the diopter D, which is divided into mild
myopia (−3 D or below), moderate myopia (−3 D to −6 D), and high myopia (−6 D or above)
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(Saw et al., 2005). Patients with high myopia are more likely to
have retinal detachment, and the probability of suffering from
glaucoma is higher. Floating objects and shadows appear in the
field of vision in many highly myopic patients. The medical
burden of high myopia includes pathological complications such
as myopic macular degeneration, choroidal neovascularization,
cataracts, and glaucoma (Pan et al., 2012).

Parapapillary atrophy (PPA) often occurs in the fundus of
patients with high myopia. The extent and development of PPA
are useful medical assessment tools because they are closely
related to the severity of several eye diseases and conditions,
including glaucomatous optic nerve damage, visual field defects,
and myopia (Heijl and Samander, 1985; Park et al., 1996; Uchida
et al., 1998; Dai et al., 2013). The size and position of PPA
are not fixed. If it progresses to the macular area, patients
will find it difficult to see objects close to them. Generally, it
is determined whether it is still expanding according to the
shrinking edge. A clear edge indicates that the PPA has probably
stopped progressing; the fuzzy and irregular edges indicate that it
is still progressing.

Currently, convolutional neural networks are widely used in
the field of medical diagnosis (Fang et al., 2020; Xia et al.,
2020; Yang et al., 2021). This study attempts to use a new type
of convolutional neural network (OT-Unet) to automatically
segment PPA. The OT-Unet is based on Unet, using three pre-
training models: VGG, ResNet, and Res2Net in the convolutional
feature extraction stage. The edge attention, parallel partial
decoder, and reverse attention modules were added to the
network, and the loss function was improved simultaneously.
Considering these improvements, the accuracy of the network
segmentation has significantly improved.

MATERIALS AND METHODS

Data Acquisition and Processing
There are few datasets of color fundus photos for high myopia,
and only 26 images on iChallenge-PALM can be retrieved on the
Internet. This cannot meet the needs of segmentation network
training. The research team obtained more than 400 datasets
from the Affiliated Eye Hospital of Nanjing Medical University.
The shooting equipment was a Topcon TRC-NW300 non-
mydriatic fundus camera. Preliminary processing of the data
was performed. The blurred pictures and pictures with severely
deformed fundus were removed, the rectangular pictures were
cut into squares, and the size was unified. Finally, 360 color
fundus photos of better quality were obtained. Figure 1 shows
color photo of fundus. The labelme tool was used to label the
PPA, and the labeling was performed under the guidance of a
professional doctor. Figure 2 shows the relationship between the
position of the parapapillary atrophy and optic disc.

The resolution of the color fundus photos used in the
experiment was 352× 352, and the edge truth map was obtained
from the real label map using Adobe Illustrator 2019. The dataset
was certified by a professional doctor. According to the ratio of
4:1, we divided the data set into 288 training pictures and 72
test pictures. To highlight the PPA while reducing the size of the

FIGURE 1 | Color photo of fundus: (A) fundus of normal eye: It has clear
boundary and clear blood vessels, and the overall color is rosy; (B) fundus of
high myopia: It has blurred boundary, parapapillary atrophy and leopard eye
fundus; (C) progressive parapapillary atrophy: It has blurred boundary; (D)
unprogressive parapapillary atrophy: It has clear borders.

FIGURE 2 | Relationship between the position of the parapapillary atrophy
and optic disc: The part inside the white circle in the middle is optic disc, and
the ring part between the two white circles is parapapillary atrophy.

image, the grayscale fundus photos were obtained. This operation
was implemented using Adobe PhotoShop 2019. Figure 3 shows
the original image and its corresponding grayscale map, PPA
truth map and PPA edge map.
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FIGURE 3 | Dataset: (A) color photo of the fundus of high myopia: Obtained
using Topcon TRC-NW300 non-mydriatic fundus camera; (B) grayscale
image of the fundus of high myopia: Apply Adobe PhotoShop 2019 to
grayscale images; (C) gorund truth mask of the parapapillary atrophy:
Obtained by labeling the grayscale image using labelme; (D) edge map of the
parapapillary atrophy: Obtained by processing the real label image using
Adobe Illustrator 2019.

Optimized-Unet Overview
The network block diagram of the OT-Unet algorithm proposed
in this study is shown in Figure 4. The network uses Unet
as the backbone network and introduces a pre-training model
to generate five convolutional layers. The first two layers{
fi, i = 1, 2

}
are used to extract low-level feature maps that

are rich in contextual information, and the high-level feature
maps extracted from the last three layers

{
fi, i = 3, 4, 5

}
include

more local information. An edge attention module is added
between the low- and high-level feature convolutional layers to
extract the edge feature information of the lesion area. Using the
edge feature enhancement module in the second convolutional
layer can extract richer local information. Compared with
the first convolutional layer, the resolution of the image is
lower, which can speed up the calculation. Simultaneously,
parallel partial decoders are used to aggregate multi-scale high-
level feature information to generate a global map. Since the
aggregation of low-level features does not significantly improve
the segmentation performance of the network, the network
chooses to aggregate three high-level features to obtain richer
joint feature information. In addition, the low-level feature map
is input to the reverse attention module at all levels under the
effect of the global map. These reverse attention modules are
cascaded with each other to aggregate the low- and high-level
feature information. It can be seen from the figure that the second
convolutional layer information, the high-level convolutional
layer information, and the aggregated information output by
the parallel partial decoder are connected and processed in the

reverse attention module. In addition, the use of three reverse
attention modules ensures that the network generates sufficiently
rich aggregate information. The feature information generated
by the last-level inverse attention module is activated by the
sigmoid activation function to generate the final lesion area
segmentation prediction map. The following will be introduced
in detail: the backbone network (Unet), key modules, and
improved loss functions.

Backbone Network—Unet
In 2015, Ronneberger et al. (2015) proposed the Unet structure.
Unet is a semantic segmentation network based on Fully
Convolutional Networks (FCN), which is currently widely used
in the field of biomedical image segmentation. The segmentation
network system includes contraction (also known as an encoder)
and expansion (also known a decoder) paths.

ImageNet’s Pre-trained Model
Visual Geometry Group
In 2014, Simonyan and Zisserman (2014) proposed a new
network known as the VGG. The image passes through the
convolutional layer, and the filter uses a very small receptive field
of 3 × 3 (the minimum size to capture the concepts of left/right,
up/down, and center).

ResNet
From experience, the depth of the network is critical to the
performance of the model. When the number of network layers
is increased, the network can extract more complex feature
patterns, so theoretically better results can be achieved when the
model is deeper. However, when the network reaches a certain
level, the depth of the network increases, and the accuracy of
the network becomes saturated or even declined. Considering
the ResNet (He et al., 2016), the author uses a residual block to
avoid this situation.

Res2Net
Most of the existing methods use a hierarchical method to
represent multi-scale features; nonetheless, Gao et al. (2021) have
constructed hierarchical residual connections in a single residual
block in a different way, proposing the Res2Net neural network
building block. This module can express particle-level multiscale
features and expand the range of receptive fields.

Feature Expression Enhancement
Module
Edge Attention Module
The enhancement effect of edge information in segmentation
features has been verified in many studies (Zhang et al., 2019;
Xing, 2020; Zhao et al., 2020; Zhou, 2020). The resolution of
the low-level feature map was higher, and the edge information
was richer. The network inputs the feature map obtained by
the second- and low-level convolution to the edge attention
module, extracts the edge information feature, and obtains
the corresponding map. The difference between the generated
edge map and edge truth map Ge corresponding to the
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FIGURE 4 | Flow chart of the automatic network segmentation: In the convolutional feature extraction stage, three pre-training models of VGG, ResNet and Res2Net
are used, respectively, and the edge attention module, parallel partial decoder module and reverse attention module are added to enhance the feature expression
ability. The model also improves the loss function. fi represents the feature information obtained by the image through the i-th convolutional layer. Se represents the
feature information generated by the second convolutional layer information through the edge attention module. Ge represents the edge map obtained by the ground
truth map. Ledge represents the standard binary cross-entropy loss function. Gs represents the ground truth map. Sg represents the feature information obtained by
the parallel partial decoder aggregating high-level convolutional layer information. Ri(i = 1, 2, 3), respectively, represent the feature information output by the three
reverse attention modules. Si(i = 1, 2, 3), respectively, represent the information obtained by the combination of the reverse attention module information and the
higher-level information.

true label is calculated using the binary cross entropy (BCE)
loss function:

Ledge = −
w∑

x=1

h∑
y=1

[
Gelog (Se)+ (1−Ge) log (1−Se)

]
(1)

where
(
x, y

)
represent the coordinates of the pixel points in the

predicted edge map Se and the edge truth map Ge. Ge is derived
from the real label Gs. w and h represent the width and height of
the feature map, respectively.

Parallel Partial Decoder Module
Segmentation through the combined use of high and low feature
maps is a common method of medical segmentation (Qian
et al., 2015; Zhou et al., 2018; Gu et al., 2019; Fan et al.,
2020). However, because of their large size, low-level feature
maps require more resources, and the effect on performance
improvement is not obvious (Wu et al., 2019). The parallel partial
decoder Pd (·) is used to fuse the high-level features to form
a prediction map Sg = Pd

(
f3, f4, f5

)
, guiding the input of the

inverse attention module. Figure 5 shows parallel partial decoder
module frame diagram.

Reverse Attention Module
Inspired by the study of Chen et al. (2018), the network uses
the reverse attention module to extract richer information.
The inverse attention module uses a progressive framework.
Its information comes from the same convolutional layer,
and it includes low-level features f2 and aggregated features
from a higher level. This method can obtain more complex
feature information and optimize the segmentation performance
of the network.

The predicted feature map of the upper layer was expanded
after the sigmoid activation, inversion, and smoothing. We
multiplied the expanded feature by the high-level output feature
(dot multiplication ·) and concatenated it with the edge attention
feature eatt

(
f2
)

to obtain the corresponding reverse attention
feature output as demonstrated below:

Ri = C
(
fi · Ai,Dow (eatt)

)
(2)

where Dow (·) and C (·) are the down-sampling concatenation
operations, respectively.

Figure 6 shows frame diagram of the reverse attention
module.
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FIGURE 5 | Parallel partial decoder module frame diagram: Including 1*1 convolution + batch normalization processing module, 3*3 convolution + batch
normalization processing modules, multiplication operation and concatenate operation.

FIGURE 6 | Frame diagram of the reverse attention module: Including Sigmoid activation function, concatenation operation, multiplication operation and reverse
operation. fi (i = 3,4,5) represents the feature information obtained by the picture through the i-th convolutional layer. Si+1(i = 1, 2) represents the information
obtained by the combination of the reverse attention module information and the higher-level information. Ai represents the output after Si+1 expand.

Loss Function
The standard IoU loss and binary cross-entropy loss functions are
the commonly used loss functions. The calculation formulas are
as follows:

LIoU = 1−
|A ∩ B|
|A ∪ B|

(3)

LBCE = −
(
ylog

(
p
)
+
(
1−y

)
log
(
1−p

))
(4)

weight = 1+ 5 |AVG(B)− B| (5)

LwIoU = 1−
(A ∩ B) · weight + 1

|A ∪ B| · weight − |A ∩ B| · weight + 1
(6)

LwBCE =
LBCE · weight

weight
(7)

where A represents the predicted map, B represents the true label,
y is the true category, and p is the probability of the predicted
category. AVG() is a function in the torch library, specifically
torch.nn.AvgPool2d(kernel_size, stride = None, padding = 0),
kernel size is the size of the window, stride is the stride of the
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FIGURE 7 | Visualized results of the segmentation of parapapillary atrophy in high myopia: It shows the Gray scale input Image, the Ground-truth Mask, and the
segmentation results of Unet, OT-Unet (VGG), OT-Unet (ResNet), and OT-Unet (Res2Net).
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TABLE 1 | Comparison of segmentation results of different models.

Methods Precision Sensitivity Specificity AUC IoU DSC

Unet 0.7226 0.8303 0.9879 0.7917 0.4731 0.6413

OT-Unet (VGG) 0.8227 0.8225 0.9963 0.9134 0.7004 0.8086

OT-Unet (ResNet) 0.7980 0.8398 0.9957 0.9171 0.6877 0.8022

OT-Unet (Res2Net) 0.8020 0.8450 0.9958 0.9235 0.7034 0.8101

DSC means Dice similarity coefficient. Bold values indicate that the value is the
largest in the same indicator.

TABLE 2 | Comparison of the segmentation results of OT-Unet (Res2Net) in
different sizes of lesion areas.

Type of lesion Precision Sensitivity Specificity AUC IoU DSC

Small lesion 0.7479 0.8287 0.9956 0.9076 0.6517 0.7712

Large lesion 0.9251 0.8820 0.9962 0.9352 0.8209 0.8986

Bold values indicate that the value is the largest in the same indicator.

window, and padding is implicit zero padding to be added on
both sides.Input(N,C,Hin,Win), output(N,C,Hout,Wout), where

Hout =

⌊
Hin + 2× padding [0]− kernel_size [0]

stride [0]
+ 1

⌋
(8)

Wout =

⌊
Win + 2× padding [1]− kernel_size [1]

stride [1]
+ 1

⌋
(9)

Where N stands for quantity, C stands for channel, Hin stands for
input height, Win stands for input width, Hout stands for output
height, and Wout stands for output width.

However, the weights assigned to each pixel by the above
two loss functions are the same, and they do not focus on the
extraction of complex pixel samples. This study combines the
weighted IoU and weighted BCE loss functions to obtain a new
loss function:

Lseg = LwIoU + LwBCE (10)

To facilitate the calculation, each predicted feature map is
restored to its original size through an up-sampling operation
(for example, Sup3 ). Therefore, we rewrite the total loss function as:

Ltotal = Lseg
(
Gs, S

up
g

)
+ Ledge +

5∑
i=3

Lseg
(
Gs, S

up
i

)
(11)

RESULTS

Visualization of Segmentation Results
Figure 7 shows the visualized results of high myopia grayscale
images, real labels, and the visual segmentation results of the PPA.
It can be observed that the OT-Unet segmentation algorithm has
a better segmentation effect than the original Unet.

Comparison of Segmentation Results
The following are the experimental segmentation results of
the four networks.

Considering Table 1, it can be observed that the segmentation
network of this study has improved for all the indicators. It
can be seen that OT-Unet is significantly better than Unet in
all indicators. The three pre-training models of OT-Unet have
different performance in various indicators. OT-Unet (VGG)
has the best performance on the Precision and Specificity
indicators; on the other indicators, OT-Unet (Res2Net) has the
best performance. Figure 8 shows experimental ROC curve
diagram of different segmented image networks.

Comparison of the Segmentation
Results of Large and Small Lesions
Based on the relationship between the PPA and papilla diameter
(PD), we divided the PPA that was less than or equal to one-
third of the PD into small lesion areas (50 images), and the rest
were large lesion areas (22 images). The best-performing Res2Net
pre-training model was used for the segmentation to obtain the
visualization and quantification results.

The quantification results of the segmentation of the large and
small lesions are shown in Table 2. When OT-Unet segmented
large lesions, its Precision, Sensitivity, Specificity and AUC scores
were higher than those of small lesions. When segmenting a small
lesion area, the lesion area is smaller than the optic disc and is
more disturbed by it. Other non-lesion regions around the optic
disc also interfere with the segmentation.

According to the segmentation results, the segmentation
performance of the OT-Unet on a large lesion area is better than
that of a small lesion area in all indicators. When segmenting a
small lesion area, the model is more susceptible to the influence of
other areas around the optic disc, and even an extreme situation
where the segmentation area does not match the real label at all
occurs as shown in Figure 9.

DISCUSSION

As a method of auxiliary diagnosis, automatic segmentation
of ophthalmic medical images can help ophthalmologists to
understand a patient’s fundus more conveniently and clearly,
indicating that this study is very valuable. The width of the PPA
is positively correlated with the degree of myopia; therefore,
early diagnosis is very important for patients with high myopia.
Automatic segmentation of medical images can effectively
extract and express image features with less preprocessing
and reduce labor costs. Considering the introduction of many
excellent segmentation network models and rapid improvement
in image processor performance, deep learning can achieve
higher segmentation accuracy.

Currently, there are few studies on the automatic
segmentation of the PPA. The datasets on the Internet are
very limited, manual labeling is time-consuming and laborious,
and labeling accuracy cannot be guaranteed. In addition, the
early PPA was crescent-shaped, which occurred near the optic
disc with a small area. The difference between PPA and the
brightness of the optic disc is not obvious, making it easy to be
affected by the optic disc when splitting the PPA. Meanwhile,
patients with high myopia often have a leopard-shaped fundus,
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FIGURE 8 | Experimental ROC curve diagram: (A) Unet (AUC = 0.7917); (B) VGG network (AUC = 0.9134); (C) ResNet (AUC = 0.9171); (D) Res2Net
(AUC = 0.9235).

FIGURE 9 | Segmentation of extremely small lesions: It can be seen that the segmentation prediction map does not correspond to the Ground-truth Mask at all.
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which is a result of stretching the retina. Visible blood vessels
affect the recognition and segmentation of the lesion area and
reduce the accuracy of the segmentation. There is no obvious
rule for the expansion of the PPA, and the shape and size of
the PPA of the fundus in different patients are quite different.
There was obvious pigmentation in the PPA, which will also affect
the segmentation of PPA. It can be observed that various factors
restrict the study of the PPA segmentation network.

The experimental results show that Unet can only segment
the approximate outline of the lesion area, which is greatly
affected by the optic disc. Also, the prediction map is irregular
and has many noises. In the feature extraction stage, OT-Unet
uses VGG, ResNet and Res2Net three pre-training models to
extract richer feature information. Considering the problem of
irregular contours of the lesion, this study adopts the method of
adding the edge attention module to extract the contour features
of the lesion area during the training phase of feature learning.
The trained model can generate a clearer boundary prediction
map. Solving the problem of the Unet being severely interfered
by the optic disc, this study uses a parallel partial decoder and
reverse attention modules to obtain more high-level and low-
level fusion features. This helps the network learnt to distinguish
between the PPA and optic disc, avoiding splitting the disc.
OT-Unet also improved the loss function to get more accurate
segmentation results.

However, according to the visualization results, the
segmentation result still cannot completely avoid the interference
of the optic disc, and the effect is not sufficient when segmenting
the small-sized PPA. In the future, the learning ability of the low-
level features of the network will be further enhanced to make the
network perform better in the segmentation of small lesion areas.

Compared to the original segmentation network (Unet), the
improved network has a better effect on lesion segmentation;
however, there are still some areas to be improved. Only
288 training images are used in this study, which weakens
the generalization ability of the network. Considering high
myopia, the size and shape of the PPA at different stages
of development are very different, and the use of the same
segmentation strategy will reduce the segmentation effect.
The improved network makes it difficult to segment small-
sized PPA. In the future, it will be necessary to use larger
datasets and use data enhancement methods for expansion.
Before segmentation, a classification network can be used
to classify the PPA according to early, middle, and late
stages. Subsequently, based on the characteristics of the para-
optical atrophy in the different stages, targeted segmentation
strategies can be formulated for segmentation. Regarding the
loss function, this study does not systematically study the
weight distribution of the weighted IoU and binary cross-
entropy loss functions; nonetheless, it simply adds them. In
the future, the relationship between these two loss functions
can be explored, and a more appropriate weight distribution of
the loss functions can be found to improve the segmentation
performance of the network.

CONCLUSION

Considering the segmentation task of PPA for high myopia, this
study proposes an OT-Unet algorithm network. In this study,
three pre-training models (VGG, ResNet, and Res2Net) are used
in the Unet for the extraction of convolutional features. Between
the high- and low-level convolutions, this study introduces
an edge attention module to extract edge feature maps and
enrich the network information. Multi-scale high-level feature
maps use a parallel partial decoder module to perform feature
fusion and obtain global information. The network also uses a
reverse attention module which uses a progressive framework
to extract high- and low-level feature information. Considering
the loss function, the network combines the weighted IoU and
binary cross-entropy loss functions to increase the weight of
the complex pixels. This shows that the improvement of the
network structure and loss function significantly improves the
segmentation performance of the network and obtains a better
segmentation effect than the Unet in the segmentation of the
lesion area. Compared to the Unet, the improved OT-Unet is
superior for all the evaluation criteria.
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Objective: This study aims to implement and investigate the application of a special
intelligent diagnostic system based on deep learning in the diagnosis of pterygium using
anterior segment photographs.

Methods: A total of 1,220 anterior segment photographs of normal eyes and pterygium
patients were collected for training (using 750 images) and testing (using 470 images) to
develop an intelligent pterygium diagnostic model. The images were classified into three
categories by the experts and the intelligent pterygium diagnosis system: (i) the normal
group, (ii) the observation group of pterygium, and (iii) the operation group of pterygium.
The intelligent diagnostic results were compared with those of the expert diagnosis.
Indicators including accuracy, sensitivity, specificity, kappa value, the area under the
receiver operating characteristic curve (AUC), as well as 95% confidence interval (CI)
and F1-score were evaluated.

Results: The accuracy rate of the intelligent diagnosis system on the 470 testing
photographs was 94.68%; the diagnostic consistency was high; the kappa values of
the three groups were all above 85%. Additionally, the AUC values approached 100% in
group 1 and 95% in the other two groups. The best results generated from the proposed
system for sensitivity, specificity, and F1-scores were 100, 99.64, and 99.74% in group
1; 90.06, 97.32, and 92.49% in group 2; and 92.73, 95.56, and 89.47% in group
3, respectively.

Conclusion: The intelligent pterygium diagnosis system based on deep learning can
not only judge the presence of pterygium but also classify the severity of pterygium.
This study is expected to provide a new screening tool for pterygium and benefit patients
from areas lacking medical resources.

Keywords: intelligent diagnosis system, pterygium, anterior segment photograph, deep learning, diagnostic
model training
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INTRODUCTION

Pterygium is a common exterior ocular disease with unknown
etiology. It is essentially a chronic conjunctival degeneration
more common among people who live near the equator or work
outdoors (e.g., fishermen and farmers) and is thought to be an
irritative phenomenon due to ultraviolet light, drying, and windy
environments (Coroneo, 2011; Delic et al., 2017). A pterygium
is clinically divided into two phases: active and stationary. As
a horizontal, triangular growth of the bulbar conjunctiva with
the head extending toward the cornea, it appears as hypertrophy
and hyperemia of the fibrovascular tissue in the active phase,
with corneal infiltration. In the stationary phase, it shows no
hyperemia, no or less fibrovascular proliferation, a flat head of the
pterygium, and transparent cornea. If the pterygium in the active
phase enlarges and encroaches on the pupillary area, it may cause
vision loss with limited eye movement, pain, congestion, and
other symptoms, as well as affect an individual’s appearance, and
trigger astigmatism and higher-order aberrations (Lin and Stern,
1998; Gumus et al., 2012; Zhou et al., 2018). Currently, surgical
resection is the main clinical treatment (Graue-Hernandez et al.,
2019). If a patient is diagnosed early and treated with proper
adjuvants, such as corticosteroids and mitomycin C, pterygium
growth can effectively be controlled, and the recurrence rate
could be reduced before and after surgical excision (Kaufman
et al., 2013; Chen et al., 2015; Abdani et al., 2020). Early diagnosis
helps to alleviate a patient’s pain, relieve their economic burden,
and improve the quality of their vision.

Traditional screening methods for pterygium mainly depend
on slit-lamp microscope observations and anterior segment
photographs taken by ophthalmologists (Troutbeck and Hirst,
2001; Gumus et al., 2011). However, due to the lack of
primary ophthalmologists, screening for pterygium still faces
a huge gap in remote or rural areas with relatively limited
medical resources. With the constant improvement of artificial
intelligence (AI) theories and technologies, intelligent diagnosis
and treatment have been rapidly growing in recent years;
thus, many ophthalmologists and intelligent technologists have
focused on relevant research. Deep learning was first used
by the Google team to diagnose diabetic retinopathy (DR)
through fundus images in 2016 (Gulshan et al., 2016). Since
then different researchers have used deep learning models to
detect DR (Kermany et al., 2018; Raman et al., 2018) and other
fundus diseases, such as glaucoma (Li et al., 2018; Medeiros et al.,
2020) and age-related macular degeneration (Nagasato et al.,
2018; Yim et al., 2020). These studies obtained remarkable results
and provided extensive ideas for clinical AI application. Some
researchers have attempted using deep learning for ocular surface
disease, the common one being pterygium. An iris segmentation
method has been proposed to assess ptergium-infected tissues
by analyzing anterior segment photographed images (ASPI)
using digital image processing (DIP) algorithms (Abdani et al.,
2015). Furthermore, a deep learning approach based on fully
convolutional neural networks was set up for automatic detection
and localization of the pterygium (Zulkifley et al., 2019). If
we can utilize these techniques and develop a new intelligent
method for consistent pterygium detection and mass screening,

it will be beneficial for pterygium diagnoses and treatment. This
study aims to investigate the application of a special intelligent
diagnostic system, based on deep learning, in the diagnosis of
pterygium. As a consequence, we expect that early detection and
appropriate interventions could provide great convenience for
ophthalmic patients.

MATERIALS AND METHODS

Objects
The images used in this study were acquired from the Affiliated
Eye Hospital of Nanjing Medical University. Anterior segment
photographs were collected from a total of 1,220 patients (1,220
eyes) with/without pterygium from December 2019 to May
2021. Only one image was selected from each patient. For
patients with pterygium, photographs of the worse eye were
selected; for those with a normal ocular surface, photographs
of a random eye were selected. The photos were selected by
an experienced eye-surface specialist, and subsequent diagnoses
were conducted by three ophthalmologists. The high-definition
images selected in this study contained upper and lower lid
margins, bulbar conjunctiva in the palpebral fissure area, and the
whole cornea. The anterior segment photographs showed either
normal appearance or a pterygium.

The exclusion criteria were as follows: (i) having
conjunctivitis, subconjunctival hemorrhage, conjunctival cyst,
conjunctival chemosis, conjunctival nevus, pseudopterygium,
corneal conjunctival papilloma, and other ocular surface diseases;
(ii) having had infectious keratitis, undergone corneal refractive
surgery, and other medical histories; (iii) confusing signs like
corneal scar or haze that affect the transparency of the cornea;
and (iv) bad quality photographs, such as those out of focus or
without appropriate light exposure.

This study was approved by the Institutional Research Ethics
Committee of the Nanjing Medical University. All photographs
were anonymized before inclusion in this study to ensure that
they contained no information about the patients other than
their diagnoses. These photographs were then randomly allocated
into training samples (750 eyes) and the test set (470 eyes), and
the training samples were divided into training and validation
sets at a 9:1 ratio.

Image Acquisition
All photographs were taken on a digital single-lens reflex
camera (EOS 600D, Canon, Tokyo, Japan) that was integrated
with a slit-lamp microscope as a digital slit-lamp image
acquisition system (SLM-7E, Chongqing Kanghua Ruiming
S&T Co., Ltd., Chongqing, China) using diffuse illumination,
10 × magnification, front view, an image resolution of
5,184 × 3,456, and an exposure time of 1/30 s. The operators were
trained and qualified in a unified standardized anterior segment
photographic technique.

The photographic images were classified into three categories
(Lin and Stern, 1998) as follows: (i) normal anterior segment
photographs with no obvious congestion or conjunctival
proliferation, or corneal transparency (as shown in Figure 1);
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FIGURE 1 | An example of the Normal group.

FIGURE 2 | An example of the Observation group (pterygium).

FIGURE 3 | An example of the Operation group (pterygium).

(ii) the observation group (pterygium) with the proliferative
head extending beyond the corneal limbus <3 mm by horizontal
length (as shown in Figure 2); and (iii) the operation group
(pterygium) with the head extending beyond the limbus ≥3 mm
by horizontal length (as shown in Figure 3).

Model Training
This study was based on the deep learning software and
hardware platform built by 20 Dawning graphics workstations
with Graphic Processing Unit (GPU) M40, using a PyCharm
integrated development environment to train a deep learning
model. PyCharm is a powerful Python editor and a cross-
platform that can improve the efficiency of program
development. The 20 Dawning graphics workstations can
satisfy the demand for a large amount of data training, which
requires the support of a powerful GPU.

Based on EfficientNet-B6 (Tan and Le, 2019), we proposed a
computer-aided diagnosis system for pterygium that relied on
the anterior segment photography in this study. EfficientNets
are a family of models obtained from a new baseline network
designed by neural architecture, which uniformly scales all
depth, width, and resolution dimensions using a compound
coefficient (Tan and Le, 2019). It is an open-source project
developed by Google with an Apache-2.0 license. EfficientNet-
B0 acquires a better backbone with a neural network search
(NAS) than previous algorithmic models. Being a variation from
the family, EfficientNets-B6 is 1.8 times wider and 2.6 times
deeper than B0, with the original image resolution reduced to 528
(Tan and Le, 2019).

Transfer learning is used to determine the initial parameters
for systematic training without structural change in the
EfficientNet model. We used parameters that have been trained
on ImageNet as the initial parameters and then trained the model
using photos collected and marked by our team to get a suitable
model for this study.

A total of 750 anterior segment photographs previously
diagnosed as normal or pterygium by the expert (250 eyes
in each group) were used as training samples and randomly
divided into training and validation sets at a ratio of 9:1 to
train EfficientNet-B6. The classification criteria were based on the
aforementioned methods.

With fewer parameters and efficient results, EfficientNet-B6
mainly includes a stem, seven blocks, and the final layers (as
shown in Figure 4). The model’s batch size was 4, using the
stochastic gradient descent method for optimization. A total of
50 epochs were trained, with the initial learning rate set at 0.01.
Cosine annealing was used to reduce the learning rate during the
training. On the basis of this framework, the parameters were
adjusted during the training process.

The other 470 clear, canonical, and standard anterior
segment photographs were then uploaded to the computer-aided
diagnosis system, EfficientNet-B6, and judged by the artificial
intelligence diagnosis technique. The results were obtained
as the test set.

Model Evaluation
An intelligent diagnosis was performed according to the
photographic images of the anterior segment. The camera
captured an anterior segment photograph of the interpalpebral
zone, including the upper and lower lid margin and the whole
cornea, at a right angle perpendicular to the iris, and uploaded it
to the artificial intelligence diagnostic system. The photographs
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FIGURE 4 | Architectural diagram of EfficientNet-B6. (A) Basic architecture. (B) Structure of block 1. (C) Structure of blocks 2–7. The basic structure of the stem is
composed of a data input layer, convolution layer, activation function layer, and other layers. Module 1 mainly contains depth-wise convolution (D-Conv2D), batch
normalization, and activation. Module 2 is primarily the connected two modules 1 with zero padding. Module 3 mainly contains global average pooling (GAP),
rescaling, and Conv2D. The final layers include Conv2D,batch normalization, and activation layers.

used in the study were in a uniform format without black
edge or extra elements, and need no preprocessing. Before
input to the model, the obtained photographs were resized to a
slightly lower resolution for model and hardware reasons, and
flipped horizontally at random during model training. When
a photo was judged by the system, the report was obtained
as the intelligent diagnosis group. The same photo will also
be assessed by three eye-surface specialists independently in a
double-blind trial on the same computer screen. The size of the
pterygium was measured by the length of the slit light band of
the slit lamp, and the grading diagnosis result of the pterygium
was obtained according to the clinical diagnosis and treatment
guidelines (Chinese Medical Association [CMA], 2007). Two
or more identical grading diagnoses were used to create the
final clinical diagnostic result. If two ophthalmologists provide
unanimous grading diagnoses, that would be taken as the expert
diagnosis; if two ophthalmologists provide different grades, a
third ophthalmologist’s diagnosis would be considered and form
the final result of expert diagnosis.

At present, there is no clear expert consensus on the
indications for pterygium surgery; however, most ocular surface

experts agree that the most important surgical indication is vision
loss caused by the invasion of the visual axis (Twelker et al., 2000;
Troutbeck and Hirst, 2001; Graue-Hernandez et al., 2019). In this
study, a medium or large pterygium (horizontal length of the
head extending beyond the corneal limbus ≥3 mm) warrants the
recommendation for surgery (Wilson et al., 2008; Gumus et al.,
2011). The sensitivity, specificity, kappa value, area under curve
(AUC), and other indicators of the AI diagnostic system were
calculated by comparing the results of intelligent diagnosis and
expert diagnosis.

Statistical Analysis
Statistical analyses were conducted with SPSS 22.0 (IBM Inc.,
Armonk, NY, United States), using methods for evaluating
diagnostic tests, and represented by four grid tables. The
enumeration data were represented by the number of images;
indicators including accuracy, sensitivity and specificity, as
well as F1-score and 95% confidence interval (CI) were
expressed as percentages. Receiver operating characteristic
(ROC) curves were plotted, and then the areas under the
concentration-time curve (AUC) were calculated to measure
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the performance of the model. The kappa test was performed
to evaluate the consistency of the diagnostic test. Taking
the results of the expert diagnosis for the ground truth,
a kappa value of 0.61–0.80 was considered significantly
consistent, while a kappa value higher than 0.80 was considered
highly consistent.

RESULTS

In this study, 470 anterior segment photographs were used to
test the proposed intelligent diagnosis system for pterygium.
According to the expert diagnosis, 189, 171, and 110 images were
categorized into the normal, observation, and operation groups,
respectively. The intelligent diagnostic system categorized 190,
162, and 118 images into these same groups respectively. The
diagnostic results of the expert and intelligent diagnoses are listed
in Table 1.

Compared with the expert diagnostic result, the true positive
rate of the intelligent diagnostic system is almost 100% in the
normal group. It also provides a high specificity of 99.64%. For
both the observation and operation groups, the specificities of
diagnosis for pterygium are above 95%, indicating the systems’
low misdiagnosis rates. The sensitivity for pterygium diagnosis
is 90.06% in the observation group and 92.73% in the operation
group, which is lower than that for the normal eye group. The
kappa values for the normal group, the observation group, and
the operation group is 0.996, 0.884, and 0.861, respectively.
The AUC values of all three groups approaches 90%, with the
highest value of 0.998 (for the normal group). Overall, the
intelligent diagnostic system provides an average accuracy of
94.68% (Table 2). A comparison of the ROC curves of the normal,
observation, and operation groups is shown in Figure 5.

DISCUSSION

Currently, there is no clear expert consensus regarding the
surgical indications of pterygium. A survey conducted by
Mexican investigators, covering 199 cornea specialists worldwide,
shows that more than 90% of the specialists considered that
surgery should be performed when the pterygium blocks up on
the visual axis, or when there is pain, redness, eye movement
restriction, or induction of astigmatism. In the same study,
cosmesis was considered by 41.7% of the participants (Graue-
Hernandez et al., 2019). For patients with pterygium in the
stationary phase and without vision impairment, observations
could be made temporarily without surgery. For pterygium in
the active phase with vision loss, surgical resection should be
performed. Although surgical treatments of pterygium vary, the
indications for different operations are comparable (Troutbeck
and Hirst, 2001; Janson and Sikder, 2014). Inappropriate
surgical timing may cause unnecessary complications (Anduze
and Burnett, 1996; Ti and Tan, 2003; Boui et al., 2020).
The selection of medicines or surgical treatments relies on
a doctor’s subjective judgment. Therefore, the development
of an intelligent image processing method based on anterior

segment photography, and the implementation of an AI-
assisted automatic detection of pterygium, by which surgical
indications could be identified through deep learning, will
be beneficial for pterygium diagnoses. It not only ensures
consistent pterygium detection but also enables mass screening
for pterygium; therefore, the subsequent early detection and
appropriate interventions will benefit patients.

At present, AI technology is being used more widely for
anterior segment diseases, such as keratoconus, infectious
keratitis, refractive surgery, corneal transplantation, cataract,
angle closure glaucoma, dry eye and pterygium (Wu et al.,
2020; Ting et al., 2021). A computer-aided pterygium screening
platform developed by Zaki et al. has been used to classify
pterygium and non-pterygium cases (Wan Zaki et al., 2018). This
system is composed of four modules: the first uses the HSV color
space and sigmoid transfer function to enhance the pterygium
tissue in the image pre-processing; the second differentiates the
pterygium tissue and the corneal region with a segmentation
module; the third extracts corneal features with the circularity
ratio, Haralick’s circulatory, eccentricity, and solidity; and the
fourth identifies the presence or absence of pterygium by support
vector machines and artificial neural networks. The sensitivity,
specificity, and area under the curve of the pterygium screening
system were 88.7, 88.3, and 95.6%, respectively. Recently, Zhang
et al. have set up a deep learning diagnostic system to make
diagnostic recommendations on whether a pterygium patient
needs surgery, with a final accuracy of up to 95% (Zhang et al.,
2018). Abdani et al. have utilized DeepLab V2 deep learning to
increase the pterygium tissue segmentation performance from
photographs taken on a mobile phone with an accuracy of 92%
(Abdani et al., 2020). These results suggest that AI can classify
pterygium based on its appearance.

In contrast to the above research, this study not only
judged the presence of a pterygium using AI but also
classified the observation and operation groups according to
the horizontal length of the head extending beyond the corneal
limbus in anterior segment photographs, therefore providing
more accurate treatment recommendations. The results of the
consistency analysis of the intelligent and expert diagnoses
showed a high consistency (accuracy) of 445 eyes (94.68%).
Among them, the sensitivity and specificity of the intelligent
diagnosis system in the normal group were 100 and 99.64%,
respectively. In the observation group, the sensitivity and
specificity were 90.06 and 97.32%, respectively. Finally, in the
operation group, the sensitivity and specificity were 92.73 and
95.56%, respectively. This study shows high consistency between
intelligent and expert diagnoses when judging the presence of
pterygium. However, the intelligent diagnosis is slightly less
sensitive in grading the pterygium. This study shows high
consistency between intelligent and expert diagnoses when
judging the presence of pterygium. However, the intelligent
diagnosis is slightly less sensitive in grading the pterygium.

Pterygium is one of the most common ocular surface disorders
that causes vision loss and affects an individual’s appearance.
It has a higher prevalence among people who live near the
equator or work outdoors, being exposed to ultraviolet radiation,
wind and dust. For the vast rural and remote areas where
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TABLE 1 | Diagnostic results.

Expert diagnosis Intelligent diagnosis Total

Normal Observation (pterygium) Operation (pterygium)

Normal group 189 0 0 189

Observation group (pterygium) 1 154 16 171

Operation group (pterygium) 0 8 102 110

Total 190 162 118 470

TABLE 2 | Evaluation index results.

Evaluation indicators

Sensitivity Specificity F1-score AUC 95% CI Kappa Accuracy

Normal group 100.00% 99.64% 99.74% 0.998 0.994–1 0.996 94.68%

Observation group (pterygium) 90.06% 97.32% 92.49% 0.937 0.909–0.965 0.884

Operation group (pterygium) 92.73% 95.56% 89.47% 0.941 0.911–0.972 0.861

AUC, area under the curve; CI, confidence interval.

FIGURE 5 | Receiver operating characteristic (ROC) curves of the three groups for normal eye and pterygium. (A) ROC curve of the normal group. (B) ROC curve of
the observation group. (C) ROC curve of the operation group.

there is a lack of professional medical resources, especially
ophthalmic specialists and products, intelligent diagnostic
technology provides a convenient screening method for local
patients with pterygium. It also aids communities by decreasing
travel to distant county or city hospitals, reducing the economic
burdens of the patients, and progressively providing treatment
advice and clear further surgical indications. It will also be
convenient for the timely referral of patients who need surgery in
such situations as the global COVID-19 pandemic and will help
facilitate the appropriate allocation of medical resources.

This study has some limitations. As the results suggested
that the intelligent diagnosis was slightly less sensitive in
grading the pterygium, further investigation and optimization
of the diagnostic model are needed. All cases of mismatch in
observation and operation groups were middle size pterygia,
and the lengths of the proliferative head extending beyond the

corneal limbus were between 2.5 and 3.5 mm, close to the
critical value of 3 mm. For further research, the number of
model training samples should be increased, and the acquisition
of anterior segment photographs requires further optimization
and screening because the quality of the images is very
important for model training and testing. We only focused
on the three-group classification of pterygium at this stage,
there was no preprocessing of the original image before deep
learning; We also continue working on localization of the lesions,
involving segmentation and visualization for labeling and rating
the image category.

Based on the relevant technical basis of this study, a new
mobile terminal pterygium screening and diagnostic system will
be developed in our future work, using photographs taken by
a mobile phone as the training set. This system is expected
to facilitate patients in remote or rural areas without anterior
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segment photographic facilities so that they can obtain a common
eye disease diagnosis and treatment recommendations at home,
with the aid of a smartphone.

CONCLUSION

To meet the requirements of intelligent pterygium diagnosis,
this study focused on breaking through the core theoretical
models and key techniques needed for the initial screening
diagnosis by the anterior segment photographs of pterygium. The
intelligent pterygium diagnosis system based on deep learning
can preferably classify pterygium. Intelligent diagnosis is highly
consistent with expert diagnosis, especially in determining the
presence or absence of pterygium. As the first study attempting
to identify the severity of conjunctival proliferation, this study
has made vital contributions by providing a new screening
tool for pterygium to make basic diagnosis and treatment
suggestions, and benefiting the majority of ordinary patients
who lack medical resources. Future studies should aim to
increase the number of training sets, constantly improve accuracy
and sensitivity, and establish an intelligent pterygium diagnosis
system suitable for basic use.
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Background and Purpose: Diabetic retinopathy (DR) is one of the common
microvascular complications in diabetes. The total magnetic resonance imaging (MRI)
burden of cerebral small vessel disease (CSVD) tends to be increased in diabetic
patients and is a marker of microvascular disease; however, the relationship between
DR and CSVD is unclear. This study aimed to explore the relationship between retinal
microvascular abnormalities and the total MRI burden of CSVD in patients with type 2
diabetes.

Methods: Data were collected from patients with type 2 diabetes who were hospitalized
between December 2019 and November 2020 in Changzhou Second People’s Hospital
affiliated to Nanjing Medical University. All patients underwent retinal photography and
cerebral MRI. The central retinal artery equivalent (CRAE), the central retinal venous
equivalent (CRVE), and arteriole-to-venule ratio (AVR) were calculated using Image J
software to determine the retinal vascular calibers for each patient. The total MRI burden
score for CSVD was determined, and the relationship between retinal microvascular
abnormalities and the total MRI burden of CSVD was analyzed.

Results: Of the 151 diabetic patients included in the study, 84 (55.6%) had no diabetic
retinopathy (NDR), 27 (17.9%) had mild DR, and 40 (26.5%) had moderate, or severe
non-proliferative DR (grouped together for this study as “more than mild DR”). In patients
with more than mild DR, the proportion of moderate to severe burden of CSVD was
75%, which was higher than in patients with mild DR (48.1%) or NDR (26.2%). Patients
with moderate to severe burden of CSVD were more likely than those with mild burden
of CSVD to have narrowed retinal arterioles (105.24 ± 8.42 µm vs. 109.45 ± 7.93
µm), widened retinal venules (201.67 ± 16.25 µm vs. 193.95 ± 13.54 µm), and lower
arteriole-to-venule ratio (0.52± 0.05 vs. 0.57± 0.04) (P < 0.05 for all). The degree of DR
(r = 0.465, P < 0.001) and CRVE (r = 0.366, P < 0.001) were positively correlated with
the total MRI burden of CSVD. Multivariate logistic regression analysis indicated that,
after adjustments were made for age, smoking, alcohol consumption, hypertension, and
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other factors, more than mild DR (OR, 4.383; P = 0.028), CRAE (OR, 0.490; P = 0.031),
and CRVE (OR, 1.475; P = 0.041) were independently associated with moderate to
severe burden of CSVD.

Conclusion: Retinal microvascular abnormalities in patients with type 2 diabetes are
associated with the presence of cerebral small vessel lesions. The degree of DR and
retinal vessel changes can be used as predictors of intracranial microcirculation lesions.

Keywords: cerebral small vessel disease, retinal microvascular, diabetic retinopathy, type 2 diabetes, retinal
photography

INTRODUCTION

Type 2 diabetes is a strong risk factor for the development
of atherosclerosis. Research has shown that type 2 diabetes is
associated with a 2.5-fold increased risk of ischemic stroke,
a 1.5-fold increased risk of hemorrhagic stroke, and a 1.5-
fold increased risk of dementia compared to the risk in the
general population (van Sloten et al., 2020). Type 2 diabetes
is also a major risk factor for microvascular dysfunction,
including dysfunction in the retinal microvascular system.
Specifically, the effect of diabetes is reflected not only in subtle
abnormalities of retinal vessels but also in the occurrence
of diabetic retinopathy (DR) (Stehouwer, 2018; van Sloten
et al., 2020). DR is the most common diabetes-related
microvascular complication, with a global prevalence of 34.6%
(Shahulhameed et al., 2020).

Research has shown that type 2 diabetes may also be
associated with an increasing occurrence of cerebral small
vessel disease (CSVD) over time (Qiu et al., 2018; van Agtmaal
et al., 2018). CSVD is a slowly progressing disease with
non-specific symptoms. Magnetic resonance imaging (MRI)
features of CSVD can include white matter hyperintensities
(WMHs), lacunes, enlarged perivascular spaces (PVS),
and cerebral microbleeds (CMBs), all of which may be a
manifestation of cerebral microvascular dysfunction. In recent
years, numerous studies have demonstrated a significant
correlation between CSVD and retinal vascular changes
(McGrory et al., 2019; Shu et al., 2020). Sanahuja et al. (2016)
also found that the presence of DR is associated with more
severe CSVD. In terms of anatomical features, the retinal
arterioles, and venules, measuring 100–300 µm in diameter,
share similar features with cerebral small blood vessels. The
retinal microvasculature is therefore thought to be a “window”
to reflect the condition of the cerebral microvasculature
(London et al., 2013).

Given the simultaneous occurrence and joint effects of MRI
markers of CSVD, the total MRI burden of CSVD could
be used to comprehensively evaluate the cumulative effect of
various types of CSVD, with total MRI burden of CSVD
potentially offering a better overall assessment of the severity
and clinical impact of CSVD (Lau et al., 2017). However,
previous studies assessing these potential links usually focused
on patients who had experienced stroke; patients with type 2
diabetes have rarely been directly studied. In addition, in previous
research assessing the relationship between type 2 diabetes and

retinal microvascular abnormalities, the fundus has usually been
evaluated via either qualitative assessment of retinopathy signs
or quantitative assessment of retinal vessel calibers. In this study,
we enrolled only patients with type 2 diabetes and we used
retinal photography to assess retinopathy and retinal vascular
calibers, thus combining qualitative assessment with quantitative
assessment to more fully reflect the abnormalities of the retinal
microvasculature. With this study design, we aimed to investigate
the correlation between retinal microvascular abnormalities and
the total MRI burden of CSVD in patients with type 2 diabetes.

MATERIALS AND METHODS

Study Design
We collected and analyzed data from patients with type 2 diabetes
who were hospitalized in the Department of Endocrinology at
Changzhou Second People’s Hospital from December 2019 to
November 2020. This cross-sectional observational study was
approved by the Ethics Committee of Changzhou Second People’s
Hospital (2017KY015-01). Informed consent was obtained from
patients (or from their family members, if patients were unable to
sign the consent form because of illiteracy).

Patient Selection
A total of 170 patients with type 2 diabetes were screened
for our study. These patients did not have dementia and
had not experienced stroke. Patients were included if they
(1) were aged ≥ 18 years old; (2) met the diagnostic criteria
for type 2 diabetes mellitus (Hemmingsen et al., 2017);
(3) had cerebral MR images demonstrating any markers of
CSVD; and (4) provided informed consent. Patients were
excluded if they (1) were unable to complete the cerebral
MRI examination or fundus photography; (2) demonstrated
evidence of acute cerebral infarcts on cerebral MRI, even
if asymptomatic; (3) had any brain disease affecting fundus
vessels (e.g., intracranial tumors, arteriovenous malformations,
venous sinus thrombosis); (4) had known eye disease or
disease that affected the retinal vessel structure or hindered
observation of the fundus (e.g., age-related maculopathy, central
serous chorioretinopathy, cataract, retinal pigment epithelial
detachment) or had undergone previous ophthalmological
treatment (e.g., laser photocoagulation, intravitreal injection);
(5) had type 1 diabetes or other types of diabetes; (6) had
severe organic or metabolic disease; and (7) had unclear fundus
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images or incomplete cerebral MRI sequences. Of the 170
patients screened for the study, 8 had unclear fundus images, 5
had cataracts or other fundus diseases, 3 had incomplete MRI
sequences, and 3 had asymptomatic acute cerebral infarction.
These patients were excluded from the analysis, leaving a total
of 151 patients enrolled in the study.

Data Collection
We collected information about patient age, sex, vascular risk
factors (including BMI, duration of diabetes, hypertension,
smoking, alcohol consumption, previous stroke, coronary heart
disease, systolic, and diastolic blood pressure), and laboratory
tests such as fasting glucose, glycated hemoglobin (HbA1c),
total cholesterol, triglyceride, low-density lipoprotein cholesterol,
high-density lipoprotein cholesterol, serum creatinine, and
urinary microalbumin/creatinine ratio. We also performed
carotid ultrasound at baseline for each enrolled participant.

Analysis of Retinal Microvascular
Abnormalities
Retinal Vascular Assessment
A Topcon (TRC-NW400) non-mydriatic fundus camera was
used to perform fundus photographic examination of all enrolled
patients. Binocular fundus images were obtained with patients
sitting under a slit lamp, and the optic disc was confirmed to be in
the center of each image. These fundus images were qualitatively
analyzed by 2 experienced ophthalmologists. In addition, the
software Image J1 was used to measure retinal vascular calibers for
each patient (Figure 1). The measurement process was completed
by a well-trained ophthalmology graduate student. First, all
photographs were projected at the same magnification. Next,
a 0.5–1 disc diameter surrounding the optic disc was circled
and the calibers of the largest 6 retinal arteries and venules
were measured. The edge of each blood vessel wall was selected
to measure the diameter of the blood vessel vertically. Using
this method, we obtained the diameter of 6 retinal arteries
and venules. Calibration of the retinal vascular calibers was
performed based on the standard disc diameter (1,850 µm) as a
defined unit of measurement. Using this uniform conversion, we
obtained the vascular calibers close to the true value. Finally, the
revised Parr-Hubbard formula was used to calculate the retinal
vascular caliber. We used an iterative procedure of pairing up the
largest vessels with the smallest and repeating this process until
we reached a single number that summarized as the central retinal
artery equivalent (CRAE), the central retinal venous equivalent
(CRVE), and the arteriole-to-venule ratio (AVR). The following
formulas were used to obtain these values (Yip et al., 2016):

CRAE = 0.88 ∗ (W2
1 + W2

2 )
1/2

CRVE = 0.95 ∗ (W2
1 + W2

2 )
1/2

AVR : CRAE/CRVE

1https://imagej.en.softonic.com/

FIGURE 1 | A screenshot of the Image J interface.

Diabetic Retinopathy Definition and Classification
DR grades (Figure 2) were determined by an experienced
ophthalmologist who assessed the cases online, and these grades
were reviewed by another experienced ophthalmologist at our
hospital; both were blinded to all clinical data and other
measurements. Based on an international consensus on clinical
DR (Solomon et al., 2017), the grades of DR were defined
as follows: 1 = non-DR (NDR), diabetic patients without DR;
2 = mild non-proliferative DR, indicated by microaneurysms
only; 3 = moderate non-proliferative DR, indicated by more
than just microaneurysms but less than severe non-proliferative
DR; 4 = severe non-proliferative DR, indicated by > 20
intraretinal hemorrhages in each of 4 quadrants, definite
venous beading in 2 or more quadrants, prominent intraretinal
microvascular abnormalities in 1 or more quadrants, or no signs
of proliferative retinopathy; and 5 = proliferative DR, indicated
by neovascularization and/or vitreous/preretinal hemorrhage.
There were no cases of PDR in our study population. For this
analysis, DR grades 3 and 4 were combined into a group referred
to as “more than mild DR.”

Analysis of the Total Magnetic
Resonance Imaging Burden of Cerebral
Small Vessel Disease
Within 7 days after admission, all enrolled patients underwent
3.0T cerebral MRI examination, including T1-weighted imaging
(T1WI), T2-weighted imaging (T2WI), fluid attenuation
inversion recovery (FLAIR) imaging, diffusion-weighted
imaging (DWI), and susceptibility-weighted imaging (SWI).
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FIGURE 2 | Fundus photographs showing features of a normal fundus and features of the various grades of diabetic retinopathy. (A) Photograph of a normal fundus.
(B) Fundus image showing mild non-proliferative diabetic retinopathy with microaneurysms. (C) Fundus image showing moderate non-proliferative diabetic
retinopathy with hemorrhages, hard exudates, and microaneurysms. (D) Fundus image showing severe non-proliferative diabetic retinopathy.

Two experienced neurologists who were blinded to the clinical
information and retinal photography findings independently
evaluated all images based on an international consensus
(Wardlaw et al., 2013). The total MRI burden scores of CSVD
were calculated ranging from 0 to 4 (Figure 3) by combining 4
individual CSVD markers, with 1 point allocated to each of the
markers. The specific criteria for the markers were as follows:

(1) WMHs: defined as periventricular or deep brain lesions of
varying sizes, hyperintense on T2WI or FLAIR imaging, and
isointense or hypointense on T1WI with abnormal white
matter signals. The severity of WMHs was assessed using
the Fazekas scale. A score of 3 points for hyperintensities in
periventricular white matter or≥ 2 points for hyperintensities
in deep white matter was counted as 1 point.

(2) Lacunes: defined as round or oval cerebrospinal fluid-
like signals on T1WI and T2WI, with a surrounding
rim of hyperintensities and central cerebrospinal fluid-like
hypointensities on FLAIR imaging, with a diameter of 3–
15 mm, distributed under the cortex. The presence of ≥ 1
lacune was counted as 1 point.

(3) CMBs: defined as round or oval signal loss lesions on
SWI, with clear boundaries, mostly 2–5 mm in diameter,
located in the cortico-subcortical junction and deep in
the cerebral hemispheres. The presence of ≥ 1 CMB was
counted as 1 point.

(4) PVS: defined as round, oval, or linear lesions that pass-
through of gray or white matter, hypointense on T1WI and
FLAIR imaging, and hyperintense on T2WI, with a diameter
of < 3 mm. A visual quantization method was used to count
the number of lesions in the basal ganglia and semioval center.
A PVS of level ≥ 2 was counted as 1 point (Huijts et al., 2013;
Lau et al., 2017).

The total MRI burden of CSVD scores was then categorized
into 2 groups based on the simple CSVD score: mild burden (0–1
points) or moderate to severe burden (2–4 points).

Statistical Analysis
All statistical analyses were performed with the Windows SPSS
software package (Version 26.0, IBM Corporation, Armonk, NY,

United States). Continuous variables with normal distribution
were presented as mean ± SD, whereas continuous variables
with skewed distribution were summarized as medians and
interquartile ranges. Categorical variables were expressed as
numbers and percentages. Differences between groups were
tested in univariate analyses using independent sample t-
test, Kruskal-Wallis H-test, Mann-Whitney U-test, chi-square
test, or Fisher’s exact test as appropriate. LSD tests and
Bonferroni corrections were used in post hoc analyses. Variables
that demonstrated a degree of significance of P < 0.1 in
univariate analysis were entered into a multivariate binary
logistic regression model to analyze the relationship between
retinal microvascular abnormalities and the total MRI burden
of CSVD. The correlation between the total MRI burden of
CSVD and DR degree and retinal vascular calibers was tested
using the Spearman rank method. Significance was defined as
P < 0.05.

RESULTS

Baseline Characteristics of Diabetic
Retinopathy
Among the 151 patients included in the study, the average age
was 63.9 ± 8.6 years. There were 84 (55.6%) patients with NDR,
27 (17.9%) patients with mild DR, and 40 (26.5%) patients with
moderate, severe, or proliferative DR (more than mild DR).
Patients with more than mild DR were older and had a longer
duration of diabetes, higher systolic blood pressure, and greater
urinary microalbumin excretion than those with NDR (Table 1).
No significant difference was observed among groups in sex
distribution, medication use, or other baseline data.

The proportion of moderate to severe burden of CSVD in
the more than mild DR group was 75%, which was higher than
that of the mild DR group (48.1%) and the NDR group (26.2%)
(Figure 4). There was a significant tendency toward retinal
arteriolar narrowing and venular widening with increasing
degree of DR. The AVR values in patients with mild DR
(0.53± 0.04) and in those with more than mild DR (0.51± 0.04)
were smaller than in patients with NDR (0.57 ± 0.04). These
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FIGURE 3 | MRI images from patients with different cerebral small vessel
disease scores. Zero points: This patient was a 46-year-old man with no
apparent lesions on MR images. One point: This patient was a 56-year-old
man. Enlarged perivascular spaces (PVS) (grade 3) could be seen in the brain
cortex on T2-weighted imaging. MR images showed no other abnormality.
Two points: This patient was a 72-year-old woman. MRI demonstrated a
lacune in the right basal ganglia, smooth halo-like lesions near the bilateral
ventricles (Fazekas 2 for periventricular WMH), confluent white matter
hyperintensities (Fazekas 2 for deep WMH) in the deep lobe and enlarged PVS
(grade 1) in the bilateral basal ganglia. Susceptibility-weighted imaging
showed no abnormality. Three points: This patient was a 69-year-old
woman. MRI showed irregular white matter lesions in the lateral ventricles
extending to the white matter (Fazekas 3 for periventricular WMH), large
confluent areas of WMH (Fazekas 3 for deep WMH) in the center of the
bilateral semioval and enlarged PVS (grade 3). Four points: This patient was
a 77-year-old man. There were patchy, irregular white matter lesions
extending to the white matter in the lateral ventricle (Fazekas 3 for
periventricular WMH), fused WMH (Fazekas 3 for deep WMH), and 2 lacunes
in the parietal lobe, enlarged PVS (grade 2) in the bilateral basal ganglia, and
cerebral microbleeds at the level of the bilateral ventricles. All 4 MRI markers
appeared in the images from this patient.

significant associations remained significant after LSD tests or
Bonferroni corrections (Table 1).

Association of Retinal Microvascular
Abnormalities With Total Magnetic
Resonance Imaging Burden of Cerebral
Small Vessel Disease
A total of 86 patients demonstrated mild burden of CSVD, and
65 patients demonstrated moderate to severe burden of CSVD.

Patients with moderate to severe CSVD burden were more likely
than those with mild CSVD burden to have narrowed retinal
arterioles (105.24 ± 8.42 µm vs. 109.45 ± 7.93 µm), widened
retinal venules (201.67 ± 16.25 µm vs. 193.95 ± 13.54 µm), and
lower AVR (0.52± 0.05 vs. 0.57± 0.04) (P< 0.05 for all). Patients
with moderate to severe burden of CSVD also demonstrated a
higher proportion of more than mild DR (46.2%) than those with
mild burden of CSVD (11.6%) (Table 2).

Spearman rank correlation analysis demonstrated that the
degree of DR (r = 0.465, P < 0.001) and CRVE (r = 0.366,
P < 0.001) were positively correlated with the total MRI burden
of CSVD, whereas CRAE (r = –0.306, P < 0.001) was negatively
correlated with the total MRI burden of CSVD.

Multivariate Logistic Regression Analysis
of Total Magnetic Resonance Imaging
Burden of Cerebral Small Vessel Disease
Multivariate logistic regression analysis was performed to further
evaluate the association between the total MRI burden of CSVD
and retinal microvascular abnormalities. After adjustments were
made for confounding factors such as age, smoking, alcohol
consumption, hypertension, and stroke, more than mild DR (OR,
4.383; 95% CI, 1.179–17.202; P = 0.028), CRAE (OR, 0.490;
95% CI, 0.256–0.936; P = 0.031), and CRVE (OR, 1.475; 95%
CI, 1.016–2.143; P = 0.041) were found to be independently
associated with moderate to severe burden of CSVD (Table 3).

DISCUSSION

This study found that DR was correlated with the total
MRI burden of CSVD in patients with type 2 diabetes.
More specifically, the degree of DR was associated with
more severe CSVD. Further, CRAE, CRVE, and the presence
of more than mild DR were independently associated with
increased burden of CSVD.

DR has a high incidence in patients with diabetes and
is one of the most common microvascular complications
in this population. Additionally, as a slowly progressive
neuromicrovascular disorder, diabetes is associated with an
increased risk of the occurrence of CSVD (van Sloten
et al., 2020). Research has shown that retinal microvascular
abnormalities can reflect changes in small cerebral arteries caused
by vascular risk factors such as diabetes and hypertension
(Yip et al., 2016). Previous studies have mostly focused on
the relationship between retinal microvascular abnormalities
and individual CSVD markers. Mutlu et al. (2016) found
that the widening of retinal venules and arteriole stenosis
were related to the volume of white matter lesions and
that changes in retinal vessels calibers may have predated
these lesions. Dumitrascu et al. (2018) found that changes
in arteriovenous nicking, focal arteriolar narrowing, and
retinal vascular curvature were more common in patients
with CSVD than in those without CSVD. The degree of
retinal vein dilation and focal arteriolar narrowing was
related to the presence of lacunes. In our study, we used
a scoring system that included WMHs, lacunes, EPVS, and
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TABLE 1 | Clinical characteristics of the study population according to DR status (NDR, mild DR, or more than mild DR).

Variables NDR (n = 84) Mild DR (n = 27) More than mild DR (n = 40) P-value

Age, y; mean ± SD 62.3 ± 8.6 65.5 ± 8.0 66.3 ± 8.2* 0.030

Male, n (%) 44 (52.4) 14 (51.9) 16 (40.0) 0.413

Vascular risk factors at baseline

Smoking, n (%) 22 (23.8) 11 (40.7) 9 (22.5) 0.178

Alcohol consumption, n (%) 14 (16.7) 6 (22.2) 9 (22.5) 0.675

Hypertension, n (%) 51 (60.7) 18 (66.7) 27 (67.5) 0.714

Duration of diabetes, years, median (IQR) 10 (4, 15) 12 (10, 20) 19.5 (10, 21)* <0.001

Previous stroke, n (%) 14 (16.7) 5 (18.5) 9 (22.5) 0.737

Coronary heart disease, n (%) 6 (7.1) 2 (7.4) 0 (0) 0.218

Carotid artery plaques, n (%) 51 (60.7) 19 (70.4) 29 (72.5) 0.367

Systolic BP, mmHg, mean ± SD 135 ± 18 129 ± 17 143 ± 21*§ 0.009

Diastolic BP, mmHg, mean ± SD 78 ± 10 75 ± 12 78 ± 11 0.314

BMI, kg/m2, mean ± SD 24.16 ± 3.57 23.58 ± 2.92 23.88 ± 3.11 0.715

Laboratory tests

Fasting glucose, mmol//L, median (IQR) 8.38 (6.62, 11.30) 8.06 (6.29, 12.09) 8.79 (6.89, 11.70) 0.774

HbA1c, %, median (IQR) 8.40 (7.73, 10.50) 8.40 (7.30, 10.50) 8.45 (7.53, 9.95) 0.880

Total cholesterol, mmol//L, mean ± SD 4.29 ± 1.02 4.60 ± 1.59 4.46 ± 1.34 0.492

Triglycerides, mmol//L, mean ± SD 1.86 ± 1.17 1.81 ± 1.41 1.70 ± 1.02 0.771

LDL-C, mmol//L, mean ± SD 2.42 ± 0.71 2.56 ± 0.90 2.55 ± 0.87 0.605

HDL-C, mmol//L, mean ± SD 1.04 ± 0.29 1.14 ± 0.37 1.10 ± 0.30 0.268

Serum creatinine, µmol//L, mean ± SD 63.26 ± 19.10 67.76 ± 28.84 73.60 ± 34.14 0.112

Urinary microalbumin/creatinine ratio, mg/g, median (IQR) 11.80 (7.15, 28.73) 27.00 (8.40, 58.40)* 20.80 (9.33, 163.65)* 0.012

Medication use

Insulin treatment, n (%) 25 (29.8) 6 (22.2) 15 (37.5) 0.402

Hypoglycemic agents, n (%) 48 (57.1) 14 (51.9) 20 (50.0) 0.727

Antihypertensive medication, n (%) 30 (35.7) 11 (40.7) 17 (42.5) 0.740

Antiplatelet medication, n (%) 15 (17.9) 8 (29.6) 6 (15.0) 0.294

Lipid-modifying medication, n (%) 28 (33.3) 11 (40.7) 10 (25.0) 0.389

Retinal vessel changes

CRAE, µm, mean ± SDmean SD 109.15 ± 8.96 106.37 ± 6.70 105.32 ± 7.62* 0.039

CRVE, µm, mean ± SD 191.58 ± 16.47 200.34 ± 9.63* 207.15 ± 8.59* <0.001

AVR, mean ± SD 0.57 ± 0.04 0.53 ± 0.04* 0.51 ± 0.04*§ <0.001

Total MRI burden score of CSVD <0.001

Mild burden, n (%) 62 (73.8) 14 (51.9) 10 (25.0)*

Moderate to severe burden, n (%) 22 (26.2) 13 (48.1) 30 (75.0)*

DR, diabetic retinopathy; NDR, no diabetic retinopathy; SD, standard deviation; IQR, interquartile range; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CRAE,
Central Retinal Arterial Equivalent; CRVE, Central Retinal Venous Equivalent; AVR, arteriole-to-venule ratio; CSVD, cerebral small vessel disease.
*Indicates that the difference was statistically significant compared with the NDR group.
§ Indicates that the difference was statistically significant compared with the mild DR group.

cerebral microhemorrhages in the assessment of CSVD. It
is a relatively new scoring system in recent years that can
comprehensively evaluate the combined effect of CSVD lesions.
The effectiveness and applicability of this scoring system
for CSVD have been demonstrated in a growing number
of studies (Lau et al., 2017; Yang et al., 2019; Shu et al.,
2020).

Previous research has shown that retinal microvascular
dysfunction is related to diabetes mellitus; this dysfunction
includes not only DR but also subtle abnormalities in the
structure and function of retinal microvascular vessels, such
as retinal venule dilation or arteriole reduction, and increased
fractal dimension (Stehouwer, 2018; van Sloten et al., 2020).
In our study, differences in retinal blood vessel calibers

were observed among patients with different severities of
DR. With the aggravation of DR, CRVE tended to increase,
whereas CRAE and AVR tended to decrease. These differences
were statistically significant, suggesting that widened retinal
venules and narrowed retinal arterioles may be related to
the progression of DR. Diabetes is associated with a number
of microvascular and macrovascular complications that affect
the retina and the brain in parallel, so both retinal blood
vessels and cerebrovascular vessels are susceptible to this
disease (Pearce et al., 2019). Previous research has shown
that retinopathy and retinal microvascular abnormalities are
associated with the presence and progression of CSVD in
patients with type 2 diabetes (Cheung et al., 2015), some
of the findings confirmed by our study. In our study, we
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FIGURE 4 | Frequency and severity of cerebral small vessel disease (CSVD) in
the 3 study groups. DR, diabetic retinopathy; NDR, no diabetic retinopathy.

found that DR was related to the total MRI burden of
CSVD, and the more severe the DR was, the heavier the
total MRI burden was.

Hyperglycemia is associated with systemic endothelial
dysfunction of the microcirculation, which can cause cerebral
hypoperfusion, leading to chronic cerebral ischemia (Sörensen
et al., 2016). The changes in cerebral microcirculation in
diabetic patients are related to the increased permeability of
the blood-brain barrier and changes in cerebral blood flow
regulation. The blood-brain barrier is susceptible to oxidative
stress, which may be caused by the increased production of
reactive oxygen species associated with hyperglycemia and
limited antioxidant defenses in the brain. This disruption of
the blood-brain barrier in turn leads to vessel wall thickening
and disorders of the cerebral microcirculation, resulting in
structural brain abnormalities (Bogush et al., 2017; Rhea and
Banks, 2019). In our study, we found that patients with narrower
retinal arterioles and wider retinal venules show a heavier total
MRI burden of CSVD. After adjusting for confounding factors
such as age, smoking, alcohol consumption, hypertension, and
stroke, we found that CRAE, CRVE, and the presence of more
than mild DR were independently associated with moderate to
severe burden of CSVD.

Patients with diabetes may also be affected by microvascular
complications other than DR, such as diabetic nephropathy
and diabetic neuropathy. A systematic review reported that
DR is consistently associated with other complications of

TABLE 2 | Clinical characteristics of the study population based on the total MRI burden of CSVD.

Variables Mild burden (n = 86) Moderate to severe burden (n = 65) P-value

Age, y; mean ± SD 61.3 ± 8.7 67.4 ± 7.2 <0.001

Male, n (%) 43 (50.0) 31 (47.7) 0.779

Vascular risk factors at baseline

Smoking, n (%) 17 (19.8) 23 (35.4) 0.031

Alcohol consumption, n (%) 11 (12.8) 18 (27.7) 0.021

Hypertension, n (%) 44 (51.2) 52 (80.0) <0.001

Duration of diabetes, years, median (IQR) 10 (6, 17) 12 (6.5, 20.5) 0.113

Previous stroke, n (%) 7 (8.1) 21 (32.3) <0.001

Coronary heart disease, n (%) 4 (4.7) 4 (6.2) 0.726

Carotid artery plaques, n (%) 47 (54.7) 52 (80.0) 0.001

Systolic BP, mmHg, mean ± SD 133 ± 18 141 ± 21 0.008

Diastolic BP, mmHg, mean ± SD 77 ± 11 78 ± 10 0.741

BMI, kg/m2, mean ± SD 24.05 ± 3.12 23.90 ± 3.61 0.781

Laboratory test

Fasting glucose, mmol//L, median (IQR) 7.78 (6.47, 9.89) 9.37 (7.47, 12.77) 0.005

HbA1c, %, median (IQR) 8.10 (7.0, 9.68) 9.40 (8.05, 10.90) <0.001

Total cholesterol, mmol//L, mean ± SD 4.47 ± 1.17 4.28 ± 1.30 0.350

Triglycerides, mmol//L, mean ± SD 1.83 ± 1.12 1.79 ± 1.25 0.846

LDL-C, mmol//L, mean ± SD 2.48 ± 0.75 2.36 ± 0.83 0.475

HDL-C, mmol//L, mean ± SD 1.11 ± 0.32 1.02 ± 0.28 0.086

Serum creatinine, µmol//L, mean ± SD 60.95 ± 19.46 74.54 ± 30.93 0.001

Urinary microalbumin/creatinine ratio, mg/g, median (IQR) 11.80 (6.60, 27.58) 20.50 (9.10, 97.95) <0.001

Retinal microvascular abnormalities

DR <0.001

NDR, n (%) 62 (72.1) 22 (33.8)

Mild DR, n (%) 14 (16.3) 13 (20.0)

More than mild DR, n (%) 10 (11.6) 30 (46.2)

CRAE, µm, mean ± SD 109.45 ± 7.93 105.24 ± 8.42 0.002

CRVE, µm, mean ± SD 193.95 ± 13.54 201.67 ± 16.25 0.002

AVR, mean ± SD 0.57 ± 0.04 0.52 ± 0.05 <0.001

DR, diabetic retinopathy; NDR, no diabetic retinopathy; SD, standard deviation; IQR, interquartile range; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CRAE,
Central Retinal Arterial Equivalent; CRVE, Central Retinal Venous Equivalent; AVR, arteriole-to-venule ratio; CSVD, cerebral small vessel disease.
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TABLE 3 | Multivariate logistic regression analysis of the total MRI burden of
CSVD.

Variable OR 95% CI P-value

Age 1.100 1.024∼1.181 0.009

Hypertension 3.531 1.118∼11.148 0.031

HbA1c 1.601 1.117∼2.294 0.010

More than mild DR 4.383 1.179∼17.202 0.028

CRAE 0.490 0.256∼0.936 0.031

CRVE 1.475 1.016∼2.143 0.041

OR, odds ratio; CI, confident interval; DR, diabetic retinopathy; CRAE, Central
Retinal Arterial Equivalent; CRVE, Central Retinal Venous Equivalent; CSVD,
cerebral small vessel disease.

diabetes, with the severity of DR contributing to a higher
risk of developing other microvascular complications (Pearce
et al., 2019). One study found that nephropathy was the only
complication of diabetes independently associated with DR,
and the presence of retinopathy increased the likelihood of
developing nephropathy by 4.37 times (El-Asrar et al., 2001).
In our study, we also found that patients with diabetes who
have retinopathy, compared with those without retinopathy, had
greater urinary albumin excretion. Fewer studies have evaluated
the relationship between retinal vascular changes and diabetic
neuropathy. One population-based cross-sectional study found
that suboptimal arteriolar caliber and DR were associated with
peripheral neuropathy (Ding et al., 2012).

This study also found that age and hypertension were
independent risk factors for increased total MRI burden of
CSVD, which is consistent with the results of previous studies
(Hernandez-Diaz et al., 2019; Shu et al., 2020). Nam et al.
(2020) found that in patients with no history of cerebrovascular
disease, a high triglyceride-glucose index was associated with a
higher total burden of CSVD, suggesting that this index may
be a convenient and useful predictor of CSVD. In a large
population-based study, van Agtmaal et al. (2018) found that
persistent hyperglycemia was associated with abnormalities such
as WMHs and lacunes. In our study, HbA1c was found to be an
independent risk factor for moderate to severe burden of CSVD,
which was consistent with the findings of van Agtmaal et al.
(2018). However, we observed no significant correlation between
triglycerides or fasting blood glucose and the total MRI burden
of CSVD; this lack of association may be related to the use of
medications to control diabetes, as well as lipid-regulating agents.

This study had several limitations. First, because this was
a cross-sectional study, a direct relationship between retinal
microangiopathy and CSVD could not be demonstrated.
Second, the study included patients with type 2 diabetes
but did not include age-matched prediabetic or non-diabetic
controls, making it difficult to extrapolate these results to a
wider population. Future studies will be needed to assess the
relationship between total MRI burden and retinal microvascular
lesions in patients with prediabetes and non-vascular factors.
The semiquantitative method used in this study to evaluate
retinal blood calibers may be inaccurate. In addition, while
some studies have adopted quantitative assessment of WMHs,
there is no quantitative disease burden evaluation system that
truly targets small blood vessels themselves. Further research is

needed to establish a more accurate system for evaluating the
total MRI burden of CSVD. In future studies, we plan to use
a high-resolution, high-quality imaging segmentation method
to examine volumetric data for WMH, lacunes, EPVS, recent
subcortical infarcts, microbleeds, and global and regional brain
volume, with the goal of identifying the global burden of brain
changes. Automated image quantification tools are becoming
a crucial part of clinical research and practice; thus, a robust
and precise MRI segmentation method capable of identifying
multiple imaging features of CSVD is needed. Finally, further
research is needed regarding quantifying and intelligentizing
imaging and symptomatic diagnosis for CSVD.

CONCLUSION

In conclusion, this study found that retinal microvascular
abnormalities in diabetic patients are related to the occurrence
of CSVD. These retinal microvascular abnormalities can be used
to evaluate the severity of CSVD and to predict the occurrence of
intracranial microvascular disease.
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Choroid neovascularization (CNV) is one of the blinding factors. The early detection
and quantitative measurement of CNV are crucial for the establishment of subsequent
treatment. Recently, many deep learning-based methods have been proposed for CNV
segmentation. However, CNV is difficult to be segmented due to the complex structure
of the surrounding retina. In this paper, we propose a novel dynamic multi-hierarchical
weighting segmentation network (DW-Net) for the simultaneous segmentation of
retinal layers and CNV. Specifically, the proposed network is composed of a residual
aggregation encoder path for the selection of informative feature, a multi-hierarchical
weighting connection for the fusion of detailed information and abstract information, and
a dynamic decoder path. Comprehensive experimental results show that our proposed
DW-Net achieves better performance than other state-of-the-art methods.

Keywords: multi-target segmentation, choroid neovascularization, convolutional neural network, optical
coherence tomography, medical image processing, attention mechanism

INTRODUCTION

The choroid is an important tissue of the human eye. It is a soft and smooth brown film located
between the retina and the sclera (Hageman et al., 1995; Bressler, 2002). Optical coherence
tomography (OCT) is a noninvasive, high-resolution biological imaging technology that can be
used for in vivo measurement of fundus structures such as the retina, retinal nerve fiber layer,
macula, and optic disc (Huang et al., 1991; Fercher et al., 1993). In OCT image, the normal retinal
structure presents multiple interconnected retinal layers (Srinivasan et al., 2014; Zanet et al., 2019);
from the inside to the outside are: the nerve fiber layer (NFL), Ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer
(ONL), outer photoreceptor segment layer (OPSL), and retinal pigment epithelium (RPE). Figure 1
shows the OCT image with normal retinal layers.

Choroid neovascularization (CNV), also known as sub-retinal neovascularization, refers to the
pathologically proliferating blood vessels that extend from the choroid to the sub-retinal pigment
epithelium, the sub-retinal space, or a combination of the above (Lopez et al., 1991; Laud et al.,
2006). Figure 2 shows the OCT image of the retina with CNV. Due to the high permeability of
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FIGURE 1 | Optical coherence tomography (OCT) image of the normal retinal layer. (A) Original image. (B) Label. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL,
inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OPSL, outer photoreceptor segment layer; RPE, retinal pigment
epithelium.

FIGURE 2 | Optical coherence tomography (OCT) image of the normal retinal layer containing choroid neovascularization (CNV). (A) Original image. (B) Label.

the vascular wall of neovascularization, it may lead to sub-
retinal hemorrhage, lipid exudation, detachment of the retinal
pigment epithelium and choroid, and the formation of fibrotic
scars (Zhang et al., 2017). The main symptoms are visual loss,
distortion of vision, and central or para-central dark spots, which
eventually lead to blindness (Saxe et al., 1993; Grossniklaus
and Green, 2004). Therefore, early detection and quantitative
measurement of CNV are crucial for the establishment of
subsequent treatment plans.

Medical-aided diagnosis segmentation algorithm based
on computer vision can quickly obtain the shape, size,
location, and optical density value, which can provide
reliable and accurate quantitative information for the
diagnosis and treatment of CNV (Chen et al., 2012, 2016;
Gao et al., 2015). Therefore, the development of a reliable and
automatic OCT-based CNV segmentation method requires
further attention.

However, accurate segmentation of CNV still faces great
challenges. Firstly, the structure of the retina is complex due
to the multiple retinal layers it contains (Garvin et al., 2009;
Roy et al., 2017). Secondly, with the existence of CNV or fluid,
the adjacent retinal layers will deform greatly, resulting in a
decrease in contrast (Shi et al., 2015). Thirdly, some CNVs
are small objects that are hard to discriminate, resulting in
performance degradation.

Therefore, focusing on these problems, we propose a new
dynamic multi-hierarchical weighting segmentation network
(DW-Net) for the joint segmentation of CNV and retinal
layers in retinal OCT images. To alleviate the increase in the
difficulty of CNV segmentation due to the complexity of the
retinal layer structure, we developed a joint framework for
the simultaneous segmentation of the retinal layers and CNV.
To reduce the impact of partial deformation of the retinal
layers and improve the segmentation performance on small
CNVs, multiple multi-hierarchical connections are introduced
in our proposed network, thus making full use of contextual
information. Comprehensive experimental results suggest that
our proposed DW-Net achieves superior performance in OCT-
based segmentation of retinal layers with CNV compared with
several state-of-the-art methods.

The major contributions of this paper can be summarized as
follows. Firstly, we create an end-to-end deep learning framework
for the simultaneous segmentation of the retinal layers and CNV.
Secondly, we develop multiple multi-hierarchical connections
to extract and fuse the features in a contextual-driven
manner. Thirdly, we evaluate the proposed methods on OCT
images of the retina, with experimental results suggesting the
effectiveness of our methods.

The rest of the paper is organized as follows. We first
briefly review related work in section “Related Work.” Then,
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we introduce the proposed dynamic multi-hierarchical weighting
segmentation network (DW-Net) in section “Methods”. In
section “Experiments and Results,” we present the experimental
settings, experimental results, ablation study, and the materials
used in this study. The ablation study and the limitations of
our current work are shown in section “Discussion,” as well as
possible future directions. Finally, we conclude this paper in
section “Conclusion.”

RELATED WORK

In recent years, several automatic CNV segmentation methods
of the retinal layers and CNV have been proposed. Lu et al.
(2010) segmented the retinal blood vessel into multiple vascular
and non-vascular slices, smoothed and filtered to refine the
layer boundary. Song et al. (2013) further used arc-based graph
representation, combined extensive prior information through
paired energy terms, and calculated the maximum flow in low-
order polynomial time. In the same year, Dufour et al. (2013)
proposed a graph-based automatic multi-surface segmentation
algorithm to add prior information from the learning model
and further improved the accuracy of segmentation. Xu et al.
(2013) used the Iowa reference algorithm to segment 10 retinal
layers, followed by a combined graph search/graph cut method
to segment pairs of adjacent retinal layers and any present
fluid-associated abnormality detection region in 3D. Xi et al.
(2017, 2018) developed a structure prior method based on
sparse representation classification and local latent function to
capture the global spatial structure and local similarity structure
prior, which improved the segmentation robustness of CNVs of
different sizes.

At present, deep neural networks have been widely used
for the segmentation of retinal images and CNV. Su et al.
(2020) proposed a differential amplification block to extract the
contrast information of the foreground and background, which
is integrated into the U-shaped convolutional neural network
for CNV segmentation. Based on density cell-like P systems,
Xue et al. (2018) proposed an automatic quantification method
of the CNV total lesion area on outer retinal OCT angiograms
to improve the accuracy of the segmentation boundaries. To
simultaneously segment layers and neovascularization, Xiang
et al. (2018) extracted well-designed features to find the coarse
surfaces of different OCTs and introduced a constrained graph
search algorithm to accurately detect retinal surfaces. Wang et al.
(2020) trained two independent convolutional neural networks
to classify the input scans according to the presence or absence
of CNVs in a complementary manner, forming a powerful CNV
description system.

METHODS

Overview
The encoder–decoder structure (Ronneberger et al., 2015; Zhao
et al., 2017; Feng et al., 2020) has been proven to be an efficient
architecture for pixel-wise semantic segmentation among many

deep learning-based methods; therefore, we propose a novel
joint segmentation framework to solve the challenges in retinal
CNV segmentation based on this. As shown in Figure 3A, the
proposed DW-Net consists of three parts: residual aggregation
encoder path, dynamic multi-hierarchical weighting connection,
and dynamic decoder path.

Residual Aggregation Encoder Path
In the conventional encoder path, encoders are composed of
stacked convolutional layers and pooling layers, which are used
to extract rich semantic information and global features layer by
layer. However, continuous convolution and pooling will reduce
the resolution of semantic features, which may lead to the loss
of some small objects (such as small CNVs). To reduce the loss
of resolution and enhance the selectivity of the feature encoder,
we utilized the residual module as our encoder in this paper.
By fusing the current feature maps with previous feature maps,
the residual module can obtain informative feature maps that are
more conducive to subsequent segmentation.

As shown in Figure 3B, the input data X ∈ RH×W×C is
encoded by a convolutional layer and four encoders, as follows:{

Xi,0
= Conv(X) i=0

Xi,0
= ResNet(Xi−1,0) 1 ≤ i ≤ 4

(1)

where H, W, and C denote the height, width, and channels of
the input data, respectively, and X0,0 represents the output of
the first convolutional layer. Xi,0(1 ≤ i ≤ 4) denotes the output
feature maps of four encoders, with channel numbers of 64, 128,
256, and 512, respectively. To improve the feature extraction
ability and save computing resources, we used the pre-trained
model of layers 1–4 in ResNet18 (He et al., 2016) to initialize the
parameters of the encoders.

Dynamic Multi-Hierarchical Weighting
Connection
Encoders of different hierarchies can extract features of different
levels. The local features extracted by the low-level encoder are
relatively simple and are more inclined to the basic components
of images such as points, lines, and contours, while the high-
level encoder is able to extract more complex features, such as
abstract globe information. As for the semantic segmentation
tasks, abstract global features can improve the overall positioning
ability of the object, while fine local features can refine the edges
of the segmented object.

To make full use of the feature maps in multilevel encoders,
as in Figure 4 (Zhou et al., 2018) developed UNet++.
They concatenated the features of encoders in order layer by
layer directly (gray dotted line in Figure 4), thus improving
the performance of the segmentation network. However, the
output feature map of the encoder usually contains interference
information such as background and noise, which need to be
selected and filtered. Also, the output features of each level have
different contributions to the segmentation task; therefore, direct
concatenation cannot highlight the importance of each part. In
addition, concatenation in each hierarchy will greatly increase the
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FIGURE 3 | (A) Architecture of the proposed dynamic multi-hierarchical weighting segmentation network (DW-Net). The dark yellow part in (B,C) indicate the
residual aggregation encoder path and the dynamic multi-hierarchical weighting connection, respectively.

parameters of the network, which may reduce the training and
increase the risk of overfitting.

In response to the above problems, we proposed a dynamic
multi-hierarchical weighting connection, which aims to take full

advantage of the multi-scale extracted features that are conducive
to segmentation in a contextual-driven manner and to filter
irrelevant information. Figure 3C shows the structure of our
proposed dynamic multi-hierarchical weighting connection, and
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FIGURE 4 | Architecture of the UNet++ by Zhou et al. (2018).

its calculation process is as follows:

Xi,j
= Conv(Xi,0

+ DB(Xx+1,j−1)) 0 ≤ i ≤ 3, j = 1 (2)

Xi,j
= Conv(

j−2∑
k=0

αi,2j+k∗Xi,k
+ Xi,j−1

+DB(Xx+1,j−1)) 0 ≤ i ≤ 4−j, 2 ≤ j ≤ 4 (3)

where i and j denote the layer index and column index of the
feature mapXi,j, respectively, andDB represents a decode module
composed of a 3 × 3 convolutional layer and an upsampling
layer. αi,2j+k is a learnable parameter, which is optimized through
multiple iterations. To make full advantage of the known detailed
information and abstract information at all hierarchies, we
performed pixel addition on all higher-level feature maps and
current-level feature maps according to their weight, thereby
dynamically enhancing the segmentation ability of the current-
level decoder.

Dynamic Decoder Path
The dynamic decoder path contains four decoders, and the
channels of the output feature map X4−i,i(0 ≤ i ≤ 3) are 256,
128, 64, and 32, respectively. The decoder path is composed of
stacked convolutional layers and upsampling layers, which aims
to upsample the feature maps with strong semantic information

from a high level and restore the spatial resolution layer by layer.
Zhou et al. (2018), conducted pixel-wise averaging on the output
feature map of the decoder path and output feature maps at
the same hierarchy (the black straight line in the upper part of
Figure 4), as follows:

Y
′

= soft max

1
4

4∑
j=1

Conv
(
X0,j) (4)

where Conv is a simple 1 × 1 convolutional layer for
compressing the output feature channel. This strategy
directly merges different feature maps without considering
their depths. However, in convolutional neural networks,
segmentation tasks are sensitive to the depth of the network;
thus, a reasonable design of its depth will improve the
performance (Simonyan and Zisserman, 2014). For this
consideration, we modified the decoder path of UNet++ (Zhou
et al., 2018) to extract more informative prediction results.

Y
′

= soft max

1
4

4∑
j=1

DN
(
X0,j) (5)

where DN is a dynamic fusion module consisting of a bilinear
upsampling layer used to restore the input spatial resolution
and two 1 × 1 convolutional layers followed by a normalization
layer and a Relu nonlinear activation layer. Then, the 1 ×
1 convolutional layer is applied for channel compression.
Finally, we performed pixel-wise averaging on the output of
DN, followed by a softmax layer. Y

′

represents the predicted
probability map.

Loss Function
In the task of semantic segmentation of medical images, the
pixel-by-pixel cross-entropy loss, LCE, is a commonly used loss
function that compares the predicted probability map with the
gold standard (GT) in order according to the spatial position.

Y
′

= soft max

1
4

4∑
j=1

DN
(
X0,j) (6)

where k denotes the number of objects and Y represents
the gold standard.

TABLE 1 | Mean segmentation results (in percent) of the contrast experiments and ablation studies (mean ± SD).

Methods DSC IoU Acc Sen Pre

UNet 94.01 ± 1.34 88.89 ± 2.27 99.23 ± 0.17 94.10 ± 1.30 94.03 ± 1.32

AttUNet 93.19 ± 0.38 87.48 ± 0.67 99.13 ± 0.07 93.27 ± 0.49 93.25 ± 0.33

CE-Net 94.98 ± 0.32 90.55 ± 0.57 99.36 ± 0.03 95.19 ± 0.17 94.84 ± 0.45

Multi-ResUNet 94.41 ± 0.31 89.57 ± 0.54 99.28 ± 0.04 94.42 ± 0.25 94.49 ± 0.38

R2UNet 88.19 ± 1.10 79.48 ± 1.61 98.49 ± 0.11 88.38 ± 1.29 88.67 ± 0.87

DeepLab v3 95.05 ± 0.10 90.69 ± 0.18 99.38 ± 0.01 95.26 ± 0.19 94.90 ± 0.10

Backbone 93.54 ± 0.39 88.07 ± 0.68 99.17 ± 0.08 93.69 ± 0.32 93.50 ± 0.51

DW-Net 95.38 ± 0.22 91.26 ± 0.40 99.41 ± 0.02 95.44 ± 0.22 95.36 ± 0.23

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.
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TABLE 2 | Choroid neovascularization (CNV) segmentation results (in percent) of the contrast experiments and ablation studies (mean ± SD).

Methods DSC IoU Acc Sen Pre

UNet 92.80 ± 2.17 87.15 ± 3.46 99.73 ± 0.08 93.12 ± 2.25 93.10 ± 1.72

AttUNet 91.27 ± 0.86 84.67 ± 1.31 99.68 ± 0.06 91.68 ± 1.73 91.75 ± 1.23

CE-Net 94.53 ± 0.92 90.00 ± 1.63 99.80 ± 0.04 95.61 ± 0.95 93.86 ± 2.17

Multi-ResUNet 93.70 ± 0.80 88.66 ± 1.26 99.77 ± 0.03 93.25 ± 0.88 94.72 ± 0.68

R2UNet 85.00 ± 3.48 75.64 ± 4.68 99.39 ± 0.02 89.52 ± 4.71 83.26 ± 3.17

DeepLab v3 93.74 ± 0.73 88.62 ± 1.23 99.77 ± 0.04 95.11 ± 0.76 92.77 ± 1.58

Backbone 92.51 ± 0.54 86.65 ± 0.85 99.72 ± 0.06 92.67 ± 0.94 92.99 ± 0.28

DW-Net 94.84 ± 0.80 90.48 ± 1.38 99.81 ± 0.02 95.13 ± 0.92 94.81 ± 0.78

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.

FIGURE 5 | Visualization results of the different methods.
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FIGURE 6 | Histogram of choroid neovascularization (CNV) volume comparison.

Dice loss, LDice, is another widely used loss function (Milletari
et al., 2016) that aims to measure the overlap ratio of two samples,
and its value ranges from 0 to 1.

LDice = 1−
1
k

k−1∑
c=0

2YY
′

+ ξ

Y + Y ′ + ξ
(7)

where ξ is set to a very small constant to ensure that the divisor is
not equal to 0. The final loss function we used is as follows:

L= LDice+LCE (8)

EXPERIMENTS AND RESULTS

Dataset and Implementation
Dataset
To evaluate the effectiveness of the proposed method, we
conducted comprehensive experiments. The dataset we used in
the experiment was collected by the Joint Shantou International
Eye Center of Shantou University and The Chinese University
of Hong Kong. The acquisition process lasted 13 months, and
6,016 retinal OCT images from 47 three-dimensional retinal
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FIGURE 7 | Architecture of Res18UNet++ (A) and AdaptiveUNet++ (B).

OCT volumes with CNV were completely acquired through the
Zeiss canner. The size of the actual scanning area is 6 mm ×
2 mm × 6 mm (X × Y × Z), and the number of voxels is
512 × 1,024 × 128. Pixel-level annotations of NFL, GCL, IPL,
INL, OPL, ONL, OPSL+RPE, and CNV were provided by senior
ophthalmologists.

Implementation Details
The implementation of our proposed DW-Net is based
on the public platform Pytorch 1.8.0 with CUDA 11.0
parallel computing library and GeForce RTX 3090 GPU with
24-GB memory.

To save computing resources and increase network
receptivity, each slice was resized to 512 × 512 by bilinear
interpolation. We divided the 6,016 retinal OCT images into four
groups, with the slice number as balanced as possible. Fourfold
cross-validation was conducted on the divided dataset (1,664,
1,792, 1,280, and 1,280). The Adam optimizer with a learning
rate of 1e-4 was adopted as our optimizer. The batch size and
epoch were set to 4 and 100, respectively. For fair comparison,
we used the same training strategy in all experiments.

Evaluation Metrics
Five metrics including dice similarity coefficients (DSCs),
intersection-over-union (IoU), accuracy (Acc), sensitivity (Sen),

and precision (Pre) (Garcia-Garcia et al., 2017) were used to fully
and fairly evaluate the performance, where TN, TP, FN, and FP
represent true negative, true positive, false negative, and false
positive, respectively.

DSC =
2TP

2TP+ FP+ FN
(9)

IoU =
TP

TP+ FP+ FN
(10)

Acc =
TP+ TN

TP+ FP+ TN+ FN
(11)

Sen =
TP

TP+ FN
(12)

Pr e =
TP

TP+ FP
(13)

Results
We first compared our proposed DW-Net with other excellent
convolutional neural network (CNN)-based methods,
including UNet (Ronneberger et al., 2015), AttUNet (Oktay
et al., 2018), CE-Net (Gu et al., 2019), Multi-ResUNet
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TABLE 3 | Ablation experiments (mean ± SD).

Methods DSC IoU Acc Sen Pre

Backbone 92.51 ± 0.54 86.65 ± 0.85 99.72 ± 0.06 92.67 ± 0.94 92.99 ± 0.28

Res18UNet++ 94.64 ± 0.60 90.21 ± 0.91 99.80 ± 0.03 94.65 ± 0.83 95.02 ± 0.23

AdaptiveUNet++ 92.76 ± 0.60 87.06 ± 0.94 99.73 ± 0.05 92.96 ± 1.16 93.15 ± 0.75

DW-Net 94.84 ± 0.80 90.48 ± 1.38 99.81 ± 0.02 95.13 ± 0.92 94.81 ± 0.78

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.

FIGURE 8 | Value of the learnable parameter αi,2j+k during training.

TABLE 4 | Choroid neovascularization (CNV) segmentation experiments without retinal layers (mean ± SD).

Methods DSC IoU Acc Sen Pre

DW-Net-2 90.06 ± 0.62 82.98 ± 0.90 99.63 ± 0.07 89.93 ± 0.50 91.52 ± 0.90

DW-Net 94.84 ± 0.80 90.48 ± 1.38 99.81 ± 0.02 95.13 ± 0.92 94.81 ± 0.78

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.

(Ibtehaz and Rahman, 2020), R2UNet (Alom et al., 2018),
and DeepLab v3 (Chen et al., 2017). In addition, UNet++ (Zhou
et al., 2018) was applied as our backbone. Tables 1, 2 show the
mean joint segmentation results of the 7 retinal layers containing
CNV and the joint segmentation results of CNV, respectively.

From Table 1, it is worth noting that the proposed DW-
Net achieves better performance than all of the above methods,
with DSC, IoU, Acc, Sen, and Pre of 95.38, 91.26, 99.41, 95.44,
and 95.36%, respectively. As for CNV, the performance of our
proposed joint segmentation realized 2.52, 4.42, 0.09, 2.65, and
1.96% improvements in terms of DSC, IoU, Acc, Sen, and Pre,
respectively, over the backbone, as shown in Table 2.

The performance of CE-Net (Gu et al., 2019) was comparable
to that of the proposed DW-Net for CNV Sen, while being
slightly lower in other metrics. In Figure 5, we plotted the
visualization results of the different methods, where the red,
green, dark blue, yellow, light blue, purple, white, and navy blue
areas represent NFL, GCL, IPL, INL, OPL, ONL, OPSL+RPE,
and CNV, respectively. It can be seen that our proposed DW-
Net can accurately segment each retinal layer and CNV, which
is closer to the GT compared with the other methods.

Furthermore, we carried out a quantitative analysis of
the experimental results. Figure 6 shows a histogram of the
comparison between the size of the actual CNV and the
segmented CNV using DW-Net, which are represented by blue
and orange bars, respectively. It can be seen from the qualitative

and quantitative results in the figure that the volume difference
between the prediction of DW-Net and GT is generally small,
which further proves the effectiveness and stability of the joint
segmentation network and suggest promising clinical value and
application prospects.

DISCUSSION

In this section, we first conduct a series of ablation experiments.
Then, we study the contribution of the information on the retinal
layers to the CNV segmentation task. Finally, we introduce the
limitations of this work and possible future research directions.

Ablation Experiments for Residual
Aggregation Encoder Path
To evaluate the effectiveness of the residual aggregation encoder
path, we further compared the backbone with its counterparts
(called Res18UNet++). Specifically, Res18UNet++ directly
applies residual aggregation encoder path based on UNet++
(Zhou et al., 2018) and replaces concatenation by pixel addition,
as shown in Figure 7A, where α is a constant that is fixed to 1.
Table 3 reports the segmentation results.

It can be seen that our proposed Res18UNet++ achieves
better performance over the backbone on all metrics, which
suggests that the residual aggregation encoder path can retain
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more effective features as possible to alleviate the resolution loss
caused by network deepening.

Ablation Experiments for Dynamic
Multi-Hierarchical Weighting Connection
We also compared the backbone with another counterpart (called
AdaptiveUNet++), as shown in Figure 7B. Here, αi,2j+k is a
learnable parameter that is multiplied with the output feature
map of the corresponding encoder. Its value during the training
process is shown in Figure 8.

We can conclude from Table 3 and Figure 8 that our
proposed AdaptiveUNet++ enables the encoders to utilize
multi-scale context information and filter irrelevant information.
In addition, residual aggregation encoder path and dynamic
multi-hierarchical weighting connection can influence and
promote each other, thereby further improving the overall joint
segmentation performance of the network, as shown in the results
of DW-Net in Table 3.

Ablation Experiments for Retinal Layer
Information
All the experiments above were based on the assumption that the
introduction of complex retinal layer information is conducive to
improving the performance of CNV segmentation. Therefore, we
performed joint segmentation of the retinal layers and CNV. In
this section, we set out to verify the assumption.

Pre-processing
We considered CNV as the foreground, and the corresponding
spatial label was set to 1, then the remaining area including the
retinal layers was regarded as background, with the label of 0.
Here, the joint segmentation was transformed into a foreground–
background segmentation. A variant of DW-Net, named DW-
Net-2, was applied for a single CNV segmentation, where the
last layer of the network was modified to sigmoid function, and
the number of output channels was set to 1. Table 4 shows the
segmentation results of DW-Net-2 and DW-Net.

It can be clearly seen that the performance of DW-Net is
superior, which proves that the introduction of retinal layer
information is conducive to distinguishing the features of
background, retinal layers, and CNV, thereby improving the
segmentation performance of CNV.

Limitations and Future Work
The current work still has many limitations. Our proposed DW-
Net contains many learnable parameters, which will increase the
computational burden; therefore, further compression is needed
in practical applications. The dataset used in our experiment

needs further expansion, which is also one of our future works.
We will conduct experiments on more datasets to verify the
effectiveness and generalization of the proposed DW-Net.

CONCLUSION

CNV segmentation is a fundamental task in medical image
analysis. In this paper, we proposed a novel end-to-end dynamic
multi-hierarchical weighting segmentation network (DW-Net)
for the simultaneous segmentation of the retinal layers and CNV.
Specifically, the proposed network is composed of a residual
aggregation encoder path for the selection of informative feature,
a multi-hierarchical weighting connection for the fusion of
detailed information and abstract information, and a dynamic
decoder path. Comprehensive experimental results show the
effectiveness and stability of our proposed DW-Net and suggest
promising clinical value and application prospects.
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Corneal ulcer is a common leading cause of corneal blindness. It is difficult to
accurately segment corneal ulcers due to the following problems: large differences in
the pathological shapes between point-flaky and flaky corneal ulcers, blurred boundary,
noise interference, and the lack of sufficient slit-lamp images with ground truth.
To address these problems, in this paper, we proposed a novel semi-supervised
multi-scale self-transformer generative adversarial network (Semi-MsST-GAN) that can
leverage unlabeled images to improve the performance of corneal ulcer segmentation
in fluorescein staining of slit-lamp images. Firstly, to improve the performance of
segmenting the corneal ulcer regions with complex pathological features, we proposed
a novel multi-scale self-transformer network (MsSTNet) as the MsST-GAN generator,
which can guide the model to aggregate the low-level weak semantic features with
the high-level strong semantic information and adaptively learn the spatial correlation in
feature maps. Then, to further improve the segmentation performance by leveraging
unlabeled data, the semi-supervised approach based on the proposed MsST-GAN
was explored to solve the problem of the lack of slit-lamp images with corresponding
ground truth. The proposed Semi-MsST-GAN was comprehensively evaluated on
the public SUSTech-SYSU dataset, which contains 354 labeled and 358 unlabeled
fluorescein staining slit-lamp images. The results showed that, compared with other
state-of-the-art methods, our proposed method achieves better performance with
comparable efficiency.

Keywords: corneal ulcer, GAN, slit-lamp image, semi-supervision, deep learning

INTRODUCTION

The cornea is a transparent membrane located at the front of the eyeball and is directly exposed
to the air. Therefore, it is more likely to be infected with bacteria, resulting in several frequently
occurring ophthalmic symptoms such as corneal ulcer. Corneal ulcer is an inflammatory or, more
seriously, infective condition of the cornea involving disruption of its stromal–epithelial layers
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(Bron et al., 2007; Chen and Yuan, 2010). Late or inappropriate
treatment may induce irreversible damages to vision acuity
(Cohen et al., 1987; Diamond et al., 1999).

Fluorescein staining is the most widely used diagnostic
technology in optometry and ophthalmology to assess the
integrity of the ocular surface, particularly the integrity of the
cornea (Morgan and Carole, 2009; Zhang et al., 2018). With the
development of staining techniques, doctors can quantitatively
evaluate the size and severity of corneal ulcers by fluorescein
staining of slit-lamp images.

Accurate segmentation of the ulcer region is essential for
assessing the severity of corneal ulcer and formulating a
treatment plan. As shown in Figure 1, corneal ulcer can be
classified into point-like corneal ulcer, point-flaky mixed corneal
ulcer, and flaky corneal ulcer according to the pathological
characteristics and distribution. Although the ulcer region can
be marked manually by experienced ophthalmologists via some
professional software, this task is time-consuming and subjective.
Therefore, it is significant to explore a method that can
automatically and accurately segment the corneal ulcer area.

There are some segmentation methods (Pritchard et al., 2003;
Wolffsohn and Purslow, 2003; Peterson and Wolffsohn, 2009)
designed for separate point-like corneal ulcers rather than for the
point-flaky or flaky types. Later, methods for the segmentation
of corneal ulcers with more complex shapes were proposed and
achieved good results (Chun et al., 2014; Sun et al., 2017; Deng
et al., 2018a,b; Liu et al., 2019). Chun et al. (2014) proposed an
objective digital image analysis system to evaluate the corneal
staining using RGB (red–green–blue) and the hue–saturation–
value (HSV) technique with 100 images. Deng et al. (2018a)
presented an automatic ulcer segmentation method by utilizing
k-means clustering followed by morphological operations and
region growing. Then, in Deng et al. (2018b), a simple
linear iterative clustering (SLIC) super-pixel-based pipeline was
proposed for automatic flaky corneal ulcer area extraction with
150 images. Liu et al. (2019) segmented the ulcer area by
employing a joint method of Otsu and Gaussian mixture model
(GMM) with 150 images. Sun et al. (2017) proposed a patch-
based deep convolutional neural network (CNN) for corneal
ulcer segmentation with 48 images. The methods mentioned
above are traditional algorithms mostly based on around 100
images and are only designed for certain types of corneal ulcer,
therefore not suitable for all types of segmentation.

Recently, several CNNs have been proposed for medical image
segmentation, such as UNet (Ronneberger et al., 2015), CE-Net
(Gu et al., 2019), Att-UNet (Oktay et al., 2018), and CPFNet
(Feng et al., 2020). Most of them are based on the encoder–
decoder architecture (Ronneberger et al., 2015) due to its good
performance. The encoder can extract the context information
and reduce the spatial dimension of feature maps. The decoder
can recover the spatial dimension and details of the targets. The
skip connections help to recover the full spatial resolution at
the network output, making the network suitable for semantic
segmentation (Zhou et al., 2018). However, the original skip
connections in the U-shaped network will introduce irrelevant
clutters and have semantic gaps due to the mismatch of the
receptive fields (Feng et al., 2020). To improve the performance

of the original U-Net, methods such as attention U-Net (Att-
UNet) (Oktay et al., 2018) and CPFNet (Feng et al., 2020)
have introduced an attention mechanism, whose core idea is
to change the global focus to key and local region focus. The
attention mechanism tries to focus the attention of the network
on the relationship of the channels, gather spatial information
to focus on the correlated features, and suppress the irrelevant
regions in the feature map. It is beneficial to utilize attention
mechanism to capture more rich details of objects instead of
the direct concatenation of feature maps from the encoder and
decoder. Although these CNN-based methods have achieved
good performance (Ronneberger et al., 2015; Oktay et al., 2018;
Gu et al., 2019; Feng et al., 2020), a few CNN-based methods
have been proposed for corneal ulcer segmentation in slit-lamp
images. There are still two problems that need to be solved in
order to improve the accuracy of corneal ulcer segmentation in
slit-lamp images: (1) the interferences caused by complicated
pathological features of corneal ulcers in slit-lamp images, such
as the large differences in the pathological shapes between point-
like, point-flaky, and flaky corneal ulcers, blurred boundary, and
noise interference, and (2) how to leverage the large amount of
unlabeled data to further improve the segmentation accuracy. In
this paper, we propose a novel semi-supervised algorithm based
on adversarial learning to solve the current dilemma. Our main
contributions are summarized as follows:

(1) To improve the segmentation performance of the corneal
ulcer regions with complex pathological features, a
novel multi-scale self-transformer network (MsSTNet)
is proposed for corneal ulcer segmentation, which can
improve the ability of the model to capture the global
long-range dependencies of multi-scale features from
different layers.

(2) To leverage unlabeled samples for the further performance
improvement, a novel semi-supervised multi-scale self-
transformer generative adversarial network (Semi-MsST-
GAN) is explored.

(3) Comprehensive experiments based on the SUSTech-
SYSU dataset have been conducted to demonstrate the
effectiveness of our proposed methods. The results show
that, compared with other state-of-the-art algorithms, our
proposed method not only achieves higher segmentation
accuracy but also can leverage unlabeled data to further
improve segmentation performance.

METHODS

We adopted the adversarial framework as the architecture of our
proposed method, which contains a generator network and a
discriminator referred to Mirza and Osindero (2014) and Isola
et al. (2017). The following provides a detailed description and
functional interpretation of the proposed method.

Semi-MsST-GAN
In recent years, generative adversarial networks (GANs)
(Goodfellow et al., 2014) and their variations (Chen et al., 2016;
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FIGURE 1 | Comparison of the three types of corneal ulcers, with the top row representing point-like corneal ulcers, the middle row representing point-flaky mixed
corneal ulcers, and the bottom row representing flaky corneal ulcers.

Ma et al., 2018; Wang T.-C. et al., 2018; Jiang et al., 2019) have
been widely used in several domains (Li and Wand, 2016; Pathak
et al., 2016; Salimans et al., 2016; Vondrick et al., 2016; Wu
et al., 2016; Zhu et al., 2016, 2017; Zha et al., 2019), especially in
image processing applications, such as image generation (Zha
et al., 2019), image editing (Zhu et al., 2016), representation
learning (Salimans et al., 2016), image inpainting (Pathak et al.,
2016), style transfer (Li and Wand, 2016), and image-to-image
translation (Zhu et al., 2017), with significant performances.
Different from the original GAN that generates images based
on random noise, conditional GAN (cGAN) generates images
based on specified conditional inputs (Mirza and Osindero,
2014). Moreover, the GAN architecture is also widely used
in semi-supervision-based methods (Sricharan et al., 2017;
Hung et al., 2018; Wang et al., 2021). Therefore, to improve
the ability of the model to learn the complex pathological
features and leverage unlabeled data in order to further improve
the segmentation performance, we proposed a novel semi-
supervised MsST-GAN based on cGAN architecture for corneal
ulcer segmentation.

As shown in Figure 2, similar to general GAN methods (Mirza
and Osindero, 2014; Isola et al., 2017), our proposed Semi-
MsST-GAN mainly consists of two networks of generator and
discriminator. The generator network aims to accurately segment
the region of the lesion to confuse the discriminator, while the
discriminator aims to discriminate whether its input paired is
real or fake. It can be seen from Figure 2 that MsSTNet is
employed as the generator of MsST-GAN. The Semi-MsST-GAN
is trained based on the data composed of labeled images and
unlabeled images:

(1) For the data with ground truth: MsSTNet is trained
to segment the corneal ulcer region as close to the

corresponding ground truth as possible based on the
guidance of objective function of Ljoint. Then, the
segmentation result of MsSTNet is concatenated with the
original data (fake pair) and fed into the discriminator.
At the same time, the ground truth is concatenated with
the original data (real pair). They are all fed into the
discriminator to discriminate whether the input pair is real
or fake based on the objective function of LD.

(2) For the data without ground truth: MsSTNet is trained
to segment the corneal ulcer region to confuse the
discriminator to predict fake results based on the objective
function of Ladv. Then, the segmentation result of MsSTNet
is concatenated with the original data and fed into the
discriminator. The discriminator is trained to discriminate
whether the input pair is real or fake based on the objective
function of LD.

It should be noted that the optimization of Semi-MsST-GAN
is an end-to-end training process based on mixed data composed
of labeled data and unlabeled data.

Multi-Scale Self-Transformer Network
Recently, researchers have proposed several variant networks
based on the encoder–decoder architecture for semantic
segmentation tasks, such as SE-Net (Hu et al., 2018), CE-Net
(Gu et al., 2019), Attention U-Net (Oktay et al., 2018), U-Net++
(Zhou et al., 2018), and CPFNet (Feng et al., 2020). Most of
them introduced an attention mechanism to capture more rich
details of objects instead of the direct concatenation of feature
maps from the encoder and decoder. However, such attention-
based feature extraction method still learns feature relationships
in limited receptive fields, which cannot capture the long-range
feature dependencies in the entire feature map.
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FIGURE 2 | Framework of the proposed semi-supervised multi-scale self-transformer generative adversarial network (Semi-MsST-GAN). In the semi-supervised
training process based on labeled and unlabeled images, for the data with ground truth, the multi-scale self-transformer network (MsSTNet) is trained to segment the
corneal ulcer region as close to the corresponding ground truth as possible based on the guidance of the objective function of Ljoint. Then, the segmentation result of
MsSTNet is concatenated with the original data and fed into the discriminator. At the same time, the ground truth is concatenated with the original data. They are all
fed into the discriminator to discriminate whether the input pair is real or fake based on the objective function of LD. For the data without ground truth, MsSTNet is
trained to segment the corneal ulcer region to confuse the discriminator to predict fake results based on the objective function of Ladv. Then, the segmentation result
of MsSTNet is concatenated with the original data and fed into the discriminator. The discriminator is trained to discriminate whether the input pair is real or fake
based on the objective function of LD.

In Lazebnik et al. (2006), Springenberg et al. (2014), He
et al. (2015), and Long et al. (2015), contexts were encoded
in the gradually larger receptive fields, which can model
long-range dependencies. Long-range dependencies play a vital
role in image analysis tasks based on deep neural networks
(Fukushima and Miyake, 1982; LeCun et al., 1989; Yu and
Koltun, 2015). Fukushima and Miyake (1982) and Yu and Koltun
(2015) captured the long-range dependency features contained
in the feature map by constructing a larger receptive field.
LeCun et al. (1989) proposed a novel non-local neural network
based on a self-attention mechanism to capture long-range
dependencies. However, there is still the problem of non-local
spatial interactions that are not cross scales (LeCun et al., 1989;
Wang X. et al., 2018). Thus, these methods cannot capture
the non-local context of objects with different scales (Zhang
et al., 2020), especially for medical image segmentation tasks
with complex pathological features (Chen et al., 2017; Zhao
et al., 2017). Considering the loss of point-flaky mixed corneal
ulcer in high-level feature maps resulting from the continuous
downsampling operation, the feature maps from different
levels were adopted to supplement long-range dependencies.
Therefore, to fully utilize the feature interaction between the
local context and the global context, which contains long-range
dependencies and spatial correlations from different levels, we
developed a novel MsSTNet as the segmentor of MsST-GAN. As
shown in Figure 3, it adopts a pyramid architecture and self-
attention layers to fuse feature maps cross spatial and scales.
Figure 3 also shows that, in MsSTNet, the encoder–decoder

architecture was also employed as our framework, in which the
pre-trained ResNet-18 was adopted as the encoder path and
simple upsampling and deconvolution constituted the decoder
path. Especially, to reduce the semantic gap and avoid irrelevant
clutters, a novel multi-scale self-transformer (MsST) module was
proposed and embedded into the MsSTNet to enhance the ability
of the model to extract multi-scale and multi-semantic features,
which can improve the segmentation performance.

Figure 3 shows that the proposed novel MsST module was
embedded into the top of the encoder path. Firstly, feature maps
from stage 2 (F1), stage 3 (F2), and stage 4 (F3) were fed into a
downsampling normalized module, which consists of a bilinear
downsampling operation, followed by a 3 × 3 convolution
layer to match the features of stage 5 in the channels and
size. Then, the feature maps with different scales and semantic
information were fused by the addition of elements. Finally,
the fused feature maps with rich multi-scale and multi-semantic
information and the feature maps of the top layer with global
feature information were fed into self-attention (often called
scaled-dot attention in natural language processing, NLP), which
has three branches: query, key, and value (Shaw et al., 2018). As
shown in Figure 3, to further extract rich features with complex
pathological characteristics and suppress the interference from
irrelevant features, we employed the fused feature maps with rich
multi-scale and multi-semantic features as the input of branch
query. The feature maps with rich global features, which are from
the encoder’s top layer, were adopted as the input of branch key
and value. In this way, it guides the model to learn salient global
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FIGURE 3 | Overview of the proposed multi-scale self-transformer network (MsSTNet). The original image is fed into the encoder path composed of a pre-trained
ResNet-18 to obtain the high-level features. Then, the feature maps from stages 2, 3, 4, 5 are fed into the MsST module to fuse multi-scale and multi-semantic
information. Subsequently, the features are recovered by the decoder path. Finally, the predicted images are obtained.

features and suppress the interference of unrelated local features.
As can be seen from Figure 3, our proposed MsST module mainly
consists of four steps:

(1) We adopted 1 × 1 convolution to encode the feature
map FA to query (Q) and encode FT to key (K) and value (V),
respectively.

Q = Conv 1× 1 (FA) ∈ RB,C/8,W,H (1)

K = Conv 1× 1 (FT) ∈ RB,C/8,W,H (2)

V = Conv 1× 1 (FT) ∈ RB,C,W,H (3)

(2) Calculate the similarity between query and key to obtain
the non-local spatial feature correlation weight guided by global
information. ◦ represents the pixel-wise multiple, as follows:

Q = Reshape (Q) ∈ RB,C/8,W×H (4)

K = Reshape (K) ∈ RB,C/8,W×H (5)

energy = QT◦K ∈ RB,W×H,W×H (6)

Att = Softmax
(
energy

)
∈ RB,W×H,W×H (7)

3) The attention map Att and the corresponding V were
weighted and summed to obtain the final spatial response FM
with a multi-scale and multi-semantic feature.

FM = Reshape
(
V◦AttT

)
∈ RB,C,W,H (8)

4) Finally, we multiplied FM by a scale parameter, γ, and
performed an element-wise summation operation with the
feature map FT to obtain the final output.

Ffinal = FT + γ × FM ∈ RB,C,W,H (9)

where γ is initialized as 0 and gradually learns to assign more
weight. It can also be seen from Eq. 9 that the final feature map,
Ffinal, is the weighted sum of the multi-scale, multi-semantic, and
strong semantic global features. Therefore, it not only has a global
contextual view but can also selectively aggregate contextual
information with multi-scale and multi-semantic features.

Discriminator
The ordinary GAN discriminator maps the input into a real
number between 0 and 1, which represents the probability that
the input sample is true or fake. It is not suitable for medical
image segmentation, which requires high-resolution and high-
definition details. Therefore, in this paper, the discriminator of
patchGAN (Isola et al., 2017) was employed as the discriminator
of MsST-GAN to solve these problems. It could classify whether
each N × N patch from the input image is real or fake. This
operation encourages the model to pay more attention to the
structure in local patches, which is in favor of modeling high
frequencies. The discriminator performs convolution operations
on the input images, followed by averaging all responses to
provide the ultimate discrimination of the output image. In this
paper, N was set as 70.
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Loss Function
Given an input image X, the segmentor and discriminator were
denoted as MsSTNet and D, respectively. The segmentation
results from MsSTNet were represented as MsSTNet (X). The
input of D was defined as XD, which contains two forms: the
original image combined with the ground truth (XDT) and the
original image combined with the segmentation result (XDF),
representing the pairs as True or Fake.

Loss for Discriminator
The spatial binary cross entropy loss LD, as follows, was adopted
to optimize the discriminator:

LD =
∑

h,w

(
1− y

)
log

(
1− D (MsSTNET (X))h,w

)
+y log

(
D
(
y
)h,w) (10)

where y = 0 if the patch was from MsSTNet prediction and y = 1 if
the patch was from the ground truth. D(MsSTNet(X))h,w denotes
the probability map of MsSTNet(X) at location (h,w), andD(y)h,w
is the probability map of y at location (h,w).

Loss for MsSTNet
To improve the segmentation accuracy of MsSTNet, we proposed
a novel joint loss function to optimize the model, as follows:

Ljoint = LBCE + LDice + LAdv (11)

It can be seen from Eq. 11 that the joint loss function mainly
contains three components: adversarial loss function, LAdv, which
helps the segmentor generate prediction as close to the ground
truth as possible; spatial cross entropy loss function, LBCE, which
was mainly adopted to evaluate the gap between the segmentation
result and the ground truth pixel-wise; and the dice loss, LDice,
which was employed to evaluate the segmentation performance
in images.

LAdv = −
∑

h,w
log

(
D (MsSTNet (X))h,w

)
(12)

LBCE = −
∑

h,w

(
1− y

)
log

(
1− ŷ

)h,w
+ y log

(
ŷ
)

(13)

LDice = 1−
2
(
y ∩ ŷ

)
y ∪ ŷ

(14)

where ŷ denotes the segmentation result of MsSTNet.

Objective Function for Semi-Supervised Learning
In semi-supervised learning, the loss function often contains two
components: supervised loss and unsupervised loss. Supervised
loss was adopted to optimize the model based on the data with
ground truth. Unsupervised loss was employed to evaluate the
segmentation results, optimizing the model to accurately segment
the data without ground truth. In this paper, the supervised and
unsupervised losses were defined as follows:

Lsupervised = Ljoint + LD (15)

Lunsuperivised = LAdv (16)

The semi-supervised loss function was finally defined
as follows:

Lsemi = Lsupervised + Lunsuperivised (17)

DATASET

To evaluate the performance of the proposed method,
comprehensive experiments have been conducted on the
SUSTech-SYSU public slit-lamp fluorescein staining image
dataset (Deng et al., 2020), which was released to develop and
evaluate automatic corneal ulcer segmentation algorithms. As
far as we know, this is the first time the semi-supervised-based
method has been explored for corneal ulcer segmentation
task based on the SUSTech-SYSU dataset. It has 354 point-
flaky mixed and flaky corneal ulcer slit-lamp fluorescein
staining images with ground truth annotated pixel-wise by
ophthalmologists and 358 point-like corneal ulcer images
without ground truth, in which the lesions were too small to
annotate. Each RGB image with a resolution of 2,592 × 1,728
pixels contains only one corneal area, which is located in the
middle of the field of view. In order to achieve a balance between
the computational efficiency and avoid the loss of lesions with
small size, the original images and their ground truths were
resized to 512 × 512 by bilinear interpolation. In order to
fully demonstrate the effectiveness of our proposed method,
the dataset was randomly divided into fourfolds. The data
strategies are listed in Table 1 to train and evaluate all models.
Besides, we also adopted online data augmentation, including
rotations from −10 to 10 degrees, horizontal flipping, vertical
flipping, Gaussian noise addition, and affine transformation
to prevent overfitting and improve the robust ability of
the model.

EXPERIMENTS AND RESULTS

Evaluation Metrics
To fully and fairly evaluate the segmentation performance
of the different methods, four metrics were employed: dice
coefficient (Dsc), Jaccard index (Jac), sensitivity (Sen), and
Pearson’s product-moment correlation coefficient (PPMCC).

TABLE 1 | Experimental data strategies.

Supervision
approach

Data distribution

Supervised All 354 labeled slit-lamp images were randomly divided into
fourfold for cross-validation. Except for the 4th fold, which only
had 84 images, each fold contained 90 slit-lamp images.

Semi-
supervised

All 354 labeled slit-lamp images were randomly divided into
fourfold for cross-validation. Except for the 4th fold, which only
had 84 images, each fold contained 90 slit-lamp images. The
358 unlabeled point-like corneal ulcer images in the
SUSTech-SYSU dataset were mixed with the labeled images to
train the semi-supervised method.
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PPMCC, with a value between −1 and 1, is often adopted
to measure the correlation (linear correlation) between two
variables. The four indicators were calculated as follows:

Dsc =
2× TP

2× TP+ TN+ FP
(18)

Sen =
TP

TP+ FN
(19)

Acc =
TP+ FN

TP+ FP+ FN
(20)

PPMCC =
Cov (X,Y)
σXσY

(21)

where TN, TP, FN, and FP represent true negative, true
positive, false negative, and false positive, respectively. X and Y
denote the segmentation result and corresponding ground truth,
respectively. Cov(.) represents the covariance between X and Y.
σX and σY are the standard deviations of X and Y, respectively.

Implementation Details
The proposed network was performed on the public platform
Pytorch and a Tesla K40 GPU (12 GB). Adam was used as
the optimizer. The initial learning rate was set to 0.0005, and
weight decay was set to 0.0001. The batch size was set to be 4
and epoch was 100.

The segmentation performance of our proposed network
was compared with other excellent networks, such as Attention
U-Net (Oktay et al., 2018), R2U-Net (Alom et al., 2018), CE-
Net (Gu et al., 2019), ResU-Net (He et al., 2016), PSPNet (Zhao
et al., 2017), DeepLabv3+(Chen et al., 2018), U-Net++ (Zhou
et al., 2018), and CPFNet (Feng et al., 2020). Aside from these
CNN-based networks, the proposed network was also compared
with other GANs, such as cGAN (Mirza and Osindero, 2014),
PIX2PIX (Isola et al., 2017), and Cycle GAN (Zhu et al., 2017).
Besides, several semi-supervised methods were also compared,
such as Semi-cGAN, Semi-PIX2PIX, and Semi-Cycle GAN. All
the networks were trained with the same parameters. It should
be noted that all experiments based on supervised learning
adopted the same data processing strategy and loss function of
LBCE + LDice. Moreover, the code for Semi-MsST-GAN will be
released in https://github.com/TingtingWang12/MsST-GAN.

Experimental Results
Based on the data strategy listed in Table 1, we conducted
comprehensive experiments to evaluate the effectiveness of our
proposed MsST-GAN and Semi-MsST-GAN. MsST-GAN was
compared with other CNN-based methods and GAN methods,
with 354 labeled images under the supervised condition.
Then, 358 unlabeled images were introduced to conduct the
semi-supervised strategy. The proposed Semi-MsST-GAN was
compared with Semi-cGAN, Semi-PIX2PIX, and Semi-Cycle
GAN. Besides, we also conducted a series of ablation experiments
to verify the validity of the proposed MsSTNet and loss function.
For convenience, we used UNet (Ronneberger et al., 2015) as
the baseline. The mean and standard deviation values of the
four evaluation metrics and the efficiency for all methods are
listed in Table 2.

It can be seen from Table 2 that both supervised MsSTNet
and MsST-GAN outperformed other state-of-the-art supervised
methods. Cycle GAN achieved the worst results with 82.76% for
Dsc as it tended to model collapse, which may be caused by
corneal ulcers with complex pathological features. Although the
efficiency of our proposed MsST-GAN was slightly lower than
that of the baseline (U-Net), the Dsc and Jac indices of MsST-
GAN were improved by 3.00 and 4.60%, respectively, compared
with U-Net. Moreover, compared with the latest excellent models
such as CE-Net (Gu et al., 2019) and CPFNet (Feng et al., 2020),
which have been adopted for various medical image segmentation
tasks, the Dsc values of MsST-GAN were improved by 1.67
and 0.58%, respectively. Besides, the efficiency of the proposed
method was also improved by 52 and 128% compared to CE-Net
and CPFNet, respectively. These results show that our proposed
method can improve the performance of segmenting corneal
ulcers and satisfy real-time requirements by adopting non-
local convolution and self-attention rather than the traditional
attention mechanism.

The performance of our proposed Semi-MsST-GAN was
further improved by introducing 358 unlabeled images obviously.
Compared with MsST-GAN, the Dsc, Sen, Jac, and PPMCC
of Semi-MsST-GAN were increased from 89.90, 91.03, 82.36,
and 89.89% to 90.93, 91.93, 83.79, and 90.77%, by 1.03, 0.9,
1.43, and 0.88%, respectively. On the contrary, the evaluation
metrics declined when cGAN and PIX2PIX introduced the semi-
supervised strategy. It was mainly caused by the poor ability of
cGAN and PIX2PIX to learn the complex pathological features
of point-like lesions. These results show that the proposed Semi-
MsST-GAN can improve the performance of segmentation by
leveraging unlabeled images. Three examples of segmentation
results with different methods are shown in Figure 4, where
yellow represents the correctly segmented region while red
and blue are the results of false-positive and false-negative
segmentation, respectively. It can be seen from Figure 4 that
our proposed method achieved the best segmentation results.
The false-positive and false-negative segmentation results of
the proposed Semi-MsST-GAN were obviously less than those
of other methods. The results of U-Net (Ronneberger et al.,
2015), Att-UNet (Oktay et al., 2018), CE-Net (Gu et al., 2019),
and PSPNet (Zhao et al., 2017) had the problem of incorrect
segmentation (shown in the bottom line of Figure 4). Compared
with CE-Net (Gu et al., 2019), PSPNet (Zhao et al., 2017), and
CPFNet (Feng et al., 2020), our proposed method cannot only
accurately segment the lesion with small sizes but also maintain
good regional continuity in segmenting large targets.

Statistical Significance Assessment
We further investigated the statistical significance of the
performance improvement for the proposed MsST-GAN and
Semi-MsST-GAN using the paired t-test. The p-values are listed
in Tables 3, 4, respectively. To avoid confusion, we renamed
MsST-GAN as “MsSTGAN” and Semi-MsST-GAN as “Semi
MsSTGAN” in both tables. As shown in Table 3, compared
with the other supervised learning-based methods, the proposed
MsST-GAN achieved significant improvement in terms of the
main evaluation metrics (Dsc and Jac), with p-values less

Frontiers in Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 79337778

https://github.com/TingtingWang12/MsST-GAN
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-793377 December 27, 2021 Time: 14:49 # 8

Wang et al. Semi-MsST-GAN

TABLE 2 | Evaluation indices for different methods.

Strategy Methods Dsc (%) Sen (%) Jac (%) PPMCC (%) Efficiency (s)

Supervised U-Net (Ronneberger et al., 2015) 87.28 ± 5.38 88.54 ± 3.71 78.74 ± 8.13 87.40 ± 5.23 0.0015

CE-Net (Gu et al., 2019) 88.43 ± 4.85 88.45 ± 4.31 80.38 ± 7.16 88.48 ± 4.53 0.0038

Att-UNet (Oktay et al., 2018) 86.41 ± 6.17 88.05 ± 3.28 77.65 ± 9.05 86.59 ± 6.03 0.0026

R2U-Net (Alom et al., 2018) 80.76 ± 9.26 82.56 ± 5.78 70.50 ± 11.71 81.29 ± 8.67 0.0042

ResU-Net (He et al., 2016) 88.64 ± 4.73 89.02 ± 3.90 80.79 ± 7.33 88.71 ± 4.61 0.0029

PSPNet (Zhao et al., 2017) 89.09 ± 4.64 90.20 ± 3.34 81.28 ± 7.25 89.08 ± 4.56 0.0030

DeepLabv3+ (Chen et al., 2018) 88.29 ± 5.41 89.19 ± 4.90 80.32 ± 8.04 88.33 ± 5.27 0.0057

U-Net++ (Zhou et al., 2018) 86.93 ± 4.66 87.31 ± 2.45 78.24 ± 6.97 87.05 ± 4.59 0.0022

CPFNet (Feng et al., 2020) 89.38 ± 4.30 89.97 ± 2.50 81.76 ± 6.78 89.37 ± 4.23 0.0057

cGAN (Mirza and Osindero, 2014) 85.22 ± 6.82 86.26 ± 3.37 75.25 ± 9.65 85.17 ± 6.51 0.0015

PIX2PIX (Isola et al., 2017) 87.49 ± 5.31 87.81 ± 3.67 78.81 ± 7.92 87.55 ± 5.06 0.0015

Cycle GAN (Zhu et al., 2017) 82.76 ± 9.40 80.35 ± 13.4 72.08 ± 13.28 82.98 ± 8.88 0.0015

Ablation supervised Baseline (Ronneberger et al., 2015) 87.28 ± 5.38 88.54 ± 3.71 78.74 ± 8.13 87.40 ± 5.23 0.0015

UNet+MsST 88.24 ± 4.63 90.03 ± 3.21 80.09 ± 7.20 87.85 ± 5.67 0.0022

UNet+ResNet18 89.11 ± 4.56 90.02 ± 2.95 81.42 ± 7.08 89.11 ± 4.49 0.0021

MsSTNet (UNet+ResNet18+MsST) 89.41 ± 4.36 90.04 ± 3.70 81.85 ± 6.87 89.41 ± 4.29 0.0025

MsST-GAN (Ladv + LD) 89.21 ± 4.62 90.02 ± 2.98 81.36 ± 6.99 89.25 ± 4.37 0.0025

MsST-GAN (Ladv + LD + LBCE) 89.31 ± 4.52 91.23 ± 2.39 81.44 ± 6.89 89.27 ± 4.33 0.0025

MsST-GAN (Ladv + LD + LDice) 89.64 ± 4.58 90.57 ± 2.75 82.11 ± 6.98 89.62 ± 4.38 0.0025

MsST-GAN 89.90 ± 4.31 91.03 ± 1.88 82.36 ± 6.77 89.89 ± 4.12 0.0025

Semi-supervised Semi-cGAN 83.87 ± 10.98 92.07 ± 4.40 73.89 ± 14.52 80.01 ± 18.07 0.0015

Semi-PIX2PIX 87.28 ± 5.54 87.40 ± 4.11 78.58 ± 7.99 87.29 ± 5.34 0.0015

Semi-Cycle GAN 82.35 ± 3.11 83.39 ± 6.87 70.79 ± 4.19 84.75 ± 5.71 0.0015

Semi-MsST-GAN 90.93 ± 4.19 91.93 ± 3.16 83.79 ± 6.72 90.77 ± 4.13 0.0025

Dsc, dice similarity coefficient; Sen, sensitivity; Jac, Jaccard index; PPMCC, Pearson’s product-moment correlation coefficient; cGAN, conditional generative adversarial
network; MsSTNet, multi-scale self-transformer network; MsST-GAN, multi-scale self-transformer GAN. Values in bold indicate the best performance.

FIGURE 4 | Examples of corneal ulcer segmentation. From left to right: original image, U-Net, Attention U-Net, CE-Net, PSPNet, CPFNet, MsST-GAN, and the
proposed method. Yellow represents the correctly segmented region, while red and blue are the results of false-positive segmentation and false-negative
segmentation, respectively.

than 0.05. Table 4 shows the p-values of the Semi-MsST-GAN
compared with MsST-GAN and other CNN-based methods. All
the improvements for the Jac and Dsc values of Semi-MsST-GAN
were statistically significant, with p < 0.05, except for the Dsc
of Cycle GAN (p = 0.052, slightly higher than 0.05). Tables 3, 4
further proved the effectiveness of the proposed MsST-GAN and
Semi-MsST-GAN. Compared with those of the other CNN-based

methods, the segmentation accuracies of both MsST-GAN and
Semi-MsST-GAN have been significantly improved.

Ablation Experiment for MsSTNet
As shown in Table 2, an ablation experiment was conducted to
evaluate the proposed MsST module and the ResNet18 encoder
path. Compared with the baseline model, our proposed MsSTNet
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TABLE 3 | Statistical analysis (p-value) of the proposed MsST-GAN compared
with other convolutional neural network (CNN)-based methods.

Methods Dsc Jac

MsSTGAN–UNet (Ronneberger et al., 2015) 0.025 0.010

MsSTGAN–CENet (Gu et al., 2019) 0.040 0.008

MsSTGAN–Att-UNet (Oktay et al., 2018) 0.003 0.006

MsSTGAN–R2UNet (Alom et al., 2018) 0.038 0.036

MsSTGAN–ResUNet (He et al., 2016) 0.028 0.006

MsSTGAN–PSPNet (Zhao et al., 2017) 0.010 0.001

MsSTGAN–DeepLabv3+ (Chen et al., 2018) 0.014 0.014

MsSTGAN–UNet++ (Zhou et al., 2018) 0.015 0.008

MsSTGAN–CPFNet (Feng et al., 2020) 0.016 0.007

MsSTGAN–cGAN (Mirza and Osindero, 2014) 0.005 0.003

MsSTGAN–PIX2PIX (Isola et al., 2017) 0.005 0.001

MsSTGAN–Cycle GAN (Zhu et al., 2017) 0.049 0.045

Dsc, dice coefficient; Jac, Jaccard index; cGAN, conditional generative adversarial
network; MsST-GAN, multi-scale self-transformer GAN.

TABLE 4 | Statistical analysis (p-value) of the proposed Semi-MsST-GAN
compared with MsST-GAN and other CNN-based methods.

Methods Dsc Jac

Semi MsSTGAN–UNet (Ronneberger et al., 2015) 0.013 0.026

Semi MsSTGAN–CENet (Gu et al., 2019) 0.016 0.017

Semi MsSTGAN–Att-UNet (Oktay et al., 2018) 0.005 0.001

Semi MsSTGAN–R2UNet (Alom et al., 2018) 0.043 0.020

Semi MsSTGAN–ResUNet (He et al., 2016) 0.010 0.017

Semi MsSTGAN–PSPNet (Zhao et al., 2017) 0.001 0.004

Semi MsSTGAN–DeepLabv3+ (Chen et al., 2018) 0.025 0.020

Semi MsSTGAN–UNet++ (Zhou et al., 2018) 0.025 0.026

Semi MsSTGAN–CPFNet (Feng et al., 2020) 0.006 0.010

Semi MsSTGAN–cGAN (Mirza and Osindero, 2014) 0.006 0.006

Semi MsSTGAN–PIX2PIX (Isola et al., 2017) 0.001 0.005

Semi MsSTGAN–Cycle GAN (Zhu et al., 2017) 0.052 0.043

Semi MsSTGAN–MsSTGAN 0.029 0.005

Semi MsSTGAN–Semi-cGAN 0.027 0.023

Semi MsSTGAN–Semi-PIX2PIX 0.001 0.001

Semi MsSTGAN–Semi-Cycle GAN 0.005 0.009

Dsc, dice coefficient; Jac, Jaccard index; cGAN, conditional generative adversarial
network; Semi MsSTGAN, semi-supervised multi-scale self-transformer GAN.

(Baseline+MsST+ResNet18) achieved improvement in terms of
all four evaluation metrics (2.13% for Dsc, 1.5% for Sen, 3.11%
for Jac, and 2.01% for PPMCC). In order to demonstrate the
performance improvement of the proposed MsST module and
the ResNet18 encoder path, we also conducted the experiments
of UNet+MsST and UNet+ResNet18. Compared with that of
the baseline (UNet), the Dsc of UNet+MsST was improved from
87.28 to 88.24% and that of UNet+ResNet18 was improved from
87.28 to 89.11%, which benefits from the fact that the MsST
module can guide the aggregation of low-level weak semantic
information with the high-level strong semantic information
and adaptively learn the spatial correlation in feature maps and
the ResNet18 encoder path can extract feature effectively. These
experimental results proved the effectiveness of the proposed
MsST module and the ResNet18 encoder path.

Ablation Study for Loss Function
We also conducted experiments to demonstrate the effectiveness
of our proposed loss function. It can be seen from Table 2

that, compared with MsST-GAN with only the generative
adversarial loss function LAdv + LD, both MsST-GAN with
LAdv + LD + LBCE and with LAdv + LD + LDice achieved higher
values in all four evaluation metrics. Especially, the average
Dsc of MsST-GAN with LAdv + LD + LBCE increased from
89.21 to 89.31%, while MsST-GAN with LAdv + LD + LDice
increased from 89.21 to 89.64%. These results indicated
that the effectiveness of LBCE works at the pixel level and
LDice works at the image level. Finally, the results of our
proposed loss function Lsupervised were compared with all the
ablation experimental results. It can be seen from Table 2
that MsST-GAN with Lsupervised achieved the best results
in terms of Dsc, Acc, Jac, and PPMCC, except for Sen,
which was slightly lower than that of the MsST-GAN with
LAdv + LD + LBCE. Especially, the Dsc and PPMCC of
MsST-GAN with Lsupervised were improved by 0.77 and 1.23%
and reached 89.90 and 89.89% compared with the results of
LAdv + LD, respectively.

CONCLUSION AND DISCUSSION

In this paper, we proposed a novel Semi-MsST-GAN for
semi-supervised corneal ulcer segmentation, which mainly
focused on solving two problems: (1) the interferences caused
by large pathological differences between point-like, point-
flaky, and flaky corneal ulcers, blurred boundary, and noise
interference, and (2) how to improve the segmentation
accuracy of the network by leveraging the data without
ground truth. This is the first time the semi-supervision-
based method has been introduced into the task of corneal
ulcer segmentation, which achieved good results. Compared
with other state-of-the-art supervised CNN-based methods,
the newly proposed MsST-GAN achieved better segmentation
performance with comparable efficiency. In addition, our
proposed semi-supervision-based method can further improve
the performance by leveraging the data without ground truth.
Comprehensive experiments have been conducted to evaluate
the effectiveness and robustness of the proposed method. The
experimental results showed that, compared with that of the
other state-of-the-art algorithms, the segmentation performance
of our proposed semi-supervision-based method has been
improved obviously.

There is still a limitation in this study. All the compared
algorithms and the proposed semi-supervision-based method
were trained and evaluated based on the limited data from the
SUSTech-SYSU dataset. Although the proposed semi-supervision
method has achieved better performance, we believe that if more
data can be collected, the performance of the proposed method
will be further improved. Therefore, it is one of our future
works to collect more data and further improve the accuracy
of segmentation.
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Purpose: To characterize the corneal and epithelial thickness at different stages of
keratoconus (KC), using a deep learning based corneal segmentation algorithm for
anterior segment optical coherence tomography (AS-OCT).

Methods: An AS-OCT dataset was constructed in this study with 1,430 images from
715 eyes, which included 118 normal eyes, 134 mild KC, 239 moderate KC, 153 severe
KC, and 71 scarring KC. A deep learning based corneal segmentation algorithm was
applied to isolate the epithelial and corneal tissues from the background. Based on the
segmentation results, the thickness of epithelial and corneal tissues was automatically
measured in the center 6 mm area. One-way ANOVA and linear regression were
performed in 20 equally divided zones to explore the trend of the thickness changes
at different locations with the KC progression. The 95% confidence intervals (CI) of
epithelial thickness and corneal thickness in a specific zone were calculated to reveal
the difference of thickness distribution among different groups.

Results: Our data showed that the deep learning based corneal segmentation algorithm
can achieve accurate tissue segmentation and the error range of measured thickness
was less than 4 µm between our method and the results from clinical experts, which is
approximately one image pixel. Statistical analyses revealed significant corneal thickness
differences in all the divided zones (P < 0.05). The entire corneal thickness grew
gradually thinner with the progression of the KC, and their trends were more pronounced
around the pupil center with a slight shift toward the temporal and inferior side. Especially
the epithelial thicknesses were thinner gradually from a normal eye to severe KC. Due
to the formation of the corneal scarring, epithelial thickness had irregular fluctuations in
the scarring KC.
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Conclusion: Our study demonstrates that our deep learning method based on AS-
OCT images could accurately delineate the corneal tissues and further successfully
characterize the epithelial and corneal thickness changes at different stages of
the KC progression.

Keywords: keratoconus, corneal thickness, anterior segment optical coherence tomography, deep learning,
segmentation

INTRODUCTION

Keratoconus (KC) is a non-inflammatory, chronic, and
progressive corneal disease which is characterized by apical
thinning and cone-like protrusion of the central cornea, and
usually leads to irregular astigmatism and myopia (Kennedy
et al., 1986; Hashemi et al., 2020). Reports have shown an
incidence of KC to be as high as 1.38/1,000 in the general
population (Hashemi et al., 2020). Whereas diagnostic criteria
such as CLEK guidelines (Zadnik et al., 1998) and Amsler–
Krumeich classification (Krumeich et al., 1998) have been used
to grade the severity of KC, the profiles of the corneal thickness
along with KC progression are yet to be defined. Corneal
thickness including epithelial thickness has been considered as
one of the most important morphological features that aids in
the characterization of KC progression (Li et al., 2012; Xu et al.,
2016; Morishige et al., 2019; Yang et al., 2020; Toprak et al., 2021).
Thus, characterizing the corneal thickness at different stages of
KC might complement the existing diagnostic criteria.

With its ability for high-resolution non-invasive imaging
in cross-sectional biological systems, anterior segment optical
coherence tomography (AS-OCT) is an effective tool in observing
the whole corneal thickness as well as individual layers such
as the epithelium in normal or KC eyes (Chen et al., 2012;
Corre-Perez et al., 2012; Li et al., 2012; Xu et al., 2016;
Ang et al., 2018; Morishige et al., 2019; Yang et al., 2020;
Toprak et al., 2021). Compared with the normal eyes, KC
eyes have thinner apical corneal epithelial thickness but thicker
epithelial layer superonasally, which is similar to the total
corneal thickness pattern (Li et al., 2012). Eyes with forme fruste
keratoconus seem to have increased central epithelium/stroma
ratio and asymmetric superior-nasal epithelial thinning (Toprak
et al., 2021). Besides, some epithelial thickness-based variables
and corneal thickness-based variables have been developed for
detecting KC (Li et al., 2012; Yang et al., 2020; Toprak et al.,
2021). With ultra-high-resolution OCT, vertical thickness profiles
of the epithelial and Bowman’s layers have been shown to provide
valuable diagnostic references for sub-clinical KC (Xu et al.,
2016). Recent studies have investigated corneal deformation with
the presence of stromal scarring in KC patients and demonstrated
a correlation between the progression of KC and a reduction in
corneal thickness and volume, as well as stromal scar formation
(Morishige et al., 2019). These studies provided useful insights
into the potential use of corneal thickness in understanding
underlying mechanisms of KC. However, there is no study on
the quantification of the characteristics of corneal and epithelial
thickness at the different stages of KC development (Zadnik et al.,
1998; Morishige et al., 2019).

One of the important premises for obtaining corneal thickness
is accurate segmentation of corneal tissue interfaces from the AS-
OCT images. Currently, the corneal tissue segmentation often
performed through either manual labeling or some traditional
image processing algorithms (Larocca et al., 2011; Li et al., 2012;
Xu et al., 2016; Ang et al., 2018; Morishige et al., 2019; Yang
et al., 2020; Toprak et al., 2021). Whereas manual labeling is
time-consuming and has poor repeatability, the traditional image
processing methods are less robust to deal with pathological
corneas (Larocca et al., 2011; Williams et al., 2015; Ang et al.,
2018; Elsawy et al., 2019). Recent studies have explored the
feasibility of using deep learning-based methods for corneal
tissue segmentation with AS-OCT images (Mathai et al., 2019;
Ouyang et al., 2019; Santos et al., 2019). We have also proposed
a hierarchy-constrained network, which robustly improves the
segmentation performance of the corneal tissue interfaces in both
normal and KC eyes (Liu et al., 2020). By taking advantage of this
automated method, the profiles of the corneal thickness could be
conveniently determined from the AS-OCT images.

In this study, we aimed to investigate the corneal and epithelial
thickness profiles along the vertical and horizontal meridians
in the KC eyes at different stages. The corneal tissue interfaces
were delineated using our previously developed hierarchy-
constrained method (Liu et al., 2020), and the thickness was
automatically measured from the segmented AS-OCT images.
Then one-way ANOVA and linear regression analyses were
performed to explore the trends of the thickness changes against
the KC progression.

MATERIALS AND METHODS

Dataset
This retrospective study was conducted based on the tenets of
the Declaration of Helsinki and was approved by the institutional
review board of Qingdao Eye Hospital of Shandong First Medical
University. A total of 1,430 images from 715 eyes were selected
from a large clinical database of the hospital between January
2009 and July 2021. The 715 eyes included both normal and KC
patients. We excluded participants with any type of prior ocular
surgery or trauma, associated corneal pathologic features, and
those who had undergone collagen cross-linking, corneal rings,
or keratoplasty. All AS-OCT images were acquired by Optovue
RTVUE 100 (Optovue, Inc., United States), using a line scan
mode. Each eye acquired two scans along with the horizontal
and vertical meridians. The pupil center was treated as the focus
point during scanning. The acquired images had a resolution of
1,019 × 640 pixels and covered an area of 8 mm × 1.933 mm. All
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the images were unified to 1,024 × 640 pixels by padding zeros
on the left and right sides, and then resizing to 2,648 × 640 pixels
for isotropy. Consequently, each pixel represented approximately
3 µm in corneal tissue, both horizontally and vertically.

The KC eyes were categorized into four different stages based
on both CLEK guidelines (Zadnik et al., 1998) and additional
clinical criteria (Morishige et al., 2019). According to the CLEK
guidelines (Zadnik et al., 1998), we first identified three stages
including mild KC (corneal curvature is less than 45 D), moderate
KC (corneal curvature is between 45 D and 52 D), and severe KC
(corneal curvature is more than 52 D). Then the scarring KC was
classified based on the existence of stromal scarring (Morishige
et al., 2019). All patients with scarring have resolved hydrops. In
particular, the cornea, which appears as Descemet’s membrane
rupture with dilacerations of collagen lamellae, large fluid-filled
intra-stromal cysts, was excluded from the scarring stage. In total,
there were 118 normal eyes, 134 mild KC eyes, 239 moderate
KC eyes, 153 severe KC eyes, and 71 scarring KC eyes. The
demographic information is shown in Table 1.

Deep Learning Based Corneal
Segmentation
To measure the corneal layers’ thickness, we first performed
corneal tissue segmentation using our proposed hierarchy-
constrained network (Liu et al., 2020). The network adopted the
U-Net architecture (Ronneberger et al., 2015) and consisted of
a progressive feature-extraction module (PFEM) and a multi-
level prediction fusion module (MPFM) (Liu et al., 2020). The
PFEM added side paths to each level of decoder to achieve
deep supervision for obtaining correct image features. On
the other hand, the MPFM leveraged semantic information
in various resolutions by concatenating reconstructed features
from each level of the decoder. In addition, we extracted
the boundaries of layers to calculate edge loss as additional
constraints. Our previous report has shown that such a deep
learning-based method improves the performance of corneal
tissue segmentation (Liu et al., 2020). The main code is available
at https://github.com/sie163/ASOCT_KC.

Before applying the segmentation method to the entire
dataset, we evaluated its accuracy on a partial subset. Specifically,
236 normal images (from 118 normal eyes) were numbered, and
150 numbers were randomly generated from 1 to 236 and the
images corresponding to the numbers were extracted to form
a subset. The same rule was applied to KC images. Finally, we
randomly selected 150 normal images and 160 KC images from
the AS-OCT dataset, and manually labeled the semantic masks.

The boundaries of the cornea and epithelial layer were outlined
with customized labeling software by 3 ophthalmologists. Before
formal labeling, we verified the labeling consistency of 3
ophthalmologists on 10 AS-OCT images covering different KC
stages. Paired comparison of the labeled results showed that
the dice values of corneal segmentation all reached 0.99 and
the dice values of epithelial segmentation all reached 0.95. It
showed that the labels of 3 ophthalmologists were basically the
same. In addition, all 310 images were labeled, about 1/3 for
each ophthalmologist. Thereafter, a senior expert reviewed the
labeled semantic masks and discussed with 3 ophthalmologists
to revise the questionable masks. Finally, all 310 AS-OCT images
with labeled masks were used to evaluate the performance of our
proposed deep learning method.

Measurement of the Corneal Thickness
To automatically measure the corneal thickness, the pupil center
in the anterior corneal surface was first defined as a reference
point after corneal segmentation. A Region of Interest (ROI) was
then derived by cutting off 3 mm sections on either side of the
reference point. Thus, an ROI containing 6 mm of the studied
corneal section was created. Locating the reference point and
corresponding ROI was essential because it serves to map the
corneal tissues for further analysis of the corneal layers’ thickness.
To calculate the thickness of the cornea and epithelium, we then
set 40 sampled points in the ROI, which were measured after
every 0.15 mm horizontally or vertically. The distance between
the sampled points on the anterior surface of the cornea and the
intersection points of its incident normal as well as the boundary
of epithelial and posterior surface of the cornea were defined
as the thickness of the cornea and epithelial layer, respectively
(Figure 1F). The visualization was implemented using Python
(Oliphant, 2007).

Segmentation Evaluation and Statistical
Analysis of Corneal Thickness Profiles
The performance of the corneal segmentation was assessed
by direct and indirect evaluation metrics. The direct metrics
included dice coefficient, IoU, sensitivity, and specificity (Liu
et al., 2020), while the indirect metric was only the thickness
error. Dice coefficient and IoU represented the overlap between
the segmented and the labeled areas by the clinician, which
reflects the overall segmentation precision. Sensitivity and
specificity were the auxiliary metrics for proper segmentation.
Whereas sensitivity calculated the proportion of positive pixels
that are correctly segmented, specificity calculated the proportion

TABLE 1 | Demographic information for five groups in KCTD.

Normal Mild KC Moderate KC Severe KC Scarring KC

Eyes 118 134 239 153 71

Images 236 268 478 306 142

Sex (M:F) 93:25 112:22 178:61 129:24 58:13

Age (mean ± std) 24.39 ± 6.69 21.01 ± 4.87 20.62 ± 4.43 22.58 ± 5.91 20.73 ± 5.54

KC, Keratoconus; KCTD, KC corneal thickness dataset.
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FIGURE 1 | The original AS-OCT images and their corresponding segmented maps generated by our trained deep learning networks. Red masks illustrate the
segmented epithelial layers, while masks with red and blue are the segmented corneas. The representative cases included mild KC (A), moderate KC (B), severe KC
(C), scarring KC (D), and normal eye (E), respectively. (F) An example of the automatic corneal thickness measurement on resized AS-OCT image. The purple circle
denotes the pupil center on the cornea. The dark blue rectangle stands for the studied region of interest. The sky-blue and red curves draw the anterior and
posterior boundaries of the cornea including the epithelial layer. The normal lines of the corneal anterior surface represent the measurement of the epithelial layer
thickness and corneal thickness.

of negative pixels that are properly segmented. We calculated
these metrics for the segmentation of the whole cornea and
epithelium. Besides, we measured the corneal and epithelial
thickness based on the segmented maps and the labeled maps,
respectively, and then calculated the average values of their
differences as an indirect evaluation metric.

In addition, the thickness profiles in the horizontal and vertical
meridians were compared between the normal eyes and the
different KC stages. To unify the direction, the horizontal scan
of the right eye was mirrored to the left eye during comparison.
Each thickness line was divided equally into 20 zones, and the
mean values and 95% confidence intervals (CI) were calculated.
We applied one-way ANOVA to investigate group effect for
mean epithelial thickness and corneal thickness in each zone. On
the other hand, a two-sample t-test was used to determine the
statistical significance of between-group differences. A P < 0.05
was considered as statistically significant. Besides, we applied
ordinary least square linear regression to investigate the trend
of corneal and epithelial thickness along with the progression
of the KC in each zone. To test the diagnostic values of
the epithelial and corneal thickness profiles, four thickness
ectasia indices, including epithelium ectasia index of the vertical
meridian (EEI_V), cornea ectasia index of the vertical meridian
(CEI_V), epithelium ectasia index of the horizontal meridian
(EEI_H), and cornea ectasia index of the horizontal meridian
(CEI_H), were built to quantify the different change patterns
at the different KC stages. Thickness ectasia index is defined
as the ratio of maximum thickness to minimum thickness.
Moreover, then linear discriminant analysis was applied to

build discriminant functions with four indices. The predictive
accuracies of differentiating the groups with different KC stages
from the normal group were determined by receiver operating
characteristic (ROC) curves and the area under the curves (AUC).
All statistical analyses were performed with SciPy library in
Python (Oliphant, 2007).

RESULTS

Evaluation of the Corneal Segmentation
Algorithm
Our experiment demonstrated successful segmentation of the
different stages of the KC and normal eyes (Figure 1). Our
designed hierarchy-constrained network enhanced the capability
of identifying corneal layers’ boundaries from indiscernible
images, such as having some degree of scarring around the
boundary as shown in Figure 1D.

The quantitative evaluation of the segmentation performance
was performed based on 310 labeled AS-OCT images. Using
our model, there was high consistency of the segmented results
with tissue masks labeled by clinical experts for both the whole
cornea and epithelial layers in normal and KC eyes (Table 2).
Besides, whereas dice coefficient, IoU, sensitivity, and specificity
were slightly lower in the KC eyes compared with the normal
eyes, their values significantly improved to 0.989, 0.978, 0.991,
and 0.995 for the whole cornea, and 0.925, 0.860, 0.932, and 0.997
for the epithelium, respectively. The thickness error (T_error)
between the segmented and labeled maps was 2.220 µm for the
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TABLE 2 | Quantitative evaluation for corneal tissue segmentation and thickness
measurement between our model and clinicians.

Dice IoU Sensitivity Specificity T_error (µm)

Epithelium

Normal 0.951 0.906 0.954 0.998 2.220

KC 0.925 0.860 0.932 0.997 3.858

Cornea

Normal 0.995 0.990 0.996 0.997 1.788

KC 0.989 0.978 0.991 0.995 3.462

epithelial thickness and 1.788 µm for the corneal thickness in
the normal eyes. On the other hand, the T_error between the
segmented and labeled maps was 3.858 µm for the epithelial
thickness and 3.462 µm for the corneal thickness in the KC
eyes. The error range of thickness was, therefore, just about one
pixel, because each image pixel represented around 3 µm both
horizontally and vertically.

Statistical Analysis of the Thickness
Changes
The profiles of the corneal and epithelial thickness in the
horizontal and vertical meridians were then investigated based on
all 1,430 AS-OCT images (Figure 2). For the epithelial thickness,
there were minimal differences and fluctuations between the
normal and mild KC eyes both in the horizontal and vertical
meridians. With the progressing of the KC, the central epithelial
layer grew thinner, thus the severe KC eyes had the thinnest
central epithelial thickness. The epithelial thickness was thicker
in the scarring KC stage and was accompanied by irregular
fluctuations in both the horizontal and the vertical meridians.
For the corneal thickness, the average changes of the thickness
profiles were very regular, which were characterized by gradual
thinning with KC progression. The thinnest parts were in the

temporal and the inferior side next to the pupil center for the
horizontal and the vertical meridians, respectively.

In addition, one-way ANOVA revealed significant thickness
differences in all the divided zones in the horizontal and vertical
meridians (P < 0.05). We also assessed the trends of thickness
changes in each zone in the normal and KC eyes in different
stages (Figure 3). The fitted slopes showed similar curve shapes
for corneal thickness. The values were all less than zero, which
demonstrated that the corneal thickness grew thinner with the
KC progression. The lowest slopes occurred at zone 9 both in the
horizontal and vertical meridians. However, the slope curves were
relatively complex for the epithelial thickness. There were some
positive values in the peripheral region of both sides, including
zone 1, 2, 18, 19, and 20 for the horizontal meridian, and zone
1, 2, 17, 18, 19, and 20 for the vertical meridian. The lowest
slopes occurred at zone 11 and zone 12 for the horizontal and the
vertical meridians, respectively. In particular, there were obvious
fluctuations around zone 8 for the horizontal meridian and zone
9 for the vertical meridian.

Furthermore, we provided the 95% confidence intervals (CI)
for the thickness values (Table 3) and their corresponding
regression curves for the typical zones (Figure 3). The selected
zones included epithelial thickness in zone 8 of the horizontal
meridian (ET_Z8_H) and the corneal thickness in zone 9 of
the horizontal meridian (CT_Z9_H) as well as the epithelial
thickness (ET_Z9_V) and the corneal thickness (CT_Z9_V) in
zone 9 of the vertical meridian. Two sample t-tests revealed
that most comparisons of the corneal thickness were statistically
different among each group in both meridians (CT_Z9_H
and CT_Z9_V). Most of the differences had a significance of
P < 0.001, except between the normal and mild KC eyes in
zone 9 of the horizontal meridian (P = 0.07). For the epithelial
thickness, most comparisons reached a P < 0.05. Besides, due
to irregular changes of the epithelial thickness in scarring KC,
there were no significant differences between the normal eyes and

FIGURE 2 | The average epithelial and corneal thickness profiles in the horizontal (A,C) and vertical (B,D) meridians between the normal and KC eyes in different
stages. The reference origin is the pupil center in the scanned AS-OCT image. The horizontal direction is from temporal to nasal, and the vertical direction is from
inferior to superior. The yellow lines are for normal groups, and the green, red, dark blue, and sky-blue lines are for mild KC, moderate KC, severe KC, and scarring
KC, respectively.
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FIGURE 3 | The trends of the thickness change in different zones of the horizontal (A,C) and vertical (B,D) meridians between the normal and KC eyes in different
stages. (A,B) Show epithelial thickness changes, while (C,D) show the corneal thickness changes. Each subgraph includes the fitted slopes in all divided zones and
the detailed regression curve in one of the selected zones.

mild KC (P = 0.37), or between scarring KC and normal eyes
(P = 0.28), mild KC (P = 0.47), and moderate KC (P = 0.08) in
zone 8 of the horizontal meridian (ET_Z8_H). In addition, there
were no significant differences between scarring and moderate
KC (P = 0.29) in zone 9 of the vertical meridian (ET_Z9_V).

In Figure 4, the ROC curves for each discriminant function
illustrated the discriminative abilities of mild KC, moderate
KC, severe KC, and scarring KC from normal eyes. The
output values of the discriminant functions showed different
abilities to discriminate mild KC (AUC = 0.693), moderate KC
(AUC = 0.840), severe KC (AUC = 0.918), and scarring KC
(AUC = 0.998) from normal eyes, respectively. The more severe
keratoconus, the higher the diagnostic accuracy.

DISCUSSION

As described in the global consensus on KC (Hashemi et al.,
2020), the existing staging standards of KC [CLEK guidelines
(Zadnik et al., 1998) and Amsler–Krumeich classification

TABLE 3 | A 95% CI of epithelial thickness and corneal thickness in selected
zones.

Group ET_Z8_H (µm) ET_Z9_V (µm) CT_Z9_H (µm) CT_Z9_V (µm)

Normal 47.84–49.93 48.37–50.84 497.28–511.68 503.88–519.23

Mild KC 47.19–49.26 46.73–48.72 490.2–501.83 482.10–493.82

Moderate KC 42.87–44.56 41.79–43.30 470.94–480.41 456.58–466.42

Severe KC 39.20–41.47 38.86–40.81 447.38–463.22 432.33–447.57

Scarring KC 43.34–50.46 41.17–47.16 363.07–389.10 369.19–402.14

CI, confidence intervals; ET_Z8_H, epithelial thickness in zone 8 of horizontal
meridian; ET_Z9_V, epithelial thickness in zone 9 of vertical meridian; CT_Z9_H,
corneal thickness in zone 9 of horizontal meridian; CT_Z9_V, corneal thickness in
zone 9 of vertical meridian.

(Krumeich et al., 1998)] are relatively limited and outdated. For
instance, the protocols do not fully consider the variation trend of
various parameters such as the anterior and the posterior corneal
surface height, the cornea thickness, and cornea curvature
(Hashemi et al., 2020). Interestingly, corneal thickness variation
is one of the most important characteristics of KC progression.
To better guide clinicians in staging of the KC, there is need for
accurate measurement of the corneal thickness and analysis of
the corneal thickness distribution in patients with KC at different
stages. AS-OCT provides cross-sectional information critical in
the generation of thickness maps of both the whole cornea and
individual layers (Shan et al., 2019; Yip and Chan, 2019). The
main obstacle to accurate evaluation of the thickness is precise
outlining of the corneal tissue boundaries. Besides the manual
segmentation or semi-automated traditional methods (Chen
et al., 2012; Corre-Perez et al., 2012; Li et al., 2012; Xu et al., 2016;
Ang et al., 2018; Morishige et al., 2019; Yang et al., 2020; Toprak
et al., 2021), deep learning-based methods have been proposed
for corneal tissue interface segmentation (Mathai et al., 2019;
Ouyang et al., 2019; Santos et al., 2019). In our previous studies,
we compared these methods with our proposed hierarchy-
constrained segmentation network (Liu et al., 2020) and validated
the effectiveness of our network architecture and boundary
constraint. Here, we further demonstrated that our method could
achieve accurate corneal segmentation for measuring corneal and
epithelial thickness in both normal and KC eyes. Our experiment
demonstrated high segmentation accuracy as evaluated by dice
coefficient, IoU, sensitivity, and specificity (Table 2). In addition,
the error ranges of the corneal thickness were less than 4 µm
between our automatic method and the results by clinical experts,
which was just about one image pixel.

Although the corneal thickness profiles including the
epithelial layer have been investigated based on AS-OCT images
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FIGURE 4 | ROC curves of discriminant functions in differentiating the groups with different KC stages from the normal group. (A) ROC curve of discriminant function
for mild KC vs. the normal group. (B) ROC curve of discriminant function for moderate KC vs. the normal group. (C) ROC curve of discriminant function for severe
KC vs. the normal group. (D) ROC curve of a discriminant function for scarring KC vs. the normal group.

(Chen et al., 2012; Corre-Perez et al., 2012; Li et al., 2012; Wu
et al., 2014; Ma et al., 2016; Xu et al., 2016; Ang et al., 2018;
Mathai et al., 2019; Morishige et al., 2019; Ouyang et al., 2019;
Santos et al., 2019; Wang et al., 2019; Yang et al., 2020; Toprak
et al., 2021), none of them was able to successfully classify the
KC into different stages based on the CLEK guidelines (Zadnik
et al., 1998). Often, all the KC eyes are considered as a group when
compared with normal eyes. Only two recent studies classified
sub-clinical KC (Xu et al., 2016) and scarring KC (Morishige
et al., 2019). In this study, we collected KC eyes at four different
stages: mild, moderate, severe, and scarring KC. The thickness
profiles were revealed within ± 3 mm from the pupil center
along with the horizontal and vertical meridians. For the corneal
thickness, the overall distribution showed that the cornea was
thinner in the central part but thicker on the peripheral sides.
The thinnest points were located around 0.5 mm temporal side

(CT_Z9_H) and 0.5 mm inferior side (CT_Z9_V) from the pupil
center. The thinning phenomenon in the middle became more
pronounced with the progression of the KC. On the other hand,
for the epithelial thickness, the biggest change happened in the
scarring KC with irregular thinning or thickening. Descemet’s
layer might break spontaneously to produce corneal edema in
the late stage of the KC. Thereafter, the scar tissues were formed
after corneal edema was repaired, which undoubtedly caused
the irregular changes of epithelial thickness in the scarring KC.
Since the thickness profiles in some stages of KC had never
been investigated based on the AS-OCT, the findings not only
supported the previous studies (Li et al., 2012; Ma et al., 2016; Xu
et al., 2016; Morishige et al., 2019; Wang et al., 2019; Yang et al.,
2020; Toprak et al., 2021), but also provided new evidence for the
KC features at different stages. Furthermore, our experimental
results with the linear discriminant analysis revealed that the
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measured thickness indices could be used to differentiate the
groups of different KC stages from normal eyes.

Some limitations should be considered and need to be
strengthened. First, previous studies have investigated the
consistency of the corneal thickness measurement with AS-OCT,
ultrasound pachymetry, and Scheimpflug imaging (Chen et al.,
2012; Dutta et al., 2013; Huang et al., 2013; Kiraly et al., 2017).
To prove the effectiveness of our proposed method, there is a
need to perform more comparison studies with other devices
or methods in the future. Second, besides the CLEK guidelines,
there are more relevant KC grading systems such as topographical
keratoconus classification (TKC) (Issarti et al., 2019). Further
work includes grading the data with the TKC system and applying
our purposed method to characterize the thickness changes along
with the TKC system. Third, our study only obtained two AS-
OCT images along with the horizontal and vertical meridians.
A recent study that scanned 16 AS-OCT images for each eye to
form a three-dimensional corneal shape (Morishige et al., 2019).
Thus, we could scan more intensive images and detect the KC at
different stages based on the AS-OCT derived corneal thickness.

Taken together, with our proposed segmentation network, we
could successfully quantify the epithelial and corneal thickness
profiles in the horizontal and vertical meridians for the normal
and KC eyes at different stages. The entire corneal thicknesses
became thinner with the progression of the KC, and their
trends were deepened especially around the pupil center with
a slight shift to the temporal and inferior side. Besides, the
epithelial thickness had more irregular fluctuations due to more
complex corneal tissue changes in the scarring KC. These findings
therefore provide more quantitative information to investigate
the underlying mechanism of KC at different stages.
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Reduced Radial Peripapillary
Capillary in Pathological Myopia Is
Correlated With Visual Acuity
Jie Ye, Jue Lin, Meixiao Shen, Wen Chen, Riyan Zhang, Fan Lu* and Yilei Shao*

School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China

Purpose: To quantify the radial peripapillary capillary (RPC) density and the peripapillary
retinal nerve fiber layer (pRNFL) thickness in pathological myopia and examine
associations among these factors and best-corrected visual acuity (BCVA).

Methods: The cohort was composed of 41 eyes as control and 79 eyes with high
myopia (59 simple high myopia, 20 pathological myopia). Optical coherence tomography
angiography was done to obtain RPC density and pRNFL thickness, superficial retinal
capillary plexus (SRCP), and deep retinal capillary plexus (DRCP) density. The axial
length (AL) was measured. Correlations among BCVA, RPC density, pRNFL thickness,
AL, and other parameters were determined.

Results: For pathological myopia, the densities of RPC, SRCP, and DRCP were
significantly less than those of the control and simple high myopia groups (p ≤ 0.005).
There was no statistical difference in pRNFL thickness between pathological myopia
and simple high myopia (p = 0.063), whereas there was significant difference in global
pRNFL thickness between pathological myopia and control (p = 0.008). The global RPC
density showed the greatest area under the curve (AUC = 0.962, sensitivity = 94.74%,
specificity = 90.00%, cutoff value = 47.8%) for pathological myopia, whereas the AUC
of pRNFL thickness, SRCP, and DRCP were only 0.675, 0.824, and 0.865, respectively.
The univariate and multiple linear regression models showed that RPC density, SRCP
density, and AL were correlated with BCVA (All p < 0.05). In the final BCVA model
with multiple generalized estimating equation analysis, AL, RPC density and interaction
between RPC and AL were shown (all p < 0.03). For an eye with AL ≥ 27.94 mm, global
RPC density was predicted to be less than 48.77% with a high risk of visual impairment.

Conclusion: Peripapillary alterations, both the decreasing RPC density and pRNFL
thickness, occurred in pathological myopia compared with the control. The RPC density
was associated with BCVA, and this relationship was affected by AL.

Keywords: optical coherence tomography angiography, visual acuity, pathological myopia, radial peripapillary
capillary, axial length

INTRODUCTION

High myopia, defined as a spherical equivalent (SE) worse than −6.0 diopter (D) or axial length
(AL) greater than 26.5 mm, is not uncommon around the world (Holden et al., 2016; Wong et al.,
2017). Holden et al. (2016) predicted that by 2050 there would be 938 million people with high
myopia worldwide. With the progression of high myopia, pathological changes often accumulate
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over time. It was estimated that nearly 40.6% of cases develop
pathological myopia, characterized by the presence of myopic
maculopathy (Hayashi et al., 2010; Ohno-Matsui et al., 2015).
Of the patients with pathological myopia, approximately one
of three had a best-corrected visual acuity (BCVA) of less than
20/60 (Liu et al., 2010). Pathological myopia is considered to be
one of the major causes of visual impairment. Thus, to develop
possible preventative and therapeutic methods, it is necessary to
understand the risk factors and pathogenesis associated with it.

In the early stage of pathological myopia, changes in the
fundus commonly occur around the optic disc. With the
continued axial elongation and progression of high myopia,
some peripapillary alterations occur, such as the appearance
of peripapillary diffuse atrophy and the tilt of optic disc
(Shimada et al., 2007; Nakazawa et al., 2008; Jonas et al.,
2016, 2018). Often, in patients with long-term follow-up, early
evidence of myopic maculopathy is indicated by the presence
of peripapillary diffuse atrophy (Tokoro, 1998; Fang et al.,
2018). The reduced peripapillary microvasculature and structure
are always considered to be associated with the characteristic
of the peripapillary diffuse atrophy. Disease progression then
usually includes macular chorioretinal atrophy radiating out
from the peripapillary area (Fang et al., 2018). The related
macular microvascular and structural alteration in pathological
myopia had been reported in our previous studies (Ye et al., 2019,
2020). We hypothesized that peripapillary alterations (especially
peripapillary microvasculature and structure) are likely to result
in pathological myopia and visual impairment. However, regional
differences in peripapillary microvasculature and structure, and
the relationship of those alterations to visual function have
seldom been studied in quantitative detail. The early detection
of the peripapillary microvasculature and structure changes in
pathological myopia and differentiating it from the simple high
myopia would be important to develop new preventive strategies
and prevent further fundus degeneration and the occurrence of
visual impairment.

In this study, the changes in the global and sector-
specific radial peripapillary microvasculature and structure in
pathological myopia would be investigated. We then correlated
these sector-specific changes with visual impairment. This new
information regarding the peripapillary microvasculature and
structure alterations that occur in pathological myopia and visual
impairment can help develop new therapeutic approaches to
prevent further progression of this disease.

MATERIALS AND METHODS

Subjects and Clinical Examinations
All myopia patients and control subjects were from the
Eye Hospital of Wenzhou Medical University, Wenzhou,
Zhejiang, China. The control subjects had no vision problems
and were present only in the clinic for ocular health
screenings. This project was executed in consonance with the
tenets of the Declaration of Helsinki and was approved by
the Ethics Committee of Wenzhou Medical University. All

participants agreed to participate in the project and signed the
informed consent.

All subjects were given a clinical examination, including
refractive error with BCVA measured as the log minimum
angle of resolution (logMAR), slit-lamp biomicroscopy, fundus
photography with a 45◦ retinal camera (Canon EOS 10D SLR
backing; Canon, Inc., Tokyo, Japan), AL measurement with
the IOL Master (Carl Zeiss, Jena, Germany), and intraocular
pressure (IOP) measurement with the Auto Tonometer TX-F
(Topcon, Tokyo, Japan).

After the clinical examinations, all subjects were separated
into three groups: (1) control subjects for whom the SE varied
from −1.5 D to + 0.5 D; (2) simple high myopia patients
with SE worse than −6.0 D or AL greater than 26.5 mm,
without pathological fundus alteration; and (3) pathological
myopia patients with SE worse than −6.0 D or AL greater than
26.5 mm, with pathological fundus alteration. Patients having a
fundus with diffuse or severe atrophy were considered to have
pathological myopia based on the meta-analysis for pathologic
myopia (META-PM) classification (Ohno-Matsui et al., 2015).
The diagnosis and classification of the three groups were
determined by two ophthalmologists from the Eye Hospital of
Wenzhou Medical University. In cases where the two could not
reach an agreement, another senior ophthalmologist made the
final decision. Exclusion criteria included any of the following:
patients with IOP > 21 mm Hg, history of the optic disc and
peripapillary disease, visual field defects, pathological myopia-
related complications, history of intraocular surgery, or related
systemic diseases.

Peripapillary and Macular Image
Acquisition
Peripapillary and macular images for all subjects were acquired
by optical coherence tomography angiography (OCT-A, Optovue
RTVue XR Avanti; Optovue, Inc., Fremont, CA, United States;
software version 2017.1.0.155) using the angio disc scan protocol
(4.5 × 4.5 mm) and angioretinal macular scan protocol
(3× 3 mm), respectively.

The global peripapillary area was defined as a ring with a
2-mm inner diameter and a 4-mm outer diameter centered
on the optic disc. The radial peripapillary capillary (RPC) slab
was imaged from the internal limiting membrane to the retinal
nerve fiber layer (RNFL). After angio disc scanning, the software
automatically segmented the global peripapillary area into eight
sectors based on the Garway-Heath grid map (Garway-Heath
et al., 2000), that is, nasal-superior, nasal-inferior, inferior-
nasal, inferior-temporal, temporal-inferior, temporal-superior,
superior-temporal, and superior-nasal. The peripapillary RNFL
(pRNFL) thickness and RPC density of the same global
peripapillary area and eight sectors were calculated by built-in
software. The RPC density was defined as the ratio between the
area occupied by the capillary vessels and the whole target area
analyzed in the OCT-A image. The angio disc scan also calculated
the optic cup-to-disc ratio.

The global analyzed macular area was defined as a ring
with a 1-mm inner diameter and 3-mm outer diameter
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centered on the macular fovea. The superficial retinal capillary
plexus (SRCP) slab was imaged from the internal limiting
membrane to 10 µm above the inner plexiform layer, and
deep retinal capillary plexus (DRCP) slab was imaged from
10 µm above the inner plexiform layer to the 10 µm below
the outer plexiform layer. After angioretinal macular scanning,
the software automatically segmented the global macular area
into four sectors, that is, nasal, inferior, temporal, and superior.
The SRCP and DRCP density of the global macular area and
four sectors were calculated by built-in software. The density
was defined as the ratio between the area occupied by the
capillary vessels and the whole target area analyzed in the OCT-
A image.

A masked reader reviewed all OCT-A images. Scans with a
signal strength index (assessed by the machine itself) less than
4/10, an RPC/SRCP/DRCP slab segmentation error, an obvious
motion artifact, a Bruch membrane opening distance at optic
disc larger than 2 mm, and without vessels in the target analyzed
area were excluded.

Statistical Analyses
Only the right eye of each subject was included for data
analysis in this study. All continuous data were analyzed as
means ± standard deviations and were calculated by SPSS
software (version 22.0; SPSS, Inc., Chicago, IL, United States).
The SE was analyzed as the spherical dioptric power plus
half of the cylindrical dioptric power. Differences in gender
frequencies among the three groups were calculated by the χ2-
test. Differences of other parameters among the three groups were
analyzed by one-way analysis of variance (ANOVA). The receiver
operating characteristic (ROC) curve was used to determine the
diagnostic accuracy of the peripapillary parameters and macular
retinal microvascular density to differentiate pathological myopia
and the AL cutoff value to the visual impairment. Pearson
correlation, partial correlation, and simple and multiple linear
regression were used to assess the correlations among the
peripapillary parameters, macular retinal microvascular density,
BCVA, and AL. To avoid confounding factors, the generalized
estimating equations (GEE) were further used to analyze the
associations and interactions of the above parameters with the
BCVA. Non-linear regression was used to explore the relationship
between the AL and RPC density. p-values less than 0.05 were
considered to be statistically significant.

RESULTS

Subjects Basic Characteristics
The study population included 41 control, 59 simple high
myopia, and 20 pathological myopia eyes (Table 1). There were
no significant differences in age, gender ratios, IOPs, or optic cup-
to-disc ratios among the three groups (p = 0.729, 0.868, 0.852,
and 0.606, respectively, Table 1). Compared with the control and
simple high myopia eyes, the eyes with pathological myopia had
worse myopic refraction error, worse BCVA, and longer AL (all
p < 0.001; Table 1).

The Difference of Radial Peripapillary
Capillary Density, Peripapillary Retinal
Nerve Fiber Layer Thickness, and
Macular Retinal Microvascular Density
Among the Three Groups
Representative fundus photography and OCT-A images of the
control, simple high myopia, and pathological myopia are shown
in Figure 1. There were significant differences in RPC density
for the global area and the respective eight sectors (ANOVA,
all p < 0.001; Table 2). When compared with the control
group, the global RPC density in simple high myopia was
smaller (p = 0.013; Table 2), although none of the eight sectors
were significantly different between the control group and the
simple high myopia group (Table 2). For the pathological
myopia group, the RPC densities in not only the global area
but also all eight sectors were significantly less than those
of the control and simple high myopia groups (p < 0.01;
Table 2).

Although there was a significant difference in pRNFL
thickness in the global area among the three groups (ANOVA,
p = 0.030; Table 3), there was no statistical difference between the
simple high myopia and the control group (p = 0.217; Table 3).
The pRNFL of the simple high myopia and pathological myopia
in inferior-nasal and superior-nasal sectors were thinner, and
that in the tempo-inferior sector was thicker when compared
with the control group (p < 0.02; Table 3). The pRNFL showed
the insignificant difference between the simple high myopia and
pathological myopia in the global and respective eight sectors
(p = 0.063–1.000; Table 3).

There were significant differences in SRCP and DRCP density
for the global area and the respective four sectors (ANOVA, all
p < 0.001; Table 4). The global SRCP density in simple high
myopia was smaller (p = 0.017; Table 4), although nasal, inferior,
and superior sectors did not show significant differences when
compared with the control group (Table 4). When compared
with the control group, the global DRCP density in simple high
myopia was smaller (p = 0.027; Table 4), although the nasal
sector was not shown a significant difference (Table 4). For the
pathological myopia group, the SRCP and DRCP density in not
only the global area but also all four sectors were significantly
less than those of the control and simple high myopia groups
(p < 0.003; Table 4).

Receiver Operating Characteristic Curve
for Discriminating Analysis
The ROC curves were used to show the discriminating
power of RPC density, pRNFL thickness, and macular retinal
microvascular density for pathological myopia. The global RPC
density showed the greatest area under the curve (AUC = 0.962,
sensitivity = 94.74%, specificity = 90.00%; Figure 2A) with the
cutoff global RPC density value as 47.8%, whereas the AUC
of pRNFL thickness, SRCP density, and DRCP density were
only 0.675, 0.824, and 0.865, respectively (Figure 2A). For the
respective eight sectors, the AUCs of the RPC density in the
tempo-inferior, tempo-superior, and superior-tempo sectors were
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TABLE 1 | The basic characteristic information of the control group, simple high myopia, and pathological myopia.

Control Simple high myopia Pathological myopia p* p1 p2 p3

Patients, n 41 59 20 — — — —

Eyes, n 41 59 20 — — — —

Age, year 31 ± 11 31 ± 8 33 ± 9 0.729 0.732 0.622 0.430

Gender, M:F 16: 25 20: 39 7: 13 0.868 0.599 0.761 0.928

SE, diopter −0.88 ± 1.07 −8.32 ± 2.72 −14.6 ± 3.85 <0.001 <0.001 <0.001 <0.001

BCVA, logMAR −0.0 ± 0.06 0.00 ± 0.03 0.22 ± 0.18 <0.001 0.131 <0.001 <0.001

AL, mm 23.79 ± 0.97 26.71 ± 1.19 29.11 ± 1.66 <0.001 <0.001 <0.001 <0.001

IOP, mm Hg 13.67 ± 3.67 14.11 ± 3.44 14.27 ± 3.50 0.852 0.637 0.618 0.891

Optic cup-to-disc ratio 0.30 ± 0.15 0.27 ± 0.14 0.26 ± 0.14 0.606 0.410 0.406 0.772

M, male; F, female; SE, Spherical Equivalent; BCVA, best corrected visual acuity; AL, axial length; p*, p-value of ANOVA among the three groups; p1, p-value between
the control group and simple high myopia; p2, p-value between the control group and pathological myopia; p3, p-value between the simple high myopia and pathological
myopia. The bold values just means the P-value less than 0.05.

FIGURE 1 | Representative OCT-A images of the control, simple high myopia, and pathological myopia. OCT-A, optical coherence tomography angiography; SRCP,
superficial retinal capillary plexus; DRCP, deep retinal capillary plexus; pRNFL, peripapillary retinal nerve fiber layer.

greater than 0.800, while AUCs of RPC density in other five
sectors were less than 0.800 (Figure 2B,C).

Association of Radial Peripapillary
Capillary Density, Peripapillary Retinal
Nerve Fiber Layer Thickness, and
Macular Retinal Microvascular Density
With Best-Corrected Visual Acuity
While doing the associated analysis, we included only the global
data instead of data from the respective eight (or four) sectors.

In univariate regression with the BCVA as the outcome, the eyes
with less RPC density (p < 0.001), thinner pRNFL (p < 0.001),
less SRCP and DRCP density (both p < 0.001), and longer AL
(p < 0.001) would show worse BCVA (Table 5). The parameters
with p-values less than 0.05 in univariate regression (Table 5)
would be further included for the multivariate regression
analysis. As a result, worse BCVA was associated with less
RPC density (standardized coefficient = −0.211, p = 0.026), less
SRCP density (standardized coefficient = −0.191, p = 0.043),
and longer AL (standardized coefficient = 0.341, p = 0.001;
Table 5).
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TABLE 2 | The radial peripapillary capillary (RPC) density (%) among the control, simple high myopia, and pathological myopia.

Control Simple high myopia Pathological myopia p* p1 p2 p3

Global 52.60 ± 2.42 51.03 ± 3.47 44.15 ± 2.86 <0.001 0.013 <0.001 <0.001

Nasal-superior 49.22 ± 3.81 46.81 ± 5.75 41.97 ± 6.98 <0.001 0.089 <0.001 0.003

Nasal-inferior 47.39 ± 4.50 45.61 ± 6.20 41.08 ± 5.68 <0.001 0.120 <0.001 0.003

Inferior-nasal 51.70 ± 4.23 49.41 ± 5.19 44.96 ± 7.18 <0.001 0.100 <0.001 0.005

Inferior-tempo 56.71 ± 3.98 55.20 ± 6.92 48.46 ± 8.39 <0.001 0.245 <0.001 <0.001

Tempo-inferior 54.26 ± 3.63 54.53 ± 4.68 45.04 ± 7.67 <0.001 0.786 <0.001 <0.001

Tempo-superior 57.60 ± 3.15 56.20 ± 6.22 44.24 ± 10.43 <0.001 0.282 <0.001 <0.001

Superior-tempo 55.62 ± 3.41 55.53 ± 4.23 47.33 ± 7.05 <0.001 0.921 <0.001 <0.001

Superior-nasal 51.33 ± 4.14 49.69 ± 5.72 44.65 ± 5.85 <0.001 0.127 <0.001 <0.001

p*, p-value of ANOVA among the three groups; p1, p-value between the control group and simple high myopia; p2, p-value between the control group and pathological
myopia; p3, p-value between the simple high myopia and pathological myopia. The bold values just means the P-value less than 0.05.

TABLE 3 | The peripapillary retinal nerve fiber layer (pRNFL) thickness (µm) among the control, simple high myopia, and pathological myopia.

Control Simple high myopia Pathological myopia p* p1 p2 P3

Global 121.7 ± 12.9 117.7 ± 16.6 109.8 ± 19.3 0.030 0.217 0.008 0.063

Nasal-superior 114.3 ± 18.0 111.2 ± 30.7 102.1 ± 36.5 0.297 0.891 0.452 0.711

Nasal-inferior 95.46 ± 20.2 94.83 ± 31.0 94.21 ± 33.6 0.986 0.913 0.874 0.934

Inferior-nasal 154.8 ± 25.8 130.7 ± 24.2 117.9 ± 37.7 <0.001 <0.001 0.002 0.443

Inferior-tempo 154.1 ± 21.1 153.4 ± 26.2 140.0 ± 42.5 0.151 0.998 0.456 0.506

Tempo-inferior 76.7 ± 13.7 90.9 ± 19.0 97.7 ± 46.8 0.003 0.017 0.008 0.930

Tempo-superior 85.9 ± 15.8 92.0 ± 14.9 91.2 ± 34.1 0.300 0.167 0.899 1.000

Superior-tempo 151.0 ± 19.8 147.5 ± 22.8 136.4 ± 36.2 0.093 0.798 0.279 0.505

Superior-nasal 149.3 ± 29.6 127.9 ± 26.7 112.6 ± 37.1 <0.001 0.002 <0.001 0.143

p*, p-value of ANOVA among the three groups; p1, p-value between the control group and simple high myopia; p2, p-value between the control group and pathological
myopia; p3, p-value between the simple high myopia and pathological myopia. The bold values just means the P-value less than 0.05.

TABLE 4 | The macular retinal microvascular density (%) among the control, simple high myopia, and pathological myopia.

Control Simple high myopia Pathological myopia p* p1 p2 p3

SRCP

Global 51.5 ± 4.2 48.9 ± 4.2 43.4 ± 6.4 <0.001 0.017 <0.001 <0.001

Nasal 50.5 ± 5.3 47.8 ± 5.1 41.0 ± 8.6 <0.001 0.070 <0.001 <0.001

Inferior 50.8 ± 5.3 48.8 ± 4.5 44.0 ± 5.4 <0.001 0.152 <0.001 0.002

Tempo 51.9 ± 3.7 48.4 ± 4.5 42.8 ± 7.1 <0.001 0.002 <0.001 <0.001

Superior 53.0 ± 4.0 50.6 ± 4.1 45.8 ± 8.6 <0.001 0.069 <0.001 0.002

DRCP

Global 55.3 ± 4.5 52.8 ± 4.3 46.5 ± 5.8 <0.001 0.027 <0.001 <0.001

Nasal 56.2 ± 4.1 54.9 ± 4.1 47.9 ± 7.1 <0.001 0.584 <0.001 <0.001

Inferior 53.7 ± 5.3 50.2 ± 6.0 43.1 ± 6.8 <0.001 0.017 <0.001 <0.001

Tempo 56.6 ± 4.0 54.4 ± 4.1 49.4 ± 6.7 <0.001 0.045 <0.001 <0.001

Superior 54.4 ± 5.4 51.7 ± 4.8 45.7 ± 5.3 <0.001 0.022 <0.001 <0.001

SRCP, superficial retinal capillary plexus; DRCP, deep retinal capillary plexus. p*, p-value of ANOVA among the three groups; p1, p-value between the control group and
simple high myopia; p2, p-value between the control group and pathological myopia; p3, p-value between the simple high myopia and pathological myopia. The bold
values just means the P-value less than 0.05.

Considering the RPC density, AL, and SRCP density might be
influenced by each other in the multivariate regression result, the
further multiple GEE was used to form the BCVA model. In the
final BCVA model, the AL (coefficient = 0.249, p < 0.001), RPC
density (coefficient = 0.108, p = 0.021), and interaction between
the RPC and AL (coefficient = −0.003, p = 0.016) were shown
(Table 6). Further, before the adjustment for the AL, the RPC

was correlated with the BCVA (r = −0.443, p < 0.001). Even
after the adjustment for the AL, the RPC was still correlated
with the BCVA (r = −0.241, p = 0.010, Figure 3). For the
respective eight sectors with the AL adjustment, the significant
correlations between the RPC density and BCVA were found in
tempo-inferior, tempo-superior, superior-tempo, and superior-
nasal sectors (r =−0.265 to−0.194, p = 0.007∼0.049).
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FIGURE 2 | ROC curve of the RPC density, pRNFL thickness, and macular retinal microvascular density for discriminating the pathological myopia. (A) The ROC
curves of the RPC density, pRNFL thickness, SRCP, and DRCP density in the global area for discriminating the pathological myopia. The AUC values were 0.962,
0.675, 0.824, and 0.865, respectively. (B) The ROC curves of the RPC density in the four respective sectors (nasal-superior, nasal-inferior, inferior-nasal, and
inferior-tempo) for discriminating the pathological myopia. The AUC values were 0.748, 0.749, 0.735, and 0.786, respectively. (C) The ROC curves of the RPC
density in the four respective sectors (tempo-inferior, tempo-superior, superior-tempo, and superior-nasal) for discriminating the pathological myopia. The AUC
values were 0.861, 0.850, 0.852, and 0.772, respectively. RPC, radial peripapillary capillary; pRNFL, peripapillary retinal nerve fiber layer; SRCP, superficial retinal
capillary plexus; DRCP, deep retinal capillary plexus.

TABLE 5 | Linear regression analysis based on the BCVA as the outcome.

Parameters Univariate regression Multivariate regression

Unstandardized coefficient Standardized coefficient p Unstandardized coefficient Standardized coefficient P

RPC −0.014 −0.495 <0.001 −0.006 −0.211 0.026

pRNFL −0.003 −0.382 <0.001 – – –

Optic cup-to-disc ratio −0.132 −0.165 0.098 – – –

SRCP −0.010 −0.471 <0.001 −0.004 −0.191 0.043

DRCP −0.008 −0.361 <0.001 – – –

AL 0.033 0.592 <0.001 0.018 0.341 0.001

Age 0.002 0.164 0.073 – – –

Gender, male 0.002 0.009 0.926 – – –

RPC, radial peripapillary capillary; pRNFL, peripapillary retinal nerve fiber layer; SRCP, superficial retinal capillary plexus; DRCP, deep retinal capillary plexus; AL, axial
length; BCVA, best corrected visual acuity. The bold values just means the P-value less than 0.05.

Relationship Between Radial
Peripapillary Capillary Density and Axial
Length
The visual impairment in the current study was determined
as BCVA (logMAR) ≥ 0.1. The ROC curve here was used to
calculate the AL cutoff value determining visual impairment.
The AL cutoff value was 27.94 mm with an area under the
ROC curve of 0.875.

As shown in Figure 4A with non-linear regression, the
relationship between AL and global RPC density could
be separated into two parts: for AL < 25.01 mm, the
global RPC density ranged from 49.20 to 57.80% with
52.76% as average; for AL ≥ 25.01 mm, there would be
a negative correlation (r = −0.517, p < 0.001). With
such non-linear regression, for an eye with an AL of
27.94 mm (the AL cutoff value for the visual impairment),
the global RPC density was predicted to be approximately
48.77%. When analyzing the correlation between the AL

and RPC density for the respective eight sectors with
non-linear regression, the AL turning points are shown
in Figures 4B–I.

TABLE 6 | Multivariate GEE analysis based on the BCVA as the outcome.

Parameters Coefficient Std. error 95% Confidence interval p

Lower Upper

AL 0.249 0.0705 0.111 0.388 <0.001

SRCP 0.076 0.0478 −0.018 0.169 0.113

RPC 0.108 0.0468 0.016 0.200 0.021

RPC × AL −0.003 0.0012 −0.005 0.001 0.016

SRCP × AL −0.002 0.0010 −0.004 0.0003 0.099

RPC × SRCP −0.001 0.0005 −0.002 0.0003 0.182

AL, axial length; SRCP, superficial retinal capillary plexus; RPC, radial peripapillary
capillary; BCVA, best corrected visual acuity; GEE, generalized estimating
equations. The bold values just means the P-value less than 0.05.
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FIGURE 3 | Correlation of the RPC density and BCVA after adjustment for the
AL. RPC, radial peripapillary capillary; AL, axial length; BCVA, best-corrected
visual acuity.

Relationship Between Radial
Peripapillary Capillary Density and
Macular Retinal Microvascular Density
When analyzing the relation between the RPC density and
macular retinal microvascular density, the significant correlation
was found for the global parameters (SRCP, r = 0.426, p < 0.001;
DRCP, r = 0.418, p < 0.001; Table 7). For eight respective sectors,

TABLE 7 | The correlation between the macular retinal microvascular density and
radial peripapillary capillary (RPC) density.

SRCP DRCP

r p r p

Global 0.426 <0.001 0.418 <0.001

Nasal-superior 0.293 0.001 0.286 0.002

Nasal-inferior 0.267 0.004 0.280 0.002

Inferior-nasal 0.052 0.580 0.100 0.284

Inferior-tempo 0.290 0.002 0.292 0.001

Tempo-inferior 0.353 <0.001 0.327 0.001

Tempo-superior 0.413 <0.001 0.319 0.001

Superior-tempo 0.356 <0.001 0.342 <0.001

Superior-nasal 0.205 0.027 0.257 0.005

SRCP, superficial retinal capillary plexus; DRCP, deep retinal capillary plexus. The
bold values just means the P-value less than 0.05.

the highest correlation coefficients between RPC density and
macular retinal microvascular density were shown in tempo-
inferior, tempo-superior, and superior-tempo sectors (SRCP,
r = 0.353–0.413, p < 0.001; DRCP, r = 0.319–0.342, p < 0.002;
Table 7).

DISCUSSION

In the current study, we used OCT-A to evaluate the RPC
density and pRNFL thickness in pathological myopia. Previously
reported peripapillary alterations in myopia were mostly
consistent with our results (Table 8). However, most of the
previous articles focused only on simple high myopia and did
not include pathological myopia. The current study investigated

FIGURE 4 | Non-linear regression of the RPC density and the AL in global and all eight sectors. The solid red line in (A–I) was the AL cutoff (27.94 mm) for the visual
impairment. The dashed red line in (B–I) indicates the RPC density flexion point along with the AL. To the left of the dashed red line, the RPC density was stable and
not correlated with AL. To the right of the dashed red line, decreases in RPC density were significantly correlated with AL elongation (corresponding r and p-values
were shown in the respective panels). To the right of the solid red line, the eyes were at high risk of visual impairment. (A) Non-linear regression of the global RPC
density and the AL. (B) Nasal-superior RPC density vs. AL with AL flexion point as 23.16 mm. (C) Nasal-inferior RPC density vs. AL with AL flexion point as
22.08 mm. (D) Inferior-nasal RPC density vs. AL with AL flexion point as 22.87 mm. (E) Inferior-temporal RPC density vs. AL with AL flexion point as 24.68 mm.
(F) Temporal-inferior RPC density vs. AL with AL flexion point as 27.99 mm. (G) Temporal-superior RPC density vs. AL with AL flexion point as 26.25 mm.
(H) Superior-temporal RPC density vs. AL with AL flexion point as 27.07 mm. (I) Superior-nasal RPC density vs. AL with AL flexion point as 23.01 mm. RPC, radial
peripapillary capillary; AL, axial length.
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TABLE 8 | Summary of previous article on peripapillary alteration in myopia.

Authors Subjects Conclusions

Current study Control, simple high myopia, and pathological myopia The significant difference of the global RPC density and pRNFL thickness
among the three groups

Yang et al. (2020) Mild myopia, moderate myopia, and severe myopia with BCVA
of 20/20 or better

The significant difference of the global RPC density and pRNFL thickness
among the three groups

Sung et al. (2018) Control and high myopia without pathologic alteration No significant alteration of the pRNFL thickness but the significant alteration of
RPC density was found

He et al. (2019) Emmetropia, mild myopia, moderate myopia, and high myopia
with BCVA of 20/25 or better

No significant alteration of the pRNFL thickness but the significant alteration of
RPC density among the four groups was found.

Wang et al. (2016) Emmetropia, mild myopia, moderate myopia, and high myopia
without any sign of pathological myopia

The significant alteration of the pRNFL thickness and RPC density among the
four groups was found

Suwan et al. (2018) Control and myopia without glaucoma The decreasing of the RPC density in myopia subjects but without significance.

Sung et al. (2017) Non-high myopia and high myopia without pathological fundus The significant difference in the RPC density between the two groups

Mo et al. (2017) Control, simple high myopia, and pathological myopia The significant difference of the global RPC density among the three groups

RPC, radial peripapillary capillary; pRNFL, peripapillary retinal nerve fiber layer; BCVA, best corrected visual acuity.

the alteration of peripapillary vascular density and structural
thickness simultaneously in pathological myopia and analyzed
their correlations with the central visual function. The reduced
RPC density of pathological myopia in the current study was
found as Mo et al. (2017) had reported, whereas we found that the
relationship between the RPC density and AL was not as simple
as Mo et al. (2017) reported and further showed the significant
correlation between RPC density and BCVA. The RPC density,
as peripapillary capillary density, might be more sensitive to
indicate the alteration of pathological myopia and related to the
central visual impairment than pRNFL thickness, especially in the
temporal sectors, which was also affected by the AL. Awareness
of the RPC density alteration and preventing its further decrease
should be the important clinic goals for pathological myopia.

The peripapillary alterations in pathological myopia
were found in our current research, especially the RPC
density. The RPC density was decreased in eyes with
either simple high myopia or pathological myopia eyes
compared with normal eyes; moreover, the RPC density
in the eyes with pathological myopia was significantly
lower than in eyes with simple high myopia. Myopic eyes
have less retrobulbar peripapillary blood flow and smaller
vessel diameters than normal eyes (Patton et al., 2005;
Benavente-Pérez et al., 2010; La Spina et al., 2016). These
suggested that the RPC density may gradually decrease
during the progression of normal to simple high myopia
and then to pathological myopia. In addition, in eyes with
pathological myopia, the RPC density was decreased in all
eight sectors, demonstrating that the peripapillary perfusion
was widely affected compared with isolated local alterations in
different sectors.

From the ROC results of discriminating power for
pathological myopia, we hypothesized that the RPC density
was sensitive to indicate pathological myopia. As the straight
and long vessels without frequent anastomoses, the RPC might
even be affected more easily by the pathological progression
than macular degeneration (Henkind, 1967). Moreover, it was
described that peripapillary retinal perfusion was decreased in
some high myopia without the parafoveal perfusion alteration,

and pathological myopia always started from the alteration
in the temporal peripapillary sector (Tokoro, 1998; Wang
et al., 2016). Temporal peripapillary sectors (temporal-inferior,
temporal-superior, and superior-tempo sectors) had the highest
AUC when compared with other sectors. The reason might
be that RPC was more around the arcuate fiber region located
in the temporal peripapillary sector. To compensate for the
peripapillary ischemia in pathological myopia, we speculated the
vascular constriction seriously in RPC. The RPC in these sectors
would be sensitive to adjust for the occurrence of pathological
myopia. In addition, these temporal sectors were more related to
the macular retinal microvasculature in our current study. So,
the early detection of the RPC density in these sectors would be
important to indicate pathological myopia.

To investigate the peripapillary alteration in pathological
myopia would provide clues to the further macular degeneration
and vision-threatening alteration in pathological myopia. Within
the eye, loss of RPC density was related to degeneration of
the retinal pigment epithelium (Tan et al., 2014). Our previous
article had reported that retinal pigment epithelium thinning
was correlated with the central visual function (Ye et al., 2019).
It might be one of the reasons that decreasing RPC density
was significantly correlated to central visual impairment. The
decreasing RPC density was also associated with the macular
microvascular density as well. Large blood vessels in the
peripapillary region send branches to the macular region, and
then reductions in RPC density would be associated with changes
in macular microvascular density that could impair vision (Jonas
et al., 2017; Lee et al., 2018). As we have known, the outer
retina and the peripapillary area were both mainly supplied by
the branches of the posterior ciliary arteries, so pull-back of the
optic disc may not only result in the RPC density decreasing
but also had an influence on the macular vasculature, which
would explain the correlation between the RPC density and
visual impairment in pathological myopia. Furthermore, because
the RPC consists of straight and long vessels without frequent
anastomoses, it might be affected more easily than macular
vessels by the pathological progression (Henkind, 1967; Wang
et al., 2016).
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Axial elongation had long been considered to be the main
factor for peripapillary alteration during the progression of
pathological myopia. Differently, we found that the relationship
between the RPC density and AL was not as simple as the
previous article reported (Mo et al., 2017). In the current
study, the interaction of the AL and RPC density was shown
significantly in the final BCVA model. Actually, for the AL
less than 25.01 mm, the axial elongation did not influence
the RPC density too much from our current study. On the
contrary, the patient with AL longer than 27.94 mm might have
serious RPC density decreasing with visual impairment. The eyes
with AL ranging from 25.01 to 27.94 mm would be at high
risk of visual impairment if their AL elongated furthermore.
During our daily clinic, we should pay attention to these cutoff
values for pathological myopia to intervene early and avoid a
worse visual prognosis. When considering the respective eight
sectors, only in the temporal sectors rather than nasal sectors,
the RPC density was drastically decreased with extreme axial
elongation. We hypothesized that temporal RPC might be a great
protective mechanism to visual impairment at the early stage of
axial elongation. There might be the condition that only when
up to extremely axial elongation in pathological myopia the
temporal RPC density would alter significantly with serious visual
impairment. Moreover, we found there was still a correlation
between the RPC density and BCVA even after adjustment
for the AL. It might support the idea that the alterations of
the pathological myopic fundus also resulted from progressive
deterioration, but not only depending on the axial elongation
(Kobayashi et al., 2005).

We acknowledged some limitations in the current study. First,
the sample size, especially for the pathological myopic group,
was small. We intend to include more subjects in the future.
In the current study, we did not correct the AL-dependent
image magnification before analyzing the pRNFL thickness
and RPC density. Although previous articles had found that
correction of AL or not may not significantly influence the
peripapillary parameters, we still intend to develop software
for image magnification correction to confirm the peripapillary
alteration and visual function (Moghimi et al., 2012; Liu et al.,
2015). To try our best to avoid the influence of the AL in the
analysis, we also adjusted the AL when doing some analysis of
the correlation in the current study. Moreover, we did not do
the repeatability of these parameters when doing this research.
In our previous articles, we had certified the high repeatability
of the macular microvascular density and structural thickness in
pathological myopia with the OCT-A/OCT images, and Wang
et al. (2016) had reported that the peripapillary parameters from
the OCT-A images showed higher repeatability than macula

(Ye et al., 2019, 2020). Based on these, we thought that there
would be good repeatability of the peripapillary parameters in
pathological myopia with the OCT-A images. The posterior
staphylomas might be a key factor for the visual impairment in
pathological myopia as well, we would like to further analyze
these details in the future.

CONCLUSION

In conclusion, the current study showed peripapillary alterations
in pathological myopia compared with the controls, especially
the decreasing diffused RPC density and pRNFL thickness.
The current results indicate that RPC density had greater
discriminating power to assess pathological myopia, which might
play an important role in the further macular alteration and
central visual function in these pathological myopic patients.
Moreover, the RPC density was associated with BCVA, and
this relationship was affected by AL. Quantitative analysis
of the peripapillary microvasculature would help clarify the
potential pathophysiological mechanism of progression in
pathological myopia.
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