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Editorial on the Research Topic

Machine learning-based methods for RNA data analysis—Volume II

RNAs regulate multiple biological processes including RNA transcription, splicing,

stability, and translation. They play significant roles in cell biology (Connelly et al. (2016);

Licatalosi and Darnell (2010); Mukherjee et al. (2022); Chen et al. (2018b)). The

Encyclopedia of DNA elements project reported that only 1.5% of human genome is

translated into proteins, while approximately 70%–90% is transcribed to RNAs (Falese

et al. (2021)). RNAs greatly expand the range of targets from proteins to RNAs by re-

targeting mutated targets (Yu et al. (2019); Chen et al. (2020); Li et al. (2022); Yang et al.

(2022)). Particularly, noncoding RNAs have dense linkages with human diseases

including cancers. Now, RNAs have been diagnostic or prognostic markers of

complex diseases (Hui et al. (2011); Xu et al. (2022); Peng et al. (2022a); Shen et al.

(2022); Zhang T. et al. (2022); Chai et al. (2022)). In this topic, we aim to analyze diverse

RNA data to provide clues for the diagnosis and therapy of various diseases (Dal Molin

et al. (2022); Wang S. et al. (2022); Li J. et al. (2019); Liu et al. (2020)). Long noncoding

RNAs (lncRNAs) regulate many significant biological processes (such as immune

response and embryonic stem cell pluripotency) by linking to RNA-binding proteins

(Wapinski and Chang (2011); Chen and Huang (2017); Ping et al. (2018); Wang et al.

(2020)), Wang et al. (2021W.); Peng et al. (2020)). They have been important biomarkers

for cancers (Wu et al. (2022a); Banerjee et al. (2020); Zhang S. et al. (2021); Zhou G. et al.

(2021); Peng et al. (2022a); Liang et al. (2022b); Peng et al. (2021); Zhou L. et al. (2021)).

For example, lncRNAs AFAP1-AS1, CCAT1, CYTOR, GAS5, HOTAIR, and PVT1 are

molecular regulators of lung caner (Aftabi et al. (2021)). KCNQ1OT1may be a prognostic

biomarker in colorectal cancer (Lin et al. (2021)). lncRNAs are also oncogenes (such as

MKLN1-AS, GHET1, LASP1-AS, MALAT1, HULC, HOTAIR, and PAPAS) and tumor

suppressors (such as CASC2, DGCR5, MEG3, GAS5, and NRON) in hepatocellular

carcinoma (Guo et al. (2021)). Many machine learning methods have been proposed to
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infer new LncRNA-Disease Associations (LDAs). For example,

graph convolutional completion with conditional random (Fan

et al. (2022)), heterogeneous graph attention network with meta-

paths (Zhao et al. (2022)), graph convolutional auto-encoders

(Silva and Spinosa (2021)), multi-view attention graph

convolutional network and stacking ensemble (Liang et al.

(2022b)), and learning to rank-based model (Wu et al.

(2022a)) are widely used methods for LDA prediction.

In this research topic, Sun et al. developed a weighted graph-

regularized matrix factorization approach (LPI-WGRMF) to

identify possible lncRNA-protein interactions (LPIs) based on

known biological information and LPI matrix. LPI-WGRMF

obtained an AUC of 0.9012 and AUPR of 0.7324 on LPI

dataset provided by Zhang et al. (Zhang et al. (2018)) based on

5-fold cross validation. They predicted that lncRNAs SNHG3,

SFPQ, and PRPF31 may interact with proteins Q9NUL5,

Q9NUL5, and Q9UKV8, respectively. Yao et al. designed a

random walk with restart algorithm (MHRWRLDA) to infer

LDAs on multiplex and heterogeneous networks. MHRWRLDA

computed an AUC of 0.6874 under leave-one-out cross validation,

and inferred that lncRNA BCYRN1 may associate with colon

cancer and hepatocellular carcinoma. Cheng et al. considered that

the recurrence rate of nonfunctioning pituitary adenoma is

relatively high after surgical resection and built lncRNA

signatures for its prognosis. They obtained microarray

sequencing profiles of lncRNA expressions from 66 patients

who suffered from nonfunctioning pituitary adenoma.

Univariable Cox regression analysis and random survival

forests-variable hunting were applied to filter lncRNAs. They

found that three lncRNAs, LOC101927765, RP11-23N2.4, and

RP4-533D7.4, have dense associations with tumor recurrence and

inferred that the three lncRNAs may be potential therapeutic

targets of nonfunctioning pituitary adenoma.

MicroRNAs (miRNAs) are a class of endogenous noncoding

RNAs with a length of approximately 22 nucleotides (Sun et al.

(2022); Chen et al. (2019b, 2018b); Zhang L. et al. (2021)).

MiRNAs regulate many biological activities and influence

almost all genetic pathways (Chen et al. (2018c); Peng et al.

(2017); Chen et al. (2018a)). Thus, miRNAs have been a class of

tumor suppressor genes in clinical medicine (Chen et al. (2019a);

Peng et al. (2018)). For example, miR-940 is a potential

biomarker of prostate cancer (Rajendiran et al. (2021)).

Urinary exosome microRNA signatures are noninvasive

prognostic markers for prostate cancer (Shin et al. (2021)).

Recently, machine learning methods have been widely used to

identify possible MicroRNA-Disease Associations (MDAs). For

example, tensor decomposition with relational constraints

(Huang et al. (2021)), similarity constrained matrix

factorization (Li L. et al. (2021)), tensor factorization and label

propagation (Yu et al. (2022)), deep attributed network

embedding model (Ji et al. (2021)), and multi-view

multichannel attention graph convolutional network (Tang

et al. (2021)) are popular methods in MDA prediction.

In this topic, Qu et al. explored a computational model

(BRWRMHMDA) for MDA inference combining enforcing

degree-based biased random walk with restart.

BRWRMHMDA computed an AUC of 0.8310 under leave-

one-out cross validation. They predicted that hsa-let-7f and

hsa-mir-30e may associate with esophageal neoplasms and

breast neoplasms, respectively. Zhou et al. proposed a

pseudogene-miRNA association identification method

(PMGAE) by integrating feature fusion, graph autoencoder,

and eXtreme gradient boosting. First, they computed three

types of similarities for pseudogenes and miRNAs, that is,

Pearson similarity, cosine similarity, and Jaccard similarity.

Second, the above similarities were fused to build a similarity

profile for each node. Third, the similarity profiles and

pseudogene-miRNA associations are further aggregated to

depict each node as a low-dimensional vector through a graph

autoencoder. Finally, the feature vector was fed into eXtreme

gradient boosting for pseudogene-miRNA association

prediction. PMGAE computed better AUC of 0.8634 and

AUPR of 0.8966. The results from PMGAE showed that

miRNAs hsa-miR-34c-5p, hsa-miR-199b-5p, and hsa-miR-

103a-3p may associate with pseudogenes RPLP0P2, HLA-H,

and HLA-J, respectively.

Circle RNAs (circRNAs) is a class of novel endogenous

noncoding RNAs with a covalently closed loop structure

(Wang C.-C. et al. (2021); Li G. et al. (2019); Wang et al.

(2021b)). circRNAs have more stable expressions due to their

resistances to RNA exonuclease degradation (Li et al. (2020);

Wang et al. (2021c,b)). They can regulate protein binding,

miRNA sponges, alternative splicing and transcription, and

generate pseudogenes (Wang C.-C. et al. (2021); Chen

(2020)). In addition, they demonstrate close associations with

cancers, cardiovascular and nervous system diseases (Wang C.-C.

et al. (2021); Li G. et al. (2019, 2020); Wang et al. (2021c,c,b)).

Therefore, various computational models have been developed to

detect possible CircRNA-Disease Associations (CDAs). For

example, network embedding and subspace learning method

(Xiao et al. (2021)), knowledge attention network (Lan et al.

(2022)), multi-source feature fusion-based machine learning

framework (Wang L. et al. (2022)), and robust nonnegative

matrix factorization model (Peng et al. (2022c)) are widely

used in CDA prediction.

Furthermore, Li et al. developed a computational CDA

identification method (GATGCN) based on graph attention

network and graph convolutional network. First, they fused

several biomedical data from different sources through the

centered kernel alignment model. Second, graph attention

network was deployed to obtain latent representation of

circRNAs and diseases. Finally, graph convolutional network

was explored to infer CDAs. GATGCN computed better an AUC

of 0.951 under leave-one-out cross validation and an AUC of 0.

932 under 5-fold cross-validation. They found that circRNAs

hsa_circRNA_404833, hsa_circ_0013509, hsa_circRNA_2149,
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circR_284, and circR_284 have the highest association scores

with lung cancer, diabetes retinopathy, prostate cancer,

cholangiocarcinoma, and clear cell renal cell carcinoma,

respectively.

A large quantity of transcriptomic data enable us to

investigate complex biological processes at single-cell

resolution levels (Peng et al. (2022b); Liang et al. (2022a);

Zhang et al. (2022b); Xu et al. (2020). Therefore, Miao et al.

(2021) considered specific noises and computing efficiency, and

then designed biologically interpretable integration strategies to

integrate multi-omics single-cell data. Zhou P. et al. (2021) used

multiscale stochastic dynamics to dissect transition cells from

transcriptome data. Ye et al. (2022) used combinatorial hybrid

sequencing to construct the axolotl cell landscape at single-cell

resolution. McKellar et al. (2021) detected transitional progenitor

states in mouse skeletal muscle regeneration based on single-cell

transcriptomic data. Wu et al. (2022b) exploited a stacking

ensemble learning-based model to implement single-cell Hi-C

classification.

In particular, Panchy et al. analyzed large-scale

transcriptome datasets using non-negative principal

component analysis and non-negative matrix factorization.

The results showed that the above two methods provided low-

dimensional features for the progression of biological processes.

They found that gene expression signatures from conserved

epithelial-mesenchymal transition can be applied to depict the

stages in multiple cell lines. Lang et al. evaluated the performance

of two sequencing platforms (Nextseq500 and MGISEQ-2000)

using the same capture DNA libraries built by the Illumina

protocol. The results demonstrated that a significant loss of

fragment occurred in the range of 101–133 bp sizes on

MGISEQ-2000 for Illumina libraries while not for the capture

DNA libraries. Bao et al. considered that it is crucial to

differentiate the transcriptomic and proteomic profiles

between unstable and stable atherosclerotic plaques. They

obtained 5 unstable and 5 stable human carotid

atherosclerotic plaques by carotid endarterectomy to identify

lncRNA-targeted genes and circRNA-originated genes. The

results indicated that 293 proteins, 488 lncRNAs,

91 circRNAs, and 202 mRNAs are differentially expressed

between unstable and stable atherosclerotic plaques.

Furthermore, CD5L, S100A12, CKB, CEMIP, and

SH3GLB1 may be key genes in regulating the stability of

atherosclerotic plaques. In addition, Zheng et al. used a series

matrix file search method and obtained data related to breast

cancer from the ArrayExpress and Gene Expression Omnibus

databases. They found that RSK2 is a possible biomarker in breast

cancer.

RNA sequencing data have been broadly applied to screen

therapeutic strategies for various diseases (Przybyla and

Gilbert (2022); Zhang Y. et al. (2021); Li C.-x. et al. (2021)).

Chen et al. (2022) used RNA sequencing to explore the

mechanism of oxygen-boosted sonodynamic therapy for the

treatment of hepatocellular carcinoma. Zhang et al. (2022c)

integrated single-cell and bulk RNA sequencing data to probe a

pan-cancer stemness signature. Sammut et al. (2022)

combined multi-omics data including DNA and RNA

sequencing and machine learning technique to predict

breast cancer therapy response. Based on RAN sequencing

data, Ma et al. first downloaded RNA sequencing data related

to gliomas from the TCGA database. Then they used DESeq2,

key driver and weighted gene correlation network to identify

differentially expressed genes. They observed that Paclitaxel,

Cidofovir, 6-benzyladenine, Erlotinib, Bilirubin, Oxaliplatin,

Nutlins, Valproic acid, and Fenofibrate may be potential drugs

in inhibiting the recurrence of gliomas. Similarly, Xiang et al.

detected gene expression and network differences between

limited and advanced stages for the diffuse large B-cell

lymphoma (DLBCL) patients to predict potential agents

against DLBCL. First, they collected RNA sequencing data

from the DLBCL patients at different clinical stages from the

TCGA database. Second, they used DESeq2 to identify

differentially expressed genes and weighted gene correlation

network and differential modules to analyze variations

between different stages. Finally, they extracted important

genes using key drivers and identified potential agents for

DLBCL patients using gene-expression perturbations and the

CREEDS database. The results indicated that the

thistle1 module had high association with the clinical stage

of DLBCL. In addition, MOCOS, RAB6C, ACCSL, MMP1, and

RGS21 were highly linked to the occurrence and development

of DLBCL.

RNAs are a carrier of genetic information and have broad

roles in regulating gene expression and other biological

processes. Furthermore, the majority of noncoding RNAs are

highly associated with diseases including cancers and

nontumorigenic diseases. Thus, RNA data analysis contributes

to prioritizing previously unrecognized therapeutic targets. We

anticipate that this topic can provide clues for the diagnose and

prognosis of complex diseases especially cancers.
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Long non-coding RNAs (lncRNAs) are widely concerned because of their close
associations with many key biological activities. Though precise functions of most
lncRNAs are unknown, research works show that lncRNAs usually exert biological
function by interacting with the corresponding proteins. The experimental validation of
interactions between lncRNAs and proteins is costly and time-consuming. In this study,
we developed a weighted graph-regularized matrix factorization (LPI-WGRMF) method
to find unobserved lncRNA–protein interactions (LPIs) based on lncRNA similarity matrix,
protein similarity matrix, and known LPIs. We compared our proposed LPI-WGRMF
method with five classical LPI prediction methods, that is, LPBNI, LPI-IBNRA, LPIHN,
RWR, and collaborative filtering (CF). The results demonstrate that the LPI-WGRMF
method can produce high-accuracy performance, obtaining an AUC score of 0.9012
and AUPR of 0.7324. The case study showed that SFPQ, SNHG3, and PRPF31 may
associate with Q9NUL5, Q9NUL5, and Q9UKV8 with the highest linking probabilities
and need to further experimental validation.

Keywords: lncRNA–protein interaction, weighted graph-regularized matrix factorization, lncRNA similarity,
protein similarity, SFPQ, SNHG3, PRPF31

INTRODUCTION

Long non-coding RNAs (lncRNAs) are closely associated with many key biological processes, for
example, immune response, embryonic stem cell pluripotency, and cell cycle regulation (Chen et al.,
2016; Agirre et al., 2019; Gil and Ulitsky, 2020). lncRNAs regulate cellular activities to achieve their
biological function through interactions with proteins (Chen and Yan, 2013; Zhang et al., 2018b).
Therefore, finding potential lncRNA–protein interactions (LPIs) is important to uncover lncRNA-
related biological activities. Wet experiments found a few LPIs; however, experimental methods
are costly and time-consuming. Thus, computational methods are developed to identify possible
associations between lncRNAs and proteins (Bester et al., 2018; Chen et al., 2018).

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 69009610

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.690096
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.690096
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.690096&domain=pdf&date_stamp=2021-07-16
https://www.frontiersin.org/articles/10.3389/fgene.2021.690096/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-690096 July 12, 2021 Time: 17:23 # 2

Sun et al. Predicting lncRNA–Protein Interaction

LPI prediction methods can be roughly classified into two
groups: network-based methods and machine learning-based
methods. Network-based LPI identification methods integrated
various biological data and network propagation methods (Peng
et al., 2019). Li et al. (2015) used random walk with restart on the
constructed lncRNA–protein heterogeneous network to find LPI
candidates. Zhang et al. (2018a) developed a linear neighborhood
propagation method to score for lncRNA–protein pairs. Ge
et al. (2016), Zhao et al. (2018a), and Xie et al. (2019) applied
bipartite network projection recommended methods to compute
the association probabilities between lncRNAs and proteins.

Machine learning-based methods mainly contain matrix
factorization-based LPI prediction methods and ensemble
learning-based LPI prediction methods. Matrix factorization
methods have been widely applied to various association
prediction areas (Peng et al., 2020). Liu et al. (2017), Zhang T.
et al. (2018), Zhao et al. (2018a), and Shen et al. (2019)
used matrix factorization methods to predict possible LPIs.
Hu et al. (2018) and Zhang et al. (2018b) utilized ensemble
techniques and generated ensemble learning frameworks to
discover potential LPIs based on the constructed benchmark
datasets. Computational methods effectively revealed the possible
associations between lncRNAs and proteins. However, the
performance obtained by the above methods is limited and can
be further improved.

In this study, we first integrated lncRNA similarity, protein
similarity, known LPIs. We then developed a novel LPI
prediction method based on weighted graph-regularized matrix
factorization (LPI-WGRMF). LPI-WGRMF was compared
with five state-of-the-art LPI methods [LPBNI, LPI-IBNRA,
LPIHN, RWR, and collaborative filtering (CF)] to measure
the performance of the proposed LPI-WGRMF method. LPI-
WGRMF obtained the AUC value of 0.9057 and the AUPR value
of 0.7324. The results showed that LPI-WGRMF is a useful tool
for identifying LPIs. Case study analysis suggests that there are
possibly joint links between SFPQ and Q9NUL5, SNHG3 and
Q9NUL5, and PRPF31 and Q9UKV8.

MATERIALS AND METHODS

In this manuscript, we developed an LPI prediction model, LPI-
WGRMF. The method can be summarized to three steps. First,
experimentally validated LPIs from the NPInter 2.0 database
were collected. Second, lncRNA similarity matrix and protein
similarity matrix are computed based on the assumption that
lncRNAs tend to associate with similar proteins and vice
versa. Finally, lncRNA similarity, protein similarity, and LPI
matrix were integrated to the weight graph-regularized matrix
factorization model for computing the association scores for each
lncRNA–protein pair.

Materials
LPI Data
We obtained experimentally validated LPI dataset, which was
provided by Zhang et al. (2018a). The dataset contains 4158
LPIs between 990 lncRNAs and 27 proteins after preprocessing.

The LPI matrix between n lncRNAs and m proteins was
denoted as Yn×m.

lncRNA Similarity Matrix
The sequence and expression information of lncRNAs can
be downloaded from the NONCODE database. We computed
lncRNA similarity matrix by integrating the sequence similarity,
expression similarity, and interaction similarity to the similarity
kernel fusion technique.

Sequence statistical similarity
Each lncRNA was described a 20-dimensional vector based on
the methods provided by Zhang et al. (2018b). Based on the
assumption that each vector can be denoted by their k-nearest
neighbors, linear neighborhood similarity between two lncRNAs
li and lj can be computed and denoted as sl,0

(
i, j
)
.

Expression similarity
Suppose that the expression profile of the ith lncRNA can be
represented as ei and thus the expression similarity between two
lncRNAs li and lj can be defined as:

sl,1
(
i, j
)
=

{ 1
2
(
1+ ρi,j

)
i 6= j

0 i = j
(1)

where ρi,j is the Pearson’s correlation coefficient between two
expression profiles ei and ej and is defined as:

ρi,j =
cov(ei, ej)
σ(ei)σ(ej)

(2)

where cov() denotes the covariance and σ denotes the
standard deviation.

Interaction profile similarity
Suppose that the interaction profile of the ith lncRNA can be
represented as the ith row Yi. Of the LPI matrix Y , the interaction
profile similarity between two lncRNAs li and lj can be defined as:

sl,2
(
i, j
)
= exp

(
−

1
γl
||Yi. − Yj.||

2
)

(3)

where

γl =
1
n

n∑
i 1

||Yi.||
2 (4)

where || · || denotes the 2-norm of a matrix.

Protein Similarity Matrix
Sequence alignment similarity
The sequences of proteins were downloaded from the
SUPERFAMILY database. The alignment score of the uth
protein against the vth protein can be computed by Blast and be
denoted as bu,v. The sequence similarity between two proteins pu
and pv can be defined as:

sp,0 (u, v) =


bu,v
bu,u

u 6= v

0 u = v
(5)
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Sequence statistical feature similarity
Each protein can be represented as a 504-dimensional vector
based on the method provided by Zhou et al. (2020). Linear
neighborhood similarity between two proteins pu and pv can be
computed and denoted as sp,1.

Interaction profile similarity
Suppose that the interaction profile of the uth protein can be
represented as the uth column Y.u of the LPI matrix Y , the
interaction profile similarity between two proteins pu and pv can
be defined as:

sp,2 (u, v) = exp
(
−

1
γl
||Y.u − Y.v||

2
)

(6)

where

γl =
1
n

m∑
u=1

||Y.u||
2 (7)

Similarity Kernel Fusion
In the above sections, three lncRNA similarity measurements
and three protein similarity measurements were proposed. The
similarity kernel fusion method provided by Zhou et al. (2020)
was applied to integrate this similarity information to compute a
more comprehensive similarity.

First, the three lncRNA similarities were normalized as
follows:

θl,q(i, j) =
sl,q(i, j)∑n
t=1 sl,q(t, j)

,
(
q = 0, 1, 2

)
(8)

The normalized similarity matrix was denoted as:

2l,q = {θl,q
(
i, j
)
}n×n (9)

Second, for an lncRNA li and sl,q, the k most similar lncRNAs
were collected as a set Nl,q(i, k) and sl,q can be normalized in
constraint based on the neighborhood information:

ϕl,q
(
i, j
)
=

sl,q
(
i, j
)
Il,q,k(i, j)∑n

t=1 sl,q (i, t) Il,q,k(i, t)
(10)

where

Il,q,k
(
i, j
)
=

{
1 lj ∈ Nl,q(u, k)
0 lj /∈ Nl,q(u, k)

(11)

The neighborhood constrained normalized matrix was
denoted as:

φl,q = {ϕl,q
(
i, j
)
}n×n (12)

The above three normalized matrices were integrated based on
the following iterative process:

2l,q (λ+ 1) =
1
2
α

φl,q
∑
r 6=q

2l,r (λ)φT
l,q


+

1
2

(1− α)
∑
r 6=q

2l,r (0) (13)

where α was a weight parameter with 0 α 1, T was the
transpose of the matrix, λ represented the iterative parameter,
and 2l,r (0) 2l,r .

We computed the integrated similarity matrix after z rounds
of iteration:

2l =
1
3
(
2l,0 (z)+2l,1 (z)+2l,2 (z)

)
(14)

By considering data noise, we defined the following indicator
function based on the k most similar lncRNAs for each lncRNA:

wl,k =


1 Il,0,k

(
i, j
)
= Il,1,k

(
i, j
)
= Il,2,k

(
i, j
)
= 1

0 Il,0,k
(
i, j
)
= Il,1,k

(
i, j
)
= Il,2,k

(
i, j
)
= 0

0.5 otherwise
(15)

The final lncRNA similarity matrix can be denoted as follows:

Sl,k = {ϑl
(
i, j
)
wl,k

(
i, j
)
}n×n (16)

where ϑl
(
i, j
)

is the (i, j)th element in the matrix 2l.

Nearest Neighbor Information
Based on the graph regularization theory, similar lncRNAs should
tend to interact with similar proteins and vice versa in an
LPI network, and thus we first observe the nearest neighbor
information for lncRNAs and proteins. Given the lncRNA
similarity matrix Sl, we represented a p-nearest neighbor graph
N as

Nij =


1 j ∈ Np (i) & i ∈ Np(j)
0 j /∈ Np (i) & i /∈ Np(j)

0.5 otherwise
(17)

where Np(i) denotes the set of p nearest neighbors of lncRNA li. N
is applied to increase the sparsify of the lncRNA similarity matrix
Sl as

∀i, j Ŝlij = NijSlij (18)

Thus, the sparse similarity matrix of lncRNAs can
be computed. Similarity, the sparse similarity matrix of
protein can be done.

Low-Rank Approximation
Based on low-rank approximation idea, the LPI matrixY ∈ Rn=m

can be decomposed into two low-rank latent feature matrices A ∈
Rn=k (for lncRNAs) and B ∈ Rm=k (for proteins) by minimizing
the following low-rank approximation objective:

min
A,B
||Y − ABT ||2F (19)

where || · ||F denotes the Fronbenius norm and k is the rank of
matrices A and B, that is, the number of features in A and B.

We decomposed Y ∈ Rn=m into U ∈ Rn=k, Sk ∈ Rk=k, and
V∈ Rm=k so that USkVT is the closest k-rank approximation
to Y where U and V are matrices with orthonormal columns,
Sk is a diagonal matrix, and kmax = min(n,m). Thus, the
feature matrices A and B can be represented as A = US1/2

k and
B = VS1/2

k .
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Graph-Regularized Matrix Factorization
To boost generalization ability and prevent overfitting, we
minimize the following GRMF’s objective function by adding
Tikhonov and graph regularization terms to the above low-rank
approximation:

min
A,B
||Y − ABT ||2F + λf (||A||2F| + |B||

2
F)+ λl

n∑
i,r=1

Ŝlij||ai − ar||2

+λp

n∑
j,q=1

Ŝpij||bj − bq||2 (20)

where λf , λl, and λp are positive parameters, ai and bj are the
ith and jth rows of A and B, respectively, and n and m are the
numbers of lncRNAs and proteins, respectively. The first term is
used to make the model approximate the matrix Y . The second
term (Tikhonov regularization) minimizes the norms of A and
B. The third and final terms are lncRNA graph regularization
and protein graph regularization, respectively. The two terms are
applied to minimize the distance between feature vectors of two
neighboring lncRNAs or proteins. Based on graph regularization,
the above model can be redescribed as

min
A,B
||Y − ABT ||2F + λf (||A||2F| + |B||

2
F)+ λlTr(ATLlA)

+λpTr(BTLpB) (21)

where Tr(·) denotes the trace of matrix, Ll = Dl
− Ŝl and

Lp = Dp
− Ŝp represent the graph Laplacian terms for Ŝl and

Ŝp, respectively, and Dl and Dp are diagonal matrices where
Dl
ii =

∑
r Ŝ

l
ir and Dt

jj =
∑

q Ŝ
p
jq.

To improve LPI prediction performance, we normalize
graph Laplacians Ll and Lp by L̃l = (Dl)−1/2L̃l(Dl)−1/2 and
Lp = Dp

− Ŝp. Equation (4) can be rewritten as

min
A,B
||Y − ABT ||2F + λf (||A||2F| + |B||

2
F)+ λlTr(ATL̃lA)

+λpTr(BTL̃pB) (22)

Weighted Graph-Regularized Matrix
Factorization
To prevent unknown lncRNA–protein pairs from affecting the
performance of singular value decomposition produced by Y , we
add a weight matrix W into the objective function as follows:

min
A,B
||W � (Y − ABT)||2F + λf (||A||2F| + |B||

2
F)+ λlTr(ATL̃lA)

+λpTr(BTL̃pB) (23)

Based on the alternating least square method provided by
Ezzat et al. (2016), we can solve the model (6). Let ∂L

∂ai = 0 and
∂L
∂bj
= 0, run alternatingly the following two update rules until

convergence:
∀i = 1, 2, ...n,

ai =
( m∑

j=1

WijYijbj − λl(L̃l)i∗A
)( m∑

j=1

WijbTj bjλf Ik

)−1
(24)

∀j = 1, 2, ...m,

bi =
( n∑

i=1

WijYijai − λp(L̃p)j∗B
)( n∑

j=1

WijaTi aiλf Ik

)−1
(25)

where (L̃l)i∗ and (L̃p)j∗ are the ith and jth rows vectors of L̃l and
L̃p, respectively.

We can obtain A and B based on Eqs 7 and 8. Finally, the
interaction probability between the ith lncRNA and the jth protein
can be computed by

Y = ABT (26)

RESULTS

Experimental Settings
We conducted three different fivefold cross validation on
the training dataset to set LPI-WGRMF’s parameters,
that is, k (the rank of matrices A and B), p (the number
of nearest neighbors), λl, λd, and λt . We set the
parameters as k ∈ {50, 100}, p ∈ {1, 2, 3, 4, 5, 6, 7}, λf ∈{

2−2, 2−1, 20, 21}, λl ∈ {0, 10−4, 10−3, 10−2, 10−1
}, and λp ∈

{0, 10−4, 10−3, 10−2, 10−1
}. And we used grid search

and found that the best parameter combination is
k = 50, p = 7, λf = 0.5, λl = 0.3, and λ p = 0.005.

Evaluation Metrics
Precision, recall, f1 score, accuracy, AUC, and AUPR are
widely applied to measure the performance of machine learning
methods on association prediction. In this study, we used the
six measurements to evaluate the performance of our proposed
LPI-WGRMF. AUC is the area under the receiver operating
characteristics curve. AUPR is the area under precision–recall
curve. The other four criteria are defined as follows:

Precision =
TP

TP + FP
(27)

Recall =
TP

TP + FN
(28)

Accuracy =
TP + TN

TP + FP + TN + FN
(29)

f1 score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(30)

where TP and FP denote the predicted true and false number
of positive LPIs, respectively, and TN and FN denote the
predicted true and false number of negative LPIs, respectively.
The experiments were conducted 20 times. The average precision,
recall, accuracy, AUC, and AUPR values for 20 times of
experiments were computed as the final performance.
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Performance Comparison of
LPI-WGRMF and Other Methods
To measure the performance of our proposed LPI-WGRMF
method, we compared LPI-WGRMF and five state-of-the-art
methods, that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and CF.
LPBNI is a bipartite network inference method; LPIHN is a
heterogeneous network inference method based on random
walk with restart. The two models obtained better prediction
performance in the area of LPI identification and are state-of-
the-art LPI prediction methods. The experiments were conducted
20 times under fivefold cross validation. The results are shown
in Table 1. The best performance in each column (measurement
metric) is denoted in bold in Table 1.

Higher precision, recall, accuracy, and AUC denote better
performance. From Table 1, we can find that LPI-WGRMF
significantly outperformed other five methods in terms of
precision, recall, and AUC. Precision computed by LPI-
WGRMF was better 59.27, 45.32, 55.74, 61.17, and 67.44%
than LPBNI, LPI-IBNRA, LPIHN, RWR, and CF, respectively.
Recall computed by LPI-WGRMF was better 36.83, 34.83,
56.19, 44.91, and 53.86%, respectively. F1-score computed
by LPI-WGRMF was better 36.83, 30.37, 56.19, 44.91, and
53.86%, respectively. AUC of LPI-WGRMF was higher
5.39, 3.74, 6.69, 10.19, and 15.14%, respectively. AUPR of
LPI-WGRMF was higher 54.92, 40.59, 68.61, 61.40, and
67.82%, respectively.

Although accuracy computed by LPI-WGRMF was lower
than LPBNI, LPI-WGRMF obtained better precision, recall,
and AUC. More importantly, AUC and AUPR are more
representative measurement metrics compared with other
three evaluation metrics. Thus, AUC and AUPR can be
more effectively applied to evaluate the performance of LPI
prediction models. LPI-WGRMF is a powerful tool for LPI
identification because of its better precision, recall, AUC,
and AUPR. Figures 1, 2 demonstrate the AUC and AUPR
values obtained by the six LPI prediction methods. The
results show that LPI-WGRMF obtained the best AUC
value, thereby demonstrating LPI-WGRMF’s powerful LPI
prediction capability.

Case Study
We further conducted four case studies after confirming
the performance of LPI-WGRMF. The lncRNAs in the four
cases are Splicing Factor Proline and Glutamine Rich (SFPQ),

TABLE 1 | The performance of five LPI prediction methods.

Methods Precision Recall Accuracy F1-score AUC AUPR

LPBNI 0.3794 0.4037 0.9573 0.3876 0.8569 0.3302

LPI-IBNRA 0.5093 0.4165 0.9641 0.4521 0.8718 0.4351

LPIHN 0.4122 0.2800 0.9412 0.3324 0.8451 0.2299

RWR 0.3617 0.3521 0.9531 0.3543 0.8134 0.2827

CF 0.3033 0.2949 0.9488 0.2965 0.7686 0.2357

LPI-WGRMF 0.9314 0.6391 0.8906 0.6493 0.9057 0.7324

The best performance in each column (measurement metric) is denoted in bold.

FIGURE 1 | The AUC values of six LPI prediction methods.

FOrkhead boX protein D2-Adjacent Opposite Strand RNA 1
(FOXD2-AS1), Small Nucleolar RNA Host Gene 3 (SNHG3),
and Pre-mRNA-Processing Factor 31 (PRPF31), respectively.
We predicted possible LPIs based on lncRNA similarities,
protein similarities, known LPIs, and LPI-WGRMF. Table 2
lists the predicted top five proteins associated with the
above four lncRNAs.

SFPQ is a multifunctional nuclear protein participating in
a few cellular activities including RNA transport, apoptosis,
and DNA repair. SFPQ is densely associated with several
diseases including renal cell carcinoma, Xp11-associated tumor,
and dyslexia. More importantly, the expression levels of
SFPQ impact on the sensitivity of ovarian cancer cells to
PT-induced death (Gao et al., 2019; Pellarin et al., 2020).
Table 2 shows that SFPQ has joint connection with Q9NUL5
(ranked as 2). More importantly, the association between
SFPQ and Q9NUL5 is ranked as 1 in all other five LPI
identification methods. The fact suggests that SFPQ is possibly
to link with Q9NUL5.

FOXD2-AS1 is an RNA gene and is abnormally expressed in a
variety of malignant tumors. FOXD2-AS1 has close associations
with many diseases, for example, nasopharyngeal carcinoma,
esophageal cancer, bladder cancer, multiple pterygium syndrome,
escobar variant, and ulcerative colitis (Bao et al., 2018; Chen
et al., 2018; Su et al., 2018; Huang et al., 2020; Liu et al.,
2020). FOXD2-AS1 was predicted to be closely linking with
O00425, Q9NZI8, Q9Y6M1, and Q9NUL5, which was ranked
as 1, 2, 3, and 4. All these connections were ranked in the
top five associations among other five LPI prediction models.
Therefore, FOXD2-AS1 is associated with O00425, Q9NZI8,
Q9Y6M1, and Q9NUL5.

SNHG3 is a newly found lncRNA and was discovered as a
biomarker of malignant cancers, for example, ovarian cancer,
hepatocellular carcinoma, colorectal cancer, lung cancer, and
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FIGURE 2 | The AUPR values of six LPI prediction methods.

TABLE 2 | The top five proteins associated with the four lncRNAs.

lncRNAs Proteins Confirmed LPI-WGRMF LPBNI LPIIBNRA LPIHN RWR CF

MTND2P28 Q9NUL5 NO 1 1 4 2 7 2

O00425 YES 2 2 2 1 1 1

P26599 YES 3 8 10 11 4 11

Q07955 YES 4 16 17 18 5 15

Q9Y6M1 YES 5 3 1 3 2 3

RPI001_1001892 Q9NUL5 YES 1 1 1 1 1 1

Q07955 YES 2 9 13 15 8 13

P35637 YES 3 5 5 5 4 5

P26599 YES 4 15 17 16 9 16

Q9NZI8 YES 5 4 4 3 5 3

RPI001_1002045 Q9NUL5 YES 1 1 1 1 1 1

P35637 YES 2 4 2 5 4 5

Q01844 YES 3 6 6 6 6 6

P31483 YES 4 9 10 8 7 9

Q9Y6M1 YES 5 3 4 3 3 3

RP11-169K16.7 Q9UKV8 YES 1 1 1 1 2 1

Q9H9G7 YES 2 2 4 2 1 7

Q9UL18 YES 3 7 3 4 4 10

Q9HCK5 YES 4 6 2 3 3 9

Q9NUL5 YES 5 5 5 6 5 2

glioma (Zhang et al., 2016; Huang et al., 2017; Lu et al.,
2019; Liu and Tao, 2020). The results from case study analyses
showed that SNHG3 tends to link with Q9NUL5 (ranked

as 1) and has highest association scores with the protein
in LPNI, BPIHN, and CF. Thus, SNHG3 may be possibly
linked with Q9NUL5.
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PRPF31 is one retinitis pigmentosa-causing gene. Its genetic
variants have joint connections with variation in response to
metformin in patients with type 2 diabetes (Kiser et al., 2019).
In our predicted results, PRPF31 was found to be densely
associated with Q9UKV8 (ranked as 1). More importantly, the
association between PRPF31 and Q9UKV8 was identified to be
ranked as 1, 1, 2, and 1 in LPBNI, LPIHN, RWR, and CF,
respectively. PRPF31 obtained the highest association score with
Q9UKV8 in five models.

DISCUSSION AND CONCLUSION

In this manuscript, we developed a novel method LPI-
WGRMF for identifying possible LPIs, based on lncRNA
similarity, protein similarity, known LPIs, and weighted graph
regularization-based matrix factorization. We first integrated
the similarity information and known LPIs as the initial
resource. We then proposed a weighted graph-regularized matrix
factorization model to compute the association scores for
lncRNA–protein pairs.

LPI-WGRMF was compared with five classical LPI methods,
that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and CF. Cross-
validation experiments were conducted for 20 times. The
results showed the powerful performance of LPI-WGRMF. We
conducted four case study analyses after confirming the LPI-
WGRMF’s accuracy. The results suggest that there are possibly
close associations between SFPQ and Q9NUL5, SNHG3 and

Q9NUL5, and PRPF31 and Q9UKV8 and need to further
experimental validation.

In the future, other sources of LPI-related data may be
used to improve the prediction performance, for example, using
multiple kernels and designing a multiple kernel learning-based
algorithm to effectively integrate the abundant lncRNA and
protein information.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

FL and JY conceived, designed, and managed the study. XS
and LC designed the LPI-WGRMF method, ran LPI-WGRMF,
and wrote the original manuscript. JL and CX revised the
original draft. XS, JL, and CX discussed the proposed method
and gave further research. All authors read and approved the
final manuscript.

ACKNOWLEDGMENTS

We would like to thank all authors of the cited references.

REFERENCES
Agirre, X., Meydan, C., Jiang, Y., Garate, L., Doane, A. S., Li, Z., et al. (2019). Long

non-coding RNAs discriminate the stages and gene regulatory states of human
humoral immune response. Nat. Commun. 10:821.

Bester, A. C., Lee, J. D., Chavez, A., Lee, Y.-R., Nachmani, D., Vora, S., et al. (2018).
An integrated genome-wide crispra approach to functionalize lncrnas in drug
resistance. Cell 173, 649–664. doi: 10.1016/j.cell.2018.03.052

Bao, J., Zhou, C., Zhang, J., Mo, J., Ye, Q., He, J., et al. (2018). Upregulation of
the long noncoding RNA FOXD2-AS1 predicts poor prognosis in esophageal
squamous cell carcinoma. Cancer Biomark. 21, 527–533. doi: 10.3233/CBM-
170260

Chen, X., Sun, Y.-Z., Guan, N.-N., Qu, J., Huang, Z.-A., Zhu, Z.-X., et al. (2018).
Computational models for lncrna function prediction and functional similarity
calculation. Brief. Funct. Genom. 18, 58–82. doi: 10.1093/bfgp/ely031

Chen, X., Yan, C. C., Zhang, X., and You, Z.-H. (2016). Long non-coding RNAs and
complex diseases: from experimental results to computational models. Brief.
Bioinform. 18, 558–576. doi: 10.1093/bib/bbw060

Chen, X., and Yan, G. Y. (2013). Novel human lncRNA-disease association
inference based on lncRNA expression profiles. Bioinformatics 29, 2617–2624.
doi: 10.1093/bioinformatics/btt426

Ezzat, A., Zhao, P., Wu, M., Li, X. L., and Kwoh, C. K. (2016). Drug-target
interaction prediction with graph regularized matrix factorization. IEEE/ACM
Trans. Comput. Biol. Bioinform. 14, 646–656. doi: 10.1109/TCBB.2016.2530062

Gao, Z., Chen, M., Tian, X., Chen, L., Chen, L., Zheng, X., et al. (2019). A
novel human lncRNA SANT1 cis-regulates the expression of SLC47A2
by altering SFPQ/E2F1/HDAC1 binding to the promoter region in renal
cell carcinoma. RNA Biol. 16, 940–949. doi: 10.1080/15476286.2019.
1602436

Ge, M., Li, A., and Wang, M. (2016). A bipartite network-based method for
prediction of long non-coding rna-protein interactions. Genomics Proteomics
Bioinform. 14, 62–71. doi: 10.1016/j.gpb.2016.01.004

Gil, N., and Ulitsky, I. (2020). Regulation of gene expression by cis-acting long non-
coding RNAs. Nat. Rev. Genet. 21, 102–117. doi: 10.1038/s41576-019-0184-5

Hu, H., Zhang, L., Ai, H., Zhang, H., Fan, Y., Zhao, Q., et al. (2018). Hlpi- ensemble:
prediction of human lncrna-protein interactions based on ensemble strategy.
RNA Biol. 15, 797–806. doi: 10.1080/15476286.2018.1457935

Huang, W., Tian, Y., Dong, S., Cha, Y., Li, J., Guo, X., et al. (2017). The long non-
coding RNA SNHG3 functions as a competing endogenous RNA to promote
malignant development of colorectal cancer. Oncol. Rep. 38, 1402–1410. doi:
10.3892/or.2017.5837

Huang, Y., Yuan, K., Tang, M., Yue, J. M., Bao, L. J., Wu, S., et al. (2020). Melatonin
inhibiting the survival of human gastric cancer cells under ER stress involving
autophagy and Ras-Raf-MAPK signalling. J. Cell. Mol. Med. 2020, 1480–1492.
doi: 10.1111/jcmm.16237

Kiser, K., Webb-Jones, K. D., Bowne, S. J., Sullivan, L. S., Daiger, S. P., and Birch,
D. G. (2019). Time course of disease progression of PRPF31-mediated retinitis
pigmentosa. Am. J. Ophthalmol. 200, 76–84.

Li, A., Ge, M., Zhang, Y., Peng, C., and Wang, M. (2015). Predicting long
noncoding rna and protein interactions using heterogeneous network model.
BioMed. Res. Int. 2015:671950. doi: 10.1155/2015/671950

Liu, H., Ren, G., Chen, H., Liu, Q., Yang, Y., Zhao, Q., et al. (2020). Predicting
lncRNA–miRNA interactions based on logistic matrix factorization with
neighborhood regularized. Knowl. Based Syst. 191:105261. doi: 10.1016/j.
knosys.2019.105261

Liu, H., Ren, G., Hu, H., Zhang, L., Ai, H., Zhang, W., et al. (2017). Lpi-nrlmf:
lncrna-protein interaction prediction by neighborhood regularized logistic
matrix factorization. Oncotarget 8:103975. doi: 10.18632/oncotarget.21934

Liu, Z., and Tao, H. (2020). Small nucleolar RNA host gene 3 facilitates cell
proliferation and migration in oral squamous cell carcinoma via targeting
nuclear transcription factor Y subunit gamma. J. Cell. Biochem. 121, 2150–2158.

Lu, W., Yu, J., Shi, F., Zhang, J., Huang, R., Yin, S., et al. (2019). The long non-
coding RNA Snhg3 is essential for mouse embryonic stem cell self-renewal and
pluripotency. Stem Cell Res. Ther. 10:157. doi: 10.1002/jcb.29421

Frontiers in Genetics | www.frontiersin.org 7 July 2021 | Volume 12 | Article 69009616

https://doi.org/10.1016/j.cell.2018.03.052
https://doi.org/10.3233/CBM-170260
https://doi.org/10.3233/CBM-170260
https://doi.org/10.1093/bfgp/ely031
https://doi.org/10.1093/bib/bbw060
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1109/TCBB.2016.2530062
https://doi.org/10.1080/15476286.2019.1602436
https://doi.org/10.1080/15476286.2019.1602436
https://doi.org/10.1016/j.gpb.2016.01.004
https://doi.org/10.1038/s41576-019-0184-5
https://doi.org/10.1080/15476286.2018.1457935
https://doi.org/10.3892/or.2017.5837
https://doi.org/10.3892/or.2017.5837
https://doi.org/10.1111/jcmm.16237
https://doi.org/10.1155/2015/671950
https://doi.org/10.1016/j.knosys.2019.105261
https://doi.org/10.1016/j.knosys.2019.105261
https://doi.org/10.18632/oncotarget.21934
https://doi.org/10.1002/jcb.29421
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-690096 July 12, 2021 Time: 17:23 # 8

Sun et al. Predicting lncRNA–Protein Interaction

Pellarin, I., Dall’Acqua, A., Gambelli, A., Pellizzari, I., D’Andrea, S., Sonego,
M., et al. (2020). Splicing factor proline-and glutamine-rich (SFPQ) protein
regulates platinum response in ovarian cancer-modulating SRSF2 activity.
Oncogene 39, 4390–4403. doi: 10.1038/s41388-020-1292-6

Peng, L., Liu, F., Yang, J., Liu, X., Meng, Y., Deng, X., et al. (2019). Probing lncRNA-
protein interactions: data repositories, models, and algorithms. Front. Genet.
10:1346. doi: 10.3389/fgene.2019.01346

Peng, L., Shen, L., Liao, L., Liu, G., and Zhou, L. (2020). RNMFMDA: a microbe-
disease association identification method based on reliable negative sample
selection and logistic matrix factorization with neighborhood regularization.
Front. Microbiol. 11:592430. doi: 10.3389/fmicb.2020.592430

Su, F., He, W., Chen, C., Liu, M., Liu, H., Xue, F., et al. (2018). The long non-
coding RNA FOXD2-AS1 promotes bladder cancer progression and recurrence
through a positive feedback loop with Akt and E2F1. Cell Death Dis. 9, 1–17.
doi: 10.1038/s41419-018-0275-9

Shen, C., Ding, Y., Tang, J., Jiang, L., and Guo, F. (2019). Lpi-ktaslp: prediction of
lncrna-protein interaction by semi-supervised link learning with multivariate
information. IEEE Access 7, 13486–13496. doi: 10.1109/ACCESS.2019.2894225

Xie, G., Wu, C., Sun, Y., Fan, Z., and Liu, J. (2019). Lpi-ibnra: Long non-
coding rna- protein interaction prediction based on improved bipartite network
recommender algorithm. Front. Genet. 10:343. doi: 10.3389/fgene.2019.00343

Zhang, T., Cao, C., Wu, D., and Liu, L. (2016). SNHG3 correlates with malignant
status and poor prognosis in hepatocellular carcinoma. Tumor Biol. 37, 2379–
2385. doi: 10.1007/s13277-015-4052-4

Zhang, T., Wang, M., Xi, J., and Li, A. (2018). Lpgnmf: Predicting long non-
coding rna and protein interaction using graph regularized nonnegative matrix
factorization. IEEE/ACM Trans. Comput. Biol. Bioinform 17, 189–197.

Zhang, W., Qu, Q., Zhang, Y., and Wang, W. (2018a). The linear neighborhood
propagation method for predicting long non-coding rna-protein interactions.
Neurocomputing 273, 526–534. doi: 10.1016/j.jpdc.2017.08.009

Zhang, W., Yue, X., Tang, G., Wu, W., Huang, F., and Zhang, X. (2018b). Sfpel-
lpi: Sequence-based feature projection ensemble learning for predicting lncrna-
protein interactions. PLoS Comput. Biol. 14:e1006616. doi: 10.1371/journal.
pcbi.1006616

Zhao, Q., Yu, H., Ming, Z., Hu, H., Ren, G., and Liu, H. (2018a).
The bipartite network projection-recommended algorithm for predicting
long non-coding rna-protein interactions. Mol. Ther. Nucleic Acids 13,
464–471.

Zhao, Q., Zhang, Y., Hu, H., Ren, G., Zhang, W., and Liu, H. (2018b).
Irwnrlpi: integrating random walk and neighborhood regularized logistic
matrix factorization for lncrna-protein interaction prediction. Front. Genet.
9:239. doi: 10.3389/fgene.2018.00239

Zhou, Y. K., Hu, J., Shen, Z. A., Zhang, W. Y., and Du, P. F. (2020).
LPI-SKF: predicting lncRNA-protein interactions using similarity
kernel fusions. Front. Genet. 11:615144. doi: 10.3389/fgene.2020.6
15144

Conflict of Interest: JL and CX were employed by the company Geneis Beijing
Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Sun, Cheng, Liu, Xie, Yang and Li. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 8 July 2021 | Volume 12 | Article 69009617

https://doi.org/10.1038/s41388-020-1292-6
https://doi.org/10.3389/fgene.2019.01346
https://doi.org/10.3389/fmicb.2020.592430
https://doi.org/10.1038/s41419-018-0275-9
https://doi.org/10.1109/ACCESS.2019.2894225
https://doi.org/10.3389/fgene.2019.00343
https://doi.org/10.1007/s13277-015-4052-4
https://doi.org/10.1016/j.jpdc.2017.08.009
https://doi.org/10.1371/journal.pcbi.1006616
https://doi.org/10.1371/journal.pcbi.1006616
https://doi.org/10.3389/fgene.2018.00239
https://doi.org/10.3389/fgene.2020.615144
https://doi.org/10.3389/fgene.2020.615144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-720327 August 4, 2021 Time: 13:51 # 1

METHODS
published: 10 August 2021

doi: 10.3389/fgene.2021.720327

Edited by:
Lihong Peng,

Hunan University of Technology,
China

Reviewed by:
Wen Zhang,

Huazhong Agricultural University,
China

Yi Xiong,
Shanghai Jiao Tong University, China

*Correspondence:
Jia Qu

TB17060015B4@cumt.edu.cn
Zhong Ming

mingz@szu.edu.cn

Specialty section:
This article was submitted to

RNA,
a section of the journal

Frontiers in Genetics

Received: 04 June 2021
Accepted: 13 July 2021

Published: 10 August 2021

Citation:
Qu J, Wang C-C, Cai S-B,

Zhao W-D, Cheng X-L and Ming Z
(2021) Biased Random Walk With

Restart on Multilayer Heterogeneous
Networks for MiRNA–Disease

Association Prediction.
Front. Genet. 12:720327.

doi: 10.3389/fgene.2021.720327

Biased Random Walk With Restart
on Multilayer Heterogeneous
Networks for MiRNA–Disease
Association Prediction
Jia Qu1* , Chun-Chun Wang2, Shu-Bin Cai3, Wen-Di Zhao1, Xiao-Long Cheng1 and
Zhong Ming3*

1 School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou,
China, 2 Information and Control Engineering, China University of Mining and Technology, Xuzhou, China, 3 College
of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Numerous experiments have proved that microRNAs (miRNAs) could be used as
diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting
the unobserved associations between miRNAs and diseases is extremely significant
for the medical field. Here, based on heterogeneous networks built on the information
of known miRNA–disease associations, miRNA function similarity, disease semantic
similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases,
we developed a computing model of biased random walk with restart on multilayer
heterogeneous networks for miRNA–disease association prediction (BRWRMHMDA)
through enforcing degree-based biased random walk with restart (BRWR). Assessment
results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-
validation (LOOCV), which proved the calculation algorithm’s good performance.
Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal
neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast
neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of
the case study all showed that the proposed model has good and stable performance.

Keywords: microRNA, disease, association prediction, degree, biased random walk with restart

INTRODUCTION

MicroRNA (miRNA) is a noncoding single-stranded RNA with a length of about 22 nucleotides
and pervasive in both animals and plants (Axtell et al., 2011). MiRNAs play their regulator role
through binding to imperfect complementary sites within the 3′ untranslated regions (UTRs)
of their messenger RNA (mRNA) targets (Reinhart et al., 2000; Ambros, 2004; Bartel, 2009).
Nowadays, a large number of experimental studies have proved that miRNAs regulate multiple
biological activities and per miRNA can regulate hundreds of gene targets (Lee et al., 1993;
Pasquinelli and Ruvkun, 2002; Brennecke et al., 2003; Lin et al., 2003; Cheng et al., 2005; Karp
and Ambros, 2005; Miska, 2005; Pillai et al., 2005; Cui et al., 2006; Lu et al., 2008; Bartel, 2009;
Alshalalfa and Alhajj, 2013). Moreover, miRNAs have potential influences on almost all genetic
pathways, and the upregulation and downregulation of miRNA expression in the human body
are correlated to various complex diseases (Liu et al., 2008). It indicates that miRNAs have close
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associations with many complex diseases, and miRNAs may
be used as a tumor suppressor gene to treat cancer in clinical
medicine (Cheng et al., 2005). For example, the abnormal
expression of miR-21 could be conducive to the growth and
spread of human hepatocellular cancer (HCC) via the regulation
of phosphatase and tensin homolog (PTEN) expression and
PTEN-dependent pathways (Meng et al., 2007). MiR-10b is
expressed in metastatic breast cancer cells highly and has a
positive regulatory effect on cell migration and invasion (Ma
et al., 2007). Research further suggested that the overexpression
of miR-17-92 in lung cancer could enhance cell proliferation
(Hayashita et al., 2005). Moreover, the miRNA family of let-
7 was reported to downregulate in lung cancers and regulate
an oncogene of RAS, so the inhibition of let-7 may help
in the treatment of the cancer (Johnson et al., 2005). Also,
through targeting an antiapoptotic factor of B-cell lymphoma-2
(BCL2), miR-15 and miRNA-16 were proved to downregulate in
chronic lymphocytic leukemias and induce apoptosis (Cimmino
et al., 2005). Certainly, identification of potential miRNA–disease
associations has become a very significant research goal in
the field of biomedical research. Predicting potential miRNAs
related to diseases would promote people’s understanding of the
pathogenesis of diseases at the molecular level and benefit for the
diagnosis, treatment, and prevention of diseases. Recently, some
reliable databases have been developed to store experimental
verified miRNA–disease associations, such as HMDD v2.0 (Li
et al., 2014), miR2Disease (Jiang et al., 2009), and dbDEMC
(Yang et al., 2010). Using traditional experiment approach
to identify potential miRNA-disease associations is usually
complex, time consuming and expensive. It is an urgent
need for scholars to develop calculation models to predict new
miRNA–disease associations. We expect that miRNA–disease
pairs with high scores could be selected for experimental
verification, which would significantly reduce the time and cost
of biological experiments.

Great progress has been made in developing calculation
models for the potential miRNA–disease association prediction in
recent years. These prediction models are usually proposed by the
consideration of complex network-based or machine learning-
based methods (Chen et al., 2019a). For the experimentally
confirmed miRNA–disease associations that have been collected,
a lot of calculation models were put forward for the identification
of new miRNA–disease associations on the basis of the hypothesis
that functionally similar miRNAs are often associated with
phenotypically similar diseases (Perez-Iratxeta et al., 2002;
Aerts et al., 2006). In 2013, human disease-related miRNA
prediction (HDMP), an effective prediction algorithm based
on weighted k most similar neighbors, was proposed by Xuan
et al. (2015). In the model, functional similarity between each
miRNA pair was calculated by combining the information of
their related disease terms and disease phenotype similarity.
Then the possibility of unobserved miRNA–disease pairs was
predicted via the sum of subscores of miRNA’s k neighbor.
The subscore for a neighbor of a miRNA can be calculated
based on the weight of the neighbor and the functional
similarity between the neighbor and the miRNA. In 2014, based
on known miRNA–disease associations, disease similarity, and

miRNA similarity, a global method of regularized least squares
for miRNA–disease association (RLSMDA) was introduced by
Chen and Yan (2014) to uncover novel associations between
miRNAs and diseases under the framework of a semisupervised
classifier. In 2015, based on the constructed miRNA functional
network, another new model of miRNAs associated with diseases
prediction (MIDP) was developed by Xuan et al. (2015) to
prioritize candidate miRNAs for investigated diseases with
known related miRNAs. In the model, for the marked nodes
and unmarked nodes, transition matrices are different, and
the transition weight of marked nodes was higher than that
of unmarked nodes. Moreover, due to the fact that MIDP
could not predict potential miRNAs (diseases) associated with
new diseases (miRNAs) without any known related miRNAs
(diseases), an extension approach of MIDPE was also proposed
to predict potential miRNAs (diseases) associated with new
diseases (miRNAs). Chen et al. (2017) published a model of
ranking-based KNN for miRNA–disease association prediction
(RKNNMDA), in which the KNN approach was employed
to gain the k-nearest-neighbors of each miRNA and disease
according to the collected data information. Then, based on
the Hamming loss of per disease pair and miRNA pair, a
support vector machine (SVM) ranking model was introduced
to achieve scores of potential miRNA–disease associations.
Furthermore, Chen and Huang (2017) presented a computational
model named Laplacian regularized sparse subspace learning
for miRNA–disease association prediction (LRSSLMDA), which
projected miRNAs’ feature and diseases’ feature into a common
subspace. Then, the local structures of the training data were
obtained based on Laplacian regularization, and the final
predicted scores would be obtained by carrying out the L1-
norm constraint. Chen et al. (2018a) put forward a machine
learning-based method of extreme gradient boosting machine
for miRNA–disease association prediction (EGBMMDA), in
which a feature vector for the miRNA–disease pair was
established by merging three matrices of miRNA functional
similarity, disease semantic similarity, and known miRNA–
disease associations. Then, based on the characteristics and the
gradient boosting framework, a regression tree was applied to
obtained scores of potential miRNA–disease associations. In
the same year, a computational model of ensemble learning
and link prediction for miRNA–disease association prediction
(ELLPMDA) was brought forward by Chen et al. (2018f); they
inferred new miRNA–disease associations via the weight-based
integration of three classified results gained from common
neighbors, Jaccard index and Katz index. Also, from the angle
of reducing the noise of the original collected known miRNA–
disease association information, Chen et al. (2018e) further
brought up a calculation method of matrix decomposition and
heterogeneous graph inference for miRNA–disease association
prediction (MDHGI). The sparse learning method was carried
out firstly on the initial association information to reduce
noise. Then, an iterative formula for propagating miRNA
and disease information was established based on the built
heterogeneous network to predict potential miRNA–disease
associations. Besides, Chen et al. (2018c) presented a novel
method of inductive matrix completion for miRNA–disease
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association prediction (IMCMDA) through enforcing a low-rank
inductive matrix completion approach on the collected datasets.
Chen et al. (2018d) also developed a prediction model of bipartite
network projection for miRNA–disease association prediction
(BNPMDA). In the model, the bias ratings for miRNAs
and diseases were built based on agglomerative hierarchical
clustering. Then, through assigning transfer weights to resource
allocation links between miRNAs and diseases according to the
bias ratings, the bipartite network recommendation algorithm
was implemented to predict the potential miRNA–disease
associations. Chen et al. (2019b) put forward a machine learning-
based method named ensemble of decision tree-based miRNA–
disease association prediction (EDTMDA), which identifies
potential disease–miRNA association by implementing ensemble
learning based on decision trees (DTs) and dimensionality
reduction based on principal component analysis (PCA).
In recent years, Chen et al. (2021) further proposed the
neighborhood constraint matrix completion for miRNA–disease
association prediction (NCMCMDA), which combined the
neighborhood constraint with matrix completion. The prediction
problem in NCMCMDA can be transformed into an optimization
problem, and a fast iterative shrinkage–thresholding algorithm
was implemented to solve it.

Some scholars have also introduced some calculation models
on the basis of various types of association networks, rather than
limited to the miRNA–disease network. In 2014, through the
analysis of miRNA–protein associations and protein–disease
associations, Mork et al. (2014) developed a scoring scheme
for the potential miRNA–disease association prediction. In
2016, through taking advantage of miRNA–disease associations,
miRNA–neighbor associations, miRNA–target associations,
miRNA–word associations, and miRNA–family associations,
Pasquier and Gardes (2016) expressed the distribution
information of miRNAs and diseases in a high-dimensional
vector space and then inferred association scores between
miRNAs and diseases according to their vector similarity. In
2017, based on the phenome–miRNA network constructed
by known miRNA–disease associations, miRNA functional
similarity, disease semantic similarity, and phenotypic similarity,
a combinatorial prioritization algorithm was proposed by Yu
et al. (2017) to predict potential miRNA–disease associations. In
2018, through constructing a three-layer heterogeneous network
based on the integration of known miRNA–lncRNA interactions,
miRNA–disease associations, miRNA similarity, disease
similarity, and lncRNA similarity, Chen et al. (2018b) designed a
method of triple-layer heterogeneous network-based inference
for miRNA–disease association prediction (TLHNMDA) by
establishing two information spreading iterative formulas.

In this manuscript, based on a multilayer heterogeneous
network established by known miRNA–disease associations,
disease semantic similarity, miRNA functional similarity, and
Gaussian interaction profile kernel similarity for diseases and
miRNAs, we put forward a calculating model of biased random
walk with restart on multilayer heterogeneous networks for
miRNA–disease association prediction (BRWRMHMDA).
In the model, degree-based biased random walk with
restart (BRWR) was implemented to predict potential

miRNA–disease associations on the basis of the constructed
multilayer heterogeneous network. For evaluating the property
of the introduced calculation model, local leave-one-out
cross-validation (LOOCV) was presented and the outcome
showed that BRWRMHMDA possesses an AUC of 0.8310
in local LOOCV. In the case study, we not only employed
BRWRMHMDA to infer candidate miRNAs for esophageal
neoplasms in the light of known miRNA–disease associations
extracted from HMDD v2.0 (Li et al., 2014) but also implemented
the model to predict breast neoplasms-associated miRNAs on
the basis of known miRNA–disease associations collected from
HMDAD v1.0. From the result of LOOCV and the case study,
we can be sure that BRWRMHMDA has better prediction
ability, and BRWRMHMDA can be used to predict potential
miRNA–disease associations.

MATERIALS AND METHODS

Human miRNA–Disease Association
The dataset of 5,430 experimentally verified associations between
383 diseases and 495 miRNAs came from the HMDD v2.0
database (Li et al., 2014). We used the variables nm and nd
to refer to the number of diseases and miRNAs in the dataset,
respectively. Afterward, an adjacency matrix A was established
to indicate known miRNA–disease associations. If miRNA m(i)
is related to d(j), the value of entity A(i, j) would equal to 1,
otherwise 0.

A(i, j) =
{

1, if miRNAm(j) is related to disease d(i)
0, otherwise

(1)

MiRNA Functional Similarity
Since functionally similar miRNAs are more likely to be
associated with phenotypically similar diseases on the
basis of the previous study (Wang et al., 2010), we got
the information of miRNA functional similarity from
http://www.cuilab.cn/files/images/cuilab/misim.zip. After that,
we constructed a miRNA functional similarity matrix FS with
the row and column of nm. It is remarkable that the value of
entity FS(i, j) refers to the similarity score between miRNA m(i)
and miRNA m(j).

Disease Semantic Similarity Model 1
Each disease can be described as a directed acyclic graph (DAG)
according to previous literature (Wang et al., 2010). For example,
disease D can be described as DAG = (D,T(D),E(D)), where
T(D) refers to all disease nodes, and E(D) indicates all edges that
connect disease nodes based on DAG(D). Inspired by previous
work (Xuan et al., 2013), the contribution value of disease d in
DAG(D) to the semantic value of disease D can be defined as
follows:{

DD1(d) = 1 if d = D
DD1(d) = max

{
1∗DD1(d′)|d′ ∈ children of d

}
if d 6= D

(2)
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where 1 is the semantic contribution decay factor, and the
semantic value of disease D can be described as follows:

DV1(D) =
∑

d∈T(D)

DD1(d) (3)

Considering that two diseases would have greater similarity if
they share larger part of their DAGs, we defined the semantic
similarity between disease d(i) and d(j) in disease semantic
similarity model 1 as follows:

SS1(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(Dd(i)1(t)+ Dd(j)1(t))

DV1(d(i))+ DV1(d(j))
(4)

Disease Semantic Similarity Model 2
Also inspired by previous work (Xuan et al., 2013), we also
introduced disease semantic similarity model 2. For two diseases
in the same layer of DAG(D), if the first disease occurs more
frequently in DAG(D) than the second disease, the second disease
would be regarded to be more specific to disease D. By the
consideration of the idea that the contribution of different disease
terms in the same layer of DAG(D) may be the difference, the
contribution of disease d in DAG(D) to the semantic value of
disease D could be described as follows:

DD2(d) = − log[
the number of DAGs including d

the number of disease
] (5)

The value of semantic similarity in disease semantic similarity
model 2 between disease d(i) and d(j) could be calculated as
follows:

SS2(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(Dd(i)2(t)+ Dd(j)2(t))

DV2(d(i))+ DV2(d(j))
(6)

where
DV2(D) =

∑
d∈T(D)

DD2(d) (7)

Gaussian Interaction Profile Kernel
Similarity
The calculation of Gaussian interaction profile kernel similarity
for diseases and miRNAs depends on the topologic information
of known miRNA–disease associations (van Laarhoven et al.,
2011). For diseases, we used a binary vector IP(d(u)) (i.e., the
uth row of the adjacency matrix A) to indicate the interaction
profiles of disease d(u). Accordingly, the Gaussian interaction
profile kernel similarity between diseases d(u) and d(v) can be
described.

KD(d(u), d(v)) = exp(−γd
∣∣∣∣IP(d(u))− IP(d(v))

∣∣∣∣2) (8)

The parameter γd was used to regulate the kernel bandwidth and
could be acquired via the normalization of a new bandwidth γ

′

d
by the average number of associated miRNAs for each disease.

γd = γ
′

d/

 1
nd

nd∑
u=1

∣∣∣∣IP(d(u))
∣∣∣∣2 (9)

For miRNAs, the binary vector IP(m(i)) (i.e., the ith column
of the adjacency matrix A) was introduced to indicate the
interaction profiles of miRNA m(i). At last, the Gaussian
interaction profile kernel similarity between miRNA m(i) and
m(j) can be constructed as follows:

KM(m(i),m(j)) = exp(−γm
∣∣∣∣IP(m(i))− IP(m(j))

∣∣∣∣2) (10)

γm = γ
′

m/

(
1
nm

nm∑
i=1

||IP(m(i))||2
)

(11)

Integrated Similarity for miRNAs and
Diseases
Based on past work (Chen et al., 2016), integrated similarity
for a pair of diseases (d(u) and d(v)) can be defined via
the combination of disease semantic similarity and Gaussian
interaction profile kernel similarity for diseases. The formula of
integrated similarity for diseases is displayed as follows:

SD(d(u), d(v)) =
SS1(d(u)+ d(v))+ SS2(d(u), d(v))

2
d(u) and d(v) has

semantic similarity
KD(m(u),m(v)) otherwise

(12)
Also, the integrated similarity for a pair of miRNAs (m(i) and
m(j)) could be formed by taking miRNA functional similarity
with Gaussian interaction profile kernel similarity for miRNA
into account (Chen et al., 2016).

SM(m(i),m(j)) ={
FS(m(i),m(j)) m(i) and m(j) has functional similarity
KM(m(i),m(j)) otherwise

(13)

BRWRMHMDA
Via the integration of known miRNA–disease associations,
disease semantic similarity, miRNA functional similarity, and
Gaussian interaction profile kernel similarity for miRNAs and
diseases, we put forward a calculating model of BRWRMHMDA
based on the degree for the identification of potential miRNA–
disease associations by enforcing BRWR on a constructed
multilayer heterogeneous network according to previous work
(Bonaventura et al., 2014) (see Figure 1).

In the model, based on the constructed multisource dataset,
we used Wdd, Wmm, Wdm to represent the initial matrix
of integrated disease similarity, integrated miRNA similarity,
and known miRNA–disease associations, respectively. Then, the
multilayer heterogeneous network was constructed and described

as W=
[
Wdd Wdm
Wmd Wmm

]
. In BRWR, if we predicted potential

miRNAs for disease d(i), the disease d(i) is the seed node in the
disease network. If the miRNA m(j) is associated with disease
d(i), miRNA m(j) is the seed node for disease d(i) in the miRNA
network. If the miRNA m(j) has no known association with
disease d(i), miRNA m(j) is the candidate node for disease d(i) in
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FIGURE 1 | Comparing to the other calculating algorithms (ELLPMDA, IMCMDA, EGBMMDA, MDHGI, TLHNMDA, MaxFlow, RLSMDA, HDMP, WBSMDA, MirAI,
and MIDP) in terms of AUCs, BRWRMHMDA gained a better AUC value of 0.8310. It indicates that the proposed model is more suitable for the miRNA–disease
association prediction.

the miRNA network. For predicting potential miRNAs for disease
d(i), the original probability vector v0 of the miRNA network is
computed through assigning equal probability to the seed nodes
in the miRNA network with a total equal to 1. In the disease
network, the probability value of 1 was assigned to d(i), and the
probability value of 0 was assigned to other diseases to form u0,

where the initial seed node probability P0
=

[
α∗u0

(1− α)∗v0

]
; α and

(1− α) refer to the weight of the disease network and the miRNA
network, respectively.

Seed nodes at each step move to their immediate neighbors
with a probability (1− δ) or return to the seed nodes with a
restart probability δ (δ ∈ (0, 1)). P0 was the initial probability
vector, and Pt+1 was a probability vector of node at time t + 1,
which could be defined as follows:

Pt+1
= (1− δ)MPt + δP0 (14)

where matrix M=
[
Mdd Mdm
Mmd Mmm

]
is the transition matrix of our

established network. In random walk with restart (RWR), the
transition probability M(i, j) of a walker from node i to node j
can be described as follows:

M(i, j) =
W(i, j)∑
l
W(i, l)

(15)

where W(i, j) is the similarity between node i and node j. In
this model, BRWR of degree biased random walk was proposed
to identify potential miRNA–disease associations. Biases were
usually considered to be related to graph topological properties.
For example, a walk at node xi selects it neighbors of xj
with a probability fj = f (xj) relying on the node property xj.
Usually, the node property can be described as a function of
the vertex properties (the network degree, closeness centrality,
etc.) or the edge properties (multiplicity or shortest path), or the
combination of them (Gomez-Gardenes and Latora, 2008). There
are other related bias choice of maximal entropy (Burda et al.,
2009). Thus, the transition probability of a walker from i to j in
BRWR can be defined as

M(i, j) =
W(i, j)fj∑
l
W(i, l)fl

(16)

Therefore, in the disease similarity network, the transition
probability from vertex di to dj can be defined as

Mdd(i, j) = p(dj|di) ={
Wdd(i, j)fj/

∑
jWdd(i, j)fj if

∑
jWdm(i, j) = 0

(1− λ)Wdd(i, j)fj/
∑

jWdd(i, j)fj otherwise
(17)
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In the miRNA similarity network, the transition probability from
mi tomj can be defined as

Mmm(i, j) = p(mj|mi) ={
Wmm(i, j)fj/

∑
jWmm(i, j)fj if

∑
jWdm(j, i) = 0

(1− λ)Wmm(i, j)fj/
∑

jWmm(i, j)fj otherwise
(18)

In the miRNA–disease association network, the transition
probability from vertex di to mj can be defined as

Mdm(i, j) = p(mj|di) ={
λWdm(i, j)fj/

∑
jWdm(i, j)fj if

∑
jWdm(i, j) 6= 0

0 otherwise
(19)

The transition probability from vertex mi to dj can be defined as

Mmd(i, j) = p(dj|mi) ={
λWdm(j, i)fj/

∑
jWdm(j, i)fj if

∑
jWdm(j, i) 6= 0

0 otherwise
(20)

In this paper, we focus on the case of BRWR by considering the
degree nodes. Therefore, fj = f (xj) in the model is the degree of
node xj in the transition probability. The degree fi of a disease
node i is defined by computing the number of edges involved in
the disease node. Therefore, in the disease similarity network, the
degree of disease node j can be defined as fj =

∑
iWdd(i, j). In the

miRNA similarity network, the degree of miRNA node j can be
defined as fj =

∑
iWmm(i, j). In the transition probability matrix

of the miRNA–disease association network, the degree of miRNA
mj can be described as fj =

∑
iWdm(i, j). Also, in the transition

probability matrix of the miRNA–disease association network,
the degree of disease dj can be described as fj =

∑
iWdm(j, i).

Therefore, based on BRWR of degree nodes, the potential
miRNA–disease associations would be obtained.

RESULTS

Performance Evaluation
Since BRWR is a local calculating method, it cannot infer
candidate miRNAs for all diseases simultaneously. Therefore,
in order to analyze the performance of BRWRMHMDA,
the proposed method has been extensively compared with
some classic algorithms (ELLPMDA, IMCMDA, EGBMMDA,
MDHGI, TLHNMDA, MaxFlow, RLSMDA, HDMP, WBSMDA,
MirAI, and MIDP) based on the 5,430 known miRNA–disease
associations from the HMDD v2.0 database (Li et al., 2014) via
local LOOCV. In local LOOCV, each known miRNA–disease
association was considered as a test sample in turn, and the rest of
5,429 known associations were treated as training samples. After
enforcing BRWRMHMDA, the score of the test sample would be
sorted with the scores of all unobserved pairs between miRNAs
and the investigated disease. The proposed approach would be
regarded as reliable if the test sample’s ranking is higher than a
set threshold. Then a receiver operating characteristics (ROC)
curve with the true positive rate (TPR, sensitivity) versus the

false positive rate (FPR, 1-specificity) at various thresholds would
be drawn. Sensitivity refers to the percentage of test samples
ranked higher than the given threshold, and specificity refers to
the percentage of candidates ranked lower than the threshold.
Finally, the area under the ROC curve (AUC) was calculated
to accurately evaluate the prediction ability of BRWRMHMDA.
The value of the AUC is between 0 and 1, and the higher the
value of the AUC, the better the prediction performance of
the algorithm. If the value of the AUC is 0.5, the prediction
performance of BRWRMHMDA is random. The final assessment
results showed that BRWRMHMDA has better prediction
performance with an AUC of 0.8310 than those of the other
server classical algorithms of ELLPMDA (0.8181), IMCMDA
(0.8034), EGBMMDA (0.8221), MDHGI (0.8240), TLHNMDA
(0.7756), MaxFlow (0.7774), RLSMDA (0.6953), HDMP (0.7702),
WBSMDA (0.8031), MirAI (0.6299), and MIDP (0.8196) (see
Figure 2). Here, the AUC value of MirAI is lower than that
reported in its literature (Pasquier and Gardes, 2016) because
MirAI was proposed on the basis of a collaborative filtering
algorithm affected by the data sparsity problem. Compared with
the training set in the original literature, our dataset is relatively
scarce. The training set in the original literature contains 83
diseases and at least 20 known related miRNAs for each disease,
while our training set contains 383 diseases and most diseases-
related miRNAs are rare.

Case Studies
In order to further analyze the performance of the algorithm
effectively, we carried out two types of case studies. The first type
of case studies is the prediction of potential miRNAs associated
with esophageal neoplasms based on the known miRNA–disease
association collect from HMDD v2.0. The second type of
case studies is the prediction of potential miRNAs associated
with breast neoplasms based on the known miRNA–disease
association collect from HMDD v1.0.

Esophageal neoplasm is one of the most lethal cancers
in the world; its main nature is highly invasive and of low
survival rate (Domper Arnal et al., 2015). The disease contains
two main histological types of squamous cell cancer and
adenocarcinoma (Zhang et al., 2016). Malnutrition is a main
risk factor for esophageal squamous cell carcinoma (ESCC), and
obesity is the main risk factor for esophageal adenocarcinoma
(Domper Arnal et al., 2015). Accordingly, looking for sensitive
molecular biomarkers and individual treatment approach for
early diagnosis of esophageal cancer has become the main
clinical and basic research direction. Numerous studies suggested
that miRNAs play an important role in diseases and can be a
biomarker for esophageal neoplasms’ treatment. For example,
miR-506 was abnormally expressed in a variety of tumors
and could be used as a prognostic biomarker for ESCC
(Li et al., 2016). Besides, plasma miR-718 was reported to
downregulate in ESCC patients and might be treated as a
potential diagnostic marker for the disease (Sun et al., 2016).
Here, we employed BRWRMHMDA to prioritize candidate
miRNAs for esophageal neoplasms according to the dataset of
5,430 known miRNA–disease associations between 383 diseases
and 495 miRNAs. As a result, of the first 50 miRNAs predicted
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FIGURE 2 | Flowchart of BRWRMHMDA to prioritize candidate miRNAs for diseases. Through employing BRWR on the established heterogeneous networks, final
scores p∞ of candidate miRNAs predicted for each disease would be gotten after some steps.

for esophageal neoplasms in the ranking, 49 miRNAs have
been confirmed by the database of dbDEMC and miR2Disease
(see Table 1). For example, the predicted association score
between hsa-mir-125b and esophageal neoplasms is ranked first.
Yu et al. (2020) have found that hsa-mir-125b suppresses cell
proliferation and metastasis by targeting HAX-1 in ESCC, which
proves that hsa-mir-125b is related to esophageal neoplasms.
Moreover, the predicted association score between hsa-mir-
200b and esophageal neoplasms is ranked second. Researchers
have confirmed that hsa-mir-200b is downregulated in ESCC
in the comparison of the respective adjacent benign tissues
(Zhang et al., 2014). Therefore, hsa-mir-200b is associated with
esophageal neoplasms.

Breast neoplasm is one of the three most common cancers
for women (Siegel et al., 2018). In particular, metastatic breast
cancer (MBC) is usually incurable, and about 5% of patients
have metastases at diagnosis (Torre et al., 2015). With recent
research, miR-10b sponge has been shown to effectively inhibit
the growth of MDA-MB-231 and MCF-7 cells in breast cancer
(Liang et al., 2016). In addition, miR-223 was demonstrated
to function as a potential tumor marker for breast neoplasm
through suppressing its protein expression of FOXO1 (Wei
et al., 2017). Accordingly, identifying breast neoplasm-related
miRNAs is meaningful, which could help the medical diagnosis
and treatment for MBC (McGuire et al., 2015). Here, we
enforced BRWRMHMDA to infer potential miRNAs related
to breast neoplasms on the basis of 1,395 known miRNA–
disease associations between 137 diseases and 271 miRNAs
collected from HMDD v1.0. The results showed that 48 of
the first 50 miRNAs predicted for breast neoplasms have
been confirmed by the databases of dbDEMC, miR2Disease,
and HMDD v2.0 (see Table 2). For example, hsa-let-7b was
predicted to associate with breast neoplasms, and the predicted
score is ranked second. It is worth noting that hsa-let-7b
can significantly change oncogenic signaling in breast cancer

cells. Consequently, hsa-let-7b may have important roles in
breast neoplasm progression and can be considered as potential
targets for breast neoplasm therapy and diagnosis (Bozgeyik,
2020). Besides, hsa-mir-16 was predicted to be related to breast
neoplasms, and the predicted score is ranked third. Haghi et al.
indicated that has-mir-16 and has-mir-34a can collaborate in
breast tumor suppression, which proved that hsa-mir-16 has
association with breast neoplasms.

At last, we have released the whole prediction results via the
implementation of BRWRMHMDA for all miRNA–disease pairs
between 383 diseases and 495 miRNAs from HMDD v2.0 (see
Supplementary Table 1).

DISCUSSION

Through integrating known miRNA–disease associations, disease
semantic similarity, miRNA function similarity, and Gaussian
interaction profile kernel similarity for miRNAs and diseases,
BRWRMHMDA was employed in this manuscript to prioritize
candidate miRNAs for diseases via the implementation of degree-
based BRWR on the established networks. The assessment results
of LOOCV showed that the developed algorithm outperforms the
other 11 classic prediction algorithms in accuracy. We further
enforced the proposed algorithm to infer candidate miRNAs
for esophageal neoplasms in the light of known miRNA–disease
associations extracted from HMDD v2.0 and infer candidate
miRNAs for breast neoplasms in the light of known miRNA–
disease associations extracted from HMDD v1.0. The results of
the case study fully demonstrated the stability of this introduced
algorithm. It is worth mentioning that our research group will
keep on studying this issue in depth. Furthermore, we hope
more external research groups would select potential associations
with high prediction scores and verify them based on biological
experiment in the future.
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TABLE 1 | The implementation of BRWRMHMDA to prioritize candidate miRNAs
for esophageal neoplasms based on experimentally confined miRNA–disease
associations collected from HMDD v2.0 and 47 of the first 50 predicted
miRNAs were confirmed.

miRNA Evidence miRNA Evidence

hsa-mir-125b dbDEMC hsa-mir-429 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-106a dbDEMC

hsa-mir-18a dbDEMC hsa-mir-24 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-30c dbDEMC

hsa-mir-221 dbDEMC hsa-mir-218 unconfirmed

hsa-mir-19b dbDEMC hsa-mir-93 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-132 dbDEMC

hsa-mir-1 dbDEMC hsa-mir-30a dbDEMC

hsa-mir-222 dbDEMC hsa-mir-127 dbDEMC

hsa-let-7i dbDEMC hsa-mir-195 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-199b dbDEMC

hsa-let-7e dbDEMC hsa-mir-10b dbDEMC

hsa-let-7d dbDEMC hsa-mir-15b dbDEMC

hsa-mir-29b dbDEMC hsa-mir-107 dbdemc and
miR2Disease

hsa-let-7f unconfirmed hsa-mir-7 dbDEMC

hsa-mir-181b dbDEMC hsa-mir-224 dbDEMC

hsa-mir-181a dbDEMC hsa-mir-18b dbDEMC

hsa-mir-125a dbDEMC hsa-mir-133b dbDEMC

hsa-let-7g dbDEMC hsa-mir-335 dbDEMC

hsa-mir-9 dbDEMC hsa-mir-194 dbdemc and
miR2Disease

hsa-mir-146b dbDEMC hsa-mir-302b dbDEMC

hsa-mir-106b dbDEMC hsa-mir-20b dbDEMC

hsa-mir-182 dbDEMC hsa-mir-124 dbDEMC

hsa-mir-142 dbDEMC hsa-mir-373 dbdemc and
miR2Disease

hsa-mir-122 unconfirmed hsa-mir-191 dbDEMC

Actually, the method’s high accuracy in the miRNA–disease
association predictions mainly rely on the following attractive
properties. First, the training set of known miRNA–disease
associations used in this manuscript was collected from a very
reliable database of HMDD v2.0, and the several bioinformatics
data (disease semantic similarity, miRNA function similarity,
and Gaussian interaction profile kernel similarity for miRNAs
and diseases) mentioned in the paper were accurately calculated
and integrated. All the reliable biological information mentioned
above would attribute to the accuracy of BRWRMHMDA.
Second, compared with the machine learning-based methods that
randomly select negative samples as the training set, the proposed
algorithm only uses positive samples as the training set that
would provide higher prediction value. At last, BRWRMHMDA,
a degree-biased random walk, could fully take advantage of
the information about node degree and improve the prediction
accuracy. From the preceding discussion, it is no surprise that
this algorithm is superior to other comparison algorithms and has
good performance.

However, the proposed model still has some weaknesses and
shortcomings. For example, despite the biological information
collected here being reliable, the number of 5,430 experimentally

TABLE 2 | The implementation of BRWRMHMDA to prioritize candidate miRNAs
for breast neoplasms based on experimentally confined miRNA–disease
associations collected from HMDD v1.0 and 48 of the first 50 predicted
miRNAs were confirmed.

miRNA Evidence miRNA Evidence

hsa-let-7i dbDEMC and
miR2Disease and
HMDD

hsa-mir-203 dbDEMC and
miR2Disease and
HMDD

hsa-let-7b dbDEMC and HMDD hsa-mir-32 dbDEMC

hsa-mir-16 dbDEMC and HMDD hsa-mir-30e unconfirmed

hsa-let-7e dbDEMC and HMDD hsa-mir-532 dbDEMC

hsa-let-7g dbDEMC and HMDD hsa-mir-335 dbDEMC and
miR2Disease and
HMDD

hsa-let-7c dbDEMC and HMDD hsa-mir-150 dbDEMC

hsa-mir-92a HMDD hsa-mir-199b dbDEMC and HMDD

hsa-mir-126 dbDEMC and
miR2Disease and
HMDD

hsa-mir-99a dbDEMC

hsa-mir-223 dbDEMC and HMDD hsa-mir-98 dbDEMC and
miR2Disease

hsa-mir-92b dbDEMC hsa-mir-142 unconfirmed

hsa-mir-373 dbDEMC and
miR2Disease and
HMDD

hsa-mir-128b miR2Disease

hsa-mir-101 dbDEMC and
miR2Disease and
HMDD

hsa-mir-107 dbDEMC and HMDD

hsa-mir-191 dbDEMC and
miR2Disease and
HMDD

hsa-mir-224 dbDEMC and HMDD

hsa-mir-182 dbDEMC and
miR2Disease and
HMDD

hsa-mir-27a dbDEMC and
miR2Disease and
HMDD

hsa-mir-99b dbDEMC hsa-mir-195 dbDEMC and
miR2Disease and
HMDD

hsa-mir-106a dbDEMC hsa-mir-124 dbDEMC and HMDD

hsa-mir-181a dbDEMC and
miR2Disease and
HMDD

hsa-mir-30a miR2Disease and
HMDD

hsa-mir-29c dbDEMC and
miR2Disease and
HMDD

hsa-mir-520b dbDEMC and HMDD

hsa-mir-100 dbDEMC and HMDD hsa-mir-95 dbDEMC

hsa-mir-18b dbDEMC and HMDD hsa-mir-23b dbDEMC and HMDD

hsa-mir-372 dbDEMC hsa-mir-491 dbDEMC

hsa-mir-24 dbDEMC and HMDD hsa-mir-183 dbDEMC and HMDD

hsa-mir-130a dbDEMC hsa-mir-31 dbDEMC and
miR2Disease and
HMDD

hsa-mir-15b dbDEMC hsa-mir-192 dbDEMC

hsa-mir-196b dbDEMC hsa-mir-135a dbDEMC and HMDD

verified miRNA–disease associations extracted from HMDD v2.0
is still far from enough. If more associations between miRNAs
and diseases are validated, the prediction accuracy of the model
would be higher. Moreover, except for the fact that miRNA
similarity could be calculated via the consideration of miRNA
functional similarity and Gaussian interaction profile kernel for
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miRNAs, it could also be calculated based on other miRNA
features. At the same time, disease similarity could also be
calculated based on other disease features. Also, the model could
not predict candidate miRNAs for new diseases that have no
known related miRNAs. In addition, due to the fact that the
proposed algorithm is a local ranking model, it could not infer
candidate miRNAs for all diseases simultaneously.

Nowadays, more and more researchers are studying the
regulatory interactions between ncRNA classes, as well as
the associations between ncRNA and other biological entities
including diseases, small molecules, etc. Prediction of ncRNA-
related networks will greatly expand our understanding of
ncRNA function and its regulatory network. Simultaneously,
predictions including miRNA–lncRNA interactions, miRNA–
circRNA interactions, drug–target interactions, small molecule–
miRNA associations, and disease–lncRNA associations have
made great progress. In the field of miRNA–disease association
prediction, the number of known miRNA–disease associations
is limited, which will affect the prediction performance of the
model. In the future, integrating multisource biological data
that was mentioned above to build a multilayer heterogeneous
network based on machine learning-based method can effectively
improve the prediction performance of the model.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JQ implemented the experiments, analyzed the result, and
wrote the manuscript. C-CW analyzed the result, revised
the manuscript, and supervised the project. S-BC and ZM
analyzed the result and revised the manuscript. W-DZ and
X-LC contributed to the analysis of the data for the manuscript
and revised the manuscript. All authors read and approved the
final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.720327/full#supplementary-material

REFERENCES
Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., et al.

(2006). Gene prioritization through genomic data fusion. Nat. Biotechnol. 24,
537–544. doi: 10.1038/nbt1203

Alshalalfa, M., and Alhajj, R. (2013). Using context-specific effect of miRNAs to
identify functional associations between miRNAs and gene signatures. BMC
Bioinformatics 14:S1. doi: 10.1186/1471-2105-14-S12-S1

Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.
doi: 10.1038/nature02871

Axtell, M. J., Westholm, J. O., and Lai, E. C. (2011). Vive la difference: biogenesis
and evolution of microRNAs in plants and animals. Genome Biol. 12:221. doi:
10.1186/gb-2011-12-4-221

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell
136, 215–233. doi: 10.1016/j.cell.2009.01.002

Bonaventura, M., Nicosia, V., and Latora, V. (2014). Characteristic times of biased
random walks on complex networks. Phys. Rev. E Stat. Nonlin. Soft. Matter.
Phys. 89:012803.

Bozgeyik, E. (2020). Bioinformatic analysis and in vitro validation of Let-7b
and Let-7c in breast cancer. Comput. Biol. Chem. 84:107191. doi: 10.1016/j.
compbiolchem.2019.107191

Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003).
bantam encodes a developmentally regulated microRNA that controls cell
proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113,
25–36. doi: 10.1016/s0092-8674(03)00231-9

Burda, Z., Duda, J., Luck, J. M., and Waclaw, B. (2009). Localization of the maximal
entropy random walk. Phys. Rev. Lett. 102:160602.

Chen, X., and Huang, L. (2017). LRSSLMDA: laplacian regularized sparse
subspace learning for MiRNA-disease association prediction. PLoS Comput.
Biol. 13:e1005912. doi: 10.1371/journal.pcbi.1005912

Chen, X., and Yan, G. Y. (2014). Semi-supervised learning for potential human
microRNA-disease associations inference. Sci. Rep. 4:5501.

Chen, X., Huang, L., Xie, D., and Zhao, Q. (2018a). EGBMMDA: extreme gradient
boosting machine for MiRNA-disease association prediction. Cell Death Dis.
9:3.

Chen, X., Qu, J., and Yin, J. (2018b). TLHNMDA: triple layer heterogeneous
network based inference for MiRNA-disease association prediction. Front.
Genet. 9:234. doi: 10.3389/fgene.2018.00234

Chen, X., Sun, L. G., and Zhao, Y. (2021). NCMCMDA: miRNA-disease
association prediction through neighborhood constraint matrix completion.
Brief. Bioinform. 22, 485–496. doi: 10.1093/bib/bbz159

Chen, X., Wang, L., Qu, J., Guan, N. N., and Li, J. Q. (2018c). Predicting miRNA-
disease association based on inductive matrix completion. Bioinformatics 34,
4256–4265.

Chen, X., Wu, Q. F., and Yan, G. Y. (2017). RKNNMDA: ranking-based KNN for
MiRNA-disease association prediction. RNA Biol. 14, 952–962. doi: 10.1080/
15476286.2017.1312226

Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z. H., and Liu, H. (2018d). BNPMDA:
bipartite network projection for MiRNA-disease association prediction.
Bioinformatics 34, 3178–3186. doi: 10.1093/bioinformatics/bty333

Chen, X., Xie, D., Zhao, Q., and You, Z. H. (2019a). MicroRNAs and complex
diseases: from experimental results to computational models. Brief. Bioinform.
20, 515–539. doi: 10.1093/bib/bbx130

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., et al.
(2016). WBSMDA: within and Between score for MiRNA-disease association
prediction. Sci. Rep. 6:21106.

Chen, X., Yin, J., Qu, J., and Huang, L. (2018e). MDHGI: matrix decomposition
and heterogeneous graph inference for miRNA-disease association prediction.
PLoS Comput. Biol. 14:e1006418. doi: 10.1371/journal.pcbi.1006418

Chen, X., Zhou, Z., and Zhao, Y. (2018f). ELLPMDA: ensemble learning and link
prediction for miRNA-disease association prediction. RNA Biol. 15, 807–818.

Chen, X., Zhu, C. C., and Yin, J. (2019b). Ensemble of decision tree reveals potential
miRNA-disease associations. PLoS Comput. Biol. 15:e1007209. doi: 10.1371/
journal.pcbi.1007209

Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005). Antisense
inhibition of human miRNAs and indications for an involvement of miRNA
in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297. doi: 10.1093/
nar/gki200

Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M.,
et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl.
Acad. Sci. U.S.A. 102, 13944–13949. doi: 10.1073/pnas.0506654102

Cui, Q., Yu, Z., Purisima, E. O., and Wang, E. (2006). Principles of microRNA
regulation of a human cellular signaling network. Mol. Syst. Biol. 2:46. doi:
10.1038/msb4100089

Domper Arnal, M. J., Ferrandez Arenas, A., and Lanas Arbeloa, A. (2015).
Esophageal cancer: risk factors, screening and endoscopic treatment in Western

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 72032726

https://www.frontiersin.org/articles/10.3389/fgene.2021.720327/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.720327/full#supplementary-material
https://doi.org/10.1038/nbt1203
https://doi.org/10.1186/1471-2105-14-S12-S1
https://doi.org/10.1038/nature02871
https://doi.org/10.1186/gb-2011-12-4-221
https://doi.org/10.1186/gb-2011-12-4-221
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.compbiolchem.2019.107191
https://doi.org/10.1016/j.compbiolchem.2019.107191
https://doi.org/10.1016/s0092-8674(03)00231-9
https://doi.org/10.1371/journal.pcbi.1005912
https://doi.org/10.3389/fgene.2018.00234
https://doi.org/10.1093/bib/bbz159
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1093/bioinformatics/bty333
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1371/journal.pcbi.1006418
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.1093/nar/gki200
https://doi.org/10.1093/nar/gki200
https://doi.org/10.1073/pnas.0506654102
https://doi.org/10.1038/msb4100089
https://doi.org/10.1038/msb4100089
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-720327 August 4, 2021 Time: 13:51 # 10

Qu et al. MiRNA-Disease Association Prediction

and Eastern countries. World J. Gastroenterol. 21, 7933–7943. doi: 10.3748/wjg.
v21.i26.7933

Gomez-Gardenes, J., and Latora, V. (2008). Entropy rate of diffusion processes on
complex networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 78:065102.

Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S.,
et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in
human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632.
doi: 10.1158/0008-5472.can-05-2352

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009).
miR2Disease: a manually curated database for microRNA deregulation in
human disease. Nucleic Acids Res. 37, D98–D104.

Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al.
(2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.
doi: 10.1016/j.cell.2005.01.014

Karp, X., and Ambros, V. (2005). Encountering microRNAs in cell fate signaling.
Science 310, 1288–1289. doi: 10.1126/science.1121566

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell
75, 843–854. doi: 10.1016/0092-8674(93)90529-y

Li, S. P., Su, H. X., Zhao, D., and Guan, Q. L. (2016). Plasma miRNA-506 as a
prognostic biomarker for esophageal squamous cell carcinoma.Med. Sci. Monit.
22, 2195–2201. doi: 10.12659/msm.899377

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014). HMDD
v2.0: a database for experimentally supported human microRNA and disease
associations. Nucleic Acids Res. 42, D1070–D1074.

Liang, A. L., Zhang, T. T., Zhou, N., Wu, C. Y., Lin, M. H., and Liu, Y. J.
(2016). MiRNA-10b sponge: an anti-breast cancer study in vitro. Oncol. Rep.
35, 1950–1958. doi: 10.3892/or.2016.4596

Lin, S. Y., Johnson, S. M., Abraham, M., Vella, M. C., Pasquinelli, A., Gamberi,
C., et al. (2003). The C elegans hunchback homolog, hbl-1, controls temporal
patterning and is a probable microRNA target. Dev. Cell 4, 639–650. doi:
10.1016/s1534-5807(03)00124-2

Liu, Z., Sall, A., and Yang, D. (2008). MicroRNA: an emerging therapeutic target
and intervention tool. Int. J. Mol. Sci. 9, 978–999. doi: 10.3390/ijms906
0978

Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., et al. (2008). An analysis
of human microRNA and disease associations. PLoS One 3:e3420. doi: 10.1371/
journal.pone.0003420

Ma, L., Teruya-Feldstein, J., and Weinberg, R. A. (2007). Tumour invasion and
metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688.
doi: 10.1038/nature06174

McGuire, A., Brown, J. A., and Kerin, M. J. (2015). Metastatic breast cancer: the
potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis
Rev. 34, 145–155. doi: 10.1007/s10555-015-9551-7

Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., and Patel, T.
(2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene
in human hepatocellular cancer. Gastroenterology 133, 647–658. doi: 10.1053/j.
gastro.2007.05.022

Miska, E. A. (2005). How microRNAs control cell division, differentiation and
death. Curr. Opin. Genet. Dev. 15, 563–568. doi: 10.1016/j.gde.2005.08.005

Mork, S., Pletscher-Frankild, S., Palleja Caro, A., Gorodkin, J., and Jensen, L. J.
(2014). Protein-driven inference of miRNA-disease associations. Bioinformatics
30, 392–397. doi: 10.1093/bioinformatics/btt677

Pasquier, C., and Gardes, J. (2016). Prediction of miRNA-disease associations with
a vector space model. Sci. Rep. 6:27036.

Pasquinelli, A. E., and Ruvkun, G. (2002). Control of developmental timing by
micrornas and their targets. Annu. Rev. Cell Dev. Biol. 18, 495–513. doi: 10.
1146/annurev.cellbio.18.012502.105832

Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2002). Association of genes
to genetically inherited diseases using data mining. Nat. Genet. 31, 316–319.
doi: 10.1038/ng895

Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E.,
et al. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human
cells. Science 309, 1573–1576. doi: 10.1126/science.1115079

Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie,
A. E., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing
in Caenorhabditis elegans. Nature 403, 901–906. doi: 10.1038/35002607

Siegel, R. L., Miller, K. D., and Jemal, A. (2018). Cancer statistics, 2018. CA Cancer
J. Clin. 68, 7–30. doi: 10.3322/caac.21442

Sun, L., Dong, S., Dong, C., Sun, K., Meng, W., Lv, P., et al. (2016). Predictive
value of plasma miRNA-718 for esophageal squamous cell carcinoma. Cancer
Biomark. 16, 265–273. doi: 10.3233/cbm-150564

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A.
(2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108. doi:
10.3322/caac.21262

van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction
profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036–
3043. doi: 10.1093/bioinformatics/btr500

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010). Inferring the human
microRNA functional similarity and functional network based on microRNA-
associated diseases. Bioinformatics 26, 1644–1650. doi: 10.1093/bioinformatics/
btq241

Wei, Y. T., Guo, D. W., Hou, X. Z., and Jiang, D. Q. (2017). miRNA-223 suppresses
FOXO1 and functions as a potential tumor marker in breast cancer. Cell Mol.
Biol. (Noisy-le-grand) 63, 113–118. doi: 10.14715/cmb/2017.63.5.21

Xuan, P., Han, K., Guo, M., Guo, Y., Li, J., Ding, J., et al. (2013). Prediction of
microRNAs associated with human diseases based on weighted k most similar
neighbors. PLoS One 8:e70204. doi: 10.1371/journal.pone.0070204

Xuan, P., Han, K., Guo, Y., Li, J., Li, X., Zhong, Y., et al. (2015). Prediction of
potential disease-associated microRNAs based on random walk. Bioinformatics
31, 1805–1815. doi: 10.1093/bioinformatics/btv039

Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., et al. (2010). dbDEMC: a database
of differentially expressed miRNAs in human cancers. BMC Genomics 11 Suppl
4:S5. doi: 10.1093/nar/gkw1079

Yu, H., Chen, X., and Lu, L. (2017). Large-scale prediction of microRNA-disease
associations by combinatorial prioritization algorithm. Sci. Rep. 7:43792.

Yu, Z., Ni, F., Chen, Y., Zhang, J., Cai, J., and Shi, W. (2020). miR-125b suppresses
cell proliferation and metastasis by targeting HAX-1 in esophageal squamous
cell carcinoma. Pathol. Res. Pract. 216:152792. doi: 10.1016/j.prp.2019.152792

Zhang, H. F., Zhang, K., Liao, L. D., Li, L. Y., Du, Z. P., Wu, B. L., et al. (2014).
miR-200b suppresses invasiveness and modulates the cytoskeletal and adhesive
machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2.
Carcinogenesis 35, 292–301. doi: 10.1093/carcin/bgt320

Zhang, L., Ma, J., Han, Y., Liu, J., Zhou, W., Hong, L., et al. (2016). Targeted therapy
in esophageal cancer. Expert. Rev. Gastroenterol. Hepatol. 10, 595–604.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Qu, Wang, Cai, Zhao, Cheng and Ming. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 72032727

https://doi.org/10.3748/wjg.v21.i26.7933
https://doi.org/10.3748/wjg.v21.i26.7933
https://doi.org/10.1158/0008-5472.can-05-2352
https://doi.org/10.1016/j.cell.2005.01.014
https://doi.org/10.1126/science.1121566
https://doi.org/10.1016/0092-8674(93)90529-y
https://doi.org/10.12659/msm.899377
https://doi.org/10.3892/or.2016.4596
https://doi.org/10.1016/s1534-5807(03)00124-2
https://doi.org/10.1016/s1534-5807(03)00124-2
https://doi.org/10.3390/ijms9060978
https://doi.org/10.3390/ijms9060978
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1038/nature06174
https://doi.org/10.1007/s10555-015-9551-7
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1053/j.gastro.2007.05.022
https://doi.org/10.1016/j.gde.2005.08.005
https://doi.org/10.1093/bioinformatics/btt677
https://doi.org/10.1146/annurev.cellbio.18.012502.105832
https://doi.org/10.1146/annurev.cellbio.18.012502.105832
https://doi.org/10.1038/ng895
https://doi.org/10.1126/science.1115079
https://doi.org/10.1038/35002607
https://doi.org/10.3322/caac.21442
https://doi.org/10.3233/cbm-150564
https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21262
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.14715/cmb/2017.63.5.21
https://doi.org/10.1371/journal.pone.0070204
https://doi.org/10.1093/bioinformatics/btv039
https://doi.org/10.1093/nar/gkw1079
https://doi.org/10.1016/j.prp.2019.152792
https://doi.org/10.1093/carcin/bgt320
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-712170 August 13, 2021 Time: 17:20 # 1

ORIGINAL RESEARCH
published: 19 August 2021

doi: 10.3389/fgene.2021.712170

Edited by:
Liqian Zhou,

Hunan University of Technology,
China

Reviewed by:
Wei Peng,

Kunming University of Science
and Technology, China

Kebo Lv,
Ocean University of China, China

*Correspondence:
Wei Gao

13960986882@163.com

Specialty section:
This article was submitted to

RNA,
a section of the journal

Frontiers in Genetics

Received: 20 May 2021
Accepted: 23 July 2021

Published: 19 August 2021

Citation:
Yao Y, Ji B, Lv Y, Li L, Xiang J,

Liao B and Gao W (2021) Predicting
LncRNA–Disease Association by
a Random Walk With Restart on

Multiplex and Heterogeneous
Networks. Front. Genet. 12:712170.

doi: 10.3389/fgene.2021.712170

Predicting LncRNA–Disease
Association by a Random Walk With
Restart on Multiplex and
Heterogeneous Networks
Yuhua Yao1,2,3, Binbin Ji4, Yaping Lv1, Ling Li5, Ju Xiang6,7,8, Bo Liao1 and Wei Gao9*

1 School of Mathematics and Statistics, Hainan Normal University, Haikou, China, 2 Key Laboratory of Data Science
and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, China, 3 Key Laboratory of
Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, China, 4 Geneis Beijing Co.,
Ltd., Beijing, China, 5 Basic Courses Department, Zhejiang Shuren University, Hangzhou, China, 6 School of Computer
Science and Engineering, Central South University, Changsha, China, 7 Department of Basic Medical Sciences, Changsha
Medical University, Changsha, China, 8 Department of Computer Science, Changsha Medical University, Changsha, China,
9 Departments of Internal Medicine-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou,
China

Studies have found that long non-coding RNAs (lncRNAs) play important roles in
many human biological processes, and it is critical to explore potential lncRNA–
disease associations, especially cancer-associated lncRNAs. However, traditional
biological experiments are costly and time-consuming, so it is of great significance
to develop effective computational models. We developed a random walk algorithm
with restart on multiplex and heterogeneous networks of lncRNAs and diseases to
predict lncRNA–disease associations (MHRWRLDA). First, multiple disease similarity
networks are constructed by using different approaches to calculate similarity scores
between diseases, and multiple lncRNA similarity networks are also constructed by
using different approaches to calculate similarity scores between lncRNAs. Then, a
multiplex and heterogeneous network was constructed by integrating multiple disease
similarity networks and multiple lncRNA similarity networks with the lncRNA–disease
associations, and a random walk with restart on the multiplex and heterogeneous
network was performed to predict lncRNA–disease associations. The results of Leave-
One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC)
was 0.68736, which was improved compared with the classical algorithm in recent
years. Finally, we confirmed a few novel predicted lncRNAs associated with specific
diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to
predict lncRNA–disease associations.

Keywords: lncRNA, disease, association, networks, random walk, predict

INTRODUCTION

Numerous studies have indicated that protein-coding genes accounted for less than 2% of the
human genome (Crick et al., 1961; Yanofsky, 2007). There are many non-translatable RNAs called
non-coding RNAs (ncRNAs), which have been considered as transcriptional noise for a long
time (Zhang et al., 2017; Xu et al., 2020). Long non-coding RNAs (lncRNAs) whose length are
greater than 200 nucleotides are a class of important ncRNAs (Mercer et al., 2009). There are
increasing evidence that lncRNAs play key roles in many important biological processes and
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diseases (Akerman et al., 2017; Wang et al., 2019; Peng
et al., 2020). For example, HOTAIR was considered as a
potential biomarker for liver cancer (Yang et al., 2011; Li
et al., 2019), lung cancer (Li G. et al., 2014a), and colorectal
cancer (Kogo et al., 2011; Maass et al., 2014), and UCA1
was a potential biomarker for bladder cancer diagnosis (Zhang
et al., 2012). Li J. et al. (2014b) summarized the important
role of lncRNA such as MALAT1, HOTAIR, and other specific
lncRNAs for hepatocellular carcinoma. LncRNAs associated
with tumor immune invasion in non-small cell lung cancer
(NSCLC) have important value in improving clinical efficacy
and immunotherapy, compared with normal controls, and the
expression of gabpb1-it1 was significantly downregulated in
NSCLC. In addition, overexpression of gabpb1-it1 in cancer
samples is associated with increased survival in NSCLC patients
(Sun et al., 2020). Inferring the association between lncRNA and
diseases can better study human diseases and help the diagnosis
and treatment of diseases, and accelerate the identification of
potential drug response predictors (Liu et al., 2016, 2020).
Therefore, the exploration of lncRNA–disease association has
attracted more and more attention from biologists. The
establishment of an effective computational model to predict
the association between lncRNAs and diseases can save time
and money spent in biological experiments (Yao et al., 2019;
Yan et al., 2020).

At present, many machine learning methods have been
proposed to predict the lncRNA–disease association, for example,
Laplacian regulated least square method (LRLSLDA; Chen and
Yan, 2013), propagation algorithm (Yang et al., 2014), a method
based on Bayesian classifier (Zhao et al., 2015), and a method
based on induction matrix (Lu C. et al., 2018a). However, these
machine learning methods need negative samples, which are
difficult to obtain. In order to solve this problem, network-
based methods emerge as the times require. With the increasing
importance of revealing the molecular basis of human diseases,
network-based methods have been widely used in exploring
disease-related genes (Yan et al., 2015; Hu et al., 2018; Lu M.
et al., 2018b; Yang et al., 2020). For example, Xiang et al.
(2021) proposed a multibiological network (NIDM) network
pulse dynamics framework and a fast network embedding (Xiang
et al., 2020) to predict disease-related genes. Network-based
algorithms have also been widely studied in predicting lncRNA–
disease association. Bellucci et al. (2011) combined the expression
similarity of lncRNA with the Gaussian nuclear interaction
spectrum similarity of lncRNA, and proposed a potential protein
determination method based on sequence information to predict
the function of lncRNA. In the study of Xiao et al. (2015), the
function of lncRNA was predicted by constructing the regulatory
network between lncRNA and protein coding genes. In the
BPLLDA study, the authors estimated the potential relationship
between disease and lncRNAs by connecting the length of the
disease and lncRNA pathway (Xiao et al., 2018). KATZLDA
was a computing method to predict lncRNA–disease association
based on the similarity between heterogeneous network nodes
(Chen, 2015a). The random walk model is also widely used
in the field of data mining and Internet, and many researches
use this method to predict potential association (Xing et al.,

2012; Yang et al., 2016, 2017; Gu et al., 2017). Zhou et al.
(2015) proposed a new method by integrating the related
lncRNA–lncRNA network, disease–disease similarity network,
and the heterogeneous lncRNA–disease association network, and
then realized random walk on the heterogeneous network. Sun
et al. (2014) proposed a method for constructing lncRNA–
lncRNA functional similarity network and then developed
a calculation method based on global network (RWRlncD).
Recently, Lei and Bian (2020) used random walk to weight
the structural features of circRNA–disease pairs and combined
it with k-nearest neighbor algorithm to get the prediction
score of each circRNA–disease pair. Although these methods
have been proposed to predict lncRNA–disease association
successfully, it is still a challenge to make full use of multi-source
biological data.

In this study, a random walk algorithm with restart on
multiplex and heterogeneous networks was developed. The
downloaded known lncRNA–disease association data were used
to calculate lncRNA functional similarity, lncRNA Gaussian
interaction kernel similarity, disease semantic similarity, and
disease Gaussian interaction kernel similarity, respectively.
Then, these similarity networks and lncRNA–disease association
network were constructed into multiplex and heterogeneous
networks. A random walk with restart was carried out on
the multiplex and heterogeneous networks, and the potential
lncRNA–disease association was predicted using the final
stable probability.

MATERIALS AND METHODS

LncRNA–Disease Association
LncRNADisease (Chen, 2015b), Lnc2Cancer (Ning et al., 2016),
MNDR (Wang et al., 2013), and other databases stored the known
lncRNA–disease association data, which have been of great help
in predicting novel association. In this study, 285 lncRNA–disease
association was downloaded from lncRNADisease database,
including 117 lncRNAs and 159 diseases. We used LD to
represent the lncRNA–disease association adjacency matrix. If
lncRNA(i) is related to disease(j), then LD(i, j) = 1; otherwise,
LD(i, j) = 0, that is:

LD
(
i, j
)
=

{
1, if lncRNA (i) is associated with disease

(
j
)

0 otherwise
(1)

Disease Similarity
Disease Semantic Similarity
Directed acyclic graphs (DAGs) were used to calculate disease–
disease similarity, for disease dk, let DAG(dk,T(dk),E(dk)) be its
directed acyclic graph, where T(dk) are ancestor nodes of dk, and
E(dk) represents the corresponding set of edges from parent node
to child nodes. Semantic similarity of diseases was calculated by
R package called DOSim (Li et al., 2011); for any disease k in
DAG(dk,T(dk),E(dk)), the semantic contribution of k to dk was
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defined as:

Ddk(k) =
{

1, if k = dk
max{0.5 ∗ Ddk(k

′)|k′ ∈ children of k}, if k 6= dk
(2)

The above formula indicates that the contribution of the disease
to its semantic value is 1. Semantic contribution decreased with
the increase of the distance between disease k and other diseases.
Then, the semantic similarity between di and dj was defined as:

DSS(di, dj) =

∑
k∈Tdi∩Tdj

(Ddi(k)+ Ddj(k))∑
k∈Tdi

Ddi(k)+
∑

k∈Tdj
Ddj(k)

(3)

Gaussian Interaction Profile Kernel Similarity for
Diseases
In order to obtain the similarity information between diseases,
the Gaussian Interaction Profile kernel similarity between disease
was constructed based on the lncRNA–disease association
network. First, the Interaction Profile (IP) of each disease
represents a binary code in the known lncRNA–disease
association network. For example, for given disease di, its IP(di)
represents the ith column of LD. Next, the Gaussian Interaction
Profile kernel similarity between di and djwas calculated as:

DSGIP(di, dj) = exp(−γd
∣∣∣∣IP(di)− IP(dj)

∣∣∣∣2 (4)

Where γd represents the bandwidth that controls
the Gaussian Interaction Profile kernel similarity,

γd =
γ′d
( 1
nd

∑nd
i = 1

∣∣∣∣IP(di)
∣∣∣∣2); in this study, according to

van Laarhoven et al. (2011), we set γ′d = 1, and nd represents
the number of diseases.

LncRNA Similarity
LncRNA Functional Similarity
Studies have shown that similar lncRNAs are usually associated
with similar diseases. Therefore, lncRNA functional similarity
can be roughly estimated by their similarity in related
diseases (Sun et al., 2014). For any two lncRNAs li and lj,
Di = {dik

∣∣1 ≤ k ≤ m } and Dj = {djl
∣∣1 ≤ l ≤ n } were

disease sets associated with li and lj, respectively. The semantic
similarity between disease d and disease set D was firstly defined
as:

SS(d,D) = max
dl∈D

DSS(d, dl) (5)

Then, the functional similarity between li and lj was defined as:

NFS(li, lj) =

∑m
i = 1 SS(dia ,Dj)+

∑n
j = 1 SS(djb ,Di)

m+ n
(6)

Gaussian Interaction Profile Kernel Similarity for
LncRNAs
Similar to the disease Gaussian interaction profile kernel
similarity. The formula for calculating the Gaussian interaction
profile kernel similarity between li and lj was:

LSGIP(li, lj) = exp(−γl
∣∣∣∣IP(li)− IP(lj)

∣∣∣∣2) (7)

Where γl represents the bandwidth that controls the
property similarity of Gaussian interaction kernel,

γl =
γ′l
( 1
nl

∑nl
i = 1

∣∣∣∣IP(li)
∣∣∣∣2); in this study, γ′l = 1, nl represents

the number of lncRNAs, IP(li) and IP(lj) represent the ith and
jth row of the LD, respectively.

A Random Walk With Restart on
Multiplex and Heterogeneous Networks
An overview of MHRWRLDA is shown in Figure 1. Specifically,
we first downloaded the data of known lncRNA–disease
association from the LncRNADisease database and got diseased’
DO ID from the DO database to calculate disease similarity.
After compute disease similarity and lncRNA similarity, a
multiplex and heterogeneous network was set up based on
these similarity networks and known lncRNA–disease association
network. Finally, a random walk algorithm with restart was
implemented on networks, and the final stability probability was
used to conduct the predictions.

Multiplex and Heterogeneous Network
Based on disease semantic similarity network, disease Gaussian
similarity network, lncRNA similarity network, and lncRNA
Gaussian similarity network, we constructed a multiplex and
heterogeneous network by using lncRNA–disease association.
In these networks, the set of lncRNA nodes was defined as:
RM = {vα

i , i = 1, 2, · · · , n; α = 1, 2, · · · , L}, where vα
i

represents the ith node on the α layer. The set of disease nodes
was defined as: DM = {v

β
j , j = 1, 2, · · · ,m; β = 1, 2, · · · ,K},

where vβ
i represents the jth node on the β layer. The adjacency

matrix on each layer is:

A[α] = A[α](i, j)

=


1, if the ith node is associated with

the jth node on layer α

0, otherwise
(8)

A particle can either travel from the previous node vα
i term to

any neighbor node on the same layer, or it can also jump to the
same node on a different layer. The matrix A contains different
types of jumps that the particle can follow at each step:

A =


(1− δ)A[1] δ

(L−1) I
δ

(L−1) I (1− δ)A[2]
· · ·

δ
(L−1) I

· · ·
δ

(L−1)A
...

...
δ

(L−1) I
δ

(L−1) I

. . .
...

· · · (1− δ)A[L]

 (9)

Where I is the n × n identity matrix, the diagonal element of
A represents the particle walking on same layer, the off-diagonal
element represents the particle jumping between different layers,
and the parameter δ ∈ (0, 1) represents the probability of the
particle walking on the same layer or jumping between different
layers. If δ = 0, the particles will always walk on the same layer.

ARM(nL × nL), ADM(mK × mK) is the matrix of lncRNA
similarity and disease similarity on multiplex and heterogeneous
networks, respectively. n, L, m, and K are the number of
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FIGURE 1 | The framework of MHRWRLDA.

lncRNAs, lncRNA similarity networks, diseases, and disease
similarity networks, respectively, the adjacency matrix is:
BMH = (Bn × m,Bn × m, · · · ,Bn × m)T .

The dimension of BMH is nL × mK, which is equivalent
to replicating the adjacency matrix Bn × m L∗K times, where
B = LD. Then, the adjacency matrix of the whole multiplex and

heterogeneous networks is: A =
[
ARM BMH
BTMH ADM

]
.

Random Walk With Restart on Multiplex and
Heterogeneous Networks
A random walk with a restart means that a particle starts at a
node and it is faced with two choices at each walk: move to a
randomly selected neighbor node, or jump back to the start node.
Considering the time is discrete, t ∈ N, the particle is at node vt
at the tth step. Then, it walks from vt to vt1. We defined a restart
probability γ ∈ (0, 1), and the random walk with restart can be
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TABLE 1 | Confusion matrix definitions.

True prediction Positive Negative

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

defined as:
Pt+1 = (1− γ)HTPt + γPRS (10)

Where the vectors Pt1 and Pt represent the probability
distribution of vt and vt1, respectively. PRS is the initial probability

distribution and PRS =
[

(1− η)R0
ηD0

]
; the importance of each

network is adjusted by adjusting PRS, where R0 and D0 represent
the initial probability distribution of lncRNA similarity network
and disease similarity network, respectively, and the dimensions
of the vectors Pt+1, Pt , and PRS are nL × mK. The parameter
η ∈ (0, 1) controls the probability of each network restarting; if
η < 0.5, the particle is more likely to be restarted in lncRNA

similarity networks. H =
[
HRR HRD
HDR HDD

]
represents the transition

probability matrix of multiplex and heterogeneous networks,
where HRR andHDD represent the transition probability of nodes
upstream in the same layer, HRD and HDR represent the transition
probability of node jump between different layers. For a given
node, if dichotomous correlation exists, the particle can jump
between layers or stay in the current layer with probability λ ∈

(0, 1), and the closer it is to 1, the higher the probability of
jumping between different networks.

We suppose a particle was located at the node ri ∈ R. In the
next step, the particle can walk to the node rj ∈ R. The transfer
probability is:

HRR =


AR(i,j)∑n

k=1 AR(i,k), if
∑m

k=1 B(i, k) = 0

(1− λ)
AR(i,j)∑n

k=1 AR(i,k), otherwise
(11)

It can also jump to the node db ∈ D through binary correlation,
and the transfer probability is:

HRD =

{
λB(i,b)∑m
k=1 B(i,k), if

∑m
k=1 B(i, k) 6= 0

0 otherwise
(12)

Similarly, if the particle was located at the node da ∈ D, then the
transfer probability of the particle walking to the node db ∈ D is:

HDD =


AD(a,b)∑m

k=1 AD(a,k), if
∑n

k=1 B(k, b) = 0

(1− λ) AD(a,b)∑m
k=1 AD(a,k), otherwise

(13)

If the particle jumps to the node rj ∈ R through binary
correlation, then the transfer probability is:

HDR =

{
λB(j,a)∑n
k=1 B(k,a), if

∑n
k=1 B(k, a) 6= 0

0, otherwise
(14)

When predicting lncRNAs that are potentially associated with
the given disease di, the node di will be used as the seed node

FIGURE 2 | The ROC curves of MHRWRLDA, KATZLDA, BPLLDA, and
LRLSLDA based on global LOOCV.

in disease similarity networks. The initial probability D0 is 1 for
the given node di and 0 for the remaining nodes. If there are
known associations among lncRNAs r1, r2 · · · and disease di,
then the nodes r1, r2 · · · are the seed nodes in lncRNA similarity
networks. The initial probability R0 was assigned to seed node
r1, r2 · · · , with a probability of 1, and the remaining nodes were
0. Pt converges after some iteration, that is, Pt − Pt+1 < 10−10,

and we denoted the stable probability as: P∞ =
[

(1− η)R∞
ηD∞

]
.

Based on the stabilized R∞, those seed nodes r1, r2 · · · were
removed, and the remaining lncRNAs were ranked. The higher
the ranked lncRNA, the more likely it was to be associated with
the given disease di. Similarly, a lncRNA can also be designated
to predict diseases related to it.

RESULTS

Indicators of Performance Evaluation
For a binary classification problem, the confusion matrix is
shown in Table 1. Precision, specificity, and sensitivity are
evaluation indicators of classification models. They are calculated
as:

FPR = 1−specificity =
FP

TN + FP

TPR = sensitivity =
TP

TP + FN

To evaluate the performance of MHRWRLDA, the receiver
operating characteristic (ROC) curve was drawn by calculating
TPR and FPR according to different thresholds. Area under the
curve (AUC) is the area under the ROC curve, and this area is
less than 1. Since the ROC curve cannot directly indicate which
classifier has better effect in many cases, as a value, the larger the
AUC is, the better the classifier has an effect.
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FIGURE 3 | The PR curves of MHRWRLDA, KATZLDA, BPLLDA, and
LRLSLDA based on global LOOCV.

TABLE 2 | The predicted top 10 lncRNAs for colon cancer.

Disease Rank LncRNA Evidence

Colon cancer 1 H19 Confirmed

2 MEG3 Confirmed

3 CDKN2B-AS1 Confirmed

4 MALAT1 Confirmed

5 PVT1 Confirmed

6 BCYRN1 Unknown

7 IGF2-AS Confirmed

8 Anti-NOS2A Unknown

9 WT1-AS Unknown

10 UCA1 Confirmed

TABLE 3 | The predicted top 10 lncRNAs for hepatocellular carcinoma.

Disease Rank LncRNA Evidence

Hepatocellular carcinoma 1 H19 Confirmed

2 MEG3 Confirmed

3 MALAT1 Confirmed

4 AIR Confirmed

5 HULC Confirmed

6 HOTAIR Confirmed

7 IGF2-AS Confirmed

8 CDKN2B-AS1 Confirmed

9 PVT1 Confirmed

10 BCYRN1 Unknown

Performance of MHRWRLDA
In order to evaluate the performance of MHRWRLDA for
predicting lncRNA–disease association, we applied the known
lncRNA–disease association data to MHRWRLDA, and used
Leave-One-Out cross-validation (LOOCV) to verify. For global
LOOCV, the scores of all test samples are compared with those
of all candidate samples. For local LOOCV, each known lncRNA
related to a particular disease is selected as the test sample, and

TABLE 4 | The predicted top 10 lncRNAs for breast cancer.

Disease Rank LncRNA Evidence

Breast cancer 1 H19 Confirmed

2 CDKN2B-AS1 Confirmed

3 PVT1 Confirmed

4 MEG3 Confirmed

5 BCYRN1 Confirmed

6 SRA1 Confirmed

7 XIST Confirmed

8 GAS5 Confirmed

9 HOTAIR Confirmed

10 DSCAM-AS1 Confirmed

TABLE 5 | The predicted top five novel disease correlated with
MALAT1, PVT1, and MEG3.

LncRNA Disease Rank Evidence

MALAT1 Endometrial stromal sarcoma 1 Confirmed

Non-small cell lung cancer 2 Confirmed

Lung adenocarcinoma 3 Confirmed

Cervical cancer 4 Confirmed

Osteosarcoma 5 Confirmed

PVT1 Burkitt’s lymphomas 1 Confirmed

Hodgkin’s lymphoma 2 Confirmed

Renal disease 3 Confirmed

Diabetic nephropathy 4 Confirmed

Pancreatic cancer 5 Confirmed

MEG3 Pituitary adenomas 1 Confirmed

Heroin addiction 2 Confirmed

Nonfunctioning pituitary adenomas 3 Confirmed

Chronic myeloid leukemia 4 Confirmed

Myelodysplastic syndrome 5 Confirmed

other related lncRNAs are selected as the training samples; the
scores of test samples are only compared with those of candidate
samples. In this study, there are a total of three parameters,
namely, γ, λ, and η, and their range is (0, 1), where γ is
the restart probability; λ is the jump probability, reflecting the
probability of particles jumping between different networks; and
η regulated the probability of each network restarting, When
η = γ = 0.9 and λ = 0.9, the prediction effect is the best; at this
point, AUC = 0.68736.

The AUC based on global LOOCV of the KATZLDA (Chen,
2015a), BPLLDA (Xiao et al., 2018), and LRLSLDA (Chen
and Yan, 2013) were 0.63768, 0.5845, and 0.6219, respectively.
The ROC curves of MHRWRLDA, KATZLDA, BPLLDA, and
LRLSLDA based on global LOOCV are shown in Figure 2, the PR
curves based on global LOOCV are shown in Figure 3, and the
AUPR values are shown in their legends. Their ROC curves and
PR curves based on local LOOCV are shown in Supplementary
Figures 1, 2. The results showed that MHRWRLDA performed
better than other classical algorithms in predicting lncRNA–
disease association.
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FIGURE 4 | The network of diseases and lncRNAs were made by Cytoscape. (A) The network of novel lncRNAs related to colon cancer, hepatocellular carcinoma,
and breast cancer. (B) The network of novel diseases related to lncRNA MALAT1, PVT1, and MEG3.

Case Study
To further explore the performance of MHRWRLDA in
predicting lncRNA–disease association, we selected colon cancer,
hepatocellular carcinoma, and breast cancer for the case study.
During the experiment, all known associations were considered
as the train set, and unknown associations were regarded as the
test set. According to LOOCV results, we sorted lncRNAs and
selected the top 10 lncRNAs for further verification based on the
LncRNADisease database and several recently published studies.

Colon cancer is a malignant tumor, causing nearly 700,000
deaths each year, and has a high incidence rate record in
developed countries. We applied MHRWRLDA to colon cancer
experiments to predict the top 10 lncRNAs related to colon cancer
(Table 2). Seven of the top 10 lncRNAs have been confirmed in
databases or other literature. Previous studies have found that
the third ranked CDKN2B-AS1 up-regulates HCT116, thereby
causing cell proliferation (Chiyomaru et al., 2013). In addition,
studies have shown that removal of PVT1 (ranked 5) from MCY-
driven colon cancer strain HCT116 can reduce carcinogenicity
(Tseng et al., 2014).

Hepatocellular carcinoma is one of the most common cancers
in the world. Studies have shown that hepatocellular carcinoma
is the main component of primary liver cancer. We listed the
top 10 lncRNAs related to hepatocellular carcinoma predicted by
experiments in Table 3. Of the top 10, 9 were all verified in known
databases. The overexpression of CDKN2B-AS1, which ranked
8, can inhibit the proliferation and invasion of liver cancer cells
(Hua et al., 2015), thereby promoting the apoptosis of liver cancer
cells and preventing the occurrence of hepatocellular carcinoma.
Ding et al. identified PVT1 (ranked 9) as a novel biomarker
for predicting tumor recurrence in patients with hepatocellular
carcinoma (Ding et al., 2015).

Breast cancer accounts for 22% of all cancers in women and is
the second leading cause of cancer death in women (Donahue
and Genetos, 2013; Karagoz et al., 2015). Traditionally, breast
cancer has been diagnosed on the basis of histopathological
features such as tumor size, grade, and lymph node status. The
prediction of breast cancer-related lncRNAs may help diagnose
and treat breast cancer (Meng et al., 2014). In order to diagnose
and treat breast cancer better, it is necessary to predict lncRNAs

associated with breast cancer and identify lncRNA biomarkers
(Xu et al., 2015). We implemented MHRWRLDA on breast
cancer to predict potentially relevant lncRNAs, and listed the
top 10 lncRNAs related to breast cancer in Table 4. The
downregulation of the top ranked first H19 significantly reduced
breast cancer clonal formation and anchored independent
growth (Barsytelovejoy et al., 2006). In addition, the incidence
of breast cancer is also affected by PVT1 overexpression due to
genomic abnormalities (Guan et al., 2007).

Finally, the network of three cases and lncRNAs predicted by
MHRWRLDA is shown in Figure 4A; it revealed that MEG3,
CDKN2B-AS1, H19, PVT1, BCYRN1, HOTAIR, and all three
diseases are related. In addition to exploring lncRNAs related
to novel diseases, it is also extremely important to predict
diseases related to novel lncRNAs. Therefore, taking lncRNA
MALAT1, PVT1, and MEG3 as examples, the predicted top five
diseases related to them are listed in Table 5, and their network
is shown in Figure 4B. The experimental results proved that
MHRWRLDA was useful for predicting the potential lncRNA–
disease association.

DISCUSSION

In recent years, the research on the interaction between
biomolecules has been growing. Due to the importance of
lncRNA, the research on the associations between lncRNAs
and diseases has been paid more and more attention. These
associations can be characterized by complex networks, so it is
urgent to develop network-based computational algorithms to
explore functional associations between lncRNAs and diseases.
The algorithm of constructing heterogeneous network and
implementing random walk on heterogeneous network is widely
used in the field of bioinformatics. However, in previous studies,
most of them are single heterogeneous networks with a single
information source. Therefore, we consider multiple network
embedding by integrating different types of edges. Multiplex and
heterogeneous networks are the combination of heterogeneous
networks connected by multiple interactions; they integrate the
framework of multiple information sources, and each layer is
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a simplex network with specific types of nodes and edges;
when the data set is large, they can produce better results.
Multiple heterostructures may provide a richer perspective
for the study of the complex relationship between different
biological components.

In this study, we extend it to multi-layer heterogeneous
networks so as to more effectively predict lncRNA–disease
associations. We constitute a multiplex and heterogeneous
network by integrating known lncRNA–disease association,
lncRNA function similarity, lncRNA Gaussian similarity
network, disease semantic similarity network, and disease
Gaussian similarity network, and then we generate the final
comprehensive predictive scores by the random walk with
restart on the multiplex and heterogeneous network, so as
to forecast potential lncRNA–disease associations. LOOCV
experimental verification results showed that the AUC was
0.68736, which exceeded other algorithms to predict lncRNA–
disease association. In novel diseases, the top 10 lncRNAs
were verified and predicted by database or literature. In
addition, the model can also predict diseases associated with
particular lncRNAs.

The network-based approach overcomes the disadvantage
of machine learning methods that need to construct negative
samples and not only is suitable for predicting lncRNA–
disease associations, but also proved to be widely used in
exploring disease-related miRNAs, drug repositioning, and
prediction of disease–gene associations. Therefore, if the known
lncRNA–disease association data are replaced with miRNA-
disease association data, MHRWRLDA can be used to predict
the potential miRNAs associated with disease; similarly, if it
is replaced by drug–disease association data or gene–disease
association data, it is possible to make contributions to drug
repositioning and the exploration of disease-related genes,
respectively. In the future, we will try to apply MHRWRLDA to
the above aspects for research.

However, there are some limitations. First, there are only
two methods for constructing the similarity network; if the
calculation method of the similarity network can be increased,
the number of layers in the multi-layer heterogeneous graph can
be increased to provide more possibilities for particle migration.
Second, the lncRNA–disease association data contain only 117
lncRNAs and 159 diseases, of which there are only 285 pairs
of correlations; a small data set may also affect the prediction
results. In the future, more association data will be discovered
and used to overcome the difficulties caused by the complexity

and inconsistency of biological data. In addition, efforts will be
made to combine multiple prediction models to achieve more
accurate predictions.
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Large-scale transcriptome data, such as single-cell RNA-sequencing data, have
provided unprecedented resources for studying biological processes at the systems
level. Numerous dimensionality reduction methods have been developed to visualize
and analyze these transcriptome data. In addition, several existing methods allow
inference of functional variations among samples using gene sets with known biological
functions. However, it remains challenging to analyze transcriptomes with reduced
dimensions that are interpretable in terms of dimensions’ directionalities, transferrable
to new data, and directly expose the contribution or association of individual genes.
In this study, we used gene set non-negative principal component analysis (gsPCA)
and non-negative matrix factorization (gsNMF) to analyze large-scale transcriptome
datasets. We found that these methods provide low-dimensional information about the
progression of biological processes in a quantitative manner, and their performances are
comparable to existing functional variation analysis methods in terms of distinguishing
multiple cell states and samples from multiple conditions. Remarkably, upon training
with a subset of data, these methods allow predictions of locations in the functional
space using data from experimental conditions that are not exposed to the models.
Specifically, our models predicted the extent of progression and reversion for cells
in the epithelial-mesenchymal transition (EMT) continuum. These methods revealed
conserved EMT program among multiple types of single cells and tumor samples.
Finally, we demonstrate this approach is broadly applicable to data and gene sets
beyond EMT and provide several recommendations on the choice between the two
linear methods and the optimal algorithmic parameters. Our methods show that
simple constrained matrix decomposition can produce to low-dimensional information in
functionally interpretable and transferrable space, and can be widely useful for analyzing
large-scale transcriptome data.
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INTRODUCTION

Recent developments in RNA-sequencing technology have
enabled the collection of large-scale transcriptome data at high
speed. For example, single-cell RNA-sequencing (scRNA-seq)
data of many biological systems have been accumulating
rapidly and provide opportunities to gain insights into complex
biological processes at both the systems level and the single-
cell resolution. Together with the advances in experimental
techniques, the recent development of computational methods,
including those for dimensionality reduction, allow the
visualization and analyses of high-dimensional transcriptome
data in low-dimensional space. For example, t-distributed
stochastic neighbor embedding (tSNE) and Uniform Manifold
Approximation and Projection (UMAP) have been instrumental
to tackling challenges in transcriptome data visualization and
are widely used in biomedical research (Van der Maaten and
Hinton, 2008; Stein-O’Brien et al., 2018; Becht et al., 2019;
Luecken and Theis, 2019). However, dimensionality reduction
methods usually do not provide low-dimensional space that is
directly interpretable in terms of biological functions: while these
approaches cluster related samples, the positioning of samples
along the derived dimension may not correspond to the degree
of any biological process even if a predefined gene set with
similar functions is chosen before the reduction. In addition,
the contribution or significance of individual genes related to
the derived dimension cannot be accessed directly with these
methods. The lack of interpretability of the dimensions makes
it challenging to visualize and analyze the progression of the
samples (cells) in known biologically functional space.

Existing methods for functional quantification, such as
Z-score and Gene Set Variation Analysis (GSVA; Hänzelmann
et al., 2013), are useful for obtaining “functional scores” with the
expression levels of multiple genes involved in the same biological
process. However, these methods do not have transferability in
that the scoring systems obtained with one dataset cannot be used
to analyze other datasets directly. This limits the utility of these
methods in predicting the progress of new data points, and in
studying the relationships between functional spaces in different
experimental settings.

One example of cellular processes that contains crucial
quantitative information is epithelial-mesenchymal transition
(EMT). While extreme changes of cell fate and morphology
occur in the classical form of EMT, recent studies with cancer
and fibrosis showed that partial EMT involving intermediate
states are prevalent, and it may be responsible for pathogenesis
(Pastushenko et al., 2018). To quantify the degree of EMT in
EMT-induced cell lines and tumor samples, several previous
studies analyzed transcriptomic data and their projections onto
epithelial (E) and mesenchymal (M) dimensions (Tan et al.,
2014; George et al., 2017; Cursons et al., 2018; Chakraborty
et al., 2020; Panchy et al., 2020; Hirway et al., 2021). Recently,
scRNA-seq analysis has shown that the progression of EMT
is highly dependent on inducing signals and cell types (Cook
and Vanderhyden, 2020). However, it remains challenging to
analyze rapidly accumulating transcriptome information on
EMT for obtaining biological insights across multiple conditions.

Improvement of methods for reducing dimensions of expression
data in a functionally meaningful manner is necessary.

In this study, we used gene set filtered variants of both
non-negative principal component analysis (gsPCA) and non-
negative matrix factorization (gsNMF) to analyze progression of
EMT in single cells at multiple timepoints. We show that these
methods describe large-scale transcriptome data of multiple EMT
stages in low-dimensional and functionally interpretable space.
Taking advantage of the methods’ transferability, we constructed
dimensionality reduction models that can predict the stages
of EMT with data from timepoints that were not used for
model construction. We show that these linear methods can be
used to compare functional spaces across multiple experimental
conditions. Furthermore, we demonstrate the utility of our
approach in visualizing drug responses in heterogeneous single
cell data. With a validation scheme for rigorous testing, we
provide recommendations for the choice of the methods and
the parametric settings. Overall, our work provides a new
toolbox for analyzing large-scale transcriptome data with efficient
visualization and functional quantification.

RESULTS

Overview of Method and Performance
Evaluation
The overall goal of our method is to find low-dimensional
space of transcriptome data that has both biologically meaningful
directionality and the ability to represent data points not used
in the procedure to derive the space. This requires one or more
preselected functional gene sets, which are readily available in
publicly available databases such as Molecular Signature Database
(Liberzon et al., 2011), and can be defined manually (Figure 1).
We propose two linear approaches of matrix decomposition:
gsPCA and gsNMF (see “Materials and Methods” section for
details). Briefly, gsPCA finds the optimal component (projection)
by maximizing the variance of the projected data points under the
constraint that each functional gene has a non-negative loading
value. For gsNMF, the gene-set-filtered transcriptome matrix is
approximated by the product of two non-negative matrices, one
of which represents a “meta” expression profile across samples,
while the other represents the non-negative coefficients of the
functional genes (the procedure for obtaining the number of
components is described in Supplemental Methods). Following
gsNMF, the leading component is selected for subsequent
analyses (see “Materials and Methods” section). With either
gsPCA or gsNMF, transcriptome data can be projected onto an
axis whose direction unambiguously represents expression of the
gene set and can be interrogated to reveal the contribution or
association of individual genes in the set to scores along the axis.

To test the performance of gsPCA and gsNMF in capturing
biological progression through functional space, we first used
time-course datasets containing single cells treated with EMT-
inducing signals for various periods of time (Cook and
Vanderhyden, 2020). In addition to the biological importance
of the stepwise progression in EMT (Pastushenko et al., 2018;
Kröger et al., 2019), the time labels in the datasets allow
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FIGURE 1 | Schematic of the gene set non-negative matrix factorization
(gsNMF)/gene set non-negative principal component analysis (gsPCA)
analysis process. A diagram of the analysis process used in this study
beginning with input data in the form of sequencing data and gene sets.
gsNMF/gsPCA is applied to this data to generate a functional scoring or
space in the form of component scores (see “Materials and Methods” section
for details). These scores can be used in two ways. First, without further data
labels, scores can be used to look at relationships between or across
biological processes beginning with low-dimensional visualization to identify
trends and putative groups. Quantities such as the correlation between
different functional scores can be computed for analysis. In addition, the
transferable nature of these models means that they can be used to infer the
position of new data points and contributions of individual genes, which allows
assessment of their importance. Screening can be done both between gene
sets and within gene sets. Secondly, when data labels are present, different
metrics can be used to assess the performance of a functional score in terms
of capturing variance: the common language effect size or f-probability can be
used to evaluate how well the functional score separates two distinct
populations while the variance explained or R2 can evaluate how much of the
variation of a numeric variable representing biological progression, such as
time, that the functional score can explain across the data.

us to evaluate the performance of the functional projection.
Specifically, we used two metrics for the evaluation: the coefficient
of determination (R2) for quantifying how well the projected
values explain the time labels, and the common language effect
size (f ) for measuring the separation between two neighboring
subsets of data with two labels (McGraw and Wong, 1992;
See “Materials and Methods” section). The usage of R2 is only

possible when the labels are numerical, while f can be used
with any type of label (Figure 1). Note that our overall goal
is not clustering the data points. Instead, we aim to represent
the progression along biologically meaningful axes. In addition,
neither gsPCA nor gsNMF requires data labels for analysis. The
two metrics are only used for evaluation. In later sections, we
will show analyses with additional data sets in which labels are
categorical and the biological processes are non-EMT.

gsPCA and gsNMF Capture Cell State
Progression in Low Dimensional
Functional Space
To show the performance of the proposed methods, we first
used two signature gene sets whose high expressions represent
the epithelial (E) and mesenchymal (M) states, respectively (Tan
et al., 2014; Watanabe et al., 2019; Panchy et al., 2020). With
the E and M gene sets, we first performed gsPCA and gsNMF
on time-course single-cell transcriptomes of TGF-β-treated A549
cells using two components per model for each gene set
(Cook and Vanderhyden, 2020). The two gene sets contain 179
and 114 genes, respectively, in the A549 data set. We then
projected the single-cell data from the first five time points,
which represent continuous EMT progression, onto the leading
dimension for each gene set. This produced two-dimensional
plots with dimensions that can be viewed as the progression
of cell states in the epithelial and the mesenchymal spectrums
(Figures 2A,B). We then compared the performance to two
widely used approaches: Z-score and GSVA (Figures 2C,D).
We found that gsPCA and gsNMF both better explained the
overall variance of time across the first five time points of EMT
progression (Adjusted R2 = 0.46 and 0.48, respectively) than
Z-score (Adjusted R2 = 0.31) and GSVA (Adjusted R2 = 0.08).
Likewise, when considering neighboring time points, we found
that E-scores tended to decrease and M-scores tended to
increase with time of TGF-β treatment (Figure 2E), with both
scores significantly separating all neighboring time points for
gsPCA and gsNMF and yielding higher f probabilities than
other methods in all but one case (E-scores at 3 vs. 7 days,
Figure 2F). This suggests that gsPCA and gsNMF not only serve
as visualization methods of functional space with defined gene
sets, but also describe heterogeneous cell populations containing
transitional information in a rigorous fashion. Between the two
methods, we found the gsNMF performed better with regard to
both overall variance (Adjusted R2 0.48 vs. 0.46) and separating
time points (Figure 2F) than gsPCA. However, gsNMF requires
selecting the leading dimension based directly on correlation
with time of EMT progression, suggesting that gsPCA may be
more reliable in a purely unsupervised setting (see “Materials and
Methods” section).

In the next few sections, we show various utilities of
these linear methods based on their transferability and
high-performance features. Because gsNMF gives the best
performance with the A549 EMT data set, our discussion will
focus on results obtained with gsNMF. The results using gsPCA,
which had similar performance in all cases, are included in
Supplementary Materials.

Frontiers in Genetics | www.frontiersin.org 3 August 2021 | Volume 12 | Article 71909940

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-719099 August 16, 2021 Time: 13:59 # 4

Panchy et al. Functional Projection of RNA-Sequencing Data

FIGURE 2 | Visualization of epithelial-mesenchymal transition (EMT) progression in TGF-β induced A549 cells by multiple scoring methods. (A–D) Contour plots of
gene set scores of E (X-axis) and M (Y-axis) genes from four different scoring methods, gsPCA (A), gsNMF (B), z-score (C), and GSVA (D). Color indicates the time
of TGF-β induction from 0 days (dark green) to 7 days (dark purple). Circles indicate the mean E- and M-score of samples from each time point and the associated
error bars show the standard deviation. (E) A box-plot showing the distribution of E (red) and M (blue) scores across all five time points of TGF-β induction from the
gsNMF model. Whiskers indicate the 1.5 inter-quartile range of each distribution while the red points indicate outliers beyond this range. (F) Bar chart of the f
probability values for E (top) and M (bottom) scores between all consecutive pairs of time points. Color indicates the method used to produce the score: red is
z-score, orange is GSVA, blue is gsPCA, and purple is gsNMF. Bars marked by an “x” indicates that the score did not significantly separate the samples from those
time points (Mann–Whitney U-test, p < 0.05).

Prediction of Cell States With Data From
New Conditions
The transferability of gsPCA and gsNMF methods allows the
projection of new high-dimensional data points onto previously
derived functional dimensions. Similarly, these methods can be
used to derive functional dimensions with partial information
of the biological process in terms of its stages. To show the
predictive power of gsNMF, we removed samples from the 0-,
1-, and 7-day (including revertant) time points in the A549 EMT
data (i.e., the start, middle, and the end of the continuous portion
of TGF-β induction) and then performed the dimensionality
reduction. We found that the low-dimensional functional space
was robust with respect to the removal, regardless of whether
the missing time point is in the middle of the progress or at

the extremes (Figures 3A–D), such that when we projected the
removed data points onto the space derived from a partial dataset,
their positions were highly correlated with their positions when
they were included in the data set [Pearson correlation coefficient
(PCC > 0.95)]. However, while the inferred 1-day samples were
similarly separable from samples in 8-h (f = 0.81 for E, 0.84
for M) and 3-day (f = 0.75 for E, 0.79 for M) time points, we
observed reduced separability between the both inferred 0-day
vs. 8-h (f = 0.52 for E, 0.63 for M) and 3-day vs. inferred 7-
day (f = 0.53 for E, 0.55 for M) time points, with E-scores not
significantly separating the first and the last time points (Mann–
Whitney U-test, p = 0.13 and 0.16, respectively). We also applied
the same inference procedure to samples which were exposed to
a transient EMT-inducing signal and allowed to revert. However,
because the 8- and 24-h reversion samples largely overlap with
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FIGURE 3 | Predicting A549 samples from specific time points using gsNMF. (A) Scatter plot of E (X-axis) and M (Y-axis) scores for all TGF-β induction samples
using gsNMF. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (B–D) Scatter plot of 0-day (green, B),
1-day (yellow, C), and 7-day samples (purple, D) inferred using a gsNMF model built with all other time points (gray). (E) A scatter plot of TGF-β induction samples
with TGF-β reversion samples (i.e., 7 days induction followed by removal from TGF-β). Induction samples are labeled as in panel (A), while reversion samples are
colored blue, with darker shade indicating longer time since removal. (F) Scatter plot of 3-day reversion samples (dark blue) inferred using a gsNMF model built with
all non-reversion time points (gray).

7-day (hence their removal for 7-day inference, Figure 3E), we
focused on inferring 3-day reversion samples after performing
dimensionality reduction on the data set without any reversion
samples. We found that 3-day reversion samples were positioned
in the middle of the EMT spectrum, consistent with when they
were included in functional space construction (PCC = 0.99
for E and 0.98 for M, Figure 3F). Additionally, the inferred 3-
day reversion samples were similarly separable from the 7-day
samples (f = 0.91 for E, 0.91 for M) as when they were when
included in functional space construction (f = 0.90 for M, 0.91 for
M). We obtained similar results using gsPCA when inferring the
position of samples from missing time points (Supplementary
Figure 1), but neither E- nor M-scores significantly separated
the end points (0-day vs. 8-h and 3- vs. 7 day). These results

suggest that gsPCA and gsNMF can predict cell states of new data
without retraining the model, and that these methods can be used
to predict new cell states that have not been observed directly,
though it may be difficult to separate these samples when they
are positioned the edge of the spectrum and/or when the new
samples are closely related to existing samples.

Using Functional Space Across Cell
Lines
The transferability of gsNMF can be extended to data
from different cell lines. We performed gsNMF on single-
cell transcriptomes of TGF-β-treated DU145 from Cook and
Vanderhyden (2020) using the same procedure as A549 and
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FIGURE 4 | Transferring gsNMF models between A549 and DU145 TGF-β induced samples. (A–D) Scatter plot of E (X-axis) and M (Y-axis) scores for different
combinations of data and gsNMF model: (A) A549 model on A549 data, (B) DU145 model on A549 data, (C) A549 model on DU145 data, and (D) DU145 model on
DU145 data. Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple). (E,F) Comparison of E-scores of
samples from A549 (E) and DU145 (F) data. The X-axis is the E-score from using the model from the same data set (A549 on A549 and DU145 by DU145), while
the Y-axis is the E-score from the opposite model (DU145 on A549 and A549 on DU145). Samples from different time points are indicated by color going from 0
days (dark green) to 7 days (dark purple). (G,H) Comparison of M-scores of samples from A549 (G) and DU145 (H) data. The X-axis is the M-score from using the
model from the same data set (A549 on A549 and DU145 by DU145), while the Y-axis is the M-score from the opposite model (DU145 on A549 and A549 on
DU145). Samples from different time points are indicated by color going from 0 days (dark green) to 7 days (dark purple).

obtained a moderate explanation of variance in time of EMT
progression using the E and M dimensions (Adjusted R2 = 0.31).
We then inferred the position of the five continuous time
points in the A549 data set using the DU145 model and vice
versa (Figures 4A–D). Transferred models (DU145 on A549
and A549 on DU145) were able to separate the individual time
points, but overall performance decreased as they can explain
only part of the variance seen in the original models (Adjusted
R2 = 0.30 for DU145 on A549 and 0.25 for A549 on DU145).
Therefore, it was expected that the individual sample scores
would be positively correlated between models along both the
E (Figures 4E,F) and M dimensions (Figures 4G,H). However,
while the correlations between all pairs of scores were significant
(minimum p = 2.7e−73), the correlation between E-scores was
weaker overall and worse for models of DU145 (PCC = 0.31) than
models of A549 (PCC = 0.46). Comparably, the M-scores for both
models of A549 (PCC = 0.84) and models of DU145 (PCC = 0.84)
were more highly correlated and consistent between models.
However, none of the sample scores between A549 and DU145
models were as correlated as inferred sample scores from missing
point and the complete A549 model (PCC > 0.95). This suggests
a reduced transferability across cells lines compared to within
cells lines. In addition, across the data sets we used, changes along

the M dimension were more consistent than the E dimension. We
observed similar results using gsPCA, including M-scores being
more correlated (PCC, A549 = 0.92, DU145 = 0.94) than E-scores
(PCC, A549 = 0.76, DU145 = 0.72; Supplementary Figure 2).
This is consistent with the fact that the same inducing agent was
used across all cell lines, and also implies that inducing EMT in
different cell types may yield more consistent changes in M genes
compared to E genes.

Using Functional Space Across
Experimental Conditions
In addition to predicting the locations in the functional space
across cell lines, gsPCA and gsNMF can be used across both
experimental conditions and cell types. To test the cross-
condition transferability, we first used our low-dimensional
functional EMT space for A549 and DU145 cells to analyze
tumor transcriptomes measured with bulk RNA-seq (The Cancer
Genome Atlas, TCGA). To perform the most comparable
transfer, we used lung adenocarcinoma (LUAD) and prostate
adenocarcinoma (PRAD) data, which correspond to A549 and
DU145 in terms of tissue type. We considered transfers between
both similar (projecting LUAD data by a A549-trained model,
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FIGURE 5 | Transferring gsNMF models to TCGA data. (A,B) Scatter plots of E-scores for PRAD (A) and LUAD (B) from transferring gsNMF models built on A549
(X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA based E-score of the TCGA data set. (C,D) Scatter plots of M-scores for
PRAD (C) and LUAD (D) from transferring gsNMF models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual points indicates the original GSVA
based M-score of the TCGA data set.

and PRAD by a DU145-trained model) and dissimilar (LUAD
by DU145 and PRAD by A549) cell types. We found that the
low-dimensional functional space obtained with in-vitro data
captured tumor sample heterogeneity in the EMT spectrum
when compared to our previous GSVA analysis of the same
data (Figure 5). Overall, the original E- and M-scores were
significantly correlated with the A549 models in all cases (smallest
p = 2.8e−34). Models from both cell lines showed similar
correlation with the original GSVA scores, except in the case
of PRAD scores, where the DU145 model was better correlated
than the one built on A549 data (Table 1). We also observed
that M-models built on A549 and DU145 data were more similar
to each other than E-models, and we obtained similar results
with gsPCA (Supplementary Figure 3), which showed greater
overall correlation with GSVA scores, but the same pattern
of reduced correlation for the A549 model of PRAD E-scores
(Supplementary Table 1).

It should be noted that these results are partly due to
higher average correlation of expression of EMT genes in
bulk RNA-seq data (average PCC = 0.28 LUAD, 0.38 PRAD

for all pairs of M-genes, average PCC = 0.18 LUAD, 0.10
PRAD for E-genes), compared to the scRNA-seq data (average
PCC = 0.01 in all cases). This is expected given that bulk
RNA-seq is derived from populations rather than individual
cells, but as a result, the effect of differentially weighing
individual genes across models and components within models
is reduced. This would explain the stronger correlation of
M-scores between A549 and DU145 derived models, as well as
the reduced performance of A549 on PRAD E-gene data, which
is the most variable bulk RNA-seq data set. Yet, as the same
time, this would suggest the variance present in PRAD bulk
RNA-seq data is more similar to the model built on DU145
scRNA-seq data, than scRNA-seq data from a more dissimilar
background. This also has implication for comparing multiple
model components as they tend to be more similar in the bulk
RNA-seq model despite if they were anti-correlated (gsNMF)
or relatively uncorrelated (gsPCA) in the original scRNA-seq
model or other scRNA-seq data (see Supplementary Table 2).
Nonetheless, we have shown that the transferred models are,
overall, consistent with the prior analysis of TCGA data and
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detected the expected variance in bulk RNA-seq data when it
is present.

Using Functional Space Across Spatial
and Temporal Progression
We next examined if gsNMF can produce transferrable models
that reveal both spatial and temporal progression of EMT. Using
single-cell RNA-seq, McFaline-Figueroa et al. (2019) previously
found that epithelial cells exhibit an E to M spectrum from the
inner position of a colony to the outer position. This dataset
that contains binarized identities (inner and outer) obtained
with macro-dissection (defined as spatial EMT data) from two
experiments, one in which cells were allowed to migrate without
external induction of EMT (Mock), and one in which EMT
was induced with TGF-β (TGF-β). Since there are only two
populations in this data set, the leading dimension for E- and
M-scores was chosen to maximize the separation based on the
f probability. Overall, three analyses were performed for each
data set: spatial data with its own gsNMF model, spatial data with
the model from the other spatial data set (TGF-β on Mock and
Mock on TGF-β), and spatial data with A549 time series model
(Figure 6). As with our previous results, the best separation of
inner and outer data points was observed when Mock (f = 0.61
for E, 0.73 for M) and TGF-β (f = 0.77 for E, 0.82 for M) data sets
had their own model applied to them. However, for Mock data,
the TGF-β model (f = 0.64 for E, 0.69 for M) outperformed the
A549 model (f = 0.45 for E, 0.60 for M) on both dimensions and,
in fact, the E dimension of the A549 model did not effectively
separate inner and outer points in the Mock data (p = 0.99).
In comparison, the Mock model better separated TGF-β inner
and out points in the E direction (f = 0.68 for E, 0.63 for M),
while the A549 model better separated them in the M direction
(f = 0.59 for E, 0.76 for M). gsPCA models gave similar results,
including the A549 model yielding better performance along the
M-dimension (f = 0.76) for TGF-β data than Mock data (f = 0.68;
Supplementary Figure 4).

The fact the A549 model better separated TGF-β spatial
points along the M dimension than the Mock model, but did
not outperform TGF-β on the Mock model suggests that there
is conserved TGF-β induced M-gene expression regardless of
context. To explore the basis of this similarity in M-scores,
we compared the coefficient matrices (H, see “Materials and
Methods” section) between Mock, TGF-β, and A549 gsNMF
models, which represent the weights of individual genes along
the components. We found little correlation between A549
and spatial E-gene coefficient values for the lead dimension
(PCC = −0.02. p = 0.82 for Mock; PCC = 0.06, p = 0.57 for

TABLE 1 | Pearson correlation coefficients of E and M scores between GSVA,
A549, and DU145 models of TCGA data.

TCGA data set GSVA vs. A549 GSVA vs. DU145 A549 vs. DU145

PRAD E-genes 0.49 0.72 0.43

LUAD E-genes 0.72 0.71 0.52

PRAD M-genes 0.85 0.84 0.90

LUAD M-genes 0.62 0.65 0.86

TGF-β), however, while there was also little correlation between
A549 and spatial M-gene coefficient values for the Mock model
(PCC = 0.02, p = 0.83) there was significantly positive correlation
for the TGF-β model (PCC = 0.48, p = 8.8e–7). Additionally,
we examined which genes were in the top 10th percentile of
coefficient values across models and found that the A549 and
TGF-β models share six M-genes (FN1, LGALS1, SERPINE1,
TAGLN, TPM2, and VIM), compared to three E-genes (ELF3,
PERP, and SLPI). Furthermore, another four E-genes (AREG,
KRT18, KRT8, and NQO1) were in the top 10th percentile of
A549 E-gene coefficient values, but the bottom 10th percentile
of TGF-β E-gene coefficient values. We observed similar results
from gsPCA, finding significant correlation of loading values
only between A549 and TGF-β M-models (PCC = 0.61, p = 5.8e–
11) with many of the same genes in the top 10th percentiles
of both models (FN1, TPM2, VIM, TAGLN, GLIPR1, and
LGALS1). Notably, the M-genes with high coefficient values in
both A549 and TGF-β models across both A549 and TGF-β
models are key regulators/inducers of EMT (FN1, LGALS1, and
VIM; Mendez et al., 2010; Griggs et al., 2017; Zhu et al., 2019)
or specific activators of migratory behavior in epithelial/cancer
cells (TAGLN, TPM2; Lee et al., 2010; Shin et al., 2017).
Conversely, while KRT8 and KRT18 are considered epithelial
cytokeratins (Tomaskovic-Crook et al., 2009), both of these genes
undergo an initial increase in expression in the A549 time-
course (Supplementary Figure 5), compared to largely unaltered
distributions across the inner and outer samples of migration
data. This is consistent with previous observations that, both
KRT8 (Wang et al., 2020) and KRT18 (Zhang et al., 2019) are
over-expressed/aberrantly expressed in certain human cancers
and such expression is associated with cancer progression/poor-
prognosis. This potentially reflects intermediate EMT states
caused by full or partial arrest of the process at an early timepoint,
independent of the resulting migratory potential of the cells.
Coefficient values for all genes in each model can be found in
Supplementary Table 3.

Together, these results suggest a coherence of the progression
of the EMT program in both the spatial and temporal context
with regard to M-genes, while E-gene progression appears
to be more sensitive to context, being only transferable
between the two spatial data sets. The coefficient values of
genes across both contexts offers insight into the difference
in transferability between E and M models: high scoring
M-genes across both contexts constitute important drivers of
EMT/migration, suggesting common regulatory mechanisms,
while the differential expression of KRT8 and KRT18 across time,
but not space, suggests E-gene expression can be sensitive to
biological context. Finally, these results highlight the usefulness
of the transferability of gsPCA and gsNMF outside of a time
series context, where performance may need to be evaluated on
discrete groups.

Characterizing Relationships Among
Multiple Functional Spectrums
To test the capacity of gsNMF to infer functional spaces across
a broader range of gene sets and data, we first returned to
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FIGURE 6 | Transferring gsNMF models between temporal and spatial data sets. (A–C) Scatter plots of E (X-axis) and M (Y-axis) scores for Mock spatial data from
gsNMF models built on different data sets: Mock spatial data (A), TGF-β induced spatial data (B), and TGF-β induced A549 temporal data (C). The color of the
sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue). (D–F) Scatter plots of E (X-axis) and M (Y-axis)
scores for TGF-β spatial data from gsNMF models built on different data sets: TGF-β induced spatial data (D), Mock spatial data (E), and TGF-β induced A549
temporal data (F). The color of the sample indicates whether it originates from a cell in the inner-ring (non-motile, red) or the outer ring (motile, blue).

the A549 data set and examined the expression changes of
multiple gene sets across EMT progression. Taking advantage
of the high-efficiency of this method, we began with 5455 C2
curated gene sets from the Molecular Signature Database (see
“Materials and Methods” section) and applied a gsNMF model
to A549 data for each. For simplicity, we used a two-component
model, but we applied stricter convergence and selection criteria
because of the diversity of gene set size and coverage by the
data set (see “Materials and Methods” section). Overall, 867
gene sets (15.9%) had a leading dimension whose magnitude
of correlation (PCC) was > 0.5 (Supplementary Table 4). As
such, we expected that functional spaces constructed from highly
correlated gene sets should show similar results to our original E
vs. M functional space.

To construct unambiguous functional spaces, we initially
focused on pairs of up/down regulated gene sets where the
leading dimensions had a high magnitude of correlation
(PCC), but opposite sign, in order to emulate our original
E/M model of EMT progression for A549 (Figure 7A).
For example, two pairs of gene sets, up regulation
or down regulation in response to KRAS knockdown
(SWEET_KRAS_TARGETS, Figure 7B) and up regulation

or down regulation in low-malignancy ovarian cancer relative
to control (WAMUNYOKOLI_OVARIAN_CANCER_LMP,
Figure 7C), yielded functional spaces similar to E and M genes
(Figure 7A) and captured a similar amount of variance explained
among non-revertant cells (R2 = 0.48 and 0.49, respectively).
Furthermore, the results suggest that EMT progression is
correlated with expression of genes normally repressed by
KRAS, a pro-proliferation signal, and anti-correlated with the
expression of genes associated with tumorigenic, but non-
metastatic ovarian cancer, consistent with the idea of the E
state of EMT being pro-proliferative and the M state being
pro-migratory. However, not all pairs of gene sets provide
well defined functional spaces: for example, the gene set
down-regulated in metastatic vs. non-metastatic head and
neck tumors (RICKMAN_METASTASIS_DN) produced a
strong anti-correlated leading dimension (PCC = −0.63), but
the leading dimension of the up-regulated variant has a far
smaller magnitude of correlation (PCC = 0.34). However,
combining the metastatic down-regulated gene set with
another correlated gene set, genes silenced during angiogenesis
(HELLEBREKERS_SILENCED_DURING_TUMOR_ANGIOGE
NESIS, PCC = 0.66), generated a functional space of EMT
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progression competitive with E and M genes (Figure 7D,
R2 = 0.48). As such, functional space constructs need not be
confined to reciprocal or connected gene sets, though this does
not excluded the possibility of an underlying, common genetic
basis between these functional spaces. Nevertheless, the divergent
origins of the gene sets in terms of the biological processes they
represent demonstrates the breadth over which the functional
significance of variation can be explored using this methodology.

To move beyond EMT associated data and gene sets, we
next used gsNMF to analyze data from McFarland et al. (2020)
which is composed of 7,245 cells with heterogeneous origins
treated with trametinib for 3, 6, 12, 24, or 48 h as well
as an untreated control (0 h). Because this data set mixes
24 cell lines from several different origin tissues and focuses
specifically on the response to a cancer drug, we focused our
exploration of functional spaces on 1,022 gene sets derived from
the C6 database from Molecular Signature Database as well
as the drug resistant genes identified by Wang et al. (2017)
and their overlapping KEGG pathways and GO terms (see
“Materials and Methods” section). Overall, 57 gene sets (5.6%)
had a leading dimension whose magnitude of correlation (PCC)
was >0.5 and relaxing this threshold to >0.4 yielded only
200 (19.6%) gene sets, suggesting that the explained temporal
variance in this data set is lower than that obtained with A549
(Supplementary Table 5). Nevertheless, using positive regulation
of gene expression (GO:0010628) and negative regulation of gene
expression (GO:0010629), we were able to a functional space
of trametinib response with similar performance (R2 = 0.30,
Figure 8A) to our model of EMT progression in DU145 data
(R2 = 0.31). Additionally, a number of oncogenic signatures
which were positively correlated with trametinib response,
though there were no up/down regulated pairs that with leading
dimensions in opposed directions. Instead, we selected two
oncogenic signatures, down regulation in response to KRAS
over-expression (KRAS.600_UP.V1_DN) and down regulation
in response to LEF over-expression (LEF1_UP.V1), whose
leading dimension were strongly correlated with trametinib
response (PCC = 0.54). We then took the negatively correlated
component of the corresponding up regulation gene sets models
(KRAS.600_UP.V1_UP and LEF_UP.V1_UP), even though
the magnitude of the positively and negatively correlated
components was similar (difference the absolute value of
PCC ≤ 0.005). This process gave functional spaces which
improved variance explained over the previous gene regulation
model (R2 = 0.35 and 0.36, respectively, Figures 8B,C). Together,
these results suggest suppression of gene expression in general
and of oncogenes specifically in response to trametinib treatment,
consistent with the results in McFarland et al. which observed
greater enrichment of KRAS responsive genes among down-
regulated genes in later time points relative to earlier ones. As
with A549 data, we were also able to combine distinct functional
sets, response to drug (GO:0042493, PCC = 0.58) and positive
regulation of cell cycle (GO:0045787, PCC = −0.49) to explain
an comparable amount of variance in expression as the reciprocal
onco-gene sets (R2 = 0.36, Figure 8D). As such, while the amount
of variance we can capture with our models is dependent on the
data set, our approach overall is capable of producing functional

spaces that broadly characterize variance in expression across
diverse data and gene sets.

DISCUSSION

Previous methods that aimed to address the challenges of
visualizing single-cell data in functional space were primarily
based on weighted sum of expression values or Kolmogorov–
Smirnov test with full datasets (Hänzelmann et al., 2013;
DeTomaso and Yosef, 2016). These methods are useful to
analyzing samples with functional gene sets, they do not provide
transferability which is essential for predicting cell states with
existing models and new data. We showed that constrained
linear transformation enables good performance in depicting cell
states with straightforward interpretation in functional space and
satisfactory efficiency. While more sophisticated methods such
as deep generative models have potentials to address similar
problems, current methods primarily focus on the interpretability
in terms of inter-sample distances in low dimensions rather than
the dimensions themselves (Ding et al., 2018; Lopez et al., 2018),
and we expect that the gsPCA and gsNMF methods are more
efficient than models based on non-linear connectivity.

Factorization approaches like PCA and NMF have previously
been applied to the problem of gene expression, with NMF in
particular having been used to deconvolute expression patterns
scRNA-seq data sets (Chen and Zhang, 2018; Fujita et al., 2018;
Min et al., 2018; Kotliar et al., 2019; Zhang and Zhang, 2019),
but these approaches have primarily focused on the unsupervised
clustering of samples and/or for de-novo module discoveries
at relatively high dimensionality (n > 10). In contrast, our
approach suggests there is a utility in applying these factorization
approaches to interrogating the relationship between known
gene modules and data with implicit structure and/or separable
populations of samples, particularly when assessing a single
biological process (EMT) across multiple contexts (e.g., cell line,
time and space), such that the simplicity of low-dimension space
(n = 2) can be leveraged for visualization and analysis.

In this work we have found that conserved EMT gene
expression signatures can be used to describe stages of EMT in
multiple cell lines (e.g., A549 and DU145), and these signatures
not only capture the subpopulation heterogeneity resulting from
differential times of treatment with EMT-inducing signals such
as TGF-β, but also reflect the EMT program driven by spatial
heterogeneity with cell populations (McFaline-Figueroa et al.,
2019). These results are consistent with the existence of conversed
EMT program across cell lines (Cook and Vanderhyden, 2020),
but do not contradict the idea of context specific expression
as models trained and applied to the same data set always
explained more variance in EMT progression. The coexistence
of a common EMT signature and context specific expression is
further supported by the observation that M-scores were more
consistent and better separate data across different contexts of
EMT than E-scores, and the related observation that M-gene
component values were correlated across spatial and temporal
models, while E-genes were not. This suggests that M-gene
induction by TGF-β is consistent across cellular contexts, while
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FIGURE 7 | Visualization of EMT progression in TGF-β induced A549 cells by multiple gene sets. (A–D) Contour plots of A549 functional space generated using
gsNMF with different gene sets: E vs. M (A), KRAS knockdown up and down (B), non-malignant ovarian cancer up and down (C), and metastasis downregulation
vs. angiogenesis downregulation (D). Color indicates the time of TGF-β induction from 0 days (dark green) to 7 days (dark purple). Circles indicate the mean gene set
score of samples from each time point and the associated error bars show the standard deviation.

changes in E-gene expression are more variable, possibly due to
greater sensitivity to cell line, environmental context, or other
initial conditions effecting the cell prior to induction.

The transferability of models across EMT context indicates the
synergy between spatial arrangement of cells and external signals
(e.g., TGF-β) in determining the stages of EMT. In addition,
we found that the functional dimensions obtained with TGF-
β can serve as reasonable approximations for the positioning
of tumor transcriptomes in the EMT spectrum. Similar to
the EMT spectrum, many biological processes involve stepwise
changes of gene expression programs. A possible mechanism
underlying these non-binary programs is the feedback-driven
formation of stable intermediate cell states (Yui and Rothenberg,
2014; Ye et al., 2019). With the rapid advances of the single-
cell technology, transcriptome-wide gene expression data will
become available for more biological systems. We expect
that our functional projection methods can be widely useful
for visualizing and analyzing these data. In particular, the
transferability of the models can be a powerful feature for
interrogating the relationships among different experimental
conditions and cell types.

MATERIALS AND METHODS

Gene Expression Data Sources
Single-cell RNA-sequencing data and meta data for A549 and
DU145 cell lines were obtained from Cook and Vanderhyden
(2020). In brief, we obtained pre-processed SeuratObjects for
A549 and DU145 TGF-β as .rds data files and extracted
expression data for E, M, all genes using the ScaleData function
from Seurat to regress out mitochondrial gene expression, total
unique reads in a sample, cell cycle gene expression, and
batch effects as well as center and scale each data set across
genes (Stuart et al., 2019). For McFaline-Figueroa et al. (2019)
spatial data we obtained aggregated count data from GEO in
the form of a pre-processed .cds file (GSE114687). We then
dropped genes expressed in less than 50 cells (∼1% of each
data set) from Mock and TGFB1 and split samples into Mock
and TGFB1 subset for subsequent steps. Because we planned
to compare models from these data to those from A549 and
DU145, we followed the preprocessing procedure from Cook
and Vanderhyden: we normalized the Mock and TGFB1 data
sets independently in Seurat using the NormalizeData function
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FIGURE 8 | Visualization of trametinib treatment data by multiple gene sets. (A–D) Contour plots of trametinib treatment functional space generated using gsNMF
with different gene sets: positive vs. negative gene regulation (A), KRAS overexpression up and down regulation (B), LEF overexpression up and down regulation
(C), and positive cell-cycle regulation vs. drug response (D). Color indicates the time of trametinib treatment from 0 h (dark green) to 48 h (dark purple). Circles
indicate the mean gene set score of samples from each time point and the associated error bars show the standard deviation.

and then used ScaleData to regress out mitochondrial gene
expression, total unique reads in a sample, and cell cycle gene
expression as well as scale each data set across genes. Finally,
we obtained Cell Ranger output for trametinib time-course data
from McFarland et al. (2020) and processed it in R using the
Read10X function. We dropped the DMSO time course, and used
the Untreated samples as time 0 as well as annotations from the
original manuscript to eliminate low quality cells and then filtered
genes expressed in less than 73 cells (∼1% of the data set). Pre-
processing was done in Seurat as with using NormalizeData and
ScaleData as previously described, except that we additionally
regressed out the effect of each different cell line used in the
experiment, but did not regress out cell-cycle gene expression as
the original manuscript suggested that cell cycle disruption may
be induced by trametinib treatment.

TCGA bulk RNA-seq data was obtained from TCGAbiolinks
(Colaprico et al., 2016; McFaline-Figueroa et al., 2019). Raw
counts were transformed to log2TPM with a pseudo-count of 1
using gene models for the hg38 annotation of the human genome
obtained from RefSeq (O’Leary et al., 2016).

Non-negative PCA and NMF
Gene set non-negative principal component analysis
uses the non-negative approach to PCA pioneered by

Sigg and Buhmann (2008). In brief, the vector of weights,
w, used to define the first principal component of PCA is defined
such that it maximizes the variance of the first component, i.e.:

arg maxw wTCw

Where C is the covariance matrix of the original data set X and
w is unit vector (||w||2 = 1). In our case, X is an m by n matrix
of expression values where m is the number of samples and n is
the number of genes in the selected gene set. This method for
determining w can be treated as an expectation maximization
problem where the original data is projected using the current
estimate of w (y = Xwt) and this projection is used to re-estimate
w using the following minimization step:

wt+1 = arg minw

N∑
n =1

||xn − ynw||22

Where xn are the rows of the original data and yn are the rows of
the projected data (Sigg and Buhmann, 2008). This expectation-
maximization formulation allows additional constraints on w,
including forcing the component values to be non-negative. Note
that the non-negativity constraint applies only to the weight
components such that negative scores can still exist if there
are negative values in underlying data, such as those produced
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by centering expression data to zero which we did for all
gsPCA inputs. Subsequent components are calculated in the
same way, under the constraint that they are orthogonal to
the preceding ones.

NMF involves factorizing the original data matrix of non-
negative values into two matrices whose product estimates the
original data, i.e.:

X ∼=WH

Where X is the original matrix (m by n), W is the basis or features
matrix (m by p), and H is the coefficient matrix (p by n), such that
m is the number of rows in the original matrix (samples in our
case), n is the columns (genes in our case), and p is the number of
components used in the factorization. In addition to factorizing
X, NMF naturally clusters the elements of the original data: W
represents the “centers” of column clusters whose memberships is
determined by the relative coefficient values in H, and vice versa
with H representing the centers of row clusters determined by W
(Brunet et al., 2004). Because the original matrix is constrained
to being non-negative, we subtracted the minimum of value of
the scaled expression matrix from all values to create a non-
negative input matrix. As a consequence, the values of the W
and H matrices must likewise be non-negative such that product
is non-negative.

Implementation of Dimension Reduction
Approaches
We implemented non-negative PCA in R using the nsprcomp
function (with the option nneg = TRUE) from the package
of the same name (Sigg and Buhmann, 2008). We used the
standard convergence parameters for the algorithm as these
produced consistent principal components across multiple runs
and different number of components. This is to be expected as
nsprcomp greedily maximizes the variation explained by each
component in order. For gsNMF, we used the Scikit-learn
implementation of NMF (Pedregosa et al., 2011). To optimize
convergence criteria, we performed a cross-validation analysis
of A549 data and found that a two-component model fit with
a tolerance of 1e–6 and a max of 500 iterations gave the
best results (see Supplemental Methods and Supplementary
Figure 6). We also tested ten random seeds of the two component
A549 model on the full data to confirm that consistent results
were given (average PCC of dimensions > 0.99). We tested ten
random seeds against the other data sets to tune the convergence
parameters, raising maximum iterations to 2,500 and tolerance
to 1e–9 if the initial parameters did not yield consistent results
(i.e., average PCC of dimensions > 0.99). GSVA and Z-score
methods were implemented using the GSVA package in R
(Hänzelmann et al., 2013).

Unlike GSVA and Z-scores methods, which produce a single
score per gene set, gsPCA and gsNMF both produce multiple
sample level scores in the form of principal component scores
(wX, gsPCA) or the columns of the features matrix (W, gsNMF),
while the corresponding loading values/weights (w, gsPCA) or
coefficient matrix (H, gsNMF) represent gene level scores (i.e.,
gene importance). Therefore, we need to choose one of these
sample level scores as a “leading dimension” to represent each

gene set in functional space. For gsPCA, we used the first
principal component as this represents the direction of greatest
variance for gene expression in that gene set. For gsNMF, we
used the magnitude of correlation between the columns of the
transform matrix and the sample metric that best represented
progression in EMT (i.e., time for A549 and DU145 data). For E
and M genes, we also required the sign of correlation to match the
expected change in E and M genes during EMT (i.e., picking the
greatest negative PCC for E and the greatest positive PCC for M).
For our spatial EMT data, where there were only two populations,
f probability was used instead (see below), but with the same
constraint on the direction of E and M dimensions (i.e., higher M
scores for outer samples and higher E scores for inner samples).

Evaluating Functional Spaces
To evaluate a functional space, we used two metrics. First, if
the sample data had an associated time variable, we created
a model of time as a linear function of the two axes of the
functional space (time ∼X + Y) and calculated the coefficient
of determination, which is the percent of overall variance in
the dependent variable explained by the independent variables
(Adjusted R2). Second, to evaluate the ability of functional space
to separate distinct populations, such as neighboring time points
or spatial locations, we used the common language effect size (f ),
which is the probability that a value or score randomly sampled
from one population will be larger than a random score from
the other. This metric is advantageous because we can calculate
it from the test statistic of Mann–Whitney U-test, which also
provide a measure of significance, and is related to the area under
of the receiver operating curve (AUC-ROC), which is commonly
used to asses classification algorithms. Additionally, since the f
probability is reciprocal, the choice which population we want
to be larger is arbitrary, so for EMT we can chose to calculate
the f probability such that the larger population is the more
progressed for M and less progressed for E. Therefore, a higher
probability of f always indicates better correspondence with EMT
progression in our results.

Inference and Model Transfer
To infer the position of new data in functional space for gsPCA,
we multiplied the new data directly by loading vectors (also
known as weights, w) of the E- and M-scores. For gsNMF,
we used the Scikit-learn “transform” method which transforms
the input data according to the fitted model (i.e., it fixes the
coefficient matrix, H, and generates a new feature matrix, W).
In both cases, we used the same leading dimension for inference
as in the original model. For inferring missing data points, no
further steps were required as the new data always had the same
coverage of the E and M gene sets as the original. However, for
transferring models across cell-line, TCGA, and spatial data, we
first had to determine the common set of genes between the two
data sets. Common genes were then used to filter the weight
vectors for gsPCA and to refit the model on the original data
using the common subset of genes for gsNMF. The data set that
was the target of the transferred model was then subset by the
same common set of genes and inference was done as described
previously. Transferred models were assessed against the new
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data set using the same approaches as the original models, but
relationship between E/M-scores and gene loading/coefficient
values between models were assessed by PCC.

Multi-Gene Set Evaluation
C2 gene sets were obtained from the Molecular Signature
Database (version 7.1)1 (Subramanian et al., 2005; Liberzon
et al., 2011, 2015). gsNMF was performed as described
for EMT gene sets expect that we increased the iteration
(2,500) and convergence threshold (1e–9) of the NMF
algorithm to ensure consistent results across the gene sets
which varied widely in size (2–1,581 genes present in the
data set) and coverage by the A549 data set due to the
sparsity of scRNA-seq data. To test the robustness of this
approach, we looked at the correlation of PCC scores
along the leading axis for each gene set across 10 random
seeds and found they were highly similar (average PCC
between seeds = 0.998).

We used the same iteration and convergence threshold
for analysis of the C6 (Molecular Signature Database)
and the GEAR drug resistance gene sets (Wang et al.,
2017) which were used to project the trametinib data.
Gene sets, KEGG pathways and GO terms associated
with the GEAR drug genes were obtained using
KEGGREST package in R for KEGG pathways and
http://geneontology.org/ for GO terms (Ashburner et al.,
2000; The Gene Ontology Consortium, 2017).
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Supplementary Figure 1 | Predicting A549 samples from specific time points
using gsPCA. (A) Scatter plot of E (X-axis) and M (Y-axis) scores for all TGF-β
induction samples using gsPCA. Samples from different time points are indicated
by color going from 0 days (dark green) to 7 days (dark purple). (B–D) Scatter plot
of 0-day (green, B), 1-day (yellow, C), and 7-day samples (purple, D) inferred using
a gsPCA model built using all other time points (gray). (E) A scatter plot of TGF-β
induction samples with TGF-β reversion samples (i.e., 7 days induction followed
by removal from TGF-β). Induction samples are labeled as in panel (A), while
reversion samples are colored blue, with darker shade indicating longer time since
removal. (F) Scatter plot of 3-day reversion samples (dark blue) inferred using a
gsPCA model built using all non-reversion time points (gray).

Supplementary Figure 2 | Transferring gsPCA models between A549 and
DU145 TGF-β induced samples. (A–D) Scatter plot of E (X-axis) and M (Y-axis)
scores for different combinations of data and gsPCA model: (A) A549 model on
A549 data, (B) DU145 model on A549 data, (C) A549 model on DU145 data, and
(D) DU145 model on DU145 data. Samples from different time points are
indicated by color going from 0 days (dark green) to 7 days (dark purple). (E,F)
Comparison of E-scores of samples from A549 (E) and DU145 (F) data. The
X-axis is the E-score from using the model from the same data set (A549 on A549
and DU145 by DU145), while the Y-axis is the E-score from the opposite model
(DU145 on A549 and A549 on DU145). Samples from different time points are
indicated by color going from 0 days (dark green) to 7 days (dark purple). (G,H)
Comparison of M-scores of samples from A549 (G) and DU145 (H) data. The
X-axis is the M-score from using the model from the same data set (A549 on A549
and DU145 by DU145), while the Y-axis is the M-score from the opposite model
(DU145 on A549 and A549 on DU145). Samples from different time points are
indicated by color going from 0 days (dark green) to 7 days (dark purple).

Supplementary Figure 3 | Transferring gsPCA models to TCGA data. (A,B)
Scatter plots of E-scores for PRAD (A) and LUAD (B) from transferring gsPCA
models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual
points indicates the original GSVA based E-score of the TCGA data set. (C,D)
Scatter plots of M-scores for PRAD (C) and LUAD (D) from transferring gsPCA
models built on A549 (X-axis) and DU145 (Y-axis) data. The color of individual
points indicates the original GSVA based M-score of the TCGA data set.

Supplementary Figure 4 | Transferring gsPCA models between temporal and
spatial data sets. (A–C) Scatter plots of E (X-axis) and M (Y-axis) scores for Mock
spatial data from gsPCA models built on different data sets: Mock spatial data (A),
TGF-β induced spatial data (B), and TGF-β induced A549 temporal data (C). The
color of the sample indicates whether it originates from a cell in the inner-ring
(non-motile, red) or the outer ring (motile, blue). (D–F) Scatter plots of E (X-axis)
and M (Y-axis) scores for TGF-β spatial data from gsPCA models built on different
data sets: TGF-β induced spatial data (D), Mock spatial data (E), and TGF-β
induced A549 temporal data (F). The color of the sample indicates whether it
originates from a cell in the inner-ring (non-motile, red) or the outer
ring (motile, blue).

Supplementary Figure 5 | Normalized expression of KRT8 and KRT18 across
A549 and migration data sets. Boxplots showing the normalized expression of
KRT8 (top) and KRT18 (bottom) across A549 data (left) and migration data
(right). The central black line indicates the average of each distribution while the
whiskers show 1.5 times the interquartile range. For A549 data, color of the
boxplot indicates the time from 0 day (dark green) to 7 days (dark purple) for
TGF-β treatment, followed by removal of TGF-β for 8 h, 1 days, and 3 days
(darkening shades of blue). For migration data, color differentiates samples in the
inner (red) vs. outer (blue) rings of the assay.

Supplementary Figure 6 | Performance of gsPCA models across
cross-validation data sets. Boxplots showing Adjusted R2 of the linear model of
gsNMF leading E and M dimensions across different number of model
components (X-axis) and different convergence criteria: basic (algorithm standard,
A), strong (1e–6 tolerance, 500 iterations, B), very strong (1e–9 tolerance, 2,500
iterations, C), and nndsvd (initialization with non-negative singular value
decomposition, 1e–6 tolerance, 500 iterations, D). Left and right panels separate
the result for all validation folds and the mean performance of independent folds
within each training data set (see Supplemental Methods). The yellow line
indicates the average of each distribution while the whiskers show 1.5 times the
interquartile range. Red dots show the individual Adjusted R2 values in
each distribution.
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Over 50% of diffuse large B-cell lymphoma (DLBCL) patients are diagnosed at an
advanced stage. Although there are a few therapeutic strategies for DLBCL, most of
them are more effective in limited-stage cancer patients. The prognosis of patients with
advanced-stage DLBCL is usually poor with frequent recurrence and metastasis. In this
study, we aimed to identify gene expression and network differences between limited- and
advanced-stage DLBCL patients, with the goal of identifying potential agents that could be
used to relieve the severity of DLBCL. Specifically, RNA sequencing data of DLBCL
patients at different clinical stages were collected from the cancer genome atlas (TCGA).
Differentially expressed genes were identified using DESeq2, and then, weighted gene
correlation network analysis (WGCNA) and differential module analysis were performed to
find variations between different stages. In addition, important genes were extracted by
key driver analysis, and potential agents for DLBCL were identified according to gene-
expression perturbations and the Crowd Extracted Expression of Differential Signatures
(CREEDS) drug signature database. As a result, 20 up-regulated and 73 down-regulated
genes were identified and 79 gene co-expression modules were found using WGCNA,
among which, the thistle1 module was highly related to the clinical stage of DLBCL. KEGG
pathway and GO enrichment analyses of genes in the thistle1 module indicated that
DLBCL progression was mainly related to the NOD-like receptor signaling pathway,
neutrophil activation, secretory granule membrane, and carboxylic acid binding. A total
of 47 key drivers were identified through key driver analysis with 11 up-regulated key driver
genes and 36 down-regulated key diver genes in advanced-stage DLBCL patients. Five
genes (MMP1, RAB6C, ACCSL, RGS21 and MOCOS) appeared as hub genes, being
closely related to the occurrence and development of DLBCL. Finally, both differentially
expressed genes and key driver genes were subjected to CREEDS analysis, and 10
potential agents were predicted to have the potential for application in advanced-stage
DLBCL patients. In conclusion, we propose a novel pipeline to utilize perturbed
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gene-expression signatures during DLBCL progression for identifying agents, and we
successfully utilized this approach to generate a list of promising compounds.

Keywords: diffuse large B-cell lymphoma, drug repurposing, differentially expressed genes, differential module
analysis, key driver analysis

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most commonly
diagnosed non-Hodgkin lymphoma (NHL), representing
approximately 25% of new NHL cases each year in the
United States (Liu and Barta, 2019). In practice, about one half
of DLBCL patients presented with advanced-stage disease (Prakash
et al., 2012), featuring bulky tumor burden and poor patient response
to treatment. According to published data, advanced-stage DLBCL
(stage I/II and stage III/IV) may be both biologically and clinically
different from limited-stage DLBCL cases (stage I and II). For
example, advanced-stage DLBCL patients were more likely to
express higher levels of CD30 (Rodrigues-Fernandes et al., 2021)
and CD25 (Oka et al., 2020), both of which are biomarkers of B-cell
activation. In addition, advanced-stage DLBCL was also shown to be
associated with a higher immune-inflammation index (Wang et al.,
2021) and an increased level of lymphopenia at diagnosis (Shin et al.,
2020), highlighting its deteriorating immune regulation. Green and
Johnson et al. reported there were a few biological factors known to
adversely impact the prognosis of DLBCL patients, including the
cell-of-origin, co-expression of MYC/BCL2 and co-occurrence of
MYC and BCL2/BCL6 rearrangements failed to predict poorer
prognosis in limited stage DLBCL(Green et al., 2012; Johnson
et al., 2012). Ajay, Major et al reported that stage I and II
DLBCL cases had a slightly increased risk of secondary primary
malignancies after DLBCL treatment in long-term follow-up (>20
years) (Major et al., 2020). Comparing with limited stage DLBCL,
advanced-stage DLBCL patients were more likely to benefit from
intensified radiotherapy (Hoiland et al., 2020; Freeman et al., 2021).
Also, the pattern of late disease relapses observed in advanced stage
DLBCL cases was different from that of limited-stage cases, further
corroborating that limited and advanced stage DLBCL were
biologically heterogeneous (Hoiland et al., 2020). All of these
observations prompted us to treat advanced- and limited-stage
DLBCL with different strategies, better tailoring for their specific
biological and clinical characteristics.

However, there is limited knowledge regarding the genomic
and transcriptomic differences between limited- and advanced-
stage DLBCL. Two previous large analyses exploring the genetic
landscape of DLBCL were not intended to compare the limited
and advanced stages of the disease (Reddy et al., 2017; Schmitz
et al., 2018). Moreover, at the single gene or single locus level,
advanced- and limited-stage DLBCL may also be different in
terms of their altered gene regulation and regulatory/co-
expression networks, which was confirmed in other clinical
comparisons such as cancer vs normal tissue (Zhang et al.,
2018; Xu et al., 2019) and young vs old (Yang et al., 2015;
Yang et al., 2016b).

Although frontline chemoimmunotherapies have been shown
to cure up to 60% of patients with advanced-stage disease, with a

clear plateau in progression-free survival (PFS) and rare relapses
beyond 5 years (Coiffier et al., 2010), there still is a fraction of
patients who are subject to relapse and have tumors that are
refractory to treatment (Coiffier et al., 2010), highlighting the
heterogeneity of advanced DLBCL. Thus, it is critical to develop
new drugs for improving the treatment of advanced-stage
DLBCL, so that it might be effectively treated by using
existing treatment strategies as limited-stage DLBCL patients
are. However, the development of a novel drug is usually
costly and time-consuming (Liu et al., 2020; Yang et al., 2020)
and highlights the need for effective drug repositioning strategies.
There are many computer-based drug repositioningmethods that
have been used for cancers (Xu et al., 2019; Liu et al., 2020) and
other diseases, such as Coronavirus disease 2019 (COVID-19)
(Tang et al., 2020; Li et al., 2021).

In this study, we propose a new strategy for identifying new
agents that have the potential to specifically target advanced-stage
DLBCL. In general, we retrieved advanced-stage DLBCL-specific
expressed genes by comparing the transcriptome of advanced-
stage disease with that of limited-stage DLBCL. These
differentially expressed genes (DEGs) were then subjected to
weighted gene correlation network analysis (WGCNA) to
discover the co-expression modules that may contribute to the
progression of this disease. Finally, potential personal agents were
obtained from the Crowd Extracted Expression of Differential
Signatures (CREEDS) based on the down-regulation and up-
regulation of genes (see Materials and methods for details). We
aimed to specifically reveal the transcriptomic scenario occurring
in advanced-stage DLBCL and to elucidate the genes that were
most likely contributing to disease progression. Based on this
knowledge, we then identified some potential agents for the
treatment of advanced-stage DLBCL in future clinical practice.

MATERIALS AND METHODS

Data Collection
RNA sequencing data from patients with DLBCL cancer were
collected from the cancer genome atlas (TCGA). Based on the
imaging results, including computed tomography (CT) scans,
magnetic resonance imaging (MRI) or positron emission
tomography (PET) scanning, patients were divided into four
stages (I–IV) according to the Ann Arbor system (Heidelberg,
2020).

Differential Gene Expression Analysis
Between Samples at Different Stages
An expression matrix of 42 patients and their group information
(stage I/II or III/IV) were used as the input for DEG discovery.
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DEGs between samples at stage I/II and stage III/IV were
obtained using DESeq2 (Love et al., 2014) using log2 |fold
change| S 1 and a p value & 0.05.

Survival Analysis
After identifying DEGs, we performed survival analysis on these
genes for all of the patients. Next, Kaplan-Meier (Bland and
Altman, 1998) survival estimation was used for all differentially
expressed genes to identify genes correlated with overall survival.
Kaplan- Meier arranged the survival time in descending order, at
each death node, it estimated the proportion of the observed
values that survived for a certain period of time under the same
circumstances, which could intuitively show the survival and
mortality rates of two or more groups. The R packages survival
and survminer were used for survival analysis and curve plotting,
respectively.

Weighted Gene Correlation Network
Analysis
The WGCNA package in R (Peter and Horvath, 2008) was used
to construct a co-expression network. For this step, we randomly
picked 400 genes from the stage III/IV patients to generate a
topological overlap matrix since the gene number was too large to
perform this analysis using all of the genes. For the constructed
gene network to conform to a scale-free distribution, a soft
threshold was used to select the appropriate β after removing
outliers. Finally, the soft threshold was set to 10. Then, genes were
clustered by hierarchical clustering, and the tree was cut into
different modules using a dynamic cutting algorithm, in which
genes were highly correlated. Furthermore, we calculated the
Pearson correlation coefficient between different modules and
clinical stage and used this Pearson correlation coefficient to
judge the relationship between the module and clinical stage.
Finally, significant modules closely related to the occurrence and
development of DLBCL were identified for follow-up analysis.

Functional and Pathway Enrichment
Analyses
KEGG pathway (Ogata et al., 1999) analysis and Gene Ontology
(GO) analysis (Botstein et al., 2000), including biological process
(BP), cellular composition (CC) and molecular function (MF),
were performed on the genes in the module identified by
WGCNA to understand the biological significance of the
progression of DLBCL. The R package clusterProfiler (Yu
et al., 2012) was used in the process of enrichment analysis to
analyze the functions of the genes from these modules.

Key Driver Analysis
For key driver analysis, we used up- or down-regulated genes
separately as inputs to identify key drivers. Key driver analysis
(Yang et al., 2016a) (KDA) was used to identify hub genes, and
protein actions v11.0 was used as a reference protein–protein
interaction network (Szklarczyk et al., 2021). Parameters were set
as follows: nlayerExpansion was set to 1, nlayerSearch was set to 6
and enrichedNodesPercentCut was set to −1. A p value_whole&

0.05 was used to filter out key drivers. The hub genes were of great
significance in terms of the occurrence and development of
DLBCL.

Drug Discovery
CREEDS includes single gene perturbation signatures, as well as
disease and drug perturbation signatures, and it can be used to
identify the relationship between gene, disease and drug (Gillies
et al., 2016). CREEDS is composed of single-drug perturbation-
induced gene expression signatures. Utilizing this database,
agents that can reverse the behavior of up/down-regulated
genes can be discovered, and the best matched agents are
reported. We used this tool for drug discovery for advanced-
stage DLBCL. In this work, we combined differentially expressed
genes and key driver genes as a new gene set to discover new
agents related to advanced-stage DLBCL.

RESULTS

A Brief Study Design of Drug Repurposing
For the purpose of specifically developing new agents that could be
utilized in combination with R- CHOP backbones to treat
advanced stage DLBCL patients, we proposed a new method of
drug repurposing based on gene expression and network
perturbation (Figure 1). In order to identify key factors for
DLBCL progression, WGCNA and DEG, differential module
(DM) and key driver (KD) analyses were performed. Then, the
key factors of DLBCL progression and drug perturbation signature

FIGURE 1 | A brief study design for drug repurposing, including these
major steps: 1) Download and organize the RNA-seq data and clinical
information of DLBCL from TCGA; 2) Got key factors of DLBCL progression
through DEG analysis, key driver analysis and WGCNA analysis; 3)
Potential drug prediction through CREEDs; 4) Literature confirmation.
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were used to predict potential agents for the treatment of advanced
stage DLBCL. Finally, some previous studies were reviewed to
demonstrate the effectiveness of the newly identified agents.

Patient Characteristics
The clinical characteristics of DLBCL cancer patients collected from
TCGA are presented in Table 1, including 25 patients at clinical
stage I/II and 17 patients at clinical stage III/IV. It was more likely to
occur in elder patients and involve extranodal sites or organs.
Patients of advanced stage disease also tended to have B
symptoms. No gender preference was observed in this group of
patients and all patients received no treatment before resection of
tumors.

Identification of DEGs and Survival Analysis
After collecting data from TCGA, DEGs were obtained using
DESeq2, by comparing the transcriptome of advanced stage
DLBCL with limited stage DLBCL. Of the 93 DEGs that were
identified with a log2 |fold change| S 1 and a p value& 0.05, 20
genes were up-regulated and 73 genes were down-regulated in
advanced DLBCL. The top 10 genes that were differently

expressed between advanced and limited stage DLBCL are
shown in Figure 2A.

We aimed to evaluate whether this set of differentially expressed
genes could define a group of patients with poorer prognosis. We
dichotomized 42 DLBCL cases into either the high expression
group or the low expression group as per the mean expression level
of each DEG. In addition, the Kaplan-Meier survival estimation
method was used to evaluate all DEGs to study the relationship
between gene expression and overall survival. Through this
Kaplan-Meier survival estimation analysis, we found that DAB1
was negatively correlated with overall survival, while other DEGs
were not correlated with overall survival.

Weighted Gene Correlation Network
Analysis and Differential Model Analysis
WGCNA, based on a scale-free network to analyze genes
according to their expression patterns, was used to cluster
highly related genes into one module. As can be seen from
Figure 3A, the soft threshold value was set at 10 to build this
scale-free network. Next, 79 gene modules were identified by

TABLE 1 | Summary of general clinical information of DLBCL cases in TCGA.

Limited stage Advanced stage χ2 P

Gender Male 9 10 0.006 0.938
Female 16 7

Age ≥60 6 10 5.203 0.023
<60 19 7

Extranodal disease Yes 8 11 4.369 0.037
No 17 6

B symptoms Yes 1 9 13.36 0.000
No 24 8

FIGURE 2 | Analysis of differentially expressed genes. (A) Heat map of the top 10 differentially expressed genes. The x-axis represents different samples from
TCGA, blue indicates samples at limited stage (stage I/II) and red indicates samples at advanced stage (stage III/IV). The y-axis represents differentially expressed genes.
(B) Survival curve of the association between the expression levels of DAB1 and survival time after diagnosis with DLBCL.
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hierarchical clustering and dynamic branch cutting, and each
module was assigned a unique color identifier (Supplementary
Figure S4). We then selected a portion of these genes to construct
a topological overlapping heat map, shown in Figure 3B.
Through differential module analysis, we found that the
thistle1 module was most relevant to advance stage of DLBCL
in this dataset (Figure 3C).

Functional and Pathway Enrichment
Analysis of the thistle1 Module
In order to understand the causes of DLBCL deterioration from
the biological level, we analysed the genes in the thistle1 module

using KEGG pathway and GO enrichment analysis. KEGG
pathway analysis results indicated that the development of
DLBCL was very strongly correlated to the NOD-like receptor
signalling pathway, osteoclast differentiation, leishmaniasis,
Staphylococcus aureus infection and viral protein interaction
with cytokine and cytokine receptor (Figure 4A).
Furthermore, GO enrichment was performed based on three
aspects: BP, CC and MF. In the BP analysis, we found that the
genes in the thistle1 module were mainly related to neutrophil
activation, positive regulation of response to external stimulus
and response to interferon−gamma (Figure 4B). In addition, in
the CC analysis, the genes in the thistle1 module were related to
secretory granule membrane, endocytic vesicle and apical part of

FIGURE 3 | Weighted co-expression and key module identification associated with clinical DLBCL stage. (A) Determination of soft threshold in WGCNA. (B)
Topological overlappingWGCNA heat map. (C) The relationship betweenmodules and clinical traits. Pearson correlation coefficient was used to calculate the correlation
degree between each module and trait.
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FIGURE 4 | Pathway and functional enrichment analysis of genes in the thistle1 module. (A) KEGG pathway analysis. (B)GO enrichment for biological process. (C)
GO enrichment for cellular composition. (D) GO enrichment for molecular function. The x-axes are the ratio of genes, and the y-axes are the GO terms.

FIGURE 5 | Network of key DLBCL drivers and hub genes. Red, key drivers from up-regulated gene set in advanced-stage samples. Blue, key drivers from down-
regulated gene set in advanced-stage samples. Yellow, hub genes.
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cell (Figure 4C). Moreover, the genes in the thistle1 module were
mainly enriched in 7 MFs, including carboxylic acid binding,
organic acid binding, cysteine−type endopeptidase activity,
manganese ion binding, ligand−gated cation channel activity,
immunoglobulin G (IgG) binding and immunoglobulin binding
(Figure 4D).

Hub Genes Identified Through Key Driver
Analysis
A total of 47 key drivers were identified through key driver
analysis, with 11 up-regulated key driver genes and 36 down-
regulated key diver genes being diagnostic of advanced-stage
DLBCL relative to limited-stage DLBCL. Then, five hub genes
were identified from key drivers as shown in Figure 5, which were
most related to the occurrence and development of DLBCL.
MMP1 (Rosas et al., 2008), also known as matrix
metalloproteinase-1, encodes a protein of 469 amino acid
residues and is a kind of photolytic enzyme closely related to
tumor genesis, invasion and metastasis. Rab6c (Young et al.,
2010) is a member of the RAS family. Its mutation can affect the
balance of Ras-GTP and cause malignant transformation of cells.
Gene ontology annotations for 1-Aminocyclopropane-1-
Carboxylate Synthase Homolog (Inactive) Like (ACCSL) (Chen
and Karampinos, 2020) include pyridoxal phosphate binding.
Dysregulation of gene levels of molybdenum cofactor sulfurase
(MOCOS) (Kurzawski et al., 2012) can lead to cell disorders.
Studies have demonstrated that this gene can be used as a key
detection gene for kidney genetic diseases. RGS21 (Von
Buchholtz et al., 2004), a new member of the regulator of G

protein signaling (RGS) protein family. It can inhibit signal
transduction by increasing GTPase activity.

Agent Screening
Potential personal agents associated with DLBCL were identified
according to the differences between differential genes and drug
signaling. Approximately 10 potential agents were selected
according to their drug perturbation-induced gene expression
signatures, and detailed information on these agents is presented
in Table 2, including the type, drug/small molecule, possible
effect and evidence for activity. The top five agents could reverse
the expression of down-regulated genes, and the remaining
agents could reverse the expression of up-regulated genes. In
other words, after treatment with these drugs, gene expression
levels may return to normal. The top five agents that may reverse
down-regulated gene expression are formaldehyde, ethanol,
dibutyl phthalate, paclitaxel, and prednisolone. Ethanol
(EtOH) is similar to pharmacological mTOR inhibitors and
has been shown to inhibit the mTOR signaling pathway.
Mazan et al. studied the influence of EtOH on the mTOR
signaling pathway and explored the translational group
analysis of downstream effects of EtOH in DLBCL, and the
results showed that EtOH partially inhibited mTOR signaling
and protein translation (Mazan-Mamczarz et al., 2015). In a
previous study, newly diagnosed DLBCL patients treated with
rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisolone (R-CHOP) were evaluated for their clinical
characteristics, therapeutic efficacy and patient survival, and
DLBCL patients treated with R-CHOP had better survival
than other patients (Hong et al., 2011). Ohe et al. also

TABLE 2 | Potential DLBCL treatment agents.

Gene
type

Drug/Small
molecule

Possible effect Evidence

Down Formaldehyde A metabolite of vitamin A that plays important roles in cell growth, differentiation and
organogenesis acts as an inhibitor of the transcription factor Nrf2 through the activation
of retinoic acid receptor alpha

DOI:10.14423/SMJ.0000000000000545

Down Ethanol Similar to pharmacological mTOR inhibitors, which can inhibit the mTOR signaling
pathway

DOI: 10.1186/s12964-015-0091-0

Down Dibutyl phthalate Is expected to cause severe side effects to the central nervous system of animals and
humans

DOI:10.1016/S0145-2126 (96)00033-1

Down Paclitaxel A synthetic macrocyclic ketone analog of the marine sponge natural product
halichondrin B, which leads to the inhibition of microtubule growth in the absence of
effects on microtubule shortening at microtubule plus ends

Unknown

Down Prednisolone Belongs to the adrenal corticotropic hormone and adrenal corticotropic hormone class
and has strong anti-inflammatory effects

DOI:10.3109/10428194.2011.588761
DOI:10.5045/kjh. 2012.47.4.293

Up Oxaliplatin It selectively inhibits the synthesis of deoxyribonucleic acid (DNA). The guanine and
cytosine contents correlate with the degree of oxaliplatin-induced cross-linking

DOI: 10.1016/S2352-3026 (18)30054-1

Up Eribulin Is a microtubule inhibitor indicated for the treatment of patients with metastatic breast
cancer who have previously received at least two chemotherapeutic regimens for the
treatment of metastatic disease. Also being investigated for use in the treatment of
advanced solid tumors

DOI: 10.1007/s00280-012-1976-x. Epub
2012 Sep 26

Up NC1153 Specifically inhibits JAK3 via NC1153-induced apoptosis of certain leukemia/lymphoma
cell lines

DOI: 10.1016/j.febslet. 2010.02.071

Up EPZ-6438 Selectively inhibits intracellular histone H3 lysine 27 (H3K27) methylation in a
concentration- and time-dependent manner in both EZH2 wild-type and mutant
lymphoma cells

DOI: 10.1158/1535-7163.MCT-13-0773

Up R547 A potent CDK inhibitor with a potent anti-proliferative effect at pharmacologically
relevant doses

DOI: 10.1158/1535-7163.MCT-09-0083
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reported a case of DLBCL successfully treated with prednisolone
(Ohe et al., 2012). The top five agents that may reverse up-
regulated gene expression are oxaliplatin, eribulin, NC1153, EPZ-
6438 and R547. Oxaliplatin selectively inhibits the synthesis of
deoxyribonucleic acid (DNA). Shen et al. studied the efficacy,
safety and feasibility of the combination of rituximab,
gemcitabine, and oxaliplatin (R-GemOx) as a first-line
treatment in elderly patients with DLBCL. They found that
R-GemOx might be a therapeutic option for the management
of DLBCL (Shen et al., 2018).

DISCUSSION

DLBCL remains a highly heterogenous disease, with the frontline
R-CHOP modality achieving only a 40–60% complete response
(CR) rate in unselected patients. The prognosis of patients with
DLBCL with refractory tumors or relapse remains dismal. As a
result, designing more sophisticated personal treatment
modalities has the potential to improve the outcomes in high-
risk DLBCL patients. Although a wealth of studies has focused on
targeted therapies based on the molecular classification of
DLBCL, the clinical stage of DLBCL remains an important
factor for choosing an appropriate treatment regime. DLBCL
patients with advanced- and limited-stage disease have different
responses to standard chemoimmunotherapies, due to the
different genomic profiles of advanced-stage disease relative to
limited-stage disease (Miao et al., 2019). In this study, we propose
a new approach to gain insights into the intrinsic heterogeneity of
DLBCL, which focused on comparing the transcriptomic profile
of advanced- and limited-stage DLBCL and distilling the disease
to a few distinctly expressed genes and hub genes that might
contribute to disease progression. In general, 20 genes were up-
regulated and 73 genes were down-regulated in advanced-stage
samples compared to limited-stage samples. We also found that
DAB1 was negatively correlated with overall survival through
survival analysis of all identified DEGs (Figure 2B, p � 0.045).
Due to the limitations of differential expression analysis, it is
impossible to group genes with the same function together.
Therefore, we carried out weighted gene co-expression
network analysis and analysis on different modules. During
these analyses, 79 similar gene expression modules were found
using WGCNA, among which, the thistle1 module was highly
related to disease stage. KEGG pathway and GO enrichment
analyses of the genes in the thistle1 module indicated that
DLBCL progression was mainly related to the NOD-like
receptor signaling pathway, neutrophil activation, secretory
granule membrane and carboxylic acid binding. There is
evidence that tumors and their mesenchymal cells produce
many cytokines and chemokines to stimulate the
differentiation of N2 neutrophils (Valerius et al., 1993; Souto
et al., 2014). However, neutrophils can cause DNA damage
through reactive oxygen species and related products of
myeloperoxidase (MPO), and N2 cells secrete VEGF, TNF
and other cytokines to promote tumor angiogenesis and, at
the same time, synthesize and secrete MMP and NE to the
tumor stroma to participate in the tumor reconstruction of

the extracellular matrix to promote tumor growth and
metastasis (Zvi et al., 2009; Mishalian et al., 2013; Zhou et al.,
2016). During key driver analysis, 47 key drivers were identified
and five hub genes were extracted from these key drivers,
including MMP1. MMP1 (Rosas et al., 2008) can alter the
microenvironment of cells. When MMP1 is out of balance, it
accelerates the degradation of the matrix barrier and promotes
the formation and growth of tumors by releasing matrix-related
growth factors. Studies have shown thatMMP1 is associated with
lung squamous cell carcinoma, colon cancer and
adenocarcinoma.

Based on gene expression and network perturbations, 10
potential agents for the treatment of DLBCL were obtained.
For instance, NC1153 can inhibit JAK3 specifically and induce
the apoptosis of certain leukemia/lymphoma cell lines. Using
Affymetrix microarray profiling following NC1153 treatment,
Nagy et al. reported that JAK3-dependent survival modulating
pathways (p53, TGF-beta, TNFR and ER stress) were altered in
Kit225 cells (Nagy et al., 2010). EPZ-6438 selectively inhibited
intracellular H3K27 methylation in a concentration- and time-
dependent manner in both EZH2 wild-type and mutant
lymphoma cells. Inhibition of H3K27 trimethylation
(H3K27Me3) leads to selective cell killing of human
lymphoma cell lines bearing EZH2 catalytic domain point
mutations (Knutson et al., 2014).

In summary, we proposed a novel pipeline to utilize perturbed
gene-expression signatures during DLBCL progression for
identifying agents, and we successfully utilized this approach
to generate a list of promising compounds. Whether this can be
used clinically needs further research. We will continue to follow
the latest developments of these agents in the treatment of
DLBCL and explore its pharmaco-mechanisms under the aid
of stage-of-art technologies in the future.
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A Novel Three-LncRNA Signature
Predicting Tumor Recurrence in
Nonfunctioning Pituitary Adenomas
Sen Cheng1†, Jing Guo2†, Dawei Wang2, Qiuyue Fang2, Yulou Liu2, Weiyan Xie2,
Yazhuo Zhang1,2,3,4 and Chuzhong Li1,2,3,4*

1Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China, 2Beijing
Neurosurgical Institute, Capital Medical University, Beijing, China, 3Beijing Institute for Brain Disorders Brain Tumor Center,
Beijing, China, 4China National Clinical Research Center for Neurological Diseases, Beijing, China

The nonfunctioning pituitary adenoma (NFPA) recurrence rate is relatively high after surgical
resection. Here, we constructed effective long noncoding RNA (lncRNA) signatures to
predict NFPA prognosis. LncRNAs expression microarray sequencing profiles were
obtained from 66 NFPAs. Sixty-six patients were randomly separated into a training
(n � 33) and test group (n � 33). Univariable Cox regression and a machine learning
algorithm was used to filter lncRNAs. Time-dependent receiver operating characteristic
(ROC) analysis was performed to improve the prediction signature. Three lncRNAs
(LOC101927765, RP11-23N2.4 and RP4-533D7.4) were included in a prognostic
signature with high prediction accuracy for tumor recurrence, which had the largest
area under ROC curve (AUC) value in the training/test group (AUC � 0.87/0.73). The
predictive ability of the signature was validated by Kaplan-Meier survival analysis. A
signature-based risk score model divied patients into two risk group, and the
recurrence-free survival rates of the groups were significantly different (log-rank p <
0.001). In addition, the ROC analysis showed that the lncRNA signature predictive
ability was significantly better than that of age in the training/testing/entire group (AUC
� 0.87/0.726/0.798 vs. AUC � 0.683/0.676/0.679). We constructed and verified a three-
lncRNA signature predictive of recurrence, suggesting potential therapeutic targets
for NFPA.

Keywords: non-functioning pituitary adenoma (NFPA), recurrence, long noncoding RNAs, signature, machine
learning

INTRODUCTION

Pituitary adenoma (PA) is a common and benign intracranial tumor that occurs in the pituitary
gland (Fernandez et al., 2010; Ostrom et al., 2015). It can be divided into functioning and
nonfunctioning pituitary adenoma (FPA and NFPA, respectively) according to the presence or
absence of hormone oversecretion and/or related clinical symptoms, like hyperthyroidism,
acromegalic features, and hyperprolactinemia (Moreno et al., 2005). NFPAs account for 14–54%
of PAs, and the annual incidence is 0.65–2.34 cases/100,000 (Raappana et al., 2010; Tjörnstrand et al.,
2014; Al-Dahmani et al., 2016; Day et al., 2016). Due to the lack of typical symptoms related to
hormone hypersecretion, NFPA is usually detected based on symptoms caused by tumor pressure on
surrounding structures, such as headaches or visual impairment, or found incidentally on imaging
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tests (Chen et al., 2011; Ntali andWass, 2018). Surgical treatment
is effective for NFPAs; however, total resection is not achievable
for some tumors because they can invade the cavernous sinus or
the area around the internal carotid artery (Meij et al., 2002;
Shomali and Katznelson, 2002). Moreover, the recurrence rate of
residual tumors reches 40 and 50% at 5 and 10 years, respectively,
and even tumors that are completely resected have a recurrence
rate of 10–20% after 5–10 years (Brochier et al., 2010; Chen et al.,
2012; Sadik et al., 2017). Therefore, addressing the recurrence of
NFPA is warranted. Currently, radiotherapy is considered to be
effective in treating patients with residual or recurrent NFPA,
although it may lead to progressive hypopituitarism and other
long-term complications (Brada and Jankowska, 2008; Pollock
et al., 2008). However, many questions remain about which
subsets of NFPA patients are more likely to have recurrence
and which subsets of residual tumors need to be further treated to
prevent regrowth. Therefore, a method for predicting tumor
recurrence after initial surgery is needed for early intervention.

Long noncoding RNAs (lncRNAs) are greater than 200 nt in
length and have limited protein-coding ability (Moran et al.,
2012). Emerging evidence suggests that lncRNAs regulate gene
expression at the transcriptional and posttransciptional levels and
that the dysfunction of lncRNAs contributes to the progression of
many cancers, including PA (Poliseno et al., 2010; Wang and
Chang, 2011; Huarte, 2015; Beylerli et al., 2020). Zhao et al. (2021)
showed that downregulation of lncRNA PCAT6 could inhibit the
proliferation, migration, viability, and invasion of PA cells by
modulating the miR-139-3p/BRD4 axis . A study by D’Angelo
et al. (2019) found that the lncRNA RPSAP52 promotes PA cell
growth by acting as a microRNA (miRNA) sponge for HMGA
proteins. The above studies verify that lncRNAs play a critical role
in PA progression. Moreover, recent studies suggest that
lncRNAs can be used to predict cancer prognosis and can as a
signature in several cancers, such as oesophageal squamous cell
carcinoma, gastric cancer, and hepatocellular carcinoma (Li et al.,
2014; Zhu et al., 2016; Hong et al., 2020). However, the
mechanism and prognostic value of lncRNAs in NFPA are
still unclear. Therefore, it is necessary to find an appropriate
lncRNA signature to accurately predict the recurrence of NFPA
patients after surgery to provide early intervention.

In this study, tumor recurrence refers to regrowth of residual
tumor cells and tumor relapse after total resection. We analyzed
the expression of lncRNAs in 66 NFPA patients through
microarray sequencing and identified genes associated with
tumor recurrence. We aimed to develop and validate a useful
multi-lncRNA prediction model that may be used to evaluate
recurrence and guide treatment after surgical resection in patients
with NFPA.

METHODS

Patients and Samples
FromOctober 2007 to July 2014, patients whowere diagnosedwith
NFPA and underwent surgical resection at Beijing Tiantan
Hospital were included in this study (n � 66). The mean age of
these 66 patients was 51.5 years (range, 25–73), there were 34males

and 32 females, and themedian follow-up was 76.5 months (range,
5–122). The clinical and pathological characteristics of all the
patients are shown in Supplementary Table S1. Cavernous
sinus (CS) invasion was defined by the Knosp grading scale
(grade 3 or 4) on preoperative enhanced magnetic resonance
imaging (MRI) (Knosp et al., 1993). Postoperative tumor
recurrence was defined as recurrence identified from any
direction on enhanced MRI from the day of surgery to the end
of the follow up; the maximum tumor diameter needed to increase
by > 2 mm. According to tumor size, NFPA were divided into
microadenoma (<10mm in diameter), macroadenoma (≥10mm)
and giant adenoma (≥40mm). The local Ethics Committee
approved this study, and informed consent was obtained from
each subject.

Total RNA Extraction
According to the instructions provided, total RNA was extracted
and purified from collected samples using the phenol-free
mirVana™ miRNA Isolation Kit (Cat # AM1561; Ambion;
Thermo Fisher Scientific, Inc.). A Thermo ScientificTM

NanoDrop 2000 was used to quantify and assess purity of the
extracted RNA.

RNA Microarray Analysis
RNA samples were used to generate fluorescence-labeled cRNA
targets for the SBC human ceRNA array V1.0 (4 × 180 K) and
were subsequently hybridized with slides and scanned in an
Agilent Microarray Scanner (Agilent Technologies, Santa
Clara, CA, United States) to obtain the data. The raw data was
extracted using feature extraction software 10.7 (Agilent
Technologies, Inc.). Then, the quantile algorithm provided by
the “limma” package (http://bioconductor.org/packages/limma/)
of the R program was used to normalize the data.

Identification of Prognostic LncRNAs
The “sample” function of R progrom (www.r-project.org/) was
used to randomly divided 66 NPFA patients into a training set
(n � 33) and a testing set (n � 33). In the training group,
univariable Cox proportional hazards regression analysis was
performed to determine the association between recurrence-
free survival (RFS) and lncRNA expression in each patient.
We used a machine learning approach, random survival
forests-variable hunting (RSFVH) algorithm, to narrow the
scope of the gene set through an iteration procedure,
discarding the bottom quarter of lncRNAs (the least important
lncRNAs) at each step. In total, nine lncRNAs were selected
(Mogensen et al., 2012; Li et al., 2014; Ishwaran and Lu, 2019).

Construction of Prognostic LncRNA
Signature
The selected lncRNAs was used to construct a risk prediction
score model as follows (Ritchie et al., 2015; Guo et al., 2016).

Risk Score (RS) � ∑ Ni � 1 (Explg *Coef)
In this formula, N represent the number of prognostic lncRNA,
Explg represents the expression value of lncRNA, and Coef
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represents the estimated regression coefficient of the lncRNA in
the univariable Cox regression analysis.

Since the nine selected lncRNAs could form 29–1 � 511
combinations or signature, each patient received 511 risk
scores. Then, in the training dataset, the sensitivity and
specificity of the 511 signatures were analyzed by the time-
dependent receiver operating characteristic (ROC) curves. The
prognostic signature was obtained by comparing the area under
the ROC curve (AUC) values.

Validation the Reliability of Microarray Data
by RT-PCR
To verify the existence of the lncRNA signature, twelve samples
were randomly selected from the entire group for RT-PCR and
agarose gel electrophoresis. LncRNA reverse transcription was
performed using a High Capacity cDNA Reverse Transcription
Kit (0049472, Thermo Fisher). Next, PCR was performed using I-
5TM High-Fidelity Master Mix (I5HM, 200MCLAB). PCR was
conducted as follows: 2 min of initial denaturation at 98°C, 32

cycles of 10 s at 98°C, 58°C for 10 s and 72˚C for 10s, and final
extension step for 5 min at 72˚C. GAPDHwas used as an internal
control gene. The PCR products were run on 2% agarose gel and
visualized using a UV transilluminator. The primer sequences are
presented in Supplementary Table S2.

Statistical Analysis
The survival distribution of different groups was evaluated and
compared using Kaplan-Meier survival analyses and two-sided log-
rank tests. The chi-square test was used to analyzed the associations
with clinical signatures. p < 0.05 was considered to indicate statistical
significance. All analyses were performed using R program 3.6.1. The
packages were downloaded from Bioconductor, including the
survival, ROC, and randomForestSRC packages.

Functional Enrichment Analysis of LncRNAs
With Prognostic Value
To investigate the potential function of the lncRNAs in the
signature, Pearson correlation tests were used to identified

FIGURE 1 | Flowchart of the study.
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protein-coding genes (PCGs) coexpressed with the prognostic
lncRNAs. The genes with a p < 0.05 and an absolute value of the
Pearson coefficient > 0.6 were selected for Gene Ontology (GO)
(Ashburner et al., 2000; The Gene Ontology, 2017) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000; Kanehisa et al., 2016; Kanehisa et al., 2017)
enrichment analyses. The GO and KEGG analyses were
performed with the clusterProfiler package (Yu et al., 2012) of
the R program.

RESULTS

Identification of LncRNA Signatures for the
Prediction of NFPA Recurrence
A total of 19,741 lncRNAs were extracted from the 66 NFPA
expression profiles. The flow chart of this study is shown in
Figure 1. The patient information of all patients is summarized in
Table 1.

Initially, in the training set, univariate Cox proportional
hazards regression analysis was used to obtain RFS-related
lncRNAs. The 1,214-lncRNA set was identified using
recurrence as the dependent variable, and the signature was
significantly associated with patient recurrence
(Supplementary Table S3, p value < 0.05, Figure 2A).

Secondly, to further reduce the number of prognostic
lncRNAs, the random forest supervised cassification (RFSC)
algorithm was employed to analyze the 1,214-lncRNA set, and
the nine lncRNAs most related to recurrence were obtained
according to the permutation important score calculated with
the RFSC algorithm (Figure 2B; Supplementary Figure S1).

Thirdly, based on the nine types of lncRNA, we constructed a
risk-score model of 29–1 (511) types of lncRNA set combinations,
which contained different lncRNA numbers from 1 to 9. To

screen for a better prediction signature, we conducted a time-
dependent ROC analysis that used recurrence status as a lable and
signature risk scores as a variable in the training group and
compared the sensitivities and specificities (Supplementary
Table S4).

According to the AUC values of all 511 signatures
(Supplementary Table S4), we identified the lncRNA
combination composed of LOC101927765, RP11-23N2.4, and
RP4-533D7.4 as the most promising, as it had strong ability to
predict recurrence and the smallest node and the largest AUC
value of 0.87 (Figure 2C; Table 2). RT-PCR was used to confirm
the reliability of microarray sequencing. Consisting with the
microarray data, the three lncRNAs were detected in 12 tumor
tissues (Figure 2D), which revealed that the lncRNA are stable
and can be used as prognostic maker.

The risk score of the signature was calculated as follows: risk
score� (3.41 × expression value of LOC101927765) + (1.90 ×
expression value of RP11-23N2.4) + (−3.43 × expression value of
RP4-533D7.4).

Validation the Prediction Ability of the Three
LncRNA Signature
Each patient obtains a risk score according to the risk score
model. Then, the patients from the training group were divided
into a high-risk group (n � 16) and a low-risk group (n � 17)
based on the cutoff point, which was the median risk score.
Kaplan-Meier survival analysis was performed to determined the
difference in RFS between the two risk groups. The median RFS
time was significantly shorter in the high-risk group (4.44 years)
than in the low-risk group (6.74 years) (p < 0.001; log-rank test,
Figure 3A). Moreover, the recurrence rate of the high-risk group
was higher than that of the low-risk group (>60% vs. < 1%). In a
similar manner, patients from the test group were also divided
into two risk groups. The results of Kaplan-Meier analyses for the
high-risk (n � 16) and low-risk (n � 17) groups in the test dataset
were plotted and are shown in Figure 3B (median RFS time:
5.51 vs. 6.82 years; log-rank test, p � 0.016), and the RFS rates
were approximately 52.25 and 87.40%, respectively. In addition,
patients in the entire group were similary divided into high-risk
(n � 32) and low-risk (n � 34) groups, and Kaplan-Meier analysis
further confirmed the ability of the lncRNA signature to predict
recurrence (median PFS time: 4.97 vs. 6.79 years; log-rank test,
p < 0.001, Figure 3C).

Figures 4A–C intuitively shows the risk score, survival status
and expression pattern of lncRNAs in the training, testing, and
independent datasets. For patients with low risk scores in the
three datasets, RP4−533D7.4 was highly expressed, while
LOC101927765 and RP11-23N2.4 was expressed at low levels;
the opposite patterns for each lncRNA were seen in patients with
high risk scores.

The Value of the LncRNA Signature is
Independent of Traditional Clinical Features
After proving the recurrence prediction ability of the lncRNA
signature, we explored the correlation between the signature and

TABLE 1 | Clinical Data of the included tumors.

Entire set (n) Training set (n) Test set (n)

Gender
Male 32 18 14
Female 34 15 19

Age (years)
≤52 38 19 19
>52 28 14 14

Tumor size classification
Macro 47 24 23
Giant 19 9 10

CS Invasion
Yes 38 20 18
No 28 13 15

Headache
Yes 31 14 17
No 35 19 16

Vision and visual field disorders
Yes 50 26 24
No 16 7 9

Recurrence
Yes 20 10 10
No 46 23 23

CS, cavernous sinus; Giant, giant adenoma; Macro, macroadenoma.
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clinical characteristics in the entire dataset (n � 66) to understand
the clinical significance of the lncRNA signature.

Table 3 shows that there was an association between the
lncRNA signature and age in the entire group (chi-suqre test,
p � 0.03, Table 3). In addition, we further assessed whether the
prognostic value of the three-lncRNA signature was
independent of other clinical factors. Univariate and
multivariate Cox regression analyses of factors including
age, sex, tumor size classification, CS invasion, and the

signature were performed. In the entire dataset, age (HR �
0.33, 95% CI � 0.12–0.93, p � 0.04) and the signature risk score
(HR � 1.50, 95% CI � 1.24–1.82, p < 0.001) were significantly
associated with the RFS of patients (Table 4). Moreover, the
three-signature score was also an indenpent prognostic factor
associated with RFS in the training (HR � 2.06, 95% CI �
1.36–3.12, p < 0.001) and test set (HR � 6.96, 95% CI �
1.21–40.16, p � 0.03). Hence, the results indicate that the
three-lncRNA signature is an independent prognostic factor
for NFPA RFS.

Comparison of the Predictive Power of the
LncRNA Signature and Age
It has been reported that age is associated with a risk of tumor
recurrence (Losa et al., 2008). ROC analysis was performed to
determine the predictive power of the lncRNA signature and age.
The results showed that in the training/testing/entire group, the
AUC values of the lncRNA signature were lager those of age
(AUC � 0.87/0.726/0.798 vs. AUC � 0.683/0.676/0.679, Figures

FIGURE 2 | Identifying the LncRNA signature in the training dataset. (A), Univariate Cox proportional hazards regression analysis of the lncRNA expression profiling
data in the training dataset. (B), Identifying the lncRNAs by RFSC algorithm. (C). The AUC of all 511 signatures were calculated and the nine highest AUC for k � 1, 2. . .9 is
shown in the plot by ROC analysis for the lncRNA signatures predicting model in the training dataset. (D), Agarose electrophoresis of selected lncRNAs PCR products.

TABLE 2 | Identities of PCG and lncRNAs in the prognostic expression signature
and their univariable cox association with prognosis.

Gene symbol Coefficienta p Valuea Gene expression level
association with poor

prognosis

LOC101927765 3.406 0.001 high
RP11-23N2.4 1.895 0.007 high
RP4-533D7.4 −3.440 0.002 low

aDerived from the univariable Cox regression analysis in the training set.
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5A–B), indicating that the signature had high accuracy and
important clinical significance. In addition, time-dependent
ROC analysis was performed on the three datasets to further
understand the signature prediction capabilities for 3-, 4- and
5 year RFS. The signature AUC values in the training/test/
entire group at 3, 4, and 5 years, as shown in Figures 5D–F,
indicated a strong predictive power of the signature for RFS
(AUC � 0.767/0.818/0.833, 0.651/0.723/0.713, and 0.688/0.774/
0.769, respectively).

Functional Enrichment Analysis of Genes
Associated with the Prognostic LncRNAs in
the Signature
The PCGs correlated with the lncRNAs in our prognostic
signature were obtained by Pearson correlation analysis in all
66 patients, and their potential biological function were explored.
The expression of 1,056 PCGs was highly correlated with that of
at least one of the LncRNAs (Pearson correlation coefficient >

FIGURE 3 | The lncRNA signature for predicting recurrence PFS of patients with NFPA. Kaplan–Meier survival curves of patients classified into high- and low-risk
groups using the lncRNA signature in the training (A), test (B) and entire dataset (C).

FIGURE 4 | Risk score distribution, survival status and gene expression patterns for patients in high- and low-risk cluster grouped by the three-lncRNA signature in
the training (A), testing (B), and independent datasets (C).
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0.60, p < 0.05, Supplementary Table S5). Next, we performed GO
and KEGG analyses and found these the genes were enriched in
99 different terms (Supplementary Table S6), such as mRNA
processing, RNA splicing and oxidative phosphorylation
(Figure 6).

DISCUSSION

The prevalence of NFPA ranges from 7 to 41.3 cases per 100,000
population, and it is the second most common type of adenomas
after prolactinomas (Ntali and Wass, 2018). Despite NFPA being
a histologically benign tumor and advances in endosopic
techniques, the recueence rate of NFPA is relatively high
(Batista et al., 2018). Therefore, it is necessary to accurately

predict tumor recurrence after NFPA surgery to obtain the
most effective and accurate treatment plan. Herein, we
constructed a three-lncRNA signature to predict the
prognostic of NFPAs and verifies its predictive power.

First, we obtained 19,741 lncRNA expression profiles by
sequencing 66 NFPAs and identified 1,214 lncRNAs that were
significantly related to RFS in NFPA in the training set. RSFVH
algorithm, a machine learning method, was used to narrow down
the number of RFS-related lncRNAs to 9. A three-lncRNAs
(LOC101927765, RP11-23N2.4, and RP4-533D7.4) signature
with the highest AUC value of 511signatures, which contained
combinations of 1–9 different lncRNAs, was identified. The risk
model of the signature was constructed basde on the three
lncRNAs. Second, patients were divided into two risk group in
the training and testing sets, and the recurrence prediction power

TABLE 3 | Association of the signature with clinicopathological characteristics in Pituitary adenoma patients.

Variables Training Test Entire

Low
risk

High
risk

P Low
risk

High
risk

P Low
risk

High
risk

P

Sex 1.00 0.36 0.62
Female 8 7 8 11 16 18
Male 9 9 9 5 18 14

Age 0.21 0.12 0.03
≤52 7 11 5 10 12 21
>52 10 5 12 6 22 11

Tumor size classification 0.50 0.40 0.70
Giant 6 3 5 5 11 8
Macro 11 13 12 11 23 24

Invasion 1.00 0.21 0.43
No 6 6 10 5 16 11
Yes 11 10 7 11 18 21

Data were analyzed using the Chi-squared test; p-value < 0.05 was considered to indicate a statistically significant difference.

TABLE 4 | Univariable and multivariable Cox regression analysis of the signature and survival of NFPA patients in the training, test group and entire group.

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Training set (n � 33)
Age >52 vs.≤52 0.23 0.05 1.09 0.06 0.18 0.03 1.08 0.06
Sex Male vs. Female 1.05 0.29 3.74 0.94 0.73 0.17 3.11 0.68
Tumor size classification Macro vs. Giant 1.10 0.23 5.18 0.91 1.19 0.18 7.72 0.85
CS invasion Yes vs. No 1.40 0.36 5.40 0.63 1.37 0.28 6.59 0.70
Signature High risk vs. low risk 2.03 1.40 2.94 <0.001 2.06 1.36 3.12 <0.001

Test set (n � 33)
Age >52 vs.≤52 0.35 0.09 1.36 0.13 0.62 0.15 2.67 0.52
Sex Male vs. Female 0.53 0.14 2.03 0.35 0.78 0.17 3.72 0.76
Tumor size classification Macro vs. Giant 0.31 0.09 1.08 0.07 0.15 0.02 0.88 0.04
CS invasion Yes vs. No 2.05 0.53 7.92 0.30 0.43 0.06 3.29 0.42
Signature High risk vs. low risk 5.49 1.16 14.92 0.03 6.96 1.21 40.16 0.03

Entire set (n � 66)
Age >52 vs.≤52 0.29 0.10 0.79 0.02 0.33 0.12 0.93 0.04
Sex Male vs. Female 0.75 0.31 1.81 0.52 0.89 0.36 2.18 0.80
Tumor size classification Macro vs. Giant 1.21 0.82 1.78 0.33 0.59 0.21 1.67 0.32
CS invasion Yes vs. No 1.72 0.66 4.48 0.26 1.23 0.42 3.54 0.71
Signature High risk vs. low risk 1.49 1.24 1.80 <0.001 1.50 1.24 1.82 <0.001

CS, cavernous sinus; Giant, giant adenoma; Macro, macroadenoma.
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was validated by Kaplan-Meier analysis. Third, the three-lncRNA
signature-based risk score was identified as a prognostic factor
independent of clinical features like sex, tumor size classification,
CS invasion. Age is a controversial factor related to recurrence in
NFPA. Batista et al. (2018) showed that recurrence of NFPA was
not associated with age while Subramanian and indicated that
older age at surgery was related to a lower risk of recurrence (Lyu
et al., 2021; Subramanian et al., 2021). Even so, the ROC analysis
showed that the predictive ability of the three-lncRNA signature
was better than that of age. Finally, we explore the potential
biological function of the three lncRNAs through functional
enrichment analysis of coexpressed PCGs, which were
identified as related to the three lncRNAs by Perason
correlation analysis.

In recent years, lncRNAs has been considered potential
prognostic markers and therapectic targets for cancers (Sanchez
Calle et al., 2018; Zhang et al., 2021). Liu et al. (2020) found that
lncCSMD1-1 is overexpressed in hepatocellular carcinoma (HCC)
and interacts with theMYC protein to promote tumor progression,
suggesting that it may serve as a prognostic marker for HCC. The
lncRNA PiHL (RP11-382A18.2) is upregulated in colorectal cancer
(CRC), and its upregulation is an independent predictor of poor
CRC prognosis (Deng et al., 2020). In addition, lncRNA also play a
crucial role in PA progression. Wang et al. (2019) demonstrated
that the lncRNA clarin 1 antisense RNA 1 (CLRNA-AS1) was

expressed at low levels in prolactinoma and inhibited cell
proliferation and autophagy Moreover, lncRNA-H19 is
downregulated in PA and negatively correlated with tumor
progression (Wu et al., 2018). Therefore, lncRNAs may be
developed into a prognostic makers of PA. Recently, an
increasing number of studies have identified several lncRNAs
that can be studied to predict cancer prognostic. Meng et al.
(2014) identified four lncRNA genes (U79277, AK024118,
BC040204, AK000974) that can be used to predict breast cancer
survival. Jiang et al. (2020) found that three-lncRNA (LINC02434,
AL139327.2, and AC126175.1) could be used to predict prognosis
in head and neck squamous cell cancer However, these studies did
not confirm the reliability of the lncRNAs in tumor samples. In the
present study, to avoid false positives in sequencing data, RT-PCR
was performed to verify the reliability of the three lncRNA.

There are some limitations in this study that need to be
acknowledged. First, potential lncRNAs may have been
overlooked because the study only included 19,741
lncRNAs, which is only a small fraction of human lncRNAs.
Second, the construction and evaluation of the model were
based on the limited NFPAs samples, and more external
samples are needed to verify the prediction power. Third,
further in vivo and in vitro experiment need to be
performed to elucidate the mechanisms and potential
functions of the three lncRNAs.

FIGURE 5 |Compare prediction power of the lncRNA signature to that of Age by ROC in the training, test, and entire dataset (A, B, C) and TimeROC analysis for the
signature at 3,4, and 5 years in the three sets (D, E, F).
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FIGURE 6 | Function of the three lncRNA for GO (A) and KEGG (B) analysis by clusterProfiler.
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In summary, we constructed a three-lncRNAs signature that
could serve as a precise predictive biomarker for NFPAs. In
addition, patients identified by the 3-lncRNA signature to be at
high risk of NFPA after surgery could benefit from early and
accurate intervention.
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Sequencing Platform for Illumina
Target Capture Sequencing Libraries
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1Bioinformatics and R and D Department, Geneis (Beijing) Co. Ltd., Beijing, China, 2Qingdao Geneis Institute of Big Data Mining
and Precision Medicine, Qingdao, China, 3Academician Workstation, Changsha Medical University, Changsha, China, 4Vascular
Surgery Department, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing, China, 5Department of
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Illumina is the leading sequencing platform in the next-generation sequencing (NGS)
market globally. In recent years, MGI Tech has presented a series of new sequencers,
including DNBSEQ-T7, MGISEQ-2000 and MGISEQ-200. As a complex application of
NGS, cancer-detecting panels pose increasing demands for the high accuracy and
sensitivity of sequencing and data analysis. In this study, we used the same capture
DNA libraries constructed based on the Illumina protocol to evaluate the performance of
the Illumina Nextseq500 and MGISEQ-2000 sequencing platforms. We found that the two
platforms had high consistency in the results of hotspot mutation analysis; more
importantly, we found that there was a significant loss of fragments in the 101–133 bp
size range on the MGISEQ-2000 sequencing platform for Illumina libraries, but not for the
capture DNA libraries prepared based on the MGISEQ protocol. This phenomenon may
indicate fragment selection or low fragment ligation efficiency during the DNA
circularization step, which is a unique step of the MGISEQ-2000 sequence platform. In
conclusion, these different sequencing libraries and corresponding sequencing platforms
are compatible with each other, but protocol and platform selection need to be carefully
evaluated in combination with research purpose.

Keywords: illumina sequencing platform, MGISEQ-2000 sequencing platform, next generation sequencing, DNA
nanoball, target capture library

INTRODUCTION

With the launch of the Human Genome Project, next-generation sequencing (NGS) technology has
had a huge impact on the biological field in the past 20 years (Consortium, 2015; Yang et al., 2015;
Goodwin et al., 2016). Different companies and research institutions have developed various
sequencing approaches and platforms, such as Roche’s 454 sequencing platform, Illumina’s
sequencing by synthesis (SBS) technology, and PacBio’s single-molecule nanopore sequencing
technology (Rivas et al., 2015; Goodwin et al., 2016). Among them, the sequencers or
sequencing platforms developed by the Illumina Company have a dominant position in the
sequencing market due to their high throughput and high sequencing accuracy. Over time, the
development of machine hardware and the diversification of bioinformatics analysis software tools
have led to drastic reductions in sequencing costs and increases in convenience and usability, even for
new developed techniques like single cell sequencing (Yang et al., 2020a; Xu et al., 2020). For
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example, NGS technology plays a vital role in analyzing somatic
mutations that occur in multiple tumor types. The Cancer
Genome Atlas (TCGA) (Weinstein et al., 2013) and
International Cancer Genome Consortium (ICGC) (Hudson
et al., 2010) have sequenced thousands of tumors from more
than 50 cancer types and summarized the significant genetic
somatic mutations that occur during the process of tumorigenesis
(Alexandrov et al., 2013). These data have played an extremely
important role in promoting cancer genome research and
development (He et al., 2020a; He et al., 2020b; Liu et al., 2021).

Recently, MGI Tech Co., Ltd (referred to MGI) launched a
series of NGS sequencers and platforms based on DNA nanoball
(DNB) and probe-anchor synthesis (cPAS) technology, such as
MGISEQ-200, MGISEQ-2000, and DNBSEQ-T7 (Fehlmann
et al., 2016). They have gradually achieved a certain sales
volume and have become another option for high-throughput
sequencing. For example, MGISEQ-2000 can generate
approximately 1.44 TB sequencing data per run with a
running cost of only 10 USD/GB. Several studies have
compared the performance between MGI and the Illumina
sequencing platform, and the results showed that they were
highly consistent for different types of sequencing libraries,
including whole-exome sequencing (WES) (Xu et al., 2019),
whole-genome sequencing (WGS) (Patch et al., 2018),
transcriptome sequencing (Zhu et al., 2018; Jeon et al., 2019;
Patterson et al., 2019; Zeng et al., 2020), single-cell transcriptome
sequencing (Natarajan et al., 2019; Peng et al., 2020a; Senabouth
et al., 2020; Zhuang et al., 2021), metagenome sequencing (Fang
et al., 2018) and small RNA sequencing (Huang et al., 2017)
libraries.

When MGI launched their sequencers, they indicated that
they were compatible with the sequencing libraries constructed
based on Illumina protocols, that is, that the MGISEQ platform
could sequence the Illumina libraries. In our study, we used the
same capture DNA libraries constructed based on the Illumina
protocol for sequencing with the Illumina NextSeq 500 and
MGISEQ-2000 sequencing platforms. We found that the two
platforms had high consistency in the hotspot mutation analysis
and that there was a significant loss of the 101–133 bp fragments
on the MGISEQ-2000 sequencing platform but not in the capture
DNA libraries based on the MGISEQ protocol. We hypothesized
that this might be related to fragment selection or low ligation
efficiency during the DNA circularization step, a step that is
unique to theMGISEQ-2000 sequence platform. Hence, although
the selection of sequencers and platforms is becoming
increasingly diversified and all theoretically compatible and
applicable to each other, the choice of platform for practical
applications may need to be further evaluated according to the
research purpose and library characteristics.

MATERIALS AND METHODS

Sample Collection and Experimental
Groups
Our research was approved by the Qingdao Geneis Institute of
Big Data Mining and Precision Medicine in November 2019, and

the research ID was Ethics-QD-[2020] No. 001. A total of 272
samples (patient age: 29–91 years old) were collected at Qingdao
Geneis Institute of Big Data Mining and Precision Medicine from
December 2019 to March 2020, including 79 plasma samples, 21
white blood cell samples and 172 formalin-fixed and paraffin-
embedded (FFPE) samples. Informed written consent forms were
obtained from patients, and identifying information was
removed. The clinical information of the samples is shown in
Table 1.

We randomly selected 204 (75%: 204/272) samples to
construct capture libraries based on the Illumina protocol and
performed data analysis. The remaining samples were divided
into two groups of 34 samples (12.5%: 34/272) using different
capture panels and constructing capture libraries based on the
MGISEQ protocol for sequencing and data analysis, respectively.

Library Preparation Based on Illumina
Platform and Sequencing
DNA for NGS-based analysis was extracted using the GeneRead
Kit (Qiagen, Hilden, Germany) for FFPE tissue and the QIAamp
DNA Blood Mini Kit (Qiagen, Hilden, Germany) for white
blood cell samples. DNA (200 ng) was used to build the library
by using the NEBNext Ultra II DNA library Prep Kit for
Illumina (96 reactions) (NEB, Ipswich, MA, United States).
Cell-free DNA was extracted using a QIAamp Circulating
Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The extracted DNA (20 ng/
sample) was then used to build libraries using Accel-NGS®
2S Plus DNA Library Kits (96 reactions; Swift BioSciences,
Ann Arbor, MI, United States). Integrated DNA
Technologies (IDT, Skokie, IL, United States) or Agilent
Technologies (Santa Clara, CA, United States) custom probes
were used for hybridization capture. We used the IDT 38-
hotspot gene panel or Agilent 519 gene panel
(Supplementary Table S5) for all 272 libraries.

TABLE 1 | Clinical information for collected samples.

Clinical characteristics All samples (n = 272)

Unknown 46
Age, Median (Range)-yrs 62.5 (29.0–91.0)
Age groups-No.% 15–49 years 24/226 (10.62)

50–64 years 97/226 (42.92)
≥65 years 105/226 (46.46)

Sex-No.% Female 103/226 (45.58)
Male 123/226 (54.42)

Disease-No.% Lung cancer 166/226 (73.45)
Colon cancer 13/226 (5.75)
Rectal cancer 11/226 (4.87)
Gastric cancer 6/226 (2.65)
Breast cancer 5/226 (2.21)
Esophageal cancer 5/226 (2.21)
Colorectal cancer 4/226 (1.77)
Nasopharyngeal carcinoma 2/226 (0.88)
Liver cancer 1/226 (0.44)
Ovarian cancer 1/226 (0.44)
Tongue cancer 1/226 (0.44)
Unknown 11/226 (4.87)
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Quantification was performed with an Illumina/Universal
Library Quantification Kit (Kapa Biosystems, Wilmington,
MA, United States) on an ABI 7500 Real Time Polymerase
Chain Reaction (PCR) System (Applied Biosystems, Waltham,
MA, United States). The quality control for Agilent 2,100
Bioanalyzer used a High-Sensitivity DNA Kit (Agilent
Technologies, Santa Clara, CA, United States). Next-
generation sequencing-based analysis was performed on a
NextSeq500 or MiSeqDX instrument according to the
manufacturer’s instructions (Illumina, San Diego, CA,
United States). With the NextSeq500/550 High Output V2
Kit or MiSeqTMDX Reagent V3 Kit, Illumina NextSeq500 or
MiSeqDX (Illumina, San Diego, CA, United States) was used for
DNA sequencing in 302 cycles for 151 bp paired-end
sequencing. All 272 libraries were also analyzed on a
MGISEQ2000 instrument according to the manufacturer’s
instructions (BGI, Shenzhen, Guangdong, China). With the
MGISEQ-2000RS High Output kit (BGI, Shenzhen,
Guangdong, China), MGISEQ-2000 (BGI, Shenzhen,
Guangdong, China) was used for DNA sequencing in 200

cycles and 300 cycles for 100 bp and 150 bp paired-end
sequencing, respectively.

Library Preparation Based on the MGISEQ
Platform and Sequencing
DNA libraries were prepared with the MGIEasy FS DNA Library
Prep Set (BGI, Shenzhen,Guangdong, China). DNA (50–200 ng)was
fragmented physically with a Covaris S220 instrument (Covaris,
Woburn, MA, United States), followed by A-tailing, adapter
ligation and PCR amplification. DNA library quality was assessed
using a Qubit and Agilent 2,100 Bioanalyzer with a High Sensitivity
DNA Kit. Cot-1 DNA blocking reagent (Thermo Fisher Scientific,
Waltham, MA, United States), IDT universal blocking
oligonucleotides and IDT adapter-specific blocking
oligonucleotides were added to the pooled libraries and dried in a
SpeedVac. The driedmixture was redissolved inmixed liquids of IDT
hybridization buffer, IDT hybridization enhancer and BOKE capture
probes (BOKE bioscience, Bejing, China). After hybridization at 65°C
for 4 h, the target regions were captured with M270 streptavidin

FIGURE 1 | Comparison of Sequencing Data Quality Control Parameters between Illumina and MGISEQ-2000 Platforms. (A) Distribution of Q20 ratio by each
sample. (B) Distribution of GC content by each sample. (C) Distribution of average depth by each sample. (D) Distribution of probe capture efficiency by each sample.
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beads by incubation at 65°C for 45min and then washed 3 times at
65°C and another 3 times at room temperature with IDT xGen
lockdown reagents. Then, 15 postcapture amplification cycles were
performed to obtain the captured libraries. Final libraries were pooled
and sequenced using the MGISEQ-2000 sequencing platform with a
150 bp paired-end cycle kit.

Data Normalization and Statistics
As the volume of sequencing data and read length of the Illumina
and MGISEQ-2000 platforms were different (Supplementary
Table S1), we “normalized” all 272 sample sequencing
datasets, that is, each sample had the same read length and
read number. We used seqtk (version: 1.0-r73-dirty) (https://
github.com/lh3/seqtk) to “normalize” the raw sequencing data.
We used a in-house perl program to caculate the number of reads,
Q20 ratio and GC content (Supplementary Table S2).

Data Preprocessing and Analysis
The normalized data were cleaned by Trimmomatic (version:
0.39) (Bolger et al., 2014), which filtered out the adapter
contamination reads and low-quality reads and the
parameter’s setting was ILLUMINACLIP:adapter sequence:2:
30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36 (adapter sequences for Illumina Nextseq 500 and
MGISEQ-2000 were AGATCGGAAGAGCACACGTCTGAA
CTCCAGTCAC/AGATCGGAAGAGCGTCGTGTAGGGAAA

GAGTGTA and AAGTCGGAGGCCAAGCGGTCTTAGGAA
GACAA/AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCC
AAGGAGTTG, respectively). BWA-ALN algorithm (version:
0.7.12) (Li and Durbin, 2009) was applied for alignment with the
reference genome hg19 (parameters: -o 1 -e 50 -t 4 -i 15 -q 10). The
output SAM file was sorted and deduplicated with Samtools
(version: 0.1.19) (Li et al., 2009), and the BAM format file was
obtained. We used FreeBayes (version: 1.0.2) (Garrison and Marth,
2012) to detect SNP/InDel mutations (parameters: -j -m 10 -q 20 -F
0.001 -C 1). The mutations were annotated from the ANNOVAR
database (Wang et al., 2010). Fragment size distribution was
summarized from the paired-end alignment information (column
ninth) in the BAM format file. Statistical analysis used the statistical
functions in Microsoft Excel 2019 and R software (version 3.2.5).

RESULTS

Data Quality Control Parameters Were
Significantly Different Between the Illumina
and MGISEQ-2000 Sequencing Platforms
We compared the Q20 rate, GC content, mean depth and capture
efficiency of 204 samples generated based on the Illumina library
protocol, which were captured by the IDT 38-hotspot gene panel
and sequenced on the Illumina and MGISEQ-2000 sequencing

FIGURE 2 | Hotspot Mutation Results Comparison between the Illumina and MGISEQ-2000 Platforms. (A) The Venn digram of the detected hotspot mutations
comparision. (B) The correlation comparison of the detected hotspot mutation frequency values.
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platforms (Figure 1, details in Supplementary Table S3),
respectively. We found that all of the quality control
parameters had significant differences, with p-values of 4.87e-
85, 1.15e-4, 0.0326 and 0.0035, respectively, in the two-tailed
heteroscedasticity t-test analysis. We thought that these
differences could be due to the sequencing principles, the
algorithm used for base recognition or the sequencing
platform characteristics. For example, the Nextseq500 platform
treated all unrecognized bases as G, while HiSeq-2000, MGISEQ-
2000 and other previous four-color imaging sequencers treated
these bases as N. Therefore, the GC content tended to be higher in
the Illumina NextSeq500 results than in the others.

Hotspot Mutations Showed High
Consistency Between the Illumina and
MGISEQ-2000 Sequencing Platforms.
The hotspot mutations (SNPs and InDels) detected in 204 sample
datasets were compared between the Illumina andMGISEQ-2000

platforms (Supplementary Table S4). We defined a positive
detection filter condition as mutation frequency ≥ 0.4% for
plasma samples and mutation frequency ≥ 1% for FFPE
samples. We found that the hotspot mutation detection results
had high consistency rates of 82.30% (Illumina: 200/243) and
82.99% (MGISEQ-2000: 200/241) (Figure 2A). Furthermore, no
significant difference (R2 � 0.8422, p-value � 0.9652) in mutation
frequency was observed between the Illumina andMGISEQ-2000
platform data. (Figure 2B).

MGISEQ-2000 sequencing platform data based on Illumina
libraries showed a significant loss of the 101–133 bp fragment.

Insert fragment size and distribution were evaluated and
analyzed for all 204 samples. As we used the same sample
library for sequencing, the theoretical difference only existed
in Illumina’s bridge PCR amplification and MGISEQ-2000s
DNB circularization. (Figure 3A) (Goodwin et al., 2016; Chen
et al., 2019; Korostin et al., 2020). Combining all 204 sample data
for fragment size analysis, our results revealed a significant loss of
101–133 bp fragments in theMGISEQ-2000 platform data, with a

FIGURE 3 | The Insert Fragment Size Analysis of Illumina-based Capture Library On the Illumina and MGISEQ-2000 Platforms. (A) The principles of Illumina and
MGISEQ sequencers. Track A represents the Illumina library combined with bridge PCR amplification of the Illumina platform. Track B represents the Illumina library
combined with DNA circularization for DNB of the MGISEQ-2000 platform. Track C represents the MGISEQ library combined with DNA circularization for DNB of the
MGISEQ-2000 platform. (B) Compared with the Illumina platform data, the MGISEQ-2000 platform data had a significant loss of 101–133 bp fragments. (C)
Statistical analysis of sequencing depth distribution in ALK, EGFR and ERBB2 with one sample. Sequencing depth distribution of 101–133 bp (left panel) and
134–500 bp (right panel) in ALK (top), EGFR (middle), and ERRBB2 (bottom). In each figure panel, the top panel shows the sample total sequencing depth distribution,
the middle panel shows the sequencing depth of 101–133 bp fragment size, and the bottom panel shows the 134–500 bp fragment size sequencing depth distribution.
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t-test p-value of 3.3072e-17 (Figure 3B), while other fragment
sizes, such as 134–500 bp (t-test p-value � 0.7264), did not show a
difference. Although significant differences were found in the
Q20 rate, GC content and other quality control statistics, these
should be attributable to the sequencer system characteristics and
should not have a great impact on the fragment size distribution.
Therefore, the loss of the 101–133 bp fragment size may be
related to the DNA cyclization step, that is, there may be
fragment size selection in the circularization step or
enrichment bias for longer DNA molecules and low ligation
efficiency for shorter DNA molecules.

Then, we extracted 101–133 bp and 134–500 bp fragment size
information from BAM files for each sample and analyzed the
sequencing depth distribution of three common cancer genes,
ALK receptor tyrosine kinase (ALK), epidermal growth factor
receptor (EGFR) and erb-b2 receptor tyrosine kinase 2 (ERBB2).
The results showed that 69.12% (141/204) of samples had
101–133 bp fragment size loss, while the sequencing depth
distribution of 134–500 bp fragments was consistent with the
overall total sequencing depth, indicating that the phenomenon
was not due to stochasticity in specific genes (Figure 3C). The
sequencing depth distribution of all samples was in the
Supplementary Figures by each sample.

As we know, the use of FFPE or hemolyzed samples may have
a great influence on the distribution of DNA fragment size.

Therefore, we performed statistical analysis on the quality of
204 samples with and without 101–133 bp loss. First, we defined
the sample quality levels with DNA agarose gel electrophoresis as
A, B, C, D or E (Figure 4A). Then, all samples in each grade were
subgrouped according to whether the 101–133 bp fragment size
was lost. We found that the sample proportions of A, D and E
levels were consistent in the two groups, while B and C levels were
quite different. The proportions of B [C] level samples in the
101–133 bp loss group and 101–133 bp nonloss group were
25.53% (36/141) [26.24% (37/141)] and 41.27% (26/63: 6)
[9.52% (6/63)], respectively (Figure 4B). Therefore, our results
showed that the circularization step of MGISEQ-2000 not only
biased the selection of DNA fragment size but also may have a
greater impact on samples with quality grade B or C.

Fragment Size Loss had no Probe
Preference and was not Obvious in the
Database of MGISEQ-2000 Libraries.
To verify whether the phenomenon was related to capture-probe
preference, we analyzed the fragment size distribution of the
sequencing data from 34 samples that were captured with an
Agilent 519 gene panel and sequenced separately by Illumina
Nextseq500 and MGISEQ-2000. As shown in Figure 5A, the
same 101–133 bp fragment size loss was found. In addition, we

FIGURE 4 | Statistical Analysis On The Quality of 204 Samples. (A) Sample quality grading table of gDNA agarose gel electrophoresis. (B) The distribution of
different sample quality levels in samples with and without loss of 101–133 bp fragment size. The top figure represented sample quality grade distribution of samples
without 101–133 bp fragment size loss. The bottom figure represented sample quality grade distribution of samples with 101–133 bp fragment size loss.
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constructed 34 other libraries according to the experimental
protocols of MGISEQ and Illumina and generated data on
their sequencing platforms. We also analyzed the fragment
size distribution and found that the fragment size (peak
183 bp) distribution on the Illumina platform had a “left
offset” compared to that (peak 214 bp) on the MGISEQ-2000
platform. The fragment size distribution curve of the MGISEQ
data was smooth, and there was no obvious 101–133 bp fragment
size loss (Figure 5B).

DISCUSSION

In recent decades, next-generation sequencing technology has
undergone rapid development. With the greatly reduced
sequencing cost, increasing scientific research and technical
product development are being applied to NGS. In particular,
to meet the needs of precision medicine and big data mining, the
number and scale of cancer omics research and clinical projects
are constantly increasing (Yang et al., 2020b; Zeng et al., 2020).
For a large number of samples, the expenses and costs borne are
unaffordable; thus, sequencing costs are still the bottleneck for
large-scale NGS applications. At present, Illumina sequencers
dominate the high-throughput sequencing market, but MGI
sequencers based on DNB technology have gradually become
more popular worldwide. Recently, several studies have
compared the performance of BGI-500 and the Illumina
HiSeq machine and showed that both of them could produce
high-quality data in various applications. However, a comparison

of their quality for capture panel sequencing (exceptWES), which
is widely used in tumor research, has not been published.

In this study, we compared the data produced from the same
library by different sequencing platforms. For the library
preparation step, Illumina used bridge PCR technology, while
MGI achieved single-molecule template amplification by DNB
circularization amplification. We applied both the Illumina
(Nextseq500 and MiSeqDx) platform and MGISEQ (MGISEQ-
2000) platform to the same library constructed by the Illumina
protocol. Theoretically, any difference in sequencing data should
have been caused by the differences between bridge PCR and
circularization amplification or the consequent sequencing
system differences. Comparison of the data analysis results
revealed the disadvantage of fragment size selection and short
fragment size ligation efficiency in the circularization step. These
results suggest that the sequencing data based on Illumina library
preparations and in which sample types with shorter fragment
sizes (such as hemolyzed plasma samples) or a more complex
distribution of DNA fragment sizes (such as FFPE samples with
longer storage times) are used may encounter short DNA
fragment size loss on the MGISEQ sequencing platform.
Therefore, we should evaluate the compatibility of sequencing
libraries and sequencing platforms for scientific research that
focuses on the distribution of fragment size, especially for small
RNA (Fehlmann et al., 2016), cell-free DNA (cfDNA) and
circulating tumor DNA (ctDNA) research (Underhill et al.,
2016; Liu et al., 2020). Although the sequencing library is
basically compatible with different sequencing platforms,
appropriate experimental systems and sequencing platforms

FIGURE 5 | Fragment Distribution in Illumina Nextseq500 and MGISEQ-2000. (A) The libraries were constructed following the instructions of Illumina and captured
with an Agilent 519 gene panel. (B) Fragment distribution when experiments were performed according to the experimental systems and kits recommended by Illumina
and MGISEQ, respectively.
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should be selected based on the research purpose and sample
type. Otherwise, there may be an unexpected impact on the
sequencing results. Our data showed the results of only target
capture panel sequencing; the assessment of other sequencing
applications requires further investigation.

Considering that the alignment algorithm may also have an
impact on the fragment size distribution analysis, we replaced the
BWA “aln” algorithmmentioned in the article with the BWA “mem”
algorithm. The “mem” algorithm is much looser than the “aln”
algorithm, and it can perform local alignment and splicing. The
“mem” algorithm allows multiple different parts of the sequencing
reads to have their own optimal matches, resulting in multiple
optimal alignment positions for the reads and greatly improving
the alignment rate. After comparing and analyzing the combined
data with 204 samples of the IDT 38-hotspot gene panel and 34
samples of the Agilent 519 gene panel by using the “mem” algorithm,
we found that the number of reads in the 101–133 bp fragment size
from the MGISEQ-2000 platform data was significantly improved
(Supplementary Figure S1), but there were still significant
differences, with t-test p-values of 0.0277 and 0.0252, respectively.
The conclusionwas consistentwith that based on the “aln” algorithm.

We also found that the data without the 101–133 bp fragment
size loss were derived from different sequencing read lengths of
the Illumina Nextseq500 and MGISEQ-2000 platforms, while the
data with the same sequencing read length showed the
101–133 bp fragment size loss. To investigate whether the data
with or without the phenomenon were related to the sequencing
read length, we reanalyzed and compared data with the same
number of sequencing reads but not read length, and found that
the results were consistent with the previous conclusion. Since the
101–133 bp fragment size loss was concentrated in the data with
long read length (150 bp) but not in the data with short read
length (100 bp), we hypothesized that the phenomenon may also
be related to the sequencing read length. We will conduct more
in-depth research on this point in our future work.

In summary, the MGISEQ-2000 platform has good
compatibility with Illumina sequencing libraries, but the DNB
circularization step may cause fragment size selection or have low
ligation efficiency for short DNA fragment sizes. For the accuracy
of downstream data analysis, we recommend that different

sequencing platforms should be used with their official
experimental systems and kits. If the experiment needs to
change between different platforms, for cost considerations or
other reasons, the selected platform should be evaluated carefully
with respect to the purpose of the research or actual needs, as it
may have a significant impact on outcomes. In the future, it would
be interesting to compare the performances of two platforms in
specific applications like cancer diagnosis (He et al., 2020b; Peng
L.-H. et al., 2020), prognosis (Peng et al., 2020c; Song et al., 2020;
Zhou et al., 2020), evolution inference (Yang et al., 2013; Yang
et al., 2014), drug repositioning (Peng et al., 2015; Zhou et al.,
2019; Liu et al., 2020), and so on. However, it is out of the scope of
this study.
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Association Between RSK2 and
Clinical Indexes of Primary Breast
Cancer: A Meta-Analysis Based on
mRNA Microarray Data
Kun Zheng1†, Shuo Yao1†, Wei Yao1, Qianxia Li 1, Yali Wang1, Lili Zhang1, Xiuqiong Chen1,
Huihua Xiong1, Xianglin Yuan1, Yihua Wang2,3, Yanmei Zou1* and Hua Xiong1*

1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China, 2Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton,
United Kingdom, 3Institute for Life Sciences, University of Southampton, Southampton, United Kingdom

Background: Although ribosomal protein S6 kinases, 90 kDa, polypeptide 3 (RSK2,
RPS6KA3) has been reported to play an important role in cancer cell proliferation, invasion,
and migration, including breast cancer, its clinical implication in primary breast cancer
patients is not well understood, and there were not many studies to explore the relationship
between RSK2 and breast cancer on a clinical level.

Methods: A systematic series matrix file search uploaded from January 1, 2008 to
November 31, 2017 was undertaken using ArrayExpress and Gene Expression Omnibus
(GEO) databases. Search filters were breast cancer, RNA assay, and array assay. Files
eligible for inclusion met the following criteria: a) sample capacity is over 100, b) tumor
sample comes from unselected patient’s primary breast tumor tissue, and c) expression of
RSK2 and any clinical parameters of patients were available from the files. We use median
as the cutoff value to assess the association between the expression of RSK2 and the
clinical indexes of breast cancer patients.

Finding: The meta-analysis identified 13 series matrix files from GEO database involving
3,122 samples that come from patients’ primary breast cancer tissue or normal tissue. The
expression of RSK2 in tumor tissues is lower than that in normal tissues [odds ratio (OR),
0.54; 95% credible interval (CI), 0.44–0.67; Cochran’s Q test p � 0.14; I2 � 41.7%].
Patients with a high expression of RSK2 showed more favorable overall survival [hazard
ratio (HR), 0.71; 95% CI, 0.49–0.94; Cochran’s Q test p � 0.95; I2 � 0.0%] and less
potential of distant metastasis (OR, 0.59; 95%CI, 0.41–0.87; Cochran’sQ test p � 0.88; I2

� 0.0%) and lymph node infiltration (OR, 0.81; 95% CI, 0.65–0.998; Cochran’s Q test p �
0.09; I2 � 42.8%). Besides, the expression of RSK2 in luminal breast cancer is lower than
Cochran’s Q test p � 0.06; I2 � 63.5%). RSK2 overexpression corresponded with higher

Edited by:
Jialiang Yang,

Geneis (Beijing) Co. Ltd., China

Reviewed by:
Feng Zhu,

Affiliated Hospital of Guilin Medical
University, China

Zhen Guo,
Changsha Medical University, China

*Correspondence:
Yanmei Zou

whtjzym@tjh.tjmu.edu.cn
Hua Xiong

cnhxiong@tjh.tjmu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

RNA,
a section of the journal
Frontiers in Genetics

Received: 03 September 2021
Accepted: 30 September 2021
Published: 01 November 2021

Citation:
Zheng K, Yao S, Yao W, Li Q, Wang Y,
Zhang L, Chen X, Xiong H, Yuan X,
Wang Y, Zou Y and Xiong H (2021)

Association Between RSK2 and
Clinical Indexes of Primary Breast

Cancer: A Meta-Analysis Based on
mRNA Microarray Data.

Front. Genet. 12:770134.
doi: 10.3389/fgene.2021.770134

Abbreviations: CI, credible interval; DFS, disease-free survival time; DMFS, distant metastasis-free survival; ER, estrogen
receptor; FGFR2, fibroblast growth factor receptor 2; GEO, gene expression omnibus; HER2, human epidermal growth factor
receptor 2; HR, hazard ratio; MAPK, mitogen-activated protein kinase; NOS, newcastle-ottawa quality assessment scale; OR,
odds ratio; OS, overall survival; PR, progesterone receptor; RFS, relapse-free survival time; RSK2/RPS6KA3, ribosomal protein
S6 kinases, 90 kDa, polypeptide 3; TNBC, triple-negative breast cancer; YB-1, Y-box binding protein-1.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7701341

SYSTEMATIC REVIEW
published: 01 November 2021

doi: 10.3389/fgene.2021.770134

84

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.770134&domain=pdf&date_stamp=2021-11-01
https://www.frontiersin.org/articles/10.3389/fgene.2021.770134/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.770134/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.770134/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.770134/full
http://creativecommons.org/licenses/by/4.0/
mailto:whtjzym@tjh.tjmu.edu.cn
mailto:cnhxiong@tjh.tjmu.edu.cn
https://doi.org/10.3389/fgene.2021.770134
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.770134


histological grade (OR, 1.329; 95% CI, 1.03–1.721; Cochran’s Q test p � 0.69; I2 � 0.0%).
RSK2 expression is also associated with estrogen receptor (ER) and age.

Conclusion: The meta-analysis provides evidence that RSK2 is a potential biomarker in
breast cancer patients. The expression of RSK2 is distinctive in different intrinsic subtypes
of breast cancer, indicating that it may play an important role in specific breast cancer.
Further study is needed to uncover the mechanism of RSK2 in breast cancer.

Systematic Review Registration: (website), identifier (registration number).

Keywords: ribosomal protein S6 kinase, 90kDa, polypeptide 3 (RSK2), breast cancer, molecular subtype, microarray,
prognostic value, biomarkers

INTRODUCTION

Breast cancer is the most frequent cancer among women. Data
from the World Health Organization shows that breast cancer
impacts over 1.5 million women each year and also causes the
greatest number of cancer-related deaths among women. In 2015,
570,000 women died from breast cancer—that is, approximately
15% of all cancer deaths among women. Although there has been
a breakthrough in the treatment and prevention of breast cancer
in the past few years, leading to the 5-years relative survival rate
rising to 90%, the majority of breast cancer patients with distant
metastasis succumb to cancer progression within 5 years (Siegel
et al., 2018). Also, breast cancer is more than one single disease.
Several molecular subtypes of breast cancer have been classified
depending on their molecular characteristics (Perou et al., 2000),
and each individual subtype corresponds to a different underlying
biology, survival rate, and response to therapy (Prat et al., 2015;
Nielsen et al., 2017). Therefore, the identification of biomarkers to
screen high-risk patients, predict breast prognostic outcomes, and
provide new therapeutic targets for specific breast cancer is
urgently needed.

RSK2, ribosomal protein S6 kinase, 90 kDa, polypeptide 3,
belongs to RSK serine/threonine kinase family and is a
downstream of the mitogen-activated protein kinase (MAPK)
pathway (Zhao et al., 2016). RSK is unique among
serine–threonine kinases in that it contains two functional
kinase domains: an N-terminal kinase that phosphorylates the
substrates of RSK and a C-terminal kinase involved in the
activation mechanism of RSK (Frödin and Gammeltoft, 1999).
RSK isoforms are activated by virtually all extracellular signaling
molecules including growth factors, peptide hormones,
neurotransmitters, and environmental stresses (Arul and Cho,
2013). It has been demonstrated that RSK2 plays an important
role in cancer cell proliferation, invasion, and migration,
including breast cancer (Yoo et al., 2019; Guo and Kong, 2021).

In previous studies, it has been reported that RSK2 expression
is different between breast cancer tissue and normal breast tissue
and varies among different subtypes or histological grades of
breast cancer. Some studies suggested that RSK2 overexpression is
correlated with basal-like breast cancer and higher histological
grade, and RSK2mRNA is associated with poor survival in breast
cancer patients who had not received chemotherapy (Stratford
et al., 2012; Zhao et al., 2016). A protein downstream of RSK2

named Y-box binding protein-1(YB-1) was reported to transform
human mammary epithelial cells in the development of basal-like
breast cancer (Davies et al., 2014). Another study indicated that
RSK2 activation status positively correlates with patient response
to anti-estrogen hormonal therapies and is required for estrogen
receptor+ (ER+) breast cancer tumorigenesis (Clark et al., 2001).
Several drug trials illustrated that by suppressing RSK2
expression, the metastasis of human epidermal growth factor
receptor 2+ (HER2+) breast cancer was repressed (Mao et al.,
2016), the ability of migration and invasion of lung cancer cell
was inhibited (Lee et al., 2015), and the carcinogenesis of
ultraviolet radiation-induced skin cancer was prevented (Yao
et al., 2014). These prompt us to investigate whether RSK2
might be a potential biomarker that can act as a promising
biomarker of breast cancer or a novel therapy target for a
specific subtype of breast cancer. However, RSK2 expression is
rarely associated with clinical practice, which drives us to
investigate the association between RSK2 expression and
clinical parameters and prognosis of breast cancer patients.

In the case of very limited clinical studies of RSK2, we
performed a meta-analysis using public electronic databases
ArrayExpress (Parkinson et al., 2007) and Gene Expression
Omnibus (GEO) (Clough and Barrett, 2016) to summarize
and evaluate the clinical significance of RSK2 in breast cancer
patients and in order to explore the possibility of RSK2 expression
as a predictive marker of clinicopathological parameters and
prognosis in primary breast cancer, so as to screen high-risk
patients or to provide new targets and directions for the treatment
of breast cancer patients with specific molecular subtypes.

METHODS

Literature Search
We conducted a search of a series matrix files in the electronic
database ArrayExpress (ArrayExpress, 2017) uploaded from
January 1, 2008 to November 1, 2017 using the search filter
“breast cancer,” “Homo sapiens,” “RNA assay,” “array assay,” and
“all assay.” We also conducted a search of a series matrix files in
the GEO database (NCBI, 2017) uploaded from January 1, 2008
to November 1, 2017 using the search filter “breast cancer,”
“Homo sapiens,” “series,” and “expression profiling by array.”
A total of 207 and 227 expressions by array dataset were listed in
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the ArrayExpress and GEO databases, respectively. Relevant
literatures were found in GEO database using the GSE ID.

Inclusion and Exclusion Criteria
This meta-analysis collects data from primary breast cancer
patient’s tumor tissue to assess the relationship of RSK2
expression and the clinical parameters of breast cancer
patients, such as clinicopathological features and prognostic
factors. Inclusion criteria are as follows: a) patients in the
study have not been selected, or the selection had no effect on
clinical indicators given the RSK2 expression might be different
among different subtypes of breast cancer and different clinical
status of patients; b) the sample size in each file is greater than 100
and comes from the same study; c) sample comes from breast
cancer patients’ primary tumor tissue or normal tissue; d) the
expression of RSK2 was efficient and available from the series
matrix file; and e) any of a patient’s clinicopathological features
and prognostic factors can be extracted from the file. When
samples in a file are duplicated with samples in another file, we
selected the larger or qualified one. The exclusion criteria are as
follows: a) samples were gathered from different studies; b) the
original study could not be found; c) the sample size in
the document is inconsistent with the number of patients in
the study, and the replicated samples could not be found in the
file; and d) the file was ineligible after invalid samples were
removed. Files were filtered by two researchers separately; the
disagreement was resolved through discussion. The eligible files
are listed on Table 1.

Data Extraction
For observational studies, the Newcastle-Ottawa Quality
Assessment Scale (NOS) was employed for assessing the
quality of these studies. All data was abstracted by using a
standardized data collection form, with information recorded
as follows: first author’s name, publication year, country of origin,
number of cases and controls, detection method, GSE ID, and
platform of detection. Each sample’s RSK2 expression and
corresponding clinicopathological features and prognostic
factors were extracted from the series matrix file, including
age, tissue, ER status, progesterone receptor (PR) status, HER2
status, lymph node infiltration, histological grade, TNM stage,

tumor size, tumor type, metastasis, intrinsic subtype (by PAM50),
overall survival time (OS), disease-free survival time (DFS),
relapse-free survival time (RFS), and relevant status of the
patient. Samples with incomplete information or data
described above were removed.

Data extraction is conducted by two researchers, respectively,
and disagreements were resolved by discussion.

Statistical Analysis
Statistical analysis was conducted by the guidelines proposed by
the Meta-Analysis of Observational Studies group (Stroup et al.,
2000). Median was used as the cutoff value to determine the level
of RSK2 expression because there was no suitable cutoff value to
help us distinguish the expression status of RSK2. Odds ratio
(OR) was employed for evaluating the association between RSK2
expression and clinicopathological features. Hazard ratio (HR)
and 95% credible interval (CI) were appraised to assess the
association between RSK2 expression and prognostic
indicators, including OS, DFS, and RFS by using IBM SPSS
Statistics 24. Heterogeneity of the OR and HR was calculated
by using the Cochran’s Q and I2 test. A random-effect model was
applied when p < 0.1 or I2 > 50%.When heterogeneity was absent,
a fixed-effect model was employed. Begg’s rank correlation
method and Egger’s weighted regression methods were
employed to assess publication bias. STATA software package
(version 12.0) was used to calculate pooled ORs, HRs, and
corresponding 95% CI; all p values were two tailed.

Given the limited prognostic information of specific breast
cancer patients in those GSE files, we used the Kaplan–Meier
Plotter (Hou et al., 2017; Kaplan-Meier plotter), an online
database including gene expression data and clinical data, to
assess the prognostic value of RSK2 in breast cancer. The patient
samples were divided into two cohorts according to the median
expression of the gene (high vs. low expression).

RESULTS

Search Results
The flow diagram for the recognition of eligible studies is
presented in Figure 1. There were 207 and 227 GSE files

TABLE 1 | Studies included in the meta-analysis.

First author GSE ID Platform Sample (N) Year Country or area Duration (months) Quality score

Calabrò et al. (2009) GSE10510 GPL6486 152 2009 Germany 36 9
Haakensen et al. (2010) GSE18672 GPL6848 143 2010 Norway 24 7
Enerly et al. (2011) GSE19783 GPL6480 115 2011 Norway 44 8
Kao et al. (2011) GSE20685 GPL570 327 2011 Taiwan 168 9
Terunuma et al. (2014) GSE39004 GPL6244 108 2014 USA 127 8
Clarke et al. (2013) GSE42568 GPL570 121 2013 Ireland 60 7
Gruosso et al. (2016) GSE45827 GPL570 155 2016 France NA 7
Lu et al. (2008) GSE5460 GPL570 129 2008 USA NA 8
Tofigh et al. (2014) GSE58644 GPL6244 317 2014 Switzerland NA 9
Huang et al. (2015) GSE59595 GPL17581 175 2015 Italy 12 9
Chanrion et al. (2008) GSE9893 GPL5049 155 2008 France 156 9
Li et al. (2010) GSE19615 GPL570 115 2010 USA NA 7
Wang et al. (2015) GSE93601 GPL22920 1,110 2015 USA 324 9
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identified from the ArrayExpress database and GEO database,
respectively. After duplicates were removed, RSK2 expression,
abstract, and full text were checked, and 13 GSE files from 13
independent studies involving 3,122 patients were identified by
our search strategy. The features of the 13 studies are listed in
Table 1. Ineligible samples and data were removed, such as
samples from cell, blood, or distant metastasis. When sample
was detected multiple times, the one with the highest RSK2
expression was selected. Histological grades Ⅰ and Ⅱ were
grouped as low-grade disease, and Ⅲ was grouped as high-
grade disease. Clinical stages Ⅰ and Ⅱ were grouped as early-
stage disease, and III and IV were grouped as late-stage disease.
Tumors larger than 2 cm were grouped as large tumors, and the
rest were grouped as small tumors. Patients were divided into
high-age group and low-age group, with 55 years old as the cutoff
value. Clinical stage of GSE20685 was not available, which we
estimated depending on the T, N, and M stage shown in the GSE
file using the NCCN guidelines of breast cancer (version 2. 2011).
Data in GSE39004 were only used for comparing RSK2

expression between normal tissues and tumor tissues, because
its tumor sample size is not large enough.

RSK2 Expression in Breast Tumor Tissues
was Lower Than That in Normal Breast
Tissue and Enriched in Basal-Like Breast
Cancer
Our meta-analysis demonstrated that RSK2 expression in breast
cancer tissuewas lower than that in normal tissue (pooledOR� 0.54,
95% CI: 0.44–0.67, Cochran’s Q test p � 0.14, I2 � 41.7%)
(Figure 2A). There was no statistically significant difference
between ductal carcinoma and lobular carcinoma (pooled OR �
0.75, 95% CI: 0.35–1.60, Cochran’s Q test p � 0.104, I2 � 51.3%)
(Figure 2B). The relationship of RSK2 expression and molecular
subtype was analyzed in our meta-analysis. The expression of RSK2
was obviously different between the luminal subtype and basal
subtype of breast cancer (pooled OR � 0.25, 95% CI: 0.08–0.80,
Cochran’s Q test p � 0.06, I2 � 63.5%) (Figure 2C), and no

FIGURE 1 | Flow diagram of literature selection. The search and selection process for the expression of RSK2 of breast cancer patients and the number of eligible
studies.
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FIGURE 2 | RSK2 expression among different types of breast tumor tissues as well as normal breast tissues. (A) RSK2 expression in breast cancer tissue
compared with normal tissue. (B) The association between RSK2 expression and the ductal breast cancer relative to the lobular breast cancer. (C) RSK2 expression in
luminal breast cancer compared with basal-like breast cancer. (D) RSK2 expression in luminal A breast cancer compared with luminal B breast cancer.
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FIGURE 3 | The association betweenRSK2 expression and the threemain breast cancer biomarkers. (A) The association betweenRSK2 expression and estrogen
receptor (ER) status. (B) The association between RSK2 expression and progesterone receptor (PR) status. (C) The association between RSK2 expression and HER2
status.
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FIGURE 4 | The association between RSK2 expression and other clinicopathological characters. (A) The association between RSK2 expression and distant
metastasis. (B) The association between RSK2 expression and lymph node infiltration. (C) The association between RSK2 expression and histological grade. (D) The
association between RSK2 expression and tumor size. (E) The association between RSK2 expression and clinical stage of breast cancer.
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FIGURE 5 | The association between RSK2 expression and survival outcome of breast cancer patients. (A) The association between RSK2 expression and breast
cancer overall survival (OS). (B) The association between RSK2 expression and breast cancer disease-free survival (DFS). (C) The association between RSK2 expression
and age of breast cancer patients.
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distinctive RSK2 expression was found between luminal A and
luminal B subtypes of breast cancer (pooled OR � 0.73, 95% CI:
0.26–2.01, Cochran’s Q test p � 0.05, I2 � 66.5%) (Figure 2D).

RSK2 Expression is Negatively Correlated
With ER Status
On the basic data obtained, we analyzed the relationship between
RSK2 expression and the three main breast cancer biomarkers.
RSK2 expression was inversely correlated with ER expression
(pooled OR � 0.38, 95% CI: 0.25–0.58, Cochran’sQ test p � 0.009,
I2 � 67.7%) (Figure 3A). There was no statistically significant
relationship between PR expression (pooled OR � 0.83, 95% CI:
0.57–1.22, Cochran’s Q test p � 0.36, I2 � 1.3%) (Figure 3B) and
HER2 expression (pooled OR � 0.91, 95% CI: 0.66–1.25,
Cochran’s Q test p � 0.14, I2 � 39.2%) (Figure 3C).

RSK2 Expression Effects on Breast Cancer
Progression
The association of RSK2 expression with breast cancer
clinicopathological features was also analyzed. High RSK2
expression reduced the possibility of distant metastasis (pooled
OR � 0.59, 95% CI: 0.41–0.87, Cochran’sQ test p � 0.88, I2 � 0.0%)
(Figure 4A) and lymph node metastasis (pooled OR � 0.81, 95%
CI: 0.65–0.998, Cochran’s Q test p � 0.09, I2 � 42.8%) (Figure 4B).
The overexpression of RSK2 positively correlated with histological
grade (pooled OR � 1.33, 95% CI: 1.03–1.72, Cochran’s Q test p �
0.69, I2 � 0.0%) (Figure 4C). However, RSK2 expression has no
statistically significant relationship with other biological characters
of breast cancer, including tumor size (pooled OR � 0.995, 95% CI:
0.77–1.28, Cochran’s Q test p � 0.43, I2 � 0.0%) (Figure 4D) and
clinical stage (pooled OR � 1.09, 95% CI: 0.71–1.67, Cochran’s Q
test p � 0.87, I2 � 0.0%) (Figure 4E).

High RSK2 Expression is Indicative of
Longer OS in Breast Cancer Patients
We evaluated the association between RSK2 expression level and
survival outcome of breast cancer patients. The results indicate that
RSK2 overexpression was statistically associated with the OS rate of
breast cancer patients (pooled HR � 0.71, 95% CI: 0.48–0.94,
Cochran’s Q test p � 0.95, I2 � 0.0%) (Figure 5A), while there
was no significant relationship between RSK2 expression and DFS
(pooledHR� 0.96, 95%CI: 0.63–1.29, Cochran’sQ test p� 0.94, I2�
0.0%) (Figure 5B). Only one GSE file (GSE42568) involving 104
patients has the data of RFS, and there was no statistical significance
between them (HR � 0.62, 95% CI: 0.32–1.22, log rank test p � 0.21)
(Figure 5C). We did not find a significant difference in survival
outcome between basal-like breast cancer and luminal breast cancer
for the limited sample capacity and accessible data.

RSK2 Expression is Negatively Correlated
With the Age of Breast Cancer Patients
We also recorded the corresponding age of every sample and
grouped them into low-age group and high-age group with

55 years old as the cutoff value, which was randomly selected.
Interestingly, we found that RSK2 expression is lower in the high-
age group (pooled OR � 0.73, 95% CI: 0.60–0.89, Cochran’sQ test
p � 0.45, I2 � 0.0%) (Figure 5D). In order to investigate whether
RSK2 expression decreased with age, we calculated the
relationship between RSK2 expression and age involving 508
normal tissue samples in GSE93601, and no statistically
significant correlation was found (OR � 0.95, 95% CI:
0.66–1.36). The status of p53 was available in GSE19783,
which involves 110 patients, indicating there was a positive
relationship between RSK2 and P53 mutation (OR � 4.09, 95%
CI: 1.74–9.22, Cochran’s Q test p � 0.0007).

Prognostic Value of Various RSK2 Among
Different Molecular Subtypes of Breast
Cancer
The online database Kaplan–Meier was employed to evaluate the
impact of RSK2 expression on the prognostic outcome in
different molecular subtypes of breast cancer, indicating that
elevated RSK2 expression predicts a favorable OS (luminal A
breast cancer: HR � 1.04, 95% CI: 0.74–1.48, log rank p � 0.81;
luminal B breast cancer: HR � 0.67, 95% CI: 0.46–0.97, log rank
p � 0.034; basal-like breast cancer: HR � 0.48, 95% CI: 0.28–0.82,
log rank p � 0.006; HER2+ breast cancer: HR � 0.7, 95% CI:
0.37–1.35, log rank p � 0.29) (Figure 6) and distant
metastasis-free survival (DMFS) (luminal A breast cancer:
HR � 0.96, 95% CI: 0.72–1.28, log rank p � 0.78; luminal B
breast cancer: HR � 0.63, 95% CI: 0.44–0.9, log rank p � 0.009;
basal-like breast cancer: HR � 0.54, 95% CI: 0.32–0.92, log
rank p � 0.021; HER2+ breast cancer: HR � 1, 95% CI:
0.54–1.87, log rank p � 0.99) (Figure 7) in basal-like and
luminal B breast cancer, but not in luminal A and HER2+
breast cancer. The overexpression of RSK2 predicts a
favorable prognostic value of RFS (Figure 8) in all those
subtypes of breast cancer (luminal A breast cancer: HR � 0.78,
95% CI: 0.65–0.92, log rank p � 0.004; luminal B breast
cancer: HR � 0.68, 95% CI: 0.56–0.82, log rank p < 0.001;
basal-like breast cancer: HR � 0.67, 95% CI: 0.52–0.87, log
rank p � 0.002; HER2+ breast cancer: HR � 0.51, 95% CI:
0.35–0.76, log rank p < 0.001).

The sample capacity is very large in GSE93601, which may
have a great impact on the statistical results. We reanalyzed the
data after removing the data from GSE93061 and got the same
result as the previous one.

Publication Bias
Publication bias statistics were obtained using the Begg’s test and
Egger’s test, which did not indicate any significant publication
bias (Table 2).

DISCUSSION

RSK2 is an X-linked dominant gene and acts as a modulator of
craniofacial development, and the mutation of RSK2 was
responsible for Coffin–Lowry syndrome (Laugel-Haushalter

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7701349

Zheng et al. RSK2 in Breast Cancer

92

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


et al., 2014). It is generally believed that RSK2 plays an
important role in the tumorigenesis, migration, invasion,
cell proliferation, and response to stress (Sulzmaier and
Ramos, 2013; Laugel-Haushalter et al., 2014; Alesi et al.,
2016). Precisely measuring the prognostic value of RSK2

may help to guide individual therapies for breast cancer
patients. Our meta-analysis takes advantage of a public
electronic database to evaluate the association between the
abundance of RSK2 mRNA and the clinical parameters of
breast cancer patients for the first time. Although it is not

FIGURE 6 | The association between RSK2 expression and OS in different molecular subtypes of breast cancer. (A) The association between RSK2 expression
and OS in luminal A breast cancer. (B) The association between RSK2 expression and OS in luminal B breast cancer. (C) The association betweenRSK2 expression and
OS in basal-like breast cancer. (D) The association between RSK2 expression and OS in HER2+ breast cancer.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 77013410

Zheng et al. RSK2 in Breast Cancer

93

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


possible to draw conclusions about causality, these findings
suggest that RSK2 is a potential biomarker in breast cancer,
especially in a specific subtype of breast cancer, and might
provide new perspective of the interaction between RSK2 and
breast cancer.

From our research, RSK2 expression was overexpressed in
basal-like breast cancer and higher histological grade breast
cancer and negatively correlated with estrogen receptor. These

results corresponded with previous studies that suggest that RSK2
expression is highest in basal-like breast cancer and those with the
highest histological grade (Stratford et al., 2012; Zhao et al., 2016).
A protein downstream of RSK2, namely YB-1, transforms human
mammary epithelial cells through chromatin remodeling leading
to the development of basal-like breast cancer (Davies et al.,
2014). Inactivating YB-1 can depress tumor-initiating cells of
basal-like breast cancer. A study suggested that ER-α physically

FIGURE 7 | The association between RSK2 expression and distant metastasis-free survival (DMFS) in different molecular subtypes of breast cancer. (A) The
association between RSK2 expression and DMFS in luminal A breast cancer. (B) The association between RSK2 expression and DMFS in luminal B breast cancer. (C)
The association between RSK2 expression and DMFS in basal-like breast cancer. (D) The association between RSK2 expression and DMFS in HER2+ breast cancer.
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interacts with RKS2, resulting in the accumulation of RSK2 in
nuclear sequestration, and RSK2 can promote neoplastic
transformation and facilitate metastatic tumor growth of ER+
breast cancer (Ludwik et al., 2018), but there was no explanation

for RSK2 expression negatively correlating with ER status.
However, there is no obvious statistical significance between
RSK2 expression and progesterone receptor on the basic data.
Luminal A breast cancer is an ER-positive breast cancer with a

FIGURE 8 | The association between RSK2 expression and relapse-free survival (RFS) in different molecular subtypes of breast cancer. (A) The association
between RSK2 expression and RFS in luminal A breast cancer. (B) The association between RSK2 expression and RFS in luminal B breast cancer. (C) The association
between RSK2 expression and RFS in basal-like breast cancer. (D) The association between RSK2 expression and RFS in HER2+ breast cancer.
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lower histological grade, while luminal B breast cancer is an ER-
positive breast cancer with a higher histological grade. Although
RSK2 is overexpressed in higher histological grade breast tumor,
there is no obvious distinction between luminal A and luminal B
breast cancer from our data. It may be partly due to the limited
sample size of luminal A and luminal B breast cancer, and the
distinction of RSK2 expression was not large enough
between them.

There were some unexpected results based on our data. It is
generally believed that the expression of RSK2 in cancer tissue is
higher than that in normal tissue, and reducing the expression of
RSK2 can prevent tumorigenesis, tumor cell growth, and ability of
migration and invasion (Lee et al., 2013; Yao et al., 2014; Mao
et al., 2016; Zhao et al., 2016). However, based on our data, the
contrary result was obtained. Furthermore, no evidence indicates
that the immunohistochemistry outcome of RSK2 was different
from that of mRNA microarray assay. The overexpression of
RSK2 alone or RSK2 combined with other biomarkers indicates a
poor prognostic outcome was reported. For example, it has been
shown that targeting RSK2 with specific inhibitors or small
interfering RNAs remarkably inhibits the growth and renewal
of tumor-initiating cells in triple-negative breast cancer (TNBC)
and that RSK2 promotes migration through the ERK/MEK
pathway (Stratford et al., 2012). In addition, Czaplinska et al.
found that fibroblast growth factor receptor 2 (FGFR2) can form
an indirect complex with RSK2, which may be involved in the
progression of breast cancer and lead to poor prognosis in breast
cancer patients (Czaplinska et al., 2016).

Based on the data collected from microarray, the OS of breast
cancer patients is higher in RSK2 high-expression patients than
that in RSK2 low-expression patients, and with the increase of
RSK2 expression, the potential of distant metastasis and lymph
node infiltration decreased. Moreover, it is strange that the
expression of RSK2 is highest in basal-like breast cancer
(TNBC), which is defined by the absence of the three main
breast cancer biomarkers—i.e., a lack of expression of ER and
PR and a lack of amplification or overexpression of HER2—and
cooperates with poor prognosis and high risk of distant metastasis
(Carey et al., 2010), but the OS, the potential of distant metastasis,

and the lymph node metastases were more favorable in the RSK2
high-expression group in the basic data from microarray. No
relevant study was available to help us understand the mechanism
under the paradoxical phenomenon. We hypothesize that RSK2
plays a different role in different subtypes of breast cancer.We did
not find a significant difference in survival outcomes between
basal-like breast cancer and luminal breast cancer for the limited
sample capacity and accessible data. In reference to the result
from the online Kaplan–Meier Plotter, the overexpression of
RSK2 predicts more favorable prognostic value of RFS in all
subtypes of breast cancer. As for the OS and DMFS, only basal-
like and luminal B breast cancer patients were able to benefit from
RSK2 overexpression.

We found that RSK2 expression is negatively correlated with
the age of breast cancer patients for the first time, but there is no
such relationship in normal tissue. There is also no statistically
significant difference in RSK2 expression between the early-stage
group and late-stage group of breast cancer patients. It was
reported that RSK2 is sequestered in stress granules, which can
aid cell survival in response to environmental stress by acting as
sites of translational repression, and facilitates stress granule
assembly to repress translation and to enhance cell survival
(Eisinger-Mathason et al., 2008). The body’s response to stress
decreases with age and may provide a possible explanation for the
phenomenon.

Heterogeneity tests are an essential part of a meta-analysis. In
this study, minor heterogeneities were observed with respect to
OS, DFS, tumor size, clinical stage, and histological grade;
however, there were substantial heterogeneities with respect to
ER status, HER2 status, lymph node infiltration, and different
subtypes of breast cancer. This unbalanced phenomenon could
partly result from the detection method and accuracy of ER
status, PR status, and HER2 status being different from each
other, and the data completeness obtained from GSE files was not
identical. Three GSE files have efficient PR status, and the
heterogeneity was not obvious among them, while the other
three GSE files have identified the molecular subtype of breast
cancer, which shows a significant heterogeneity. Patients from
different areas may respond to the heterogeneities. There were no
heterogeneities in United States patients, while the main
heterogeneity of ER status and HER2 status originates from
different European countries when we conducted a subgroup
analysis. Another significant heterogeneity was likely due to the
detection platform. Publication bias is worth considering in a
meta-analysis. In this study, there was no significant publication
bias based on the Egger’s and Begg’s test.

There are still some limitations in this meta-analysis. First of
all, the relevant studies and complete available data were limited,
and the available clinical parameter is not homogenous among
those matrix files. Secondly, the detection platform, method, and
accuracy of hormone receptors are different among these studies.
Thirdly, the therapy level and method are distinctive, and we
cannot eliminate their effect. Lastly, we cannot ignore the
publication bias. Some data are still unavailable.

For further verification, we could download the mRNA
expression data and corresponding clinical information of
breast cancer patients from other databases as a validation

TABLE 2 | Publication bias tested by Egger’s test and Begg’s test.

Egger’s test P Begg’s test P

Normal tissue and tumor tissue 0.476 0.806
ER status 0.412 0.266
PR status 0.936 1
HER2 status 0.264 0.260
Lymph node infiltration 0.149 0.536
Tumor size 0.890 1
Histological grade 0.582 1
Basal-like and luminal breast cancer 0.325 1
Luminal A and B breast cancer 0.764 1
Distant metastasis 0.866 1
Lobular and ductal breast cancer 0.615 1
Age of patient 0.776 0.902
Overall survival 0.892 1
Disease-free survival 0.222 0.296

ER, estrogen receptor; PR, progesterone receptor.
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cohort to verify the relationship between the RSK2 expression
level and the clinicopathological features as well as the prognosis
of patients. In terms of experimental validation, future
researchers could modify the expression of RSK2 in different
breast cancer cell lines and then perform various in vitro andmice
xenografts in vivo trials to observe the effects of altering RSK2
expression on the proliferation, apoptosis, cell cycle, metastasis,
and invasion capabilities of breast cancer cells. Furthermore, the
prognostic significance of RSK2 could also be verified by
measuring the protein expression level of RSK2 by flow
cytometry, western blotting, and immunohistochemistry
staining on tumor and paracancerous normal tissues of breast
cancer patients in conjunction with clinical information analysis.
The strategies above could help to confirm the reliability of our
meta-analysis findings based on RSK2 mRNA expression and
prognosis.

In conclusion, our meta-analysis was the first study that
used microarray assay to research the association between
RSK2 expression and clinicopathological features and
prognostic factors of primary breast cancer patients.
Although some results corresponded with previous studies
and some results were opposite to previous studies, both of
them indicated RSK2 is a promising biomarker of breast
cancer. This study provides a new research direction and
area of RSK2, while more experimental studies and

elaborate research are needed to uncover the sealed
mechanism of RSK2 in breast cancer.
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Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The
rupture of atherosclerotic plaque is the main reason for the clinical events caused by
atherosclerosis. Making clear the transcriptomic and proteomic profiles between the stabe
and unstable atherosclerotic plaques is crucial to prevent the clinical manifestations. In the
present study, 5 stable and 5 unstable human carotid atherosclerotic plaques were
obtained by carotid endarterectomy. The samples were used for the whole transcriptome
sequencing (RNA-Seq) by the Next-Generation Sequencing using the Illumina HiSeq, and
for proteome analysis by HPLC-MS/MS. The lncRNA-targeted genes and circRNA-
originated genes were identified by analyzing their location and sequence. Gene
Ontology and KEGG enrichment was carried out to analyze the functions of
differentially expressed RNAs and proteins. The protein-protein interactions (PPI)
network was constructed by the online tool STRING. The consistency of transcriptome
and proteome were analyzed, and the lncRNA/circRNA-miRNA-mRNA interactions were
predicted. As a result, 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 proteins were
identified to be differentially expressed between stable and unstable atherosclerotic
plaques. The 488 lncRNAs might target 381 protein-coding genes by cis-acting
mechanisms. Sequence analysis indicated the 91 differentially expressed circRNAs
were originated from 97 protein-coding genes. These differentially expressed RNAs
and proteins were mainly enriched in the terms of the cellular response to stress or
stimulus, the regulation of gene transcription, the immune response, the nervous system
functions, the hematologic activities, and the endocrine system. These results were
consistent with the previous reported data in the dataset GSE41571. Further analysis
identified CD5L, S100A12, CKB (target gene of lncRNAMSTRG.11455.17), CEMIP (target
gene of lncRNAMSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411) to be
critical genes in regulating the stability of atherosclerotic plaques. Our results provided a
comprehensive transcriptomic and proteomic knowledge on the stability of atherosclerotic
plaques.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory disease with high
prevalence and mortality. The stability of atherosclerotic
plaques is the main reason for its clinical manifestations.
Unstable plaques, also known as vulnerable plaques, are
characterized by a large lipid core, a thin fibrotic cap, less
smooth muscle cells, less collagen, and elevated
inflammation. The broken of unstable plaques blocks
capillaries, forms thrombosis, and eventually triggers
clinical manifestations, such as ischemic stroke and
myocardial infarction. Figuring out the genes and proteins
which play critical roles in the stability of atherosclerotic
plaques is important.

Recent researches have demonstrated the functions of
lncRNAs and circRNAs in atherosclerosis (Xiao et al., 2018;
Fasolo et al., 2019; L.; Wang et al., 2019; Cao et al., 2020). For
example, lncRNA FENDRR, LincRNA-p21, ANRIL, MIAT,
CDK2B-AS1, PELATON participated in the formation and
stability of atherosclerotic plaques. They interfered with the
phagocytosis, lipid uptake, and reactive oxygen species
formation during atherogenesis (Çekin et al., 2018; Hung
et al., 2020; Ou et al., 2020). CircRNA is a plentiful, stable,
diversified, and conserved class of non-coding RNA molecules
that circularized from head to tail with a covalent bond of 5–3
(Jeck et al., 2013). It is involved in a wide range of biological and
pathological processes, such as carcinogenesis and
cardiovascular diseases. CircRNAs act as miRNA sponges,
decoys, or scaffolds of gene expression (Poller et al., 2018).
Studies reported the participation of cirRNA00044073,
circRNA-PTPRA, circRNA_0003204, and circHIPK3 in
atherosclerosis through affecting the autophagy, proliferation
and invasion, and tube formation (Shen et al., 2019; Wei et al.,
2020; Zhang, 2020; Zhang et al., 2020).

Recently, some studies have investigated the transcriptome
profiles in atherosclerosis. In a microarray analysis, 236
lncRNAs and 488 mRNAs were identified to be differentially
expressed in human advanced atherosclerotic plaques compared
to the normal arterial intimae (Bai et al., 2019). An RNA-Seq
identified 1,259 annotated and 381 new RNAs in coronary
artery disease (Pan et al., 2019). A weighted gene correlation
network analysis identified several key genes in ruptured
atherosclerotic plaques and other aging diseases (Yang et al.,
2016; Xu et al., 2020; Yang et al., 2020). However, no
comprehensive study and analysis was performed on the
whole transcriptome and proteome in stable and unstable
plaques.

In our present study, we obtained the stable and unstable
plaques from patients conducting carotid endarterectomy (CEA),
measured the transcription profiles and protein profiles by RNA-
Seq and HPLC-MS/MS, identified the differentially expressed
(DE) mRNAs, lncRNAs, circRNAs, and proteins, analyzed the
functions of these differentially expressed genes. The present
study provided a comprehensive knowledge of the gene and
protein expression profiles responsible for the stability of
atherosclerotic plaques, and identified several essential RNAs
and proteins.

METHODS AND MATERIALS

Patients and Samples
The atherosclerotic plaques were obtained from 10 patients
undergoing CEA operation in the First Hospital of Jilin
University (Changchun, Jilin, China) from July 2019 to
November 2019. The plaques were fast-frozen in liquid
nitrogen and stored at −80°C. The classification of unstable or
stable plaques was carried out according to the criteria of the
American Heart Association (AHA) (Hetterich H et al., 2016).
Briefly, type I/II: near-normal wall thickness, no calcification;
Type III: diffuse intimal thickening or small eccentric plaque, no
calcification; Type IV/V: plaque with lipid or necrotic core
surrounded by fibrous tissue with possible calcification; Type
VI: complex plaque with possible surface defect, hemorrhage, or
thrombus; Type VII: calcified plaque; Type VIII: fibrotic plaque
without lipid core and with possible small calcification. Type I-II,
III, VII, VIII were considered stable, while type IV-V, VI to be
unstable plaques. Two independent investigators conducted the
plaque classification.

The procedures were approved by the Ethics Committee of the
First Hospital of Jilin University (No. 2019-272, Changchun, Jilin).
Written informed consent was obtained from every participant.
Eventually, 5 stable plaques and 5 unstable plaques were obtained
for further analysis. The stable or unstable plaque from each patient
was divided into two parts evenly. One part was used for whole
transcriptome sequencing (RNA-Seq), while the other part was for
LC-MS/MS detection.

RNA Extraction, Library Preparation, and
RNA-Sequencing
The Next-Generation Sequencing (NGS) analysis was performed
in the Shanghai Personalbio Technology Co., Ltd. (Shanghai,
China). Total RNA was isolated using the Trizol reagent
(Invitrogen, Carlsbad, CA, United States). The qualities and
quantities of the RNA were measured using NanoDrop
spectrophotometer (Thermo Scientific, Waltham,
Massachusetts, United States). The integrity of the total RNA
was determined by Bioanalyzer 2,100 (Agilent Technologies,
Santa Clare, CA, United States) and 1% agarose gel
electrophoresis.

Sequencing libraries were generated according to the following
steps: poly-T oligo-attached magnetic beads were used to purify
mRNA from total RNA. The mRNA was fragmented by divalent
cations under elevated temperature in an Illumina proprietary
fragmentation buffer. Then, the first strand cDNA was
synthesized using random oligonucleotides and SuperScript II,
followed by the second strand cDNA synthesis using DNA
Polymerase I and RNase H. After adenylation of the 3’ ends of
the DNA fragments, Illumina PE adapter oligonucleotides were
ligated to prepare for hybridization. The cDNA fragments with a
length of 400–500 bp were selected. Then the library fragments
were purified using the AMPure XP system (Beckman Coulter,
Beverly, CA, United States). DNA fragments with ligated adaptor
molecules on both ends were amplified using Illumina PCR
Primer Cocktail in a 15 cycle PCR reaction. The products
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were purified (AMPure XP system) and quantified using the
Agilent high sensitivity DNA assay on a Bioanalyzer 2,100 system
(Agilent). The sequencing library was then sequenced on
NovaSeq 6,000 platform (Illumina) by Shanghai Personal
Biotechnology Co. Ltd.

Samples are sequenced on the NovaSeq 6,000 platform to get
image files, which were then transformed to the original data in
FASTQ format (RawData). These RawData were filtered to get high-
quality sequence (Clean Data) by Cutadapt (v1.15) software, which
removed low-quality Reads and connectors. The reference genome
and gene annotation files were downloaded from the genome website.
The filtered reads were mapped to the reference genome (Homo-
sapiens.GRCh38. dna.primary_ assembly. fa) using HISAT2 v2.0.5.

Identification of Differentially Expressed
mRNA, lncRNA, and circRNA
The expression of mRNAs was identified by the HTSeq (0.9.1)
statistics. The Read Count values on each gene were considered to be
the original expression level, and then the FPKM method was used
to standardize them. The expression difference of mRNA between
stable and unstable plaque groups was analyzed by DESeq (1.30.0).

The lncRNAs were identified by the Stringtie software. Briefly,
the transcripts with length >200 bp and exon number≥2 were
identified first. Transcriptions with the class code of x/u/i (x stand
for antisense lncRNA, u stand for intergenic lncRNA, i stand for
intronic lncRNA) were identified secondly. LncRNAs with
coverage >3 were identified as expressed lncRNAs. The newly
identified lncRNA was nominated by the Stringtie automatically
with a title of “MSTRG”.

The remaining unmapped reads were considered to be
candidates of circRNAs. On the candidate transcripts, 20 bp at
each end was used as 5′ Anchor or 3’ Anchor. The Anchors were
then mapped to the reference sequence. If the sequences of the
Anchors were reverse to the mapped sequence and the junction
was consistent with the splicing pattern of AG-GT, it was
determined to be a circRNA. The expression level of circRNAs
was calculated by the method of Transcripts Per kilobase of exon
model per Million mapped reads (TPM).

The DESeq was used to analyze the DE mRNAs, lncRNAs,
circRNAs. RNAs with |log2FoldChange| > 1.0 and p-value < 0.05
were identified as differentially expressed.

The MeV 4.9.0 software was used to perform clustering and
visualizing the expression pattern of 20 DE mRNAs, lncRNAs,
and circRNAs.

Verification of Differentially Expressed
mRNA, lncRNA, and circRNA
The expression level of 4 DE mRNA, 4 DE lncRNA, 4 DE
circRNA were verified by qPCR. The total RNAs from 5 stable
and 5 unstable plaques were extracted by Trizol (Takara, Dalian,
China). After concentration and quality evaluation, the total
RNAs were reverse transcripted to cDNA by the PrimeScript
RT reagent Kit with gDNA Eraser (perfect real time) kits (Takara,
Dalian, China). The PCR reactions were conducted by Applied
Biosystems Quantstudio 5 system with the following program:

95 °C 30 s, followed by 40 cycles of 95°C 5 s, 60°C 30 s. The
primers were provided by Shanghai Sangon Biological
Engineering Co. Ltd. (Shanghai, China). The primers used in
the present study were as following: CD163: forward 5′-GGA
TCT GCT GAC TTC AGA AG -3′, reverse 5′-CTC CTT GTC
TGT TCC TCC AA-3’; (antisense); S100A8: Forward 5′-ATG
CCG TCT ACA GGG ATG ACC T-3′, reverse 5′- AGA ATG
AGG AAC TCC TGG AAG TTA-3’; FGF14: forward 5′-TAT
TGC AGG CAA GGC TAC TAC TTG-3′, reverse 5′-GTT TTC
ACT CCC TGG ATG GCA AC-3’; CDH19: forward 5′-ATT
GGT CAG CCA GGA GCG TTG T-3′, reverse 5′- GCA GAT
TCA GAG ACA GTC AAG CG-3’. lncRNA ENST00000430222
forward 5′- TCT CAA GTC GCT GAC ACC TCC TC-3′, reverse
5′- GGG TTG CCG AGT GAA GCT AAG AC-3’; lncRNA
ENST0000062895 forward 5′-GCA AGG CGT CCG AAG
TAT GAG TC-3′, reverse 5′-CGT CAG TAG AAG TTA GGC
GAT CAG C -3’; lncRNA ENST00000631338 forward 5′-AGT
TCA TCA CGG CTG CTG CTA AC-3′, reverse 5′- CTT GGC
TTG GAG GGA GAA GAA TCA C-3’; lncRNA MSTRG18183
forward 5′-CCA GAG AGG AGG AAG AGG GGA ATC-3′,
reverse 5′-TTA GGT GGG TGG AAG GCA GAG ATC-3’;
hsacirc_013041 forward 5′-TGG TGT ATG CAA GTG GCC-
3′, reverse 5′-TGC TGA AAA GCC AAC TGC TGG GTA G-3’;
hsacirc_025902 forward 5′-AGA CCG TGG TGG TCA TCC-3′,
reverse 5′-CCT GAG CCT TGA GAT AGT T-3’; hsacirc_054182
forward 5′-CAG AGC CAG CAT TCT TTC C-3′, reverse 5′-
GAGCCTGTGGATGAAGTGAG-3’; hsacirc_037511 forward
5′- CCC TAA AGA AAA TTG CTA-3′, reverse 5′- TTA TCA
CAA ATC TCA GCC -3’. GAPDH forward: 5′-CTC TGC TCC
TCC TGT TCG AC-3′, reverse: 5′-GCG CCC AAT ACG ACC
AAA TC-3’. All samples were run in triplicate, and the results
were analyzed using the 2(−ΔΔCt) Method.

The lncRNA-Targeted Genes and
circRNA-Originated Genes Identification
As reported previously, the cis-acting regulation is an
important mechanism of lncRNA. Through this, the
lncRNAs activate, repress, or modulate the expression of
neighboring target genes (Lam et al., 2014). These
lncRNAs are treated as cis-acting lncRNAs. Usually, the
cis-acting lncRNAs regulate the expression of their
neighboring genes in a manner dependent on the location
of their own sites of transcription. Therefore, the protein-
coding genes neighboring the cis-acting lncRNAs might be
their targets. Here, we searched the protein-coding genes
within a distance of 1 kb ∼ −1 kb to the potential cis-acting
lncRNAs. These protein-coding genes were considered to be
the lncRNA-target genes of the corresponding lncRNA.

To predict the functions ormechanisms of circRNAs, we identified
the circRNA-originated genes based on the theory that many
circRNAs are originated from protein-coding genes and contain
exonic sequences (Guo et al., 2014; You et al., 2015). Therefore, we
analyzed the sequence of the differentially expressed circRNAs,
identified the circRNAs with exons of protein-coding genes. These
protein-coding genes were considered to be the originate genes of the
corresponding circRNAs.
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Proteomic Analysis of Differentially
Expressed Proteins in Stable and Unstable
Plaques
Extraction and digestion of proteins: The samples were lysed by
SDT solution (4% SDS, 100 mM Tris/HCl pH 7.6, 0.1 M DTT).
The protein concentration was determined by BCA method.
The extracted total proteins were hydrolyzed by trypsin using
filter aided proteome preparation (FASP). The desalination was
conducted on the C18 cartridge. After freeze-drying, the peptide
was dissolved in 40 μl Dissolution buffer and quantified by
OD280.

LC-MS/MS detection: Trypsin-digested peptides were
separated using the Easy nLC nanoHPLC system. 2 μg of the
sample were loaded with a constant flow of 4 μl/min on a
Thermo Scientific EASY column C18 column. After trap
enrichment, the peptides were eluted in the Easy C18

nanocolumn (75 μm*10 cm) by a linear gradient of solvent A
(0.1% formic acid solution) and solvent B [0.1% formic acid in
acetonitrile (84%)] with a constant flow of 250 nL/min. The
solvent B changed from 0 to 35% in 0–50 min, from 35 to 100%
in 50–58 min, and 100% in 58–60 min.

The HPLC system was coupled to an OrbiTrap QExactive mass
spectrometer (Thermo Fisher Scientific Inc.) via an EasySpray
source. The full scan MS survey spectra was m/z 300 to 1800 in
positive mode. The first-grade mass spectrometry resolution was
70,000 at m/z 200. The automatic gain control (AGC) target was 3e6.
Themaximum ITwas 10ms. The dynamic exclusionwas 40.0 s. The
charge to mass ratio of peptides was collected under the following
conditions: after a full scan, 10 MS2 scan was obtained; The MS2
activation type was HCD, with an isolation window of 2 m/z; The
resolution of MS2 was 17,500 at 200 m/z; The normalized collision
energy was 30 eV, and the underfill ratio was 0.1%.

Annotation and quantification of proteins: The raw file was
annotated by Maxquant software (version 1.5.5.1). The
parameters used for the analysis was as following: main search
ppm was 6; max missed cleavages was 2; De-isotopic was True;
enzyme was trypsin; fixed modifications was carbamidomethyl;
variable modifications were oxidation, and the database was
uniport_Homo_sapiens_186616_20191202; the decoy database
pattern was Reverse; the label-free quantification (LFQ) was True;
the peptide mass tolerance was ±20 ppm; the peptide FDR
was≤0.01, and the protein FDR was≤0.01.

The differentially expressed proteins (DEPs) between stable
and unstable plaques were identified by the criteria of |
log2FoldChange| > 1.0 and p-value < 0.05.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes pathway analysis of
Differentially Expressed mRNAs,
lncRNA-targeted genes,
circRNA-originated genes, and
Differentially Expressed Proteins.
GO enrichment analysis and KEGG pathway analysis were used
to analyze the functions of DE mRNAs, lncRNA-targeted genes,
circRNAs-originated genes, and DEPs. The DAVID online tool

(https://david.ncifcrf.gov/) was used for GO and KEGG
enrichment. The GO enriched genes into three annotations:
biological process (BP), cell components (CC), and molecular
function (MF). A p-value < 0.05 was considered to be significantly
related GO terms or KEGG pathways.

Protein-Protein Interaction Analysis of the
Differentially Expressed Proteins
To identified the interactions between DEPs, the STRING online
tool (website: https://string-db.org/) was used. The STRING
database covers 9′643′763 proteins from 2′031 organisms. It
provides direct (physical) interactions and indirect (functional)
associations between proteins based on the computational
prediction, knowledge transfer between organisms, and
interactions aggregated from other (primary) databases. After
the PPI analysis by STRING, the key clusters in the PPI network
were analyzed by the tool of MCODE in Cytoscape software 3.8.3.

Comparison Analysis of Transcriptome and
Proteome, and Previously Reported Data
Profile GSE41571.
A previous study reported a low correlation between transcripts
and proteins (Ghazalpour et al., 2011). To analyze the consistency
of expression pattern between transcriptome and proteome in the
present study, and to identify the key genes which may play
critical roles in the stability of atherosclerotic plaques, we
analyzed the overlapped genes between DE mRNAs and DEPs.
We also analyzed the relationship between lncRNA-targeted
genes (identified in The lncRNA-Targeted Genes and circRNA-
Originated Genes Identification) and the DEPs, the circRNA-
originated genes (identified in The lncRNA-Targeted Genes and
circRNA-Originated Genes Identification) and DEPs. The
overlapped genes and the expression levels were summarized.

To verify our transcriptomic and proteomic results, we also
downloaded the gene expression profile GSE41571 from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).
The dataset GSE41571 contains 5 unstable and 6 stable
atherosclerotic plaques obtained from CEA. These plaques
were carried out genome-wide gene expression profiling using
microarrays. The GEO2R tool on the GEO website was used to
screen out the differentially expressed genes in GSE41571. Then
we analyzed the overlapped genes between DE mRNAs from
GSE41571 and our transcriptomic and proteomic profiles.

LncRNA/circRNA-miRNA-mRNA Network
Analysis
The lncRNAs and cirRNAs are involved in the gene regulation by
many methods, such as binding to target genes, affecting the
histone modification, activating transcriptional factors, and
binding to miRNA as competitive endogenous RNA (ceRNA).
To further analyze the functions of specific lncRNAs or circRNA,
the miRNAs which interacted with the lncRNA/circRNA were
analyzed by miRDB (http://mirdb.org/). Then the miRNA
targeted mRNA was analyzed by miRDB. Cytoscape software
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3.8.3 was used to visualize the lncRNA/circRNA-miRNA-mRNA
network.

Statistical Analysis
The data were presented in the form of mean ± S.D. p-value <
0.05 is considered statistically significant.

RESULTS

Patients and Samples Information
A total of 5 patients with stable plaques and 5 patients with
unstable plaques were involved in the present study. The
characteristic information of these patients were shown in
Supplementary Table S1. There was no significant
difference between the two groups on age, sex, body
weight index, smoke, alcohol, and lipid profiles. In the
unstable plaque group, 40% of the patients are taking
antihypertensives, antihyperlipidemic drugs, or
antiplatelet drugs. In the stable plaque group, 40% of the
patients are taking antihypertensives.

The DE mRNAs, lncRNAs, circRNAs, and
Proteins in Stable and Unstable Plaques.
In the RNA-Seq analysis, more than 168 466 008 clean reads were
identified with more than 96.57% been mapped to the reference
genome. Totally, 20025 mRNAs, 31751 lncRNAs, and 12131
circRNAs were identified. Among these genes, 202 mRNAs,
488 lncRNAs, and 91 circRNAs were differentially expressed.
In the 202 DE mRNAs, 125 were upregulated and 77 were
downregulated in unstable plaques. The heatmap of 20 DE
mRNAs were shown in Figure 1A. In unstable atherosclerotic
plaques, 207 upregulated and 281 downregulated lncRNAs, 61
upregulated and 30 downregulated circRNAs were also been
identified. The heatmaps of part of these differentially
expressed lncRNAs and circRNAs were shown in Figures
1B,C. To verify the RNA-Seq results, the qPCR analysis was
conducted for several DE mRNAs, lncRNAs, and circRNAs. The
qPCR results were consistent with that of the RNA-Seq results
(Figures 1F,G).

In the HPLC-MS/MS analysis, a total of 3,082 proteins in 23494
peptides were identified. Among these proteins, 148 were upregulated

FIGURE 1 | The hierarchical clustering heatmap of 20 DE mRNAs, lncRNAs, circRNAs, and proteins. A–D: The hierarchical clustering heatmap of mRNAs (A),
lncRNAs (B), circRNA (C), proteins (D). (E): The heatmap of overlapping genes between current study and GSE41571; (F): the qPCR verification of 6 randomly selected
upregulated mRNAs, lncRNAs, and circRNAs. (G): the qPCR verification of 6 randomly selected downregulated mRNAs, lncRNAs, and circRNAs. The values (mean ±
S.D. from 5 independent experiments) are relative to Stable group, which was set as 1. *p < 0.05, **p < 0.01. Red box: the overlapping genes between current study
(A) and GSE41571 (E).
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and 145 were downregulated in unstable plaques. The hierarchical
clustering heatmapof 20 differentially expressed proteinswere shown in
Figure 1D.

Comparison Analysis of the Present
Transcriptome and Previously Reported
Data from GSE41571.
To further verify our results and to figure out the key genes in
the stability of atherosclerotic plaques, we analyzed the dataset
GSE41571 downloaded from the GEO database. 1,595
downregulated and 750 upregulated genes were found in
GSE41571. Among them, 30 genes were differentially
expressed in both dataset GSE41571 and our RNA-Seq data,
42 genes were overlapped with our DEPs (Supplementary
Table S2, Figure 1E). These overlapped genes were mainly
related to cell adhesion, immune response, and inflammatory
responses.

The lncRNA-Targeted mRNA and
circRNA-Originated Genes Identification
We screened the neighboring protein-coding genes of the 488
differentially expressed lncRNAs. 381 protein-coding genes
were at the distance of 1 kb ∼ −1 kb to the corresponding
488 lncRNAs (Supplementary Table S3). These protein-
coding genes were treated as the potential lncRNA-targeted
genes. The corresponding lncRNAs were treated as cis-acting
lncRNAs. The expression of these targeted genes might be
regulated by the cis-acting lncRNAs.

We also analyzed the sequence of 91 differentially expressed
circRNAs. All of these 91 circRNAs contained exonic sequences.
These exonic sequences belong to 97 protein-coding genes. These
97 genes were considered to be the circRNA-originated genes
(Supplementary Table S4).

The GO enrichment and KEGG pathway analysis of the DE
mRNAs, lncRNA-targeted genes, circRNA-originated genes,
and DEPs.

The GO and KEGG analysis was conducted to predict the
functions of differentially expressed mRNA, the lncRNA-
targeted genes, circRNA-originated genes, and the DEPs.
The results were shown in Supplementary Table S5. The
DE mRNAs were mainly enriched in the GO terms of
extracellular region, RAGE receptor binding, defense
response, and KEGG terms of neuron ligand-receptor
interaction, and cytokine-receptor interaction. The lncRNA-
targeted genes were enriched in the GO terms of intracellular
membrane-bounded organelle, transcription regulator
activity, transcription from RNA polymerase II promoter,
and KEGG terms of the TNF signaling pathway. The
circRNA-originated genes were enriched in the GO terms of
basal cortex, malonyl-CoA decarboxylase activity, negative
regulation of stress fiber assembly, and KEGG terms of
cellular senescence and focal adhesion. The proteins were
mainly related to ECM-receptor interaction, hematopoietic
cell lineage, and phagosome.

Protein-Protein Interaction Network and
Clusters Analysis of Differentially
Expressed Proteins
The protein-protein interaction network between the DEPs was
analyzed by the online tool STRING and shown in Figure 2. In
total, 195 nodes and 532 edges were identified. Four clusters with
24 genes were identified by the MCODE tool in the Cytoscape
software (Figure 2 and Supplementary Table S6). The DEPs
were clustered into 4 clusters which may be involved in the
functions of smooth muscle contraction, metabolism and
transportation of lipoproteins, immune system function, and
mRNA splicing.

Comparison Analysis of Transcriptome and
Proteome
To analyze the consistency of transcripts and proteins, and to
identify the key genes playing critical roles in the stability of
atherosclerotic plaques, we compared the expression of
differentially expressed mRNA and DEPs, the lncRNA-target
genes and DEPs, as well as the circRNA-originated genes and
DEPs. Surprisingly, only two DEPs (CD5L, S100A12) were
overlapped with mRNA. Two proteins (CKB, CEMIP) were
overlapped with the lncRNA-targeted genes, one protein
(SH3GLB1) was overlapped with the cirRNA-originated
gene. The expression levels of these mRNAs, related
lncRNAs, related circRNA, and DEPs were shown in
Supplementary Table S7. Both CD5L and S100A12 mRNAs
and proteins were upregulated in the unstable plaques. The
CKB and CEMIP proteins, as well as their related lncRNA,
MSTRG.11455.17 and MSTRG.12845 were upregulated in
unstable plaques. While the SH3GLB1 protein was
upregulated, but its related circRNA, hsacirc_ooo411 was
downregulated. These genes may play critical roles in the
stability of atherosclerotic plaques.

LncRNA (circRNA)-miRNA-mRNA Network
Analysis
In LncRNA (circRNA)-miRNA-mRNA Network Analysis, two
lncRNAs (MSTRG.11455.17, MSTRG.12845) and one
circRNA (hsacirc_000411) were identified to interact with
DEPs. To further explore the functions of
MSTRG.11455.17, MSTRG.12845, and hascirc_000411, we
analyzed the related miRNA, and the subsequent miRNA
targeted mRNAs. The lncRNA (circRNA)-miRNA-mRNA
network was shown in Figure 3. The lncRNA
MSTRG.11455.17 was predicted to bind miR-7849, miR-
7856, and miR-4760, which may affect the functions of
subsequent 33 genes. LncRNA MSTRG.12845 was predicted
to bind miR-4797, miR-3915, miR-5009, miR-6873, and miR-
6817, which may affect subsequent 26 genes. Hsacirc-000411
was predicted to bind miR-647 and miR-4433b, which may
affect subsequent 7 genes (Figure 3).
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DISCUSSION

The present study screened the transcripts and proteins in human
stable and unstable atherosclerotic plaques. A total of 202
mRNAs, 488 lncRNAs, 91 circRNAs, and 293 DEPs were
identified to be differentially expressed between stable and
unstable atherosclerotic plaques. The 488 lncRNAs might
affect the production of 381 protein-coding genes by cis-acting

regulations. Sequence analysis indicated the 91 circRNAs were
originated from 97 protein-coding genes.

To figure out the functions of these DE mRNAs, lncRNAs,
circRNAs, and proteins, we conducted the GO enrichment and
KEGG pathway analysis, as well as the PPI network. The
enrichment and pathway analysis indicated these differentially
expressed RNAs and proteins were involved in the cellular
response to stress or stimulus, regulated the gene transcription

FIGURE 2 | The protein-protein interactions of DEPs and the clusters identified byMCODE. Red box: cluster1; Green box: cluster 2; Yellow box: cluster 3; Pink box:
cluster 4.

FIGURE 3 | The lncRNA (or circRNA)-miRNA-mRNA interactions network. Yellow diamond: lncRNA or circRNA; green circle: miRNA; blue square: mRNA.
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through ways such as histone acetyltransferase binding,
spliceosome, and dihydropteridine reductase activity. In
the atherosclerotic plaque stability, the following functions
may play critical roles: the immune response (RAGE receptor
binding, cytokine-cytokine receptor interactions, ECM-
receptor interaction, phagosome, B cell receptor signaling
pathway, cGMP-PKG signaling pathway, antigen processing
and presentation), nervous system functions (neuroactive
ligand-receptor interactions, cholinergic synapse,
neurotrophin signaling pathway), hematologic activities
(hematopoietic cell lineage, coagulation cascades), and
endocrine system (cortisol synthesis and secretion, insulin
secretion). The PPI and MCODE analysis of DEPs discovered
4 clusters relating to the function of smooth muscle
contraction, insulin function, lipid metabolism, immune
system, and gene expression (Supplementary Table S6).
These results indicated that the immune response,
endocrine system, metabolisms are major functional
alterations between stable and unstable atherosclerotic
plaques.

Since the previous microarray dataset GSE41571 analyzed
the gene expression profiles in the macrophage-rich regions
of stable and unstable atherosclerotic plaques, we compared
our data with the GSE41571 data. 30 genes and 42 proteins
were found to be differentially expressed in both our data and
GSE41571. These 72 genes and proteins are mainly related to
cell adhesion, immune response, and inflammatory
responses, which were consistent with our GO and KEGG
analysis.

To further screen out the key genes which may play critical
roles in the stability of atherosclerosis, we analyzed the
consistency of transcriptome and proteome in the present
study. Surprisingly, only a few genes were screened out. They
are CD5L, S100A12, CKB (target gene of lncRNA
MSTRG.11455.17), CEMIP (target gene of lncRNA
MSTRG.12845), and SH3GLB1 (originated gene of
hsacirc_000411). CD5L and S100A12 were upregulated in
unstable plaques at both mRNA and protein levels. CD5L
encodes the secreted glycoprotein antigen protein CD5, which
is involved in the inflammatory response. It is primarily expressed
in macrophages and promotes M2 macrophage polarization,
promotes anti-inflammation in response to TLR activation
(Sanjurjo et al., 2015, 2018). S100A12 is a member of the S100
protein family. It binds to RAGE and activates the downstream
pro-inflammatory signals, such as NF-kB and ROS (Xiao et al.,
2020). S100A12 is involved in the pathogenesis of atherosclerosis
through the S100A12-CD36 axis (Farokhzadian et al., 2019). CKB
and CEMIP are the targets of two novel lncRNAs
MSTRG.11455.17 and MSTRG.12845, respectively. CKB
encodes protein creatine kinase B, which plays a role in
energetic hemostasis in ischemic and inflammatory disorders
(Kitzenberg et al., 2016). CEMIP encodes the cell migration-
inducing and hyaluronan-binding protein, which regulates
epithelial-mesenchymal transition (EMT), tumor cell growth
and migration (Li et al., 2017). In atherosclerosis, CEMIP was
reported to regulate the proliferation and migration of vascular
smooth muscle cells (Xue et al., 2020). SH3GLB1 gene encodes

the endophilin-B1 or Bif-1 protein, which is implicated in the
apoptotic and autophagic pathways (Takahashi et al., 2013).
However, its effects on atherosclerosis are still unknown.
Therefore, the above five genes, and their correlated lncRNAs
(MSTRG.11455.17, MSTRG.12845) and circRNA (circ_000411)
may play critical roles in the stability of atherosclerotic plaques
through inflammation, cell growth or migration.

Competitively endogenous RNA (ceRNA) is another
important mechanism of the functions of non-coding RNAs.
ceRNAs regulate other RNA transcripts by competing for shared
microRNAs (miRNAs) (Salmena et al., 2011). Based on the
sequence of MSTRG.11455.17, MSTRG.12845, and
circ_000411, we found 10 miRNAs that may bind to them,
indicating their ceRNA potential.

In our present study, a whole atherosclerotic plaque was
collected through method of CEA, and was used for
detection. Atherosclerotic plaques are comprised of many
different kinds of cells, such as foam cells, macrophages,
smooth muscle cells. Different cell types are with different
gene expression patterns. This is a major limitation in our
present analysis, which might decrease the efficacy of
screening out more differentially expressed genes. Single-
cell RNA-Seq is needed in future studies to distinguish the
gene expression pattern in different cells types between stable
and unstable plaques.

In summary, our study screened the transcription and protein
profiles in human stable and unstable atherosclerotic plaques by
RNA-Seq and LC-MS/MS, analyzed the functions and pathways
of differentially expressed RNAs and proteins, identified a few key
genes and noncoding RNAs. The results may provide new
knowledge on understanding the stability of atherosclerotic
plaques.
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Background: Pseudouridine (Ψ) is a common ribonucleotide modification that plays a
significant role in many biological processes. The identification of Ψmodification sites is of
great significance for disease mechanism and biological processes research in which
machine learning algorithms are desirable as the lab exploratory techniques are expensive
and time-consuming.

Results: In this work, we propose a deep learning framework, called PseUdeep, to identify
Ψ sites of three species: H. sapiens, S. cerevisiae, andM. musculus. In this method, three
encoding methods are used to extract the features of RNA sequences, that is, one-hot
encoding, K-tuple nucleotide frequency pattern, and position-specific nucleotide
composition. The three feature matrices are convoluted twice and fed into the capsule
neural network and bidirectional gated recurrent unit network with a self-attention
mechanism for classification.

Conclusion: Compared with other state-of-the-art methods, our model gets the highest
accuracy of the prediction on the independent testing data set S-200; the accuracy
improves 12.38%, and on the independent testing data set H-200, the accuracy improves
0.68%. Moreover, the dimensions of the features we derive from the RNA sequences are
only 109,109, and 119 in H. sapiens, M. musculus, and S. cerevisiae, which is much
smaller than those used in the traditional algorithms. On evaluation via tenfold cross-
validation and two independent testing data sets, PseUdeep outperforms the best
traditional machine learning model available. PseUdeep source code and data sets are
available at https://github.com/dan111262/PseUdeep.

Keywords: RNA modification, pseudouridine site prediction, feature extraction, deep learning, capsule network

INTRODUCTION

Pseudouridine (Ψ) is one of the most prevalent RNA modifications that occurs at the uridinebase
through an isomerization reaction catalyzed by pseudouridine synthases (see Figure 1) (Bousquet-
Antonelli et al., 1997; Chan and Huang, 2009; Ge and Yu, 2013; Kiss et al., 2010; Wolin, 2016; Yu and
Meier, 2014). It is confirmed that Ψ modification occurs in several kinds of RNAs, such as small
nuclear RNA, rRNA, tRNA, mRNA, and small nucleolar RNA (Ge and Yu, 2013). Ψ plays a
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significant role in many biological processes, including regulating
the stability of RNA structure in tRNA and rRNA (Kierzek et al.,
2014). Deficiency of Ψ might cause various diseases; the
dysregulation of Ψ in mitochondrial tRNA is one of the
etiologies of erythrocytic anemia and mitochondrial myopathy
(Bykhovskaya et al., 2004). Moreover, the mutations ofΨ are also
associated with several types of cancers, such as gastric and lung
cancer (Mei et al., 2012; Carlile et al., 2014; Carlile et al., 2015;
Shaheen et al., 2016; Penzo et al., 2017; Zhang et al., 2021), and Ψ
is also applied in biochemical research and pharmaceuticals (C.
Liu et al., 2020; Penzo et al., 2017; J. Yang et al., 2020).
Undoubtedly, the identification of Ψ modification sites would
be of great benefit for disease mechanism and biological processes
research.

Although accurate Ψ sites can be identified by some lab
exploratory techniques, they are expensive and time-
consuming (Carlile et al., 2014). As an increasing number
of genomic and proteomic samples are produced (J. Yang
et al., 2020), it is necessary to develop some effective and
robust computational models to detect Ψ sites in RNA
sequences.

Many machine learning algorithms have been introduced as
fast, low-cost, and efficient alternative methods to identifyΨ sites.
In 2015, Li et al. established the first computational model named
PPUS to identify PUS-specificΨ sites in Saccharomyces cerevisiae
and Homo sapiens. The method used the nucleotides aroundΨ as
features for training a support vector machine (SVM) (Y. H. Li
et al., 2015). Similarly, in 2016, Chen et al. developed an SVM
classifier named iRNA-PseU using the occurrence frequencies
and the chemical properties of the nucleotides as well as pseudo
k-tuple nucleotide composition (PseKNC) as features in Mus
musculus, S. cerevisiae, and H. sapiens (Chen et al., 2016). He
et al., in 2018, proposed PseUI, in which five types of features,
nucleotide composition (NC), dinucleotide composition (DC),
pseudo dinucleotide composition (PseDNC), position-specific
nucleotide composition (PSNP), and position-specific
dinucleotide propensity (PSDP), were combined and a
sequential forward selection method was applied to select the
optimal feature subset for training SVM to predict Ψ sites in M.
musculus, S. cerevisiae, andH. sapiens (J. He et al., 2018). In 2019,
Liu et al. proposed an ensemble model, XG-PseU, based on
eXtreme gradient boosting (XGBoost) using six types of

features, including NC, dinucleotide composition (DNC),
trinucleotide composition (TNC), nucleotide chemical
property (NCP), nucleotide density (ND), and one-hot
encoding (Liu et al., 2020). In 2020, Bi et al. proposed an
integrated model based on a majority voting strategy, called
EnsemPseU, which contained five machine learning methods
SVM, XGBoost, Naive Bays (NB), k-nearest neighbor (KNN),
and random forest (RF) (Bi et al., 2020). In short, the above
machine learning methods in H. sapiens, S. cerevisiae, and M.
musculus have the highest accuracy rates of 65.44%, 68.15%, and
72.03%, respectively. Although the performance of the above
machine learning methods is reasonable, there is still a lot of
room for improvement. With the emergence of deep learning
methods, many prediction methods based on deep learning have
been applied to the field of RNA and protein modification
predictions (Huang et al., 2018; Long et al., 2018; Mostavi
et al., 2018; Zhang and Hamada, 2018). The above predictors
do not consider deep learning methods, which can extract
deeper features to improve prediction performance (B. He
et al., 2020; Liang et al., 2020).

In this work, we propose a deep learning framework,
PseUdeep, to identify Ψ sites of the three species H. sapiens, S.
cerevisiae, and M. musculus. Compared with previous
machine learning methods, our model applies three encoding
methods, one-hot encoding, K-tuple nucleotide frequency
pattern (KNFP) (Y. Yang et al., 2021), and PSNP (Dou et al.,
2020) to extract RNA sequence features. Our model consists
of a convolutional neural network (CNN), a capsule neural
network, and a bidirectional gated recurrent unit (BiGRU)
network with a self-attention mechanism (see Figure 2).
Finally, we conduct a tenfold cross-validation test on the
benchmark data set and an independent verification test on
two independent data sets and compare the prediction results
of our model with the results of the previous machine learning
model; the accuracy of our model for H. sapiens increased
by 1.55%, for S. cerevisiae by 4.58%, and for M. musculus
by 0.42%.

METHODS

Benchmark Data Sets
Chen et al. (2016) established data sets for computationally
identifying Ψ sites in H. sapiens, M. musculus, and S.
cerevisiae based on RMBase (Sun et al., 2016). With the
update of RMBase, we use three training new data sets base
on RMBase2.0 (Chen et al., 2015), which include NH_990 (H.
sapiens), NM_944 (M. musculus), and NS_627 (S. cerevisiae), and
the data sets built by Liu K. et al. (2020). In H. sapiens and S.
cerevisiae, we also use the independent data sets H_200 and
S_200, which are built by Chen et al. (2016) to evaluate the
performance of the method.

In the NH_990 and NM_944 data sets, the length of the
sequence is 21 nt. However, in the NS_627 data set, the length
is31 nt. In the H_200 and S_200 data sets, the RNA sequence
length is 21 and 31 nt, respectively. Table 1 shows the details of all
data sets.

FIGURE 1 | Illustration of Ψ modification. The Ψ synthase catalyzes the
uridine isomer Ψ by removing the uridine residue base from its sugar and then
removing the uridine isomer, rotating it 180° along the N3–C6 axis, and finally
turning the base the 5-carbon and 1′-carbons of the sugar.
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Feature Extraction
Feature extraction is the basis of the algorithm. In our work, we
consider three kinds of features: one-hot encoding, KNFP (Y.
Yang et al., 2021), and PSNP (Dou et al., 2020).

One-Hot Encoding
Given an RNA sequence R,

Rϕ � N1N2/Nl, (1)

where Nj ∈ {A,C, G, U}(j � 1, 2,/, l) represents the nucleotide
at the jth position of the RNA segmentR. We represent each
nucleotide with a four-dimensional vector, that is, nucleotide G is
represented as (1, 0, 0, 0), C is (0, 1, 0, 0), Uis (0, 0, 1, 0), and A is
(0, 0, 0, 1).

KNFP
TheKNFP (Y. Yang et al., 2021) pattern represents the local contextual
features at different levels. KNFP integrates various short-distance
sequence order information and retains a large number of original
sequence modes (Chen et al., 2015). We apply KNFP to extract local
context features from RNA sequences. KNFP includes
mononucleotide, dinucleotide, and trinucleotide composition. For
an RNA sequence Rϕ, the K-tuple nt composition can represent
any RNA sequence as a 4K dimensional vector:

P � [φ1,φ2,φ3,φ4, . . . ,φ4K]
T, (2)

where ϕu(u � 1, 2,/, 4K) is the frequency of the uth K -tuple
pattern in the RNA sequence, namely, the substring of the
sequence contains K neighboring nt, and the symbol T
represents the transpose operator, so it has l − K + 1
overlapping segments for every RNA sequence R with length
l , and each segment is encoded as a one-hot vector with
dimension 4K. The frequency pattern matrix mK εR(l−K+1)*4K is
generated for each type of K-tuple nt composition. To facilitate
subsequent processing, we fill the shorter part with zeros. By
combining different K-tuples M � {m1,m2,m3} with K � 1, 2, 3,
the feature of each position in the sequence is connected in one
dimension of size d � 64.Compared with the traditional one-hot
encoding, KNFP effectively compensates for the shortcomings of
information insufficiency.

PSNP
PSNP (Dou et al., 2020) is an effective nucleotide encoding
method, which has been successfully applied to the
identification of many functional sites in biological sequences
(W. He et al., 2018; W. He et al., 2018; G. Q. Li et al., 2016; Zhu
et al., 2019). In this method, location-specific information can be
represented by calculating the differences in nucleotide frequency

FIGURE 2 | The flowchart of PseUdeep: We use the collected RNA sequences as the input of the model and the first use three encoding methods, one-hot
encoding, KNFP, and PSNP, to extract RNA sequence features. Then, the three feature matrices are convoluted twice, and the results are stitched together. Finally, it is
input into the capsule neural network and the BiGRU network with a self-attention mechanism and two fully connected layers for classification.

TABLE 1 | The information on training data sets and independent testing data sets.

Species The name of the
datasets

The length of
the RNA sequences

(bp)

The number of
positive samples

The number of
negative samples

H. sapiens NH-990 (training) 21 495 495
H-200 (testing) 21 100 100

S. cerevisiae NS-627 (training) 31 314 313
S-200 (testing) 31 100 100

M. musculus NM-944 (training) 21 472 472
- - - -
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at a specific location between positive and negative RNA samples.
Considering an RNA sequence Rϕ � N1N2/Nl, the PSNP
matrix can be written as a 4 × l -dimensional vector.

First, we calculate the frequency of occurrence for four nucleotides,
respectively, from bath positive and negative samples at the jth
position. In this way, we obtain two 4 × l position-specific
occurrence frequency matrixes, namely, Z+andZ−, of which Z+is
obtained from all positive samples and Z−from all negative samples.
We define the location-specific nucleotide propensity matrix,
represented byZPSNP, as shown below:

ZPSNP � [Z1, Z2,/Zl] �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1,1 Z1,2 / Z1,l

Z2,1 Z2,2 / Z2,l

Z3,1 Z3,2 / Z3,l

Z4,1 Z4,2 / Z4,l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where Zi,j � Z+
i,j − Z−

i,j gives the difference of frequencies of the
ith nucleotide at the jth position between positive and negative
samples.

Deep Learning Architecture of PseUdeep
For each input sequence, we use three feature extraction (one-hot
encoding, KNFP, and PSNP) methods to form three feature
matrices. For each feature matrix, a pair of 1-D CNNs are
used. The first layer of each feature matrix has a filter size of 11
and a kernel size of 7. Similarly, the second 1[D CNN layer for each
feature matrix has a filter size of 11 and a kernel size of 3. Two
convolution layers are used to capture features from three feature
matrices; all layers had a “Relu” activation function. The three
convolution results are spliced together and fed into the capsule
network with 14 capsules for vector convolution, and the output of
the capsule network is put into the BiGRU neural network with an
attention mechanism; the final feature is concatenated and fed into
two dense layers to obtain the prediction results. Bayesian
optimization is used to select the best performance of the
hyperparameters. The adjusted parameters are the number of
filters, the filter size, and epoch. To prevent the model from
overfitting, the dropout algorithm with a probability of 0.5 is also
used. A binary cross-entropy is used as a loss function with an early
stop patience of 20. The batch size is 32, and the number of epochs is
set to 200. For the stochastic gradient descent method, the Adam
optimization algorithm is selected here. The total number of
trainable parameters in the network is 165,365. The entire
program is done in Python 3.6.

CNNs
CNNs are widely used in the fields of artificial intelligence, such as
machine learning, speech recognition, document analysis,
language detection, and image recognition.

Capsule Neural Networks
Capsule neural networks, first proposed by Hinton et al., provide
a unique and powerful deep learning component to better
simulate the various relationships represented inside the neural
network. Because capsule neural networks can collect location
information, they can learn a small amount of data to get good
predicted results. In the data sets we collected, the amount of
RNA data is small, and the length of RNA sequences is small, so to

study the hierarchical relationship of local features, capsule neural
networks are used in this paper.

BiGRU Networks and Attention Mechanism
BiGRU networks are used to extract the deep features of the
sequences because BiGRU networks can be regarded as two
unidirectional GRUs. An attention mechanism in a deep
neural network is also an important part. The attention
mechanism is remarkable in serialized data, such as speech
recognition, machine translation, and part of speech taming,
which has also been widely used in much bioinformatics
research and achieved excellent performance.

Cross-Validation and Independent Testing
Because the K-fold (K � 5 or 10) cross-validation (Dezman
et al., 2017; G. Q.; Li et al., 2016; Vučković et al., 2016) is widely
used to evaluate models, we apply a tenfold cross-validation test
to measure model performance in NH_990, NM_944, and
NS_627, in which a data set can be divided into 10 mutually
exclusive folds, one fold is reserved for testing, whereas the
remaining nine folds are used for training purposes. To verify
the stability of the models more objectively, the proposed
models are tested on two independent data sets H_200 and
S_200.

Performance Evaluations
To measure the performance of our model, we use four statistical
parameters, sensitivity (Sn), specificity (Sp), accuracy (Acc), and
Matthew’s correlation coefficient (MCC), which are used in a
series of studies to evaluate the effectiveness of predictors. These
parameters are defined as follows:

Sn � 1 − N+
−

N+, (4)

Sp � 1 − N−
+

N−, (5)

Acc � 1 − N+
− +N−

+
N+ +N−, (6)

MCC � 1 − N+−+N−+
N++N−





















(1 + N−+−N+−

N+ )(1 + N+−−N−+
N− )

√ , (7)

where N+, N− indicate the number of positive and negative
sequences, respectively; N+−represents the number of positive
RNA samples that are incorrectly predicted as negative RNA
samples; and N−

+ represents the number of negative RNA
samples that are incorrectly predicted as positive RNA
samples. In addition, the graph of the ROC (Fawcett, 2006)
is also widely used to intuitively display the performance. Then,
the AUC can be obtained to objectively evaluate performances
of the proposed model.

RESULTS

Model Selection
To select a more effective model, in each data set, we first
compare four models’ performances based on two feature
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extraction methods, one-hot encoding and KNFP (results are
shown in Supplementary Tables S1, S2). These models are
constructed by gradually adding different types of layers
based on two 1-D convolution layers, a BIGRU network,
and a two fully connected layers network. The four models
are shown below:

1) CNN: The network consists of two layers of 1-D convolution,
a BIGRU network, and a two fully connected layers network as
described above. The input matrices are the one-hot encoding
and KNFP features extracted from the RNA sequences.

2) CNN + Capsule: The model adds a capsule layer after the
BiGRU layer on the basis of the CNN model.

3) CNN + Attention: The model adds a self-attention
mechanism layer before the BiGRU layer based on the
CNN model.

4) CNN+Capsule +Attention: Themodel adds a capsule layer based
on the CNN + Attention model; on the basis of the above four
models, we add PSNP features and compare the performance of
the four newmodels (see Tables 2, 3). In summary, our PseUdeep
model (CNN + Capsule + Attention model on three feature
extraction methods) is superior to the others.

Performance of a Single Type of Feature
We also evaluate our model (CNN + Capsule + Attention) with
only one kind of feature. Table 4 shows the comparison of
performance in the tenfold cross-validation on benchmark
data sets. It follows that the ACC values and AUC values of
PSNP in three species, H. sapiens, M. muscles, and S. cerevisiae,
are much higher than those of the other two characteristics. The
ACC value of PSNP is increased by 11.11%, 15.6%, and 16.68%,
respectively, compared with other characteristics, the AUC value
increased by 0.074, 0.199, and 0.115, respectively. PSNP provides
a great possibility to improve the model performance in
identifying Ψ sites.

Comparison with State-of-the-Art Methods
We compare our model PseUdeep with other state-of-the-art
machine learning predictors published recently to evaluate
the identification ability of Ψ sites. In benchmark data sets
with tenfold cross-validation and independent testing, the
results obtained by PseUdeep and other predictors are listed
in Tables 5, 6 and Figures 3, 4; the ROC curves of PseUdeep
are shown in Figure 5. The accuracy of the PseUdeep model
in NH_990, NS_627, and NM_944 is increased by 1.55%,

TABLE 2 | Tenfold cross-validation performance comparison of four models based on three feature extraction methods on three benchmark data sets.

Data sets Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

NH_990 CNN 67.96 68.09 67.86 0.36 0.737
CNN + Capsule 66.02 63.83 67.86 0.32 0.742
CNN + Attention 66.02 46.81 82.14 0.31 0.745
PseUdeep (CNN+ 66.99 74.47 60.71 0.35 0.746
+Capsule + Attention)

NS_627 CNN 69.71 70.59 68.75 0.39 0.728
CNN + Capsule 68.18 61.76 75.00 0.37 0.735
CNN + Attention 69.71 76.47 68.75 0.40 0.734
PseUdeep (CNN 72.73 61.75 78.13 0.45 0.737
+Capsule + Attention)

NM_944 CNN 70.41 57.78 86.79 0.41 0.741
CNN + Capsule 69.39 73.34 66.04 0.39 0.750
CNN + Attention 70.41 57.78 81.13 0.41 0.751
PseUdeep (CNN 72.45 66.70 77.36 0.44 0.756
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.

TABLE 3 | Performance comparison of four models based on three feature extraction methods on independent testing data sets.

Testing data
sets

Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

H_200 CNN 65.69 68.63 62.75 0.31 0.691
CNN + Capsule 62.25 63.73 60.78 0.25 0.696
CNN + Attention 65.19 52.94 77.45 0.31 0.692
PseUdeep (CNN 66.18 73.53 58.82 0.33 0.720
+Capsule + Attention)

S_200 CNN 82.35 86.27 78.43 0.65 0.899
CNN + Capsule 80.88 77.45 84.31 0.62 0.908
CNN + Attention 79.91 83.34 76.47 0.59 0.899
PseUdeep (CNN 80.88 77.45 84.31 0.65 0.909
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.
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4.58%, and 0.32%. In addition, the performance of PseUdeep on
independent data sets compared with iRNA-Pse and PseUI is
shown in Table 6 and Figure 4. It can be observed that the
accuracy of the PseUdeep model in H_200 and S_200 is increased
by 0.68% and 12.38%, respectively.

We summarize and compare our model with other state-of-
the-art models in terms of feature extraction, number of features,
and classifiers as shown in Table 7. Among them, our model
PseUdeep does not further feature selection, and the feature
dimension is only 109, 109, and 119 in H. sapiens, M.
musculus, and S. cerevisiae, respectively, and our model gets
the highest accuracy of the prediction.

CONCLUSION

In this study, we propose a model, PseUdeep, which can
effectively identify Ψ sites in RNA sequences. To get better
prediction performance, we also train a combination of three
features in a simple model and then gradually add different types
of layers to obtain better performance. In addition, we compare
our model with other models through tenfold cross-validation
and independent testing, and the results show that PseUdeep is
more accurate and stable. Finally, we evaluate and compare the
performance of the three features used in this study and find that
PSNP shows the best effect.

TABLE 4 | The model performance with a single type of feature.

Benchmark data
sets

Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

NH_990 one-hot 55.56 40 68.51 0.08 0.592
PSNP 66.67 62.22 70.37 0.32 0.666
KNFP 63.63 80 50 0.31 0.658

NS-627 one-hot 53.03 26.47 81.25 0.09 0.634
PSNP 69.71 61.75 78.13 0.40 0.734
KNFP 66.67 64.71 68.75 0.33 0.619

NM-944 one-hot 58.16 35.55 77.35 0.14 0.547
PSNP 71.42 57.77 83.01 0.42 0.746
KNFP 56.12 62.22 50.94 0.13 0.580

The bold value is the value with the best effect in the corresponding evaluation index.

TABLE 5 | A comparison of PseUdeep with other models on three benchmark data sets.

Training data
set

Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

NH_990 iRNA-PseU 59.80 61.01 59.80 0.21 0.61
re-Irna-PseU 61.92 65.05 58.79 0.24 0.65
PseUI 64.24 64.85 63.64 0.28 0.68
XG-PseU 65.44 63.64 67.24 0.31 0.70
PseUdeep 66.99 74.47 60.71 0.35 0.74

NS-627 iRNA-PseU 64.49 64.65 64.33 0.29 0.81
re-Irna-PseU 65.61 66.88 64.33 0.31 0.69
PseUI 65.13 62.72 67.52 0.30 0.69
XG-PseU 68.15 66.84 69.45 0.37 0.74
PseUdeep 72.73 61.75 78.13 0.45 0.74

NM-944 iRNA-PseU 69.07 73.31 64.83 0.38 0.75
re-Irna-PseU 70.34 79.87 60.81 0.41 0.75
PseUI 70.44 74.58 66.31 0.41 0.77
XG-PseU 72.03 76.48 67.57 0.45 0.77
PseUdeep 72.45 66.7 77.36 0.44 0.77

The bold value is the value with the best effect in the corresponding evaluation index.

TABLE 6 | A comparison of PseUdeep with other models on independent data sets.

Testing dataset Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

H_200 iRNA-PseU 61.5 58 65 0.23 /
PseUI 65.5 63 68 0.31 /
PseUdeep 66.18 73.53 58.82 0.33 0.720

S_200 iRNA-PseU 60 63 57 0.2 /
PseUI 68.5 65 72 0.37 /
PseUdeep 80.88 77.45 84.31 0.62 0.909

The bold value is the value with the best effect in the corresponding evaluation index.
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FIGURE 3 | The success rates of the PseUdeep and baseline methods on three training data sets.

FIGURE 4 | The success rates of the PseUdeep and baseline methods
on independent data sets.

FIGURE 5 | The ROC curves of PseUdeep for H. sapiens, S. cerevisiae,
and M. musculus, respectively.
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Predicting Pseudogene–miRNA
Associations Based on Feature Fusion
and Graph Auto-Encoder
Shijia Zhou1, Weicheng Sun1, Ping Zhang1 and Li Li 1,2*

1Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China,
2Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China

Pseudogenes were originally regarded as non-functional components scattered in the
genome during evolution. Recent studies have shown that pseudogenes can be
transcribed into long non-coding RNA and play a key role at multiple functional levels
in different physiological and pathological processes. microRNAs (miRNAs) are a type of
non-coding RNA, which plays important regulatory roles in cells. Numerous studies have
shown that pseudogenes and miRNAs have interactions and form a ceRNA network with
mRNA to regulate biological processes and involve diseases. Exploring the associations of
pseudogenes and miRNAs will facilitate the clinical diagnosis of some diseases. Here, we
propose a prediction model PMGAE (Pseudogene–MiRNA association prediction based
on the Graph Auto-Encoder), which incorporates feature fusion, graph auto-encoder
(GAE), and eXtreme Gradient Boosting (XGBoost). First, we calculated three types of
similarities including Jaccard similarity, cosine similarity, and Pearson similarity between
nodes based on the biological characteristics of pseudogenes and miRNAs.
Subsequently, we fused the above similarities to construct a similarity profile as the
initial representation features for nodes. Then, we aggregated the similarity profiles and
associations of nodes to obtain the low-dimensional representation vector of nodes
through a GAE. In the last step, we fed these representation vectors into an XGBoost
classifier to predict new pseudogene–miRNA associations (PMAs). The results of five-fold
cross validation show that PMGAE achieves a mean AUC of 0.8634 and mean AUPR of
0.8966. Case studies further substantiated the reliability of PMGAE for mining PMAs and
the study of endogenous RNA networks in relation to diseases.

Keywords: pseudogene, microRNA, ceRNA network, feature fusion, graph auto-encoder, extreme gradient boosting

INTRODUCTION

In mammalian genomes, only about 1–2% of genes encode proteins (Carninci et al., 2005). The
remaining parts involve non-coding RNAs, including pseudogenes, long non-coding RNAs
(lncRNAs), and miRNAs. Pseudogenes usually refer to DNA sequences similar to genes but lack
coding function in the genome. However, there is increasing evidence showing that pseudogenes can
be transcribed into non-coding RNAs and become important regulators in organisms, especially in
human cancer (Ma et al., 2021). Some of them may be potential therapeutic targets (Shi et al., 2015).
The study of pseudogenes may help the diagnosis or clinical treatment of cancer. miRNAs are short
non-coding RNAs between 19 and 25 nucleotides in length, accounting for about 3% of the genome
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(Setoyama et al., 2011). miRNAs regulate gene expression by
acting on mRNAs to affect many developmental processes and
the occurrence of diseases (Plank, 2014; Santulli, 2015; Liu Z.
et al., 2016). On the other hand, miRNAs can be used as
biomarkers for the objective evaluation and diagnosis of
tumors (Ruan et al., 2009; Zhang et al., 2012; Stiegelbauer
et al., 2014).

Pseudogenes and miRNAs are important components of the
competing endogenous RNA (ceRNA) network (Karreth et al.,
2015). ceRNAs can regulate gene expression by competing with
miRNAs to construct a ceRNA network (Salmena et al., 2011;
Rutnam et al., 2014). The ceRNA network can be understood as a
balancing mechanism regulating cell activities at the RNA level.
Exploring molecular associations in the ceRNA network helps in
finding more biological mechanisms at the RNA level. It is
important to study various associations in the ceRNA network
but this process is often time-consuming and it can be laborious
to study the associations by wet experiments. Various
computational methods have been developed accordingly.

Currently, non-coding RNA associations in the ceRNA
network have been predicted by diverse machine learning
methods, which mainly fall into three categories. The first
category is based on matrix factorization (MF). MF extracts
features by decomposing the input matrix into the product of
two or more low-rank matrices. For instance, Zhang et al.
proposed a graph-regularized generalized matrix factorization
model for predicting a variety of biomolecular interactions
(Zhang et al., 2020). Chen et al. and Xu et al. predicted the
miRNA–disease associations based on the probability matrix
decomposition and inductive matrix completion, respectively
(Chen et al., 2018; Xu et al., 2019). Zheng et al. and Liu et al.
respectively introduced methods based on collaborative matrix
factorization and neighborhood-regularized logistic matrix
factorization to predict drug–target interactions (Zheng
et al., 2013; Liu Y. et al., 2016). The second category is
based on graph embedding. The known associations are
learned by the graph embedding method to obtain the
behavior information of nodes, and then the characteristics
are fused with the characteristic information of nodes, and
then the classifiers use node features to predict results. Ji et al.
predicted miRNA–disease associations based on the GraRep
embedding model (Ji et al., 2020). Song et al. predicted
lncRNA–disease associations based on the DeepWalk
embedding model (Song et al., 2020). The third category is
based on deep learning, among which the most representative
method is the graph convolution network (GCN). The GCN is
an end-to-end learning model that can deeply integrate the
feature information and topological relationship of nodes in
the network. Fu et al. proposed a deep learning model based on
the multi-view GCN to predict multiple molecular associations
(Fu et al., 2021). Xuan et al. and Long et al. proposed GCNLDA
and GCNMDA based on the GCN to predict lncRNA–disease
associations and microbe-drug associations, respectively
(Xuan et al., 2019; Long et al., 2020).

Although pseudogenes play an important role in the ceRNA
network, the computational study of associations between
pseudogenes and miRNAs is under-developed. Here, we

presented a method predicting pseudogene–miRNA
associations (PMAs) based on feature fusion and GAE.
Given there are many prediction models that can accurately
predict lncRNA–miRNA associations, we proposed that the
role of pseudogenes is comparable to that of lncRNAs in the
ceRNA network. Thus, the expression level can be used as the
node feature for pseudogenes as the methods focus on
lncRNAs. We fused the node features into the
pseudogene–miRNA network and predicted PMAs by a
computational method. To the best of our knowledge, this
is the first attempt at PMA prediction. The model achieves the
mean area under the ROC curve (AUC) and mean area under
the precision–recall curve (AUPR) of 0.8634 and 0.8966,
respectively. The experimental results confirmed PMGAE-
predicted potential PMAs. We also demonstrated the
performance of PMGAE through a series of comparative
experiments. Together, PMGAE is a powerful and reliable
method for the prediction of PMAs as an important
component of the ceRNA network.

MATERIALS AND EQUIPMENT

Datasets
We downloaded known PMAs from starBase v2.0 (Li et al., 2014),
a large miRNA database that includes the association between
miRNAs and lncRNAs and their associations with mRNAs,
pseudogenes, and proteins. dreamBase (Zheng et al., 2018) is a
database containing massive pseudogene information, including
the associations between pseudogenes and the transcription
factor (TF), the connection with RNA-binding protein (RBP),
and the expression level of pseudogenes in various normal tissues
or cancer tissues. We obtained the expression level of
pseudogenes in various tissues as the characteristic
information of pseudogenes. miRBase (Kozomara et al., 2019)
is a comprehensive miRNA sequence database, which contains
miRNA sequence information. We obtained the
miRNA sequence as the characteristic information of miRNAs
from it.

Data Preprocessing
After quality checking and filtering the obtained data, the
dataset comprises the expression information of 444
pseudogenes, the sequence information of 173 miRNAs, and
1,884 pairs of pseudogene–miRNA associations. In addition,
considering the independence of the testing set used in the case
study, we firstly divided all association pairs into two parts.
One is used for model training, and the other is used for the
case study.

miRNA sequences are composed of four types of nucleotides:
A, adenine; G, guanine; C, cytosine; U, uracil. We set k in k-mer to
3, and each miRNA sequence can be represented as a 64 (4 × 4 ×
4)-dimensional vector, where each dimension can represent the
frequency of each 3-mer sequence in the sequence. For example,
in the miRNA sequence “AGGUUCCAGG,” p (“AGG”) � 2/
(10−3+1). For the pseudogenes, we normalized the expression
level of pseudogenes as their characteristics.
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For the PMAs, we construct a 444 × 173 PMA matrix and put
the known PMAs into the PMA matrix. If the ith pseudogene is
associated with the jth miRNA, then let PMA(i, j) � 1;
otherwise, let PMA(i, j) � 0.

METHODS

PMGAE Overview
PMGAE is composed of three steps, as shown in Figure 1. In step
Ⅰ, we calculated and fused the biological characteristics of
pseudogenes and miRNAs to obtain the similarity profiles as
their features. In step Ⅱ, we obtained the low-dimensional
representation vector of nodes by a GAE based on the feature
information and association information of existing nodes. In
step Ⅲ, we fed the low-dimensional vector into XGBoost to
predict the PMAs.

Feature Fusion
We computed the Jaccard similarity coefficient, cosine similarity
coefficient, and Pearson similarity coefficient based on the
respective characteristics of pseudogenes and miRNAs. We
calculated Gaussian kernel similarity based on PMAs to
replace the zeros in the matrix (Chen, 2015). Eventually, we
generated the pseudogene similarity (PS) profile of 444 × 444 in
dimension and the miRNA similarity (MS) profile of 173 × 173 in
dimension. Jaccard similarity, cosine similarity, and Pearson
similarity can be calculated as follows:

Jaccard(X,Y) � X ∩ Y

X ∪ Y
,

Cos(x, y) � ∑
n

k�1xkyk
�������
∑

n

k�1x
2
k

√ �������
∑

n

k�1y
2
k

√ ,

ρX,Y � cov(X,Y)
σXσY

� E(XY) − E(X)E(Y)
�������������
E(X2) − E2(X)√ ������������

E(Y2) − E2(Y)√ .

(1)

Individual similarity measures between pseudogenes and
between miRNAs may contain noise in the data. In order to
reduce the noise, we fused several similarity profiles by feature
fusion. Feature fusion obtains a single output matrix by fusing all
similarity profiles with non-linear methods (Wang et al., 2014).
Firstly, we construct the weight matrix as

P(i, j) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(i, j)

2∑
k≠i

S(i, k), i ≠ j

1/2, i � j

. (2)

The local affinity matrix is defined as

L(i, j) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(i, j)

∑
k∈Ni

S(i, k), j ∈ Ni

0, otherwise

, (3)

FIGURE 1 | Flowchart of PMGAE.
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where S(i, j) represents the similarity matrix and Ni represents
neighbors of the ith node. Then, we iteratively update the
matrix as

P(v)
t+1 � L(v) × (

∑k≠vP
k
t

n − 1
) × (L(v))

T
, v � 1, 2, ..., n. (4)

The final feature matrix (here, we set n to 3 in our model) is
represented as

Pt � p(1)
t + p(2)

t + ... + p(n)
t

n
. (5)

For the fusion similarity profiles PS and MS, we removed the
noise by a stacked auto-encoder (SAE) and obtained the low-
dimensional vector representation of pseudogenes and miRNAs.
By an SAE, we obtained 128-dimensional matrix representations
of PS’ and MS’ for pseudogenes and miRNAs, respectively.
Finally, in order to improve the training speed and prediction
effect of the model, we tried to standardize the obtained 128-
dimensional vectors. Specifically, we carried it out using
StandardScaler and RobustScaler individually. StandardScaler
and RobustScaler can be expressed as

x′ � x − μ

σ
,

y′ � y −median

IQR
,

(6)

where IQR represents the interquartile range of the sample.
StandardScaler improves the rate of learning and prediction

accuracy of the model. RobustScaler reduces the effect of outliers
on results. Both of them are important, so we took the mean
values of the matrix that are treated by each of them separately
and obtained the final feature matrices PS″ andMS″. Finally, the
node feature matrix X is constructed as

X � (
PS″
MS″). (7)

Graph Auto-Encoder
Auto-encoder is a kind of neural network, which can restore the
input using output through certain training. It includes an
encoder and a decoder. The encoder obtains the low-
dimensional representation of the input vector (Baldi, 2012).
The GAE migrates the auto-encoder to a graph (Kipf and
Welling, 2016). We constructed the adjacency matrix and the
feature matrix of the nodes. The goal is to obtain the low-
dimensional representation of the nodes by deeply integrating
the association information between nodes and the feature
information of nodes themselves through the GAE. The GAE
uses a two-layer graph convolution network as an encoder, which
can be described as follows:

GCN(X,A) � ~AReLu( ~AXW0)W1, (8)

where ~A � D−1
2AD−1

2, ReLu(X) � max(X, 0) represents the
activation function, andW0 andW1 are parameters to be learned.

We built the adjacency matrix based on the PMA network as
follows:

A � (
0 PMA

PMAT 0
), (9)

where PMAT represents the transpose of the matrix PMA.
We used the adjacency matrix A and feature matrix X to

obtain the low-dimensional representation vector of nodes by an
encoder, which can be defined as

Z � GCN(X,A). (10)

The decoder also obtains the low-dimensional vector
recomposition map based on the neural network. The decoder
generates a graph according to the probability of edges between
nodes. It can be defined as

Â � sigmoid(ZZT), (11)

where sigmoid(x) � 1
1+e−x represents the activation function. Â is

the reconstructed network matrix. In this study, in order to make
the model more explanatory, we do not use the decoder layer but
put the low-dimensional representation vector of nodes into the
best classifier we trained to predict the PMAs.

To measure the error between the predicted and the real
association, the loss function is defined as

L � − 1
N

∑y logŷ + (1 − y)log(1 − ŷ), (12)

where y represents the value of an element in the adjacency
matrix A (0 or 1) and ŷ represents the value of the same element
in the reconstructed adjacency matrix Â (0–1). We took multiple
epochs to minimize the loss function to make the reconstituted
data as similar to the original data as possible.

Subsequently, we predicted potential PMAs by XGBoost.
XGBoost is a machine learning algorithm whose core idea is
to integrate multiple decision trees and continuously add trees to
them. Each addition of trees is a process of iteratively adding new
functions. Its purpose is to make the final predicted value as close
as possible to the real value. Its implementation process can be
expressed as

ŷi
(t) � ∑

t

k�1fk(xi) � ŷi
(t−1) + ft(xi). (13)

The objective function of XGBoost is defined as follows:

L(φ) � ∑
i

l(yi, ŷi) +∑
k

Ω(fk), (14)

where l(yi, ŷi) is the training error and Ω(fk) is the
regularization term to suppress over-fitting.

Graph Embedding
In contrast to the traditional machine learning algorithm which
may only consider the mapping from input to output without
considering the associations in the network, the graph-based
algorithm can obtain the associations between nodes together
with their own characteristics to improve the accuracy of
prediction. The graph data we obtain from real life are often
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high-dimensional and sparse. Graph embedding is the process of
mapping the input graph data to low-dimensional dense vectors,
which can reinforce the efficiency of machine learning and
improve the accuracy of prediction.

We selected several representative graph embedding methods
including Line (Tang et al., 2015), GraRep (Cao et al., 2015),
Node2vec (Grover and Leskovec, 2016), and DeepWalk (Perozzi
et al., 2014) to predict the PMAs and compared the results of
PMGAE in Results.

RESULTS

Experimental Setup and Performance
Evaluation
For the experiment parameters in the GAE, we set a learning rate
of 0.001 and trained the model for 8,000 epochs. We obtained a
32-dimensional representation for each node. Then, they were
put into XGBoost for prediction. In addition, we used five-fold
cross validation to evaluate the performance of the model. We
take the known PMAs as a positive sample. The remaining
unknown PMAs can be considered potential negatives from
which we randomly selected PMAs with equal size to the
positive samples as negative samples. Subsequently, we
randomly divided the positive and negative samples into five
parts. One in the five parts was taken out in turn as a test set, and
the remaining were used as the training sets.

We used several evaluation metrics including accuracy,
sensitivity, specificity, and precision. In addition, we also
adopted the AUC and AUPR to evaluate the prediction
performance. We took multiple independent experiments of
five-fold cross validation to reduce the error. The mean AUC
and AUPR were shown under the corresponding curve
(Figure 2). The AUC and AUPR of our prediction model
reached 0.8634 and 0.8966, respectively, which
showed that PMGAE has satisfactory performance in PMA
prediction.

Comparison of the Performance of PMGAE
and MF-Based Methods
MF-based methods have shown excellent performance in
predicting the correlation of various biomolecules. To evaluate
the performance of PMGAE, we compared it with MF-based
methods including multiple similarities collaborative matrix
factorization (MSCMF), inductive matrix completion for
miRNA–disease association (IMCMDA), and neighborhood-
regularized logistic matrix factorization (NRLMF). MSCMF is
a collaborative filtering model integrating multiple similarities for
predicting drug–target interactions (Zheng et al., 2013).
IMCMDA is a matrix completion–based model, integrating
miRNA–disease associations, individual miRNA and disease
characteristics, and Gaussian interaction profile kernel
similarity between them to predict miRNA–disease
associations (Chen et al., 2018). NRLMF combined logical
matrix factorization and neighborhood regularization to
predict drug–target interactions (Liu Y. et al., 2016).

As shown in Figure 3, PMGAE showed the best performance
in terms of AUC and AUPR. Relative to the MF-based methods,
the GAE can effectively extract node features, with the best
prediction achieved through XGBoost.

Visualization of Embedding Effect
Because the features are high-dimensional, it is difficult to
visualize the clustering results directly. In order to make the
model more interpretable and validate the embedded effects, we
mapped the features of the nodes before and after embedding
them into the three-dimensional space through t-SNE (Maaten
and Hinton, 2008). t-SNE can reduce the high-dimensional data
to two or three dimensions. Through t-SNE, we can do an
intuitive observation on the embedding method for the node
clustering effect.

As shown in Figure 4, nodes are randomly distributed before
embedding, and our embedding method leads to clustering of the
nodes based on their characteristics. Since similar molecules may

FIGURE 2 | AUC (A) and AUPR (B) of PMGAE using five-fold cross validation. Insets represent the zoom-in view of local regions.
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have similar or related biological functions, effective clustering
can facilitate potential association prediction and improve the
performance of the model. The effective clustering through
embedding validates it as an important component of PMGAE.

Feature Fusion With Various Similarity
Measures
Using the expression information of pseudogenes and the k-mer
sequence information of miRNAs, we calculated the Jaccard

similarity coefficient, cosine similarity coefficient, and Pearson
similarity coefficient of pseudogenes and miRNAs, respectively.
Then, pairwise fusion and full fusion were performed and
compared. Table 1 shows the performance of specific fusions
and no fusion.

Individual similarity has its own limitations. For example, the
cosine similarity coefficient tends to distinguish differences from
directions; thus, it has a good effect on the calculation of different
directions but is not sensitive to the change of values. The Jaccard
similarity coefficient has a good effect on the binary data, but it

FIGURE 3 | Comparison of AUC (A) and AUPR (B) of PMGAE and MF-based models.

FIGURE 4 | Clustering results of nodes before (A) and after (B) embedding.
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cannot measure the specific value of the difference. The Pearson
similarity coefficient tends to give better results when the data do not
conform to a certain rule, but the effect on overlapping data is
compromised. Considering these shortcomings, we tried to fuse these
similarity measures in a non-linear way for a better similarity
representation by integrating the advantages. The experimental
results in Table 1 show that our full similarity fusion method can
effectively improve the performance of the model.

Comparison of the Performance of Various
Embedding Methods
For each method, the mean of individual runs is used to measure
its performance. As shown in Figure 5, the PMGAEmodel shows
the best prediction. The performance of GAE is superior to that of
other graph embedding methods. The GAE more effectively
mines the topology structure in the scenario of node
information in the network than other embeddings.

Although the graph embedding models mentioned above have
many advantages, according to our experimental study, we found
that these models still have some drawbacks. Specifically, the Line

model only considers the first-order relationship and second-order
relationship of nodes. It cannot construct the global structure of the
network well, and the embedding of Line for low-level nodes is not
accurate enough. Thus, the prediction outcome of Line is the least
accurate in our data. DeepWalk takes into account each first-order
relationship of the node with all relationships stored in a subspace.
But it cannot distinguish the order of the node’s neighbors during
training. At the same time, DeepWalk is only applicable to
unweighted graphs and has obvious limitations. The Node2vec
model combines some advantages of Line and DeepWalk and
also can control the preference of random walk by adjusting the
hyperparameters. However, when the number of samples is limited as
in the case of PMGAE, the length of random walk is also limited. So,
the learning effect for remote neighbors in the network is far from
optimum. The GraRep model can put each first-order relationship
between nodes in different subspaces, whichwell constructs the global
structure of the network. However, the calculation of each first-order
relationship Ak and the optimization loss function is large, so it
cannot be used for large-scale graph data. Besides, the above-
mentioned graph embedding models often only take into account
the topological information of nodes but do not well incorporate the
characteristic information of nodes themselves. The GAE can achieve
the best predictions, mainly because it uses the graph convolution
neural network to learn the characteristics of nodes in an end-to-end
way. At the same time, the GAE has better robustness and stability,
together with good learning effect for poor datasets.

Comparison of the Performance of Various
Classifiers
Classifiers play a key role in the model. To compare the prediction
performance of our model under different classifiers and select
the best classifier, we seek to check its predictive performances
with five representative classifiers: eXtreme Gradient Boosting

TABLE 1 | Model performance comparison using similarity profile fusions and
using individual similarity profiles.

Methods Evaluation metrics

Acc. Sen. Spec. Prec. AUC AUPR

Jaccard 0.7641 0.6443 0.8838 0.8475 0.8416 0.8676
Pearson 0.7633 0.6555 0.8710 0.8356 0.8381 0.8637
Cosine 0.7901 0.6491 0.9310 0.9040 0.8562 0.8872
Cosine + Jaccard 0.7927 0.6433 0.9421 0.9176 0.8607 0.8912
Cosine + Pearson 0.7964 0.6396 0.9533 0.9320 0.8591 0.8935
Jaccard + Pearson 0.7954 0.6460 0.9448 0.9214 0.8565 0.8913
Full fusion 0.8015 0.6592 0.9437 0.9216 0.8632 0.8966

FIGURE 5 | Model performance using various embedding methods.
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(XGBoost), random forest (RF), K-nearest neighbor (KNN),
bagging, and gradient boosting decision tree (GBDT). The
AUC and AUPR were used to evaluate their performance. As
shown in Figure 6, while all the classifiers have an AUC and
AUPR above 0.8, XGBoost yields the best performance. Thus,
XGBoost is most suitable for our model.

Comparison of GAE With Various Setups of
Hidden Units
The GAE contains two layers of hidden units in the neural
network. We evaluated the impact of different dimensions of
each layer on the performance of the model. We fixed the second
hidden layer with 32 units and then set the first hidden layer with

FIGURE 6 | AUC (A) and AUPR (B) using various classifiers.

FIGURE 7 | AUC and AUPR of various hidden unit setups in the first (A) and second (B) layers of GAE.
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units of 32, 64, 128, 256, and 512, respectively. Figure 7 shows
that when the first hidden unit is 64, the GAE has the best
performance. Then, we set the first hidden layer with units of 64
and set the second hidden layer with units of 16, 32, 64, 128, and
256, respectively. We found that model performance was slightly
improved with the decrease of the unit number. The AUPR is
highest when the unit number is reduced to 32, and the AUC is
highest when the unit number is reduced to 16. High-dimensional
representation may lead to data sparsity, which is not conducive
to classification. While reducing dimension can improve the
training speed of the model, dimensions too low may cause
loss of key information. For the task of PMA prediction, we
chose the first hidden unit to be 64 and the second hidden unit to
be 32.

Effect of Ratio of Positive to Negative
Samples
Unbalanced test sets containing too many negative samples may
affect the performance of the model. To explore the impact of this
data imbalance on PMGAE, we used various setups of positive:
negative sample ratios. In the five-fold cross validation, we
constructed 1:1, 1:2, 1:5, 1:10, and 1:20 test sets by changing
sizes of potentially negative samples. Table 2 shows the
experimental results. The test set with different proportions
has a moderate effect on the results. It suggests that, for the
evaluation of model performance in predicting PMAs, the
influence of different positive: negative sample ratios cannot
be omitted.

Case Studies
Exploring cases of PMAs is of great significance to provide
insights for research of diseases. Seeking support of our
predictions from independent sources can evaluate the
effectivity and robustness of PMGAE. For the case study, we
used all other associations that did not contain three pseudogenes
RPLP0P2, HLA-H, and HLA-J to train the model and then
predicted the probability of all miRNAs associated with each
of these three pseudogenes. The top 15 predicted associations
were used to verify the predictions through starBase.

Three pseudogenes, RPLP0P2, HLA-H, and HLA-J, were used
for case studies. RPLP0P2 is a pseudogene associated with a
variety of cancers including lung adenocarcinoma and colorectal
cancer. Several studies have shown that low expression of

RPLP0P2 can lead to decreased proliferation and adhesion of
tumor cells (Chen et al., 2016; Yuan et al., 2021). Table 3 shows
the top 15 candidate miRNAs associated with RPLP0P2, 11 of
which are supported by starBase.

HLA-H is a kind of transmembrane molecule, and it can
mobilize HLA-E at the cell surface of multiple immune cells
(Jordier et al., 2019). At the same time, HLA-H gene mutations
cause many cases of hereditary hemochromatosis. Table 3 shows
the top 15 candidate miRNAs associated with HLA-H, 12 of
which are proved by starBase.

HLA-J is also a class of HLA gene. HLA-J has an
immunosuppressive effect and is potentially a predictor of
breast cancer (Würfel et al., 2020). Besides, HLA-A has been
shown to be associated with schizophrenia. The presence of HLA-
AM80468 significantly reduces the incidence of schizophrenia,
whereas the presence of HLA-JM80469 increases the incidence of
schizophrenia (Gu et al., 2013). As shown in Table 3, 11 of the top
15 candidate miRNAs associated with HLA-J are proved by
starBase.

DISCUSSION

Genome-wide prediction of PMAs has great significance in both
biology and medicine. It can not only help us understand the
cellular role of pseudogenes but also provide clues and directions
for the clinical treatment of various diseases. In this work, full
potential PMAs are predicted for the first time. Feature fusion and
GAE were used to construct the model, PMGAE. The
performance of PMGAE was evaluated by five-fold cross
validation, with an AUC of 0.8634 and AUPR of 0.8966
obtained. Extensive experiments on feature fusion, model
framework, and setup were conducted.

The good performance of PMGAE may be attributed to the
optimization of each step and flexibility together with the good
interpretability of the model. First, we integrated the attribute
information from different perspectives of nodes by feature
fusion. Subsequently, the GAE was used to integrate the
correlation information and attribute information to obtain
the low-dimensional representation of nodes. Finally, we
selected the most suitable classifier for the model as an
association prediction task. By comparative experiments on
the feature construction, embedding method, and classifiers,
the best integrated model can be selected. The resultant
PMGAE model has the optimal effect in predicting the PMAs.

In the ceRNA network, pseudogene–miRNA is the only pair of
relationships that have not been studied computationally. By
predicting PMAs for the first time, using PMGAE, our work fills
the gap in the ceRNA network, so that all known relational pairs
in the ceRNA network can be predicted by computational
methods. The completed map will facilitate the studies of
ceRNA network architecture and its biological implications.

Based on the successful application of PMGAE, there is space
for further improvement. First, only one type of feature for each
node was used when constructing a similarity feature profile.
Fusing more types of node features may provide more
information for model training. Second, one can also

TABLE 2 | Model performance under various setups of positive: negative sample
ratios.

Evaluation metrics Positive: negative sample ratio

1:1 1:2 1:5 1:10 1:20

AUC 0.8632 0.8548 0.8557 0.8596 0.8626
AUPR 0.8966 0.8388 0.7653 0.7193 0.6693
Acc. 0.8015 0.8523 0.9218 0.9554 0.9753
Sen. 0.6592 0.6008 0.5594 0.5419 0.5196
Spec. 0.9437 0.9782 0.9943 0.9968 0.9981
Prec. 0.9216 0.9323 0.9513 0.9447 0.9323
MCC 0.6292 0.6646 0.6938 0.6965 0.6858
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introduce intermediate layers to incorporate
pseudogene–lncRNA associations and lncRNA–miRNA
associations. Whether adding intermediate layers will improve
the prediction effect of the model is a problem worth further
exploration. Third, when constructing negative samples, we
simply used non-positive samples as potential negative
samples and then randomly extracted them. How to build
negative samples more accurately is also a question worth
exploring. Fourth and more importantly, in PMGAE,
embedding and classifier are sequentially, also separately
trained. For the task of PMA prediction, end-to-end modeling
seeking a global optimal solution is worth further exploration.
Toward a full description and understanding, we will incorporate
all relation pairs to build a complete graph of the ceRNA network,
together with diverse information of all types of nodes.
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Background: Recurrence is still a major obstacle to the successful treatment of gliomas.
Understanding the underlying mechanisms of recurrence may help for developing new
drugs to combat gliomas recurrence. This study provides a strategy to discover new drugs
for recurrent gliomas based on drug perturbation induced gene expression changes.

Methods: The RNA-seq data of 511 low grade gliomas primary tumor samples (LGG-P),
18 low grade gliomas recurrent tumor samples (LGG-R), 155 glioblastoma multiforme
primary tumor samples (GBM-P), and 13 glioblastomamultiforme recurrent tumor samples
(GBM-R) were downloaded from TCGA database. DESeq2, key driver analysis and
weighted gene correlation network analysis (WGCNA) were conducted to identify
differentially expressed genes (DEGs), key driver genes and coexpression networks
between LGG-P vs LGG-R, GBM-P vs GBM-R pairs. Then, the CREEDS database
was used to find potential drugs that could reverse the DEGs and key drivers.

Results: We identified 75 upregulated and 130 downregulated genes between LGG-P and
LGG-R samples, which weremainly enriched in human papillomavirus (HPV) infection, PI3K-Akt
signaling pathway, Wnt signaling pathway, and ECM-receptor interaction. A total of 262 key
driver genes were obtained with frizzled class receptor 8 (FZD8), guanine nucleotide-binding
protein subunit gamma-12 (GNG12), andGprotein subunit β2 (GNB2) as the top hub genes. By
screening the CREEDS database, we got 4 drugs (Paclitaxel, 6-benzyladenine, Erlotinib,
Cidofovir) that could downregulate the expression of up-regulated genes and 5 drugs
(Fenofibrate, Oxaliplatin, Bilirubin, Nutlins, Valproic acid) that could upregulate the expression
of down-regulatedgenes. Thesedrugsmayhave apotential in combating recurrenceof gliomas.

Conclusion:We proposed a time-saving strategy based on drug perturbation induced gene
expression changes to find new drugs that may have a potential to treat recurrent gliomas.

Keywords: low grade gliomas, RNA-seq, differentially expressed genes, WGCNA, key driver genes, drug discovery
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INTRODUCTION

Gliomas are the most common type of central nervous system (CNS)
tumors, which are composed of various distinct subtype tumors
(Galbraith and Snuderl, 2021). Differed from non-CNS neoplasms,
the gliomas’ grading system is quite complicate. The latest 2021WHO
Classification of Tumors of the Central Nervous System (WHO
CNS5) has integrated certain molecular markers and histological
features for more accurate staging of gliomas (Louis et al., 2021).
Briefly, the gliomas can be classified as two categories, low-grade
gliomas (grade 1–2) with a relatively benign slow-growing feature and
favorable prognosis, and high-grade gliomas (grade 3–4) with highly
infiltrative ability and malignant form. Glioblastoma multiforme
(GBM) accounts for approximately 55% of gliomas and is
considered as the most aggressive type of gliomas with a 5-years
survival rate less than 5% and amedian survival time of 12–15months
(Ostrom et al., 2015a; Ostrom et al., 2015b). Currently, the
conventional therapeutic regimen for gliomas is surgical resection
followed by radiotherapy and chemotherapy. However, the curative
effect is far from satisfaction and recurrence is still the major obstacle
to the success of chemoradiotherapy since themajority of GBMwould
experience recurrence within 6.2months after diagnosis (Bähr et al.,
2009; King and Benhabbour, 2021). Therefore, it is imperative to find
new therapeutic target and novel therapeutic strategies for patient with
gliomas.

Over the past decades, molecular biomarkers have gained
important value in providing diagnostic information and
therapeutic target for gliomas. Bevacizumab, an inhibitor of
vascular endothelial growth factor (VEGF), was approved to treat
recurrent GBM by the Food and Drug Administration (FDA) in
March 2009 (Friedman et al., 2009; Kreisl et al., 2009). By targeting
VEGF, Bevacizumab inhibits angiogenesis and blocks the nutrient
supply, which ultimately impedes the growth and metastasis of GBM.
In addition, methylation of the O6 -methylguanine-DNA
methyltransferase (MGMT) promoter might serve as a predictive
marker for temozolomide (TMZ) treatment response of GBM (Hegi
et al., 2008). Poly (ADP ribose) polymerase (PARP) inhibitors can
increase tumor sensitivity to TMZ chemotherapy and synergize with
radiation therapy (Lesueur et al., 2018). A novel nano-compounds
encapsulating wild-type p53 (SGT-53) could enhance the inhibitory
effects of TMZ on TMZ-resistant GBM cells (Kim et al., 2015).
Moreover, mutations/deregulation in the platelet-derived growth
factor receptor alpha (PDGFRα), telomerase reverse transcriptase
(TERT), epidermal growth factor receptor (EGFR), c-Myc,
phosphatase and tensin homolog (PTEN), serine/threonine-protein
kinase (BRAF) are frequently observed in glioma, which have become
attractive markers for targeted therapy [Mukasa et al., 2010; Sampson
et al., 2010; Killela et al., 2013; Johnson et al., 2014; Liu et al., 2020a; Liu
et al., 2020b)].

Though a handful ofmolecular biomarkers have been discovered,
the targeted therapies in clinical trials displayed limited curative
effect for gliomas (Wu et al., 2021). This may be attributed to the
inter- and intra-heterogeneity in driver mutations and plasticity of
gliomas. The recurrent tumor might have a totally distinct gene
expression signature in comparison with the primary tumor.
Notably, 90% of druggable targets identified at initial diagnosis of
gilomas are differentially expressed in a recurrent tumor (Schäfer

et al., 2019). Ideally, a patient would select the specific drug according
to his/her own molecular genetic feature and change the drugs over
the course as the tumor evolves.With the advent ofmultiomics era, it
is becoming possible.

In the era of big data, genome-widemolecular profiling at genome,
transcriptome, proteome, and metabolome level have revealed
comprehensive landscapes for all major types of gliomas. This has
not only enriched our understanding of the molecular mechanism of
gliomas pathogenesis and progression, but also broadened our ideas in
discovering new therapeutic drugs. As we all know, new drug
developing is a time-consuming course with high capital input and
low yield, and drug repositioning based on computational tools could
largely shorten the process (Liu et al., 2016; Xu et al., 2019; Zhou et al.,
2019; Yang et al., 2020a; Liu et al., 2020; Tang et al., 2020; Zhou et al.,
2020; Peng et al., 2021). In the present study, we proposed a fast,
economical, and comprehensive strategy to find old drugs with new
function for combating recurrence of gliomas. Our results on TCGA
data suggested that this strategy provides a new direction in
discovering drugs and brings hope for people in treating gliomas.

MATERIALS AND METHODS

Data Collecting and Grouping
The RNA sequencing data of gliomas samples were downloaded
from TCGA database. The samples were divided into 4 groups:
low grade gliomas primary tumor samples (LGG-P, n � 511), low
grade gliomas recurrent tumor samples (LGG-R, n � 18), GBM
primary tumor samples (GBM-P, n � 155), and GBM recurrent
tumor samples (GBM-R, n � 13).

Screening of DEGs in Gliomas
The R package DESeq2 was applied to identify DEGs in the
following data pairs: LGG-P vs LGG-R, GBM-P vs GBM-R. |
log2fold change (FC)| ≥ 2, false discovery rate (FDR) < 0.5 and
adjusted p value < 0.001 were set as threshold. R package
clusterProfiler was used for Gene Ontology (GO) enrichment
analysis and calculations. The enriched pathways in the up- or
down-regulated gene set were generated using R package ggplot2.

Weighted Gene Correlation Network
Analysis and Key Driver Analysis
Network-based methods have been widely used to analyze the
associations between various biological entities (Chen et al., 2018;
Peng et al., 2018; Peng et al., 2020; Zhang et al., 2021). The R
package WGCNA was used to construct a weighted gene co-
expression network. The key driver analysis was performed using
a software package described by Yang et al.(Yang et al., 2016). The
first step was to generate a subnetwork NG, which is located
within 2 steps of nodes in a given gene set. Next, the dynamic
neighborhood search (DNS) was used to find the gene within 2
steps of each gene in NG. Lastly, by taking the gene set in the first
step as the background, the hypergeometric test is carried out to
calculate the enrichment value between the gene set in the second
step and the input gene set. p value < 0.05 for DEG and p value <
0.01 for subnet were set as threshold in the key driver analysis.
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Drug Discovery
Based on the DEGs and key drivers, the CREEDS database was
used to find potential drugs. The CREEDS database contains 906
drug perturbation gene expression signatures collected from GEO
database (Wang et al., 2016). We screened the drug-gene pairs to
identify potential drugs that could reverse the expression of DEGs
and key drivers in gliomas. p value < 10–10 was set as the threshold.

RESULTS

A Computational Framework to Identify
Biomarkers for Glioma Recurrence and
Potential Drugs Targeting Them
We proposed a computational framework biomarker identification
and drug discovering for glioma recurrence (Figure 1). Firstly, the
differentially expressed genes (DEGs) of primary gliomas samples and
recurrent gliomas samples were identified from RNA sequencing data
downloaded from The Cancer Genome Atlas (TCGA) database.
Secondly, weighted gene correlation network (WGCNA) analysis
and key driver analysis were conducted to find co-expression
modules and key driver genes. Thirdly, the CREEDS database was
applied to find potential drugs that could reverse the DEGs and key
drivers. We then applied this framework to the downloaded TCGA
data and identified important genes involving in glioma recurrence and
potential drugs targeting them.

ManyDEGsWere IdentifiedBetween LGG-P
and LGG-R, and Between GBM-P and
GBM-R
We conducted a comprehensive analysis of theDEGs between LGG-P
and LGG-R, and between GBM-P and GBM-R. The difference
between GBM-P and GBM-R samples was not significant as we
only obtained 2 upregulated and 29 downregulated genes. A total of
205 DEGs with 75 upregulated and 130 downregulated genes were
identified between LGG-P and LGG-R samples. The specific details of
each DEGs were shown in Supplementary Table S1. Since the
number of DEGs between GBM-P and GBM-R was not large
enough, we chose LGG-P and LGG-R pairs for further study. We
randomly selected 25 samples to draw the heat map and the top 10
differentially expressed genes were shown in Figure 2.

GO analysis was utilized to annotate the function of DEGs
between LGG-P and LGG-R. The upregulated genes could not be
enriched owing to the relatively large p value. The downregulated

genes were predominantly enriched in DNA-binding transcription
activator activity, extracellular matrix structural constituent,
growth factor binding, and platelet-derived growth factor
binding for the molecular function (MF) category (Figure 3A).
For the cellular component (CC) category, the downregulated
genes were correlated with extracellular matrix, collagen-
containing extracellular matrix, endoplasmic reticulum lumen,
and collagen trimer (Figure 3B). For the biological process (BP)
category, the downregulated genes were mainly involved in skeletal
system development, extracellular matrix organization,
extracellular structure organization, and connective tissue
development (Figure 3C). KEGG enrichment analysis was
further performed to explore the underling pathological
pathways for LGG. As shown in Figure 4, the enrichment
pathways include human papillomavirus infection, PI3K-Akt
signaling pathway, Wnt signaling pathway, ECM-receptor
interaction, and proteoglycans in cancer.

Coexpression Analysis Revealed Chemical
Synaptic Transmission Pathway and T Cell
Activation Pathway as Key Modules for
Glioma Recurrence
To better understand the function of differentially expressed
genes, WGCNA was carried out to identify highly correlated

FIGURE 1 | The framework of this study. The RNA-seq data was used to find DEGs, which was followed by GO enrichment, WGCNA, and key driver analysis.
Potential drugs that could reverse the DEGs and key drivers were screened through the CREEDS database.

FIGURE 2 | The heat map of the DEGs between LGG-P and LGG-R
samples. Dao, mdh1, slc1a3, CNOT4, meox2, pik3c2g, LGR6, ahcyl2,
SPARC and LTF were the top 10 differentially upregulated genes; LMNTD2-
AS1, MAFA, COL2A1, ONECUT3, MEOX1, BNC1, LMNTD2, GEN1,
Wnt11 and trim7 were the top 10 differentially down regulated genes.
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FIGURE 3 | GO analysis of the downregulated genes between LGG-P and LGG-R. (A) molecular function category; (B) cellular component category; (C)
biological process category. The X-axis is the ratio of differentially expressed genes enriched in the corresponding pathway, and the Y-axis is the name of the
pathway.
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gene clusters. Genes with zero expression were deleted
from all samples, and the samples of some separated
groups were removed from the hierarchical clustering
results. WGCNA finally yielded 150 significant gene
modules in LGG-P group and 65 gene modules in LGG-R
group. Since there are too many genes to visualize, we

randomly selected 400 genes to construct a topological
overlapping heat map (Figure 5A) and performed
functional enrichment analysis. As shown in Figure 5B
and Figure 5C, the highly coexpression genes were mainly
enriched in chemical synaptic transmission pathway and
T cell activation pathway.

FIGURE 4 | KEGG analysis of the downregulated genes between LGG-P and LGG-R. The DEGs were mainly enriched in protein digestion and absorption, human
papillomavirus infection, ECM-receptor interaction, PI3K-Akt signaling pathway, and proteoglycans in cancer pathways.

FIGURE 5 |Highly correlated gene clusters were identified byWGCNA. (A) Topological overlapping heat map of 400 genes. (B)GO enrichment analysis of module
5. (C) GO enrichment analysis of module 8.
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Many Genes Including FZD8 and GNG12
Were Identified as Key Driver Genes for
Glioma Recurrence
Key driver gene was considered as the hub gene that connected
the up- or downregulated genes. For LGG-P vs LGG-R pair, we
obtained 2 key drivers in the upregulated gene set and 260 key
drivers in the downregulated gene set. The detailed information
of the key drivers can be found in Supplementary Table S2. The
most siginificant key drivers and their corresponding subnetwork
were shown in Figure 6. We demonstrated that frizzled class
receptor 8 (FZD8) and guanine nucleotide-binding protein
subunit gamma-12 (GNG12) were two of the hub gene of the
downregulated genes. FZD8 is a G protein-coupled receptor
protein that plays an important role in β-catenin signaling
pathway and regulates cancer invasion and metastasis (Li
et al., 2017). GNG12 is a member of the G protein family and
participate in a handful of trans-membrane signal transducer
pathways (Yuan et al., 2021). G protein subunit β2 (GNB2) is a
hub gene of up regulated genes and belongs to the guanine
nucleotide-binding proteins family. GNB2 may activate the
canonical G protein signaling and involved in cancer initiation
and progression (O’hayre et al., 2014). The functions and
implications of these hub genes in cancers will be discussed
further.

A Few Drugs Including Paclitaxel and
Fenofibrate Were Identified as Potential
Drugs for Preventing Glioma Recurrence
Drugs that have a potential to reverse the expression of DEGs
may be valuable for further treatment of gliomas. We obtained 26
drugs that could perturb the expression of up regulated gene sets
and 50 drugs that could perturb the expression of down regulated
gene sets by CREEDS database. In consideration of drug profile

and previous studies, we focused on 4 perturbation drugs of up
regulated genes (Paclitaxel, 6-benzyladenine, Erlotinib,
Cidofovir) and 5 perturbation drugs of down regulated genes
(Fenofibrate, Oxaliplatin, Bilirubin, Nutlins, Valproic acid)
(Table 1). These drugs may provide new insight into
preventing recurrence of LGG.

DISCUSSION

Gliomas are highly malignant tumors and recurrence is still the
main obstacle to treatment. Though researchers have identified a
handful of biomarkers for glioma, the therapeutic effect of
targeted drugs is far from satisfaction. Currently, our study
provides a fast, economical, and comprehensive method for
finding potential drugs to treat gliomas.

Based on RNA sequencing data of LGG-P and LGG-R samples
from TCGA, we yielded 75 upregulated and 130 downregulated
genes, which were predominantly correlated with human
papillomavirus (HPV) infection, PI3K-Akt signaling pathway,
Wnt signaling pathway, ECM-receptor interaction. HPV
infection is a major cause of cervical cancer, and associated
with several epithelial malignancies, including oral cavity, anal,
oropharyngeal, penile, vulvar, vaginal, and laryngeal cancers (Lu
et al., 2020). Until now, there is no direct evidence indicates that
HPV infection is involved in gliomas. We speculate HPV
infection may interfere host immune system and participate in
LGG recurrence. PI3K-Akt signaling pathway and Wnt signaling
pathway are two of the canonical signaling transduction pathways
in various cancers. PI3K/Akt pathway controls cell fate by
regulating cell growth, apoptosis, angiogenesis, metabolism,
autophagy, and chemotherapy resistance of gliomas
(Shahcheraghi et al., 2020). Activation of PI3K-Akt pathway is
associated with migration and invasion of glioblastoma cells
(Huang et al., 2018). Wnt/beta-catenin signaling pathway plays

FIGURE 6 | A subnetwork of the key drivers that connected the up and down regulated genes. Purple indicates upregulated genes, red indicates key drivers of
upregulated genes, green indicates downregulated genes, and blue indicates key drivers of downregulated genes.
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a vital role in ionizing radiation-induced invasion of glioblastoma
cells (Dong et al., 2015). It has been reported that high level of
beta-catenin was associated with a poor prognosis in glioblastoma
patients (Gao et al., 2017). Currently, a number of PI3K inhibitors
and wnt inhibitors have entered clinical trials for gliomas
treatment, such as BKM120, XL147 and XL765 (Lee et al.,
2016; Zhao et al., 2017). ECM-receptor interaction pathway
mediates cell migration by regulating neovascularization and
diffuse infiltration of tumor cells (Cui et al., 2018). Previous
study also indicated ECM-receptor interaction pathway was
abnormal in development and survival of glioblastoma (Bo
et al., 2015; Yang et al., 2020b).

We also identified several key driver genes that contributed to
LGG recurrence, including FZD8, GNG12, GNB2. FZD8 could
activate the β-catenin pathway and play a vital role in cancer
invasion and metastasis (Chen et al., 2020). Aberrant expression
of FZD8 has been reported in gastric cancer, prostate cancer, renal
cell carcinoma, lung cancer, pancreatic adenocarcinoma, and
overexpression of FZD8 was considered to promote tumor
metastasis (Li et al., 2017; Yang et al., 2017; Liu et al., 2019;
Chen et al., 2020; Li et al., 2021). In addition, overexpression of
FZD8 leaded to chemotherapy resistance in breast cancer patients
(Yin et al., 2013). GNG12 acted as an important modulator or
transducer in various transmembrane signaling systems.
Researchers have demonstrated that GNG12 could regulate
cancer cell proliferation, inflammatory response, and immune
response via activating the mTORC1 pathway and NF-κB
signaling pathway (Larson et al., 2010; Luo et al., 2018; Li
et al., 2020). GNB2 was involved in cancer initiation and
progression by activating AKT/mTOR pathway, MAPK
pathway, and Hippo signaling pathway. Mutations of GNB2
may result in targeted kinase inhibitors resistance to numerous
types of cancer (Yoda et al., 2015). The roles of FZD8, GNG12,
GNB2 have not been fully illustrated in gliomas and needs further
investigation. These key driver genes may help for understanding
the pathogenesis of for LGG recurrence and shed new insight for
developing new drugs.

However, developing new drugs from a molecular biomarker
is a great project and still has a long way to go. In the present
study, a total of 9 drugs with potential therapeutic effect against
LGG recurrence were selected through a drug-gene perturbation
method. Paclitaxel is a natural anticancer drug that has been

widely used in the therapy of breast cancer, ovarian cancer, lung
cancer, and several head and neck cancers. Paclitaxel binds to
tubulin, promotes its assembly with microtubules and inhibits
dissociation, which finally prevents mitosis and hinders cell cycle
progression (Zhu and Chen, 2019). Erlotinib is used to treat some
types of lung cancer and advanced ormetastatic pancreatic cancer
in clinical. Erlotinib blocks EGFR pathway by inhibiting tyrosine
kinase activity and impeding cell proliferation, apoptosis,
angiogenesis, invasions, and metastasis. Benzylaminopurine is
a first generation cytokinin that stimulates cell division and
inhibits respiratory kinase, leading to plant growth and
development. Cidofovir is used to treat cytomegalovirus
(CMV) infection through inhibiting viral DNA polymerase
(Alcamo et al., 2020). Cidofovir also has a strong activity
against herpes simplex virus (HSV), varicella zoster virus
(VZV), adenovirus (AV), and human papillomavirus (HPV).
Fenofibrate is widely used as a lipid-lowering drug through
activating PPARα-RXR signal and transcription of lipid
metabolism related genes. Numerous evidence has indicated
that fenofibrate might exert anticancer effects through
regulating cell apoptosis, cell-cycle arrest, invasion, and
migration (Lian et al., 2018). Oxaliplatin is a third-generation
platinum analog that has been widely used as the first-line drugs
for metastatic colorectal cancer. It blocks DNA replication by
binding to DNA and forming cross-linked DNA adducts, which
consequently leading to cancer cell death (Mauri et al., 2020).
Bilirubin is an endogenous metabolite from haem. Recent studies
have indicated bilirubin levels may serve as biomarker for several
cancers and vascular disease (Horsfall et al., 2020; Seyed Khoei
et al., 2020). Nutlins is a small molecule that could displace p53
protein from p53/MDM2 complex, thereby preventing the
degradation of p53. It has been revealed that Nutlins could
induce p53 dependent cell cycle arrest and apoptosis in a
number of tumors (Impicciatore et al., 2010). Valproic acid
(VPA), a histone deacetylase (HDAC) inhibitor, is widely used
to treat epilepsia, bipolar disorders, migraine, and schizophrenia.
In addition, VPA may exert anti-tumor activity by regulating cell
proliferation, apoptosis, differentiation, adhesion, invasion,
migration, angiogenesis, and inflammation (Michaelis et al.,
2007). As shown above, some candidate drugs were already
commonly used in clinical, some candidates only showed
preclinical antitumor activity. Weather these drugs/agents

TABLE 1 | Potential drugs for the treatment of LGG recurrence.

Class Drug Antitumor mechanism Evidence (DIO)

up Paclitaxel prevents mitosis, blocks cell cycle progression, and inhibits cell growth. 10.1186/s11658-019-0164-y
up 6-

benzyladenine
stimulates cell division, and inhibits respiratory kinase, leading to plant growth and development. 10.1111/plb.13154

up Erlotinib inhibits tyrosine kinase activity, blocks EGFR signaling pathway 10.1016/bs.podrm.2019.10.004
up Cidofovir inhibits viral DNA polymerase 10.1542/peds.2019-1632
down Fenofibrate activates PPARα-RXR signaling 10.7150/jca.24488
down Oxaliplatin blocks DNA replication 10.1016/j.ctrv.2020.102112
down Bilirubin an endogenous metabolite from haem 10.1021/np4005807
down Nutlins binds to p53/MDM2 complex and displace p53 protein 10.2174/138161210791033932
down Valproic acid inhibits histone deacetylase (HDAC) 10.2174/

1574892810666150317144511
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could prevent LGG recurrence still needs further preclinical and
clinical trial validation.

In conclusion, we conducted a comprehensive analysis of
LGG-P and LGG-R samples to find DEGs and key driver
genes. By using a drug-gene perturbation method, a serious
potential drugs/agents were screened to treat LGG recurrence.
However, the exact effect of these drugs on glioma recurrence
needs further experimental data for verification. Besides,
independent dataset with paired primary tumor and recurrent
tumor samples is needed to validate the findings in the future.
This study may broaden our understanding of the molecular
mechanism of LGG recurrence and provide new sights for drug
discovery.
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Using Graph Attention Network and
Graph Convolutional Network to
Explore Human CircRNA–Disease
Associations Based on Multi-Source
Data
Guanghui Li 1*, Diancheng Wang1, Yuejin Zhang1, Cheng Liang2, Qiu Xiao3 and Jiawei Luo4*

1School of Information Engineering, East China Jiaotong University, Nanchang, China, 2School of Information Science and
Engineering, Shandong Normal University, Jinan, China, 3College of Information Science and Engineering, Hunan Normal
University, Changsha, China, 4College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

Cumulative research studies have verified that multiple circRNAs are closely associated
with the pathogenic mechanism and cellular level. Exploring human circRNA–disease
relationships is significant to decipher pathogenic mechanisms and provide treatment
plans. At present, several computational models are designed to infer potential
relationships between diseases and circRNAs. However, the majority of existing
approaches could not effectively utilize the multisource data and achieve poor
performance in sparse networks. In this study, we develop an advanced method,
GATGCN, using graph attention network (GAT) and graph convolutional network
(GCN) to detect potential circRNA–disease relationships. First, several sources of
biomedical information are fused via the centered kernel alignment model (CKA), which
calculates the corresponding weight of different kernels. Second, we adopt the graph
attention network to learn latent representation of diseases and circRNAs. Third, the graph
convolutional network is deployed to effectively extract features of associations by
aggregating feature vectors of neighbors. Meanwhile, GATGCN achieves the
prominent AUC of 0.951 under leave-one-out cross-validation and AUC of 0.932
under 5-fold cross-validation. Furthermore, case studies on lung cancer, diabetes
retinopathy, and prostate cancer verify the reliability of GATGCN for detecting latent
circRNA–disease pairs.

Keywords: circRNA-disease associations, deep learning, graph attention network, graph convolutional network,
centered kernel alignment

INTRODUCTION

Circular RNA (circRNA) is a novel endogenous non-coding RNA forming a covalently closed loop
structure, which lacks a 50-end cap and a 30-end ployA tail (Memczak et al., 2013; Meng et al., 2017).
This structure is beneficial for circRNA to develop resistance to RNA exonuclease degradation and
provides a more stable biological expression (Li et al., 2015). As a result, in most species, the average
half-life of circRNAs is substantially increased than their linear equivalent.When circRNAs were first
found as early as 1970s, they had been regarded as the abnormal shear or product of “shear noise,”
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limited to the level of technology and knowledge at that time. In
previous studies, multiple circRNAs were verified to be
widespread in eukaryotes and play an essential role in
biological functions with the advancement of biology and
sequencing technologies. Currently, the biological functions of
circRNA are reflected as follows (Rong et al., 2017): regulation of
alternative splicing or transcription, miRNA sponges, regulation
of protein binding, and generation of pseudogenes.

CircRNA has become a new biomarker due to its abundance,
structural stability, developmental stage specificity, and tissue
specificity (Zhang Z. et al., 2018), which can be discovered in
saliva, blood, and exosomes. Cumulative research studies have
confirmed that multiple circRNAs are significant to the
expression of various pathological conditions (Han et al., 2018;
Zhu et al., 2017; Zhang S. et al., 2018), especially cancer (Vo et al.,
2019), cardiovascular, cerebrovascular, and nervous system
diseases. For instance, circRNA hsa_circ_0027599 is
overexpressed in gastric cancer (Wang L. et al., 2018), thereby
regulating the expression of the gene PHLDA1 and promoting
tumorigenesis. In cardiovascular and cerebrovascular diseases,
circRNA circWDR77Z targets and regulates miRNA miR-124/
FGF-2 through the “sponge” function (Chen et al., 2017), which
affects the migration and proliferation for vascular smooth
muscle cells, thereby promoting atherosclerosis development.
For myocardial infarction, overexpression of circRNA CDR1
leads to the upregulation of downstream corresponding
enzymes and proteins (Zhang et al., 2016), thereby aggravating
myocardial infarction. In neurological diseases, the expression of
circRNA in brain tissue is different, and its distribution in the
brain is uneven (Zhang et al., 2021b).

Although circRNA is commonly expressed in various cell lines
and tissues with strong tissue specificity and development stage
specificity, the pathogenic mechanism of circular RNA and how it
interacts with other biological molecules remain unknown. In
recent years, researchers have established many experimentally
verified or reported databases on relationships between circRNAs
and diseases, such as circBase (Glažar et al., 2014), circRNADb
(Chen et al., 2016), circR2Disease (Fan et al., 2018b),
circRNADisease (Zhao et al., 2018), circ2Disease (Yao et al.,
2018) and circ2Traits databases (Ghosal et al., 2013).
Considering that conventional biological studies are cost-
ineffective and time-consuming, several computational
approaches have been designed to detect relationships between
diseases and circRNAs efficiently (Xiao et al., 2022; Lei et al.,
2021). At present, the proposed computational models for
discovering relationships between diseases and circRNAs are
mainly classified into the following groups:

Network propagating methods have been widely applied to
detect correlations between diseases and various biological
entities, including circRNAs, due to the efficient use of
network structure information (Peng et al., 2018). Zhang et al.
designed a linear neighbor marker propagation approach named
CD-LNLP via neighbor similarity to reveal relationships between
diseases and circRNAs (Zhang et al., 2019). Li et al. presented the
DWNCPCDA using DeepWalk and network consistency
projection (Chen et al., 2018) to detect unobserved
associations between diseases and circRNAs (Li G. et al.,

2020). Lei et al. constructed a prediction model named
RWRKNN, which combined the k-nearest neighbor and RWR
to calculate weighted features for diseases and circRNAs (Lei and
Bian, 2020).

Path-based methods are widely adopted to calculate potential
interactions between diseases and circRNAs by measuring the
weight of paths in different networks. Lei et al. presented a path-
weighted method named PWCDA, which predicted the
circRNA–disease relationships by calculating the probability
value for each circRNA–disease pair via path information (Lei
et al., 2018). Fan et al. presented the model named KATZHCDA
via the circRNA expression profile, the similarity of the disease
phenotype, and the nuclear similarity of the Gaussian interaction
profile using the KATZ method to detect potential interactions
between diseases and circRNAs through the heterogenous
network (Fan et al., 2018a). Zhao et al. revealed a computed
method named IBNPKATZ using the bipartite network
projection model and the KATZ (Zhang et al., 2021a) model
to discover circRNA–disease interactions (Zhao et al., 2019).

Matrix factorization–based methods have been carried out for
detecting circRNA–disease relationships by constructing a low-
dimensional matrix to represent the initial input features (Wang
P. et al., 2018; Peng et al., 2020a). Wei et al. used weight-based
nearest neighbor nodes to reconstruct the association matrix and
designed a graph regularized non-negative matrix factorization
algorithm iCircDA-MF to detect relationships between diseases
and circRNAs (Wei and Liu, 2020). Lu et al. constructed a model
named DMFCDA with deep matrix factorization, which infers
potential circRNA–disease interactions by mapping features of
diseases and circRNAs into low-dimensional spaces (Lu et al.,
2021). Yan et al. used the Kronecker product kernel to design a
regularized least squares algorithm called DWNN-RLS to detect
relationships (Yan et al., 2018). Li et al. presented an advanced
approach named SIMCCDA by regarding predicting associations
as a recommendation system task, which achieves outstanding
performance for discovering circRNA–disease associations (Li M.
et al., 2020).

Deep learning integrates low-level features to construct
high-level representations of features or attribute categories
through the deep non-linear network structure (Peng et al.,
2021; Zhou et al., 2021). Wang et al. designed a model to reveal
interactions between diseases and circRNAs using deep
convolutional neural networks and deep generative
adversarial networks (Wang et al., 2020a). Wang et al.
designed an approach named GCNCDA to identify disease-
related circRNAs, which extracts high-level features contained
in the circRNA–disease heterogenous network through graph
convolutional networks to calculate association scores (Wang
et al., 2020b). GATCDA is a novel model for discovering the
correlation between diseases and circRNAs, which learns the
latent representation of nodes by assigning corresponding
weights to each neighbor node (Bian et al., 2021). Xiao
et al. designed a computational model named NSL2CD that
adopts network embedding by adaptive subspace learning
(Xiao et al., 2021).

Although the abovementioned approaches have achieved
excellent predictive performance, there are still several
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limitations given as follows: First, network-based methods
achieve poor performance in sparse networks due to a small
amount of network structure information. Second, path-based
methods fail to dynamically calculate weights based on known
associations, which makes it unable to efficiently detect
relationships between diseases and circRNAs with new
diseases or circRNAs. Third, matrix factorization–based
methods could not discover a non-linear interaction between
diseases and circRNAs. Last, current deep learning–based
methods could not effectively utilize the multisource data and
only pay more attention to features of the neighbor nodes or the
node itself, respectively.

To solve the abovementioned challenges, we develop an
advanced method GATGCN via graph attention network
(GAT) and graph convolutional network (GCN) to detect
potential circRNA–disease relationships. The complete process
could be summarized as four steps: First, multisource similarity
data for circRNAs and diseases are fused by the centered kernel
alignment model (CKA) (Cristianini et al., 2006). Second, we
adopt the graph attention network to learn the dense
representation of nodes on fused disease similarity network
and fused circRNA similarity network. Third, we construct the
heterogenous network by connecting circRNA–disease
interaction network, feature matrix of diseases, and feature
matrix of circRNAs. Finally, the graph convolutional network
is adopted to get prediction scores based on the heterogenous
network. According to reliable computer experiments, GATGCN
outperforms several state-of-the-art methods with a prominent
AUC of 0.932.

MATERIALS

Human CircRNA–Disease Associations
The circR2Disease provides verified relationships between diseases
and circRNAs, which is a manually curated database including 739
known relationships between 100 diseases and 676 circRNAs. We
eventually extract 661 associations between 88 diseases and 585
circRNAs for humans after removing the associations unrelated to
human species and duplicate associations.

Human Disease–MiRNA Associations
MiRNAs are significant to pathogenesis and treatment of diseases
as the important regulatory molecule for genes. On dataset, we
collect 1,883 experimentally verified disease–miRNA
relationships between 462 miRNAs and 88 diseases from the
HMDD (Li et al., 2014), which provides disease-associated
miRNAs and their target genes, including 8,802 known
relationships between 350 diseases and 32281 miRNAs.

Human Disease–Gene Associations
Due to gene mutation and expression affecting diseases, diseases
are closely related to genes. On the dataset, 74 experimentally
verified disease–gene associations between 61 genes and 88
diseases are filtered out, downloaded from http://cssb2.biology.
gatech.edu/knowgene/.

Human CircRNA–MiRNA Associations
With plenty miRNA binding sites (Hansen et al., 2013; Peng et al.,
2020b), circRNAs actively affect the expression of miRNA’s
downstream genes as miRNA sponges (Peng et al., 2017; Zeng
et al., 2020). We obtain 17844 known circRNA–miRNA
associations between 640 miRNAs and 585 circRNAs from
ENCORI (available at http://starbase.sysu.edu.cn/agoClipRNA.
php? source=circRNA).

Human CircRNA–Gene Associations
According to the previous research, circRNAs are verified to be
significant in regulating the expression of genes. On the dataset,
487 known circRNA–gene associations between 418 genes and
585 circRNAs are extracted from http://cssb2.biology.gatech.edu/
knowgene/search.html.

Disease Semantic Similarity
The semantic information of the diseases has been wildly adopted
to measure the similarity of diseases because of its effectiveness
and stability. In this study, we obtain the related annotation terms
for each disease from MeSH.

In MeSH, the directed acyclic graph (DAG) is applied to
represent the semantic relationship among diseases, in which
nodes denote corresponding disease information and directed
edges denote the relationship among diseases. Specifically, disease
di can be described as three items DAGi = [di, T (di, E(di))], where
T(di) represents di itself and its ancestor nodes and E(di) is
relationships between di and all diseases. The contribution of
disease di in DAGi is formulated as follows:

{
Ddi(n) � 1 if n � d
Ddi(n) � max{σ ·Ddi(n′)

∣∣∣∣n′∈ children of n} if n ≠ d
, (1)

where σ denotes the attenuation factor for semantic contribution,
which is defined as the optimal value of 0.5 according to Wang’s
experience Wang et al. (2010); n’ represents the child node of the
node n. Therefore, the overall semantic score of the disease di is
measured by accumulating the contribution scores from its
ancestor diseases and itself as follows:

D(di) � ∑
n∈T(di)

Ddi(n). (2)

In general, diseases with more common parts shared in the
DAG achieve higher semantic similarities. Based on this
hypothesis, the value of disease semantic similarity between
disease di and disease dj is formulated via Eq.3:

DS(di, dj) �
∑n∈Tdi

∩Tdj
(Ddi(n) +Ddj(n))

D(di) +D(dj)
. (3)

CircRNA Functional Similarity
According to previous studies, circRNAs that are relevant to more
similar diseases are prone to bemore similar in functions (Li et al.,
2019). Then, the BMA method is deployed to measure the
functional similarity score among different circRNAs
according to relevant disease sets. Given a specific disease di
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andD = (d1, d2, . . . , dt), the score of functional similarity between
circRNA ci and circRNA cj is measured via Eqs 4, 5:

FS(ci, cj) �
∑
|Di|

m�1
S(dm,Dj) +∑

|Dj|
n�1

S(dn, Di)
|Di| +

∣∣∣∣Dj

∣∣∣∣
, (4)

S(dm,Dj) � max
1≤t≤|Dj|(S(dm, dt)), (5)

whereDj represents the collection of diseases associated with circRNA
cj. S(dm, Dj) represents the similarity between disease dm associated
with circRNA ci and disease collection Dj associated with circRNA cj.

Pearson’s Correlation Coefficient Similarity
Since the circRNA functional similarity network and the disease
semantic similarity network are prone to be sparse, we adopt
Pearson’s correlation coefficient approach to enrich multisource
similarity data by calculating the linear correlation among
different variables. To be specific, the value of Pearson’s
correlation between variable M and variable N is measured as
follows:

Cor(M,N) � cov(M,N)
�������������
var(M)var(N)√ , (6)

where var(M) measures the variance of M; cov(M, N) calculates
the covariance between M and N; the value of Cor(M, N) ranges

from −1 to 1, which reflects the strength of the linear correlation
between M and N.

Four binary networks have been built including the
disease–gene network, circRNA–miRNA network,
circRNA–gene network, and disease–miRNA network. Then,
Pearson’s correlation coefficient approach is adopted to
compute disease similarity and circRNA similarity via
corresponding bipartite networks. The equation is computed
as follows:

Cor(ni, nj) �
cov(IP(ni), IP(nj))

��������������������
var(IP(ni))var(IP(nj))

√ , (7)

where IP(ni) denotes the ith row of the corresponding association
network. Cor(ni, nj) denotes the value of Pearson’s correlation
similarity between node ni and node nj based on the
corresponding association network.

METHODS

In this work, we develop an advanced method GATGCN via the
graph attention network and graph convolutional network to
detect potential circRNA–disease relationships. As shown in
Figure 1, the complete process could be summarized in four

FIGURE 1 | Overall workflow of the GATGCN.
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steps: First, the CKA-based model is adopted to fuse multisource
similarity data for circRNAs and diseases. Second, we adopt the
graph attention network to calculate the dense representation of
nodes on the fused disease similarity network and fused circRNA
similarity network. Third, we construct the heterogenous network,
including circRNA–disease interactions network, feature matrix of
diseases, and feature matrix of circRNAs. Eventually, the graph
convolutional network is adopted to get prediction scores based on
the constructed heterogenous network.

Centered Kernel Alignment
In previous studies, multisource data are usually fused by
calculating the average value, which ignores the importance
among different kernels. Thus, the centered kernel alignment
(CKA) model (Wang et al., 2021) is adopted to fuse several kinds
of similarities for diseases and circRNAs based on different
weights. We consider Kd = {K1

d, . . ., K
v
d} and Kc = {K1

c , . . ., K
u
c }

as different kernels for disease space and circRNA space. The v
and u denote the number of kernels from disease space and
circRNA space, respectively. Meanwhile, the basic CKA model
(Cristianini et al., 2006) is used as the objective of MKL (Ding
et al., 2019) to measure the corresponding weight of each kernel.

To be specific, the kernels Kp
c and K*d based on optimal weight

are calculated as follows:

Kp
c � ∑

u

p�1
apc K

p
c , Kp

c ∈ Rm×m, (8)

Kp
d � ∑

v

p�1
aqdK

q
d, Kq

d ∈ Rn×n, (9)

where ɑc = {ɑ1c , . . ., ɑ
u
c }and ɑd = {ɑ1d, . . ., ɑ

v
d}.

Basic CKA (Cristianini et al., 2006) is adopted to calculate the
weights of each kernel on the training set. The kernel alignment
score between the two kernels is formulated as follows:

U(E, I) � 〈E, I〉F
‖E‖F‖I‖F, (10)

where E, I denotes the corresponding similarity matrix, ||E||F denotes
the Frobenius norm, and <E, I> = Trace(ETI) denotes the Frobenius
inner product. The kernel alignment score represents the similarity
among different kernels. Specifically, the kernel alignment score
between the similarity kernel (disease kernel or circRNA kernel) and
the ideal kernel matrix is measured as follows:

max
β≥0

CU(Kp, Kideal) � max
β≥0

〈ZNKpZN,Kideal〉F
‖ZNKpZN‖F‖Kideal‖F, (11)

subject ˜ to ˜K
p � ∑

N

p�1
βpKp β≥ 0, p � 1, 2..., N, (12)

∑
N

p�1
βp � 1, (13)

where Kideal denotes a label kernel constructed by known
associations; Kideal, d = YT

trainYtrain ∈ Rn×n and Kideal, c =
YtrainY

T
train ∈ Rm×m denote the ideal kernel of diseases and

circRNAs, respectively.

Attention Mechanism on Similarity
Considering that current methods did not capture potential
features on the similarity network, we adopt the graph
attention method to learn latent representation of diseases and
circRNAs, which assigns corresponding weights to different node
features based on the local graph structure to ignore noise and
redundancy. The advantage of the attention mechanism is to
directly evaluate which features are preferred embedding for
specific downstream tasks by calculating the weights. First, we
obtain the corresponding association matrix by setting a
threshold on the similarity network for diseases and circRNAs.
Then, the GAT (Veličković et al., 2017) is applied to learn dense
representation for diseases and circRNAs as follows:

The input layer of the graph attention network is formulated
as follows:

f � {f1, f2, ..., fN}, fi ∈ RF, (14)
where F denotes the dimension of features, and N represents the
number of nodes in the corresponding similarity network. f ∈
RN×F is constructed by the features of nodes in the corresponding
similarity network. The output layer of the graph attention
network is defined as follows:

f′ � {f1
′, f2

′, ..., f′
i}, f

′
i ∈ RF′, (15)

where F′ denotes the length of learned features, and f’ ∈ RN×F’

represents the learned latent representations of nodes in the
network. The first step is to calculate the weight of the
corresponding neighbor node. The importance of the given
nodes is computed by the self-attention mechanism. For each
association pair between node ni and node nj, the attention
coefficient eij is calculated as follows:

eij(ni, nj) � att(Wfi,Wfj), (16)
where att represents a mapping function transforming high-level
features to a real number for association pair between node ni and
node nj based on input features, andW ∈ RF’×F denotes a trainable
weight matrix. To avoid the influence of dimension between
different attention coefficients, eij is further normalized as follows:

θij � softmax(eij) �
exp(eij)

∑t∈Ni
exp(eit)′, (17)

where Ni represents the collection of neighbor nodes of node ni.
θij denotes the normalized weight representing the importance
between node ni and node nj in the network.

From the abovementioned formula, we obtain the combined
attention mechanism as follows:

θij � exp(leakyRelu(aT[Wfi

∣∣∣∣
∣∣∣∣Wft]))

∑t∈Ni
exp(leakyRelu(aT[Wfi

∣∣∣∣
∣∣∣∣Wft]))

′, (18)

where leakyRelu denotes a non-saturated activation function,
which can solve the vanishing gradients and accelerate
convergence. a ∈ R2F’ denotes the weight matrix, which maps
features to a real number. The second step is to aggregate the
features of all neighbors for a given node by integrating the
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corresponding weight. The aggregation between the given node
and neighbors is formulated as follows:

f′
i � σ(∑

t∈Ni
θitWft) (19)

where σ denotes a non-saturated activation function. Multi-head
attention mechanism is applied in GAT to integrate features and
prevent overfitting. The output with the multi-head attention
mechanism contains the features in different representation
subspaces, which enhances the expressive capacity of the
model. To be specific, the multi-head attention model based
on the combination of K-independent attention mechanisms
learns latent features as follows:

f′
i � σ(

1
K
∑

K

K�1∑
t∈Ni

θkit ·WKft), (20)

where K represents the number of self-attention models. Wk

denotes the trained weight matrix of the kth attention model.

Heterogenous Network
The heterogenous network is constructed as initial features of
GCN, including circRNA–disease associations, learned feature
matrix of circRNAs, and learned feature matrix of diseases. The
binary matrix A is constructed, and Aij = 1 if the interaction
between circRNA ci and disease dj has been verified; otherwise Aij

= 0. The learned feature matrix of circRNAs and learned feature
matrix of diseases based on GAT are denoted as matrix Sc and
matrix Sd, respectively. The heterogenous network AH is defined
as follows:

AH � [
Sc

AT
A
Sd

] ∈ R(M+N)×(M+N). (21)

Graph Convolutional Network on
Heterogenous Network
In recent years, GCN has achieved superior performance in node
prediction, node classification, and edge prediction tasks (Kipf
and Welling, 2016). In order to discover potential relationships
between diseases and circRNAs, GCN models (Wang et al.,
2020b) are designed to effectively extract features of
circRNA–disease relationships based on the global graph
structure by aggregating feature vectors of neighbors. To be
specific, given a network G, each layer of the GCN model
embedding is formulated as follows:

H(l+1) � σ(D−1
2GD−1

2H(l)W(l)), (22)
whereH(l) denotes the propagation of features at the lth layer, σ(·)
represents a nonlinear activation function, D = diag(∑

i
Gij)

denotes the degree matrix of G, and W(l) is the trained weight
matrix at the lth layer. GCN integrates low-level features to
construct high-level representations of nodes on the
constructed heterogenous network AH. In addition, we adjust
the number of graph convolutional network layers and set node
dropout to avoid overfitting, which can reduce excessive

parameters and improve the generalization ability of the
GATGCN. The penalty factor µ is set to regulate the
contribution of learned similarity features in the embedding of
graph convolutional layers. Specifically, the input heterogenous
network G is defined as follows:

G � [
μ · Sc
AT

A
μ · Sd ]. (23)

Then, the initial embedding is defined as follows:

H(0) � [
0
AT

A
0
]. (24)

The first layer of the GCN model embedding is calculated as
follows:

H(1) � σ(D−1
2GD−1

2H(0)W(0)), (25)
where W(0) ∈ R(M+N)×k represents an input-to-hidden trained
weight matrix, H(1) ∈ R(M+N)×k represents the first-layer
propagation of features, including circRNAs and diseases. K
denotes the embedding dimension in graph conventional
layers. We adopt the exponential linear unit (Clevert et al.,
2016) as the nonlinear activation function to enhance noise
robustness and expressive capacity of the model in all graph
convolutional layers. Eventually, the bilinear decoder A′
proposed by Huang et al., (2020) is deployed to reconstruct
the circRNA–disease association matrix as follows:

A′ � sigmoid(HCW′HT
D), (26)

whereW′ ∈ Rk×k denotes a trained weight matrix. HD ∈ RN×k and
HC ∈ RM×k represent the last embedding for diseases and
circRNAs, respectively. The final predicted relationship score
a′ij between circRNA ci and disease dj is obtained according to
the corresponding (i, j)th entry of A′.

RESULTS

In this section, several verification experiments are deployed to
assess the predictive capacity of GATGCN. First, we assess the
influence of different parameters setting on GATGCN. Second,
we introduce the evaluation metrics under leave-one-out cross-
validation and 5-fold cross-validation to analyze the predictive
capacity of GATGCN. Third, we design the ablation study to
assess the impact of each part on GATGCN. Fourth, we discuss
and compare GATGCN with state-of-the-art models on the same
dataset. Last, case studies are deployed to further assess the
performance in detecting potential relationships on GATGCN.

Parameter Setting
The performance of the model is frequently impacted by
hyperparameter settings. Analysis of the parameters can
quantitatively evaluate the stability of the model and provide a
reference for parameter selection. The learning rate is significant
to the convergence of the gradient descent algorithm in the
model. Figure 2 indicates that the model will converge slowly
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with too small a learning rate, while too large a learning rate
makes it hard to converge. According to the results in Figure 3,
the embedding dimension within a certain size range has less
impact on the convergence of our model. However, when the
embedding dimension is too large, the model is prone to
overfitting due to plenty of parameters. As shown in Figure 4,
the model performs better with small layers of the graph
convolutional network, and the performance drops
significantly when the number of layers of GCN is l > 4. The
reason is that the GCN with more layers not only captures more
global prior information but also captures a lot of noise at the
same time. Meanwhile, the penalty factor µ is set to regulate the
contribution of learned similarity features in the propagation of
convolutional layers, and the dropout rate a is adopted to avoid
overfitting. As shown in Figure 5, the model achieves best
performance at µ = 6 and a = 0.6.

Evaluation Metrics
Cross-validation is a self-consistent testing approach widely adopted
to demonstrate the predictive capacity of a method. The basic idea is
to carry out the resampling method to select a portion of the
benchmark data set as the training set to train the model, and
the remaining samples to verify themodel. Five-fold cross-validation
and leave-one-out cross-validation are deployed to assess the
predictive capacity of GATGCN. For five-fold cross-validation,
the whole samples in the dataset are randomly separated into five
roughly identical sections, four of which are adopted to train the
GATGCN and the other is used to test the GATGCN. In order to
decrease the bias produced by sample segmentation, the five-fold
cross-validation is repeated 30 times to calculate the average result as
the ultimate output. For leave-one-out cross-validation, each time
only one sample in the dataset is selected among all recorded
circRNA–disease relationships to test the model, and the
remaining known relationships are utilized as training samples.
In this study, since circRNA functional similarity relies on known
associations; we recalculate the circRNA functional similarity in each
repetition of the experiment.

FIGURE 2 | Outcome of comparing various learning rates.

FIGURE 3 | Outcome of comparing various embedding dimensions.

FIGURE 4 | Outcome of comparing various GCN layers.

FIGURE 5 | Outcome of comparing various dropout rates and penalty
factors.
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In this study, the area under the curve (AUC) is applied as the
primary metric to assess our model, which can visually show the
predictive ability of GATGCN under each decision threshold.
The basic principle is to treat the false-positive rate (FPR) and the
true rate (TPR) as a two-dimensional coordinate point in a
Cartesian coordinate system with FPR as the abscissa and TPR
as the ordinate under different discrimination thresholds.
Besides, several threshold-based metrics are adopted to further
evaluate the predictive performance of the GATGCN including
recall, specificity, accuracy, and F1. The detailed results of five-
fold cross-validation and leave-one-out cross-validation are
summarized in Table 1.

Ablation Study
The model GATGCN is used to detect potential relationships
between diseases and circRNAs based on the centered kernel
alignment model (CKA), graph attention network (GAT), and
graph convolutional network (GCN). In order to verify the
importance of CKA, GAT, and GCN in our model, we apply
the ablation study to our model. In this part, we replace the
CKA model with calculated average to fuse multisource
similarity as NOCKA. Meanwhile, we only combine the

CKA model and GCN model as NOGAT to calculate
association scores. In addition, we only adopt the GCN to
predict associations between diseases and circRNAs as
NOCKAGAT. According to the results in Figure 6, the
complete model GATGCN is compared with NOCKA,
NOGAT, and NOCKAGAT with five-fold cross-validation,
which achieves the best AUC of 0.932. In general, using the
the graph attention network on the similarity network is
beneficial to learn the latent representation of nodes. The
AUC of GATGCN and NOCKA is significantly higher than
that of the other two models, which indicates that GAT is
significant to detect relationships between diseases and
circRNAs. Moreover, the comparison between GATGCN
and NOCKA suggests that the fusion of multisource
similarity based on weights can improve performance in
circRNA–disease relationship prediction.

Comparison With Other Methods
To confirm the advantage of GATGCN, we compare it with
several classic prediction methods with five-fold cross-
validation. Since these methods adopt various datasets and
evaluation metrics, we apply the same dataset and AUC as the
metrics to compare the predictive capacity of models fairly and
reasonably. In this part, the GATGCN is compared with
several state-of-the-art methods, including KATZHCDA
(Fan et al., 2018a), DWNN-RLS (Yan et al., 2018), PWCDA
(Lei et al., 2018), GCNCDA (Wang et al., 2020b), and
GATCDA (Bian et al., 2021). KATZHCDA is a graph-based
method that uses the walking lengths and number of walks
among nodes to measure the similarity among nodes in the
heterogenous network. The DWNN-RLS measures initial
relational values of new diseases and circRNAs via the
decreasing weight k-nearest neighbor model and adopts the
Kronecker product kernel to predict associations between
diseases and circRNAs. The PWCDA predicts the
circRNA–disease relationships by searching the paths
without repeating for all circRNA–disease pairs based on
the constructed heterogenous network. The GCNCDA
extracts high-level features in the heterogenous network
through graph convolutional neural networks and predicts
the correlation between circRNAs and diseases via Forest by
Penalizing Attributes. GATCDA learns the latent
representation of nodes by assigning corresponding weights
to each neighbor node, which efficiently aggregates the
information of neighbor nodes and utilizes the local
features of the graph. The results in Figure 7 indicate that

TABLE 1 | Results generated by the GATGCN under five-fold CV and LOOCV.

Test set Accu Rec Spe F1 AUC

5-fold CV_1 0.988 0.682 0.989 0.437 0.956
5-fold CV_2 0.987 0.568 0.991 0.361 0.918
5-fold CV_3 0.987 0.644 0.988 0.373 0.922
5-fold CV_4 0.990 0.627 0.991 0.414 0.931
5-fold CV_5 0.991 0.647 0.990 0.402 0.934
Average 0.9886 ± 0.0024 0.6336 ± 0.0656 0.9898 ± 0.0012 0.3974 ± 0.0396 0.9322 ± 0.0238
LOOCV 0.987 0.782 0.992 0.542 0.951

FIGURE 6 | Performance of the GATGCN based on various model
combinations.
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GATGCN achieves the best AUC of 0.932, which is
substantially greater than that of other models, and
produces 7.9%, 43.3%, 4.5%, 3.2%, and 3.4% improvement
in the AUC compared with KATZHCDA, DWNN-RLS,
PWCDA, GCNCDA, and GATCDA respectively.

Furthermore, the number of known interactions between
diseases and circRNAs in the dataset can greatly affect the
performance of the method, which also indicates the

robustness of the method. Thus, we randomly remove a part
of known associations between diseases and circRNAs at a ratio
r∈{80%, 85%, 90%, 95%, and 100%} with five-fold cross-
validation. As shown in Figure 8, the performance of
GATGCN improves with increasingly known associations.
Meanwhile, the GATGCN achieves the best result across
different data richness among KATZ, DWNN-RLS, PWCDA,
GCNCDA, and GATCDA.

Case Studies
In this part, two kinds of case studies are utilized to further assess
the reliability of the GATGCN for detecting potential
circRNA–disease associations, which calculated the predicted
probability matrix via a candidate set comprising unproven
circRNAs. For the first kind of case study, all known
circRNA–disease relationships are selected as training samples,
and all unknown circRNA–disease relationships are prioritized

FIGURE 7 | Comparison results of various prediction models under five-
fold cross-validation.

FIGURE 8 | Performance of methods based on various percentages of known relationships.

TABLE 2 | Top 10 candidate circRNAs related to lung cancer.

Rank circRNA Evidence (PMID)

1 hsa_circ_0007385 29372377
2 hsa_circ_0014130 29440731
3 hsa_circ_0016760 33416186
4 hsa_circ_0043256 28958934
5 hsa_circ_0012673 32141533
6 hsa_circRNA_404833 unconfirmed
7 hsa_circRNA_006411 unconfirmed
8 hsa_circRNA_401977 unconfirmed
9 hsa_circ_0013958 28685964
10 hsa_circ_0006404 unconfirmed
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according to the corresponding prediction scores. We select the
top 10 scores by sorting the scores of the probability matrix in
descending order and verified those predicted candidates through
validated databases and literature, such as CircR2Disease,
CircBase, and PubMed. Eventually, we adopt case studies on
lung cancer, diabetes retinopathy, and prostate cancer.

Lung cancer occurs in the bronchial mucosa or glands with the
highest incidence and the highest number of deaths in the world.
The results in Table 2 show that six associations are verified by
experiments among top 10 predicted candidate circRNAs for lung
cancer. For example, the hsa_circ_0007385 (top 1) knockdown
resulted in considerable inhibition of the proliferation, invasion,
and migration of lung cancer cells (Jiang et al., 2018). Zhang et al.
discovered that hsa_circ_0014130 (top 2) exhibited substantially
overexpression in NSCLC tissues (Zhang S. et al., 2018). Zhu et al.
indicated that hsa_circ_0016760 (top 3) accelerated the
malignant growth of NSCLC by sponging miR-145-5p/FGF5
(Zhu et al., 2021).

Diabetes retinopathy is a microvascular complication caused
by diabetes, which can be divided into proliferative diabetic
retinopathy and non-proliferative diabetic retinopathy. As
shown in Table 3, the predictive results contain seven
experimentally verified associations among the top 10 ranked
candidate circRNAs. For instance, hsa_circRNA_063981 (top 1),
hsa_circRNA_404457 (top 2), and hsa_circRNA_100750 (top 3)
are considerably elevated in the serum of T2DR patients
compared to T2DM and control patients (Gu et al., 2017).

Prostate cancer refers to malignant tumors produced by the
epithelial cells of the prostate under the action of a variety of

carcinogenic factors, which causes bone pain, pathological
fractures, and paraplegia. Using the GATGCN, we successfully
predict five of 10 top candidate circRNAs for prostate cancer
(Table 4). The results in the literature indicate that circHIPK3
(top 1) expression is upregulated in prostate cancer cells and
prostate cancer tissues (Liu et al., 2020). Kong et al. found that
circFOXO3 (top 3) acted as a sponge for miR-29a-3p, exhibiting
oncogenic activity in prostate cancer (Kong et al., 2020). Li et al.
revealed that hsa_circ_0044516 (top 8) downregulation
suppressed prostate cancer cell metastasis and growth (Li T.
et al., 2020).

In order to further assess the capacity of GATGCN for
detecting new diseases, two common diseases, that is, clear cell
renal cell carcinoma and cholangiocarcinoma are chosen for case
studies. Specifically, all known associations about clear cell renal
cell carcinoma and cholangiocarcinoma are reset to unknown and
all candidate circRNAs are prioritized according to
corresponding prediction scores. Eventually, we select the top
10 scores to assess the performance of GATGCN for detecting
new circRNAs and diseases.

Cholangiocarcinoma is a malignant tumor that originates
from the extrahepatic bile duct. The result in Table 5 shows
that five associations are verified among the top 10 ranked
candidate circRNAs. For example, Louis et al. demonstrated
that the expression of circHIPK3 (top 2) was specifically
elevated in cholangiocarcinoma cell lines (Louis et al., 2019).
Chen et al. discovered that in cholangiocarcinoma, ciRS-7 (top 3)
acts as an oncogene and promotes tumor development by
competitively inhibiting miR-7. (Chen et al., 2021). Lu et al.

TABLE 3 | Top 10 candidate circRNAs related to diabetes retinopathy.

Rank circRNA Evidence (PMID)

1 hsa_circRNA_063981 28817829
2 hsa_circRNA_404457 28817829
3 hsa_circRNA_100750 28817829
4 hsa_circRNA_406918 28817829
5 hsa_circRNA_104387 28817829
6 hsa_circRNA_103410 28817829
7 hsa_circRNA_100192 28817829
8 hsa_circ_0013509 unconfirmed
9 circSLC8A1-1 unconfirmed
10 hsa_circ_101396 unconfirmed

TABLE 4 | Top 10 candidate circRNAs related to prostate cancer.

Rank circRNA Evidence (PMID)

1 circHIPK3 32547085
2 hsa_circ_0004383 unconfirmed
3 circ-Foxo3 31733095
4 hsa-circRNA 2149 unconfirmed
5 circR-284 unconfirmed
6 circDLGAP4 unconfirmed
7 hsa_circ_0008887 unconfirmed
8 hsa_circ_0044516 31625175
9 CDR1as 23900077
10 Cir-ITCH 32904490

TABLE 5 | Top 10 candidate circRNAs related to cholangiocarcinoma.

Rank circRNA Evidence (PMID)

1 hsa_circ_000438 unconfirmed
2 circHIPK3 31654054
3 ciRS-7 33390857
4 circR-284 unconfirmed
5 circDLGAP4 unconfirmed
6 circSMARCA5 31880360
7 hsa_circ_0008887 unconfirmed
8 hsa_circ_0006404 unconfirmed
9 hsa_circRNA_000585 34182814
10 hsa_circ_0000673 33221765

TABLE 6 | Top 10 candidate circRNAs related to clear cell renal cell carcinoma.

Rank circRNA Evidence (PMID)

1 circHIPK3 32409849
2 circR-284 unconfirmed
3 circDLGAP4 unconfirmed
4 hsa_circ_0004383 unconfirmed
5 Cir-ITCH unconfirmed
6 hsa_circRNA_003251 unconfirmed
7 circPVT1 33453148
8 hsa_circ_0001451 30271486
9 ciRS-7 32496306
10 circZFR 31571906
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indicated that circSMARCA5 (top 6) expression was lower in ICC
tumor tissues than surrounding tissues (Lu and Fang, 2020).

Clear cell renal cell carcinoma is derived from adenocarcinoma of
renal tubular epithelial cells, which forms hemangioma thrombus or
metastasizes to lymph nodes and other organs. As shown in Table 6,
the predicted results contain five experimental verified associations
among the top 10 ranked candidate circRNAs. For example, Li et al.
discovered that overexpression of circHIPK3 (top 1) substantially
reduced CCRCC cell invasion and migration in vitro (Li H. et al.,
2020). Zheng et al. discovered that circPVT1 (top 7) promotes
progression in CCRCC cells by regulating TBX15 expression and
spongingmiR-145-5p (Zheng et al., 2021).Wang et al. indicated that
hsa_circ_0001451 (top 8) upregulation could promote CCRCC cell
invasion and proliferation (Wang G. et al., 2018).

The results of the case studies show that GATGCN can
efficiently detect the potential circRNA–disease relationships
and provide clues for exploring the mechanism between
human complex diseases and circRNAs.

CONCLUSION

Cumulative evidence has proved that the development of powerful
calculation methods is significant to infer the interactions between
diseases and circRNAs. These calculation models address challenges
of high cost and high time consumption in conventional biological
experiments. In this study, an advanced calculation method called
GATGCN is designed to discover potential circRNA–disease
relationships via graph attention mechanism and graph
convolutional network. First, multisource similarity data for
circRNAs and diseases are fused by the centered kernel
alignment model. Second, the graph attention network is
deployed to learn the dense representation of nodes on the
disease–disease similarity network and circRNA–circRNA
similarity network. Third, the heterogenous network is
constructed by connecting known circRNA–disease associations,
feature matrix of diseases, and feature matrix of circRNAs. Finally,
the graph convolutional network is applied to get prediction scores
based on the constructed heterogenous network. To further confirm
the advantage of GATGCN for detecting circRNA–disease
interactions, we compare it with several state-of-the-art prediction
models under five-fold cross-validation. The results indicate that
GATGCN achieves significant performance among compared
methods. Meanwhile, the case study substantiates the excellent
capability of the GATGCN for detecting potential
circRNA–disease relationships. In conclusion, GATGCN is a

powerful and promising approach for detecting circRNA–disease
relationships.

Although we have integrated multisource biological information
and utilized graph attention network and graph convolutional
network to learn latent representation for diseases and circRNAs,
there is still room to strengthen the predictive capability of the
model. On the one hand, a large number of nonlinear features are
extracted to detect circRNA–disease associations, which ignore the
importance of linear features.We could further solve this problem by
fusing nonlinear features and linear features to enhance the stability
of our model. On the other hand, feature aggregation in excessive
network layers could affect the expression of initial feature
information. In the future, we can splice the representations of
nodes in different layers as node features.
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Genome-Wide Identification of
Immune-Related Alternative Splicing
and Splicing Regulators Involved in
Abdominal Aortic Aneurysm
Shiyong Wu1, Shibiao Liu1, Ningheng Chen1, Chuang Zhang1, Hairong Zhang2* and
Xueli Guo1*

1Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2Department of
Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

The molecular mechanism of AAA formation is still poorly understood and has not been fully
elucidated. The study was designed to identify the immune-related genes, immune-RAS in
AAA using bioinformatics methods. The GSE175683 datasets were downloaded from the
GEO database. The DEseq2 software was used to identify differentially expressed genes
(DEGs). SUVA pipeline was used to quantify AS events and RAS events. KOBAS 2.0 server
was used to identify GO terms and KEGGpathways to sort out functional categories of DEGs.
The CIBERSORT algorithm was used with the default parameter for estimating immune cell
fractions. Nine samples from GSE175683 were used to construct the co-disturbed network
between expression of SFs and splicing ratio of RAS events. PCAanalysiswas performedbyR
package factoextra to show the clustering of samples, and the pheatmap package in R was
used to perform the clustering based on Euclidean distance. The results showed that there
were 3,541 genes significantly differentially expressed, of which 177 immune-related genes
were upregulated and 48 immune-related genes were downregulated between the WT and
WTA group. Immune-RAS events were mainly alt5P and IR events, and about 60% of it was
complex splicing events in AAA. The WT group and the WTA group can be clearly
distinguished in the first principal component by using the splicing ratio of immune-RAS
events. Two downregulated genes, Nr4a1 and Nr4a2, and eight upregulated genes, Adipor2,
Akt2, Bcl3, Dhx58, Pparg, Ptgds, Sytl1, and Vegfa were identified among the immune-related
geneswith RAS andDEGs. Eighteen differentially expressedSFswere identified anddisplayed
by heatmap. The proportion of different types of cells and ratio of the average ratio of different
cells were quite different. Both M1 and M2 types of macrophages and plasma cells were
upregulated, while M0 type was downregulated in AAA. The proportion of plasma cells in the
WTA group had sharply increased. There is a correlation between SF expression and immune
cells/immune-RAS. Sf3b1, a splicing factor with significantly different expression, was selected
to bind on a mass of immune-related genes. In conclusion, our results showed that immune-
related genes, immune-RAS, and SFs by genome-wide identification were involved in AAA.

Keywords: abdominal aortic aneurysm, alternative splicing, RNA-Seq, immune-related genes, splicing factor,
genome-wide identification
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INTRODUCTION

Abdominal aortic aneurysm (AAA) refers to the permanent and
localized expansion of the abdominal aortic wall exceeding 50%
of the normal vascular diameter, and is usually diagnosed when
the abdominal aorta is more than 3 cm in diameter (Chaikof et al.,
2018; Cai et al., 2021). AAA is a disease of the cardiovascular
system with severe complications, mainly manifested in the lower
renal aorta. With the progression of the disease and the increase
in the inner diameter of the aorta, the risk of AAA rupture
increases. AAA rupture represents a life-threatening
complication of aneurysms with an overall mortality rate of up
to 90% in western countries. AAA accounted for 1.3% of deaths
among men aged 65 to 85 in developed countries (Sakalihasan
et al., 2005). The incidence of AAA has steadily increased in most
developed countries, rising from 1.6% to 7.2% of the general
population 60–65 years or older (Guirguis-Blake et al., 2019).
AAA is now the 10th leading cause of death in western countries,
and its incidence is rising (Brangsch et al., 2017). AAA is related
to advanced age, men, smoking, atherosclerosis, high blood
pressure, and genetic predisposition (Annambhotla et al.,
2008). Although important evidence has emerged in the past
decade, the molecular mechanism of AAA formation is still
poorly understood, and the exact reasons for the occurrence
and its development have not been fully elucidated (Brangsch
et al., 2017; Li H. et al., 2021). At present, the treatment of AAA is
still mainly surgery, only the innovation of endovascular
treatment (Wanhainen et al., 2019). With the advancement of
the human genome, understanding exactly which molecules and
genes mediate the development of AAA and blocking their
activity at the molecular level may lead to important new
discoveries and treatments.

AAA is a fatal vascular disease in human, which is a chronic
degenerative disease of abdominal aorta. In this process, the
inflammatory responses and immune system work effectively
through the attraction of inflammatory cells, the secretion of
proinflammatory factors, and the subsequent upregulation of
MMP (Li et al., 2018). Inflammation is an important part of
the immune system. A large number of exogenous immune cells,
including macrophages, lymphocytes, neutrophils, mast cells, and
natural killer cells, gradually infiltrate into the tissue from
adventitia to intima, triggering a series of inflammatory
reactions (Rateri et al., 2011; Wang et al., 2014; Yan et al.,
2016). The adaptive and innate immune system plays an
important role in the initiation and propagation of the
inflammatory response in aortic tissue. Recently increased
knowledge indicates that the immune process is involved in
the pathogenesis of AAA (Jagadesham et al., 2008; Liu et al.,
2015). Some immune cells such as macrophages, CD4+ T cells,
and B cells play an important role in the diseased aortic wall
through phenotypic regulation (Maiellaro and Taylor, 2007;
Schaheen et al., 2016). Additionally, immunoglobulin also has
a great influence on the function and differentiation of immune
cells in AAA. Recent evidence suggests that innate immune
system, especially Toll-like receptors, chemokine receptors,
and complements are involved in the progression of AAA (Li
et al., 2018). The current understanding may provide new insights

into the role of inflammation and immune response in AAA.
Based on tissue gene expression profiles and specific gene
expression profiles of various immune cells, some methods
have been developed to allow the quantification of immune
cell composition through traditional gene profiling methods,
including a large number of RNA-seq, such as EPIC, TIMER.
and CIBERSORT (Finotello and Trajanoski, 2018). However, the
composition of immune cells in the process of AAA is dynamic,
and the factors affecting immune infiltration are not fully
understood. Therefore, regulation of immune inflammatory
response is an emergingmolecular target for AAA (Li et al., 2018).

Alternative splicing (AS) plays an immunomodulatory role in
many diseases. The regulated alternative splicing events located in
immune-related genes (immune-RAS) is a new kind of drug
target and an important biomarker in clinical diagnosis.
Abnormal immune-RAS is an important factor in the
occurrence and development of many diseases including
tumors (Li et al., 2019; Bonnal et al., 2020). The research of
Sanela et al. showed that AS was a common feature of thoracic
aortic aneurysm (TAA) formation, and AS in the TGF-β pathway
could be used to characterize patients with bicuspid aortic valve
and tricuspid aortic valve TAA (Kurtovic et al., 2011). The study
of Zhao et al. revealed the pivotal role of the AS change of XBP1 in
maintaining the VSMC contractile phenotype and providing
protection from aortic aneurysm formation (Zhao et al., 2017).
At present, there are a small number of reports on the role of AS
in the development of AAA, but there is a rare report on the role
of AS in the immune regulation of AAA. In this view, we will
discuss immune-related genes and its regulation of AS, and
provide new mechanism insights for the development of
immune-targeted therapy in AAA.

MATERIALS AND METHODS

Retrieval and Process of Public Data
Public sequence data files GSE175683 (Li H. et al., 2021) were
downloaded from the Sequence Read Archive (SRA). SRA run
files were converted to fastq format with NCBI SRA Tool fastq-
dump. The raw reads were trimmed of low-quality bases by using
a FASTX-Toolkit (v.0.0.13; http://hannonlab.cshl.edu/fastx_
toolkit/). Then the clean reads were evaluated using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
SF3B1-bound peaks were downloaded from Encodeproject
(https://www.encodeproject.org/) (ENCSR133QEA).

Read Alignment and Differentially
Expressed Gene Analysis
Clean reads were aligned to the mouse GRCm39 genome by
HISAT2 (Kim et al., 2019). Uniquely mapped reads were
ultimately used to calculate read number and reads per
kilobase of exon per million fragments mapped (FPKM) for
each gene. The expression levels of genes were evaluated using
FPKM. When we do gene differential expression analysis, we
choose the software DEseq2 (Love et al., 2014). DEseq2 will
model the original reads and use the scale factor to explain the
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difference of Library depth. Then DEseq2 estimates the gene
dispersion, and reduces these estimates to produce more accurate
dispersion estimates, so as to model the reads count. Finally, the
model of negative binomial distribution is fitted by DEseq2, and
the hypothesis is tested by Wald test or likelihood ratio test.
DEseq2 can be used to analyze the differential expression between
two or more samples, and the analysis results can be used to
determine whether a gene is differentially expressed by fold
change (FC) and false discovery rate (FDR).

**There are two important parameters**

1) FC: fold change, the absolute ratio of expression change.
2) FDR: false discovery rate.

**The criteria of significant difference expression were as
follows**

FC ≥ 2(up) or ≤0.5(down), FDR ≤ 0.05.

Alternative Splicing Analysis
The AS events and regulated alternative splicing events (RAS)
among different groups were defined and quantified by using the
SUVA pipeline as described previously (Cheng et al., 2021). Reads
proportion of SUVA AS event (pSAR) of each AS events were
calculated. Immune-related genes (1,793) (https://www.immport.
org/shared/genelists/) were regained from the ImmPort database.
The regulated alternative splicing events located in immune-
related genes (immune-RAS) were screened and analyzed.

Co-Expression Analysis
The co-disturbed network between expression of splicing factors
and splicing ratio of RAS events (pSAR ≥90%) was constructed
using nine samples fromGSE175683.We calculated the Pearson’s
correlation coefficients (PCCs) between them and classified their
relation into three classes: positive correlated, negative correlated,
and non-correlated based on the PCCs value. |Pearson’s
correlation| ≥0.8 and p-value ≤0.01 were retained.

Functional Enrichment Analysis
To sort out functional categories of DEGs, Gene Ontology (GO)
terms and KEGG pathways were identified using the KOBAS 2.0
server (Xie et al., 2011). Hypergeometric test and
Benjamini–Hochberg FDR controlling procedure were used to
define the enrichment of each term.

Cell-type Quantification
The CIBERSORT algorithm (Newman et al., 2015) (v1.03) was
used with the default parameter for estimating immune cell
fractions using FPKM values of each expressed gene. A total
of 22 immune cell phenotypes were analyzed in the study,
including seven T-cell types [CD8 T cells, naive CD4 T cells,
memory CD4 resting T cells, memory CD4 activated T cells, T
follicular helper cells, and regulatory T cells (Tregs)]; naive and
memory B cells; plasma cells; resting and activated NK cells;
monocytes; macrophages M0, M1, and M2; resting and activated
dendritic cells; resting and activated mast cells; eosinophils; and
neutrophils.

Other Statistical Analysis
Principal component analysis (PCA) was performed by R
package factoextra (https://cloud.r-project.org/package=
factoextra/) to show the clustering of samples with the first
two components. After normalizing the reads by TPM (tags
per million) of each gene in samples, in house-script (Sogen)
was used for visualization of next-generation sequence data
and genomic annotations. The pheatmap package (https://
cran.r-project.org/web/packages/pheatmap/index.html/) in R
was used to perform the clustering based on Euclidean
distance. Student’s t-test was used for comparisons between
two groups.

RESULT

Transcriptome Analysis of DEGs in
WT-AngII Group and WT-Saline Group
Samples
In the study, the RNA-seq data of 10 mice AAA model samples
of GSE175683 were downloaded from GEO database. Five mice
were the control group (WT) perfused with saline and five mice
were the experimental group (WTA) perfused with angiotensin
II. In our basic analysis, it was found that the sample WTA4 was
seriously outlier, which may affect the subsequent analysis
results, so this sample was eliminated. Compared with the
WT group, a large number of gene transcription levels have
changed in the WTA group. There were 3,541 genes
significantly differentially expressed, of which 2,627 genes
were upregulated and 914 genes were downregulated
(Figure 1A; Supplementary Figure S1). Compared with the
WT group, functional enrichment analysis of DEGs was
conducted in the WTA group, and it was found that the
upregulated genes were mainly enriched in the signaling
pathways of mitochondrial respiratory chain complex I
assembly, fatty acid metabolism process, oxidation–reduction
process, fatty acid beta-oxidation, mitochondrial electron
transport, NADH to ubiquitin, electron transport chain, lipid
metabolism process, brown fat cell differentiation, respiratory
electron transport chain, and fatty acid biosynthetic process
(Figure 1B). Compared with theWT group, theWTA group has
downregulated genes mainly enriched in signaling pathways in
cell adhesion, extracellular matrix organization, positive
regulation of pri-miRNA transcription by RNA polymerase
II, axon guidance, response to mechanical stimulus,
transforming growth factor beta receptor signaling pathway,
positive regulation of apoptotic process, nervous system
development, angiogenesis, and cell-substrate adhesion
(Figure 1C). As shown in Figure 1D, 1793 immune-related
genes were downloaded from the ImmunePort database, and
Venn diagram was used to show the number of immune genes
with significantly different expression levels in the WTA group
compared with the WT group. Among them, 177 genes were
upregulated, and 48 genes were downregulated, indicating that
the expression levels of a large number of immune-related genes
were also regulated. In this study, we focused on the AS of
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immune genes, but it also shows that the regulation of immune
genes of the body is multilayered.

Identification of WTA-Associated
Alternative Splicing vents Located in
Immune-Related Genes
We used the recently published AS analysis software SUVA to
analyze and identify AS events that are significantly different
between the WT and WTA group. Immune-RAS events were
specifically showed, and the main splicing events in the transcript
(pSAR ≥90%) were displayed. As shown in Figure 2A and
Supplementary Figure S2A, immune-RAS events identified by
SUVA were mainly alt5P, alt3p and IR. The splicing events were
corresponding to classical splicing events, in which A5SS events
accounted for a large proportion, which may be one of the
characteristics of immune-RAS and RAS (Figure 2B and
Supplementary Figure S2B). As shown in Figure 2C, about
60% of immune-RAS events were complex splicing events,
indicating the complexity of immune-RAS regulation of AAA.
As shown in Figure 2D, theWTA group and theWT group can be
clearly distinguished in the first principal component by using the
splicing ratio of immune-RAS events for PCA analysis. A splicing
event involves two transcripts, and these two transcripts may only
account for a very small part of the expression of the whole gene.
We hope to find a more dominant transcript undergo AS which
was quantified as “pSAR” value by SUVA. The number of splicing

events accounting for different proportions of all reads in the
region is shown in Figure 2E; Supplementary Figure S2C. Some
splicing events accounted for only a small proportion, so the
immune-RAS events with pSAR ≥90%were selected for follow-up
analysis. As shown in Figure 2F the heatmap was used to show the
splicing events of the dominant transcripts in immune-RAS
events. As shown in Figure 2G, the Venn diagram showed the
common and unique genes among the immune-related genes with
RAS (RASGs) and DEGs. These splicing events were significantly
regulated in AAA, and the transcripts produced by its splicing
were the main transcription products of genes, which were worthy
of in-depth study and also potential therapeutic targets. A splicing
event on Vegfa gene is demonstrated in Figures 2H, I, which is an
exon skipping event. The intermediate exon reservation
transcripts are mainly selected in WTA samples, while exon
jump transcripts are more selected in WT samples. A splicing
event on another immune gene Pparg is shown in Figures 2J, K,
which was a altered first exon event. The shorter transcripts were
mainly selected in the WTA group, and longer transcripts were
more selected in the WT group.

Construction of Co-disturbed Network
Between SFs and immune-Regulated
Alternative Splicing
This part mainly displayed the differentially expressed SFs in
WTA and WT samples, as well as immune-RAS that may be

FIGURE 1 | Transcriptome analysis of DEGs inWT-AngII group (WTA) andWT-Saline group (WT) samples. (A) Volcano plot shows all DEGs betweenWTA andWT
groups. False discovery rate (FDR) ≤0.05 and FC (fold change) ≥2 (up) or ≤0.5 (down). (B) Bar plot exhibited the most enriched Gene Ontology (GO) biological process
results of the upregulated genes between the WTA and WT groups. (C) Bar plot exhibits the most enriched GO biological process results of the downregulated genes
between the WTA and WT groups. (D) Venn diagram shows the immune-related genes involved in DEGs between WTA and WT groups.
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FIGURE 2 | Identification of WTA-associated alternative splicing (AS) events located in immune-related genes (immune-RAS). (A) Boxplot showing the number of
immune-RAS detected by SUVA, which were altered spliced between the WTA andWT groups. (B) Splice junction constituting immune-RAS events detected by SUVA
was annotated to classical AS event types, and the number of each classical AS event types is shown with boxplot. (C) Boxplot showing number of SUVA immune-RAS
events, which contains SJs involved in two or more different classical splicing events (complex) or in the same classical splicing event (simple). (D) PCA of splicing
ratio of immune-RAS in which frequency ≥40% and pSAR (read proportion of SUVA AS event) ≥50%. The samples were grouped by tumor or normal, and the ellipse for

(Continued )
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regulated by SFs, and constructed a SF-RAS interaction
network structure diagram. As shown in Figure 3A;
Supplementary Figure S3A, the expression levels of all
these different SFs were displayed by heatmap, and a total
of 18 differentially expressed SFs were identified. In
subsequent verification and experiments, SFs with higher
expression levels and significant differences, such as Sf3b1,
Nol3, Fastk, Scaf1, etc., should be selected and based on
existing literature reports. As shown in Figure 3B, the
expression of differentially expressed SFs and the splicing
ratio of immune-RAS events (pSAR ≥90%) were used for
Pearson’s correlation analysis (correlation coefficient ≥0.8,
p-value ≤0.01). It mainly showed the co-variation relationship
between differentially expressed SFs and immune-RAS, which
meant that these SFs might potentially regulate immune-RAS.

The size of nodes in the figure represents the number of gene/
splicing events associated with them. We can focus on the
larger SFs and splicing events.

Immune Infiltration Altered and is
Associated With Candidate splicing factors
As shown in Figure 4A,B and Supplementary Figure S4, the
proportion of different types of cells and the ratio of the average
ratio of different cells were quite different between the WTA and
WT group. In particular, both M1 and M2 types of macrophages
were upregulated, while M0 type was downregulated in the WTA
group. It implied that the polarization of macrophages in AAA
had changed. It was also worth noting that the proportion of
plasma cells had sharply increased in the WTA group. As shown

FIGURE 2 | each group is the confidence ellipse. (E)Bar plot showing immune-RAS number with different abundance (pSAR) of all detected regulated alternative splicing
events (RAS). (F) Heatmap of splicing ratio across all samples for immune-RAS which pSASR ≥90% and corresponding genes. (G) Venn diagram showing the common
and unique genes among the immune-related RASGs and DEGs. (H) Visualization of junction reads distribution of vascular endothelial growth factor A (Vegfa) in AS
events clualt5p28432 from different groups. Splice junctions were labeled with SJ reads number, and altered exon was marked out with a red box. (I) Splicing events
model is shown in the top panel. Boxplot in the bottom panel showing splicing ratio profile of the splicing event from Vegfa shown in (H). (J) Visualization of junction read
distribution of Pparg in AS events clualt5p51327 from different groups. Splice junctions were labeled with SJ reads number, and altered exon was marked out with red
box. (K) Splicing events model is shown in the top panel. Boxplot in the bottom panel showing splicing ratio profile of the splicing event from Pparg shown in (J).

FIGURE 3 | Construction of co-disturbed network between SFs and immune-RAS. (A) Expression heatmap of all 18 significant differentially expressed SFs
between WTA and WT sample. (B) The co-disturbed network between expression of WTA-associated SFs and splicing ratio of immune-RAS events (pSAR ≥90%) was
constructed. |Pearson’s correlation| ≥0.8 and p-value ≤0.01 were retained. Triangle represents SF genes. Circles indicate immune-RAS.
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in Figure 4C, correlation analysis between SF expression and the
proportion of different cell types indicated that SF and its
regulated immune genes played an important role in immune
infiltration.

SF3B1 Bound on aMass of Immune-Related
Genes
We selected a splicing factor Sf3b1 with significantly different
expression and studied the binding characteristics of Sf3b1
homologous gene in human K562 cells using ECLIP data, and
speculated its regulation effect on immune-related genes. As

shown Figure 5A and Supplementary Figure S5A, Sf3b1
interacts with AS of many immune genes and is associated
with many processes. Then we used the ECLIP data of human
K562 cells to analyze the distribution of the homologous gene
Sf3b1 binding peak in different regions of the genome, mainly
the intron region, followed by the CDS region in Figure 5B.
As shown in Figure 5C, 142 peak genes (common to IP1 and
IP2) bound to Sf3b1 were immune-related genes, including
AKT2, MAVS, and VEGFA, which are shown in Figure 5A. As
shown in Figure 5D; Supplementary Figure S5B, the motif
enrichment analysis of peak on Sf3b1-bound immune genes
showed the top five genetic sequence.

FIGURE 4 | Immune infiltration altered, and is associated with, candidate SFs. (A)Boxplot showing the fraction of each immune cell type inWTA orWT samples; the
significant difference in the immune cell fractions between WTA and WT samples was calculated using the Student’s t test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (B) The
WTA group relative to the WT group rank ordered based on decreasing values of the relative frequency ratio of cell populations. (C). The dot-plot demonstrated the
correlations between each immune microenvironment infiltration cell type and each dysregulated SF regulator. Different colors indicate correlation of immunocyte-
RBP regulator, and significant ones were labeled with a star. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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DISCUSSION

AAA has always been the research focus of vascular surgery.
With the development of second-generation sequencing
technology, more and more researchers have begun to use
bioinformatics technology to study AAA. Based on the RNA-
seq data of GSE175683, we explored the genome-wide
identification of immune-RAS and splicing regulators
involved in AAA. We discovered that there were 3,541
genes significantly differentially expressed, of which 2,627
genes were upregulated and 914 genes were downregulated,
and 177 upregulated genes and 48 downregulated genes were
immune-related regulatory genes (Figure 1; Supplementary
Figure S1). We further focused on the AS of immune genes
and used software SUVA to analyze and identify immune-RAS
events. We found that immune-RAS events were mainly alt5p
and IR events, about 60% of it was complex splicing events, and
some immune-related genes could regulate AS events in AAA
(Figure 2; Supplementary Figure S2). Next, we explored the
differentially expressed SFs in WTA and WT samples and
constructed an interaction network structure diagram between
SFs and immune-RAS. We found that a total of 18
differentially expressed SFs were identified and constructed

a co-variation relationship between differentially expressed
SFs and immune-RAS (Figure 3; Supplementary Figure
S3). Interestingly, we found that the proportion of different
types of immune cells in WTA and WT group changed,
individual cell types also changed significantly, and the
expression levels of SFs were correlated with the ratio of
different cell types (Figure 4; Supplementary Figure S4).
Finally, we selected Sf3b1, an SF with a significant
difference in expression, and found that many of the genes
of the distribution of Sf3b1-bound peaks were related to the
immune-RAS (Figure 5; Supplementary Figure S5). In
summary, we found that immune-related genes and its
regulation of AS events played an important role in AAA,
and immune-RAS events were regulated by SFs.

With the change in lifestyle, the incidence of cardiovascular
disease is increasing year by year, and it has become a serious
public health problem. AAA is a serious aortic disease that has
become an important cause of death in elderly people over 65.
According to reports, about 13,000 people die from AAA every
year (Nie et al., 2020). Most AAA patients are asymptomatic and
cannot be treated before aneurysm ruptures, or the patient dies
(Summers et al., 2021). No drugs can slow the development of
AAA. The occurrence and development of AAA is a complicated

FIGURE 5 | SF3B1 bound on a mass of immune-related genes. (A) The co-disturbed network between expression of Sf3b1 and splicing ratio of immune-RAS
events (pSAR ≥90%). (B) Bar plot showing the distribution of Sf3b1-bound peaks across different genomic regions. (C) Venn diagram of Sf3b1-bound peak genes and
immune-related genes. (D) Motif analysis showing the top five peaks preferred bound motifs of Sf3b1 on immune-related genes by the HOMER software.
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process involving many factors. It is usually believed that AAA is
directly associated with atherosclerosis, hypertension, chronic
obstructive pulmonary disease, and a variety of proteases, but
there is no clear evidence that these factors play a role in the
pathogenesis of AAA (Nie et al., 2020). The pathophysiological
progresses of AAA include infiltration of inflammatory cells,
degradation of collagen and elastic fibers, death of smooth
muscle cells, increase of oxidative stress and defects of the
arterial wall (Li H. et al., 2021; Thanigaimani et al., 2021).
Although AAA has several established biological
characteristics, convincing evidence shows that immune-
mediated processes play a clear and prominent role in the
pathogenesis of AAA (Li et al., 2018). The immune-
inflammatory response is mediated by some special immune
cell types, which interact in a highly coordinated manner and
are functionally vital to the initiation and progression of AAA
(Dale et al., 2015; Liu et al., 2015). In our study, compared with
the WT group, a large number of gene transcription levels have
changed, functional enrichment analysis of DEGs was conducted,
and expression levels of immune genes changed in the WTA
group. These suggested that there was regulation of immune-
related genes in AAA, which was consistent with some previous
reports (Nie et al., 2020; Li T. et al., 2021).

According to previous human and AAA experimental studies,
several exogenous immune cells, including lymphocytes,
macrophages, natural killer cells (NK), neutrophils, and
dendritic cells, have been found to penetrate into aneurysm
tissue and release extensively proinflammatory cytokines to
trigger a series of inflammatory responses that lead to the direct
structural protein degradation of the abdominal aorta (Hendel
et al., 2015; Li et al., 2018; Blassova et al., 2019). Lei et al. found that
several kinds of immune cells including naive B cells, resting and
activated CD4+ T cells were identified to be pointedly higher in
ruptured AAA, while regulatory T cells, together with activated
mast cells, were more in stable AAA conversely (Lei et al., 2020).
Research showed that there was a significant difference in immune
cell infiltration between normal vascular and AAA specimens, and
high proportions of CD4+ T cells, resting natural killer cells,
activated mast cells, and 12 other types of immune cells were
found in normal vascular tissues, whereas high proportions of
macrophages, resting mast cells, CD8+ T cells, and six other types
of immune cells were found in AAA tissues (Nie et al., 2020). In the
same situation, our research also found that bothM1 andM2 types
of macrophages and plasma cells were upregulated in the WTA
group, while M0 type of macrophages, NK cells, CD4+ T cells, and
eosinophils were upregulated in the WT group. However, most
reports only focus on a perspective of the immune response, and
generally only discuss the types of immune cells and their roles.We
know little about the AS events of immune-related genes and the
regulation of SFs in AAA.

In order to better understand the immune-RAS events and SFs
that play a role in AAA, further research is necessary to determine
their special role in the pathophysiology of AAA. In our study, we
used the software SUVA to analyze and identify immune-RAS
events. The results showed that immune-RAS events were mainly
alt5p and IR events, and about 60% of it was complex in AAA. In
order to find a more dominant transcript for splicing, the events

with pSAR ≥90% were selected for follow-up analysis. We newly
discovered the AS of immune-related genes, such as Vegfa, Pparg,
Adipor2, Ltbp2, Nr4a1, etc., by using heatmap and Venn diagram
analysis. We choose Vegfa gene as a representative to discuss its
effect of AS. Vegfa (vascular endothelial growth factor A) gene
expresses multiple protein isoforms due to its AS exons. Dou et al.
found that AS of Vegfa may regulate the development of colorectal
cancer and represent new targets for its diagnosis, prognosis, and
treatment (Zhao et al., 2015). Dou et al. found that Vegfa gene had
AS in endometrial cancer, which may also provide new biomarkers
for the diagnosis of endometrial cancer (Dou et al., 2020). The use
of AS to produce VEGFA protein isoforms with different
bioavailabilities is a key mechanism to control the development
and function of blood vessel (Bridgett et al., 2017). Chesnokov et al.
discovered that Vegfa isoform ratio produced by AS may be a
promising factor for prediction of anti-angiogenic therapy
efficiency in human hepatocellular carcinoma (Chesnokov et al.,
2018). These fully indicate that the AS of genes has important
effects, and it is necessary to further explore the role of these
immune-RAS in AAA.

SFs are involved in removing introns from mRNA so that
exons can be joined together. AS of precursor mRNA is an
important mechanism to increase the complexity of gene
expression and plays an important role in cell differentiation
and organism development (Bonnal et al., 2020; Zhang et al.,
2021). The regulation of AS is a complex process in which many
interacting components are at work. Any error in this process
may lead to the destruction of normal cell functions and the
occurrence of diseases. In particular, immune-related genes are
also regulated by SFs, which can cause changes in immune
response or immune cell composition (Blake and Lynch,
2021). SFs may be the basis for identifying new diagnostic and
prognostic biomarkers and new treatment strategies. In our study,
a total of 18 differentially expressed SFs, such as Sf3b1, Nol3,
Fastk, Scaf1, etc., were identified between the WTA and WT
group, and SFs show interaction with immune-RAS, whichmeant
that these SFs might potentially regulate immune-RAS. Recently,
with the development of second-generation sequencing
technology, many mutations related to RNA splicing have
been gradually identified and reported one after another.
Among these different SFs, human Sf3b1 (splicing factor 3b
subunit 1) is the gene with the higher mutation frequency. So,
we selected Sf3b1 for analysis based on higher expression levels
and significant differences, and combined it with existing
literature reports. Furney et al. found that Sf3b1 was
repeatedly mutated in uveal melanoma, and the mutation was
associated with abnormal AS (Furney et al., 2013). Maguire et al.
discovered that Sf3b1 mutations resulted in AS events, and might
constitute drivers and a novel therapeutic target in a subset of
breast cancers (Maguire et al., 2015). Chang et al. found that Sf3b1
may not only induce direct cancer cell cytotoxicity but also initiate
an innate immune response via activation of RNA-sensing
pathways (Chang et al., 2021). All these suggest that Sf3b1 can
regulate AS events, which is consistent with our research.

In conclusion, our research discovered that immune-related
genes and immune cells played an important role in the
occurrence and development of AAA, and the immune-RAS
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events affected the formation of AAA. The regulation of SFs on
AS events may be a new target for diagnostic and therapeutic
intervention. However, there are several limitations to the study.
First, because of the secondary analysis of the original data, it is
difficult to evaluate the reliability of the original samples. Second,
a small sample size may cause certain deviations in the
comparison results, including DEGs, immune-RAS, and SFs.
Since the samples we analyzed are from mouse AAA models
and are relatively consistent, the pathophysiological process of
patients may be different in clinical practice. Although we have
removed outliers and used powerful tools, such as the latest
algorithms for evaluation, it may still cause a certain error in the
clinically actual situation. Therefore, further research is needed to
provide more direct evidence for the immune-RAS and SF
regulation of AAA. Altogether, we take the lead in discussing
the vital role of immune-RAS and SFs, and provide new
mechanism insights for the development of immune-targeted
therapy in AAA.
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Supplementary Figure S1 | Transcriptome analysis of DEGs in WTA and WT. (A).
The sample correlation heatmap exhibited the clustering of samples from the WT
andWTA groups. (B). Expression heatmap of all significant DEGs betweenWTA and
WT samples.

Supplementary Figure S2 | Identification of WTA-associated AS events located
in immune-related genes (immune-RAS). (A). Boxplot showing all regulated AS
events (RAS) by SUVA between WTA and WT. (B). Splice junction constituting
RAS detected by SUVA was annotated to classical AS event types. And the
number of each classical AS event types were showed with boxplot. (C). Bar plot
showing number with different abundance (pSAR) of all detected RAS. (D). Bar
plot exhibited the most enriched GO biological process results of the RASG
between WTA and WT groups. (E). Bar plot exhibited the most enriched KEGG
pathways results of RASG between WTA and WT groups. (F). Boxplot showing
splicing ratio profile across 5 WT tumor and 4 WTA samples of 3 immune-related
splicing events (pSASR ≥ 90%).

Supplementary Figure S3 | Construction of co-disturbed network between SFs
and immune-RAS. A. Boxplot showing expression profile of co-disturbed SFs in
WTA and WT samples.

Supplementary Figure S4 | Immune infiltration altered and is associated with
candidate SFs. (A). Box plots showing proportion of 7 significantly altered cell type
(P ≤ 0.05) in WTA or WT samples. (B). Scatter plot comparing the mean proportions
of cell populations of each cell type in two groups.

Supplementary Figure S5 | SF3B1 bound on a mass of immune-related genes.
(A). Bar plot exhibited the most enriched GO biological process results of the genes
bound by Sf3b1 in both replicates. (B). Motif analysis showing the top 5 peaks
preferred bound motifs of Sf3b1 on immune-related genes by HOMER software.
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